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Abstract

This study examined i) the imbibition behaviour of a wide range of genotypes with 
different seed coat characteristics; ii) the use of a polymer to regulate the rate of 
water uptake and iii) the mechanism of regulation of water uptake by the seed coat in 
soybeans (Glycine max L. Merril.). Seed coat structure was studied by using light, 
fluorescence and scanning electron microscopy. The effects of different methanol 
and chloroform pre-treatments on seed coat permeability to water were also assessed. 
In this study, imbibition damage due to rapid water uptake was well documented in a 
wide range o f soybean genotypes. In addition a line (VLS-1) was identified that 
possessed a delayed-permeability seed coat characteristic that offered protection 
against imbibition damage. This characteristic was likely to be due to a lack o f pits in 
the abaxial region o f the seed. In contrast, genotypes with a high proportion o f deep 
and wide open pits in the abaxial region o f the seed offered minimal protection 
against imbibition damage.
Coating seeds (24 mg per seed) with a polymer containing vinyl acetate, vinyl 
chloride, ethylene and acrylate regulated the rate o f water uptake, and offered 
protection against imbibition damage. Seedling emergence from polymer coated 
seeds was also improved.
Deposits and pits occurred in the surface of the seed coat in most genotypes. Deposits 
were shown to be composed of hydrophilic polysaccharide material, since staining 
with calcofluor was observed. Water permeability mapping indicated that pits were 
the sites o f the initial water penetration. However, in hard seeds, pits appeared to 
function in a different way to soft seeds and this is fully discussed within the thesis. 
Prolonged methanol pre-treatments were highly effective in increasing the water 
uptake when seeds were imbibed immediately after the pre-treatments. However, 
drying o f seeds after the organic solvent pre-treatments restored permeability to 
water to untreated control levels. Results from the absorption spectrum o f the 
methanol and chloroform supernatants, indicated that the effect o f the pre-treatments 
were not due to the extraction of UV-absorbed material from the seed coat. In hard 
seeds, the location of the water impermeability barrier was near the outermost part of 
the palisade cell layer. The nature of the barrier was not identified by comparative 
anatomical and histochemical studies between hard and soft seeds.
A mechanism for the water uptake regulation by the soybean seed coat was proposed. 
The proposed mechanism involved: i) a diminished role o f the cuticle and its 
components (epicuticular and intracuticular waxes), ii) a key role for pits as initial 
sites o f water penetration, and iii) swelling or collapse o f the cellulosic and/or pectic 
material in the subcuticular and palisade cell layer that could regulate water 
penetration through the seed coat. The common behaviour of a wide range of 
genotypes tested indicated that the above mechanism o f regulation of water uptake 
by the seed coat is likely to be universal in soybeans.
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Chapter 1: General Introduction

CHAPTER 1 

General Introduction

1.1. Importance of soybeans

Soybean (Glycine max L. Merril.) is a member o f the family Leguminosae, sub­

family Papilionideae and the genus Glycine (Hinson and Hartwing, 1982). It probably 

originated from Glycine soja which grows wild in the northern and north-eastern 

provinces o f China, adjacent areas o f Russia, Korea and Japan (Hinson and Hartwing, 

1982). Flowers are borne on short racemes originating in the leaf axis; each raceme 

bears 3 to 15 small, purple, pink or white flowers. Self pollination is the rule with only 

about 1% of cross pollination (Weiss, 1983). Soybean seeds are borne in pods, each 

pod contains about 4 seeds. Seed shape varies from spherical to flattened and 

elongated. Seed coat varies from yellow to black but most cultivated genotypes are 

yellow seeded. Seed weight in cultivated genotypes varies from lOOmg to 200 mg per 

seed (Hinson and Hartwig, 1982).

Soybean seeds sent from China by missionaries were planted at the Royal 

Botanic Garden Kew, London, in 1790 (Morse, 1950). Soybean was introduced into 

the United States in 1804 but in the early stages, it was mostly grown as a forage crop 

(Hammond et al., 1951). It was around 1920's when the Americans realised its food 

value and started harvesting the crop for grain (Probst and Judd, 1973). As a result, 

there has been a continuous increase in the cropped area which resulted in doubled 

world production between 1969 and 1982, mainly because o f increases in output from 

the USA and Brazil (Hume et. al., 1985). Four countries, namely USA, Brazil, China 

and Argentina, account for about 90 to 95% of the world soybean production (Smith 

andHuyser, 1987).

The grain is mainly composed o f proteins, lipids, carbohydrates and minerals 

with proteins and oil being the most important constituents. Most o f the improved 

varieties contain about 40% protein, about 20% oil, about 34% carbohydrate and 5% 

ash on a dry weight basis (Orthoefer, 1978). The grain composition makes soybean an 

excellent source of protein and oil, in contrast with cereals which contain almost no 

oil and about 8  to 20% protein on a dry weight basis (Hardy and Havelka, 1975).
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Chapter 1: General Introduction

Soybean meal and oil are the most traded and utilised meal and vegetable oil 

products in the world: soybean oil accounts for about 2 0 % of total world fats and oil 

production and about 30% of total edible vegetable oil production, more than any 

other single vegetable or animal source (Smith and Huyser, 1987). Its oil is made up 

of both saturated (palmitic, stearic) and unsaturated fatty acids (linoleic, oleic and 

linolenic) (Hinson and Hartwig, 1982). In contrast, a high percent o f the meal 

remaining after the extraction o f oil is used as a protein supplement in livestock and 

poultry feeds worldwide. Soy-protein in common with other legumes is low in 

methionine and cysteine but high in tryptophane (Hinson and Hartwig, 1982). 

Soybean seeds are the cheapest source of good quality edible plant protein (Cambell 

1979). Additionally, soybean meal is used to a smaller extent as a food either in the 

Orient which is part o f the local diary or elsewhere in the world as a meat substitute 

or protein enrichment.

Although demand for soybean meal is mainly in developed countries, several 

tropical and subtropical countries have been trying to introduce developed varieties or 

modify existing management systems for a large-scale soybean production. In the 

tropics, soybean meal could be used as a protein supplement to increase the protein 

content o f traditional dishes such as maize or porridge (IITA, 1987). Soybean could 

also play an important role in bridging protein malunitrion. In West Africa, for 

example, great efforts have been made to grow soybean on a large scale in the Ivory 

Coast, Ghana, Nigeria and Cameroon (Nangju et al., 1980). However, soybean 

introduction to the lowland tropics has met with little success (Singh and Rachie,

1987). In Pakistan, poor storage environment and lack o f expertise during planting 

has acted as a disincentive to more extensive soybean cultivation, although the 

country is faced with a serious shortage of edible oil and the crop is considered to be 

suitable for about 1.5 million hectares (Ehsanullah, 1993).

1.2. Seed quality

Seed quality is a multi-component concept namely analytical purity, seed health, 

germination and vigour. Several laboratory tests are needed to assess seed quality 

with analytical purity, seed health and germination being determined in routine tests 

(Perry, 1980). A farmer perceives seed quality as a component required in order to 

produce vigorous seedlings, and then an established plant and ultimately an economic 

yield (Carver, 1980). Crop failures caused by poor seed quality have been well
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Chapter 1 : General Introduction

documented over many years. In soybeans, the most severe quality problems relate to 

low germination and vigour and the single most recognised and accepted index of 

seed quality is the ability o f seeds to germinate (Copeland and MacDonald, 1985).

1.2.1. Seed viability

Seed viability is the ability o f seeds to germinate. However, there is no common 

measurement o f seed germination. To the seed physiologist, a viable seed would be 

one that a clear radicle protrusion through the seed coat is manifested (Copeland and 

McDonald, 1985). To the seed analyst the definition o f germination is "the emergence 

and development from the seed embryo o f those essential structures which are 

indicative o f the ability to produce a normal plant under favourable conditions" 

(Copeland and MacDonald, 1985). In other words, the criterion o f viability is the 

production o f normal seedlings rather than the germination itself.

The main aim o f the standard germination test is to determine the practical value 

o f a seed lot under controlled and standardised conditions (Wellington, 1965). 

However, under adverse field conditions, the results from laboratory tests over­

predict field emergence by varying percentages depending on the relative adversity of 

soil conditions (Athow and Caldwell, 1956; TeKrony and Egli, 1977). Another 

problem with standard germination tests is that differences in the magnitude o f 5% 

between lots are often not statistically different, although could reflect great 

differences in other performance characteristics (Ellis and Roberts, 1980). Finally, the 

loss o f capacity to germinate is almost the last event that happens as seed deteriorates 

and ultimately dies (Priestley, 1986). Therefore, the standard germination test does 

not take into account the very substantial loss in performance potential that occurs 

before germination capacity is lost.

1.2.2. Seed vigour

In general, seed vigour is the potential for growth and the ability to sustain life. 

Over the last two decades, seed vigour has become recognised as an important quality 

constituent. Although the term seed vigour has been used for a long time, particularly 

during the 1970's, there was no agreed meaning before the International Seed Testing 

Association (ISTA) adopted the following definition: "the sum total o f all those

3



Chapter 1 : General Introduction

properties o f seed which determine the level o f activity and performance o f the seed 

lot during germination and seedling emergence" (Perry, 1978). McDonald (1980) 

defined vigour as those properties that determine the potential for rapid and uniform 

seedling emergence over a range o f field conditions.

Despite differences o f opinion on its definition there is a general agreement that 

vigour measurements can be used for predicting the potential performance in the field 

o f soybeans (Pollock and Roos, 1972; Yaklich and Kulik, 1979; Oliveira et al., 1984; 

Loeffler et al., 1988). Heydecker (1972) reported that soybean seed vigour may show 

its effects at survival in storage, emergence in the field, establishment o f mature plants 

and production o f full yield at the end o f the plants life cycle. However, Egli and 

TeKrony (1979) observed that high vigour seed lot resulted in improved crop stands 

but not necessarily high yield. Over the years, the identification o f the vigour level of 

seeds has been a prime target o f research, and therefore several tests have been 

developed. McDonald (1980) suggested that any vigour test should be inexpensive, 

rapid, uncomplicated, reproducible and correlated with field performance. Vigour 

tests could be broadly grouped in three main categories: physical, physiological and 

biochemical.

Physical tests

Within this category are those that measure the effect o f seed size and weight 

upon the rate o f seedling emergence (Woodstock, 1969; Perry, 1969; McDonald,

1975).

Physiological tests

Physiological tests may be carried out under favourable or unfavourable 

conditions. Under favourable conditions, the most common test is the measurement of 

speed o f germination or the seedling growth (Perry, 1980). Under unfavourable 

conditions, the cold test has been widely used in maize (McDonald, 1975) and 

soybeans (Johnson and Wax, 1978; Perry, 1980). Other stress tests, involve 

measurement o f germination after exposure o f seeds to ageing conditions. 

Accelerating ageing is the test where seeds are rapidly aged by exposing them to hot 

and humid environment (e.g. 41°C and 100% relative humidity). In soybeans, the 

accelerating ageing test has been used to estimate longevity in storage (Delouche and 

Baskin, 1973), seed vigour during seed production (Rasyad et al., 1990) and to 

predict field emergence (TeKrony and Egli, 1977). Controlled deterioration test 

involves the ageing under stable seed moisture and temperature conditions

4



Chapter 1: General Introduction

(Matthews, 1980). Controlled deterioration has been widely used by Ellis and 

colleagues to develop the viability equation for predicting seed deterioration (Ellis and 

Roberts, 1980).

Biochemical tests

Vigour tests within this group are based on the measurement o f chemical 

reactions or processes related to seed germination. These include vital staining 

reactions, enzyme activity, processes involved in biosynthesis and measurement of 

membrane integrity (Woodstock, 1973). The tetrazolium test and the electrical 

conductivity test are the most widely used biochemical tests.

The tetrazolium test is based on a vital staining reaction which occurs when the 

reduction o f the colourless 2,3,5 tri-phenyl tetrazolium chloride by the redox 

dehydrogeneases o f living seed tissue results to a formation of red formazan (Cottrel, 

1948). The test is considered as a powerful diagnostic tool in the detection o f low 

viability due to ageing or other causes such as mechanical or heating damage to seeds 

(Woodstock, 1973). In addition, the staining with tetrazolium chloride was used as a 

seed vigour indicator to illustrate that seeds with injured cotyledons were susceptible 

to adverse conditions in the field leading to poor emergence (Moore, 1973). It was 

later, that a close association between the poor staining o f the cotyledons and the high 

solute leakage in low vigour pea seeds was observed (Matthews and Rogerson,

1976). Staining o f the cotyledons with tetrazolium chloride has been widely used to 

reveal imbibition damage in many grain legumes, as proposed by Powell and 

Matthews (1978).

The conductivity test is based on the measurement o f the electrical conductivity 

o f the water in which seeds have been soaked (Perry, 1969). Matthews and Bradnock 

(1967, 1968) first used this test was as a routine vigour test for peas. Seed lots with 

high conductivity readings were found to have poor field emergence and vigour 

whereas those with low conductivity measurements had a high vigour and seedling 

emergence (Matthews and Bradnock, 1967). Over the years, the conductivity test has 

been widely used to stress the negative relationship between leakage o f electrolytes 

and low vigour in many grain legumes, including peas (Perry, 1970; Bedford, 1974; 

Rowland, 1981), soybeans (Yaklich et al., 1979; Oliveira et al., 1984), chickpeas 

(Legesse and Powell, 1992), French beans (Powell et al., 1986a) and faba beans 

(Kantar et al., 1996).
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Chapter 1: General Introduction

1.2.3. Seed characteristics related to viability and vigour

Seed size is frequently adopted as a quality characteristic in soybeans although 

the implications and practical significance o f seed size to seed quality are poorly 

understood. There is some contradiction in the literature in relation to the effect o f 

seed size on vigour, germination, seedling growth and establishment.

According to Heydecker (1972), larger seeds with more "initial capital" often 

have at least an initial advantage over smaller seeds. However, different soybean seed 

sizes within cultivars had little or no effect on germination, field emergence and initial 

plant stand (Singh et al., 1972; Johnson and Lueders, 1974; Smith and Camper, 

1975). Edward and Hartwig (1971) used isogenic soybean lines differing in seed size 

and found that the small (95 mg per seed) and medium (135 mg per seed) gave more 

rapid emergence and greater root development than the larger seeds (225 mg per 

seed). This result was consistent at different soil moisture contents at which 

germination occurred. In agreement, Green et al. (1965) reported that genotypes with 

small seeds were generally associated with larger germinability and seedling 

emergence than genotypes with large seeds in fields in Missouri, USA. A possible 

explanation for the poor emergence o f large seeds may be that the large cotyledons 

provide excessive resistance in medium and heavy soils, and are more susceptible to 

mechanical damage during handling in comparison to the smaller seeds (Shibles et al., 
1975). Hoy and Gamble (1985) studied the seed performance o f different sizes in 18 

different lots o f three different cultivars. They reported that the largest seeds had the 

lowest percentage o f normal seedlings and highest leakage conductivity values.

Egli et al., (1990) compared the effect o f seed size on the seedling growth 

within similar range o f vigour levels (as measured by using the accelerating ageing 

test). They reported that larger seeds produced heavier seedlings than the small seeds 

but seed size had no effect on seedling growth rate. Burris (1973) reported that the 

largest seeds within seed lots exhibited superior seedling emergence and greater leaf 

area than small seeds. Fontes and Ohlrogge (1972) reported that in field conditions 

larger seeds within seed lots produced fewer barren plants compared to small seeds. 

Hopper et al., (1979) reported that although the smallest seeds within a seed lot 

germinated more slowly than the larger seeds, in sand media the smaller emerged 

faster than the largest seeds.
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Chapter 1: General Introduction

1.3. The role of ageing in seed quality

Earlier reports suggested that some o f the important manifestations o f seed 

ageing were changes in seed colour, delay in germination, susceptibility to adverse 

storage conditions, higher sensitivity to radiation treatments, reduced growth of 

seedlings and increased number of abnormal seedlings (Toole et al., 1948).

In general, as seeds age, they maintain germinability for some time; then enter a 

period decline during which some fail to germinate while others germinate and grow 

normally (Abdul-Baki and Anderson, 1972). The time which marked the first 

detectable decline in germinability did not coincided with the actual beginning o f 

deterioration; a great decline in synthesis o f carbohydrates and proteins occurred 

while the germinability still remained unchanged (Abdul-Baki, 1969). Although no 

physiological interpretation o f the characteristic germinability-decay curve has been 

firmly established, one attractive hypothesis has been advanced by Roberts et al. 
(1967). According to this hypothesis, the germination o f a seed is dependent on the 

proper functioning o f a relatively large number o f key cells in the embryo. The 

hypothesis assumes that some o f these key cells are rendered non-functional during 

deterioration by some unspecified factor. The interaction o f this debilitating process 

with the cellular population is describable in terms o f a Poisson distribution.

Ageing causes an irreversible degenerative change in the quality o f seeds after it 

attains its maximum quality level (Coopeland and McDonald, 1985). According to 

Roberts (1972) the membrane damage is the earliest biochemical indication o f the 

onset o f ageing which is followed by a sequence o f events such as impaired 

biosynthesis which caused slower growth and a greater susceptibility to environmental 

stress resulting in poor emergence, morphological aberrations and finally the lost 

ability o f seed to germinate. Ageing is recongnised as a major cause o f differences in 

the vigour. Soybean seeds could suffer considerable deterioration before harvest in the 

mother plant depending on the climatic conditions (Green et al., 1965; TeKrony et al., 
1980; Ellis et al., 1987), during and immediately after harvest (Green et al., 1966; 

Lueders and Burris, 1979; TeKrony et al., 1987), and during the storage (Roberts, 

1986).
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Chapter 1: General Introduction

1.4. The role of imbibition in seed quality

Germination and seedling growth require energy and molecular building blocks 

(substrates) for synthesis o f the new tissues. Energy and substrates are obtained by 

enzyme-catalysed metabolic processes in the tissues o f the germinating seeds 

(Woodstock, 1988). Water is essential for cellular metabolism for at least three 

reasons: a) for enzyme activity, b) solubilization and transport o f reactants and c) as a 

reactant (Priestley, 1986). According to W oodstock (1988), although necessary 

imbibition is a period o f peril. The ability o f the seed to traverse this period 

successfully depends on the inherent soundness and vigour o f the seed (Woodstock, 

1988). Vertucci (1989) suggested that the rate o f water penetration was critical to the 

success o f subsequent germination. If water uptake is too slow, germination is 

reduced perhaps because o f fungal infection or accelerated deterioration. If  water 

uptake is too rapid, seeds are subject to imbibition damage (Vertucci, 1989).

Larson (1968) investigated the effect o f the rate o f water uptake during 

imbibition on subsequent seed performance. He reported that when pea embryos 

(seeds without the coats) were imbibed in water showed an increased solute leakage 

and reduced seedling growth compared to seeds which were imbibed with the seed 

coat present. However, it was much later that the phenomenon was properly 

recognised when pea embryos (seeds without the seed coat) soaked into water by 

Powell and Matthews (1978). They reported that high leakage o f electrolytes coupled 

with poor staining o f the cotyledons with tetrazolium chloride was observed. This 

phenomenon was called imbibition damage (Powell and Matthews, 1978). Initially, it 

was supported that the rapid water uptake resulted in the death o f the outer layers of 

cells o f the cotyledons which occurred within minutes o f the start o f imbibition 

(Powell and Matthews, 1978). However, later it was shown by the same authors that 

the failure to stain actually resulted from the loss o f the substrate for the 

dehydrogenase enzymes that reduce tetrazolium chloride to the red formazan (Powell 

and Matthews, 1981). Imbibition damage was, therefore, caused by impaired cell 

function on the surface o f the cotyledons which allowed a high loss o f solutes and 

resulted in a failure to stain with tetrazolium chloride. Further support to the existence 

o f imbibition damage in soybeans, navy beans, peas and groundnuts was given by 

Duke and Kakefuda (1981) using another methodology. They used Evan's blue, a 

non-permeable to the seed coat stain; when embryos imbibed in an aqueous stain 

solution, the outermost cells of the cotyledons were stained whereas no staining in the 

intact seeds was observed. The consequences of imbibition damage may have an
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effect at a later stage o f imbibition and germination. Imbibition damage resulted in 

reduced respiration, germination, a decline in the rate o f food reserve transfer from 

the cotyledons to the growing axis and a lower seedling growth (Powell and 

Matthews, 1979).

Powell et al., (1984) proposed that imbibition damage as revealed by an 

increased leakage o f electrolytes and low percentage o f cotyledons fully stained with 

tetrazolium chloride was a common situation in all grain legumes. Indeed, using the 

above methodology, imbibition damage has been observed in soybeans (Semple, 1981; 

Oliveira et al., 1984), dwarf French beans (Powell et al., 1986b), chickpeas (Knights 

and Mailer, 1989; Legesse and Powell, 1992), long beans (Abdullah et al., 1992), faba 

beans (Rowland, 1981; Kantar et al., 1996). Imbibition damage may not only result in 

a physiological damage o f the cells on the surface o f the cotyledons but also in an 

increased predisposition o f seeds to the infection by soil borne fungi (Powell and 

Matthews, 1980). There have been proposed two explanations for the previous 

situation; either the increased predisposition may result because the tissue acts an 

initial site o f fungal infection and/or the solutes leakage into the soil causes an 

increase in the inoculum potential (Matthews, 1971).

The possibility o f a direct relationship between the imbibition damage and the 

low seedling emergence under soil condition conditions could be explained o f the 

previous basis. In several studies, the soil condition has been involved in the seedling 

emergence and growth. Earlier studies, in peas, have shown that high soil moisture 

was closely correlated with low seedling emergence and growth (Hull, 1937; Baylis, 

1943). The infection o f soil-borne fungi of Pythium species has been reported as a 

cause o f a poor field emergence in soybeans (Hill and West, 1982; Peske, 1983), 

chickpeas (Legesse and Powell, 1992), peas (Matthews and Whitbread, 1968; 

Matthews, 1971). Further evidence of the involvement of the soil-borne fungi in the 

low seedling emergence is the fact that seed fungicide treatment results in 

improvement o f germination. The improvement in seedling emergence due to 

fungicide treatments has been reported in several grain legumes including soybeans 

(Gupta and Chatrath, 1983; Wall etal., 1983; Ferriss et al., 1987), peas ( Jacks, 1963; 

Matthews and Bradock, 1967) and chickpeas (Kaiser and Hannan, 1983).

9



Chapter 1: General Introduction

1.5. Regulation of water uptake during imbibition

In general, imbibition is affected by the seed properties as well as the 

environment in which seeds germinate. A water gradient between the seed and the 

environment is the driving force for water uptake but permeability o f seed to the 

medium is more important in determining the rate (Bewley and Black, 1985). Seed 

permeability is a complex function of seed morphology, structure, composition, 

moisture and temperature (Vertucci, 1989). Practically, regulation o f rate o f water 

uptake during imbibition could be achieved by use of osmo-conditioners as imbibing 

media, use o f polymer coating, and finally by the seed coat itself.

1.5.1. Use of osmo-conditioners

Polyethylene glycol (PEG), a non-toxic high-molecular weight compound has 

been widely used as an osmoconditioner to reduce the rate of water uptake during 

imbibition. W oodstock and Tao (1981) reported results in the effect o f slow 

imbibition in PEG in the subsequent growth of the excised embryonic axis of 

soybeans. They concluded that seed deterioration decreased the ability o f seed axis to 

tolerate rapid water uptake at the start of the imbibition. Slow imbibition in PEG of 

low vigour seeds resulted in an improvement of the axis growth at levels comparable 

to the unaged control seeds (Woodstock and Tao, 1981). These results were further 

supported by the findings of Woodstock and Taylorson (1981). They reported that 

slow imbibition in PEG could play a vital role in avoiding the rapid water uptake in 

soybean seeds. Tilden and West (1985) reported a reversal of the effect o f ageing by 

slowly imbibing seeds. This treatment reduced electrolyte leakage and increased seed 

vigour, providing evidence for a metabolic repair of plasma membranes and other sub- 

cellular components when seeds imbibed at a slow rate.

1.5.2. Polymer coating

Reduced rate o f water uptake could be achieved by the application o f relatively 

hydrophobic polymers. The use o f polymers is widespread in seeds o f particular crops 

like vegetables or sugarbeet. These type of polymers are highly hydrophilic, and are 

added to seeds together with insecticides and fungicides to offer better resistance to 

pathogen attacks (Powell and Matthews, 1988). However, use o f polymers to 

regulate the rate o f water uptake requires polymers with hydrophobic qualities.

10
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Preliminary results by applying a thin layer o f lanolin to seeds were open the 

possibility o f the use o f polymers to regulate the water uptake (Priestley and Leopold, 

1986). West et al. (1985) reported results about the control of only moisture uptake 

but not water uptake by using two polymers. More recently, Hwang and Sung (1991), 

applied ethyl cellulose as a hydrophobic layer and observed that water uptake was not 
stopped completely but it was slowed down.

1.5.3. Seed coat

The soybean seed coat has often been regarded as the only, or at least primary, 

regulator in the exchange of water, nutrients and gases between the seed and outside 

atmosphere (Woodstock, 1988). The functional significance o f the seed coat in 

soybeans lies in its protective roles for the underlying embryonic tissues. These roles 

include: mechanical protection from injury due to striking or abrasion, physically 

holding seed parts together and shielding the embryo, retention o f water and 

protection against desiccation following imbibition, and avoidance o f imbibition injury 

from excessively rapid water uptake (Woodstock, 1988).

According to Delouche (1974), the soybean seed is poorly designed to resist 

mechanical damage due to the fact that the embryonic axis lies against the basal 

margins o f the cotyledons, and this position together with the thin seed coat make the 

seed vulnerable to mechanical injury. Many studies have shown that the presence of 

the soybean seed coat during imbibition resulted in a lower rate o f water uptake than 

embryos and hence in protection against imbibition damage (Duke et al., 1983; Duke 

et al., 1986; Duke and Kakefuda, 1981; Tully et al., 1981). To carry out this role, the 

seed coat should be also intact. Powell and Matthews (1979) showed that pea seeds 

with scarified seed coats had a higher rate of water uptake and higher level of 

imbibition damage than seeds with intact coats. In addition, Powell and Matthews 

(1979, 1980) suggested that the presence of pea seeds with cracked coats within seed 

lots was associated with the vigour level o f the seed lot. Similar association between 
the presence o f seeds with cracked coats and low vigour has been reported in 

commercial soybean seed lots (Oliveira et al., 1984) and faba beans (Kantar et al., 

1996).
In grain legumes, several reports have shown the existence o f genotypic 

differences in seed coat characteristics that could be related to different rates o f water 

uptake. One o f the most widely referred seed coat characteristic is the pigmented

11
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colour o f the seed coat. In soybeans, seeds with black colour seed coat had a lower 

rate o f water uptake than those with yellow colour seed coats (Tully et a l,  1981; 

Kuo, 1989). Powell et al. (1986b) in dwarf French beans reported that seeds with 

black seed coats had a lower rate o f water uptake, a lower leakage, a higher 

percentage o f cotyledons fully stained and a higher field emergence than seeds with 

white seed coat. Similarly, the previous relationship between seed coat colour and 

imbibition behaviour has been reported in chickpeas (Kaiser and Hannan, 1983; 

Legesse and Powell, 1992).

Seed coat in soybeans (botanically known as testa) is marked with a hilum (seed 

scar) that varies in shape from linear to oval. At the one end o f the hilum is the 

micropyle, a tiny hole formed by the integuments during seed development but 

frequently covered by a cuticle at maturity. At the other end of hilum is the raphe, a 

small groove extending to the chalaza where the integuments were attached to the 

ovule proper (Williams, 1950). The seed coat proper has three distinct layers: i) 

epidermis, ii) hypodermis, and iii) inner parenchyma layer (Thorne, 1981). The 

epidermal layer consists o f closely packed, thick-walled palisade cells 

(macrosclereids). A cuticle is present on the outer wall o f the macrosclereids. The 

hypodermis consists o f a single layer o f sclerified cells (hourglass cells) variously 

elongated and separated from each other. The unevenly thickened cell walls are thin at 

the end o f the cell and very thick at the central, constricted portion o f the cell. These 

cells thus form a strong supporting layer with considerable intercellular space 

(Wilcox, 1987). The inner parenchyma tissue consists o f six to eight layers o f thin- 

walled, flattened cells that lack contents. The parenchyma tissue is essentially uniform 

throughout the entire seed coat except the hilum where it forms three distinct layers 

(Dzikowski, 1936).

According to Ragus (1987), the significance o f hilum to water uptake was far 

lesser to that o f seed coat itself. The micropyle served important functions, being the 

route by which pollen tubes entered the ovule and the passageway for movement of 

gases and moisture to and from the developing embryo (Carlson, 1973). It was also 

the route for passive invasion by pathogens into the seed (Vaughan et. al., 1985). In 

the literature there is some contradiction on the role o f micropyle in relation to water 

uptake. Saio (1976), observed that the micropyle acted as a major route for water to 

enter the seed at germination. He also added that hardseedness (a situation in which 

water uptake was inhibited) was associated with a closed micropyle. However, 

Yaklich et. al., (1986) through a series of SEM studies observed hard seeds with an

12
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open micropyle. Phillips (1968), tested the hypothesis if there was any preferential 

water uptake through the micropyle but no difference between the uncovered and 

epoxy glue micropyle-covered seeds was observed. A possible explanation for 

hardseedness in soybeans with an open micropyle may be that a blockage or closure 

occurs farther down in the micropylar channel (Vaughan et. al., 1987).

McDonald et al. (1988), observed that after 8  hours soaking, the seed coat of 

the cultivar "Williams 82" either had no effect or a slightly promotive effect on water 

uptake into the seed. However, at longer than 8 h imbibition, seeds with the coat 

present had a higher amount of water absorbed than embryos ( McDonald et al.,
1988). This might be due to the large water holding capacity o f the seed coat. Indeed, 

Vertucci and Leopold (1983) observed that under conditions o f excess water, the 

seed coat absorbed 3.0 times its dry weight after 4 hours compared to a soybean 

cotyledon which absorbed about 1.2 times its dry weight. Also, the seed coat in the 

cultivar "Williams 82" found to aid in tangential and radial movement of water 

around the seed that both cotyledons hydrate evenly (McDonald et al., 1988). Such 

mechanism o f water transport (if proved to be universal in soybeans) could be very 

important in a soil environment where pockets of water exists as the seed to soil 

contact is poor. The thickness o f the seed coat in soybeans differed considerably from 

one part o f the seed to the other with the thick part to be the hilar region and the thin 

part to be the dorsal region (Hwang and Suang, 1991). Some reports have concluded 

that a thicker seed coat was generally found on a smaller seed (Calero et. al., 1981; 

Yaklich et al., 1986). In contrast, Hwang and Suang (1991) showed that large seeds 

had thicker seed coats than seeds of medium and small size. Comparison was done on 

the thickness at the hilum (thick part) and the distal area (thin part) of the seed coat 

(Hwang and Suang, 1991).

It is generally believed that thicker seed coats offered more resistance to water 

penetration, although there were only weak negative correlation between the ratio of 

seed coat dry weight to embryo dry weight and the rate of water uptake (Mugnisjah 

et. al., 1987; Calero et. al., 1981; Yaklich et. al., 1986). McDonald et. al. (1988) 

suggested that water firstly penetrates the dorsal region and then the ventral region of 

the seed. Pereira and Andrews (1985), showed that the seed coat decreased in 

thickness away from hilum; this was attributed to the presence o f hourglass cells that 

gradually decreased in size from the hilum until they disappeared in the region distal 

to hilum. Hourglass cells were ascribed a cushioning role by absorbing excess water 

and preventing the seed coat wrinkling (Pereira and Andrews, 1985). McDonald et.
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al., (1988) showed that regardless of the hydration environment, the portion o f the 

seed coat nearer to hilum (larger hourglass cells) absorbed more water than that of 

distal to the hilum. According to McDonald et al. (1988), hourglass cells were ideally 

tailored as moisture reservoirs and this proposed function had obvious advantages to 
seeds planted in soils with fluctuating moisture levels.

Structural features (pits, deposits) are present in the surface o f the soybean seed 

coat. Pitting o f the seed coat surface was observed in several previous reports with 

surveys o f large number o f soybean genotypes (Wolf and Baker, 1972; Newell and 

Hymowitz, 1978; Calero et. al., 1981; W olf et. al., 1981). The number o f pits varied 

from 21 to 6  per 75 nm2  but that number was a poor indicator o f permeability to 

water (Calero et. al., 1981). The pits frequently appeared to be either closed slots or 

open passageways which penetrated to various degrees the thickness o f the palisade 

layer. Below the pits, frequently there was an oval-shaped cavity (W olf et. al., 1981). 

Although, the presence o f deposits in the surface o f the soybean seed coat is well 

documented, some reports have suggested that deposits were cutins which hinder the 

water uptake (Calero et al., 1981; Ragus, 1987) whereas other reports have 

suggested that deposits were residues to the endocarp (Wolf et al., 1981; Yaklich et 
al., 1986) which may play little role in the water uptake during imbibition. The 

function o f pits and deposits is still intriguing without a clear evidence o f their 

involvement in the water uptake during imbibition. According to Bedi and Basra 

(1993) an understanding o f seed coat characteristics in relation to regulation o f the 

water uptake is imperative so that plant-breeders could exploit this knowledge for 

cultivar improvement to avoid the detrimental effects of the rapid water uptake during 

imbibition in seed performance.

1.6. Aims and objectives

The present study aimed: (a) To identify genotypes that were resistant to 
imbibition damage and then if such genotypes are demonstrated to determine the seed 

coat characteristics responsible for any observed improvement in imbibition 

behaviour, (b) To investigate the applicability of the use of a polymer to avoid 

imbibition damage and to improve seedling emergence and growth, (c) To investigate 

the mechanism o f regulation of water uptake by the soybean seed coat.
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The objective o f experiments in Chapter 3 was to determine whether particular seed 

coat characteristics were correlated with high or low levels of imbibition damage. The 

imbibition behaviour o f a wide range o f soybean genotypes with different seed size, 

physical seed coat characteristics and seed coat colour were examined. The 

importance o f the hilum region in water uptake compared with the dorsal or abaxial 

region o f the seed coat was also examined. Finally, the importance o f the seed coat 

adherence to the embryo was assessed.

The objective o f experiments in Chapter 4 was to investigate whether the condition 

(hard or split) o f the seed coat could influence seed performance during ageing. The 

importance o f the occurrence of seeds with a high proportion o f hard or split seed 

coats within a genotype was assessed. Comparative studies between five genotypes in 

the seed performance during ageing were made. The genotypes were grown in the 

field under similar conditions, were of medium seed size and required similar time to 

flowering and maturity. However, the condition of the seed coat was different. In 

particular, in cv. Douglas seeds had intact or split seed coat and in cv. Pioneer-9581 

seeds had normal or hard seed coat.

The objective o f experiments in Chapter 5 was to investigate whether polymer coating 

could regulate the rate o f water uptake, prevent imbibition damage and improve 

germination, seedling emergence and growth. The beneficial role o f a polymer was 

studied in seeds o f cv. Douglas that was prone to imbibition damage due to a high 

proportion o f seeds with seed coat splits. In addition, the importance o f the initial 

seed quality was assessed by using seeds of two vigour levels (high or low vigour). 

Seeds o f low vigour level were produced after 2 days o f accelerated ageing. Finally, 

the performance o f polymer coated seeds was assessed under natural soil conditions 

or temporary flooding soil conditions.

The objective o f experiments in Chapter 6  was to investigate the role o f surface 

structure o f the seed coat (e.g. deposits and pits) in regulation of water uptake. Six 

genotypes with differences in the amount of deposit material present and in the 

structure and density of pits were examined. Caclofluor was used as a water-soluble 

fluorescent stain. Finally, changes in the seed coat structure due to organic solvents 

pre-treatments were associated with changes in the water permeability of the seed 

coat.
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The objective o f experiments in Chapter 7 was to localise and identify the nature of 
the water impermeability barrier in the soybean seed coat. Localisation of the barrier 

was made in hard seeds by using calcofluor as a water-soluble fluorescent stain. 

Identification o f the nature o f the barrier was attempted by comparative anatomical 

and histochemical studies between hard and soft seeds. Finally, changes in the hard 

seed coat structure due to organic solvents pre-treatments were associated with 

changes in the water permeability of the hard seed coat.

The final outcome o f the proposed research may help to further understand the 

mechanism o f regulation o f water uptake by the seed coat, and this should help: 1 ) to 

provide solutions in order to maintain high seed quality, and 2 ) to increase the 

fundamental knowledge in seed coat regulation of the water uptake which could 

subsequently be used in breeding programmes for selection o f genotypes with 

desirable seed coat characteristics.
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CHAPTER 2 

General Materials and Methods 

2.1. Seed Material

Soybean cultivars and lines were kindly supplied around the end o f 1993 

beginning o f 1994 from the following sources: i) Ten genotypes (2 cultivars, 8  lines) 

from the Germplasm Centre o f the Asian Vegetable Research and Development 

Centre (AVRDC), Tainan, Taiwan; ii) Ten lines from the seed company KWS, 

Einbeck, Germany; iii) Ten cultivars from the seed company Rustica Semences, 

Mondonville, France; iv) Ten lines from the National Bureau for Plant Genetic 

Resources (NBPGR), India and v) Ten cultivars from Agricultural Research Station, 

Mingora, Pakistan. Seed samples were posted to the researcher as air-mail small 

parcels. Immediately after reception, seeds were tested for moisture content and 

germinability (Table 2.1). Seeds were stored in a cold store at 5°C in sealed plastic 

bags until needed. From the 50 genotypes originally obtained, a selection o f genotypes 

was made in order to cover a wide range of seed size and seed coat colour (Table

2 .1).

2.2. Seed characteristics

The seed moisture content o f soybean seeds was determined by the hot oven 

method at 103 ± 2°C for 17h (ISTA, 1985). Four samples each o f 2 g were used to 

determine the seed moisture content. Each sample was ground and placed in a pre­

weighed and pre-dried glass beaker. At the end of the drying period, the beakers were 

placed in a desiccator with blue silica in the bottom to cool for about 30 minutes. 

After cooling, the beakers were weighed and the percentage moisture content was 

calculated on fresh weight basis. Hundred seed weight was based on average o f three 

replications o f 100 seeds each per cultivar. Seed coat colour and hilum colour were 

observed with the naked eye. Seed surface area was calculated by the equation 

describing a prolate spheroid: Area= 2pab [(sin_1e)/e] + 2pb2, where a is half the 

length o f the longest axis, b is half the average of width and thickness, and e is the 
eccentricity o f seeds which is calculated by the equation: e= (a2 -b2)°-5/a (Kuo, 1989).
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Table 2.1. Characteristics of the soybean genotypes used in this study.

Genotype seed coat colour production

year

moisture

content

(%)

normal

seedlings

(%)
Source: AVRDC
GC 84128-17-2-1 yellow 1991 8 . 6 8 6

AGS 292 yellow 1992 8.4 85
G 2120 green 1990 8 . 1 8 8

Suwan-155 black 1992 7.9 87
Suwan-156 black 1992 8 . 2 84

CC 84051-32-1 green 1992 8.3 92
GC 88037-38-2-2 brown 1992 8 . 8 89

SS 87040-2-1 green 1992 8.9 93

Source: KWS

KWS-2 partially black* 1992 8.9 87

KWS-3 yellow 1992 7.8 8 8

KWS-5 green 1992 9.1 90

KWS-A partially black* 1992 8 . 8 8 6

KWS-C partially brown* 1992 8.5 85

KWS-E yellow 1992 8 . 8 91

Source: Rustica
Picador yellow 1992 9.1 91

Toreador yellow 1992 9.6 89

Essor partially brown* 1992 8 . 8 91

Sapporo yellow 1992 9.4 94

Source: India
Pusa-16 yellow Unknown 7.9 8 8

Pusa-40 yellow Unknown 8 . 1 85

JS 7980 yellow Unknown 8 . 2 91

VLS-1 black Unknown 8 . 6 91

Source: Pakistan

Forrest yellow 1993 9.6 94

Douglas yellow 1993 9.1 91

HSC-591 yellow 1993 8 . 1 96

HSC-401 yellow 1993 8 . 2 92

Pioneer-9581 yellow 1993 8.4 8 8

* the rest o f the seed was yellow.
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Table 2.3. List o f chemicals used.

Name Formula Supplier Code
Polyethylene glycol 8000 - Sigma P-2139

2,3,5-triphenyl

tétrazolium chloride C i8 H i2 N 6 Fisons T/3 703/43

Potassium phosphate k 2h p o 4 Sigma P-5379

Potassium phosphate Na2 FLP04 Sigma S-7907

Sodium phosphate NaH 2 H P 0 4 Sigma S-8282

Sodium-hypochlorite NaOCl Anderson UN1791

Dithane-945 - Rohm & Hass 2085

Hydrochloric acid HC1 BDH UN1789

Phloroglucinol c 6h 6o 3 Sigma P-3502

Glutaraldehyde c 5h 8o 2 Sigma G-5882

Ethanol c 2h 5o h Fisons F/0400/08

Calcium Sulfate C aS0 4 Sigma C-3771

LR White resin - London Resin R/1281

Calcofluor white M2R C4oH42Nj2S2Na2 Sigma C-0647

Glycerol c 3h 8o 3 Fisons G/0650/17

Chloroform CHC13 Fisons C/4920/PB08

Toluidine Blue 0 C 1 5 H 1 6 N 3 SC1 Sigma T-3260

Vanillin c 8h 8o 3 Sigma V-2375

Ruthenium red - Sigma R-2751

Fluorol yellow c 22H i6o Sigma F-5520

Aniline blue - Fisons A/7300/46
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Seed coat dry weight was determined by removing the coat and comparing the 

seed weight before and after the seed coat removal. Seed coat dry weight per unit 

area was the quotient o f seed coat dry weight and seed surface area.

Hard seeds were defined as those with no obvious sign of imbibition (wrinkling 

o f the seed coat) after lOh soaking in distilled water at room temperature as proposed 

by Abdullah et al. (1992). Soft seeds were those with obvious sign o f imbibition after 

30 minutes o f soaking in distilled water. Hardseedness was determined as the 

percentage by weight of hard seeds in the seed sample; each mean represents the 

average o f four replications o f approximately 1 0 0  g o f seeds.

2.3. Germination test

The germination o f the different soybean genotypes was carried out using the 

standard rolled paper towel method according to recommended International Seed 

Testing Association conditions (ISTA, 1985).

Seeds were dipped in 1 % sodium hypochlorite for 1 0  seconds and then rinsed 

thoroughly with distilled water before being placed for germination. Seeds were 

placed 2 cm apart in a single row on the lower half of a double sheet o f Kimberley 

Clarke Hi-Dri 7390 rolled paper towel (220 x 380 mm) wetted with distilled water, 

and covered with a third moistened paper towel. The paper towels were fully 

saturated, and then placed in a photographic tray and allowed to drain freely before 

use. The bottom edge was folded up, the towels rolled up and held in shape by elastic 

bands. The rolls were placed upright in a basket, covered but not sealed with a 

polythene bag to reduce evaporation of water and placed into an incubator at 25°C in 

the dark. After 8  days of incubation, germination assessment was carried out 

according to the rules of International Seed Testing Association (ISTA, 1985). 

Seedlings were classified as normal, abnormal seedlings or dead seeds. Seedlings were 

evaluated in accordance with the ISTA Handbook of Seedling Evaluation (Bekendam 

and Grob, 1979). Normal seedling is described as an embryonic plant that must 

consist o f a complete root and shoot axis that has the capacity o f normal growth 

under favourable conditions (Bekendam and Grob, 1979).
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2.4. Seedling emergence and growth from compost

2.4.1. Determination of the field capacity

Seedling emergence and growth was determined in seeds that were sown in a 

loam based John Innes Compost No 2 that had a pH 6.5. The moisture content was 

determined following the high constant temperature oven method (ISTA, 1985). The 

field capacity o f the compost was determined as follows: Random samples o f the 

compost were used to fill three pre-weighed 20 cm diameter pots. Pots plus compost 

were weighed and placed in a photographic tray containing a reservoir o f 5  cm of 

water. The pots were watered from the top in order that capillary water movement 

could be established. After 24h, the pots were allowed to drain for about 6 h until 

capillary movement had virtually stopped before being weighed. The difference 

between the dry weight o f the compost and the weight o f the compost after drainage 

represents the 1 0 0 % field capacity of the compost.

2.4.2. Seedling emergence and growth

Pots 20 cm diameter were filled with compost up to 5cm from the top. Twenty 

five seeds were spread over the surface of the compost in such a way that seeds were 

clearly separated. The seeds were gently firmed into position before being covered 

with another 4cm of compost which was gently firmed. To achieve the desired 

percentage o f field capacity, water was added to each pot. Subsequently, pots were 

placed for incubation and the weight of the pots was checked daily.

2.5. W ater uptake

2.5.1. Measurements from a bulk of seeds

Twenty weighed seeds were placed in a 200 ml beaker and were covered with 

50ml o f distilled water. At different intervals, the seeds were removed from water, 

blotted dry on a paper towel to remove excess o f water and weighed. Afterwards, the 

seeds were quickly returned to the water and the procedure repeated later as a 

function o f time. Changes in weight due to water uptake were expressed as 

percentage weight increase of the initial weight of the seeds. Each mean represents the 

average o f three replications with 2 0  seeds each.
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2.5.2. Measurements from individual seeds

The water uptake was measured from ten individually weighed seeds each one 

placed inside a square compartment o f a compartmentalised square Petri dish. Each 

compartment was fully covered with approximately 4ml distilled water at the 

beginning o f the experiment. At the end o f the experiment, the water left was enough 

to completely cover the seeds. The seeds were held at room temperature and at pre­

determined intervals, each seed was removed from water, blotted dry, weighed and 

returned to water for the subsequent measurement. The weight o f water absorbed per 

seed was calculated, and each mean represents the average o f ten seeds.

2.6. Leachate conductivity

Four replications o f 25 weighed seeds were placed into 350ml clean beakers, 

and then 200 ml distilled water was added. Control beakers with distilled water were 

also set up. The beakers were covered with aluminum foil and incubated at 25°C for 

24 hours. After this period o f soaking the conductivity o f the soak water was 

measured using a GP 383 Conductivity meter (1 cm platinum cell), EDT Instruments. 

The conductivity o f distilled water used as a control was then subtracted from the 

leachate conductivity o f the samples. The electrode of the conductivity meter was 

rinsed in distilled water before transferring between solutions. The conductivity o f the 

soak solution was expressed per gram of seeds for each replication (mS/g/cm). Each 

value was a mean o f 4 replications.

2.7. Assessment of living tissue with tétrazolium chloride

The tétrazolium chloride was prepared according to ISTA (1985). The 

percentage o f living tissue on the cotyledons was determined by carefully removing 

the seed coat from fully imbibed seeds. The cotyledons of each seed were separated 

and placed in a 1% (w/v) solution of 2 ,3,5-triphenyl tétrazolium chloride (TTC) for 3 

hours at 25°C kept in the dark. The staining on the abaxial surface of the cotyledons 

was assessed as proposed by Powell and Mathews (1978). The results were expressed 

as a percentage o f cotyledons fully stained with tétrazolium chloride, as proposed by 

Powell and Matthews (1978). Each mean represents the average o f four replications
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with 20 seeds each. From each seed only one cotyledon was assessed whereas the 
other cotyledon was discarded.

2.8. Accelerated ageing test

Accelerated ageing test subjects seeds to a combination o f high temperature 

(41°C) and relative humidity (around 100%) for short periods (3 to 4 days); the seeds 

then removed from stress conditions and placed under optimum germination 

conditions (Copeland and McDonald, 1985).

Seeds were treated with Dithane M-45 (1.5 g per Kg o f seed) before the ageing 

test in order to suppress the growth o f saprophytic fungi during the accelerated ageing 

test. Seeds were spread in a single layer on a muslin cloth that was firmly attached 

over a circular metallic sieve with a rubber band. The metallic sieve was placed inside 

a desiccator that was placed in a water bath running at 41°C (+1 °C). Seeds were 

situated about 3 cm above the surface of the water inside the desiccator. Seeds were 

protected against condensation by wrapping the lid of the desiccator with a double 

sheet o f muslin cloth. The desiccator lid was sealed to the base with vaseline. The 

surface o f the water in the water bath was cover with plastic balls to reduce the 

evaporation o f the water. The water bath with the desiccator were covered with a 

single aluminum foil to reduce heat losses. The temperature o f the water in the water 

bath was constantly measured. Additionally, changes in the moisture content o f the 

seeds during the ageing test were daily measured, as described in section 2 .2 . 

Preliminary experiments with seeds from different genotypes showed that this set-up 

for the accelerated ageing test had no fluctuations in temperature or in the level of 

seed moisture content during the ageing test. After the ageing process, the seeds were 

spread out to dry at room temperature for 4 days before being tested for germinability 

as described in section 2.3.

2.9. Seed coat anatomy and histochemistry

The sequence o f the procedures for the anatomical and histochemical 

investigation o f the seed coat, outlined by O'Brien and McCully (1981), was as 

follows:

23



Chapter 2: General materials and methods

1. Preparation o f the tissue

Dry soybean seeds were soaked in distilled water for 2hours. From each seed, 

segments o f the seed coat approximately 2 mm x 3 mm were taken from either the 
ventral side or the dorsal side o f the seed.

2. Fixation

The cut segments o f the seed coat were placed in 2.5% w/v glutaraldehyde in 

0.1M NaH 2 P 0 4 /Na2 HP 0 4  buffer, pH 7.2 for 2h at room temperature. Fixation was 

ended by replacing the fixative and then washing 3 times in the buffer (15 min each 

wash) at room temperature.

3. Dehydration

The gradual removal of the water from the tissue was accomplished by 

replacing the buffer in successively higher concentrations (30%, 50%, 70%, 90% and 

100%) o f ethanol. The duration o f each dehydration treatment was 15min at room 

temperature. The dehydration process was finished by overnight soaking in 100% 

ethanol which had been dried over CaSC> 4

4. Infiltration and embedding

Infiltration was achieved by adding up to 50% of the initial volume the LR 

White Resin drop by drop over a 30 min period. The vials were placed on a rotary 

motor for continuous rotation. Subsequently, the resin/ethanol mixture was replaced 

twice with pure resin; once for 8 h and then for 16h with continuous rotation. 

Embedding was achieved by placing the material in gelatin capsules and then the 

capsules inside a vacuum oven for 16h at 60 °C.

5. Sectioning

The finished block with the tissue was trimmed and then placed in the 

microtome where sections measuring 1.5 mm thickness for light and fluorescence 

microscopy were prepared using a glass knives. Sections were hooted on drops of 

water on a slide and then dried on a slide warmer.
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2.10. Use of calcofluor as a water-soluble fluorescent stain

2.10.1. Water penetration sites in the surface of the seed coat

In short periods, calcofluor enters cuticular discontinuities and binds to the 

immediately-underlying polysaccharide wall, providing an unambiguous map o f the 

sites o f water entry in stigma surfaces (Heslop-Harrison and Heslop-Harrison, 1982).

Whole seeds were briefly soaked in 0.1%, w/v aqueous solution o f calcoflour 

white M2R. Seeds were washed carefully with distilled water to remove any stain 

excess from the surface o f seed coat and then blotted dry on a paper towel. From each 

seed, around 2 mm x 3 mm segments of the seed coat were taken from ventral, dorsal 

or abaxial side o f the seed. The segments were mounted in glycerol and the surface 

was observed as quickly as possible with a Leitz Ortholux II epifluorescence 

microscope, using filter set II (exciter filter, maximum transmission 340-360; barrier 

filter, maximum transmission >490). Controls of the untreated material were also 

studied.

2.10.2. Depth of calcofluor presence within the seed coat

Whole seeds were soaked in 0.1% w/v aqueous solution o f calcoflour white 

M2R. Seeds were washed carefully with distilled water to remove any stain excess 

from the surface o f seed coat and then blotted dry on a paper towel. From each seed, 

around 2 mm x 3 mm segments of the seed coat were taken from the ventral, dorsal 

or abaxial side o f the seed. In order to avoid further penetration or diffusion o f the 

stain due to contact with water, fixation was omitted. The segments were dehydrated 

in absolute ethanol for 3 times with 15min each. Infiltration, embedding and 

sectioning was done as described in Section 2.9. Hand cut sections of fresh material 

were also prepared. Epifluorescence from the sections was observed as described in 

section 2 . 1 0 . 1 .

2.11. Scanning Electron Microscopy (SEM)

Seeds were placed for air-drying in muslin bags and then in an air-incubator for 

air-drying set at 30 °C for 4 days. Subsequently, they were kept inside a desiccator 

with blue silica gel in the bottom until required. Specimens were mounted on
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aluminum stubs, gold coated and examined in a Cambridge S250 at an accelerating 

voltage o f 7.5 Kv. Micrographs were taken using a Kodak TMX (100 ASA) film.

2.12. Organic solvent pre-treatments

Twenty weighed seeds were placed in 50 ml o f different combinations of 

methanol or chloroform solvents inside a 250 ml conical flask, at room temperature. 

The flask was tightly covered with aluminum foil held in place with plastic rubber. 

They were then placed on a shaker for continuous shaking at 200 rpm for the required 

period o f time. At the end o f the treatment, seeds were removed from the organic 

solvent and blotted dry.

2.13. Absorbance measurements

The organic solvent was decanted of the seeds at the end o f the pre-treatment 

period and then centrifuged at 10,000 rpm for 5 min. The absorbance spectrum o f the 

supernatant from 215 to 350 nm was measured using a Beckman DU 65 

spectrophotometer. The pure organic solvents were used as blanks.

2.14. Statistical Analysis

Most experiments were conducted in completely randomised design. 

Experiments in Chapter 5 were conducted, analysed as a two factor (genotype and 

ageing) or three factor (genotype, ageing, water regime) experiments. In most cases, 

the analysis was carried out, or treatments were applied, in four replications. 

However, results from the individual seeds were based in ten replications.

ANOVA were performed in all data, using STATGRAPHICS Release 6.0 

(Statistical Graphics Corp., Manugistics Inc.), testing for normal distribution o f data 

sets prior to analysis. All o f the data were found either to fit normal distribution or be 

with acceptable levels o f skewness therefore no transformations were applied. Results 

from the ANOVA tests are presented in the Appendixes section. The mean 

comparison was based on the two tailed paired t-tests.
All graphs were created using the graphic programme EXCEL Release 5.0. In 

all figures the standard error o f the means (s.e.m.) are displayed.
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CHAPTER 3 

Imbibition behaviour of soybean (Glycine max L. Merril) genotypes with different 
seed coat characteristics

3.1. Introduction

The presence o f the seed coat offers a significant protection to the embryo 

against the damage o f the embryo cells during imbibition. In peas (Pisum sativum), 

seeds without the testa failed to stain with tetrazolium chloride following imbibition 

in water (Powell and Matthews, 1978). In soybeans, several reports have shown that 

the intact seed coat retards the rapid water uptake and, hence, protects against 

imbibition damage as revealed by solute leakage and damage o f the cells in the 

embryo (Duke and Kakefuda, 1981; Tully et al., 1981; Duke et al., 1983). To carry 

out the important function of protecting the embryo from imbibition damage, the 

seed coat needs to be intact. In peas, artificially scarified seeds showed a rapid water 

uptake which resulted in high solute leakage and low vital staining o f the cotyledons 

(Powell and Matthews, 1979). In soybeans, Oliveira et al., (1984) reported that split 

seed coats in many low vigour seed lots resulted in rapid water uptake causing 

damage to the cells in the cotyledons and high levels of leakage o f electrolytes. The 

detrimental effect during imbibition of artificially induced or naturally occurring seed 

coat cracks or splits has been reported in several grain legumes including dwarf 

French beans (Powell et al., 1986a, 1986b), faba beans (Kantar et al., 1996) and 

cowpeas (Legesse and Powell, 1992).

High levels o f leakage have been shown to result from imbibition damage due 

to the rapid water uptake causing death o f the cells on the surface o f the cotyledons 

in a number o f grain legumes including peas (Powell, 1985), dwarf French beans 

(.Phaseolus vulgaris; Powell et al., 1986a, 1986b), faba beans (Vida faba; Rowland, 

1981; Kantar et al., 1996), chickpeas (Cicer arietinum; Knights and Mailer, 1989; 

Legesse and Powell, 1992), cowpeas (Vigna unguiculata; Beigley and Hoper, 1981), 

long beans (Vigna sesquipedalis; Abdullah et al., 1992).

From the seed coat characteristics, seed coat colour and seed coat adherence to 

embryo have been reported as important factors regulating the rate o f water uptake.
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In soybeans, seeds with dark coloured coats have been associated with low rate of 

water uptake (Tully et al., 1981; Kuo, 1989). Similar close association between 

pigmented seed coat and a low rate o f water uptake has been reported in several grain 

legumes including snap beans (.Phaseolus vulgaris; Deakin, 1974; Wyatt, 1977), long 

beans (Abdullah et al., 1988), chickpeas (Legesse and Powell, 1992) and lima beans 

(Kannenberg and Allard, 1964). Adherence of the seed coat to the embryo has been 

reported as an important seed coat characteristic which results in low rates o f water 

uptake in dwarf French beans (Powell et al., 1986b).

In soybeans, there is no published information about the seed coat 

characteristics in relation to different levels of imbibition damage when the seed coat 

is intact. The objectives o f this work were therefore (1) to assess imbibition damage 

in genotypes with a range o f seed coat characteristics, and (2 ) to identify seed coat 

characteristics that correlated with minimum and maximum levels o f imbibition 

damage.

3.2. Materials and methods

3.2.1. Seed characteristics of the twenty genotypes.

The twenty genotypes were selected to cover a wide range of seed size (Table

3.1) and different seed coat colour (Table 2.1). Seed characteristics o f the twenty 

selected genotypes were determined, as described in section 2 .2 .

3.2.2. Imbibition behaviour of the twenty genotypes.

Soybean seed coat is often firmly attached to embryo thus making the removal 

o f the seed coat difficult without damaging the embryo. In order to facilitate the 

removal o f the seed coat, seeds imbibed first in 2 0 % (w/v) polyethylene glycol 

(PEG) for 2 hours at room temperature. After the seed coat removal, embryos were 

left to dry for 2  days under room conditions and subsequently were dried with air- 

drier set at 30°C for 4 days. The final moisture content o f these embryos was 8  % 

m.c. (± 1 .5 % m.c.) on a fresh weight basis, determined as described in section 2 .2 . 

Subsequently, water uptake and leachate conductivity after 6 h of imbibition o f the 

intact seeds and embryos were measured, as described in sections 2.5.1 and 2.6 

respectively. The time course of water uptake of intact seeds was based on weight 

changes o f individual seeds as described in section 2.5.2. Assessment of the vital
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staining in the surface layers o f the cotyledons with tétrazolium chloride was made as 

described in section 2.7. Scarification o f the seed coat was carried out according to 

Powell et al. (1986a). Precision of the scarification was achieved using a razor blade, 

by carefully scratching the dorsal region o f the seed (approximately 2  mm long). 

Low rate o f water uptake was achieved by soaking seeds in 30% (w/v) PEG for 24 

hours before staining with tétrazolium chloride.

3.2.3. Seed coat characteristics in relation to water uptake.

The hilar region o f seeds o f 4 genotypes was sealed by applying a nail varnish 

and leaving the seeds to dry overnight. Four genotypes were selected, one genotype 

was slow imbiber (line VLS-1) and the other three genotypes were fast imbibers (line 

SS 87040-2-1, line KWS-E and cv. Toreador). Water uptake in varnished and 

unvarnished seeds was measured during 4 hours, as described in section 2.5.2. Water 

uptake was expressed as the weight o f water absorbed per seed. Each mean was the 

average o f ten values. The effect o f proximity to water o f the different region o f seed 

on the water uptake during imbibition was assessed using seeds o f two genotypes. 

The two genotypes were selected because in seeds o f cv. Sapporo the hilum was 

closed whereas in seeds o f line KWS-E, the hilum was wide open. Ten individually 

weighed seeds were oriented so that the ventral, dorsal or abaxial side o f the seed was 

in direct contact with water through a set of identical round holes (about 2 0 mm2) cut 

in plastic discs. The plastic discs with the holes were glued on a 90mm Petri dish. 

The Petri dish was filled with distilled water. At pre-determined intervals, each seed 

was removed from the hole, blotted dry and weighed. Seeds were replaced in the 

same position until the end o f the experiment. The water uptake was expressed as 

weight o f water imbibed per seed. Each mean was the average of ten values.

The effect o f wetting and drying of seeds on water uptake was investigated. 

Four genotypes were selected to cover different rates of water uptake. In particular, 

two genotypes were slow imbibers (line VLS-1 and line G2120) and the other two 

genotypes were fast imbibers (line SS 87040-2-1 and cv. Toreador). Seeds were 

soaked for lhour in water, blotted dry and left to dry in ambient conditions for 2  

days, and then for another 2 days with air-drier set at 30°C before placing them for 

soaking in water, as described in section 2.5.2. Control (untreated) seeds were also 

used. Water uptake was expressed as the weight of water absorbed per seed. Each 

mean was the average o f ten values. The effect o f wetting and drying o f seeds on the 

physical characteristics o f the coat was observed. Control (untreated) seeds were also 

used. The adherence o f the seed coat to cotyledons was visually examined. The
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surface o f the seed coat after the wetting and drying was observed by a low 
magnification stereoscope.

3.3. Results

3.3.1. Seed characteristics of the twenty genotypes

Imbibition studies were conducted on seeds o f 20 genotypes, selected from a 

total o f 50 genotypes that were obtained from different sources (section 2.1). The 

selected 20 genotypes represented a wide range of seed coat colour (Table 2.1) and 

seed size (Table 3.1). Additionally, seeds o f line GC 84128-17-2-1 and AGS-292 had 

a high proportion o f seeds with split coats. The seed coat colour ranged from yellow 

(9 genotypes), green (4 genotypes), black (2 genotypes) and 1 genotypes with brown 

seed coat colour. Additionally, there were 4 genotypes with the seed coat partially 

black or brown coloured (Table 2.1).

There were differences (P<0.001) in seed dry weight between the genotypes 

(Appendix 1, Table 1.1). Line G2120 had the smallest seed weight (60 mg seed '1) 

whereas line GC84128-17-2-1 had the largest seed weight (331 mg seed"1) (Table

3.1). There were differences (PO.OOl) in seed surface area between the genotypes 

(Appendix 1, Table 1.2). Line G2120 had the smallest area (69 mm 2  seed '1) and line 

GC84128-17-2-1 had the largest area (223 mm 2  seed '1). There were differences 

(PO.OOl) in seed coat dry weight between the genotypes (Appendix 1, Table 1.3). 

Line G2120 had the smallest seed coat dry weight (5.8 mg seed '1) whereas cv. 

Suwan-155 had the largest seed coat dry weight (18.3 mg seed"1) (Table 3.1). There 

were differences (PO.OOl) in seed coat dry weight as a percentage o f seed dry 

weight between the genotypes (Table 3.1). Line GC84128-17-2-1 had the smallest 

value (5.4%) whereas the cv. Pusa-16 had the highest value (13.8%) (Table 3.1). 

There were differences (PO.OOl) in seed coat dry weight per unit area between 

genotypes (Table 3.1). Line VLS-1 had the smallest value (0.075 mg mm-2) whereas 

the cv. Pusa-40 had the highest value (0.15 mg m m '2) (Table 3.1).

There were strong positive correlations between seed dry weight and seed coat 

dry weight and between seed dry weight and seed surface area. There was a strong 

negative correlation between seed dry weight and seed coat dry weight as percentage 

to seed dry weight. However, there was a weak negative correlation between seed dry 

weight and seed coat dry weight per unit area (Table 3.1).
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Table 3.1. Seed characteristics o f 20 soybean accessions.

Accessions Dry wt Surface Seed Seed coat Seed coat
seed- 1 area coat dry dry wt as % dry wt per

seed-1 wt

seed" 1

of seed dry 

wt

unit area

(mg) (mm2) (mg) (%) (mg/mm2)

Ac 12 G 2120 60 69 5.8 9.7 0.084
Ac 16 Pusa-16 71 6 6 9.8 13.8 0.150
Ac 17 Pusa-40 84 65 9.8 11.7 0.150
Ac 3 KWS-5 1 0 2 104 9.8 9.6 0.094
Ac 8 Picador 127 1 1 0 9.7 7.6 0.088
Ac 13 CC 84051-32-1 131 114 10.7 8 . 1 0.094

Ac 5 KWC-C 132 116 1 2 . 2 9.2 0 . 1 0 0

Ac 18 VLS-1 134 130 9.7 7.4 0.075

Ac 4 KWS-A 155 127 12.3 7.9 0.097

Ac 7 Toreador 157 139 1 1 . 8 7.5 0.085

Ac 2 KWS-3 158 127 12.3 7.8 0.097

Ac 19 Pioneer-9581 160 156 12.7 7.9 0.081

Ac 1 KWS-2 168 142 13.2 7.9 0.093

Ac 9 Essor 190 142 13.2 6.9 0.093

Ac 15 GC 88037-38-2-2 199 147 13.2 6 . 6 0.089

Ac 14 SS 87040-2-1 2 0 1 154 13.2 6.5 0.086

Ac 6 KWS-E 204 143 14.2 6.9 0.099

Ac 20 Suwan-155 257 192 18.3 7.1 0.095

Ac 11 AGS 292 283 183 15.8 5.6 0.086

Ac 10 GC 84128-17-2-1 331 223 18 5.4 0.081

s. e. m. 7.8 1.8 1.4 0.7 0.001

correlation with seed dry wt 0 q 9 3 *** -0.81*** -0.44*

***: PO.OOl, *: P<0.05
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3.2.2. Imbibition behaviour of the twenty genotypes

The percentage weight increase after 6 h of imbibition was measured in seeds 

with the seed coat and seeds without the seed coat (i.e. embryos). In general, there 

were differences (PO.OOl) between the genotypes in the water uptake after 6  h of 

imbibition (Appendix 1, Table 1.4). Considerable differences (PO.OOl) between the 

genotypes in percentage weight increase were observed when seeds with seed coats 

imbibed (Table 3.2). However, the differences on water uptake between the 

genotypes were smaller in the absence o f the seed coat than in the presence o f the 

seed coat. Seeds o f cv. Pioneer-9581 had the lowest percentage weight increase 

(35%) and seeds o f cv. Suwan-155 had the highest percentage weight increase 

(138%) after 6 h o f imbibition.

The 20 genotypes could be divided into four groups in relation to the 

percentage weight increase after 6 h o f imbibition. In the first group, there were 4 

genotypes where the percentage weight increase o f seeds was considerable lower 

(between 2 to 3.5 times) than that o f embryos. In the second group, there were 11 

genotypes were seeds imbibed 15-30% less (PO.OOl) water than embryos. In the 

third group, there were 4 genotypes in which the percentage weight increase was the 

same in the seed as in the embryo. The fourth group consisted o f 1 genotype in which 

seeds had a higher (PO.OOl) percentage weight increase than embryos.

Figure 3.2 shows the leachate conductivity after 6 h o f imbibition o f seeds with 

seed coat and seeds without seed coat. In general, there were differences (PO.OOl) 

between the genotypes in the water uptake after 6  h o f imbibition (Appendix 1, Table 

1.5). Considerable differences (PO.OOl) between the genotypes in leachate 

conductivity were observed when seeds with the seed coat imbibed (Table 3.2). 

However, the differences on leachate conductivity between the genotypes were 

smaller in the absence o f the seed coat than in the presence of the seed coat. Seeds of 

cv. Pioneer-9581 had the lowest leachate conductivity (4 mS/g/cm) whereas those of 

line GC 84128-17-2-1 had the greatest conductivity (30 mS/g/cm) reading.

The 20 genotypes could be divided into three groups in relation to leachate 

conductivity. In the first group, there were 5 genotypes where the conductivity of 

seeds was largely lower (between 2 to 5.5 times) than that o f embryos. In the second 

group, there were 10 genotypes in which seeds had 30-45% lower (P<0.001) leachate 

conductivity than that o f embryos. In the third group, there were 4 genotypes in 

which the leachate conductivity was the same in the seed as in the embryo.
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Table 3.2. Percentage weight increase and electrical conductivity after 6 h of 

imbibition o f intact seeds and embryos of the twenty genotypes (n=4).

Genotypes Weight increase 

at 6 h 

( % )  ±  s.e.m. (n=4)

Electrical conductivity 

at 6 h

(mS/g/cm) ± s.e.m. (n=4)

seed embryo seed embryo

Ac 19 Pioneer-9581 35 ± 1 .4 123 ±2.5 4 ± 0 .7 22 ± 1 .4

Ac 9 Essor 41 ± 1.9 119 ± 3 .2 5 ± 0 .3 22 ±0.9

Ac 1 KWS-2 45+4.3 123 ±3.9 7 ± 0 .4 2 1  ± 0 . 8

Ac 18 V L S - 1 61 ± 1 . 2 127 ±3.4 9 ± 0 .4 2 1  ± 0 . 8

Ac 16 Pusa-16 94 + 3.5 116 ±3.3 19 ± 0 .7 25 ±0.9

Ac 12 G 2120 98 ± 2 . 1 121 ±3.8 19 ± 1 . 2 25 ± 0 .7

Ac 17 Pusa-40 98 ± 2 . 6 119 ±3.6 15 ± 0 . 6 2 2  ± 1 . 2

Ac 2 KWS-3 99 ±2.4 125 ± 1 . 6 14 ± 1.1 2 2  ± 1 . 2

Ac 13 CC 84051-32-1 99 ±3 .1 125 ± 1 . 8 17 ±0.4 24 ± 0.7

Ac 8 Picador 100 ±2.9 128+3.8 19 ± 0 . 8 26 ± 0 . 6

Ac 3 KWS-5 102 ±3.4 135 ±1.9 18 ±0.4 25 ±0.9

Ac 5 KWC-C 102 ±3.8 123 ±3.1 12 ± 1.3 21 ±0.9

Ac 7 Toreador 104 ± 3 .3 123 ± 2 .7 14 ±0.9 2 2  ± 1 . 2

Ac 6 KWS-E 105 ± 2 .7 130 ±2.4 16 ± 1 . 2 23 ± 0 . 6

Ac 4 KWS-A 107 ± 3.6 122 ±3.2 18 ±0.4 24 ±0.9

Ac 15 GC 88037-38-2-2 121 ±3.4 125 ±3.9 25 ± 0 . 8 26 ± 1 . 1

Ac 11 AGS 292 121 ± 3 .7 123 ±3.5 29 ± 0 . 6 31 ± 0 . 8

Ac 14 SS 87040-2-1 122 ±3.8 127 ±3.4 26 ± 0 .7 28 ± 1.4

Ac 10 GC 84128-17-2-1 122 ±4 .1 126 ±2.9 30 ± 0 . 8 30 ± 0 .9

Ac 20 Suwan-155 138 ±3.8 123 ±3 .1 27 ±0.9 26 ± 0 . 6
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The variation in both percentage weight increase and leachate conductivity 

suggested that there could be a relationship between them. A scatter diagram of 

percentage weight increase plotted against leachate conductivity showed a strong 

positive correlation between the two variables (Fig. 3.1).
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Figure 3.1. Relationship between mean leachate conductivity and mean percentage 

weight increase after 6 h o f imbibition of seeds with seed coat of the 2 0  genotypes.

The time course o f water uptake during imbibition was measured. Results on 

the water uptake were presented for seeds o f ten genotypes (Fig. 3.2). The selected 

genotypes were previously shown (Table 3.2) to have a low, medium and rapid water 

uptake after 6 h o f imbibition. In particular, seeds o f cv. Pioneer-9581, Essor, line 

VLS-1 and KWS-2 had a low water uptake after 6 h o f imbibition. In seeds o f line 

VLS-1, wrinkling o f the seed coat was observed only on the dorsal region o f the seed 

until after 2h o f imbibition. Seeds of cv. Toreador and line KWS-E had a medium 

water uptake after 6 h o f imbibition. Seeds of line GC84128-17-2-1, AGS 292, GC 

88037-38-2-2 and SS 87040-2-1 had a rapid water uptake after 6 h of imbibition. In 

seeds o f lines GC 88037-38-2-2 and SS 87040-2-1, wrinkling of the seed coat was 

observed in all regions of the seed within minutes of imbibition.

♦
♦

♦
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1 -  Rcneer-9581 - + VLS-1 k Bsscr 9 KV\/S-2

□ SS 87040-2-1 o GC 88037-3&-2-2 A_ GC 84128-17-2-1 0  AGS 292
X Toreador . ^  KWS-E

irrbibition time (h)

Figure 3.2. Percentage weight increase of ten individual seeds o f the ten genotypes 

during imbibition; error bar, standard error of the mean, (n= 1 0 ).

Figure 3.2 shows the percentage weight increase o f individual seeds o f the ten 

genotypes during imbibition. In general, there were differences (P<0.001) between 

the genotypes in the water uptake after 6  h of imbibition (Appendix 1, Table 1.6). 

The greatest rate o f water uptake was observed in seeds o f line GC84128-17-2-1 and 

AGS 292 which had a high proportion of seeds with splits in the seed coats. During 

the first hour they had a 50% weight increase and imbibition was completed at 6  

hours. Seeds o f line SS87040-2-1 and GC88037-38-2-2 had, also, a high rate of 

water uptake; during the first hour of imbibition they had a 40% weight increase. 

Seeds o f cv. Toreador and line KWS-E had lower (PO.OOl) water uptake than those 

o f the previous four genotypes. However, after 6 h o f imbibition they had gained 

more than 90% of the weight increase at 24h imbibition. Seeds of line VLS-1, had a 

low water uptake during the first two hours o f imbibition with a rapid increase (from 

11-36% weight increase) between second and third hour of imbibition. Seeds of 

Essor and line KWS-2 had low water uptake during the first 6 h o f imbibition but the 

water uptake after 24h was similar to the previous genotypes. Seeds o f cv. Pioneer- 

9581 had the lowest percentage weight increase during the whole imbibition period 

with, also, the lowest water uptake after 24h of imbibition.
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Large variations in the water uptake were observed between individual seeds of 

cv. Essor, Pioneer-9581 and line KWS-2 as indicated by the large size o f the standard 

error o f the means (particularly evident in seeds o f Pioneer-9581). The variation was 

due to the occurrence o f hard seeds (Table 3.3). In cv. Pioneer-9581, there was a high 

percentage o f hard seeds during the whole period of imbibition. In contrast, in cv. 

Essor and line KWS-2 a small proportion of those seeds was observed; all seeds of 

these two genotypes were became permeable to water after 24h o f imbibition.

Table 3.3. The percentage o f hard seeds remained during imbibition in seeds o f the 

three genotypes.

Genotypes percentage o f hard seeds remained

lh 2 h 3h 4h 5h 6 h 24h

Essor 30 30 30 30 30 2 0 0

KWS-2 2 0 2 0 2 0 1 0 1 0 1 0 0

Pioneer-9581 70 70 70 70 70 60 50

The vital staining o f the cotyledons with tétrazolium chloride was examined in 

seeds imbibed in either water or 30% (w/v) PEG with the seed coat intact or scarified 

(Table 3.4). In general, there were differences (PO.OOl) between the genotypes in 

the water uptake after 6  h of imbibition (Appendix 1, Table 1.7). In most genotypes, 

scarified seeds soaked in water had a lower percentage of cotyledons fully stained in 

tétrazolium chloride that that o f intact seeds soaked in water. When seeds soaked in 

30% (w/v) PEG, the percentage o f cotyledons fully stained was the same in the 

scarified seeds as in the intact seeds. A considerable variation (7)<0.001) between the 

genotypes in the vital staining o f the cotyledons was observed when intact seeds were 

soaked in water prior to staining. Seeds of line GC 84128-17-2-1 had 6 % of 

cotyledons fully stained whereas seeds of line VLS-1 had 94% of the cotyledons 

fully stained. About half of the genotypes had more than 75% of the cotyledons fully 

stained, 6  genotypes between 20-60% of the cotyledons fully stained and j  genotypes 

with less than 10% of the cotyledons fully stained (Table 3.4).
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In most genotypes, seeds with intact coats imbibed in 30% (w/v) PEG , had a 

higher (PO.OOl) percentage o f their cotyledons that were fully stained than that of 

seeds imbibed in water; that was particularly evident in the genotypes with lower 

percentage o f cotyledons stained. In contrast, the genotypes with higher percentage 

o f cotyledons fully stained had little or no improvement when soaked in 30% PEG in 

comparison to water.

When seeds with scarified coats soaked in water, a lower (P<0.001 ) percentage 

o f vital staining o f the cotyledons than that o f intact seeds was observed. The 

reduction in the percentage cotyledons stained was particularly evident in the 

genotypes which had a higher percentage o f vital staining o f the cotyledons rather 

than the genotypes with a lower percentage o f vital staining o f the cotyledons. In 

seeds o f three genotypes (line G2120, KWS-5 and cv. Pusa-16), there was no 

difference in the vital staining o f the cotyledons regardless of the treatment.

A scatter diagram o f percentage weight increase and percentage o f cotyledons 

fully stained with tétrazolium chlorite suggested that there could a relationship 

between them. Indeed, there was a negative correlation between the two variables 

(Fig. 3.3).
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Figure 3.3. Relationship between mean percentage weight increase and mean 

percentage o f cotyledons fully stained with tétrazolium chloride in seeds o f the 2 0  

genotypes.
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Table 3.4. The percentage o f cotyledons fully stained with tétrazolium chloride after 

24h imbibition in water or 30% PEG with the seed coats intact or scarified, (n=4).

Accessions Percentage of cotyledons fully stained with

tétrazolium chloride (TTC) ± s.e.m. (n=4)

testa intact testa scarified

water 30% PEG water 30% PEG

Ac 10 GC 84128-17-2-1 6 + 2 . 3 55 ± 3 .3 6  ± 3 .4 60 ± 4 .6

Ac 11 AGS 292 8 ± 3 .2 61 ± 4 .3 6  ± 4 .6 52 ± 5 .8

Ac 20 Suwan-155 8 + 2 . 8 51 ± 4 .9 6  ± 3 .5 59 ± 6 .3

Ac 15 GC 88037-38-2-2 18 ± 5 .9 47 ± 2 .5 4 ± 3 .4 39 ± 3 .2

Ac 14 SS 87040-2-1 2 0  ± 6 . 1 6 6  ± 4 .2 6  ± 2 .7 72 ± 4 .3

Ac 13 CC 84051-32-1 28 ± 5 .8 54 ± 5 .6 4 ± 3 .8 59 ± 3 .4

Ac 2 KWS-3 48 ± 4.6 60 ± 6 . 2 26 ±3 .1 54 ± 2 .3

Ac 4 KWS-A 58 ± 5 .4 82 ± 3 .2 24 ± 4 .3 76 ± 3 .6

Ac 6 KWS-E 62 ± 6 .3 88  ± 2 .9 38 ± 4 .9 8 8  ± 4 .3

Ac 3 KWS-5 74 ± 3 .9 76 ± 4 .8 72 ± 3 .7 80 ± 3 .6

Ac 7 Toreador 76 ± 4 .3 82 ± 5 .3 56 ± 5 .3 78 ± 4 .6

Ac 8 Picador 76 ± 2 .9 80 ± 5 .7 54 ± 2 . 8 74 ± 5 .3

Ac 5 KWC-C 82 ± 6 . 2 80 ± 3 .6 58 ± 4 .3 82 ± 6 . 2

Ac 17 Pusa-40 82 ± 4 .6 78 ±3 .1 70 ± 3 .6 85 ± 4 .2

Ac 19 Pioneer-9581 82 ± 6.4 92 ± 4 .5 72 ± 2 .7 94 ± 2 . 8

Ac 1 KW S - 2 84 ± 4 .3 90 ± 3 .9 36 ± 2 .9 88  ± 3 .7

Ac 16 Pusa-16 8 6  ± 3 .5 88  ± 5 .3 80 ± 4 .3 84 ± 4.4

Ac 12 G 2120 92 ± 4 .3 90 ±3 .1 8 6  ± 4 .7 92 ± 5 .1

Ac 9 Essor 94 ± 5 .6 92 ± 4 .2 54 ± 4 .9 90 ± 3 .6

Ac 18 VLS-1 94 ± 4.2 90 ± 3 .3 42 ± 5 .3 8 8  ± 3 .9
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3.2.3. Seed coat characteristics in relation to water uptake

The relationship between seed coat characteristics and water uptake during 

imbibition was investigated (Fig. 3.4). There was no correlation between seed coat 

dry weight and the percentage weight increase after 6 h o f imbibition. However, the 

scatter plot distribution indicated that three points were far removed from the rest. 

The three points represented the genotypes with a proportion o f hard seeds (cv. 

Essor, Pioneer-9581 and line KWS-2). When these three genotypes were excluded 

from the calculation, a positive correlation was obtained (y=3.8x + 59, R2 =0.53).

There was no correlation between seed coat dry weight as a percentage to seed 

dry weight and the percentage weight increase after 6 h of imbibition. Exclusion of 

the three genotypes with a proportion of hard seeds from the calculation, resulted in a 

weak negative correlation (y=-3.2x + 132, R2=0.17).

There was no correlation between seed coat dry weight per unit area and 

percentage weight increase after 6 h o f imbibition. Exclusion o f the three genotypes 

with a proportion o f hard seeds had no affect in the correlation.
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Figure 3.4. Relationship between mean percentage weight increase after 6 h of 

imbibition and seed coat characteristics; a) seed coat dry weight, b) seed coat dry 

weight as a percentage to seed dry weight, and c) seed coat dry weight per unit area.
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The water uptake through different regions o f the seed coat was measured. In 

seeds o f line KWS-E, the hilum was wide open whereas in seeds o f cv. Sapporo it 

was closed.

Figure 3.5 shows the weight o f water imbibed during the first 3h o f imbibition 

when the dorsal, ventral or abaxial region of the seed was in contact with water. 

Little difference (P>0.005) between the three regions in the weight o f water absorbed 

by seeds o f cv. Sapporo was observed (Appendix 1, Table 1.8) whereas large 

differences (PO.OOl) between the three regions in the weight o f water absorbed by 

seeds o f line KWS-E was observed (Appendix 1, Table 1.9). In both genotypes, the 

lowest water uptake was observed when the ventral region of the seed was exposed to 

water. Also, in both genotypes, there was no difference in the water uptake between 

the dorsal and abaxial region o f the seed during the first 3h of imbibition. In seeds o f 

line KWS-E, with the hilar fissure wide open, the water uptake from the ventral 

region was 17-33% lower (PO.OOl) that from the dorsal region during the first 2h of 

imbibition. The differences in the water uptake between the dorsal and the ventral 

region were greater in seeds o f cv. Sapporo (hilar fissure closed) than in seeds o f line 

KWS-E (hilar fissure wide open). In seeds of cv. Sapporo the water uptake from the 

ventral region was from 2 to 4.5 times lower than that from the dorsal region during 

the first 2 h o f imbibition.
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Figure 3.5. The weight o f water imbibed during the first 3h o f imbibition when the 

dorsal, ventral or abaxial region o f the seed was exposed to water, a) seeds of line 
KWS-E, and b) seeds o f cv. Sapporo; error bar, standard error o f the mean, (n=10).
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The hilar region o f the seed coat in seeds o f four genotypes was sealed with 

nail varnish, and then the amount o f water imbibed during 4h o f imbibition was 

measured. In seeds o f line KWS-E, the hilum was wide open whereas in seeds o f the 
other genotypes it was closed.

In seeds o f genotypes with the hilum closed no difference between the control 

and the varnished seeds was observed (Appendix 1, Table 1.10). In contrast, in seeds 

o f line KWS-E, varnished seeds had a 30% lower (PO.OOl) and 12% lower 

(PO.OOl) water uptake than that of control seeds, after lh  and 2h imbibition 

respectively (Fig. 3.6). However, no difference in the water uptake between 

varnished and control seeds was observed after the 3h o f imbibition.

The effect o f wetting and drying on the water uptake o f seeds o f four genotypes 

was examined (Fig. 3.7). In all four genotypes examined, wetting and drying resulted 

in an increased (PO.OOl) water uptake in comparison to the untreated control seeds 

during the 4h period o f imbibition (Appendix 1, Table 1.11).

Untreated control seeds o f line VLS-1 had a low water uptake particularly 

during the first lh  o f imbibition (5mg o f water seed-1). In contrast, treated seeds had 

4 times and 2 times more water uptake than the untreated control seeds after 1 h and 

2 h o f imbibition respectively.

Untreated control seeds o f line SS 87040-2-1 had a high water uptake; after lh  

o f imbibition seeds absorbed 77mg o f water seed-1. Treated seeds imbibed 43% more 

(PO.OOl) water uptake than the untreated control seeds. In seeds o f cv. Toreador, 

treated seeds had a higher (PO.OOl) water uptake than untreated seeds, during the 4h 

imbibition period.
Untreated control seeds of cv. Toreador had a medium water uptake; after lh  of 

imbibition seeds absorbed 35mg of water seed '1. Treated seeds imbibed 8 6 % more 

(P<0.001) water uptake than the untreated control seeds.

Untreated control seeds of line G 2120 after lh  of imbibition seeds absorbed 

13mg o f water seed '1. Treated seeds imbibed 2.5 times more water uptake than the 

untreated control seeds.
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Figure 3.6. The weight o f water imbibed during the first 4h of imbibition in control 

and varnished (hilar region) seeds, a) line VLS-1 b) line SS 87040-2-1 c) cv. 

Toreador d) seeds o f line KWS-E; error bar (smaller than the symbols), standard 

error o f the mean, (n= 1 0 ).
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Figure 3.7. The weight o f water imbibed during the first 4h of imbibition by control 

seeds and seeds which had undergone wetting and drying (w&d), a) line VLS-1 b) 

line SS 87040-2-1 c) cv. Toreador d) line G 2120; error bar (smaller than the 

symbols), standard error of the mean, (n= 1 0 ).
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The adherence o f the seed coat to the embryo was examined visually. In seeds 

o f cv. Toreador and line VLS-1, the seed coat adhered tightly to the embryo thus 

making difficult the separation o f the two structures from each other (Fig. 3.8a). On 

the other hand, in seeds o f cv. Suwan-155, the seed coat adhered loosely to the 

embryo, thus the embryo was completely separated from the seed coat (Fig. 3.8b). In 

addition, in most seeds o f cv. Suwan-155, the seed coat in the dorsal region o f the 

seed appeared to be highly wrinkled thus allowing additional extra free space 

between the seed coat and the embryo.

The effect o f wetting and drying on the physical relationship between the seed 

coat and the cotyledons was examined visually. In seeds o f cv. Toreador, after the 

wetting and drying treatment, the seed coat appeared to be detached from the 

embryo, particularly in the dorsal and abaxial region of the seed. In contrast, in seeds 

o f line VLS-1, there was no clear difference between treated seeds and the untreated 

control seeds in the adherence o f the seed coat to the embryo.

Surface view o f the seed coat o f untreated control seeds and seeds after wetting 

and drying under low magnification stereoscope was made. In seeds o f cv. Toreador, 

soaking for lh  followed by drying resulted in the appearance of ellipsoidal-shaped 

ruptures in the surface o f the seed coat (Fig. 3.9a). Some of the ruptures were of 

significant size but smaller ruptures appeared as well (Fig. 3.9a). In most cases, the 

large ruptures appeared in the abaxial and ventral region o f the seed. In many seeds 

o f line GC 88037-38-2-2, soaking for lh  followed by drying resulted in the 

appearance o f long slit-shaped ruptures which were found predominantly in the 

abaxial region o f the seed coat (Fig. 3.9b).

43



Chapter 3: Seed coat characteristics related to imbibition

A

B

Figure 3.8. Micrographs showing the adherence o f the seed coat to the embryo in a) 

seed o f cv. Toreador and b) seed of cv. Suwan-155, lOx magnification; arrows 

indicate the gap between the seed coat and the embryo.
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A

Figure 3.9. Micrographs showing the surface o f the seed coat after wetting and drying 

in a) seed o f cv. Toreador, 20x magnification, b) seed o f line GC 88037-38-2-2, 30x 

magnification; arrows indicate the ruptures in the surface of the seed coat.
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3.2. Discussion

In this study, the seed coat was clearly shown to be a regulator controlling the 

rate o f water uptake in soybeans since seeds without a seed coat imbibed greater 

amounts o f water than those with a seed coat. In addition to the role o f the seed coat 

in controlling the rate of water uptake, the seed composition and seed microstructure 

have been proposed as other factors regulating the water diffusivity into seeds. 

Vertucci, (1989) reported that sweet maize had a higher diffusivity than dent maize. 

Phillips, (1968) reported that soybeans had about 10 times more water diffusivity 

than cotton (Gossypium hirsutum L.). However, Vertucci, (1989) in a comparative 

study o f six grain legumes reported that seed composition was not the major 

determinant o f diffusitivity since seeds with similar composition displayed 

remarkably different water diffusitivities. In a number o f studies in both 

monocotyledons and dicotyledons species, the seed microstructure has been reported 

to be critical to the seed diffusitivity; Phaseolus embryos with low water 

diffusitivities had small, tightly packed starch granules whereas wheat grains with 

vitreous endosperms had a slower hydration than grains with mealy endosperms 

(Vertucci, 1989).

In this study, the rate o f water uptake, the level of leachate conductivity and the 

extent o f staining o f the cotyledons with tetrazolium chloride were closely related 

characteristics. High rates o f water uptake resulted in imbibition damage as 

evidenced by high leachate conductivity and low percentage o f cotyledons staining 

with tetrazolium chloride. This observation is in agreement with two previous 

reports, in soybeans, that high rates of water uptake were associated with high solute 

leakage and low percentage of cotyledons fully stained with tetrazolium chloride 

(Semple, 1981; Oliveira etal., 1984). Duke and Kakefuda (1981), reported additional 

evidence o f the occurrence of imbibition damage due to rapid water uptake. They 

observed that when soybean embryos (seeds minus the testa) soaked in an aqueous 

solution o f 1% Evans Blue, the outermost layers of cells absorbed the stain shortly 

after the soaking. They also reported that embryos had poor retention o f solutes 

which was interpreted as being the result of cellular rupture during imbibition.

Further support for the incidence o f imbibition damage in soybeans due to the 

rapid water uptake was the improved percentage o f cotyledons fully stained with 

tetrazolium chloride when the genotypes were slowly imbibed in 30% PEG prior to
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staining. The improvement in the percentage of cotyledons fully stained due to the 

low water uptake was particularly evident in the genotypes in which the imbibition 

damage was more pronounced. However, there were genotypes that even after the 

slow imbibition in 30% PEG a considerable number o f the cotyledons remained 

unstained with the tetrazolium chloride. Also, there were genotypes where slow 

imbibition resulted in little or no improvement in comparison to the water soaking 

indicating that there were genotypes in which imbibition damage did not occur. 

Scarifiaction o f the seed coat resulted in aggravation o f imbibition damage in most 

cases, indicating that the seed coat offers a significant protection to the embryo in 

relation to imbibition damage.

Powell and Matthews (1979), in peas, reported that slow imbibition did not 

improve the vital staining o f the cotyledons in all cases; slow imbibition in 30% 

Carbowax o f seeds o f cv. Sprite resulted in about 30% improvement in the vital 

staining o f the cotyledons whereas the slow imbibition of seeds o f cv. Kelvedon 

Wonder resulted in no improvement of the vital staining of the cotyledons. Powell et 
a l,  (1986b) reported that, in dwarf French beans, slow imbibition in 40% PEG 

resulted in an improvement in the percentage of cotyledons fully stained with 

tetrazolium chloride only in the genotype with high imbibition damage. Legesse and 

Powell, (1992) reported in cowpeas improvement in the percentage o f cotyledons 

fully stained with tetrazolium chloride when seeds were imbibed slowly from paper 

towel. They also reported that the improvement was particularly evident in genotypes 

with high rate o f water uptake and low vital staining of the cotyledons. Abdullah et 
al., (1992), in long beans, reported that in some genotypes even after slow imbibition 

in 30% PEG, a considerable proportion of cotyledons remained unstained with the 

tetrazolium chloride due to low vigour o f seeds prior to testing. Similar results 

implicating the low vigour of seeds in cases where poor staining was observed after 

slow imbibition, were also reported in cowpeas (Legesse and Powell, 1992).

In this study, the condition o f the seed coat appeared to be a very important 

factor in relation to the occurrence o f imbibition damage. The two genotypes (line 

GC 84128-17-2-1 and AGS 292) with a high proportion o f cracked seed coats had 

the highest rate o f water uptake, the highest amount of leachate conductivity and the 

lowest vital staining o f the cotyledons. Oliveira et al., (1984) reported that cracks in 

the soybean seed coat resulted in a high rate of water uptake, leachate conductivity 

and low vital staining o f the cotyledons.
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Additionally, there were two genotypes (lines GC 88037-38-2-2 and SS 87040- 

2 - 1 ) in which although the testa was apparently intact (examined visually and under 

low magnification stereoscope), a high level o f imbibition damage was observed. 

This observation indicated that there were situations where the presence o f intact 

seed coat was not sufficient to reduce the rate of water uptake, and provide no 
protection against imbibition damage.

The slow mean rates o f water uptake by three genotypes (cv. Essor, Pioneer- 

9581 and line KWS-2) was largely attributed to the presence o f hard seeds. Thus, the 

mean rate o f water uptake was related to the proportion o f hard seeds present. Hard 

seeds became soft at different rates in the three genotypes. Similar effects o f hard 

seeds on the water uptake have been reported in a number of grain legumes including 

chickpeas (Legesse and Powell, 1992), long beans (Abdullah et al., 1992) and 

Phaseolus beans (Dickson and Boettger, 1982).

In this study, a number o f genotypes with a wide range o f seed sizes was 

examined. According to Nelson and Wang (1989), seed weight between 40 and 

346mg per seed represents the 99% of the range of the seed weight o f all accessions 

in the USDA Soybean Germplasm Collection. In the genotypes examined, the 

percentage seed coat dry weight to seed dry weight and the rate o f water uptake were 

totally uncorrelated. This result is in agreement with several reports in the lack of 

correlation between the physical characteristics of the seed coat and the rate o f water 

uptake (Calero et al., 1981; Yaklich et al., 1986).

In this study, water uptake did not occur uniformly through the soybean seed 

coat. Wrinkling o f the seed coat started from the dorsal region, and then covered the 

abaxial and ventral region o f the seed. This observation is in agreement with previous 

reports that wrinkling o f the seed coat was the first visual sign o f imbibition, and the 

dorsal region being the first one showing wrinkling o f the seed coat as a sign o f 

imbibition (Yaklich et al., 1986; McDonald et al., 1988). There was an association 

between the rate o f water uptake and the time taken for wrinkles to appear after the 

start o f imbibition.

From the results o f the effect o f seed proximity to the water uptake, it was 

shown that regardless o f the openness o f the hilar fissure, the ventral region 

facilitated the slowest rate of water uptake during the first 4h of imbibition. There
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was no difference in the rate o f water uptake between the dorsal and abaxial region of 

the seed coat. In contrast, McDonald et al., (1988) in an experiment where soybean 

seeds orientated so that either the ventral or the dorsal region was exposed to water 

on paper towels, found that the ventral region facilitated a greater rate o f water 

uptake than the dorsal region. Additionally, from the results in this study with nail 

varnish, it was shown that the hilar region played little or no role in water uptake in 

comparison to the permeability of the seed coat. Powell et al., (1986a) reported that 

in dw arf French beans sealing of both hilum and micropyle resulted in a significant 

reduction in the rate o f water uptake during the first 12h of imbibition. The hilum and 

micropyle has previously been shown to be a major route of the water entry into 

seeds o f Phaseolus (Kyle and Randall, 1963; Schroth and Cook, 1964; Spurny, 1973; 

Korban et al., 1981). However, in cowpeas, sealing o f both hilum and micropyle in 

most genotypes resulted in no reduction in the rate of water uptake (Legesse and 

Powell, 1992).

The lower rate o f water uptake in the hilar area in comparison to the other 

regions o f the seed coat, may be explained on the basis that water could only 

penetrate through the tracheid bar but not through the palisade layers (outer and inner 

palisade). As a result, although the hilum fissure was wide open, the rate o f water 

uptake was lower in comparison with the dorsal side. Ragus, (1987), on the basis of 

microscopical studies, suggested that testa and micropyle were better sites of entry of 

water than the hilum in soybeans. Hyde, (1954) proposed that the hilar fissure in 

Papilionoidae seeds acted as a hygroscopic valve, permitting water loss from, but 

preventing water entry into, the maturing, dehydrating seed. Lersten, (1982) in an 

anatomical survey o f the tracheid bar of 232 species in Papilionoidae seeds supported 

the idea that the tracheids in the tracheid bar have lost their water conductive 

significance in favour o f gas exchange capability.

In this study, there was no clear relationship between the colour o f the seed 

coat and the rate o f water uptake since it was observed that one genotypes with black 

coat imbibed water at high rate and one genotype with black coat imbibed water at a 

low rate o f water uptake. The genotype with a brown seed coat imbibed water at a 

high rate. In the literature, there have been several reports showing a close 

association between dark coloured seed coat and low rate o f water uptake. However, 

in this study, there were examined only 3 genotypes with black or brown seed coat. 

For a better assessment o f the relationship between testa colour and water
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permeability a larger number o f genotypes with pigmented seed coat is required. 

Kuo, (1989) investigated the relationship between seed coat colour and water 

permeability in 20 soybean genotypes o f which 15 had black or brown seed coats. A 

low rate o f water uptake was clearly associated with the black seed coats although 

not all black genotypes had a low rate water uptake (Kuo, 1989). Powell et al., 
(1986a), in dw arf French beans, reported a close association between the testa colour 

and a low rate o f water uptake, in an investigation of 30 genotypes o f which 20 had 

black or brown seed coats. Similar close associations between the dark coloured seed 

coat and a low rate of water uptake has been reported in several grain legumes 

including snap beans (Deakin, 1974; Wyatt, 1977), long beans (Abdullah, 1988), 

chickpeas (Legesse and Powell, 1992) and lima beans (Kannenberg and Allard, 
1964).

In grain legumes, the close association between dark coloured seed coat and 

low water uptake has been explained on the basis o f the quantity o f the phenolic 

material, the adherence o f the seed coat to the embryo and the high degree o f seed 

coat cracking.

Firstly, low rate o f water uptake by pigmented seeds due to the high quantity of 

phenolic material within the seed coat was proposed by Marbach and Mayer (1974, 

1975). They reported that phenolic material, in pigmented Pisum seeds, could be 

oxidised in the presence o f catechol oxidase during dehydration o f the seeds 

following maturation. Other authors have been reported a similar indirect relationship 

between the development of the pigmentation (during seed development and 

maturation) and the rate o f water uptake measured by those seeds. Legesse and 

Powell (1992) reported results in Phaseolus beans, chickpeas and cowpeas. They 

reported that in the absence of pigmentation at the early stages o f maturation, seeds 

imbibed rapidly. Flowever, as soon as pigmentation started to develop, the rate o f the 

water uptake by the pigmented seeds was reduced. Additionally, the close association 

o f pigmentation with reduced rates of water uptake has been previously reported in 

isogenic lines o f peas (Powell, 1989). Seeds having the dominant A gene for seed 

coat colour were usually pigmented and imbibed slowly in comparison to the 

unpigmented seeds having the recessive gene (Powell, 1989).
Secondly, the rate o f water uptake by pigmented seeds has been associated with 

the degree o f the seed coat adherence to the embryo. In the present investigation, the 

existence o f a narrow space between the seed coat and the embryo was observed 

which could provide an important pathway of water movement during imbibition.
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This observation is in agreement with earlier studies which have shown that the seed 

coat o f many genotypes detached from the embryo leaving a free narrow space in 

between (Moore, 1971). The importance of the close adherence o f the seed coat in 

relation to the low water uptake has been reported in French beans (Powell et al., 
1986b), peas (Powell, 1989) and snap beans (Wyatt, 1977). Powell et al., (1986a, 

1986b) reported a close association between rapid water uptake, loose testa 

adherence and high imbibition damage in Phaseolus seeds. The water could move 

freely in the gap between the coats and the cotyledons (loose adherence o f seed coat 

to the embryo) whereas prevention o f water movement was observed in seeds in 

which there was a tight adherence of the seed coat to the embryo. Powell et al., 
(1986a)suggested that changes in the rate of water uptake during imbibition after 

previous wetting and drying could indicate the contribution o f the seed coat 

adherence to the water uptake in dwarf French beans. In this study, it was shown that 

the increased rate o f water uptake of seeds subjected to one cycle o f wetting and 

drying could not be attributed entirely to a loosening o f the adherence o f the seed 

coat to the embryo. Seeds subjected to wetting and drying appeared to have extensive 

ruptures in the surface of the seed coat. This observation is in agreement with 

previous results such as those of W olf et al., (1981) who soaked intact seeds of 

soybean cv. Beeson in water for lh  and then air-dried the seeds. They reported that 

this pre-treatment resulted in large splits in the seed coat and additional smaller 

cracks in the surface o f the seed coat. They suggested that the seed coat could dry 

more rapidly than the cotyledons which resulted in fissures that closely resemble 

those found in field-harvested seeds as well. Also, an earlier report by Moore (1971) 

indicated that alternate cycles of wetting and drying progressively resulted in 

loosened, wrinkled seed coats and an increased number of fissures in soybeans. 

Adherence o f the testa to the embryo could play an important role in the water uptake 

in soybeans but it appears to be difficult to measure or quantify it. As it was clearly 

shown, assessment o f the role o f testa adherence could not be made after one cycle of 

wetting and drying o f the seeds.
Thirdly, the higher rate o f water uptake in non-pigmented than pigmented 

seeds has been associated with the degree of cracking o f the seed coat. Recently, 

Kantar et al., (1996) reported that there was a greater number of cracks in the seed 

coat o f zero-tannin faba beans than the high-tannins lines; the incidence o f the cracks 

in the seed coats was clearly associated with low vigour in these lines.
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In this study, one black seeded genotype (line VLS-1) had a low rate o f water 

uptake during the first 2 h of imbibition but a considerably greater rate o f water 

uptake thereafter. This delayed-permeability character o f the seed coat was associated 

with a low solute leakage and a high proportion o f cotyledons fully stained with 

tetrazolium chloride. Kuo (1989) reported that 3 black seed coat genotypes had a 

similar delayed-permeability character. He suggested that this character could 

improve seed quality if successfully transferred to cultivated soybean genotypes.

In this study, one black seeded genotype (cv. Suwan-155) had a higher rate of 

the rate o f water uptake when seeds soaked with the coat present than that o f seeds 

without the coat present. This high rate of water uptake resulted in high solute 

leakage and very low percentage o f cotyledons fully stained with tetrazolium 

chloride. A possible explanation for the previous anomaly may be the following: a 

loose adherence o f the testa to the embryo was observed when seeds were visually 

examined. This loose adherence resulted in a wide gap between these two structures; 

the gap was greatly increased due to the wrinkling of the seed coat which was mainly 

concentrated in the dorsal region o f the seed. As a result, water had penetrated the 

seed coat and trapped in the gap between the coat and the embryo. When seeds were 

blotted dry and then weighed, the weight increase referred not only to the weight of 

water absorbed but also to the amount of the water trapped in the gap. The presence 

o f free water trapped in the gap between the seed coat and the embryo was visually 

confirmed during the imbibition experiments.
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CHAPTER 4 

Influence of the the condition of the seed coat on seed performance

4.1. Introduction

Seed longevity is markedly influenced by the ambient temperature, seed 

moisture content, pre-storage environment and genotype (Delouche, 1974; Ellis et 
a l,  1982).

There are several reports in the literature of differences amongst genotypes in 

seed deterioration characteristics in the field and during storage. Resistance to seed 

deterioration in the field has been associated with small seed size, short reproductive 

growth period and black seed coat colour (Dassou and Kueneman, 1984; Mugnisjah 

et al., 1987). A large proportion, also, of hard seeds within a seed lot has been 

reported to offer resistance in the mother plant particularly when harvest was delayed 

and/or adverse environmental conditions occurred (Potts et al., 1978; Minor and 

Pascal, 1982). Low infection by seed-borne fungi has been also associated with 

increased percentage germination and seedling emergence (Pascal and Ellis, 1978; 

TeKrony et al., 1984). Deterioration o f soybean seeds may start on the mother plant 

in the field prior to harvesting (Green et al., 1965; Mondragon and Potts, 1974) and 

poor seed vigour, as revealed by low percentage of normal seedlings after 3 days of 

accelerated ageing, has been reported even at the physiological maturity (TeKrony et 
al., 1980).

Seed moisture and temperature are the primary environmental determinants of 

seed longevity in storage (Roberts, 1960; Roberts, 1972). Ellis and Roberts (1980) 

proposed a quantitative model for the decline in the percentage viability during 

storage which could be applied in orthodox seeds under a wide range o f seed 

moisture and temperature levels. Poor storability, in the tropics, has been a major 

biological constraint to expanding soybean production (Delouch et al., 1973; Singh 

and Rachie, 1987). According to a report by IITA (1979), hot temperatures (above 35 

°C) and large relative humidity values (above 75% r.h.) accelerate seed deterioration 

and loss o f viability; germination declined sharply after only 60 to 90 days in storage 

under ambient conditions. However, there have been several reports about consistent
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differences in the storage potential among genotypes. The lines with high storage 

potential had seeds with smaller seed sizes than the lines with low storage potential 

but not all small seeded lines stored well (Wien and Kuenerman, 1981; Dassou and 

Kuenerman, 1984). In addition, Wien and Kuenerman (1981) reported that seed coat 

colour was not consistently correlated with storability, although, the best three lines 

in terms o f longevity had black seed coats. Delayed permeability o f the seed coat has 

been proposed to be a promising character for producing seeds o f good quality (Kuo, 

1989).

Seed coat splitting occurred in the outer layers of the seed coat and involved 

the separation o f cuticle, palisade and hourglass layer o f cells (W olf et al., 1981). 

Seed coat splitting could be a severe problem in soybeans, especially in genotypes 

with large seeds (Lassim and Delouche, 1981). This imperfection o f the seed coat 

may affect seed quality either as an avenue for pathogens or increase deterioration 

particularly under adverse environmental conditions before or after harvest (Yaklich 

and Barla-Szabo, 1993). The occurrence of seeds with split coat within seed lots has 

occasionally been associated with low levels of seed germination and vigour, but not 

always (Burchett et al., 1985).

There is still a lack o f conclusive information about the influence o f the condition of 

the seed coat in seed performance. Therefore, the objectives of this study were: (1) to 

measure the influence o f the intact or split seed coat in seed, and (2 ) to present 

additional evidence o f the effectiveness of the hard seed coat in maintaining high 

seed performance.

4.2. Materials and methods

One seed lot o f each of the five cultivars that received from Agricultural 

Research Station, Mingora, Pakistan were provided by Dr. Ehsanullah Khan.

The genotypes were grown in the field under similar conditions, were of 

medium seed size and required similar time to flowering and maturity (Table 4.1). 

However, the condition o f the seed coat was different. In particular, approximatelly 

60% of the seeds o f cv. Douglas were noticed to have seed coat splitting whereas in 

all other genotypes few seeds (discharged) with seed coat splitting were observed 

(Table 4.1). Separation o f seeds with split or intact seed coat was visually made. 

Also, a high proportion of hard seeds (about 65%) were observed in cv. Pioneer-9581
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whereas in all other genotypes no hard seeds were observed (Table 4.1). Separation 

o f hard from soft seeds was made as described in section 2.2. Seeds o f the five 

genotypes were placed for the accelerated ageing, as described in section 2 .8 . 

Cracked and intact seeds o f cv. Douglas and hard and soft seeds o f cv. Pioneer-9581 

were placed separately for ageing. Seed moisture content during the ageing test was 

measured as described in section 2.2. Leachate conductivity from seeds was 

measured as described in section 2 .6 .

Table 4.1. Characteristics o f the five soybean genotypes which were grown in the 

field, in Pakistan.

Genotypes Dry weight 

seed- 1

(mg)

Time to 50% 

flower 

(days)

Maturity time 

(days)

Forrest 182 42 134

Douglas 165 39 128

HSC-591 154 38 133

HSC-401 140 44 134

Pioneer-9581 153 41 137

The germination tests were performed as described in section 2.3. Seeds o f cv. 

Pioneer-9581 that remained hard (about 10-15% of the initial amount) after the 8 th 

day were carefully scarified and subjected to another germination test. The total 

percentage o f normal seedlings was expressed as the sum of the two tests. Seedling 

evaluation at the end o f the germination test was made as described in section 2.3. 

The fresh weight o f all normal seedlings was measured before taking separate 

measurements for shoot and root fresh weight. Results from fresh weight were based 

in normal seedlings from the first germination test with unscratched seeds. The 

vigour index was calculated by multiplying the percentage o f normal seedlings by 

seedling fresh weight, as proposed by Woodstock (1973)..

4.3. Results

Figure 4.1 shows the effect o f accelerated ageing 1 to 4 days on the percentage 

o f normal seedlings produced. Analysis o f variance results were presented in
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Appendix 2, Table 2.1. In the unaged control seeds, there was no significant 

difference between the genotypes in the percentage o f normal seedlings. In general, 

as the ageing period increased, the percentage o f normal seedlings declined. 

However, there were differences between genotypes in the rate o f decline in the 

percentage o f normal seedlings. After 1 day of ageing, there was no significant 

difference between the aged seeds and the unaged control seeds in the percentage of 

normal seedlings in most genotypes. However, in seeds o f cv. Douglas an immediate 

and steady decline in the percentage of normal seedlings from the first day o f ageing 

afterwards was measured. After 2 days o f ageing, there was no difference between 

aged and unaged control seeds, in the percentage normal seedlings, only in seeds of 

cv. HSC-401. After 3 days o f ageing, all genotypes had a decline (PO.OOl) in the 

percentage normal seedlings in comparison to the unaged control seeds. The lowest 

decline in the percentage normal seedling was measured in seeds o f cv. Pioneer-9581 

and HSC-591; aged seeds had about 12% (P<0.05) lower percentage normal 

seedlings than that o f the unaged control seeds. After 4 days of ageing, seeds o f cv. 

Pioneer-9581 retained the highest percentage of normal seedlings; about 70% of aged 

seeds produced normal seedlings.

— Forrest 4  Douglas _ FISC-591 p  FISC-401 •%- Pioneer-9581

days of accelerated ageing

Figure 4.1. Effect o f accelerated ageing on the percentage of normal seedlings 

produced from seeds o f five genotypes; error bar, standard error of the mean, (n=4).
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Figure 4.2a shows the effect o f accelerated ageing on the percentage o f normal 

seedlings produced by seeds with intact or split seed coats o f cv. Douglas. In the 

unaged control seeds and seeds aged for 4days, there was no significant difference 

between seeds with intact or split coats in the percentage of normal seedlings. After 2 

days o f ageing, however, seeds with split coats had a 2 2 % lower (P< 0 .0 0 1 ) 

percentage o f normal seedlings than that of seeds with intact coats.

Figure 4.2b shows the effect o f accelerated ageing on the percentage o f normal 

seedlings produced by hard or soft seeds of cv. Pioneer-9581. In the unaged control 

seeds, there was no significant difference between hard or soft seeds in the 

percentage o f normal seedlings. In hard seeds, ageing had no significant effect in the 

decline o f percentage o f normal seedlings. However, soft seeds produced 12% and 

55% lower (P<0.001) percentage of normal seedlings than hard seeds at 2day and 

4day o f ageing respectively.
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Figure 4.2. Effect o f accelerated ageing after 2 and 4 days on the percentage of 

normal seedlings produced from seeds of a) cv. Douglas and b) cv. Pioneer-9581; 

error bar, standard error o f the mean, (n=4).
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Figure 4.3 shows the increase in the percentage moisture content during the 

ageing in seeds o f the five genotypes. Analysis o f variance results were presented in 

Appendix 2, Table 2.2. In unaged control seeds, difference in the percentage moisture 

content were only between seeds o f cv. Pioneer-9581 and seeds o f cv. Douglas. As 

the ageing period increased, the percentage moisture content also increased. 

However, there were differences between genotypes in the percentage moisture 

content. Seeds o f cv. Pioneer-9581 had the lowest increase in the percentage 

moisture content, reaching 25% moisture content at the end o f the ageing. Seeds of 

cv. Douglas had the highest increase in the percentage moisture content. At the 4 day 

of ageing seeds o f all but cv. Pioneer-9581, reached about 32% moisture content.

0  1 2  3 4

days of accelerated ageing

Figure 4.3. The percentage moisture content during the accelerated ageing o f seeds of 

five genotypes; error bar (smaller than the symbols), standard error of the mean, 

(n=4).
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Figure 4.4a shows the effect o f accelerated ageing on the percentage moisture 

content in seeds with intact or split seed coats o f cv. Douglas. In the unaged control 

seeds and seeds aged for 4days, there was no significant difference between seeds 

with intact or split coats in the percentage moisture content. After 2 days o f ageing, 

however, seeds with split coats had a 3% higher (T O .001) percentage o f moisture 

content than that o f seeds with intact coats.

Figure 4.4b shows the effect o f accelerated ageing on the percentage moisture 

content in hard or soft seeds o f cv. Pioneer-9581. In the unaged control seeds, soft 

seeds had a 14% higher (PO.OOl) percentage moisture content than hard seeds. Soft 

seeds had also a 2.7 and 1.6 times higher percentage moisture content after the 2 day 

and 4 day o f ageing respectively.
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F ig u re  4.4. T he percentage m oisture conten t after 2 and 4 days o f  accelerated  ageing

o f  seeds o f  a) cv. D ouglas and b) cv. P ioneer-9581; error bar (sm aller th an  the

sym bol), standard  error o f  the m ean, (n=4).
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Figure 4.5 shows the effect o f accelerating ageing on the leakage from seeds of 

the five genotypes. Analysis o f variance results were presented in Appendix 2, Table

2.3. Leakage from unaged seeds o f cv. Douglas was 3 times more than that from 

seeds o f cv. Pioneer-9481 was. There was no difference between the three other 

genotypes in the leakage conductivity. In general, as ageing increased the leachate 

conductivity increased. However, there were differences between genotypes in the 

conductivity values. Seeds o f cv. Douglas had the highest leakage throughout the 

ageing period whereas seeds o f cv. Pioneer-9581 had the lowest leakage throughout 

the ageing period. Aged seeds o f the other three genotypes differed little in leakage 
when tested.

g  Forrest 4  - Douglas _ 4_  HSC-591

t  HSC-401 X - - Pioneer-9581

days of accelerating ageing

Figure 4.5. Effect o f accelerated ageing 1 to 4 days on the conductivity o f the 

leachate from seeds o f five genotypes; error bar, standard error o f the mean, (n=4).
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Figure 4.6a shows the effect o f accelerated ageing on the leakage from seeds 

with intact or split seed coats o f cv. Douglas. Analysis o f variance results were 

presented in Appendix 4, Table 4.4. In general, seeds with split coats had a higher 

leakage than intact seeds. In the unaged control seeds, seeds with split coat had an 

84% higher (P<0.001) leakage than intact seeds. However, after 4days o f ageing, 

seeds with split coats had a 15% higher (PO.OOl) leakage than intact seeds.

Figure 4.6b shows the effect of accelerated ageing on the solute leakage from 

hard or soft seeds o f cv. Pioneer-9581. In general, leakage from hard seeds was 

negligible whereas solute leakage from soft seeds was high.

a) b)

days of accelerated ageing

. hard . soft

days of accelerated ageing

Figure 4.6. Effect o f accelerated ageing at 2 and 4 days on the conductivity o f the 

leachate from seeds o f a) cv. Douglas and b) cv. Pioneer-9581; error bar, standard 

error o f the mean, (n=4).
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Figure 4.7 shows the effect o f accelerating ageing 1 to 4 days on the fresh 

weight per normal seedling produced by seeds of the five genotypes. Analysis of 

variance results were presented in Appendix 2, Table 2.4. In general, ageing had a 

negative effect on the fresh weight per normal seedling. However, there were 

differences between the genotypes on the fresh weight per normal seedling produced 

by aged seeds. Unaged seeds o f cv. Pioneer-9581 had the lowest seedling fresh 

weight (409 mg per normal seedling) whereas unaged seeds of cv. HSC-591 had the 

highest seedling fresh weight (706 mg per normal seedling) (P<0.001). Seeds o f cv. 

Pioneer-9581 showed the lowest decline in the seedling fresh weight due to ageing 

whereas seeds o f cv. Douglas showed the highest decline in the seedling fresh weight 

due to ageing.

g  Forrest ^  Douglas HSC-591

0  HSC-401 X  Pioneer-9581

days of accelerated ageing

Figure 4.7. Effect o f accelerated ageing 1 to 4 days on the fresh weight per normal 

seedling produced by seeds of five genotypes; error bar, standard error o f the mean, 

(n=4).
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a) b)
g  Forrest 
A -  HSC-591 
X  Pioneer-9581

A Douglas 
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X  Pioneer-9581
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0 0
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Figure 4.8. Effect o f accelerated ageing 1 to 4 days on a) the shoot fresh weight per 

normal seedling, b) the root fresh weight per normal seedling, produced by seeds of 

five genotypes; error bar, standard error of the mean, (n=4).

Figure 4.8a shows the effect of the accelerating ageing 1 to 4 days on the shoot 

fresh weight per normal seedling produced by seeds of the five genotypes. Analysis 

o f variance results were presented in Appendix 2, Table 2.5. In general, ageing had a 

negative effect in the shoot fresh weight and the decline in shoot fresh weight was 

similar to that in the seedling fresh weight. There were, however, differences 

between the genotypes on the shoot fresh weight produced by aged seeds. Unaged 

seeds o f cv. Pioneer-9581 had the lowest shoot fresh weight (299 mg per normal 

seedling) whereas unaged seeds of cv. FISC-591 had the highest shoot fresh weight 

(588 mg per normal seedling) (PO.OOl). Seeds o f cv. Pioneer-9581 showed the 

lowest decline in the shoot fresh weight due to ageing whereas seeds o f cv. Douglas 

showed the highest decline in the seedling fresh weight due to ageing.

Figure 4.8b shows the effect o f the accelerating ageing 1 to 4 days on the root 

fresh weight per normal seedling produced by seeds o f the five genotypes. Analysis
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o f variance results were presented in Appendix 2, Table 2.6. In general, root fresh 

weight was more affected than the shoot fresh weight by the ageing. Seeds after 1 

day o f ageing produced 35-50% lower (EO.OOl) root fresh weight than the unaged 

seeds. After 4 days o f ageing, seeds of all genotypes had about 3 times less root fresh 

weight than the unaged control seeds.

Ageing had a negative effect in the vigour index (normal seedlings x fresh 

weight per normal seedling) (Fig. 4.9). Analysis o f variance results were presented in 

Appendix 2, Table 2.7. However, there were differences between the genotypes on 

the decline o f the vigour index from aged seeds. Unaged seeds o f cv. Pioneer-9581 

had the lowest vigour index (9,000 mg) whereas unaged seeds o f cv. HSC-591 had 

the highest vigour index (16,500 mg) (PO.OOl). Seeds o f cv. Pioneer-9581 showed 

the lowest decline (42% after 4 days of ageing) in the vigour index due to ageing 

whereas seeds o f cv. Douglas and HSC-401 showed the highest decline (30 times 

after 4 days o f ageing) in the vigour index due to ageing. Aged seeds o f cv. HSC-591 

for 4 days had about 3 times lower vigour index than that o f the unaged seeds.

H Forrest Douglas ^  HSC-591

HSC-401 X  Pioneer-9581

days of accelerated ageing

Figure 4.9. Effect o f accelerated ageing 1 to 4 days on the vigour index (normal 

seedlings x fresh weight per normal seedling), from seeds of five genotypes; error 

bar, standard error o f the mean, (n=4).
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4.4. Discussion

The effect o f accelerated ageing on decline o f viability using seeds o f five 

genotypes were assessed. The genotypes were o f the same maturity group (group V), 

similar seed size, yellow seed coated and were grown under the same conditions. 

Genotypic differences in seed longevity during storage can be identified only when 

different genotypes are grown under the same conditions and treated identically 

before storage (Roberts, 1986). A large proportion o f seeds with split coats were 

noticed in cv. Douglas whereas in all other genotypes few seeds with seed coat 

splitting observed. Also, a high proportion of hard seeds (about 65%) were noticed in 

cv. Pioneer-9581 whereas in all other genotypes no hard seeds were noticed. The 

cultivar Douglas has been reported as prone to seed coat splitting (Yaklich and Barla- 

Szabo, 1993).

In this study, although the initial germinability o f the unaged seeds was similar 

across the genotypes, significant differences between the genotypes in the storage 

potential were revealed. During storage in hot and humid conditions, a high initial 

germinability in itself appeared to confer inadequate storage life. Seed coat could 

influence the storage life o f seeds under unfavourable conditions. Differences in the 

storage potential could be associated with the influence of the seed coat to moisture 

absorption from the hot and humid atmosphere. A large proportion o f hard seeds in 

cv. Pioneer-9581 resulted in a low moisture absorption during accelerated ageing and 

high viability in the subsequent germination test. On the other hand, a large 

proportion o f seeds with split coats in cv. Douglas resulted in a high moisture 

absorption during accelerated ageing and low viability in the subsequent germination 

test. Additionally, the seed coat could vastly influence the leachate conductivity by 

regulating the water uptake; a high proportion o f hard seeds resulted in very low 

leachate conductivity whereas a high proportion of seeds with splitted coat resulted 

in high leachate conductivity.

Hardseedness has been previously reported to maintain high storage potential 

in seeds. Prolonged storage potential (as revealed by accelerated ageing test) and 

resistance to field weathering (deterioration in the mother plant due to late 

harvesting) was found in a soybean genotype with a high percentage o f hard seeds 

(Potts et al., 1978). Minor and Paschal (1982) reported variation in storability o f 253 

soybean genotypes; seeds were produced in a tropical environment and stored in a 

simulated tropical environment (30°C and 80% r.h.). One genotype (cv. Barchet)
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with 60% hard seeds had a storage half-life 16 weeks whereas all the other genotypes 

had a storage half-life shorter than 8  weeks. Prolonged storage potential due to a 

large percentage o f hard seeds was also reported in long bean (Vigna sesquipedalis 
L.) (Abdullah et al., 1992). In a comparative study o f eleven genotypes, they found 

small decrease in percentage o f normal seedlings after 4days o f accelerated ageing in 

seed lots which had above 30% hard seeds whereas in seed lots with no hard seeds, 

the viability was completely lost after 4 days o f ageing.

In the present work, large difference between seeds with split coats and seeds 

with intact coats in the percentage o f normal seedlings produced by 2  days aged 

seeds were observed. In addition, accelerated ageing had a similar negative effect on 

leachate conductivity in seeds with split and intact coats. Burchett et al. (1985), in a 

study o f the importance o f the presence o f seeds with split coats within soybean seed 

lots on germination and seed quality, reported that seeds with split coats were inferior 

to both germination and vigour (use o f accelerated ageing).

In this study, the large difference between seeds with split coats and intact 

coats in the percentage o f normal seedlings produced by 2  days aged seeds could be 

ascribed to either the effect o f the seed coat in the moisture absorption during the 

accelerated ageing test or difference between splitted and intact seeds in the initial 

seed quality. There was about 3% difference between splitted and intact seeds in the 

moisture content at the end o f the first two days of the accelerated ageing. In ageing 

tests where the seed moisture is kept constant during the whole period o f the test, 

even small differences in the seed moisture could result in different rates of 

deterioration (Matthews, 1980). For the same reasons, Ellis and Roberts (1980) 

reported that differences o f more than 2 % in moisture content during the controlled 

deterioration test, had a considerable effect on seed longevity. However, Tomes et al. 
(1988) reported that a variation of up to 3% in soybean seed moisture at the end o f 

the fourth day o f accelerated ageing had no significant effect on the percentage of 

normal seedlings.

It is difficult, however, to ascribe all the difference between seeds with split 

coats and intact coats to the influence o f the seed coat on moisture absorption during 

the accelerated ageing. Seeds with split coats might have a lower initial seed quality 

in comparison to the intact seeds for the following reasons:
a) It is in fact very difficult to achieve the same initial level of seed quality, 

although every care was made. The selected genotypes were of the same maturity
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group, medium seed size, same seed coat colour, grown under similar field 

conditions, stored and treated in the same way before the experiments started. 

However, it is possible that seeds with split coats may have suffered more 

mechanical damage and pathogen infection than the seeds with intact coats. 

Mechanical damage during handling operations was found to be very common in 

soybean seeds (TeKrony et al., 1987). Burris (1980) suggested that seeds with split 

coats may not offer optimum protection to the embryo particularly when increased 

stress forces were placed on seeds during handling.

b) The initial seed quality was found to be influenced by the position o f the pod 

in the mother plant; seeds from upper pods possessed more initially quality than 

those from lower pods (Adam et al., 1983). It may possible that seeds with split coats 

are produced exclusively or predominately in lower pods in the mother plant. 

Unfortunately, there has been no report about the occurrence o f seeds with split coat 

in relation to the position o f the pod in the mother plant.

c) It is possible that the seeds with split coats may have undergone more 

deterioration in comparison to the seeds with intact coats before harvesting in the 

mother plant. Seed coat splitting started just before physiological maturity when 

seeds attained their maximum weight (Yaklich and Barla-Szabo, 1993). Seed quality 

can deteriorate prior to harvest in the mother plant depending on the environmental 

conditions (TeKrony et al., 1980; Horlings et al., 1991).

One possible way to assess whether differences in the storage potential are 

entirely ascribed to the influence of the seed coat on moisture absorption during 

accelerated ageing and/or reflect differences in the initial seed quality, is to measure 

the initial seed quality, as Ellis and Roberts (1980) in their equation for the prediction 

o f storage potential suggested. They reported that the construction of a survival curve 

from germination results (fitted by probit analysis) after controlled deterioration gave 

an accurate estimate o f the initial seed quality. The construction o f the survival curve 

requires a controlled deterioration of seeds o f 16-10% moisture content for about 50- 

100 days. During this period, a considerable number o f germination tests (from 7 to 

10 germination tests) should be performed (Zanakis, 1993). In this experiment, 

however, this method was not performed because of the limited seed supply.

In the present work, the influence o f the presence of seeds with split coats on 

seed quality was assessed in seeds o f one seed lot of one genotype. However, for 

more conclusive results, seeds o f more genotypes or different seed lots o f the same 

genotype, grown under different locations and years should be assessed. It may be
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also important to investigate under which environmental conditions seed coat 

splitting is pronounced. Burchett et al. (1985) reported that supplemental irrigation or 

delayed planting resulted in a three-fold increase in seed coat splitting.

In the present work, seedling growth characteristics were measured to provide 

further information about genotypic differences in vigour decline due to accelerated 

ageing. In seeds o f cv. Pioneer-9581 and Douglas, a common assessment o f the 

seedling growth after the ageing was made regardless o f the type o f the seed coat 

(hard or soft, intact or split). It was planned to answer questions about differences 

between genotypes rather than differences between hard and soft or seeds with intact 

and seeds with split coats. It is has been reported that in seed lots where hard seeds 

appeared, only a proportion of seeds appeared to be hard (Potts et al., 1978; Hartwig 

and Potts, 1987). Additionally, in seed lots where seeds with split coats appeared, 

only a proportion o f the seeds had split coats (Burchett et al., 1985). Based on 

seedling growth after ageing seeds for different periods of time, an estimation of 

vigour could be made. Seeds o f cv. HSC-591 showed their superiority in vigour in 

comparison to seeds o f other genotypes, whereas seeds o f cv. Douglas possessed a 

low vigour. Hardseedness greatly reduced the decline o f seedling growth during the 

ageing but a significantly lower seedling growth and higher variation in comparison 

to the other genotypes was measured. Based on the vigour index, hardseedness 

greatly reduced the vigour decline. However, final statements about genotypic 

differences in the vigour level could be made only when more than one seed lot o f a 

particular genotype is examined (Wien and Kueneman, 1981). In this study, root 

growth was generally more affected by ageing than shoot growth. Chauhan (1985) 

using tetrazolium staining reported that in soybeans the most sensitive tissues to 

ageing were radicle and plumule.

Hardseedness (in cv. Pioneer-9581) greatly reduced the decline o f seedling 

growth during ageing but a lower seedling growth than that o f the other genotypes 

was observed. Also, hardseedness greatly reduced the decline in vigour during 

ageing. Despite the clear potential o f successful regulation o f water uptake in 

soybeans by introducing the hardseeded characteristic to agronomicaly important 

genotypes, some problems may also emerge. One of the major disadvantages of 

introducing the hardseedness into soybean cultivars would be the non-uniform rate of 

imbibition and germination, indicating that scarification of the seed coat might be 

necessary before planting. Potts et al., (1978) reported that a high percentage o f the 

hard seeds were scarified in the normal commercial harvesting therefore seeds for
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planting would not require added treatments in the normal seed conditioning process. 

They reported that the hardseeded line had a 87% emergence at the time the normal 

seeded genotype had a 100% emergence. However, additional studies concerning 

means and effects o f scarifiacation during harvesting and/or processing should be 

made. Another disadvantage of introducing the hardseedness into soybean cultivars 

might be the volunteer plants in the year following the seed production year. 

Duangapatra (1978) reported that the hardseedness caused numerous volunteer plants 

in the year following the field experiments.
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CHAPTER 5 

Effect of polymer application on imbibition, germination and seedling growth in 

soybeans during soaking and two different soil water regimes

5.1. Introduction

In tropical and subtropical countries soybean seeds frequently experience 

waterlogged conditions due to rainfall immediately after planting which could result 

in severe imbibition damage and poor crop stands (Troedson et al., 1983; Hwang and 

Sung, 1991). For similar reasons, Ragus (1987) suggested that selection o f those 

soybean cultivars that are less affected by imbibition damage is the first step to 

successful germination under saturated soil moisture conditions.

It has been suggested that improved germination, seedling emergence and 

growth could be achieved when imbibition damage was largely prevented by slowing 

down the initial rate o f water uptake during imbibition (West et al., 1985; Priestley 

and Leopold, 1986; Hwang and Sung, 1991). The lower rate of water uptake during 

imbibition could be achieved by three ways. Firstly, by using a imbibition medium 

with a low osmotic potential (Hobbs and Obendorf, 1972; Woodstock and Tao, 

1981). Secondly, by breeding a delayed-permeable seed coat that protects the embryo 

from imbibition damage during the first hours of imbibition (Kuo, 1989), or by 

coating the seeds with hydrophobic polymers (West et al., 1985; Priestley and 

Leopold, 1986). There has been only one report that soybean seeds o f cv. Leu-kuang 

coated with ethyl cellulose reduced imbibition damage and improved germination 

after soaking for 48h in distilled water (Hwang and Sung, 1991).

However, there is no published information about the effect o f polymer 

application on seedling emergence and growth particularly under flooded conditions. 

In addition, there is no published information about the effectiveness o f polymer 

application in genotypes prone to imbibition damage due to either seed coat splitting 

or low seed vigour. The objectives o f this study were, therefore: (1) to investigate the 

effectiveness o f polymer application in preventing imbibition damage in genotypes 

prone to imbibition damage (2 ) to present evidence that polymer application could 

prevent imbibition damage and improve germination and seedling growth during 

soaking in water, and (3) to investigate the effect of polymer application on seedling 

emergence and growth under normal or flooded soil conditions.
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5.2. Materials and methods

5.2.1. Polymer application

Two polymers were obtained from Vinamul Ltd, Surrey, England. The basis o f 

the selection was the hydrophobic nature of the polymers. From preliminary 

experiments, one polymer (VINAMUL 3650) containing vinyl acetate, vinyl 

chloride, ethylene and acrylate with cellulose ether as a stabilising system was further 

selected for application to seeds. Application suggestions from the company were 

that the polymer should be applied at about 20°C with the drying air temperature at 

least 10°C above the fdming temperature for good film integration.

The polymer was diluted to 80% (w/w) in water and was added to seeds by 

sequential coats o f application and drying. About 40g o f seeds were briefly (about 15 

seconds) soaked in 200ml o f polymer solution in a 500ml conical flask. The polymer 

solution with the seeds were manually shacked to help the even distribution o f the 

polymer on the seeds. Subsequently, seeds were removed from the solution and 

placed for drying on a single layer on a muslin cloth inside an air-dryer set at 35°C.

Seeds were manually separated to avoid agglomeration and left for drying at 

the air-dryer for 4hours before a second coat of polymer was applied. Every 3 coats 

o f polymer, seeds were left overnight for drying in the air-dryer set at 35°C. In every 

coat o f polymer, seeds were both visually or under low magnification microscope 

examined to check how good the application was.

5.2.2. Effect of polymer application on imbibition and germination

The amount o f polymer added to seeds was measured by the weight o f 10 

individual seeds before and after the removal of the film coating. Three levels of 

polymer application in seeds o f cv. Forrest and Douglas were produced. The time 

course o f water uptake of the polymer-coated seeds at the three levels o f polymer 

application was measured, as described in section 2.5.2. The percentages o f normal 

seedlings produced from coated seeds of cv. Forrest and Douglas were measured, as 

described in section 2.3. Aged seeds were produced after 2 days o f the accelerated 

ageing treatment, as described in section 2 .8 .
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5.2.3. Effect of 24h soaking in water on germination and imbibition damage of 

unaged and aged polymer coated seeds

Aged seeds were produced after 2 days of the accelerated ageing treatment, as 

described in section 2.8. Polymer coating (24 mg o f polymer per seed) was applied to 

seeds, as described in section 5.2.1. Unaged (uncoated and polymer coated) and aged 

(uncoated and polymer coated) seeds were placed into 350 ml beakers, and then 200 

ml o f water was added. The beakers were incubated at 25°C for 24 hours. 

Subsequently, seeds were placed for germination in paper towels, as described in 

section 2.3. Four replications o f 25 weighed seeds were used. The leachate 

conductivity from unaged (uncoated and polymer coated) and aged (uncoated and 

polymer coated) was measured, as described in section 2.6. The percentage of 

cotyledons fully stained with tetrazolium chloride was also measured, as described in 

section 2.7. In addition, seeds soaked in 30% PEG for 24h before staining with 

tetrazolium chloride was made, as described in section 2.7.

5.2.4. Seedling emergence and growth of unaged and aged polymer coated seeds 

during two different soil water regimes

Aged seeds were produced after 2 days o f the accelerated ageing treatment, as 

described in section 2.8. Polymer coating (24 mg of polymer per seed) was applied to 

seeds, as described in section 5.2.1. Unaged (control and coated) and aged (control 

and coated) seeds were sown in pots with compost, as described in section 2.4. For 

each treatment four replications of 25 seeds were sown in plastic pots, and placed at 

random inside a controlled environment cabinet at 25°C with 12h light and 12h dark. 

Irradiance was lOOmE PAR n r 2 s"1. The pots were watered with tap water, and the 

compost held at moisture levels between 70-80% of the field capacity (control water 

regime). The flooding water regime was produced as follows: pots were watered at 

the beginning o f the experiment at 1 0 0 % of the field capacity without any watering 

for the next four days. At the end o f the 4 day, the compost moisture level had 

dropped to about 70% of the field capacity. Subsequently, pots were treated as the 

pots in the control water regime. A second control water regime was also used; pots 

were kept at a flooding conditions (about 1 0 0 % of the field capacity) for the whole 

period o f the emergence test. Seedling emergence was counted daily up to day 16 

when plants were cut at the base just above the soil surface. Seedling emergence 

from pots that were kept at 1 0 0 % of the field capacity was lower than 1 0 %, and
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therefore results were not presented. The shoot length o f all emerged seedlings was 

measured. The fresh weight o f the plants was determined per pot, and average single 

plant values were calculated by dividing the fresh weight by the total number of 

plants harvested. After harvesting, pots were kept in the Fisons cabinets for another 

week (day 23). During that period, no other seedling emergence was observed.

5.3. Results

5.3.1. Effect of polymer application on imbibition and germination

From preliminary experiments, it was concluded that the best technique for the 

polymer application was a gradual increase in the amount o f polymer applied to 

seeds, as described in section 5.2.1. There was a linear increase in the amount o f 

polymer applied to seeds; every coat o f application added about 5mg polymer per 

seed (Fig. 5.1). After 10 coats o f polymer, the total amount of polymer applied was 

52 mg per seed or about 32% of the initial seed weight (Fig. 5.1).

cycles of polymer application

Figure 5.1. The weight o f polymer applied to seeds of cv. Forrest in every coat of 

polymer application.
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Figure 5.2 shows the time course o f water uptake o f seeds o f cv. Forrest coated 

with 12, 24 and 48 mg o f polymer per seed. Analysis of variance results were 

presented in Appendix 3, Table 3.1. In general, polymer coated seeds absorbed lower 

amount o f water during imbibition than uncoated seeds. Water uptake o f uncoated 

control seeds was initially high and eventually terminated around 24 hours after the 

start o f imbibition. There was no difference between uncoated and coated with 12 mg 

o f polymer per seed in the water uptake during the 72h imbibition period. Seeds 

coated with 24 and 48 mg of polymer per seed absorbed water more slowly than the 

uncoated control seeds. Coating seeds with 24 mg of polymer per seed resulted in a 

water uptake which was lower (PO.OOl) than that of the uncoated seeds during the 

48h o f imbibition. However, after 60h o f imbibition the amount o f water which had 

been taken up by the coated seeds was the same as that which had been taken up by 

the uncoated seeds. The total water uptake of seeds coated with 48 mg of polymer 

per seed at 72h was lower (PO.OOl) than that, the uncoated control seeds.

I  control <> 12 mg P/seed ^  24 mg P/seed *  48 mg P/seed

imbibition time (h)

Figure 5.2. The time course o f water uptake of seeds of cv. Forrest coated with three 

different levels o f polymer (P) (12mg, 24mg and 48 mg per seed); error bar, standard 

error o f the mean, (n= 1 0 ).
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Figure 5.3 shows the time course o f water uptake o f seeds o f cv. Douglas 

coated with 12, 24 and 48 mg of polymer per seed. Analysis o f variance results were 

presented in Appendix 3, Table 3.2. In general, polymer coated seeds absorbed lower 

amount o f water during imbibition than uncoated seeds. The rate o f water uptake o f 

uncoated seeds and seeds coated with 1 2  mg o f polymer per seed was initially very 

high; seeds absorbed 100 mg o f water during the first two hours o f imbibition. The 

very high initial water uptake was reflected in the short time taken to terminate 

imbibition; around 8  hours after the start of imbibition. Seeds coated with 24 and 48 

mg o f polymer per seed absorbed lower water than the uncoated control seeds. 

Coating seeds with 24 mg o f polymer per seed resulted in a water uptake which was 

lower than that o f the uncoated seeds during the 48h of imbibition but after 60h of 

imbibition the amount o f water that had been absorbed by the coated seeds was the 

same as that which had been absorbed by the uncoated seeds. However, the total 

water uptake o f seeds coated with 48 mg o f polymer per seed at 72h was lower 

(7J<0.00 1 ) than that o f the uncoated control seeds.

control o  12 mg P/seed ^  24 mg P/seed —x— 48 mg P/seed

imbibition time (h)

Figure 5.3. The time course of water uptake of seeds cv. Douglas coated with three 

different levels o f polymer (P) (12 mg , 24 and 48 mg o f polymer per seed); error bar, 

standard error o f the mean, (n=T0 ).
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Figure 5.4 shows the percentage o f normal seedlings produced from seeds of 

cvs Forrest and Douglas coated with the three different levels o f polymer. Analysis 

o f variance results were presented in Appendix 3, Table 3.3. There was no difference 

between the uncoated control seeds and those coated with 12 and 24 mg o f polymer 

per seed in the percentage o f normal seedlings produced. However, seeds o f cv. 

Forrest and Douglas coated with 48 mg o f polymer per seed produced 38% and 34% 

fewer (T<0 .0 0 1 ) normal seedlings than the uncoated control seeds respectively.

H control m 12 mg P/seed ¡j24 mg P/seed ¡¡¡48 mg P/seed

Forrest Douglas
gen otypes

Figure 5.4. The effect o f three different levels of polymer (12 mg, 24 and 48 mg of 

polymer per seed) on the percentage of normal seedlings produced from seeds o f cv. 

Forrest and Douglas; error bar, standard error o f the mean, (n=4).
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In view o f the results shown in Fig. 5.4, it was decided that 24 mg o f polymer 

per seed was an appropriate level o f polymer application.

Figure 5.5 shows the effect o f the 24mg of polymer per seed on the percentage of 

normal seedlings, in unaged and aged seeds of both genotypes. Analysis o f variance 

results were presented in Appendix 3, Table 3.4. Unaged seeds in both genotypes had 

the same high percentage o f normal seedlings in both coated and uncoated seeds. 

Ageing reduced the percentage of normal seedlings by 12% (P>0.05) and 33% 

(PO.OOl) in comparison to the unaged control in seeds o f cvs Forrest and Douglas 

respectively. However, in neither genotypes, there was any difference between the 

aged control and the aged coated seeds in the percentage o f normal seedlings 

produced.

I  control u  24 mg P/seed

100

Forrest Douglas Forrest Douglas

unaged aged

Figure 5.5. The effect o f a 24 mg of polymer (P) per seed on the percentage of 

normal seedlings produced from unaged and aged seeds o f cvs Forrest and Douglas; 

error bar, standard error o f the mean, (n=4).
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5.3.2. Effect of 24h soaking in water on germination and imbibition damage of 

unaged and aged polymer coated seeds

Figure 5.6 shows the effect o f 24h soaking in water on percentage normal seedlings 

o f unaged and aged polymer coated seeds with 24mg o f polymer per seed. Analysis 

o f variance results were presented in Appendix 3, Table 3.5. In general, 24h soaking 

in water resulted in a reduction of the percentage of normal seedlings. Coating 

although resulted in an improvement of the percentage o f normal seedling, it was 

lower (P<0.001) than that from the paper towel germination tests.

Unaged coated seeds of cvs Forrest and Douglas had 56% and 115% higher 

(P<0.001) percentage o f normal seedling that the unaged uncoated seeds. Aged 

coated seeds cvs Forrest and Douglas had 96% and 121% higher (PO.OOl) 

percentage o f normal seedling that the aged uncoated seeds.

■  control □ uncoated B 24 mg P/seed

Forrest Douglas Forrest Douglas

unaged aged

F igure  5.6. E ffect o f  24h  soaking in  w ater on percentage o f  norm al seed lings o f

unaged  and  aged  po lym er coated seeds (24 m g o f  po lym er p er seed) o f  cvs F orrest

and D ouglas; erro r bar, standard  error o f  the m ean, (n=4).
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Figure 5.7 shows the effect o f the 24h soaking in water on leachate 

conductivity o f unaged and aged polymer coated seeds with 24 mg o f polymer per 

seed. Analysis o f variance results were presented in Appendix 3, Table 3.6.

Unaged and aged coated seeds had a lower (JP<0.001) conductivity than unaged 

and aged uncoated seeds. The leachate conductivity of unaged control seeds o f cv. 

Douglas was 78% higher (T O .001) than that o f unaged control seeds o f cv. Forrest. 

Coating o f seeds reduced the conductivity in comparison to the uncoated seeds to a 

greater extent in seeds of cv. Douglas than in seeds o f cv. Forrest. Aged seeds o f cvs 

Forrest and Douglas had 52% and 17% higher (T O .001) leachate conductivity than 

that o f the unaged control seeds respectively. Flowever, in either genotypes, aged 

coated seeds had a lower (TO.OOl) leachate conductivity than that o f the uncoated 

aged seeds.

□ uncoated g 24 mg P/seed

unaged aged

F igure  5.7. E ffect o f  24h soaking in  w ater on leachate conductiv ity  from  unaged  and

aged  p o ly m er coated  seeds (24 m g o f  po lym er per seed) o f  cvs F orrest and D ouglas;

erro r bar, standard  error o f  the m ean, (n=4).
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Figure 5.8 shows the effect o f the 24h soaking in water on the percentage of 

cotyledons fully stained with tétrazolium chloride o f unaged and aged polymer 

coated seeds with 24 mg o f polymer per seed. Analysis o f variance results were 

presented in Appendix 3, Table 3.7.

Unaged and aged coated seeds had a higher (P<0.001) percentage of 

cotyledons that were fully stained that the unaged and aged uncoated seeds. Unaged 

control seeds o f cv. Douglas had a 2.6 times lower percentage o f cotyledons that 

were fully stained than seeds of cv. Forrest. Coating o f seeds increased the 

percentage o f cotyledons stained to a greater extent in seeds of cv. Douglas than in 

seeds o f cv. Forrest. Aged seeds of cvs Forrest and Douglas had 59% and 80% lower 

(P O M ) 1 ) percentage o f cotyledons fully stained than the unaged control seeds 

respectively. However, in either genotypes, aged coated seeds had a higher (PO.OOl) 

percentage o f cotyledons fully stained than the uncoated aged seeds.

I  control □ uncoated 24 mg P/seed

Forrest Douglas

unaged

Forrest Douglas

aged

Figure 5.8. Effect o f 24h soaking in water on percentage of cotyledons fully stained 

o f unaged and aged polymer coated seeds (24 mg of polymer per seed) of cvs Forrest 

and Douglas; error bar, standard error of the mean, (n=4).

80



Chapter 5: Polymer application

5.3.3. Seedling emergence and growth of unaged and aged polymer coated seeds 

during two different soil water regimes

5.3.3.1. Seedling emergence

The effect o f 24 mg o f polymer per seed on seedling emergence, establishment and 

growth o f unaged and aged seeds o f the two genotypes was studied. Control and 

flooding water regimes were applied to the pots as described in section 5.2. Figure 

5.8 shows the effect o f the 24 mg of polymer per seed on the percentage seedling 

emergence in the two water regimes o f unaged and aged seeds o f both genotypes. 

Analysis o f variance results were presented in Appendix 3, Table 3.8. The percentage 

seedling emergence in compost was lower (PO.OOl) than the percentage normal 

seedlings from the paper towel germination tests. Coated seeds had a higher 

(PO.OOl) percentage seedling emergence than the uncoated seeds. Ageing reduced 

(PO.OOl) the percentage seedling emergence. Flooding reduced (PO.OOl) the 

percentage seedling emergence.

In the control water regime, unaged coated seeds and unaged control seeds of 

cv. Forrest had similar percentage seedling emergence. However, unaged coated 

seeds o f cv. Douglas had higher (PO.OOl) percentage seedling emergence than the 

uncoated seeds. This improvement resulted in a percentage seedling emergence 

which was at a similar level with the percentage normal seedlings from the paper 

towel germination test. Aged uncoated seeds of either genotypes produced lower 

percentage seedling emergence than the unaged control in seeds. Coating o f aged 

seeds although resulted in a percentage seedling emergence which was higher than 

that o f the uncoated aged seeds, it was lower than the percentage normal seedlings 

from the paper towel germination tests. In the flooding regime, unaged seeds of 

either genotypes had lower percentage seedling emergence than that o f the seeds in 

the control water regime. Coating o f unaged seeds although resulted in a percentage 

seedling emergence which was higher than the uncoated aged seeds, it was lower 

(PO.OOl) than that from the paper towel germination test. In aged seeds, a further 

decline in the percentage seedling emergence was observed such that all seeds o f cv. 

Douglas failed to emerge. Aged coated seeds of cvs Forrest and Douglas had a 1.6 

and 30 times higher (PO.OOl) percentage seedling emergence than that o f the 

uncoated seeds. This improvement, however, resulted in a percentage seedling 

emergence which was at a lower level (PO.OOl) with the percentage normal 

seedlings from the paper towel germination test.
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a)
■ control □ uncoated g  24 mg P/seed

100  -

Forrest Douglas Forrest Douglas
unaged aged

b)

a control □ uncoated g 24 mg P/seed

100 -

Forrest Douglas Forrest Douglas

unaged aged

Figure 5.9. Percentage seedling emergence o f unaged and aged polymer coated seeds 

(24 mg o f polymer per seed) o f cvs Forrest and Douglas; a) control water regime and 

b) flooding water regime; error bar, standard error o f the mean, (n=4).
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5.3.3.2. Time to 50% seedling emergence

The effect o f 24 mg o f polymer per seed on time o f 50% seedling emergence in 

the two water regimes produced from unaged and aged seeds o f the two genotypes 

was studied (Fig. 5.10). Analysis of variance results were presented in Appendix 3, 

Table 3.9. In the control water regime, unaged coated seeds of cv. Forrest had a 1.4 

day delay (P<0.05) in the time o f 50% seedling emergence in comparison to the 

unaged control seeds. However, no difference between unaged coated and control 

seeds in cv. Douglas in the time o f 50% seedling emergence was observed. Little 

increase (P>0.05) due to ageing in the time o f 50% seedling emergence was observed 

in seeds o f either genotypes. Aged coated seeds of cv. Douglas had a 1.6 day delay 

(P<0.05) in the time o f 50% seedling emergence in comparison to the aged uncoated 

seeds. In the flooding water regime, unaged seeds of cv. Forrest and Douglas had a 

1.6 and 1.4 day delay (P<0.05) in the time to 50% seedling emergence in comparison 

to that o f the seeds in the control water regime respectively. However, little increase 

(P>0.05) due to coating in the time to 50% seedling emergence was observed in both 

unaged and aged seeds of the two genotypes.

a) b)
□ uncoated @ 24 mg P/seed □ uncoated g  24 mg P/seed
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F igure  5.10. T im e to  50%  seedling  em ergence o f  unaged and aged po lym er coated

seeds (24 m g o f  p o lym er per seed) o f  cvs F orrest and D ouglas; a) contro l w ater

reg im e and b) flooding  w ater regim e; error bar, standard error o f  the m ean, (n=4).
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5.3.3.3. Seedling shoot length

The effect o f 24 mg o f polymer per seed on shoot length in the two water regimes 

produced from unaged and aged seeds o f the two genotypes was studied (Fig. 5.11). 

Analysis o f variance results were presented in Appendix 3, Table 3.10. In the control 

water regime, little difference (P>0.05) between unaged coated seeds and unaged 

uncoated seeds in the shoot length in seeds o f either genotypes was observed. Ageing 

resulted in 16% and 18% lower (P<0.05) shoot length than that o f unaged control 

seeds. Coating resulted in similar shoot length in seedlings produced from unaged or 

aged seeds in either genotypes.

In the flooding water regime, unaged seeds o f cvs Forrest and Douglas produced 

seedlings which had 16% and 14% lower (PO.OOl) shoot length respectively than 

that o f the unaged seeds in the control water regime. Coating resulted in similar shoot 

length in seedlings produced from unaged or aged seeds in either genotypes.

a) b)
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Figure 5.11. Shoot length o f polymer coated (24 mg of polymer per seed) unaged and 

aged seeds o f cvs Forrest and Douglas; a) control water regime and b) flooding water 

regime; error bar, standard error o f the mean, (n=4).
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5.3.3.4. Seedling shoot fresh weight

The effect o f 24 mg polymer per seed on shoot fresh weight in the two water regimes 

produced from unaged and aged seeds o f the two genotypes was studied (Fig. 5.12). 

Analysis o f variance results were presented in Appendix 3, Table 3.11. In the control 

water regime, unaged coated seeds o f cv. Forrest had 15% lower (P<0.05) shoot fresh 

weight than that o f the control seeds. However, no difference between unaged coated 

and control seeds in cv. Douglas in the shoot fresh weight was observed. Ageing 

resulted in 19% and 24% lower (PO.OOl) shoot length than that o f unaged control 

seeds. Coated seeds o f cv. Forrest had 17% lower (P<0.05) shoot fresh weight than 

that o f the control seeds. However, no difference between unaged coated and control 

seeds in cv. Douglas in the shoot fresh weight was measured.

In the flooding water regime, unaged seeds o f cv. Forrest and Douglas had 17% and 

22% lower (PO.OOl) shoot length respectively than that o f the seeds in the control 

water regime. Ageing resulted in 20% and 18% lower (PO.OOl) shoot length than 

that o f unaged control seeds. Coating resulted in similar shoot length in seedlings 

produced from unaged or aged seeds in either genotypes.

a) b)

unaged aged unaged

Figure 5.12. Shoot fresh weight o f polymer coated (24 mg of polymer per seed) 

unaged and aged seeds o f cvs Forrest and Douglas; a) control water regime and b) 

flooding water regime; error bar, standard error of the mean, (n=4).
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5.4. D iscussion

Polymer application to soybean seeds resulted in the formation o f a film 

coating on the surface o f seed. The amount o f polymer was gradually added to seeds 

by sequential cycles o f application and drying. Coated seeds were examined both 

visually and under low magnification stereoscope to ensure that optimum coating 

was achieved. It was observed that proper drying of the polymer-coated seeds was a 

very important factor in achieving the best coating. In each application cycle about 

5mg o f polymer was added to each seed.

The polymer used in the present study has a relatively hydrophobic nature and 

is different from those that are widely used in the film coating o f seeds o f several 

vegetables, and o f peas and oilseed rape. These polymers are highly permeable to 

water and their main purpose is to offer fungicide and insecticide protection during 

the very early stage o f seedling growth which is the most sensitive to pathogen attack 

(Powell and Matthews, 1988). West et al., (1985) coated soybean seeds with two 

types o f polymers (polyvinylalchohol and polyvinylidene chloride) in order to 

regulate moisture absorption and maintain seed quality during storage at high 

temperature and relative humidity. They applied an 80% aqueous solution o f polymer 

to seeds at one step in a rotating chamber. Huang and Sung (1991) coated soybean in 

order to regulate water uptake and prevent soaking injury. They applied a solution o f 

polymer diluted in ethanol together with an adhesive to seeds in a rotating inclined 

pan. Duan and Burris (1997) coated sugar beet (Beta vulgaris L.) seeds with a 

commercial polyvinyl polymer using a batch coater. In commercial scale, film 

coating is normally applied with the Wurster Air Suspension Technique in which 

seeds are fluidised in an upward moving column of air, continuously circulated in a 

fountain where seeds dry almost immediately (Powell and Matthews, 1988). Film 

coating materials are usually inert and not phytotoxic to seed (Robani, 1994). In this 

study, no attempt was made to identify any possible phytotoxic effects o f the 

polymer to the seed.

In the present study, it was found that 24mg of polymer per seed was sufficient 

to reduce the rate o f water uptake without affecting the final total water uptake. The 

highest amount o f polymer tested (48 mg of polymer per seed) caused a significant 

decrease in the percentage of normal seedlings o f seeds and this was considered 

undesirable. The reduction in the percentage o f normal seedlings produced from 

polymer coated seeds with 48 mg of polymer per seed, was likely to be due to the
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lower total water uptake. However, restricted oxygen supply might be another reason 

for the reduced germinability at high levels o f polymer application.

Although, in most horticultural crop seeds the germination is not adversely 

inhibited by polymer film-coating (Robani, 1994), adverse effect o f coating on 

germination o f lettuce probably due to a temporary occurrence o f thermodormancy 

(.Lactuca sativa L.) seeds has been reported (Valdes and Bradford, 1987). Recently, 

Duan and Burris (1997) reported that polymer film coating (20 g Kg"l of polymer) 

induced germination reductions in sensitive sugar beet cutlivars. They suggested that 

the reduction was likely to be due to restricted oxygen supply to the enclosed embryo 

and to the retention o f water soluble germination inhibitors which would normally be 

leached into the germination medium.

In this study, coating with 24mg o f polymer per seed, proved to be highly 

efficient in reducing the solute leakage and the percentage of cotyledons unstained 

with tetrazolium chloride particularly in the genotype (cv. Douglas) with a high 

proportion o f seeds with split coats. Huang and Sung (1991) reported a reduction in 

leachate conductivity when 18 mg o f ethyl cellulose per seed was applied to soybean 

seeds. In soybeans, some commercial seed lots appear to have a proportion o f seeds 

with split coat. This has been reported as a significant factor contributing to low 

vigour as revealed by high leachate conductivity and the low percentages of 

cotyledons fully stained with tetrazolium chloride (Oliveira et al., 1984). The 

beneficial effect o f coating in relation to imbibition damage could be proposed for 

several grain legumes where splits in the seed coat have been reported as an 

important factor related to low vigour (Powell et al., 1986a; Legesse and Powell, 

1992; Kantar et al., 1996).

In this study, the effects o f both soaking in water and two different soil water 

regimes on germinability, seedling emergence and growth in seeds o f high and low 

vigour were studied. Seeds o f low vigour were produced after 2 days of accelerated 

ageing. This threshold was selected because it was found to be appropriate to 

produce seeds o f low vigour without a high reduction in seed viability. Therefore, 

aged seeds o f cvs Forrest and Douglas produced 84% and 69% normal seedlings 

respectively (section 4.3). In this study, ageing resulted in some well-known effects 

on seedling emergence and growth (Priestley, 1986); a lower percentage seedling 

emergence, a greater time to 50% emergence, a lower shoot length and shoot fresh 

weight than the unaged control seeds than the unaged seeds.
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In this study, the seedling growth o f polymer coated seeds in two different soil 

water regimes was studied. Coated seeds had a delay in the time to 50% emergence, a 

lower shoot length and fresh weight than the uncoated seeds regardless o f the vigour 

level in either genotypes. The lower seedling growth o f the polymer coated seeds was 

expected since imbibition proceeded at a slower rate in coated than in the uncoated 

seeds. Although coating resulted in significant lower rate o f imbibition, there was 

little difference between uncoated and coated seeds in the seedling growth indicating 

that uncoated seeds were caught up.

Pre-emergence flooding was reported as a major problem causing severe 

reduction in seedling emergence in soybeans (Hwang and Sung, 1991). In this study, 

zero seedling emergence was observed from aged seeds o f cv. Douglas in the 

flooding water regime. As a result, a combination of low vigour, high proportion of 

seeds with split coats and flooding soils could represent the worst scenario in relation 

to seedling emergence in soybeans. Under optimum conditions (high vigour seeds 

and control water regime), a low seedling emergence was only observed in seeds of 

cv. Douglas where a high proportion o f seeds with split coats was observed. 

However, in the flooding water regime, a low seedling emergence was observed 

regardless o f the seed vigour o f the seeds. Ferriss and Baker (1990) studied the 

seedling emergence o f 1 1  soybean seed lots under different soil conditions; they 

reported that the lowest percentage of seedling emergence (about 2 0 %) was observed 

in the flooded soils.

In the present study, imbibition damage in low vigour seeds and seeds with 

split coats was inferred from both an increase in the percentage o f cotyledons with a 

region o f dead tissue and an increased leakage of solutes. One explanation for poor 

field emergence in seeds o f grain legumes having low vigour and splitted seed coats 

is the incidence o f infection by soil-borne fungi particularly of the Pythium species. 

As a result, higher levels o f Pythium infection may explain the poor seedling 

emergence occurred particularly in the flooding soils in genotypes which were prone 

to imbibition damage. In this study no direct measurement o f pre-disposition o f seeds 

in infection o f Pythium species was measured. Oliveira et al., (1984) suggested a 

similar connection between imbibition damage, seed exudates and pathogen attack to 

explain the poor seedling emergence of several soybean seed lots. Dickson and 

Boettger (1982), in Phaseolus vulgaris seeds, reported that seeds with low water
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uptake exhibited low imbibition damage and leachate conductivity. They suggested 

that low infection o f Pythium was the reason for the observed vigorous seedling 

emergence and growth in the field. Similar results showing a relation between 

imbibition damage, seed exudates and pathogen infection has been also reported for 

peas (Matthews and Bradnock, 1968; Powell, 1985), dwarf French beans (Powell et 
al., 1986a), field beans (Rowland, 1981), chickpeas (Legesse and Powell, 1992). 

Keeling (1974), in soybeans, reported a direct relationship between seed exudation 

and susceptibility to pathogen attack. Similarly, Kaiser and Flannan (1981, 1983) 

found in chickpeas that certain lines were highly susceptible to Pythium infection and 

pre-emergence damping-off. Additionally, Chen et al., (1983) reported a significant 

reduction in chickpea seeds as a result o f combination o f rapid imbibition and low 

temperatures. Similar direct evidence between seed exudates and susceptibility to 

pathogen attack was reported in peas (Perry 1973).

Improvement in germinability and seedling emergence due to coating during soaking 

in water and in the flooding soil water regime was measured. However, the final 

percentage o f both normal seedlings and seedling emergence was only part o f the 

percentage germination from the paper towel germination tests. This result opens the 

possibility o f additional or alternative causes o f low seedling emergence in flooded 

soils. For similar reasons, Ferriss and Baker (1990) suggested additional causes for 

low seedling emergence in flooded soils.
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CHAPTER 6

Relationship between seed coat features and water uptake during imbibition in 
soybeans (Glycine max L. Merril)

6.1. Introduction

Deposits are present on the surface of the seed coat o f most soybean genotypes. 

Earlier reports have classified the seed coat appearance as shiny, dull or coated with 

bloom, depending on the amount o f deposits present (Wiliams, 1950; Bernard and 

Weiss, 1973). Several reports have described deposits as being material adhered to 

the surface o f the seed most likely to be residues o f the pod endocarp (Newell and 

Hymowitz, 1978; W olf et al, 1981; Yaklich et al., 1986). In contrast, other reports 

suggested that deposits were of waxy origin (cutins) and therefore had originated 

from the epidermal layer o f the seed coat (Calero et al., 1981; Ragus, 1987).

The existence o f pits in the surface o f the soybean seed coat is also well 

documented (W olf and Baker, 1972; Calero et al., 1981; W olf et al., 1981). 

However, the role o f deposits and pits in the water uptake has not yet been clearly 

identified. Calero et al., (1981), based on the information from SEM studies, reported 

that when deposits existed in the absence of pits, the soybean seed was hard and 

when both pits and deposits were present, water uptake was slow. However, there is 

no published information reporting direct evidence (using water soluble stains) that 

pits or/and deposits play a role in water uptake.

Organic solvents can be used to associate changes in the seed coat with 

changes in permeability to water. Traditionally, organic solvents have been used to 

overcome hardseedness in many species; in most of the previous reports, it was 

assumed that changes in the seed coat properties were related to changes in the 

cuticle (McDonald and Coopeland, 1989). There is no published information relating 

changes in the seed coat brought about by organic solvents to changes in water 

uptake in normal (soft) soybean seeds.

In this study, six contrasting genotypes were selected to investigate the 

relationship between seed coat features and water uptake during imbibition. The 

results presented in Chapter 3 revealed that there were large differences between the 

six genotypes in the regulation o f the water uptake by the seed coat. The seed coats 

o f seeds o f lines SS 87040-2-1 and GC 88037-38-2-2 were highly permeable to water 

exhibited a high level o f imbibition damage. In contrast, seeds o f line VLS-1
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possessed a delayed-permeable seed coat and the seeds exhibited a low level of 
imbibition damage.

The objectives o f this study were therefore: (1) to identify differences between 

six contrasting genotypes in the surface structure (deposits and pits), (2 ) to identify 

the role that deposits and pits could play in water uptake using a water-soluble 

fluorescent stain, and (3) to identify the mechanism of water uptake regulation by the 

seed coat using organic solvents.

6.2. Materials and methods

6.2.1. The surface of the seed coat

The surface o f the seed coat o f seeds the six genotypes was studied. Seeds were 

processed for SEM as described in Section 2.11. For the estimation o f the presence o f 

deposits, micrographs were taken at 300x magnification in the middle o f the abaxial 

region o f the seed. Prior to the estimation of the density of pitting, the surface 

deposits had to be removed; twenty seeds were soaked for 24h in 50ml o f methanol 

and chloroform solvents with continuous shaking. Seeds were then processed for 

SEM as described in Section 2.11. Micrographs were taken at 300x magnification in 

the middle o f the abaxial side o f the seed. The density of pitting was then arbitrary 

classified into 3 categories namely, 0 (no pits), 1 (low density of pits) and 2 (high 

density o f pits).

6.2.2. Use of calcofluor as a water-soluble fluorescent stain

To demonstrate water penetration, whole seeds of cv. Sapporo were soaked in 

0.1% calcofluor for 5 sec, 15 seconds, 1 min, 15 min and 30 minutes as described in 

section 2.10.1. Comparisons were made between the fluorescence image o f the 

calcofluor stained seed coat and the light microscope image o f the same area. To 

determine the depth o f penetration o f calcofluor into the seed coat, whole seeds were 

soaked in calcofluor for 2 min or 15 minutes. The experimental procedure was the 

same as described in section 2 . 1 0 .2 .

Seeds o f the other five genotypes were used to demonstrate staining o f the 

surface deposits. Additionally, seeds after the 24h methanol pre-treatment (removal 

o f the deposits) were also used. Whole seeds were soaked in calcofluor for 5 seconds, 

and the experimental procedure was the same as described in section 2 .1 0 .1 .

Water penetration through the hilar region of the seed coat was studied. Whole 

seeds o f cv. Sapporo and KWS-C were soaked in calcofluor for 15 min or 60
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minutes, and then segments o f the seed coat of the pre-treated seeds were prepared as 

described in section 2.9. Hand-cut sections were also prepared.

6.2.3. Effect of methanol and chloroform pre-treatments on water uptake

Seeds o f six genotypes (Table 6.1) were used. Organic solvent pre-treatments 

were applied as described in section 2.12. Four pre-treatments were used: 1) lm in 

chloroform (TR1), 2) 2h periods successively in methanol, chloroforimmethanol 

(1:1) and chloroform with continuous shaking throughout (TR2), 3) 2h methanol 

with continuous shaking (TR3) and 4) 2h chloroform with continuous shaking (TR4). 

After the pre-treatments, seeds were blotted dry. Subsequently, 10 seeds were placed 

for measurement o f the water uptake after 30 min o f imbibition as described in 

Section 2.5.2.

Seeds cv. Sapporo were used to measure the effect of the prolonged methanol 

or chloroform pre-treatments on the water uptake. Seeds were soaked in methanol or 

chloroform for 2h, 24h, 48h, 72h, 96h as described in Section 2.12. After the pre­

treatments, seed surface solvent removed. Subsequently, 10 seeds were placed for 

measurement o f the water uptake after 30 and 60 min of imbibition as described in 

Section 2.5.2. The amount o f solvent absorbed by seeds after 72h pre-treatment was 

indirectly calculated as the seed weight increase. The amount o f solvent absorbed 

was expressed as mg per seed, and each mean is the average o f ten values.

Seeds o f the five genotypes were used to measure the effect o f the 72h 

methanol and chloroform pre-treatment on the water uptake. Seeds were soaked in 

methanol and chloroform for 72h as described in Section 2.12. After the pre­

treatments, seeds were blotted dry. Subsequently, 10 seeds were placed for 

measurement o f the water uptake after 30 minutes o f imbibition as described in 

Section 2.5.2.

6.2.4. Absorbance spectrum of supernatant
Seeds o f cv. Sapporo were used. The absorbance spectrum of the supernatant 

obtained from the 24h and 72h methanol and chloroform supernatant was measured 

as described in section 2.13.

6.2.5. Effect of seed drying after prolonged methanol and chloroform pre­

treatments on water uptake
Seeds o f the six genotypes were used. Seeds were soaked in methanol and 

chloroform for 72h as described in section 2.12. After the pre-treatments, seeds were 

blotted dry, left to dry for 4 days at room conditions. The final moisture o f the seeds
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was 7.5% (±1.5%) m.c. on fresh weight basis. Subsequently, 10 seeds were placed 

for imbibition, and the water uptake was measured after 30 minutes as described in 

section 2.5.2.

6.2. Results

6.2.1. The surface of the seed coat

Scanning electron microscopy (SEM) of the surface of the seed coat revealed 

the presence o f deposits and pits in seeds o f most of the genotypes studied.

Deposits were observed as material attached to the surface o f the seed coat and 

were visible even at low magnification. Pits were observed as indentations o f the 

surface o f the seed coat and could also be seen at low magnification. However, in 

order to observe the structure o f deposits and individual pits, higher magnifications 

were used. Pits and deposits were often occurred together in the surface of the seed 

coat Fig. 6.2. In cases like these, the presence o f deposits makes the study o f pits 

very difficult unless a method for effectively removing the deposits is developed 

first.

Soaking for 24h in methanol with continuous shaking caused the surface o f the 

seed coat to change from dull (Fig. 6.1a) to shiny (Fig. 6.1b) whereas little difference 

was observed in the appearance o f seed coats of seeds that had been pre-treated for 

24h with chloroform (Fig. 6.1c). Images obtained from SEM, revealed that the 

methanol pre-treatment had removed the deposits (Fig. 6.2b) whereas the chloroform 

pre-treatment had little effect upon them (Fig. 6.2c). SEM images, from the abaxial 

region o f the seed, revealed that the surface of the seed coat in seeds of cv. Sapporo 

was free from deposits whereas deposits were present in seeds o f all other genotypes.

The 24h methanol pre-treatment was applied to seeds of cv. Sapporo to see 

whether any changes, other than the removal o f the deposits, had occurred in the 

surface o f the seed coat due to the pre-treatment. At both low and high magnification, 

no other changes in the surface o f the seed coat were observed.

Deposits could be seen in the form of a thick granular-like material present on 

the surface o f the seed coat (Fig. 6.3a). At a higher magnification, granules of a 

smaller size were also observed (Fig. 6.3b). In most cases, a great part of the dorsal 

region had fewer deposits than the abaxial region.
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Figure 6.1. Light micrographs showing the effect of methanol pre-treatment on the 

appearance o f the abaxial region o f seeds o f line GC 88037-38-2-2. A) control, no 

pre-treatment, B) after 24h methanol pre-treatment; 7x magnification.

D

Figure 6.2. SEM micrographs showing the effect of methanol and chloroform pre­

treatments on deposits in the abaxial region o f seeds of GC 88037-38-2-2. A) control, 

no pre-treatment, B) after 24h methanol pre-treatment and C) after 24h chloroform 

pre-treatment. D: deposits, S: surface. Scale bar 100//m.
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Figure 6.3. SE M  m icrographs o f  the deposits on the surface o f  seeds in the abaxial

region o f  seeds o f  V LS-1. A) scale bar, 100/rm; B ) scale bar, 20/um D deposits, S:

surface.
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Pitting o f the surface o f the seed coat was assessed after the removal of 

deposits by methanol. For the evaluation o f the number o f pits, SEM micrographs 

were taken from the abaxial region o f the seed coat at 300x magnification for the 

arbitrary classification from zero to high density o f pits (Table 6.1).

Table 6.1. The colour o f the seed coat, presence o f deposits and density o f pits in the 

abaxial region in the six genotypes.

Genotypes Testa colour Presence of 

deposits

density o f pits*

VLS-1 black yes 0 /+

KWS-C yellow yes ++

Sapporo yellow no ++

SS 87040-2-1 green yes ++

GC 88037-38-2-2 brown yes ++

Suwan-156 black yes +

*scale, 0 : zero; +:medium; ++: high.

There was a variation among the genotypes in the density o f pits observed . 

Figure 5.4 shows examples illustrating the range of pitting observed. Seeds o f line 

VLS-1 had very few pits (Fig. 6.4a), seeds o f cv. Suwan-156 medium density o f pits 

(Fig. 6.4b) and seeds o f cv. Sapporo (Fig. 6.4c) and line GC 88037-38-2-2 (Fig. 6.4d) 

high density o f pits . Additionally, in seeds o f line SS 87040-2-1 and GC 88037-38- 

2 -2 , there was a high proportion o f pits which appeared to be very deep and highly 

open (Fig. 6.4d).

In seeds o f line VLS-1, there was a variation in the number o f pits observed 

within the different regions o f the seed coat; very few pits in the abaxial region but 

significantly more in the dorsal region. In several seeds, in the abaxial region, small 

areas were observed that were extensively pitted surrounded by areas with no pitting.

Three types o f pits were observed, namely; deep-elongated (Fig. 6.5a) or deep- 

circular (Fig. 6.5b) and shallow (Fig. 6.5c). In seeds o f line VLS-1, most o f the pits 
were shallow whereas in all other genotypes a combination o f all types o f pits 

occurred.
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Figure 6.4. SEM micrographs o f the pitting in the abaxial region of the seed coat 

within different genotypes. A) seeds from line VLS-1; B) seeds from cv. Suwan-156; 

C) seeds from cv Sapporo and d) seeds o f line SS 87040-2-1. P: pits. Scale bar, 

1 0 0 //m
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A B

F igure 6.5. SEM  m icrographs o f  the structure o f  individual pits. A ) deep and

elongated-shaped pit; B ) deep and circular-shaped pit and C) shallow pit; (arrow

indicate pit), scale bar, 20jum.
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6.2.2. Use of calcofluor as a water-soluble fluorescent stain

Soaking whole seeds in calcofluor was used to stain the surface deposits, and 

as a method o f demonstrating water penetration mapping into the seed coat. The 

surface o f the abaxial region of the seed coat was observed using fluorescence 

microscopy.

To observe water penetration mapping, whole seeds o f cv. Sapporo were used 

because it was previously shown that their surface was free from deposits. After 5sec 

o f soaking whole seeds in calcofluor no staining was observed in the abaxial region. 

In seeds soaked in calcofluor for 15 sec, a patchy staining pattern could be seen. In 

seeds soaked in calcofluor for 1 min, a similar patchy staining pattern could be seen 

(Fig. 6 .6 ). In seeds soaked in calcofluor for 15 and 30 mins, the stain diffused 

throughout the layers o f the seed coat, and the resolution was lost. The light 

microscope image o f the same area was also observed in order to correlate the 

distribution o f the patchy areas to the distribution o f the pits. Comparison of the two 

images revealed the closed association o f the distribution o f the patchy areas to the 

distribution o f the pits (Fig. 6.7).

To observe the staining o f the surface deposits seeds of the line VLS-1 were 

used. In seeds o f line VLS-1, deposits with few pits were present in the abaxial 

region o f the seed coat. After soaking whole seeds o f line VLS-1 for 5 sec in 

calcofluor, a strong staining was observed (Fig. 6 .8 a). When seeds o f the line VLS-1 

that had been pre-treated with 24h methanol (deposit removed) soaked in calcofluor 

for 5 seconds little staining was observed (Fig. 6 .8 b). The staining o f the untreated 

control seeds and methanol treated seeds o f the other genotypes was similar to that 

observed in seeds o f line VLS-1.
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►

Figure 6 .6 . Fluorescence micrograph of the staining of the abaxial region o f the seeds 

coat after soaking seeds o f cv. Sapporo in 0 . 1 % calcofluor for Imin; (arrows indicate 

sites o f water penetration), 600x magnification, .

I

►
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Figure 6.7. Light microscope micrograph of the same area as in the above 

microrgaph; (arrows indicate pits), 600x magnification.
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Figure 6 .8 , Fluorescence micrographs o f the staining of the abaxial region o f the seeds 

coat after soaking seeds of line VLS-1 in 0.1% calcofluor for 5sec. A) control, 

untreated seeds (arrows indicate staining), B) 24h methanol pre-treated seeds (no 

staining). 600x magnification.
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Anticlinal sections o f resin-embedded seed coats from dorsal, abaxial and 

ventral regions o f the seed were examined in order to identify the penetration o f the 

calcofluor staining within the layers of the seed coat. In seed coats o f seeds soaked 

for 2  mins in calcofluor, a light staining o f the outer parts o f the palisade layer in all 

regions o f the seed coat was evident (Fig. 6.9a). In seed coats o f seeds soaked for 15 

mins in calcofluor, a strong staining of the whole palisade layer in all regions o f the 

seed coat was observed (Fig. 6.9b). It was not possible to identify differences 

between the three regions o f the seed coat in the depth o f the stain penetration into 

the palisade layer . However, frequently, in sections from all regions, there were 

groups o f the palisade cells which showed a stronger stain reaction than adjacent 

cells. In seed coats o f seeds soaked for 30 mins in calcofluor, a very strong staining 

o f the whole palisade layer in all regions of the seed coat was observed (Fig. 6.9c).

Anticlinal sections o f the hilar region of the seed coat o f seeds soaked in 

calcofluor were studied in order to observe the penetration o f the stain in these 

regions. In seeds o f cv. Sapporo, the tracheid bar was only partially stained after 30 

mins o f soaking (Fig. 6.10a) whereas in seeds o f line KWS-C the tracheid bar was 

totally stained after 15 min of soaking whole seeds in calcofluor (Fig. 6.10b). In 

seeds o f cv. Sapporo, only the external part of the outer palisade layer but not the 

inner palisade layer was stained after 30 mins soaking whole seeds in calcofluor (Fig. 

6.10a). However, in seeds of cv. KWS-C both outer and inner palisade layer were 

stained after 15 mins o f soaking whole seeds in calcofluor (Fig. 6.10b).
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A

Figure 6.9. Fluorescence micrographs of anticlinal hand-cut sections o f the hilar 

region of the seed coat after soaking seeds in 0.1% calcofluor for 15sec. A) seeds of 

cv. Sapporo; B) seeds o f line KWS-C. TB: tracheid bar; OPCL: outer palisade cells 

layer; IPCL: inner palisade cells layer; (arrows indicate staining) 2,000 x 

magnification.
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Figure 6.10. Fluorescence micrographs of anticlinal resin-embedded sections o f the abaxial 

region o f the seed coat after soaking seeds of cv. Sapporo in 0.1% calcofluor. A) seeds 

soaked for 2min, (arrows indicate staining) 4,000x magnification; B) seeds soaked for 

ISmin, l,500x magnification; C) seeds soaked for 30mins, l,500x magnification. PCL: 

palisade cells later; HCL: Hourglass cells layer.
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6.2.3. Effect of methanol and chloroform pre-treatments on the water uptake

The weight o f water imbibed by seeds o f the six genotypes that had been 

subjected to four different pre-treatments immediately prior to the start of imbibition 

was measured. The four pre-treatments were: 2min in chloroform (TR1), 2h periods 

successively in methanol, methanol:chloroform (1:1) and chloroform (TR2), 2h in 

methanol (TR3) and 2h in chloroform (TR4).

Figure 6.11 shows the water imbibed in 30 mins by untreated seeds and seeds 

subjected to pre-treatments TR1, TR2, TR3 and TR4. Analysis o f variance results 

were presented in Appendix 4, Table 4.1. There was a variation (PO.OOl) among the 

genotypes in the water imbibed in 30 mins by the untreated controls. Untreated seeds 

o f line VLS-1 imbibed 2.2 mg o f water per seed whereas those of line GC 88037-38- 

2-2 imbibed 51.1 mg o f water per seed (PO.OOl). Brief pre-treatment with 

chloroform (TR1) had no effect on the water uptake in comparison to the control in 

most genotypes; only in seeds of line GC 88037-38-2-2 the water uptake o f the pre­

treated seeds was lower (PO.OOl) than the control.

Seeds pre-treated with either TR2 or TR3 consistently showed increased 

(PO.OOl) water uptake in comparison to untreated controls in all genotypes; the 

increase varied from lOmg of water, in seeds of line KWS-C, to 27mg o f water as in 

seeds o f line VLS-1. In most genotypes, there was no difference between treatments 

TR2 and TR3. Flowever, seeds o f cv. Suwan-156 pre-treated with (TR3) imbibed less 

(PO.OOl) water than those pre-treated with (TR2). Two hours pre-treatment with 

chloroform (TR4) had no effect on water uptake in most genotypes; only in Suwan- 

156 was the water uptake o f the pre-treated seeds was higher (PO.OOl) than that of 

the control seeds.

In view o f the effect o f the 2h pre-treatments on imbibition, the effects of 

prolonged periods o f pre-treatments were investigating using seeds o f cv. Sapporo. 

The five pre-treatment periods were: 2h, 24h, 48h, 72h and 96h.

Figure 6.12a shows the effect of different durations o f methanol pre-treatments 

on water uptake in seeds o f cv. Sapporo. Analysis of variance results were presented 

in Appendix 4, Table 4.2. In general, the larger the duration o f the methanol pre­

treatment the greater the water uptake (PO.OOl). Seeds given a 2h methanol pre­

treatment had a 60% higher (PO.OOl) water uptake that the untreated control seeds. 

Seeds given a 96h methanol pre-treatment had a 4 times greater water uptake than the 

untreated control seeds.
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Figure 6.11. Weight o f water imbibed in 30 min by seeds o f six genotypes that had 

been pre-treated with different organic solvents, control (untreated), TR1 (2min 

chloroform), TR2 (2h methanol, 2h methanol:chloroform (1:1), 2h chloroform), TR3 

(2h methanol) and TR4 (2h chloroform); error bars, standard error o f means (n=10).
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During imbibition, there was a linear increase in the water imbibed by the 

untreated control seeds. In contrast, seeds which had methanol pre-treatment imbibed 

more water in the first 30 mins than in the second 30 minutes. This effect was 

particularly evident in seeds given a 96h methanol pre-treatment.

Figure 6.12b shows the effect o f different durations o f chloroform pre­

treatments on water uptake on seeds of cv. Sapporo. Analysis o f variance results 

were presented in Appendix 4, Table 4.3. In general, seeds given chloroform pre­

treatments imbibed more (PO.OOl) water than the untreated control seeds. The water 

uptake o f seeds given 2h chloroform pre-treatment was about 60% higher (PO .O O l) 

than the untreated control seeds. Seeds given a 96h chloroform pre-treatment had a 2 

times greater water uptake than the untreated control seeds.

The amount o f methanol and chloroform absorbed during the 72h pre-treatment 

was calculated from the seed weight increase. Table 6.2 shows that the amount o f 

methanol absorbed was about 2 times greater (PO.OOl) than the amount of 

chloroform absorbed.

Table 6.2. Weight o f solvent absorbed by seeds of cv. Sapporo during the 72h pre­

treatment (n= 1 0 ).

Pre-treatments weight o f solvent absorbed

mg per seed ± s.e.m. (n= 1 0 )

72h methanol 6.1 ± 0 .9

72h chloroform 2.2 ±0.5

Figure 6.13 shows the effect o f 72h methanol and chloroform pre-treatments on the 

water uptake during 30 mins o f imbibition, in seeds of all genotypes. Analysis of 

variance results were presented in Appendix 4, Table 4.4. There was a variation 

(P<0.001) among the genotypes in the water imbibed in 30 mins by the untreated 

controls.
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Figure 6.12. Weight o f water imbibed in 30 and 60 mins by seeds o f cv. Sapporo that 

had been pre-treated for control (untreated), 2h, 24h, 48h, 72h, 96h with a) methanol 

(M), b) chloroform (C); error bar, standard error o f means (n=10).
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In general, seeds with the methanol and chloroform pre-treatment had a greater 

(P<0.001) water uptake than the untreated control seeds. However, the methanol pre­

treatment induced a greater (P<0.001) increase in the water uptake than the 

chloroform pre-treatment. In seeds of cv. Suwan-156, the water uptake o f methanol 

and chloroform pre-treated seeds was 2.3 times and 53% (PO.OOl) greater than that 

o f the untreated control seeds respectively. In seeds o f line VLS-1, the water uptake 

o f methanol and chloroform pre-treated seeds was 21 and 5 times greater than that of 

the untreated control seeds respectively. In seeds of line KWS-C, the water uptake of 

methanol and chloroform pre-treated seeds was 3.5 and 2 times greater than that of 

the untreated control seeds respectively. In seeds o f line SS 87040-2-1, the water 

uptake o f methanol and chloroform pre-treated seeds was 2 times and 36% greater 

(P<0.001) than that o f the untreated control seeds respectively. In seeds o f line GC 

88037-38-2-2 the water uptake o f methanol and chloroform pre-treated seeds was 

85% and 27% greater (P 0 .0 0 1 )  than that of the untreated control seeds respectively.

6.2.5. Effect of seed drying after prolonged methanol and chloroform pre­

treatments on the water uptake

After the 72h methanol and chloroform pre-treatment, seeds were allowed to 

dry for 48h at room temperature. Subsequently, the weight of water imbibed in 30 

mins was measured.

Figure 6.14 shows the effect o f different pre-treatments on water uptake. 

Analysis o f variance results were presented in Appendix 6 , Table 6.5. In general, 

seeds placed for imbibition directly after the 72h methanol and chloroform pre­

treatments, showed an increase (P<0.001) in the water uptake in comparison to the 

untreated control seeds. Methanol pre-treatment had a higher increase (P<0.001) in 

the water uptake in comparison to the chloroform pre-treatments, in seeds o f all 

genotypes. Seeds dried after the pre-treatments had a lower (P 0 .0 0 1 ) water uptake 

in comparison to that o f the undried seeds. In seeds o f cv. Sapporo, the water uptake 

o f methanol and chloroform pre-treated seeds which placed immediately for 

imbibition was 3  and 2  times greater than that o f the untreated control seeds 

respectively. However, seeds dried after the pre-treatments had a similar water 

uptake with untreated control seeds.
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Figure 6.13. Weight o f water imbibed in 30 min by seeds o f six genotypes that had 

been pre-treated with different organic solvents, control (untreated), 72h M (72h in 

methanol) and 72C (72h in chloroform); error bars, standard error of means (n=10).
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In seeds o f cv. Suwan-156, the water uptake o f methanol and chloroform pre­

treated seeds which placed immediately for imbibition was 2.7 times and 65% 

(T O .001) greater than that o f the untreated control seeds respectively. Seeds dried 

after the methanol pre-treatments had a 44% greater (T O .001) water uptake than the 

untreated control seeds whereas seeds dried after the chloroform pre-treatment had a 

similar water uptake with the untreated control seeds.

In seeds o f line VLS-1, the water uptake o f methanol and chloroform pre­

treated seeds which placed immediately for imbibition was 16 and 7.6 times greater 

(7*0.001) than that o f the untreated control seeds respectively. Seeds dried after the 

pre-treatments had a 2 times greater (7*0.001) water uptake than the untreated 

control seeds.

In seeds o f line KWS-C, the water uptake of methanol and chloroform pre­

treated seeds which placed immediately for imbibition was 3.2 and 2.2 times greater 

than that o f the untreated control seeds respectively. However, seeds dried after the 

pre-treatments had a similar water uptake with untreated control seeds.

In seeds o f line SS 78040-2-1, the water uptake of methanol and chloroform 

pre-treated seeds which placed immediately for imbibition was 90% and 39% greater 

(7*<0.001) than that o f the untreated control seeds respectively. However, seeds dried 

after the pre-treatments had a similar water uptake with untreated control seeds.

In seeds o f line GC 88037-38-2-2, the water uptake o f methanol and 

chloroform pre-treated seeds which placed immediately for imbibition was 80% and 

35% greater (7*<0.001) than that o f the untreated control seeds respectively. Seeds 

dried after the chloroform pre-treatments had a 24% greater (7*<0.001) water uptake 

than the untreated control seeds whereas seeds dried after the methanol pre-treatment 

had a similar water uptake with the untreated control seeds.

i l l



Chapter 6: Seed coat features and water uptake

I control |*72hM n 72hM+D ¡¡j 72h C B 72h C+D

Sapporo Su wan-156 

genotypes

VLS-1

90

'S 80a></)
I  70
t/>

I  60
o
”  50
TJ
|  40
la
•S 30

control m 72h M n 72h M+D B 72h C B 72h C+D

20

10  .

I
KWS-C SS 78040-2-1 

genotypes

i

GC 88037-38-2-2

Figure 6.14. The effect o f seed drying after the 72h methanol and chloroform pre­

treatments on the water uptake during 30 min imbibition: control (untreated), 72h M 

(72h methanol), 72h M+D (72h methanol followed by 48h drying), 72h C (72h 

chloroform) and 72h C+D (72h chloroform followed by 48h drying); error bars, 

standard error o f means (n= 1 0 ).
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6.2.4. Absorbance spectrum of supernatant

Figure 5.14 shows the absorbance spectrum in the range of 330-215nm of the 

supernatant obtained from the 24h and 72h methanol and chloroform extracts. In most 

o f the range scanned, the absorbance o f the methanol supernatant was lower than that 

o f chloroform supernatant. In both extracts, the 72h supernatant had a higher values 

that the 24h supernatant in the whole range o f spectrum. The absorbance o f the 

methanol supernatant had constantly very low values up to 240nm with an increase in 

the absorbance thereafter. The chloroform mixture absorbance had several peaks 

between 220-275nm with no absorbance at values lower than 220nm.
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Figure 6.15. Absorbance spectrum of the methanol and chloroform supernatant from 
the 24h and 72h extracts; 24h M (24h methanol), 24h C (72h chloroform), 72h M 

(72h methanol), 72h C (72h chloroform).
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6.4. Discussion

In the this study, deposits were observed on the surface o f the seed coat in most 

genotypes examined. Similar observations were reported by W olf et al., (1981), in a 

survey o f 33 soybean genotypes. In some genotypes, they observed that the surface 

o f the seed coat was densely covered. In many cases, the deposits had a honeycomb­

like appearance, visible to the naked eye.

As far as the nature of the deposit material is concerned, there is some 

contradiction in the literature. Newell and Hymowitz (1978), in a seed coat survey of 

Glycine Wild subgenus Glycine seeds (relatives o f the cultivated soybean Glycine 
max (L.) Merr.) suggested that the deposits appeared to result from adherence o f the 

endocarp to the seed coat. Also, W olf et al., (1981) having in several cases found 

similarities o f size and shape between the seed coat deposits and the cell wall ridges 

o f the endocarp, suggested a common origin for the two structures. Yaklich et al., 
(1986), in a developmental investigation of the soybean seed coat reported that 

surface deposits were present in all four genotypes examined and they were derived 

from the endocarp o f the pod wall. They, also, reported that deposits were present at 

the last stage o f the seed development which described as the transversely broadly 

elliptic stage in seed development. Contrary to the previous reports, some authors 

have referred to deposits as being cutins (waxy material) which is a structural 

component o f cuticle and therefore originates from the epidermal layer o f the seed 

coat (Calero et al., 1981; Ragus, 1987). In the previous reports, deposits were 

implicated in causing impermeability to water; however, the basis o f these 

suggestions was the mere presence o f deposits on the surface of the seed coat o f hard 

seeds as revealed in SEM images.

In the present work, there were several pieces of evidence to include that the 

deposits were residues o f the pod endocarp. Firstly, deposits were shown to be 

hydrophilic material with polysaccharide composition since calcofluor binds only 

with b-1,4- and mixed 1,3- and 1,4 glucans (Heslop-Harrison and Heslop-Harrison, 

1982). When deposits were removed from the surface of the seed coat, the staining 

was significantly reduced. Secondly, there were a larger amounts o f deposits in the 

abaxial than in dorsal region o f the seed surface. Deposits were more likely to adhere 

to the abaxial region during seed development and maturation (Yaklich et al., 1986). 

Thirdly, 24h soaking in methanol with continuous shaking was an effective method 

in removing the deposits whereas as the same pre-treatment with chloroform little
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change induced in the deposits. If deposits were o f wax nature, the chloroform should 

have been more effective in removing them than the methanol. However, W olf et al., 
(1981) reported that soaking soybean seeds in water, hexane or methanol xhloroform 

(2:1) for either 5 mins or 17h at room temperature had little effect on the deposit 

material present on the surface o f the seed coat. Also, the methanol pre-treatment had 

a substantial change in the visual appearance o f the seeds from dull to shiny. Reports 

have long indicated that soybean cultivars vary in seed appearance (classified as 

shiny, dull and bloomy) depending in the amount o f material present in the surface of 

the seed coat (Williams, 1950; Bernard and Weiss, 1973).

In this study, both deposits and pits were present on the surface o f the seed coat 

in most genotypes. There was no obvious relationship between the two features. For 

example, seeds o f cv. Sapporo were highly pitted but had no surface deposits 

whereas seeds o f line VLS-1 had plenty of deposits but few pits. A similar lack of 

relationship was observed in a survey of the surface structure o f 33 soybean 

genotypes (W olf et al., 1981).

Assessment o f pitting was done after the removal of deposits. The methanol 

pre-treatment for removal of deposits had no other obvious effect on the surface o f 

the seed coat as could be seen in either low or high magnification. Individual pits 

appeared in three types, deep (round and elongated) and shallow. In most cases, pits 

were a combination o f all types but it was not possible to identify a predominant type 

o f structure o f individual pits (round or elongated). There was a clear relationship 

between the water uptake and the pitting in two o f the genotypes examined. As it was 

previously shown (Chapter 3, section 3.2.2), seeds o f line VLS-1 had a low water 

uptake and wrinkling o f the seed coat was observed in only the dorsal region o f the 

seed until after 2h o f imbibition. Wrinkling o f the seed coat was the first visible sign 

o f imbibition by seeds (Yaklich et al., 1986). Seeds of line VLS-1, also, had few and 

shallow pits in the abaxial region. Seeds o f line SS 87040-2-1 and GC 88037-38-2-2 

had a high water uptake and seed coat wrinkling was observed in all regions o f the 

seed within 30 mins o f imbibition. Seeds of the o f lines SS 87040-2-1 and GC 

88037-38-2-2 had a high proportion o f very deep and wide open pits.

Several reports have documented the existence o f pits in the surface o f the 

soybean seed coat (W olf and Baker, 1972; Newell and Hymowitz, 1978; Calero et 
a l,  1981; W olf et al., 1981, Yaklich et al., 1986). Although, pits definitely increase 

the seed coat surface area, there is no direct evidence so far, that they play a role in 

water imbibition.
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In the present work, there was a clear correlation between the sites o f initial 

water penetration to the distribution o f pits in the surface o f the seed coat. 

Comparisons between the fluorescence image of the calcofluor stained seed coat and 

the light microscope image of the same area, revealed that the distribution and size of 

the spots were closely corresponded to pits (compare Fig. 6.7 to Fig. 6 .6 ). Heslop- 

Harrison and Heslop-Harrison, (1982) have successfully used the calcofluor staining 

for mapping the permeability of stigma surfaces. They suggested that 30-60 seconds 

was appropriate to provide an unambiguous map o f the water penetration in stigmas.

In this study, in addition to seed surface calcofluor staining, anticlinal sections 

o f the seed coat from seeds that had been soaked in calcofluor were studied. As 

imbibition progressed, the staining of the palisade layer was changed from light to 

intense. It was not possible to identify differences, in sections from all three regions, 

in the extent o f water penetration through the palisade layer since the depth and 

density o f calcofluor staining was similar. However, regardless o f the region 

examined, it was clear that the water penetration did not occur uniformly through the 

palisade layer since groups o f palisade cells showed a stronger staining than the 

adjacent cells. In the hilar region, water penetration was observed through the 

tracheid bar but not through the outer and inner palisade layer.

In the present work, different methanol and chloroform pre-treatments were 

applied to whole seeds and then the water uptake o f the pre-treated seeds was 

measured.

Brief (2min) immersion of seeds in chloroform at room temperature did not affect the 

water uptake in comparison to the untreated controls. Brief chloroform pre-treatment 

was used as a method to remove epicuticular waxes. In studies o f epicuticular waxes 

in leaves and stems, brief chloroform immersion o f the tissue has been widely used 

as an effective method o f removal these waxes (Silva Fernandes et al., 1964; Baker 

et al., 1982). In this study, the efficacy of the previous pre-treatment in removing 

epicuticular waxes was not established. However, epicuticular waxes on the surfaces 

o f leaves, flowers and stems are thought to influence only the wetting of the surface 

(Holloway, 1970; 1984).

Two hours successive immersions of whole seeds, at room temperature, in 

methanol, methanol: chloroform ( 1 : 1 ) and chloroform was used to remove both 

epicuticular and intracuticular waxes. The same procedure was used in waxes 

extraction from separated tomato fruit cuticles (Baker, 1982). Seeds that had been 

pre-treated with the previous combination showed a significant increase in the water
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uptake in comparison to the untreated control seeds. However, the increase in the 

water uptake could not be attributed to intracuticular waxes for several reasons. 

Firstly, the efficacy o f the pre-treatment in removing the intracuticular waxes was not 

established. In other plant cuticle studies, the experimental procedures used for the 

extraction o f soluble cuticular waxes vary tremendously. In a comparative study o f 

the different extraction methods, Riederer and Schneider (1989) reported that the 

solvents used for extraction cover a wide range o f polarities from methanol to n- 
hexane, and they were applied at varying temperatures (ambient to boiling point) and 

for periods o f time ranging from 2sec to 2hours. They also reported that different 

extraction methods resulted not only to different yields of waxes but also to different 

proportions o f the various classes o f waxes.

Secondly, it was not known if  the pre-treatment affected only the cuticle or if  it also 

affected the subcuticular or/and the palisade layer. It is, therefore, likely that changes 

in the subcuticular and palisade layer to be wrongly attributed to the extraction o f the 

intracuticular waxes. Most o f the studies in the relationship between the water 

permeability and intracuticular waxes in plant material have been performed on 

separated cuticular membranes rather whole tissues. In seeds, it is not known the 

relative effect o f changes in cuticular water permeability in comparison to the 

changes in subcuticular and palisade layer. Treatment of separated leaf cuticular 

membranes with chloroform extracted intracuticular waxes and increased the water 

permeability by 2 to 3 orders o f magnitude (Schonherr, 1976; Schónherr and 

Schmidt, 1979; Hass and Schonherr, 1979). However, no simple relation has been 

found between the amount and/or composition o f soluble waxes and the permeability 

o f cuticles (Schonherr and Schmidt, 1979).

Thirdly, it was the methanol and not the chloroform component o f the previous pre­

treatment that had the greatest impact in the increase of the water uptake. However, 

several reports have shown that chloroform was a better extraction medium of the 

intraciticuticular waxes than methanol (Tulloch, 1976; Baker, 1982; Holloway, 

1984). Riederer and Schneider (1989) reported in isolated Citrus leaf cuticles that 

chloroform extraction yielded high amounts of intracuticuticular waxes and even the 

more polar intracuticuticular waxes were extracted.

The greatest increase, however, in water uptake was achieved when prolonged 

methanol and/or chloroform pre-treatments applied to seeds. Methanol pre­

treatments, in particular, were highly effective in increasing the water uptake during 

imbibition. The seed coat of methanol pre-treated seeds observed to be highly 

permeable to water and within the first 30 min o f imbibition seeds had already
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absorbed a significant amount o f water. There was no region o f the seed that 

observed to be a point o f rapid water penetration but the whole seed coat was highly 

permeable to water. The effectiveness o f the methanol pre-treatment was particularly 

evident in seeds with low water uptake rather than that o f seeds with high water 

uptake.

One possible explanation o f these observations is that the organic solvent pre­

treatments were extracting phenolic material from the subcuticular and palisade 

layer. Lower amount o f phenolic material might give rise to higher water uptake. A 

close association o f low rates o f water uptake with seed coat pigmentation has been 

reported in isogenic lines o f peas (Powell, 1989). In this case, seeds having the 

dominant A gene for seed coat colour were usually pigmented, and imbibed slowly in 

comparison with the unpigmented seeds having the recessive gene. Also, other 

reports have shown a close association between the development o f pigmentation 

during seed development and low water uptake in chickpeas and cowpeas (Legesse 

and Powell, 1992). They reported that in the absence o f pigmentation at early stages 

o f maturation, all seeds imbibed rapidly whereas as pigments started to develop the 

rate o f water uptake was significantly reduced. Although, the development of 

pigmentation may be associated with low rates of water uptake, no direct evidence 

exists that phenolics per se play an important role in reducing the water permeability 

o f the seed coat. During seed development and maturation other changes in the seed 

coat may have taken place thus making the low water permeability an independent 

process. One possibility is that during the last stages of seed development, and due to 

a great loss o f moisture, a marked shrinkage of the palisade cells give rise to a 

compaction o f cells. Yaklich et al., 1986 reported a compaction o f the seed coat in 

the last stage o f the soybean seed development. Similar observations have been 

reported for pigmented Phaseolus vulgaris seeds (Corner, 1951; Yeung and Cavey, 

1990).

The fact that methanol was far more effective in increasing the water uptake 

than chloroform supported the possibility that extraction o f phenolics may have 

resulted in high water uptake. Phenolics are well known to be highly soluble to polar 

solvents (Witham, 1983) and traditionally, methanol and ethanol are the most widely 

employed solvents in identification by spectrophotometric techniques (Waterman and 
Mole, 1994). The absorption spectrum of the supernatant, therefore, obtained from 

methanol and chloroform extracts was measured. From the absorption spectrum 

results, it was clear that prolonged methanol pre-treatments extracted little material
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with UV absorbance in the range o f 220-3 20nm. Phenolics are well documented to 

absorb in the previous range o f with varied maxima depending on type o f phenolic 

compounds (e.g. simple phenolics 265-280nm, simple aldehydes and acids 250- 

325nm) (Waterman and Mole, 1994). In contrast, the absorption spectrum o f the 

supernatant from the prolonged chloroform pre-treatments extracted substances with 

UV absorbance in the range o f 220-320nm. However, the nature o f the exctracted 

substance(s) is not known and needs further investigation.

In the present work, drying of seeds after the application o f the pre-treatments 

restored the water permeability to the levels observed in the untreated control seeds. 

Egley and Paul (1993), in a study o f the effect o f 28 different organic solvents in 

overcoming the water impermeability of prickly sida (Sida spinosa) seeds, reported 

that seed drying after the methanol pre-treatment restored the seed coat permeability 

to water in similar levels to the untreated control seeds. The following sequence of 

events could explain the action o f particularly the methanol solvent pre-treatments: 

Organic solvents could penetrate the cuticle reaching the subcuticular and palisade 

layer. As the duration o f the treatment increased, the presence o f solvent has reached 

inner parts o f the palisade layer. Cellulosic material in the subcuticular and palisade 

layer have hydrated in organic solvent, these carbohydrates swell and created forces 

among the palisade cells that caused breaking or/and separation o f the cells. The 

breakage/ separation o f the palisade cells opened wide avenues for the massive influx 

o f water into seed that observed within minutes o f imbibition. Drying o f the seeds 

after the pre-treatment restored water permeability to the original levels because the 

disturbance was temporary induced. In the presence o f methanol, water would reach 

all the seed coat cells invaded by methanol since water is soluble to methanol. When 

the methanol was dried off, there would be no open pathway for the water movement 

through the layers o f the seed coat. The last possibility could explain the difference in 

the effectiveness between methanol and chloroform in changing the seed coat 

permeability to water since the seed coat was more permeable to methanol than to 

chloroform, and water is soluble in methanol but not in chloroform.

Egley and Paul (1993) reported results o f the effects o f 28 different organic 

solvents with a range o f polarities, swelling factor and solubility to water in 

overcoming the water impermeability of prickly sida seeds. They reported that all the 

three previous physical properties of the solvents could interact each other, and 

finally change the seed coat permeability to water with the most active solvents those 

being non-polar, with high values o f relative swelling factor and solubility to water.
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They also reported that low values in one factor (e.g. polarity) could be compensated 

by high values in other factor (e.g. swelling factor) so that the final end result in the 

water permeability could be the same.

In the present work, it was not possible to identify the role o f the physical 

properties o f the solvents due to a small number o f solvents used. However, the 

common imbibition behaviour of seeds o f all genotypes tested indicated that the 

previous model for regulation of the water uptake is likely to be universal in 

soybeans.
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CHAPTER 7 

Comparative studies in the structure and histochemistry of the seed coat in hard 
and soft seeds in soybeans (Glycine max L. Merril)

7.1. Introduction

Deposits and pits occur in the surface o f the hard seed coat in most soybean 

genotypes. However, the role o f pits and deposits has been unclear since in some 

genotypes hard seeds were free o f pits and deposits whereas other genotypes seeds 

were heavily pitted and/or had a lot of deposit material. The lack o f clear description 

o f the role o f pits and deposits is mainly due to the fact that most o f the published 

work about the hard soybean seed coat has been based in SEM studies o f the surface 

or anticlinal sections o f the coats (Calero etal., 1981; W olf etal., 1981;Ragus, 1987; 

Yaklich et al., 1987). There is no published information reporting a direct evidence 

(using water soluble stains) that pits or/and deposits could play a role in the water 

impermeability in soybeans. Additionally, there is no published information about 

the location o f the water impermeability barrier in the hard soybean seed coat.

There is no published information about the nature o f water impermeability 

barrier by comparative anatomical and histochemical studies between hard and soft 

seeds. Duanganparta (1977) reported no anatomical and histochemical difference 

between hard and soft soybean seed coats; hardseedness was attributed in the 

presence o f a continuous layer o f suberin in the inner palisade layer in the hilar 

region o f the seed coat. Harris (1987) examined soybean seed coats o f a hardseeded 

and softseeded genotype; no clear anatomical or histochemical difference between 

them was observed. However, a higher amount o f phenolic material in seeds o f the 

hardseeded genotype than in seeds o f a softseeded genotype was observed.

In soybeans, the effectiveness o f the organic solvents to overcome the 

hardseedness has been assumed to be related with changes in the cuticle due to 

removal o f waxes (Ragus, 1987). Recently, Egley and Paul (1993), in hard seeds of 

Sida spinosa, reported that the effectiveness o f the organic solvents to overcome the 

water impermeability barrier was related to changes in palisade layer o f the seed coat 

as a combination o f the hydration, swelling and polarity properties o f the solvents. 

There is no published information that associates changes in the seed coat due to 

organic solvents with changes to water impermeability barrier.
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The objectives o f this study were, therefore: (1) to localise o f the water 

impermeability barrier within the layers of the hard seed coat, (2 ) to identify o f the 

nature o f the barrier by comparative anatomical and histochemical studies between 

hard and soft seeds, and (3) to investigate the nature o f the barrier when 

impermerability is overcome using organic solvents.

7.2. Materials and methods

7.2.1. Physical characteristics of hard and soft seeds

The percentage o f hard seeds was calculated as described in section 2.2. After 

the separation, both hard and soft seeds were left to dry at ambient conditions for 4 

days before placing them for air-drying set at 30°C for 2 days, and then the moisture 

content was measured (8 % ±1.5% m.c.) as described in section 2.2. The seed 

characteristics o f both hard and soft seeds were calculated as described in section 2 .2 .

7.2.2. Scanning electron microscopy of the seed coat of hard and soft seeds

The surface o f hard seeds o f the three genotypes was studied. Seeds were 

processed for the investigation o f the surface of the seed coat by SEM as described in 

Section 2.11. For the assessment o f the effects o f wetting and drying on the surface 

structure o f the seed coat, seeds of cv. Sapporo were soaked in water for lhour. 

Subsequently, seeds blotted dry and left to dry at ambient conditions for 4 days. 

Sample preparation for the SEM studies was done as described in section 2.11. 

Unsoaked seeds were used as a control. For the estimation o f the degree o f pits, 

micrographs were taken at 300x magnification at the middle abaxial region o f the 

seed coat. Anticlinal sections of hard and soft seeds o f the three genotypes were 

made. Strips o f the seed coat by a razor-blade were made. The experimental 

procedure was the same as described in section 2 . 1 1 .

7.2.3. Use of calcofluor as a water-soluble fluorescence stain

Hard seeds o f the three genotypes were used. For the calcofluor staining o f the 

surface o f the seed coat, hard seeds were soaked in calcofluor for 15 sec, 1 min, 15 

min and 30 minutes. The experimental procedure was the same as described in 

section 2.10.1. For the identification o f the calcofluor presence within the seed coat, 

hard seeds were soaked for 24h in stain solution. The experimental procedure was the 

same as described in section 2 . 1 0 .2 .
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7.2.4. Light microscopy studies of the seed coat of hard and soft seeds

Hard and soft seeds o f the three genotypes were used. Fixation, dehydration, 

vacuum infiltration, embedding and sectioning were done as described in section 2 .9 . 
The following histochemical reactions were carried out:

a) Toluidine Blue O (TBO): Sections were placed in 0.05% (w/v) aqueous 

Toluidine blue at pH 4.4 for 4 min as metachromatic stain, washed and mounted in 

distilled water (O'Brien and McCully, 1981).

b) Phloroglucinol: Sections were placed in a saturated solution o f the stain in 

20% (w/v) HC1. A cherry pink coloration taken to indicate the presence o f lignin 

(O'Brien and McCully, 1981).

c) Vanillin test: Sections were placed in oversaturated solution o f vanillin in 

HC1 for staining o f phenols (Ling-Lee et al., 1977).

d) Ruthenium red: Sections were placed in an aqueous solution o f 0.02% o f the 

stain, washed and mounted in distilled water. Pink staining indicated pectins (O'Brien 

and McCully, 1981).

7.2.5. Fluorescence microscopy studies of the seed coat of hard and soft seeds

Hard and soft seeds o f the three genotypes were used. Fixation, dehydration, 

vacuum infiltration, embedding and sectioning were done as described in section 2.9. 

The following histochemical reactions were carried out:

a) Autofluorescence: sections were mounted in glycerol and examined for 

autofluorescence by excitation with ultra-violet light (filter set I). A yellow colour 

indicated the presence o f polyphenolic substances.

b) Calcofluor: Sections were stained in a 0.1% (w/v) aqueous solution of 

calcofluor white M2R for 30 sec., mounted in glycerol and examined with filter set 

II.

c) Fluorol Yellow: A 0.01%(w/v) solution of fluorol yellow 088 (Solvent 

Green 4) was prepared in polyethylene glycol by heating at 90 C for 1 hour. An equal 

volume o f 90% (w/v) glycerol was added to the polyethylene glycol plus stain. 

Sections were stained in this mixture for lh  at room temperature, washed in water 

and mounted on slides in 75% (w/v) glycerol, and examined using filter set I.

d) Aniline blue: Sections were placed in a 0.005 (w/v) solution o f the stain in 

50% (v/v) alcohol for 24 hi', and mounted in 70% (w/v) glycerol. The presence o f 

callose was examined (Jensen, 1962).
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7.2.6. Effect of methanol and chloroform pre-treatments in the water uptake of 

hard seeds

Hard seeds o f the three genotypes were used. Organic solvents pre-treatments 

were applied as described in Section 2.12. Four pre-treatments were used: 1) 2h 

methanol, 2) 24h methanol, 3) 2h chloroform and 4) 24h chloroform. After the pre­

treatments, seeds were blotted dry. Subsequently, 10 seeds were placed for 

measurement o f the water uptake after 30 min of imbibition as described in Section

2.5.2. Additionally, methanol and chloroform pre-treatments for 24h, 72h and 96h 

were used. After the pre-treatments, seeds were blotted dry. Subsequently, 10 seeds 

were placed for measurement o f the water uptake after 30 min o f imbibition as 

described in Section 2.5.2.

7.2.7. Absorbance spectrum of supernatant

Hard and soft seeds o f cv. Pioneer-9581 were used. The absorbance spectrum 

of the supernatant obtained from the 24h and 72h methanol and chloroform 

supernatants was measured as described in section 2.13.

7.2.8. Effect of seed drying after prolonged methanol and chloroform pre­

treatments on the water uptake

Hard seeds o f the three genotypes were used. Seeds were soaked in methanol 

and chloroform for 72h as described in section 2.12. After the pre-treatments, seeds 

were blotted dry, left to dry for 4 days at room conditions. The final moisture o f the 

seeds was 8 % m.c. (± 1.5% m.c.) on a fresh weight basis. Subsequently, 10 seeds 

were placed for imbibition, and the water uptake was measured after 30 minutes as 

described in section 2.5.2.
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7.3. Results

7.3.1. Physical characteristics of hard and soft seeds

The physical characteristics o f both hard and soft seeds o f the seeds o f cv. 
Essor, Pioneer-9581 and line JS-7980 were measured.

In the seed lots examined, the percentage by weight o f hard seeds varied 

(PO.OOl) among genotypes; cv. Essor and line JS-7980 had a low percentage 

whereas cv. Pioneer-9581 had a high percentage of hard seeds (Table 7.1).

Seed dry weight was also variable (PO.OOl) within genotypes. Seeds o f line 

JS-7980 had the smallest size whereas seeds of cv. Essor had the largest size. In all 

cases, hard seeds were lighter than soft seeds but only in the seed lots o f line JS-7980 

and cv. Pioneer-9581 were the differences significant (PO.OOl) (Table 7.1).

The testa dry weight was also variable (PO.OOl) within genotypes. Seeds o f 

line JS-7980 had the smallest testa dry weight whereas seeds o f cv. Essor had the 

largest testa weight. Soft seeds had a higher testa dry weight than hard seeds in line 

JS-7980 and cv. Essor (P O .05) whereas the difference was not statistically 

significant (Table 7.1). However, the testa dry weight was strongly positively 

correlated (y=0.05x + 4, R2 =0.93) to the initial seed weight therefore the ratio of 

testa to seed was calculated. In all cases, hard seeds had a higher ratio than soft seeds 

but the difference was significant (P O .05) only in seeds o f line JS-7980 (Table 7.1).

Table 7.1. Percentage hard seeds, seed and testa dry weight and ratio o f seed coat dry 

weight to seed dry weight for the three genotypes.

Genotypes Type Percentage 

hard seeds 

(%)

Seed dry 

weight 

(mg)

Testa dry 

weight 

(mg)

Ratio testa 

to seed

Essor hard 9 181 14.6 0.081

soft 198 13.7 0.069

JS-7980 hard 17 77 7.9 0 . 1 0 2

soft 109 9.5 0.087

Pioneer-9581 hard 67 150 1 1 . 1 0.074

soft 179 1 2 . 8 0.071

s.e.m. (n=10) 3.4 4.98 0.49 0.003
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7.3.2. Scanning electron microscopy of the seed coats

Scanning electron microscopy o f the surface and o f sections o f the seed coat 

was carried out to find out whether hard and soft seeds in the three genotypes 

differed in morphology and chemical composition.

The surface o f the seed coat was free o f deposits, in both hard and soft seeds, in 

all three genotypes.

Before any attempt to investigate differences in the pitting between hard and 

soft seeds, evidence was needed that the process used to separate hard and soft seeds 

did not induce any changes in the surface o f the seeds. Seeds o f cv. Sapporo (100% 

soft) were used in this test. The seeds were covered in water for 30 mins at room 

temperature; wrinkling o f the seed coat was observed particularly evident in the 

dorsal region o f the seed. Seeds were dried and processed for the SEM studies as 

previously described. In many seeds, ruptures o f the seed coat were observed which 

were similar to those reported in section 3.2.3. The surface o f the seed coat o f seeds 

that appeared to be intact was examined under SEM to investigate possible changes 

at high magnifications. SEM images revealed two differences in comparison to the 

untreated control seeds: Firstly, cracking of the seed coat was observed (Fig. 7.1b), 

and secondly the opening in the individual pits were about double the size o f those in 

the pits o f the untreated control seeds (Fig. 7. Id).

For this reason, valid comparisons between hard and soft seeds in the pitting 

were not valid, and therefore observations o f hard seeds o f the three genotypes were 

made. Observations o f hard seeds, at the abaxial region, revealed that there was a 

clear difference between the genotypes in the number o f pits present per unit area and 

structure o f the individual pits. Flard seeds of line JS-7980 had few pits (Fig. 7.2a) 

whereas those o f cv. Essor and Pioneer-9581 had numerous pits (Fig. 7.2b and 7.2c). 

The structure o f the individual pits in hard seeds o f line JS-7980 and cv. Essor was 

shallow (Fig. 7.2a) whereas pits in cv. Pioneer-9581 were deep (Fig. 7.2c). In many 

cases, at the dorsal region, hard seeds of cv. Essor appeared to have long and 

elongated (slit-like shaped) pits (Fig. 7.2b).

Anticlinal sections of the seed coat, in both hard and soft seeds in all 

genotypes, indicated the presence o f passageways through the palisade layer. The 

passageways were wide or narrow, penetrating the whole or part o f the palisade layer 

(Fig. 7.3).
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A

Figure 7.1. SEM micrographs of the dorsal region o f the seed coat in cv. Sapporo. A) 

control, no pre-treatment, scale 100/rm; B) after wetting and drying, scale 100/an; C) 

pit from control untreated seeds, scale 10/rm and D) pit from seeds after wetting and 

drying; P: pits, (arrows indicate cracking), scale 10//m.
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Figure 7.2. SEM micrographs o f the surface of the seed coats, abaxial region, of 

different genotypes. A) seed o f line JS-7980; B) seed of cv, Essor and C) seed of cv. 

Pioneer-9581, (arrows indicate pits) scale 100/rm.
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A

Figure 7.3. SEM micrographs of anticlinal sections o f the seed coat A) hard and B) 

soft seeds o f cv. Essor; PCL: palisade cell layer, HCL: hourglass cell layer, scale bar, 

1 0 /ym.
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7.3.3 Use of calcofluor as a water-soluble fluorescent stain

Soaking whole hard seeds in calcofluor was used as a method to demonstrate 

surface water penetration and localization o f the calcofluor staining within the layers 

o f the seed coat. In hard seeds o f all genotypes soaked in calcofluor for lm in, there 

was a lack o f calcofluor staining o f the surface of the seed coat (Fig. 7.4). There was 

little difference on staining o f the surface of the seed coat after soaking whole hard 

seeds for 15 and 30 min in calcofluor.

The presence o f the calcofluor staining within o f the seed coat was observed in 

anticlinal sections o f the seed coat after soaking whole hard seeds in calcofluor for 24 

hours. In the hilar region, after 24h soaking whole hard seeds in calcofluor, staining 

was evident only in the outer parts of the tracheid bar whereas the outer and inner 

palisade layer were totally unstained (Fig. 7.5). In hard seeds o f all genotypes, the 

staining was clearly evident in the subcuticular layer of the seed coat (Fig. 7.6a). In 

higher magnifications, the staining was clearly confined in the subcuticular area 

bordering externally with the palisade cell layer whereas no staining was observed in 

the palisade layer itself (Fig. 7.6b). The same observation was made in all regions o f 

the hard seed coats examined.

7.3.4. Light microscopy of the seed coats

Segments o f the seed coat, from all regions o f the seed, were fixed, dehydrated, 

infiltrated, embedded in resin and sectioned as previously described. Comparative 

anatomical and histochemical studies of anticlinal sections o f the seed coat o f hard 

and soft seeds o f the three genotypes were made.

Figure 7.7a shows the general structure of the soybean seed coat. The cuticle 

was very thin and it was not possible to observe it properly with the light microscope. 

In most cases, it was difficult to identify it from the subcuticular layer. The 

subcuticular layer was also thin but clearly visible at higher magnifications o f light 

microscope. The palisade layer was composed o f elongated cells which had their 

long axes perpendicular to the surface. Each cell had thick cell walls and the lumen 

in the middle was comparatively small (Fig. 7.7a and Fig. 7.7b). The hourglass cells 

had a considerably thickened secondary cell wall with large spaces between the cells 

(Fig. 7.7a and Fig. 7.7c). The parenchyma layer consisted o f six to eight layer of 

cells, lacking in cell content and flattened.
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Figure 7.4. Fluorescence micrograph of the surface staining o f the abaxial region of 

the seed coat after soaking whole seeds of cv. Pioneer-9581 in 0.1% calcofluor for 

lmin; (no staining), 600x magnification.

Figure 7.5. Fluorescence micrograph of anticlinal resin-embedded sections of the hilar 

region of the seed coat after soaking whole seeds o f cv. Pioneer-9581 in 0.1% 

calcofluor for 24h, (arrows indicate staining); OPCL: outer palisade cell layer, IPCL: 

inner palisade cell layer, TB: tracheid bar, 2,000x magnification.
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Figure 7.6. Fluorescence micrographs o f anticlinal resin-embedded sections o f the 

ventral region o f the seed coat after soaking hard seeds o f cv. Pioneer-9581 in 0.1% 

calcofluor for 24h, (arrows indicate staining). A) 500 x magnification, B) 2,000 x 

magnification. SL: subcuticular cell layer, PCL: palisade cell layer, F1CL: hourglass 

cell layer, PL: parenchyma layer, AW: anticlinal walls, LU: lumen, LUM: lumina 
material.
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Figure 7.7. Light micrographs of the seed coat o f hard seeds o f cv. Pioneer-9581. A) 

anticlinal section o f the whole seed coat; B) periclinal section o f the palisade layer, 

and C) periclinal section o f the hourglass cells; 5,000 x magnification. SL: 

subcuticular layer, PCL: palisade cell layer, HCL: hourglass cell layer, PL: 

parenchyma layer, AW: anticlinal walls, LU: lumen, LUM: lumina material.

133



Chapter 7: Anatomy and histochemistry

The "light line" appeared as an indefinite transparent region in the outermost 

part o f the palisade layer adjacent to the subcuticular layer (Fig. 7.8). The "light line" 

was identified in both hard and soft seeds in all o f the genotypes (Fig. 7.8). There 

was no clear difference, between hard and soft seeds in any o f the genotypes, in the 

position and the intensity o f the "light line".

Frequently, fissures were observed in the palisade layer which were substantial 

covering the whole palisade layer (Fig. 7.9). The presence o f fissures was identified 

in both hard and soft seeds in all genotypes (Fig. 7.9).

In anticlinal sections stained with Toluidine Blue O (TBO) at pH 4.4, cell walls 

o f the subcuticular layer, anticlinal and inner tangential wall stained deep purple and 

the contents o f the claviform lumina became dark. The secondary walls o f the 

palisade cell layer stained light purple. No clear difference between hard and soft 

seeds, in the staining reaction o f these cells was observed (Fig. 7.10). There was a 

difference between the genotypes in the amount o f the material present in the lumina. 

Lumina material o f seeds o f cv. Essor showed a stronger stain reaction than that o f 

seeds o f line JS-7980 and cv. Pioneer-9581 (Fig. 7.10). However, no clear difference 

between hard and soft seeds, in the staining reaction o f the lumina material was 

observed (Fig. 7.10).

The contents o f the claviform lumina were stained red by vanillin/HCl. The 

lumina material stained strong red in seeds o f cv. Essor but less red in seeds o f line 

JS-7980 and cv. Pioneer-9581 (Fig. 7.11). There were no clear differences in the 

intensity o f the red colour reaction between hard and soft seeds in any o f the three 

genotypes (Fig. 7.11).

The cuticle failed to stain but the subcuticular layer was stained strongly pink- 

red by ruthenium red (Fig. 7.12). With ruthenium red, the anticlinal cell walls o f the 

palisade layer had a weaker stain reaction than the subcuticular layer (Fig. 7.12). 

There were no clear differences either between the genotypes or between hard and 

soft seeds o f any o f the genotypes in the staining with ruthenium red.

With Phloroglucinol/HCl in both hard and soft seeds in all genotypes, no part 

o f the seed coat showed any staining. However, in the hilar region, the tracheid bar 

showed a strong reaction to the stain and became red.
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Figure 7.8. Light micrographs o f anticlinal section the seed coat of cv. Pioneer-9581; 

7,000 x magnification. A) hard seed, and B) soft seed. SL: subcuticular layer, PCL: 

palisade cell layer, LL: light line.

Figure 7.9. Light micrograph of anticlinal section o f the seed coat stained with TBO 

o f hard seed o f cv. Pioneer-9581; 5,000 x magnification. SL: subcuticular cell layer, 

PCL: palisade cell layer, HCL: hourglass cell layer.
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A B

Figure 7.10. Light micrographs of anticlinal sections of the seed coat stained with 

TBO 5,000 x magnification. A) hard seed of cv. Pioneer-9581; B) soft seed of cv. 

Pioneer-9581; C) hard seed of cv. JS-7980 and D) soft seed of cv. JS-7980. SL: 

subcuticular cell layer, PCL: palisade cell layer, HCL: hourglass cell layer, AW: 

anticlinal walls, SW: secondary walls, LU: lumen, LIJM. lumina material.
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PCL
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Figure 7.11. Light micrographs of anticlinal sections of the seed coat stained with 

vanillin/HCl, 2,000 x magnification. A) hard seed o f cv. JS-7980; B) soft seed o f cv. 

JS 7980; C) hard seed o f cv Pioneer-9581; D) soft seed o f cv. Pioneer-9581; E) hard 

seed of cv. Essor and F) soft seed o f cv. Essor. PCL: palisade cell layer, LU: lumen, 
LUM: lumina material.
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Figure 7.12. Light micrographs o f anticlinal sections o f the seed coat stained with 

ruthenium red o f cv. Pioneer-9581, 7,000 x magnification. A) hard seed, and B) soft 

seed. CU: cuticle, SL: subcuticular layer, PCL: palisade cell layer, LU: lumen.
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7.3.5. Fluorescence microscopy studies of the seed coats

Segments o f the seed coat, from all regions o f the seed, were fixed, dehydrated, 

infiltrated, embedded and sectioned as previously described. Hand-cut sections were 

also used. Comparative histochemical studies o f the seed coat o f hard and soft seeds 

o f the three genotypes were made.

The subcuticular layer, the anticlinal palisade cell walls and the contents o f the 

lumina showed a strong yellow autofluorence (Fig. 7.13). There appeared to be more 

autofluorescent material in the lumina o f the palisade cells o f cv. Essor than in the 

lumina o f the palisade cells o f the other two cultivars studied. However, no clear 

differences were observed between hard and soft seeds in any o f the three genotypes 

(Fig. 7.13). Also, in many sections o f seed coats of cv. Essor, material in the lumina 

showed an orange autofluorescence which formed a layer on the palisade cell layer 

(Fig. 7.14). There were no differences between hard and soft seeds in any o f the 

genotypes in the presence and size of this orange autofluorescent layer.

The subcuticular layer, the anticlinal cell walls o f the palisade layer and the 

contents o f the lumina showed a strong gold-yellow fluorescence after staining with 

fluorol yellow (Fig. 7.15). Both hard and soft seeds in all the genotypes had similar 

fluorescence after staining by fluorol yellow.

The palisade cell layer was observed to fluorescence after staining by 

calcofluor (Fig. 7.16). Both hard and soft seeds in all the genotypes had similar 

fluorescence after staining by calcofluor.

No part o f the seed coat observed to fluorescence after staining by aniline blue.
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Figure 7.13. Micrographs showing autofluorescence in anticlinal sections the seed 

coat. A) hard and B) soft seed o f cv. Pioneer-9581, 5,000 x magnification. SL: 

subcuticular cell layer, PCL: palisade cell layer, AW: anticlinal walls, SW: secondary 

walls, LU: lumen.

Figure 7.14. Micrograph showing autofluorescence of anticlinal section of hard seed 

o f cv. Essor; 700 x magnification; (arrow indicates the "orange" autofluorenscence), 

PCL: palisade cell layer, FICL: hourglass cell layer.
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Figure 7.15. Fluorescence micrographs of the anticlinal sections o f seed coat o f cv. 

Essor stained with fluorol yellow. A) hard seed and B) soft seed; 7,000 x 

magnification. SL: subcuticular cell layer, PCL: palisade cell layer, AW: anticlinal 

walls, SW: secondary walls, LU: lumen, HGL: hourglass cell layer.

Figure 7.16. Fluorescence micrographs of the anticlinal sections o f the seed coat o f 

seeds of cv. Essor stained with calcofluor. A) hard seeds, and B) soft seeds; 1,500 x 

magnification PCL: palisade cell layer, F1CL: hourglass cell layer.
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7.3.6. Effect of methanol and chloroform pre-treatments on water uptake of 

hard seeds

Hard seeds o f the three genotypes were subjected to four pre-treatments, 

namely: 2h methanol (2h M), 24h methanol (24 M), 2h chloroform (2h C) and 24h 

chloroform (24h C). Immediately afterwards, the pre-treated seeds were placed for 

imbibition. The number o f seeds that became soft and the weight o f water imbibed 

by all seeds in 30 min was measured. Analysis o f variance results were presented in 

Appendix 5, Table 5.1.

Figure 7.17a shows the imbibition behaviour of hard pre-treated seeds o f cv. 

Pioneer-9581. The hard untreated controls remained hard after 30 min o f imbibition 

thus no water uptake was measured. In general, the chloroform pre-treatments had a 

lesser (PO.OOl) effect on hard seeds in comparison to the methanol pre-treatment. 

However, hard pre-treated seeds became soft in different numbers depending on the 

type o f the pre-treatment. Forty percent of hard seeds with 2h methanol pre-treatment 

became soft. Twenty-four hours methanol pre-treatment had changed all hard seeds 

to soft seeds; a substantial amount o f water was absorbed by these seeds. Chloroform 

pre-treatment for 24h changed 30% of the hard seeds to soft seeds.

Figure 7.17b shows the imbibition behaviour of hard pre-treated seeds o f cv. 

Essor. The hard untreated controls remained hard after 30 min o f imbibition. In 

general, the different methanol pre-treatments had a smaller (P<0 .0 0 1 ) effect on hard 

seeds than that observed in hard seeds o f cv. Pioneer-9581. There was little (P>0.05) 

difference between methanol and chloroform pre-treatments in the imbibition 

behaviour o f hard seeds. Twenty-four hours methanol pre-treatment changed 30% of 

hard seeds to soft seeds.

Figure 7.17c shows the imbibition behaviour of hard pre-treated seeds o f line 

JS-7980. The hard untreated controls remained hard after 30 min o f imbibition. In 

general, the imbibition behaviour of hard pre-treated seeds was similar to that o f hard 

seeds o f cv. Essor. There was little (P>0.05) difference between methanol and 

chloroform pre-treatments in the imbibition behaviour o f hard seeds. Twenty-four 

hours methanol pre-treatment changed 30% of hard seeds to soft.
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Figure 7.17. The effect o f methanol and chloroform pre-treatments on water uptake 

and percentage o f seeds became soft after 30 min o f imbibition in water, a) hard 

seeds o f cv. Pioneer-9581, b) hard seeds o f line JS-7980 and c) hard seeds o f cv. 

Essor; error bar, standard error o f the mean, (n=10).
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In view o f the pre-treatment effects on the imbibition behaviour o f the hard 

seeds, prolonged periods o f methanol and chloroform pre-treatments were applied. In 

particular, three methanol and chloroform pre-treatments were used, namely: 24h, 

48h and 72h. Immediately after the pre-treatments the seeds were placed for 

imbibition. The number o f seeds that became soft and the weight o f water imbibed 

by all seeds in 30 min was measured. Analysis o f variance results were presented in 

Appendix 5, Table 5.2.

Figure 7.18a shows the imbibition behaviour o f hard methanol pre-treated 

seeds o f the three genotypes. In general, pre-treated seeds imbibed more (PO.OOl) 

water than the untreated control seeds. All the hard, untreated control seeds remained 

hard after 30 min o f imbibition, thus no water uptake was measured. All the hard 

seeds o f cv. Pioneer-9481 had become soft after 24h methanol pre-treatment whereas 

complete conversion from hard to soft seeds o f cv. Essor and line JS-7980 required 

48h methanol pre-treatment. Hard pre-treated seeds o f cv. Pioneer-9581 for 24h with 

methanol, imbibed about 50mg of water per seed during the first 30 mins of 

imbibition whereas 72h methanol pre-treated seeds imbibed about lOOmg of water 

per seed (P<0.001). In hard seeds o f cv. Essor, 24h pre-treatment with methanol 

resulted in 7mg o f water per seed whereas 72h pre-treatment with methanol resulted 

in 6 8 mg of water per seed (PO.OOl). Hard pre-treated seeds of line JS-7980 for 24h 

with methanol, imbibed 2mg o f water per seed whereas 72h methanol pre-treated 

seeds imbibed about 33mg o f water per seed (PO.OOl).

Chloroform pre-treatment had a smaller (PO.OOl) effect than methanol pre­

treatment on the imbibition behaviour of seeds of all the three genotypes (Fig. 7.18b). 

After 72h chloroform pre-treatment, most of the hard seeds remained hard during the 

first 30 mins o f imbibition; 50% in line JS-7980 and cv. Essor and 40% in cv. 

Pioneer-9581. Hard pre-treated seeds of cv. Pioneer-9581 for 24h with chloroform, 

imbibed 8 mg of water per seed during the first 30 mins o f imbibition whereas 72h 

chloroform pre-treated seeds imbibed 28mg o f water per seed (PO.OOl). In hard 

seeds o f cv. Essor, 24h pre-treatment with chloroform resulted in 12mg o f water per 

seed whereas 72h pre-treatment with chloroform resulted in 30mg o f water per seed 

(P 0 .0 0 1 ). Hard pre-treated seeds o f line JS-7980 for 24h with chloroform, imbibed 

3mg o f water per seed whereas 72h methanol pre-treated seeds imbibed about 12mg 

of water per seed (P<0.05).
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Figure 7.18. The effect o f different periods o f a) methanol and b) chloroform pre­

treatments on the water uptake after 30 mins o f imbibition; (*) indicates 100% soft 

seeds, error bars, standard error o f the means (n= 1 0 ).
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7.3.8. Absorbance spectrum of supernatant

Figure 7.19 shows the absorbance spectrum of the supernatant obtained from 

the 24h and 72h methanol and chloroform extracts from hard and soft seeds o f cv. 

Pioneer-9581. In most o f the range scanned, the absorbance o f the methanol 

supernatants was lower than that o f chloroform supernatants in extracts from both 

hard and soft seeds. In all cases, the 72h supernatants had a higher values that the 24h 

supernatants. In general, the absorbance o f chloroform supernatant from soft seeds 

was higher than that from hard seeds.

In all cases, the absorbance o f the methanol supernatant had constantly very 

low values up to about 240nm with an increase in the absorbance thereafter. In all 

cases, in the methanol supernatants, there were no peaks in the absorbance in the 

whole range scanned. However, in the chloroform supernatants, there were several 

peaks in the absorbance between 220-275nm.

7.3.10. Effect of seed drying after the 72h methanol and chloroform pre­

treatments

After the 72h methanol and chloroform pre-treatment, seeds were allowed to 

dry for 48h at room temperature. Subsequently, the imbibition behaviour o f pre­

treated seeds was monitored by measuring the amount o f water imbibed and the 

number o f seeds that became soft after 30 mins of imbibition. Analysis o f variance 

results were presented in Appendix 5, Table 5.3.

Figure 7.20 shows the effect o f the different pre-treatments on the water 

uptake. Hard untreated control seeds showed no imbibition after 30 min. In general, 

seeds placed for imbibition immediately after the pre-treatments had a higher 

(PO.OOl) water uptake that those dried after the pre-treatments. However, genotypes 

responded differently (P<0.001) in relation to the water uptake due to the pre­

treatments.

All hard seeds that had been pre-treated with 72h methanol, and placed 

immediately afterwards for 30 mins imbibition became soft. When seeds dried after 

the 72h methanol pre-treatment, and then placed for imbibition became again hard. 

During the 30 mins of imbibition, the hard pre-treated seeds with 72h methanol o f cv. 

Pioneer-9581, Essor and line JS-7980 imbibed about 100, 70 and 40 mg o f water per 

seed respectively. When seeds dried after the 72h methanol pre-treatment, and then 

placed for imbibition imbibed about 5, 4 and lm g o f water per seed respectively.

146



Chapter 7: Anatomy and histochemistry

A bsorbance

0.400 0.320 0.160 0.080

f
L

I:j-<;

)■
I

Mi I{ ...   .
..  ...........................¿3 '"? ...."?.. , *• i iV ï. V * \ 'd -  ;■>! >: \  * ,C-J :: Ï

350

323

296 %

r :!
.■•s: CNJ

•'I.; »W

- rT “

\

H i
ï 'I !

I l l

1 ........ i....... i f !
- j ........ i......T ' / f

j

/  /
i ! ! l \  I
j .......I...... !...JJl....

CJ:
'  C N J :

fxt.---
csl

; H  
 ii........

W>c<u
269 3

242

215

350

323

296 E
e

w>s<u

 j I j .......
I : : : : I i: i'd-:CNi

Mwimw ■-

269 >C5
£

242

215
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Few of the hard seeds that had been pre-treated with 72h chloroform, and placed 

immediately afterwards for 30 mins imbibition became soft. When seeds dried after 

the 72h chloroform pre-treatment, and then placed for imbibition became again hard. 

During the 30 mins o f imbibition, the hard pre-treated seeds with 72h chloroform of 

cv. Pioneer-9581, Essor and line JS-7980 imbibed about 40, 24 and 15 mg o f water 

per seed respectively. When seeds dried after the 72h methanol pre-treatment, and 

then placed for imbibition imbibed about 3, 2 and lm g o f water per seed 

respectively.
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Figure 7.20. The effect o f seed drying after the pre-treatments on water uptake during 

30 mins o f imbibition: control (untreated), 72h M (72h methanol), 72h M+ D (72h 

methanol followed by drying), 72h C (72h chloroform), 72h C + D (72h chloroform 

followed by drying); error bars, standard error o f the means (n= 1 0 ).

148



Chapter 7: Anatomy and histochemistry

7.4. Discussion

The seed lots o f three genotypes on which the comparative studies between 

hard and soft seeds were made, had a significant variation in the percentage hard 

seeds they contained. It was assumed that genotypic differences could be identified 

particularly in situations where a range o f hardseedness occurred.

The incidence o f hard seeds may be an inherited characteristic. In soybeans, 

Verma and Ram (1987) supported the view that impermeability was an inherited 

characteristic that was dominant over permeability, a theory proposed followed by 

earlier studies on soybeans (Ting, 1946; Shahi and Pandey, 1982). In contrast, 

Srinives and Hadley (1980), believed that permeability was a dominant seed coat 

characteristic. Other studies have related the induction o f hardseedness to 

environmental factors during seed maturation and subsequent drying. In soybeans, 

Duangapatra (1977), reported a negative association between seed moisture and 

expression o f hardseedness; the presence o f hard seeds was first detectable only after 

the seed moisture content dropped to or below 14% and an increased proportion of 

seeds were hard when seeds were dried to 7.5% moisture content. Baciu-Miclaus 

(1970) considered that variation in hard seed percentages between seed lots was 

dependent on climatic conditions or the length o f growing seasons.

In the present work, the comparison o f the physical characteristics o f hard and 

soft seeds revealed two features. First, hard seeds were shown to have a lower seed 

dry weight in comparison to the soft seeds and second, the ratios o f seed coat dry 

weight to seed dry weight was higher in hard seeds than in soft seeds.

Some reports have shown that soybean lines with an impermeable seed coat 

generally have smaller seeds (Saio, 1976; Arechavaleta-Medina and Snyder, 1981) 

and seed lots with permeable seed coats occasionally produced impermeable seeds 

that were among the smallest in the seed lot. In contrast, Aitken (1939), reported that 

soft seeds o f Trifolium subterraneum were about 20% lighter than hard. The higher 

dry matter content o f the hard seed was attributed to a possible longer period o f seed 

development on the plant, involving a higher nutrient concentration and consequently 

a high dry matter content (Aitken, 1939). Yaklich et al., (1986) suggested that the 

ratio o f the soybean seed coat to embryo was an important index related to 

hardseedness; the two genotypes with impermeable seed coat (cv. Sooty and line 

D67-5677) had ratios above 0.1 whereas the two genotypes with permeable seed coat 

had ratios below 0.1. However, early attempts in Trifolium and Lotus species to relate
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the thickness o f the testa to hardseedness were unsuccessful (Aitken, 1939; Watson, 

1948).

In this study, the suggestion that in hard seeds the ratio o f seed coat to seed was 

below 0.1 observed only for the hard seeds of line JS-7980 although in all genotypes 

hard seeds had a higher ratio o f testa to seed in comparison to soft seeds.

Additionally, the ratio o f seed coat to seed may be more important in breaking 

the hardseedness rather than inducing it. Russi et al., (1992) in hard seeds of 

Trifolium and Medico species reported that the ratio o f seed coat thickness to seed 

radius was important in breaking the hardseedness under natural soil conditions. 

They observed that cases where most of the hard seeds became soft after 3 months in 

soil conditions the ratio o f testa thickness to seed radius was 0.06. In cases where all 

o f the hard seeds remained hard after the 3 months period, the ratio o f testa thickness 

to seed was 0.13. They suggested that the thinner the testa, the more likely it would 

be that the intense stresses under diurnal temperature fluctuations would lead to 

rupture at weak sites. Tran (1979) in a study o f the effects o f microwave energy on 

Acacia seeds reported a negative relationship between seed coat thickness and 

susceptibility to softening.

In this study, there was no relationship between the presence o f deposits and 

hardseedness since all the genotypes were free o f deposits. Although the presence of 

deposits on the surface o f both hard and soft soybean seed coats has been well 

documented in a number o f studies (Calero et al., 1981; Harris, 1987; Ragus, 1987), 

there has been no real evidence o f their involvement in hardseedness. If  deposits are 

to play a role in hardseedness in soybeans, they must be o f waxy origin (cutins) and 

also the cuticle to be the primary location for the impermeability barrier to water. As 

shown in Chapter 6 , section 6.2.2., in all five genotypes examined, the deposits were 

hydrophilic material, probably remains o f the pod endocarp.

It is not known whether the deposits that were observed in the surface o f soft 

seeds are o f the same origin as the deposits in hard seeds observed by other 

researchers. In images published by Calero et al., (1981), however, the deposits on 

the surface o f hard seeds appear to be very similar to the deposits reported in Chapter 

6 , section 6 .2 . 1 .

In the present work, the presence and distribution o f pits on the surface o f the 

seed coat o f the hard seeds was documented. Unfortunately, valid comparisons 
between hard and soft seeds within the same genotype in relation to the surface

150



Chapter 7: Anatomy and histochemistry

structure could not be made because the separation procedure (the cycle o f wetting 

and drying) significantly affected the surface structure o f the seeds. One way to 

eliminate the problem may be soaking only half o f the seed (to test whether it is hard 

or soft) and observe the other half (to identify possible differences between them). 

However, observation o f the surface structure o f hard seeds o f the three genotypes 

could indicate variation in the pitting between the genotypes.

In the genotypes studied in this investigation, pitting in hard seeds was varied. 

In hard seeds o f two o f the genotypes, pits appeared to be shallow but in the third 

genotype the pits appeared to be deep. Although, it is logical to assume that shallow 

pits are less suited to allowing water penetration, explanations are needed for the 

failure o f deep pits to facilitate water uptake. Calero et al., (1981) in a comparison of 

the surface structure and water uptake suggested that the size and shape of individual 

pits could play a role and that the elongated/shallow pits were those with minimum 

function in relation to water permeability. Few or total lack o f pits was reported for 

hard soybean seeds o f cv. Sooty and cv. Brachett (Yaklich et al., 1986; Harris, 1987). 

Additionally, in other studies on the surface structure o f soybean hard seeds (cv. 

Altona and line D67-5677), a significant degree o f pitting was reported (W olf et al., 
1981; Yaklich et al., 1986). Apparently, the mere presence o f numerous deep pits 

does not make the seed coat o f a hard seed permeable to water.

A surface view o f the hard seed coats after soaking whole hard seeds in 

calcofluor indicated that no staining o f the surface o f the seed coat had taken place. 

Unfortunately, valid comparisons between hard and soft seeds o f the same genotype 

in relation to surface calcofluor staining could not be made. The separation 

procedure, between hard and soft seeds, created cuticular cracks in the surface o f the 

soft seed that were entry points for calcofluor staining. However, comparisons could 

be made with soft untreated seeds o f other genotypes.

As previously presented (Chapter 6 , section 6.2.2.), in such soft seeds there was 

a clear correlation between the distribution and size o f pits and the distribution, size 

o f the patchy areas. In the hard seeds o f genotypes studied in this investigation, this 

staining pattern was absent indicating that the pits did not function in the same way 

in relation to the water permeability. One possible explanation for the previous 

anomaly may be that the shallow-shaped pits which appeared in hard seeds o f two 

genotypes, were not suited for water penetration. However, the reason that pits were 

not function in hard seeds o f cv. Pioneer-9581 (pits were deep) is not known.

151



Chapter 7: Anatomy and histochemistry

Localization o f the presence o f the barrier to water uptake within the seed coat 

o f hard seeds was successfully achieved using calcofluor as a water-soluble 

fluorescent stain. In other studies, localization o f the impermeability barrier to water 

had been also achieved by other water-soluble stains such as aqueous solution of 

ruthenium red, in Leucaena leucocephala seeds (Serrato-Valenti et al., 1995), 

aqueous solution o f crystal violet, in sugar maple seeds (Jannerette, 1979), aqueous 

solution o f fast green FCF, in Aspcilathus linearis seeds (Kelly and Van Staden, 

1986).

The location o f the barrier was very superficial near the surface o f the seed coat 

in hard seeds. There was no difference between the different regions o f the seed in 

the distribution o f staining within the seed coat indicating the uniformity o f the 

presence o f the water barrier. In the hilar region, staining could be localized only at 

the outer parts o f the tracheid bar but not at the outer and inner palisade layers 

indicating that only the tracheid bar could play a role in the imbibition o f a hard seed. 

Anticlinal sections o f the seed coat o f hard seeds soaked for 24h in calcofluor, 

showed that the subcuticular layer was clearly stained. In addition, the uppermost 

part o f the palisade cell layer, the region bordered by the "light line", appeared to be 

stained as well.

From the observations with the use o f calcofluor as a water-soluble fluorescent 

stain, it was apparent that the cuticle was not the primary location o f the water 

permeability barrier in soybeans. This observation is in agreement with other reports 

that in most species cuticle is not totally responsible for water impermeability. 

However, there have been some cases reported o f cuticles exhibiting water 

impermeability. Seeds o f Ononis sicula, a desert annual legume, has a well 

developed and thick cuticle that was shown to be the location o f water 

impermeability (Gutterman and Heydecker, 1973). Similar cuticle characteristics 

have been described in Trigonella arabica (Gutterman, 1979). Although, the cuticle 

alone may not explain the different degrees of water impermeability for most legume 

species (Russi et al., 1992), if  it is well developed and thickened, it might delay 

imbibition by seeds. Russi et al., (1992) in Medicago orbicularis observed that 

cuticle was well developed and 3.0-6.6 mm thick.

In the present work, no clear anatomical differences between hard and soft 

seeds in any o f the three genotypes were observed. SEM images from anticlinal 

sections revealed that both hard and soft seeds had abundant passageways penetrating 

most o f the part o f the palisade layer. These passageways were more likely to be the
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lumen o f the palisade cells as revealed by light microscope images as well. In 3 

dimensions, the size o f the passageways (e.g. wide or narrow, high or short) is more 

likely to be an effect o f the cutting edge through the palisade layer in the seed coat. It 

is logical to assume that in hard seeds if  water can penetrate the outer parts o f the 

palisade layer, then the presence o f passageways would provide an avenue for easy 

penetration in the base o f the palisade cell layer. In this case, the water permeability 

barrier should be located at the base of the palisade layer; however, previous 

observations with the use o f calcofluor as a water-soluble stain indicated that the later 

view was not true. Additionally, the "light line" was present at the same position in 

both hard and soft in all three genotypes examined. It was not possible to identify 

differences between hard and soft seeds in the intensity o f the "light line".

Calero et al., (1981) observed the presence of passageways only in soft-seeded 

soybean genotypes but not in hardseeded genotypes. In contrast, W olf et al., (1981) 

in a survey o f 33 soybean genotypes observed passageways in both hard and soft 

soybean seeds. Duanagapatra (1978) in soybeans, observed the presence o f the "light 

line" in both hard and soft seeds. She also reported that no clear difference between 

hard and soft seeds in the intensity of this region could be observed. In contrast, 

Harris (1987), in an anatomical comparison o f a hardseeded to a softseeded genotype, 

using interference microscope reported a sharp difference in refractive index at the 

light line zone. He also reported that the "light line" was stronger in the hardseeded 

than in softseeded genotype.

Observations from the light and fluorescence microscopy studies showed that 

although there were some differences between genotypes in the histochemistry o f the 

seed coat, there was no clear difference between hard and soft seeds within the same 

genotype.

In this study, sections stained with ruthenium red revealed the presence of 

pectin material in parts o f all cell walls throughout the seed coat o f both hard and soft 

seeds. Callose was not detected in sections o f the seed coat stained with aniline blue 

o f either hard or soft seeds in any o f the genotypes. Lignin was not detected in 

sections o f the seed coat stained with Phloroglucinol/HCl o f either hard or soft seeds 

in any o f the genotypes. However, lignin was detected in the tracheid bar from both 

hard and soft seeds. Suberin was not detected in sections o f the seed coat stained with 

aniline blue o f either hard or soft seeds in any of the genotypes. Phenolic material 

was stained with fluorol yellow but no difference between hard and soft seeds was 

observed.
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Duanagapatra (1978) in soybeans observed pectins in the cells walls o f the 

palisade layer in both hard and soft seeds. The presence o f callose is well-known as a 

sealing or plugging compound (Currier and Strugger, 1956), and has been reported as 

an important permeability control factor in a number o f studies; Bevilacqua et al., 
(1989) in Melilotus alba, Bhalla and Slattery (1984) and Bevilacqua et al., (1989) in 

Trifolium subterraneum seeds. Duanagapatra (1978), also, reported absence o f lignin 

o f both hard and soft seeds in soybeans. Contrary, Baciu-Miclaus (1973) high 

lignification level o f the palisade cells in hard seeds. Duanagapatra (1978) reported 

the presence o f suberin in the seed coat in the hilar region using safranin-o-fast green, 

zinc-chloro-iodide and IKI-H 2 SO4  stains. Suberin was detectable only in the inner 

palisade layer in the hilar region in both hard and soft seeds but in different forms; in 

soft seeds the substance appeared in the form o f droplets scattered throughout the 

length o f the palisade cells whereas in hard seeds the substance was compressed into 

an inverted cone shape, completely filling the basal portion o f the cells. Based on the 

previous observation, she attributed the soybean hardseedness to this morphological 

difference in the suberin deposition in the imier palisade layer.

In this study, however, the inner palisade cell layer was partial stained with 

calcofluor. The water had penetrated through the tracheid bar since first, the outer 

palisade cell layer was preventing the water penetration and second, the areas o f the 

inner palisade cell layer stained with calcofluor were those closed to the tracheid bar. 

Additionally, for the same reasons, even in soft seeds (Chapter 6 , section 6.2.2.) the 

partial staining o f the inner palisade cell layer with calcofluor was more likely to be 

due to water penetration through the tracheid bar rather than the outer palisade cell 

layer. It is more likely, therefore, that although that morphological difference in the 

deposition o f suberin does exist, it has got no important connection to the water 

impermeability in soybeans.

In this study, no anatomical or histochemical differences between the seed 

coats o f hard and soft seeds in any o f the three genotypes examined were observed. It 

was not possible to detect the nature o f the water impermeability barrier by the 

procedures used. However, the location o f the barrier suggested its close proximity to 

the uppermost part o f the palisade cell layer closed to the "light line".

Harris (1983) stated that the "light line" has been a subject o f controversy since 

investigators have been studying seed coats microscopically. However, in soybeans, 

several reports have confirmed the existence of "light line" (Duangaptra, 1978; 

Harris, 1987). Harris (1987), in TEM studies o f the soybean seed coat, reported that
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the light line zone appeared as an osmiophilic layer more likely to be suberin or 

related substance(s) which was responsible for the optical phenomenon known as 

light line. However, in the same studies, the previous author did not report any 

difference between hard and soft seeds in the structure or density o f the osmiophilic 

layer. Similar osmiophilic layer closely related to the occurrence o f the light line was 

reported in normal seeds o f Pisum sativum by the same author (Harris, 1983).

In the other species, there have been suggested several reasons o f causing of 

the "light line" phenomenon. Miller (1967) in anatomical studies in Crotalaria seeds, 

suggested that it was an artifact o f light resulting from differences o f refractive 

indices in the cell walls. Hamly (1932, 1935), in Melilotus seeds, suggested that the 

juxtaposition o f suberin and cellulose, which differ in refractive index, produced this 

optical phenomenon. Cavazza (1950), in Gleditshia seeds, stated that the occurrence 

o f the light line was due to a compact layer o f cellulose. Spurny (1964) reported that 

suberin or related compound(s) existed in the outer parts o f the cell walls.

In other species, researchers have observed the presence o f caps on top o f the 

palisade layer, and frequently the structure and histochemistry o f the palisade caps 

have been implicated with the cause o f impermeability to water. However, the 

structure and histochemistry of the palisade caps have been highly disputed. Spurny 

(1964) suggested that the full development o f suberin star-shaped structures on the 

apical part o f the palisade layer was related to the water impermeability in Pisum 
sativum seed coat. Werker et al. (1979) reported in Pisum species reported that caps 

on the top o f the palisade layer formed a continuous layer o f pectins. He reported that 

pectic substances were forming a "hard" pectinaus layer which was suggested to be 

the cause o f water impermeability. Cochrane (1985) reported that pectic substances 

could play an important role as substances hindering water penetration. She reported 

that pectic substances were filling the xylern elements in some barley ears; when the 

pectic substances were at high concentrations could completely stop the flow o f 

water whereas removal o f the pectic substances by enzymes allowed normal water 

penetration. Serrato-Valenti et al. (1994) in studies of testa structure and 

histochemistry related to water uptake in Leucaena leucocephala, observed a 

continuous o f the thin palisade cap layer composed o f polysaccharide hydrophilic 

material. Rangaswamy and Nandakumar (1985) in correlative studies on seed coat 

structure, chemical composition and impermeability in Rhynchosia minima observed 

that the palisade cap layer was a thin sheet covering the entire outer surface o f the 

palisade area, and it was suggested that the cap layer prevented water uptake. Raleigh 

(1930) in anatomical studies o f Gymnocladus dioica, Werker et al., (1973) in
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Prosopis farcata and Bhalla and Slattery (1984) in Trifolium subterraneum reported 

the occurrence o f single suberised caps over each palisade cell. Bevilacqua et al., 
(1989) observed in Melilolus alba separate auramine-fluorescent caps indicating 

heavily cutinized caps which could prevent water penetration.

In this study, there was a clear association between the amount o f phenolic 

material indicated by staining with vanill/HCl in present in the lumina o f the palisade 

cells and the colour o f the seed coat.

Yellow-coloured seed coats of seeds of cv. Pioneer-9581 and line JS-7980 

appeared to have less phenolic material than the partially-brown seed coats o f seeds 

o f the cv. Essor. Also, the observations from the Toluidine Blue O, vanillin test and 

the autofluorescence consistently stressed the previous relationship between seed 

coat colour and phenolics present in the lumens. Several other studies have shown a 

similar relation between the amount o f phenolic material and the pigmentation o f the 

seed coat in other species. Marbach and Mayer (1974,1975) in Pisum seeds reported 

that seeds with coloured seed coat had a higher amount of total phenolic material. 

Werker et al. (1979) in anatomical studies in Pisum seeds, reported that there was a 

clear association between the phenolic material detected by FeC^ in ethanol or 

M aN 0 2  and the seed coat colour; coloured seed coats had a higher amount of 

phenolic material in comparison to the lighter colour seed coats. Slattery et al. (1982) 

in Trifolium subterraneum seeds, reported that dark coloured seed coats had a higher 

amount o f total phenolic material that light coloured seeds.

In the present work, no clear difference between hard and soft seeds in any of 

the 3 genotypes studied in the amount of phenolic material, indicated by staining 

with vanill/HCl, was observed . Water impermeability has previously been associated 

with the quantity o f phenolic material present within the seed coat. Harris (1987) 

studied the seed coat structure o f a hard-seeded (cv. Brachett) and soft-seeded (cv. 

Hardee) in soybeans. He reported that the hard-seeded cultivar had more phenolic 

material (indicated by F eS 04) in the palisade layer than the soft-seeded cultivar. 

Phenolic material developed during early maturation in cv. Brachett but not in cv. 

Hardee. Marbach and Mayer (1974, 1975) reported a high content o f phenolic 

material and catechol oxidase in pigmented Pisum species. They suggested that 

during dehydration o f the seeds following maturation, phenolic compounds in seed 

coats were oxidised in the presence o f the catechol oxidase and this might render the 

seed coats impermeable to water. Werker et al., (1979) also associated the presence 

o f phenolic material, in Trifolium subterraneum, with seed coat impermeability to
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water. However, Slattery et al., (1982) in Trifolium subterraneum reported that 

although phenolic material played an important role in the pigmentation o f the seed 

coat, no convincing evidence existed about the relation o f the phenolic material to 

impermeability to water.

In the present study, there was a clear difference between the effect of 

methanol pre-treatment and the effect of chloroform pre-treatment when hard seeds 

were placed for imbibition immediately after the pre-treatments. Methanol 

effectively changed all hard seeds to soft and the duration o f the pre-treatment that 

required for this effect was genotype-dependent. Once all hard seeds became soft, 

further methanol pre-treatment had a substantial effect in the amount o f water 

absorbed during imbibition. On the other hand, a small proportion o f hard seeds 

became soft following pre-treatment with chloroform regardless o f the duration of 

the pre-treatment. Arechavaleta-Medina and Snyder (1981) in a study o f water 

imbibition o f soft and hard soybean seeds (cv. Amsoy 71) reported that 24h methanol 

or ethanol pre-treated seeds converted hard seeds to soft seeds. In contrast, 24h pre­

treatment with chloroform, hexane or acetone had little effect on hard seeds. They 

suggested that cuticle was the site o f water impermeability although no difference in 

the cuticle was observed between hard and soft seeds.

In view o f the effect o f organic solvents, particularly the methanol, in the 

imbibition behaviour o f hard seeds explanations were sought. One possibility was 

that the organic solvent pre-treatments were extracting phenolics from the 

subcuticular or/and palisade layer. At the first step, the extraction o f phenolics might 

have caused a disruption in the water impermeability barrier thus changing the seeds 

from hard to soft. At a second step, as prolonged pre-treatments were applied, the 

seeds showed a high amounts o f water absorbed during imbibition. However, the 

suggestion that the extraction o f phenolics was a cause for the loss o f water 

impermeability was not substantiated. From the absorption spectrum results, it was 

clear that prolonged methanol pre-treatments extracted little material with UV 

absorbance in the range o f 220-3 20mm which is the region in which phenolic 

material absorbs (Waterman and Mole, 1994). Additionally, it was observed that 

prolonged chloroform pre-treatments extracted a lot o f material with UV absorbance 

in the range o f 220-320mm.
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Drying o f seeds after the pre-treatments restored water impermeability to about 

90% o f seeds. If  something which caused impermeability was extracted from the 

seed coat, it would not be restored on drying o f the seeds after the pre-treatments.

Egley and Paul (1993) examined the effects o f 28 different organic solvents 

with a range o f polarities, swelling factor and solubility to water in relation to the 

nature o f the water-impermeable barrier(s) in Sida spinosa. They observed that the 

most active solvents in overcoming the barrier were those with non-polar, high 

swelling factor and high solubility to water organic solvents (e.g. pyridine, 

diethylamine). Seed drying after the application o f the pre-treatments, however, did 

not restore water impermeability due possibly to a permanent disturbance o f the 

barrier. Some other polar (ethanol) and non-polar (chloroform) solvents were o f 

medium activity in overcoming the barrier; seed drying restored to a great extent 

water impermeability probably due to a temporary disturbance o f the barrier. They, 

also, suggested two points as a key factors in relation to the previous results: a) water 

impermeability was lost at few specific sites in the chalaza in Malvaceae seeds and a 

cascade o f events resulted in a massive disruption of cell layers as cells hydrated and 

expanded, and b) a slight amount o f moisture (3% increase in moisture content) in 

the seed coat helped to maintain the barrier and block further penetration o f liquid 

water.

The following model could provide explanations in relation to the effects o f 

organic solvents, particularly the methanol, on the water impermeability barrier in 

hard soybean seeds. Organic solvents could penetrate the cuticle reaching the 

subcuticular layer and the external part o f the palisade layer where apparently was 

the location o f the barrier. Cellulosic and/or pectic material in the subcuticular layer 

and very upper parts o f the palisade layer hydrated, swelled and created forces that 

ruptured the barrier. Prolonged soaking in organic solvents created further breakages 

or/and separations in the whole palisade cell layer thus creating wide avenues for the 

massive influx o f water into seed that was observed within minutes o f imbibition. 

Drying o f the seeds after the organic solvent pre-treatments restored water 

impermeability to the original levels because the disturbance was temporary induced. 

In the presence o f methanol, water would reach more easily the location of the water 

impermeability barrier since water is soluble to methanol. When the methanol was 

dried off, there would be no open pathway for the water movement through the 

barrier in the uppermost part o f the seed coat. The last possibility could explain the 

difference in the effectiveness between methanol and chloroform in changing the 

seed coat permeability to water since the seed coat was more permeable to methanol
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than to chloroform, and water is soluble in methanol but not in chloroform. In this 

study, no weak sites were observed (as observed in prickly sida seeds) where water 

penetration started. The whole seed coat appeared highly permeable within minutes 

o f imbibition.

Egley and Paul (1993) suggested that not one but all three properties (polarity, 

swelling factor and solubility to water) o f the organic solvents could play a role in 

overcoming the impermeability to water barrier. In this study, it was not possible to 

identify the role o f the physical properties o f the solvents due to a small number of 

solvents used. However, the common imbibition behaviour of seeds o f all genotypes 

tested indicated that the model proposed above for regulation o f the water uptake is 

likely to be universal in soybeans.
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CHAPTER 8 

General Discussion 

8.1. Introduction

In many countries, soybean planting is frequently followed by heavy rains that 

result in flooded soil conditions. In such conditions, seedling emergence, 

establishment and growth is poor. It is therefore important to investigate the response 

o f different soybean genotypes to imbibition and to understand the mechanism o f 

regulation o f the water uptake during imbibition.

The aims o f this study were to measure some physiological effects o f the water 

uptake, and to investigate how the soybean seed coat regulates the water uptake. 

Special reference was given to: i) the imbibition behaviour o f a wide range of 

genotypes with different seed coat characteristics, ii) the use o f a polymer to regulate 

the rate o f water uptake and iii) the mechanism of regulation o f water uptake by the 

soybean seed coat. These aims were achieved by a combination o f physiological and 

anatomical and histochemical studies using a range of soybean genotypes.

The experimental approaches have elucidated many physiological and 

anatomical points which were properly discussed at the end o f each experimental 

chapter. The purpose o f this General Discussion is, therefore, to provide a synthesis 

o f the experimental chapters by summarising and discussing information under four 

themes; namely, imbibition damage, the use o f a polymer to regulate the water 

uptake, seed coat characteristics related to different imbibition behaviour, and the 

mechanism o f water uptake regulation by the seed coat. These themes were chosen 

because they pervade the aims and the objectives o f this study.

8.2. Imbibition damage

In the present work, a close relationship was observed between the rate of 

water uptake, the level of leachate conductivity and the percentage o f cotyledons 

fully stained with tetrazolium chloride (section 3.2.2). This situation has been
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previously called imbibition damage (Powell and Matthews, 1978). Further support 

for the cause o f imbibition damage in soybeans due to the rapid water uptake was 

gained either from the improved percentage o f cotyledons fully stained with 

tetrazolium chloride when seeds were slowly imbibed in 30% PEG prior to staining 

or the aggravation o f the percentage of cotyledons fully stained when the seed coat 

was scarified (Table 3.4). Imbibition damage, as previously described, was a 

common situation within a range o f soybean genotypes. However, there were 

genotypes that even after the slow imbibition in 30% PEG, exhibited a considerable 

percentage o f cotyledons that were unstained with tetrazolium chloride (Table 3.4). It 

was suggested, therefore, that seeds had already suffered a significant deterioration 

which could not be completely overcome by slow imbibition. In contrast, there were 

genotypes in which slow imbibition resulted in little or no improvement (Table 3.4) 

indicating that there were genotypes in which imbibition damage did not occur.

Powell et al. (1984) proposed that imbibition damage due to rapid water uptake 

during imbibition was a major physiological factor that caused decline in seed 

vigour, in many grain legumes. According to this theory, imbibition damage occurred 

as a combination o f physiological damage o f the surface o f embryos and increased 

predisposition o f seeds to infection by soil-borne fungi. They proposed that under 

field conditions, reduced seedling emergence and growth observed in flooded soil 

conditions could be explained on the basis o f the imbibition damage that had 

occurred. However, it could be argued that imbibition damage was a decline in 

vigour (as measured by high solute conductivity and low staining o f the cotyledons 

with tetrazolium chloride) that may not be entirely correlated with the lost final 

ability o f seeds to germinate. In the literature, the low germination o f seeds due to 

soaking has been frequently called soaking injury or damage. Although, in this study, 

it was not aimed to establish a relationship between these two situations, results 

indicated the possibility o f alternative or additional theories. When polymer coated 

seeds were soaked in water, a lower rate o f water uptake and lower levels of 

imbibition damage than corresponding uncoated seeds were observed (section 5.3.2). 

However, the germinability o f the coated seeds was lower than that o f the untreated 

control seeds (Fig. 5.6). This result suggested that although imbibition damage was 

prevented, the germinability was not restored to the untreated control seeds. In 

addition, total seedling emergence from coated seeds was lower than the percentage 

o f normal seedlings from the paper towel germination tests (Fig. 5.9). Ferriss and
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Baker (1990) also attributed the low soybean seedling emergence from flooded soils 

in reasons other than the imbibition damage.

In the literature, several other theories have been proposed as the basis o f cause 

o f germination failure during soaking o f seeds. Some earlier reports have suggested 

that the fundamental cause of damage was the loss o f essential cell constituents 

during soaking (Eyster, 1940; Barton, 1950; Barton and McNab, 1956). However, 

when lost constituents were added to water, prevention o f imbibition damage did not 

occur. Another theory ascribed low germination o f Phaseolus vulgaris seeds to a 

deficient oxygen supply at a critical early stage o f germination. During soaking the 

cavity between the cotyledons was flooded with an excess o f water that remained 

trapped unless forcibly removed (Orphanos and Heydecker, 1968). They reported 

that any treatment that increased oxygen supply had a beneficial effect in 

germination o f water soaked seeds. Another theory ascribed the reduction in seedling 

emergence under flooding to damage by ethanol self-poisoning o f seeds 

(McManmon and Crawford, 1971). They suggested that lactic and malic acids are 

nontoxic whereas ethanol was a toxic end product. In flooding-resistant genotypes, a 

malic enzyme activity was detected but not in flooding-susceptible genotypes. 

However, substances other than ethanol have been suggested as a cause o f 

germination failure during soaking. Harman et al., (1981) reported a close 

association between poor field seedling emergence and production o f a volatile 

aldehyde during germination particularly in low vigour soybean and pea seeds. Small 

et al., (1991) concluded that ethylene was not the cause of failure o f germination 

during soaking since it was found to be partially required for the prevention of 

damage, in Phaseolus vulgaris seeds. Another recent theory proposed that failure of 

Phaseolus seeds to germinate during soaking was due to a lack o f oxidative pentose 

phosphate pathway activity which resulted in a depressed protein synthesis 

(Pretorious and Small, 1992).

8.3. Use of a polymer to regulate water uptake

Polymer application resulted in formation o f a film coating on the surface of 

seeds which was sufficient to reduce the rate o f the water uptake without affecting 

the total water uptake (section 5.3.1). The suitability of the polymer for water uptake 

regulation is therefore indicated. The applicability, however, o f polymer coating in
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soybean seeds (or in other grain legumes which are prone to imbibition damage), is 

challenged by the following concerns:

Firstly, the reduction in water uptake due to polymer coating must be minimum 

and balanced in order to allow a rapid and uniform seedling emergence and 

establishment under commercial growing conditions. Enhancing the rate o f 

germination to get the seedlings out of the soil as early as possible or before a soil 

crust has formed, was a priority in soybean agronomic practices (Hinson and 

Hartwig, 1982). This was particularly true in many tropical and sub-tropical soybean 

cultivation regions where although most o f the seeds germinate, the seedlings were 

trapped within the soil structure (Dadson, 1982; Emerson, 1982). Coating seeds (24 

mg per seed) with the polymer resulted in no significant difference between coated 

and uncoated seeds in the seedling growth in controlled conditions (section 5.3.3). It 

is, however, doubtful if  this would be true under normal growing conditions. This 

requires further investigation by sowing coated seeds under range o f growing 

conditions.

Secondly, polymer coating represents a seed treatment with an extra cost to 

seeds. In most tropical and sub-tropical soybean cultivation regions, this extra cost 

could not be afforded by farmers. From the economic point o f view, only vegetable 

seeds could be so coated due to the greater profit margin in comparison to grain 

legumes.

8.4. Seed coat characteristics in relation to different imbibition behaviour

Water uptake did not occur uniformly throughout the soybean seed coat. 

Wrinkling o f the seed coat started from the dorsal region, and then covered the 

abaxial and ventral region o f the seed (section 3.2.2). Measurements o f rate o f water 

uptake through different regions o f the seed coat indicated that regardless how open 

the hilar fissure was, the ventral region facilitated the lowest rate o f water uptake 

whereas there was no observed difference between the dorsal and abaxial region o f 

the seed coat in the rate of water uptake (Fig. 3.5). Additionally, from the results with 

nail varnish, it was shown that the hilar region played little or no role in water uptake 

in comparison to the permeability of the testa (Fig. 3.6). Calcofluor was used as a 

water-soluble fluorescent stain to directly follow the water penetration through the 

seed coat. From observations using calcofluor, it was concluded that water could 

only penetrate through the tracheid bar but not through the outer and inner palisade
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layers (Fig. 6.9). As a result, although the hilar fissure was open, the rate o f water 

uptake in the hilar side was lower than that o f the dorsal side.

The condition o f the seed coat appeared to be an important factor in relation to 

the occurrence o f imbibition damage. Lines GC 84128-17-2-1 and AGS 292 that had 

a high proportion o f seeds with split coats, had the highest rate o f water uptake, the 

highest amount o f leachate conductivity and the lowest percentage o f cotyledons 

fully stained with tetrazolium chloride (section 3.2.1). However, the presence o f 

intact seed coat was not always sufficient to reduce the rate o f water uptake, thus 

offering no protection against imbibition damage. In seeds of lines GC 88037-38-2-2 

and SS 87040-2-1, although the seed coat was apparently intact (examined visually 

and under low magnification stereoscope), a high level o f imbibition damage 

occurred (section 3.2.1). A surface view o f the seed with SEM, revealed the presence 

o f a high proportion o f very deep and wide open pits (Fig. 6.4). Wrinkling o f the seed 

coat was observed in all regions of the seed within minutes o f imbibition (section

3.2.2).

Kuo (1989) identified some soybean genotypes with black seed coats that 

possessed a delayed-water permeable seed coat during imbibition. In this study, a 

similar seed coat characteristic was identified in seeds o f line VLS-1 that had 

possessed black testas. In addition, this delayed-permeability character was 

associated with low levels of imbibition damage (section 3.2.1). A surface view of 

such seeds with SEM, revealed that seeds of line VLS-1 had few and shallow pits in 

the abaxial region (Fig. 6.4). Also, wrinkling of the seed coat o f such seeds was 

observed in only the dorsal region of the seed until after 2 h o f imbibition (section

3.2.2). It was, therefore, suggested that the lack o f pits in the abaxial region o f the 

seed coat could explain the delayed-permeability character in soybeans. This 

observation could open up the possibility of breeding soybean cultivars with seeds 

that possess the delayed-permeability character. Since seeds with black testas are not 

preferred by consumers (W olf et al., 1981), the delayed-permeable character (lack o f 

pits in the abaxial region o f the seed coat) would need to be transferred to 

agronomically important cultivars with yellow seed coats.

There was no clear relationship between the dark colour o f the seed coat and 

the rate o f water uptake since it was observed that genotypes with dark coloured 

coats imbibed water at a high and low rate (section 3.2.1). However, definite
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conclusions about the association of the dark coat colour and the rate o f the water 

uptake could not be made due to the small number o f genotypes examined that had 

pigmented coats. Starzinger and West (1982) reported that pigmented seeds had a 

greater percentage germination than otherwise genetically similar yellow seeds due 

to high levels o f tannins and phenolic material present in the seed coat. The black 

seed coat colour has been proposed as a characteristic to be closely associated with 

superior seed quality in comparison to genotypes with yellow seed coats (Dassou and 

Kueneman, 1984). However, Wien and Kueneman (1981) reported that some 

genotypes with black seed coats were found to possess poor longevity during storage.

In this study, seeds o f cv. Suwan-155 (black testa) had a high rate o f water 

uptake that resulted in high levels of imbibition damage (section 3.2.1). A loose 

adherence o f the seed coat to the embryo was observed when seeds were visually 

examined (Fig. 3.8b). This loose adherence resulted in a wide gap between these two 

structures and water had trapped in this gap during imbibition. In this study, it was 

shown that the increased rate o f water uptake o f seeds subjected to one cycle of 

wetting and drying could not be attributed to a loosening o f the adherence o f the seed 

coat to the embryo. Seeds subjected to wetting and drying appeared to have coats 

with extensive ruptures (Fig. 3.9). In addition, a SEM surface view o f seeds subjected 

to wetting and drying revealed seed coat cracking and an increased size o f the 

individual pits due to the treatment (Fig. 7.1). Although, the adherence o f the seed 

coat to the embryo could play an important role in the water uptake in soybeans, it 

was difficult to measure or quantify it.

It appeared that no single individual seed coat characteristic could provide a 

sound basis for selection o f soybean genotypes for superior seed quality. This was 

probably because a clear separation amongst genotypes in relation to seed quality 

may not be based on a single individual seed characteristic but a combination of 

them.

8.5. Mechanism of regulation of water uptake by the seed coat

In this study, in order to elucidate the mechanism of the water regulation by the 

seed coat a number o f different approaches were used. Water penetration was 

successfully followed by the use of calcofluor as a water-soluble fluorescent stain.
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The seed coat structure (surface or anticlinal) was observed by SEM or light 

microscope techniques. The seed coat histochemistry was studied by using 

appropriate light and fluorescent staining techniques. Finally, changes in the seed 

coat due to the treatment with organic solvents were associated with changes in the 

water permeability o f the seed coat. Studies were made using a wide range of 

genotypes with different imbibition behaviour. On one hand, studies were made on 

genotypes with normal (soft) seeds that had a low, medium or high rate o f water 

uptake. In contrast, studies were also made on genotypes with different proportions 

o f hard seeds. As a result, a whole range of imbibition behaviour was studied using a 

range o f genotypes, therefore the results obtained are more likely to be o f universal 

significance in soybeans.

Two aspects o f water uptake by seeds are important in considering the 

mechanism o f water regulation by the seed coat: the initial sites o f water penetration 

and the subsequent water penetration through the seed coat.

8.5.1. Initial sites of water penetration

Deposits and pits were observed by SEM on the surface o f the seed coat in 

most genotypes examined. In the literature, there is some contradiction in relation to 

the nature and role o f deposits during imbibition. Deposits have been either described 

as a waxy material (cutins) which hinders the water uptake or as a residues o f the pod 

endocarp which may not play any role in the water uptake. Results from this study, 

provide strong evidence that deposits were cellulosic material most likely to be 

residues o f the pod endocarp which could not play any role in the water uptake 

during imbibition (section 6.3.1 and Fig. 6 .8 ). The fibrous nature of deposits which 

contain calcium or silicate could provide a basis to understand why soybean-miso 

manufacturers prefer soybean seeds with glossy coats (Saio, 1976).

Assessment o f pitting was performed after the removal o f deposits by methanol 

and pits were present on the surface of the seed coat in most genotypes (section 

6.3.1). Individual pits appeared in three types, namely deep (round and elongated) 

and shallow (Fig. 6.5). In most cases, there was a combination o f all types without 

being possible to identify a predominant type o f structure of individual pits. Using 

calcofluor as a water-soluble fluorescent stain, there was a clear correlation between 

the sites o f initial water penetration to the distribution o f pits in the surface o f the
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seed coat (Fig. 6 . 6  and Fig. 6.7). In hard seeds pitting was varied. In hard seeds o f 

two o f the genotypes, pits appeared to be shallow but in the third genotype the pits 

appeared to be deep (Fig. 7.2). Apparently, the mere presence o f numerous deep pits 

does not make the seed coat o f a hard seed permeable to water. Observations from 

the use o f calcofluor as a water-soluble stain showed that the staining was absent 

indicating that the pits did not function in the same way as in soft seeds (Fig. 7.4). 

Although, it is logical to assume that shallow pits are less suited to allowing water 

penetration, explanations are needed for the failure o f deep pits to facilitate water 

uptake.

8.5.2. Subsequent water penetration through the seed coat

Water uptake progresses in the seed with the water penetration through the seed 

coat itself. Using calcofluor as a water-soluble fluorescent stain, water penetration in 

the hilar, abaxial and ventral region of the seed coat was examined. In soft seeds, 

even after minutes o f imbibition, water was present in the palisade cell layer (Fig. 

6.10a). As imbibition was progressed, more water was present in the palisade layer as 

revealed by the strong calcofluor staining (Fig. 6.10b and Fig. 6.10c). It was not 

possible to identify clear differences in the water presence in the palisade layer 

within regions o f the seed coat. However, regardless o f the region examined, it was 

clear that water penetration did not occur uniformly through the palisade layer since 

groups o f palisade cells showed a stronger staining than the adjacent cells (Fig. 

6.10c). In the hilar region, water penetration was observed through the tracheid bar 

but not through the outer and inner palisade cell layers (Fig. 6.9).

In hard seeds, localisation o f the presence of the barrier to water uptake within 

the seed coat was successfully achieved using calcofluor as a water-soluble 

fluorescent stain (section 7.3.3). Anticlinal sections o f the seed coat of hard seeds 

soaked for 24h in calcofluor, showed that the subcuticular layer was clearly stained 

(Fig. 7.6). As a result, it was apparent that the cuticle was not the primary location of 

the water permeability barrier in soybeans. There was no difference between the 

different regions o f the seed in the distribution of staining within the seed coat 

indicating the uniformity o f the presence o f the water barrier.
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Changes in the seed coat due to the treatment with organic solvents were 

associated with changes in the water permeability o f the seed coat.

In soft seeds, two hours o f successive immersion o f whole seeds, at room 

temperature, in methanol, methanol: chloroform ( 1 :1 ) and chloroform was utilised to 

remove both epicuticular and intracuticular waxes (Fig. 6.11). Seeds that had been 

pre-treated with the previous combination o f solvents showed a significant increase 

in the water uptake in comparison to the untreated control seeds (Fig. 6.11). 

However, the increase in the water uptake could not be attributed to intracuticular 

waxes. Methanol pre-treatments, in particular, were highly effective in increasing the 

water uptake during imbibition (section 6.3.3). There was no region o f the seed that 

was observed to be a point o f rapid water penetration but the whole seed coat was 

highly permeable to water. The effectiveness o f the methanol pre-treatment was 

particularly evident in seeds with a low water uptake (section 6.3.3).

In hard seeds, there was a clear difference between the effect o f methanol pre­

treatment and the effect o f chloroform pre-treatment when hard seeds were placed for 

imbibition immediately after the pre-treatments (Fig. 7.17). Methanol effectively 

changed all hard seeds to soft and the duration of the pre-treatment that was required 

for this effect was genotype-dependent (Fig. 7.18a). Once all hard seeds became soft, 

further methanol pre-treatment had a substantial effect in the amount o f water 

absorbed during imbibition (Fig. 7.18a). In contrast, a small proportion o f hard seeds 

became soft following pre-treatment with chloroform regardless o f the duration of 

the pre-treatment (Fig. 7.18b).

Results from the absorption spectrum of the different methanol and chloroform 

supernatants indicated that the effect of the organic solvent pre-treatments on the 

water uptake were not due to the extraction of phenolic material from the seed coat 

(Fig. 6.15 and Fig. 7.19). Drying o f seeds after the organic solvent pre-treatments 

restored water permeability to the original untreated control levels. In soft seeds, 

drying reduced the rate o f water uptake to similar level of the untreated control seeds 

(Fig. 6.13). In hard seeds, drying restored impermeability to about 90% of seeds (Fig. 

7.20). If  something which caused either delayed water permeability or 

impermeability was extracted from the seed coat, it would not be restored on drying 

o f the seeds after the pre-treatments.

The following model was suggested to provide an explanation in relation to the 

effects o f organic solvents, particularly methanol, on the water permeability in
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soybean seeds. Organic solvents could penetrate the cuticle reaching the subcuticular 

and palisade layer. In soft seeds, as the duration o f the treatment increased, the 

presence o f solvent reached the inner parts of the palisade layer. Cellulosic and/or 

pectic material in the subcuticular and palisade layer would have hydrated in the 

presence o f organic solvent, these carbohydrates swell and created forces in the 

palisade cells that caused breaking and/or separation o f the cells. In hard seeds, this 

region (outermost part o f the palisade cell layer) was the location o f the water 

impermeability barrier that has to be ruptured first. The breakage/separation o f the 

palisade cells opened avenues for the influx o f water into seed that was observed 

within minutes o f imbibition. Drying o f the seeds after the pre-treatment restored 

water permeability to the original levels because the disturbance was temporarily 

induced. In addition, in the presence o f methanol, water would reach all the seed coat 

cells invaded by methanol since methanol is soluble to water. When the methanol 

was dried off, there would be no open pathway for the water movement through the 

layers o f the seed coat. The last possibility could explain the difference in the 

effectiveness between methanol and chloroform pre-treatments. The common 

imbibition behaviour o f seeds of all genotypes tested indicated that the model 

proposed above for regulation o f the water uptake was likely to be universal in 

soybeans.

The nature o f the impermeability barrier to water by comparative anatomical 

and histochemical methods was not detected. However, it is logical to assume that 

the cell walls in the uppermost region of the seed coat o f soft seeds would be more 

brittle, less resilient than those in hard seeds thus offering less resistance to water 

penetration. What causes this situation is not known but several possibilities exist.

Firstly, it may be possible that phenolic and/or pectic material differ in the way 

they cross-link with the cell wall components thus creating differing degrees o f 

resistance to water penetration. Briggs and Fry (1987) suggested that phenolics 

commonly occur as components o f cell walls and the possible function o f phenolic 

material may be to cross-link cell wall components, thus strengthening the wall. A 

possible difference between hard and soft seeds in the cross-linking o f the above 

material with the cell walls may be due to reasons that are not detectable with 

microscopy techniques (e.g. methylation, ionic binding or degree o f polymerization 

o f the phenolic and/or pectic material).
Secondly, it may be possible that the soybean seed coat impermeability to 

water may be a sum of several factors related to changes in the physical
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characteristics o f the seed coat during the later stages o f seed development. These 

factors may include a tightly packed palisade cells and tightly bonded cell layers. 

Several authors have reported the soybean seed coat became impermeable to water 

during the final stages of seed development when seed moisture levels fell 

(Duangapatra, 1978; Yaklich et al., 1986). During this time, cells in the seed coat 

collapsed, the seed coat shrank and tightly bonded cell layers resulted (Yaklich et al., 

1986).

Thirdly, it may possible that drying o f pectic material and other gel-like 

cellular material, during the later stages o f seed development, to contribute in the 

development o f the impermeability barrier to water (Egley, personal 

communication). This might be comparable to the drying o f mucilage to form a 

"glue".
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8.6. Conclusions

In this study, imbibition damage (inferred by high leakage conductivity and 

low percentage o f cotyledons fully stained with Tetrazolium chloride) due to rapid 

water uptake was documented in a wide range o f soybean genotypes. However, some 

genotypes were identified to be resistant (line VLS-1) or susceptible (lines GC 

88037-38-2-2 and SS 87040-2-1) to imbibition damage due to low or rapid water 

uptake respectively. Therefore, the original aim whereby genotypes with different 

imbibition behaviour and hence different levels o f imbibition damage were to be 

identified was accomplished. Seed size or seed coat colour were uncorrelated with 

the low or high levels o f imbibition damage observed in these genotypes. The hilum 

region o f the seed coat facilitated the slowest rate o f the water uptake during the first 

4h o f imbibition whereas no difference between the dorsal and the abaxial region was 

observed. In seeds o f cv. Suwan-156, that was shown to have a rapid-permeability 

seed coat characteristic, the seed coat was adhered only loosely to the embryo. 

However, the role o f seed coat adherence per se in relation to rate o f water uptake 

appeared to be difficult to measure or quantify. As a result, more work on this aspect 

needs to be done and appropriate methods developed to quantify the seed coat 

adherence to the embryo.

From structural studies performed in this thesis, the density and structure o f 

pits appeared to be an important seed coat characteristic in relation to levels of 

imbibition damage. In seeds of line VLS-1, that possessed the delayed-permeability 

seed coat characteristic, there was a lack o f pits in the abaxial region o f the seed coat. 

In seeds o f lines GC 88037-38-2-2 and SS 87040-2-1, both o f which possessed a 

rapid-permeability seed coat characteristic, a high density o f deep and wide open pits 

were observed. Therefore, the original objective set to identify seed coat 

characteristics that were correlated with different levels o f imbibition damage was 

accomplished. The implication of the identification o f a delayed-permeable seed coat 

characteristic (lack o f pits in the abaxial region) is important to soybean breeding. As 

a result, genotypes resistant to imbibition damage due to the possession o f a delayed- 

permeable seed coat characteristic could be selected. Careful screening for 

agronomically-important, yellow seed coated genotypes that are resistant to 

imbibition damage might be one option. Another option might be the transfer o f the 

trait (if inheritable) from the black seeded genotype (line VLS-1) to other yellow 

seeded agronomically-important genotypes.
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Coating seeds (24 mg per seed) with a polymer regulated the rate o f water 

uptake and offered protection against imbibition damage during soaking in water. 

However, the germinability of the coated seeds was lower than that o f the untreated 

control seeds. Percentage seedling emergence from polymer coated seeds was also 

lower than the uncoated seeds during flooding soil conditions. Although imbibition 

damage was prevented by application o f a polymer, the germinability was not 

restored to the untreated control seeds. This result suggested that regulation o f the 

rate o f water uptake by using a polymer could only partially avoid the diminished 

seedling emergence in flooded soil conditions. Therefore, the original objective o f 

investigating the effect o f polymer coating on regulation o f water uptake, as a 

mechanism to prevent imbibition damage and improve germination and seedling 

emergence and growth was shown to be problematical in practice. As a result, more 

work should be done to identify the causes o f low germination in cases where 

imbibition damage was completely overcome.

From the structural studies, deposits and pits occurred in the surface o f the seed 

coat in most genotypes. Deposits were shown to be hydrophilic material consisting of 

polysaccharide since staining with calcofluor was observed. Pits were shown to be 

the sites o f the initial water penetration through the seed coat as indicated by 

calcofluor staining. In hard seeds, two genotypes had seeds with few and shallow pits 

whereas the third genotype had many and deed pits. Although, it is likely that 

shallow pits are less suited to allow water penetration, explanations are needed for 

the failure o f deep pits to facilitate water uptake. Therefore, the original objective o f 

identifying the role o f deposits and pits on the regulation of water uptake was mostly 

achieved.

In hard seeds, the location of water impermeability barrier was near the 

outermost part o f the palisade cell layer. The nature o f the barrier was not identified 

by comparative anatomical and histochemical studies between hard and soft seeds. 

Therefore, the original objective o f defining the locality and identification o f the 

nature o f the water impermeability bander using histochemical methods were only 

partially accomplished. Future work, on the nature of the barrier, should be 

performed employing the facility of a confocal microscope.

In both hard and soft seeds, prolonged methanol pre-treatments were highly 

effective in increasing the water uptake when seeds placed for imbibition
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immediately after the pre-treatments, ft was concluded that the cuticle and its 

components (epicuticular and intracuticular waxes) played little role in regulating 

water uptake. Drying o f seeds after the organic solvent pre-treatments restored 

permeability to water to the original untreated control levels. Results from the 

absorption spectrum of the methanol and chloroform supernatants, indicated that the 

effect o f the pre-treatments were not due to the extraction o f UV-absorption 

substances from the seed coat. It was suggested that organic solvent pre-treatments 

would cause hydration and swelling of cellulosic and/or pectic material in the 

subcuticular and palisade layer. The created forces would cause temporary 

disturbances in the cells to facilitate the rapid influx o f water into seed. When the 

solvent was dried off, there would be no open pathway for the water movement 

through the layers o f the seed coat.

A mechanism for the water uptake regulation by the soybean seed coat was 

proposed. The proposed mechanism involved: i) a diminished role o f deposits, the 

cuticle and its components (epicuticular and intracuticular waxes), ii) a key role for 

pits as initial sites o f water penetration, and iii) swelling or collapse o f the cellulosic 

and/or pectic material in the subcuticular and palisade cell layer that could regulate 

water penetration through the seed coat. The common behaviour o f a wide range of 

genotypes tested indicated that the above mechanism o f regulation o f water uptake 

by the seed coat is likely to be universal in soybeans. Therefore, the original aim of 

investigating the mechanism o f regulation of water uptake by the soybean seed coat, 

using light, fluorescence and scanning electron microscopy techniques, was mostly 

accomplished. However, more work in this area is needed to elucidate other elements 

o f the mechanism o f water regulation by the soybean seed coat. Future work should 

concentrate on how cellulosic and/or pectic material could regulate the water 

penetration using either confocal microscope or non-microscopical techniques.
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8.7. Suggestions for future research

8.7.1. Investigation of regulation of water uptake by the seed coat using 

Confocal Microscope

In soybeans, the imbibition process is greatly regulated by the seed coat. How 

the seed coat structure achieves this regulation is largely unknown although 

associations o f seed coat characteristics with rate o f water uptake have been reported. 

The confocal microscope is ideally suited to study imbibition process, and calcofluor 

would be an appropriate water-soluble fluorescent stain for this type o f investigation. 

There has been no published information about the control o f imbibition by seed coat 

using confocal microscope. It would also be interesting to combine changes due to 

the organic solvent pre-treatments with confocal microscopy studies. Finally, this 

type o f study is ideally suited for the investigation o f the breaking process of 

hardseedness in seeds.

8.7.2. Changes in the seed coat structure during seed development and 

maturation

In other grain legumes, there have been several reports on changes in water 

uptake during seed coat development which are correlated with changes in the 

pigmentation o f the seed coat. It would be important to investigate whether such 

changes also exist in the soybeans. Additionally, changes in the structure and 

histochemistry that are related to the water uptake may provide a broad spectrum of 

unaddressed research questions. This type o f study would require growing and 

harvesting soybeans at different growing developmental stages during seed 

maturation.

8.7.3. Investigation of the cause of soaking damage

Several reports have shown that soybean and other legume seeds would suffer 

diminished germination in flooded soil conditions. In most grain legumes, the 

relationship between imbibition damage and soaking damage is far from clear or 

straightforward. It is, therefore, important to separate the different elements during 

the imbibition process (rate o f water uptake, oxygen availability, direct or indirect 

carbon dioxide effect). Additionally, it is important to separate the effects of 

imbibition and soaking damage on cotyledons and embryonic axis.
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APPENDICES

APPENDIX 1

1. Section 3.3.1.

Table 1.1. Analysis of variance in seed dry ’weight (mg per seed) in all genotypes (Table 3.1
Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 269560 19 14187 77.6 S***

residual 7306 40 182
total 276866 59

Table 1.2. Analysis of variance in seed surface area (mm^ per seed) in all genotypes (Table 
3.1).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 494 19 26.1 29.1 S***

residual 36 40 0.9
total 530 59

Table 1.3. Analysis of variance 
3.1).

in seed coat dry weight (mg per seed) in all genotypes (Tab!

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 93158 19 4903 478 S***

residual 410 40 10.4
total 93568 59
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2. Section 3.3.2.

Table 1.4. Analysis of variance between seed weight increase (%) at 6 h of imbibition, 
produced by intact seeds and embryos (seed coat) for all genotypes (Table 3.2).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 12735 19 670 39.2 S***
seed coat 20742 1 20742 1216.4 S***

Interaction 13243 19 697 40.8 S***

residual 2046 1 2 0 17
total 48767 159

Table 1.5. Analysis of variance in electrical conductivity (mS/cm/g) at 6 h of imbibition, 
produced by intact seeds and embryos (seed coat) for all genotypes (Table 3.2).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 943 19 49 14.4 g * * *

seed coat 5906 1 5906 1723.4 g * * *

Interaction 633 19 33 9.7 g * * *

residual 411 1 2 0 3.2
total 7894 159

Table 1.6. Analysis of variance 
genotypes (Fig. 3.2).

in seed weight increase (%) during imbibition, for all

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 10756 19 566 37.9 g * * *

time 24865 1 24856 1668.2 g * * *

Interaction 14238 19 749 50.3 g * * *

residual 1795 1 2 0 15
total 51645 159
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Table 1.7. Analysis of variance in percentage of cotyledons fully stained with Tétrazolium 
Chloride, produced after imbibition in water or 30% PEG with the seed coat intact or 
scarified (treatment) for all genotypes (Table 3.4).

Sourse of variation sum of 
squares

d.f. mean square F-ratio

genotype 50584 19 2662 74.1 g * * *

treatment 75871 3 25290 704.1 g * * *

Interaction 24296 57 426 1 1 . 8 g * * *

residual 2871 80 36
total 153624 159

3. Section 3.2.3.

Table 1.8. Analysis of variance in the weight of water imbibed (mg/seed) during the first 3h 
of imbibition (time) when the dorsal, ventral or abaxial region of the seed was exposed to 
water (region) for seeds of cv. Sapporo (Fig. 3.5a).

Sourse of sum of d.f. mean square F-ratio
variation squares

region 816 2 408 36.9 S***
time 4241 3 1413 128 S***

Interaction 1 1 1 6 18.6 1.6 NS

residual 1191 108 1 1 . 2

total 6360 119

Table 1.9. Analysis of variance in the weight of water imbibed (mg/seed) during the first 3h 
of imbibition (time) when the dorsal, ventral or abaxial region of the seed was exposed to 
water (region) for seeds of cv. KWS-E (Fig. 3.5b).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

region 147 2 73 3.9 g***
time 5067 3 1689 91.2 g***

Interaction 56 6 9.4 0.5 g***

residual 1999 108 18.5
total 7270 119
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Table 1.10. Analysis of variance in the weight of water imbibed (mg/seed) during the first 4h 
of imbibition (time) when the hilum was warnished for seeds of all genotypes (Fig. 3.6).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotypes 16987 3 5662 77.6 g * * *

varnish 116 1 116 1 . 6 IMS
time 55984 3 18661 255.6 g * * *

interaction
gen. x varn. 7549 3 2516 34.5 g * * *

residual 1613 2 2 73
total 82249 32

Table 1.11. Analysis of variance in the weight of water imbibed (mg/seed) during the first 4h 
of imbibition (time) after wetting and drying (treatment) for seeds of all genotypes (Fig. 3.7).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotypes 19967 3 6655 80.2 g * * *

treatment 1345 1 1345 16.2 g * * *

time 61719 3 20573 247.8 g * * *

interaction
gen. x treat. 9948 3 3316 39.9 g * *

residuai 1829 2 2 83
total 94808 32
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APPENDIX 2 

1. Section 4.3

Table 2.1. Analysis of variance between percentage of normal seedlings (%), produced by 
seeds after aging for all genotypes (Fig. 4.1).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 8870 4 2217 83.3 S***
aging 55984 4 13996 525.8 S***

Interaction 11635 16 727 27.3 S***

residual 2032 75 27.1
total 78523 99

Table 2.2. Analysis of variance between seed moisture content (%), produced by seeds 
during aging for all genotypes (Fig. 4.3).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 243 4 60 717 3 S***
aging 3241 4 810 9546.1 S***

Interaction 65 16 4 48.4 S***

residual 2 25 0.08
total 3552 49

Table 2.3. Analysis of variance between electrical conductivity (mS/g/cm), produced by 
seeds after aging for all genotypes (Fig. 4.5).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 6850 4 1712 7 4 . 4  s***
aging 35781 4 8945 388.9 S***

Interaction 10216 16 638

residual 1729 75 23
total 54576 99
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Table 2.4. Analysis of variance between fresh weight per normal seedling (mg), produced by 
seeds after aging for all genotypes (Fig. 4.7).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 1102485 4 275621 331.2
aging 812459 4 203114 244.1

Interaction 207095 16 12943 15.5 g***

residual 62439 75 832
total 2184478 99

Table 2.5. Analysis of variance between shoot fresh weight per normal seedling (mg), 
produced by seeds after aging for all genotypes (Fig. 4.8a).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 1100087 4 275021 341.1 g * * *

aging 750725 4 187681 232.7 g * * *

Interaction 202693 16 12668 15.7 g * * *

residual 58032 75 806
total 2111537 99

Table 2.6. Analysis of variance between fresh weight per normal seedling (mg), produced b 
seeds after aging for all genotypes (Fig. 4.8b).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 2386 4 596 9.8 g * * *

aging 61719 4 15429 254.9 g * * *

Interaction 4391 16 274 4.5 g * * *

residual 4500 75 60
total 72996 99

Table 2.7. Analysis of variance between vigour index (mg), produced by seeds after aging for 
all genotypes (Fig. 4.9).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 1383880 4 345970 49.2
aging 35797020 4 8949255 1273.5

Interaction 2546780 16 159173 2 2 . 6

residual 527060 75 7027
total 7299600 99
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APPENDIX 3

1. Section 5.3.1

Table 3.1. Analysis of variance between weight of water (mg/seed), absorbed by seeds of cv. 
Forrest coated with polymer during imbibition (Fig. 5.2).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

polymer 26246 3 8748 56.8 g * * *

time 678909 8 84863 551.1 g * * *

pol. x tim. 48301 24 2 0 2 1 13.1 g * * *

residual 47927 311 154
total 801383 359

Table 3.2. Analysis of variance between weight of water (mg/seed), absorbed by seeds of cv. 
Douglas coated with polymer during imbibition (Fig. 5.3).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

polymer 22253 3 7417 39.2 S***
time 573529 8 71691 379.3 S***

pol. x tim. 38989 24 1624 8.59 S***

residual 59029 311 189
total 693800 359

Table 3.3. Analysis of variance between percentage of normal seedlings, produced by seeds 
of the two genotypes coated with polymer (Fig. 5.4).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 1.5 1 1.5 0.1 NS
polymer 5815 3 1938 27.6 S***

gen. x pol. 116 3 38 0.5 NS

residual 1683 24 70
total 7617 31
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Table 3.4. Analysis of variance between percentage of normal seedlings, produced by seeds
of the two genotypes, with different ageing regimes, coated with polymer (Fig. 5.5).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 957 1 957 22.2 §***
polymer 2.5 1 2.5 0.1 NS
ageing 3180 1 3180 73.9 §**

Interactions
gen. x pol. 26 1 26 0.6 NS
gen. x ag. 693 1 693 16.1 §***
pol. x ag. 5.2 1 5.2 0.1 NS
gen. x pol. x ag. 3.7 1 3.7 0.1 NS

residual 1032 24
total 5901 31

2. Section 5.3.2

Table 3.5. Analysis of variance between percentage of normal seedlings, produced by seeds 
of the two genotypes, with different ageing regimes, coated with polymer after soaking in 
water for 24h (Fig. 5.6).

Sourse of sum of d.f. mean square F-ratio
variation squares

genotype 520 1 520 9 2 s***
ageing 5002 1 5002 89.3 S***
polymer 18275 2 9137 163.2 S**

Interactions
gen. x ag. 33 1 33 0.5 NS
gen. x pol. 205 2 102 1.8 NS
ag. x pol. 69 2 35 0.6 NS
gen. x ag. x pol. 263 2 131 2.3 NS

residual 2015 36 56
total 26384 47
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Table 3.6. Analysis of variance between electrical conductivity (mS/g/cm), produced by 
seeds of the two genotypes, with different ageing regimes, coated with polymer after soaking 
in water for 24h (Fig. 5.7).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 621 1 621 24.4 g***
polymer 488 1 488 19.2 g***
ageing 1875 1 1875 73.8 g**

Interactions
gen. x pol. 81 1 81 3.1 NS
gen. x ag. 116 1 116 4.5 S*
pol. x ag. 34 1 34 1.3 NS
gen. x pol. x ag. 9.1 1 9.1 0.3 NS

residual 609 24 25.4
total 3835 31

Table 3.7. Analysis of variance between percentage of cotyledons fully stained with TTC, 
produced by seeds of the two genotypes, with different ageing regimes, coated with polymer 
after soaking in water for 24h (Fig. 5.8).

Sourse of sum of d.f. mean square F-ratio
variation squares

genotype 6745 1 6745 95.3 g***
polymer 11029 2 5514 77.9 g***
ageing 11501 1 11501 162.5 g**

Interactions
gen. x pol. 299 2 149 2.1 NS
gen. x ag. 130 1 130 1.8 NS
pol. x ag. 23 2 12 0.1 NS
gen. x pol. x ag. 59 2 29 0.4 NS

residual
total
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5.3. Section 5.3.3

Table 3.8. Analysis of variance between percentage of seedling emergence, produced by 
seeds of the two genotypes, with different ageing regimes, coated with polymer subjected to 
two soil water regimes (Fig. 5.9).

Sourse of variation sum of 
squares

d.f. mean square F-ratio

genotype 3690 1 3690 62.8 g * * *

soil 16900 1 16900 288.1 g * * *

polymer 10100 1 10100 172.1 g * * *

ageing 11610 1 11610 197.8 g * *

Interactions
gen. x soil. 3 1 3 0.5 NS
gen. x pol. 495 1 495 8.4 g * *

gen. x ag. 16 1 16 0.2 NS
soil, x pol. 27 2 1 272 4.6 S*
soil, x ag. 1242 1 1242 21.1 g * * *

pol. x ag. 115 1 115 1.9 NS
gen. x soil, x pol. 0.5 1 0.5 0.1 NS
gen. x soil, x ag. 272 1 27 2 4.6 S*
gen. x pol. x ag. 100 1 100 1.7 NS
soil, x pol. x ag. 495 1 495 8.4 g * *

gen. x soil, x pol. x ag. 2 1 2 0.1 NS

residual 28 16 48 58.6

total 4 8 13 2 63
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Table 3.9. Analysis of variance between time to 50% seedling emergence (days), produced 
by seeds of the two genotypes, with different ageing regimes, coated with polymer subjected 
to two soil water regimes (Fig. 5.10).

Sourse of variation sum of 
squares

d.f. mean square F-ratio

genotype 0.1 1 0.1 0.1 NS
soil 36 1 36 24.6 g * * *

polymer 20 1 20 13.7 g * * *

ageing 11 1 11 7.8 g * *

Interactions
gen. x soil. 0.5 1 0.5 0.3 NS
gen. x pol. 1.1 1 1.1 0.7 NS
gen. x ag. 0.1 1 0.1 0.1 NS
soil, x pol. 0.2 1 0.2 0.1 NS
soil, x ag. 0.7 1 0.7 0.5 NS
pol. x ag. 0.1 1 0.1 0.1 NS
gen. x soil, x pol. 0.1 1 0.1 0.1 NS
gen. x soil, x ag. 0.1 1 0.1 0.3 NS
gen. x pol. x ag. 0.5 1 0.5 0.1 NS
soil, x pol. x ag. 0.2 1 0.2 0.1 NS
gen. x soil, x pol. x ag. 0.6 1 0.6 0.4 NS

residual 48
total 63

Table 3.10. Analysis of variance between shoot length (cm), produced by seeds of the two
genotypes, with different ageing regimes, coated with polymer 
regimes (Fig. 5.11).

subjected to two soil water

Sourse of variation sum of 
squares

d.f. mean square F-ratio

genotype 1.2 1 1.2 0.7 NS
soil 49 1 49 31.9 g * * *

polymer 7.6 1 7.6 4.9 S*
ageing 31 1 31 20.3 g * * *

Interactions
gen. x soil. 0.1 1 0.1 0.1 NS
gen. x pol. 1.1 1 1.1 0.7 NS
gen. x ag. 0.1 1 0.1 0.1 NS
soil, x pol. 0.2 1 0.2 0.1 NS
soil, x ag. 0.5 1 0.5 0.3 NS
pol. x ag. 3.2 1 3.2 2.1 NS
gen. x soil, x pol. 0.2 1 0.2 0.1 NS
gen. x soil, x ag. 1.1 1 1.1 0.6 NS
gen. x pol. x ag. 0.8 1 0.8 0.5 NS
soil, x pol. x ag. 0.1 1 0.1 0.1 NS
gen. x soil, x pol. x ag. 0.4 1 0.4 0.3 NS

residual 74 48 1.5
total 172 63
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Table 3.11. Analysis of variance between shoot fresh weight per normal seedling (mg), 
produced by seeds of the two genotypes, with different ageing regimes, coated with polymer 
subjected to two soil water regimes (Fig. 5.12).

Sourse of variation sum of 
squares

d.f. mean square F-ratio

genotype 1.9 1 1.2 0.7 NS
soil 53 1 49 28 .8 g * * *

polymer 9.6 1 7.6 4 .4 S*
ageing 43 1 31 18.2 g * * *

Interactions
gen. x soil. 0.2 1 0.1 0.1 NS
gen. x pol. 1.6 1 1.1 0.6 NS
gen. x ag. 0.2 1 0.1 0.1 NS
soil, x pol. 0.1 1 0.2 0.1 NS
soil, x ag. 0.9 1 0.5 0.3 NS
pol. x ag. 4.2 1 3.2 1.8 NS
gen. x soil, x pol. 0.2 1 0.2 0.1 NS
gen. x soil, x ag. 0.9 1 1.1 0.6 NS
gen. x pol. x ag. 0.6 1 0.8 0.5 NS
soil, x pol. x ag. 0.2 1 0.1 0.1 NS
gen. x soil, x pol. x ag. 0.3 1 0.4 0.2 NS

residual 81 48 1.7

total 168 63
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APPENDIX 4 

1. Section 6.2.3

Table 4.1. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 6.11).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 47173 5 9434 138.8 S***
pre-treatment 28086 4 7021 103.3 S***

gen. x pre-tr. 6208 20 310 4.5 S***

residual 18339 270 67.9
total 99808 299

Table 4.2. Analysis of variance between weight of water (mg/seed), after 30 and 60 mins of
imbibition, absorbed by seeds of cv. 
(Fig. 6.12a).

Sapporo subjected to different methanol pre-treatments

Sourse of sum of d.f. mean square F-ratio
variation squares

pre-treatment 66744 5 13348 131.5 g * * *

time 12979 1 12979 127.9 g * * *

pre-tr. x tim. 894 5 178 1.7 NS

residual 10959 108 101
total 91577 119

Table 4.3. Analysis of variance between weight of water (mg/seed), after 30 and 60 mins of 
imbibition, absorbed by seeds of cv. Sapporo subjected to different chloroform pre­
treatments (Fig. 6.12b).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

pre-treatment 21237 5 4247 110.5 S***
time 6351 1 6351 165.2 S***

pre-tr. x tim. 109 5 22 0.5 NS

residual 4151 108 38
total 31848 119
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Table 4.4. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 6.11).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 35247 4 8811 94 7 s***
pre-treatment 19257 2 9628 103.5 S***

gen. x pre-tr. 7528 8 941 10.1 S***

residual 12412 133 93
total 74444 149

Table 4.5. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 6.14).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 42138 5 8427 120.3 S***
pre-treatment 29846 4 7461 106.6 S***

gen. x pre-tr. 8258 20 412 5.8 S***

residual 18968 270 70
total 99210 299
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APPENDIX 5 

1. Section 7.3.6.

Table 5.1. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by hard seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 
7.17).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 4261 2 2130 13.5 S***
pre-treatment 8447 3 2815 17 9 s***

gen. x pre-tr. 12560 6 2093 13 3 S***

residual 16985 108 157
total 42255 119

Table 5.2. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by hard seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 
7.18).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 62318 5 12463 51.1 S***
pre-treatment 25327 2 12663 519 s***

gen. x pre-tr. 12367 10 1236 5.1 S**

residual 39678 162 244
total 139690 179

Table 5.3. Analysis of variance between weight of water (mg/seed) after 30 mins, absorbed 
by hard seeds subjected to different organic solvent pre-treatments, for all genotypes (Fig. 
7.20).

Sourse of 
variation

sum of 
squares

d.f. mean square F-ratio

genotype 50938 2 25469 100.5 S***
pre-treatment 29250 2 14625 57 7 S***

gen. x pre-tr. 3840 4 960 3.7 S**

residual 20512 81 253
total 104542 89
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