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Lay Summary

There is an extensive history of research aimed at identifying virulent vs harm-

less bacteria and this has led to a ’pathotype’ classification usually based

around specific virulence genes important for infection or damage. Over the

last twenty years it has become apparent that these virulence determinants

are often horizontally-acquired on large regions of DNA, usually as integrated

bacteriophage (prophage) regions or plasmids. With the advent of relatively

low cost whole genome sequencing (WGS) techniques and advances in com-

puting, it is now possible to obtain sequences from large numbers of bac-

terial strains and interrogate these in relation to both their core and acces-

sory genomes. While there are some bacterial species with preferred hosts,

especially in terms of disease, there has been no real systematic investiga-

tion of host and niche specificity associated with strains of Escherichia coli

and Salmonella Typhimurium despite the fact that these bacteria can be iso-

lated from many different host species and environments. The main aim of

this project was to determine if host and/or niche-specific proteins could be
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identified for ’multi-host adapted’ bacteria such as E. coli and Salmonella Ty-

phimurium and this information used to predict both the ’origin’ of a strain and

its potential to infect humans only using its genome sequence. For this re-

search, two datasets of ’multihost’ bacterial sequences were analysed: 1203

S. Typhimurium isolates from 4 hosts (avian, bovine, human, swine) and E.

coli from 6 host (avian, bovine, canine, environmental, human, swine). Classi-

cal core genome analysis which included core phylogeny, multilocus sequence

typing and phylogrouping found no clear way to predict the host from which

the bacterium was isolated. Moreover, some of the methods were found im-

practical for analysis of large datasets (i.e. multiple sequence alignment) or

the methods lacked sufficient resolution (MLST). The accessory genome was

then investigated, and accessory host associated proteins (HAP) were found

for each of the bacteria/host groups. The threshold for protein extraction could

be changed, thus different numbers of HAPs could be extracted based on this

threshold. At the setting used for further analysis, the average number of pro-

teins associated with a host group was 648 for E. coli ranging from a minimum

of 73 proteins for the human group (number of isolates = 409) to a maximum

of 1311 for the canine group. It was interesting to note that a small number of

HAPs was not necessarily a reflection of a reduced number of isolates in the

group (compare: canine isolates = 36, number of HAP = 1311; bovine isolates

= 703, number of HAP = 1090). For the more balanced S. Typhimurium dataset

there was an average of 300 isolates per host with the minimum number of
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187 HAPs in the human group and maximum of 685 in avian group. These

proteins were used to build a machine learning classifier (support vector ma-

chine (SVM ) to predict the isolation host of the bacterial isolates. The majority

of isolates from both species were predicted correctly with prediction accuracy

ranging from 67% to 90%. For both species the most challenging were bovine

and swine host groups as these two had many features in common. The ap-

proach allowed both ’generalist’ and ’specialist’ strains from each host group

to be estimated as well identifying genes potentially required for successful

transmission between species, although these would have to be verified ex-

perimentally. This work has shown that the E. coli or S. enterica isolate se-

quences can be used as a baseline for prediction and quantification of human

zoonotic potential as was demonstrated using E. coli O157 and Salmonella

Typhi as examples. Overall this part of the research showed marked host re-

striction for both S. enterica and E. coli, with only a limited subset of isolates

exhibiting host promiscuity by analysis of predicted protein content. Machine

learning can be successfully applied to interrogate source attribution of bacte-

rial isolates and has the capacity to predict zoonotic potential. Using the same

machine learning approach another question was asked about how alike are

known zoonotic pathogens. In the work described above all E. coli O157, inde-

pendent of the isolation host, were scored as potentially zoonotic when com-

pared to the wider E. coli population. However when only E. coli O157 isolates

were studied then the approach identified a small subset of cattle strains with
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predicted protein content associated with human strains and so were consid-

ered (and scored) more likely to be a serious threat to human health. This

approach was verified with E. coli O157 human outbreak strains traced back

to food sources. All of the outbreak strains independent of food or animal ori-

gin were scored as a ’human’. This finding has profound implications for public

health management of disease because interventions in cattle, such a vacci-

nation, could be targeted at herds carrying strains of high zoonotic potential.

The final part of the research compared how effective different techniques and

machine learning algorithms were at predicting the isolation host using the S.

Typhimurium dataset. Dimensionality reduction techniques as well as unsu-

pervised and supervised machine learning methods were applied to HAPs. All

3 supervised ML classifiers resulted in very comparable high levels of predic-

tion (over 95%) while other methods were unsuccessful. Thus choice of which

supervised classifier to use for host prediction should be based on the knowl-

edge of the user and any requirements for downstream analysis. To conclude,

supervised machine learning methods can be used successfully to predict the

potential source of a bacterial isolate and quantify its infection threat to hu-

mans. The methods described here can be applied more broadly and have

implications for monitoring, identification and targeted interventions applied to

potentially zoonotic infections. The success of these approaches is dependent

on high numbers of sequences with accurate metadata including the origin of

the isolates.
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Abstract

With the advent of relatively low cost whole genome sequencing (WGS), it is

now possible to obtain sequences from large numbers of bacterial strains and

interrogate their core and accessory genomes in relation to associated meta-

data. While there are some bacterial species with preferred hosts, especially

in terms of disease, there has been no real systematic genomic investigation

of host and niche specificity of ’generalist’ bacteria, i.e., those that can be iso-

lated from multiple hosts and environments.

The main aim of this research was to determine if host and/or niche-specific

proteins can be identified for ’multi-host adapted’ bacteria such as E. coli and

Salmonella Typhimurium (STm) in order to predict the ’origin’ of a strain and its

zoonotic potential from its sequence.

Two datasets of ’multi-host’ bacteria were analysed: 1,203 STm isolates from 4
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hosts (avian, bovine, human and swine) and E. coli from 6 hosts (avian, bovine,

canine, environmental, human and swine). Based on classical core genome

analysis such as core phylogeny, multilocus sequence typing and phylogroup-

ing, no strong correlations with host were identified.

The accessory genome was also investigated for host-based associations, and

accessory host associated proteins (HAP) were identified for each of the bac-

teria/host groups. These proteins were used to build a machine learning (ML)

classifier - support vector machine (SVM) - to predict the isolation host of the

bacterial isolates. The majority of the isolates from both species were pre-

dicted correctly with prediction accuracy ranging from 67% to 90%. For both

bacterial species the most challenging were bovine and swine host groups

as these two had many features in common. The approach allowed not only

prediction of host based on WGS but also an assessment of how much the

genome of particular isolates resembled the features of the genomes of the

same species isolated from other hosts. This allowed ’generalist’ and ’spe-

cialist’ strains from each host group to be estimated as well as the sequences

that indicate successful transmission potential between hosts. This work also

showed that diverse collections of E. coli or STm can be used as a baseline for

prediction and quantification of zoonotic potential as was demonstrated with

E. coli O157 and Salmonella serovar Typhi. Overall this part of the research

indicated marked host restriction for both STm and E. coli, with only limited
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isolate subsets exhibiting host promiscuity based on predicted protein content.

ML can be successfully applied to interrogate source attribution of bacterial

isolates and has the capacity to predict zoonotic potential.

Using the same ML approach, another question was asked about how similar

are the known zoonotic pathogens. When studied apart, E. coli O157 can be

classified further into human and bovine isolates with only a small proportion

of bovine isolates predicted as ’human’, pointing to the specific cattle strains

that are potentially a more serious threat to human health. This approach was

tested with 2 independent sets of O157 human outbreak strains with traced-

back isolates from animals and food. The outbreak strains independent of the

origin were scored as ’human’. This finding has profound implications for public

health management of disease because interventions in cattle, such a vacci-

nation, could be targeted at herds carrying strains of high zoonotic potential.

The final section the thesis research was based on the STm dataset and com-

pared different ML approaches to test which algorithm performed best for host

prediction. Dimensionality reduction techniques as well as unsupervised and

supervised ML were applied to HAP. Dimensionality reduction techniques and

unsupervised ML were not able to split the dataset by host and produced dif-

ferent results which could be challenging to interpret correctly in terms of bio-

xvii



logical significance of the factors that influenced clustering. On the other hand,

all three supervised classifiers resulted in very comparable high levels of pre-

diction (over 95%). Thus, the choice of supervised classifier for host prediction

should be based on the knowledge of the end-user as well as on requirements

for any further analysis.

To conclude, accessory genomes were successfully used for extraction of host

associated proteins as well as for prediction of source host and quantification of

zoonotic potential for bacteria species that can be isolated from multiple hosts.

The methods described here can be applied to other bacteria and overall have

implications for monitoring, identification and targeted interventions associated

with potentially zoonotic infections. The results are completely dependent on

the dataset quality which should be as large and diverse as possible. The re-

search highlights the predictive potential of such algorithms but also the need

for bacterial sequences to be gathered with as much useful metadata as pos-

sible, including isolation host.
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Objectives

The overall objective for this work was to investigate if host/niche adaptation

signals can be identified from whole genome sequences of enteric bacteria

Escherichia coli and Salmonella enterica serovar Typhimurium.

• Study the relationships between isolates with known provenance.

• Explore similarities and differences in core and accessory genomes.

• Identify genetic features that are associated with host/niche adaptation.

• Determine if specific isolates pose an increased zoonotic risk due to their

capacity to thrive in different environments; i.e. have evolved as general-

ists.

• Develop algorithms for prediction of strain origin.

• Compare different algorithms for prediction of strain origin.
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Chapter 1

Introduction
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This thesis describes bioinformatics approaches to investigate bacterial genomes.

Both bioinformatics and bacterial genomics are relatively young fields of re-

search and are expanding quickly, thus many approaches that were innovative

at the beginning of this PhD have become obsolete or inappropriate over the

course of this study. It is fascinating ’building up a head of steam’ however

such work in new areas requires caution and careful consideration with inter-

pretation as there are very few examples to compare the work with.

The boom that we have witnessed in the past 10 years in microbial genomics

is due mainly to one reason: the democratisation of sequencing. Illumina

short read sequencing has become a quick and relatively affordable solution

for many. Increased sequence dataset sizes and their analysis have lead to

our realisation about the genetic complexity of many bacterial populations and

resulted in the introduction of new terms such as ’pangenome’; ideas like the

’bacterial genome continuum’ and projects like the Human Microbiome demon-

strate weaknesses of a reductionist approach and inabilities of small datasets

to correctly reflect reality. They often also point to a need for a more holistic

view of problems. All of the above urge the development of new ways to anal-

yse data, that are also helped immensely by another revolution, in computing,

that has lead to the availability of clusters and clouds where all these large

sequencing projects can be curated and stored as well as analysed.

2



This chapter introduces bacterial genomics as a discipline, gives an overview

of the species that were investigated during this work, Salmonella enterica

and Escherichia coli, briefly touches on the evolution of sequencing and its

consequences for bacterial genomics as well as importance for public health.

Moreover, this chapter provides brief reviews of the methods and concepts that

were used in bacterial genomics before the advent of whole genome sequenc-

ing (WGS) and those that have now become the main players, dealing with

larger data sets empowered by modern computing capacity.

1.1 Bacteria and bacterial classification

The main work was carried out with datasets from two bacterial species: E.

coli and Salmonella enterica. Both are rod-shaped, Gram negative, faculta-

tively anaerobic bacteria. E. coli is a common but low abundance commensal

of the gastrointestinal tract of many mammals [1] and has been associated with

a wide range of infections in both humans and animals with certain strains able

to cause life threatening zoonotic infections. A long record of association with

human and animal disease means that certain strains represent a health threat

with significant costs to society [2] [3] [4] [5]. It is evident that E. coli can thrive

in a wide range of hosts and ecological niches and while it is one of the first

species of bacteria to colonise the human gut [6] [7] [8], it can exist, at least

temporarily, outside of its ’primary’ host habitat in soil, water, sediments and
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plant tissues [9] [10]. Moreover, Escherichia coli is a model organism; strains

K12 and B and their derivatives have helped advance our understanding of

molecular biology, genetics and gene engineering.

E. coli seems to succeed in different environments with diverse conditions in-

cluding variations in temperature and pH, and in the face of challenges such

as an immune responses or antibiotic therapy. Some strains appear highly

adapted to a particular niche, for example it is now appreciated that Shigella

strains can be considered as part of the Escherichia coli species and these,

to date, have only been found in humans and primates [11] and can cause

diarrhoea in humans [2]. Other strains such as E. coli O157 seem to be well

adapted not only to a subset of hosts like cattle (and perhaps sheep), but to a

specific niche in the intestine of these ruminants [12]. Other strains, for exam-

ple porcine, bovine and human enterotoxigenic E. coli are considered relatively

host specific but this has been attributed to specific combinations of adhesins,

although there is no evidence to suggest they could switch hosts solely based

on exchange of these colonization factors.

The first stark indication of the diversity in E. coli followed the sequencing of

a strain of E. coli O157:H7 and its comparison with E. coli K12. From this,

1,387 ’new’ genes were identified with the finding that E. coli O157 had a sig-
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nificantly larger genome (5.5 Mb compared to 4.2 Mb) than the K12 strain. The

E. coli O157:H7 strain possessed specific virulence factors as well as differ-

ent metabolic capacities [13]. Although conversely, some studies show that

there is much less diversity among certain E. coli pathovars than was previ-

ously anticipated [14]. Overall, it is now clear that the E. coli genome can

exhibit incredible plasticity associated with horizontal gene transfer by bacte-

riophages and plasmids. As a consequence, these changes do not necessarily

need many generations to consolidate and therefore can be associated with

the rapid emergence of different and sometimes virulent strains, such as oc-

curred in the 2011 atypical enterohaemorrhagic E. coli outbreak in Northern

Germany [15]. An E. coli genome can perhaps be altered endlessly leading to

appearance of new strains and/or rapid specialisation of existing strains. This

same plasticity is important when considering adaptation to human interven-

tions such as antibiotic treatment. Such selective pressures help to develop,

maintain and potentially combine resistance and virulence traits.

Taxonomy of Salmonella is complex, with two main species S. enterica and S.

bongori ; with the latter species sometimes called the ’Salmonella of lizards’,

as this was first isolated from a lizard and for many years it was thought to be

host restricted. Nevertheless, recently it has been isolated from dogs, birds

and in some cases humans. [16] [17] [18].
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S. enterica can be further divided into six subspecies enterica, salamae, ari-

zonae, diarizonae, indica, and houtenae more often called by Roman numerals

I, II, IIIa, IIIb, IV, and VI respectively. Both species, S. enterica and S. bongori

can cause gastrointestinal disease - salmonellosis, however subspecies I (S.

enterica subsp. enterica) is responsible for the vast majority of infections and

is one of the most common bacterial infections in humans and animals world-

wide. Diseases caused by S. enterica vary from self-limiting enterocolitis with

very mild symptoms to severe systemic infections, as with the example of ty-

phoid fever. The most common manifestation of salmonellosis is diarrhoea with

fever, abdominal cramps, and vomiting.

Species of Salmonella are closely related to E. coli and they are estimated to

have diverged from a common ancestor 100 million years ago; their genomes

still display significant similarity, hence many functional identities. Many of

the genes which are unique to Salmonella serovars, compared to E. coli, are

found on large discrete genomic islands such as Salmonella pathogenicity is-

lands (SPIs). These Salmonella-’specific’ determinants include many genes

associated with virulence and characterise the divergence of S. enterica from

S. bongori. For instance, the SPI-2 genes which encode a type III secretion

system present in S. enterica are absent in S. bongori.
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Apart from acting as a blueprint for an organism, DNA contains information

that allows us to understand phylogeny, the evolutionary path, antimicrobial

resistance and environmental adaptation. Billions of years of evolution have

allowed, in most cases, tremendous genomic diversity to be generated and

selected with subsequent complexity in bacterial metabolic and anabolic path-

ways. There are more differences between certain bacterial species than be-

tween all eukaryotes combined see Figure 1.1). As a scientific discipline bac-

terial genomics is concerned with all of the hereditary information that can be

found in a bacterial genome. Recently it has become possible to analyse and

compare whole genomes sequences of thousands of bacteria. These recent

advances indicate that we have underestimated bacterial diversity.

For many decades bacterial species were classified by a variety of phenotypic

characteristics such as morphological and anatomical features, culture charac-

teristics, reaction to stains, differences in nutrition, with analysis of a series of

biochemical reactions and the presence and absence of different antigens and

their structure. Moreover sometimes there is a need to distinguish bacteria of

the same species, for example to identify bacteria associated with a disease

outbreak. In this case, schemes such as serotyping, enzyme typing, identifi-

cation of toxins or other virulence factors, or characterization of plasmids have

become the methods of choice.

7



Rhodopirellula baltica

Borrelia burgdorferi

Treponema denticola

Treponema pallidum

Leptospira interrogans 56601

C
a
m

p
ylo

b
a
cte

r je
ju

n
i

H
e
lic

o
b
a
c
te

r p
y
lo

ri 2
6
6
9
5

P
se

ud
om

on
as

 a
er

ug
in

os
a

R
a
ls

to
n
ia

 s
o
la

n
a
c
e
a
ru

m

P
se

ud
om

on
as

 s
yr

in
ga

e

X
a
n
th

o
m

o
n
a
s 

ca
m

p
e
st

ri
s

B
ra

d
y
rh

iz
o
b

iu
m

 ja
p

o
n
ic

u
m

R
h
iz

o
b
iu

m
 l
o
ti

R
h

iz
o

b
iu

m
 m

e
lilo

ti

N
e
is

s
e
ri
a
 m

e
n
in

g
it
id

is
 B

B
o
rd

e
te

lla
 b

ro
n
ch

is
e
p
tic

a

B
o
rd

e
te

lla
 p

a
ra

p
e
rt

u
s
s
is

B
o
rd

e
te

lla
 p

e
rt

u
s
s
is

C
h
ro

m
o
b
a
c
te

ri
u
m

 v
io

la
c
e
u
m

Escherichia coli K12

Salmonella typhi

Salmonella typhimurium

Shigella flexneri 2a 301

Yersinia pestis CO92

V
ib

rio
 c

ho
le

ra
e

Vib
rio

 p
ar

ah
ae

m
ol

yt
ic
us

Vib
rio

 v
uln

ifi
cu

s 
C
M

C
P6

Haem
ophilu

s i
nflu

enza
e

Haem
ophilu

s 
ducr

eyi

Past
eure

lla
 m

ulto
cid

a

C
o
xi

e
lla

 b
u
rn

e
tii

R
ic

k
e
tts

ia
 c

o
n
o
rii

R
ic

k
e
tts

ia
 p

ro
w

a
z
e
k
ii

Chlamydia tra
chomatis

Bacteroides thetaiotaomicron

Porphyromonas gingivalis

W
o
lin

e
lla

 s
u
c
c
in

o
g
e
n
e
s

D
e
su

lfo
vib

rio
 vu

lg
a
ris

N
it
ro

s
o
m

o
n
a
s
 e

u
ro

p
a
e
a

B
d
e
llo

vib
rio

 b
a
cte

rio
vo

ru
s

R
h
o
d
o
p

s
e
u
d
o
m

o
n
a
s
 p

a
lu

s
tris

Chlorobium te
pidum

S
ynechocystis sp. P

C
C
6803

P
rochlorococcus m

arinus S
S
120

S
ta

p
h
y
lo

c
o
c
c
u
s
 e

p
id

e
rm

id
is

D
einococcus radiodurans

Stre
pt

oc
occ

us
 m

ut
an

s

Stre
pt

oc
oc

cu
s 

pn
eu

m
on

ia
e 

TIG
R
4

Stre
pto

co
cc

us p
yo

genes M
1

E
nt

er
oc

oc
cu

s 
fa

ec
al

is

La
ct

oc
oc

cu
s 

la
ct

is

B
a
ci

llu
s 

su
b
til

is

C
lo

s
trid

iu
m

 a
c
e
to

b
u
ty

lic
u
m

C
lo

s
trid

iu
m

 p
e
rfrin

g
e

n
s

C
lo

s
trid

iu
m

 te
ta

n
i

La
ct

ob
ac

ill
us

 p
la

nt
ar

um

L
is

te
ri
a
 m

o
n
o
cy

to
g
e
n
e
s 

E
G

D

L
is

te
ri
a
 i
n
n
o
c
u
a

Corynebacterium diphtheriaeCorynebacterium glutamicum
Mycobacterium bovis

Mycobacterium leprae

Mycobacterium paratuberculosis

Streptomyces coelicolor

M
y
c
o
p
la

s
m

a
 g

a
lli

s
e
p
ti
c
u
m

M
y
c
o
p
la

s
m

a
 g

e
n
it
a
liu

m

M
y
c
o
p
la

s
m

a
 p

n
e
u
m

o
n
ia

e

M
y
c
o

p
la

s
m

a
 p

u
lm

o
n

is

Methanococcus jannaschii

Methanosarcina mazei

Methanosarcina acetivorans

Archaeoglobus fulgidus

Pyrococcus furiosus

Sulfolobus solfataricus

Thermoplasma acidophilum

Methanopyrus kandleri

Therm
otoga m

aritim
a

X
yl

e
lla

 f
a
st

id
io

sa
 9

a
5
c

A
rabidopsis thaliana

O
ryza sativa

S
chizosaccharom

yces pom
be

S
accharom

yces cerevisiae

Leishm
ania m

ajor

C
a
e
n
o
rh

a
b
d
itis b

rig
g
sa

e

C
a
e
n
o
rh

a
b
d
itis e

le
g
a
n
s

D
ro

so
p
h
ila

 m
e
la

n
o
g
a
ste

r
D

a
n
io

 re
rio

G
a
llu

s
 g

a
llu

s

P
a
n
 tro

g
lo

d
y
te

s

H
o
m

o
 s

a
p
ie

n
s

M
u
s
 m

u
s
c
u
lu

s

R
a
ttu

s
 n

o
rv

e
g
ic

u
s

Pyrobaculum aerophilum

M
y
c
o
p
la

s
m

a
 p

e
n
e

tr
a
n
s

Pyrococcus abyssi

B
ru

c
e
lla

 m
e
lit

e
n
s
is

B
ru

c
e

lla
 s

u
is

Ta
kifu

g
u
 ru

b
rip

e
s

H
e
lic

o
b
a
c
te

r h
e
p
a
tic

u
s

S
ynechococcus elongatus

G
loeobacter violaceus

E
rem

othecium
 gossypii

Streptomyces avermitilis

La
ct

ob
ac

ill
us

 jo
hn

so
ni

i

G
e
o
b
a
cte

r su
lfu

rre
d
u
ce

n
s

Plasm
odium

 falciparum

W
igglesworth

ia brevipalpis

Methanococcus maripaludis

M
y
c
o
p
la

s
m

a
 m

y
c
o
id

e
s

Leptospira interrogans L1-130

D
ictyostelium

 discoideum

C
yanidioschyzon m

erolae

Thermoplasma volcanium

Pyrococcus horikoshii

Aeropyrum pernix

Fibrobacter s
uccinogenes

P
rochlorococcus m

arinus C
C

M
P
1378

Aquifex aeolicus

Halobacterium sp. NRC-1

N
e
is

s
e
ri
a
 m

e
n
in

g
it
id

is
 A

W
o
lb

a
c
h
ia

 s
p
. w

M
e
l

S
he

w
an

el
la

 o
ne

id
en

si
s

P
ho

to
ba

ct
er

iu
m

 p
ro

fu
nd

um

P
roch

loroco
ccus m

arinus M
IT

931
3

Fusobacterium nucleatum

Mycobacterium tuberculosis CDC1551

Mycobacterium tuberculosis H37Rv

Escherichia coli O157:H7

Chlamydophila caviae
Chlamydia muridarum

S
ynechococcus sp. W

H
8102

H
e
lic

o
b
a
c
te

r p
y
lo

ri J
9
9

B
a
ci

llu
s 

h
a
lo

d
u
ra

n
s

X
a
n
th

o
m

o
n
a
s 

a
xo

n
o
p
o
d
is

Buchnera aphidicola Sg

P
h
y
to

p
la

s
m

a
 O

n
io

n
 y

e
llo

w
s

N
ostoc sp. P

C
C
 7120

Sulfolobus tokodaii

Chlamydia pneumoniae AR39

Chlamydia pneumoniae CWL029

Buchnera aphidicola APS

T
h
e
rm

o
a
n
a
e
ro

b
a
c
te

r te
n
g
c
o
n
g
e
n
s
is

U
re

a
p

la
s
m

a
 p

a
rv

u
m

Buchnera aphidicola Bp

Chlamydia pneumoniae J138

Photorhabdus luminescens

Corynebacterium efficiens

Escherichia coli EDL933

C
a
u
lo

b
a
c
te

r c
re

s
c
e
n
tu

s

S
ta

p
h
y
lo

c
o
c
c
u
s
 a

u
re

u
s
 M

u
5
0

S
ta

p
h
y
lo

c
o
c
c
u
s
 a

u
re

u
s
 N

3
1
5

Nanoarchaeum equitans

P
se

ud
om

on
as

 p
ut

id
a

S
tre

pt
oc

oc
cu

s 
pn

eu
m

on
ia
e 

R
6

A
n
o
p
h
e
le

s g
a
m

b
ia

e

A
g
ro

b
a
c
te

ri
u

m
 t
u
m

e
fa

c
ie

n
s
 W

a
s
h
U

A
g

ro
b

a
c
te

ri
u

m
 t

u
m

e
fa

c
ie

n
s
 C

e
re

o
n

Chlamydophila pneumoniae TW183

O
ce

a
n
o
b
a
ci

llu
s 

ih
e
ye

n
si

s

X
yl

e
lla

 f
a
st

id
io

sa
 7

0
0
9
6
4

Giardia lam
blia

Stre
ptoco

cc
us p

yo
genes M

GAS8232

Yersinia pestis KIM

Methanobacterium thermautotrophicum

Stre
ptococcus pyogenes S

SI-1

Vib
rio

 v
ul

ni
fic

us
 Y

J0
16

S
ta

p
h
y
lo

c
o
c
c
u
s
 a

u
re

u
s
 M

W
2

Corynebacterium glutamicum 13032

B
a
ci

llu
s 

a
n
th

ra
ci

s

Shigella flexneri 2a 2457T

Stre
ptococcus pyogenes M

GAS315

Tropheryma whipplei Twist

Blochmannia flo
rid

anus

Salmonella enterica

Gemmata obscuriglobus

Stre
pto

co
cc

us 
agala

ct
ia

e V

Stre
pto

co
cc

us 
agala

ct
ia

e II
I

Bifidobacterium longum

Escherichia coli O6

Tropheryma whipplei TW08/27

B
ac

ill
us

 c
er

eu
s 

A
T
C

C
 1

09
87

B
ac

ill
us

 c
er

eu
s 

A
T
C

C
 1

45
7
9

Yersinia pestis Medievalis

S
o
lib

a
cte

r u
sita

tu
s

C
ryptosporidium

 hom
inis

A
cid

o
b
a
cte

riu
m

 ca
p
su

la
tu

m

Dehalococcoides ethenogenes

Therm
us therm

ophilus

L
is

te
ri
a
 m

o
n
o
cy

to
g
e
n
e
s 

F
2
3
6
5

M
y
c
o

p
la

s
m

a
 m

o
b

ile

Thalassiosira pseudonana

Colored ranges

Bacteria

Eukaryota

Archaea

Tree scale: 1

Figure 1.1: Tree of life adopted from iTOL. Relative diversity of three domains of live
Bacteria (purple), Eukaryota (red) and Archaea (green) is shown. The phyloge-
netic tree built from concatenated alignment of 31 universal protein families and
covers 191 species whose genomes have been fully sequenced. The tree scale
represent substitutions per cite [19].
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The first step towards genetic classification was based on DNA-DNA hybridiza-

tion (DDH), a method that become a ’gold standard’ for over 50 years. [20] [21].

The method measures the kinetics of re-association of the two strands of DNA

from two bacteria, with the intuition that less similar DNA binds less efficiently,

and therefore re-associates more quickly. The threshold of 70% was consid-

ered to be enough to call two bacterial isolates the same species, but in 2014

a new threshold with 79% similarity was proposed [22]. Even though DDH was

used as the ’gold standard’ for a long time, the method had its drawbacks as it

was laborious and time consuming and there were difficulties in comparability

and reproducibility.

Another successful method to establish relationships between isolates within

the same species is the use of specific genes that are present in all sequences;

these are then adopted into ’typing schemes’. From early work on 16S rRNA

[23] and gyrB based phylogenetics [24] to development of new schemes such

as MLEE, MLST, MLVA and PFGE [25] [26] [27] [28], these kinds of methods

facilitate sharing and comparison of results between researchers, public health

surveillance and outbreak investigations and serve as a means to reveal sub-

structures of E. coli populations that sometimes can explain prototypical varia-

tion or shed light into the origin of strains.
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The standard microbiological tests cannot distinguish from patients stool sam-

ple commensal, pathogenic and diarrhea causing E. coli. Advances in under-

standing of biology has led to multiple sub-qualifications of E. coli pathotypes

that vary in pathogenic mechanism [29].

Summarised below are basic descriptions of the most common typing schemes

that have been used in bacteria such as classification based on 16S rRNA,

ANI, MLST, phylogroups and serogroups as well as some of the pros and cons

of these methods. Arguably, the advent of whole genome sequencing (WGS)

overcomes the majority of the pitfalls presented in these predecessor methods,

although this information is often still extracted from WGS to allow comparison

of strains, for example when only a subset has been subject to WGS.

1.1.0.1 16S rRNA

Over 30 years, ribosomal RNA operons (rRNA), specifically the 16S rRNA

genes, have been used for taxonomic assignment and building of phylogenetic

trees to determine microbial diversity and identify the phylogenetic position of

novel isolates. 16S rRNA is so popular because at least one copy of the gene

can be found in each bacterial species, the gene has not changed its function

over time and contains both similar and variable regions that allow for easy

PCR amplification and sequencing; followed by classification of the bacteria
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into bacterial family, genus and species in the majority of the cases. More-

over the 16s RNA region is long enough (1,500 bp), so when bioinformatically

searching for this region in more complex data, statistically weak hits can eas-

ily be removed.

16s rRNA is a part of 30S small subunit of the prokaryotic ribosome, and these

genes have very slow mutational rates. Nevertheless the bacterial 16S gene

contains regions of hyper-variability (V1-V10) by comparison of which the tax-

onomic classes can be detected. There is evidence that comparison of some

of these regions (V4, V6) are more reliable and some (V2, V8) are less reliable

for differentiating bacterial genera and species [30].

There is no clearly defined threshold for species identification based on 16S

rRNA. The majority of cases can be resolved into species based on 97% sim-

ilarity. On the other hand there is some evidence that even bacteria that have

achieved this threshold of similarity can belong to different species [31] and

conversely, isolates from bacteria of the same species, for example E.coli, can

possess 16S rRNA regions when similarity is below than 97% (Chapter 3.1).

One of three separate methods for 16S rRNA analysis can be used: the first is

to align short reads to a reference 16S RNA sequence; the second is to assem-
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ble short reads; and third is to compare reads from the one of the most reliable

hyper-variable regions. Each of these methods can introduce bias, however

a recent study showed that an effective classifier can be achieved when just

Illumina short reads from the V4 region, with an optimal size of 100-120bp,

are compared between isolates [32]. The analysis of clinical specimens shows

that the majority of isolates (83%) can be identified to species level. Those that

could not be identified were due to limitations of the databases [33] and/or due

to sequencing errors.

Overall, the 16S rRNA method can be used for bacterial classification to species

level where the 16S RNA region is diverse enough to distinguish between

species and highly similar within species. However for some bacteria such

as E. coli (too diverse) or Edwardsiella species (too similar) 16S rRNA classifi-

cation has its limitations. Nevertheless, 16S rRNA greatly aided the beginning

of microbiome research when targeted 16S rRNA barcoding allowed whole

microbial communities to be determined.

1.1.0.2 MLST

Multilocus sequence typing (MLST) is a technique by which bacterial isolates

can be characterised based on comparison of DNA sequences from multiple

internal fragments of common genes. Different alleles of these genes can
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be found within populations, once a new allele is found and verified it will be

assigned a number and stored in a database for that genus/species. MLST

typing results in a sequence type (ST) which is a combination of the numbers

obtained from allele assignments of each gene in a particular scheme. The

first MLST scheme was developed for Neisseria meningitidis in 1997 [34] and

consisted of 6 gene fragments. Nowadays there are 143 MLST schemes [35]

with ST profiles ranging from 4 for Salmonella Typhi to a staggering 13,443

Streptococcus pneumoniae fragments.

Thus even though MLST was designed to simplify classification of bacteria into

a few STs, it is clear that the diversity of the bacteria was underestimated and

as the number of analysed bacterial sequences increased, so did the num-

ber of STs (see Figure 1.2). Over time ribosomal bacteriophage and plasmid

MLST have been developed as well as nine eukaryotes MLST schemes [35].

There are two main methods to analyse MLST data. The first is to use soft-

ware such as eBURST [37] to construct a minimum spanning tree or dendo-

gram based on the pairwise differences between allelic profiles (i.e. numbers)

assigned to each of the genes in a scheme [38]. Therefore, no meaningful

phylogenetic tree can be constructed as just numbers of ST are assigned and

compared. A second method uses the nucleotide sequences of these alleles
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Figure 1.2: Sequence types (ST) vs number of analysed isolates for 133 existing
MLST schemes of different bacterial species. The graph was generated from
the data obtained from PubMLST database [36] on 24 July 2017.
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rather than their allelic numbers. These alleles can be concatenated and their

phylogeny inferred using a variety of schemes for SNPs substitution analysis.

It seems that this method is more appropriate for bacteria that undergo clonal

expansion than for bacteria with high rates of recombination [39].

Figure 1.3: Level of resolution for different MLST schemes depends on the number of
alleles in the scheme. [40]

MLST is based on the assumption that accumulation of mutations in house-

keeping genes is a relatively slow process, thus allelic profiles continue to be

stable enough over time allowing for species wide global epidemiological com-

parisons. It is very interesting that in some cases (as for E. coli and S. enter-

ica in this work) MLST based phylogeny is comparable with core and whole

genome analysis, showing quite remarkable similarities in terms of assigning

isolates to the same clusters. However, MLST may lack resolution for certain

15



requirements such as outbreak investigations. To address these issues, the

latest proposed MLST schemes generally extend to the whole core genome.

The level of the resolution that such schemes can achieve can be seen in Fig-

ure 1.3.

Overall, MLST is a widely used, highly comparable and reproducible method

that is often used for epidemiological investigations, although caution should be

used when applied to highly recombinant bacteria. The schemes rely on well

curated databases for their survival and nowadays that is sometimes based

only on the pure enthusiasm and efforts of particular researchers. Moreover,

any core gene MLST will need an adjustment when used for an individual col-

lection that will require at least basic bioinformatic knowledge of the end-user.

Also there is strong evidence that pangenome provides better resolution than

MLST [41] and so the community needs to consider the resolution required

and the value and costs of maintaining such schemes.

1.1.0.3 ANI

As introduced, DNA-DNA hybridisation methods have been used since the

1960s to indicate sequence similarities, however due to the laborious work-

flow involved and difficulties with comparison of the data obtained, [42] a new

method based on Average Nucleotide Identity (ANI) [43] of sequences was
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developed. The method compares genomes pairwise, each in turn serves as

a reference while another is chopped to ’windows’ of a desired size. Then

these smaller sequences are mapped to the reference, the best BLAST score

is noted and then the average nucleotide similarity is calculated. It is expected

that ANI between sequences of the same species will be above 98-99%. Re-

searchers also compared their method with DDH at 70% and found that this

cut-off corresponds to 94% ANI and 65% or above of the conserved DNA.

Moreover, authors point out that even though the majority of species can be

distinguished at 95-96 % of ANI, there are situations when the interspecies

boundaries are as high as 99% based on ANI. One such example is Bordetella

species that are found to be 99% identical by ANI definition however one of its

species, B. bronchiseptica, possess 600 more genes compared with B. pertus-

sis or B. parapertussis. Overall ANI is an easy to use, quick and reproducible

method that can substitute DDH. However, this method uncovers a new prob-

lem in species classification; definition of the species should include not only

genetic identity but also the ecological niche that will influence the number of

extra genes present in an ’ecotype’ genome.

Furthermore, if the two populations have almost identical genomes but do not

compete with each other it can be considered as strong evidence that they are
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2 different species. [44]. To conclude, there are some examples of successful

use of ANI to delineate a species i.e. Pseudomonas species [45] and success-

ful examples of use of ANI coupled with agglomerative clustering algorithm with

an different cutoffs [46]. However, the exceptions list for ANI use even for al-

ready known species is too long, thus applying ANI to determine new species

(or different sub-populations in vast ecological niches for the same species) is

most likely a very unpractical choice.

1.1.0.4 Serotype

Serovars or serotypes indicate distinct variation within a species of bacteria

based on their cell surface antigens. Serogroups are groups within serovars

that allow within species classification. Classification is based on a set of

unique reactions of cell surface antigens, usually based on antibody stain-

ing. The need for beyond species classification arises from the fact that even

within a species bacteria are often quite diverse and exist with many differ-

ent subgroups than can have quite different clinical manifestations. Thus, in

clinical settings, serotyping can have a crucial role in identification and plan-

ning treatment and intervention options. Common antigens include: the ’O’

antigen which is the outermost portion of the Lipopolysaccharide (LPS) and

differ based on their chemical ’makeup’; the ’H’ antigen which is based on the

flagellar antigens which differ by protein content; K or capsular antigens and
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F or fimbrial antigens [47]. E. coli can be classified into 150 - 200 serotypes

while for S. enterica over 2,000 serovars can be distinguished. In Salmonella

serovars can be grouped by relation to host: there are host adapted (that infect

only one host like serovar Typhi - human), host restricted (that are restricted

to a few hosts only like serovar Dublin (human and bovine ) [48] and those

that are found in multiple hosts such as serovar Typhimurium. Pathogenic E.

coli are classified into pathotypes based on the production of broad classes of

virulence factors and on the mechanisms by which they cause disease. Within

each pathotype, strains are classified into virotypes or virulence gene profiles,

based on the presence of combinations of virulence genes. Strains of a partic-

ular pathotype belong to a restricted number of serotypes.

1.1.0.5 Phylogeny

It is estimated that Salmonella Typhimurium and E. coli diverged from the com-

mon ancestor around 120 million years ago and since then have accumulated

numerous point mutations as well as harvested and lost, by horizontal gene

transfer (HGT), various parts of the chromosome [49].

The evidence for the genetic substructure of E. coli accumulated in the 20th

century has led to development of a method that can easily and inexpensively
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assign E. coli isolates to a certain phylogroup. Phylogroups are quite sta-

ble units in the population structure of E. coli and there were initially 4 main

phylogroups that can give a indication of whether an isolate was commensal

(phylogroups A and B1) or pathogenic (associated with phylogroups B2 and

D). Initially, the method was based on the detection of two genes and one ge-

netic fragment dividing all strains into 4 groups; a later method that analyses 5

genes and one genetic fragment could separate E. coli into 7 phylogroups and

a cryptic clade allowing to gather under this classification all other E. coli that

were very different in nucleotide composition but were very similar to all other

E. coli phenotypically [50] [51] [52] [53]. The downside of the method when

done not in silico is that it is still relatively time and labour consuming as well

as subject to PCR related errors.

Salmonella enetrica subspecies enterica population structure for a long time

was described as clonal, however recent studies show that five stable lineages

with different estimated HGT levels can be delimited [54]. Moreover, STm pop-

ulation structure also can be defined by few lineages from which lineage I and

II contain highly related sequences and lineages 3I and IV gather isolates with

quite diverse sequences. Notably, some highly invasive sub-Saharan STm are

estimated to have emerged independently and quite recently (around 50 years

ago) due to spread of HIV and antibiotic treatment [55].
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To conclude on classifications methods, overall, different schemes provide

different perspectives about a bacterial population. Better resolution can be

achieved when more information, such as gene content are included, although

computational resources can be a limiting factor when analysing big datasets.

Nevertheless, bacterial genomics has already moved from approaches reliant

on either single or a few genes to whole genome models and these whole

genome analyses are becoming routine.

1.1.1 The pan and core genome concept

Recent studies show that the diversity and number of the genes that have

been estimated in nature are much larger than previously calculated [56] [57]

[58] [59]. This reflects the billions of years of evolution over which bacteria

have confronted Earth’s ever changing environment, selecting the genes for all

possible conditions. Mechanisms of horizontal gene transfer then allowed bac-

teria to exchange these genes and to reflect environmental changes by altering

the genome. This is a comparatively rapid solution for adaptation compared to

other ’gene-evolving’ ways such as mutations, insertions and deletion. There

are three main ways to acquire new genetic information by horizontal gene

transfer:

• conjugation: DNA is directly exchanged as plasmids between bacterial
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cells

• transformation: genetic material can be directly taken up from the envi-

ronment

• transduction: the DNA is delivered by a virus (bacteriophages)

A few notes on the third ’method’ of horizontal gene transfer as it becomes

important later on (see Chapter 3.3). During the transduction process a bac-

teriophage may incorporate not only its own genome into the host bacterial

genome but also can transfer genes of a previously infected bacterium by gen-

eralised or specialised transduction. The global population of bacteriophages

is much higher than that of bacteria. There are 1023 phage invasion events

per second [60], thus given the vast gene diversity already presented in bac-

teria and the capacity to transfer these genes in different combinations it has

become evident that genome variation is staggering. Bacterial diversity could

be seen at various levels, both between different taxonomic groups as shown

on the tree of life 1.1 as well as within some bacterial species such as E. coli

(3.1, 3.3 and STm 3.2. The currently sequenced 10 thousand unique bacterial

species [61] as well as near 100 thousand different E. coli and STm isolates

[62] are likely far from covering the whole bacterial population diversity both on

a kingdom level as well as at species level.

To control HGT principally from bacteriophages, bacteria have defence sys-

tems that can occupy up to 10% of the bacterial DNA. Recent studies of bac-
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terial defence systems classify them in a similar way to innate and adaptive

immunity systems of higher organisms. So bacteria can modify its own DNA

by methylation leading to restriction-modification systems, such that any DNA

without these modifications can be recognised as foreign and dealt with this

would be an example of an innate and quite general defence that is not spe-

cific in terms of recognition of the invader. By contrast, an example of adaptive

immunity would be CRISPR-Cas systems that use phage genome fragments

as transcripts to guide RNA to promote enzymatic cleavage of a ’remembered’

invading phage genome. [63].

The gene collection within bacteria even of the same species can be quite di-

verse. Definition of a ’pan-genome’ first appeared following analysis of 8 S.

agalactiae genomes from which it was found that 80% of genes were shared

amongst all of them, while 20% were only partially shared between genomes

and some of these genes were strain specific [59]. Thus a pan-genome is all

genes found within a group of organisms, usually of the same species. How-

ever pangenome, as a type of analysis can be applied to any groupings, one

can try identify pangenome of Enteobacteria or look closely to just a serovar

specific pangenome. Genes from pangenome can be sub-classified further:

core genes present in all genomes in a group, and accessory genes, some-

times called non-essential genes, which would be present only in a fraction of

genomes.

23



The core and pangenome concepts were established in 2005 by Tettelin in

his work ’Genome analysis of multiple pathogenic isolates of Streptococcus

agalactiae: implications for the microbial pan-genome’ [59]. Core genes are

found amongst all or the majority of strains (cut-off can vary) of the same

species in a given dataset and the accessory genome (or variable genome

or dispensable genes) are the genes that are present in only a proportion of

the strains. Some authors divide the classification of the pangenome even fur-

ther and distinguish singleton or strain specific genes these can be found only

in a small proportion of the population.

The paper marked the beginning of new era in bacterial genomics and a new

view of bacterial species; it was realised that there are species with limited

diversity and therefore a closed pangenome, meaning that at some point it

doesn’t matter how many new isolate genomes are added into the collec-

tion, the number of new genes will not increase further (B. anthracis). On

the other side there are bacterial species with an open pangenome, where

new genes are constantly being detected as more isolates are sequenced

as for example(S. agalactiae) [64]. Bacteria studied in this thesis have an

open pangenome as in the case of Escherichia coli and the intermediate

pangenome for Salmonella enterica (see Chapter 3.2).
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Core genes usually are the genes that perform basic functions like fundamental

growth and survival and some are responsible for species specific phenotypic

traits. However, the number of core genes for a species with open pangenome

would heavily depend on the number of isolates and sampling, i.e. bacteria

from the same ST would share much more genes. Moreover, it is important to

consider that with an average sequencing coverage of 30X (majority of isolates

described in this thesis) there is a chance that some coding sequences can be

missed. Another factor is that prediction/annotation software could miss some

genes. Prodigal, the main underling annotation software for bacteria, estimates

5% of the error rate, mainly due to the stochastic nature of the algorithm. Also

some small differences in the genetic sequence can lead to a frame shift and

two almost identical sequences can be annotated differently, especially when

predicting open reading frames and putative proteins.

It is important to note that core genes are not the same as essential genes.

Firstly, because size of the core would heavily depend on the size and the di-

versity of the sub-population analysed. Secondly, the essential genes for each

bacteria are dependant on the environment; therefore, for mixed populations,

the core genome would contain some housekeeping genes but not in all of

them.
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Pan-genome analysis could also change the ways of how we classify different

species. For example, it was found that B. anthracis differ from B. cereus only

by two virulence-associated plasmids [64]. However, for species with an open

pangenome like E. coli, definition of ’species’ almost becomes meaningless

with a genome-continuum paradigm where frontiers between recently called

’species’ as an example E. coli and Shigella and E. alberti and E. fergusonii

become blurred; and the more we sequence the more we find intermediate

bacteria that can be classified by previous ’old’ methods to either species.

The pangenome concept has lead to development of such new terms as pan-

metabolism [65] and pan-regulon and these should incorporate all metabolic or

regulation reactions respectively. The authors [65] concluded that open pan-

genome is not reflected in the pan-metabolome, as a study of 29 E. coli found

just over 1,500 total metabolic pathways from which almost 900 were core re-

actions. However, it is early days and metabolic pathway databases are still in

their infancy, thus metabolic pathway databases like MetaCys and KEGG [66]

[67] are far from complete. It is important to continue to fill such databases as

in the future it could be used for such applications as predictions of metabolic

pathways for the biodegradation of environmental toxins or biosynthesis of re-

quired speciality compounds.
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Genome structure is quite variable in the bacterial world as well. So the pro-

portion of proteins per genome (average coding density) is 85-90%. However,

for some symbionts and pathogens, this number can be as low as 40% [68].

On the other hand, some genomes are quite redundant in terms of duplicated

genes; pseudogenes and prophage related content also add to diversity of

the bacterial DNA. On the surface, these additions often seem to have little

evolutionary impact. Nevertheless from these immense levels of ’acciden-

tal’ change, successful combinations emerge that contribute to better/faster

adaptations to changes in the complex real-world environments encountered

by many bacteria. It is this complexity in genomic information that should be

amenable to investigation by machine-learning methods.

Accessory genes and in particular those which are rare singletons do not carry

housekeeping function but contribute to species diversity and often can pro-

vide advantages when selective pressure is applied. Hypothetical proteins as

well as phage- and transposon-associated genes often form the main bulk of

the accessory genome in species like E. coli and seem not to be responsible

for immediate survival as they are sparse. However, what are they, what are

their functions? Traces of random gene exchange from the bacteria’s past that

easily can be lost, or do they contribute to bacterial fitness in specific envi-
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ronments? In many cases species’ evolution can be associated as much with

gene loss as with acquisition [69] [70].

Of serious concern for human and animal kind is that bacterial pathogenesis

and resistance are often linked to genes encoded in the accessory genome:

these include a variety of virulence factors such as toxins and adhesins, antibi-

otic resistance genes, mobile elements such as plasmids, transposons, inser-

tion sequences and phages [71]. In fact the pathogenicity of strains is often de-

scribed by the distribution and expression of specific virulence factors such as

toxins, adhesins, invasins and others that are encoded by either chromosomal

or plasmid genes. Regions of chromosomal DNA that encode multiple genes

linked to virulence, and are often horizontally required, are termed pathogenic-

ity islands [70]. Pathogenic E. coli strains do not have a single evolutionary

origin but may have arisen many times [26]. There is also the possibility that

any E. coli strain can acquire appropriate virulence factors and give rise to a

pathogenic form. However, it is debatable whether any strain can acquire any

virulence factor as this also makes huge assumptions about the regulatory and

other networks required to control the acquired genes apparently to become a

successful pathogen.

From a bioinformatics point of view, note that even though the term ’pan-
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genome’ is used, blast search, alignment and comparison of sequences are

usually carried out using translated amino acid sequences. There is some ad-

vantages of doing so. First, a redundant codon will count as a mutation. How-

ever, there is most likely no significant evolutionary pressure to prevent a silent

mutation, so as long as the protein sequence is not altered these changes

do not have to be calculated against the homology score. Second, statisti-

cal significance of an alignment will be more easily achieved when comparing

alignments based on 20 different letters than alignment based on four letters.

Third, some amino acid changes will not alter a protein dramatically, as for ex-

ample isoleucine to valine, both similarly hydrophobic, these mutations can be

accounted for in an amino acid alignment, while in DNA alignment this region

will be treated as any other misalignment or substitution.

The number of genes (proteins) detected in any sequence can be influenced

by various factors:

• Sequencing errors.

• Assembly errors: some of the genes will be lost as long as the assembly

stays in a draft format, therefore contigs can be broken in the middle of a

gene, so that gene is not detected.

• Annotation errors: Some software relies on annotation, nowadays anno-

tation is the weakest link in many whole genome analysis steps, as the
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amount of information increases dramatically while accuracy and verifi-

cation of this information is often poor and slow. [72].

1.1.2 Zoonosis

Any disease or infection that is naturally transmissible from vertebrate animals

to humans and vice-versa is classified as a zoonosis [73]. This is complex is-

sue that involves interactions between animals, humans and their ecosystems

and needs multidisciplinary collaboration and communication between public

health and animal health professionals, environmentalist, microbiologist and

many others to provide solutions that can benefit public health. There have

been over 200 zoonotic diseases identified; listed below are the top priorities

for the World Health Organisation (WHO).
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Figure 1.4: Map of incidence of diarrhoeal diseases worldwide in children under 5
years old. Figure adopted from WHO [73]
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Main zoonotic diseases

• Anthrax

• Animal influenza

• Bovine Spongiform Encephalopathy (BSE)

• Food-borne zoonoses

• Haemorrhagic fevers

• Leptospirosis

• Prion diseases

• Tularaemia

• Variant Creutzfeldt-Jakob disease (vCJD)

The food-borne zoonotic diseases are estimated to kill 525,000 children and

cause 1.7 billion incidences of childhood diarrhoea every year; they are the

the major cause of mortality and morbidity for children under 5 worldwide (Fig-

ure 1.4). Diarrhoea is the result of acquired infection, with Rotavirus and Es-

cherichia coli as the most common etiological agents that can be transmitted

through water contaminated by human or animal faeces; food is another major

source. The majority of these cases are preventable. However many general

behaviours and practices need to be changed to achieve this. Currently, more

money is spent on treatment of HIV than on these infections, even though less

people die from HIV each year than from diarrhoeal diseases.

The main zoonotic pathogens identified by WHO are listed below.
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Main zoonotic pathogens

• Salmonella

• Campylobacter

• Anthrax

• Brucellosis

• Verotoxigenic Escherichia coli

• Leptospirosis

• Plague

• Q fever

• Shigellosis

• Tularaemia

The human - animal - ecosystem interface (HAEI) includes all types of con-

tacts between human, animals and the environment; direct and indirect and

all types of pathogens are transmitted through these contacts. It is clear that

the zoonotic problems cannot be treated only by one sector and seen only as,

for example, a ’medical problem’. Thus, prevention and control measurements

should be addressed at all levels.

Public health authorities and epidemiologists are starting to use genome se-

quencing as day-to-day tools to detect and warn populations about bacterial

outbreaks as well as to rapidly identify pathogens. WGS has opened new
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horizons in diagnostics and surveillance of outbreaks due to its high resolu-

tion. There are no limits in the areas of surveillance as it can be used for

human clinical diagnostics in the same way it can be applied for detection of

microbes in veterinary contexts or from environmental samples. The challenge

remains in centralising such analysis, i.e holding the central database where

uploaded sequences can be compared with other sequences, assembled, se-

quence typed, AMR detected, etc. There are many databases that are partially

doing this, for example Enterobase [62] or the Center for Genomic Epidemiol-

ogy [74]. However, the need for centralisation is obvious if it is to be really

beneficial on a global scale.

There are multiple risk factors associated with the emergence of zoonosis, so

it could be argued that pathogens with taxonomic and ecological broad host

ranges are more likely to become zoonotic. The capacity to be transmissi-

ble between humans is also a risk factor, as well as a predisposition for the

acquisition of DNA and evolution based on a high mutation rate. As a con-

sequence, certain viruses may be more likely to become zoonotic compared

to certain bacteria, and in turn this is more likely than zoonotic emergence of,

for example, certain helminths and other eukaryotic microbial pathogens. Of

course, many parasites have multi-host life-cycles which complicates this sim-

plified view.
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Other factors associated with emergence of zoonotic diseases include land use

and agricultural/industry changes, international travel and commerce, dietary

and medical practices [75]: 70% of emerging zoonoses originate in wildlife

and this is increasing over time [76]. Novel and more intensive interactions be-

tween humans and livestock increases the risk of ’spillover’ [77], and disruption

of natural ecosystems such as the loss of native forest leads to loss of buffer

zones. Overall habitat fragmentation leads to loss of biodiversity with distor-

tion of population densities leading to an increased risk of zoonoses emerging.

Human behaviour also increases the risk of zoonoses. For example, illegal

animal trade is the 4th largest global illegal industry that can be one origin of

zoonotic spillovers as with the bush meat trade. Overall, this acts by enhancing

the contact between wildlife species and humans.

Another group of factors that can lead to an increased risk of zoonotic diseases

are those associated with changes in the host. Susceptibility to infection varies

with age, underlying disease and immune status. By 2040, 25% of EU popu-

lation will be 65 and older with an age-reduced immune competence. More-

over, obesity is constantly increasing in the industrialised world, thus leading to

chronic conditions like type 2 diabetes and a compromised immune system. In

general, with improving medical technology many more people will live with im-

munosuppressive chronic diseases (diabetes, cancer, HIV, transplants) but be

at an increased risk of infectious diseases, including zoonoses. Major socio-
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economic factors should also be included such as poverty, war and famine.

Currently 60 million people are forcibly displaced and social vulnerability re-

duces disease resistance.

Finally, changes in the pathogen or to a pathogen are important causes of

emerging zoonoses. Microorganisms are constantly evolving to allow for sur-

vival in new and changing environments. Bacteria can generate variation that

enables them to infect a new host in which they can then potentially specialise

with further adaptation. In parallel, there is always the possibility of evolution

towards novel more virulent strains; in turn these can acquire resistance to

antimicrobials generating some of the multi-drug resistant pathogens that are

now a major threat to human health.

While epidemiologists can track and monitor outbreaks, there is a need for

prevention, prediction and targeted interventions to tackle zoonotic pathogens.

These have become more realistic objectives now that WGS of thousands of

bacterial isolates can be achieved and big scale population studies can be

computed, all due to advances in both sequence technology as well as com-

putational hardware and software.
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1.2 Challenges and advances in bacterial genomics

Hundreds of thousands of isolates from over 50 different bacterial phyla have

been sequenced since 1995 when the first two bacterial genomes of Haemophilus

influenzae and Mycoplasma genitalium were sequenced [78] [79]. A ’genome

sequencing’ search in PubMed [61] returned 94,119 matches, demonstrat-

ing increase in use of these words in publications over the years (see Figure

1.5). Adding the word ’bacteria’ decreases the number of hits almost 4-fold

to 24,229, reflecting a predominance of work on human genome in search of

genetic markers for health and disease.

Nevertheless, bacterial genomics is catching up, with the same upward trajec-

tory over the past decade (see Figure 1.5), also reflecting how humankind is

prioritising based on existing knowledge. In 2010, after establishing a human

gut microbial gene catalogue [80] the number of publications in bacterial ge-

nomics is slowly but steadily increasing, doubling its number with over 2,300

publications in 2016. All this data requires computational ’warehouses’ that

enable storage, processing and backup.

As up to date (November 2018) there were 187,229 genomes available at NCBI

genbak ftp site ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria.
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Figure 1.5: Number of sequencing related publications per annum. Number of publi-
cations (y axis) including words ’genome sequencing’ that appeared in PubMed
from 1970 to present (x axis). The red line represents the number of these publi-
cations which also contain the word ’bacteria’.

There is a number of publicly available databases that enable storage and of-

ten some analysis: National Center for Biotechnology Information NCBI [61],

Genomes OnLine Database GOLD [81], Enterobase [62], the Genomic Ency-

clopedia of Bacteria and Archaea (GEBA) [82], Ribosomal Database Project,

RDP [83], The Bacterial Isolate Genome Sequence Database BIGSdb with

mostly MLST data [35]. Built-in tools for interaction with the sequences and

their metadata often includes filtering and ordering based on metadata, se-

quence typing, clustering by similarity and some phylogeny.
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Figure 1.6: Growth in the number of genomes present RefSeq database from 2000 to
present. It was 45,650 bacterial species on database as to 8-05-2017.

With regard to meta-data, there is still a huge debate around what information

should be stored alongside the sequences. It is frustrating when one realises

how little can be done handling only a sequence of the genome; all analysis

becomes limited to comparison studies, and this is only if one is lucky enough

to be working with a sequence which is similar to something that already ex-

ists in a database. Thus, some basic information is already mandatory for all

of the above databases, however what is considered ’basic’ can vary dramati-

cally. Very often information can be deduced from the genetic sequence itself

relatively easily: for example, sequence type (ST), serotype, phylogroup or an-

timicrobial resistnce (AMR) genes or virulence factor profiles. Nevertheless,

most public databases already have in place ’minimal meta-data check lists’

required for uploading raw sequence data and these check lists most likely
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would include info such as: source of isolation, location and time as well as de-

tails about sequence manipulation such as sequencing platform or assembler,

if applicable [84]. Thus, more recent submissions are improving the situation

and are more likely to have appropriate information stored. However good

metadata is still relatively sparse.

Over the time of this PhD research, new databases with new genomes have

become available. One of these is EnteroBase, [62] the biggest database

of enteric bacteria that contains 4 separate databases for Salmonella, Es-

cherichia and Shigella, Yersinia and Moraxella. EnteroBase aims to establish ’a

world-class, one-stop, user-friendly, backwards-compatible but forward-looking

genome database’, coupled with a set of web-based tools such as EnteroBase

Backend Pipeline, to enable bacteriologists to identify, analyse, quantify and

visualize genomic variation principally within genera. The Salmonella sub-

section is the most populated database in Enterobase and contain 103,364

Salmonella genomes. The database curators at EnteroBase are trying hard

to include metadata, so the sequences can be reused by others and can be

used to address questions beyond those for which the original uploads were

intended.

However, to illustrate a common state of affairs with metadata and the bias
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towards human-related data, lets look at EnteroBase [62] which is one of the

largest collections for enteric bacteria as well as one of the newest databases

and therefore potentially have the best metadata. As of today (August, 5,

2017), there was just slightly over 100 thousand Salmonella genomes but for

over 40 thousand of them there is no source of isolation information. One

third of those with host information are isolated from humans. Moreover, hu-

man sampling is dominated by human pathogens: there are 5,625 sequenced

genomes from Salmonella Typhi alone (specific human pathogen) while from

Salmonella Typhimurium which can be found in different hosts there are 8,228

isolates with host information, 4,486 from human hosts and the remaining are

unequally split between 32 different hosts. The biggest reservoirs for zoonotic

split, such hosts as avian, bovine porcine each contain just slightly above 500

isolates). Therefore when planning future studies, principally those that require

data acquisition, it would be very useful, where possible, to look for the oppor-

tunities to close existing gaps and try not to duplicate existing data.

Growth in the numbers of bacterial sequences in the NCBI RefSeq database

are illustrated in Figure 1.6 with over 45,500 bacterial genomes in it. How-

ever, as expected reference genome collection is also heavily skewed towards

model organisms and major pathogens, plus almost half of all the genomes

sequenced are from the Proteobacteria phylum. Figure 1.7 shows bacteria

whose number of sequenced genomes are above 1,000, with the 3 major play-
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ers: Streptococcus pneumoniae with 8,267 genomes, Staphylococcus aureus

- 7,997 genomes, Salmonella enterica - 7,426 genomes.

Streptococcus pneumoniae

8267

Staphylococcus aureus

7997

Salmonella enterica

7426

Escherichia coli

6275

Mycobacterium tuberculosis

5367
Klebsiella pneumoniae

2493

Pseudomonas aeruginosa

2427

Acinetobacter baumannii

2327

Listeria monocytogenes

1512

Mycobacterium abscessus

1411

Campylobacter jejuni

1080

Figure 1.7: Bacterial species with more than 1,000 genomes sequenced in RefSeq.
The pie chart showing the relative proportions of bacteria. Bacterial species
names and numbers of sequenced genomes are shown.

In a genome sequencing project, the DNA of the target organism is broken up

into millions of small pieces and processed on a sequencing machine. The

resulting pieces of genomic informations are called reads, and depending on

the sequencing technology can vary in length from few tens of bp to hundreds

of thousands bp. Genome assembly is a process by which a large number of

these reads are assembled back together in order to create a representation

of the chromosome from which the DNA originated. In contrast to mapping,

genome assembly assumes not prior knowledge of the genome structure and
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composition.

The goal of a sequence assembler is to find overlaps and produce long con-

tiguous pieces of sequence (contigs) from these reads. There are different

ways to approach assembly, one of which is de Bruijn graph are described

below as this strategy is implemented in the assembler used throughout this

work (Spades [85]). The de Bruijn graph method of sequence assembly has its

roots in Pevzner theoretical work from the late 1980s that studied the problem

of reconstructing a genome sequence when only its set of constituent k-mers

is known [86].

To construct the de Bruijn graph, each genomic read is broken into a sequence

of overlapping k-mers. The distinct k-mers are added as vertices to the graph,

and k-mers that originate from adjacent positions in a read are linked by an

edge (see Figure 1.8). Then a path through the graph that visits each edge in

the graph once - an Eulerian path - needs to be found. In practice, sequenc-

ing errors and sampling biases obscure the graph, so a complete Eulerian tour

through the entire graph is typically not sought [? ] [87]. Even when an Eulerian

path through the entire graph can be found, it is unlikely to reflect an accurate

sequence of the genome because of the presence of repeats, as there are a

potentially exponential number of Eulerian traversals of the graph, only one of
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which is correct [88]. In most instances, the assembler attempts to construct

contigs consisting of the unambiguous, unbranching regions of the graph.

The choice of length of kmears affects the construction of the de Bruijn graph.

Smaller values of k collapse more repeats together, making the graph more

tangled. Larger values of k may fail to detect overlaps between reads, par-

ticularly in low coverage regions, making the graph more fragmented. Ideally,

one should use smaller values of k in low-coverage regions (to reduce frag-

mentation) and larger values of k in high-coverage regions (to reduce repeat

collapsing). Spades uses multi sized de Bruijn graph that minimise the above

mentioned problems however not fully overcome them, and as a result the as-

sembly for E coli and STm are fragmented with average number of contigs per

genome 80. See 3.1.

Figure 1.8: Schematic representation of de Bruijn graph. Edges (kmears) of the size 4
form vertexes of the size 3. The path can be read both ways (denoted by arrows)
Adapted from [85]
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A solution to the higly fragmented assembly is to produce longer reads. Third

generation sequencing also known as single molecule real time sequencing

(SMRT) done by companies such as Pacific Biosciences (PacBio) [89] and Ox-

ford Nanopore Technologies (ONT) can produce much longer reads, however

with much higher error rate. Compare PacBio: mean length = 10 kilobases, er-

rors = 10%-15%; ONT: mean length = 2 kilobases, errors 65%-88%, Illumina:

mean length = 150 bases, errors < 2%. However, PacBio errors are distributed

randomly, and as the technology now allows to sequence each strand of DNA

multiple times (a pass), then when the number of passes is higher than 15,

PacBio can show a extraordinary sequencing accuracy of 99.9% that is even

greater than the ’Gold standard’ Sanger technology. However, the cost of the

genome sequencing by PacBio remains relatively high, limiting its use on a

massive scale [90]. Nevertheless, long read technology was successfully used

to define and compare integrated phages in EHEC [91]. All these sequencing

advances are due to our better understanding of DNA (chemical and func-

tional).

With the rapid increase in the number of sequenced genomes analysed, it

has become evident that many approaches that worked for smaller datasets

are inappropriate for large datasets. For example, whole genome multiple se-

quence alignments or building of core genome phylogenetic trees becomes

very time and resources consuming, and therefore there is a need for develop-
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ment of new better approaches and/or algorithms as well as further advances

in computing capacities. Our computers can now store 10,000 times more in-

formation compared to when the first bacterial genome was sequenced; they

can perform a quadrillion (1015) calculations each second and we are building

even bigger computers that aim to operate fifty times faster than is currently

achieved https://exascaleproject.org/.

Nevertheless, bacterial sequencing technologies are improving faster than com-

putational capabilities and today the reality is that analysing 20,000 bacterial

genomes with approximately 5,000 genes per genome, in an all vs all protein

comparison would take 4 months at the rate of a billion billion comparisons per

second [92]. Building of core SNPs Maximum Likelihood tree from this work

(see Figure 3.4) took 27 days at the Cloud Infrastructure for Microbial Bioinfor-

matics (CLIMB) [93] instance with 64 GB RAM and 12 CPUs.

The quantity of data also brings new requirements for visualisation: static ways

to illustrate work are often no longer able to convey the complexity and gran-

ular detail of the data and fail to visualise the details necessary. To illustrate

this point, one can compare a phylogenetic tree with 10 leaves vs 959 leaves

(Figure 3.4), both printed on A4 format paper. Visualisation tools need to be

quick and scalable in many directions: allow the user to quickly zoom in and
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out; for example from a whole bacterial genome view to a specific 20 bp region.

Ideally, the user could then zoom out for a view of thousands of genomes as

well as then focus into a specific one from the dataset. Many such programs

including visualising raw sequence data and visualisation, browsing and com-

parison of whole genome sequences have been developed recently [94].

A few new programs that allow for interactive visualisation and integration of

different types of metadata are also becoming available:

• iTOL: Interactive tree of life

https://itol.embl.de/

• Microreact: a Hierarchical and Geographical Analysis Tool

https://microreact.org/showcase

• Phandango: an Interactive visualisation of genome phylogenies

https://jameshadfield.github.io/phandango/

Even with such wonderful tools, a challenge still exists, for example, visualisa-

tion of the results from a ’thousand genomes project’ for a publication is an act

of pure creativity that involves not only out of ordinary thinking but excellent

programming skills that allow implementation and the execution of the ideas.

Another logical and ongoing change is how we publish our research. Many
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journals still expect that authors will supply their data in the form of spread-

sheets, which over submission will be converted into pdfs. This ridiculous prac-

tice should stop, as such spreadsheets nowadays contain gigabytes (GB) of

data that becomes virtually unusable as soon as they are converted into PDF.

It also should be accepted that some details of research will be visualised not

as a static pictures but with links provided to external resources, such as those

from the previous paragraph.

In summary, over the last 20 years we have witnessed extraordinary changes in

sequencing, computing, data management and data analysis. An exponential

increase of the sequenced data has led to quick turnover of new software, as

well as methods and tools in order to find new ways to interact and analyse

complex multidimensional data.

1.3 Machine learning

Machine learning (ML) is a broad term referring to a class of algorithms that

allows computers to ’learn’ from experience, essentially enabling an algorithm

to improve its predictive ability as it becomes exposed to data. In 1959, Arthur

Samuel [95] defined machine learning as ’the ability to learn without being ex-

plicitly programmed’. ML applications in everyday life are diverse, from spam
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filters to face recognition in airport security systems and targeted advertise-

ment in your web-browser. ML shows promise not only in social and economic

disciplines, but in the science and medicine arenas as well. ML is used in an-

notation pipelines such as Prodigal [96] as well as in skin cancer classification

[97]. The Royal Society have recently pointed out importance of open frame-

works, data and polices for successful advances of ML in the UK. [98].

An exponential increase of available datasets due to democratisation of se-

quencing has added to the captured complexity and understood natural het-

erogeneity of biological systems, which cannot be fully analysed with simplistic

models and require: a) robust and easy to access databases that allow rapid

data assessment and data feature retrieval; b) Development of machine learn-

ing models that can handle multi-dimensionallity. In biology, some models have

already been implemented, e.g, for predicting macromolecule structure [99],

tumour classification [100] [97], reconstruction of gene networks [101] and vir-

tual drug discovery [102]. In bacterial genomics they have been applied to

predict antibiotic resistance [103], solubility of recombinant proteins [104], and

in clarification of taxonomic issues [105].

ML uses predictive analysis to identify patterns and hidden information on ob-

served data without being explicitly programmed to do so. ML algorithms can
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be divided into two main categories: supervised learning and unsupervised

learning. uML attempts to automatically assign data to a number of groups,

while supervised learning requires data that is already labelled in two or more

groups. Unsupervised learning algorithms look for similarities/differences in

data that were not previously labelled, trying to automatically classify them in

independent groups. It is often used for initial data exploration, as no prior

knowledge of the data structure is required. It is also easier to implement, as

there are generally less parameters available to choose from. Another point

in favour of unsupervised learning is that labelled data required for supervised

learning is ’expensive’ and often difficult to obtain, which is not required to run

an unsupervised learning algorithm. For example, in public databases contain-

ing microbial genome sequences, information on the host of isolation is rela-

tively rare and sometimes unspecific or incoherent (e.g., the label ’livestock’ is

sometimes employed, when a more detailed label would be necessary, requir-

ing to manually relabel the data). Notwithstanding, the results of unsupervised

ML can sometimes be hard to interpret, as the clustering can include features

of little relevance for the subject of study.

With a number of clusters that should be defined a priori, uML would separate

data starting with more obvious, dominant features. It is an excellent approach

to explore data, however it could be an impractical choice when searching for

particular answers that are based on subtle differences.
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When the data is labelled, it is possible to use a class of more powerful algo-

rithms based on supervised ML. The process by which a supervised algorithm

is able to build a prediction is known as ’training’ (see Figure 1.9). Once an al-

gorithm has been trained on data, it is possible to apply the prediction to new,

unseen data. The quality of a supervised algorithm depends on the type and

amount of data, the number of features and the algorithm itself. If a learning

algorithm is unable to perform a good prediction, this may be due to the lack of

features to fit the data (underfitting), meaning that the model lacks complexity

to describe the underlying data (low bias). The opposite may happen as well,

when the model is overly complex and is thus able to describe very accurately

the training data. Despite having a very small error on the training dataset,

predictions performed on new data can be poor, and the algorithm is said to be

overfitting.

The main algorithms that proved to work well with bacterial data to answer

host quetions are Support Vector Machines (SVM) [106], Random Forest (RF)

[107] and Neural Network (NN) [108]. SVM is a supervised learning algorithm

that works by maximizing the margin (separation) between two sets of labelled

data. It can naturally prevent overfitting, as the algorithm works my maximizing

the margin between the two sets. SVM works well in the presence of many fea-
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Figure 1.9: Simplified, linear ML classification example. A The simple dataset that
consist of two classes and can be described by only 2 features represent here
a training dataset. B During the training the rules of classification is calculated
and decision boundary, here represented by line, are drown between 2 classes.
C At the next stage, the new unseen before data can be introduced (stars) and
predicted with higher or lower probabilities to belong to one of the classes.
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tures, but training process can be computationally expensive. Once the training

is done, it is easy to calculate predictions for new data. Some advantages of

SVMs: High accuracy, nice theoretical guarantees regarding overfitting, and

with an appropriate kernel that can work well even if the data is not linearly

separable in the base feature space. Especially popular in text classification

problems where very high-dimensional spaces are the norm; memory-intense,

hard to interpret, and it may be difficult to execute and tune.

RF works by using decision trees generated with a random number of features,

circumventing the overfitting that is usually seen when using regular decision

trees. RF averages the results of these distinct decision trees, thus reducing

the variance at the cost of bias.

Neural networks use an array (or layer) of ’neurons’ which are able to apply and

combine operations between a number of features with different weights. It is

possible to create and model several of these layers in order to improve the ac-

curacy of the algorithm at the expense of computational power. The algorithm

is trained by finding the weights for each layer that maximize the prediction of

the training dataset. Neural networks usually require large datasets and can

be hard to find the right architecture to tackle a problem, but allow to solve very

complex problems, for example in computer vision and robotics.
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The major part of this thesis relies on machine learning classification that has

been applied to identify ’host of isolation’ for Salmonella serovar Typhimirium

and Escherichia coli in Chapter 3.2, quantify zoonotic potential of a specific

bacterial subgroup - E. coli serovar O157 in Chapter 3.3 and to see what pat-

terns become dominant when different ML algorithms are applied to the same

dataset in Chapter 3.4.
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Chapter 2

Methods
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Data

To distinguish between sub-datasets the following abbreviations are used: A -

avian, B - bovine, C - canine, E - environmental, H - human, S - swine. Words

’sub-group’ and ’sub-dataset’ in this work mean a group of strains related by

a host. The Escherichia coli dataset from multiple hosts was composed of

all sequenced isolates in the possession of the group from previous projects

and through collaboration, thus it is unbalanced in terms of host sources. The

Escherichia coli dataset is publicly available as stated in [109]. The O157

Escherichia coli dataset is composed from UK and USA isolates from bovine

host as well as clinical human isolates and is publicly available [110]. The

Escherichia coli data were received in Illumina 1.9, paired-end, fastq format

[111]. Raw reads vary in length from 32 to 251 bp. FastQC [112] was used to

perform quality control, revealing that majority of data were good quality and

did not need any further trimming. All datasets were checked for the pres-

ence of adaptors and some of the datasets (UK O157) were trimmed with

cutadatp [113]. The Salmonella enterica dataset was downloaded from Enter-

obase [62] in form of draft genomes with number of contigs varied from 51 to

364. Salmonella dataset IDs and other metadata are published [114].
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Assemblies

SPAdes [85] was used to assemble Illumina read sequences. After bench-

marking a variety of options it was clear that better results are produced when

a built-in error corrector is used instead of the recommended QUAKE [115]

error corrector. To control mismatches and indels ’careful’ flag proved to pro-

duce better results. Quality of assemblies were evaluated with QUAST soft-

ware [116] - Quality Assessment Tool for Genome Assemblies. A wide range

of statistical data from QUAST output for all assemblies were compiled into a

spreadsheet describing assemblies in different parameters such as length of

assembly, number and length of contigs, GC%, N metrics (N25, N50, N75),

misassemblies report, number of Ns per 100kbp, gene statistics (unique, du-

plicated, genes larger than certain threshold).

Annotation

Annotation was carried out with PROKKA [117] - a prokaryotic genome annota-

tion software. To achieve a better quality of annotation, a database with trusted

proteins were gathered from reference quality E. coli genomes from NCBI. Use

of custome database dramatically improved annotation and decreased number

of ’hypothetical proteins’. For details refer to appendix 4.
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Phylogenetic analysis

Maximum likelihood (ML) trees were constructed using RAxML [118]. To op-

timise the best tree search program was run with 500 rapid bootstrap (BS)

followed by a slow Maximum Likelihood (ML) search under the GTRGAMMA

model of heterogeneity.

To reconstruct phylogenetic relationships two separate approaches were used:

one is based on the core genes and other is based on the pangenome. For

core phylogeny core proteins present in 95% isolates were extracted from all

sequences, aligned with MUSCLE, translated to nucleic acid and submitted

to RAxML with parameters described above. The pangenome trees were ex-

tracted from ROARY output [119].

Typing schemes

The phylotyping described by [120] was used as a starting point to develop

a small program that assigns each strain to the one of the 4 original possi-

ble phylogroups (A, B1, B2, D) based on the presence or absence of 4 genes:

chuA, yjaA, TspE4.C2, arpA. To further distinguish between groups and assign

strains to an additional 4 phylogroups (C, E, F, cryptic clade I) it was necessary

to check for the presence of a fifth gene trpA and/or distinguish the specific

alleles for the above genes. After performing all steps each E. coli sequence
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were assigned to one of eight possible phylogroups.

To extract gene fragments from the genomes, a database that includes all se-

quences from the collection were build with BLAST+ [121]. The reference qual-

ity sequences for querying genes were downloaded from the NCBI website

and blasted against E. coli dataset with -max_target_seqs 1 parameter. The

hit was considered positive when sequence length were covered < 90% with

sequence similarity 99%.

MLST analysis was performed with SRST2 software [122] when short reads

were available (E. coli dataset) and with MLST software developed by Torsten

Seemann (unpublished, https://github.com/tseemann/mlst)

when analysing Salmonella dataset.

Serotyping was performed using command line blast [121] with curated alleles

databse from SerotypeFinder gene databases [123].

Multiple gene alignment as for MLST, phylogroups, 16S rRNA phylogeny was

carried out using MUSCLE [124]. Alignments were visualised with Geneious

[125].
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Protein clustering

First clustering results were obtained from Get_homologues [126] software.

However, Get_homologues could not be scaled up for a larger dataset. See

details in the Appendix 4. New software for clustering, Roary [119] was identi-

fied later on, and demonstrated promising speed and accuracy. The software

takes as its input protein sequences extracted from .gff files from a PROKKA

output. Different settings were trailed and for this work cut off for the assign-

ment to the same cluster was set 95% of similarity at the amino acid level. To

assign paralogs Roary uses synteny information of the nearest 5 genes both

side from the gene in question. Due to draft quality of the assemblies it was

decided not to split paralogs as this option originates many false positive new

clusters, that is due to fact that the genes being on the ends of the contigs.

The computation for this work was performed on the HPC ’Eddie’ facility from

The University of Edinburgh and on CLIMB [93]. Data visualisation was done

using R [127] and iTOL [19].

Other methods

Benchmarking of different methods and pipelines are described in the first year

report 4. Any other methods are included in relevant chapter’s methods sec-

tions or within papers.
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Chapter 3

Results
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3.1 Core genes phylogeny and analysis based on

in silico typing schemes.

3.1.1 Introduction

There are three separate components in this chapter: 1) 1st year report in

the appendix 4 ; 2) a published paper [109] (bounded); and ’core’ analysis

described below on a Chapter 3.2.

The first year report (see appendix 4) describes the work that was carried out

during 1st year of this PhD and mainly addresses problems such as quality as-

sessment of short Illumina reads, improvement of assemblies and annotation,

outliers and in silico species classification based on sequence similarity: ANI

calculator, 16S phylogeny, core genes similarity and some preliminary work on

pangenome. Moreover, at that time only the E. coli dataset was available. As

such, the work only superficially touched the main host question, therefore to

maintain coherence of the thesis it was decided to omit that work from the main

body of text.

Another work that forms part of the first chapter is a paper that is published as

joined first authorship with my colleague, former PhD student Geoffrey Mainda

[109]. My contribution to the paper ’Phylogenomic approaches to determine
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the zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) iso-

lated from Zambian dairy cattle’ was all the bioinformatics analyses starting

from short read quality assessment, all the way through to reference genome

mapping, development of bioinformatics pipelines for phylo- and serotype, phy-

logenetic tree building, interpretation and visualisation of results as well as writ-

ing and editing the paper.

The third component of this chapter describes and quantifies host associations

that can be found based on typical typing schemes (MLST, serotype and phy-

logroup (phylogroup only for E. coli.) as well as core SNPs phylogeny. Strictly

speaking, only MLST and core SNP phylogeny are core-genome analyses,

while sero- and phylo-typing are looking not only to variation between specific

genetics segments but also take into account presence or absence of some

of the fragments, therefore not a strictly ’core’. These methods can still be

regarded as ’typical’ microbial genomics analysis [128].

Classical serological typing of E. coli is based on the O, H, and K surface

antigens, first described by Kauffman in the 1940s and developed by Frits and

Orskov, who made seminal contributions to E. coli typing. The O antigen forms

part of the E. coli lipopolysaccharide (LPS) with over 180 different types; usu-

ally fliC gene encoding antigen of type H, which is the major part of flagella (53

antigenic types) and K relating to the capsular polysaccharide (CPS) which is
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a thick, mucous-like layer of polysaccharide that surrounds some E. coli (>80

types). These antigens can be present in any combination, leading to an enor-

mous number of strains that differ in their immunological profile. No strong

association between serotype and host can be found except Shigella, that is

known to be a specific human pathogen and to date was isolated only from hu-

mans and primates. Serogroup O55:H7 also seems to be restricted to human,

however the number of isolates is still small: so in Enterobase there is 67 E.

coli O55:H7 isolates and all from human host, 14 other O55 marked as envi-

ronmental or food, however these contain different H antigenes. Nevertheless,

it is known that some E. coli are more often associated with human disease

(i.e shiga-toxin producing E. coli O157, O26:H11, O145:H28, O131).

Salmonella enterica can also be serotyped using the above antigens, as com-

binations of antigens differ between serovars. STm would contain O and H,

while S. serovar Typhi and S. serovar Dublin would in addition contain cap-

sular antigen. Even though by knowing Salmonella enterica serovar one can

make some conclusions about its host (i.e. host restricted and host adapted

serovars), combinations of antigens in Salmonella are not restricted to host.

For example, serovar Typhi (only human pathogen) and Dublin (bovine, ovine),

both contain all three antigens.
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The major argument in favour of the theory that not any strain will acquire any

virulence factor is the evidence of division of E. coli into phylogroups. Based on

multi-locus enzyme electrophoresis (MLEE), Ochman and Selander [49] gath-

ered a collection of 72 isolates from different mammalian hosts to represent

the diversity of E. coli [25]. They noted that a small number of core genes can

be used to organise E. coli into phylogroups. Importantly, certain phylogroups

are known to contain the majority of strains that are pathogenic in humans (B2

and D) while others are known to contain many animal and human commen-

sals (A and B1). This indicates that there are core lineage differences in the

evolution of virulent strains arguing against the idea that acquisition of key vir-

ulence factors into ’any’ background can produce a pathogen. As such it is a

much more complex issue trying to determine which strains might emerge as

significant pathogens by simple acquisition.

There is very limited evidence that phylogroup is associated with the host ex-

cept a recent publication [129] in which a collection of 391 E.coli isolates from

3 hosts was phylogrouped and there was a statistically significant association

of phylogroups A and F with poultry, B1 and E were associated with cattle

and B2 and D with water buffalo. Study of water [130] isolates showed that

these were of mixed origin but mostly from A and B1 phylogroups, with ration

changes between these two phylogroups between dry and wet periods [130].

Stable number of isolates from B1 phylogrops over the year can indicate water
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adaptation of B1 phylogroup.

Rather than focusing solely on virulence, the primary aim of the research pro-

posed here is to ascertain if it is possible to predict the likely ’source’ of an

E. coli and STm isolate based on its WGS. The hypothesis underlying this re-

search is that bacterial strains have evolved to replicate optimally in a specific

environment. This does not preclude replicating and being ’successful’ in mul-

tiple environments, but that each strain has an optimum niche. Extrapolating

from this, it is likely that certain strains may have a more generic capacity to

succeed in multiple environments than others based on their ’primary’ habitat.

These generalists may have an increased capacity to transfer between animal

species and, depending on the factors they express, pose a zoonotic threat.

3.1.2 Results

The isolate sequence collection grew during the thesis research. The final col-

lection is summarised in Figure 3.1. The STm dataset is more balanced than

the E. coli, with an average of 300 isolates from each host (avian, bovine, hu-

man and swine). The E. coli dataset was more diverse in terms of host (avian,

bovine, canine, environmental, human and swine), however it was dominated

by human and bovine isolates. The environmental strains were isolated from
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plants and plant roots from a specific field with no known livestock passage

over the last 10 years. The metadata available for both datasets can be viewed

at http://itol.embl.de/shared/nlupolova.

In this chapter, ’classical’ core analysis was applied to Salmonella and E. coli

isolate sequences, mainly focusing on one primary question: whether any typ-

ing schemes could be associated with a host?

3.1.2.1 Phylogenetic analysis

The core genes that are present in 95% of isolates were extracted, concate-

nated and used to reconstruct phylogenetic relationship for both E. coli and

STm. STm phylogeny is presented in Figure 3.3 and Figure 3.5. Overall the

tree is divided into 2 main mixed clusters (see vertical tree Figure 3.5 I and II

or top and bottom clusters respectively). The diversity of the strains in the top

cluster is much higher than in any other part of the tree (note branch length).

This top cluster is dominated by very diverse human isolates (n=119, 35% of

all STm human isolates) and a much less diverse tight cluster of bovine iso-

lates (72 isolates 32% of all STm bovine isolates). The middle section of the

top cluster is occupied by mixed isolates from bovine (n=32), avian (n=32) and

swine (n=17) hosts.
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Figure 3.1: Host distribution in S. Typhimurium (top) E. coli (bottom) datasets. The
number of genomes (y-axis) isolated from a specific host are shown. S. Ty-
phimurium was isolated from 4 hosts: avian (yellow), bovine (red), human (blue),
swine( pink). E. coli was isolated from 6 hosts/sources avian (yellow), bovine
(red), human (blue), swine (pink) canine (brown) and environmental (green).
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The II (bottom) cluster is formed from 2 sub-clusters, one composed almost ex-

clusively from 2 ’pure’ host clusters human (115 isolates, 34%) and the biggest

on the tree is an avian cluster with 225 isolates, 72% of all avian isolates. The

remaining section of the tree is composed of clusters of mixed origin with the

majority of the swine isolates (212, 83%), bovine (183, 61%), some human 66

isolates (20%) and only 9 avian isolates.

The E. coli phylogenetic tree (Figures 3.1,3.6) is much more diverse than STm,

in part relating to the species vs serovar difference noted earlier and that the

E. coli collection is composed of isolates from more hosts/sources. The ma-

jority of the isolates are found in separate branches with considerable length.

Comparing an average branch length from both genera: for the STm tree this

was 0.0002 and for E. coli this was 0.013 (100 times longer). The E. coli phy-

logenetic tree therefore demonstrates the much greater diversity than STm.

There were only 13 E. coli sequences with identical patterns and only some

of the isolates formed clonal clusters. One of these was the O157 cluster (25

isolates) which was expected to cluster apart. Other clusters were 5 ’pure’

almost clonal human clusters that were situated in different parts of the tree

and contained from 14 to 28 isolates. There were 3 tight bovine clusters, two

of which contained 20 isolates and one 39. However 2 of the bovine clusters

contained isolates from other hosts (3 human, 1 swine and 1 environmental)

but the branch length for other hosts was the same as for the bovine isolates
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in these clusters.

Isolates apart from the subsets from human and bovine hosts did not cluster

together and are spread all over the tree.

3.1.2.2 Phylogroups

Phylotyping was performed in silico for all E. coli isolates. 31 sequences failed

to be assigned to any phylogroup. The failure is likely to be due to assembly

failures as the specific genes were searched from de novo assemblies. Nev-

ertheless, the proportion of bioinformatically detected phylogroups was still

higher than the proportion of assigned strains using PCR. For 40 Zambian

strains on which PCR based typing was performed, 2 were untypable, while in

silico all of these strains were assigned to one or other phylogroup. There is

also high consistency between PCR and in silico phylotyping.

There are 16 possible combinations of variants that allow the assignment to 8

different phylogroups. Only 12 combinations were detected previously [120].

In our collection, all 16 combinations were detected.

Phylogroups fit well with core SNP based cluster divisions (Figure 3.2). How-

ever, there were some inconsistencies: the most interspersed were the A and

C groups, both belonging to the same big cluster. A small number (21 isolates
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Figure 3.2: Phylogroups distribution of E. coli isolates. Colours represent
hosts/sources: avian (yellow), bovine (red), human (blue), swine (pink), canine
(brown) and environmental (green).
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of the mixed origin) of phylogroup C were found in the B1 cluster. B1 is the

largest phylogroup containing 442 isolates (A = 11, B = 222, C = 9, E = 15, H

= 156, S = 29), 128 isolates were in group C (A = 20, B = 18, C = 13, E = 1,

H = 66, S = 10). Phylogroup B2 had 109 isolates (A = 19, B = 10, C = 15, E =

6, H = 52, S = 7 ) and phylogroup A 99 isolates (A = 17, B = 18 , C = 2, E =

1, H = 53 , S = 8 ). Phylogroup E had 83 isolates (A = 4, B = 35, C = 0 , E =

5, H = 34, S = 5) and phylogroup D 36 isolates (A = 7, B = 6, C = 3, E = 3, H

= 14, S = 3). All others isolates formed three small groups: phylogroup F had

21 isolates (A = 2, B = 0, C = 0, E = 4, H = 15, S = 0), cryptic clades (total 13

isolates A = 1, B = 4, C = 3, E = 4, H = 1, S = 0 ) and unassigned 31 (A = 5, B

= 0 , C = 11, E = 0, H = 15, S = 0).

3.1.2.3 MLST

The MLST analyses were based on the 7 gene MLST scheme for both species.

The vast majority of the STm isolates were successfully assigned to a se-

quence type (ST) 1,196 out of 1,203. In total, 35 different ST types were

found in the STm dataset with heavy dominance of ST19 (n = 984, 82% of the

dataset) and the second and third most frequent were ST34 (n = 122, 10%)

and ST36 (n = 28, 2%) respectively. Distribution of ST by host was as follows:

11 STs in avian isolates, 15 in bovine, 14 in human, 14 in swine. ST19, as ex-

pected, was the dominant ST in all host subgroups but with significantly lower
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Figure 3.3: Maximum likelihood STm tree. The tree is based on core SNPs from
all STm isolates (n = 1,203). Outer ring represents the host distribution: avian
(yellow), bovine (red), human (blue), swine (pink).
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Figure 3.4: Maximum likelihood E. coli tree. The tree is based on core SNPs from
all E. coli isolates (n = 967). Outer ring represents the host distribution: avian
(yellow), bovine (red), human (blue), swine (pink), canine brown, environmental
(green).
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Tree scale: 0.001

I

II 

Figure 3.5: STm core ML tree, vertical, scaled. The tree is based on core SNPs from
all STm isolates (n = 1,203). Coloured bar represents the host distribution: avian
(yellow), bovine (red), human (blue), swine (pink).
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Figure 3.6: E. coli core ML tree, vertical, scaled. Coloured bar represents the host dis-
tribution: avian (yellow), bovine (red), human (blue), swine (pink), canine (brown),
environmental (green).
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prevalence in the human subgroup and slightly lower in swine (A = 95%, B =

95%, H = 55%, S = 86%) Apart from ST19, there were STs that were found

across multiple sub host groups.

• ST19: A, B, H, S

• ST34: A, H, S

• ST11: A, H, S

• ST32: A, B

• ST321: A, B

• ST98: A, H

• ST138: A, S

• ST13: B, H

• ST302: B, S

• ST213: H, S

The entries in Enterobase for ST19 were examined, which turned up 11,024

isolates in total of which 2,694 were Human isolates, 1,627 Avian, 779 Bovine,

564 Swine; the remainder had no designation. The next most abundant was

ST34 which was assigned to 3,832 isolates, broken down by host as follows:

29 Bovine, 44 Avian, 247 Swine, 2,074 Human. It is difficult to draw any con-

clusion from this number as database collection is biased by different studies.

Assigning ST for E. coli produced much more diverse results with the total

number of STs from 963 sequences being 260, 139 sequences were not as-
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signed to any ST. Only the top 5 STs had more than 20 isolates assigned to

them: ST10 = 58, ST17 = 28, ST33 = 27, ST442 = 24 and ST11 = 23. It is

difficult to deduce if any ST is associated with host as the groups are unequal

and small. For example, for the largest ST in the whole dataset which was

ST10, (n = 58) the distribution was: A = 12, 15%, B = 8, 3% E = 1, 3%, H = 31,

7.6% C = 5, 14% S = 1, 1.6%.

S

ST analysis was performed with all E. coli (47,590) sequences in Enterobase,

which were distributed into a total of 3,023 STs. However, almost half of these

had no information about the host assigned to them. After filtering sequences

without host and without ST information there were 18,823 sequences that

were assigned to a total of 1,902 STs (Figure 3.7, 3.8). Our collection only par-

tially reflected ST distribution in Enterobase where most abundant STs were

ST11 (the ST of the Sakai O157 strain), ST10 (ST of K12 strain), ST131 [131],

ST21, and ST17. The majority of the STs were skewed towards human sam-

pling, with some exceptions including ST10 for which the majority are labo-

ratory strains. Overall any given ST has a mixed host population of isolates;

human isolates can be found in any of these and it is extremely challenging to

come to the conclusion that any particular ST is associated with a particular

host. As with the example of ST131 for which the vast majority of the isolates

are of human origin but is it due to the fact that these bacteria have evolved

for a human host or due to the history of the research with this clone which is
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Figure 3.7: ST distribution of E. coli sequences form Eterobase. Size of the clusters
are reflecting number of isolates. The Enetrobase is dominated by 3 ST: ST11
(blue), ST10 (light blue), ST131 (orange).

mostly focused on human studies? [131]

3.1.2.4 Pan-core proportions

Core proteins were extracted by clustering all proteins from all isolates using

95% sequence similarity and 95% inclusion (i.e a protein should be present
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Figure 3.8: Host distribution within the the most abundant ST of E. coli sequences
form Enterobase. The tree is clustered the same way as in the Figure ??, but
coloured by host. Human isolates (blue) can be found in all ST, but in different
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in at least 95% isolates) as the threshold. As these predicted proteins were

translated from predicted genes, the terms genes and proteins are used inter-

changeably in this work as these were obtained by the same method (PROKKA

annotations). Adjustment of ’core’ inclusion strictness can be illustrated by the

following example: when core is ’to be present in 100% of isolates’ there were

1,991 core genes in STm dataset; with inclusion of 95% of isolates core = 3,991

genes. The average number of genes per STm genome was 4,626 gene per

isolate. For E. coli, only 446 genes were found to be present in 100% of iso-

lates but this number rapidly increased if the threshold was less strict, so at

95% inclusion there were 2,179 predicted core genes. The average number of

genes in an E. coli genome was 4,773 (see Figure 3.11).

The number of predicted core proteins in STm avian isolates was significantly

lower (z-test, p<0.0001) compared to all other STm hosts: A = 2,218, B =

3,054, H = 3,056, S = 3,065. On the other hand, the mean number of proteins

in sequences per host showed little variation: A = 4,632, B = 4,645, H = 4,573,

S = 4,636, but lowest in the human group. Thus, the proportion of shared pro-

teins was the smallest in the avian group (48%) and varied from 66 to 68% in

all others host subgroups.

For E. coli, the number of core proteins was: A = 1,615, B = 1,031, C = 1,433, E
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= 1,857, H = 803, S = 1,715, and the mean number of proteins per host group

was: A = 4,801, B = 4,743, C = 4,998, E = 4,656, H = 4,829, S = 4,563. As the

size of the groups varied dramatically, the analysis was also carried out with a

random set of 36 isolates to match the number of canine isolates as this was

the smallest group. The sampling procedure was repeated three times and

the results averaged. Even though by normalising we reduced the complexity

of the dataset, it gives an estimate of the core diversity by host group with

core proteins distributed as: A = 1,749, B = 2,130, C = 1,433, E = 1,870, H =

1,956, S = 1,934 and the mean total proteins was A = 4,752, B = 4,797, C =

4,998, E = 4,674, H = 4,893, S = 4,527. Therefore, subsampling also indicated

that the canine group is significantly different, with a much smaller core than

all other subgroups (only 28% of all genes was shared between all canine

isolates), followed by avian (36%), and then all others with core proportion

variation being from 40% in human to 44% in bovine.

Overall, the proportions of core proteins was lower for E. coli, but it must be

noted that the Salmonella isolates where represented by a single serovar, while

the E. coli dataset is quite diverse.
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3.1.3 Published work: Phylogenomic approaches to deter-

mine the zoonotic potential of Shiga toxin-producing

Escherichia coli (STEC) isolated from Zambian dairy

cattle
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Phylogenomic approaches to 
determine the zoonotic potential of 
Shiga toxin-producing Escherichia 
coli (STEC) isolated from Zambian 
dairy cattle
Geoffrey Mainda1,2,*, Nadejda Lupolova1,*, Linda Sikakwa3, Paul R. Bessell1, John B. Muma3, 
Deborah V. Hoyle1, Sean P. McAteer1, Kirsty Gibbs4, Nicola J. Williams4, Samuel K. Sheppard5, 
Roberto M. La Ragione6, Guido Cordoni6, Sally A. Argyle1, Sam Wagner1, Margo E. Chase-
Topping7, Timothy J. Dallman8, Mark P. Stevens1, Barend M. deC. Bronsvoort1 & 
David L. Gally1

This study assessed the prevalence and zoonotic potential of Shiga toxin-producing Escherichia coli 
(STEC) sampled from 104 dairy units in the central region of Zambia and compared these with isolates 
from patients presenting with diarrhoea in the same region. A subset of 297 E. coli strains were 
sequenced allowing in silico analyses of phylo- and sero-groups. The majority of the bovine strains 
clustered in the B1 ‘commensal’ phylogroup (67%) and included a diverse array of serogroups. 11% 
(41/371) of the isolates from Zambian dairy cattle contained Shiga toxin genes (stx) while none (0/73) 
of the human isolates were positive. While the toxicity of a subset of these isolates was demonstrated, 
none of the randomly selected STEC belonged to key serogroups associated with human disease and 
none encoded a type 3 secretion system synonymous with typical enterohaemorrhagic strains. Positive 
selection for E. coli O157:H7 across the farms identified only one positive isolate again indicating this 
serotype is rare in these animals. In summary, while Stx-encoding E. coli strains are common in this 
dairy population, the majority of these strains are unlikely to cause disease in humans. However, the 
threat remains of the emergence of strains virulent to humans from this reservoir.

Shiga toxigenic Escherichia coli (STEC) are emerging pathogens of public health concern worldwide, including 
in Europe, North and South America and Asia1,2. Ruminants, in particular cattle, have been identified as the pre-
dominant reservoir of STEC3,4, indicating that the bacteriophage-encoded Shiga toxins (Stx) are likely to confer 
an advantage to E. coli in these host animals. In Africa there is little information on the epidemiology of STEC in 
livestock systems and their impact on human health1. It is evident that only a subset of STEC are a serious threat 
to human health, these enterohaemorrhagic E. coli (EHEC) are associated with specific serogroups in particular 
the seven that have been defined as adulterants in beef production in the USA, O157, O26, O111, O45, O145, 
O103, O1215,6. Similar serotypes, especially O157 & O26 are also an issue in Europe. Typical EHEC strains can 
be further characterised by possession of a type 3 secretion system (T3SS) that enables colonisation of the gastro-
intestinal tract7. EHEC infections in humans are associated with diarrhoea and bloody diarrhoea, with the more 
serious sequelae of kidney and brain damage due to activity of Stx on the microvasculature in these organs4,8.

The cost of whole genome sequencing (WGS) has drastically reduced and it is now possible to sequence large 
numbers of isolates and use bioinformatics approaches to extract strain relatedness and gene carriage data. For 
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E. coli, strains have classically been assigned into phylogroups that provide a good correlation with commensal 
versus pathogenic strains9. The phylogroups are based on particular combinations of specific genes and can be 
assigned from the WGS. Whole genome core SNP analysis to define strain relatedness is now commonly used and 
provides greater resolution than MLST10. In addition the serogroup, the O-chain of LPS, can also be inferred from 
their genetic determinants using WGS. The WGS of any strain collection is therefore a valuable resource allowing 
relatively rapid comparison of phylogeny and pathogenic potential.

Both small holding and large-scale dairy farming is important to the economic survival of communities in 
many developing nations, including Zambia11,12. As such, it is important to understand if practices on these units 
and their products may represent a threat to human health and where such risks exist suggest possible mitigation 
measures. A study has recently been carried out to sample E. coli strains from cattle across small, medium and 
large-scale (commercial) dairy farms in central Zambia, with the primary aim of understanding antibiotic use and 
antimicrobial resistance patterns in this sector13.

These isolates have now been further analysed in the present study for stx prevalence and any association with 
the farming system. In addition, E. coli isolates from patients with diarrhoea were also screened and sequenced to 
determine evidence of relationship to the bovine strains.

Results
Detection of Shiga toxin alleles (stx1 and stx2) in isolates from Zambian dairy cattle and 
humans.  Eleven percent (41/371) of the bovine E. coli isolates were positive for the presence of Shiga toxin 
genes as defined by detection of appropriately sized PCR amplification products using an established stx mul-
tiplex assay14. Based on this, both stx1 and stx2 were detected in 54% (22/41) of the STEC, while 37% (15/41) 
had stx2 only and 10% (4/41) had stx1 only. Using this data, the overall adjusted prevalence of STEC across 
the different farming scales for the central Zambian study area can be estimated at 6% (95% CI: 2.5–10.2). The 
adjusted prevalence per farming scale was higher in medium-scale 17.1% (95% CI: 5.9–28.2) and small-scale 
10.6% (95% CI: 6.6–14.5) farms when compared to the commercial farms 2.8% (95% CI: 0.3–6.0). Based on these 
ranges, there is a significant difference in estimated prevalence between the small and commercial scales. Logistic 
regression indicates that medium- and small-scale farming are significant risk factors for Shiga toxin producing 
E. coli (STEC) with commercial as a reference (Table 1). Out of the 73 E. coli isolates from human patients with 
diarrhoea for which good quality sequence information was generated, no Shiga toxin genes were detected.

As an additional investigation, the enrichment cultures for all the animals (n =​ 371) were streaked onto sorb-
itol MacConkey agar plates and any non-sorbitol fermenting colonies tested for O157 agglutination. Only one 
animal yielded a positive strain (ZB-2213N0194) and this was then added to the study.

Phylogenetics.  In order to understand the genetic backgrounds of the STEC strains isolated in this study, 
including their potential threat to human health, their relationship to other human disease-associated EHEC were 
tested by phylogenetic methods. The WGS of 297 of the Zambian isolates (224 bovine and 73 human) were deter-
mined. This included 41 STEC, 37 of the 41 defined as stx+​ by PCR from main study, three STEC strains from a 
pilot study and the single positively selected E. coli O157 strain. These were compared with 262 E. coli sequences 
from human, cattle, avian and canine hosts; one hundred and twenty nine strains in this second collection were 
human clinical STEC isolates (see Supplementary Table 1).

Alignment to a reference genome (E. coli O157:H7 str. Sakai, RefSeq assembly accession: GCF_000008865) 
resulted in 715,632 core positions with 68,327 single nucleotide polymorphism (SNPs) across all 559 sequences. 
A maximum likelihood phylogeny revealed the population structure of the E. coli strains (Fig. 1). While there 
was no clear clustering of the strains based on geographical location or host, there was, as anticipated, good cor-
relation with established E. coli phylogroups, with only minor discordance. All possible phylogroups and cryptic 
clades were identified, however the majority of the E. coli strains (97%) were distributed across 5 phylogroups 
(Fig. 1).

The Zambian bovine strains (n =​ 224) predominately associated with the B1 ‘commensal’ cluster (67%) with 
the remainder present as: A (9%); B2 (4%); C (8%); D (9%); other (3%). By contrast, the Zambian human strains 
(n =​ 73) had equivalent representation across the 5 main phylogroups: A (22%); B1 (19%); B2 (16%); C (22%); 
D (16%); other (5%). The Zambian cattle STEC strains were also predominately in the B1 phylogroup (27/41).

Serotyping.  The majority of EHEC strains that are a threat to human health are associated with 7 specific 
serogroups. A bioinformatic approach was used to serotype the sequenced strains. H typing was possible for 
550/559 strains and O-typing for 483/559 (summarized in Supplementary Tables 3 and 4). Failure to detect spe-
cific genes in some of the strains was most likely due to assembly issues with short read sequences.

With the exception of the positively selected E. coli O157 strain, none of the Zambian bovine STEC strains 
(0/40) were assigned to any of these seven serogroups. In fact, only 3 strains across the whole set of cattle isolates 
could be assigned within these serogroups (ZB-244; serogroup O45 and ZB-2213N0112; serogroup O111 and 
ZB-2213N0194; serogroup O157). Overall, the Zambian strains (cattle and human) exhibited an extensive array 

Farm type Estimate 95% CI P

Commercial 1 – –

Medium 7.05 1.76–28.28 0.007

Small 4.05 1.20–13.64 0.002

Table 1.   Farming type STEC risk analysis.
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Figure 1.  Phylogenetic context of Zambian isolates. The tree depicts the phylogenetic relationship of E. coli 
isolates from Zambia (bovine - red and human - blue) with other E. coli isolates (grey). The ML tree is based on 
core SNPs as described in Materials and Methods. The tree is un-rooted and grey circles on branches represent 
bootstrap values higher than 80. Vertical columns demonstrate: (1) Diversity of the sequence types (ST) based 
on MLST analysis where each colour represents a different ST; (2) Diversity of O-serogroups for which each 
colour represents a different group; (3) Phylogroups: A-yellow, B1-red, B2-blue, C-green, D-turquoise, E-pink, 
F-grey, cryptic clades-light green. The phylogroups are consistent with core SNP clustering with some minor 
discordance. White spaces on all columns indicate sequences that were untypable.
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of serogroups (Fig. 1 and Supplementary Table 4) and H:O combinations were unique for each strain with little 
clustering or association with established human clinical isolates (Fig. 2).

Toxicity analysis of stx+ strains.  To determine if the genotypically positive stx strains were able to express 
Stx, eighteen of the bovine STEC were examined for Vero cell cytotoxicity with and without mitomycin C (MMC) 
induction. 89% (16/18) of the MMC-induced STEC strains had a cytotoxic effect on Vero cells (Fig. 3). These 
samples were verified as Stx positive using a commercial ELISA (Fig. 3), with only one strain (4) exhibiting toxic-
ity on Vero cells without any detection of Stx by ELISA.

Shiga toxin subtyping.  Forty one STEC positive strains were included in the WGS analysis (Fig. 2) and 
from this stx alleles could be further subtyped using a published BLAST-based methodology15 (Supplementary 
Table 5). It was evident that the most cytotoxic strains (Fig. 3) were those encoding Stx2a often in combination 
with Stx1a, in line with studies of cytotoxicity and pathology induced by enterohaemorrhagic strains with differ-
ent Stx variants16,17.

Stx association with type 3 secretion and enteroaggregative virulence factors.  Typical entero-
haemorrhagic E. coli strains are defined by the co-association of stx genes with a type 3 secretion system (T3SS)7. 
In the present study, the presence of a T3SS was determined by detection of both eae and sepL. Based on BLAST 
analysis, 3.6% (8/224) and 2.7% (2/73) of the Zambian bovine and human isolates respectively may encode a T3SS 
(Fig. 2). Excluding the positively selected O157 strain, neither intimin (eae) nor sepL were detected in the bovine 

Figure 2.  Phylogenetic relationship between STEC. The same ML core SNP tree as in Fig. 1 plotted in a 
circular manner to depict relationships between Shiga toxin encoding strains. The strain designations are 
Zambian bovine (red), Zambian human (blue), other E. coli (grey). For the Zambian strains, the coloured bars 
indicate the presence of Stx genes: stx2 (purple) and stx1 (green). Black blocks around the tree indicate non-
Zambian E. coli encoding stx (1 or 2). Orange blocks highlight the presence of intimin (eae) and sepL indicating 
the possession of a type 3 secretion system. It is apparent that with the exception of one positively selected 
EHEC O157 (ZB-2213N0194), that the Zambian cattle STEC do not encode this system.
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STEC. Other non-STEC but intimin positive strains were present within the Zambian strains analysed and some 
were in close proximity to clinical human STEC strains (Fig. 2). The cattle strains were also checked for the pres-
ence of the enteroaggregative E. coli (EAEC) adherence factors AggR and AA probe by PCR but all were negative 
indicating that these dairy cattle are not a common reservoir of enteroaggregative E. coli as associated with the 
atypical EHEC O104 outbreak in Northern Germany in 2011.

Discussion
Shiga toxins (Stx) can pose a serious threat to human health, and human infections are usually restricted to a sub-
set of serogroups that can express Stx and a type 3 secretion system (T3SS) or other adherence mechanisms that 
can facilitate colonisation of the human gastrointestinal tract. In this study, E. coli isolates were obtained from cat-
tle associated with dairy production in a region of central Zambia. A total of 371 isolates, each from an individual 
animal, covering 104 farms were tested for the presence of stx by PCR. Of these, 41 (11%) were positive. This gives 
an estimated prevalence (taking into account sampling and the study design effect) of 6% (95% CI: 2.5–10.2). To 
our knowledge, this is one of the first surveys to systematically analyse the proportion of random E. coli from a 
farm animal source that are positive for stx as other studies usually use positive selection methods from animals. 
Our survey does indicate that STEC are common in these dairy cattle. It was also evident that the small and 
medium sized production units had a higher prevalence of STEC than the commercial units sampled. This is of 
interest as it does indicate that management practices potentially influence the selection of STEC. On-going work 
will investigate these differences including the influence of breed which can differ between the farming scales13 
and/or diet which can change EHEC O157 prevalence18.

Our study also examined 73 E. coli strains from human patients with diarrhoea presenting at the University 
Teaching Hospital (UTH) in Lusaka over the same time period. While the human sample numbers were relatively 
low, stx was not detected, indicating that STEC are unlikely to be common in the local human population. The 
overall phylogenetic analyses of the strains into phylogroups was as anticipated, with the majority of the Zambian 
bovine strains being present in the B1 group associated more with commensal strains, although this cluster con-
tains non-O157 EHEC serotypes causing infections in humans that likely originate from cattle. A greater propor-
tion of the human Zambian isolates clustered within the phylogroups associated with human disease, reflecting 
that the strains were collected from patients with diarrhoea and in some cases the strain may be the etiological 
agent.

Based on bioinformatic analyses of WGS, there was marked diversity of serotypes in the cattle and human 
sample populations (Fig. 1 and Supplementary Tables 3 and 4). None of the randomly selected bovine STEC were 
allocated to a serogroup commonly associated with human EHEC infections. Furthermore, none of these bovine 
STEC encoded a T3SS based on detection of intimin (eae) and sepL alleles (Fig. 2), as both genes are present on 
the locus of enterocyte effacement that encodes the system. An additional study to positively select for E. coli 
O157 isolates from the faecal pat enrichments only identified one positive sample from a farm. Taken together, 
this study indicates that while STEC are common in the Zambian dairy cattle these strains would not be classified 
as EHEC and are unlikely to be associated with serious human disease.

While it is encouraging that EHEC strains were extremely rare, many of the supernatants from the STEC 
strains were cytotoxic and appropriate backgrounds for EHEC emergence are present. As such, we should remain 
vigilant in case Stx-encoding prophages from this reservoir do emerge in other strain backgrounds that have a 

Figure 3.  Shiga toxin activity and subtyping. The top panel graph indicates the cytotoxic effect of selected 
STEC strain supernatants on Vero cells. Increased cell survival results in higher values. 0.2% Triton X-100 
was used as a positive control; RPMI +​ LB and RPMI alone were used as negative controls. Values below the 
dashed line indicate a cytotoxic effect on the cells. 89% (16/18) of the STEC supernatants tested demonstrated a 
cytotoxic effect. Supernatants were prepared as described in Materials and Methods. Stx subtypes are shown in 
the lower panel along with ELISA results for detection of Stx. Isolates with both stx1a and stx2a are associated 
with higher toxicity. Sample number ZB-4-stx contains stx2a and exhibited cytotoxicity on Vero cells but was 
negative by ELISA.
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higher capacity to cause disease in the human host. Continuing work on factors driving the maintenance of STEC 
strains in the bovine host will hopefully clarify approaches to reducing the threat from this emerging group of 
pathogens.

Methods
Bovine and human isolates from Zambia.  Bovine E. coli isolates (n =​ 371) were collected as part of a 
previously published study investigating antimicrobial resistance13. In addition, a further 81 E. coli isolates from 
cattle were collected as part of a pilot study in 2013 in the same region13. Faecal sampling and animal handling 
of the farm animals was carried out in accordance with the approved guidelines issued by The Roslin Institute 
Animal Welfare and Ethical Review Body which approved this study13. In the main study, 376 dairy cattle from 
104 farms representing about 20% of the dairy herds in the study area were randomly sampled and an E. coli 
was isolated from 371 animals (E. coli was not isolated from 5 animals) based on growth characteristics on both 
MacConkey agar and Bile-X-Glucuronide (TBX) plates (Oxoid, UK). Subsequent phylotyping indicated that 97% 
(361/371) could be allocated to established E. coli phylogroups19. In terms of subsequent studies the isolates were 
chosen as follows: From the main study all isolates (n =​ 371) were tested by the stx PCR to allow the prevalence 
to be estimated. 188 were sequenced but 186 were used in the phylogenetic analyses due to quality issues with 
2 sets of reads. The sub-selected strains for sequencing were as follows (those with poor reads removed): (1) All 
strains showing phenotypic antibiotic resistance in the original study (n =​ 61)13; Strains positive for stx by PCR 
(37/41); the rest (n =​ 88) were randomly chosen from the remainder. From the pilot study 40 from 81 strains were 
sequenced including three that were stx+​ as determined by PCR; 37/40 were included in the phylogenetic study 
as three had read quality issues. As a separate study, enrichments from all animals (n =​ 371) were plated onto 
sorbitol MacConkey and any non-sorbitol fermenting colonies (3 per plate) tested for O157 agglutination. Only 
one animal yielded a positive isolate (ZB-2213N0194) and this positively selected isolated was then sequenced 
and added into the phylogenetic analysis. In total there were 224 bovine E. coli good quality whole genome 
sequences that were analysed in this study.

E. coli isolates (n =​ 79) from patients presenting with diarrhoea were collected at Lusaka hospital between 
4th December 2014 and 7th January 2015 as part of another project managed by Prof. J.B. Muma and generously 
supplied for sequencing. Informed consent was obtained from all subjects. Six of the isolate sequences were not 
analysed due to read quality leaving n =​ 73 for phylogenetic and virulence determinant analysis. Further strain 
and sequence details are provided in the Supplementary Table 1.

DNA extraction.  DNA extraction was carried out using either a Wizard Genomic DNA Extraction Kit®​ or a 
Qiagen®​ DNA extraction kit from 1 ml of bacterial culture as defined in the manufacturers’ protocols.

PCR detection of virulence determinants.  All the bovine strains were screened by a published multiplex 
PCR for Shiga toxin genes and intimin14. The strains were also screened with a multiplex PCR for aggR and AA 
probe genes as markers for enteroaggregative E. coli20. The PCR products were visualised and captured using 
multi imaging software (Fluorchem HD2) following electrophoresis in 1.5% w/v agarose gel (Agarose, Melford, 
UK) and staining with Gelred®​.

Verocytotoxicity assays.  Established method21,22, with these minor variations: Single colonies were 
selected from LB agar plates and suspended in 10 ml of LB broth for 24 h (overnight). 50 μ​l of overnight culture 
was added to 5 ml (1:100) of fresh LB broth and incubated for 60 min. Then 20 μ​l of 5 μ​g/ml mitomycin C (MMC) 
was added followed by overnight incubation.

Supernatant samples were screened for the presence or absence of Stx using a commercial ELISA kit 
(RIDASCREEN®​ Verotoxin ELISA (C2201), R-Biopharm AG, Darmstad, Germany) according to the manufac-
turer’s instructions.

Statistical analysis.  The adjustment of prevalence estimates per farming scale and the risk factor analysis 
were carried out using logistic regression in ‘survey package’23 in R software environment version 3.1.1 (http://
cran.r-project.org/), p <​ 0.05 values were taken as statistically significant. The statistical analyses and more infor-
mation on the definition of the different level farming systems were as described previously13.

E. coli whole genome sequence analyses.  To better understand how the Zambian E. coli strains dataset 
compared with other E. coli, the Zambian strain genomic sequences were analysed with a larger strain collection 
that consisted of 559 E. coli genomes, including clinical and commensal isolates from 4 different broad catego-
ries of animal and human hosts (Supplementary Table 1). New short read sequence files have been uploaded to 
European Nucleotide Archive under the study accession number: PRJEB11782, PRJEB11950, PRJEB11956. Some 
genome sequences from the Zambian strain sets were removed due to poor read and/or assembly quality, result-
ing in 297 Zambian genome sequences (224 bovine and 73 human) available for analysis.

Sequencing analysis.  All reads were generated by Illumina 1.9 paired-end read sequencing with read 
lengths from 36 to 251 bp. FASTQC24 was used for quality assessment and where necessary trimming was done 
with cutadapt25. Short reads were aligned to a reference E. coli O157:H7 str. Sakai (RefSeq assembly accession: 
GCF_000008865) by combining BWA26, SAMtools and SnpEff27 in a custom-made python script. The consensus 
sequence for each alignment of 5,590,092 bp was produced using the majority rule.

Consensus sequences for each alignment were concatenated into one multifasta file that were then parsed to 
find core positions. Multifasta files of concatenated core nucleotides for each strain were used for recombina-
tion analysis with GUBBINS28. The recombinatorial regions were removed from the final alignment. The final 
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alignment was then used to construct a Maximum Likelihood (ML) tree with RAxML29 under a GAMMA model 
of heterogeneity with 100 bootstrap replicates (BS). The trees were visualised with ITOL30.

An established phylotyping scheme31 was used as a starting point to develop a programme that assigned each 
strain to one of the 4 possible phylogroups (A, B1, B2, D) based on the presence or absence of one of 3 genes 
chuA, yjaA, arpA and one genetic fragment TspE4.C2. To further distinguish between groups and assign strains 
to an additional 4 phylogroups (C, E, F or cryptic clades), it was necessary to check for the presence of a fifth gene 
trpA and for the presence of specific alleles for the above genes. arpA alleles were used to distinguish between 
phylogroups D and E based on specific primer sequences described in31.

To establish gene presence or absence a database that includes all sequences from the collection were built 
with BLAST+​15. Query gene’s sequences of intimin, sepL, chuA, yjaA, arpA, trpA, genetic fragment TspE4.C2 
were downloaded from the NCBI website. Gene identifiers are presented in the (Supplementary Table 2). Query 
Shiga toxin sequences identified in32 also were downloaded from the NCBI website. Gene’s presence were estab-
lished based on a E-value =​ 0 and similarity match at >​90% coverage of the query sequence. For Shiga toxins 
blast results were filtered based on bit score above 1000, if multiple contigs were involved only the highest result 
was kept.

Serogroups were identified based on presence of one or several alleles from the following genes: for O-typing - 
wzx, wzy wzm and wzt; for H-typing the flagellin genes fliC, flkA, fllA, flmA and flnA. Databases were provided by 
Dr Flemming Scheutz and colleges32. Multi locus sequence type were identified using SRST2 software33.
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Supplementary Table 1: Isolate sequences used in the study 

Host Source 
(country)/ 

Name prefix 

Number/ Remark and source publication if relevant 

Avian  Chicken (various) 

A- 

A-CH- 

39  This study, two collections of avian isolates. (i) Disease associated 
isolates from the UK, Italy and Germany, courtesy of Zoetis Animal 
Health (ii) E. coli strains from the GIT of healthy birds (UK). 
Sequences released to public 31 January 2016 
http://www.ebi.ac.uk/ena/data/view/PRJEB11956  

Turkey (Germany 
and Italy) 

A-T- 

6  Isolates from diseased birds in Germany and Italy, courtesy of 
Zoetis Animal Health 

 

Duck (Germany) 

A-DK 

4  Isolates from diseased birds courtesy of Zoetis Animal Health 

Bovine  Cattle (Zambian) 

ZB- 

224 

	
  

Isolates from cattle fecal sampling in central Zambia (1). Sequences 
released to public 31 January 2016 
http://www.ebi.ac.uk/ena/data/view/PRJEB11782  

Cattle (UK) 

W-  

20 

	
  

A subset of E. coli O157 strains isolated from UK cattle (2) 

Canine Canine (UK) 

C- 

18 Multi-drug resistant strains isolated from dogs at the Edinburgh 
University Veterinary School (3)  Sequences release to public 31 
January 2016 
http://www.ebi.ac.uk/ena/data/view/PRJEB11950 

Community (UK) 

C- 

19 A subset of strains associated with community-acquired canine UTI 
(3) Sequences release to public 31 January 2016 
http://www.ebi.ac.uk/ena/data/view/PRJEB11950 

Human Human (UK) 

HO- 

HS- 

122 

	
  

UK STEC strains as published (4, 5, 6) or this study 

Human (Zambia) 

ZH- 

73 

	
  

Isolated from patients exhibiting symptoms of diarrhea (this study). 
Sequences release to public 31 January 2016 
http://www.ebi.ac.uk/ena/data/view/PRJEB11782 

Shigella isolates 
(UK) 

R- 

3 

	
  

NCBI: 

Ss046, Sb227, Sd197 

Reference 
genomes 
(various) 

R- 

31 

	
  

NCBI: 

 H10407, REL606, HS, IAI1, E24377A, 55989, SE11, TW14359-
O157, Sakai, Godstone, SMS, IAI39, CE10, 42, UMNO26, E2348-
69, SE15, JJ1886, NA114, 536, S88, IHE3034, PMV, UTI89, 
UM146, LF82, 857C, 83972, CFT073, W3110, MG1655 
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Supplementary Table 2. Gene Identifiers 

Gene GI Position 

arpA 556503834 4222487-4220301 

chuA 15829254 4391446-4389464 

trpA 556503834 1317222-1316416 

TspE4.C2 7330942 Not applicable 

yjaA 556503834 4213234-4213617 

   SepL                    NC_002695.1   4593776 - 4594831 

eae     NC_002695.1   4596458 - 4599262 

 

	
  

	
   	
  

98



Supplementary Table 3:  Most frequent H-types defined from whole genome 

sequence analysis 

Collection (all including Zambian) Zambian only 

H type (44 types identified)  Number of strains 

550 

 H type (42 types identified) Number of strains  

297 

H7 242 H21 38 

H4 47 H8 26 

H21 47 H7 25 

H8  31 H4 22 

H10 23 H10 16 
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Supplementary Table 4: Most frequent O types assigned from whole genome 

analysis 

Collection (all including Zambian) Zambian only  

O type (129 types 
identified)  

Number of strains  

483 

 O type (102 types 
identified) 

Number of strains  

235 

O157 57 O8 17 

O8 20 O25 9 

O6 16 O102 9 

O25 13 O6 6 

O117 13 O150 6 
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Supplementary Table 5: Shiga toxin subtypes of bovine Zambian STEC 

Shiga toxin Subtype Number of isolates % 

stx1 only sxt1a 4 9.76 

stx2 only stx2a 3 7.32 

stx2b 1 2.44 

stx2d 7 17.07 

stx2e 1 2.44 

stx2c 2 4.88 

Stx1 and stx2 stx1a, stx2d 9 21.95 

stx1a,stx2a 10 24.39 

stx1a,stx2g 1 2.44 

stx1c, stx2b 1 2.44 

stx1a,stx2c 2 4.88 
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3.1.4 Conclusions

Core SNP-based phylogeny and typing techniques were used to explore the

core genome of the two bacterial datasets (Chapter 3.1) and assess their suit-

ability for investigating bacterial host association. It is appreciated that the S.

Typhimurium sequences are part of a better dataset as they are more balanced

in terms of host of isolation. By contrast, the E. coli dataset was more limited

although it did provide some insights into two extra host/niche source groups

(environmental and canine).

The relative core and pangenome attribution for the species or serovar can

vary dramatically depending on both the biology of the grouping (e.g., open vs

closed genome species), as well as technical issues such as strictness of the

analysis. As an example of this, the core genome for (E. coli can vary from

400 genes (at 100% inclusion) to 1,500 (at 95% inclusion). This difference is

unlikely to be due to genuine underlying biology but instead reflects the draft

quality of assemblies, for example when contigs break in different places dis-

turbing downstream analysis including gene prediction. Inclusion in the core

being based on presence in greater than 95% of the genomes seems to be

reasonable and more realistic for comparative analysis purposes.
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Overall, E. coli proportionally has a much smaller core genome and more di-

verse pangenome that STm. The significantly smaller canine core than that of

other hosts can be partly explained by the fact that all the canine isolates were

clinical isolates from UTIs with many associated with complicated medical his-

tories and multiple antibiotic treatments. The set was geographically restricted

and many of these isolates contain multiple diverse plasmids that aid bacterial

survival in these conditions [132]. Taken together, this means the set lacks

diversity but the isolates can have extended accessory genomes.

It is interesting that avian isolates for both E. coli and STm had much smaller

core sizes compared to other host. For both these species, the smaller size of

the avian core genome was not coupled with an increased size of its pangenome.

Again, these isolates may lack diversity by comparison to some of the other

host groups but further investigation on possible adaptation by gene decay

should be investigated.

Some phylogroups for E. coli are known to be associated with human disease

(B2, E), while others (B1, A, C) are mostly associated with commensal car-

riage. Moreover, a few previous studies have tried to quantify host-phylogroup

relationships; however, the overall conclusion is that the distribution of isolates

from specific sources being associated with different phylogroups is mainly due
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to sampling biases (compare [133], [134], [135]). From our study, the main con-

clusion is that isolates from any host source can be found in any phylogroup,

however with higher or lesser prevalence. So bovine and swine isolates have

higher prevalence in the B1 phylogroup, while all other isolates from other hosts

were relatively equally distributed amongst other phylogroups. Environmental

isolates were quite diverse as a group and were distributed equally amongst

the majority of phylogroups, however they had significantly lower prevalences

in the A and C phylogroup. Overall, phylogroups for E. coli is an interesting

concept as phylogrouping provides a stable clustering within the E. coli popu-

lation with the vast majority of the isolates from the same phylogroup clustering

together; for example in my current study 80 to 100% isolates from the same

phylogroup were clustered together in either the core or pan trees. Neverthe-

less, it is not yet clear which biological processes make these structures so

reliable, and whether core gene alterations in the different phylogroups are as-

sociated in any way with acquisition and loss of accessory genes. In other

words, what is it about a particular core type that should lead to pathogen vs

commensal differences?

As expected, phylogeny of the E. coli dataset is much more diverse than that

of STm as the E. coli phylogeny 3.4 represents a species population diver-

sity while STm 3.3 is an example of within serovar diversity. Core SNP-based

phylogeny clustered the majority of avian, swine and human isolates by host,
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although for human isolates there were 2 main clusters. On the other hand,

nearly 20% of each host population (except bovine) fell into mixed clusters

from different hosts. While all host-mixed clusters may contain ’true’ generalist

isolates, it is curious to investigate what led to formation of only two host clus-

ters like avian-bovine and swine-human 3.3. No link to the same outbreak or

same place or even the same submitter to the database was detected.

MLST classification based on house keeping genes has been long accepted

as thought to be representative to the population diversity. Nevertheless, with

WGS becoming more affordable, MLST schemes were criticized as lacking res-

olution, with core-MLST schemes starting to appear on the horizon. The cur-

rent study provides pros and cons for the MLST debate demonstrating clearly

that MLST based phylogeny can, within limits, represent population diversity.

This study and others [53] [136], [137] demonstrate that phylogeny based on

the seven MLST genes for E. coli produces a ’true’ phylogeny that can be

obtained from the whole core alignment. Thus, MLST is a useful approach

as it can save time and computational resources when building phylogenies,

principally in the modern reality when huge datasets may need to be analysed.

On the other hand, there is no direct connection between sequence type and a

phylogroup. The same is true for STm MLST based classification which maps

well to the whole core phylogeny, but any ST can be found in any of the tree

brunches. As an example, the majority of STm isolates belong to the same
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ST19 which reflects the situation present on Enterobase where ST19 is by far

the most dominate ST. ST19 isolates are distributed evenly across the tree in

my study (Figure 3.9) and can also be found in all branches of the tree derived

from 10,000 genomes of Salmonella Typhimurium from Enterobase 3.10, [62].

Moreover, ST19 is the most diverse ST in relation to host (Figures ??). There-

fore, at least for ST19, ST classification has little value, as these isolates do

not cluster together.

In summary, STm demonstrates quite good correlation of phylogeny with host

for the majority of host subpopulations, while only rare associations between

typing schemes and host were found for this particular datasets for both STm

and E. coli, the work of other researchers demonstrate quite promising result

of using microbial sub-typing with integration of case-control data for source at-

tribution in STm [138], [139] and by additional identification and understanding

source specific risk factors for shiga-toxin producing E. coli [140].
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3.2 Pangenome: host attribution

3.2.1 Introduction

Earliest microbial genomes comparisons made heavy use of reference strains

and direct alignments to them, thus overlooking within-species heterogeneity

due to additional content. Approaches described in Chapter 3.1 rely on this

alignment to a reference genome or reference genes. The drawbacks of such

method are obvious, for bacteria species with an open pangenome, E. coli for

example, much of the information contained in genome would be lost or not

considered as the core genes correspond less than a half of the genome con-

tent.

According to the idea of a genomic continuum [141], bacteria would absorb

and discard genes dependent on particular circumstances and selective pres-

sure. Thus, the accessory genome is more likely to contain traits of sequence

adaptation. For a long time, variable gene content except for virulence factors

has been left behind without proper analysis. The accessory genome provides

new information that was difficult to access, analyse and quantify until now. Ac-

cessory genes can be unique to a particular strain or can be shared between

few or many but may also not be present in all strains.
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Another consideration is that with increasingly large datasets the analysis that

can work with hundreds of sequences is computationally non-viable for thou-

sands of genomes. For example, multiple genome sequence alignment or

probability based phylogenetic trees from large alignments can be both time

and resources consuming to compute and difficult to interpret.

Therefore, scalable methods that allow work with a whole genome, that ac-

count for sparse data and can also handle multi-factorial, multidimensional

data, should be applied. Machine learning is one of the approaches that seems

to be perform well with similar complex datasets in finance, social media and

other sciences. One of the first studies using machine learning in bacterial

populations looked to predict pathogenicity of bacteria. The study took into

account whole genome sequences and identified yet uncharacterised proteins

that can play roles in pathogenicity. They also built an algorithm that predicts

if a new isolate is pathogenic or not [142]. Such methods are a step further

from current typing schemes or phylogeny, as they allow to combine not only

genetic information but phenotypic thus identifying strains that are more similar

to these that are known to be a threat to human health. Moreover, ML provides

a unique opportunity to assign a probability of any new unknown isolate to be-

long to one of the groups under analysis. Such capability of the algorithm can

lead to development of new prognostic and diagnostic tools that can be useful

for both monitoring as well as for targeted intervention.
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This chapter is presented by the published paper ’Patchy promiscuity: machine

learning applied to predict the host specificity of Salmonella enterica and Es-

cherichia coli ’ published in Microbial Genomics 2017 [114]. In this study whole

genomes of bacterial isolates from STm and E. coli dataset are analysed and

any associations between accessory genome content and host are quantified.
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3.2.2 Results: Patchy promiscuity: machine learning ap-

plied to predict the host specificity of Salmonella en-

terica and Escherichia coli
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Abstract

Salmonella enterica and Escherichia coli are bacterial species that colonize different animal hosts with sub-types that can cause

life-threatening infections in humans. Source attribution of zoonoses is an important goal for infection control as is identification

of isolates in reservoir hosts that represent a threat to human health. In this study, host specificity and zoonotic potential were

predicted using machine learning in which Support Vector Machine (SVM) classifiers were built based on predicted proteins

from whole genome sequences. Analysis of over 1000 S. enterica genomes allowed the correct prediction (67 –90% accuracy) of

the source host for S. Typhimurium isolates and the same classifier could then differentiate the source host for alternative

serovars such as S. Dublin. A key finding from both phylogeny and SVMmethods was that the majority of isolates were assigned

to host-specific sub-clusters and had high host-specific SVM scores. Moreover, only a minor subset of isolates had high

probability scores for multiple hosts, indicating generalists with genetic content that may facilitate transition between hosts. The

same approach correctly identified human versus bovine E. coli isolates (83% accuracy) and the potential of the classifier to

predict a zoonotic threat was demonstrated using E. coli O157. This research indicates marked host restriction for both

S. enterica and E. coli, with only limited isolate subsets exhibiting host promiscuity by gene content. Machine learning can be

successfully applied to interrogate source attribution of bacterial isolates and has the capacity to predict zoonotic potential.

DATA SUMMARY

1. Data used for this work can be downloaded from https://
figshare.com/s/7a3ededa8cedd95b9fb7. The files include
isolate IDs, protein variants (PVs) and their annotations for
Salmonella enterica and Escherichia coli.

2. Descriptive PVs for each model also can be found at
https://figshare.com/s/7a3ededa8cedd95b9fb7. The name of
the file describes the model for which these PVs were used.
So salmonella_PV_30_AO_annotations.csv means these are
the PVs that describe Salmonella Typhimurium Avian iso-
lates vs all Other isolates.

3. Isolate metadata for both species (original host, predic-
tions, place, year and multilocus sequence type) are visual-
ized using pan genome trees and can be viewed on ITOL:
http://itol.embl.de/shared/nlupolova.

INTRODUCTION

Salmonella enterica and Escherichia coli can be isolated from
a large number of animal hosts, in particular birds and

mammals. When isolated, S. enterica serovars are usually
associated with disease whereas the majority of E. coli are
commensals with only a subset considered overt pathogens
[1, 2]. Infections caused by these two genera are a major
burden on human morbidity and mortality and many of
these infections are zoonotic, i.e. are transmitted from ani-
mals to humans. Host restriction or specificity has been a
key area of research for Salmonella, and host-specific sero-
vars such as S. Typhi and S. Gallinarum are responsible for
more severe systemic disease in their primary host, whereas
serovars with broader host ranges, such as S. Typhimurium
(STm) and S. Enteritidis are often restricted to gastrointesti-
nal disease in their different hosts. However, this differentia-
tion is increasingly appearing simplistic with identification
of invasive strains of STm, such as ST313, in humans [3–5].
The fundamental biology underlying host restriction is
important to understand as it shows the barriers these bac-
teria need to overcome to successfully colonize and cause
disease in a new host. From a public health perspective, the
capacity to ascribe correctly the source of an infection is
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important as it can inform ways to intervene and limit
human infection from animal and food sources.

Compared to S. enterica, the host-specificity of E. coli has
been less well investigated. Classically the species has been
divided into phylogroups (A, B1, B2, C, D, E and F) which
are based on possession of a small number of specific alleles
[6]. This classification was considered to have only a weak
association with isolation host but has the advantage that
commensal and pathogenic isolates are often assigned to
separate types [7]. The genetic relatedness demonstrated by
a reduced allele methods such as multilocus sequence typing
(MLST) and phylogroup agree well with high-resolution
core genome SNP typing [8, 9]. More recent studies that also
take into account accessory genome information do provide
examples of host specialization for E. coli [10, 11], which
should also include Shigella species as a type of enteroinva-
sive E. coli [2, 12]. Fundamentally, Escherichia and Salmo-
nella share the same gene acquisition, mutation and
recombination systems as well as overall physiology. As such
both should have the same genetic potential for plasticity
that could result in host adaptation or host promiscuity. In
the last few years short read sequences from thousands of
bacterial genomes have been deposited in databases,
although often their use is limited by lack of associated meta-
data. Where the isolation host is known, this now provides
an opportunity to interrogate such sequence data for genetic
signals and predictors of host specificity and determine how
these map onto the phylogeny of the different species.
Recently, a machine-learning algorithm, Support Vector
Machine (SVM), was used to analyse sequence data from
E. coli O157 isolated from cattle and humans, so as to deter-
mine if all cattle isolates had the same genetic potential to
cause detectable infections in humans [13]. There were iso-
lates from cattle that had genetic information allied more
closely to isolates associated with human infection, indica-
tive of strains with increased zoonotic potential. In the cur-
rent study, we have combined a machine learning approach
with pan genome analyses of both S. enterica and E. coli to
investigate the relatedness of isolates from different hosts.
The primary aim of this study was to demonstrate the poten-
tial of machine learning, in this case SVM, to predict the
source of an isolate, and indicate its potential to transfer
between hosts, including the zoonotic threat to humans.

METHODS

Genome analysis

Illumina short read sequences were assembled with SPAdes
[14] and annotated with Prokka [15]. Sequence type was
assigned using MLST v. 2.4 [16]. Pan genomes were clus-
tered with Roary [17], paralogues were split and the thresh-
old for sequence similarity was set to 95% at the amino-acid
level. The core SNP trees were built with RAxML [18] based
on aligned core genes (Table 1). Accessory trees based on
the presence or absence of accessory genes were extracted
from the Roary output (Table 1). Shiga-toxin (stx)-positive
isolates were detected using a BLASTN search with an stx1

query (NC_004913.3, coordintates: 33251–31917) and stx2a
query (NC_002695.1, coordinates: 1266960–1267928).

Support vector machine analysis

SVM implementation in R package e1071 [19] was used to
build classifiers with radial kernel, weighted classes, and
‘gamma’ and ‘cost’ parameters adjusted after tuning for
each host. Protein presence and absence output from Roary
were used to identify features for each class of an SVM
model. Proteins were clustered with high (95%) similarity,
and therefore related proteins (less than 95% similarity)
were allocated into different clusters. For these the term
‘protein variants (PVs)’ was introduced to more precisely
describe the Roary output. PVs that differentiate the two
classes under test were chosen for the respective classifier.
For example, the proportion of each PV found in the STm
avian host group was compared with the proportion found

IMPACT STATEMENT

Both Salmonella enterica and Escherichia coli are bacte-

rial species with a broad animal host range with strains

that can colonize humans and in some cases cause

lethal infections. Both species have large accessory

genomes and it is established for certain subtypes (sero-

vars) of S. enterica that these can be host-restricted with

both gene acquisition and loss contributing to the degree

of host specificity. The extent of host restriction for E. coli

and Salmonella serovar Typhimurium is not known and

the capacity to predict the source of human infections

with these bacteria is important to understand the origin

of zoonoses and aid public health interventions. The

work in this study has successfully applied a machine

learning algorithm, Support Vector Machine, to attribute

the source animal or environment of these bacteria

based on their genome content. The work should have

value to allow the sources of zoonotic outbreaks to be

identified and also to assign sources to environmental

and water pollution events. The research will also help

identify the genes and pathways that lead to host restric-

tion and are therefore required for infection in different

animal hosts.

Table 1. Summary of gene content for S. enterica and E. coli isolates

analysed in this study

Section Description S. enterica E. coli

Number of isolates 1682 943

Core genes 99%�strains�100% 3175 1328

Accessory genes 0%�strains�99% 20 132 91 087

Soft core genes 95%�strains<99% 236 815

Shell genes 15%�strains<95% 2098 3516

Cloud genes 0%�strains<15% 17 748 86 746

Total genes 0%�strains�100% 23 307 92 415
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in the ‘all others’ STm host groups. PVs which differed by at
least 30% between the two groups (DPV30) were used as
descriptive features for the SVM STm model. The higher
the DPV values the more clearly distinct the groups are,
although there is a trade-off between PV discrimination, the
number of PVs and model accuracy (Figs S1 and S2, avail-
able in the online Supplementary Material).

All SVM classifiers in this study were based on comparing
two groups of data. For example, for serovar Typhi vs Dublin
this was straightforward and the two training classes were
based on the predicted proteins extracted from these two spe-
cific serovars. For analysis of STm and for E. coli datasets a
‘one against all’ approach [20] was used. For each classifier,
the differential PVs are defined by comparing PVs of the iso-
lates from one specific host with those from isolates from the
remaining hosts combined. This means that for STm four
different classifiers were built (avian vs the rest; cattle vs the
rest; human vs the rest; and porcine vs the rest) and for E. coli
six different classifiers were used (human vs the rest; porcine
vs the rest; canine vs the rest; avian vs the rest; environmental
vs the rest; and cattle vs the rest).

For each classifier 10� cross-validation was performed,
meaning the data were split randomly into 10 groups and
trained on 90% of the isolates and the remaining 10% used
for testing, and this process was then repeated with different
gamma and cost values. Different approaches to sub-sam-
pling for test sets were taken. The main method was to
remove each isolate in turn from the training set; each time
PVs were re-calculated, the model was tuned and parame-
ters were adjusted. After this the removed isolate was tested.
From this a probability attribution for each isolate and for
each host was generated. The overall performance for each
classifier was assessed by plotting true positive vs true nega-
tive rates and calculating an area under the curve for each of
the classifiers (Fig. S3 for STm and Fig. S4 for E. coli).

The Typhi and Dublin datasets were analysed differently.
(1) Initially 20 isolates were randomly selected from each
Typhi-human and Dublin-bovine dataset to be used as the
test groups. The remaining Typhi-human and Dublin-
bovine isolates (training dataset) were labelled and differen-
tial PVs were calculated between them. DPV90 values were
used as features for the model. To access model accuracy
10� cross-validation was performed on the training set and
the best parameters of ‘cost’ and ‘gamma’ were extracted
from the tuning step. (2) A second test was similar to the
above except that for the test group we included four Dublin
human isolates. (3) To test the Dublin serovar alone, one
isolate was removed for each assessment cycle, and the
SVM classifier was retrained on all other human and bovine
Dublin isolates; this involved recalculating discriminatory
PVs (with DPV50 for the model) and then testing the
removed isolate. (4) The combination involved the STm
human and bovine datasets as a training model with
DPV30, and then all isolates from the Dublin-bovine, Dub-
lin-human and the Typhi datasets were tested.

Significance of the results was described using P values,
which were obtained using basic R functions as required:
Student’s t-test (t.test function) and Fisher’s exact test
(fisher.test function).

RESULTS

Salmonella enterica

In total, 1682 Salmonella sequences were obtained from
Enterobase [21]. The collection included serovar Typhi (250
human isolates), serovar Dublin (187 bovine isolates and 40
human isolates), and serovar Typhimurium (STm; 336
human isolates, 300 bovine isolates, 311 avian isolates, 256
swine isolates) (defined in supplementary file ‘Salmonella_-
data.tgz’). The isolates were diverse in terms of their year of
isolation, ranging from 1945 to 2016, and their geography,
which covered all continents with the exception of Antarc-
tica. We assigned sequence type (ST) based on the S. enter-
ica MLST scheme and identified 52 different STs in the
whole dataset, although for each serovar one or two STs
were dominant: Typhi ST 1 (n=185); Dublin ST 10 (n=206);
and Typhimurium ST 19 (n=992) and ST 34 (n=122).

Both core (3175 genes) and accessory (20 132 genes)
genome relationships (Table 1) were plotted as trees based
on information derived from the sequences. The clustering
obtained for both trees (Figs 1 and S5) was quite similar
with serovars Typhi, Dublin and STm on separate branches,
illustrating a good correlation between core SNPs and acces-
sory genome content at serovar level. Overall, both core and
accessory trees show a large avian cluster that contained
82% of all the avian STm isolates, a few different human
clusters with the largest two in the accessory tree containing
38 and 20% of all human STm isolates and one bovine clus-
ter with 23% of all bovine STm isolates (Fig. 1). Swine iso-
lates had no sub-cluster that contained at least 20% of the
isolates together in the accessory tree but the core tree did
contain such a cluster. The accessory genome therefore indi-
cates some clustering by host for STm, especially for avian
and human isolates, but many of the STm isolates from dif-
ferent hosts were interspersed within several branches con-
taining isolates of mixed origin. S. Typhi and S. Dublin were
included as ‘established’ host-restricted serovars and pro-
vided a framework for analysis of the host association of
STm isolates.

SVM prediction of isolation host

To predict the isolation host of an S. enterica isolate, the
SVM classifier was built using a ‘one against all’ approach,
i.e. differentiating one host group from all other host
sequences based on discriminatory PVs as described in the
Methods. Initially, the classification and prediction method
was applied to serovars Typhi and Dublin. S. Typhi is
human host-specific while S. Dublin is generally associated
with severe infections in cattle with some human cases.
There were 752 DPV90 found almost exclusively in the
Typhi isolates and similar numbers (n=746) describing the
Dublin isolates. Randomly taking 20 isolates from each
serovar for testing, and training on the remainder, it was
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found that these isolates could be separated with 100%
accuracy (Fig. 1b). This basic prediction was to be expected
from the obvious differences in genetic content
(DPV90=1349, DPV100=8) and their separation on both
core and pan-genome trees. Note that in this situation any
human vs bovine signal is masked by more significant sero-
var/phylogenetic differences. This is shown by adding Dub-
lin human isolates into the analysis; in this case both Typhi
and Dublin can still be accurately predicted (100%), with
separation not due to host as the human and bovine Dublin
isolates receive the same prediction scores (Fig. 1c).

To try to exclude the serovar genetic signal, we tested SVM

assignment of isolation host for a single serovar, STm, using
the sequences of isolates collected from different sources

(human, bovine, avian and swine). From 17 145 total PVs

within the STm pan genome, the subtractive difference
between the average presence of PVs in a host group versus

all others isolates (DPV) can be ranked and binned by its

discriminatory power (Fig. 2a). The aim was to predict the
isolation host with as few PVs as possible while maintaining

an acceptable accuracy for the model and its application

across all host datasets. A series of test runs were carried out
based on different DPV values, assessing the quality of pre-

diction and trying to find a ‘one solution fits all’ for the
datasets. DPV30 was eventually used as a features discrimi-

nator for SVM (Fig. 2b). However, it is clear that DPV30 is

not the best option for all host groups and to further
improve predictions for individual studies it would be advis-
able to choose the DPV value according to the dataset.

The main SVM analyses were then carried out by removing
a single isolate and training the model with the remainder
and then testing that isolate; this process was then repeated
until all isolates had been tested. The distribution of dis-
criminatory PVs differed in the four host groups (Fig. 2a):
684 DPV30 describe the avian group, 284 PVs for swine,
198 PVs for the bovine group and 182 PVs for the human
isolates. Several highly discriminating PVs were identified
for the avian group (45 DPV80) while for the other host
groups there were only a limited number at the DPV50 level
(bovine=2, human=13, swine=6).

SVM generates a probability, based on comparison of
genetic content with the training set, of each test isolate
belonging to a specific host group. As such, a logical starting
point for our assessment of the methodology for host assign-
ment was to determine how well test isolates could be
assigned based on a prediction probability of >0.5 for a spe-
cific host. Using this threshold, the majority of the isolates
could be classified in relation to their isolation host: 89% of
avian isolates (276 out of 311), 67% of bovine isolates (202/
300), 90% of human isolates (301/336) and 75% of swine
isolates (192/256) (Fig. 2c, d). The distribution of probabili-
ties was quite distinct for the different host groups. So while

Fig. 1. Host association of Salmonella enterica. Colour scheme of serovars: Typhi (black); Dublin-bovine (magenta); Dublin-human

(cyan); STm avian (yellow); STm bovine (red); STm human (blue); STm swine (pink). (a) Clustering of isolates based on accessory

genome content (non-core): distinct branches are evident for Typhi and Dublin serovars. Inside of STm there is some clustering associ-

ated with host; the majority of avian isolates cluster together, 80% of the human isolates cluster in three groups, while the bovine and

swine isolates are mostly found in groups of mixed origin. The outer ring shows the SVM host prediction when >0.5 (see Methods) and

is otherwise left blank. (b) SVM prediction of Salmonella Typhi (human) vs serovar Dublin (bovine). Twenty isolates were randomly

taken from each serovar for testing, and the model was trained on the remaining sequences (230 Typhi-human, 167 Dublin-bovine).

Prediction was 100% accurate due to highly discriminatory PVs (DPV90=1349, DPV100=8). (c) The SVM classifier in (b) was applied to

serovar Dublin isolates from both cattle (magenta) and humans (cyan): this primarily discriminates the serovar not the host as there is

still complete separation between Typhi (black) and Dublin serovars (cyan and magenta). (d) If predictions were based on training with

only Dublin human and bovine information then the Dublin isolates can be separated by this classification. (e) In this case STm bovine

and human isolates were used as the training sets and testing was carried out on the distinct serovars: Dublin-bovine, Dublin-human

and Typhi-human. Notably, the three groups can now be separated by the STm classifier in a logical trend based on isolation host.
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the majority of human and avian isolates had high host
assignment scores (above 0.8), only a small proportion of
isolates achieved such high scores in the bovine and swine
groups. The strong SVM assignment for avian and human
strains correlated well with their accessory genome cluster-
ing (compare Figs 1a and 2c, d). It was also evident that the
majority of all isolates achieved a score higher than 0.5 for
only one host (94%), indicating dominant genomic charac-
teristics for this host. However, there were isolates in each

host group that scored highly for two or more hosts (total
n=73), indicating that such isolates, termed ‘generalists’,
already contain genetic information that could facilitate exis-
tence in at least one other host. Some host groups had low
proportions of generalist strains, i.e. the avian and human
groups, in which only a minority of isolates were assigned
with second host probabilities, >0.5 (human n=6, avian
n=11), while the proportions were much higher among the
bovine (n=27) and swine (n=29) isolates (Fig. 2c, d).

Fig. 2. Host prediction by SVM for STm. Colour scheme: STm-avian (yellow); STm-bovine (red); STm-human (blue); STm-swine (pink).

(a) The number of and differential PVs on which predictions were based for each host. PVs that differed by less than 10 are not shown

(see Methods). The coloured bars are the number of PVs that are present in higher levels in the specified host group, while white bars

are the number of PVs more abundant in the ‘all other’ population. (b) Graph showing the relationship between the number of PVs and

model accuracy for each host group. Individual points relate to the number of PVs at different DPV thresholds from DPV>10 to

DPV>50, plotted from right to left. Crosses define the number of PVs and model accuracy at DPV>30, which was applied in the study.

(c) Probability assignments of isolate genome content to each host. All STm isolates were tested for their score assignment to each

host, expressed as a probability. The sources of the majority of the isolates were predicted correctly, although some hosts have iso-

lates that were more likely to contain genetic information that overlapped with another host. (d) SVM-assigned probabilities for each

host plotted for each isolate as a stacked bar. This allows a comparison of the level of host specificity for each isolate. (e) Circos plot

depicting the proportion of STm sequence features from each host that can be found in another host. For example, 51 swine isolates

with strong porcine prediction scores (>0.5) also had high (>0.5) scores for genetic features from bovine isolates and these are shown

as a pink ribbon going from the swine host to bovine host. In total, 52 bovine isolates had a high (>0.5) swine signal and are depicted

with a red ribbon going from cattle to swine. The outer ring plots these data as the percentage of isolates assigned other host scores

for each specific host. (f) STm isolates scored as human from the different hosts. For each STm isolate the probability of belonging to

the human training group was assessed. With a threshold probability of 0.5, there were: nine avian (3%), 14 bovine (5%) and six swine

(2%) isolates. When the threshold was set at 0.2, there were 16 avian (5%), 32 bovine (11%) and 18 swine (7%). At this threshold the

higher proportion of cattle isolates with human isolate features is significant (Fisher’s exact test: P=0.035).
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At the left-hand side of each ranked host probability plot
(Fig. 2d) are those isolates that have a low probability score
for that specific isolation host and would be called as not
significantly associated with that host. These isolates often
have higher scores for other hosts. This may reflect: (1) the
limitation of our strain sets in that we are failing to capture
all genetic information relevant to a specific host; (2) incor-
rect metadata or methodology around collection; and (3)
the isolate may be transient and may not persist in that
host. It is notable that isolates that are not significantly asso-
ciated with a particular host (the blanks in the outer ring of
Fig. 1a) through the SVM classifier are present in grouped
clusters in the pan-genome tree; this includes isolates with a
range of host allocations. The implication of this is that par-
ticular STm sub-clusters may have a greater potential to
switch between specific hosts based on analysis of their
genome content.

SVM was used to assign scores to each isolate in relation to
its host-relevant genetic content, creating a unique measure
of host specificity, and indicates, from this collection of iso-
lates, which animals may be more likely to exchange STm
isolates (Fig. 2e). In line with the core and accessory genome
trees, the analysis demonstrated a surprising level of host
specificity for STm isolates, in particular with avian and
human isolates, providing evidence that there may be more
human-specific strains circulating beyond our current con-
cerns with ST313. According to this approach, swine and
bovine STm isolates can share significant genetic informa-
tion (Fig. 2e, f).

In each of the three non-human host groups (avian, bovine
and swine) there were isolates that achieved an isolation host
probability of >0.5 but also reasonable scores for human asso-
ciation. At a 0.5 threshold for human isolate content there was
no significant difference between the three hosts, although the
highest numbers of such isolates were from the bovine host
[avian (n=3, 0.9%), bovine (n=9, 3%), swine (n=0, 0%)]. At a
lower threshold (probability assignment >0.2) bovine isolates
were significantly more likely to have genetic content associ-
ated with human STm isolates when compared with avian
and swine isolates [avian (n=6, 1.9%), bovine (n=20, 6.6%),
swine (n=2, 0.8%)] (Fig. 2e, f).

We note that as with STm, SVM analysis of bovine and
human isolates from within the Dublin serovar can also be
predicted with high accuracy (Fig. 1d), as the classifier is
again working within the same serovar and so presumably
is not confounded by the serovar signal. We then investi-
gated whether it is possible to predict isolation host across
serovars, in this case by training on human and bovine STm
isolates and testing on human and bovine Dublin isolates,
as well as Typhi (Fig. 1e). It was evident that the Dublin iso-
lates could be differentiated by their source even though the
training was with STm genome content. Furthermore,
S. Typhi isolates could be further differentiated in this
model based on the STm classifier with significantly higher
human association scores (average probability scores for

Dublin bovine=0.15, Dublin human=0.27, Typhi=0.48)
(Fig. 1e).

Escherichia coli

The E. coli dataset was composed of sequences from 943 iso-
lates from six different sources: avian (n=87), bovine
(n=308), canine (n=57), environmental (n=40), human
(n=388) and swine (n=63). The analysis also included three
Shigella isolates as these cluster genetically within the E. coli
species and are considered human-specific. Clustering by
relatedness of the accessory genomes is summarized in
Table 1. While the number of E. coli isolates analysed is
almost half that for S. enterica, this produced a pan genome
that was four times larger than that of S. enterica, with more
than 90 000 genes. The differences between these two bacte-
rial species were also reflected in the size of their core
genome, for which S. enterica had almost three-quarters of
its genome content shared among the isolates examined
while for E. coli only one-fifth was conserved across the
sequences analysed (Fig. S6). In total, 279 different STs were
attributed to E. coli, again indicating much greater diversifi-
cation than for S. enterica. A direct comparison of the E. coli
and S. enterica phylogenetic clusters at either accessory
(Figs 1a and 3a) or core levels (Figs S5 and S7) indicates a
less clear association by host for E. coli, although multiple
clusters by host were present, especially for human and
bovine isolates. Therefore, compared to what was observed
for S. enterica, there is far more mixing of sub-clusters based
on source association for E. coli, making prediction of host/
habitat attribution more challenging from the accessory
genome data presented in this format.

SVM prediction of isolation host for E. coli

The host/habitat association was predicted based on the
SVM approach, in the same manner as for STm. In contrast
to the STm analysis, only E. coli human and bovine datasets
had equivalent isolate numbers so we first tested the impact
of reducing dataset sizes on prediction accuracy by working
with sub-samples of the larger datasets for both STm and
E. coli. It was apparent that prediction capacity was substan-
tially reduced when working with fewer than 100 isolate
sequences (Figs S1 and S2). Therefore, while predicting the
presence of both human and bovine genetic content is valid
based on our group sizes, predictions for genetic content
pertaining to avian, canine, environmental and swine iso-
lates would require more isolates from these sources to be
sequenced and made available. For the larger human and
bovine datasets, the prediction capacity was equivalent to
that for STm isolates: 72% (223/308) of bovine E. coli iso-
lates and 89% (346/388) of human E. coli isolates were pre-
dicted correctly as originating from those hosts based on
DPV30 (Fig. 3b) using a prediction probability of >0.5.

As with the STm analysis, this indicates a stronger genetic
signal for human isolates and greater genetic diversity for
bovine isolates. By reducing to DPV20 and based on analysis
of PV distributions (Fig. S8), the prediction scores for avian,
swine and canine E. coli isolates show patterns similar to
human and bovine isolates when similar size training sets

Lupolova et al., Microbial Genomics 2017;3

6

116



Downloaded from www.microbiologyresearch.org by

IP:  129.215.46.103

On: Fri, 06 Oct 2017 12:38:09

were used (Figs S2, S4, S9 and S10). Therefore, we propose
that an equivalent prediction capacity for these sources
should be achievable when more isolate sequences are avail-
able to train the classifiers. Of note was the pattern for the
environmental isolates, half of which showed a strong envi-
ronmental score while the other half showed a negligible
association. This may reflect two different populations of
E. coli present in the environment, one that is plant/soil
associated and the rest more directly related to animals. The
DPV30 assignments were used to examine human and
bovine genetic traits across all the E. coli isolates in the study
(Fig. 3c). Only a minority of isolates outside of the same
host had substantial genetic content associating them with
bovine and human hosts (P>0.5), which may indicate that
only a specific subset may be able to transfer and effectively
colonize the two different hosts. Although based on small
datasets, it was evident that the inter-relationship between
bovine and swine genetic content as seen for STm was not
apparent for E. coli. Zoonotic potential based on this con-
tent can be plotted as for STm. When using a threshold of
P>0.5, there was a clear and statistically significant hierar-
chy working towards content in human isolates [environ-
mental (n=0, 0%), avian (n=5, 6%), bovine (n=19, 6%),
canine (n=7, 12%), swine (n=12, 19%), Fisher’s exact test,
P=0.002216; Fig. S11)]. The numbers and percentages at a
lower threshold of probability, >0.2, were: environmental
(n=1, 2.5 %), avian (n=16, 18%), bovine (n=40, 13%),
canine (n=16, 28%) and swine (n=22, 35%) (Fisher’s exact
test, P=1.023e-05). Independent of the threshold and based
on the percentage of isolates (rather than actual number as
group sizes varied), porcine isolates had the strongest asso-
ciation with human isolates. Overall, the data indicate that
environmental E. coli isolates may be less likely to directly
infect humans and that bovine, swine and canine isolates
are much more likely to be a zoonotic threat than isolates
from birds. While this assessment will be refined as more

sequences become available, it does demonstrate the utility
of the approach.

Testing the predictive capacity of SVM with an

established bacterial zoonosis

As a proof of principle to support the SVM assignments in
this study, we determined how machine learning would
score sequences from a well-characterized zoonosis. We
chose E. coli O157 as this clonal group colonizes cattle as an
asymptomatic reservoir host and can cause potentially fatal
disease in humans as an incidental host. To generate a base-
line, all human and bovine isolates from the E. coli dataset,
but excluding E. coli O157 (n=688, human=381,
bovine=307), were used for SVM training with prediction of
host source using DPV30 (n=139). In this case, training was
carried out on 90% of isolates and testing on 10% until all
isolates had been tested. Overall the source of 92% of iso-
lates was predicted correctly: 279 of 307 bovine isolates
(91%) and 352 of 381 human isolates (92%). Most of the
isolates were predicted with very high probabilities of origi-
nating from human or bovine hosts, with a mean probabil-
ity of 0.8 (1st quartile of 0.95 and 3rd quartile of 0.98) for
human assignments and a mean probability of 0.13 (1st
quartile of 0.01 and 3rd quartile of 0.106) for bovine assign-
ments (Fig. 4a). E. coli O157 isolates (n=25: 14 human, 11
bovine) were then tested in this context along with the three
Shigella (human isolates) (Fig. 4a). The majority of the
probabilities assigned for the O157 isolates were in the mid-
range between high human and bovine scores (mean 0.58,
1st quartile 0.44, 3rd quartile 0.73), indicating that the
E. coli O157 isolates contain ambiguity in their gene content
that may allow association with both hosts.

One potential source of bias in the training dataset was the
presence of stx-positive strains other than O157. Therefore,
another analysis was carried out in which stx+ isolates were
identified and removed from the training dataset (see Meth-
ods). The baseline was re-assessed and similar results were

Fig. 3. Accessory genome analysis and host prediction by SVM for E. coli. Colour scheme: avian (yellow); bovine (red); human (blue);

swine (pink). (a) Accessory genome tree based on PVs: some clustering by host for human and bovine isolates was evident. The outer

ring indicates the position and isolation host of isolates incorrectly called as human by SVM analysis. (b) SVM host assignment proba-

bilities for human and bovine hosts. The probabilities for each isolate are plotted as stacked bars. (c) The proportions of isolates from

each host with human or bovine features.
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obtained with 91.5% (214 of 234) of bovine isolates and
93% (266 of 285) human isolates predicted correctly. When
probabilities were assigned to the O157 isolates, their distri-
bution changed significantly [mean=0.7203, 1st quar-
tile=0.6520, 3rd quartile=0.7842 (P=0.001)] when compared
with the previous analysis that included stx+ isolates in the
training set (Fig. 4b). It is interesting that there were differ-
ent sets of differential PVs that describe the human and
bovine E. coli populations depending on the presence
(DPV30=136) or absence (DPV30=248) of stx+ isolates.
Overall, this result provides strong support for the capacity
of the SVM classifier to predict isolates with across-species
transmission potential with E. coli O157 being assigned

probabilities more indicative of human isolates despite cattle
being their primary reservoir.

DISCUSSION

Public repositories of bacterial whole genome sequences,
even with very limited metadata, allow new approaches to be
tested that address fundamental biological questions such as
host specificity and zoonotic potential. In this study we
wanted to determine if a machine learning approach, specifi-
cally SVM, could assign the isolation host/habitat for both
S. enterica and E. coli isolates based on analysis of differential
predicted PVs. Moreover, we wanted to determine if the
capacity for inter-species transmission was predictable from
the gene content, including estimation of human zoonotic
potential. The methods were first applied to S. enterica iso-
lates, as serovars such as S. Typhi and S. Dublin exhibit host
specificity and restriction, respectively. As was apparent by
both core genome (SNP) and accessory genome analyses,
including SVM, Salmonella serovars were distinct and easily
assigned. By contrast, serovar Typhimurium can be isolated
from many different hosts and can cause significant disease
in humans with animals often considered the initial source
of the infection. Both core and accessory genome clustering
provided clear evidence for sub-clusters of STm and several
of these were strongly host-associated, in particular for avian
and human isolates. Although our analysis is restricted to
only a small sample size, it does indicate that host-restricted
lineages of STm may extend beyond those receiving atten-
tion in relation to their disease severity [22]. The SVM anal-
ysis supported these findings with strong host assignment
scores for STm isolates. Conversely, only particular sub-clus-
ters contained STm isolates from multiple hosts, and SVM
calling of source host in these was much more challenging.
However, this does indicate that particular clusters have
genetic content that may be more associated with inter-spe-
cies transmission, indicative of patchy promiscuity within
the species.

Certain isolates from each animal host had more genomic
content allied with human STm isolates potentially reflect-
ing more of a capacity to infect humans. Overall the bovine
STm isolates had the highest predicted ‘human’ scores, even
compared with avian isolates. The fact that human STm
infections may be more commonly associated with poultry
[23] may reflect aspects of the food chain rather than the
comparative infection threat of avian STm isolates. In fact,
our analysis indicates that the majority of avian STm iso-
lates analysed were quite host-specific and may not pose a
public health threat. Support that the SVM classifier was
using ‘host-related’ genetic information was provided by
training on differential PVs from human and bovine STm
isolates and testing on S. Dublin from humans and bovine
as well as S. Typhi from humans. These sets were success-
fully discriminated by host (Fig. 1e), despite strong phyloge-
netic signals for the serovar. It is difficult to assess how the
phylogeny impacts on the host assignment and in some
cases the evolution of particular subtypes may have been
driven by host association, in which case phylogenetic and

Fig. 4. Host assignment of an established bacterial zoonosis: E. coli

O157. Colour scheme: human (blue) and bovine (red). E. coli isolates

from both cattle and humans are plotted with their predicted host

assignment probability. All these isolates were used as a training

dataset to determine host assignment probabilities for O157 isolates

(black circles) and three Shigella isolates (black triangles). (a) Training

set containing stx+E. coli isolates but not serovar O157, and host

assignment probability was then predicted for an O157 test group.

(b) Training set with all stx-positive isolates removed and the host

assigned for the same E. coli O157 test group. In both cases the E. coli

O157 isolates, irrespective of their isolation host, score as containing

mixed genetic information in relation to the training set of human and

bovine E. coli isolates, indicating transmission/zoonotic potential.
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host signatures may overlap. When all isolates from a
particular host are combined, the information coming
from specific branches/sub-clusters, and therefore the phy-
logenetic signal, will be diluted and mixed with information
from other isolates from other branches. When we then use
PVs that describe the ‘avian population’ from these different
branches, we decrease the importance of the tree structure.
For example, we can predict avian strains from different
regions of the tree despite there being a dominant avian iso-
late cluster. A primary driver for this publication is to dem-
onstrate the potential for machine learning alongside
phylogeny approaches, and the value and relationships
between these will become apparent as sequences of more
isolates from different sources become available.

E. coli, in comparison to S. Typhimurium, had more limited
host-specific sub-clusters based on core and accessory genome
analyses, although it was still possible to correctly call the host
of origin for the more populated datasets of bovine and
human isolates using the SVM classifier. We included isolates
from other hosts/habitats to provide more discriminatory
power in the ‘one host vs all approach’ but again prediction
accuracy for E. coli from different sources will increase as
more of these host/habitat-related sequences are made avail-
able (Fig. S2a, b). Even so, it was evident that environmental
E. coli isolates had very little overlap with human isolates and
that human infection may therefore be more likely from ani-
mal-adapted E. coli isolates. With the SVM approach, bovine,
swine and canine isolates all had subsets that shared signifi-
cant genetic content with human isolates. The analysis of E.
coli O157 isolates provided validation that the SVM classifier,
trained on bovine and human E. coli isolates, could identify
isolates with increased zoonotic potential, as isolates of this
established zoonotic clone produced intermediate scores
reflecting mixed genetic assignment between other human
and bovine isolates.

Both STm and E. coli isolates exhibited marked host restric-
tion when genetic content was evaluated using a combina-
tion of phylogenetic and machine learning methods. We
consider this is counter to a perception that these bacteria
are ‘generalists’ capable of switching between hosts. Instead,
our analyses indicate that only specific subsets of strains
have ‘mixed’ genetic content, which we suggest indicates the
capacity to transfer and succeed in different hosts, although
this now needs to be tested using experimental approaches.
We consider that machine learning has tremendous poten-
tial to interrogate complex sequence datasets and identify
genes/sequences associated with host specificity. This will
have value for source attribution in both a public health
context and, for example, in ascribing the source of water
pollution events if sequences of the bacteria are obtained.
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Figure S1: Model accuracy vs. number of PVs for E. coli. Each point
from left to right indicates ∆PV50, ∆PV40, ∆PV30 (shown as crosses, these
were chosen for the final model), ∆PV20, ∆PV10. The aim was to find a value
that could be used for all the training models within the E. coli set, but it is
clear that a ”one fits all” is not the best strategy for this particular analysis. It
is evident that the same threshold as applied to STm (∆PV30) challenging to
use for all E. coli sub datasets as in some of them (swine and avian) were too few
PVs available. Similar to the Salmonella dataset, this analysis indicates that
increasing the number of ∆PVs does not always lead to an increase in accuracy
of the model.
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Figure S2: Influence of dataset size on the number of PVs and pre-
diction accuracy. (a) Boxes represent predictions for gradually increasing
number of S. Typhimurium human isolates, while the number of bovine isolates
is kept constant. (b) The same as above with an increasing number of bovine
E. coli bovine isolates and a constant number of human isolates. Increasing the
number of isolates in the dataset mostly improves predictions.
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Figure S3: Performance of SVM models for S. Typhimurium isolates.
Area under the curve illustrating performance of four classifiers for each host
model for S. Typhimurium dataset.
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Figure S4: Performance of SVM models for E.coli. isolates. Area under
the curve illustrating performance of six classifiers for each host model for E.
coli dataset. As expected the best performance achieved for the datasets with
highest number of isolates (human and bovine).
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Tree scale: 0.01

Figure S5: S. enterica core genes tree. Maximum likelihood core genes
tree with host and serovar information shown in the inner circle (blue-human
STm; yellow-avian STm; red-bovine STm; pink-porcine Stm; black-S.Typhi;
dark pink-bovine S. Dublin; cyan-human S. Dublin) and MLST Sequence Type
information in the outer circle.
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Figure S6: Pan genome sizes of S. enterica and E. coli. The figure
illustrate the differences in pan-genome structures for S. enterica and E. coli.
Even though almost only half as many isolates were analysed for E. coli (n =
943) compared to S. enterica including Typhi and Dublin (n = 1682), E. coli
had a pan-genome that was 4 times the size of pan- genome of S. enterica
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Tree scale: 0.01

Figure S7: E. coli core genes tree with host information shown in
the inner circle (blue-human; yellow-avian; red-bovine; pink-porcine; green-
environmental; brown-canine) and Multi Locus Sequence Type-MLST infor-
mation shown in the outer circle.
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Figure S8: Distribution of descriptive PVs for E. coli . The number of
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values indicating increased presence of the PV in the defined host group and
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Figure S9: E. coli boxplot predictions. Distribution of probabilities of E.coli
isolates plotted as a boxplot for each host. Color scheme: yellow - avian, red -
bovine, orange - canine, green - environmental, blue - human, pink - swine.

10

130



0.
0

0.
5

1.
0

1.
5

2.
0

Avian
0.

0
0.

5
1.

0
1.

5
2.

0

Bovine

0.
0

0.
5

1.
0

1.
5

2.
0

Canine

0.
0

0.
5

1.
0

1.
5

2.
0

Environmental

0.
0

0.
5

1.
0

1.
5

2.
0

Human

0.
0

0.
5

1.
0

1.
5

2.
0

Swine

P
ro
b
a
b
ili
ti
e
s

P
ro
b
a
b
ili
ti
e
s

P
ro
b
a
b
ili
ti
e
s

Isolates Isolates

Figure S10: E. coli prediction of host assignment plotted as stacked
bar-plots. As discussed in the main text, the lack of specific assignment for all
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Figure S12: E. coli O157 isolates predictions. The figure illustrates how
’human isolate’ predictions changed when 24 E. coli O157 isolates were tested
on either all E. coli human and bovine isolates (with stx) as the training sets
or with stx+ containing isolates removed from these two training sets (without
stx).
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3.2.3 Conclusions

In this section, the ML classifier, Support Vector Machine was applied to STm

to predict the host of isolation. The majority of the isolates was predicted cor-

rectly. Despite the success of the prediction, this study highlights a few issues,

including: (1) size of the training dataset; (2) the reliability of metadata and

biological significance of identified genomic markers; (3) the thresholds that

should be set.

It is very important to have enough labelled data to construct a training set in

order to obtain reliable predictions. This principle is illustrated in the supple-

mentary materials for my paper from the work in this chapter [114]) for which

reducing the dataset to 50 isolates led to relatively meaningless random pre-

dictions. Current prediction accuracies are above 80% for the dataset of 300

isolates. It is important to try to increase and diversify the datasets to find out

if the accuracy can be improved or whether there is a limit in learning that can-

not be overcome even with larger datasets and within a particular model, such

as SVM. If the ’error’ rate remains the same, it could mean that data is misla-

belled or that genetic content assessed here plays only a partial role in host

adaptations and therefore other features should be taken into account, such

as expression patterns that may be influenced by factors by epigenetic factors

such as genome rearrangements and methylation profiles.
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One the other hand, the error rate can be indicative of the true biological trends

underlying the data, so the generalist and specialist dichotomy of STm is a bi-

ological reality and the STm population is not homogeneous. There are strains

that are much more adapted to only one host while others have genetic content

that could possibly facilitate colonisation in another animal host. Indications of

specialist and generalist heterogeneity of STm populations can also be seen in

the phylogeny where all host STm host subpopulations have at least one tight

host cluster and 20% or more of the isolates are clustered in mixed clusters

from multiple hosts.

Another difficulty with this type of study is to position the threshold of ’correct’

prediction. In the study, it was placed midway (0.5), however, we don’t know

how much is enough to be successful in any particular host. It can also be that

that threshold would change depending on the host and/or dataset analysed.

These settings should be verified in competing experiments. Based on the out-

come of grant applications, our future work will include competitive experiments

to test the SVM predictions described in this chapter. It is also possible to look

at correlations between differential protein variants identified in this study and

genes considered important for colonisation of STm in different hosts using a

genome-wide method such as TraDIS. We would then have much more confi-

dence in alleles that were identified using the separate approaches and these

could then be examined using traditional site-directed mutagenesis techniques

and testing in vivo.
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The study also indicates that the phylogenetic differences should be taken into

account at least in questions such as host adaptation. Even though there was

a trend from more bovine scores for S. Dublin to more human to S. Typhi when

tested following training on the STm background it was clear that between-

serovars differences are shadowing weaker between-host signals. Another

illustration of this is E. coli O157 isolates that were all classified as having

scores indicative of ’human’ isolate content and perhaps indicating a human

threat. This was the case whether from a bovine or human source when the

testing is carried at the resolution of ’human’ vs ’cattle’ E. coli and delta PV40

cut-off. While at one level this is the case for E. coli O157 and supported by

epidemiological data, we also know that not all E. coli O157 isolates have the

same disease threat. O157 isolates appear as a clonal group in the context of

the whole E. coli population, whether examined by SNP- or pangenome-based

phylogenies. However, at a higher resolution, O157 isolates can be quite di-

verse in terms of both core SNPs and accessory content, which does then

begin to identify variation that can influence pathogenic potential and zoonotic

threat. In the same way, the next chapter uses finer margins in terms of differ-

ential PVs to compare host associations within the E. coli O157 ’clonal’ cluster

and shows it is possible to then separate and predict variation in host proclivity

for different E. coli O157 isolates.
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3.3 Pangenome: zoom in. Zoonotic threat of E.

coli O157

3.3.1 Introduction

In the previous chapter, predictions of the host of isolation were correct for the

vast majority of STm and E. coli isolates. Interestingly, all 25 E. coli serotype

O157 isolates were assigned high ’human’ score, meaning they were more

similar to human clinical isolates than to a wide range of bovine isolates. There-

fore, these human scores were an indicator of the higher zoonotic potential for

all of these isolates.

Are all of E. coli serovar O157 isolates are alike? Clonality of O157 can be

seen in the phylogeny 3.1, 3.2), where independently of the source (MLST, core

SNPs or WGS) which phylogeny was inferred, E. coli O157 isolates always

seem to cluster together at the same branch with relatively short branches in-

dicating reduced diversity between these strains. However, when zooming in,

there is great diversity which can be noted in between these isolates. Some

classifications of O157 serovar are based on phylogeny - there are three lin-

eages (I, I/II, and II), on a phage sensitivity [28] - there are more then 80

phagetypes for O157, on pulsed-field gel electrophoresis (PFGE) there are

above 20 profiles, and each of these can be devided further [25]. These three
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classification schemes demonstrate how diverse O157 serovar can be.

It seems that the previous study while correctly identifying O157 as a zoonotic

threat, was lacking resolution, and therefore each isolate from the O157 pop-

ulation was seen as similar to each other, almost undistinguishable. All of the

O157 isolates achieved similar, around 70% probabilities. Nevertheless, when

the biggest differences that account for diversity of all E. coli are removed and

phylogeny inferred only from O157 isolates, it becomes clear that the strains

in that subset are quite diverse: (from 185 isolates used for the analysis de-

scribed below not a single strain shared the same SNPs pattern or had the

same proteins presence and absence sequence.

Therefore, this section describes how the same approach (ML, SVM) was ap-

plied to predict host of isolation of only E. coli serotype O157:H7 isolates. E.

coli O157 is in the category B NIH global food pathogen list [143]. Pathogens

on this category are moderately easy to disseminate, they result in moderate

morbidity rates and low mortality rates and require specific enhancements for

diagnostic capacity and enhanced disease surveillance. E. coli O157 serotype

usually has various prophage incorporated in their genome, some of which is

shiga-toxin producing, thus these strains can cause further health complica-

tions and be lethal in some cases. Moreover, due to dynamic gene exchange
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some combination of virulent factors can have summative effect as in the ex-

ample of German seed sprout outbreak where already pathogenic and antibi-

otic resistance EAEC strains acquired stx2 from shiga-producing E. coli strains

leading to a devastating effect in the human population.
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3.3.2 Results: Support vector machine applied to predict

the zoonotic potential of E. coli O157 cattle isolates
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Sequence analyses of pathogen genomes facilitate the tracking of
disease outbreaks and allow relationships between strains to be
reconstructed and virulence factors to be identified. However,
these methods are generally used after an outbreak has hap-
pened. Here, we show that support vector machine analysis of
bovine E. coli O157 isolate sequences can be applied to predict
their zoonotic potential, identifying cattle strains more likely to
be a serious threat to human health. Notably, only a minor subset
(less than 10%) of bovine E. coli O157 isolates analyzed in our
datasets were predicted to have the potential to cause human
disease; this is despite the fact that the majority are within pre-
viously defined pathogenic lineages I or I/II and encode key viru-
lence factors. The predictive capacity was retained when tested
across datasets. The major differences between human and bovine
E. coli O157 isolates were due to the relative abundances of hun-
dreds of predicted prophage proteins. This finding has profound
implications for public health management of disease because in-
terventions in cattle, such a vaccination, can be targeted at herds
carrying strains of high zoonotic potential. Machine-learning ap-
proaches should be applied broadly to further our understanding
of pathogen biology.

machine learning | zoonosis | Shiga toxin | E. coli | cattle

For important global bacterial zoonoses such as Salmonella,
enterohemorrhagic Escherichia coli (EHEC), and Campylo-

bacter, tracking of disease outbreaks and identification of
infection source are critical to limiting further disease. Whole-
genome sequencing (WGS) has provided a revolution in our
capacity to identify and trace outbreaks that would have been
virtually impossible with more traditional techniques such as
phage typing and pulsed-field gel electrophoresis (1, 2). Currently,
most analyses rely on extraction of a core “shared” genome and
isolate relationships are deduced based on SNPs in this core; con-
versely, accessory genome information is largely ignored due to its
variability, although a number of approaches have recently been
applied to interrogate pan-genome data (3).
EHEC infections, in particular by serogroups O157 and O26

(4), have emerged as a serious threat to human health in the last
30 y, driven by the integration of bacteriophages encoding Shiga
toxin (Stx) into the genomes of specific E. coli strain back-
grounds. Strains encoding Stx subtype 2a and a type 3 secretion
system are often associated with the most severe human infec-
tions, which can lead to bloody diarrhea (hemorrhagic colitis)
and kidney damage. Stx kills capillary endothelial cells and the
host’s attempt to repair this damage can result in red blood cell
hemolysis in capillaries known as hemolytic uremic syndrome,
which can be fatal (5–7). There has been extensive work to de-
termine which strains in ruminants, in particular cattle, represent
the most serious threat to human health (6, 8, 9). This led to the
definition of lineages and clades for which lineage I or lineage I/II
are more likely to be associated with human disease, whereas
lineage II strains are more restricted to cattle (10, 11). Within
these lineages certain clades predominate, so clade 8 within
lineage I/II has been associated in the United States with more

serious disease in humans (12). In the United Kingdom, a recent
WGS analysis of over 1,000 EHEC O157 human and cattle iso-
lates was used to determine their phylogeny based on core genome
SNP analysis (13). The most serious disease in the United King-
dom is associated with lineage I strains and a specific phage type
(PT) designated PT21/28; phage typing of UK strains is based on
susceptibility testing with a collection of diagnostic bacteriophages
(14). The United Kingdom has a high incidence of serious EHEC
O157 infections, and the emergence of these infections in the
1990s coincided with the acquisition of the Stx 2a subtype into UK
cattle strains already encoding a Stx2c subtype (13, 15).
Current core genome analysis of EHEC strains indicates

complete mixing of human and bovine EHEC O157 isolates (Fig.
1A and Fig. S1). This fits with the concept that the majority of
cattle strains within particular lineages and encoding Stx 2a are a
serious threat to human health. In the present study, we aimed to
determine whether a pan-genome analysis of EHEC O157 strains
could distinguish between human isolates and isolates from cattle.
In particular, we wanted to test whether machine-learning ap-
proaches such as support vector machine (SVM) (16) could be used
to discriminate a subset of bovine strains that might represent a
threat to human health and would allow more targeted interven-
tions in cattle. SVM has been applied in many areas of bio-
informatics, including prediction of protein function, prediction of
transcription initiation site, and classification of gene expression
data as well as cancer prediction and prognosis (17, 18).

Results and Discussion
UK Dataset. We initially analyzed an extensive UK dataset that
consisted of WGS for 185 E. coli O157 strains isolated from
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plex pangenome information and predict the human infection
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human patients in the United Kingdom (n = 91) and cattle (n = 94).
The 185 strains share 4,737,622 core positions, which is equivalent
to 85% of the reference E. coli Sakai strain genome (19). A maxi-
mum likelihood phylogenetic tree based on these positions clearly
splits into distinctive branches, even within this relatively clonal
serotype (Fig. 1A). The pattern for the UK O157 phylogenetic tree
is consistent with previous studies (11, 13, 20) and represents a
typical split for UK strains based on lineages: lineage I (n = 140, 70
bovine), II (n = 25, 15 bovine), and I/II (n = 17, 9 bovine). The
average number of SNPs within two sequences of the same lineage
was 1,859, 379, and 2,190 for lineages I, I/II, and II, respectively.
The vast majority of the lineage I sequences were PT21/28 (101 out
of 140) and the second most prevalent was PT32 (24 out of 140).
The dominant PT in lineage II was PT8 (15 out of 25) and in
lineage I/II was PT2 (14 out of 17). Based on phylogenetic analysis
of core SNPs, it was not possible to detect any evidence of clustering
by human or bovine host (Fig. 1A).
Determination of the accessory genome using the Roary pan-

genome pipeline indicated that among 185 UK isolates there
were 14,636 protein clusters assigned, based on 95% amino acid
sequence similarity. Core proteins present in more than 95% of
the sequences generated 4,369 clusters; 979 clusters originated

from proteins predicted in 15–95% of sequences, leaving a high
number of rare clusters (9,288) that were present in less than
15% of isolates. The majority of all protein clusters (10,653)
were annotated (i.e., were similar to already-annotated proteins
from a public database) and 3,983 were hypothetical. There were
only 5,485 unique protein names across all of the genomes, and
3,807 of these produced single copy clusters. Due to these rules
of cluster assignments, many homologous proteins generated
multiple clusters. We have termed these protein variant (PV)
clusters. An exceptionally high number of PVs were produced by
phage-related proteins, confirming that phage sequences are
highly variable (21).
An accepted way to analyze complex pan-genome data is to

apply metric multidimensional scaling (MMDS) with different
methods of matrix distance calculations. In the present study,
methods of distance calculation had little effect on the final
MMDS plots, and thus all MMDS plots presented in this paper
are based on simple dissimilarity calculations (Fig. 1B). Dense
clusters on the MMDS plot were highly correlated to the lineages
shown on the phylogenetic tree. Thus, further clustering of UK
isolates by k-means resulted in two clusters: one with all isolates
having 100% support and originating from lineage I (128 isolates

A

B

C

Fig. 1. UK Shiga toxin-producing E. coli (STEC) O157 dataset analysis. (A) Core SNP phylogenetic tree. The three main lineages (LN) are shown. The majority
of the UK isolates are in lineage I (LN I) with bovine (red) and human (blue) isolates interspersed across the tree. Bootstrap values shown on branches.
(B) MMDS plot with each isolate represented by a circle. The denser cluster on the right-hand side is composed primarily of LN I isolates with equivalent
numbers of human isolates overlaid by bovine isolates. (C) SVM probability plot based on repeated testing of isolates in the different subsets. The probability
of each isolate belonging to the human or bovine group was calculated over random repeated samples; median values are shown with interquartile ranges.
The predicted “host” of the isolate is based on whether the mean probability is below 0.5 (bovine) or above (human). The percentages of isolates assigned to
each host by the model are shown at the sides of the graph.
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out of all 140 lineage I isolates) and the second with isolates
primarily from lineages II and I/II (support higher than 90%)
and with only 11 isolates from lineage I (support between 85–
90%). All isolates in the second cluster that belonged to lineage I
were PT32 (Fig. S2). Overall, MMDS methods provided results
similar to the phylogenetic analysis, namely, separation of line-
age I and little capacity to distinguish between human and
bovine isolates.
Machine learning methods have been routinely applied to

investigate complex data in several areas of science, although,
until now, it has not been used to analyze bacterial genomic data
to predict phenotype from the genotype. Therefore we built an
SVM classifier trained on E. coli isolates with known isolation
host (human or cattle) and tested whether the classifier could
predict the likely host origin (human/bovine) of isolates from
their PV profile. To choose the features for the model, the
proportions of each PV present in each host group were calcu-
lated separately. There were a total of 10,878 clusters with a
different proportion of PVs between the two hosts (Table S1).
To reduce the number of features introduced into our model,
while preserving accuracy, we used only PVs with a subtractive
difference between the two hosts of >10 (n = 638) and have
defined the discriminatory PVs at >20 (n = 82) in Tables S2 and
S3. The probability of each isolate being assigned to the human
or bovine group was then calculated by random repeated sam-
pling and the resulting probabilities plotted in Fig. 1C. Overall,
using a probability of 0.5 as the separation value, 85% of human
and 91% of bovine isolates were assigned in accordance with the
host from which they were isolated, and the majority with high
probabilities. This shows that it is possible to differentiate these
isolates based on the isolation host, indicating that host-specific
information for E. coli O157 can be derived from the sequence

data alone. Because ruminants, in particular cattle, are a primary
reservoir for EHEC O157 strains, there was an a priori as-
sumption that it may not be possible to assign isolates to the two
host groups because the majority of human isolates are likely to
originate from cattle. However, this was not the case, and it is an
important observation that a minor subset of isolates originating
from cattle were classified into the human group (Fig. 1C).
These same bovine isolates were persistently called as human,
meaning that the model does find features in these isolates that
make them more similar to those from the human population
than from cattle. This finding indicates that not all bovine iso-
lates have the same zoonotic potential; in fact, the majority of
bovine E. coli O157 isolates were not predicted to be associated
with human disease.
The majority of either bovine or human isolates did not change

their assignment probabilities with multiple subtesting (the majority
close to 0 or 1) and strains called distinct from their isolation host
were called so consistently. Midrange isolates had more variable
assignment probabilities (Fig. 1C) and this may indicate genomes
with both human- and bovine-specific features. In addition, the
bovine isolates called as “human” and the isolates called in the
reverse direction cannot be explained by available metadata in-
cluding lineage and PT; for example, the bovine isolates repre-
sent a mixed group of PTs: PT21/28 (n = 4) and one of each PT
31, 32, 33, and 49. Six of these isolates possessed stx2a/2c, one 2a,
and one was negative for stx. We note that MMDS analysis of
this differential PV subset did not separate strains by isolation
host with clustering still tied to lineages and SNP core phylogeny
(Fig. S3).
SVM models can be analyzed for accuracy and prediction

capacity (Fig. S4), with accuracy calculations based on the level
of “incorrect” assignments. However, there is an expectation that

C

A B

Fig. 2. US STEC O157 dataset analysis. MMDS analysis of US pan-genome dataset with each isolate represented by a circle. (A) MMDS clustering with isolates
colored by lineage: lineage I in yellow, lineage I/II in gray, and lineage II in green. (B) MMDS clustering with isolates colored by host: red, bovine isolates and
blue, human isolates. (C) SVM probability plot based on repeated testing of isolates in the different subsets. The probability of each isolate belonging to the
human or bovine group was calculated over random repeated samples with median values and interquartile ranges shown. Red shading for bovine isolates;
blue shading for human isolates. The predicted “host” of the isolate is based on whether the mean probability is below 0.5 (bovine) or above (human). The
percentages of isolates assigned to each host by the model are shown at the sides of the graph.
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our two host groups are not mutually exclusive, in other words
that some isolates can colonize both hosts and therefore will
contribute to model “inaccuracy.” A logical extension of this
point is that if the model were 100% accurate, then there would
be no strain cross-over between the groups, indicating complete
host adaptation or a very rare subset of cattle isolates with
zoonotic potential. Therefore, accuracy estimations can reflect
the underlying biology of the isolates and should be considered
minimum estimates.
An important potential concern for data analysis by SVM is

overfitting, for which the model is not using biologically relevant

information to separate the groups. There are a number of ways
to test for this; the most rigorous is to train the model on one
dataset and then test it on a completely separate dataset. We
apply this model successfully in the next section using isolate
sequences from the United States. In addition, for our UK
dataset we also tested whether we could train the model on two
randomly labeled sets (containing both human and bovine iso-
lates) and determined whether strains from these random groups
could then be correctly assigned back to these groups. This was
carried out in two ways. The first involved subsampling from our
groups (random or bovine/human) with differential PVs (>10)

A

B

C

Fig. 3. Analysis of STEC O157 outbreak isolates. (A) Core SNP phylogenetic analysis of bovine UK (red) and human UK (blue) isolates and the two EHEC O157
outbreaks (magenta and cyan) showing that isolates from both outbreaks fall within lineage I and cluster tightly. (B) MMDS analysis of the two outbreaks (magenta
and cyan) relative to the UK isolate subset (gray). The outbreak isolates form distinctive clusters although associated with lineage I. (C) SVM probability plot of each
outbreak isolate without repeated sampling. Isolates from cattle, milk, or hamburger meat from both outbreaks are in red, and isolates from human hosts from both
outbreaks are colored in blue. All isolates from both outbreaks (milk, hamburger, cattle, and human) were predicted to be “human.”
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determined for these subsamples. Forty isolates distinct to the
training sets but within the assigned groups were then tested.
This subsampling, PV determination, and testing was repeated
20 times. As expected, the isolates from the random groups had a
normal distribution of probabilities reflecting their random as-
signment (Fig. S5C); in contrast, the bovine/human isolates had a
different distribution with the majority having high probabilities
of host assignment (i.e., 1 and 0) (Fig. S5A). Moreover, the re-
peated subsampling of the bovine/human groups yielded a sig-
nificantly higher mean number of PVs (637.1, SD = 63, SE = 14)
than subsampling the random groups (168, SD = 70, SE = 15)
and individual PVs were more likely to be resampled from the
host-related groups compared with the random groups (Fig. S5 B
and D). Taken together, there is significantly more genetic in-
formation relevant to the bovine/human groupings compared
with random groups. Second, when the PV selection used to
assign the complete human and bovine groups (for Fig. 1A) was
applied to randomly selected groups, the majority of probabili-
ties were around 0.5 (Fig. S6). Both approaches give us confi-
dence that our capacity to differentiate bovine and cattle isolates
is not a result of chance and overfitting from a complex dataset.

US Dataset. We obtained 44 human and 44 bovine isolate se-
quences from the United States (Dataset S1, US isolates). The
isolate distribution based on continental differences is apparent
in the phylogenetic tree (Fig. S1). The US isolates occupy sep-
arate branches from UK strains, even within the same lineages,
and show anticipated bias in host designation with lineage. There
were 30 human and 8 bovine strains in lineage I, 13 human and
12 bovine strains in lineage I/II, and 1 human and 23 bovine
strains in lineage II. Also, US strains share between them fewer
“core” positions, covering only 79% of the Sakai genome.
MMDS analysis showed results similar to the UK dataset: The
isolates were separated predominantly by lineage (Fig. 2 A and
B). Before testing our UK isolate model across to this dataset, we
first built an SVM classifier based only on the US dataset, and
the results were similar to UK isolates: The model accuracy was
91.3%, with 92% of the strains assigned correctly according to
the host the isolate was from. Four out of 44 bovine isolates were
called “human.” Thus, even though the US isolates seemed to be
distinct in terms of the human/bovine split on the phylogenetic
tree and in an MMDS plot, the SVM analysis identified a small
group of bovine strains (again just under 10%) that possessed
genome features that can be found in the majority of disease-
associated human isolates and therefore possibly have greater
zoonotic potential. Also, as in the UK dataset, the predicted
probabilities of most isolates had little variation, and therefore
potentially contain strictly bovine or human features, whereas a
smaller group exhibited much greater variability.
In the US dataset, there was a total of 10,590 PVs that varied

between the two hosts, which is comparable with the UK dataset
(10,878 PVs). However, the US dataset contained a much higher

number of PVs with larger differences between hosts (Table S1).
However, there was a relatively small overlap of discriminatory
PVs (n = 197) between the two datasets. The US dataset was
tested with the model trained on the UK dataset based on these
197 PVs. Despite the small number of overlapping PVs between
the datasets, the model accuracy was 78%, with 38 out of 44
bovine isolates and 31 out of 44 human isolates assigned
according to the host from which they were isolated. When
trained on the US dataset and tested on the UK dataset, 86 out
of 94 bovine isolates and 78 out of 91 human isolates were
assigned to the isolation host. Therefore, even though there are
considerable differences between the two datasets and a signifi-
cant amount of continent-specific information has to be excluded,
the same model can be applied, although with less accuracy, to
a distinct dataset.
Despite the continental divergence between the UK and US

isolates, we tried combining the two datasets for testing. Based
on an MMDS analysis, human US isolates that belong to lineage
I form a separate cluster far apart from other lineage I isolates
(Fig. S7 A and B); however, the overall tendency is similar for the
UK or US datasets alone, with lineage I isolates separated from
all of the others. When the proportion of PVs was calculated for
the sets combined, some descriptive features from one dataset
become neutralized by the other dataset. The SVM model based
on the combined dataset (Fig. S7) achieved 82% of model ac-
curacy and predicted 84% of human isolates and 83% of bovine
isolates correctly according to their isolation host. It was reas-
suring that among the bovine isolates that were called “human”
were all of these that already were assigned “human” from the
single-country models. The same applies to human isolates that
were called “bovine.” However, the subset of bovine strains
called “human” in a mixed model increased potentially due to
differences in PVs that define human/bovine separation in the
United Kingdom and United States.

UK Outbreaks. Two main hypotheses can be generated from these
findings, although they are not mutually exclusive: (i) Isolates
associated with human infections represent a very specific subset
of bovine isolates, in which case the majority of bovine E. coli
O157 isolates that we have sequenced may be unlikely to cause
human disease, and (ii) isolates change their genome content
following transition into another host, so potentially they acquire
phage/plasmid regions in the human host although they originate
from cattle; the reverse transfer and adaptation is also possible.
To address this question we analyzed EHEC O157 strains from
two outbreak investigations. One outbreak was associated with
hamburger consumption where both the meat and animal sour-
ces were identified (human n = 17, cattle n = 5, and hamburger
n = 12). Another was associated with milk consumption (human
n = 9 and milk n = 3). As anticipated, the individual outbreak
strains closely relate to each other and in the phylogenetic tree
formed individual tight clusters for each outbreak (Fig. S1). On
an MMDS plot they clustered slightly separately from all other
UK strains but in close proximity to lineage I PT 21/28 strains to
which they belong (Fig. 3 A and B).
We trained the model on the all-UK dataset, excluding the

outbreak isolates, and tested it on the outbreak isolates. From
both outbreaks the “bovine” isolates (from milk, hamburger
meat, and cattle) were classified as “human,” with probabilities
higher than 0.75 for any isolate (Fig. 3C). This supports the first
hypothesis that the threat to human health originates primarily
from a minor subset of strains and that the majority of bovine
strains from both our UK and US datasets, despite their core
SNP association and virulence gene content, are unlikely to be
associated with disease in humans.

Descriptive Proteins. To assess what level of differences can be
found at the core SNP versus PV level we selected four “pairs” of
isolates that lie in close proximity to each other on the final
branches of the phylogenetic tree but were isolated from dif-
ferent hosts and were predicted by the SVM model to be

Fig. 4. Word cloud depiction of annotated PVs that were in higher proportions
of human strains comparedwith cattle strains based on analysis of the UK dataset.
Many of the PVs from human and cattle isolates are of bacteriophage origin.
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associated with those hosts. These pairs had from 9 to 26 SNPs
between them whereas the number of unique PVs ranged from
137 to 364, and the relative number of unique PVs between the
pairs increased in line with the number of SNPs between the
pairs (Table S4). This indicated that these PVs were being lost or
acquired over relatively recent evolutionary time because the
core mutation rate of E. coli has been estimated to be two to
three SNPs per year (22).
We then summarized the differential PVs across the UK dataset

based on their annotations, and for the complete UK dataset with
ΔPV > 10 there were 292 PVs that had higher proportions in hu-
man compared with bovine isolates (summarized in Fig. 4; “hypo-
thetical proteins” were not included in the figure). By comparison,
343 PVs (20% more) were present in higher proportions in the
bovine isolates compared with the human. The main annotated
proteins in both groups were similar and were predominately
prophage-related proteins. Variation in prophage content therefore
underpins the human/bovine classification demonstrated in this
study. This accords with expectations about E. coli strain evolution
being driven by prophage acquisition, rearrangement, and loss.
Different prophage annotations do appear depending on the host
(i.e., rac prophage with 3% for bovine isolates and dlp12 prophage
with 3% for human), although work is now required to examine the
biological impact of differential PVs and how these alter the po-
tential of an isolate to infect or cause disease in humans.

Conclusions
This study has applied machine learning to predict the zoonotic
potential of bacterial isolates. The analysis demonstrates that in
the highly clonal E. coli O157 serogroup, host-specific informa-
tion can be inferred from WGS analysis. Moreover, using an
SVM classifier it was possible to generate a probability of host
association that indicated that only a minor (<10%) subset of
bovine strains were likely to have an impact on human health. In
fact, none of the cattle isolates (apart from outbreak trace-back
isolates) achieved very high human association probabilities
(>0.9), potentially indicating that those posing a serious zoonotic
threat are very rare. This finding has implications for public
health management of this disease because it means that such

strains can now potentially be identified in the ruminant reser-
voir and, if these are the exception, then targeted control strat-
egies including vaccination or even eradication become a more
realistic option to protect human health. The specific prophages
that encode the differential PVs now need to be identified to
progress our understanding of this zoonosis. A subset of isolates
from humans were called as “bovine,” and currently we do not
know whether they differed in their disease severity, e.g., whether
isolates from humans that had high bovine probabilities were
more likely to be associated with asymptomatic infections (23). In
summary, we consider that machine-learning approaches have
tremendous potential to interrogate complex genome information
for which specific attributes of the organism, such as disease or
isolation host, are known.

Materials and Methods
UK and US datasets were previously studied (UK dataset in ref. 13 and US
dataset in ref. 24). Illumina short read sequences were assembled with
SPAdes (25) and annotated with Prokka (26). Maximum likelihood (ML) core
SNPs trees were constructed with RAxML (27). MMDS was performed as
described in ref. 28. Pan-genomes were constructed using Roary (29); the
threshold was set to 95% of sequence similarity at the amino-acid level. A
classifier based on an SVM algorithm was built using R package e1071 (30).
The model was tuned and cost and gamma parameters were adjusted (f.ex
to gamma = 1e-04 and cost = 100 for the UK dataset). No review board
approval was required for the experiments described in this manuscript. Full
details of methods are provided in SI Materials and Methods.
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Supporting Information
Lupolova et al. 10.1073/pnas.1606567113
SI Materials and Methods
UKandUS datasets were previously studied. The isolates used in this
study, their isolation host, and lineage can be found inDataset S1. For
the convenience of this work prefixes were added to the original
isolate names. So, UK human isolates have the prefix HK; UK
bovine, BK; human US, HS; bovine US, BS; milk outbreak isolates
from a human source are HO1 and from milk are BO1. Food
outbreak isolates from humans are HO2 and from cattle are BO2.
To construct core SNPs trees short reads were aligned to a ref-

erence E. coli O157:H7 str. Sakai (RefSeq assembly accession no.
GCF_000008865). Core positions from resulted consensus se-
quences were used to construct an ML tree with RAxML under a
GAMMA model of heterogeneity with 500 bootstrap replicates.
Distance matrices were composed based on pairwise differences

of the sequences calculated as number of changes divided by length
of sequence and also as euclidean, manhattan, canberra, binary, and
minkowski distance. However, in this study, methods of matrix
calculation do not significantly change the final result. Calculations
were done with “dist” function from R library statistics.
Pan-genome based on amino acid sequence similarity of 95%

was constructed using Roary. Proportions of each PV were cal-
culated separately for human and bovine hosts. PVs with dif-
ferences between hosts higher than 10 were used to build a
classifier based on an SVM algorithm from R package e1071. The
model was tuned and cost and gamma parameters adjusted to
gamma = 1e-04, cost = 100 for the UK dataset.
To determine accuracy of the model, datasets were divided by 6

and cross-validated over 100 runs. Accuracy (A) of the predic-
tions were calculated as

A=
TP+TN

TP+FP+TN +FN
,

where TP and TN are true positives and negatives and FP and
FN are false positives and negatives. Specificity and sensitivity
were defined as

Specificity=
TN

TN +FP
, Sensitivity=

TP
TP+FN

and calculated separately for bovine and human predictions. Re-
sults were drawn as a bar plots. Receiver operating characteristic
(ROC) curves were plotted for the each run using R library
ROCR. To assess the influence of neighbors on probabilities
calculated for each data point, 10 strains from each host were
randomly sampled and combined into test datasets, then predic-
tions were made and probabilities calculated. These steps were
repeated to the point where each isolate from the dataset had
been tested at least 10 times. Ranges of the resulting probabil-
ities were graphed as bar plots.
We assessed the host-based model by comparing it to its

performance with randomly allocated groups. For UK host
groups, we randomly sampled 20 isolates from each host group to
make a test set (20 + 20); ΔPV > 10 were then determined for
the remaining human and bovine isolates on which the training
was performed, and then the initial 40 isolates tested and
probabilities assigned. This process was repeated 20 times. For
randomly allocated groups, we divided the UK dataset into equal
size groups then sampled 20 isolates from each of these, re-
calculated the PVs > 10 for the remainder on which SVM
training was carried out, then used this model to tested the 40
strains. This process was also repeated 20 times. The distribution
of assigned probabilities was compared between the groups as
well as the frequency of PV selection.
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Fig. S1. ML phylogenetic tree of E. coli O157 strains, Roman numerals indicate lineages. Light red, UK bovine; dark red, US bovine; light blue, UK human; dark blue, US human isolates; cyan. milk outbreak
isolates; and magenta, food outbreak isolates. The tree shows how the core SNP information aligns well with lineages and that UK and US isolates are generally separate, even within the same lineages. A
minimum branch length is applied by the RAxML software, so very closely related isolate clusters seem more diverse than they are, but the overall relationship between isolates and clusters is correct.
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Fig. S2. UK isolates MMDS plot based on all PVs. Each circle represents a single isolate: orange, lineage I; dark gray, lineage I/II; and green, lineage II. The tight
orange cluster on the right-hand side contains predominately lineage I PT21/28 strains. The second main cluster of lineage I isolates on the left-hand side
(partially occluded) are predominately PT32.
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Fig. S3. UK isolates MMDS plot based on ΔPV > 10. Each circle represents a single isolate (A) colored by host: red, bovine and blue, human and (B) colored by
lineage: yellow, lineage I; gray, lineage I/II; and green, lineage II.
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Fig. S4. Accuracy of the SVMmodel applied to the UK dataset. (A) Accuracy, specificity, and sensitivity of the UK model based on the ΔPV > 10 calculated over
100 cross-validation runs. Accuracy is the total accuracy of the model, which was 89%. (B) Accuracy, specificity, and sensitivity of the UK model based on the
ΔPV > 20 calculated over 100 cross-validation runs. Accuracy is the total accuracy of the model, which was 86%. (C) ROC curves. The UK dataset was divided and
each one-sixth was tested independently based on the training of the remaining five-sixths of the data. The area under the curve (AUC) value is plotted above
each test subset.

Fig. S5. Comparative analysis of random and host divided groups. (A and C) The probability distributions of isolates from 20 runs of 40 randomly sampled
isolates from the study groups: (A) human/bovine groups and (C) two randomly divided groups. Differential PVs were recalculated for each run. (B and D) The
number of runs in which the same discriminatory PVs were found. This distribution was markedly different between the bovine/human groups (B) and the
random groups (D). For the human/bovine dataset there were more than 300 PVs that were repeatedly found in all 20 runs, whereas there were only five found
for the random groups.
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Fig. S6. Test of the SVM model for the UK dataset applying host-specific PVs to random groups. UK isolates (human and bovine) were randomly divided to
generate a training dataset (80% of isolates) and a test dataset (20% of isolates). By applying the same algorithm to the model as used for the UK
dataset alone, it was evident that the two groups cannot be distinguished. Prediction accuracy was 50% and all tested isolates achieved probabilities near the
decision boundary of 0.5 (minimum 0.46 and maximum 0.52).

Fig. S7. Mixed-model analysis of combined UK and US datasets. (A) MMDS plot colored by host (red, bovine and blue, human) and (B) MMDS plot colored by
lineage. (C) SVM analysis based on first combining the UK and US datasets and then multiple subtesting of different 20% subsets as described in SI Materials
and Methods. All isolates that were called differently from their isolation host in the single-country model were also called this way in this combined model.
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Table S1. Comparison of ΔPV by dataset

ΔPV UK US Joined UK and US Overlap UK and US

1. ΔPV > 5 1,326 2,429 1,448 556
2. ΔPV > 10 638 1,238 592 197
3. ΔPV > 20 82 532 84 12
4. ΔPV > 30 18 348 4 0

Number of differential proteins in the datasets shown in different thresh-
olds. The proportion of each PV was calculated separately for human and
bovine hosts.(i.e., PVs with a subtractive difference between the two hosts of
greater than 5). Relatively few discriminatory PVs are shared between the
UK and US dataset.

Table S2. ΔPV > 20 bovine

Cluster name Bovine, % Human, % ID Description

1. group_3598 93 62 NP_414783.1 CP4-6 prophage 3B uncharacterized protein
2. group_4316 93 66 PF12083.2 Hypothetical protein
3. group_22405 93 62 NP_415710.1 Murein tetrapeptide carboxypeptidase 3B LD-carboxypeptidase A
4. group_20911 93 60 NP_415709.2 Putative cation/proton antiporter
5. group_4846 79 56 NP_416090.2 Qin prophage 3B uncharacterized protein
6. group_4385 77 56 NP_416089.1 Qin prophage 3B uncharacterized protein
7. group_2374 90 70 NP_416552.1 Phosphomannomutase
8. group_22106 77 56 NP_309096.2 Regulatory protein
9. group_5053 90 69 NP_416550.1 Putative colanic acid exporter
10. group_8445 89 69 NP_416551.1 Colanic biosynthesis UDP-glucose lipid carrier transferase
11. group_10913 90 69 NP_416549.1 Colanic acid biosynthesis protein
12. group_8447 90 69 NP_416548.1 Putative glycosyl transferase
13. group_21878 86 51 NP_415711.2 Lytic murein endotransglycosylase E
14. intP_1 61 34 NP_288015.1 Integrase fragment 2C cryptic prophage CP-933P; Rac prophage 3B integrase
15. group_1710 90 69 YP_002271281.1 O antigen polymerase
16. group_2064 61 29 NP_417122.1 CP4-57 prophage 3B uncharacterized protein
17. group_2674 55 30 NP_417130.1 CP4-57 prophage 3B putative antirestriction protein ; CP4-6 prophage 3B
18. group_6602 55 34 YP_002402151.1 Phage protein
19. group_3028 81 44 Hypothetical protein
20. group_3128 69 47 YP_003234229.1 T3SS secreted effector NleG-like protein
21. group_1688 77 45 NP_417134.2 *(2) Adhesin-like autotransporter
22. group_1685 80 44 NP_417134.2 Adhesin-like autotransporter
23. group_945 49 27 NP_415866.1 Rac prophage 3B exonuclease VIII 2C 5′ -_ 3′ specific dsDNA exonuclease
24. group_947 38 16 NP_415866.1 Rac prophage 3B exonuclease VIII 2C 5′ -_ 3′ specific dsDNA exonuclease
25. group_9649 51 27 Hypothetical protein
26. group_12348 50 26 NP_288007.1 Repressor protein encoded by cryptic prophage CP-933P
27. group_9656 50 26 YP_003233901.1 Putative antirepressor protein Cro
28. group_12345 48 25 YP_003078025.1 Plasmid stabilization system protein
29. group_2089 45 21 YP_002397033.1 Putative phage replication protein O (weak confidence)
30. group_3962 45 21 NP_415876.1 Rac prophage 3B uncharacterized protein ; phage regulatory protein
31. group_7348 62 15 NP_414651.1 Quinolinate phosphoribosyltransferase
32. group_2692 57 31 NP_417130.1 CP4-6 prophage 3B uncharacterized protein ; CP4-57 prophage 3B

antirestriction protein
33. group_9542 47 22 YP_003222344.1 Antirepressor protein
34. group_4009 35 9 NP_287300.1 Tail assembly chaperone encoded by prophage cp-933n
35. group_658 61 16 YP_002272449.1 ISSfl4 ORF3
36. group_2261 37 15 NP_418704.1 IS30 transposase
37. group_1156 41 19 NP_416078.4 Qin prophage 3B uncharacterized protein
38. group_4925 40 18 NP_416352.4 Serine/threonine-specific protein phosphatase 1
39. group_9831 24 4 Hypothetical protein

ΔPVs > 20 that were present in higher proportions of bovine isolates than in human isolates. Highlighted in gray are proteins that formed multiple clusters
(three different proteins formed two clusters each).
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Table S3. ΔPV > 20 human

Cluster name Bovine, % Human, % ID Description

1. group_2494 70 91 YP_002268881.1 Tail fiber protein; tail fiber protein from prophage CP-933H
2. group_1918 38 78 YP_003228508.1 DNA biosynthesis protein (primosomal protein I); replication protein
3. group_2230 44 65 YP_002272118.1 DNA-binding protein
4. group_22597 38 67 NP_416507.1 CP4-44 prophage 3B uncharacterized protein
5. group_9655 46 70 YP_003233901.1 Putative antirepressor protein Cro
6. group_6372 56 77 YP_003224990.1 Phage repressor protein CI; e14 prophage 3B repressor protein phage e14
7. group_9543 35 67 YP_003222344.1 Antirepressor protein
8. group_12151 53 76 Hypothetical protein
9. group_12152 53 76 Hypothetical protein
10. group_9474 53 76 PF11225.2 Hypothetical protein
11. group_4840 35 64 YP_852520.1 Transcription regulatory protein
12. group_7349 33 74 NP_414651.1 Quinolinate phosphoribosyltransferase; molybdenum transport protein modd
13. group_22540 36 64 NP_416506.1 CP4-44 prophage 3B putative DNA repair protein
14. group_5954 50 70 YP_003233676.1 Outer membrane protein X; putative outer membrane protein Lom
15. ngoMIVR 48 71 P31032 Type-2 restriction enzyme NgoMIV
16. group_12291 48 71 P44068 Hypothetical protein
17. group_12364 48 70 YP_003235023.1 Putative antirepressor protein Cro
18. group_12365 48 70 YP_003235024.1 Putative phage repressor protein CI
19. group_3030 18 54 Hypothetical protein
20. group_12378 48 68 Hypothetical protein
21. group_2933 22 57 Hypothetical protein
22. group_896 16 64 NP_309418.1 BfpM-like protein; putative transporter
23. group_8446 10 31 NP_416548.1 Putative glycosyl transferase
24. group_5052 10 31 NP_416550.1 Putative colanic acid exporter
25. group_10912 10 31 NP_416549.1 Colanic acid biosynthesis protein
26. group_3959 10 40 Hypothetical protein
27. group_8444 10 31 NP_416551.1 Colanic biosynthesis UDP-glucose lipid carrier transferase
28. group_22105 23 45 NP_309096.2 Regulatory protein
29. group_2688 20 53 NP_417130.1 CP4-6 prophage 3B uncharacterized protein ; CP4-57 prophage 3B

antirestriction protein
30. group_3185 26 56 NP_415861.1 Rac prophage 3B integrase
31. group_1711 10 31 YP_002271281.1 O antigen polymerase
32. group_12648 15 36 Hypothetical protein
33. group_654 12 32 YP_002272449.1 ISSfl4 ORF3; transposase; IS encoded protein within CP-933O; ORF 1 2C

IS66 family
34. group_4378 18 44 NP_416089.1 Qin prophage 3B uncharacterized protein
35. group_4847 18 44 NP_416090.2 Qin prophage 3B uncharacterized protein
36. group_13920 9 32 Hypothetical protein
37. group_3600 7 36 NP_414783.1 CP4-6 prophage 3B uncharacterized protein
38. group_3844 7 29 NP_287540.1 Transposase within CP-933O 3B partial; transposase
39. group_22750 11 31 NP_286994.1 Tail fiber protein of bacteriophage BP-933W
40. group_21879 5 26 NP_415711.2 Lytic murein endotransglycosylase E
41. group_4380 7 31 NP_416089.1 Qin prophage 3B uncharacterized protein
42. cro 54 76 YP_002383192.1 Regulatory protein from bacteriophage origin
43. N 55 77 YP_002397117.1 Antitermination protein N

ΔPVs > 20 that were present in higher proportions of human isolates than in bovine isolates. Highlighted in gray are proteins that formed multiple clusters
(three different proteins formed two clusters each).

Table S4. Pairwise comparison of human and bovine isolates

Pair Bovine Human Unique PV SNPs

1 BK_X011651 HK_2927 137 9
2 BK_X008248 HK_2688.3 143 17
3 BK_X010539 HK_2956 292 18
4 BK_X011616 HK_1619.1 364 26

The number of SNP and PV differences between human and bovine iso-
late pairs selected by relatedness from their core SNPs phylogenies (Fig. S1).
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Other Supporting Information Files

Dataset S1 (XLS)

Lupolova et al. www.pnas.org/cgi/content/short/1606567113 9 of 9

154



3.3.3 Conclusions

All isolates of the clonal group, E. coli serovar O157, in the previous chapter

3.2 were predicted to be of zoonotic threat. However, this separate O157 anal-

ysis when training and testing isolates are sampled from the the E. coli O157

’clonal’ cluster confirms that differential host predictions can be achieved for

this group. The resolution of the model is clearly reduced when phylogenet-

ically distinct isolates are compared. General trends towards one or another

host can be noted, but not the granularity of the sub-populations (see S. Dublin

and S. Typhi examples tested on the STm-trained background 3.2 and com-

pare E. coli O157 alone 3.3 with E. coli O157 tested on a wider, diverse scale

3.2compare). Distinct phylogeny was shadowing hidden patterns that eventu-

ally were discovered and allowed for separation by host even for such clonal

group as E. coli O157. As such, the techniques can have more discriminatory

power if you can focus down to specific sub-clusters and still have enough ex-

amples for training and testing.

A few issues were faced during this analysis and these were mostly due to

clonal nature of O157 serogroup. First, it was noted that there were very few

significantly differential PVs between human and bovine isolates. For the STm

analysis, some PVs varied by 50% or even more; by contrast in the O157 study,

no protein variants that differed by more than 20% were found. This presum-

155



ably reflects their clonal nature and that these isolates share quite a large core

genome, above 4/5 of genome content was the same between isolates).

Another side of the analysis was the finding that the majority of the PVs on

which the predictions were based were of phage origin. E. coli O157 iso-

lates usually maintain from 10 to 20 prophage sequences incorporated in their

genomes. Even though prophages can be quite diverse, they do have many

related and sometime identical genes. To add further complexity to this situ-

ation, the phage content is usually further loaded with insertions sequences.

These factors, similar regions and insertions, can heavily disrupt downstream

analysis: assemblies usually break on phage regions, and due to insertions the

same genes could be not be predicted correctly. This can negatively influence

PV clustering which is based not only on sequence similarity but also on gene’s

neighbourhood. The high similarity of the clonal group and the complexity of

phage content means that the O157 ML predictions were based on a large

number of low differential value PVs: for example there were over 600 for the

E. coli O157 analysis at PVdelta10 and around 100 used to discriminate the

human bovine isolates at deltaPV40 for the wider E. coli population (Chapter

3.2). It is likely that some of these delta10 PVs will be erroneous, however at

this point it would be impossible to distinguish between a true biological signal

and noise introduced by the analysis. It is expected that noise could influence

the predictions, however, the random testing showed significant differences
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between a classifier based on the random data and well structured human vs

bovine classifier outputs (see [110], supplementary material), reassuring that

a ’host’ signal can be extracted from the data.

To add to the mystery, our group’s current work includes analysis of long

sequence data (PacBio) and we have had a small subset E. coli O157 iso-

lates sequenced including 12 phage type 21/28 isolates, some are already

published[91]. When aligned, these sequences are extremely similar (above

90%). The most striking differences amongst these E. coli O157 genome as-

semblies are large chromosomal inversions that occur between highly homolo-

gous phage boundary regions. These potentially may explain some of the PVs

identified, but conceptually such variation should have little impact on overall

content identified. We still need to take account of possible plasmid-based dif-

ferences as these have not yet been compared to PacBio data. In addition,

the PacBio dataset is not yet big enough to consider a ML model to repeat

an equivalent analysis from these long read assemblies, but this remains an

objective. While phage and possibly plasmid based PVs will account for some

of the differential PVs, we have cases of predictive score showing a differen-

tial host prediction for isolates from which the genome alignments (based on

PacBio sequencing) show very little variation. There is concern that some of

the variation may therefore be down to artefacts that appear during assem-

bly and analysis, although we have also to consider that the Illumina method

is from a broth culture and captures all read variants of an isolate’s population
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and the PacBio assembly is just one confirmation and form. We are seeing dra-

matic heterogeneity on some isolate cultures and this could also work its way

through as a differential, for example IS and phage movements in sub popula-

tions. Such single isolate heterogeneity is a current focus in the laboratory. In

summary, my confidence in the PVs reflecting true biological host differences

increases with the differential score between the groups as it is less likely to be

due to variation that can occur with assembly and other analysis issues.

Given the discussion in the last paragraph, this study, as with the previous

chapter, would benefit from some experimental work, to try and confirm pheno-

type from genotype. However, for STm, performing competition experiments is

quite realistic, for example competing ’chicken’ and ’bovine’ strains in a chicken

gut, the equivalent for O157 would be more challenging to design and would

require some human experiments which would be difficult to justify ethically.

However, it may be possible to compete different isolates in cattle to see if

differential ’bovine’ scores have any differences in colonisation or excretion po-

tential.

Despite the caveats and our lack of understanding of what may underpin the

predictions, around 90% of isolates were classified correctly in both studies

using SVM. Moreover, the E. coli O157 SVM correctly called the outbreak
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isolates from meat and milk samples as ’human’ giving us some confidence

in this exciting approach to host attribution and my study was the first of its

kind in bacteria. It is interesting how other ML methods would handle these

datasets and if better predictions could be achieved. The next chapter explores

this and considers what other ML methods could be valuable for bacterial host

attribution.
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3.4 Overview of ML methods for bacterial source

attribution

3.4.1 Introduction

A single experiment can produce an extraordinary amount of complex data

that is challenging to handle, analyse and interpret in order to identify and

characterise features common to subsets before these can be understood in

a biological context. While dataset is relatively small tabular format are an

accepted practice to quickly sort or filter or plot data based on a few charac-

teristics, nowadays these methods have reached their limitations. New ways

to analyse and summarise a big data is needed in order to reveal any hidden

structures that can then be evaluated by new experiments. Recently ML has

become a popular choice for researchers in data rich subjects. However, it can

be difficult for an inexperienced user to choose between the many algorithms

available due to the complexity of both models and data.

This chapter aims to compare the capacity of different ML and other statistical

approaches to analyse bacterial genome sequence data in order to determine

if genetic signals relating to host ’specificity’ or ’restriction’ can be identified. A

complication of this analysis is that while we know that certain serovars of S.

enterica differ in their host restriction, i.e. that S. Typhi is a specialist human
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pathogen, S. Dublin, initially considered restricted to cattle, has isolates that

can cause infections in humans. Conversely, while S. Typhimurium is consid-

ered a generalist, as this serovar is isolated from multiple animal and human

sources, the same as with E. coli, it may not mean that all isolates have the

potential to infect multiple hosts.

It is anticipated that any such genetic signals of host-dependency will often be

integrated with or masked by strong phylogenetic signals and at the moment

we are reliant on classical approaches of sub-testing within datasets to vali-

date the different methods being compared in this study. As such, this chapter

is both a review and a research study into the different methods and their value

to predict the host source of these particular bacterial species. It builds on the

recent work described in the previous chapters predicting the zoonotic poten-

tial of E. coli and S. enterica using a single ML approach: Support Vector

Machine in Chapters 3.2, 3.3 with the conclusion that supervised ML methods

have significant potential to predict such complex phenotypes from bacterial

WGS and this will be of value to public health authorities and others wanting to

understand the zoonotic threat that surrounds us.

To explore dataset and classify bacterial sequences into 4 host categories va-

riety of dimensionality reduction techniques (DRT) as well as supervised and
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unsupervised machine learning (sML and uML) methods were used (See list

below ??). In short, DRT requires minimal prior knowledge of the dataset from

the user, whereas for uML, the user should specify the number of classes by

which the data should be separated. Some existing techniques to determine

the optimal number of clusters for a given dataset were explored. By contrast

for sML, an initial dataset (training dataset) with well defined subpopulations

is required, thus the algorithm will deduce from it some specific characteristic

of each class and learn to distinguish between them. Then, new data (test

dataset) from unknown origin can be analysed and each new datapoint can

then be assigned a probability to belong to one or another initial subpopulation

based on previously learned characteristics of these subpopulations.

Dimensionality reduction techniques (DRT) are a group of methods that are

often used as an initial step in exploratory analysis of data. Dimensionality or

complexity of the data are reduced using an orthogonal transformation to con-

vert a set of observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components. The number of

principal components is less than or equal to the number of observations. This

transformation is defined in such a way that the first principal component has

the largest possible variance, i.e. it accounts for as much of the variability in

the data as possible and each succeeding component, in turn, has the high-

est variance possible with the constraint that it is orthogonal to the preceding
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components. The resulting vectors are an uncorrelated orthogonal basis set.

Moreover, DRT are the way to reduce the number of random variables under

consideration by obtaining a set of principal variables. It is usefull for simplifi-

cation of models, to make them easier to interpret, if computational resources

is a bottleneck DRT can be applied prior training to shorten training times and

also to reduce curse of dimensionality (the dimensionality increases, the avail-

able data become sparse, thus difficult to obtain statistically sound and reliable

result. The amount of data needed to support the result often grows expo-

nentially with the dimensionality. Reducing the number of random variables

also would enhanced generalization. Overall, DRT can be divided into feature

selection and feature extraction.

In simplified terms the supervised and unsupervised algorithms are described

below.

k-means The first step when using k-means clustering is to indicate the num-

ber of clusters (k) that will be generated in the final solution. The algorithm

starts by randomly selecting k objects from the data set to serve as the initial

centers for the clusters. The selected objects are also known as cluster means

or centroids.

Next, each of the remaining objects is assigned to itâĂŹs closest centroid,
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where closest is defined using the Euclidean distance between the object and

the cluster mean. This step is called ’cluster assignment step’.

After the assignment step, the algorithm computes the new mean value of each

cluster. The term cluster ’centroid update’ is used to design this step. Now that

the centers have been recalculated, every observation is checked again to see

if it might be closer to a different cluster. All the objects are reassigned again

using the updated cluster means.

The cluster assignment and centroid update steps are iteratively repeated until

the cluster assignments stop changing (i.e until convergence is achieved). That

is, the clusters formed in the current iteration are the same as those obtained

in the previous iteration.

The agglomerative clustering is the most common type of hierarchical clus-

tering used to group objects in clusters based on their similarity. The algorithm

starts by treating each object as a singleton cluster. Next, pairs of clusters are

successively merged until all clusters have been merged into one big cluster

containing all objects. The result is a tree-based representation of the objects,

named dendrogram. The divisive clustering starts by including all objects in

a single large cluster. At each step of iteration, the most heterogeneous clus-

ter is divided into two. The process is iterated until all objects are in their own

cluster.
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In natural language processing Latent Dirichlet Allocation is generative sta-

tistical model that facilitates the automatic discovery of themes in a collection of

documents. Algorithm starts by going through each document, and randomly

assign each word in the document to one of the K topics (similar to kmeans

defined beforeahend). This step results in randomly assigned classes. To

improve them for each document d go through each word w in d and for each

topic t, compute two things: 1) p(topic t | document d) = the proportion of words

in document d that are currently assigned to topic t, and 2) p(word w | topic t)

= the proportion of assignments to topic t over all documents that come from

this word w. Reassign w a new topic, where you choose topic t with probability

p(topic t | document d) * p(word w | topic t) (according to our generative model,

this is essentially the probability that topic t generated word w, so it makes

sense that we resample the current wordâĂŹs topic with this probability). In

other words, in this step, it is assumed that all topic assignments except for

the current word in question are correct, and then updating the assignment of

the current word using our model of how documents are generated. After re-

peating the previous step a large number of times, youâĂŹll eventually reach

a roughly steady state where your assignments are pretty good. So use these

assignments to estimate the topic mixtures of each document (by counting

the proportion of words assigned to each topic within that document) and the

words associated to each topic (by counting the proportion of words assigned

to each topic overall).
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Briefly, SVM works by identifying the optimal decision boundary that separates

data points from different groups (or classes), and then predicts the class of

new observations based on this separation boundary. Depending on the situ-

ations, the different groups might be separable by a linear straight line or by a

non-linear boundary line.

Random forest in essence uses one feature at the time to separate data into

classes. Combining random multiple features the decision tree is built. Com-

bining multiple trees into a forest and calculating statistics on usefulness of

each of the feature the final result is obtained.

A neural network is an interconnected group of layers of nodes, similar to the

vast network of neurons in a brain. Each layer acts as a detection filter for

the presence of specific patterns present in the original data (first layers detect

most obvious patters and later layers detect smaller, more subtle patterns).

Last layer combine all the data that was learned by the previous layers. In same

cases (back propagation) the learning process does not end when last layer

are reached, but after comparing obtained values with the labels provided will

be disentangled backwards through network and adjusting learning to achieve

better outcome.

All of the above mentioned techniques were used to address source attribution

of Salmonella enterica serovar Typhimurium (see ??). The results are focused

on a few main points: (1) how the each method performs according to known
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Table 3.1: Methods
Dimensionality reduction methods

1 Principal component analysis (PCA) [144] PCA tutorial
2 Multidimensional scaling (MDS) [145] MDS tutorial
3 t-Distributed Stochastic Neighbor Embedding (t-SNE) [146] t-SNE tutorial

Unsupervised machine learning
1 K-means [147] k-means tutorial
2 Divisive Hierarchical clustering (DHC) [148] DHS tutorial
3 Agglomerative Hierarchical clustering (AHC) [148] AHC tutorial
4 Latent Dirichlet Allocation (LDA) [149] LDA tutorial

Supervised machine learning
1 Support vector Machines (SVM) [106] SVM tutorial
2 Random Forest (RF) [107] RF tutorial
3 Neural Network (NN) [108] NN tutorial

host information about the dataset; (2) how user-friendly the techniques are;

(3) the interpretability of the results and (4) any additional value of the tech-

nique. The 3 main methods are listed below. Explanation of the methods is out

of the scope of this work, however references to original techniques, as well as

good tutorials are provided.
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3.4.2 Methods

For this study the dataset of 1203 S. Typhimurium genome sequences from

the previous work (see chapter 3.2, [114]) were reused. Proteins variants as-

sociated with each host (p >0.05) were calculated by pangenome GWAS soft-

ware SCOARY [150] after 500 permutations. All calculations and visualisation

presented in this chapter were carried out in R [127]. Significance tests were

done using t.test{stats} and prop.test{stats}. Local polynomial regression fitting

(loess{stats}) was used with 10% smoothing span and fitted with generic pre-

dict{stats} function. Diversity was explored with R package ’vegan’ [151] from

which following functions and methods were used: diversity() for Shannon in-

dex calculations, betadiver(x, ’z’), betadisper(), anova(), plot.betadisper(), per-

mutest.betadisper(x, pairwise = T, permutations = 99) for beta diversity analy-

sis.

Diversity indexes Dissimilarity matrix for all uML analysis was calculated based

on euclidean distance. 5 fold cross-validation (sliding window) was used for all

supervised models. To assign host scores one isolate at a time has been

removed from the training, model has been trained and then the isolate were

tested.
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3.4.3 Results

3.4.3.1 Diversity

The same Salmonella Typhimurium dataset as in Chapter 3.2 was used in this

study. The dataset is based on sequences from 4 hosts: 311 avian (A) isolates,

300 bovine (B), 336 human (H) and 256 swine (S). Pangenome matrix calcu-

lated by Roary was also reused from the previous study [114]. Pangenome

contained 23,307 protein variants (PV) clusters. The mean number of pre-

dicted PVs for an isolate across the combined dataset was 4620 (min = 4037,

max = 4993), while mean values of predicted PVs per each host were very

similar with slightly less PVs in the human dataset (A = 4,632, B = 4,645, H

= 4,573, S = 4,636). There was a significantly lower (p < 0.001, z.test, R

[127]) number of core predicted proteins in the avian population (A = 2,218, B

= 3,054, H = 3,056, S = 3,065) compared to the remainder. The total number

of core protein clusters across all isolates was 1991, indicating only a partial

overlap in proteins considered core in each host. Rare PVs, these that would

be found in less then 15% of all isolates originated vast majority of the clusters

(n = 18,203) and this number of rare PVs vary by host minimally (A = 18,354,

B = 18,295, H = 18,272, S = 18,415).

One of the ways to examine biodiversity is to calculate diversity indices. Here

169



we used Shannon index [152] that quantifies the uncertainty in predicting the

species identity of an individual that is taken at random from the dataset.The

higher the index the more species are in the dataset. Moreover, Shannon in-

dex incorporates both aspects of diversity: richness (how many species in a

site) and the evenness (how close in numbers each species). To translate

to genomics, genes were treated as species and each host as a site. Shan-

non indexes were calculated across all PVs which proportions vary between

hosts. The results demonstrated very similar levels of diversity with average

value 7.88 with only slight decrease for human dataset (Shannon = 7.85). (see

Figure 3.12 A). Another aspect of diversity can be described by beta diversity

which defined as the differences in species composition among sites[153]. To

analyse beta-diveristy, beta-dispersions were proposed [154] and used here

to calculate an average dissimilarity from individual observation units(PVs) to

their group(hosts) centroid in multivariate space. The clusters resulted from

this analysis with average distances to the centroid A=0.09725, B=0.10578,

H=0.12157, S=0.09975 were significantly different between hosts (Annova, p-

value<0.0001) and in particular, between human and any other host (pairwise

comparison with permutations, p-value <0.0001), see Figure 3.12 C). Avian

and swine isolates were gathered into most tight clusters while bovine and

human subpopulation were more disperse. Apart from the density, it can

be noted, that some clusters overlap significantly as for example swine and

bovine, while majority of avian isolates clustered quite distantly. Based on this
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analysis human isolates can be divided into 2 subgroups, one was overlapped

with bovine cluster and other was scattered between human and avian clus-

ters and mixed with isolates from other hosts. Another interesting observation

is that datapoints was not gradually dispersed from a host clusters, these iso-

lates that are scattered away from the centroids usually appeared by more than

one standard deviation away. (one SD from each centroid shown as an ellipse

(see Figure 3.12 B).

To identify genetic content that associated with each host, all clusters that were

present in 100% of isolates (i.e. core, n = 1,991) were removed, then the

dataset was reduced further by removing all clusters that present in the equal

proportions across different hosts, leaving only PVs clusters for which the pro-

portions between hosts varied. Remaining 4,041 PVs shown on Figure 3.12 A.

As a whole, no significant differences in distribution of PVs proportions in each

host population were noted as shown by best fit lines (loess) (Figure 3.12 C).

Proportions of the majority of the 4,041 PVs varied just sligtly between hosts

(Figure 3.12 B), however there were some PVs that were significantly asso-

ciated with host groups as calculated by pangenome GWAS [150]. Further-

more, some of the PVs significantly associated with more than one host (i.e

a PV was significantly overrepresented in one host and in the same time was

be significantly under-represented in another host (Figure 3.12 D). There were
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263 avian associated PVs and 113 (43%) of these were shared between other

hosts, 78 PVs significantly associated with bovine host from which 30 (38.5%)

were shared with other host groups, 197 human associated with 108 (55%)

shared, 132 swine PVs with 67(51%) shared. As soe clusters were shared

between hosts, therefore, the total number of unique significantly differential

clusters was 495. Each host’s differential PVs were plotted as black circles

in Figure 3.12 C as well as in a Venn diagram to visualise the overlap of

the PVs between each group (Figure 3.12 D). All subsequent analyses in this

study were applied to the reduced matrix of 495 PVs that represent only those

flagged by SCOARY as significant.

Dissimilarity matrix based on euclidian distances obtained from these 495 PVs

showed some clustering (Hopkins statistics = 0.25), which were very similar

to these that were obtained by phylogeny either SNPs or accessory genome

based [114] (see Figure 3.12 E).

3.4.3.2 Dimensionality reduction techniques

Could dimensionality reduction by combining and transforming variouse fea-

tures separate data into clear host related clusters? First two methods, PCA

and MDS, show very similar results for which the majority of the avian isolates

are separated by the first principal component from all other isolates. More-

over there is a small group of bovine and porcine isolates that are placed apart
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from the bulk of other isolates as well as apart from the separated avian iso-

lates indicating that these are seen as a different sub population apart from the

remainder of bovine and porcine isolates. Both PCA and MDS show consid-

erable overlap between the majority of all other hosts which are placed as a

large cluster of mixed isolates, however some spread in range can be noted by

PC 3 in the MDS analysis that place human isolates above bovine and porcine

(See Figure 3.13 A, B).

All original features contributed in lesser or greater extent to separation of dat-

apoints without any clear influencers. No meaningful biological information

about what proteins are responsible for the separation can be extrapolated

from this analysis. So the complexity of the data can be seen by percent of

variation explained by principal components and for both PCA and MDS all 3

PC explained only 46% of variation (PC1 = 26%, PC2 = 12% PC3 = 8%)

Quite different results were obtained from the third dimensionality reduction

technique, prbabilistic model t-SNE. Apart from the same differences observed

with the majority of avian isolates, multiple tight groups were observed. It is in-

teresting that the algorithm divided human isolates into 4 separate clusters,

as well as divide bovine isolates into several of the most distant groups. One

of the parameter that can be changed is a perplexity which is a guess how

many neighbours each datapoint has. The plot shown (3.13 C) is done with
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perplexity = 300 what reflects average number of isolates for each host group.

Overall, any perplexity value between 30 to 350 resulted to the clustering sim-

ilar to shown here ?? C, as expected decreasing perplexity produced badly

separated one fuzzy group, while gradual increase above 350 produced one

increasingly tighter group, both without any noticible structure.
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Figure 3.12: S. Typhimurium pangenome exploration. Colours represent host: avian
(yellow), bovine (red), human (blue), swine (pink).(A) Shannon index calculated
for each host on differential PVs.(B) Beta-dispersions shows multivariate homo-
geneity of isolates in each host. Non-euclidean distances between objectsare
reduced to principal coordinates (x-axis and y-axis) Ellipses indicate one stan-
dard deviation from each host centroid marked as a letter.(C) 4,041 PV (x-axis),
which proportions (y-axis) of presence vary between host (colours). Signifi-
cantly associated with each host PVs (as calculated by pangenome GWAS) are
plotted in black. Bottom panel shows best fit lines (Loess) for distribution of
differential PVs from all host. (D) Numbers of PVs significantly associated with
host and overlap of differential PVS by between different hosts. (E) Ordered
dissimilarity matrix based on differential PVs. Heatmap colours: red (high) and
blue (low) similarity. Labels are coloured by host.
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Figure 3.13: Dimensionality reduction techniques. Colors represent host: avian (yel-
low), bovine (red), human (blue), swine (pink) A. Principal component analysis
(PCA), B. Multidimensional Scaling (MDS), C. t-Distributed Stochastic Neighbor
Embedding (t-SNE).
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3.4.3.3 Unsupervised ML

Even though the results of dimensionality reduction methods and unsupervised

machine learning (clustering) seem to be similar as they both split datasets into

smaller subgroups, these two methods differ in respect that DRT aims to com-

press features whereas clustering aims to compress datapoints. Also, for any

of the clustering algorithm it is necessary to set a number of clusters that a user

would like to obtain before running the analysis. Some techniques can indicate

the optimal number of clusters for each of the uML algorithms: by computing

different numbers of clusters and comparing within cluster ’sum of squares’,

sometimes called the elbow method, or average silhouette method, that com-

putes how well each object lies within the cluster, or gap statistics methods

which compare within intra-cluster variation with their expected values under

null reference distribution. [155] [156].

All three cluster assessments were applied to demonstrate what number of

clusters would be considered optimal by each of these methods, based on the

k-means clustering. Figure 3.14 demonstrates that each method come to the

different solution and number of the optimal clusters vary from 2 recommended

by silhouette method to 10 by gap statistics. Moreover, according to the gap

statistics graph, 10 is not yet the optimal number of clusters as the trend line

has not yet reached a plateau. To sum up, there is no agreement between
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cluster assessment methods, even though each of these produce stable solu-

tions. In all subsequent uML analysis only 4 clusters were calculated as the

objective was to access if it is possible to split the dataset by host and bacteria

in the dataset were isolated from 4 hosts.

The above described cluster assessment methods can be used not only at the

start, to guide the analysis, but also can at the end to assess how well cluster-

ing algorithms have performed. There are over thirty different indices that could

be used and recent studies [157] indicate that some of these, including Silhou-

ette, Davies-Bouldin and Calinski-Harabasz perform the best in a wide range

of situations. Thus, Silhouette indices were used to measure how similar is a

data point inside of a cluster compared to those in other clusters. Silhouette

assigns a score to each data point and these scores range from -1 to 1, and

the best clusters should have an average score near 1. If the average score

is near 0 it could indicate that cluster members would be better separated into

more, smaller clusters. When the value is negative it is an indication that the

data points were wrongly placed into this cluster.

In addition, the results of the clustering were mapped to the previously obtained

maximum likelihood phylogenetic tree see Figure 3.3, mainly because the phy-

logeny is a well established way to visualise bacterial datasets and provides a
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Figure 3.14: Optimal number of clusters as calculated by (A) Elbow method, (B) Sil-
houette method, (C) Gap statistic method. The methods that calculate optimal
number of clusters in STm dataset were in disagreement and the recommended
number of cluster ranged between 2 in ’silhouette’ to above 10 in ’GAP statistics’

clear snapshot of the diversity of the bacteria in question as well as could infer

relationships between particular isolates. In the previous sections, 3.1, 3.2, in
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either the core or pan tree the more obviouse was avian cluster, however it in-

corporated only some of the isolates ( 80%) while the other 20% were spread

across the tree and were found in close proximity to isolates from other hosts.

Based on the phylogeny there is also a human cluster that contained 50% of

isolates and a smaller bovine 30% group.

Overall uML agreed in allocation of the majority of the strains into particular

clusters. (see Figure 3.15). So all the uML methods decided that the majority

of the avian strains, also shown by phylogeny as related, should belong to the

same cluster. Moreover, the human isolates were most of the time (kmeans

HA, LDA) divided into 3 clusters, with one mainly human and two others of the

mixed host origin. It is intriguing that all uML methods agreed that some of the

phylogenetically close bovine strains (on the right side of the phylogenetic tree,

Figure 3.15) were separated from the main bulk of bovine strains and allocated

to the avian cluster. Comparing four different uML methods, it is evident that

kmeans and hierarchical agglomerative clustering come to the almost same

solution, with only 4.4% of the sequences allocated to different clusters, with

main the disagreement about the human strains that by kmeans are allocated

in the mostly human cluster, but by HA these strains are in the big mixed pop-

ulation cluster.

It is also very intriguing that almost all (except HD) methods not only joined

180



together the avian strains from the avian phylogenetic cluster but also added

to that cluster bovine and swine isolates from the phylogenetic neighbourhood

of the avian cluster.

Silhouette index for uML varied from 0.33 for LDA to 0.62 for HD, thus based

on that measure HD had the most successful clustering strategy. Kmeans and

HA both achieved very similar results and indexes of 0.46 and 0.43 respec-

tively. However the number erroneously allocated isolates (silhouette index

below 0) are higher with HA clustering. HD created the ’cleanest’ avian cluster

compared to all other uML (with only 2 human and 5 bovine included in that

cluster), however HD also originated an enormous mix population cluster that

was composed of 754 strains (67% of all strains).

The LDA method showed interesting result as it produced the most variable

clusters. Also apart from the ’mostly’ avian cluster its choice of the strains for

a particular cluster, when compared with their phylogeny, seemed much more

segmented, clearly indicating that this algorithm is finding a different and more

granular pattern than other algorithms.
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Figure 3.15: Unsupervised machine learning. The colours represent host: avian (yel-
low), bovine (red), human (blue), swine (pink). The first column of the figure
shows the cluster’s relative size and it composition by host, Second column
demonstrates Silhouette index cluster assessment, where each of 4 clusters
coloured differently and each isolate drawn as a bar with the silhouette index
from (-1 to 1) allocated to it, and average of all individual indexes is plotted on
the top of silhouette cluster and denoted as a red dotted line. The clusters are
drawn in the same order as these from the first column. Third column illus-
trate cluster correlation with phylogeny (assessory genome tree) with inner ring
depicting host and outer ring clusters
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3.4.3.4 Supervised Machine Learning

SVM performance was demonstrated in the previous sections, thus this algo-

rithm was rerun to verify that the results are stable and can be repeated, which

was the case. Some variation during the training process were noted. So SVM

and RF cross-validation model accuracy never were higher than 80-85% while

for DL model cross validation accuracy could reach 100%. Nevertheless, when

isolates were tested by ’leave one out’ method, all algorithms showed very sim-

ilar results with 85% +
−1% of overall accuracy with averaged accuracy by host

(A - 90.3%, B - 78%, H - 92%, S - 75%). The performance of all algorithms in-

dicated that avian and human host contain the easiest to learn patterns, while

bovine and swine host have many features in common and therefore are dif-

ficult to distinguish. Figure Figure 3.16 shows the performance of each sML

method with overall cluster composition and indication of assignment for each

isolate. So the tendency for errors is as follows: all hosts except avian have a

second preferred group in terms of probable assignments. For human isolates

this is the bovine group, for bovine it is swine and vice-versa. For avian the er-

roneous assignments were spread equally between all other host categories.

See Table 3.3, 3.2
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Table 3.2: Host assignments as calculated by SVM. Predicted values are in columns
and are equivalent to ’cluster composition by host’ plotted on Figure 3.16.

Host Ap Bp Hp Sp Total
A 278 16 9 8 311
B 13 234 15 38 300
H 1 25 309 1 336
S 7 45 12 192 256

Total 299 320 345 239 1203

Table 3.3: Host assignments as calculated by RF. Predicted values are in columns
and are equivalent to ’cluster composition by host’ plotted on Figure 3.16.

Host Ap Bp Hp Sp Total
A 275 15 15 6 311
B 15 240 18 27 300
H 1 24 309 2 336
S 4 52 10 190 256

Total 295 331 352 225 1203

Table 3.4: Host assignments as calculated by DL. Predicted values are in columns
and are equivalent to ’cluster composition by host’ plotted on Figure 3.16.

Host Ap Bp Hp Sp Total
A 281 13 11 6 311
B 14 226 19 41 300
H 1 19 305 11 336
S 6 47 11 192 256

Total 302 305 346 250 1203

184



High human scores for isolates from the non-human host group could indicate

higher zoonotic potential for these particular isolates. Such scores occasion-

ally assign one or another sML but here I am reporting only these isolates in

which all 3 sML algoritms agrred in the assignment off to another, non human

host. So it was 8 avian isolates that by all 3 sML were called ’human’, 9 bovine,

and 6 swine.

According to Silhouette index, the quality of clusters that were formed based

on the prediction are of much worse quality than those from uML, with a Silhou-

ette index 0,21 for SVM and RF and 0.19 for DL reflecting that the Silhouette

index cannot capture the similarity of the patterns learned by sML. Moreover

these strains that were allocated Sil index below 0 (n=365 for any of sML) all

except 4 were of the same host as main population of the cluster.
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Figure 3.16: Supervised machine learning. The colours represent host: avian (yel-
low), bovine (red), human (blue), swine (pink). The first column of the figure
shows the cluster’s relative size and it composition by host, Second column
demonstrates Silhouette index cluster assessment, where each of 4 clusters
coloured differently and each isolate drawn as a bar with the silhouette index
from (-1 to 1) allocated to it, and average of all individual indexes is plotted on
the top of silhouette cluster and denoted as a red dotted line. The clusters are
drawn in the same order as these from the first column. Third column illus-
trate cluster correlation with phylogeny (assessory genome tree) with inner ring
depicting host and outer ring clusters. (also see Figure 3.16)

.
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3.4.4 Discussion

In this chapter, different methods and their usefulness and capacity for bacterial

source attribution were evaluated. Starting with the pangenome matrix of 1203

STm isolates from 4 hosts, the ratios of pan and core genes were analysed

for each host as well as pan genome diversity calculated. The avian group

had a significantly smaller core genome (2,218 compared to average 3,055

genes in all other hosts) and the human dataset had a slightly less diverse

repertoire of accessory genes. STm have semi-open pan genome as number

of genes didn’t increased dramatically compared to other bacteria (compare

23)with After choosing only PVs significantly associated with each of the hosts,

the pangenome matrix was reduced to only 493 features. Hopkins statistics

indicated that the data is almost uniformly distributed (H = 0.25).

Ecological methods can be applied in genomics

Moreover, dimensionality reduction techniques all project data from multidi-

mensional space int 2D or 3D, therefore it can be also challenging (or even

incorrect to describe these results in terms of proximity/closeness).

Having too many features (dimensions) with little predictive power is a well-

known problem in ML, as it can be computationally costly, and negatively affect

the quality of the ML model. Several mitigating methods have been developed
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to reduce the dimensionality of the data. These include, for example, principal

component analysis (PCA) [144], multi-dimensional scaling (MDS) [145] and

t-distributed stochastic neighbour embedding (t-SNE) [158].

PCA calculates the features that are able to represent the variance of the data,

in the best way, eliminating dimensions that have low variance, effectively pro-

jecting those dimension into the remaining space. For example, if two features

have high correlation between them, it is likely that both features are not nec-

essary to effectively train the data, as only one of them would suffice to explain

the variability. It is advisable to start any exploration analysis with visualisation

by dimensionality reduction as well as for prediction use the simplest model

possible as for example logistic regression, that in many cases could bring you

more then half way closer to the answer. However in some cases dimension-

ality reduction would spot the most prominent features.

So dimensionality reduction techniques were applied to the 4 host dataset in

order to check the ability of these methods to distinguish bacteria by host. Pre-

viously PCA and MDS have been applied to distinguish between 4 species of

Enterobacteriaceae based on their biochemical profiles [159], demonstrating

that PCA performed better than MDS, clustering the different species closer

together. Our results demonstrate that both methods PCA and MDS were

finding the same differentials in the dataset and both strongly agreed that the

188



majority of the avian dataset is quite different from all others. Both PCA and

MDS collapsed the majority of the the data points into one cloud without any

differentials between hosts.

On the other hand, the third technique t-SNE was able to separate the dataset

into multiple tight clusters, revealing underlying structure of the dataset and

differences between subgroups. Future work could explore the clusters that

were obtained by t-SNE in order to find out what defines that structure, i.e.

geography, time or environment related. However, all dimensionality reduction

techniques map the multi-dimensional data to a lower dimensional space, thus

the input features no longer exist in their original form as presence and ab-

sence values. Multiple features contribute to principal components, thus DRT

becomes an impractical choice as a preliminary analysis of future wet lab ex-

periments, analysis that could lead to further laboratory tests. So essentially

it is mainly a data exploration and visualization technique, however DRT also

can be used as a preliminary step in other supervised ML techniques where

reduction of the data space is beneficial as for example when there are many

irrelevant features, similar features or when computation becomes too costly.

Then I applied both uML and sML. The choice between uML and sML is not

always straight forward. Usually, uML is quicker, more beginner friendly and
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some times even the only choice because labelled data (metadata) is expen-

sive and some times not even available. To use uML, the number of clusters

should be decided beforehand. All of the three techniques that were used to

decide the number of clusters showed different results, suggesting that the

data is complex and no obvious clustering solution can be identified. On the

other hand when all uML divided data into 4 clusters (aka 4 hosts), all uML

come to a very similar solution, confirming that there is a stable underlying

structure in the dataset, however this is not completely related to the host. Fu-

ture work could explore uML further by trying to divide the dataset into a larger

number of clusters, which could lead to multiple ’clean’ clusters of the same

host, similar to the human clusters identified in the t-SNE plot.

It is also very intriguing that the best host cluster, avian, had some bovine and

swine isolates in it but ver minimal human ones. Most likely this indicate con-

tamination by other host .

It is remarkable that phylogeny that takes into account not only molecular in-

formation (core SNPs) but also substitutional model (GTRGAMMA) [118] and

probability distribution of all possible phylogenetic trees produced results that

were quite similar by topology with the simple Neighbour Joining tree [160]

that has completely different information as an input; (pangenome matrix of

the presence and absence of protein variants written as 1s and 0s) which is, in

essence a bottom-up (agglomerative) clustering.
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sML uses an extra piece of the information, which is a label. sML is designed

by giving the label the is giving the main ’weight’, no matter the content of the

whole vector of the features. Therefore, it is forced to find commonality be-

tween data points with the same label even though these commonalities are

not the obvious ones. Thus new, previously undiscovered patterns can be re-

vealed, however there is always a worry that the patterns would not be related

to phenotype. Moreover sML uses many of the features in combination, thus

the question becomes, are these learned patterns biologically relevant and

how can we test this?

One of the directions to use when laboratory testing is not available due to com-

plexity of the factors is to increase and diversify your dataset in order to blend

out any of confounding signals. The one who is preparing the training dataset

should ensure, where possible, that samples for any label come from different

locations and in similar numbers, build a classical phylogeny of the collection

and ensure that the isolates come from different phylogenetic branches, etc.

Another solution is to ensure at least a minimal number of samples with highly

trustworthy metadata. These can be used in reinforcement ML methods when

initial training is on a small sample, then unlabelled data is added and the al-

gorithm trained and checks its learning against trustworthy samples.
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To conclude, ML contains powerful methods that allow analysis of complex

dataset, however, in order to use some of these techniques knowledge and

caution are needed.

The different sML have different advantages. Advantages of SVMs: High accu-

racy, nice theoretical guarantees regarding overfitting, and with an appropriate

kernel they can work well even if you’re data isn’t linearly separable in the

base feature space. Especially popular in text classification problems where

very high-dimensional spaces are the norm. Memory-intensive, need special-

ist knowledge to run and tune, hard to interpret, though. So I think random

forests are starting to steal the crown.

192



Chapter 4

Final discussion

193



The detailed results of this study are described in the previous chapters and the

main findings as well as some limitations are highlighted below. The objective

of this work was to find out if genetic markers associated with different hosts

can be identified from WGS of bacterial isolates. Core (Chapter 3.1) and ac-

cessory genome (Chapters 3.3, 3.2) were analysed and different methods that

can be used for host identification were tested (Chapter 3.4). The algorithm to

assess if some of the bacterial strains may represent an increased threat for

zoonotic infection was also developed and tested (Chapters 3.3, 3.2).

Both E. coli and STm are enteric bacteria living in a wide variety of hosts and

some strains are able to cause disease in humans. To date, both of these

species were mainly considered as generalists capable of thriving in different

hosts. Nevertheless, there are a few examples that demonstrate that some

sequence types have become specialised human pathogens (i.e ST131 for E.

coli and ST313 for STm), as well as some E. coli phylogroups (B1, A, C) which

are more likely to be source of clinical infections, some E. coli serogroups such

as O55 to date are usually only isolated from humans.

Although, with a few exceptions, belonging to specific sub-types of the primary

typing schemes is not indicative of being associated with a particular animal

host, these typing schemes are still valuable for a variety of analyses. For

example, phylogeny based on MLST genes correlates well with whole core
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phylogeny(at least for STm and E. coli) and therefore can be done in a fraction

of the time and with fewer computational resources. Serotyping in Salmonella

species is very indicative of phenotypic differences between serovars (i.e. Ty-

phi vs Gallinarum vs Typhimurium), however within a particular serovar, in this

case Typhimurium, a wide variety of strains could be found; those that differ

by lifestyle i.e. isolated from different hosts, as well as genotypically (above

20,000 COG clusters from 1203 STm isolates). For E. coli some serogroups

are indicative of pathogenity i.e O157, O26.

The main success of the core genome analysis was the translation of some

molecular techniques (i.e. serotyping, sequence typing, phylogrouping) to an

in-silico approach. When WGS is available, in silico typing provides, arguably,

a more accurate result and (once the sequences are available) this takes less

time and is less expensive. Over the time of this PhD, in silico typing has be-

come widespread and multiple software and databases have become available

to support thess types of analyses.

Most of the work during this thesis wa carried out by accessory gene analy-

ses and at this stage it is difficult to compare these two parts and decide if

core SNPs also could be used to predict the host of isolation. Therefore, a

follow up study can be proposed to investigate further correlation of core gene

changes/markers with the ability to thrive in a new host. Such a study can be
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based on the following steps:

• GWAS on the core SNPs to extract SNPs associated with particular

hosts.

• Build a machine learning classifier to find if the SNP patterns can be

identified and bacterial host can be inferred from these.

• Compare core and accessory classification results.

• Check if core and accessory results can be combined for improved accu-

racy.

On the chapters 3.2, 3.3, using machine learning, differentiation by host was

achieved, however, results still may not be valid. Supervised machine learning

is a powerful technique for finding commonalities amongst same-label data-

points. To ensure that these commonalities are biologically relevant, validation

of findings through biological tests are now needed. Some questionable areas

of this research and possible ways to address these are highlighted below.

• In all models for this work predictions were based on multiple PVs (in

different sub-datasets from 70 to 600). It will be challenging to design bi-

ological experiments to test all possible PVs identified, however, to some

degree, validation of predictive genes can be achieved by using TraDIS

(Transposon Directed Insertion Site Sequencing) data [161] [162]. Test-

ing bacterial fitness by randomly perturbing genes as with TraDIS and

then comparing TraDIS data with that obtained by ML would allow iden-
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tification of important genes that enable bacteria to succeed in particular

environments.

• It is very likely that not a single gene but a combination of genes are

acting together to improve bacterial chances for survival in a particular

environment. Pathway analysis could help to identify genes that are act-

ing during different stages but impacting the same pathways, so shedding

light on mechanisms of adaptation. However, pathway databases are still

in their infancy, so at this stage such an analysis would be only partial.

• The threshold for success of predictions was placed at a ’midway’ point

between the extreme value probablities (0,1), however for success in a

host that threshold could be different. It is also possible that the threshold

would depend on what bacterial species is being studied and the host in

question. Competition experiments for bacteria with different scores from

different hosts could help to adjust a threshold in a ML model. More-

over, as discussed in the previous chapters higher and lower scores for

bacteria from the same host could indicate a presence of specialist and

generalist bacteria. To confirm this idea we could test isolates from 2

hosts with middle and high scores (i.e. 0.5, 0.9). We would expect iso-

lates with 0.5 to colonise/survive equally well in any host, and isolates

which scored 0.9 may survive well only in their original host. Moreover,

specialised isolates should perform better in their original host than gen-

eralists.
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• It should be remembered that these predictions were based only on ge-

netic content, and we don’t know at this point which of these genes are

active and when. Therefore, an experiment where complex data (includ-

ing genomic sequences, transcriptomes, proteomics) are gathered to-

gether would allow for a better understanding of adaptation/colonisation

processes in bacteria.

• It is also not clear when (how quickly) adaptation related changes hap-

pen, so a resequencing experiment could shed light on this area. In

essence one would choose a ’generalist’ from cattle (or even ’general-

ist’ from another host), sequence it, passage bacteria through a cow a

few times and sequence excfreted isolates at differetn time points. These

times series resequencing experiments should demonstrate changes that

can happen while bacteria are trying to adapt. Moreover, this experiment

could possibly clarify if the ’generalist’ bacteria are a constant part of a

host bacterial population or whether generalists are bacteria that have

undergone a recent host jump and is are on their way to becoming a

specialist in another environment/host.

In the last decade democratisation of sequencing and wider availability of high

performance computing have enabled analysis of huge genomic datasets. We

now better understand bacterial population dynamics as well as genomic struc-

ture and its modifications. There is also the growing realisation that reductionist

approaches (aka one gene - one disease) often do not represent complex bio-
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logical reality. Combining genomic and phenotypic data on a population scale

and using machine learning to discover underlying patterns has shown promis-

ing results for bacterial host attribution. It is clear that machine learning with a

combination of ’omics’ and phenotypic data could help to elucidate many other

questions in bacterial genomics. So this work and methods developed during

this thesis can lead to development of various other projects.

One such project is prediction of pathogenicity of a bacterium. Urinary tract in-

fections (UTIs) affect 150 million people worldwide; a minority of cases cannot

be completely resolved by antibiotics and reoccurr. Moreover some of these

UTIs progress and develop bacteraemia and sepsis. In England alone there

are 5.000 E. coli bacteraemia related deaths per year. We (Prof. D. Gally

group) are preparing a research grant application where we propose compar-

ing thousands of E. coli from the broader phylogeny - commensal E. coli from

a healthy population, E. coli from UTI cases and from bacteraemia and then

build a classifier based on these groups to enable prediction of the potential of

UTI strains to become bacteraemic. This would have value in informing which

UTI infections to treat.

Another ongoing project for which I am developing a ML model, is a predic-

tion of phage resistance and susceptibility of bacteria. The antimicrobial resis-

tance crisis demands urgent and sustainable alternatives to antibiotics. One

such solution is phage therapy. Most phages are strain specific and there-
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fore should not disturb the patient microbiome in the way that antibiotics can.

On the other hand that specificity is one of the main reasons why phage ther-

apy still is not used worldwide - it is time-consuming and laborious process to

find the right phage(s) for a particular infection. Therefore, if the big enough

dataset of bacteria - phage interaction could be gathered, ML could be used

to inform decisions about which phages to use. Moreover, incorporating into

the model more phenotypic information should allow selection of different ’in-

fection’ mechanisms and therefore inform choice of the best combination of

phages for bespoke cocktails that will avoid resistance.

To finish up, it is an exciting time to be a bioinformatician right now: affordable

sequencing, available computing and powerful machine learning algorithms

are aligned and ready to be applied by anybody who is keen to help humankind

to leave it a safer place or even just for curiosity to uncover the wonders of

biology.
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Appendix

The Appendix includes a First year report submitted to the university of Edin-

burgh by Nadejda Lupolova. The report describes the work that was performed

over the first year of this PhD and it mostly concerns finding the optimal param-

eters for running different software as well as the analysis of some isolates that

were found to be outliers when compared to the main bulk of E. coli isolates.

The original report is bound here.
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Chapter 1

Abstract

There is an extensive history of research aimed at differentiating pathogenic and commen-
sal Escherichia coli strains and this has led to a ’pathotype’ classification usually based
around expression of specific virulence factors important for colonization or pathology.
Over the last twenty years it has become apparent that these virulence determinants are
often horizontally-acquired on large regions of DNA, usually as integrated bacteriophage
(prophage) or plasmid regions. With the advent of relatively low cost whole genome se-
quencing (WGS) techniques, it is now possible to obtain sequences from large numbers of
E. coli strains and interrogate these in relation to both their core and accessory genomes.
While it is more or less accepted that a subset of Salmonella strains often have preferred
hosts, especially in terms of disease, there has been no real systematic investigation of
host and niche specificity associated with Escherichia coli strains, despite the fact that this
species can be found to have adapted successfully to many host species and environments.

The main aim of this project is to determine if host and/or niche-specific genes can be
identified in E. coli; from this it should then be possible to predict both the ’origin’ of
a strain and its zoonotic potential from its sequence. It is anticipated that any host re-
striction probably also requires appropriate gene regulation of these ’accessory factors’,
i.e. the correct genome context, with the hypothesis that this is why relatively few E. coli
strains are truly zoonotic. In order to do this, it is necessary to first analyse the diversity
present in E. coli genomes from different hosts and environments. This work focuses on
E. coli strains from humans, dogs, birds (chickens, ducks, turkeys), plants/roots and cattle
and uses Illumina short read sequences to interrogate both phylogenetic relationships and
to identify genes that show significant associations with strain origin. Niche/host specific

1
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gene expression by RNAseq will then be carried out to focus on how any host restriction
may also relate to gene expression rather than just gene presence absence.

2
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Chapter 2

Introduction

2.1 Biology

Extensive research has been carried out on Escherichia coli as a model organism; in particular

K12 and B strains and their derivatives have helped advance our understanding of molecular

biology, genetics and gene engineering. E. coli is a common commensal of the gastrointestinal

tract in many mammals [1] and has been associated with a wide range of infections in both

humans and animals with certain strains able to cause life threatening zoonotic infections. A

long record of association with human and animal disease means that certain strains represent

a health threat with significant costs to society. [2], [3], [4], [5]. It is evident that E. coli can

thrive in a wide range of hosts and ecological niches and while it is one of the first species of

bacteria to colonise the human gut [6], [7], [8], it can exist, at least temporarily, outside of its

"primary" host habitat in soil, water, sediments, plant tissues [9], [10].

E. coli seems to succeed in different environments with diverse conditions including variation

in temperature and pH, and in the face of challenges such as an immune or antibiotic therapy.

Some strains appear highly adapted to a particular niche, for example it is now appreciated that

Shigella strains can be considered as part of the Escherichia coli species and these, to date, have

only been found in humans and primates [11] and can cause diarrhoea in humans [2]. Other

strains such as E. coli O157 seem to be well adapted not only to a subset of hosts like cattle (and

perhaps sheep), but to a specific niche in the intestine of these ruminants [12]. Other strains,

for example porcine, bovine and human enterotoxigenic E. coli are considered relatively host

specific but this has been attributed to specific combinations of adhesins, although there is no

3
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evidence to suggest they could switch hosts solely based on exchange of these colonization

factors.

The first stark indication of the diversity in E. coli followed the sequencing of a strain of E. coli

O157:H7 and its comparison with E. coli K12. From this, 1,387 ’new’ genes were identified

with the finding that E. coli O157 had a significantly larger genome (5.5 Mb compared to 4.2

Mb) than the K12 strain. The E. coli O157:H7 strain possessed specific virulence factors as

well as different metabolic capacities [13]. On the other side, some studies show that there is

much less diversity among certain E. coli pathovars than previously anticipated [14]. Overall, it

is now clear that the E. coli genome can exhibit incredible plasticity associated with horizontal

gene transfer by bacteriophages and plasmids. As a consequence, these changes do not nec-

essarily need many generations to consolidate and therefore can be associated with the rapid

emergence of a virulent strains, such as occurred in the 2011 enterohaemorrhagic E. coli out-

break in Northern Germany [15]. An E. coli genome can perhaps be altered endlessly leading

to appearance of new strains and/or rapid specialisation of existing strains. This same plasticity

is important when considering adaptation to human interventions such as antibiotic treatment.

Such selective pressures help to develop, maintain and potentially combine resistance and vir-

ulence traits.

The pathogenicity of strains also can be described by distribution and expression of specific

virulence factors as toxins adhesins, invasins and others that are encoded by either chromoso-

mal genes, plasmids, or pathogenicity islands. Pathogenic E. coli strains do not have a single

evolutionary origin but may have arisen many times [16]. There is also suggestion of the pos-

sibility that any E. coli strain acquiring the appropriate virulence factors may give rise to a

pathogenic form. However, it is debatable if every strain can acquire any virulence factor and

this also makes huge assumptions about the regulatory and other networks required to work in

a co-ordinated way in a successful pathogen.

The major argument in favour of the theory that not any strain will acquire any virulence factor

is the evidence of division of E. coli in to phylogroups. So, based on multi-locus enzyme elec-

trophoresis (MLEE) Ochman and Selander gathered a collection of 72 isolates from different

mammalian hosts to represent the diversity of E. coli [17]. They noted that a small number of

core genes can be used to organise E. coli phylogroups. Importantly, certain phylogroups are

known to contain the majority of strains that are pathogenic in humans (B2 and D) while others

4
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are known to contain many animal and human commensals (A and E). This indicates that there

are core lineage differences in the evolution of virulent strains arguing against the idea that

acquisition of key virulence factors into ’any’ background can produce a pathogen. As such it

is a much more complex issue trying to determine which strains might emerge as significant

pathogens by simple acquisition.

Rather than focusing solely on virulence, the primary aim of the research proposed here is to

ascertain if it is possible to predict the likely ’source’ of an E. coli isolate based on its WGS.

The hypothesis underlying this research is that for any E. coli strain, it has evolved to replicate

optimally in a specific environment. This does not preclude it replicating and being ’successful’

in multiple environments, but that each strain has an optimum niche. Extrapolating from this,

it is likely that certain strains may have a more generic capacity to succeed in multiple environ-

ments than others based on their ’primary’ habitat. These generalists may have an increased

capacity to transfer between animal speciesand, depending on the factors they express, pose a

zoonotic threat.

It is important to understand the host restrictions that limit strain transmission and then the

further issue of what is required to induce disease in a new host. A good example of this are

E. coli strains that contain Shiga toxin encoding bacteriophages. There are multiple types of

E. coli that contain these prophages in ruminants, but only a relatively small subset cause an

issue to human health. It is proposed that this is because those strains require both appropriate

colonization factors for the human gastrointestinal tract and signalling/expression systems to

switch on the system.

Therefore it is proposed that any host restriction of E. coli will be a combination of the need

for:

• Specific colonization and catabolic functions that are evolved to the host/tissue.

• Appropriate regulation of these factors by ’long term’ adaptation of core regulatory net-

works.

5
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2.2 Technology

This project aims to work with a large and varied set of strains to examine both genome content

and expression differences that may be related to host restriction.

Advances in technology that improved our ability to sequence and analyse whole genomes

opened new horizons for diagnostics and prevention of diseases. The major advance is a whole

genome sequencing (WGS) that now is widely available for use in science and clinical micro-

biology. Modern technology is PCR-free (thus excluding PCR introduced biases) and enables

the performance of millions of simultaneous reactions producing gigabites of data in a single

run. The data consists of a short reads usually 150 - 300 nucleotides (nt) long that can be

reassembled using known genome reference or assembled de-novo using advanced computa-

tional techniques.

The main problem that may appear while using short read sequencing is caused by the fact that

the original position where a short read comes from is lost, so during the alignment as well as

de-novo assembly the unique position where the read belong should be found. Thus, if a length

of short sequence does not cover whole repetitive region there is a possibility that all similar se-

quences would pill up in the same place. On the other side it is counter productive to apply too

strict rules in mapping as some mismatches should be deliberately allowed, to account for ge-

netic variance between reference and aligned sequences. Moreover, sequence technology itself

produces errors, that should be separated form natural variation later in analysis that sometimes

can be impossible.

The newest technologies such as PacBio and MinION can produce much longer reads from

14,000 to 40,000 bases, although some factors limit usage of this technology. Thus, PacBio

showed extraordinary sequencing accuracy of 99,9% that is even greater than a ’Gold standard’

Sanger technology. However, cost of the genome sequencing by PACBio stays relatively high,

limiting use a massive scale. MinION on the other side seems to be more accessible, but due

to the fact that this is recent technology error rate of sequencing is still high. Nevertheless,

advances not only in sequencing technologies but also in software development allow extract

valuable information using short read Illumina sequences.

As a well studied, model organism E. coli has a large collection of previously sequenced

6
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genomes many of which qualified to be a reference genome i.e. represent ’the highest qual-

ity dataset that is supported by curation by NCBI scientific staff and by collaborators’. Thus,

one of the methods used in this work was reference based analysis when each newly sequenced

genome is aligned to and compared with the reference, inferring relationship between strains

based on sequence similarity of genome regions present in all.

Schemes that use genes that are present in all sequences have long been adapted for ’typing’.

From early work on 16S rRNA [18] and gyrB based phylogenetics [19] to development of new

schemes such as MLEE, MLST, MLVA and PFGE [17], [16], [20], [21], these kind of methods

facilitate sharing and comparison of results between researchers, public health surveillance and

outbreak investigations and serves as a means to reveal substructures of E. coli that sometimes

can explain prototypical variation or shed light into the origin of the strains. However, only a

miniscule amount of the genome information is used with techniques such as MLST and they

leave behind valuable material that may contain crucial information about strain specific fea-

tures.

So where one should look for adaptation traits?

It is not clear yet and should be investigated further to what extent core genes are involved

in adaptation processes or associated with acquisition of virulence factors. Looking for an-

other bacterial example such as Staphylococcus aureus, SNPs variation in a core region can be

strongly associated with toxicity [22]. However, E. coli can undergo massive recombinations

events [23], [24], that obscure phylogenetic relationships and association with ST or habitat. On

the other hand we know that some segments of E. coli genome evolve clonally, the chromosome

structures continue to be stable and insertions and deletions are mostly found in chromosomal

hotspots [25], [26], [27].

According to the idea of genomic continuum [28] bacteria would absorb and discard genes de-

pendent on particular circumstances and selective pressure. Thus the accessory genome is more

likely to contain traits of sequence adaptation. For a long time, variable gene content except

for virulence factors has been left behind without proper analysis. Accessory genome provides

new information that was difficult to access, analyse and quantify until now. Accessory genes

can be unique to a particular strain or can be shared between few or many but not present in all.

7
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The differences between strains can lay not only in genome content but in how it it used.

Therefore, it is planned to perform competition assays and/or forced evolution experiments

with a subset of strains in order to quantify gene expression changes that can help to understand

whether there is any host related associations. Apart from being an invaluable tool for analysis

of bacteria with a large variation between strains, RNAseq also will improve delineation of

untranslated regions and improve existing annotations.

8
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2.3 Objectives

The list below describes steps that have been or will be taken in order to investigate host/niche

adaptation of Escherichia coli.

1. Study the evolutionary relationships between strains with known provenance.

2. Explore similarities and differences in core and accessory genomes.

3. Test whether we can be confident about these findings. This will involve:

• In silico verification of regions of interest from the accessory genome analyses.

• Collaborative in vivo experiments examining short term acquisition and loss to-

wards host adaptation.

4. Test impact of specific horizontally acquired regions in regulation of gene expression in

E. coli by RNAseq.

5. Determine if a subset of strains pose an increased zoonotic risk due to their capacity to

thrive in different environments; i.e. have evolved more as generalist.

6. Develop algorithms for prediction of strain origin.

Further strains may be added to the analysis, in particular UK bovine. The in silico methods

established may also be applied to Salmonella enterica to determine if any overlap is detectable.

9
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Methods

3.1 Data

The current collection of E. coli strains are isolated from five different host/environments and

consists of 564 strains. The list below summarise the collection.

• 1: Avian: chicken (39 isolates), turkey (6), duck (5)

• 2: Bovine: Zambian (135), UK (99)

• 3: Canine: Multidrug resistant (MDR) (18), community (19)

• 4: Environmental: grain (3), roots (5), soil (2), compost (3), slurry (2)

• 5: Human: UK (203), reference genomes (23)

To distinguish between sub-datasets the following abbreviation are used: A - avian, C - canine,

E - environmental, R - human isolates downloaded form NCBI, H - all other human, W - UK

bovine isolates of sequence type (ST) O157, Z - bovine isolates from Zambia. Words ’sub-

group’ and ’sub-dataset’ in this work mean a group of strains related by a host.

The pathotype for some isolates is known and numbered in Table 3.1. Metadata gathering for

the collection is still in progress. It is planned to identify the presence of resistant and virulence

genes and report sequence type (ST) using SRST2 software [29].

Main steps that was taken to explore variation between strains in our collection are illustrated

in Figure 3.1. This workflow is planned to be finished by the end of the first year.

10
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Figure 3.1: Steps taken over the first year of this work to explore diversity of the collection

of E. coli genomes. Green squares indicates finished work, yellow - work is in

progress, red - work is planned.

11
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Table 3.1: Known Pathotypes

STEC EAEC ExPEC UPEC ETEC AIEC EPEC Commensal

160(H)+97(B) 24(H) 30(A) + 4(H) 4(H) 3(H) 1(H) 1(H) 4(H)

3.2 Quality

The data were received in Illumina1.9, paired-end, .fastq format [30]. Raw reads vary in length

from 32 to 251 bp. Fastqc [31] was used to perform quality control, revealing that majority of

data were good quality and did not need any further processing. All datasets were checked for

the presence of adaptors and some of the datasets (H- and W-) were trimmed with cutadatp [32].

3.3 Reference mapping

The reference quality genome of E. coli O157:H7 str. Sakai (RefSeq assembly accession:

GCF_000008865) was chosen as reference genome for variety of methods used on this work.

Alignment of short reads to the reference genome were performed by combining BWA [33],

[34], SAMtools [35], SnpEff [36] in a custom made python script. The script takes as an in-

put paired-end short Illumina reads, aligns them to the reference genome and stores variants

into the .vcf files. Resultant .bam files store short read multiple alignments. Then consensus

sequence for each alignment is produced by taking the most common base from vcf and bam

files at each position.

All resultant sequences .consensus.fa of the length 5 590 092 bp were concatenated into one

multifasta file that served as an input to the custom made python script core_finder.py that

checked presence or absence of a nucleotide (nt) for each sequence in each position. Starting

from the beginning, if at the position one nt is present for each strain then this position called

core position and is written to the separate file together with a nt at this position for each strains.

If at any given position at least one nt is absent that position called non-core and thrown away.

The same algorithm was applied when core single nucleotide polymorphisms (SNPs) were

calculated. At each given position if there is variation at least in one base then the position is

12
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called a SNP and is written to another file.

3.4 Assemblies

SPAdes [37] was used to assemble short read sequences. After benchmarking a variety of op-

tions it was clear that better results are produced when builtin error corrector is used instead of

the recommended QUAKE [38] error corrector. To control mismatches and indels ’careful’ flag

proved to produce better result. Quality of assemblies were evaluated with QUAST software

[39] - Quality Assessment Tool for Genome Assemblies. A wide range of statistical data from

QUAST output for all assemblies were compiled into a spreadsheet describing assemblies in

different parameters such as length of assembly, number and length of contigs, GC%, N met-

rics(N25, N50, N75), misassemblies report, number of Ns per 100kbp, gene statistics (unique,

duplicated, genes larger than certain threshold).

3.5 Annotations

Annotation was carried out with PROKKA [40] - prokariyotic genome annotation software. To

achieve a better quality of annotation, a database with trusted proteins, in form of multifasta

file, were gathered from reference quality E. coli genomes from NCBI.

3.6 Phylogenetic analysis

Maximum likelihood (ML) trees were constructed using RAxML [41].To optimise the best tree

search program was run with 500 rapid bootstrap (BS) following with slow Maxumum Likeli-

hood (ML) search under the GAMMA model of heterogeneity.

To reconstruct phylogenetic relationship two different approaches were used. An earlier at-

tempt at core SNPs alignment described in the reference mapping section were used as a input

to RAxML.

For the second approach core proteins presented in 100% isolates were extracted from all se-

quences, aligned with MUSCLE, translated to nucleic acid with EMBOSS Backtranseq [42]

13
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and Pal2Nal [43], sorted using bash custom made script, concatenated and used as a input for

Gubbins software [44] - Genealogies Unbiased By recomBinations In Nucleotide Sequences.

With Gubbins recombination sites were excluded from the alignment, a tree obtained as an

output from Gubbins was used as the Guide Tree for RAxML together with alignment of core

proteins with filtered recombination sites. RAxML was run as described above with 500 boot-

straps and following ML search. The trees were visualised with FigTree [45]

3.7 Phylotyping

The phylotyping scheme described by [46] was used as a starting point to develop a small pro-

gram that assigns each strain to the one of the 4 possible phylogroups (A, B1, B2, D) based on

the presence or absence of one of 4 genes chuA, yjaA, TspE4.C2, arpA. To further distinguish

between groups and assign strains to an additional 4 phylogroups ( C, E, F, cryptic clade I)

it was necessary to check for the presence of a fifth gene trpA and/or for the presence of the

specific alleles for the above genes. Performing all steps each E. coli sequence were assigned

to one of eight possible phylogroups.

To extract genes fragments from the genomes, a database that includes all sequences from

the collection were build with BLAST+ [47]. The reference quality sequences for querying

genes were downloaded form NCBI website. Gene’s identifiers are presented in a Table 3.2.

Reference gene sequences were blasted against the database and blast output based on sequence

length < 90% and E-value = 0 were filtered with a custom made python script which also maps

filtered extracted genes back to the sequences they were obtained from and then assigned to

phylogroup.

Table 3.2: Genes ID, for phylotyping

arpA chuA trpA TspE4.C2 yjaA

GI 556503834 15829254 556503834 7330942 556503834

Position 4222487-4220301 4391446-4389464 1317222-1316416 4213234-4213617

14
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3.8 16S rRNA

rrsA 16S ribosomal RNA of the rrnA operon from Escherichia coli str. K-12 substr. MG1655

( gene ID: 948332, sequence NC_000913.3, coordinates 4035531..4037072) were downloaded

from NCBI website to querying the database described in the previous section. Sequences with

length more than 90% and E-value equal to zero were extracted from database and aligned with

MUSCLE [48]. Alignments were visualised with Geneious [49]. Phylogenetic trees were build

with RAxML, using the same parameters as described above.

3.9 Clustering

In this report some of the results were obtained from Get_homologues [50] software. However,

Get_homologues cannot be used with a large dataset as this software struggles to be scalable.

The amount of time and computer memory that the program requires means that calculation

with over 200 sequences is not really possible.

New software for clustering Roary [51] was identified only a month ago and shows promis-

ing speed and accuracy. The software take as an input protein sequences extracted from .gff

files from a PROKKA output. Cut off for the assignment to the same cluster was set 95% of

similarity on amino acid level.

Visualisaton of pan-genome, calculation of genes per group and statistical analysis was done

developing custom based scripts in MATLAB [52].
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Results and Discussion

4.1 Quality

Assess of raw and corrected reads by FastQC software demonstrated a good overall quality of

reads. All reads passed N content sections, meaning there were less than 5% of uncalled bases.

There were also no warnings in over-represented sequences, suggesting that these libraries, as

expected, contain a diverse set of sequences; individually, each sequence makes no more than

than 0.1% of the total pool. Warnings in these sections could indicate that the libraries are

contaminated, but none were produced.

4.2 Reference mapping

The first attempt to map the short Illumina reads from 564 isolate sequences to the reference

genome resulted in 134,743 core positions which represents only 2.41% out of 5,590,100 bp

of the reference genome. Across the core positions 9,891 positions were found to be vari-

able (SNPs). Based on SNPs patterns here, 167 sequences were absolutely identical. Similar

sequences were identical to other sequences within the same sub-dataset, no sequence was de-

tected with the similar SNP patterns across datasets. So there were 8 avian sequences out of

50 similar to other avian sequences, 11 Zambian out of 135, 132 O157 sequences out of 185

similiar to others O157 genomes, independent of host, 8 identical human non O157 STEC out

of 98, 5 canine out of 37 and 2 reference genomes R-MG1655 and R-W3110 with identical

SNPs pattern. The numbers of identical sequences per group confirm that O157 is a clonal
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group with minimal dissimilarities and that Zambian sub-dataset is very diverse even at a core

level. Also this indicates that the methodology works as the two K12-like strains R-MG1655

and R-W3110 were found to be identical in their core SNPs distribution.

The relatively small proportions of core positions could indicate either that there were mapping

errors or that E. coli genomes are so variable that when large number are analysed together then

it is difficult to find many similarities.

Due to an algorithm chosen to find core that removes any position that contains a gap, it is clear

that gaps distribution is a key factor that influenced the core size. Surprisingly there were not a

few outliers that dramatically influenced the core size but instead a trend of steadily increasing

gap numbers depending on how far from reference any particular strain is Figure 4.1.

Figure 4.1: Number of gaps in consensus se-

quences; first 200 sequences are ST

O157 which are similar to reference

hence such small number of gaps were

detected. Majority of the sequences

with number of gaps between 40,000

and 50,000 are human isolated refer-

ence genomes.

Genomes of the same ST as the reference

(E. coli. str Sakai) posses around 5,000 gaps

per sequence. Gradual increase from 20,000

gaps per sequence to 40.000 do not related to

any particular sub-group of strains. The next

increase in number of gaps from 40,000 to

54,000 mostly originated from NCBI refer-

ence sequences. The highest bars at Figure
4.1 originated by outliers described in sec-

tion 4.5 (one avian, two environmental and

one Zambian strain). Gap numbers for a

strain were accessed independently of others

strains, i.e. calculated only as bases that are

absent in a strain in comparison to reference.

We cannot be sure whether these strains with

increased gaps numbers are outliers due to

methodology error like sequencing, or they

are from different sub population that we have not enough samples from.

When E. fergusonii is added to the analysis in order to use it as a root for phylogenetic infer-

ence the core proportions shrinking even more as each of the E. fergusonii .consensus.fasta files
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bring additional gaps: 83457 for ATCC_35469 and 83211 for ECD227.

4.3 Phylogenetic analysis

First attempt to reconstruct phylogenetic relationships resulted in a tree presented in a Figure
4.2. The tree is based on alignment of the 564 sequences, that share 134,743 core positions and

have 9,891 SNPs. 167 sequences were absolutely identical.

Figure 4.2: Core SNPs tree are coloured according

of host: Avian - yellow, bovine - red,

canine - blue, environmental - green,

human - turquoise.

Approximately, the tree can be divided into

six distinct clusters. Human isolates are

spread across all clusters, however very few

are presented in cluster number six. Tight

cluster number three is formed by human and

bovine isolates of ST O157. Most likely all

the sequences in this cluster are of bovine

origin as there is zoonotic spread from rumi-

nants to humans. Cluster number five is com-

posed of isolates from all host types, canine

UTI strains lay in that cluster in close prox-

imity with human pathogenic strains. Ca-

nine isolates can be also found in cluster

number one with sequences that are geneti-

cally similar to K-12 strains. The majority

of Zambian strains belong to cluster number

two, however a few zambian bovine isolates

can be found in each cluster. The cluster

number four with long branches raised ques-

tions about species identification and lead to

work described in part 4.5; this is formed

by one avian A-DK8, two environmental

E-5038, E-5088, 4 bovine and one human

strain.
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There were some evidence [53] that reconstructing phylogeny based only on concatenated

SNPs may produce erroneous results as well as confuse the choice of the right substitution

model and can produce misleading results, such as wrong topology and incorrect branch length.

Thus for a second attempt invariant sites also were included into analysis. There was expected

changes in a branch length detected but no differences in topology between the two runs. More-

over it was decided to exclude sequences with a number of gaps higher than 60,000, that in-

creased the effective core size to 950,000 base pares with 83,522 variables sites. Again, no

topology changes were detected. The tree is presented on Figure 4.3 Even after exclusion of

strains with number of gaps higher than 60,000 the core obtained is still smaller than were de-

scried in previous works estimating that sligtly less than half of the E. coli genome are expected

to be a core [3], [54], [55].
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4.4 Phylotyping

The evidence for genetic substructure of E. coli accumulated in the 20th century has lead

to development of a method that can easily and inexpensively assign E. coli isolates to cer-

tain phylogroup. These phylogroups have been shown to have different characteristics in

particular disease and commensal associations. Initially method was based on the detection

A B1 B2 C D_E F clades unknown
0

25

50

75

100

125

150

175
H

B

A

C

E

Figure 4.4: Percent distributions of hosts in phy-

logroups. Colours represent host:

Avian-yellow, bovine-red, canine-blue,

environmental-green, human-turquoise

of two genes and one genetic fragment divid-

ing all strains into 4 groups, later method was

improved allowing 7 phylogroups and one

cryptic clade to be distinguished [27], [56],

[57]. The downside of the method is that

it is still relatively time and labour consum-

ing as well as subject to PCR related errors.

With advance of NGS and a wave of avail-

able whole genome sequences it was decided

to write a small program that can check for

presence of the key genes in order to even

further accelerate phylotyping assignment of

any strain.

The results of in silico performed phylotyping shows that only 8 out of 564 strains failed to be

assigned to any phylogroup. These can be explained by assembly failures as a search for genes

done in assembled genomes. Nevertheless, the proportion of bioinformatically detected phy-

logroups is still higher than the proportion of assigned strains using PCR. So for 40 Zambian

strains on which PCR based typing was performed 2 were untypable, while in silico all of these

were assigned to one or another phylogroup.

There are 16 possible combination of genes of which only 12 were detected previously [46]. In

our collection 15 combinations were detected including 19 strains from previously ’unknown’

phylotypes. Further scripting is required to distinguish between D and E phylogroup and be-

tween cryptic clades as their detection are based on allele differences.

Figure 4.3 and Figure 4.4 demonstrate results of in silico phylotyping. Phylogroups fit well

with core SNPs based cluster divisions. However, there are some inconsistencies. Thus the
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Figure 4.3: Core regions tree coloured according of host. Avian-yellow, bovine-red, canine-

blue, environmental-green, human-turquoise. Outer circle represents phylogroups:

A - yellow, B1 - red, B2 - blue, C - green, D and E - turquoise, F - pink, clades -

violet. Strains failed to be identified (8) left white, those that belong to ’unknown’

- black
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most disperse is the A phylogroup for which strains appears in several clusters. Strains in the

long brunched cluster 4 pretence to different phylogroups, which is expected as all strains in

this clusters are very different between themselves as well as in comparison to other E. coli

in the collection.Distribution by host shows that human isolates are present in all phylogroups

except for cryptic clades with majority in phylogroup D_E, which is ex[[ected as a over one

third of human isolates are of the ST O157. There is almost half as much human isolates in

phylogroup B1 (prevalently commensal) compared to B2 ( mostly pathogenic). 35% of dog and

26% of avian isolates are also assigned to phylogroup B2. In absolute numbers, phylogroup C

is composed by equal part of human, bovine adn avian isolates, however in proportion it is the

most popular phylogroup for avian isolates 40% of which assigned to this group. All bovine

O157 is in phylogroup D_E, and two-thirds of bovine Zambian strains is in phylogroup B1 with

one-third spread arounnd all other phylogroups. Previously not detected combination of genes

are presented in a Table 6.1 in the Supplementary material section

4.5 Outliers

All sequences in our collection were originally isolated as E. coli based on laboratory de-

tected phenotypes (lactose +, citrate -, indole +), however, we have isolates from many different

sources so I think we can expect variation at this level of laboratory testing. Raw short read

sequences for strains that form cluster 4 in a core SNPs tree Figure 4.2 were the same good

quality as for all others sequences in the collection. Thus the question was addressed whether

these sequences are from E. coli and fit within species limits or whether these are not E. coli.

It was decided to perform a number of in silico experiments to see if it is possible to identify

these sequences as E. coli.

4.5.1 ANI

DNA-DNA hybridisation methods have been used since the 1960s to indicate sequence simi-

larities, however due to the laborious work-flow involved and difficulties with comparison of

the data obtained [58] a new method based on Average Nucleotide Identity (ANI) of sequences

has been designed. The method compares genomes pairwise, each in turn serves as a reference

while another is chopped to "windows" of a desired size - in this analysis I have used 700nt

’windows’, then these smaller sequences are mapped to the reference, the best blast score is

noted and then average nucleotide similarity is calculated. It is expected that ANI between
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sequences of the same species will be above 95%.

ANI comparisons were carried out between an ’outlier’ duck strain A-DK8 and a ’normal’ E.

coli duck strain A-DK20; between two outliers A-DK8 vs environmental strain E-5038 and

between E. coli and bacteria of a different species E. fergusonii. As a control two E. coli

sequences were used that belong to the most distinct clusters from each other in the core SNPs

tree (MG1655 and Sakai) Figure 4.5.

Figure 4.5: Average Nucleotide Identity (ANI) cal-

culations performed for some outliers

from cluster 4 in a Figure 4.2.

From top to bottom: (1) A-DK8 vs

A-DK20, (2) A-DK8 vs E. fergusonii,

(3) A-DK8 vs E-5038, (4) MG1655 vs

Sakai.

It is clear that the method works and that even

between the most distinct sequences on the

tree MG1655 and Sakai 98% sequence simi-

larity was shown. From the analysis it could

be concluded that the outliers are not E. coli

species as they only have 90.5% similar, not

related to E. fergusonii either with an ANI of

88.6%. Nevertheless, the outliers are more

related to each other than other sequences of

the collection with an ANI of 99.32%.

4.5.2 16S rRNA

Another method to decide whether the out-

lier sequences are E. coli or not is to con-

duct a comparative analysis of the 16S. From

time when Archaea was defined as a new do-

main of life using 16S ribosomal RNA phylo-

genetic taxonomy [59], this method became

widely popular in phylogenetic due to slow

rates of mutations in this region. Multiple

sequences of 16S rRNA can be presented

within a single bacterium ( in case of E. coli

there are 7).

Blast search resulted in 646 sequences be-

tween 1428 and 1551 nt in length. 506 se-

quences were exactly the same size as the query sequence. Aligned sequences produced a
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consensus (1,570 bp) which contains 1,396 identical sites (88.9%) across all sequences. Pair-

wise sequence similarity between any 2 sequences was 99.5%, indicating that all sequences are

E. coli.

ML tree based on 16S rRNA sequences demonstrate quite different results than core SNPs

based tree. Outliers from the core SNPs tree do not seems to be outliers on a 16S rRNA tree

Figure 4.6. They lay in between other 16S rRNA sequences and also share 99.5% of pair-

wise sequence identity with any other sequence from the analysis. 16S rRNA sequences from

E. fergusonii str. ATCC 35469 and E. fergusonii str ECD227 (GenBank assembly accession:

GCA_000026225.1 and GCA_000191665.1 respectively) were also added to analysis. Inter-

estingly, these strains also lay amongst other E. coli strains with 99.5% pairwise sequence

similarity Figure 4.6.

Figure 4.6: 16S rRNA tree, based on the align-

ment of 646 sequences of length be-

tween 1428 and 1551 nt; Red - the out-

liers from cluster 4 on the Figure 4.3,

Blue - 16s rRNA from E. fergusonii

For many years 16S rRNA has been an at-

tractive and easy method for species identifi-

cation. However, the method can lack resolu-

tion when sequences share 99.5% 16S iden-

tity but have less then 50% sequence simi-

larity over the whole genome as for Edward-

siella [60]. The method also has no power to

distinguish between recently derived species

[61]. Moreover, no well defined criterion

for percent similarity cut off exists for 16S

rRNA. In the majority of studies 99% of sim-

ilarity used to establish species match. How-

ever an example provided by Janda et al de-

scribes Aeromonas veronii with a genome

that contains multiple copies of 16S rRNA

that vary among themselves by up to 1.5%.

Clearly WGS will pose many challenging

taxonomic issues including species definition.

In this study the 7 copies found in K-12 MG1655 were compared between themselves to pro-

vide a baseline for comparison. So all seven genes code for 16S ribosomal RNA called rrsA,
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rrsB, rrsC, rrsD, rrsE, rrsG, and rrsH were extracted, concatenated, aligned and visualised with

Geneious. All sequences had 1542 bp length and formed a consensus of the length 1543 bp

with 1522 identical sites across all sequences which is 98.6% of the consensus length. Pairwise

identity between any two sequences was 99.5% percent.

Further, the 16S rRNA genes were extracted from 6 other Escherichia species

• E.adecarboxylata CIP JN175338; length 1527

• E.fergusonii ATCC 35469 AF530475; length 1473

• E.hermannii CIP 103176 JN175345; length 1478

• E. coli NBRC 102203 AB681728; length 1467

• E.vulneris NBRC 102420 AB681776; length 1465

• E.blattae CIP 104942 JN175333; length 1525

• E.albertii ICDDR 19982 AY696662; length 1501

and compared the same way. These 7 sequences produced a consensus of 1529 bp with 1,418

identical sites (93.0%) and pairwise identity of 96.8%. Figure 4.7 shows the resulting tree.

0.004

E.albertii

E.blattae

E.ferguson

E.adecarbo

E.hermanni

E.coli

E.vulneris

Figure 4.7: 16S rRNA tree based on Escherichia

genera

This example indeed shows that some species

inside of Escherichia genera can be defined,

however not all of them. So if compare

only E. coli and E.fergusonii they originate

consensus of the length 1,542 bp identical

at 1,466 positions which is 99.5% and pair-

wise identity 99.6% that is even higher than

the pairwise identity across all homologues

copies of 16S rRNA inside one K12 strain.

Therefore it can be tricky to separate E. coli

from E. fergusonii based only on 16S method. Based on this analysis it can be concluded

that 16S rRNA is not an adequate method to determine species inside of Escherichia genera.

Addressing outliers showed that two different methods provided opposite results and therefore

should be interpreted with caution.
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Apart from species identification, it should be noted that the 16S rRNA tree clearly separates

into 2 distinct clusters. It can be investigated further why this division happens. To date this

does no associate with any host or environment or ST, but does indicate a likely early divergence

of the core genome in its evolution as a species.

4.6 Assemblies

All sequences were assembled with Spades with very good overall results that is summarised

in Figure 4.8. Average numbers for assembly are as follow: length of assemblies - 5239617

bp, contigs per assembly - 224, N50 - 228762nt, unique genes - 5075 per sequence. There were

some outliers: eleven out of 564 assemblies were longer then 6 Mbp, forty nine contained more

Figure 4.8: Assemblies statistic: lenght, contigs,

genes, duplicated genes.

than 300 contigs, and fourteen contained

more than 6000 genes. Two of these char-

acteristics are strongly correlated - longer as-

semblies means more genes detected, but not

always longer assemblies contain more con-

tigs.

To assess if the longest assemblies are a biological entity or banal misassembly, some of the

longest assemblies were compared with the same sequence, but resulted from sequencing by

PacBio. The results show that these compared outliers are misassembled sequences. It is there-

fore predicted that all other assembly related outliers are also misassembled genomes. There

is no any indication as to why these particular sequences are mis-assembled as they have the

same short read lengths and quality. For future reference, these numbers could be used as a

predictions for technical error when assembling a large number of genomes, thus based on the

abnormally high numbers of genes detected 14 out of 564 genomes gives 2.5% of the erro-

neously assembled genomes. Table 4.1 describes results obtained when comparing Illumina

based assemblies with PACBio.

Moreover, knowing that the main cause of misassemblies are repeats and low complexity re-

gions it can be recommended to include pre-assembly workflow that can address such prob-

lems. Repeats cause different types of errors in assembly: one of them is collapsed assembly,

that happens when non adjacent copies of repeats can erroneously be joined together and ’or-
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Table 4.1: Missasemblies

sequences C-0863N0005 C-0863N0006 C-0863N0030

original length 5000721 5309743 5135913

assembly length 6142715 6146674 5985616

gaps in mapped 28 327 26 211 27 993

phan reads’, that should be in the middle, left behind. These types of misassemblies increase

the number of contigs but shorten the overall size of assembly. Another type are expansions

when more than necessary repetitive copies joined together. Also repeats usually cause inver-

sion, the most common type of misassemblies detected in all entries when comparing Illumina

vs PacBio datasets. This type of assembly error when reads are wrongly joined in the opposite

direction produces biased results in further downstream analyses. Therefore, future work will

include RepeatMasker [62] in a pre-assembly workflow to detect and exclude, if necessary,

such regions from the assembly.

4.7 Annotation

Running PROKKA with default parameters resulted in a large number of hypothetical pro-

teins and less than 600 genes detected than expected. I decided to produce my own database

with trusted annotated proteins from which annotations can be derived. Table 4.2 summarises

improvements in annotations.

Table 4.2: Annotations

Total Hypotheticsl

Sakai ref 5467 2136

Sakai default 4810 2275

Sakai with db 5408 1342

Difference between total numbers of gene

products detected in the reference Sakai

(5467) and the Sakai sequence annotated

by PROKKA with own database (5408) can

be explained by imperfections of annota-

tion software that will not annotate anything

smaller than 200 nt long, therefore leaving

behind for instance tRNA. On the other hand it has achieved much better results regarding

the number of hypothetical proteins. The differences most likely originated by reference sta-

tus of Sakai genome. To obtain status of reference genome the annotation should be curated

i.e. verified for evidence from literature or pass manually evaluated computational analysis,

therefore proteins without such evidence will be called hypothetical. Our annotations extracted
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inference based only on sequence similarity first from our own database and then from public

databases that potentially full of errors. [63].

4.8 Homology Clustering

Clustering algorithms were developed and described well before advances in NGS technologies

as a classification by patterns (by sequence similarity in our case) into groups. Even though

clustering as a mathematical problem is not new, it is still ’a difficult problem combinatorially,

and differences in assumptions and contexts in different communities has made the transfer of

useful generic concepts and methodologies slow to occur’ [64].

Figure 4.9: Get_Homologues results on smaller

datasets. (A) Number of core genes

in Environmental, Canine and Bovine

datasets.(B) Human vs Bovine dataset:

matrix of present (red) and absent

(black) genes are plotted. (C) 135 se-

quences clustered based on presence

and absence of genes.

In Bioinformatics clustering is used when

dataset is large and other approaches such

as multiple sequence alignment may fail or

when very dissimilar genomes need to be

compared. By tuning the percent of similar-

ity one can decide how many and how sim-

ilar sequences (genes or proteins) should be

to become a cluster of homologues genes or

proteins.

Definition of ’pan-genome’ has first arrived

when analysing 8 S. agalactiae genomes it

was found that 80% of genes were shared

amongst all of them, 20% was only partially

shared between genomes and some of the

genes were strain specific [65]. Thus pan-genome is assembly of all genes found in a group of

organisms of the same species. These genes can be sub-classified further: core genes are the

genes present in all genomes in a group, and accessory genes, sometimes called non essential

genes, that would be present only in a fraction of genomes.

To find what genes families are present in our collection, I used Get-Homologues that showed

very promising results over pilot studies. However, the biggest dataset that the software was

able to calculate was composed of only 135 sequences. Increasing further dataset led to unre-
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alistic time for calculations needed as well as very high memory requirements. Some results

from that analysis are presented in a Figure 4.9. It can be seen how quickly size of core genome

shrinks when size of datasets as increasing from almost half of genome shared among 9 envi-

ronmental sequences to only 789 genes when 135 bovine sequences were analysed. Some

interesting blocks of genes were detected: some associated with bovine isolates as can be seen

in a upper left corner on sub-figure B and genes associated with ST O157 that can be seen on a

subfigure C at lower left corner.
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Figure 4.10: Pan genome statistics

Later, other software ’Roary’ were identi-

fied and used for clustering. Note, that

even though a word ’pan genome’ is used,

blast search, alignment and comparison of se-

quences are done using translated amino acid

sequences. There is some advantages to do

so. First, redundant codon will be count as

a mutations, however there is most likely no

significant evolutionary pressure to prevent

a silent mutation, so as long as protein se-

quence not altered these changes do not have to be calculated against homology score. Second,

statistical significance of an alignment will be easier achievable when comparing alignment

based on 20 different letters than alignment based on four letters. Third, some amino acid

changes will not alter protein dramatically, as for example isoleucine to valine, both similarly

hydrophobic - these mutations can be accounted for in amino acid alignment, while in DNA

alignment this region will be treated as any other misalignment.

Number of genes or proteins detected in any sequence can be influenced by various factors:

• Sequencing errors.

• Due to assembly some of the genes will be lost as long as assembly stays in a draft

format, when contigs can be broken in a middle of a gene, so that gene is not detected.

• Some software relies on annotation, nowadays annotation is the weakest link in many

whole genome analysis steps as amount of information increase dramatically while ac-

curacy and verification of this information is often poor and slow [63].

Thus it is expected a increasing rate of false positive errors in such analysis.
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Table 4.3: Number of genes by host.

Dataset Quantity Pan Core Singletons

All 528 70283 599 30908

A 49 12954 1894 7480

C 37 22527 1447 9836

H 188 32565 1903 12496

R 23 14230 2388 5009

W 96 14104 3019 4730

Z 135 37705 947 16985

The results are visualised in a Fig-
ure 4.11. There are much big-

ger number of homologues pro-

teins detected than in previous stud-

ies, however it is appreciated that

blastp cut off for this work were set

very high (95% of similarity), while

in other studies protein sequences

were joined into the same cluster

if they are above 50% [55] or 80%

[14], [66] of similarity. Neverthe-

less, there was 70,283 protein clusters produced, however that number decrease dramatically

as soon as clusters that are composed by only one sequence (singletons, 30,908 clusters) are

excluded.

Size of pan genome for different subgroups is different, most likely due size of sub-datasets.

Table 4.3 present absolute numbers for pan-genomes, core genes and number of singleton

clusters for each of 4 datasets. Preliminary analysis indicates that as expected some strains are

influencing greatly in overall size of the core and pan genome. Such strains can be clearly seen

in Figure 4.11 when they appears as black doted lines in a core genome area, meaning no genes

detected. However this problem should be analysed further if the fault is due to assembly or

the genes of these particular strains are more divergent than 95% similarity. Therefore such sit-

uation will decrease number of core genes and increase pan genome size placing these proteins

in a separate clusters.
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Figure 4.11: The figure visualise a matrix of strains (rows) vs genes (columns) Red indicates

presence of a gene, thus, the core genes can be seen at a left part of figure. (a)

Pan-genome for 528 strains from the collection contains 70,283 clusters. (b) Pan-

genome size is 20,136 clusters, if include clusters that contain proteins presented

in at least 5 strains.
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4.9 Core genes

Positions and numbers of core genes are demonstrated in a Figure 4.12. There are much less

core genes in a canine - human and canine - avian datasets. What cause this situation should be

analysed further.

oriC

Figure 4.12: Core genes plotted against reference

(inner violet circle) to demonstrate

their position in a chromosome.

Recombination analysis were performed on

core genes using Gubbins. These genes re-

sulted in an alignment of the length of 26,681

nt. Recombinations were detected and ex-

cluded, resultant alignment were 18,172 nt

long, thus 8,509 nt were filtered. Number

of SNPs inside and outside of recombination

blocks were calculated and based on this ra-

tio of recombination vs mutation will be cal-

culated in future. The Figure 6.1 in Sup-

plementary materials illustrates preliminary

’map’ for the recombination. There are clear

hotspots of recombinations events that occur

on the few genes. Work in recombination is

ongoing, with plans to closely analyse the re-

gions with massive recombinations and com-

pose list of genes from these hotspots.

Conserved regions in E. coli. also include 1,060 conserved intergenic regions flanked by ortho-

logues genes. These regions vary in size and place across genome. There are 12 regions that

is bigger then 400 nt, with the biggest regions over 683 nt long. Figure 6.2 in Suplementary

materials shows numbers and length distributions of conserved intergenic regions across all

genomes.

It is also appreciated that DNA alignment can provide invaluable information especially in de-

tecting these silent mutations which does not matter for protein homology studies. The work of

analysing DNA alignment of core genes is ongoing, aiming to determine the background drift

level of mutation, to use it then to help quantify the amount of positive or negative selection.
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4.10 Analysis of proteins associated with host or environ-

ment

Proteins presented in all strains were extracted and combined into table that provides percent

informations for each host about how many strains contain each gene. Table 4.4 bellow high-

lights some of the proteins that are found in a bigger numbers for particular host. The condition

for highlighting were that protein should be presented in more than 80% of isolates for a par-

ticular host, and be in less than 60% in other host isolates.

The highest number of proteins associated for a particular dataset was found for a bovine

groups: 50 for Zambian, and 42 for bovine, ST O157, UK. There are 10 proteins for the human

reference dataset that are almost absent in other datasets, except for some proteins found in

minority of avian strains. For avian isolates no proteins were detected that is presented in more

than 80%, it was only one protein ygcG that is presented in more than 70% of the genomes

while in other groups it is found in less than 60%, therefore it is unlikely that ygcG is an avian

host specific protein.

This part of the work is ongoing and all findings should be verified further as well as should be

statistically challenged.
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Table 4.4: Proteins by host

C W R H A Z Gene ID

ygcG 43.24 0.0 47.83 30.85 71.43 54.81 :gi|90111490|ref|NP_417258.4|

group_38327 94.59 0.0 0.0 2.13 0.0 0.0

group_69352 0.0 0.0 86.96 0.0 0.0 0.0

group_9061 0.0 0.0 86.96 1.6 0.0 0.0 :gi|145698331|ref|NP_418214.2|

group_69354 0.0 0.0 86.96 5.85 2.04 0.0

group_69349 0.0 0.0 100.0 3.19 4.08 0.74

group_28790 0.0 1.04 86.96 0.0 10.2 2.22 :gi|16131218|ref|NP_417798.1|

group_28787 0.0 1.04 100.0 0.0 40.82 5.19 :YP_671310.1

gadB 0.0 4.17 100.0 1.6 26.53 5.19 :gi|16131389|ref|NP_417974.1|

group_69348 2.7 0.0 86.96 1.6 4.08 0.74

group_69355 2.7 0.0 86.96 3.72 4.08 0.0

gadB_1 2.7 4.17 95.65 2.13 20.41 5.93 :gi|16129452|ref|NP_416010.1|

group_23656 0.0 80.21 0.0 47.34 0.0 0.0

group_26057 0.0 81.25 0.0 44.68 2.04 0.0 :YP_003222976.1

group_524 0.0 82.29 0.0 42.02 18.37 3.7 :YP_001461404.1

group_21972 0.0 84.38 0.0 45.74 2.04 3.7 :gi|16129458|ref|NP_416016.1|

group_22453 0.0 84.38 0.0 45.74 2.04 3.7 :gi|16132094|ref|NP_418693.1|

group_35189 0.0 85.42 0.0 43.09 0.0 0.0 :gi|16130028|ref|NP_416593.1|

group_13881 0.0 86.46 0.0 39.36 4.08 0.74 :NP_311304.1

group_23340 0.0 86.46 0.0 45.21 0.0 0.74 :gi|16130540|ref|NP_417111.1|

group_21726 0.0 87.5 0.0 46.28 0.0 0.74 :YP_002268455.1

group_22584 0.0 87.5 0.0 46.81 0.0 0.74 :YP_002268454.1

group_30641 0.0 88.54 0.0 45.74 0.0 0.0 :gi|16131780|ref|NP_418377.1|

group_32213 0.0 88.54 0.0 46.81 0.0 2.96

group_30017 0.0 88.54 0.0 47.34 0.0 0.0 :gi|16130295|ref|NP_416864.1|

group_9907 0.0 89.58 0.0 46.81 0.0 0.0 :gi|16130028|ref|NP_416593.1|

ycjA 0.0 89.58 13.04 35.64 0.0 3.7 :YP_002406020.1

group_25718 0.0 91.67 0.0 48.94 0.0 0.74 :gi|16129533|ref|NP_416092.1|

group_977 2.7 81.25 0.0 38.3 0.0 0.0 :gi|16131356|ref|NP_417941.1|

group_13320 2.7 81.25 0.0 45.74 0.0 0.74 :YP_003222327.1

group_38302 2.7 81.25 8.7 47.34 2.04 2.22 :NP_288358.1

group_8389 2.7 81.25 13.04 49.47 8.16 10.37 :YP_003229435.1

group_18648 2.7 81.25 17.39 46.28 14.29 15.56 :gi|16128532|ref|NP_415081.1|
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C W R H A Z Gene ID

group_35688 2.7 83.33 0.0 49.47 0.0 0.74 :NP_309096.2

group_26647 2.7 84.38 0.0 49.47 0.0 0.0 :gi|16131387|ref|NP_417972.1|

group_38694 2.7 87.5 0.0 45.74 0.0 0.74

group_20520 2.7 87.5 0.0 46.28 6.12 3.7 :YP_001457045.1

group_28621 2.7 87.5 0.0 46.81 6.12 13.33 :YP_541946.1

group_2779 2.7 87.5 8.7 42.02 4.08 2.96 :gi|288551665|ref|NP_415949.2|

group_8403 2.7 89.58 0.0 47.87 6.12 14.81 :gi|16129121|ref|NP_415676.1|

group_15416 2.7 97.92 0.0 49.47 0.0 0.0 :YP_325651.1

group_35059 5.41 80.21 0.0 35.64 0.0 0.0 :YP_002402126.1

group_18949 5.41 81.25 8.7 47.87 6.12 8.15 :YP_539966.1

group_9393 5.41 89.58 17.39 32.98 2.04 3.7 protein motif:Pfam:PF12083.2

group_974 5.41 89.58 21.74 48.4 20.41 25.19 :gi|16131356|ref|NP_417941.1|

group_14858 8.11 81.25 0.0 40.43 22.45 11.11 :gi|90111276|ref|NP_415967.2|

cpsG_1 8.11 89.58 17.39 39.36 8.16 5.93 :gi|16129988|ref|NP_416552.1|

group_11599 13.51 81.25 0.0 39.89 22.45 10.37 :gi|226524714|ref|NP_415966.6|

group_5719 13.51 82.29 4.35 43.62 22.45 13.33 :gi|16129410|ref|NP_415968.1|

group_12919 13.51 82.29 8.7 44.68 22.45 13.33 :gi|16129413|ref|NP_415971.1|

group_11035 16.22 94.79 30.43 46.81 10.2 9.63 :YP_005280294.1

group_27425 18.92 82.29 0.0 47.34 12.24 8.89 :YP_539975.1

group_26809 18.92 94.79 39.13 49.47 26.53 11.11

group_29374 21.62 81.25 13.04 48.94 4.08 9.63 :NP_310658.1

group_27410 21.62 82.29 13.04 49.47 12.24 10.37 :YP_539972.1

group_24640 24.32 86.46 17.39 49.47 0.0 6.67 :gi|16128526|ref|NP_415075.1|

group_21602 27.03 1.04 13.04 20.21 55.1 82.22 :gi|16129261|ref|NP_415816.1|

hpaH 27.03 1.04 13.04 21.81 55.1 82.22 :gi|90111116|ref|NP_414884.2|

group_26330 27.03 1.04 13.04 22.34 51.02 81.48 :gi|16129652|ref|NP_416211.1|

hpaI 27.03 1.04 13.04 22.34 55.1 81.48 :gi|16130180|ref|NP_416748.1|

group_25403 27.03 1.04 13.04 22.34 55.1 82.22 :YP_001726642.1

group_29037 27.03 1.04 13.04 22.34 55.1 82.22 :gi|90111202|ref|NP_415527.4|

hpaG 27.03 1.04 13.04 22.34 55.1 82.22 :gi|16129143|ref|NP_415698.1|

yiiF 27.03 1.04 26.09 31.38 53.06 88.89 :gi|90111663|ref|NP_418326.2|

yhaB 29.73 2.08 34.78 35.64 59.18 84.44 :gi|90111544|ref|NP_417590.2|

ybgP 32.43 1.04 26.09 25.0 51.02 82.22 :gi|16128692|ref|NP_415245.1|
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maoC 32.43 1.04 26.09 28.19 48.98 81.48 :gi|16129348|ref|NP_415905.1|

setA 32.43 1.04 26.09 32.45 59.18 86.67 :gi|49175994|ref|YP_025293.1|

yafQ 32.43 1.04 34.78 27.13 44.9 87.41 :gi|16128211|ref|NP_414760.1|

gmr 32.43 1.04 34.78 35.11 59.18 88.15 :gi|16129246|ref|NP_415801.1|

feaR 32.43 1.04 39.13 33.51 59.18 86.67 :gi|16129345|ref|NP_415902.1|

group_17363 32.43 2.08 34.78 31.91 48.98 82.22 :gi|16128631|ref|NP_415181.1|

yddJ 32.43 9.38 21.74 35.64 53.06 81.48 :YP_002402676.1

group_7587 32.43 10.42 26.09 40.43 57.14 85.19 :gi|90111272|ref|NP_415950.4|

group_28945 35.14 1.04 26.09 32.45 59.18 85.93 :gi|16128833|ref|NP_415386.1|

group_20685 35.14 1.04 43.48 31.38 59.18 81.48 :gi|16132205|ref|NP_418805.1|

group_16872 35.14 2.08 0.0 26.06 6.12 82.96 :gi|16129175|ref|NP_415730.1|

group_15681 35.14 2.08 26.09 31.38 46.94 85.19 :gi|16130641|ref|NP_417214.1|

group_15935 37.84 1.04 34.78 32.45 59.18 83.7 :gi|16130946|ref|NP_417522.1|

group_23478 37.84 2.08 0.0 25.53 6.12 82.22 :gi|16129177|ref|NP_415732.1|

group_24524 37.84 2.08 0.0 25.53 6.12 82.22 :gi|16129176|ref|NP_415731.1|

group_14860 37.84 18.75 34.78 54.26 57.14 87.41 :gi|90111276|ref|NP_415967.2|

ycgY 40.54 1.04 26.09 32.45 59.18 85.93 :gi|16129159|ref|NP_415714.1|

group_69901 40.54 2.08 0.0 26.06 6.12 83.7 :gi|16129178|ref|NP_415733.1|

group_22187 43.24 1.04 21.74 35.11 55.1 88.15 :gi|16130924|ref|NP_417500.1|

feaB 43.24 1.04 26.09 31.91 53.06 81.48 :gi|90111264|ref|NP_415903.4|

tynA 43.24 1.04 26.09 33.51 53.06 82.96 :gi|162135920|ref|NP_415904.3|

paaJ 43.24 1.04 26.09 33.51 53.06 86.67 :gi|16129353|ref|NP_415910.1|

paaD 43.24 1.04 26.09 34.04 53.06 88.15 :gi|226524712|ref|NP_415909.4|

ygiL 43.24 1.04 30.43 32.45 55.1 83.7 :gi|16130939|ref|NP_417515.1|

group_25336 43.24 2.08 0.0 26.6 8.16 85.19 :gi|16129172|ref|NP_415727.1|
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group_69217 43.24 2.08 0.0 26.6 8.16 85.93 :gi|16129174|ref|NP_415729.1|

paaH 45.95 1.04 26.09 30.85 51.02 88.89 :gi|16129356|ref|NP_415913.1|

paaI 45.95 1.04 26.09 32.45 53.06 89.63 :gi|16129357|ref|NP_415914.1|

paaG 45.95 1.04 26.09 32.98 53.06 88.89 :gi|16129355|ref|NP_415912.1|

paaF 45.95 1.04 26.09 34.04 53.06 87.41 :gi|16129354|ref|NP_415911.1|

paaA 45.95 1.04 26.09 34.57 53.06 86.67 :gi|16129349|ref|NP_415906.1|

yneK_2 45.95 1.04 34.78 32.98 48.98 82.22 :gi|16129486|ref|NP_416044.1|

paaY 48.65 1.04 34.78 35.11 59.18 94.07 :gi|16129361|ref|NP_415918.1|

yhiJ_2 51.35 7.29 34.78 39.89 59.18 86.67 :gi|16131360|ref|NP_417945.1|

paaC 54.05 1.04 26.09 34.57 53.06 88.15 :gi|16129351|ref|NP_415908.1|

group_5507 54.05 1.04 39.13 32.45 55.1 87.41 :gi|16129342|ref|NP_415899.1|

paaB 56.76 1.04 26.09 35.11 53.06 87.41 :gi|16129350|ref|NP_415907.1|

yrhB 56.76 1.04 34.78 32.98 55.1 86.67 :gi|16131318|ref|NP_417903.1|

ycbQ 56.76 2.08 30.43 30.32 55.1 84.44 :gi|90111190|ref|NP_415458.2|
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Conclusions and Future plans

Extracting all genes from more than 500 strains - provides robust ground to build powerful

statistical tools that will help to detect and recognise the origin of a strain and therefore may

be of invaluable help over epidemiological outbreaks and in general public health surveillance.

Therefore it is planned to statistically challenge data in variety of dimensions.

The descriptive part of the work is not finished yet. It is planned to classify genes found by

GO; detect virulence factors, insertion sequences, antimicrobial resistant genes and then com-

bine all information in multi-step statistical pipeline that take as an input short Illumina reads

and provides output file that describe the sequence with possible origin.

Next logical step will be to look closer to what actually are expressed and used. Thus some stud-

ies indicate that even though there is enormous diversity across E. coli genomes, its metabolome

is much more stable and around 57% of metabolic reaction shared across all strains [67]. Men-

tioned study analysed 29 strains, suggesting that panmethabolome has reached plateau that so

it is interesting if proportion maintain when applied to a bigger collection. Apart from strong

dissection between cathabolic that are mostly core reaction, and anabolic processes that can be

in accessory metabolome, analysis of metabolic reactions can provide clues about adaptation

to specific live-stile whether pathogenicity or commensalism or adaptation to the different en-

vironments.

Also the idea that there is no single genome that represent a specie but genomic continuum with

variability of possibilities to acquire new genes it would be interesting to include other species
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into our collection and check for any overlaps.

PhD is a learning opportunity and I am trying to effectively manage my time to acquire new

skills. Thus, over the first year I attended courses listed bellow. Over 2nd year of my PhD I

am planning to learn R as I have limited experience with this language. I also will continue

monitor major courses providers for a learning opportunities specific to my work.

Table 5.1: Courses attended

Course Duration Provider

1 Bioinformatics Programming and

System Management, level 11

1 semester UoE

2 RNA-Seq Data Analysis work-

shop

2 day Edinburgh Genomics

3 Hands-on Porting and Optimisa-

tion Workshop

1 day ECDF, ARCHER

4 Software development for re-

search

2 days Software Carpentry, ARCHER

5 Manipulating data using

linux/unix tools

1 day The Roslin Institute

6 Computational Molecular Evolu-

tion

2 weeks Welcome trust

7 Ensembl Browser Workshop 1 day EBI

8 MATLAB programming 9 weeks Coursera

9 Leadership and Entrepreneurship

in the Biotech Industry

1 day UoE

10 Life Sciences start-ups, spin outs

and let downs

1 day Innovation forum Edinburgh

11 Practical Project Management 1 daya UoE
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Supplementary material

Table 6.1: ’Unknown’ phylotypes

arpA chuA yjaA TspE4.C2

H-060520151-S1 - - + +

H-100440290-S3 - - + +

H-111160229-S6 - - + +

H-113320446 - - + +

H-084660371-S2 - - + +

H-102260754-S4 - - + +

H-133200678 + - + +

H-122900502 + - + +

C-0863N0015 + + + +

C-0863N0016 + + + +

C-0863N0002 + + + +

C-0863N0006 + + + +

C-0863N0005 + + + +

H-132380155 + + + +

H-134380810 + + + +

C-0863N0030 + + + +

C-0863N0025 + + + +

C-0863N0021 + + + +

Z-2014N0013 - - - -
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700.0

Figure 6.1: Recombinations detected in a core genes, plotted against core genes tree.

Figure 6.2: Size and number of conserved intergenic regions regions
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