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ABSTRACT 

The concentration of CO2 is increasing at a rate of ca 1.8kmol mol-1 per year. If the 

current trend continues, atmospheric CO2 concentration will reach double the 1980's 

ambient concentration by about 2080. An increase in atmospheric CO2 concentration 

will have direct effects on plants as a result of the role CO2 plays in determining rate of 

photosynthesis and transpiration. It may also have secondary effects on plant growth. 

The objective of this study was to determine the effects of long-term exposure to 

elevated CO2 on the growth and morphology of seedlings of Sitka spruce and silver 

birch, with a focus on the effects of elevated CO2 on the expansion, surface 

characteristics, specific leaf area, anatomy and chlorophyll content of leaves of silver 

birch. Seedlings of Sitka spruce and silver birch were placed in pots in open top 

chambers receiving ambient or elevated CO2 . After one growing season there was a 

significant increase in biomass production in seedlings of Sitka spruce grown in 

elevated CO2 compared to those grown in ambient CO2, but after eighteen months this 

effect had disappeared. The initial increase in biomass was a result of a significant 

increase in root mass. At the end of the second growing season there was no effect of 

elevated CO2 on allocation of dry mass. There was no effect of elevated CO2 on total 

number of branches produced at the end of the second growing season but there was an 

increase in the rate of branch production. Nitrogen, phosphorus and potassium 

concentration of leaves was reduced in plants grown in elevated CO2. 

After one growing season biomass was increased in elevated CO2 plants by ca 20%, 

rates of photosynthesis were also higher in elevated CO2 plants. There was no effect of 

CO2 treatment on root: shoot ratio. There was a significant increase in branch 

production in plants grown in elevated CO2, but despite an increase in leaf area 

production early on in the growing season, there was no difference in total tree leaf area 

at the end of the growing season. Nitrogen, phosphorus and potassium concentration 

of leaves was reduced in plants grown in elevated CO2 and leaves on elevated CO2 

plants senesced ca one week earlier than leaves of plants grown in ambient CO2. 

Leaf extension rates were higher in elevated CO2 plants during the morning but there 

were no consistent effects of CO2 treatment on leaf water potential or osmotic potential. 



Leaf thickness increased in elevated CO2 plants and was accompanied by an increase in 

the number of layers of palisade cells. Chlorophyll content was reduced in plants 

grown in elevated CO2. Stomatal conductance was reduced in plants grown and 

measured in elevated CO2 as a result of both a reduction in the width of apertures, and 

a reduction in stomatal density. There was no effect of elevated CO2 treatment on 

stomatal index and changes in stomatal density were a result of changes in leaf 

expansion. 

The implications of these results for the future functioning of Sitka spruce and silver 

birch, and the relevance of this study in relation to future predictions of tree growth in 

elevated CO2 are discussed. 
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PREFACE 

Fluctuations in concentrations of gases in the atmosphere are not new phenomena; the 

composition of the atmosphere is dynamic and is intrinsically linked to geochemical and 

biological processes. Emission of volcanic gases, formation of oceans and sedimentary 

carbonate rocks and the evolution of living organisms have all had significant effects on 

the composition of the atmosphere (Levine, 1985). Such chemical evolution continues 

in the present with anthropogenic activities resulting in ever increasing inputs of gases 

into the atmosphere. The increase in the atmospheric concentrations of NO R, S02, 

CFCs, CR4, CO and CO2, has become a major cause for concern as increasing levels 

of pollution, acid precipitation, holes in the ozone layer and the threat of the 

'greenhouse effect' concentrate the attention of environmentalists, scientists and the 

general public alike. 

The increase in atmospheric concentration of CO2 has received much attention because 

of the role CO, molecules play in the greenhouse effect (Houghton et al., 1990). Data 

from the Vostok and Greenland ice cores have shown that concentration of atmospheric 

CO, has increased from approximately 280 j.tmol moF 1  two hundred years ago to its 

present day value of ca 360 iiniol mol-1  (Barnola etal., 1987; Lorius eta!, 1990). The 

onset of the industrial revolution marked the beginning of this trend as a result of 

increasing manufacturing and industrial processes. The main causes of today's 

emissions of CO2 are deforestation and the burning of fossil fuels. The concentration 

of CO2 is currently increasing at ca 1.8 .tmol mol-1  (0.5%) per year (although this has 

been reduced in 1992 and 1993 by almost half, possibly as a result of the eruption of 

Mount Pinatubo). If the current trend continues atmospheric CO2 concentration will 

reach double the 1980's ambient concentration by about 2080 (Houghton et al., 1990). 

Increase in concentration of atmospheric CO2 may have indirect effects on ecosystems 

via climatic warming and direct effects on plants resulting from the role CO2 plays in 

controlling rates of photosynthesis and transpiration. 

Changes in net primary production and water use result in changes in ecosystem 

structure and metabolism. This will have wide ranging implications. 

Conversely, ecosystems affect climate. Vegetation affects regional hydrology via the 

process of evapotranspiration and the effects that vegetative cover have on reducing 

surface runoff (Melillo et al., 1990). Large scale changes in land use and the latitudinal 

and altitudinal displacement of ecosystems are likely to change the extent and 



composition of vegetative cover and, as a result, may change the albedo of the earth's 

surface. 

Terrestrial ecosystems, and forests in particular, play an important role in the terrestrial 

carbon cycle. Forests cover approximately one third of the land area of the earth and 

are responsible for approximately two thirds of the total amount of photosynthesis. 

Measurements of atmospheric CO2 concentration from 'flask' networks show seasonal 

variations in CO2 concentration (Keeling, Bacastow and Whorf, 1982; Keeling et al., 

1989). The amplitude of these oscillations varies with latitude, small seasonal 

differences in CO2 concentration occurring near the equator and in the southern 

hemisphere and large differences in northern latitudes (Keeling, 1983). The larger 

amplitudes of the seasonal oscillations in northern compared with southern latitudes has 

been attributed to the large expanses of vegetation, and in particular, the northern, 

temperate and boreal forests (Jarvis, 1989). If CO2 does stimulate the growth of plants 

and trees in particular, forests could in the future represent an important long term net 

storage of terrestrial carbon in trees and soil (Jarvis, 1989). 

Thus an understanding of the ways in which trees will respond to a rising CO2 

concentration is of increasing importance in the rapidly changing environment, 

particularly if information is to be provided to enable predictions concerning the future 

functioning of forest ecosystems are to be made and well informed management 

decisions to be taken. 

Horticulturists have been aware of the 'fertilising effect of increased concentrations of 

CO2 for many years (Wittwer, 1988; Hand, 1988), and for many years it has been a 

standard horticultural practice for growers to raise the ambient COn concentration 

within their glasshouses to maximise the yield of crops such as tomato and lettuce 

(Small and White, 1930; Calvert and Slack, 1975; Hand, 1988). With the current rise 

in atmospheric CO2 concentration, effects of increased atmospheric concentrations now 

begin to have implications for plant growth and functioning outside the glasshouse 

environment of the horticulturalist. 

Growth of plants may be stimulated by an increase in the concentration of atmospheric 

CO,, as a result of increase in photosynthesis and reduction in stomatal conductance 

(gs). Increase in CO2 concentration may also have secondary effects on plant growth 

(Bowes, 1991); of particular relevance to this study is the effect of elevated CO, on leaf 

growth. Leaf growth may be increased in elevated CO2 as a result of increase in 

substrate availability, i.e. carbohydrates and amino acids, enhancing the growth of 

leaves, or through more direct effects on leaf initiation (Morison and Gifford, 1984; 

Tolley and Strain, 1984a). The effects of elevated CO2 on leaf growth will have long 

II 



term effects on growth and functioning of plants. Leaves are the main sites for 

photosynthesis and transpiration: an increase in leaf area increases the potential for the 

interception of radiation and therefore primary production, but may offset the effect of a 

reduction in g5 on water loss. Leaf surface characteristics (stomatal density, size of 

stomata) and anatomical organisation of leaves alter the flux of CO2 and H20 molecules 

into and out of leaves and are therefore intrinsically linked to the processes of 

photosynthesis and transpiration. Changes in leaf phenology, for example accelerated 

budburst or senescence, will change the length of the foliated growing season and the 

potential for biomass production. 

Kramer and Sionit (1987) stated that an increase in leaf area has been shown to be the 

reason for increased productivity in elevated CO2 plants over fairly long time periods. 

At present the effects of elevated CO2 on leaf growth in trees are not well und&stood 

(Jarvis, 1994). Because trees are long lived, ideally the response of trees to elevated 

CO2 should be investigated over long term periods. Juvenility in trees also raises a 

problem with respect to short term experiments. However, within the three year 

timescale of a PhD., long term experiments are not possible. None the less small 

changes in rates of growth during the early stages of the life of a tree may have major 

consequences for biomass a few years later. With fast growing species some of the 

problems of juvenility may be avoided. This thesis aims to make a start by 

investigating the early growth of silver birch and Sitka spruce with particular emphasis 

on the growth and properties of the leaves of silver birch, over as long a period as 

possible within the prescribed Research Council framework. 
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CHAPTER 1 INTRODUCTION 

1.1 AIMS 

The aim of the research described in this thesis was to determine the effect of long-term 

exposure to an elevated concentration of CO2 on the growth and morphology of 

seedlings of silver birch (Betula pendula Roth.) and Sitka spruce (Picea sitchensis 

(Bong.) Can.), with a focus on the effects of elevated CO2 on the expansion, surface 

characteristics, specific leaf area, anatomy and chlorophyll content of leaves of silver 

birch. 

Specific objectives 

The following questions were addressed: 

• What are the effects of long-term growth in elevated CO2 on production of: 

- a) total biomass; 

branches; 

leaves; and 

roots 
in silver birch and Sitka spruce? Do the nature and magnitude of responses differ 

between species? 

a) What is the effect of elevated CO2 on leaf expansion in silver birch, and b) 

which biophysical parameters controlling leaf expansion are affected? 

• Is stomatal conductance reduced in silver birch in elevated CO2 as a result of an 

increase in the degree of stomatal closure and/or a reduction in stomatal density? 

• How are a) specific leaf area, b) leaf anatomy and c) chlorophyll content in silver 

birch affected by growth in elevated CO2? 

• What implications can be drawn from these findings for the future functioning of 

silver birch and Sitka spruce in an elevated CO2 environment? 

Methodological approach 

In order to address these questions it was decided that it was necessary to grow the 

trees in conditions as close as possible to their natural environment, and an open top 

1 



Introduction 

chamber experiment was initiated in June 1990. Sitka spruce and silver birch were 

chosen in this work as they are both important constituents of Scottish forests. They 

have several contrasting physiological, morphological and ecological characteristics: for 

example seedling silver birch are faster growing and initiate leaves throughout the 

season, whereas in Sitka spruce, needle primordia are laid down the previous year 

(Chapter 2) and may, therefore, be expected to respond differently to an increase in 

CO2 concentration (Oberbauer et al., 1985; Norby et al., 1994). The silver birch trees 

used in this study were grown from seed in elevated CO2 to reduce the problems of 

acclimation: the Sitka spruce plants, however, were purchased as two-year-old 

seedlings from the Economic Forestry Group (EFG). The plants were placed in pots 

(Chapter 2) outside in open top chambers under natural solar radiation. Open top 

chambers track the dynamic changes in temperature, radiation and rainfall experienced 

by unenclosed plants (Leadley and Drake, 1993) and were considered to provide the 

closest approximation to the natural environment experienced by trees in a forest, 

available within the constraints of using elevated CO2. The number of plants that could 

be placed within each chamber and the number of chambers available (four elevated and 

four ambient) provided both sufficient plant material and an acceptable number of 

replicates. Although they allow strict control of radiation, temperature and humidity, 

controlled environment chambers were rejected as they are unsuitable for long-term 

experiments, especially with potentially large plants such as trees, putting serious 

constraints on the duration of experiments, pot size the amount of plant material 

available and replication. There is also a degree of scepticism concerning the use of 

data from controlled environments to make predictions about how plants behave in their 

natural surroundings (Mousseau and Saugier, 1992). 

1.2 BACKGROUND 

1.2.1 The role of CO2 in photosynthesis in C3 plants 

CO, is a substrate for photosynthesis. In photosynthesis CO2 is converted to sugar 

phosphates in the chloroplast via the reductive pentose phosphate, or Calvin cycle 

(Calvin and Benson, 1948). 

CO2 reacts with ribulose bisphosphate, RuBP (a pentose) to form two molecules of the 

three carbon compound, phosphoglyceric acid (PGA), a reaction catalysed by ribulose 

bisphosphate carboxylasef oxygenase (rubisco). PGA then undergoes phosphorylation 

and reduction in reactions using ATP and NAD(P)H, produced from the electron 

transport process, to form glyceraldehyde-3-phosphate (GAP). Molecules of triose 

phosphate can be converted to starch or exported from the chloroplast to the cytoplasm 
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to be converted to sucrose. However, for the cycle to continue, a proportion of the 

triose phosphate must undergo reactions which eventually result in the regeneration of 

RuBP. 

In addition to catalysing the reaction by which CO2 is incorporated into the RuBP 

molecule, rubisco also catalyses the reaction of RuEP with 02, the first step of the 

oxidative glycollate cycle. Rubisco thus acts as a central link between photosynthesis 

and photorespiration (Figure 1.1). 

P02-. 
	 Light 

Triose phosphate 

sucrose CO 

Figure 1.1 A simplified diagram showing the carbon reduction and carbon 
oxidation cycles (adapted from Andrews and Lorimer, 1987). Molecules of 
CO2 and 02 compete for places on the active sites of the rubisco molecule. 
An increase in the number of CO, molecules increases carbon reduction and 
suppresses carbon oxidation by competitive inhibition. 

Rubisco has a relatively low affinity for CO2 and under present atmospheric 

concentrations of CO2 and 02 is substrate limited (Stitt, 1991). An increase in CO2 

concentration increases the rate of photosynthesis of non-acclimated C3 plants, at least 

in the short term, by stimulating the carboxylation of ribulose bisphosphate and 

suppressing photorespiration (Stitt, 1991). For the rate of photosynthesis to be 
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sustained one molecule of Rul,5bisP must be regenerated for every molecule used in 

carboxylation or oxygenation and this requires: 

• an increase in activity of the carbon reduction cycle and an increase in NADPH 

and ATP production from the light reactions of photosynthesis; and 

an increase in the end products of photosynthesis (predominantly starch and 

sucrose). 

NADPH and ATP are used in the regeneration of Rul ,5bisP in the carbon oxidation 

cycle. When the concentration of CO2 is increased, more of this NADPH and ATP is 

available for use in the carbon reduction cycle. 

The major end products of photosynthesis are starch and sucrose. Sucrose is 

synthesised from triose phosphate in the cytosol (Stitt, Huber and Kerr, 1987a) and 

starch in the chioroplast (Ap Rees, 1992). Sucrose synthesis and CO2 assimilation are 

intrinsically linked. During photosynthesis CO2 and Pi are converted to triose 

phosphate in chloroplasts; triose phosphate is then released from chloroplasts in 

exchange for Pi via the phosphate translocator (Heldt et al., 1977). Synthesis of 

sucrose from triose phosphate in the cytosol results in release of P, which is returned 

to the chloroplast; triose phosphate is released and the process continues. When sink 

demand for photosynthate is reduced the processes involved in synthesising these 

products are reduced and this leads to build up of phosphorylated intermediates (triose 

phosphate and PGA) and the pool of Pi in the cytosol and chloroplasts is depleted. 

This leads to reduction in the rate of photosynthesis as a result of Pi limitation (Walker 

and Sivak, 1986). 

The majority of reports in the literature that describe the effects of elevated CO2 on 

photosynthesis of acclimating plants show an initial increase in photosynthetic rate 

(Kramer, 1981; Tolley and Strain, 1984a,b); Conroy et al., 1986b); Ziska et al., 1991; 

Idso ci' al., 1991a,b); Radoglou, Aphalo and Jarvis, 1992). Kimball (1983), in a 

review of 430 experiments on the effects of an increase in CO2 concentration calculated 

a mean stimulation in photosynthetic rate of 33±6% and Cure and Acock (1986) in a 

review of 10 crop plants (8 of which exhibited C3 metabolism) calculated a mean 

stimulation in photosynthetic rate of 52%. Similar results have been obtained for trees: 

Eamus and Jarvis (1989) compiled increases in CO2 assimilation rate of between 30 

and 200% for young trees, and in a recent review of 73 tree species, Luxmoore, 

Wullschleger and Hansen (1993) calculated a mean increase in photosynthetic rate of 

46%. That such figures are varied and often fall below expected values calculated on 

the assumption that rubisco is limiting (Farquhar and von Caemmerer, 1982) is not 
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surprising as the response of photosynthetic rates to a doubling of CO2 concentration 

depends on the distribution of control of photosynthesis (i.e. between rubisco, RuBP 

regeneration and end product synthesis) which in turn is dependent on: 

species; 

conditions; 

• the length of the experiment; and 

• degree of acclimation of the plants involved (Stitt, 1991). 

Several workers have reported reductions in photosynthetic rate after long-term 

exposure to elevated CO2 (Wulff and Strain, 1982; Tolley and Strain, 1984a, 1985a; 

De Lucia etal., 1985; Oberbauer etal., 1985; Sionit etal., 1985; Garbutt etal., 1990), 

although the phenomenon is not universal and some workers have found no reduction 

in photosynthesis after 3 years (Idso and Kimball, 1991). Down regulation of 

photosynthesis has been attributed to the lack of sustainable sinks for photosynthate 

and this may cause direct inhibition of photosynthesis as a result of feedback regulation 

of sucrose synthesis (Sasek, et al., 1985; Stitt, 1991) or starch accumulation (Cave et 

al., 1981; DeLucia etal., 1985; Eamus and Jarvis, 1989) resulting in physical damage 

to the grana of the chloroplast (Wulff and Strain, 1982), although so far the evidence 

supporting the inhibition of photosynthesis by starch accumulation is purely correlative 

(Stitt, 1991). 

Accumulation of carbohydrates may have an indirect long-term effect on the regulation 

of photosynthesis involving reduction in the expression of genes coding for key 

proteins required for photosynthesis (Stitt, 1991; Farrar, 1992). Such coarse control 

may represent a long-term response to source-sink imbalance (Krapp, Quick and Stitt, 

1991). 

1.2.2 Response of stornatal conductance to an increase in CO2 
concentration 

The epidermis and cuticle of most higher plants are relatively impermeable to CO2 and 

water vapour. Nearly all CO2 entering, and water vapour leaving, the leaf does so 

through stomatal pores. As a result, stomata play a key role in regulating the amount of 

carbon assimilated and water transpired, and therefore have a significant impact on 

competitive ability, survival capacity and productivity. Opening and closure of stomatal 

apertures is controlled by the shape of the guard cells. Changes in cell shape are 

brought about by changes in turgor pressure of the guard cells (Meidner and Heath, 
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1959; Cowan, 1977) and are dependent on differences in thickness and elasticity of the 

cell wall in different parts of the cell (Weyers and Meidner, 1990). There is much 

conjecture concerning the biochemical mechanisms controlling stomatal movement 

(Mott, 1990; Mansfield etal., 1990). Stomata are sensitive to both environmental and 

internal variables affecting the leaf, including solar radiation, water vapour pressure, 

temperature, plant water status and intercerliular CO2 concentration (Cj). It has been 

hypothesised that stomatal response to these variables is integrated to maximise water 

use while minimising any reduction in photosynthesis (Farquhar and Sharkey, 1982). 

It is thought that this is accomplished by both feedback and feedforward processes and 

that as the conditions plants experience vary so too does the degree to which these are 

employed (Raschke, 1979). Stomatal movements result in changes in both partial 

pressures of COi at the sites of carboxylation and rates of transpiration. Changes in 

rates of transpiration alter both temperature and water potential of leaves (Farquhar and 

Sharkey, 1982). 

Short term response of stomatal aperture to CO2 concentration in non-

acclimated plants 

In general, stomatal aperture shows a short-term decreases in response to an increase in 

the concentration of CO2 (Figure 1.2). Although the sensitivity of stomata to CO2 

varies between species, some plants, particularly tree species, have been found to be 

relatively insensitive (e.g. Beadle, Jarvis and Neilson, 1979; Tolley and Strain, 1985). 

C a  

Figure 1.2 Generalised response of stomatal conductance (gs) to ambient 
CO2 concentration (Ca) (Adapted from Jarvis, 1989). 

The mean intercellular space CO2 concentration (C1) is the effective CO2 concentration 

determining stomatal aperture (Mott, 1988.) The mechanism for this response is not 

understood (Mott, 1990), but the site of perception of CO2 appears to be the internal 
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surface of the guard cells. Mansfield et al. (1990) have proposed that guard cells 

respond to CO, concentration in two opposing ways: 

• guard cell turgor increases with CO2 concentration as a result of increased malate 

synthesis, and 

• guard cell turgor is reduced as CO2 concentration increases as a result of 

modulation of photophosphorylation, and/or modulation of oxidative 

phosphorylation and/or an unknown mechanism. 

Response of g to elevated CO2 in acclimating plants 

In general, stomatal conductance is reduced when plants are grown in elevated CO2 

(Oberbauer etal., 1986; Hollinger, 1987; Fetcher et al., 1988; Bunce, 1992), although 

there are several reports of no such response (Conroy et al., 1986b); Surano et al., 

1986; Bunce, 1992; Wullschlege, Norby and Hendrix, 1992; Gunderson et al., 1993). 

Eamus and Jarvis (1989) reviewed the data then available for tree species and calculated 

that the general response of g to elevated CO2 concentration was a decrease of between 

10 and 60%. Morison (1985) compiled data from 16 C3, mainly crop species and 

calculated a mean reduction in Es  of 40% in plants grown in elevated CO2. He 

concluded that reduction in stomatal conductance was the normal response but that 

sensitivity of stomata to CO2 was affected by the conditions during growth and 

measurement. 

The response of stomata to CO2 concentration is complicated by interactions with other 

environmental variables; sensitivity to Ci increases with increasing photon flux density 

(PFD) at moderate values but may decrease in some species at high PFD (Wong et al., 

1985; Morison and Jarvis, 1983). An increase in (abscisic acid) concentrations as a 

result of water stress reduces g 5  but increases sensitivity to C1 (Raschke, Pierce and 

Popiela, 1976; Raschke, 1987). Application of IAA (indole acetic acid) decreases 

stomatal sensitivity to C1 (Snaith and Mansfield, 1982) and application of CKK 

(cytokinin) opens stomata closed by exposure to elevated CO2 concentration (Blackman 

and Davies, 1984). As yet, little work has been done especially on trees to determine 

effects of elevated CO2 on sensitivity of stomata to PFD or water status. 

Acclimation of g 5  to CO2 concentration with long-term exposure to elevated CO2 has 

been shown to occur resulting in either an increase (Jarvis, 1989; Petterson and 

MacDonald, 1992) or a decrease (Hollinger, 1987) in g  at the same C1. 
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Determination of long-term effects of elevated CO2 on stomatal conductance has usually 

depended on porometers which measure leaf conductance but do not give any 

information on whether differences in leaf conductance between two samples are a 

result of physiological responses affecting stomatal aperture, or changes in the structure 

of the leaf epidermis. The latter effects of elevated CO2 are discussed below. 

1.2.3 Effects of elevated CO2 on stomatal density 

In addition to stomatal aperture, stomatal conductance also depends on the size and 

frequency of stomata. Any changes in size or frequency of stomata with CO2 treatment 

represent a longer-term developmental response to elevated CO2. 

The number and size of stomata varies within and between species and reflects the 

conditions under which leaves have developed. Irradiance, drought, nutrient 

availability, salinity and CO2 concentration may all affect stomatal density either directly 

via an effect on the number of stomata initiated, or indirectly via an effect on leaf 

expansion (Jones, 1985; Terry etal., 1983). Evidence for a developmental response to 

elevated CO2 affecting stomatal density has been obtained from three sources: 

from study of herbarium specimens and leaves preserved in peat; 

• from controlled experiments; and 

• from plants growing adjacent to natural sources of CO2 emission. 

Evidence from herbarium specimens and leaves preserved in peat 

Woodward and Bazzaz (1988) examined herbarium specimens collected over the last 

two hundred years for eight temperate tree species and, having determined the 

approximate concentrations of atmospheric CO2 that the plants had grown in from ice 

core data, concluded that stomatal density had decreased by approximately 40% in 

response to a doubling of the atmospheric CO2 concentration. It is not clear whether 

this was the result of developmental acclimation or genetic adaptation (Jarvis, 1989). 

Korner (1988) found no such effect when he compared measurements of stomatal 

density of specimens of alpine plants collected in 1890 and 1918, with stomatal density 

measurements from plants recently collected from the same area. Doubt was cast on the 

validity of these results by Woodward (1993) who pointed out that Korner had failed to 

take into account the environmental history of the leaves and the area on the leaves 

where the measurements were made. In a comparison of herbarium specimens of 14 

trees and shrubs collected two hundred and forty years ago with present day tissue, 
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Penuelas and Matamala (1990) reported an average decrease in stomatal density of 

approximately 20% 

Beerling and Chaloner (1993b) examined leaf material of Olea europaea collected on 

four dates over a three thousand year period between 1327 BC and 1978 AD. Again 

using CO2 data from ice cores it was shown that stomatal density was lower in plants 

that developed in conditions of higher CO2 concentration. As the material was collected 

from a Mediterranean type climate that was considered not to have altered significantly 

over the period, the reduction in stomatal density was attributed directly to the changing 

CO2 concentration. Investigation of herbarium leaf material of Quercus robur also 

showed a decline in stomatal density with increasing CO2 concentration (Beerling and 

Chaloner, 1993a). However, investigation of the relationship between atmospheric 

CO2 concentration and stomatal density of leaves preserved in peat of the arctic-alpine 

shrub Salix herbacea using fossil leaves, showed that rising CO2 concentration over a 

time span of 11 500 years has been accompanied by an increase in stomatal density. 

This was attributed to temperature and water availability of the early post-glacial 

environment counteracting the effect of lower CO2 concentration and/or natural 

selection favouring a different response over the last 200 years (Beerling et al., 1992). 

Evidence from controlled experiments 

Several experiments have been done to investigate the effects of CO2 treatment on 

stomatal density and the results so far have varied greatly amongst species. Woodward 

and Bazzaz (1988) grew plants in controlled environments at different CO2 

concentrations and reported a slight reduction in both abaxial and adaxial stomatal 

density and index in Setaria, Aniaranthus, and Ambrosia at CO, concentrations above 

350 Rmol mol-1 , although the effect was not as large as in a previous experiment with 

plants grown at CO2 concentrations below 350 imol moL' (Woodward, 1987). 

Thomas and Harvey (1983) found no significant effect of growth in elevated CO2 on 

the stomatal density or index of soybean or sweetgum and Radoglou and Jarvis 

(1990b) found no effect on four poplar clones. However, Gaudillerie and Mousseau 

(1989) did find significant effects of growth in elevated CO2 on stomatal density of 

Populus euramericana. Oberbauer et at., (1985) found no effect on Ochrorna lagopus 

but described a decrease in the abaxial stomatal density of Pentaclethra inacroloba 

grown in elevated CO2 
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Evidence from natural sources 

Stomatal and epidermal cell density, stomatal index and guard cell size have been 

measured on leaves of trees of Quercus pubescens growing adjacent to, and remote 

from, natural CO2 vents in Italy, but no differences in stomatal density or index were 

found (Migliettaand Raschi, 1993). 

Evidence from the above three sources suggests that stomatal density is affected by the 

CO2 concentration in which the plants are grown but that the response is larger at 

subambient CO2 concentrations and varies between species. Salisbury (1928) 

emphasised the importance of measurements of stomatal index 

Stomatal index = 	
no. of stomata 	 xlOO (1.1) 

(no.of stomata + no. of subsidiary and epidermal cells) 

to separate effects of environmental variables affecting leaf area from direct effects of 

CO2 on initiation of stomata. 

The effect of a decrease in g resulting from either a reduction in stomatal aperture 

and/or a reduction in stomatal density, is to lower transpirational losses on a leaf area 

basis, which, together with increases in photosynthetic rate, results in an increase in 

instantaneous water use efficiency (WUE) (Eamus, 1991). An increase in 

instantaneous water use efficiency has been reported for many species grown in 

elevated CO2: Ochronta lagopus and Pentac!ethra niacroloba (Oberbaueret al., 1985); 

Pop ulus euraniericana (Gaudillere and Tvlousseau, 1989); Liquidamber stryacua 

(Tolley and Strain, 1985); Pinus echinata (Norby eta!, 1987); Nothofagusfusca and 

Pseudotsuga n2enziesii (Hollinger, 1987). 

1.2.4 Biomass production 

Increase in photosynthesis and reduction of transpirational losses may positively 

enhance biomass production. An increase in photosynthesis potentially provides more 

carbohydrate for plant growth, and improved water relations may enhance cell 

extension via a positive effect on turgor pressure (Chapter 4). Reports of an increase in 

biomass of plants grown in elevated CO2 are widespread e.g. (Thomas and Harvey, 

1983; Oberbauer et al., 1985; Sionit etal., 1985; Conroy etal., 1986a); Luxmoore et 

al., 1986; Brown and Higginbotham, 1987; Hollinger etal., 1987; Norby etal., 1987; 

O'Neil etal., 1987a; Ziska etal., 1991; Norby etal., 1992) and extensive reviews have 

been made of effects of increased CO2 concentration on growth of crops (Kimball, 
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1983; Cure and Acock, 1986) and young trees (Eamus and Jarvis, 1989). In a recent 

review, Luxmoore ci' al. (1993) compiled data from 73 tree species, growth response 

varied from 5% to 250%, with a mean response of 32%. 

1.2.5 Resource allocation 

Rate of photosynthesis determines the amount of carbohydrate produced by source 

leaves but the way in which that carbohydrate is used has important effects on future 

productivity, competitive ability, economic viability and survival of that plant. Changes 

in allocation patterns may represent important feedback interactions determining the 

long-term utilisation of resources of plants in an elevated CO2 environment. Growth in 

elevated CO2 has been reported to result in increased root production, particularly of 

fine roots (Idso and Kimball, 1991; Norby, Wullschleger and Gunderson, 1994), 

increased branch production (Kramer 1981; Idso and Kimball, 1991), leaf area 

(Kramer, 1981; Higginbotham et at., 1985; Tolley and Strain, 1985; Ziska et at., 

1991), leaf mass (Oberbauer et at., 1985; Pettersson et at., 1993), although the 

reported responses are variable amongst species. The responses of allocation patterns 

of species of trees are discussed in Chapter 3. 

Increase in allocation of dry mass to roots increases the potential for nutrient absorption 

and water uptake. Increase in number of branches produced affects canopy structure, 

absorption of radiation and speed of canopy closure. Increase in leaf area increases the 

potential for radiation absorption and water loss: the potential effects of elevated CO2 

on leaf area production are discussed in the next section (1.2.6.). A reduction in 

specific leaf area (SLA) may be a result of an increase in leaf thickness and alterations 

in anatomical organisation: the potential effects of elevated CO2 on leaf characteristics, 

including SLA and leaf thickness, are discussed in (§ 1.2.6.). 

1.2.6 Leaf area production 

There have been many reports in the literature of elevated CO, concentrations 

stimulating leaf area development (Goudriaan and de Ruiter, 1983; Higginbotham et 

at., 1985; Tolley and Strain, 1984a; Leith et at., 1986; Leadley and Reynolds, 1988; 

Caporn, 1989; Eamus and Jarvis, 1989; Wong, 1990; Ziska ci' at., 1991), both in terms 

of an increase in number of leaves produced (Tolley and Strain, 1984a) and size of the 

individual leaves (Sionit, 1983; Rogers ci' at., 1983; Oberbauer ci' at., 1985). 

However, results vary with species and some workers have found no response 

(Mousseau and Enoch, 1989), or a reduction in leaf area (Bazzaz ci' at, 1990) in 

elevated CO2 plants. 
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Leaf area of a plant is an important determinant of its biomass production (Milthorpe 

and Moorby, 1974). Leaves are the main sites of photosynthesis. Increase in leaf area 

increases interception of solar radiation and growth rate (Monteith and Elston, 1983). 

In addition to this role in radiation interception and biomass production, leaf area also 

plays a key role in determining the amount of water transpired from a plant or canopy. 

The leaf area available for radiation interception and transpiration is determined by the 

number of leaves present on the plant at any time, the individual size of those leaves 

and their arrangement on the plant. 

Extension of the lamina 

Surface areas of individual leaves are determined by the number of primordial cells, the 

rate of cell division, the duration of cell division, the final number of cells and the 

degree to which those cells enlarge. 

Plant cell walls give strength and structure to cells and rigidity to the plant as a whole. 

Cell walls play important roles in defence against pathogens, protection from physical 

stresses, including osmotic swelling in hypotonic environments, cell to cell 

communication, water movement and control of cell growth (Nobel, 1985). 

Cell walls are deposited as a series of layers. The layers consist of a microfibrillar 

phase and a matrix phase. The microfibrillar phase consists of chains of cellulose 

(l,4-glucan) molecules arranged to form microfibrills. The matrix phase of cell walls 

consists of polysaccharides (pectins, hemicelluloses), proteins, glycoproteins and 

phenolic compounds. Covalent and non-covalent bonds formed between matrix 

molecules hold the rnicrofibrils in position forming a set of interlinked networks. A 

number of models have been proposed to describe the precise arrangement of networks 

forming the cell wall (Preston, 1974; Passioura and Fry, 1992) 

Water moving into cells along osmotic gradients, causes the plasmalemma to push 

against the cell wall: this outward pressure is termed turgor pressure. Cell walls have a 

degree of elasticity and this "buffers" cells size to some extent against changes in turgor 

pressure. Irreversible plant cell enlargement occurs in actively growing leaves when 

turgor pressure builds up within cells to such an extent that it results in plastic, i.e. non-

reversible, extension of cell walls. This hydrostatic pressure or turgor pressure is the 

driving force for growth. The pressure necessary to cause cell walls to undergo this 

plastic extension is termed 'the yield turgor." Turgor pressure exerts stress on load-

bearing bonds within the cell wall and growth of the cell occurs when these bonds are 

broken, resulting in 'relaxation' of elastically stretched wall elements. Relaxation of the 

cell wall reduces the water potential in the cell and water flows into the cell (Cosgrove, 
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1986). This influx of water reduces the concentration of solutes within the cell (i.e. the 

osmotic potential). In order for the cell to continue to grow, the osmotic concentration 

must be maintained by production or uptake of solutes into the cell. The two processes 

of cell wall yielding and water uptake occur simultaneously in a number of cells 

allowing cells and leaf to expand at a constant rate (Cleland, 1971, 1977; Taiz, 1984). 

The process of cell wall extension is not a passive process. Early work done on 

Nitella, and oat coleoptiles (Cleland, 1971) showed that if a respiration inhibitor 

(e.g.sodium or potassium vanadate), or uncoupler (e.g. DCMU, 

dichiorophenyldimethylurea) is applied, growth stops irrespective of turgor pressure. 

This led to the conclusion that a metabolic process is required to sustain growth by 

maintaining turgor and mediating bond breakage and synthesis (Taiz, 1984; Brett and 

Waldron, 1990). 

Extension of leaves has been shown to respond to increase in PFD (Van Volkenburgh 

and Cleland, 1980, 1981) and this was not associated with an increase in leaf turgor but 

was thought to result from cell wall acidification leading to wall loosening. 

The nature of this process is described by the acid growth hypothesis which was first 

put forward as a result of studies on Nitella of the action of auxin in stimulating growth 

(Cleland, 1971) and has since been backed up by work on PFD-stimulated growth in 

Nitella and Atriplex (Cleland, 1986) and Phaseolus vularis (Van Volkenburgh and 

Cleland, 1980; 1981). The hypothesis is that the effects of auxin and PFD on cell walls 

is mediated by acidification of the cell walls caused by an increase in the action of 

proton-extruding ATPase enzymes in the plasmalemma. It is suggested that certain 

bonds within the wall may be weakened directly by acid and/or the increased activity of 

bond-breaking enzymes with an acid pH optimum. PFD is thought to act indirectly by 

increasing intracellular ATP via some part of the photosynthetic process and that this 

increase in ATP activates the proton pump (Van Volkenburgh and Cleland, 1980; Van 

Volkenburgh, Cleland and Schmidt, 1985). 
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Lockhart (1965) proposed a mathematical model to describe the biophysical control of 

steady-state growth of individual cells. In a simplified form the Lockhart equation 

states that under certain conditions (e.g. isothermal conditions, elastic equilibrium and 

linear viscoelastic cell wall) increase in cell volume is proportional to turgor pressure in 

excess of a critical turgor (yield turgor) and extensibility of the cell walls, i.e. 

dv = 
in (P—Y). 	 (1.2) 

dt 

dv/dt is increase in cell volume with time, P is turgor pressure, Y is the yield threshold 

(i.e. the value of turgor below which the cell wall does not extend) and in is the 

extensibility of the cell wall. 

The increase in cell volume can also be written as: 

dv 
 =k (y10 -  y3=k (w0—P+ir), 	 (1.3) 

dt 

where k is hydraulic conductance of the cell membrane, V. is water potential outside 

the cell, Vi is water potential inside the cell and iris osmotic potential within the cell. 

Combining equations (1.1) and (1.2) gives: 

dv 	ink, 
-= 
dt m.+k 

(1.4) 

If k is assumed to be much larger than m (Cosgrove, 1986) then equation (1.4) can be 

assumed to be equivalent to equation (1.2) in most cases, (Passioura and Fry, 1992). 

From equation (1.2) it can be seen that any environmental variable affecting either in or 

(P-fl may affect cell extension and by, implication, leaf extension. The effects of both 

temperature and radiation on leaf extension are well established (Terry, Waldron and 

Taylor, 1983). Both radiation quantity and quality affect leaf extension (Baker and 

Enoch, 1983). CO2 concentration also affects leaf growth. There are several possible 

ways in which elevated CO2 concentration may affect leaf growth: 

• increased photosynthetic rates result in increase in production of carbohydrates, 

increasing osmotic potential, and turgor pressure (Arp, 1991; Morison, 1993); 
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• increased photosynthetic rates result in increase in amount of carbohydrate 

available for incorporation into new plant material and for respiration; 

• reductions in stomatal conductance (ga) lead to a decrease in water loss per unit 

leaf area resulting in less negative water potentials and therefore increasing turgor 

pressure (Terry etal., 1983); 

• increased photosynthetic rates result in increase in intracellular ATP amounts 

which, in turn, activate excretion of protons by an ATPase mediated proton 

pump, causing increase in the PFD-activated acidification of plant cell walls; and 

• direct or indirect effect on hormone concentrations. 

Although there are many reports of the effects of CO2 on production of leaf area, little 

has been done to investigate the mechanisms producing these effects and it is not yet 

clear whether increase in leaf area in plants in elevated CO2 is the result of an increase 

in substrate availability or whether there is a more direct effect (Eamus and Jarvis, 

1989). 

1.2.7 Leaf characteristics 

In addition to leaf area, other characteristics of leaves, for example specific leaf area 

(SLA), leaf thickness, anatomical organisation, chlorophyll content and chlorophyll a:b 

ratio are important in determining photosynthetic capacity and, therefore, under certain 

circumstances biomass production. All of these properties have been shown to be 

affected by elevated CO2 concentration. Changes in leaf characteristics may have 

important long-term effects on photosynthetic capacity of plants grown in elevated 

CO2. 

Specific leaf area and leaf thickness 

Growth in elevated CO2 results in increase in leaf thickness and reduction in SLA in 

many tree species: Pinus taeda, Liquidambar stryacif!ua (Tolley and Strain, 1984); 

Ochrania lagopous, Pentaclethra macroloba (Oberbauer etal., 1985); Silver birch 

(Pettersson and McDonald, 1992); Popu!us clones (Thomas and Harvey, 1983; 

Leadley et al., 1987; Leadley and Reynolds, 1988; Radoglou and Jarvis, 1990a). 

Reduction in SLA may be a result of increase in storage of end products of 

photosynthesis, and/or an increase in structural content of leaves. An increase in 

accumulation of carbohydrates in source leaves has been reported for many plants 
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grown in elevated CO2 (Huber, Rogers and Israel, 1984; Farrar, 1992; Pettersson and 

McDonald, 1992; Norby et al. 1991, 1992). 

Leaf anatomy 

Increases in leaf thickness may be accompanied by alterations in leaf anatomy, either 

via changes in size of cells or number or type of cells and volume and distribution of 

intercellular spaces. Internal cell surface area per unit leaf area is closely linked to 

photosynthesis and water use efficiency (Nobel, 1985); increase in internal cell surface 

area increases the area available for absorption of CO2 molecules at sites of 

carboxylation. 

The initiation of an additional layer of palisade cells has been reported in response to 

elevated CO2 in Glycine max (Hofstra and Hesketh, 1975; Thomas and Harvey, 1983) 

and Castanea sativa (Mousseau and Enoch, 1989). An increase in the proportion of 

spongy parenchyma tissue has been reported for poplar (Radoglou and Jarvis, 1990a) 

and loblolly pine (Thomas and Harvey, 1983), whereas the increase in leaf thickness in 

sweetgum was concomitant with increase in size of cells in all cell layers (Thomas and 

Harvey, 1983). 

Chlorophyll content 

Chlorophyll a and b form a central part of the light harvesting apparatus, the function of 

which is to utilise quanta to produce ATP. Reductions in total chlorophyll content have 

been reported in several species grown in elevated CO2: yellow poplar (Liriodendron 

tulipifera) and white oak (Quercus alba) (Wullschleger, Norby and Hendrix, 1992), 

Liquidanibar stryacjfiva (Tolley and Strain 1984a) and Desmodium paniculatum Wulff 

and Strain, 1982). Reduction in chlorophyll a :chlorophyll b ratio have also been 

reported e.g. in tomato (Madsen, 1968) and Trifoliuin subterraneum (Volley and Strain, 

1985). 

A reduction in chlorophyll may reduce light harvesting efficiency in plants grown in 

elevated C07 (Oberbauer et al., 1985; Houpis ci' al., 1988). However, despite a 

reduction in chlorophyll content, Wulff and Strain (1982) and Wullschleger, Norby and 

Hendrix (1992) reported an increase in light harvesting efficiency in plants grown in 

elevated CO2. This was attributable in part, to changes in leaf anatomy. 
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1.3 OUTLINE OF THESIS 

The species used in this study, silver birch (Betula pendula Roth.) and Sitka spruce 

(Picea sitchensis (Bong.) Cam), conditions of growth and open top chambers are 

described in Chapter 2. 

Growth response of Sitka spruce and silver birch to elevated CO2 concentration, in 

terms of biomass accumulation, patterns of allocation, effects on phenology and total 

leaf production are described in Chapter 3. 

Growth response of individual leaves of silver birch and effects of elevated CO2 on the 

biophysical processes that control leaf extension are described in Chapter 4. 

Effects of elevated CO2 on leaf characteristics are described in Chapters 5 and 6: leaf 

conductance, stomatal density and stomatal index measurements and direct 

measurements of stomatal apertures obtained using a scanning electron microscope and 

an image analyser are presented in Chapter 5. 

Effects of growth in elevated CO2 on SLA, leaf thickness, anatomical organisation, 

chlorophyll and carbohydrate content are described in Chapter 6. 

In Chapter 7 these findings are drawn together in a discussion of their implications for 

the future functioning of trees, along with an assessment of the approach and 

techniques used and suggestions for further research. 

This study forms part of a much larger, series of experiments currently being 

undertaken at the University of Edinburgh and the Institute of Terrestrial Ecology to 

investigate effects of long-term exposure to elevated CO2 concentration on temperate 

tree species as part of an European initiative. The trees remaining at the end of this 

study were transferred to purpose-built individual tree chambers where experiments on 

them continue 
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CHAPTER 2 PLANT MATERIAL AND OPEN TOP 
CHAMBERS 

2.1 PLANT MATERIAL 

Forests form an important part of the terrestrial carbon cycle (Solomon and Cramer, 

1993). If an increase in atmospheric concentration of CO2 stimulates plant growth, 

trees may represent an important additional sink for carbon. Most of the studies made 

on the response of trees to elevated CO2 concentration have been done on American 

species that have very little relevance to European forests. The work in this study was 

done on two species, silver birch (Betula pendula Roth.) and Sitka spruce (Picea 

sitchensis (Bong.) Can.), both of which are important constituents of Scottish forests. 

silver birch is native to Britain and Sitka spruce is an introduced species that is now an 

important British crop. 

2.1.1 Sitka spruce 

Sitka spruce is native to the west coast of North America where it occurs from Alaska 

to California, mainly on coastal sites. It was introduced into Britain in 1831 and is now 

the most important species in upland forestry in Britain, comprising over 50% of 

current planting (Rook, 1992). It thrives on most of the sites available for afforestation 

in this country, exhibiting a high degree of vigour. In 1980 the total area of Sitka 

spruce plantations in Scotland covered more than 364 000 ha or 48% of the total 

coniferous upland forest area and 28% of the total forest area (Rook, 1992). Although 

low strength properties make it unsuitable for constructional timber, it is a highly 

versatile soft-wood timber used, for example, for manufacturing particle board and 

fibreboard and it is ideal for pulp for the manufacture of paper (Rook, 1992). Spruce 

seedlings grow slowly compared with many broadleaves as a result of relatively low 

photosynthetic rates and slower rates of leaf area production but mature canopies of 

Sitka may be very productive. Cannell (1987) outlined three reasons for their high 

productivity: 

• needles persist for six to eight years, leading to deep canopies which can intercept 

almost all solar radiation; 

• needles and shoots are structured to allow good penetration of light into the 

canopy; and 
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• ability of photosynthetic apparatus to adapt to low light and low temperature, so 

that there is net carbon gain throughout almost the whole year. 

In contrast to silver birch, Sitka spruce exhibits a 'fixed' growth pattern; the length of 

new shoots is predetermined during bud formation the previous year. Buds contain the 

preformed initials (internodes and leaves) and expand in the following year, although 

under certain conditions juvenile spruce may also exhibit growth from buds produced 

in the same year (lammas, or 'free' growth) (Kozlowski, Kramer and Pollardy, 1991). 

It has been suggested that different growth patterns of species will alter the nature and 

magnitude of their response to elevated CO2 (Oberbauer et al., 1985). The 'free' 

growth pattern exhibited by silver birch allows repeated initiation of sinks which, 

together with its relatively faster growth rate, may be expected to increase the size of its 

response to elevated CO,, whereas the response of Sitka spruce may be more 

constrained as a result of the determinate nature of its growth pattern. 

2.1.2 Silver birch 

Silver birch is a fast growing deciduous tree, common throughout northern and central 

Europe and locally on mountains southwards to Spain. It is native to Britain and in 

conjunction with Bent/a pubescens with which it readily hybridises, is the second most 

abundant broad leaf tree in Britain, covering approximately 21% of the total area of 

woodland (Steele and Peterken, 1982). It is the most abundant broadleaf species in 

Scotland, a pioneer species of open ground, burnt areas and forest clearance, and has 

been categorised by Grime, Hodgson and Hunt (1988) as intermediate between a 

competitor and a stress-tolerant competitor. It regenerates readily from seed but has a 

relatively short life span (60-70 years) and is often superceded by oak. The use of 

silver birch in land restoration and conservation is currently being encouraged 

(Patterson, 1993) via a series of grant schemes (e.g. the Woodland Grant Scheme). It 

is not an important tree for timber production in Britain, although it is grown 

extensively in Sweden where it is used for the manufacture of particleboard, 

fibreboard, floors and furniture. 

Silver birch exhibits 'free' growth, which involves elongation of shoots by 

simultaneous initiation and elongation of new shoot components as well as extension 

from buds laid down in the previous year (Kozlowski etal., 1991). 
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2.2 GROWING CONDITIONS 

2.2.1 Sitka spruce 

In May 1990 two-year old seedlings of Sitka spruce (Picea sitchensis (Bong.) Cam, 

QCI provenance 20 (identification number 83(2015)s Lot 2) were purchased from EFG 

(Economic Forestry Group) The seedlings were bare rooted and had previously been 

in cold storage to delay budburst. Seedlings were placed in individual (1.5 dm 3) pots 

containing a standard sand:peat:loam mixture (1:5:3). The pots containing the plants 

were then transferred to eight open top chambers (OTCs) located at the Institute of 

Terrestrial Ecology, Bush Estate, near Edinburgh (55° 31'N, 3° 12W). Ambient air 

was passed through four of the OTCs; air entering the remaining four chambers was 

supplemented with CO2 to give a concentration of 250 j.tmol mol -1  above ambient 

(2.4). Thirty plants were placed in each chamber. The pots were placed on capillary 

matting and watered to field capacity daily. The seedlings did not receive any additional 

fertilizer. 

In March 1991 the Sitka spruce seedlings were repotted into 5 dm 3  pots containing 

sand:peat:loam (2:5:3). Two extra chambers were utilised in 1991, one receiving 

supplementary CO,, the other receiving ambient air, making a total of four per 

treatment. Twenty five plants were placed randomly in each chamber. All the plants 

were placed in chambers with the same CU2 regime that they had been growing under 

the previous year but the concentration of CO, entering the elevated CO, chambers was 

increased to 350 l.xmol mol above ambient. The plants were watered as before. 

From March 1991 the plants were fertilised monthly with a liquid fertiliser (Chempak 

no.3., Chempak Ltd, Hoddesdon, Herts). 

2.2.2 Silver birch 

In March 1991 seeds of silver birch (Betula pent/u/a Roth.) (provenance FC 87/20) 

were sown in seed trays containing a mixture of sand, peat and grit and placed in 

polythene germination tunnels. Air entering one of the tunnels was supplemented with 

CO2 to a concentration of ambient plus 350 p.mol mol . The concentration of CU2 

was monitored at weekly intervals using a portable infra-red gas analyser (IRGA), 

(LCA-2, ADC Hoddesdon, Herts, UK). The seedlings were watered with an overhead 

irrigation system. 

At the three leaf stage the seedlings were transplanted into 1.5 dm 3  pots containing a 

standard potting compost (John Innes No.2, Bowers plc, Cambridge) and transferred 
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to eight of the open top chambers with the same CO2 regime as previously outlined for 

the Sitka spruce seedlings. The pots containing the plants were placed on capillary 

matting and watered twice daily and plants were fertilised monthly with a liquid 

fertiliser (Chempak no.3., Chempak Ltd, Hoddesdon, Herts). 

In March 1992 the silver birch seedlings were repotted into 5 dm 3  pots containing 

sand:peat:loam (2:5:3). Ten plants were placed in each chamber in randomised blocks 

of five plants. All plants were placed in chambers with the same CO2 regime they had 

been growing in the previous year. The plants were watered as before and were 

fertilised monthly with a liquid fertiliser (Chempak no.3., Chempak Ltd, Hoddesdon, 

Herts). 

2.3 OPEN TOP CHAMBERS 

The open top chambers (OTCs) used in the experiments described in this thesis are 

octagonal in shape, 3 m in diameter and 2.4 m high. They are constructed of a light-

weight aluminium frame, with 3 mm horticultural glass. A frustum at the top of the 

chamber and a glass shelf situated 0.5 m below the frustum, serve to deflect air and 

reduce incursions of ambient air which may dilute the CO2 concentration within the 

chamber. Air was filtered and drawn via a fan (EK31, radial and axial fan, Cold 

Harbour Lane, Harpenden,Herts) and entered the chamber through a duct connected to 

a perforated polythene sleeve (plenum) 1.5 m above the floor of the chamber. There 

were two air changes per minute. The CO2 monitoring and control system was initially 

controlled by a datalogger (21X, Campbell Scientific Ltd, Loughborough) but was 

replaced with a 286 personal computer and interface card system in 1991 (Barton, 

1993). A diaphragm pump (Charles Austin Ltd, Weybridge, Surrey) drew air from the 

chambers through 4 mm nylon sample lines, each of which contained a two-way 

solenoid valve which, when activated, diverted air to an IRGA (ADC Mark 2, 

Analytical Development Co.Ltd, Hoddeston, Herts). The solenoid valves were 

switched sequentially every two minutes: residual air was flushed through the IRGA 

during the first minute, to allow the IRGA to stabilise and a mean of readings taken at 

fifteen second intervals during the second minute was stored by the data logger or 

personal computer. The CO2 entering the chambers was supplied from a 16 tonne bulk 

liquid tank via a vaporiser (Distillers M.G., UK.) along 4 mm nylon supply lines 

which injected the CO2 into the air inlet duct, downstream of the fan. The flow of CO, 

along the supply lines was controlled by mass flow controllers (Tylan FC280, Torrance 

CA, USA). Each elevated CO2 chamber received ambient air plus 250 Rmol molt CO2 
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in 1990. The concentration of CO2 was increased to 350 JImol mo! -1  above ambient in 

1991. Ambient CO2 concentrations vary diurnally, so that injecting a constant amount 

Of CO2 into the chambers allowed the concentration of CO, in the elevated CO2 

chambers to vary similarly. 

The chambers were washed and disinfected at the beginning of each season to 

maximise light transmission and limit the incidence of disease. 

The air temperature within the chambers was measured at a height of 1.5 m above the 

chamber floor using a ventilated, radiation-shielded thermistor (RS Ltd, 

Loughborough). Outside air temperature and solar radiation were measured using a 

platinum resistance thermometer (Delta-T devices Ltd, Burwell, Cambridge) and a 

solarimeter (CM3, Kipp and Zenon Ltd, Delft, Holland) respectively, mounted on the 

roof of aportacabin adjacent to the OTCs. Data loggers (21X, Campbell Scientific Ltd, 

Loughborough) were used to collect and store the data. The median daytime 

temperature within the chambers was approximately 2 OC above the outside temperature 

but reached 4 °C above for short periods during a few hot summer days. Figures 

(2.la-d) show the temperatures in one ambient and one elevated CO chamber, 

compared to the outside temperature measured during four days in the summer of 1991. 

The quality of photosynthetically active radiation reaching the plants in the chambers 

was not affected by the glass. Transmittance of solar radiation was reduced by less than 

10% (Lee and Barton, 1993). 

2.4 DISTRIBUTION OF OPEN TOP CHAMBERS 

Plant position within each chamber wsrandomised. The open top chambers used in 

this study were situated on a gradual slope. Because of possible gradients in 

environmental conditions along the slope,four blocks each containing one ambient and 

one elevated CO2 chamber, were created along the gradient of the slope. This approach 

allowed for comparison between treatments as well as blocks. The effects of elevated 

CO2 could therefore be corrected for a possible block effect, caused by different 

environmental conditions along the slope. 
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Figure 2.1 Temperatures measured in one ambient, one elevated CO2 
chamber and outside on a)DOY 195, b)DOY 196, c)DOY 197, d)DOY 200. 
Values represent means of measurements taken at 5 minute intervals over a 
30 minute period. Time is in GMT. 
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CHAPTER 3 THE EFFECT OF ELEVATED CARBON 
DIOXIDE ON THE GROWTH AND MORPHOLOGY OF 

SITKA SPRUCE AND SILVER BIRCH 

3.1 INTRODUCTION 

In the previous chapter the plants, growing conditions and open top chambers were 

described. This chapter describes the effect of an elevated concentration of CO2 on the 

growth and morphology of Sitka spruce and silver birch. The aim of the study reported 

here was to determine the effects of elevated CO2 on the production and morphological 

allocation of biomass in Sitka spruce and silver birch. 

Biomass production 

Both increase in rate of photosynthesis and reduction of transpirational losses may 

enhance biomass production. Reports of an increase in biomass of trees grown in 

elevated CO2, compared to ambient CO2, are widespread: Castanea sativa (Mousseau 

and Enoch, 1989; El Kohen, Rouhier and Mousseau, 1992), Citrus aurantiuni (Idso 

and Kimball, 1991; Idso, Kimball and Allen, 1991a,b), Quercus alba (Norby, 

Wullschleger and Gunderson, 1994), Fagus grandifolia, Betula papyrifera, Prunus 

serotina, Acer saccharunz and Tsuga canadensis (Bazzaz, Coleman and Morse, 1990), 

Picea abies (Mortenson, 1982), Pinus contorta (Higginbotham etal., 1984), Ochronia 

lagopus and Pentaclethra niacroloba (Oberbauer et al., 1985), Pinzts radiata (Conroy et 

al., 1990). Eamus and Jarvis (1989) estimated that the median increase in biomass 

production with doubling of CO2 concentration was about 40% in young trees, and in a 

recent review Luxmoore etal. (1993) calculated a mean growth response of 32% for 73 

tree species grown in elevated CO2. 

Morphological allocation 

In addition to increasing biomass production, elevated CO2 may alter the structure of 

plants as a result of changes in the pattern of carbon allocation. 

Increases in root to shoot ratios have been reported in response to growth in elevated 

CO2 (Sionit etal., 1981; Higginbotham etal., 1985; Luxmoore etal., 1986; Norby et 

al., 1987; Oberbauer, etal., 1986; Norby etal., 1994), although the majority of reports 

of trees grown in elevated CO2 under well-watered conditions with adequate nutrition 

showed no effect, or a slight decrease in root: shoot ratio: Fagus grandifolia, Betu!a 
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papyr(fera, Prunus serotina, Acer saccharum, Acer rubruin, Pin us strobus and Tsuga 

canadensis (Bazzaz, Coleman and Morse, 1990), Liriodendron tulipifera (Norby, 

Wullschleger and Gunderson, 1994). Jarvis and Eamus (1989) summarised no 

significant changes in root:shoot ratio in young tree seedlings grown under non-nutrient 

limiting conditions. The allometric constant (k) determined for Sitka spruce did not 

change (D. Jones, pers. comm.), suggesting that whole plant C allocation was not 

affected by growth in elevated CO2. 

An increase in production of branches has been reported in elevated CO2 concentration 

(Mortensen, 1987; Idso et al., 1991; Samuelson and Seilor, 1993), although again 

results vary and there was no increase in branch production in Castanea sativa 

(Mousseau and Enoch, 1989) or Populus clones (Radoglou and Jarvis, 1990a). An 

increase in total leaf area has been reported in Liquidanibar stryaciflua (Sionit et al., 

1985), Ochronia lagopus, Pentaclethra macroloba (Oberbauer et al., 1985), Pinus 

contorta (Higginbotham etal., 1985), Liquidanibar stryacjflua, Pinus taeda (Tolley and 

Strain, 1984), Fagus grand(flora and Acer saccharuin (Bazzaz etal., 1990). 

Morphological changes may be attributable to increases in supply of photosynthate 

increasing growth of existing sinks or initiating the development of new ones (Stitt, 

1991), although direct effects of elevated CO2 on leaf or root production cannot be 

ruled out (Jarvis, 1989). The extent and manner in which species respond to elevated 

concentrations of atmospheric CO2 is expected to vary as a result of differences in 

growth strategies that are themselves under genetic control (Kozlowski et al., 1991). 

Fast growing plants and those exhibiting indeterminate growth patterns are expected to 

show larger response to CO2 treatment than slower growing plants or those exhibiting 

determinate growth patterns, as a result of their increased sink capacity. Inability to 

provide adequate sinks for photosynthate, resulting in a source-sink imbalance, has 

been associated with reduction in photosynthesis (1.2.1.) and, therefore, biomass 

production. Oberbauer etal. (1985) reported a larger response of growth in elevated 

CO2 in the pioneer species Ochrorna lagopus compared to the climax species 

Pentaclethra niacroloba. 

The different growth patterns of silver birch and Sitka spruce were described in 

Chapter 2. It is suggested that such differences will affect the nature and magnitude of 

the responses of these species to elevated CO2. Differences in responses of tree species 

to elevated CO2 have implications for the future composition and structure of forests. 
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3.2 MATERIAL AND METHODS - SITKA SPRUCE 

In May 1990, two-year-old seedlings of Sitka spruce were placed in individual (1.5 

dm3) 
pots containing a standard sand:peat:loam mixture (1:5:3), and transferred to eight 

open top chambers (OTCs). Thirty plants were placed in each chamber. Ambient air 

was passed through four of the OTCs, the air entering the remaining four chambers 

was supplemented with CO2 to a concentration of 250 j.imol mo! -1  above ambient. In 

March 1991 the seedlings were repotted into 5 dm 3  pots containing sand:peat:loam 

(2:5:3). Twenty five plants were placed in each chamber. All the plants were placed in 

chambers with the same CO2 regime that they had been growing under the previous 

year but the concentration of CO2 entering the elevated CO2 chambers was increased to 

350 j.imol mol 4  above ambient. Full details of growth conditions and open top 

chambers are given in Chapter 2. 

3.2.1 Non-destructive growth measurements 

Measurements of height, leader length and basal diameter were made at weekly 

intervals. Measurements were made on 40 plants per treatment (ten plants from each 

chamber) in 1990 and 45 plants per treatment (15 from each of three chambers per 

treatment) in 1991. 

3.2.2 Harvest 

Twenty plants were harvested in June 1990 before they were transferred to the OTCs. 

Measurements of height and basal diameter were made and each plant was separated 

into its constituent parts (roots, shoots, needles), the parts oven dried at 70 °C and 

weighed using an electronic balance (Sauter, model RE1E14, Fisons Scientific 

Equipment, Loughborough). 

Three subsequent harvests were made. In January 1991, at the end of the first growing 

season, 20 plants per CO2 treatment (five from each of four chambers per CO2 

treatment) were harvested; in July 1991, midway through the second growing season 

45 plants were harvested per CO2 treatment (fifteen from each of three chambers per 

CO2 treatment); and in January 1992, at the end of the second growing season 15 

plants were harvested per CO2 treatment (taken randomly from five chambers per 

treatment). Measurements of height and basal diameter were made and each plant was 

separated into its constituent parts (roots, shoots, needles), the parts oven dried at 70 
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°C and weighed using an electronic balance (Sauter, model RE1E14, Fisons Scientific 

Equipment, Loughborough). Sub-samples of needles were taken for nutrient analysis. 

3.2.3 Bud characteristics 

Number of primordia 

In January 1991, a terminal bud was removed from two first order lateral shoots on 

each seedling harvested. After excision the bud scales were removed. One bud was 

used to count the number of primordia in a bud and the other used to measure bud 

dimensions. Once the bud scales had been removed, the bud was viewed under a 

binocular microscope. In Sitka spruce, needle primordia are laid down sequentially in 

phyllotactic spirals (Figure 3.1). The divergence angle formed between centres of two 

successive primordia and the apical dome is close to the Fibonacci angle of 137.5 0 ' 

giving contact parastichies (spirals of primordia) numbering in the series 

1,2,3,5,8,13 ... (Cannell, 1978). This regular arrangement allows estimation of the 

number of primordia per bud as the product of the number of primordia in each 

phyllatactic spiral and the number of spirals (Chandler, 1989). 
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Figure 3.1 Scanning electron micrograph showing needle primordia 
arranged in spiral phyllatactic patterns in a bud. 
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Bud dimensions 

Two methods were used to prepare material for determination of bud dimensions. 

In the first method, the bud scales were removed from freshly excised dormant buds 

and the buds attached to a modified cryostub with a thin layer of tissue cryo-adhesive 

(Tissuetek, Lab-Tek division, Miles laboratories Inc,. Naperville, Illonois, USA). An 

additional amount of cryo adhesive was then used to cover the sample and the stub and 

sample plunged into a dewar of liquid nitrogen. The stub and sample were then 

inserted into a cryostat (Reichert-Jung, Leica, Cambridge) to equilibrate prior to 

sectioning. The temperature within the cryochamber was set at 18.7 °C and the angle of 

the knife at 8 0  Sections bisecting the bud were cut, transferred onto microscope 

slides, stained with safranin, rinsed in methanol and dehydrated in ethanol for one hour 

before mounting in Canada balsalm. 

In the second method, buds were cut in half longitudinally and thin sections cut by 

hand under a binocular microscope (Chandler, 1989). These were then stained and 

mounted as before. All sections were viewed under a light microscope (Ortholux, Leitz 

Ltd., Luton) and photographed. Measurements were made from prints of the 

dimensions of the bud (Figure 3.2). 

Comparisons between fresh and prepared tissue were made. Shrinkage of the linear 

dimensions of fresh tissue, as a result of the staining preparation used was found to be 

approximately 15% for both procedures, in agreement with the findings of Chandler 

(1989). 

I 

Figure 3.2 Diagram of a longitudinal section through the centre of a 
dormant bud. 
a = Diameter of apical dome 
h = Bud height (axial distance from base to vertex of the dome) 
c = Basal diameter of the bud core. 
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3.2.4 Needle area 

At each end of season harvest (January 1991 and 1992) six needles were removed from 

midway down the leader of each seedling harvested and projected individual needle area 

(A) determined from measurements of width (w) and length (1) i.e: 

A=b.w.1 	 (3.1) 

Steele (1987) determined projected area of needles from photographs from which he 

calculated b from the above relationship as: 

b =A/ (w.1) 	 (3.2) 

Measurements of needle dimensions were made using an image analyser (Quantimet 

970, Cambridge Instruments Ltd, Cambridge, UK). 

3.2.5 Nutrient analysis 

In July 1991 macro-nutrient (nitrogen, potassium and phosphorus) contents of current 

year leaf tissue from eight trees per CO2 treatment (two trees from each of four 

chambers per treatment) were analysed by the Forestry Commission Research Division 

using HPLC (Dionex, Camberly,Surrey). 

3.2.6 Statistics 

A two way ANOVA was used to determine effects of the two CO2 concentrations 

(treatment effect) and effects of the blocks (inter-chamber effect) on the dependent 

variables. Data were tested for normality and met the assumptions of the parametric 

analysis. An un-paired t-test was performed on harvest data of Sitka spruce collected in 

January 1992. Geometric mean regression analysis was used to calculate the allometric 

constant k (Richer, 1984). 

3.3 MATERIAL AND METHODS -SILVER BIRCH 

Seeds of silver birch were germinated under ambient (unsupplemented) or elevated 

(ambient + 350 jimol mol 1 ) CO2 concentration. At the three-leaf stage the seedlings 

were transplanted into 1.5 dm 3  pots and placed in eight OTCs with the same CO2 

regime. Details of establishment and growth conditions are given in Chapter 2. 
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3.3.1 Harvest 

In May 1991 ten plants were harvested prior to transplantation. Measurements of 

height, number of main stem leaves, number of side shoot leaves and leaf area were 

made. Leaf area was measured using a leaf area meter (model ICI-201, CID Inc. 

Seattle, USA). Plants were then split up into their constituent parts (root, stem, main 

stem leaves, side shoots and side shoot leaves) and these oven dried at 70 OC and 

weighed using an electric balance (Sauter, model RE1E14, Fiscus Scientific, 

Loughborough). A second harvest was made in late August. Ten plants were removed 

from each of three chambers per CO2 treatment and harvested as before. Samples of 

leaves were taken for nutrient analysis. 

3.3.2 Non-destructive growth measurements 

Measurements of height, number of main stem leaves, number of side shoots and 

number of side shoot leaves were made on ten plants from three chambers per treatment 

at weekly intervals throughout the growing season. Leaf area of main stem and side 

shoot leaves was measured on one occasion in June, using a portable leaf area meter 

(LI-3 100, LI-CUR, Lincoln, NE, USA). The youngest fully developed main stem and 

side shoot leaf were measured on thirty plants per CO2 treatment, (ten plants from each 

of three chambers). An estimate of total plant leaf area was calculated from area 

number of leaves. 

3.3.3 Gas Exchange 

Measurements of photosynthesis and stomatal conductance were made using a LCA-3 

leaf chamber open analysis system (Analytical Development Co Ltd., Hoddesdon, 

Herts). The cuvette was clamped onto a leaf and left until a steady reading of 

photosynthesis was obtained (usually around two minutes) before a reading was taken. 

Measurements were made between 11.00 and 13.00 BST on three occasions in July 

1991, forty plants were measured on each occassion (ten from each of four chambers). 

3.3.4 Nutrient analysis 

Macro-nutrient (nitrogen, potassium and phosphorus) contents of current year leaf 

tissue from eight trees per treatment (two trees from each of four chambers per CO2 

treatment) was analysed by the Forestry Commission Research Division using HPLC 

(Dionex, Camberly, Surrey). 
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3.3.5 Statistics 

A two way ANOVA was used to determine effects of the two CO2 concentrations 

(treatment effect) and effects of the blocks (inter-chamber effect) on the dependent 

variables. Data were tested for normality and met the assumptions of the parametric 

analysis. 

3.4 RESULTS - SITKA SPRUCE 

3.4.1 Leader extension 

The leader length of Sitka spruce seedlings over the 1990 growing season is shown in 

Figure 3.3. Plants were measured at weekly intervals. There was a slight increase in 

length of elevated CO2 plants compared to ambient CO2 plants between day of year 

(DOY) 210 and 250 but this was only significant at Pc0.05 on one occasion (DOY 

208). There was no significant difference in leader length of plants measured in 

September. The rate of leader extension is shown in Figure 3.4. Rate of leader 

extension was significantly increased (Pc0.05) in plants grown in elevated CO2 on two 

occasions midway through the season (DOY 192 and 208), although there was also 

significant interchamber variation between plants measured on DOY 192, 200 and 208. 

The increased rate of leader extension of elevated CO2 plants was not sustained and fell 

significantly below that of the ambient CO2 plants by September (DOY 258). Although 

there was no significant difference between the leader lengths of plants measured in 

September, of the plants harvested in January 1991 those grown in elevated CO2 had 

significantly longer leaders than the ambient CO2 grown plants (Table 3.2, P<0.0 1). 

There was no significant difference in leader length amongst plants grown in different 

chambers. 
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Figure 3.3 Leader length of Sitka spruce in 1990 

Plants grown at two concentrations of atmospheric CO2, ambient 
(unsupplemented) and elevated (ambient + 250 Rmol mo! 1). Each value is 
the mean of 40 plants (ten plants from each of four chambers); error bars 
depict two standard errors of the means. Measurements were made at 
weekly intervals between early June, prior to budburst, and late September 
1990. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 
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Figure 3.4 Rate of leader extension of Sitka spruce in 1990 

Plants grown at two concentrations of atmospheric CO2, ambient 

(unsupplemented) and elevated (ambient + 250 .mol moF 4 ). Each value is 
the mean of 40 plants (ten plants from each of four chambers), error bars 
depict two standard errors of the means. Measurements were made at 
weekly intervals between early June, prior to budburst, and late September 
1990. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 

Figures 3.5 and 3.6 show leader length and rate of leader extension, respectively, of 

seedlings measured over the 1991 growing season. Plants were measured at weekly 

intervals commencing one week before budburst. There was no effect of CO2 

treatment on rate of leader extension during the growing season (April to late 

September), although rate of leader extension was significantly increased in ambient, 

compared to elevated CO2 plants on one occasion (DOY 242). There was a slight 

reduction in the leader length of plants grown in elevated CO2 compared with ambient 
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CO2 plants harvested in January 1992 (Table 3.4), but this was not significant at 

PcO.05. 
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Figure 3.5 Leader length of Sitka spruce in 1991 

Plants grown at two concentrations of atmospheric CO2, ambient 
(unsupplemented) and elevated (ambient + 350 j.tmol mol -1 ). Each value is 
the mean of 40 plants per treatment (ten plants from each of four chambers), 
error bars depict two standard errors of the means. Measurements were 
made at weekly intervals between April, prior to budburst and late September 
1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 
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Figure 3.6 Rate of leader extension of Sitka spruce in 1991 

Plants grown at two concentrations of atmospheric CO2, ambient 
(unsupplemented) and elevated (ambient + 350 mol mol) Each value is 
the mean of forty plants per treatment (ten plants from each of four 
chambers), error bars depict two standard errors of the means. 
Measurements were made at weekly intervals between April, prior to 
budburst and late September 1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 
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3.4.2 Stem diameter 

Figure 3.7 shows the mean stern diameters of plants grown in ambient and elevated 

CO2 and measured over an eighteen month period. No significant effect of CO.) 

treatment on stem diameter was observed and there was no significant difference 

between plants grown in different chambers. 
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June 1990 	Jan 1991 	July 1991 	Jan 1992 

Time of harvest 

b 

June 1990 Jan 1991 July 1991 	 Jan 1992 

Treatment effect 	- 	0.668 	0.094 	P< 	0.629 
P< 

Chamber effect 	- 	0.759 	0.483 

Interaction 	- 	0.604 	0.501 

Figure 3.7 Stem diameter of Sitka spruce 

(a) Plants grown at two concentrations of atmospheric CO-,, ambient 

(un supple rnented) and elevated (ambient + 250 Fimol  rno1 1  in 1990 and + 

350 jirnol mol 1  in 1991). Values are the means of between 15 and 45 plants 
per treatment: errors bars depict two standard errors of the means. Full 
details of the numbers of plants harvested at each time interval are given in 
§3.2.2. Measurements were made 2 cm above the root collar. 
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(b) Results of a two-way ANOVA on data from January 1991 and July 
1991, and results of an unpaired t-test on data from January 1992 are also 
presented. 

3.4.3 Characteristics of dormant buds 

Table 3.1 shows the dimensions of dormant buds grown in ambient and elevated CO2 

and the number of primordia per bud. There were no significant differences between 

the characteristics of dormant buds laid down during the 1990 season in ambient or 

elevated CO2. There was a slight increase in number of primordia per bud in elevated 

CO2 plants compared with plants grown in ambient CO2 but this effect was not 

significant (p> 0.05). 

Table 3.1 Bud dimensions of apical buds excised from first order lateral 
shoots of Sitka spruce in January 1991. A=diameter of apical bud, B=bud 
height, C=basal diameter of bud core. Each value is the mean ± one standard 
error, of 20 buds (one from each of five plants per chamber). Results from a 
two-way ANOVA are also presented. None of the parameters measured were 
significant at the 5% level (P>0.05). 

Ambient 	Elevated 	Treatment 	Chamber 	Interaction 
Co') 	CO2 	effect PC 	effect P< 	Pc 

Amm 0.26 ± 0.01 0.27 ± 0.01 0.135 0.563 0.470 

B mm 2.01 ± 0.04 2.08 ± 0.05 0.117 0.327 0.415 

C mm 1.21 ± 0.05 1.32 ± 0.04 0.079 0.636 0.904 

Number of 160 ±3.82 170 ±7.10 0.133 0.323 0.122 
primordia per 
bud  

3.4.4 Biomass production 

Figure 3.8 shows the total plant dry mass of plants grown in ambient or elevated CO2 

over two growing seasons. The total plant dry mass was slightly increased in plants 

growing in elevated CO2 compared to those grown in ambient CO2 in January 1991 and 

this increase had become significant by July 1991 (Pc0.05). As the experiment 

continued the effect of the CO2 treatment disappeared. There was no significant 

difference in total plant dry mass between plants grown in ambient or elevated CO2 

harvested at the end of the second growing season (January 1992). 
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June 	Jan 1991 July 1991 	 Jan 1992 
1990  

Treatment effect 	- 	0.077 	0.025* 	P< 	0.987 
P< 

Chamber effect 	- 	0.453 	0.371 

Interaction 	- 	0.578 	0.501 

Figure 3.8 Total dry mass of Sitka spruce 

Plants grown at two concentrations of atmospheric CU2, ambient 
(unsupplemented) and elevated (ambient + 250 imol molt in 1990 and + 

350 j.lmol mo1 1  in 1991). Values are the means of between 15 and 45 plants 
per treatment: error bars depict two standard errors of the means. Full details 
of the numbers of plants harvested at each time interval are given in §3.2.2. 

Results of a two-way ANOVA on data in January 1991 and July 1991, 
and results of an unpaired t-test on data collected in January 1992 are also 
presented. 
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3.4.5 Growth characteristics 

Table 3.2 shows the growth characteristics of seedlings harvested in January 1991. 

The increase in total plant dry mass of seedlings harvested in January 1991 was almost 

entirely a result of significant increase in the allocation of carbon to roots in plants 

grown in elevated CO2. There  was no significant difference in total amount of shoot 

biomass of plants harvested at this time, despite a significant increase in leader length of 

elevated CO2 seedlings. There was no significant difference in number of branches or 

dry mass of needles on plants grown in elevated CO2 compared to ambient CO2 

(P>0.05) 

Table 3.3 shows the growth characteristics of seedlings harvested in July 1991. Total 

dry mass of plants harvested in July 1991 was significantly larger in elevated CU2, as a 

result of significant (P<0.05) increase in both root and shoot dry mass. Significantly 

more branches were produced in elevated CO2 and the total mass of needles was 

significantly increased (Pc0.05) in the plants grown in elevated compared to ambient 

CO2. 

Table 3.4 shows the growth characteristics of seedlings harvested in January 1992. By 

January 1992 the treatment effect on total plant dry mass had disappeared (Figure 3.8). 

No significant differences in biomass allocation were seen; there were no significant 

differences in total needle dry mass, number of branches or allocation of carbon to 

roots between plants grown in ambient or elevated CO2. 

Table 3.2 Growth characteristics of Sitka spruce grown in ambient and 
elevated CO2, harvested in January 1991. Values are means ± one standard 
error of 20 plants per treatment (five from each of four chambers). Results 
from a two-way ANOVA are also presented. * indicates differences 
significant at P<0.05. 

Parameter 	Ambient 	Elevated 	Treatment 	Interchamber Interaction 

CO2 	COi 	effect P< 	effect Pc 	P< 

Leader 223.8±24.2 323.4±19.5 0.088 0.161 0.686 
length mm 

Total shoot 16.25±1.74 18.58±1.85 0.374 0.167 0.803 
d.m. g 

Needle 7.79±0.78 9.32±0.88 0.135 0.371 0.699 
d.m. g 

Root d.m. g 11.49±1.40 20.25±3.32 0.029* 0.793 0.432 
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Table 3.3 Growth characteristics of Sitka spruce grown in ambient and 
elevated CO2 harvested in July 1991. Values are means ± one standard error 
of 45 plants per treatment (fifteen from each of three chambers). Results 
from a two-way ANOVA are also presented. *= significant at Pc0.05. 
n=current years growth, n-1=previous years growth. 

Parameter 	Ambient 	Elevated 	Treatment Interchamber Interaction 
CO2 	COn 	effect P< 	effect Pc 	Pc 

Leader 457.7±31.60 423.2±21.4 0.414 0.524 0.491 
length mm 

Total shoot 103.9±7.65 127.2±6.68 0.045* 0.359 0.515 
d.m. g 

needle 37.82±3.62 54.56±4.52 0.013* 0.576 0.625 
d.m. g 

Root 25.31±2.02 33.54±1.71 0.007** 0.498 0.500 
d.m. g 

No.of 107.30±9.07 113.80±9.30 0.623 0.249 0.294 
branches (n) 

No. of 	33.90±2.60 37.30±3.70 0.479 	0.995 	0.205 
branches 
(n-i) 

Table 3.4 Growth characteristics of Sitka spruce grown in ambient and 
elevated CO2 harvested in January 1992. Values are means ± one standard 
error of 15 plants per treatment (taken randomly from five chambers). 
Results from an unpaired t-test are also presented. *= significant at Pc0.05. 
n=current years growth, n-1=previous years growth. 

Parameter 	 Ambient COn 	Elevated CO2 	Pc 

Leader length mm 	668.50±42.10 

Total shoot d.m. g 	142.54±9.91 

needle d.m. g 	117.81±8.08 

Root d.m. g 	 54.98±4.86 

No. branches (n) 	128.80±18.40 

600.00±42.00 0.289 

	

136.66±5.81 	0.663 

	

114.55±5.43 	0.754 

	

61.10±3.70 	0.349 

112.70±11.54 	0.491 

No. branches (n-i) 	33.60±4.27 	35.20±3.29 	0.781 
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Table 3.5 shows the area of individual needles of Sitka spruce. Growth in elevated CO2 

resulted in a significant increase in area of individual needles produced in 1990 but 

there was no effect of elevated CO2 treatment on the area of needles produced in 1991. 

SLA of needles was not affected by growth in elevated CO2. 

Table 3.5 Individual needle area and SLA of needles of Sitka spruce. 
Needles were removed from midway down the leader. Values are the means 
± one standard error of six needles from 20 plants per treatment. Results 
from a two-way ANOVA are also presented. *represents  significance at 
P<0.05. 

Ambient 	Elevated 	Treatment 	Chamber Interaction 

effect Pcc 	effect P< 

Areamm2 	1990 12.27±0.86 17.78±0.62 0.001*4 
	

0.895 	0.635 

	

1991 24.79±0.83 25.87±0.94 0.376 
	

0.112 	0.375 

SLA cm29 -1  1990 	44.8±6.04 49.3 ±5.9 0.313 
	

0.405 	0.168 

1991 58.6 ±4.3 	64.2±5.6 0.400 
	

0.424 	0.391 

Figure 3.9 shows the root to total plant dry mass ratio of plants harvested between 

January 1991 and January 1992. There was a significant increase in root:total plant 

dry mass of seedlings grown in elevated CO2 and harvested in January 1991. 

Root:total plant dry mass had decreased in all plants harvested in July 1991. The 

increase in root:total plant dry mass in elevated CO2 plants had disappeared by July 

1991, although there was a slight increase in elevated CO2 plants harvested in January 

1992. Figure 3.10 shows the shoot to total plant dry mass ratios. This figure shows a 

converse trend to that of root:total plant dry mass in Figure 3.9. The needle to total thy 

mass ratios are shown in Figure 3.11. There was a significant increase in the 

needle:total plant dry mass of plants grown in elevated, compared to ambient CO2 and 

harvested in July 1991 but there was no significant difference between plants harvested 

at any other time. The increase in needle:total plant dry mass in elevated CO2 plants 

may be a result of increase in the dry mass of individual needles and/or an increase in 

the rate of needle production. 
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June Jan July Jan 
1990 
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Treatment effect 	- 0.007** 0.143 P< 	0.088 
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Chamber effect 	- 0.917 0.506 
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Interaction 	- 0.075 0.756 
P<  

Figure 3.9 Ratio of root dry mass to total plant dry mass of Sitka spruce 

Plants grown at two concentrations of atmospheric CO2, ambient 

(unsupplemented) and elevated (ambient + 250 .imo1 mo1 in 1990 and + 

350 p.mol mol-1  in 1991 and 1992). Values are the means of between 15 and 
45 plants per treatment; error bars depict two standard errors of the means. 
Full details of the numbers of plants harvested at each time interval are given 
in §3.2.2. 

Results of a two-way ANOVA on data from January 1991 and July 
1991, and results of an unpaired t-test on data from January 1992 are also 
presented. 
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June 	Jan 1991 July 1991 	 Jan 1992 
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Treatment effect 	- 	0.007** 	0.143 	P< 	0.088 
P< 

Chamber effect 	- 	0.917 	0.506 
P< 

Interaction 	- 	0.075 	0.756 
P<  

Figure 3.10 Ratio of shoot dry mass to total plant dry mass of Sitka 
spruce 

Plants grown at two concentrations of atmospheric CO2,  ambient 

(unsupplemented) and elevated (ambient + 250 .tmol moL 1  in 1990 and + 

350 .tmol moL 1  in 1991 and 1992) Values are the means of between 15 and 
45 plants per treatment; error bars depict two standard errors of the means. 
Full details of the numbers of plants harvested at each time interval are given 
in 3.2.2. 

Results of a two-way ANOVA on data from January 1991 and July 
1991, and results of an unpaired t-test on data from January 1992 are also 
presented. 
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Figure 3.11 Ratio of needle dry mass to total plant dry mass of Sitka 
spruce. 

Plants grown at two concentrations of atmospheric CO ,),  ambient 

(unsupplemented) and elevated (ambient + 250 .imoI mo1 1  in 1990 and + 

350 .tmol mo1 1  in 1991 and 1992). Values are the means of between 15 and 
45 plants per treatment; error bars depict two standard errors of the means. 
Full details of the numbers of plants harvested at each time interval are given 
in 3.2.2. 

Results of a two-way ANOVA on data fromJanuary 1991 and July 
1991, and results of an unpaired t-test on data from January 1992 are also 
presented. 

Figure 3.12 shows the relationship between root and shoot dry mass of plants grown in 

ambient and elevated CO2. There was no significant difference in the allometric 

constant k for ambient and elevated CO2 plants (1.09 cf. 0.85) suggesting that 

partitioning of dry mass was not significantly affected by growth in elevated CO2. 
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Figure 3.12 Allometric relationship of shoot to root dry mass of Sitka 
spruce. Plants were grown at two concentrations of atmospheric CO2 
(ambient and elevated); values are the means of between 15 and 45 plants per 
treatment. Full details of the number of plants harvested at each time interval 
are given in §3.2.2. Solid lines represent the geometric mean regression; 
dotted lines represent 95% confidence intervals. 

Table 3.6 shows results from nutrient analysis conducted at the end of the 1991 

growing season. All nutrients were lower in elevated CO2 plants and nitrogen was 

significantly lower (Pc0.05). Elevated CO2 plants harvested at this time were found to 

have received less than adequate nutrition (<1 mass % nitrogen) (Ingestad, 1971; 

Binns, Mayhead and MacKenzie, 1986). Lower nutrient concentrations in elevated 

CO2 plants may have resulted from dilution by increased growth rates or by increased 

dry mass in leaves because of starch accumulation, or may represent a real shortage. 

Table 3.6 Nutrient analysis for needles of Sitka spruce July 1991. Values 
are means (± one standard error) of 18 samples per treatment (six samples 
from each of three chambers). 

At 	CO2 	Elevated CO2 

Nitrogen mass % 1.26±0.09 

Phosphorus mass % 0.22±0.02 

Potassium mass % 0.56±0.06 

0.89±0.10 

0.20±0.02 

0.46±0.05 
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3.5 RESULTS - SILVER BIRCH 

Results are presented here for shoot extension, main stem leaf and side shoot 

production, dry mass allocation, growth characteristics and nutrient analysis of silver 

birch for the 1991 growing season. 

3.5.1 Shoot extension 

The height and shoot extension rate of silver birch seedlings measured over the 1991 

growing season are shown in Figures 3.13 and 3.14, respectively. There was a slight 

increase in shoot extension rate of seedlings grown in elevated CO2 over the first half 

of the season but this was not significant at Pc0.05 and fell below that of plants grown 

in ambient CO2 by the end of the season, with the result that by the end of the 

September the elevated CO2 seedlings were slightly shorter than those grown in 

ambient CO2 (not significant at P<0.05). 
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Figure 3.13 Height of silver birch seedlings 

Plants were grown at two concentrations of atmospheric CO2 ambient 

(unsupplemented) and elevated (ambient + 350 imol moll). Each value is 
the mean of 30 plants per treatment (ten plants from each of four chambers 
per treatment); error bars depict two standard errors of the means. 
Measurements were made at weekly intervals between April and late 
September 1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 
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Figure 3.14 Shoot extension rate of silver birch seedlings 

Plants were grown at two concentrations of atmospheric CO2 ambient 
(unsupplemented) and elevated (ambient + 350 psmol molt). Each value is 
the mean of 30 plants per treatment (ten plants from each of four chambers 
per treatment); error bars depict two standard errors of the means. 
Measurements were made at weekly intervals between April and late 
September 1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 

3.5.2 Main stem leaf production 

There was no effect of growth in elevated CO2 on rates or duration of main stem leaf 

production. No significant differences were seen in final number of main stem leaves 

per plant (Figure 3.15). The number of main stem leaves produced by plants grown in 

elevated CO2 was only significantly above that of ambient CO2 plants on one occasion 

(DOY 200): throughtout the rest of the season there was no significant difference 
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between the plants. There was a significant inter-chamber effect on only one occasion 

(DOY 207). 
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Figure 3.15 Number of leaves produced from the main stem of silver birch 
seedlings 

Plants were grown at two concentrations of atmospheric COI, ambient 
(unsupplemented) and elevated (ambient + 350 jimol mol-1).  Each value is 
the mean of 30 plants per treatment (ten plants from each of four chambers 
per treatment); error bars depict two standard errors of the means. 
Measurements were made at weekly intervals between April and late 
September 1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 

3.5.3 Side shoot production 

The increase in mean number of side shoots per plant with time is shown in Figure 

3.16. Rate of side shoot production was increased by growth in elevated CO2 and from 

DOY 200 the difference in the number of side shoots produced was significantly larger 

50 



Growth and morphology 

in seedlings grown in elevated, compared to ambient CO2 (Pc0.05). Rate of side shoot 

production reached a maximum at approximately DOY 220 and then declined with time 

in all seedlings measured, but the difference between treatments was maintained. 
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Figure 3.16 Number of side shoots produced on silver birch seedlings 

Plants were grown at two concentrations of atmospheric CO2, ambient 
(unsupplemented) and elevated (ambient + 350 kmol mol -1  ).Each value is 
the mean of 30 plants per treatment (ten plants from each of four chambers 
per treatment); error bars depict two standard errors of the means. 
Measurements were made at weekly intervals between April and late 
September 1991. 

Level of significance between plants grown in elevated or ambient CO2 
(treatment effect) and between plants grown in different chambers (inter-
chamber effect). The bold line represents the 0.05 level of significance. 

Table 3.7 shows the total mean area of main-stem and side-shoot leaves in June 1991. 

There was a slight increase in main-stem leaf area and total tree leaf area in elevated 

CO2 plants compared with ambient CO2 plants, but this was not significant at P<0.05. 

There was no significant difference in area of side-shoot leaves between plants. 
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Table 3.7 Area of individual main stem and side shoot leaves and estimated 
total tree leaf area of silver birch seedlings measured in June 1991. Values 
are means ± one standard error of 30 plants per CO2 treatment (ten plants 
from each of three chambers). * = data statistically significant at Pc0.05. 
**data statistically significant at (P<0.0 1). 

Ambient Elevated Treatment Chamber Interaction 

CO2 COO effect P< effect Pc Pc 

Main stem 	17.14±0.68 19.51±0.82 0.07 	0.674 	0.963 

leaf cm2  

Side shoot 	7.41±0.09 	7.61±0.08 0.119 	0.583 	0.501 

leaf cm2  

Total plant 	183.15±7.01 208.1±9.79 0.087 	0.777 	0.819 

leaf area cm2  

3.5.4 Biomass production 

Table 3.8 shows the results of an initial harvest conducted on seedlings, at the time of 

transplanting, prior to their transfer to the open top chambers. There were no 

significant difference between the seedlings germinated in ambient or elevated CO2 

(Pc0.05), although there was a slight increase in root dry mass of seedlings germinated 

in ambient CO2 compared to those germinated in elevated CO2. 
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Table 3.8 Initial harvest of seedlings of silver birch grown in ambient and 
elevated CO2. Seedlings were harvested in May 1991 prior to seedlings being 
placed in open top chambers. Data are means of ten seedlings ± one standard 
error. Results from an unpaired t-test are also presented. * = data 
statistically significant at Pc0.05. **data  statistically significant at (P<0.01). 
d.m.=dry biomass. 

Parameter 	 Elevated CO2 	Ambient CO2 	t-test 

Total d.m. mg 233.0±3.3 288.0±4.2 0.316 

Total shoot d.m. mg 189.0±8.7 207.0±8.5 0.658 

Main stem leaves 141.0±7.1 167.0±7.1 0.415 
d.m.mg 

Root d.m. mg 4.4±1.9 7.6±5.4 0.098 

Shoot:root d.m. 3.41±0.49 4.76±0.65 0.116 

Table 3.9 shows the allocation of dry matter within seedlings 24 weeks after 

germination. Total plant biomass was significantly increased in seedlings grown in 

elevated CO2 compared to ambient CO2 seedlings (Pc0.05). Total shoot dry mass was 

significantly increased in elevated CO2 seedlings, as a result of increase in allocation of 

carbon to side shoots. There were significant increases (P<0.05) in dry mass of both 

side shoots and side shoot leaves. There was no significant effect of growth in elevated 

CO2 on allocation of carbon to roots. 

Table 3.10 shows the growth characteristics of seedlings after 24 weeks. Growth in 

elevated CO2 resulted in plants that tended to be significantly thicker than those grown 

in ambient CO,, although there was no significant difference in height between 

seedlings. There was no treatment effect on number or area of main stem leaves. Side 

shoot production was enhanced in elevated CO2 and there was a slight increase 

(Pc0.05) in the number of side shoot leaves produced but there was no increase in 

side-shoot leaf area, suggesting that the mean area of individual leaves produced from 

side shoots was reduced in elevated CO2 plants. There was no effect of growth in 

elevated CO2 on total plant leaf area in August 1991. 

Leaf mass ratio (LMR, the fraction of plant dry mass comprising leaves) was 

significantly increased (P<0.05), in plants grown in elevated CO2 and average specific 

leaf area (SLA, projected leaf area per leaf dry mass) was slightly reduced. Leaf area 

ratio (LAR, total projected leaf area per plant dry mass) was significantly reduced 
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(Pcz0.05) by growth in elevated CO,, although there was a significant interaction 

between CO2 treatment and chamber, indicating that the magnitude of the CO2 response 

was different in plants from different chambers. There was no significant effect of 

elevated CO2 on root mass which was slightly increased and, despite the increase in 

above ground biomass, no significant effect of CO2 treatment on shoot: root ratio was 

observed. There was a significant interaction between CO2 treatment and chamber, 

suggesting that the magnitude of the CO2 response was different in plants from 

different chambers. 

Table 3.9 Allocation of dry mass in seedlings of silver birch in August 
1991. Measurements represent the mean ± one standard error of 30 plants 
per treatment (except roots, where n=13). Results from a two-way analysis 
of variance are also presented * = data statistically significant at Pc0.05. 
**data statistically significant at (Pc0.01) 

Dry mass g 	Elevated 	Ambient 	Treat. 	Chamber Interaction 
CO2 	C07 	effect 	effect 	Pc 

PC 	P< 

Total shoot 	28.39±1.42 23.22±1.19 *0.008 	0.204 	0.601 
d. m. 

Root d.m. 	10.72±1.55 	9.09±1.31 	0.417 	0.131 	0.153 

Total leaf d.m. 10.73±0.61 	7.71±0.49 *0.000 	0.226 	0.807 

Main stem leaf 3.82±0.22 3.11±0.17 0.012 0.257 0.599 
d. m. 

Side shoot 6.91±0.48 4.93±0.35 *0.002  0.151 0.720 
leaves 

Main stem leaf 12.34±0.55 11.01±0.52 0.080 0.396 0.633 
d. m. 

Side stem 5.73±0.42 4.49±0.35 *0.031 0.0369 0.368 
d. m.  
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Table 3.10 Growth characteristics of seedlings of silver birch in August 
1991. Measurements represent the mean ± one standard error of 30 plants 
per treatment (except shoot:root ratio, where n=13). Results from a two-way 
analysis of variance are also presented * = data statistically significant at 
Pc0.05. **data statistically significant at (Pc0.01) 

Elevated CO2 Ambient CO2 Treatment 
effect 
Pc 

Inter- 
chamber 
effect 
PC 

Interaction 
P< 

No.side shoot 116.96 100.4 0.100 0.598 0.928 
leaves ±7.16 ±7.11 

No.main stem 24.97 24.33 0.713 *0.026  0.276 
leaves ±1.24 ±1.27 

No. side 15.93 13.63 *0.044 0.589 0.847 
shoots ±0.74 ±0.71 

Height mm 1058.77 1071.30 0.768 0.071 0.097 
±33.95 ±26.91 

Stem diameter 12.83 11.80 *0.050 0.310 0.859 
mm ±0.37 ±0.32 

Total leaf area 1907.41 1881.65 0.864 0.137 0.349 
cm2  ±111.39 ±99.18 

Side shoot 1359.37 1319.07 0.746 0.137 0.750 
leaf area cm2  ±89.27 ±83.77 

Main stem 567.62 606.55 0.406 *0.009  0.291 
leaf area cm-' ±35.74 ±33.80 

Shoot:root 3.24 2.99 0.529 0.395 0.020* 
±0.250 ±0.37 

SLA cm29 1  186.49 260.29 0.085 0.243 0.666 
±9.11 ±16.44 

LMR gcm 2  0.00581 0.00424 0.041* 0.977 0.065 
±000034 ±0.00026 

LAR cm2  91  60.27 73.99 0.005* 0.210 0.001** 
±3.27 ±3.27 
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3.5.5 Photosynthesis 

Table 3.11 shows the effect of growth in elevated CO2 on stomatal conductance and 

assimilation rate of silver birch seedlings. Stomatal conductance was not significantly 

reduced in plants grown and measured in elevated CO2 (P>0.05). There was a 

significant variation in stomata] conductance between plants growing in the different 

chambers. Variation in gs  may have been a result of the differences in the PFD 

experienced by plants in the different chambers at the time that measurements were 

taken, but variation in the water status of seedlings as a result of growing the plants in 

pots cannot be ruled out. Assimilation rate was significantly increased by growth in 

elevated CO2 (Pc0.05), but again variation between chambers was also large, although 

not significantly so. 

Table 3.11 Stomatal conductance, g (mmol 1w2 5-1)  and assimilation rate, 

A (Rmol  CO2 nv2 54)  of silver birch grown at two concentrations of 
atmospheric CO2 (ambient and elevated). Measurements were made between 
11.00 and 13.00 BST on three occasions in July 1991, forty plants were 
measured on each occassion (ten from each of four chambers). Values are 
the means of 120 measurements per treatment ± one standard error. PFD = 
869±69.3, leaf temperature = 23.15±0.30. 

Ambient Elevated Treatment Chamber Interaction 
COn COn effect Pc effect Pc Pc 

gs 	 212.31 164.38 0.125 0.048* 0.094 
±32.94 ±30.72 

A 	 8.73 12.35 0.037* 0.052 0.030* 
± 1.10 ± 1.65 

3.5.6 Nutrient analysis 

Table 3.12 shows the nutrient analysis data for leaves of silver birch harvested in 

August 1991. Neither ambient nor elevated CO2 plants were found to be significantly 

nutrient deficient at this time (Ingestad, 1971). 
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Table 3.12 Nutrient concentration of leaves of silver birch harvested in 
August 1991. Each value is the mean ± one standard error of eight samples 
(two samples from each of four chambers per treatment). 

Ambient CO,) 	 Elevated CO2 

Nitrogen mass% 1.90±0.03 1.52±0.10 

Phosphorus mass 0.27±0.04 0.33±0.02 

Potassium mass % 0.88±0.15 0.88±0.07 

3.5.7 Summary of results 

(I) Sitka spruce 

After one growing season there was a 40% increase in biomass production in 

seeedlings of Sitka spruce grown in elevated CO2 compared to those grown in ambient 

CO2. but this fell to 24 % midway through second season and there was no effect on 

biomass production after eighteen months. The initial increase in biomass production 

was a result of a significant increase in root mass. After the second growing season 

there was no effect of elevated CO2 on the allocation of dry matter. There was no 

difference in the number of branches produced in ambient or elevated COI seedlings 

after eighteen months, although the rate of branch production was increased in plants 

grown in elevated CO2. The area of individual needles was increased in 1991 but there 

was no significant effect of growth in elevated CO2 on the area of needles produced in 

1992. SLA was unaffected, by growth in elevated CO2. Total nitrogen, phosphorus 

and potassium concentration of leaves were reduced in plants grown in elevated CO2. 

(ii) Silver birch 

After one growing season total plant biomass was increased in seedlings of silver birch 

grown in elevated compared to ambient CO2. Biomass production was increased in 

elevated CO2 plants by approximately 20%. Rates of photosynthesis were also higher 

in plants grown in elevated CO2. The increase in biomass was a result of an increase in 

stem diameter and an increase in the allocation of dry mass to leaves and branches. The 

number of branches produced and the rate of branch production was increased in 

elevated CO2 plants, but the number of leaves produced was only slightly increased and 

there was no effect of elevated CO2 treatment on total tree leaf area. LMR decreased 
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slightly in plants grown in elevated CO2. Leaves grown in elevated CO2 senesced 

approximately one week to ten days earlier than leaves on ambient CO2 plants. Total 

nitrogen, phosphorus and potassium concentration of leaves was reduced in plants 

grown in elevated CO2. 

3.6. DISCUSSION 

The increase in biomass production after one growing season in Sitka spruce seedlings 

grown in elevated CO2 compared to those grown in ambient CO2 was mainly a result of 

an increase in allocation of dry matter to the roots. These plants did not receive any 

additional nutrient treatment during the 1990 growing season and nutrient 

concentrations were lower in elevated compared to ambient CO2 seedlings harvested in 

July 1991. The initial enhanced allocation of resources to the roots may be a response 

to nutrient limitation. These findings are very similar to those of El Kellen, Rouhier 

and Mousseau (1992) who observed an increase in root: shoot ratios of unfertilised 

seedlings of Castaneac saliva grown in elevated CO2 but no effect of growth in elevated 

CO2 on carbon allocation of well fertilised seedlings. There was no effect of elevated 

CO2 on allocation of biomass in Sitka spruce plants grown in elevated CO, in January 

1992. 

The effect of elevated CO2 on total biomass production had disappeared by the end of 

the second growing season, despite higher rates of photosynthesis in elevated CO2-

grown plants and no evidence of down-regulation (Lee et al. 1993). Similar results for 

other species have been reported. Norby, Wullschleger and Gunderson (1994) found 

no significant effect of elevated CO2 concentration on biomass production of 

Liriodendron tulip jfera despite a sustained increase in photosynthesis per unit leaf area 

and reduced foliar respiration. This was attributed to a reduction in leaf area and a 

possible increase in fine root production. In this study with Sitka spruce there was 

only a slight reduction in leaf area production, estimated from measurements of total 

needle mass and the SLA of individual needles. No data are available for fine root 

production or root exudation in this experiment, but the results highlight the need for 

more comprehensive study of plant respiration and the below-ground processes of 

Sitka spruce grown in elevated CO2. An increase in fine root mass would potentially 

improve water relations and the uptake of nutrients and may stimulate mycorrhizal 

activity. An increase in root exudation may stimulate microbial activity in soil resulting 

in an increase in the rate of nitrogen mineralisation. 

In this study biomass increased in silver birch seedlings grown in elevated CO2 by ca 

20% after one growing season. These findings are similar to those of Pettersson and 
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McDonald (1992) who observed an increase in biomass production in silver birch 

seedlings grown in elevated CO2. Rochefort and Bazzaz (1992) also found an increase 

in biomass production in four birch species grown in elevated CO2 (Betula 

alleghaniensis, Betula popul(folia, Betulapapyrifera and Betula lenta). The increase in 

biomass production in elevated CO2-grown silver birch seedlings was a result of an 

increase in both photosynthetic rate and leaf area production early in the growing 

season. Rate of branch production and the total number and mass of branches 

produced increased leading to a larger tree area per tree. Increased branching in silver 

birch may increase area of leaves available for the interception of solar radiation early 

on in the growing season but may also speed the onset of self-shading. No effect of 

elevated CO2 on branch production of silver birch was found by Pettersson and 

McDonald (1992), but this may have been a result of the short duration of their 

experiment. Despite an initial stimulation of leaf area production, there was no effect of 

elevated CO2 treatment on the total area of leaves produced at the end of the growing 

season. The relative reduction in rate of leaf area production in elevated CO2 seedlings 

towards the end of the season may have partially offset the increase in photosynthetic 

rate of these seedlings and reduced the net effect of growth in elevated CO2. A 

reduction in rate of leaf area production was reported by Norby, Wullschleger and 

Gunderson, (1994) for Liriodendron tulipifera and Pettersson and McDonald, (1992) 

for silver birch. The reduction in rate of leaf area production during the latter part of the 

season in this study may have been in response to inadequate nitrogen supply. There 

was no effect elevated CO2 on root:shoot ratio of silver birch seedlings in this study, 

although more thorough studies are required to determine the effects of growth in 

elevated CO, on fine root and exudate production in silver birch seedlings. 

Rate of photosynthesis increased and g5 was reduced in silver birch plants in this 

study. This results in an increase in instantaneous WUE. Instantaneous WUE has 

been found to increase in many plants in elevated CO2 (e.g. Hollinger, 1987; Conroy ci' 

al. 1986b); Norby and O'Neill, 1991, Eamus, 1991; Ziska ci' al., 1991; Bunce, 1992). 

Whether WUE integrated over time increases in young silver birch trees remains to be 

tested. The effects of growth in elevated CO2 on stomatal conductance and the 

implications for plant growth are discussed more fully in Chapter 5. 

Although there was no evidence of down regulation of photosynthesis of these plants in 

July 1991, down regulation may have occurred later in the season as a result of source-

sink imbalance caused by inadequate pot size and/or nutrient limitation. Inadequate 

rooting volume has been associated with a reduction in photosynthesis (Arp 1991), 

although these studies failed to separate the effects of rooting volume and nutrient 

supply. In a recent paper, Nicotra et al. (1994) found no effect of rooting volume but 
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did find a positive correlation between nutrient supply and growth enhancement of 

plants grown in elevated CO2. Early senescence is often linked to nitrogen limitation, 

and in this study leaves on seedlings grown in elevated CO2 senesced between one 

week and ten days earlier than those grown in ambient CO2. This may have been a 

result of nutrient limitation, restrictive pot size (Tschaplinski, Norby and Wullschleger, 

1993) or a direct effect of elevated CO2 on plant phenology. 

No direct comparisons can be made between the growth of the two species in elevated 

CO2 as the Sitka spruce were placed in elevated CO2 as two-year-old seedlings and 

may have exhibited a larger acclimation response than the silver birch which were 

grown from seed in elevated CO2. However, there are indications that the allocation 

strategies differed between the species; there was no increase in branching in Sitka 

spruce whereas the number of branches produced in silver birch was significantly 

increased in elevated CO2. 

This study, along with many other studies using pot-grown plants in open top 

chambers, fails adequately to separate the effects on growth and development of 

elevated CO2 treatment from the effects of nutrition and pots. In many of the 

experiments reported in the literature, nutrient supply was found to have a more 

pronounced effect on biomass partitioning than CO2 concentration (eg El Kohen, 

Rouhier and Mousseau, 1992). The importance of controlling plant nutrition in 

experiments investigating plant response to any environmental variable has been 

emphasised by Ingestad and Lund (1986) and more recently with respect to elevated 

CO2 by Pettersson and McDonald (1992) and Linder and McDonald (1994). In 

addition small pot size per se may limit growth and affect source-sink relations (Arp, 

1991). Stolen and Hertog (1993) have also pointed out the difficulty in maintaining 

even nutrient and water distribution within pots. Pots may absorb solar radiation 

resulting in uneven root temperature and therefore root growth. Limitations of these 

experiments serve to highlight the need for studies into interactions between elevated 

CO2 and water and nutrition, and the need for long-term experiments to determine 

whether the effects of elevated CO2 observed on seedlings in this study are sustained as 

the trees mature. 
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CHAPTER 4 THE EFFECT OF ELEVATED CARBON 
DIOXIDE ON LEAF EXTENSION IN SILVER BIRCH 

4.1 INTRODUCTION 

The aim of the experiment described in this chapter was to determine the effect of 

growth in elevated CO2 on leaf extension in individual leaves of silver birch and to 

establish which of the cellular processes involved in the control of leaf extension were 

affected. 

An increase in leaf area increases the potential for the interception of solar radiation and 

therefore biomass production (Milthorpe and Moorby, 1974; Monteith and Elston, 

1983). Leaf area also plays a key role in determining the amount of water transpired 

from a plant or canopy (Jarvis and McNaughton, 1986). Leaf area may be increased as 

a result of increase in the number of leaves and/or increase in the area of individual 

leaves. 

The area of individual leaves has been found to increase in both crop and tree species in 

elevated CO2, for example Glycine max (Sionit et al., 1981), Ochroma lagopus and 

Pentaclethia macroloba (Oberbauer etal., 1985). However, response of leaf growth to 

elevated CO2 varies between species and some workers have found a reduction in area 

of individual leaves in plants grown in elevated CO2 (eg. Mousseau and Enoch, 1989). 

Extension of individual leaves can be described by the model of steady state growth of 

individual cells, developed by Lockhart (1965) (1.2.6). Although this model 

describes the growth of individual cells it has been used to investigate the growth of 

leaves (Dale, 1988) and roots (Pritchard etal., 1991). 

In a simplified form the Lockhart equation states that under certain conditions, e.g. 

isothermal conditions, elastic equilibrium and linear viscoelastic walls, the increase in 

cell volume defined below is proportional to the turgor pressure in excess of a critical 

turgor (yield turgor) and the extensibility of the cell walls, i.e. 

dv 
—=rn(P—Y) 	 (4.1) 
dt 

where dv/dt is increase in cell volume with time, P is turgor pressure and V is yield 

threshold (i.e. the value of turgor below which the cell wall does not extend) and iii is 

the extensibility of the cell wall. 
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From equation 4.1 it can be seen that any environmental variable affecting either m or 

(P-fl may affect cell extension and, by implication, leaf extension (Frost,Taylor and 

Davies, 1991). Although there are many reports of the effects of CO2 on the 

production of leaf area, there have been few investigations of mechanisms producing 

these effects and it is not yet clear whether the increase in leaf area in plants in elevated 

CO2 is a result of an increase in substrate availability or whether there are more direct 

effects (Jarvis, 1989). The need to investigate the effects of elevated CO2 on the 

biophysical parameters controlling leaf expansion has recently been emphasised by 

Jarvis (1993). 

The experiment described in this chapter was designed to measure leaf expansion 

between emergence and full expansion in silver birch, to determine whether growth in 

elevated CO2 increased leaf extension rate and final leaf area. The diurnal pattern of 

leaf extension was also investigated and compared to measurements of in, P and Y 

measured over the same period. 

4.2 MATERIALS AND METHODS 

4.2.1 Establishment 

Seeds of silver birch Roth (provenance FC 87/20) were germinated under ambient 

(unsupplemented) or elevated (ambient + 350 .imol mol-0  CO concentration. At the 

three-leaf stage the seedlings were transplanted into 1.5 dm 3  pots and placed into eight 

open top chambers with the same CO2 regime (four chambers per CO2 treatment). 

Details of establishment and growth conditions are given in Chapter 2. 

Leaves on main stems were numbered sequentially in order of appearance with the first 

leaf to emerge being numbered one. Leaves on side shoots were not considered in the 

numbering process. All measurements were made on the main stem leaves of the same 

number from each plant. 

4.2.2 Leaf area measurements. 

The maximum linear dimensions (length and width) of each leaf under investigation 

were measured. The leaf area of individual leaves was calculated from the maximum 

linear dimensions according to the relationship; 

A=k.1.w. 	 (4.2) 
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where A is the area of the leaf, 1 is the length of the leaf from tip to base of the petiole, 

w is the width across the widest point of the leaf and k is a constant. 

The value of k was obtained from the regression line of A on 1.w. for a sample of 

leaves (n=100). Measurements of the area of each leaf were made indirectly by 

photocopying each leaf onto paper of known specific area, cutting out the image and 

weighing the paper on an electronic balance (Sauter, model RE1E14, Fisons Scientific 

Equipment, Loughborough). 

4.2.3 Turgor pressure 

Turgor pressure can be calculated as the difference between water potential and osmotic 

potential of cells: 

P=V—ir 
	

(4.3) 

where V is water potential, P is turgor pressure and iris osmotic potential (Dainty, 

1976). 

Although equation 4.3 has been expressed in terms of individual cells, it can be applied 

to bulk tissue if V, P and ir are regarded as volume or weight-averaged values for all 

compartments of all cells in the tissue (Tyree and Jarvis, 1982). 

4.2.4 Water potential 

Xylem pressure potential of leaves was measured using the pressure chamber technique 

(Scholander, 1965). The leaf under investigation was excised midway down the 

petiole using a sharp razor blade. The leaf was then inserted in the pressure chamber, 

the petiole being held in place and sealed air tight with a rubber bung with the cut end of 

the petiole protruding to allow observation with a binocular microscope. 

When the leaf was severed the water in the xylem vessels receded as a result of the 

higher pressure present outside the leaf and the breakage of the water columns held 

under tension in the whole plant. The pressure chamber was attached to a nitrogen 

cylinder and gas pressure was applied until the water forced through the xylem vessels 

just began to exude from the cut end of the petiole. At this point the pressure applied 

was considered to equal the negative xylem pressure present within the leaf at the time 

of excision (Scholander, 1965). It was assumed that the osmotic potential of the xylem 

sap was negligible so that the value of xylem pressure potential obtained represented an 

average value of the water potential of the tissue in the chamber (Nobel, 1985). 
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On removal from the pressure chamber the leaf was cut into two equal sections. One 

section was stored in 100% methanol to be used for the measurement of cell wall 

extensibility (4.2.7): the other section was placed in a labelled plastic syringe, and 

plunged into a dewar of liquid nitrogen, and used for the measurement of osmotic 

potential (4.2.5). 

4.2.5 Osmotic potential 

An indirect measure of osmotic potential was obtained using a vapour pressure 

psychrometer ( 5100C, Wescor Inc. Logan UT, USA). Vapour pressure is a 

colligative solution property: compared with pure solvent (water) the vapour pressure 

of a solution is depressed in proportion to the number of particles dissolved in each kg 

of water. A measurement of vapour pressure depression, therefore, is an indirect 

measurement of solution concentration or osmolality (Turner, 1981). 

The syringe containing the leaf material was subsequently removed from the liquid 

nitrogen and the leaf section allowed to thaw. The plunger was then depressed within 

the syringe to force sap from the tissue. A sample of 8 m 3  of exuded sap was 

pippetted onto a solute-free paper disc in a circular sample holder. The holder was then 

conveyed into the measuring chamber by means of a slide assembly and the chamber 

closed and locked. After an equilibration period of approximately two minutes, a fine 

wire thermocouple, situated in the upper part of the sample chamber, was first used to 

measure the temperature of the sample chamber (reference temperature), and then the 

dew point temperature within the chamber. The difference between these two 

temperatures is the dew point temperature depression, itself a colligative property of the 

solution and a direct function of solution vapour pressure. The measurement procedure 

is controlled automatically and at the end of the process a value of osmolality is read off 

the machine. The psychrometer was calibrated using standard solutions of NaCl. No 

correction was made for apoplastic water content. The values obtained may be 

overestimates either as a result of dilution of the sap by apoplastic water or if some of 

the cells were undamaged by the freeze-thaw and crushing process (Tyree and Jarvis, 

1982). 
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4.2.6 Yield turgor 

Estimates of yield turgor were made using the pressure chamber technique (see Sands, 

McDonald and Stadenberg, 1992 for evaluation of techniques of measuring yield 

turgor) on the leaf immediately below the leaf under investigation for tp r and P. The 

leaf was wrapped in aluminium foil while still intact and then excised close to the point 

where the petiole was attached to the stem using a sharp razor blade. The assumption 

was made that Y was similar in both leaves. The validity of this assumption had been 

verified earlier on a similar sample of paired leaves. The leaf was wrapped in another 

layer of aluminium foil, care being taken to remove air from around the leaf. The foil-

wrapped leaf was then placed in a polythene bag for 16 hours at room temperature in 

the dark. Measurements of leaf xylem water potential and osmotic potential were made 

in the same way as outlined in §4.2.4 and §4.2.5 and V calculated using the following 

equation, 

Y=yf—ir 	 (4.4) 

where V is water potential, V is yield turgor pressure and iris osmotic potential. 

The theory behind this and other stress relaxation techniques is that if a cell is deprived 

of an external water supply, loosening of the cell wall (stress relaxation) continues, and 

reduction in water potential and turgor pressure occurs until the cell reaches a value of P 

equal to Y, the yield turgor of the cell (Cosgrove, Van Volkenburgh and Cleland, 1984; 

Cosgrove, 1985,1986; Sands, McDonald and Stadenberg, 1992, Cosgrove, 1993). 

4.2.7 Cell wall extensibility 

Cell wall extensibility was measured as percentage plasticity over elasticity determined 

by analysis of extension under mechanical loading using an Instron type extensiometer 

attached to a chart recorder (Van Volkenburgh, Hunt and Davies, 1983; Cleland 1984). 

The extensionmeter used in this study is shown in Figure 4.1. 

The portion of leaf that had previously (4.2.4) been placed in a vial containing 100% 

methanol to eliminate metabolic activity and remove proteins (Cleland, 1967) was 

rehydrated by soaking in distilled water for two hours. A strip 10 x 5 mm was cut in 

the lamina between the second and third major lateral veins and inserted between the 

clamps of the extensiometer which were initially set 5 mm apart. To prevent 

dehydration during measurement a drop of water was placed on the tissue between the 

clamps. The leaf strip was extended by moving the lower clamp downwards at a 

65 



Leaf extension 

known constant speed until a predetermined stress equivalent to a load of 20 g was 

obtained. The clamps were then returned to their original position and the tissue 

extended in the same way for a second time. In this way two load-extension 

relationship curves were obtained. Figure 4.2 shows an example of a load-extension 

curve. Following Van Volkenburgh, Hunt and Davies (1983), extensibility was 

calculated as the reciprocal slope of each load-extension curve; 

N.L) . 100 
 - = % change in length per 10  load 

if 	2 

(4.5) 

where If  and Ii are the final and initial lengths of the sample, respectively. 

The first load-extension curve gives a value of total extensibility and the second a value 

of elastic extensibility. Plastic extensibility is calculated from the difference between the 

total and elastic extensibilities. Cell wall extensibility is expressed as percentage 

plasticity per 10 g load. Data were corrected for variations in leaf thickness (Cleland, 

1967); prior to extension, sections were weighed, measured and mass per unit length 

calculated for each section. Values of extensibility were corrected for variation in leaf 

thickness by multiplying values of extensibility by ni/I (rn=mass, 1= length). 
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Figure 4.1 Extensionmeter used to estimate cell wall extensibility showing 
a typical load-extension curve obtained using the extensiometer. Sample is 
fixed between clamps and lower clamp is depressed at a fixed rate of 2 
mm/minute. The load acting on the tissue is measured by a position 
transducer attached to the immobile clamp. Extension and load are plotted by 
a chart recorder. 
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4.2.8 Experimental procedure 

(I) Final leaf area 

The sixth leaf from 40 plants per CO2 treatment (ten from each of four chambers) was 

tagged and its area measured at regular intervals over a period of 27 days, when all the 

leaves were fully expanded. 

Diurnal pattern of leaf extension 

Leaf extension rates were calculated from measurements of the maximum linear 

dimensions (length and width) made at four hourly intervals over a 24 hour period on 

four occasions between May and July 1991. All measurements were made on leaves of 

the same age from 40 leaves per CO2 treatment (ten from each of four chambers). 

Times are BST unless otherwise stated. 

Biophysics of leaf extension 

On two occasions measurements of xylem pressure potential, osmotic potential and cell 

wall extensibility were made in conjunction with the measurements of leaf extension 

rate. Measurements were made at four hourly intervals between 6.00 BST and 18.00 

BST. Because of the limited number of plants available for destructive sampling and the 

constraints of time, ten leaves per CO2 treatment (five from each of two chambers) 

were sampled on each occasion. 

4.2.9 Environmental variables 

(i) Temperature 

Air temperature was measured inside the open top chambers 1.5 m above the plants 

with calibrated ventilated thermistors surounded by radiation shields (RS Ltd. 

Loughborough) attached to a data logger (CR7, Campbell Scientific (UK) Ltd., 

Loughborough). 

(I) Solar radiation 

Solar radiation was measured using a solarimeter (CM3, Kipp and Zenon Ltd, Delft, 

Holland) placed on the roof of the control cabin adjacent to the open top chambers. The 
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reduction in solar radiation within the chambers caused by the glass was estimated to be 

approximately 10 % with no effects on photosynthetically active radiation (PAR) (Lee 

and Barton, 1993). 

4.2.10 Statistics 

A two-way ANOVA was used to determine effects of the two CO2 concentrations 

(treatment effect) and effects of the blocks (inter-chamber effect) on the dependent 

variables at each measurement interval. Data were tested for normality and met the 

assumptions of the parametric analysis. 

4.3 RESULTS 

4.3.1 Area of individual leaves 

Figure 4.2 shows the increase in the area of the sixth leaf of plants measured over a 28 

day period, beginning approximately three days after the leaves emerged. After 28 

days the leaves were all fully expanded. The growth of leaves was increased in silver 

birch plants grown under increased concentrations of atmospheric CO2 compared with 

those grown under ambient CO2 conditions. Growth in elevated CO2 resulted in an 

increase in leaf area of approximately 12%, which was significant at Pc0.05. There 

was no significant difference between plants grown in the same CO2 regime but in 

different chambers. Leaf area was calculated from measurements of length and width 

as described in §4.2.2. Elevated CO2 concentration did not affect the shape of leaves 

(Figure 4.3). 
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effect P< 
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effect Pc 

Interaction 	0.775 	0.529 	0.320 	0.337 	0.315 	0.876 
PC 

Figure 4.2 Area of the fourth leaf of plants of silver birch grown from seed 
under two concentrations of atmospheric CO2; ambient (unsupplemented) or 

elevated (ambient + 350 Rmol moF 1 ). All the leaves were fully expanded 
after 28 days. 

Each value is the mean of 40 leaves per CO2 treatment (one leaf from ten 
plants per chamber, four chambers per treatment); error bars depict two 
standard errors of the means. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, ** 
significant at P= 0.01. 
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Figure 4.3 Relationship between length and width of expanding and fully 
developed sixth leaf of plants of silver birch grown in ambient and elevated 
concentrations of atmospheric CO2. 

4.3.2 Diurnal pattern of leaf extension rate 

Figures 4.4-4.7 show diurnal variation in leaf extension rates. Leaf extension rate was 

highest during the period of daylight dropping to its lowest value during the night in 

leaves of both treatments. The pattern of leaf extension rate varied from day to day both 

within and between treatments, but the CO2 treatment consistently resulted in an 

increase in leaf extension rate during the early part of the day. This increase was 

significant at the 5% level (fc0.05) on two occasions (27th June, Figure 4.5, and 5th 

July, Figure 4.6). Significant differences in the extension rates of leaves from different 

chambers also occured on two occasions (Figure 4.4). There was a significant 

interaction between CO2 treatment effect and inter-chamber effect on leaf extension rate 

of plants measured at 8.00 on 16 May 1991, indicating that the size of the CO2 

response varied between plants from different chambers. 
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Time (h) 	8.00 	12.00 	16.00 	20.00 	24.00 	04.00 

Treatment 	0.082 	0.119 	0.567 	0.743 	0.110 	0.110 
effect P< 

Inter- 	0.004** 	0.411 	0.215 	0.057 	0.030* 	0.370 
chamber 
effect Pc 

Interaction 	0.005* 	0.956 	0.464 	0.992 	0.957 	0.271 
PC 

Figure 4.4 Diurnal variation in leaf extension rate (LER) from plants of 
silver birch grown in two concentrations of atmospheric CO2. Measurements 
were made at four-hourly intervals. 

Values are plotted at the midpoint of the sampling interval. Each value 
represents the mean of one leaf from 40 plants (ten from each of four 
chambers per CO2 treatment); error bars depict two standard errors of the 
means. Measurements were made on 16th June 1991. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, ** 
significant at P= 0.01. 
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Time (h) 	8.00 	12.00 	16.00 	20.00 	24.00 	04.00 

Treatment 0.001** 	0.357 	0.102 	0.849 	0.608 	0.112 
effect Pc 

Inter- 	0.640 	0.417 	0.645 	0.064 	0.300 	0.338 
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effect Pc 

Interaction 0.252 	0.371 	0.997 	0.592 	0.655 	0.679 
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Figure 4.5 Diurnal variation in leaf extension rate (LER) from plants of 
silver birch grown in two concentrations of atmospheric CO2. Measurements 
were made at four-hourly intervals. 

Values are plotted at the midpoint of the sampling interval. Each value 
represents the mean of one leaf from 40 plants (ten from each of four 
chambers per CO2 treatment); error bars depict two standard errors of the 
means. Measurements were made on 27th June 1991. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, ** 
significant at P= 0.01. 
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Figure 4.6 Diurnal variation in leaf extension rate (LER) from plants of 
silver birch grown in two concentrations of atmospheric CO2. 
Measurements were made at four-hourly intervals. 

Values are plotted at the midpoint of the sampling interval. Each value 
represents the mean of one leaf from 40 plants (ten from each of four 
chambers per CO2 treatment); error bars depict two standard errors of the 
means. Measurements were made on 5th July. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, ** 
significant at P= 0.01. 
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Figure 4.7 Diurnal variation in leaf extension rate (LER) from plants of 
silver birch grown in two concentrations of atmospheric CO2. Measurements 
were made at four-hourly intervals. 

Values are plotted at the midpoint of the sampling interval. Each value 
represents the mean of one leaf from 40 plants (ten from each of four 
chambers per CO2 treatment); error bars depict two standard error of the 
means. Measurements were made on 17th July. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, ** 
significant at P= 0.01. 
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4.3.3 Solar radiation and temperature 

Figures 4.8 and 4.9 show diurnal variation in (i) solar radiation measured outside and 

(ii) air temperature measured within the open top chambers on two occasions during 

July 1991: (a) 5th July and (b) 17th July, respectively. As expected, solar radiation and 

air temperature follow the same diurnal pattern, increasing during the morning to reach 

maxima during the middle part of the day and then declining towards evening, although 

maxima were attained later in the day on the 17th July. Leaf extension rates were low 

for leaves from both treatments during the dark period when temperatures were also 

low. Lower night-time temperatures on 17th July resulted in slightly lower minimum 

night-time leaf extension rates. However, the pattern of leaf extension rates during 

daylight hours did not correlate with either temperature or light. 
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Figure 4.8 Diurnal variation in solar radiation and air temperature on 5th 
July 1991. solar radiation was measured on the roof of a portacabin adjacent 
to the open top chambers and air temperature was measured 1.5 in above the 
floor of one of the open top chambers. Measurements were made at five 
minute intervals, values are hourly means. Time is GMT. 
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Figure 4.9 Diurnal variation in solar radiation and air temperature on 17th 
July 1991. solar radiation was measured on the roof of a portacabin adjacent 
to the open top chambers and air temperature was measured 1.5m above the 
floor of one of the open top chambers. Measurements were made at five 
minute intervals, values are hourly means. Time is GMT. 

4.3.4 Water potential, osmotic potential and calculated turgor 

Figures 4.10 to 4.12 show the variation in water potential (4.10), osmotic potential 

(4.11) and calculated turgor (4.12) of leaves measured on 5th July, 1991. Figures 

4.13 to 4.15 show the variation in water potential (4.13), osmotic potential (4.14) and 

calculated turgor (4.15) of leaves measured on 17th July, 1991. 

5th July 1991 

Figure 4.10 shows that leaf water potential declined from its early morning value 

towards midday and then rose again to reach its highest value towards evening. CO2 

treatment resulted in higher water potentials during the day but by the evening (20.00) 

this difference had disappeared. There was little variation in leaf osmotic potential 

(Figure 4.11) over the course of the day but the osmotic potential of ambient CO2 

leaves was significantly higher at 12.00 (pc0.05) and there was also a significant inter-

chamber difference in plants measured at 16.00. Leaf turgor pressure dropped slightly 

towards midmorning (12.00) and then increased to reach a maximum towards 20.00 in 

both treatments (Figure 4.12). Turgor pressures were slightly higher throughout the 

day in leaves of plants growing in elevated CO2 compared to those of plants in ambient 
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CO2. although this only reached significance at 16.00 (P<0.05). The pattern of turgor 

pressure followed that of LER during the daylight period. 

17th July 1991 

Leaf water potentials changed more slowly than on the previous occasion and were 

more negative later in the day (16.00), recovering more slowly towards evening 

(Figure 4.13), although there was a trend of lower leaf water potentials in elevated 

CO2 There were no significant differences between treatments, but inter-chamber 

variation was significant on two sampling occasions (P<0.05). There was little 

variation in leaf osmotic potential over the day (Figure 4.14). Elevated CO2 treatment 

resulted in a significantly lower osmotic potential in the morning (8.00) but any 

treatment effect disappeared during the course of the day, but there was a significant 

inter-chamber difference between plants measured at 20.00. 

The pattern of mrgor pressure varied over the course of the day between treatments, as 

did LER. Turgor was high in the morning, dropped towards mid afternoon (16.00), 

and then recovered towards evening (20.00) (Figure 4.15). By contrast with 5th July, 

turgor pressure was higher in leaves of ambient CO2 plants than in leaves of elevated 

CO2 plants for most of the day, apart from 8.00 when P in the elevated CO2 plants 

exceeded P in ambient CO2 LER were high in elevated CO2 plants in the morning 

when turgor pressure was high but fell below that of ambient plants in the afternoon 

when turgor pressure was higher in ambient CO2 plants. 
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Figure 4.10 Water potential of leaves of silver birch measured at four-
hourly intervals on 5th July 1991. Measurements were made on the ninth leaf 
from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Figure 4.11 Osmotic potential of leaves of silver birch measured at four-
hourly intervals on 5th July 1991. Measurements were made on the ninth leaf 
from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Figure 4.12 Calculated turgor pressure of leaves of silver birch measured 
at four-hourly intervals on 5th July 1991. Measurements were made on the 
ninth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Figure 4.13 Water potential of leaves of silver birch measured at four 
hourly intervals on 17th July 1991. Measurements were made on the ninth 
leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Figure 4.14 Osmotic potential of leaves of silver birch measured at four-
hourly intervals on 17th July 1991. Measurements were made on the ninth 
leaf from each plant. 

a) Values are shown at the midpoint of the sampling interval and represent the 
mean of ten leaves (five from each of two chambers per treatment); error bars 
depict two standard errors of the means. Time is BST. 

b) Level of significance for the differences between plants grown in 
elevated or ambient CO2 (treatment effect) and between leaves from plants 
grown in different chambers (inter-chamber effect). * significant at P= 0.05, 

significant at P= 0.10. 
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Figure 4.15 Calculated turgor pressure of leaves of silver birch measured 
at four-hourly intervals on 17th July 1991. Measurements were made on the 
ninth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 

4.3.5 Yield turgor 

Figures 4.16 and 4.17 show that calculated yield turgor varied with time, on the 5th 

and 17th July 1991, respectively. Figure 4.16 shows that the amplitude of this 

variation was larger on 5th  July and that growth in elevated CO2 resulted in a 
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significant increase in the value of yield turgor during the morning (8.00-12.00) but 

that this difference disappeared towards evening. The values for yield turgor on 17th 

July were much lower throughout the day, and whilst yield turgor was higher in 

elevated CO2 on three of the four occasions, the differences between treatments were 

not significant at P<0.1. 
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Figure 4.16 Calculated yield turgor of leaves of silver birch measured at 
four-hourly intervals on 5th July 1991. Measurements were made on the 
eighth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Figure 4.17 Calculated yield turgor of leaves of silver birch measured at 
four-hourly intervals on 17th July 1991. Measurements were made on the 
eighth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean, of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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4.3.6 Effective turgor Pressure 

The effective turgor [calculated turgor (P) - yield turgor (flu of leaves measured at four 

hourly intervals are presented in Figure 4.18 for the 5th July and 4.19 for the 17th 

July. There was no consistent effect of CO2 treatment on effective turgor. 

Figure 4.18 shows that the pattern of variation in (P-fl was similar in leaves from both 

CO2 treatments on 5th  July. The amplitude of the variation was slightly larger in 

leaves from elevated CO2 plants, but this was not significant at P= 0.05. There was no 

significant difference in effective turgor of leaves measured at 8.00, although LER was 

significantly higher in elevated compared with ambient CO2 plants measured at that 

time. 

On 17th July effective turgor in elevated CO2 was slightly (but not significantly) higher 

in the morning (8.00), but subsequently dropped slightly below the value of leaves in 

ambient CO2 by the late afternoon (16.00) (Figure 4.19), following a similar pattern to 

LER. 

On both days and in both CO2 treatments effective turgor followed the same pattern as 

values for turgor measured on leaves at the same time, except at 12.00 on 5th (cf 

Figures 4.15 and 4.19). 

Effective turgor increased in both treatments towards evening reaching a maximum at 

approximately the same value by 20.00. 
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Time (h) 	8.00 	12.00 	16.00 	20.00 

Treatment 	0.580 	0.502 	0.063t 	0.405 
effect P< 

Inter-chamber 0.556 	0.156 	0.126 	0.543 
effect P< 

Interaction 	0.186 	0.820 	0.589 	0.427 
P<  

Figure 4.18 Effective turgor (P-fl of leaves of silver birch measured at 
four-hourly intervals on 5th July 1991. Measurements were made on the 
ninth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Time (h) 	8.00 	12.00 	16.00 	20.00 

Treatment 	0.104 	0.636 	0.647 	0.878 
effect P< 

Inter-chamber 0.026* 	0.482 	0.925 	0.831 
effect P< 

Interaction 	0.025* 	0.450 	0.145 	0.547 
P< 

Figure 4.19 Effective turgor (P-fl of leaves of silver birch measured at 
four-hourly intervals on 17th July 1991 Measurements were made on the 
ninth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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4.3.7 Plastic extensibility 

Plastic extensibility (%plasticity/elasticity) of the leaves is shown in Figures 4.20 for 

the 5th July and 4.21 for the 17th July. The variation in plasticity over the course of 

the day was small on both the days that measurements were taken. 

Figure 4.20 shows that there were no significant treatment differences in the plasticity 

of leaves at any of the sampling times on the 5th  July. Significant variation existed in 

the plastic extensibility of leaves from different open top chambers measured at 8.00 

and 20.00. However, no similar variation was recorded in leaf extension rates 

measured at that time (Figure 4.6). 

On 17th  July there was little variation in plasticity of leaves sampled between 8.00 and 

16.00 in either treatment, but the plasticity of elevated CO2 leaves was significantly 

below that of the ambient CO2 leaves measured at 20.00 (P<0.05 Figure 4.21). At this 

time, the calculated values of turgor pressure were high in both treatments but the 

higher plastic extensibility in the leaves of ambient CO2 plants were not mirrored by 

concurrent leaf extension rates (Figure 4.7). Air temperatures recorded at this time 

were similar to those recorded in the morning when extension rates were higher (Figure 

4.9). 
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Time (h) 8.00 12.00 16.00 20.00 

Treatment 0.101 0.137 0.138 0.125 
effect P< 

Inter-chamber 0.012* 0.800 0.072k 0.001* 
effect P< 

Interaction 0.578 0.797 0.138 0.071t 
P<  

Figure 4.20 Plastic extensibility (plasticity) of leaves of silver birch 
measured at four-hourly intervals on 5th July 1991. Measurements were 
made on the eighth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent the 
mean of ten leaves (five from each of two chambers per treatment); error bars 
depict two standard errors of the means. Time is BST. 

b) Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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Time (h) 8.00 12.00 16.00 20.00 

Treatment 0.798 0.873 0.840 0.008* 
effect P< 

Inter-chamber 0.679 0.892 0.676 0.418 
effect P< 

Interaction 0.160 0.163 0.953 0.170 
P< 

Figure 4.21 Plastic extensibility (plasticity) of leaves of silver birch 
measured at four-hourly intervals on 17th July 1991. Measurements were 
made on the eighth leaf from each plant. 

Values are shown at the midpoint of the sampling interval and represent 
the mean of ten leaves (five from each of two chambers per treatment); error 
bars depict two standard errors of the means. Time is BST. 

Level of significance for the differences between plants grown in elevated 
or ambient CO2 (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect). * significant at P= 0.05, t 
significant at P= 0.10. 
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4.3.8 Summary of results 

Leaf extension rates were higher during the morning in plants grown in elevated CO2 

compared to those grown under ambient conditions, on all the days that measurements 

were made. Table 4.1 and 4.2 separate the results into two parts and summarises those 

obtained in the morning (8.00-12.00) (Table 4. 1), and those obtained during the latter 

part of the day (16.00-20.00) (Table 4.2). 

Table 4.1 Summary of the results obtained during the morning (8.00-
12.00) of the two days measurements were taken. E represents elevated CO2 
and A ambient CO2. * is significant at P=0.05, ** significant at P=0.001 and 
t represent a difference between CO2 treatments that is significant at P=0.10, 
n.s = not significant. 

5th July  17th July 

Time 8.00 12.00 8.00 12.00 

Leaf extension E>A** E>Af E>At n .s 

V 
E>A* E>A** n.s n.s 

n.s E<A* EczA** n.s 

P E>At n.s E>At n.s 

Y E>A* E>A* n.s n.s 

n.s n.s Its n.s 

Plastic n.s 
extensibility  

n.s n.s n.s 
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Table 4.2 Summary of the results obtained during the latter part of the day 
(16.00-26.00) of the two days measurements were taken. E represents 
elevated CO2 and A, ambient CO2. * is significant at 0.05, ** significant at 
0.001 and t represent a difference that is significant at 0.01, n.s = not 
significant. 

5th July   17th July  

Time 16.00 20.00 26.00 16.00 20.00 02.00 

Leaf extension E>At n.s n.s n.s A>E** A>Et 

V E>At n.s n.s n.s n.s 

n.s E>At n.s n.s 

P E>A* E>At  A>E* n.s  

Y n.s n.s  n.s n.s 

p.y E>At n.s n.s n.s 

Plastic 
extensibility 

n.s n.s n.s 

EwIIIstaIII] 

Leaf extension rates were higher in plants measured on the 5th compared to the 17th 

July. The increase in leaf extension rate during the morning in plants grown in elevated 

CO2 was also higher on the 5th. This increase in leaf extension rate in elevated CO2 

plants was accompanied by significant (Pc0.05) increases in Vt  and Y on 5th. On the 

17th the increase in leaf extension rate in elevated CO2 plants in the morning was 

accompanied by a significant decrease in it. Both radiation and temperature were lower 

during the morning of 17th compared to 5th July. 

16.00-20.00 

The slight increase in leaf extension rates in elevated CO2 plants observed during the 

latter part of the 5th July was accompanied by a significant increase in P (at 16.00) and 

a slight (non-significant at Pc0.05) increase in xy, it and (P-Y) . During the latter part of 

17th July the leaf extension rate of plants grown in elevated CO2 concentrations was 

significantly below that of the ambient CO2 grown plants. The higher levels of leaf 

extension in ambient CO2 grown plants was accompanied by a significant increase in P 

and in plasticity and a slight (non significant at P=0.05) increase in v' it and (P-fl. 
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Both radiation and temperature levels rose sharply at 16.00 on 17th July and remained 

high for two hours, but both were already dropping by this time on 5th July. 

There was no rain on either day that measurements were made. Night time temperature 

was higher on the 5th and day time temperature reached a maximum earlier than on 17th 

July. There was more cloud cover on the 17th with the result that PFD was lower than 

on the 5th July, although it increased sharply between 15.00 and 17.00, reaching 

higher values than recorded at the same time on the 5th July. 

4.4 DISCUSSION 

4.4.1 Differences in LER measured on 5th and 17th July 

The reasons for the observed differences in the parameters measured between days are 

not readily explained by differences in weather and an alternative is suggested. An 

increase in leaf area of individual leaves of plants grown in elevated CO, was observed 

in May; however, when the seedlings were harvested at the end of August there was no 

increase in either the number of leaves produced from the main stem or the total area of 

those leaves (3.5.4). This suggests that the leaves produced later in the season in 

elevated CO2 plants were smaller than those produced by plants grown in ambient CO2. 

Although rates of leaf extension were still slightly increased in elevated CO2 plants, 

compared to ambient CO2 plants measured on the 17th July, they fell below those of 

the ambient CO2 plants in the afternoon, with the result that there was no difference in 

the expansion of leaf area in leaves from elevated or ambient CO2 measured over the 

24-hour period (246 mm 2  in elevated CO, leaves cf. 238 mm2  in ambient CO, leaves, 

P<0.05). The different pattern of leaf extension observed between 16.00 and 20.00 in 

leaves measured on 17th July may be indicative of a reduction in the size of leaves 

produced in elevated CO2. 

4.4.2 Diurnal variation in leaf extension rate 

Although the pattern of leaf extension varied over the diurnal period both between and 

within treatments, in all cases higher rates of leaf extension were recorded during the 

daylight period in accordance with results for silver birch of Taylor and Davies (1985, 

1936b) and McDonald, Stadenberg and Sands (1992). Despite such variations, the 

extension rates of leaves in elevated CO2 were consistently higher during the early 

morning than those in ambient CO2. The following factors help to explain the high 

early morning increase in leaf extension rates. 
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4.4.3 Temperature 

The process of cell wall loosening involves the breaking of bonds by enzymes and is 

therefore expected to be closely coupled to leaf temperature (Kemp and Blacklow, 

1980; McDonald, Stadenberg and Sands, 1992). In the experiment described here, leaf 

extension rates were low during the night when temperatures were low and lower 

minimum extension rates were recorded when the minimum night-time temperature was 

lower, but during the daylight period leaf extension rates only correlated with 

temperature during the middle part of the day (12.00 - 16.00) with a lag of 

approximately two hours. Temperature effects on tissue extensibility alone could not 

account for the low rates of extension seen during the early evening as temperatures at 

this time were similar to those in the early morning when extension rates were high. 

4.4.4 Photon flux density 

Both radiation quantity and quality are known to affect leaf expansion. Rates of leaf 

extension were higher on 5th July compared to those measured on 17th July, when 

PEDs were lower. Increases in PFD enhance the rate of photosynthesis and the 

availability of carbohydrate for energy and the maintenance of osmotic potential, but if 

carbohydrate availability was a factor limiting leaf expansion, leaves from elevated CO2 

plants would be expected to show a consistent increase in leaf extension rate (Barlow, 

1983) 

4.4.5 Turgor pressure 

CO2 has been reported to reduce ,gs  resulting in lower rates of transpiration and higher 

water potentials which, in addition to an increase in osmotic potential because of 

increased carbohydrate production, may be expected to increase turgor. In this 

experiment there were no consistent effects of elevated CO2 treatment on either osmotic 

potential, or on water potential, despite a reduction in g (5.3.1), but turgor pressure 

was consistently higher in plants in elevated CO2 on the 5th July. 

The pattern of turgor varied both with time and treatment on the two days, mainly as a 

result of variation in leaf water potential. Leaf extension rates did correlate with turgor 

qualitatively over the middle part of the day (approximately 12.00 to 16.00) but the 

correlation was poor during the latter part of the day (20.00-26.00) when temperature 

and radiation levels were low. Bunce (1977) found a good correlation between turgor 

and leaf extension only when temperatures were high. In a controlled environment 

experiment on silver birch by Taylor and Davies (1986b) the main site of control 
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appeared to be the cell wall and no correlation between leaf extension and turgor 

pressure was found. 

4.4.6 Yield turgor 

Values obtained for yield turgor differed between the two days. The values obtained on 

the 5th July are similar to reported values of yield turgor for silver birch of 0.3-0.4 

MPa (McDonald, Lohammar and Ingestad, 1992), whereas the values obtained during 

the 17th July were lower than expected. Yield turgor was found to vary over the course 

of the day but the pattern was not consistent between days. This variation in yield 

turgor is in apparent disagreement with the findings of McDonald, Sands and 

Stadenberg (1992) who found no diurnal variation in yield turgor for Salix vinünalis 

using the psychrometer method. In a controlled environment experiment on silver 

birch, Taylor and Davies (1986b) found no difference in yield turgor between light -and 

dark periods in plants growing at constant temperature but in a parallel experiment 

(Taylor and Davies, 1986a) they did find that yield turgor was affected by changes in 

the red: far red ratio of incident light. In the experiment described here the quality of 

light, including the red:far red ratio reaching the leaves of any plant varies with the 

angle of incidence of the sun relative to the chamber and the proximity of neighbouring 

plants, and this may account to some extent for the variation in yield turgor. If the 

red:far red ratio does indeed affect yield turgor the low values recorded on the 17th July 

may be explained by the increased cloud cover on this day resulting in an increase in the 

red: far red ratio of radiation reaching the leaves. The validity of the technique used to 

measure yield turgor in this experiment is discussed in §4.49. 

4.4.7 Cell wall plasticity 

Values for plastic extensibility of the tissue did not correlate with the values obtained 

for leaf extension rates. In a similar experiment on Salix viniinalis, McDonald, 

Stadenberg and Sands (1992) suggested that the failure of plasticity measurements to 

correlate with leaf extension rates may relate to the technique used to measure plasticity: 

an assessment of the Instron approach to estimate plasticity is made in section §4.49. 

Despite inconclusive evidence of differential plasticity in this experiment, an increase in 

cell wall extensibility associated with a PFD-activated wall loosening process is 

considered to contribute to the high rates of leaf extension observed in elevated CO2 

plants in the early morning. Taylor and Davies (1986b) found higher values of plastic 

extensibility in silver birch during the photo period. They also reported a decrease in 

cell-surface pH in silver birch leaves exposed to PFD when extensibility and leaf 

growth rates were highest. Extension of leaves of Phaseolus vu/garis has been shown 
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to respond to an increase in PFD of 250 jimol 1  m 2s-1  (Van Volkenburgh and Cleland, 

1980, 198 1) and this was not associated with an increase in leaf turgor but was thought 

to result from cell wall acidification leading to wall loosening. 

4.4.8 Control of leaf extension 

The factors affecting leaf extension vary over the course of the day, such that at any 

time the limiting factor for cell extension may vary. From this experiment it can be 

suggested that cell wall extensibility was limiting leaf expansion during the early 

morning and evening in leaves from ambient CO2 grown plants but this was partly 

ameliorated in the leaves of elevated CO2 plants. During the middle part of the day 

when temperature and PFD were comparatively high, calculated turgor played a more 

prominent part and leaf extension rates followed the pattern of turgor pressure in the 

leaves of plants from both treatments. The low rates of extension measured at 20.00, 

when turgor pressures were relatively high may be the result of low PFD and low 

temperature reducing extensibility. The virtual cessation of growth during the night is 

attributable both to the darkness and to low temperatures reducing cell wall 

extensibility. 

4.4.9 Assessment of the techniques used in this study 

Turgor pressure 

Bulk leaf turgor pressure was calculated from measurements of leaf water potential by 

the pressure chamber and osmotic potential on extracted sap according to equation 4.3. 

Both these measurements were average values for the leaf tissue sampled. It has been 

suggested that the rate of expansion of the epidermis controls leaf extension. The 

heterogeneity of cells within leaf tissue and the difference in numbers of cells of other 

tissues (6.3.2) may mean that the bulk values obtained in this study do not accurately 

reflect those of the epidermis. No correction was made in the estimation of osmotic 

potential for apoplastic water content and the values of P obtained therefore, may be 

overestimates as a result of dilution of sap by apoplastic water. Time of sampling may 

also complicate the interpretation of results in this study. Values of water potential (and 

therefore turgor) are usually high in plants measured at dawn, and subsequently drop. 

In this study water potential may have already begun to drop by the time the first 

measurements were made: measurements made of dawn might have shown a better 

correlation to the early morning leaf extension rates. 
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Instron technique for estimating plasticity of cell walls 

One problem of measurements made using the Instron technique is that the tissue is 

stored in methanol, which eliminates enzyme activity, and is then rehydrated prior to 

measurement. The rehydration process may lead to the formation of new covalent 

interactions within the cell wall thus changing some of the wall properties (Brett and 

Waldron, 1990) 

Another potential problem is that the stress applied by the Instron technique is 

unidirectional whereas there is good evidence to suggest that the force experienced by 

an expanding cell wall is multi-directional (multi-axial) stress. The cellular 

heterogeneity of higher plant tissue also complicates interpretation of results as it is 

generally accepted that cell expansion of the epidermal layer controls leaf expansion 

(Cosgrove, 1993). 

Some of the problems associated with the calculation of turgor and the use of the 

Instron technique could be removed by the use of a micro pressure probe, or turgor 

probe (Husken, Steudle and Zimmerman, 1978). Turgor probes enable direct 

measurements of individual cells to be made (Cosgrove etal., 1984; Cosgrove, 1987) 

and, by simply comparing extension rate and turgor pressure, changes in wall rheology 

can be followed (Pritchard, etal., 1991). The turgor probe technique has proved to be 

difficult with the small cells of silver birch (J. Pritchard and D.Tomas, pers. comm.). 

Yield turgor 

The pressure-chamber technique (based on the technique of Cosgrove, 1987 and 

modified by Sands cx' al. 1992) used for the evaluation of yield turgor in this study 

(4.2.6) was evaluated for Salix by Sands, etal. (1992). A comparison of this method 

with the osmotic-solutions method (Van Volkenburgh and Cleland, 1981) and the 

psychrometer technique (Cosgrove cx' al., 1984) showed good agreement between 

results and resulted in the recommendation of the pressure-chamber approach when a 

large number of simultaneous measurements of yield turgor are to be made. An 

equivalent evaluation for silver birch may be necessary to validate the use of this 

technique in the future. 

When doing an experiment of this nature in the field it is inevitable that variations will 

occur in leaf temperature, photon quality and quantity reaching the leaves as a result of 

the position of plants within the chambers. Water and nutrient gradients within pots 

may further complicate results. This problem will have been compounded by the 

necessarily small sample size used in this study. It is suggested that in future similar 
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studies should be done with a larger sample size and in conjunction with a series of 

short-term experiments in controlled environments designed to investigate the 

interaction between elevated CO2 and, for example, PFD, red:far red ratio, nutrient 

availability and water status, in determining leaf extension rate. 

4.4.10 Conclusions 

Increase in the atmospheric concentration of CO2 results in increase in the area of 

individual leaves of silver birch seedlings, at least in the early part of the growing 

season. This increase in leaf area is a result of an increase in leaf extension rate during 

the early morning caused by an increase in turgor pressure. The role of PFD-activated 

acidification of cell walls in elevated CO2 plants in contributing to leaf extension rates 

requires further investigation. There was no difference in the number of leaves 

produced from the main stem or in the total area of those leaves between plants grown 

in ambient or elevated CO2 and harvested at the end of August 1991. This suggests 

that the increase in LER is not sustained and leaves produced later in the season were 

smaller in plants grown in elevated CO2. The reduction in LER measured during the 

afternoon of 17th July provides some evidence for this. The increase in leaf area in 

plants grown in elevated CO2 early in the season will have enabled them to grow faster 

and utilise resources faster than plants grown in ambient CO2 but this advantage was 

not sustained and there was no significant difference in total leaf area of plants by the 

end of August 1991. 
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CHAPTER 5 THE EFFECTS OF ELEVATED CARBON 
DIOXIDE ON LEAF SURFACE CHARACTERISTICS OF 

SILVER BIRCH 

5.1 INTRODUCTION 

Chapter 4 described the effects of an increase in the atmospheric concentration of CO2 

on the extension of leaves of silver birch It has been established that in fully developed 

leaves photosynthetic activity and transpiration are closely linked to leaf structure 

(Nobel, 1985). Stomatal size and number, and the organisation of the internal structure 

of leaves play an important part in determining the rate of absorption of CO2 at the sites 

of carboxylation, and the rate at which water is lost from leaves (Nobel, 1985). 

Chapters 5 and 6 of this thesis, describe the effects of an increase in the concentration 

of atmospheric CO2 on leaf structure. In this chapter the effects of growth in elevated 

CO2 on leaf surface properties are described. 

Stomata show a short-term physiological response to an increase in ambient CO2 

concentration (1.2.2), although some species may be relatively insensitive (Beadle et 

al., 1979). In general, stomatal conductance has been found to be reduced in trees 

grown and measured in elevated COn, for example: Pinus taeda, Liquidainber 

sttyac(flua (Fetcher et al., 1988); Ochionia lagopos, Pentaclethra macroloba (Oberbauer 

et al, 1986); Pinus radiata (Hollinger, 1987); Acer saccharinurn (Bunce, 1992). In a 

review Eamus and Jarvis (1989) indicated that the reduction in g5 in young trees was 

generally between 10 and 60%. Most of the determinations of the long-term effects of 

elevated CO2 on stomata have relied on porometers. These measure leaf conductance 

but do not provide any information concerning changes in surface characteristics 

(Mansfield etal., 1990). Evidence from herbarium specimens (Woodward and Bazzaz, 

1988; Beerling and Chaloner 1992,1993a,b; Beerling etal., 1993) and controlled 

environment studies (Woodward and Bazzaz, 1988) have shown that in some species 

stomatal density is sensitive to CO2 concentration, and is less on leaves of plants grown 

in elevated CO2 concentration. 

The aim of this study was to determine the effect of elevated CO2 on stomatal 

conductance and leaf surface characteristics of silver birch. Measurements of g5 were 

made using a porometer and stomatal density was estimated from replicates of the leaf 

surface. Measurements of the length, width and area of individual stomatal apertures 

were also made by direct observation using a scanning electron microscope and image 
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analyser to assess the relative contribution of the physiological response to elevated 

CO2 and that of changes in leaf surface properties in determining leaf surface 

conductance. 

5.2 MATERIALS AND METHODS 

5.2.1 Establishment 

Seeds of silver birch were germinated under ambient (unsupplemented) or elevated 

(ambient + 350 jimol mol 1)  CO2 concentration. At the three-leaf stage the seedlings 

were transplanted into 1.5 dm 3  pots and placed into eight open top chambers with the 

same CO2 regime. Twenty five plants were placed in each chamber. In March 1992 

the silver birch seedlings were repotted into 5 dm 3  pots containing sand:peat:loam 

(2:5:3). Ten plants were placed in each chamber. All plants were placed in in 

chambers with the same CO2 regime they had been growing in the previous year. 

A full description of the plant material used in this experiment and the conditions under 

which the plants were germinated and grown is given in Chapter 2. 

5.2.2 Porometer measurements 

In 1991 stomatal conductance was measured using a null balance diffusion porometer 

(LI-1600, Li-Cor Instruments Inc., Lincoln, Nebraska, USA). The porometer head 

was clamped onto the leaf, and leaf temperature, air temperature, PFD and leaf surface 

conductance were recorded. The boundary layer conductance (ge) in the cuvette is 

minimised by the fan and the value of surface conductance (sur ) calculated by the 

porometer has been corrected for ga  using the manufacturers estimate of 2.7 mol m2 S-

1  to  give gs•  Measurements were made between 11.00 and 13.00 BST on the abaxial 

surface of 40 fully expanded leaves per CO2 treatment (ten leaves from each of four 

chambers per CO2 treatment) on four occasions between July and September in 1991. 

In 1992 a transient porometer (AP4, Delta-T devices Ltd, Burwell, Cambridge) was 

used. Measurements were made between 11.00 and 13.00 on the abaxial surface of 40 

fully expanded leaves per CO2 treatment (ten leaves from each of four chambers per 

CO2 treatment) on four occasions between April and June 1992. 
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5.2.3 Leaf surface impressions 

Impressions of the abaxial surface of leaves were made non-destructively using 

"Xantropren" (Bajer, Germany) a silicon rubber material used primarily for dental 

impressions. This material was used to make replicas of 30 leaves per CO2 treatment 

(one leaf from each of ten leaves per chamber, three chambers per CO2 treatment). 

"Xantopren" is produced by mixing a silicon rubber base with an activator. The two 

compounds were mixed and a layer of 'Xantopren' approximately 1-2 mm thick was 

spread over the leaf surface. The compound sets in approximately three minutes, 

depending on the amount of activator used. Once dry the replicas were peeled off the 

leaves and stored in labelled vials. Positive impressions were made by painting clear 

nail varnish onto a microscope slide and placing the Xantopren impression face down 

on the slide. Another slide was placed on top to add weight to ensure the replica 

remained flat against the nail varnish. Replicas were left for a minimum of one hour to 

dry in a desiccator but best results were obtained when they were left overnight. On 

removal of the imprint a positive impression was left in the nail varnish. Positive 

impressions were examined at 250x magnification under a light microscope (Ortholux, 

Leitz Ltd., Luton, Beds) with a camera attachment. Six fields per slide were selected at 

random and photographed. Numbers of stomata and epidermal cells were counted by 

viewing the negatives under a photographic enlarger. Calculations of stomatal 

frequency (number of stomata per mm 2), epidermal cell frequency (number of 

epidermal cells per mm2) and stomatal index (1.1) were made. 

Stomatal index enables the effects on stomatal density to be seperated into changes in 

the number of stomata initiated and changes in epidermal cell extension. 

5.2.4 Determination of stornatal aperture 

Direct measurements of stomatal apertures were made using the technique described by 

Van Gardingen, Jeffree and Grace (1989.) 

Measurements of stomatal conductance were made on four leaves per CO2 treatment 

(two from each of two chambers per CO2 treatment) using a null balance diffusion 

porometer (Li-1600, LiCorinc. Lincoln Nebraska USA) §5.2.1. 

As soon after conductance was measured as possible (and within 17 seconds) the 

portion of leaf under investigation was excised and mounted abaxial side up, on a cryo- 

specimen stub using a cryo-adhesive (Tissue tek OCT compound, Lab-tek products, 
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Illinois USA). One portion of leaf (or specimen) was taken from each of the leaves on 

which a measurement of gs was made. (Prior to this experiment a sample of leaves 

was excised and the response of g5 measured using the porometer for one minute after 

excision. There was no change in gs forty seconds after excision). The stubs were 

then placed in a dewar containing liquid nitrogen where they were stored until they 

were examined under a scanning electron microscope (S250 MK1, Cambridge 

Instruments, Cambridge, U.K.) and photographed using 120 and 35 mm film. Low 

magnification images were recorded to be used to measure stomatal density. High 

magnification images of approximately six stomatal apertures per frame were recorded 

to be used for the direct measurement of aperture dimensions using an image analysis 

system (Quantimet 970, Cambridge Instruments, Cambridge, UK.) The area, width, 

length and perimeter of each stoma were measured. 

Values of stomatal conductance, gs , were calculated for each specimen using equations 

5.2) and 5.3) (Van Gardingen, Jeffree and Grace, 1989): 

flDPa  
k r d 	1n(4a/bl 

RTXI 	 "I/k 
[ira1 b1 	ira1 	j 

= A.. 

where A is Pore area 

a is Major axis radius (m), 

b is Minor axis radius (m), 

b' is Minor axis radius calculated from equation 5.3) (m), 

D isDiffusive coefficient of water vapour in air (m?-s 1 ), 

d is Depth of pathway for diffusive gas exchange (m), 

g5 is Stomatal conductance (mol m -2s-1 ), 

k is Number of stoniatal apertures measured per specimen, 

it is number of stomata per m 2, i.e. stomatal density (m 2), 

Pa is Atmospheric pressure (J m 3), 

R is Universal gas constant (8.314 J mo1 1  K 1 ), 

T is Mean of leaf and air temperature (K). 

(5.2) 

(5.3) 
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Measurements of d were made from scanning electron micrographs taken of freeze 

fractured leaves of the same age, and sampled at the same time, as those in the 

experiment. Measurements of d ±1 jim were made from eight stomata per CO2 

treatment (two stomata from two leaves per chamber, two chambers per CO2 

treatment). 

5.3 RESULTS 

5.3.1 Stomata! conductance 

Tables 5.1 and 5.2, show the mean value of stomatal conductance for plants measured 

on four clear days during July 1991, and between the end of May and beginning of 

June 1992, respectively. On each occasion data were collected from leaves of the same 

age from ten plants from each of four chambers per treatment, all measurements were 

made between 11.00 and 13.00 hours. The same plants were measured in 1991 and 

1992. Plants were measured at the same concentration of atmospheric CO2 that they 

were grown in. Analysis of variance showed that stomatal conductance varied between 

the days of measurement (Pc0.01) but the values of stomatal conductance were 

consistently lower in plants grown and measured in elevated CO2, than in ambient CO2 

(Pc0.05), although there was also a significant CO, and inter-chamber interaction, 

suggesting that the magnitude of the effect of elevated CO2 varied between chambers. 

The reduction in stomatal conductance in elevated CO2 compared to ambient CO2 was 

approximately 15%, although the measurements were made with different porometers 

in the two years. 

Table 5.1 Stomatal conductance of abaxial leaves of silver birch grown and 
measured in two concentrations of atmospheric CO2 measured on four 
occasions during July 1991. On each occasion measurements were made on 
forty plants per treatment (ten from each of four chambers per CO2 
treatment). Leaf temperature = 21 ±2 0C, RH = 50 ±8%. Values represent 
the mean (± one standard error) of one leaf from 160 plants. Results from a 
two-way ANOVA are also presented. * significant at P=0.05, ** significant 
at P=0.01. 

Ambient 	Elevated 	Treatment Inter- 	Interaction 
effect 	chamber 	Pc 

effect Pc 

gs 	 337.03 	285.97 	0.001** 	0.848 	0.435 
(mmol m 2  s') ±9.71 	±7.63 
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Table 5.2 Stomatal conductance of abaxial leaves of silver birch grown and 
measured in two concentrations of atmospheric CO2 measured on four 
occasions during May/June 1992 On each occasion measurements were 
made on forty plants per treatment (ten from each of four chambers per CO2 
treatment).. Leaf temperature = 22 ± 2.5 °C, RH = 40%. Values represent 
the mean one standard error) of one leaf from 160 plants. Results from a 
two-way ANOVA are also presented. * significant at P=0.05, ** significant 
at P=0.O1. 

Ambient 	Elevated 	Treatment Chamber 	Interaction 
effect Pc 	effect Pc 	P< 

gs 	 255.34 	21.6.44 	0.013* 	0.080 	0.003** 

(mmo! m 2  c1) ±11.76 	±10.69 

5.3.2 Leaf surface impressions 

Tables 5.3 and 5.4 show the effects of growth in two concentrations of atmospheric 

CO2 on the frequency of stomata on the abaxial surface of leaves from plants measured 

midway through their first and second season in elevated CO2 conditions. Stomatal 

density (the number of stomata per mm 2  of leaf surface) was slightly reduced in 1991 

in plants grown in elevated CO2, and the reduction in stomatal density was significant 

(Pc0.05) in !eaves grown and measured in elevated CO2 in 1992. Epidermal ce!l 

density was slightly reduced in elevated CO2 plants measured in 1991 and significantly 

reduced in elevated CO2 plants measured in 1992. There was no significant effect of 

growth in elevated CO2 on stomata! index. In 1991 there was a significant variation in 

epidermal cell density in leaves produced in different chambers and this resulted in 

variation in stomatal index. Results of stomatal index and epidermal cell density 

indicate that the reduction in the number of stomata per unit area is a result of an 

increase in the expansion of epidermal cells and not an increase in the initiation of 

stomata. Conditions during growth, for example PFD, nitrogen availability, 

temperature and water status are known to affect leaf development (Terry etal., 1983) 

and changes in one or more of these environmental variables may be responsible for the 

variable response amongst chambers. 
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Table 5.3 Stomatal density and index, and epidermal cell density of the 
abaxial leaves of silver birch grown in two concentrations of atmospheric 
CO2;  measured in July 1991 Values represent the mean (± one standard 
error) of one leaf from 40 plants (ten from each of four chambers per CO2 
treatment.) Results from a two-way ANOVA are also presented. * 
significant at P=0.05, ** significant at P=0.01. 

Ambient 	Elevated 	Treatment 	Inter- 	Interaction 
CO2 	CO2 	effect PC 	chamber 	PC 

effect PC 

Stomata! 	11.16 	11.43 	0.401 	0.042* 	0.159 
index 	±0.24 	±0.21 

Stomatal 	115.73 	109.60 	0.112 	0.743 	0.385 
density 	±4.05 	±2.68 
MM-2 

Epidermal 	914.90 	861.73 	0.062 	0.008** 	0.553 
.cell density 	±21.90 	±17.9 
mm-2  

Table 5.4 Stomatal density and index, and epidermal cell density of the 
abaxial leaves of silver birch grown in two concentrations of atmospheric 
CO2, measured in June 1992 Values represent the mean (± one standard 
error) of one leaf from 40 plants (ten from each of four chambers per CO 
treatment.) Results from a two-way ANOVA are also presented. * 
significant at P=0.05, ** significant at P=0.01. 

Ambient 	Elevated 	Treatment Chamber Interaction 
CO2 	CUi 	effect PC effect P< PC 

Stomatal 9.89 9.85 	0.891 	0.472 	0.520 
index ±0.18 ±0.26 

Stomata! 212.50 197.27 	0.026* 	0.679 	0.495 
density ±4.76 ±4.40 
mm-2  

Epidermal 	1932.05 	1824.77 	0.015* 	0.986 	0.789 
cell density 	±18.88 	±36.84 
MM-2 
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5.3.3 Stomatal aperture measurements 

Figure 5.1 shows a scanning electron micrograph of the abaxial surface of a leaf of 

silver birch. There was no evidence of damage to the leaf surface caused by either the 

porometer or the procedure used to excise, store and prepare the specimens. A 

specimen is defined as the portion of leaf excised after porometer readings were made, 

attached to a cryo-stub and viewed using the SEM. Four specimens were taken per 

CO2 treatment. 
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Figure 5.1 Scanning electron micrograph showing the abaxial surface of a 
leaf of silver birch. 
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The mean dimensions of stomatal apertures, obtained using image analysis are 

summarised in Table 5.5, along with the stomatal density and leaf surface conductance 

for each specimen. Stomatal density varied between specimens, but the variation was 

larger in leaves from ambient CO2 grown plants. There was no significant difference in 

stomatal density with CO2 treatment. Both mean aperture area and width tended to 

increase as gs increased. The mean area and width measurements obtained for the 

Ambient 2 specimen were larger than those of Ambient 3 despite the lower value of 

surface conductance; this is attributable to the lower stomatal density of the second 

specimen. The mean area of apertures from leaves of elevated CO2 plants was 49% 

smaller compared to those of ambient CO2 plants and width of apertures from elevated 

CO2 leaves was 43% smaller compared to those of leaves from ambient CO2 plants. 

The mean length of apertures was 17% smaller in plants grown in elevated CO2. The 

length to width ratio of apertures was significantly higher (Pc 0.001) in elevated CO2 

plants compared with ambient CO2 plants. 
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Table 5.5 Mean stomatal aperture dimensions (± one standard error), leaf 
surface conductances and stomatal density of leaves of silver birch grown in 
two concentrations of atmospheric CO2. Measurements were made on four 
leaves from each treatment. The number of stomatal apertures measured on 
each sample is also given. 	Percentage change ([(ambient- 
elevated)/ambient]x100) is shown. 

Treatment No. Area 	Length Width Stornatal gs (porometer) Number 

01m2) (liin) 	(Rm) 	density 	(mmol m2s1) of 
(mm--) 	 apertures 

measured 

Ambient 1 23.6 13.63 2.65 185 133 
±1.08 ±0.35 ±0.06 

Ambient 2 112.95 20.96± 8.67 65.5 449 171 
±3.47 0.31 ±0.43 ±1.26 

Ambient 3 62.56 13.3 6.9 179.65 514 148 
±1.82 ±0.17 ±0.12 ±6.91 

Ambient 4 114.6 19.17 9.12 151.05 602 221 
±2.84 ±0.20 ±0.14 ±3.32 

Ambient 78.43± 16.77± 6.84±1 131.90± 437.50 
mean 21.91 1.94 .47 34.45 ±89.82 

Elevated 1 26.83 11.26 3.1 161.00 302 133 
±2.21 ±0.50 ±0.14 ±5.15 

Elevated 2 20.97 11.03 2.75 126.25 358 70 
±1.2 ±0.54 ±0.09 ±5.88 

Elevated 3 49.57 16.83 4.44 186.75 449 122 
±2.35 ±0.23 ±0.16 ±3.64 

Elevated 4 61.28 16.76 5.28 154.25 478 163 
±2.18 ±0.26 ±0.13 ±0.85 

Elevated 36.95 13.97 3.89 157.06 396.75 
mean ±9.48 ±1.63 ±0.59 ±12.43 ±40.63 

-49% -17% -43% 19% -9% 
change 

Figures 5.2 and 5.3 show the size-class distributions of apertures from leaf specimens 

from ambient and elevated CO2 plants, respectively. The distribution of aperture 

dimensions across the size classes varied for each specimen. Each specimen had a 

wide range in all the parameters measured. 
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Figure 5.2 Size class frequency distributions for the dimensions of 
stomatal apertures of silver birch grown in ambient CO2. The value of gs of 
each leaf specimen measured by the porometer is given in units of mrnol nr 2  
s -i .  
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Figure 5.4 shows the comparison between the value of gs obtained using a porometer 

and the value of gs calculated from measurements of stomatal apertures, using 

equations (5.1) and (5.2). Specimen (1) from ambient CO2 was not included in these 
calculations as no value of stomatal density was available. Linear regression of g5 

(calculated) against .g5 (porometer) gave a slope of 1.688 and an intercept of -399.63. 

The coefficient of determination, R 2, was 0.891 which was shown by analysis of 

variance to be significant (pc 0.001). ci was 10 pm for ambient leaves and 11 I.Lm for 

elevated leaves. 
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Figure 5.4 Values of g5 calculated using equations (5.1) and (5.2).against 
measurements of g5 obtained using a porometer. The solid line represents a 
regression line of gs  against gs and has a slope of 1.688 and an intercept of 
-399.63. R2  for the regression is 0.891. The dotted line represents a 1:1 
relationship. 

5.4 DISCUSSION 

5.4.1 Reduction of gs in increased CO 2 . 

This study has demonstrated that an increase in the concentration of atmospheric CO2 

during growth resulted in a decrease in stomatal conductance in silver birch. Lower 

stomatal conductance in plants grown in elevated atmospheric CO2 compared to those 
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in ambient CO2 has been reported for many tree species investigated including Pinus 

ponderosa (Surano etal., 1986) and Acer saccharum (Bunce, 1992), but no means all. 

The reduction in stoniatal conductance of approximately 15% reported in this study is in 

broad agreement with the general estimate of 10 to 60% reviewed by Eamus and Jarvis 

(1989). Variation in the stomatal response to elevated CO2 concentration occurs 

according to species, age and conditions during growth and measurement (Morison, 

1985). Although few data are available to describe the effect of elevated CO2 on the 

sensitivity of stomatal response to environmental variables, it has been suggested that 

variations in stomatal response to Cj occur in response to changes in water relations, 

which influence abscisic acid concentrations in leaves, and PFD. The plants under 

investigation in this experiment were watered to field capacity twice-daily and this may 

contribute to the relatively small reduction in g5 observed in elevated CO2 plants. 

An increase in gs after long-term growth in elevated CO2 has been reported for some 

other species (Brenner, Sandford and Jarvis, unpublished). Pettersson and McDonald 

(1992) reported an increase in gs in silver birch plants grown in elevated CO2: after 40 

days gs of elevated CO2 leaves was higher than g5 of ambient CO2 leaves. There was 

no evidence of down regulation in the response of stomatal conductance to C1 

concentration in the plants in this study, measured in July of 1991 (Evans etal., 1993) 

and there was no significant difference in gs between plants measured after four months 

and those measured after fifteen months in elevated CO2. 

Since stomatal index was unchanged by treatment, the reduction in stomatal density 

observed in response to elevated CO2 treatment was a result of an increase in epidermal 

cell expansion and not an increase in the number of stomata initiated. This is confirmed 

by the reductions in epidermal cell density. Thus reduction in stomatal density 

contributed to the lower stomatal conductance measured by the porometer in plants 

grown in elevated CO,. Similar reductions in stomatal density have been reported for 

Pentaclethra inacroloba (Oberbauer et al., 1985) although no decrease in stomatal 

density was found in Populus clones (Radoglou and Jarvis, 1990b) or Ochroma 

lagopus (Oberbauer et al., 1985). In elevated CO2 individual stomata showed small 

reductions in width of the apertures and length of the stomatal complex and a slight 

increase in depth of the sub-stomatal cavity compared to plants grown in ambient CO,, 

all of which also contribute to the reduction in stomatal conductance. 

The correlation between the values of g5 obtained using the porometer and gs calculated 

from direct observations of stomatal apertures using equation (5.2), was high 

(R2=0.891), although the slope and intercept differed significantly from those found in 

a similar experiment on Avena fatua L. (R2  = 0.96, intercept = -8±56, slope = 
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1.0±0.1, Van Gardingen et al., 1989). In this study, calculated values of gs were 

lower than those measured by the porometer at low conductances. The porometer was 

calibrated immediately prior to this experiment for measurement of humidity and 

temperature. There are however, several possible (and not mutually exclusive) sources 

of error in the calculated values of g5 : 

• the mathematical model describing the shape of the substomatal cavity assumes a 

cylindrical shape, which may be an over-simplification of the true shape; 

• there was evidence of a large degree of heterogeneity in the length and width of 

guard cell complexes in silver birch; this may indicate that such heterogeneity 

also exists in the depth of the substomatal cavity, and such heterogeneity cannot 

be discounted by measurements of ci made in this experiment because of the small 

sample size; and 

• large variations in stomatal density may exist across the leaf and measurements of 

stomatal density made from scanning electron micrographs may not be 

representative of the area of leaf measured by the porometer, as the area of 

specimen used to measure stomatal density amounted to less than 2% of the area 

of leaf used to measure g5. 

Oversimplification in the model describing the substomatal complex may contribute to 

the discrepancy in the correlation in Figure 5.4. Figure 5.5 shows the results of a 

sensitivity test to determine the effects of aperture width and depth of diffusive pathway 

on the calculated value of g5. Calculated values of g5 would have been overestimated if 

d had been taken to be smaller and underestimated if c/ had been taken to be larger than 

the actual value for each specimen. Calculated values of gs were very sensitive to 

changes in Y. 

1101 



Leaf surface properties 

1000 

800 

& 700 

600 

500 

400 

z 300 

200 

100 

['I 

d=8 urn 
d=9 urn 
d=1O urn 
d=1I urn 
d=12 urn 

d=13 urn 

0 	 2 	 4 	 6 	 8 

aperture width (urn) 

Figure 5.5 The effects of aperture width on the value of gs calculated 
using equations (5.1) and (5.2) for a diffusive pathway depth (d) of 9-13 

Rm. Pore length was taken to be 15 j.tm and stomata! density 100 ninr 2 . 

The most likely explanation for the discrepencies between g s  calculated using equations 

5.2 and 5.3, and gs measured using the porometer is that the values of stomatal density 

are not representative of the larger area measured by the porometer. The presence of 

veins in the leaf sample can have a large effect on estimation of stomatal density and gs. 

As only a small proportion of the area of leaf measured by the porometer was used to 

estimate stomatal density, the presence of veins may have led to stomatal density being 

overestimated. This will have been much less of a problem in the more homogenous 

tissue of Avenafatua used in the study of Van Gardingen, Jeffree and Grace (1989). 

Figure 5.6 shows the results of a sensitivity test to determine the effects of aperture area 

and stomatal conductance on die calculated value of gs  Calculated values of gs would 

have been overestimated if it had been taken to be larger and underestimated if ii had 

been taken to be smaller than the actual value for each specimen. gs is sensitive to 

changes in aperture area. 
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Figure 5.6 The effects of aperture area on the value of g s  calculated using 
equations (5.1) and (5.2) for a stomatal density (n) of 60-160 mm-2). 

The discrepency in the correlation in Figure 5.4 serves to emphasis the potential 

problems of using this direct observation technique. In future studies of this nature, 

preliminary studies should be undertaken to assess the heterogeneity of the material and 

both the sample size and the area of each sample investigated increased. 

Systems available to allow computer-enhancement of digitised video images and 

mouse-driven screen cursor systems can facilitate the recording of apertures and make 

an increase in the number of samples examined more feasible (Weyers and Meider, 

1990). 

The use of other techniques to measure stomatal apertures, for example, the use of 

epidermal peels or impressions of leaf surfaces was rejected. Leaves of silver birch do 

not readily yield epidermal strips and distortion of stomatal pore-dimensions that is 

likely to result from the preparation of such peels would introduce a different kind of 

inaccuracy in this study. The use of imprints or impressions made using Xantopreri or 

similar material, has been found to be inaccurate at low conductances (Glinka and 

Wider, 1968; Weyers and Johansen, 1985) and often introduces involuntary errors 

because the imprint material forms the best replicas of the most open pores and this 

often leads to over-estimation of the degree of stomatal opening (Weyers and Meidner, 

1990). 
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5.4.2 	Implications of a reduction in gs 

A reduction in stomatal conductance will result in nearly proportional reduced rates of 

transpiration for tall trees, such as silver birch, that are well-coupled to the atmosphere 

(McNaughton and Jarvis, 1983,1991). Transpiration plays a central role in 

determining: 

plant water status; 

• leaf energy balance; and 

together with the rate of photosynthesis, water use efficiency. 

Water use efficiency 

A reduction in stomatal conductance leads to a reduction in both photosynthesis and 

transpiration on a leaf area basis. As a result of the differential effect of stomatal 

conductance on the rates of photosynthesis and transpiration (Farqhuar and Sharkey, 

1982), transpiration is reduced more than photosynthesis, resulting in an increase in 

instantaneous water use efficiency (WUE), even in the absence of an increase in 

photosynthesis. In this study, both increase in the rate of photosynthesis (3.5.4) and 

reduction in gs  (5.3.1) have been found to occur in leaves of elevated CO2 plants, 

compared to ambient CO2 plants, and this results in an increase in instantaneous WUE. 

An increase in water use efficiency in plants grown in elevated CO2 has been reported 

for most species investigated including Ficus obtusifolia, Psychotria limonensis, 

Tabebuia rosea, Acacia niangium (Ziska etal., 1991), Pinus ponderosa (Surano etal., 

1986) and Acer saccharurn (Bunce, 1992), see Morison (1993) for review of crop 

species and Eamus and Jarvis (1989) for a review of tree species. Although water use 

may be reduced on a leaf area basis as a result of reduction in gs, this may be offset to 

some extent, on a whole plant basis, by an increase in leaf area production (Eamus and 

Jarvis, 1989). In the silver birch in this study, there was a slight (approximately 15%) 

increase in the area of individual leaves produced early in the season in plants grown in 

elevated CO2 (May-June), but this was not sustained and there was no difference in 

total leaf area between ambient CO2 and elevated CO2 plants by the end of the growing 

season (3.5.4). None the less, the smaller leaves produced late in the season (3.5.4) 

in elevated CO2 may have had higher stomatal density and, therefore, gs.  WUE of 

whole plants intergrated over time is not readily established from measurements of 

instantaneous WUE of leaves with a porometer. 
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A change in water use efficiency of one species will affect the distribution of water 

resources between species and, under conditions of limited water availability, may 

affect competitive balance and the species composition of an area. 

Water potential and turgor pressure 

The reduction in g5 and, therefore, transpiration rate may result in an increase in leaf 

turgor as a result of a decrease in water potential. Turgor pressure is the driving force 

for growth. Increased turgor has been reported in several species grown in elevated 

CO2 (Townend, 1993). The adverse affects of droughting were ameliorated in plants 

of Liquidambar stryacijlua in response to elevated CO2 treatment: whole plant water 

potential remained higher over the course of a drying cycle, water stress was delayed 

and the plants maintained their photosynthetic rate at a higher level for longer (Tolley 

and Strain 1985). The onset of severe stress in Glycine max was delayed by the 

maintenance of water potential associated with a reduction in transpirational losses as a 

result of lower g5 (Cure et al., 1987). Effects of an increase in atmospheric CO2 

concentration on water potential, osmotic potential and leaf turgor of the plants used in 

this study in relation to leaf extension are described in Chapter 4: no consistent effect on 

leaf water potential or turgor potential was seen in plants measured over two diurnal 

periods in July 1991. The absence of any consistent effect of CO2 on leaf water 

potential may have been a result of the water status of the plants at the time 

measurements were taken. It has been suggested that any increase in leaf water 

potentials may not become apparent at high soil moisture content (Morison, 1985, 

1987; Davies and Mansfield, 1987). 

Leaf energy balance 

Reduction in transpiration from stomatal closure may result in less heat being dissipated 

via evaporation. The resulting increase in leaf temperature will in turn raise the vapour 

pressure inside the leaf increasing the vapour pressure difference between leaf and air 

(Monteith and Unsworth, 1990) and partially compensating for closure of the stomata. 

Such an increase in leaf surface vapour pressure deficit is likely to result in further 

closure of the stomata which would lead to further increase in leaf temperature. 

Increases in leaf temperature as a result of reductions in transpiration may have 

important effects on photosynthesis at low wind speed or at high temperatures. 

Although the temperatures experienced by the plants were probably not sufficiently 

high in this study to affect them adversely, this has been the case in other studies. For 

example, Pinus ponderosa trees grown in elevated CO2 showed signs of stress 

including accelerated needle abscission and chlorosis , and this was attributed, at least 
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in part, to elevated foliar temperatures resulting from CO2-induced stomatal closure 

lowering transpiràtional cooling of needles (Surano et al., 1986). Similarly, leaf 

temperature of Acer saccharum also exceeded the optimum for photosynthesis at 

midday in plants grown in elevated CO2, and again this was attributed to a reduction in 

transpirational cooling (Bunce, 1992). 

5.4.3 Conclusions 

• g5 was reduced in young silver birch seedlings grown and measured in elevated 

CO,), but only by 15%. 

• Stomatal index of leaves was unaffected by growth in elevated CO2 

• Stomatal density was lower as a result of increase in epidermal cell expansion in 

elevated CO,, and this contributed to the reduction in gs. However, the reduction 

in stomatal density may not be sustained, as leaves produced later in the growing 

season were smaller (Chapter 3) and this may have led to increase in stomatal 

density and g5. 

• Slight reduction in width of the stomatal apertures and in length of the guard cell 

complex, and small increase in depth of the substomatal chambers contribute to 

the reduction in g5 in plants grown in elevated CO2. 

• Direct observation of apertures using a scanning electron microscope failed to 

assess adequately the relative effects of a reduction in stomatal aperture (i.e. 

physiological response of the stomata) and changes in leaf surface characteristics 

on the stomatal conductance of leaves grown in elevated CO2. This failure was a 

result of the heterogeneous distribution and dimensions of stomata in leaf 

surfaces of silver birch tissue and the necessarily small number and area of 

samples that could be processed using this technique. 

• Reduction in gs is likely to contribute to an increase in WUE in young silver birch 

seedlings grown in elevated COD, but changes in leaf area may have a more 

significant effect on whole plant water use. 

121 



CHAPTER 6 THE EFFECTS OF ELEVATED CARBON 
DIOXIDE ON LEAF CHARACTERISTICS OF SILVER 

BIRCH 

6.1 INTRODUCTION 

In this chapter and the previous one, the effects of an increase in atmospheric CO2 on 

leaf structure are examined. The effects of growth in elevated CO2 on the 

characteristics of the leaf surface were described in Chapter 5. The aim of the study 

described in this chapter was to determine the effect of growth in elevated CO2 on leaf 

characteristics such as specific leaf area (SLA), leaf thickness, anatomical organisation, 

chlorophyll content, chlorophyll a:b ratio of young silver birch trees, germinated and 

grown in elevated CO2. 

Variation in the photosynthetic capacity of plants has been shown in some cases to be 

associated with variations in leaf characteristics (Bjorkman etal., 1972; Lewandowska 

and Jarvis, 1977). Leaf characteristics such as SLA, leaf thickness, anatomical 

organisation, chlorophyll content, chlorophyll a:b ratio are known to be affected by the 

radiation environment (Bjorkman and Holmgren, 1963; Bjorkman, 1975; Lichtenthaler, 

1985; Caesar, 1989) and nitrogen availability (Terry et al., 1983; Trewavas, 1985) 

experienced by developing leaves. Similar changes have also been reported for plants 

grown in elevated CO2 (1.2.7). Such characteristics of leaves contribute to our 

understanding of the implications of long term growth in elevated CO2 on 

photosynthetic capacity of silver birch plants. 

6.2 MATERIAL AND METHODS 

Seeds of silver birch (provenance FC 87/20) were germinated under ambient 

(unsupplemented) or elevated (ambient + 350 kmol mol 1 ) CO2 concentration. At the 

three-leaf stage the seedlings were transplanted into 1.5 dm 3  pots and placed in eight 

OTCs with the same CO2 regime. Details of establishment and growth conditions are 

given in Chapter 2. 
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6.2.1 Leaf thickness 

The thickness of leaves was measured in August 1991 and May 1992, using electronic 

calipers (RS, Loughborough, UK). Forty leaves per CO2 treatment were measured 

(one leaf from each of ten plants per chamber, four chambers per CO2 treatment). On 

each occasion all measurements were made on leaves of the same age and between the 

second and third lateral vein. 

6.2.2 Leaf mass to leaf area ratio 

In August 1991 and May 1992 leaf discs of known area were taken from leaves of the 

same age from each of 40 plants per CO2 treatment (six discs from each of ten plants 

per chamber, four chambers per CO2 treatment.) The fresh mass of each sample was 

measured using an electronic balance with 0.1 mg resolution (Sauter, RE1E14, Fisons 

Scientific Equipment, Loughborough). The discs were then placed in paper bags and 

transferred to the oven at 70 °C overnight. Measurements of dry mass were made the 

following day. 

6.2.3 Cell count 

In May 1992, leaf discs were taken from leaves of the same age from 24 plants per CO2 

treatment (three discs from each of six plants per chamber, four chambers per CO2 

treatment). A parallel sample of leaf discs was taken for the determination of fresh and 

dry mass. The leaf discs were placed in vials containing 25 cm 3  of 

chloroform:methanol 1:1 for 48 hours to remove cuticular wax. After 48 hours the 

chloroform: methanol solution was removed and the discs treated with 5 mol m 3  NaOH 

to effect alkaline hydrolysis of the cuticle. Discs were then rinsed thoroughly and 

macerated for 24 hours in 5 cm3  of 5% w/v chromium trioxide solution. The tissue was 

taken up into a pipette and gently expelled; this was done 10 times and then the 

procedure was repeated using a 5 cm 3  syringe attached to a hypodermic needle . This 

process was repeated 20 times to give an even cell suspension. The suspension was 

diluted to a known volume with water to give a suspension which, when placed on the 

haemocytometer, gave approximately one cell per square. A sample of the suspension 

was placed on a haemocytometer slide (Hawksley Crystaite, Modified Fuchs 

Rosenthal) and cell counts made for six replicate grids (Chandler, 1989). 

123 



Leaf characteristics 

6.2.4 Chlorophyll determination 

In July and September 1991 and April 1992, leaf discs were taken from leaves of the 

same age from each of twenty plants per treatment (a sample of three discs from each of 

five plants per chamber, four chambers per CO2 treatment). The leaf discs were placed 

in glass vials containing 5 cm3  dimethyl formaldehyde (DMF). The vials were kept in 

the dark and transferred as soon as possible into a cold room. The samples were left in 

the cold room for 48 hours (they are stable for 10 days) before their 'absorbance' (A) 

was read on a spectrophotometer at 663.8 nm and 646.8 nm using DMF as a blank 

(Porra, Thompson and Kriedemann, 1989). 

Chlorophyll concentrations in .xg/cm 3  were calculated according to the following 

equations: 

chll a = 12.00 A(6638  ) -3.11 A(646 . 8 ) 

chll b = 20.78 A(6468  ) -4.88 A(663 . 8 ) 

chlls a+b = 17.67 A( 646 . 8) + 7.12 A(663. 8 ) 

6.2.5 Determination of reducing sugars, starch and structural 
dry matter content 

At the time of harvesting (August 1991, §3.5.4) three leaves were collected from 20 

trees per CO2 treatment (three leaves from each of five trees per chamber, four 

chambers per treatment) at midday, placed in plastic vials and immersed immediately in 

liquid nitrogen. This leaf tissue was subsequently transferred directly from the liquid 

nitrogen to a freeze dryer (Edwards High Vacuum Ltd. Crawley, Sussex). 

The freeze dried tissue was then ground and 20 mg removed from each sample. These 

sub-samples were combined according to chamber, resulting in four 100 mg samples 

per treatment. 2 cm 3  of double distilled water was added to each 100 mg sample and 

the solutions stored overnight at 60 °C. The solutions were then centrifuged at 5000 

for 20 minutes, the supernatant was poured off and stored, the pellet washed with 2 

cm3  distilled water and re-centrifuged. This process was repeated four times and the 

total supernatants stored. Figure 6.1 summarises the procedure followed. The 

supernatant (5, Figure 6.1) was assayed to determine the amount of reducing and non-

reducing sugars present in the sample. The pellet (P, Figure 6.1) was treated to remove 
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protein and analysed to determine starch content and amount of structural dry matter 

(adapted from Hodge and Hofreiter, 1962). 

Reducing sugars 

2 cm3  of DNS reagent (Appendix) were added to 3 cm 3  of supernatant (S) in a boiling 

tube. The solution was boiled for ten minutes in a water bath. After boiling, the 

"absorbance" coefficient of the solution was read at 540 nm using a spectrophotometer 

and compared against a standard curve obtained using glucose, with DNS reagent as a 

blank (Hodge and Hofreiter, 1962). 

Total carbohydrate 

1 cm3  of Anthrone reagent (0.2% Anthrone in conc. H2SO4) was added to 0.5 cm 3  of 

supernatant and the solution boiled in a water bath for five minutes. After boiling, the 

absorbance coefficient of the solution was read at 620 nm using a spectrophotometer 

and compared against a standard curve obtained using glucose, with Anthrone reagent 

as a blank ( Hodge and Hofreiter, 1962). 

Non-reducing sugars (sucrose) 

Sucrose content was calculated as the difference between total carbohydrate and 

reducing sugars. 

Protein removal 

The pellet (P) was treated to remove soluble protein, to enable the subsequent 

determination of structural dry matter content. 2 cm 3  protease in Tris buffer, pH 7.4 

(Sigma, UK) was added to the pellet, which was then incubated at 30 °C for 24 hours. 

Following incubation the solution was centrifuged at 5000 for 20 minutes, the 

supernatant was poured off, the pellet washed with 2 cm 3  distilled water and the 

process repeated two more times. Soluble protein was removed in the supernatant 

(Peterson, 1977). 

Starch 

The remaining pellet was treated with a amylase (Termamyl, NovoNordisk, UK) and 

amyloglucosidase to break down starch to mono saccharides, which could then be 

assayed using Anthrone: 2 cm 3  of distilled water was added to the pellet followed by 
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60 nm3  of a amylase. The solution was incubated at 90 °C for one hour, cooled and 

treated with 1 cm 3  amyloglucosiclase for one hour at 55 °C. The resulting supernatant 

was assayed with Anthrone as above (1-lodge and 1-lofreiter, 1962). 

Structural dry matter 

The residual pellet was dried and weighed to determine the mass of structural dry 

matter. 
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100 mg sample freeze-dried ground tissue 

Add 2 cni distilled H 20 

Incubate overnight at 6(PC 

Centrifuge at 5000g  for 10 minutes 
Re-extract pellet 3-4 times in 2 cm 3  distilled H20 

Leave to stand for 15 minutes 
Centrifuge at 5000g  for 10 minutes 

I 	 I  
SUPERNATANT(S) 	 PELLEIYP) 

Assay with DNS (reducing sugars) 	 Add 2 cn 0.04% Protease in 0.05 M Tris, 
Assay with Anthrone (total carbohydrates) 	pH 7.4 with HCI. Incubate at 30 0C in 

water bath for 24 hours. 

Centrifuge at 50OOg  for 10 minutes 
Wash pellet with 2 cm 3  distilled 1120 
Re-centrifuge 3 times 
Combine supernatants 

PELLET 	 SUPERNATANT 

Add 2 ed distilled 1170 	
(contains soluble protein) 

Boil for 30 minutes 
Add 60111  Termamyl 
Boil for 1 hour 

Add 1 cnamyloglucosidase 
Incubate at 550C for one hour 

Centrifuge 5000g 
Wash pellet with 2cd of distilled H 10 
Repeat three times 	 - 

I 	 I 
PELLET 	 SUPERNATANT 

Dry and weigh 	 (Starch) 

(Structral dry matter) 	 Hydrolysed to monosaccharides 
Assay with Anthrone 

Figure 6.1 Procedure followed in the determination of reducing sugars, 
starch and structural cli-y matter content. 
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6.2.6 Scanning electron microscopy 

In June 1991, at 12.00 BST one leaf from each of four plants per CO2 treatment was 

excised and 2 cm2  strips taken from between the second and third main lateral veins of 

each leaf were attached to copper cryo-stubs using a thin layer of tissue cryo-adhesive 

(Tissue-tek, Agar Scientific Ltd. Essex, UK). Cryo-fixation was carried out using the 

Emscope SP2000 cryogenic preparation system (Emscope Laboratories Ltd., Ashford, 

Kent). The stubs were placed into pre-cooled liquid nitrogen (-210 °C) in an 

atmosphere of dry argon. The specimens were then transferred to the main chamber of 

the SP2000 where they were freeze-fractured and gold-coated. The stub and specimen 

was then transferred under vacuum into a scanning electron microscope (Steroscan 

250, Cambridge, UK). Photomicrographs of the internal anatomical organisation of 

the leaves were made using a 120 format camera back. 

6.2.7 Preparation of resin embedded sections of leaf tissue 

Resin embedding 

Two newly developed but fully expanded leaves from eight plants per treatment (two 

plants from each of four chambers per treatment) were excised from the trees in May 

1992 at 12.00 BST and placed in a shallow petri-dish containing sufficient solution of 

Karnovskys:Hepes (K/H,) 1:1 (Appendix) to submerge the leaf completely. Strips 

approximately 1 mm in width were cut from the leaf between the second and third 

lateral vein. The strips were placed in specimen handling capsules (Agar Scientific Ltd. 

Essex, UK) submerged in the solution. When sufficient strips were placed in the 

capsule, the capsule was labelled. Once labelled, the capsules were placed in glass 

soda vials (Agar Scientific Ltd. Essex, UK) containing K/H solution. Air bubbles 

were removed by drawing the liquid through the capsule using a pipette. The vials 

were then labelled and placed in a rotator for four hours to ensure complete penetration 

of the leaf tissue by the solution. After four hours the solution was pipetted out of the 

vials. The tissue was rinsed with Hepes (Appendix) to remove all trace of 

Karnovskys. The Hepes solution was pipetted into the vial and drawn through the 

capsule, again ensuring that no air bubbles were present in the vial. The vials were left 

for twenty minutes, this procedure was repeated three times. The capsules were 

subsequently left in Hepes solution overnight and a further rinse of Hepes was given in 

the morning. 
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The Hepes was removed and approximately one fifth of a vial of osmium tetroxide was 

added to each vial, to 'fix the tissue. The osmium tetroxide was left for two hours, the 

capsules were then given three twenty minute rinses with distilled water. 

The leaf tissue was then dehydrated by adding increasingly concentrated solutions of 

ethanol. The ethanol was then gradually replaced by polypropylene oxide (PPO) and 

finally the PPO by Agar 100 resin (epon 812 substitute) (Table 6.1). The capsules 

were then opened and the individual strips of leaf material placed in the slots of mould 

trays (Agar Scientific Ltd. Essex, UK) and the slots labelled. Resin was added to fill 

the slots and the mould trays placed in an oven at 60 °C in a fume cupboard for twelve 

hours (Glauert, 1974). 
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Table 6.1 Fixation Procedure 

Reagent Time 

1:1 Karnovskys : Hepes 4 hours 

Hepes 20 minutes 

Hepes 20 minutes 

Hepes 20 minutes 

1% Osmium tetroxide 2 hours 

Distilled H20 20 minutes 

Distilled H20 20 minutes 

Distilled HnO 20 minutes 

20% Ethanol 45 minutes 

40% Ethanol 45 minutes 

60% Ethanol 45 minutes 

80% Ethanol 45 minutes 

90% Ethanol 90 minutes 

100% Ethanol 3 hours 

100% Ethanol Overnight 

2:1 Ethanol: PPO 30 minutes 

1:1 Ethanol: PPO 30 minutes 

1:2 Ethanol: PPO 30 minutes 

1:3 Ethanol: PPO 30 minutes 

PpQ 45 minutes 

PPO 45 minutes 

2:1 PPO: Agar resin 45 minutes 

1:1 PPO: Agar resin 120 minutes 

1:2 PPO: Agar resin 4 hours 

1:3 PPO: Agar resin Overnight 

Agar resin Overnight 

Sectioning for light microscopy 

100 jim thick transverse sections of the embedded leaf tissue were made using an 

ultramicrotone (Reichert Jung Ultracut, Leica, Cambridge). Glass knives used in the 

ultramicrotone were made using a knifemaker (LKB, Leica, Cambridge). Sections of 

leaf tissue were flooded with a solution of 1% (w/v) toluidine blue in 0.3 mol ut 3  

sodium tetraborate and placed on a hot-plate at 60 °C for two minutes. Following three 

washes with distilled water, the sections were dried and mounted in resin (Agar 

Scientific Ltd., Essex,) (Reid, 1974). Leaf tissue was stained for chloroplast starch 
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using a Schiffs reagent test kit (Sigma, Poole, Dorset). Sections were viewed under a 

light microscope (Ortholux, Lietz Ltd., Luton, Beds.) at 200x magnification and 
photographs taken using a 35 mm SLR camera. 

6.3 RESULTS 

6.3.1 Leaf thickness 

Table 6.2 shows the effect of growth in elevated CO ,) on the thickness of fully-
developed leaves. Measurements were made in August of 1991. The leaves from 

plants grown in elevated CO, were slightly (Pc0.05) thicker than those from plants 
grown under ambient CO2 conditions. 

Table 6.2 Thickness of leaves of silver birch (mm) grown in ambient (non- 
supplemented) or elevated (ambient + 350 Mmol mol') CO 2. Measurements 
were made on leaf number 20 (i.e the 20th mainstem leaf to emerge). Values 
are means (± one standard error) of 40 leaves per treatment (10 leaves from 
each of four chambers per CO 2  treatment). The levels of significance for the 
differences between elevated and ambient COi-grown leaves (treatment 
effect) and between leaves from plants grown in different chambers (inter-
chamber effect) are also presented. * significant at P=0.05, ** significant at 
P=0.01. 

Ambient CO2 	Elevated CO,) 	Treatment effect Inter-chamber 	Interaction 
Pc 	 effect P< 	Pc 

0.29±0.09 	0.30±0.08 	0.07 	0.68 	0.109 

Measurements of the thickness of leaves on the same plants the following year (after 16 
months in elevated CO ,)), are shown in Table 6.3. The leaves of trees grown in 

elevated CU2 were significantly thicker than those of ambient-grown plants. The leaves 

produced in the second year were thinner in both C07 treatments compared with the 
leaves produced the year before. 
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Table 6.3 Thickness of leaves of silver birch (mm) grown in ambient (non- 
supplemented) or elevated (ambient + 350 jsmol mol-1) CO2.Measurements 
were made on fully expanded leaves of the same age. Values are means (± 
one standard error) of 40 leaves per treatment (10 leaves from each of 4 
chambers per CO2 treatment). The levels of significance for the differences 
between elevated and ambient CO2-grown leaves (treatment effect) and 
between leaves from plants grown in different chambers (inter-chamber 
effect) are also presented. * significant at the 0.05 level, ** significant at the 
0.001 level 

Ambient CO, 	Elevated CO2 	Treatment effect Inter-chamber 	Interaction 
Pc 	 effect 	Pc 

Pc 

0.20±0.01 	0.22±0.01 	0.010* 	0.196 	0.191 

6.3.2 Anatomical organisation 

Figures 6.2 and 6.3 show scanning electron micrographs of freeze fractures through 

leaves of silver birch grown under elevated and ambient concentrations of atmospheric 

CO2, respectively, taken in August 1991. Leaves from plants grown in elevated CO2 

(Figure 6.2) showed much heterogeneity in the density of mesophyll cells with limited 

air spaces and also regions of very spongy mesophyll with large intercellular spaces. Of 

particular interest was a double layer of palisade cells in elevated CO2 plants which was 

not evident in leaves from ambient CO ,)-grown plants. The layer immediately below 

the palisade layer was intermediate between mesophyll and palisade layers in some of 

the leaves from ambient plants (Figure 6.3) and this was more pronounced in areas of 

tissue adjacent to vascular tissue. Leaf sections through ambient CO2 leaves were 

slightly thinner than those through elevated CO2 leaves but did show a similar degree of 

heterogeneity in the density of mesophyll cells and the distribution of intercellular air 

spaces. 
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Figure 6.2 Scanning electron micrograph of freeze fracture through a leaf 
Of silver birch grown in ambient CO2 and excised in June 1991. Note that 
there is only one layer of palisade cells. The layer immediately below the 
palisade cell layer is intermediate between mesophyll and palisade layers, P-
palisade, SM-spongy mesopliyll. 
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Figure 6.3 Scanning electron micrograph of freeze fracture through a leaf 
of birch grown in elevated CO-).and excised in June 1991 Note the double 
palisade layer. P-palisade, SM-spongy mesophyll. 
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Transverse sections through ambient and elevated CO2 leaves produced in 1992 are 

shown in Figures 6.4 (ambient CO,) and 6.5 (elevated CO,). Sections were stained 

with Schiffs reagent to show starch grains. Leaves from plants grown in elevated CO2 

had an extra layer of palisade cells. There were more, and larger starch grains in the 

chioroplasts of plants grown in elevated CO2. 
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Figure 6.4 Transverse section through a leaf of silver birch grown in 
ambient CO ,) and excised in May 1992. P-palisade, SM-spongy mesophyll, 
ST-starch grains. 
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Figure 6.5 Transverse section through a leaf of silver birch grown in 
elevated CO ,,-and excised in May 1992 Note the double palisade layer, P-
palisade, SM-spongy mesophyU, ST-starch grains. 
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The increase in leaf thickness in elevated CO2 plants was concomitant with an increase 

in the ratio of dry mass to area and also in the dry mass: fresh mass ratio in leaves 

produced in 1991 (Table 6.4) and in 1992 (Table 6.5). 

Table 6.4 Ratios of dry mass to area (g cm -2) and dry mass to fresh mass 
of leaves of silver birch grown in ambient and elevated CO2 and measured 
in July 1991. Measurements were made on leaf number 20 (i.e the 20th 
mainstem leaf to emerge). Values are means ± one standard error of 40 
leaves per CO2 treatment (10 leaves from each of four chambers). Levels of 
significance for the differences between elevated and ambient CO2 grown 
leaves (treatment effect) and between leaves from plants grown in different 
chambers (inter-chamber effect) are also presented. *significant at P= 0.05, 
** significant at P= 0.001. 

1991 Ambient Elevated 
CO2 CO2 

Dry 0.0051 0.0062 
mass/area ±0.0001 ±0.00011 

Dry 0.386 0.430 
mass/fresh ±0.007 ±0.008 
mass 

Treatment 	Chamber 	Interaction 
effect 	effect 	P< 
PC 	PC 

0.001** 	0.818 	0.412 

0.001** 	0.805 	0.279 

Table 6.5 Ratio of dry mass to area (g CM-2)  and dry mass to fresh mass 
ratio of leaves of silver birch grown in ambient and elevated CO2 and 
measured in May 1992. Values are means ± one standard error of twenty 
leaves per CO2 treatment (five leaves from each of four chambers per 
treatment) for each leaf number. Levels of significance for the differences 
between elevated and ambient CO2 grown leaves (treatment effect) and 
between leaves from plants grown in different chambers (inter-chamber 
effect) are also presented. *significant  at P=0.05, ** significant at P= 0.001. 

1992 	Ambient 	Elevated 	Treatment 	Inter- 	Interaction 
CO2 	CO2 	effect 	chamber 	Pc 

PC 	 effect 
PC 

Dry 	0.0044 	0.0051 	0.001** 	0.621 	0.096 
mass/area 	± 0.0010 	± 0.0011 

Dry 	0.344 	0.350 	0.590 	0.403 	0.713 
mass/fresh 	± 0.005 	± 0.005 
mass 
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6.3.3 Carbohydrate content 

Table 6.6 shows carbohydrate content per leaf surface area of leaves produced in 1991, 

and harvested in August of that year. Amounts of structural carbohydrate, starch and 

soluble carbohydrate content (sucrose, fructose etc.) were increased in leaves of plants 

grown in elevated CO2. Structural carbohydrate was significantly increased in leaves 

of plants grown in elevated CO2. 

Table 6.6 Carbohydrate contents (mg m 2) of leaves of silver birch grown 
in two CO2 concentrations; ambient and elevated and measured in July 
1991.Values are means (± one standard error) of four samples per CO2 
treatment (five samples were taken from each of four chambers per CO2 
treatment and combined by chamber). Levels of significance for the 
differences between elevated and ambient CO2 grown leaves (treatment 
effect) and between leaves from plants grown in different chambers (inter-
chamber effect) are also presented. *significant  at P= 0.05, ** significant at 
P=0.01. 

Ambient 	Elevated 	Treatment 	Inter-chamber 
effect 	effect 

P< 	 p< 

Structural 	2470±120.0 	3742±510.0 	0.021* 	0.498 
carbohydrate 

Starch 	 73.4±3.7 	84.1±8.7 	0.472 	0.784 

Soluble 	29.5±11.0 	33.3±15 	0.190 	0.519 
carbohydrate 

The increased starch content of elevated CO2 leaves is also apparent from the increased 

number of starch grains stained in figure 6.4 compared to figure 6.5. 

Table 6.7 shows the effect of growth in elevated C07 on the number of cells produced 

per leaf sampled in May 1992. There was no CO2 treatment effect on the number of 

cells expressed on an area basis; the number of cells in elevated CO2 leaves was 

reduced, when expressed on a dry mass or fresh mass basis. 
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Table 6.7 Number of cells per leaf surface area, dry mass and fresh mass 
of leaves of silver birch grown in ambient and elevated CO2 and measured in 
June 1992. Values are means ± one standard error of 24 leaves per CO2 
treatment (samples of leaf material were taken from six plants from each of 
four chambers per treatment ). Levels of significance for the differences 
between elevated and ambient CO2 grown leaves (treatment effect) and 
between leaves from plants grown in different chambers (inter-chamber 
effect) are also presented. *significant  at P=0.05, ** significant at P=0.01. 

1992 	Ambient CO2 Elevated CO2 Treatment 	Inter- 	Interaction 
effect 	chamber 	Pc 
P< 	effect 

P< 

Cells rn-2 	8.99x105 	9.18x105 	0.511 	0.354 	0.599 

±0.16x105 	±0.23x105  

Cells/g dry 	6.80x107 	6.08x107 	0.00 	0.677 	0.439 
mass. 	±0.08x107 	±0.14x107  

Cells/g fresh 2.32x107 	2.14x107 	0.005** 	0.734 	0.454 
mass 	±0.03x107 	±0.04x107  

6.3.4 Chlorophyll content 

Tables 6.8, 6.9 and 6.10 show the chlorophyll content of leaves from plants grown in 

ambient or elevated CO2 and sampled in July and September 1991 and April 1992. 

There was no effect of elevated CO2 treatment on the total chlorophyll content of leaves 

sampled in July or September 1991, although the chlorophyll a to b was slightly 

reduced. The effect of chamber was, however, significant on leaves sampled in July. 

Total chlorophyll content was larger in leaves produced in 1992, in both CO2 

treatments compared to leaves produced the previous year. Total chlorophyll content 

was significantly smaller in the leaves of elevated CO2 plants sampled in April 1992 but 

there was no effect of CO2 treatment on chlorophyll a :b ratios, but chamber did have a 

significant effect on the amount of chlorophyll b. 
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Table 6.8 Chlorophyll content (mg cm -2) of leaves of silver birch grown in 
ambient and elevated CO2 and measured in July 1991. Values are means ± 
one standard error of twenty samples per CO2 treatment (one sample was 
taken from each of five plants per chamber, four chambers per treatment). 
Levels of significance for the differences between elevated and ambient CO2 
grown leaves (treatment effect) and between leaves from plants grown in 
different chambers (inter-chamber effect) are also presented. *significant  at 
P-4.05, ** significant at P= 0.01. 

Ambient 	Elevated 	Treatment 	Chamber 	Interaction 
CO2 	CO2 	effect 	effect 	PC 

P< 	Pc 

chila 224111 21.73 0.778 0.001** 0.515 
±0.88 ±0.73 

chllb 8.03 8.66 0.128 0.00** 0.394 
±0.46 ±0.49 

a+b 30.03 30.39 0.797 0.00** 0.41 
±1.29 ±1.14 

a/b 2.83 2.58 0.08 0.067 0.813 
±0.12 ±0.08 

Table 6.9 Chlorophyll content (mg cm -2) of leaves of silver birch grown in 
ambient and elevated CO2 and measured in September 1991. Values are 
means ± one standard error of twenty samples per CO2 treatment (one 
sample was taken from each of three plants per chamber, four chambers per 
treatment). Levels of significance for the differences between elevated and 
ambient CO2 grown leaves (treatment effect) and between leaves from plants 
grown in different chambers (inter-chamber effect) are also presented. 
*significant at P=0.05, ** significant at P=0.01. 

Ambient Elevated Treatment Chamber Interaction 
CO2 CO2 effect effect PC 

Pc 

chila 21.13 20.10 0.681 0.097 0.366 
±1.35 ±2.21 

chub 6.91 6.71 0.798 0.138 0.474 
±0.44 ±0.66 

a+b 28.04 26.81 0.707 0.103 0.393 
±1.79 ±2.8 

alb 3.05 2.97 0.156 0.616 0.126 
±0.03 ±0.07 
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Table 6.10 Chlorophyll content (mg cm -2) of leaves of silver birch grown 
in ambient and elevated CO2 and measured in April 1992. Values are means 
± one standard error of 25 samples per CO2 treatment (one sample was taken 
from each of five plants per chamber, five chambers per treatment). Levels 
of significance for the differences between elevated and ambient CO2 grown 
leaves (treatment effect) and between leaves from plants grown in different 
chambers (inter-chamber effect) are also presented. *significant  at P=0.05, 
** significant at P= 0.01. 

Ambient 	Elevated 	Treatment 	Chamber 	Interaction 
CO2 	CO2 	effect 	effect 	P< 

P< 	Pc 

chila 	54.91 	5159 	0.503 	0.074 	0.019 

	

±2.8 	±4.5 

chill, 	16.87 	15.53 	0.397 	0.045* 	0.622 

	

±1.32 	±1.52 

a+b 	71.78 	61.02 	0.004** 	0.072 	0.002** 

	

±3.54 	±3.31 

alb 	3.50 	3.69 	0.772 	0.096 	0.942 

	

±0.39 	±0.51 

6.3.5. Summary of results 

Leaf thickness increased in plants in elevated CO2, and this effect was more 

pronounced in younger leaves. This increase in leaf thickness was concomitant with 

increase in the leaf dry mass : area ratio. Leaf dry mass : fresh mass ratio increased in 

elevated CO2 leaves produced during the first season, but there was no effect of CO2 

treatment on leaves produced during the second season. Leaves from elevated CO2 

plants had slightly higher soluble carbohydrates (sucrose, fructan etc.), but there was 

no increase of starch accumulation in leaves from elevated CO2 plants measured in July 

1991. However, transverse sections through leaves that developed in 1992 showed an 

increase in the number and size of starch grains when stained with Schiffs reagent. In 

plants grown in elevated CO2 there was an extra layer of palisade cells. The increase in 

leaf thickness was not a result of an increase in the number of cells, but a slight increase 

in structural carbohydrate content of elevated CO2 leaves suggested that the cells were 

larger. There was no significant effect on total chlorophyll content or chlorophyll a: 

chlorophyll b ratio of leaves of plants measured after four and six months growth in 

elevated CO2, but after sixteen months total chlorophyll content measured on a leaf area 

basis was significantly lower in elevated CO2 compared to leaves from plants grown in 
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ambient CO2. In elevated CO2 there was a reduction in both chlorophyll a and b, but 

there was no effect on chlorophyll a:b ratio. 

6.4 DISCUSSION 

6.4.1 Leaf anatomy 

An increase in leaf thickness has been reported in several species grown in elevated 

CO2 including: Desmodium paniculatum (Wulff and Strain, 1982), Glycine max, 

Liquidambar stryacjflua and Pinus taeda (Thomas and Harvey, 1983), Castanea sativa 

(Mousseau and Enoch, 1989), Populus clones (Radoglou and Jarvis, 1990a), 

Phaseolus vulgaris (Radoglou and Jarvis 1992). In this study, an increase in leaf 

thickness was concomitant with the production of an extra layer of palisade cells. 

Despite the presence of an extra palisade layer there was no evidence of an increase in 

the number of cells produced on a leaf area basis. This suggests that the extra palisade 

layer was produced at the expense of mesophyll cells. Analysis of structural 

carbohydrate content indicated that the cells were slightly larger in leaves of plants 

grown in elevated CO2. The initiation of an additional layer of palisade cells in 

response to growth in elevated CO2 has been reported for Glycine max (Hofstra and 

Hesketh, 1975; Thomas and Harvey, 1983) and Castanea sativa (Mousseau and Enoch, 

1989). Although the spongy mesophyll region of a leaf generally has a larger volume 

of air, the palisade region has a larger total area of cell wall exposed to intercellular 

spaces, and therefore, a larger surface area available for the inward diffusion of CO2 

(Nobel, 1985). An increase in the size of the palisade region in leaves of plants grown 

in elevated CO2 will increase AniesiA (Ames = total leaf area of cell walls of mesophyll 

cells exposed to intercellular air spaces, A=area of one side of same leaf, Nobel, 1985). 

Leaves of sun plants generally have a larger proportion of palisade cells compared to 

leaves of shade plants and AnieslA is often two to four times larger for sun leaves than 

shade leaves. An increase in AnieslA in leaves of plants grown in elevated CO2 may 

increase total leaf conductance and therefore photosynthetic potential, and would 

therefore be worth measuring. 

6.4.2 Chlorophyll content 

There was no significant difference in total chlorophyll content on a leaf area basis in 

plants grown in elevated and ambient CO2 measured in July or September 1991. There 

was a significant reduction in total chlorophyll content of leaves from elevated CO2 

plants in April 1992. A reduction in chlorophyll content on a dry mass and leaf area 

143 



Leaf characteristics 

basis as a result of growth in elevated CO2 has been observed by several workers 

(Madsen, 1968; Tolley and Strain, 1985, Oberbauer, Strain and Fetcher, 1985; Delucia 

et al., 1985 Wullschleger, Norby and Hendrix 1992, Radoglou and Jarvis, 1992). 

There was a small reduction in chlorophyll a:b ratio in leaves from elevated CO2 plants 

measured in 1991, but there was no difference between elevated and ambient CO2 

plants in April 1992. Reduction in chlorophyll a::b has been reported in tomato 

(Madsen, 1968) and Trjfolium subterranean (Cave ci al., 1981), although no reduction 

in chlorophyll b content was reported by Radoglou and Jarvis (1992) for Phaseolus 

vulgaris. 

There were significant differences in chlorophyll a, chlorophyll b and total chlorophyll 

contents of leaves from different chambers in July 1991, and in chlorophyll b content 

of leaves measured in April 1992. Both nitrogen supply (Ingestad, 1971; Linder and 

Rook, 1984; McDonald etal., 1992) and radiation environment (Bjorkman ci al., 1972; 

Lichtenthaler, 1985) have significant effects on chlorophyll synthesis. The variation in 

chlorophyll content in this study suggests that there was significant variation in the 

radiation environment and/or nitrogen supply of leaves from different chambers. Each 

plant received the same amount of liquid fertiliser every month. The OTCs have been 

positioned in the field so that they do not shade each other and to minimise the 

possibility of variation in incoming radiation to each chamber. Plants were placed 

randomly within each chamber but position of plants in the chamber and proximity of 

neighbours must have resulted in variation in radiation incident on leaves of different 

plants within a chamber. A larger sample size might have reduced the impact of such 

variation. Each plant received the same amount of liquid fertiliser every month. 

Reduction in chlorophyll content may imply a reduction in the size or number of 

reaction centres (Lewandowska and Jarvis, 1977) or disruption of the chloroplast and 

may reduce light harvesting capacity and therefore photosynthetic potential (Oberbauer 

ci al. 1985). However it is more widely accepted that chlorophyll is usually non-

limiting unless the plant is severely stressed (Linder and Rook, 1984). 

Despite a reduction in chlorophyll a and chlorophyll b (and therefore total chlorophyll) 

content in Desniodium pan iculatum Wulff and Strain, 1982) and Liriodendron 

tulipifera and Quercus alba (Wullschleger ci al., 1992) there was an increase in light 

harvesting capacity of all three species. An increase in the initial slope of light 

-response curves (i.e. the apparent quantum yield) of these three species and an 

increase in photochemical quenching in Liriodendron tulip(fera and Quercus alba 

measured using pulse-modulated fluorescence techniques led Wulff and Strain (1982) 

and Wullschleger ci al. (1992) to suggest that plants grown in elevated CO2 may have 

an increased capacity for radiation utilisation. Although, Long and Drake (1991) found 
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no change in quantum yield in Scirpus olneyi grown in elevated CO2 measured using a 

transparent leaf chamber incorporated into an Ulbricht intergrating sphere. 

In a field situation many leaves experience low PFD as a result of shading by other 

leaves, under such conditions CO2 assimilation will be affected by quantum yield as 

much as by the light saturation rate (Long etal., 1993). Whether changes in anatomical 

organisation and chlorophyll content in silver birch seedlings grown in elevated CO2 

affebt light harvesting capacity and quantum yield should be tested. 

6.4.3. Specific leaf area and carbohydrate content 

The reduction in SLA in leaves of plants grown in elevated CO2 in this study was 

concomitant with a slight increase in structural carbohydrate content but no increase in 

cell number on a leaf area basis. This suggests that the cells were slightly larger in 

elevated CO2 leaves. There was also an increase in soluble carbohydrate content in 

leaves from elevated CO2 plants, and this is consistent with the increased rate of 

photosynthesis in plants grown in elevated CO2 recorded in this study (3.5.5; Evans 

et al., 1993) and by other workers (Pettersson et al., 1993). Both sucrose and starch 

accumulation have been reported for plants grown in elevated CO2 (Farrar and 

Williams, 1991). The accumulation of large amounts of starch has been reported for 

many plants grown in elevated CO2 and has been associated with a source-sink 

imbalance. When supply of the products of photosynthesis exceeds the demands of 

sinks, sucrose and other intermediate metabolites accumulates in the leaf, and sucrose 

synthesis is reduced by feedback control of sucrose phosphate synthetase (SPS) 

resulting in the diversion of more carbon to starch (Stitt, 1991). Accumulation of large 

amounts of starch resulting from source-sink imbalance has been implicated in the 

down-regulation of photosynthesis in plants grown in elevated CO2 for long periods. 

In this study there was no increase in starch accumulation in elevated CO2 compared to 

ambient CO2 plants measured in July 1991, and no evidence of down regulation of 

photosynthesis (Evans et al. 1993). There was, however, visual evidence of starch 

accumulation in the chloroplasts of leaves produced in elevated CO2 in May 1992 and 

this will have contributed to the reduction in SLA in elevated CO2 plants. 
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6.4.4. Conclusions 

Growth of silver birch in elevated CO2 results in; 

an increase in leaf thickness and a reduction in SLA; 

an increase in structural dry matter content of leaves, but no increase in cell 

number on a leaf area basis; 

• alterations in the anatomical organisation of leaves resulting in an additional layer 

of palisade cells; and 

• a reduction in total chlorophyll content, but no effect on the chlorophyll a to b 

ratio. 

The effect of such changes in leaf characteristics on the light harvesting efficiency and 

photosynthetic capacity of silver birch grown in elevated CO2 need further 

investigation. 
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CHAPTER 7 GENERAL DISCUSSION 

In most species, photosynthesis increases and g 8  decreases, at least in the short term, in 

response to increase in atmospheric CO2 concentration (Eamus and Jarvis, 1989; Stitt, 

1991; Bowes, 1991; Luxmoore etal., 1993). Whether these responses at leaf scale 

will be translated into long-term increases in whole plant growth will depend, to some 

extent, on changes in morphology and resource allocation of plants in elevated CO2 

(Woodward, 1993). The research described in this thesis examined the effects of 

growth in elevated CO2 on the resource allocation patterns of two contrasting species of 

juvenile trees: Sitka spruce (a conifer with a determinate growth pattern) and silver 

birch (a broadleaf with an indeterminate growth pattern) (Chapter 3), and has focused 

on the effects of elevated CO2 on leaf expansion of silver birch (Chapter 4), including 

leaf surface properties (Chapter 5) and leaf characteristics (Chapter 6). In the 

introduction to this thesis the questions addressed in this work were defined, in this 

chapter the answers to those questions will be discussed, along with comments on the 

methods used, suggestions for further research and the possible implications for longer 

term growth of more mature trees and forests that can be drawn from studies on 

seedlings. 

What are the effects of long-term growth in elevated CO2 on 

total biomass; 

branch; 

leaf; and 

root production 

in Sitka spruce and silver birch? Does the nature and magnitude of 
response differ between species? 

Despite an initial increase in biomass production in elevated CO2 above that of ambient 

CO2 plants, no significant effect on total biomass of Sitka spruce was found after 16 

months. Norby etal., (1992) describe a similar effect on total biomass production in 

Liriodendron tulipifera, although sustained increases have been reported for other tree 

species (Sour orange, Idso and Kimball and Allen, 1991; Idso and Kimball, 1991, 

1992; Castaneae sativa , El Kohen etal., 1992; Mousseau and Saugier, 1992; Pinus 

radiata, Hollinger, 1987; Conroy etal. 1988, 1990). After six months in elevated CO2 

there was a significant increase in allocation of dry mass to roots in Sitka spruce but no 

effect of elevated CO2 on above ground biomass production. By contrast, Townend 

(1993) reported no effect of growth in elevated CO2 on root: shoot ratios in clones of 
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Sitka spruce. El Kohen etal., (1992) showed that change in dry mass allocation of 

Castaneae sativa in relation to CO2 was determined by nutrient availability. This is in 

accordance with the theory that allocation of dry mass between root and shoot is 

controlled by the balance between supply of photosynthate and rate of uptake of 

nitrogen (Agren and Ingestad, 1987). Although the Sitka spruce seedlings did receive 

additional fertiliser during the second year of this study, they were shown to be nutrient 

deficient and this may account for the increased proportion of root dry mass of plants 

harvested in January 1991 and July 1991. Bare-rooted seedlings invest a larger 

proportion of dry matter into roots during establishment (Kozlowski et al., 1991), and 

this may also have been responsible for the large initial increase in root mass in plants 

grown in elevated CO,. After eight months plants received additional nutrients at 

monthly intervals. Although elevated CO2 plants harvested after thirteen months still 

had larger roots, after eighteen months there were no differences in allocation patterns 

between plants grown in ambient and elevated CO2. Townend (1993) reported a 

reduction in ratio of needle to shoot dry mass of Sitka spruce seedlings grown in 

elevated CO2. In this study, needle to shoot dry mass ratio was unaffected by growth 

in elevated CO2. 

Photosynthetic rate was higher in Sitka spruce seedlings grown in elevated CO2 

(H.J.S. Lee pers. comm.). This is in agreement with the findings of Townend (1993). 

Tolley and Strain (1984a,b) reported a decline in photosynthetic rate of Liquidambar 

stryacf1ua and Pinus taeda as the duration of the experiment increased, and similar 

findings have been reported for other tree species (Pentac!ethra niacroloba, Ochrorna 

lagopus, Oberbauer et al., 1985 and Castanae sativa, Mousseau and Saugier, 1992). 

However, Idso and Kimball (1992) found no such reduction in Citrus aurantiurn after 

three years and Gunderson et al. (1993) and Wullschleger et al. (1994) found no 

reduction in photosynthetic rate in Liriodendron tulipifera or Quercus alba after two 

years of growth in elevated CO2. Inadequate rooting volume in small pots may restrict 

uptake of nutrients or water and may reduce the potential for roots to act as sinks for 

photosynthate. In several field studies where root exploration was unconstrained the 

initial high rates of photosynthesis and biomass production have been sustained (eg. 

Arp and Drake, 1991; Idso et al., 1991). Inadequate rooting volume resulting in 

source-sink imbalance and excess accumulation of carbohydrate has been correlated 

with a reduction in photosynthetic rate and, therefore, biomass production (Arp, 1991). 

Thomas and Strain (1991) showed that down-regulation of photosynthesis was more 

pronounced in small pots than in large pots, but studies of this kind fail to separate 

effects of rooting volume and nutrient supply. In a recent paper Nicotra etal. (1994) 

described work which found no effect of rooting volume but did find a positive 

correlation between nutrient supply and growth enhancement of plants grown in 
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elevated CO2. The phenomenon is not universal and there was no acclimation of 

photosynthesis in Liriodendron tulip(fera despite low leaf nitrogen content (Norby et 

al.,. 1992; Curtis et al., 1989). There was no evidence of photosynthetic down-

regulation in Sitka spruce seedlings grown in this study and measured in July 1991 

(Lee et al., 1993, H.S.J. Lee pers. comm.) despite the low nitrogen status of the 

seedlings, indicating that there was still an adequate sink for photosynthate at the time 

measurements were taken. 

The absense of an effect of elevated CO2 on biomass production in Sitka spruce, 

despite increased photosynthetic rates suggests an increase in carbon cycling. A similar 

growth response was reported for Liriodendron tulip(fera (Wullschleger ci' al., 1994) 

and was attributed to partial compensation for increase in photosynthetic rate by a 

reduction in leaf area and respiration rate and an increase in root exudation and fine root 

production. In this study, there was no reduction in leaf area of Sitka spruce, 

suggesting that there may have been an increase in fine root production, fine root 

turnover, root exudation or respiration. A proportion of fine roots remain in the soil 

when plants are harvested and it is possible, therefore that the measurements of root dry 

mass obtained in this experiment underestimate total root production. No attempt to 

determine amount of root exudation was made in this study. Increased fine root 

production has been reported in plants grown in elevated CO2 (Norby et al. 1987; 

O'Neill et al. 1987a,b); Idso and Kimball, 1992), root exudation increased in Pinus 

echinata grown in elevated CO2 (Norby et al., 1987). An increase in fine root 

production will increase the potential for absorption of nutrients and water uptake in 

plants grown in elevated CO, (Oechel and Strain, 1985). An increase in root exudation 

may stimulate microbial activity in soil and increase nitrogen availability (Norby, 

1987). Further research is required to determine effects of elevated CO2 on respiration 

rates and the hypothesis that elevated CO2 increases fine root production and root 

exudation remains to be tested, long-term experiments are required to investigate the 

potential for positive and negative feedback on carbon and nitrogen dynamics in the soil 

(Zak, 1993). 

After six months, biomass production was increased by approximately 20% in 

seedlings of silver birch grown in elevated CO2 compared to ambient-grown plants. 

This is consistent with the findings for silver birch by Pettersson and McDonald 

(1992). Photosynthetic rate was higher in silver birch seedlings grown and measured 

in elevated CO2, this is in agreement with the findings of Pettersson et al. (1992). 

There was no evidence of down regulation of photosynthesis in silver birch seedlings 

measured in July 1991, despite low nitrogen status of leaves. In birch the number of 

branches produced increased. This was the main factor contributing to increased 
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biomass in plants grown in elevated CO2. There was no effect of elevated CO2 on root 

mass, although the rate of production, amount and turnover of fine roots produced in 

elevated CO2 was not examined. Pettersson etal. (1993) found no effect of elevated 

CO2 on root to shoot ratio of seedlings of Betula pendula grown at optimum nutrition in 

Ingestad units. They did not find any effect of elevated CO2 on branch production but 

this may be because of the short duration of their experiment (60 days). There are 

several reports of leaf area production increasing in response to elevated CO2 

(Higginbotham et al., 1985; Radoglou and Jarvis, 1990a; Wong, 1990; Ziska etal., 

1990), but despite early indications of an increase in the area of individual leaves in 

response to elevated CO2, there was no significant difference in leaf area between 

elevated and ambient CO2 plants after six months. However, the initial increase in leaf 

area in birch grown in elevated CO2 is likely to have contributed to the increase in 

biomass production and may have conferred an additional advantage for seedling 

establishment in elevated CO2. Potential for long term biomass production as a result 

of increased rates of photosynthesis in elevated CO2 may be partially offset by relative 

reduction in leaf area. Similar compensatory responses have been described for other 

species (Norby etal., 1992; Pettersson etal., 1993). Earlier onset of senescence will 

also reduce potential for biomass production, although both the relative reduction in leaf 

area production and early senescence may be attributable to the low nitrogen status of 

plants. 

• a) What is the effect of elevated CO2 on leaf expansion in birch and 

b) which biophysical parameters controlling leaf expansion are 

affected? 

In this study, leaf expansion increased in birch in elevated CO2 early in the foliated 

season (4.3.1). There was no consistent CO2 treatment effect on any of the 

biophysical parameters measured, despite consistent increase in LER in leaves from 

elevated CO2 plants during early morning. Lack of evidence of effects of elevated CO2 

on the biophysical parameters measured in this study may be, in part, a result of 

experimental procedure and the techniques used (Chapter 4). The semi-controlled 

environment of OTCs in a field situation do not enable effects of other environmental 

variables (eg. PFD, temperature, water availability, nutrition) to be separated from 

those of elevated CO2. Parallel studies in controlled environment chambers using the 

turgor probe technique are required to determine interactions between elevated CO2 and 

the main environmental variables. Further research is also required to investigate 

effects of elevated CO7 on PFD-activated acidification of cell walls. 
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• Is stomatal conductance reduced in birch in elevated CO2 as a result 
of an increase in the degree of stomatal closure and/or a reduction 

in stomatal density? 

In this study, a reduction in g of 15% was found in leaves from plants grown in 

elevated CO2, Pettersson etal. (1992, 1993) also report a slight reduction in stomatal 

conductance of birch growing in elevated CO2. Reduction in stomatal conductance in 

this study was produced by a combination of a reduction in degree of opening of 

stomata, a reduction in stomatal density and a slight reduction in size of guard cell 

complexes in plants grown in elevated CO2. However, direct observation of apertures 

using an SEM failed to adequately assess the relative effects of a reduction in stomatal 

aperture and of changes on g5 of elevated CO2 plants, because of the heterogeneity of 

the leaf surfaces and the neccessarily small sample size used (Chapter 5). There was no 

effect of elevated CO2 on stomatal index and reduction in stomatal density was a result 

of increase in leaf expansion. Leaves that developed in elevated CO2 later in the season 

were smaller than those produced in ambient CO2 and stomatal density was therefore 

likely to have been increased. The reduction in size of leaves produced late in the 

season may have been a result of low nitrogen status of plants at this time. 

Sensitivity of stomata to elevated CO2 has been shown to be affected by other 

environmental variables including PFD (Morison and Gifford, 1983) and VPD (vapour 

pressure deficit) (Hollinger, 1987) in some species, although little work has been done 

on trees. The relatively low sensitivity of silver birch to elevated CO2 in this study may 

be a result of high water status and relatively high PFD at the time measurements were 

made. Differences in gs between plants grown and measured in elevated or ambient 

CO2 may also vary with time of day. Sensitivity of stomata to CO2 has been shown to 

increase with time in Pinus radiata (Hollinger, 1987) and decrease with time in Sitka 

spruce and silver birch (P.G. Jarvis, pers. comm.). There was no effect of growth in 

elevated CO2 on sensitivity of stomata to CO2 concentration in silver birch seedlings in 

this study measured in July 1991 (Evans et al., 1993). However, the time scale over 

which acclimation of stomatal sensitivity to CO2 concentration occurs is not known and 

may extend over more than one growing season. Further research is required to 

determine the effect of growth in elevated CO2 on sensitivity of stomata to CO2 

concentration and also to investigate the interaction between CO2 concentration and 

other environmental variables (including PFD, ABA and VPD) in regulating gs in 

seedlings of silver birch. 
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Elevated CO2 has been shown to improve instantaneous water use efficiency as a result 

of increased photosynthetic rates and reduced stomatal conductance in many species 

(for. example: Liquidambar stiyaciflua, Tolley and Strain, 1984b; Quercus prinus and 

Malus domestica, Bunce, 1992; and see Morison, 1993). Reduction in instantaneous 

water use at the leaf scale is often offset by an increase in leaf area (Eamus and Jarvis, 

1989). In this study there was no effect of elevated CO2 on total plant leaf area after six 

months. Thus instantaneous water use efficiency may increase in birch in elevated CO2 

as a result of both reduction in stomatal conductance and increase in photosynthetic 

rate. Whether this will lead to an increase in integrated water use efficiency over days 

or seasons requires investigation. 

Elevated CO2 has been shown to reduce adverse effects of thought on growth in some 

species (Tolley and Strain, 1984a,b; Sionit ci' al. 1985; Conroy etal. 1986a); Hollinger, 

1987; Johnsen, 1993; Townend, 1993). A reduction in g 8  may maintain higher 

minimum water potentials during drought and this may reduce the incidence of 

photoinhibition and increase the duration of photosynthetic CO2 uptake, before water 

stress occurs (Morison, 1993). Given a situation in which both root mass and leaf area 

are the same in both ambient and elevated CO,, a reduction in g should lower leaf 

water potential (Morison, 1993). Although these conditions were satisfied in this 

study, no clear effects of elevated CO2 on leaf water potential were found. There was 

no effect of elevated CO, on osmotic potential in seedlings of silver birch in this study, 

although osmotic potential was increased in seedlings of Liquidambar stiyacijlua grown 

in elevated CO2 compared to those grown in ambient CO2 (Tolley and Strain 1984b). 

The hypothesis remains to be tested that elevated CO2 will offset the adverse effects of 

thought on young birch trees. 

• How are a) specific leaf area, b) leaf anatomy and c) chlorophyll 

content in birch affected by growth in elevated CO2 ? 

Specific leaf area decreased in birch in this study. SLA has been found to decrease in 

many species grown in elevated CO2 (for example Populus clones, Radoglou and 

Jarvis, 1990a; Betula pendula, McDonald and Pettersson, 1992). This decrease may be 

a result of increase in starch accumulation and/or an increase in leaf thickness resulting 

from alterations in leaf anatomy. Accumulation of starch is dependent on source-sink 

status at the time of measuring. Starch accumulation was not significantly increased in 

leaves of elevated CO2 plants measured in August 1991, but there was visual evidence 

of starch accumulation in elevated CO2 leaves in May 1992 and this will have 

contributed to the reduction in SLA in elevated CO2 plants. There was an increase in 

number of palisade cells in silver birch grown in elevated CO2. Similar effects have 

been found in Castaneae sativa (Mousseau and Enoch, 1989) and Glycine max 
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(Thomas and Harvey, 1983). An increase in number of layers of palisade cells 

increases the surface area of cells available for the absorption of CO2. 

Chlorophyll content of leaves was reduced in silver birch seedlings grown in elevated 

CO2. However, despite reduction in chlorophyll content, light harvesting efficiency of 

Liriodendron tulip(fera has been reported to be improved by growth in elevated CO2. 

and this was attributed, in part, to anatomical changes (Norby et al., 1992). In the 

field, many leaves experience low photon flux density as a result of self shading or 

canopy closure, and in such circumstances the CO2 assimilation rate will be affected as 

much by light harvesting efficiency as by the light saturation rate (Long, 1993). 

Whether the changes in leaf anatomy observed in this study would result in increased 

light harvesting capacity and increased quantum yield, or would be offset by reduction 

in chlorophyll requires investigation. 

• What implications can be drawn from these findings for the future 

functioning of silver birch and Sitka spruce in an elevated CO2 

environment? 

Small changes in rates of growth and allocation patterns during the early stages of the 

life of a tree may have major consequences for viability and biomass production later 

on. The initial increase in allocation of dry mass to roots of Sitka spruce may facilitate 

establishment and competition in nutrient-poor soils. An initial increase in the rate of 

growth and leaf area production in birch seedlings will increase the rate at which they 

can utilise available resourses and will thus aid competition. Although direct 

comparisons cannot be made between species because of the differences in growing 

conditions in this experiment, there was an indication that changes in pattern of 

resource allocation differed between Sitka spruce and birch. Initial increase in leaf area 

production in silver birch in elevated CO2 may enable seedlings to exploit available 

resources and may aid establishment. It has been proposed that fine root production is 

increased in Sitka spruce seedlings in elevated CO ,), this may increase improve uptake 

of nitrogen and water. 

The stimulatory effect of growth of elevated CO2 of plants in a well managed system, 

may be large but in most wild plants this potential is not likely to be fully realised as a 

result of other limiting factors. The potential of elevated CO2 to improve ability to 

withstand water and nutrient stress as a result of increased water use efficiency and 

increase in fine root production, increased mineralization of the soil and improved 

nitrogen use efficiency requires further investigation. 
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Discussion 

In the previous sections, some of the effects of growth in elevated CO2 on Sitka spruce 

and silver birch have been discussed. The following sections discuss the role of 

studies on seedlings in providing information for predicting responses of trees and 

forests to elevated CO2. 

Because of the large size and longevity of trees direct studies on the response of mature 

trees and forests are not feasible, so that, instead we are reliant to a large degree on 

extrapolation of data obtained from studies on seedlings. Whilst information now 

abounds describing the effects of elevated CO2 on tree seedlings, questions have been 

raised concerning the relevance and usefulness of extrapolating such information 

studies to determine the response of trees and forests to elevated CO') (Mousseau and 

Saugier, 1992). Extrapolating data from experiments on seedlings to predict the 

response of mature trees is dubious: mature tissue differs in size, morphology and 

anatomy compared to juvenile tissue and it cannot be assumed that mature tissue will 

respond in the same way as juvenile tissue (Hackett, 1985; Kozlowski et al., 1991). 

Another complicating factor is the degree of acclimation of plants from which the data 

were obtained. Acclimation of different processes to elevated CO2 may take minutes, 

or years and it has been suggested that full acclimation might require the growth of trees 

for more than one generation in elevated CO, (Eamus and Jarvis, 1989). 

Long-term studies, starting with seed germinated in elevated CO2 should be undertaken 

to determine whether the responses of seedlings to elevated CO2 observed in this study 

are sustained over the long term. The differences in dry matter allocation in Sitka 

spruce at different times in this study emphasis this point. There are an increasing 

number of long-term experiments with trees: a long-term experiment is continuing on 

sour orange trees in Arizona and has already shown no down regulation of 

photosynthesis after 4 years (Idso, Wall and Kimball, 1993). Long term experiments 

are also being done on Liriodendron tu/ip{fera and Quercus a/ba (Wullschleger ci al., 

1994). At the end of this study the seedlings of birch were transferred to individual 

purpose-built tree chambers where they are rooted into the ground and experiments on 

them continue with the same CO2 regimes. In a parallel experiment to obtain 

information on the functioning of mature tissue, branch bags are being used to fumigate 

entire branches of mature Sitka spruce trees (Barton, Lee and Jarvis, 1993), the 

assumption being made that branches are autonomous for carbon (Sprugel, Hinckley 

and Schnap, 1991). 

These studies on young trees serve to highlight gaps in our understanding about the 

responses of trees and forests to elevated CO2 . The interactions between CO2 and 

PFD, nutrients and water highlighted by this study are likely to be of increasing 

importance in trees approaching canopy closure when environmental variables may 
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increasingly limit growth. Changes in branching and leaf area production in trees 

grown in elevated CO2 affects leaf area density in tree crowns and this has been shown 

to have significant effects on radiation interception and biomass production (Wang, 

Jarvis and Taylor, 1991). The potential for biomass production by a closed canopy 

depends on photosynthetic rate on a leaf area basis so that acclimation of 

photosynthesis to elevated CO ,), if it occurs, will have a larger effect on biomass 

production than any stimulatory effect of elevated CO2 on leaf area production. 

An underlying objective of research investigating responses of trees to elevated CO2 is 

to enable predictions to be made concerning the likely effects of elevated CO2 on 

ecosystems, and forest ecosystems in particular. Despite significant progress in 

understanding the response of individual trees to growth in elevated CO2, the 

complexity of forest ecosystems is such that we are still a long way off being able to 

predict theft response to elevated CO2. To date, only two long term experiments have 

been conducted on plant communities in the field, a study of Alaskan tundra (Tissue 

and Oechel, 1987; Oechel et al. 1993) and a study of salt marsh vegetation (Curtis et al. 

1989). The practical difficulties of obtaining this kind of information for forests are 

immense, although the use of free air carbon dioxide exposure (FACE) systems has 

opened up possibilities for limited exposure and is currently being explored and 

developed (B. Strain pers. comm.). 

The complex nature of ecosystems, with individuals with different life cycles, strategies 

and morphology competing for resources (radiation, nutrients, water) makes a systems 

approach the most feasible (Korner, 1993). However, a major disadvantage of a such 

an approach, utilising top-down models is that they cannot be credibly used to make 

predictions beyond the range of variables used in derivation of the parameters and 

functions. The incorporation and integration of process-based routines is necessary to 

provide a more flexible tool (Jarvis, 1993). Development and parameterisation of such 

integrated models, requires: 

• an ecological approach to experimentation, using a wide range of key species, 

and taking into account the natural range of environmental variables experienced 

by each species, and the development of a representative ecological database; 

• identification of key processes (above and below-ground) sensitive to elevated 

CO2; and 

• mechanistic understanding of these key processes and their interaction with the 

main environmental variables (solar radiation, temperature, nutrient availability, 

water availability). 
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Discussion 

Responses of trees (and forests) to elevated CO2 are complex, acting on different 

processes and on different spatial and time scales, and interacting with other 

environmental variables, so that we are still a long way from being able to make reliable 

predictions about the effects of a sustained increase in atmospheric CO2 on woodlands 

and forests. The problem is immense and large scale, long-term collaborative projects 

with good alignment of techniques are necessary to facilitate the development, 

parameterisation and application of suitable models. 
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APPENDIX 

DNS reagent 

150 g of NaKtartarate in 250 ml H20 was added to 5 g of DNS (Dinitrosalicylic acid) 

and 100 ml of 2M NaOH. This solution was then made up to 400 ml with H20 and 

filtered. 

Karnovskys solution 

lOg of paraformaldehyde was dissolved in 200cm3 of distilled water and heated to 60 

OC on a stirrer within a fume-cupboard. A few drops of NaOH were added to clear the 

solution, the heat was turned off as soon as the solution cleared. 50 cm 3  of stock 

gluteraldehyde solution were added to make the solution up to 250 cm 3 . 

Hepes solution 

0. 1M Hepes was prepared, 5.95g Hepes was dissolved in 250 cm3 of distilled water. 

NaOH was added until pH = 7.2 
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