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Abstract

All right, but apart from the sanitation, the medicine, education, wine,
public order, irrigation, roads, the fresh-water system and public health,
what have the Romans ever done for us?

(Monty Python, The Life of Brian)

Alternative phrases identify selected elements from a set and subject them

to particular scrutiny with respect to the sentence’s predicate. For instance, in

the above example, sanitation, medicine, etc. are all identified as elements in

the set of things “the Romans have done for us” that should not be included in

the response to the question. They are alternative responses to the desired ones.

Alternative phrases come in a variety of constructions and perform a variety

of tasks: excluding elements (apart from), expressing preference for particular

elements (especially), and simply identifying representative examples (such as).

Not a great deal of work has been done on alternative phrases in general.

Hearst (1992) used a pattern-matching analysis of certain alternative phrases

to learn hyponyms from unannotated corpora. Also, a few examples from a

subset of alternative phrases, called exceptive phrases, have been studied, most

recently, by von Fintel (1993) and Hoeksema (1995). But not all constructions

are amenable to pattern-matching techniques, and the work on exceptive phrases

focuses on some very specific semantic points. The focus of this thesis is to present

a general program for analyzing a wide variety of alternative phrases including

their presuppositional and anaphoric properties.

I perform my analyses in Combinatory Categorial Grammar, a lexicalized

formalism. The semantic aspects of the analysis benefit greatly from the con-

cept of alternative sets, sets of propositions that differ in one or more argument

(Karttunen and Peters, 1979; Rooth, 1985, 1992; Prevost and Steedman, 1994;

Steedman, 2000a). In addition, elegant solutions are made possible by separating

the semantics into assertion and presupposition (Stalnaker, 1974; Karttunen and

Peters, 1979; Stone and Doran, 1997; Stone and Webber, 1998; Webber et al.,

1999b)— with each performing quite different tasks.

My second goal is to demonstrate the practicality and importance of this
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analysis to real systems. Although it is relevant to many practical applications,

I will focus primarily on natural language information retrieval (NLIR) as a case

study. In such a domain, queries like Where can I find other web browsers than

Netscape for download? and Where can I find shoes made by Buffalino, such

as the Bushwackers? are often observed. I review several techniques for NLIR

and demonstrate that implementations of those techniques perform poorly on

such queries. I show that understanding alternative phrases can enable simple

techniques which greatly improve precision.

To bridge the gap between these goals, I present Grok, a modular natural

language system. Several general NLP issues necessary to support my linguistic

analysis are discussed: anaphora resolution, processing of presuppositions, inter-

face to knowledge representation, and the creation of a wide-coverage lexicon.

Special attention is paid to the lexicon, which is a combination of a hand-built

and an acquired lexicon.
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Chapter 1

Introduction

I begin with some data discovered in a corpus of queries submitted to the The

Electric Monk (Monk 1999), the successor of the On Point natural language search

system described in Cooper (1997), by users of its public portal. The examples

in (1) show a query followed by the Monk’s response, and then a follow-up query.

(1) a. What is the drinking age in Afghanistan?

(search results)

What is the drinking age in other countries?

b. Where can I find web browsers for download?

(search results)

Where can I find other web browsers than netscape for download?

c. Where can I find a list of all the shoe manufacturers in the world?

(search results)

Where can I find shoes made by Buffalino, such as the Bushwackers?

d. Where are online auctions indexed?

(search results)

Are there other auction search engines besides BidFind?

In each case, particular words are used to restrict the results: e.g. such (as),

other (than), and besides. I will call these words, and others like them, alter-

native markers. Alternative markers along with their syntactic argument (e.g.

other countries), I will call alternative phrases . Through their presuppositions,

alternative markers provide a rich source of knowledge about the world. For ex-

ample, the utterances in (1) imply that Afghanistan is a country, Netscape is a

web browser, Bushwackers are shoes, and BidFind is an auction search engine.

Anaphoric reference can sometimes be critical for these inferences. In (1a), for

instance, other countries anaphorically depends on Afghanistan in the previous

query.



2 Introduction

1.1 Linguistic Analysis

The semantics of alternative phrases has not been treated extensively in the lit-

erature, although there has been work on some specific examples. Karttunen and

Peters (1979) and Rooth (1985, 1992), for example, have done work on the focus

particles even and only, which are related. More recently, von Fintel (1993) and

Hoeksema (1995) have done in-depth semantic analyses of the exceptive mark-

ers but and except (for). However, there are many more alternative markers to

consider, and furthermore, there are aspects of the analyses that deserve further

attention.

The primary purpose of this dissertation is to present a computational anal-

ysis of a wide range of alternative phrases. By computational, I mean that my

main concern is representing meaning in a way that is amenable to processing

in a computational system. In Chapter 3 and Chapter 4, I present a syntac-

tic/semantic analysis in Combinatory Categorial Grammar (CCG). I show that

an elegant account can be achieved through a separation of semantics into as-

sertion and presupposition discussed in Stalnaker (1974); Karttunen and Peters

(1979) and with respect to lexicalized grammars in Stone and Doran (1997); Stone

and Webber (1998); Webber et al. (1999b). The role of the assertion will be to

carve out the appropriate set represented by the alternative phrase. The presup-

positions, on the other hand, account for information communicated about the

alternative marker’s referent (e.g. Afghanistan, in (1a)). I also account for the

anaphoric effects noted above. In Chapter 2, I discuss several relevant construc-

tions so that the analyses and examples of alternative phrases can be viewed in

a larger context.

1.2 A Robust System

The analyses of alternative phrases presented in Chapter 3 and Chapter 4 stand

on their own, but they were originally motivated by their use in queries such as

those in (1). For those analyses to be relevant to natural language information

retrieval (NLIR) as well as other systems, it is necessary to show that they can

be used in a real-world environment. Some linguistic analyses, while accounting

for the pertinent data, may not be suitable for use in real systems. An analysis in

GB theory or minimalism, for example, may not be amenable to efficient parsing.

Therefore, in Chapter 5, I present Grok, a large scale NLP system in which

much of the alternative phrase analysis has been implemented. I discuss several

issues including robust grammar development, parsing, using preprocessing to
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handle non-uniform input and to simplify parsing, and semantic interpretation.

This chapter is a bridge between the analysis in Chapters 2–4 and the practical

application in Chapter 6 but is also a contribution in itself.

1.3 Practical Applications

A principled approach to alternative phrases is applicable to a wide variety of

practical applications. Natural language search engines, as in (1), are only one

such example. Further examples include coreference, named entity recognition,

hyponym acquisition, database querying, and information extraction.

In Chapter 6, I demonstrate that alternative phrases are not just applicable

to practical applications but also that a thoughtful treatment of them leads to

improved performance. I discuss in depth the case study of natural language

information retrieval. First, I show that alternative phrases are common enough

in dialogue to warrant attention. I then demonstrate that the linguistic analysis

along with the Grok system can be used as a front end to an NLIR system to

improve the precision of queries containing alternative phrases.

1.4 Future Work and Conclusions

In addition to recognition, generation of alternative phrases is an important dis-

play of the practicality and flexibility of the analyses. The benefit of generating

with these words is greater textual economy achieved by using the presupposi-

tions of these words to satisfy communicative goals. However, alternative phrases

present challenges for generation. Chapter 7 discusses these issues and proposes

a way forward to developing a generator that can support these words.

Also in this chapter, I briefly discuss more ways alternative phrases can be

useful in the NLIR setting. For one, I discuss the possibility of using the genera-

tion of alternative phrases to propose alternate queries to a user when the results

of a previous query are unsatisfactory. I also propose using alternative phrases to

acquire knowledge from queries, show how this can help NLIR, and discuss the

inherent problems.
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Chapter 2

A CCG English Grammar Fragment

2.1 Introduction

Chapter 3 will present an in-depth analysis of alternative phrases. However, the

purpose of this dissertation is not to simply provide this analysis in isolation, but

also to show how it fits into a larger context. Thus, this chapter briefly sketches

germane aspects of an English grammar, but the analyses are not meant to be

taken as theoretical results themselves. (For an in-depth look at a categorial

grammar for English that is generally consistent with this chapter, see Carpenter

1989, 1992.) I particularly emphasize aspects of the grammar used in examples

in the following chapters in order to make their derivations less mysterious.

I also take this opportunity to discuss my semantic and syntactic framework

and introduce some notational conventions.

2.2 Background

2.2.1 Semantics

In this dissertation, I will use the typed lambda calculus to represent my seman-

tics. The type system consists of the basic types e, entity, and t, truth-value.

These are then combined to form function types, such as 〈e, t〉, which map en-

tities to truth-values. In addition, I also require that the semantics be defined

over the standard logical connectives (∧, ∨, and ¬) as well as existential and

universal quantification (∃ and ∀). This is simply the first-order extensional part

of Montague semantics (Montague, 1970).

It should be understood that the representation of the semantics is distinct

from its interpretation. Expressions of type 〈e, t〉 denote characteristic functions

of sets whose elements are the entities for which the function returns true. Sets
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have type 〈e, t〉 which should be interpreted as a function that returns true if the

element is in the set and false if it is not. I attempt to separate the representation

and interpretation of semantic forms as much as possible and will explicitly point

out moments when I am discussing interpretation.

I discuss the semantic types for particular lexical items later on in this chapter.

2.2.2 CCG

My semantic analysis is tied to a syntactic analysis using Combinatory Catego-

rial Grammar (CCG) (Steedman 1996, 2000b). CCG is a lexicalized grammar

that encodes both the syntactic and semantic properties of a word in the lexi-

con. For instance, a transitive verb such as likes might have the lexical entry in

(2). Note that for simplicity, I will sometimes abbreviate these lexical entries to:

likes ` S\NP/NP : λxλy.like(y, x).

A word on formatting. In lexical entries, derivations, and even in the text, I

will display the orthography of a lexical entry like this and syntactic categories

like S\NP. Semantics is displayed in this style except for constants which are

displayed thus.

(2) likes `




syn : S\NP/NP

sem : λxλy.like(y, x)

In this notation for categories, results are always found to the left of the slash.

(In some notations, this is not the case (Lambek, 1958; van Benthem, 1986, 1991).)

The symbol / refers to a rightward-looking category and \ to a leftward-looking

category. The | symbol refers to a category that finds its argument on either

its left or right. (2) states that the syntactic category of likes is a functor that

requires its argument, a noun phrase, on its right. The corresponding semantic

argument is simultaneously collected and bound to the outer variable x. A new

functor is returned whose syntactic argument, another noun phrase, must be on

its left. The corresponding semantic argument is bound to y. The result is a

sentence whose semantics is like(y, x) with x and y bound as described above.

In basic categorial grammar, CG, categories combine using the forward and

backward function application rules:

(3) a. Forward Application (>):

X/Y : f Y : a ⇒ X : f(a)

b. Backward Application (<):

Y : a X\Y : f ⇒ X : f(a)
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The derivation in (4) shows how these rules combine the lexical items in

John likes Mary into single syntactic and semantic categories. Here, > indicates

forward application and <, backward application.

(4) John likes Mary

NP : john S\NP/NP : λxλy.like(y, x) NP : mary
>

S\NP : λy.like(y, mary)
<

S : like(john, mary)

CCG adds to the basic CG base three classes of rules, each of which corre-

sponds to one of the simplest combinators of Curry and Feys (1958). The three

combinators incorporated into CCG are composition, type-raising, and substitu-

tion, abbreviated as B, T, and S respectively. Only composition and type-raising

are relevant for this dissertation.

(5) Rules corresponding to the composition combinator B.

a. Forward Composition (>B):

X/Y : f Y/Z : g ⇒B X/Z : λx.f(g(x))

b. Forward Crossing Composition (>B×):

X/Y : f Y\Z : g ⇒B X\Z : λx.f(g(x))

c. Backward Composition (<B):

Y\Z : g X\Y : f ⇒B X\Z : λx.f(g(x))

d. Backward Crossing Composition (<B×):

Y/Z : g X\Y : f ⇒B X/Z : λx.f(g(x))

(6) Rules corresponding to the type-raising combinator T.1

a. Forward Type-raising (>T):

X : a ⇒T T/(T\X) : λp.p(a)

b. Backward Type-raising (<T):

X : a ⇒T T\(T/X) : λp.p(a)

These rules can be restricted for particular languages. For instance, forward

crossing composition is not allowed in English—a fact that will prove useful for my

analyses in Chapter 4. It is also important to note that the introduction of type-

raising and composition allow different, but semantically equivalent, derivations

of the same string. Example (7) shows an alternative derivation to (4).

1T in these rules is a variable over categories.
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(7) John likes Mary

NP : john S\NP/NP : λxλy.like(y, x) NP : mary
>T

S/(S\NP) : λp.p(john)
>B

S/NP : λx.like(john, x)
>

S : like(john, mary)

The semantics presented in this dissertation uses the lambda calculus. How-

ever, I add that this is implemented in my system (Section 5.8) with a unification-

based representation that mirrors the syntax (Steedman, 1996, p.14). Conse-

quently, the derivation in (4) can also be shown as below. This will become

significant in the discussions of practical application (Chapter 6) and generation

(Section 7.3) where working with λ-expressions is difficult.

(8) John likes Mary

NP :john (S :like(y, x)\NP :y)/NP :x NP :mary
>

S :like(y, mary)\NP :y
<

S :like(john, mary)

One reason for choosing a lexicalized system such as CCG is the close coupling

of the syntax and semantics of an analysis. This simplifies the problem of pre-

senting a semantic theory while at the same time showing how it can be used to

robustly parse and understand real data. Section 5.3.2 provides more discussion

regarding using CCG in robust systems. I believe that the ideas presented in this

thesis can also be implemented in other lexicalized grammar formalisms.

2.3 Nouns, Noun Phrases, and Determiners

CG grammars generally distinguish common nouns (N) from noun phrases (NP),

corresponding to the semantic distinction between 〈e, t〉 and e. In essence, com-

mon nouns are therefore interpreted as properties and noun phrases as entities.

Unfortunately, this distinction leads to several incongruities in the rest of the

grammar. For instance, all plural nouns must have both NP and N lexical entries

to accommodate the examples in (9a). It is a good theoretical and engineering

principle to minimize the number of syntactic categories (the Principle of Head

Categorial Uniqueness—Steedman 2000b, p.33), so this is undesirable.

(9) a. [Dogs]NP ate my homework.

[Five]NP/N [dogs]N ate my homework.

[All]NP/N [dogs]N ate my homework.
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b. [All]NP/NP [five]NP/N [dogs]N ate my homework.

[All]NP/N [five]N/N [dogs]N ate my homework.

These examples presuppose that determiners have the category NP/N, but

for examples like (9b), we see that things are more complex. Because multiple

determiners can be strung together, determiners must either have NP/NP or N/N

as an additional category. Again, having these additional categories is undesir-

able. (Note that determiners do not freely combine—see Keenan (1996) for an

overview—but accounting for these phenomena is well beyond the scope of this

thesis.)

These examples indicate that, syntactically at least, the distinction between

NP and N does not lend itself to elegant analyses. Instead, I make the distinction

between bare and non-bare noun phrases, where the non-bare NPs are those that

have combined with determiners. Therefore all common nouns, singular and

plural, are given the category NPbare:+ and determiners are given NPbare:−/NP,

where NP is underspecified for the bare feature. This allows the successful parsing

of the above examples with far fewer lexical entries. It also simplifies the analyses

in Chapter 3. Of course, unless verbal categories are restricted, sentences like

Dog ate my homework will be allowed. This is the same as in the XTAG project

(XTAG-group, 1999), which has a similar analysis for common nouns. Their

solution is to allow these sentences with the restriction that singular, bare nouns

must be interpreted as mass nouns. My general scheme for interpreting NPs is

discussed in Section 5.7.3.

This analysis also allows a simpler analysis of relative clauses. The stan-

dard categorial analysis gives subject and object relative pronouns the category

(N\N)/(S|NP) for relative clauses like the dogs that ate my homework. Bare plu-

rals, on the other hand, such as dogs that eat homework, require the relative

pronoun to be given the category (NP\NP)/(S|NP). We now give relative pro-

nouns the category (NP\NP)/(S|NP), which is sufficient for both types relative

clause.

Semantically, we must still account for the loss of the distinction between

properties and entities. I claim that common nouns are still analyzed as functions

of type 〈e, t〉, and thus a typical lexical entry would be (10). I also analyze proper

nouns as functions of type 〈e, t〉 that return true for the entity denoted by the

proper noun, and false otherwise. Note that I will often simplify the expression

λx.p(x) to p to save space. Thus λx.dog(x) could be written as dog, as is the

case for john and mary in (4).

(10) dog ` NPbare:+ : λx.dog(x)
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We will see that the distinction between N and NP appeals to the fact that, as

mentioned earlier, expressions of type 〈e, t〉 denote characteristic functions of a

set whose elements are the entities for which the function returns true. Also,

following Landman (1989) and Link (1983), a plural noun is closely associated

with the power-set of the elements for which its function returns true.

Determiners are particularly difficult to analyze and are the subject of much

study in order to correctly account for scoping ambiguities. Recent research has

suggested that, actually, most determiners should not be analyzed as true quan-

tifiers. Indefinite NPs, for instance, can sometimes just be analyzed as arbitrary

objects, and delayed or immediate instantiation of this arbitrary object accounts

for narrow and wide scope readings. (See Park 1995, 1996 and Steedman 1999

for details.) Furthermore, work by Koller and Niehren (2000) has shown that

it is possible to resolve scope ambiguity after parsing by instantiating an under-

specified semantic form. The simple analysis given below is consistent with these

underspecified forms, so such techniques could be used. Therefore, scope ambi-

guity will not be discussed further since it is not required for this dissertation.

The examples below show simple analyses for some common determiners (many

more possible features are discussed in XTAG-group 1999).

(11) the ` NPnum: 1 ,def:+,bare:−/NPnum: 1

two ` NPnum:plural,def:−,bare:−/NPnum:plural

a ` NPnum:singular,def:−,bare:−/NPnum:singular

some ` NPnum: 1 ,def:−,bare:−/NPnum: 1

I will treat the basic semantics of determiners as the identity function with

type 〈〈e, t〉, 〈e, t〉〉. A determiner, then, does not have a semantic effect until

interpretation. At that point, the interpretation of an NPbare:− depends on the

features that have been added by the determiner.

For example, an indefinite feature (def:-) will cause a new entity (a group,

if the number is plural) to be created with the semantic property of the NP.

Thus, a dog yields the semantic form dogbare:−,def :−. This will be interpreted as

an anonymous entity which has the property of being a dog.

A definite feature will cause the interpretation to be an element or elements

selected from a property’s associated set. The, for example, will return the ele-

ment of the set with maximal cardinality (there must be only one such element)

restricted to the domain of discourse. Thus, if the set of dogs in the discourse

is simply Fido, as in (12a), then the dog returns fido since it is the subset of

maximum cardinality. It is important to remember that fido has type 〈e, t〉 and

thus denotes the characteristic function of a set containing the element Fido. As
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mentioned earlier, plurals are interpreted as the power-set of the singular. Thus

the maximum subset of a plural is the original set of the singular. In (12b), then

The dogs is interpreted as the full set of dogs. Every dog, as another example,

simply returns the set denoted by dog. This leads to the same result as the dogs

but contains no uniqueness requirement.

(12) a. dog : {fido}
the dog : max({fido}) = fido

b. dog : {fido, spot, phred}
dogs : {{f, s, p}, {f, s}, {s, p}, {f, p}, f, s, p}
the dogs : max({{f, s, p}, {f, s}, {s, p}, {f, p}, f, s, p}) = {f, s, p}

c. dog : {fido, spot, phred}
every dog : {fido, spot, phred}

2.4 Pronouns and Reflexives

Pronouns and reflexives are simply represented by variables. It is then the job of a

resolution module, described in Section 5.7.2, to determine the antecedent. Both

a binding theory and the syntactic features are used in restricting the possible

antecedents.

Some examples are given below.

(13) he ` NPper:3,num:singular,gen:male,refType:pron : x

himself ` NPper:3,num:singular,gen:male,refType:refl : x

they ` NPper:3,num:plural,refType:pron : x

2.5 A Note on Features

To this point, I have explicitly listed feature structures as comma separated lists of

name/value pairs. It now becomes convenient to abbreviate this in the following

manner. All binary features, such as bare : +, will now be expressed without the

colon separator: e.g. bare+. For other features, unless there is an ambiguity, the

name will be omitted. For example, I will write num : plural simply as plural.
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2.6 Small Clauses and the Copula

Since in CCG we do not postulate empty categories, the burden of small clause

constructions like in (14) must fall on either the NP or its modifier. We choose

to have the modifiers, adjectives and prepositional phrases, do the job, giving the

analyses in (15). The feature pred is used to indicate small clause predication.

This comes from the “predicate raising” analysis of the inverse copular construc-

tion discussed in Heycock (1994). Although small clauses may not seem relevant

to this dissertation, they are used in the analysis of queries in Section 2.7.

(14) a. I consider John smart.

b. I consider John the culprit.

c. I consider John in big trouble.

d. John is smart.

e. John is the culprit.

f. John is in big trouble.

(15) is ` S\NP/(Spred\NP) : λpλx.p(x)

consider ` S\NP/(Spred\NP)/NP : λxλpλy.consider(y, p(x))

smart ` Spred\NP : λx.smart(x)

the ` (Spred\NP)/NP : λxλy.(x = y)

in ` (Spred\NP)/NP : λxλy.in(y, x)

There are a few things to note about these lexical entries. First, consider does

not take an Spred as an argument, but rather the subject and predicate separately.

The purpose of this is to correctly allow extraction, as described in Section 2.7.

(16) a. The culprit is John.

b. * I consider the culprit John.

c. I consider the culprit to be John.

The inverse copular data in (16) raise additional syntactic problems that are

irrelevant to the discussion in this thesis. In particular, while (16b) and (16c) are

handled by the current analysis, (16a) is not. But I believe that the analysis to

this point is consistent with the analysis in Heycock (1994), who treats this issue

in depth.
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2.7 Queries

Chapter 6 of this dissertation focuses on queries in the context of natural language

information retrieval systems. Consequently, it is important to have an analysis

for queries. I capture the data in (17).

(17) a. What/who likes spam?

b. What/who does Mary like?

c. What/which food does Mary like?

d. What/which person likes spam?

e. Does Mary like spam?

f. Can/could/shall/should/... Mary eat spam?

g. Who can/could/shall/should/... eat spam?

h. Why/when/how does Mary eat spam?

i. Is Mary insane/the leader/in the house?

j. How/where/who is Mary?

The analysis accounting for this data, (18), uses mode features to distinguish

between sentence types. The mode can be indicative (ind), interrogative (int),

predicative (pred), or non-inflected (base). The questions in (17) are correctly

accounted for by this analysis2 (e.g. (19)) and also reject the sentences in (20).

(18) is ` Sint/(Spred\NP)/NP λxλp.p(x)

why/where/when/how ` Sint/Sint λx.why/.../how(x)

where/when/how ` Sint/(S/(Spred\NP)) λp.p

does ` Sint/Sbase λx.x

can/will/... ` Sint/Sbase λx.can/will(x)

(Sind\NP)/(Sbase\NP) λpλx.can/will(p(x))

what/who ` Sint/(Sind\NP) λx.x

Sint/(Sint/NP) λx.x

what/which ` Sint/(Sind\NP)/NP λpλqλx.p(x) ∧ q(x)

Sint/(Sint/NP)/NP λpλqλx.p(x) ∧ q(x)

(19) a. Who likes spam?

Sint/(Sind\NP) : λx.x Sind\NP : λx.like(x, spam)
>

Sint : λx.like(x, spam)

2I do not consider echo questions like Mary likes what? and embedded questions like I know

what Mary likes. Also, as this thesis does not deal with negation, I do not handle negative

questions like Doesn’t Mary like spam?
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b. What food does Mary like?

Sint/(Sint/NP)/NP : NP : Sint/Sbase : Sbase/NP :
λp.λq.λx.p(x) ∧ q(x) food λx.x λx.like(mary, x)

> >B
Sint/(Sint/NP) : λqλx.food(x) ∧ q(x) Sint/NP : λx.like(mary, x)

>
Sint : λx.food(x) ∧ like(mary, x)

c. Does Mary like spam?

Sint/Sbase : λx.x Sbase : like(mary, spam)
>

Sint : like(mary, spam)

d. Who can eat spam?

Sint/(Sind\NP) : (Sind\NP)/(Sbase\NP) : Sbase\NP :
λx.x λpλx.can(p(x)) λy.eat(y, spam)

>
Sind\NP : λy.can(eat(y, spam))

>
Sint : λy.can(eat(y, spam))

One interesting aspect of these derivations is that the analysis for does3 is the

same for (19b) and (19c) since it can combine through both forward application

and forward composition. However, because forward crossing composition (> Bx)

does not exist in English, (20a) fails. If such strings are to be grammatical, as in

John doesn’t like spam, Mary doesn’t like spam... Who DOES like spam?, does

can be given the same category as can and will. This category is the standard

non-inverted auxiliary category, allowing sentences like Mary does/can/... eat

spam, so it was not created solely for this purpose.

(20) a. * Who [does]S/S [like spam]Sbase\NP?

b. * [Who]Sint/(Sint\NP) [like spam]Sbase\NP?

c. * [What]Sint/(Sint/NP) [Mary like]Sbase/NP?

d. * What [does]Sint/Sbase
[Mary likes]Sind/NP?

Note that the small clause analysis in the previous section is used in queries

containing the copula, (21). A special category is required for how, where, and

when. Clearly, the semantics of this category would have to specify what sort of

property was required (method, location, time), but I have not done that here.

3Note that another analysis of the English auxiliary gives the category S/(S\NP)/NP (Car-

penter, 1992). This analysis works perfectly well for the examples given in this thesis, but I will

use the S/S analysis for simplicity.
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(21) a. How is Mary?

Sint/(S/(Spred\NP)) : Sint/(Spred\NP)/NP : NP : mary
λp.p λxλp.p(x)

>
Sint/(Spred\NP) : λp.p(mary)

>
Sint : λp.p(mary)

b. Is Mary insane?

Sint/(Spred\NP)/NP : λxλp.p(x) NP : mary Spred\NP : λx.insane(x)
>

Sint/(Spred\NP) : λp.p(mary)
>

Sint : insane(mary)

Also, in Section 2.6, consider was given the category S\NP/(Spred\NP)/NP

rather than S\NP/Spred to allow extraction. With the latter category, (22) would

not be accepted because English does not have forward crossing composition, but

the sentence is allowed in (23) with the other category.

(22) *What does [Mary consider]S/Spred
[edible]

Spred\NP
?

(23) What does Mary consider edible?

S/(S/NP) : S/S : S/(S\NP) : S\NP/(Spred\NP)/NP : S\NPpred :
λx.x λx.x λp.p(mary) λxλpλy.consider(y, p(x)) λx.ed(x)

<T
T\T/(S\NPpred)
λp.p(λx.ed(x))

<B
(S\NP)/NP : λxλy.consider(y, ed(x))

>B
S/NP : λx.consider(mary, ed(x))

>B
S/NP : λx.consider(mary, ed(x))

>
S : λx.consider(mary, ed(x))

2.8 The Full English Lexicon

For more information on the English lexicon in Grok (Section 5.8) see:

http://grok.sourceforge.net/
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Chapter 3

Connected Alternative Phrases

Luke... There is... another...Sky...Sky...walker.
(Yoda, Return of the Jedi)

3.1 Introduction

I begin my discussion of alternative phrases by introducing the concept of an

alternative set . An alternative set is a set of propositions which differ with re-

spect to how one or more arguments are filled. For example, the alternative set

{like(mary, jen), like(mary, bob), ...}, summarized as λx.like(mary, x), repre-

sents the entities that Mary likes.

An early discussion of these structures is provided in Karttunen and Peters

(1979) where an analysis is given for the focus particle even. They noted, as had

been well studied in the literature, that even contributes meaning to a sentence

but does not affect its truth value. That is, the sentence in (24)1 conveys the

primary meaning in (25) but also the meanings in (26). They argue that (26) is

due to conventional implicature rather than presupposition as had been suggested

in previous literature.

(24) Even Bill likes Mary.

(25) Bill likes Mary.

(26) a. Other people besides Bill like Mary.

b. Of the people under consideration, Bill is least likely to like Mary.

They provide the “rough” representation of (26a) in (27) where a is defined as

the focus of the sentence and ...x... is the scope. In the example above, the focus
0This chapter is an extended version of Bierner (2000) which, in turn, is an extended version

of Bierner (1999).
1These examples are taken from Karttunen and Peters (1979).
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is bill and the scope is like(x, mary). This representation states that there are

more values for x than Bill. Another way of saying this is that the alternative set

defined by λx.like(x, mary) contains like(bill, mary) and the size of the set is

greater than one.

(27) There are other x under consideration besides a such that ...x...

Rooth (1985, 1992) uses alternative sets to develop a detailed account of focus,

particularly with the focus particle only. Only involves the restriction of an

alternative set to a single element. For example, in (28), out of the alternative

set described by λx.like(mary, x), only one element, like(mary, bob), is true.

For an overview of focus using the related “structured meanings” approach, see

von Stechow (1991).

(28) Mary likes only Bob

Alternative sets are of more than theoretical interest: Prevost and Steedman

(1994) and Steedman (2000a) have shown that alternative sets form the semantic

basis for contrast in intonation, and this can be exploited in speech generation

(Bierner, 1998). Steedman (2000a) defines the concepts of theme (roughly the

question the utterance addresses) and rheme (roughly the answer it provides)

in terms of alternative sets: a theme presupposes an alternative set which is

restricted by a rheme. Thus in (29b)2, the theme, Marcel proved evokes an alter-

native set such as (30). The rheme, completeness, restricts that alternative set to

the single item prove(marcel, completeness). Contrastive stress is then given

to words in the rheme that contribute to the restriction of the alternative set—in

this case simply completeness.

(29) a. What result did Marcel prove?

b. (Marcel proved) (completeness)

(30)





prove(marcel, decidability)

prove(marcel, soundness)

prove(marcel, completeness)





Alternative set semantics is also useful in describing a large class of frequently

occurring words, such as besides, such (as), and other (than), which I will call

alternative markers. For example, besides, in the question Who does Mary like

besides Bob?, appeals to the alternative set λx.like(mary, x) and considers all

elements except for like(mary, bob).

2These examples are taken from Steedman (2000a).



3.1. Introduction 19

As I discussed in Chapter 1, these words are relevant to practical applications

because of their frequency and their linguistic properties. In natural language

information retrieval (NLIR), for example, these words are used to restrict (and

possibly order) the set of results. In addition, they imply information about the

world that, in some systems, can be useful in answering that and future queries.

The examples in (1) from the The Electric Monk that I discussed in Chapter 1,

repeated below, demonstrate this.

(31) a. What is the drinking age in Afghanistan?

(search results)

What is the drinking age in other countries?

b. Where can I find web browsers for download?

(search results)

Where can I find other web browsers than netscape for download?

c. Where can I find a list of all the shoe manufacturers in the world?

(search results)

Where can I find shoes made by Buffalino, such as the Bushwackers?

d. Where are online auctions indexed?

(search results)

Are there other auction search engines besides BidFind?

For the Monk to answer the second query in (31a), it must identify Afghanistan

as a country and exclude it from the current search. Similar reasoning in (31b)

should conclude that Netscape is a web browser to be excluded from the search.

For these examples, it is important to note that incorrectly including Afghanistan

and Netscape in the results can overwhelm the results to the extent that no other

answers are returned to the user. This is a serious failure in a retrieval system

and is discussed in depth in Section 6.6.

In (31c), one must conclude that Bushwackers are shoes made by Buffalino

which can be non-exclusively included in the search. Finally, in (31d), BidFind

must be an auction search engine and excluded from the search.

In the above examples, the alternative markers are used in what I will call

connected alternative phrases (modeled after similar terminology in Hoeksema

1995). These phrases are closely bound to the NP to which they refer. I will also

consider free alternative phrases which behave more like parentheticals: e.g. (32).

(32) Other than Fido, every dog likes going for walks.

As I discuss in Chapter 6, alternative markers are practically relevant beyond

the scope of NLIR, but these examples adequately demonstrate the properties of
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alternative markers listed in (33). In terms of (31a), for example, these properties

correspond to other’s anaphoric dependence to Afghanistan, the implication that

Afghanistan is a country, and that Afghanistan should be excluded from the

countries under consideration. I will focus on the first two properties but will

also discuss the third.

(33) Properties of alternative markers:

a. They depend upon anaphora.

b. They presuppose and imply facts about the world.

c. They include or exclude alternatives from a larger set.

The rest of this chapter begins with a summary of previous work and my

approach to the problem. I continue with a detailed discussion of connected

alternative phrases in this chapter and free alternative phrases in the next.

3.2 Previous Work

Hearst (1992) demonstrates cases where pattern matching can be used to ex-

tract knowledge from some constructions with alternative phrases and gives the

patterns in (34) as examples.

(34) a. such NP as {NP,}* {or|and} NP

b. NP {, NP}* {,} {or|and} other NP

c. NP {,} including {NP,}* {or|and} NP

d. NP {,} especially {NP,}* {or|and} NP

This technique may be adequate for her purpose, the acquisition of hyponyms

from large corpora, because the goal is to take advantage of easily available in-

formation, not handle a wide variation of linguistic phenomena. Although the

number of constructions is limited, that is perhaps made up for by the speed and

robustness of pattern-matching techniques.

Pattern matching is not adequate for my purposes. For one thing, by itself it

simply cannot handle anaphoric examples like (31a). Also, even for its primary

purpose of extracting knowledge, it is likely to produce poor results if applied

to free alternative phrases because of their attachment ambiguity. In addition,

while the above patterns for such, including, and especially are completely re-

liable, (34b) can produce incorrect results. (35) shows that discourse and world

knowledge must be taken into account.
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(35) John’s pet dog, Fido, was sick.

So John and the other dogs went for a walk.

In contrast, von Fintel (1993) and Hoeksema (1995) give in-depth semantic anal-

yses. While they treat both connected and free constructions, they focus entirely

on exceptive phrases (ways of referring to exceptions) illustrated by the lexical

items but and except (for). The thrust of their analyses is directed towards

how these words interact with determiners to determine the final set of entities.

Since in queries, alternative phrases less frequently interact with determiners in

this way, this interaction with determiners does not appear to be a significant

problem in the NLIR application that I am concerned with. I am much more in-

terested in the anaphoric and inferential aspects of these words, issues generally

skirted by Hoeksema and von Fintel. I will discuss the relevant aspects of their

work, with respect to free alternative phrases, in more depth in Chapter 4.

3.3 My Approach

In this thesis, I present an alternative, formal approach to alternative phrases

that is wider in scope than the alternatives reviewed in Section 3.2 (although less

detailed in some respects than von Fintel and Hoeksema’s work).

Previously, in Chapter 2, I only presented assertional semantics. For my

analysis of alternative phrases, I will also use presupposition. I take the pragmatic

view of presuppositions explored by Lewis (1979) and Stalnaker (1974) which,

stated loosely, sees them as propositions that must be true for an utterance to

make sense. (For an overview of presupposition, see Beaver 1997.) I separate

lexical semantics into assertion and presupposition as in Stalnaker (1974) and

Karttunen and Peters (1979). The idea is also used in Webber et al. (1999b)

to capture anaphoric (non-structural) links between discourse connectives and

material derivable from previous discourse, and in Stone and Doran (1997) and

Stone and Webber (1998) for natural language generation. This reveals a simple

and elegant analysis.

The assertion is computed during the derivation as shown in Section 2.2.2.

Evaluating presuppositions is a more complex issue and is described in Sec-

tion 5.7.1. For now, I simply show the resulting presuppositions after the deriva-

tion. I will write lexical entries in the following form, where the semantic param-

eters scope both the assertion and presupposition:
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lexical item `





syn : syntactic category

sem : λ...




assert : proposition

presup : proposition*

I discussed earlier how alternative sets play an important role in understanding

alternative phrases. Alternative sets are sets of propositions, but, in a restricted

view, they can also be viewed as the pair of a property and a set. The set, called

the ground, contains the differing members of the alternative set, and the property

is the result of abstracting over those members. The property and set resemble

the sets and their characteristic functions described in Section 2.3. My analyses

refer to alternative sets through the relation alts(p, q) which is defined as follows,

where p and q are expressions of type 〈e, t〉:

(36) alts(p, q) ⇐⇒ ∃A ∈ alt-sets s.t. ∀x.(p(x) ∨ q(x))→ x ∈ ground(A)

Intuitively, this relation specifies that the two sets of entities denoted by p and q

can be found together in the ground of at least one alternative set in the knowledge

base. The description component of the alternative set (i.e. the property) need

not be known.

It is important to note that although I will talk about unifying these struc-

tures, they are relations—not just logical forms. Therefore, although this is

glossed over in most of this thesis, the relation’s properties should be respected,

namely that it is symmetric and reflexive, but not transitive. This is implemented

in Grok (Section 5.8) so that, for example, if a symmetric relation fails to unify,

the unification is tried again with the arguments reversed.

The alternative phrases I analyze fall into two classes: those that assemble a

set from elements and those that excise a set from a larger set (as in exceptive

phrases). In either case, one particular set of elements is of interest, the figure.

With assembly words, the figure is either admitted into the set, called the ground,

or combined with a complement to form a set. With excision, the figure is explic-

itly excluded from the ground. The figure may derive from structurally-related

constituents, or it may be given anaphorically.

The following sections show how the use of presupposition along with the alts

relation can allow us to analyze both connected and free alternative phrases to

capture their anaphoric and inferential properties.
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3.4 Connected Alternative Phrases

3.4.1 Besides

Besides is an excision word whose figure and ground are given structurally, as

opposed to anaphorically. (37), derived from (31d), demonstrates this by its

presupposition that the figure, BidFind, is an auction search engine. I provide the

analysis in (38), which shows the ground and the figure being taken as structural

arguments that are then used in both the assertional and presuppositional parts

of the semantics. In other constructions involving besides, the ground can derive

from any argument or adjunct and also has an assembly use, as in the sentence

Besides John, Mary likes spam. See Chapter 4 for further discussion.

(37) Are there auction search engines besides BidFind?

(38) besides `





syn : NP\NP/NP

sem : λfλg





assert : λx.g(x) ∧ ¬f(x)

presup : ∀x.f(x)→ g(x)

alts(f, λx.g(x) ∧ ¬f(x))

In this analysis, the assertion returns all entities of the ground except for the

figure. The analysis asserts nothing of the figure regarding clause-level predica-

tion, as it may be true of the figure (39b) or it may not (39a).

(39) a. Fido is vicious and I hate him, but I like dogs besides Fido.

b. Fido may be my favorite, but I like dogs besides Fido.

In either case the speaker is committed to the fact that the figure (fido) has

the ground property (dogs). This is expressed as the first presupposition in the

analysis. (Since figures can be realized pronominally, the presupposition refers

to the referent of the figure rather than its form. Section 5.7.1 discusses the

consequences of this for implementation.) I choose to express this as a universal

quantification for reasons of type consistency. The simplest way to interpret

this expression is as set membership. That is, the elements of f are a subset

of the elements of g, as in dogs besides Fido. This is implicit in the analysis of

Hoeksema (1995). However, with certain instantiations the relation might not

be set membership, as in dogs besides poodles where the relationship is subtype.

This issue is at the heart of the problem of interpreting generics (see Carlson

and Pelletier 1995), and Section 5.7.3 discusses heuristics for disambiguating the

interpretation of these expressions.
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The second presupposition states that the figure is an alternative to the other

entities under consideration. This is a more general case of the first presupposition

which explicitly refers to the property of the alternative set containing the figure

and ground: i.e. dog. The alts relation leaves the alternative set, and thus the

property, unspecified. I will show in Section 3.4.2 that this plays an important

role.

The analysis is illustrated in the derivation in (40).

(40) auction search engines besides BidFind

NP : ase (NP\NP)/NP : NP : bf
λfλgλx.g(x) ∧ ¬f(x)

>
NP\NP : λgλx.g(x) ∧ ¬bf(x)

<
NP : λx.ase(x) ∧ ¬bf(x)

presupposition set:

{
∀x.bf(x)→ ase(x)

alts(bf, λx.ase(x) ∧ ¬bf(x))

Here, the most pertinent presupposition of besides communicates that BidFind

is an auction search engine. If this knowledge is not already available to a system,

it may be accommodated in the sense of Lewis (1979). But this is a limited form

of accommodation in that we assume that these presuppositions can be resolved

with entities already available from the discourse or a very limited set of the

common ground (Section 3.6.3). I do not postulate new entities or keep around

partial, or underspecified, representations for later instantiation.

The semantics of the NP auction search engines besides BidFind uses the

assertion of besides to yield λx.ase(x) ∧ ¬bf(x)—i.e. entities that are auction

search engines and not Bidfind.

This analysis and those following identify ∀x.f(x)→ g(x) as a presupposition.

I show now that this is supported by several standard tests for presupposition

(as opposed to assertion and implicature) as discussed in van der Sandt (1992),

Beaver (1995) and Lagerwerf (1998).

Embedding Tests

The idea behind embedding tests is that the embedded context changes the as-

sertion of the sentence without affecting a presupposition. For example, in the

classic negation test, a presupposition should survive a negated context. For ex-

ample, both (41a) and (41b) communicate (41c), which is the presupposition of

stop.
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(41) a. Jones stopped beating his grandmother.

b. Jones did not stop beating his grandmother.

c. Jones was beating his grandmother.

Similarly, with besides, both (42a) and (42b) presuppose (42c).

(42) a. I like dogs besides Fido.

b. I don’t like dogs besides Fido.

c. Fido is a dog.

Presuppositions should also project through modal contexts and questions. In-

deed, this is the case.

(43) a. It is possible that I like dogs besides Fido.

b. Do you like dogs besides Fido?

c. Fido is a dog.

Discourse Tests

The remaining tests recognize that presuppositions are affected by their context.

If the context contains the information expressed by the presupposition, then

the presupposition is satisfied. If the context contains information contradicting

the presupposition, the presupposition is rejected, and the discourse is considered

unacceptable. If the context does not entail the information expressed by the pre-

supposition, then the presupposition is accommodated—as in the basic examples

for besides I have presented so far.

(44) a. Fido is a dog. I like dogs besides Fido.

b. #Fido is a cat. I like dogs besides Fido.

c. Fido is a dog.

In (44), we see that this test succeeds for besides. The second sentence of

both (44a) and (44b) contains the presupposition in (44c). The first example,

where the context is consistent with the presupposition, is acceptable, while the

second is not (on the assumption that the set of dogs excludes cats).

A final test is how a presupposition behaves within a conditional. In most

conditionals, the presupposition is made available to the rest of the discourse.

However, if the antecedent of the conditional entails the information communi-

cated by the presupposition, then that information is not available to the rest of

the discourse.
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For example, Lagerwerf (1998) presents the following examples. In the first

sentence of (45), regrets triggers the presupposition that the father is dead. The

second sentence, in which the father is alive, is infelicitous. In (46), on the other

hand, the presupposition does not project through the conditional and thus the

second sentence is acceptable even though it implies the father is alive.

(45) If he was crying, then he regrets killing his father.

#But if he was happy, then his father is alive and kicking.

(46) If he killed his father, then he regrets killing his father.

But if his father is alive, he will be glad his father managed to survive.

Similarly, in (47), the presupposition that Fido is a dog survives the con-

ditional, causing the second sentence, which implies that Fido is a cat, to be

unacceptable. In contrast, in (48), the presupposition does not project past the

conditional. Thus, implication in the second sentence that Fido is a cat is accept-

able.

(47) If John has a big backyard, he owns dogs besides Fido.

#But if John’s backyard is small, all his pets are cats.

(48) If Fido is a dog, John owns dogs besides Fido.

But if Fido is a cat, all his pets are cats.

Given that these standard tests are satisfied, I conclude that ∀x.f(x)→ g(x),

in the analysis of besides in (38), is a presupposition.

3.4.2 Such

Such, as in (31c) (repeated in (49) in a simplified form), differs from besides in

two ways. First, it is an assembly word: Bushwackers, the figure, is required to be

included in the resulting set. Secondly, the figure can derive anaphorically as well

as structurally. Example (50) supports the second claim by showing that such

can even appear in a different sentence than its figure, clearly indicating it is a

discourse anaphor. The same analysis I propose for this will also account for (49′),

where such and as are separated within a phrase. It would be possible, though

less compact, to have a separate lexical entry to handle this example structurally.

(49) Where can I find shoes such as the Bushwackers?

(50) Bushwackers are very comfortable.

Where can I find such shoes?
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(49′) Where can I find such shoes as the Bushwackers?

The examples given above use the restrictive sense of such. That is, it re-

stricts the interpretation of the noun phrase by some property or properties of

the figure. For example, we might only want shoes that are comfortable—like the

Bushwackers. Such can also be used in a non-restrictive way, as in (51), where it

simply provides an example of the set, but does not restrict it.

(51) Where can I find comfortable shoes, such as the Bushwackers?

The syntactic distribution of NP taking such can be seen in (52), showing,

as discussed above, that such and the ground NP can be in any order. Here,

parentheses indicate optionality.

(52) a. dogs such as Fido

b. * dogs such

c. a dog such as Fido

d. * a dog such

e. such dogs (as Fido)

f. such a dog (as Fido)

g. any such dog

h. any such dog as Fido

It is tempting, then, to give such the syntactic category NP|NP, the non-

directional slash indicating that the argument can be taken on either side. How-

ever, if the ground NP appears first, the as modifier must appear, as indicated

in (52b) and (52d). The non-directional category would incorrectly allow these

examples. Therefore, I propose a separate analysis for each order, (53).

(53) a. such `





syn : NPeq+,comp−/NPkind+

sem : λg





assert : λx.g(x) ∨ f(x)

presup : ∀x.f(x)→ g(x)

alts(f, λx.g(x)∨f(x))

b. such as `





syn : NPeq+,comp−\NPkind+/NP

sem : λgλf





assert : λx.g(x) ∨ f(x)

presup : ∀x.f(x)→ g(x)

alts(f, λx.g(x)∨f(x))
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Since one cannot say such the dog, such every dog, or even such any dog the NP

argument must be further restricted to be interpretable as a kind. For notational

simplicity, I indicate this as a feature (kind+) on the syntax.

I treat such in (53) as having two presuppositions: (1) the figure, f , has

the properties associated with the ground, g, and (2) the figure and assertion

are alternatives. These are the same as for besides. The assertional semantics

provided here is for non-restrictive such. For restrictive such, the set returned

by the assertion should actually be λx.g(x)∨ f(x) restricted by salient properties

of f , such as comfortable in (50). If no properties are available, an effective

default might be to return the most specific subsumer of f with respect to g. I

believe that this finer-grained semantics is only useful for practical systems given

a large knowledge base. In the particular case of NLIR, we would also require an

understanding of the retrieved documents that goes beyond simple indexing of

words and phrases. This exists for certain specific domains, but not for general

web-based retrieval. I discuss this issue more in Chapter 6.

The semantic analysis of such allows the simple syntactic/semantic derivation

of such shoes given in (54).

(54) such shoes

NP/NP : λgλx.g(x) ∨ f(x) NP : shoe
>

NP : λx.shoe(x) ∨ f(x)

presupposition set:

{
∀x.f(x)→ shoe(x)

alts(f, λx.shoe(x) ∨ f(x))

At this point, the semantics is dependent on the free variable f , the figure,

which represents an anaphorically presupposed expression of type 〈e, t〉 (which

could be a set). This is reflected by the fact that, in isolation, such shoes does

not make sense. Although such anaphoric reference is difficult to resolve, in

some constructions we can identify the figure without bringing full resolution

techniques to bear. Some of these constructions are those that contain the word

as. My analysis of NP-taking as is given in (56), from which we can perform the

derivation in (57). At the same time, it rejects the NPs in (55). The eq feature,

used to mark equative phrases, is responsible for restricting the first example.

Lexical NPs are labeled with eq− and as requires eq+.

In a general sense, the syntactic analysis for as (and than in the next section),

is consistent with the transformational-style account given in McCawley (1988,

ch. 20) in that it views it as an adjunct of the NP rather than a complement.
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(55) a. * [shoes]NPeq− [as the Bushwackers]NP\NPeq+

b. * [shoes]NP [such]NP/NP or NP\NP/NP/as

(56) as `





syn : NP\NPeq+,comp−/NP

sem : λxλy




assert : y

presup : alts(x, y)

(57) such shoes as the Bushwackers

NPeq+/NP : NPeq− : (NP\NPeq+)/NP : NP : b
λgλx.g(x) ∨ f(x) shoe λxλy.y

< >
NPeq+ : λx.shoe(x) ∨ f(x) NP\NPeq+ : λy.y

<
NP : λx.shoe(x) ∨ f(x)

presupposition set:





a. ∀x.f(x)→ shoe(x)

b. alts(f, λx.shoe(x) ∨ f(x))

c. alts(b, λx.shoe(x) ∨ f(x))

The presupposition set is the union of the presuppositions of such and as,

as bound during the derivation. The remaining variable, f , can be determined

solely from the presupposition set of (57) using the old AI planning heuristic “use

existing objects” (Sacerdoti, 1977) to avoid inventing new objects when others

are already available. In particular, we can unify (57b) and (57c), discovering

that f , the figure, is b, or Bushwackers. This then instantiates (57a), yielding

∀x.b(x)→ shoe(x): i.e. Bushwackers are shoes. Unifying logical forms to instan-

tiate variables in this way follows the “interpretation as abduction” paradigm

(Hobbs et al., 1988, 1993), where this merging is performed to exploit redun-

dancy for “getting a minimal, and hence a best, interpretation.” This is, in

essence, what I am trying to do.

That Bushwackers are a type of shoe may or may not already be present in

the discourse. If it is not, as before we can accommodate the fact.

3.4.3 Other

The semantic analysis in (59) defines other, like besides, as an excision word

that excludes the figure from the ground3. However, as with such, it differs from

besides in that the figure can be derived anaphorically rather than being con-

tained structurally. Also as with such, data shows us that the NP argument can

3Other can appear in other syntactic constructions which I review in Chapter 4.
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appear on either side of other but that NPs such as dogs other are ungrammatical

(58). Thus, for the same reason, I propose two lexical entries.

As mentioned in Section 2.3, I exclude N as a basic category and instead,

distinguish between bare and non-bare NPs. Non-bare NPs cannot be rightward

arguments of other (58f), so I place a bare+ restriction on these NPs (62).

(58) a. dogs other than Fido

b. * dogs other

c. a dog other than Fido

d. * a dog other

e. other dogs (than Fido)

f. * other a dog (than Fido)

g. any other dog (than Fido)

(59) a. other `





syn : NPcomp+,eq−/NPbare+

sem : λg





assert : λx.g(x) ∧ ¬f(x)

presup : ∀x.f(x)→ g(x)

alts(f, λx.g(x) ∧ ¬f(x))

b. other than `





syn : NPcomp+,eq−\NP/NP

sem : λgλf





assert : λx.g(x) ∧ ¬f(x)

presup : ∀x.f(x)→ g(x)

alts(f, λx.g(x) ∧ ¬f(x))

In derivation (60), the analysis in (59a) interprets other countries as the set of

countries not including the figure. As with such, the figure must be available

from elsewhere in the sentence, from the discourse, or from the common ground

(Section 3.6.3).

(60) other countries

NP/NP : λgλx.g(x) ∧ ¬f(x) NP : country
>

NP : λx.country(x) ∧ ¬f(x)

presupposition set:

{
∀x.f(x)→ country(x)

alts(f, λx.country(x) ∧ ¬f(x))

While the full problem of identifying a presupposed figure is not yet solved

(cf. Section 3.6), we can decisively identify the figure for other in constructions
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containing than. The word than has a very similar analysis to as except for

its eq and comp features. These avoid over-generating sentences such as (63)

while performing the derivation in (64) (from the example in (31b)). This use

of features to avoid over-generation follows the XTAG analysis for comparatives

in XTAG-group (1999) to block phrases like more brighter than dark, as patient

than Bill, and more patient as Bill.

(61) than `





syn : NP\NPeq−,comp+/NP

sem : λxλy




assert : y

presup : alts(x, y)

(62) * [other]NP/NPbare+
[a dog]NPbare−

(63) a. * [other web browsers]NPcomp+,eq− [as Netscape]NP\NPeq+

b. * [such web browsers]NPcomp−,eq+ [than Netscape]NP\NPcomp+

(64) other web browsers than Netscape

NPcomp+/NP : NPcomp− : (NP\NPcomp+)/NP : NP :
λgλx.g(x) ∧ ¬f(x) browser λxλy.y netscape

> >
NPcomp+ : λx.browser(x) ∧ ¬f(x) NP\NPcomp+ : λy.y

<
NP : λx.browser(x) ∧ ¬f(x)

presupposition set:





∀x.f(x)→ browser(x)

alts(f, λx.browser(x) ∧ ¬f(x))

alts(netscape, λx.browser(x) ∧ ¬f(x))

As in Section 3.4.2, we unify the last two presuppositions and thus determine

that the figure is Netscape. Our first presupposition is instantiated to indicate

that Netscape is a browser, which we can accommodate if not already known. In

addition, the assertional semantics denotes browsers that are not Netscape.

A remaining problem involves other NPs with post-modifiers which can con-

vey either old material (for identifying what is to be excluded) or new material

(to be predicated of the new entity). In speech, intonation can disambiguate: for

instance, in penguins and other birds that CAN fly, bird but not flying is predi-

cated of penguin, while in robins and other birds that can fly, both are predicated

of robin. The same is true for prepositional phrases as in crows and other birds

with RED wings and cardinals and other birds with red wings. For most practical

applications, however, disambiguation remains a problem.

In my analysis, this phenomenon is reflected by an attachment ambiguity. If

the post-modifier attaches to the ground alone, then the presupposition of other
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requires that the post-modifier apply to the figure (65). If it attaches to the entire

alternative phrase, then the post-modifier has no effect on the figure (66).

(65) robins ... other birds that can fly

NP : robin NP/NP : NP : bird NP\NP :
λgλx.g(x) ∧ ¬f(x) λpλx.p(x) ∧ fly(x)

<
NP : λx.bird(x) ∧ fly(x)

>
NP : λx.bird(x) ∧ fly(x) ∧ ¬f(x)

NP : λx.bird(x) ∧ fly(x) ∧ ¬robin(x)
presupposition: ∀x.robin(x)→ bird(x) ∧ fly(x)

(66) penguins ... other birds that CAN fly

NP : penguin NP : NP\NP :
λx.bird(x) ∧ ¬f(x) λpλx.p(x) ∧ fly(x)

<
NP : λx.bird(x) ∧ ¬f(x) ∧ fly(x)

NP : λx.bird(x) ∧ ¬penguin(x) ∧ fly(x)
presupposition: ∀x.penguin(x)→ bird(x)

If this is true, a situation where the modifier can only attach to birds, rather

than other birds, should yield the reading where the figure has the modifier’s

property. Thus, using a different syntactic form of other (the semantics works

out the same—see Section 4.3), we can produce the sentences in (67). Despite

conflicting world knowledge, (67a) communicates that penguins fly. Even with

the same intonation as in our previous example, (67b) also communicates that

penguins fly—as predicted. World knowledge seems to not have an effect since the

result is the same with both penguins and robins. Because this conflicts with the

contrastive stress on can, this sentence is perceived as odd. (68) contains a short

discourse that makes such a sentence palatable by providing another referent for

the contrastive stress. The meaning of the sentence is that John does not like

penguins and does not like robins, but he does like flying birds that are not robins.

(67) a. Other than penguins, John likes every bird that can fly.

b. #Other than penguins, John likes every bird that CAN fly.

#Other than robins, John likes every bird that CAN fly.

(68) John doesn’t care for penguins because they can’t fly.

But other than robins, he likes every bird that CAN fly.

3.4.4 Comparatives

Comparatives such as better, faster, and longer behave very similarly to other.

Representing the semantics of comparatives, and adjectives in general, is a com-
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plex topic which I will not address here (see Beesley 1983 and Klein 1991 for an

overview). However, I will briefly discuss cases where they have presuppositions

which one can take advantage of in a practical system.

Syntactically and presuppositionally, I treat comparatives similarly to other

though, in some instances, they lack one of its two presuppositions. Consider the

examples in (69).

(69) a. Fido walks. Bigger dogs run.

b. Bigger dogs than Fido run.

c. Dogs bigger than Fido run.

While (69a) and (69b) presuppose that Fido is a dog, this is not the case for

(69c). (Consider the sentence Dogs bigger than a bread-box are common.) This

observation was made at least as early as Chomsky (1965, p.180, 234). I take

the observation as additional evidence that there should be separate analyses for

taking arguments on the left and the right.

I discuss comparatives further in Section 6.4.3.

3.5 Scoping Alternative Phrases

Anaphoric alternative markers can scope each other. (70) gives two examples

from the British National Corpus (BNC).

(70) a. Like other such instincts, however, envy is both preservative and de-

structive.

b. After four days and nights of play, the final table had seen him bust

out such other local legends as Clyde “Slippery” Coleman and the

dread Dave Crunkleton.

In (70a), where other has wide scope, the figures for both other and such

are the same. That is, the sentence refers to instincts that are not envy but are

similar to envy. It would be nice if it fell out of my theory that this is the case.

However, this is not quite as simple as when we unified the presupposition of

other with that of than. As (71) shows, the alts presuppositions of other and

such for this example are not the same. Note that I represent the semantics of

restrictive such as g ∼ f , which means, roughly, elements of g that are like f .

(71) such: alts(f1, instinct ∼ f1)

∀x.f1(x)→ instinct(x)

other: alts(f2, (instinct ∼ f1) ∧ ¬f2)

∀x.f2(x)→ (instinct ∼ f1)(x)
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Because the presuppositions are different, they can not be unified, and the

figures cannot be collapsed. However, it is unlikely that the “use existing objects”

heuristic is restricted to simple unification of existing logical forms. Rather, the

idea is to collapse objects when that is the simplest consistent explanation, so

some simple reasoning is not out of place.

(72) alts(f, f)

(73) alts(f, x)→ alts(f, x ∨ f)

(74) (instinct ∼ f1) ≡ ((instinct ∼ f1) ∨ f2)

I reintroduce the reflexive property of the alts relation mentioned in Section 3.3,

(72). This axiom has the immediate consequent in (73). This simple bit of

reasoning results in a slight variation of other’s presupposition, shown in (75).

The only piece of knowledge that we need is that f2 is included in (instinct ∼
f1). This knowledge is given as the second presupposition of other in (71) and

allows the equivalence in (74).

(75) alts(f2, (instinct ∼ f1) ∧ ¬f2)

→ alts(f2, ((instinct ∼ f1) ∧ ¬f2) ∨ f2) (73)

≡ alts(f2, ((instinct ∼ f1) ∨ f2) ∧ (¬f2 ∨ f2)) distributivity

≡ alts(f2, (instinct ∼ f1) ∨ f2) complementarity

≡ alts(f2, instinct ∼ f1) (74)

The resulting relation can now unify with the alts presupposition of such in (71),

collapsing the figures such that f1 = f2. Looking ahead, Section 3.6.1 describes

how like produces the presupposition in (76). This can unify with the original

presupposition of other in (71), identifying f2 as envy, and thus f1 as well.

(76) alts(envy, (instinct ∼ f1) ∧ ¬f2)

Note that there is no aspect of (75) that is specific to such. Thus, for any

presupposition alts(f, x∧¬f) of other, it will also be true that alts(f, x). Given

that all alternative phrases produce a presupposition of the form alts(f ′, x′), this

analysis predicts that other will prefer to share the figure of any alternative phrase

that it scopes. This is demonstrated in (77) where the ships being referred to by

other smaller ships are different from and smaller than the same thing—the fifty

warships.

(77) I knew that just beyond the narrow sea separating the two countries there

were at least fifty warships ready to attack us, with many other smaller

ships.
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In contrast, when such has wide scope, it is not the case that both figures

are likely to be the same. This is the case in (70b) where the local legends

being referred to are different from the referent of him and similar to Coleman

and Crunkleton. And in (78), the men are similar to Certon and Sandrin. It

is unclear whether they are younger than Attaingnant or Janequin and Sermisy,

but the pertinent point is that younger does not refer to Certon and Sandrin.

(78) And beside Janequin and Sermisy, Attaingnant brought out the songs of

such younger men as the immensely prolific Pierre Certon and Sandrin,

whose “Doulce memoire” was transcribed for lute or keyboard all over

Europe from Spain to Poland.

The presuppositions shown in (79) show why this is so. Here, the reflexive prop-

erty of the alts relation does not help us. The two presuppositions remain un-

unifiable, so the “use existing objects” heuristic of unifying the presuppositions

cannot be used.

(79) other: alts(f1, local-legend ∧ ¬f1)

such: alts(f2, (local-legend ∧ ¬f1) ∼ f2)

These interactions are very interesting and deserve further investigation with

respect to other anaphoric phrases. But that is beyond the scope of this thesis.

3.6 Finding the Figure

Identifying the figure when interpreting words like such and other (i.e. when the

figure is not given structurally) appears comparable to determining the referent of

a pronoun or NP. However, there are several common constructions, besides those

created with as and than, that make the presupposed figure easily identifiable.

3.6.1 Exploiting the Presence of Other Alternative Markers

Like and unlike are assembly words, but unlike other alternative markers I have

discussed, they do not take a ground. Rather, they take a figure and complement

and presuppose that they are alternatives. For example, in Unlike Mary, John

likes spam, we presuppose that Mary and John are alternatives. In this case,

no explicit evidence is given for what alternative set they belong to. However,

one source of evidence is the appearance of other in one of the arguments—e.g.

in the first sentence of this paragraph. The analysis of unlike in (80) provides

the partial derivation in (81). Note that the syntax is a simplification of that
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presented in Section 4.4. Aspects of the semantics, such as the status of ¬p(x) as

a presupposition, are also discussed in that section.

(80) unlike `





syn : S/VP/NP/NP

sem : λxλyλp





assert : p(y)

presup : ¬p(x)

alts(x, y)

As in Sections 3.4.2 and 3.4.3, we can “use existing objects” and unify the last two

presuppositions, determining that the figure is the set of like and unlike which,

through the first presupposition, are inferred to belong to the set of alternative

markers.

(81) unlike other alt markers, “like” and “unlike”

((S/VP)/NP)/NP : NP/NP : NP : NP :
λxλyλp.p(y) λgλx.g(x) ∧ ¬f(x) am λx.x ∈ {“like”, “unlike”}

>
NP : λx.am(x) ∧ ¬f(x)

>
(S/VP)/NP : λy.λp.p(x)

>
S/VP : λp.p(λx.x ∈ {“like”, “unlike”})

presupposition set:





∀x.f(x)→ am(x)

¬p(λx.am(x) ∧ ¬f(x))

alts(f, λx.am(x) ∧ ¬f(x))

alts(λx.x ∈ {“like”, “unlike”}, λx.am(x) ∧ ¬f(x))

It is important to note that this still works perfectly well if the NPs are

reversed, as in (82). Remember that alts is a symmetric relation and therefore the

unification process will try both orders of the arguments. Thus, the interpretation

succeeds.

(82) unlike “like” and “unlike”, other alt markers

((S/VP)/NP)/NP : NP : NP/NP : NP :
λxλyλp.p(y) λx.x ∈ {“like”, “unlike”} λgλx.g(x) ∧ ¬f(x) am

> >
S/VP/NP : λyλp.p(y) NP : λx.am(x) ∧ ¬f(x)

>
S/VP : λp.p(λx.am(x) ∧ ¬f(x))

presupposition set:





∀x.f(x)→ am(x)

¬p(λx.x ∈ {“like”, “unlike”})
alts(f, λx.am(x) ∧ ¬f(x))

alts(λx.am(x) ∧ ¬f(x), λx.x ∈ {“like”, “unlike”})
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Unlike is not the only lexical item that can identify the figure in this way.

Free alternative phrases such as in addition to, besides, and other than, when

used in an assembly context, do so as well.

3.6.2 List Contexts

List contexts such as (83) also provide a situation in which we can identify the

figure. I include a presupposition with and (and list-forming commas) that states

the coordinated items are alternatives—the same presupposition given for as and

than (Section 3.4.2). The presupposition of and is instantiated in (83) to (84a).

The presuppositions of other are instantiated as in (60), repeated in (84b). This

is now equivalent to (64) where we can identify the figure, Afghanistan, though

unification.

(83) What is the drinking age in Afghanistan and other countries?

(84) a. alts(afghanistan, λx.country(x) ∧ ¬f(x))

b. ∀x.f(x)→ country(x)

alts(f, λx.country(x) ∧ ¬f(x))

(85) What is the drinking age in Afghanistan, other countries, and Dallas?

In the case of (85), however, we must ensure that Dallas is not considered a

country. Assuming that the grammar collects list items from left to right (easily

implemented in CCG or through an incremental parser), Afghanistan and other

countries will be combined first. Because we unify presuppositions as soon as

possible (as in Hobbs et al. (1988, 1993)), by the time Dallas is combined into the

list, the figure has already been resolved to Afghanistan in the manner described

above. Therefore, Dallas cannot be the figure and is not identified as a country.

(86) John’s pet dog, Fido, was sick.

So, John and the other dogs went for a walk.

There are cases where this heuristic seems to fail, such as (86). Clearly, John

should not be presupposed to be a dog. Making this mistake is due to not taking

into account that, to be considered, possible antecedents must be compatible

with the presupposition. Thus, John should not be considered when resolving

the figure because we know he is a dog owner, hence human, hence not a dog.

This means that the process by which a figure is found through the unification

of presuppositions fails, leaving the figure unbound. The problem is now reduced
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to normal anaphoric resolution. Restrictions on antecedents and how to handle

intersentential reference are discussed in Section 3.6.3.

It is possible that these cases could be handled completely through standard

anaphora resolution. However, I prefer to have firmer control so that the first

choice for the figure is the set of all previous entities in the list. It is questionable

whether existing mechanisms for anaphora resolution would do this rather than

just choosing the most recent entity. This sort of reference is present in other

cases, such as in John, Mary, and their friends, so anaphora resolution algorithms

must eventually support it. When this happens, a standard resolution algorithm

can replace the procedure discussed in this section.

3.6.3 Intersentential Reference

Finding the figure outside of the sentence is handled through standard discourse

anaphora techniques. (Our implementation does this with an analysis based on

c-command and salience described in Section 5.7.2.) A presupposition concerning

the figure, then, becomes a further restriction placed on an antecedent. If no an-

tecedent is found that is known to meet this restriction, an antecedent consistent

with it is chosen and the presupposition accommodated. Thus, in (31a), repeated

in (87), when evaluating the second sentence, we look for an antecedent that is a

country.

(87) What is the drinking age in Afghanistan?

What is the drinking age in other countries?

If Afghanistan is known to be a country, we choose it. Otherwise, if it is consistent

with being a country, we choose it and accommodate that fact. Otherwise we try

the common ground before failing.

That is, presuppositions can also be licensed by elements of the common

ground that come from the speaker’s and hearer’s shared physical or cultural

situation. While in general, completely specifying user’s and system’s common

ground is impossible, we can do quite well in constrained domains like NLIR

queries. In particular, the user, the location of the user, and the user’s web

browser can all be considered part of the common ground. Thus, in the absence

of alternative evidence, other countries probably excludes the user’s current lo-

cation, while other browsers almost certainly excludes the one being used.
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3.6.4 Preliminary Evaluation

I have hand-tested the heuristics given in Sections 3.6.1 and 3.6.2 for finding the

figure of other on three corpora: a subset of the British National Corpus (BNC),

a corpus of home maintenance instructions (RD) Digest (1991), and one month of

queries from the Monk. The BNC contains a great deal of literature and literary

criticism, while the RD is a more constrained “how to” text. The dialogues in

the Monk’s user interactions are the shortest and most constrained of all.

Without Default With Default

precision recall precision recall
BNC 100% 10% 47% 47%
RD 100% 43.4% 57.8% 57.8%

Monk 100% 69.6% 78.3% 78.3%

Table 3.1: Accuracy of Figure-finding Heuristics

Table 3.1 gives scores for precision and recall where precision is the number

of figures correctly identified out of those attempted and recall is the number

correct out of all instances of the word other, excluding idioms like on the other

hand. I show two sets of scores. The first uses only the techniques described in

Section 3.6. The second includes a default which chooses the most recent sen-

tential subject that is not the other phrase itself. This is a simple heuristic for

selecting the most salient entity, which is done more intelligently in my implemen-

tation (Chapter 5). With the default, precision and recall are the same because

the procedure identified a figure for all instances of other. Note that the gold

standard is not 100% because there are cases in the data sets where not enough

of the discourse was available to identify the figure.

These scores simply suggest that the current approach is practical since the

heuristics give significantly greater accuracy with more constrained texts such as

are found in the queries of NLIR systems like the Monk.

Comparing results with and without the default, in the latter case 30.4% of

the time no element is chosen as the figure, causing NPs of the form “other y” to

be translated to just simply y in the Boolean query. This will cause false positives,

pages incorrectly containing the figure, to be included in the results of the query.

With the default, the set of instances where false positives are returned is

reduced to 21.7%. In these cases, the NP “other y” is translated into y AND NOT

z (not really—see Section 6.1) where z is an incorrectly identified figure. Here

there are two possibilities: z could be of interest to the user, causing important
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documents to not be returned (false negatives). Alternatively, z could be irrele-

vant, in which case no false negatives occur, and the query is essentially just y,

causing false positives. Further investigation into the frequency of these situa-

tions and the effect they have on users’ ability to effectively complete their tasks

will help pinpoint the appropriate tradeoffs to make in a practical system, but

this is beyond the scope of this dissertation.

3.7 Determiners

So far in this chapter, I have only shown derivations where the ground is a bare

plural. This was meant to simplify the examples and explanation. However,

this does hide some important issues that arise with determiners. Consider the

sentence in (88).

(88) John likes Fido, but Mary likes the other dog.

(89) a. NP

the NP

other dog

b. NP

NP/NP

the other

dog

Syntactically, there is a choice in the structure of the other dog. First, as in (89a),

other dog could combine first to form the noun phrase argument of the determiner.

This would be consistent with my current analysis. The other option, (89b), is for

the determiner and the alternative marker to combine to form a new determiner.

There are two reasons to favor the second analysis over the first. The first is

simply that, in English, the word another is already an example of a determiner

having combined with an alternative marker. A further reason is that, with

determiners, some examples where unification is used to identify the figure no

longer work. For example, in the phrase unlike the other dog, Fido..., the current

analysis would produce the presuppositions in (90). In the second alts relation,

produced by unlike, the second argument has combined with the determiner,

while in the first alts relation, this is not the case. The two relations therefore

cannot unify and the figure is not correctly identified.
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(90) unlike the other dog, Fido

((S/VP)/NP)/NP : NP/NP NP/NP : NP : dog NP : fido
λxλyλp.p(y) λx.xthe λgλx.g(x) ∧ ¬f(x)

>
NP : λx.dog(x) ∧ ¬f(x)

>
NP : [λx.dog(x) ∧ ¬f(x)]the

>
(S/VP)/NP : λyλp.p(y)

>
S/VP : λp.p(fido)

presupposition set:





∀x.f(x)→ dog(x)

alts(f, λx.dog(x) ∧ ¬f(x))

¬p([λx.dog(x) ∧ ¬f(x)]the)

alts(fido, [λx.dog(x) ∧ ¬f(x)]the)

The solution is to add lexical entries for alternative markers that explicitly

subcategorize for determiners as well as the ground. The analysis is then able

to apply the determiner to the ground in the semantics to yield the appropriate

presupposition. An example of such an entry is shown in (91). This allows the

more compatible analysis of the other dog in (92). The alts presupposition is

now able to unify with alts(fido, [λx.dog(x)∧¬f(x)]the) and determine that the

figure is Fido.

(91) other `





syn : NPcomp+,eq−\(NP/NP)/NPbare+

sem : λgλq





assert : q(λx.g(x) ∧ ¬f(x))

presup : ∀x.f(x)→ g(x)

alts(f, q(λx.g(x) ∧ ¬f(x)))

(92) the other dog

NP/NP : λx.xthe NP\(NP/NP)/NP : NP : dog
λgλq.q(λx.g(x) ∧ ¬f(x))

>T
T/(T\(NP/NP)) : λp.p(λx.xthe)

>B
NP/NP : λg.[λx.g(x) ∧ ¬f(x)]the

>
NP : [λx.dog(x) ∧ ¬f(x)]the

presupposition set:

{
∀x.f(x)→ dog(x)

alts(f, [λx.dog(x) ∧ ¬f(x)]the)
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Chapter 4

Free Alternative Phrases

Yeah, True Love is the greatest thing in the world, except for a nice
MLT—mutton, lettuce and tomato sandwich, when the mutton is nice
and lean, and the tomato is ripe. They’re so perky.

(Miracle Max, The Princess Bride)

As others have pointed out, most recently von Fintel (1993) and Hoeksema

(1995), alternative markers can appear in freer contexts than those described

in Chapter 3. These papers are particularly interested in the exceptive marker

except for and perform in-depth analyses of its assertional semantics with respect

to quantifiers, as in (93).

(93) Except for John, every student attended the meeting.

This dissertation has been primarily concerned with how presupposition and

anaphora in alternative phrases imply things about how the figure relates to the

world. In the example above, this would be that John is a student and that he

did not attend the meeting. Though this is only discussed superficially by von

Fintel and Hoeksema, it will remain my main concern. Furthermore, von Fintel

and Hoeksema miss an interesting observation. Consider the sentences in (94)1.

(94) a. Other than John, every student attended the meeting.

b. Other than John, three students attended the meeting.

c. Other than John, few students attended the meeting.

d. Q: Who attended the meeting? Was the class president there?

A: Other than John, who is the principal, every student attended

the meeting. So, yes, the class president was there.

1Dialects vary in the acceptability of these sentences. For many, apart from or besides is a

more appropriate alternative marker than other than.
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Classifying these sentences based on whether or not John attended the meeting

and whether or not he is a student, we see that there is quite a variety of behavior.

(95) is student is not student

attended meeting (94b), (94c) (94b), (94d)

did not attend meeting (94a)

Using the determiner every, the sentence communicates that John did not

attend the meeting and that he is a student. With few, the sentence still com-

municates that John is a student but also that he attended the meeting. With

three, John attended the meeting but may or may not be a student depending

on slight variations in intonation. And, finally, we see that in an example with

every engineered such that John cannot be a student, the sentence reads that

John did attend the meeting.

This chapter will explain this phenomenon. In the process, I will discuss

several examples of free alternative phrases with different semantic properties, and

I will sketch a CCG account of the syntax for some of the simpler constructions.

4.1 Syntax of Simple Free Alternative Phrases

4.1.1 Introduction

The literature on the semantics of free exceptives, for the most part, glosses over

or entirely ignores syntactic issues. I, too, choose to skirt this issue as much as

possible, but since I require complete lexical entries, I will provide a sketch of a

CCG analysis. In general, the goal of this analysis is not to account for every last

bit of data. Its goal is to give alternative phrases access to both the figure and

ground NPs. This was crucial for the semantic treatment of connected alternative

phrases and will remain so here.

I begin with a cursory look at the syntactic distribution of free alternative

phrases. Figure 4.1 shows some example sentences organized by the position

of the alternative phrase. Positions are marked by (s)ubject, (v)erb, (o)bject,

(wh)-word, and X, which is the alternative phrase.

This table is not complete in that I only consider simple intransitive and

transitive verbs and alternative phrases with NP arguments. As Hoeksema notes,

alternative phrases can occur in all major sentential adverbial positions—sentence

initial, sentence final, and before the verb. Von Fintel points out that sentence-

final positions like in (96) seem to be indicating an afterthought or repair and

does not treat them.
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X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Subject

Other than the president, every officer attended the meeting.
Every officer, other than the president, attended the meeting.
* Every officer attended, other than the president, the meeting.
Every officer attended the meeting, other than the president.
* Other than the president, what meeting did every officer attend?
Other than the president, who attended the meeting?
* What meeting, other than the president, did every officer attend?
Who, other than the president, attended the meeting?
What meeting did every officer attend, excluding the president?
Who attended the meeting, other than the president?

X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Object

Other than the president, the meeting included few officers.
* The meeting, other than the president, included every officer.
The meeting included, other than the president, every officer
The meeting included every officer, other than the president.
Other than the president, who did the meeting include?
* Other than the president, what meeting included every officer?
Who, other than the president, did the meeting include?
* What meeting, other than the president, included every officer?
Who did the meeting include, other than the president?
What meeting included every officer, excluding the president?

Figure 4.1: Syntactic Distribution of Free Alternative Phrases

(96) The meeting included every officer, other than the president (of course).

Of course, not all free alternative markers can appear in all of these positions.

The analysis I provide below will provide an easy way of restricting the syntactic

distribution to certain positions.

Von Fintel assumes a syntactic analysis that causes the exceptive phrase to

combine with the full NP:

(97) NP

except for X NP

Det N′

As von Fintel points out, this leads to problems with semantic analyses that

need access to the semantics of the N′, since in this tree, the exceptive phrase

connects at the NP level. He appeals to the analysis of Bach and Cooper (1978)

which introduces a free variable at the N′ level which can be used by relative

clauses and, as it turns out, exceptive phrases. Every student, for example, can
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have the semantics in (98a) and Except for John, every student therefore has the

semantics in (98b).

(98) a. λr.[[every]]([[student]] ∩ r)

b. [[every]]([[student]] ∩ {j})

I will also have the alternative phrase syntactically subcategorize for the NP.

I reserve judgment on the Cooper variable solution, but I leave it on the table as

a possibility. For now, I continue the policy introduced in Section 2.3 of having

quantifiers merely contribute semantic features that will be resolved in a later

interpretation phase. Thus, the phrases do have access to the N′ semantics.

Before describing this analysis, I will briefly discuss the possibility of a sentence-

adjunct analysis.

4.1.2 A Sentence-adjunct Analysis

Parentheticals are sometimes treated as sentential adjuncts (McCawley, 1988).

Syntactically, this would seem at first to work fairly elegantly. If we give alterna-

tive phrases the category S|S, the following derivations succeed.

(99) a. Unlike John, Mary likes spam.

S|S S
>

S

b. Mary likes spam ,unlike John.

S S|S
<

S

c. Mary ,unlike John, likes spam.

NP S|S S\NP
>T

S/(S\NP)
<B×

S/(S\NP)
>

S

However, it is also the case that undesirable sentences, such as (100a), are

allowed with the sentential analysis. Furthermore, the coordinate sentence in

(100b) shows that this analysis does not allow some grammatical sentences. This

is because the coordination forces unlike John to combine with hates beer and

this is not possible without forward crossing composition, which English lacks.
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(100) a. ∗What food , other than Mary, repels everyone?

S/(S\NP) S|S S\NP
<B×

S/(S\NP)
>

S

b. Mary loves spam but ,unlike John, hates beans.

NP S\NP CONJ S|S S\NP
∗

In addition to these syntactic deficiencies, the sentential adjunct analysis does

not make particularly useful semantic distinctions. Because this analysis only has

access to the sentence as a whole, the ground or complement must be identified

anaphorically. This seemed fairly clear-cut in the cases in Chapter 3, but now

matters are complicated by the fact that, as we will see in the next few sections,

the possible locations for the ground/complement differ for various alternative

phrases. If it is possible to capture these distinctions in the syntactic account, it

will not be necessary to postulate such specific lexical restrictions on anaphoric

reference.

4.1.3 A Different Adjunct Analysis

In my syntactic analysis, alternative phrases are (forward and backward) adjuncts

of verb phrases and type-raised NPs. The purpose of this is to have both the figure

and ground readily available for use in the semantics. In its most general case,

these categories can be described simply as (101) which uses the $-convention

described in (Steedman, 2000b, p.42). In essence, S$ represents all categories

whose final result is S. In practice, the examples in this thesis all use categories

that are instantiations of the more specific forms in (102). At first glance, the

category S|(S|NP) might generate concern in that it seems to support non-order-

preserving type-raising. However, note that S/(S/NP) is only a valid category

for topicalized NPs and wh-words, which are valid targets for alternative phrases.

The category S\(S\NP) is also not a concern since it does not appear at all in

the English lexicon.

(101) S$|S$

(102) a. (S|iNP)|(S|iNP)

b. (S|i(S|jNP))|(S|i(S|jNP))

Restrictions on the directionality of these categories will yield the restrictions

on the syntactic distribution of particular alternative markers. To simplify mat-
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ters, I introduce the notational abbreviations in (103). The feature ind|int means

that the argument must be tensed. This will become important shortly.

(103)
−→
NP ⇒ S/(Sind|int\NP)
←−
NP ⇒ S\(Sind|int/NP)
→→
NP ⇒ S/(Sind|int/NP)
←→
NP ⇒ S|(Sind|int|NP)

Figure 4.2 contains the syntactic categories required for the free alternative

phrase in each of the constructions in Figure 4.1.

subject object

X s v o
−→
NP /

−→
NP (S/NP)/(S/NP)

s X v o
−→
NP \

−→
NP or (S\NP)/(S\NP) ∗

s v X o (S\NP)\(S\NP)
←−
NP /

←−
NP or (S/NP)\(S/NP)

s v o X (S\NP)\(S\NP)
←−
NP \

←−
NP

X wh s v ∗
→→
NP /

→→
NP

X wh v o
−→
NP /

−→
NP ∗

wh X s v ∗
→→
NP \

→→
NP

wh X v o
−→
NP \

−→
NP ∗

wh s v X (S\NP)\(S\NP) (S/NP)\(S/NP)

wh v o X (S\NP)\(S\NP)
←−
NP \

←−
NP

Figure 4.2: Categories for Free Alternative Phrases

Note that these examples do not cover constructions like Does/can/must ev-

ery officer attend the meeting? As described in Section 2.7, the category for

does/can/must is Sint/Sbase. This category may compose into the type-raised

subject, reducing the analysis to those for indicative sentences.

In addition to the sentences in Figure 4.1, these categories allow the coordinate

construction in (100b) not allowed by the sentential-adjunct analysis:

(104) Mary loves spam but ,unlike John, hates beans.

NP S\NP CONJ (S\NP)/(S\NP) S\NP
>

S\NP
<Φ>

S\NP
<

S

A few questionable or ungrammatical constructions must be restricted. First,

the pre-subject position for alternative phrases is not possible in questions: for
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example in *What meeting, other than the president, did every officer attend. This

is restricted by the requirement in (103) that the arguments of the type-raised NPs

must be tensed. This is demonstrated in (105). This example explicitly shows in

every officer that the S categories of a type-raised NP share the same features.

Thus, the untensed feature base, from did, forms a category that cannot combine

with the alternative phrase. However, the related, but grammatical, sentences in

(106) and (107) are still allowed.

(105) ∗What meeting , other than the president, did every officer attend

Sint/(Sbase/NP) (S/(Sint\NP))/(S/(Sint\NP)) Sint/Sbase Si/(Si\NP) S\NP/NP
>B

Sint/(Sbase\NP)
∗

(106) Other than the president, who attended the meeting

(S/(Sint\NP))/(S/(Sint\NP)) Sint/(Sind\NP) Sind\NP
>

Sint\NP
>

Sint

(107) Other than the president, who did the meeting include

(S/(Sint/NP))/(S/(Sint/NP)) Sint/(Sint/NP) Sint/Sbase Sbase/NP
> >B

Sint/(Sint/NP) Sint/NP
>

Sint

Also, in no case does it seem grammatical to have a free alternative phrase

directly before the verb that refers to the object, (108). This is because the

adjunct has no way to combine with the object NP since it is being blocked by

the subject NP. Furthermore, the alternative phrase is positioned such that the

verb cannot combine with the subject to free things up. This is the same for the

interrogative case.

(108) a. * The meeting [, other than the president,](S/NP)/(S/NP)

[included]S\NP/NP every officer.

b. * What meeting [, other than the president,](S/NP)/(S/NP)

[included]S\NP/NP every officer?

Other restrictions are also the result of the standard CCG rule set. There is

simply no way for the alternative phrase to reach past the wh-word:

(109) a. * Other than the president, [what meeting]S/(S/NP) did every officer

attend?

b. * Other than the president, [what meeting]S/(S\NP) included every

officer?
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Finally, I look at the subject-attaching, post-verb position in (110). As with

adverbial phrases, this is generally allowed with a heavy object and backwards

crossing composition. These sentences are odd, but because heavy objects seem

to improve matters, I permit them in my syntactic analysis.

(110) #Mary attended, unlike John, the extraordinarily long meeting.

NP S\NP/NP (S\NP)\(S\NP) NP
<B×

S\NP/NP
>

S\NP
<

S

I now briefly discuss remaining syntactic considerations—commas. I will then

continue with a discussion of three classes of free alternative phrases. Each class

demonstrates a particular subset of the syntactic distribution shown above. The

syntactic distributions that I present in these sections are the result of a very small

data set of grammaticality judgments and should not be taken as fact. However,

part of the elegance of the syntactic analysis is that it is simple to modify the

distribution through restrictions on the non-directional slashes.

4.2 What About the Commas?

There remains the interesting question of when to allow the categories presented

in this section to combine with the rest of a sentence. These constructions are,

in some sense, parentheticals and must be specified as such to be allowed. This

can be done through intonation in speech or punctuation (commas, parenthe-

ses, hyphens) in written text. How do we restrict alternative phrases to these

contexts?

On their own, alternative phrases must be restricted from combining with

anything else—that is, they must be “locked”. The “key” to the lock is the

comma. This can be implemented with features. In my particular grammar, this

can be done using mode features on S. Since, in my grammar, the mode feature is

never left unspecified on the verb, we can use a conflicting feature on alternative

phrases to cause a conflict. This is the lock.

(111) S$|Sap$

The key to the lock is the comma. Thus, the category for commas marking

pre- and post-sentential alternative phrases would be as in (112a), and sentence-

medial alternative phrases as in (112b). These categories simply take a locked
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alternative phrase and return an unlocked alternative phrase which is now free to

combine with the rest of the sentence. But without the comma, a free alternative

phrase would yield an ungrammatical sentence. These categories are very similar

to those used for intonational boundary tones in Steedman (2000a), which is not

surprising since intonation marks free alternative phrases in speech.

(112) a. (S$|S$)|(S$|Sap$)

b. (S$|S$)/, /(S$|Sap$)

This solution is somewhat ad hoc in that it requires that the mode feature

be specified for all verbs. This might not always be desirable. Furthermore,

using this feature as a lock does not correspond with the original purpose of the

feature. The alternative, though, is to create a new feature, but then that must

be instantiated for every verb just as the mode feature is. For now, I leave the

discussion here, but in Section 7.1, I discuss an avenue for further research.

4.3 Other (than)

4.3.1 Syntax

Figure 4.3 contains the syntactic distribution for other (than) in a free context.

Given the discussion in Section 4.1, all that is required is that we restrict the

categories in (102) so that they only accommodate this data. The resulting

categories are in (113). Although more will be said about the syntax of alternative

phrases later in the chapter, I will now continue with a discussion of semantics.

(113) (S|iNP)|(S|iNP)/NP

(S/(S|iNP))|(S/(S|iNP))/NP

4.3.2 Semantic Observations

The data in (114) and (115) show that sentences behave differently with respect

to whether the predicate of the main clause applies to the figure and whether the

figure has the property of the ground.

(114) a. Other than Sam, almost every/every/most/all officer(s) attended the

meeting.

b. Other than Sam, two/many/some officers attended the meeting.

c. Other than Sam, few/no officers attended the meeting.

Other than Sam, who attended the meeting?
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X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Subject
Other than the president, every officer attended the meeting.
Every officer, other than the president, attended the meeting.
∗
Every officer attended the meeting, other than the president.
∗
Other than the president, who attended the meeting?
∗
Who, other than the president, attended the meeting?
What meeting did every officer attend, other than the president?
Who attended the meeting, other than the president?

X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Object
Other than the president, the meeting included few officers.
∗
The meeting included, other than the president, every officer
The meeting included every officer, other than the president.
Other than the president, who did the meeting include?
∗
Who, other than the president, did the meeting include?
∗
Who did the meeting include, other than the president?
∗

Figure 4.3: Syntactic Distribution of Other (than)

(115) Q: Do you know who is attending the premiere? I’m trying to get au-

tographs from my favorite actresses Mary and Sally.

A: Other than Mary, every actress is attending the premiere.

So Sally is there but Mary is not.

A’: Other than John, the director, every ACTRESS is attending the

premiere.

So both of them should be there.

The variation seems primarily due to the ground’s quantifier. For universals

or near-universals, as in (114a), the sentence communicates that Sam is an officer

and did not attend the meeting. Other quantifiers, as in (114b), communicate

that Sam did attend the meeting but remain neutral about whether Sam is an

officer. Finally, some quantifiers, (114c), communicate that Sam attended the

meeting and is an officer. (Note that Other than Sam, officers attend meetings is

ambiguous because officers can be interpreted as either the generic or as some

officers.)



4.3. Other (than) 53

To further complicate matters, (115) shows that the addition of world knowl-

edge can change the meaning. The first answer is equivalent to (114a) except that

the information that Mary is an actress is already given. As the answer indicates,

Mary, the figure, is not attending the meeting. However, when Mary is replaced

by the director and contrastive stress is placed on actress, the reading is that the

director is not an actress and is attending the meeting.

As I have mentioned, I am primarily interested in what these sentences tell

us about the figure, (116), so I will concentrate on that in the coming discussion.

These facts are not a focus of von Fintel and Hoeksema’s work. Von Fintel gives a

semantics that assumes the negative reading of (116a), and Hoeksema only briefly

mentions Gricean Implicature as the means by which (116b) is communicated.

(116) a. p(f) or ¬p(f) (Sam did/didn’t attend)

b. g(f) (Sam is an officer)

Thus, given that f is the figure (sam), g is the ground (officer), and p is

the property (attend), I propose that the assertional semantics for other than

is p(λx.g(x) ∧ ¬f(x)), the same as the analysis in Section 3.4.3. The assertion

makes no judgement to the questions of (116) since the figure is removed from

the set under consideration. Information about the figure will be communicated

with presupposition. This is all I will say about the assertion, which is compatible

with the work of von Fintel and Hoeksema.

4.3.3 Denial of Expectation

The key observation is that Sam is an exception to what the assertion of the

sentence might lead one to believe—a denial of expectation. Most officers attended

the meeting, for example, might lead one to conclude that Sam attended the

meeting. The addition of other than Sam denies this.

The concept of denial of expectation is used by Lagerwerf (1998) to analyze

the causal connective although and by Webber et al. (1999a) for however. For

example, in Lagerwerf’s example (117), the first clause might communicate an

expectation that Greta Garbo married. The second clause denies this.

(117) Although Greta Garbo was considered to be the yardstick of beauty, she

never married.

(118) Defeasible Modus Ponens

∀x(φ > ψ), φ(δ) |≈ ψ(δ),

but not ∀x(φ > ψ), φ(δ),¬ψ(δ) |≈ ψ(δ)
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The mechanism Lagerwerf uses to explain this is Defeasible Modus Ponens as

described by Asher and Morreau (1995). The > notation is the defeasibly im-

plies condition that is paraphrased as, if φ > ψ and φ holds then ψ normally

holds. This is the expectation. If φ is instantiated as φ(δ) then it “defeasibly

validates” ψ(δ). However, this validation is not possible if there is information

contradictory to the conclusion. Lagerwerf’s analysis for although includes the

presupposition in (119). Thus, the case of Greta Garbo can be represented as in

(120)—an instantiation of defeasible modus ponens. In this way Lagerwerf shows

that defeasible modus ponens is exactly the mechanism to describe denial of ex-

pectation. Basically, although presupposes an expectation which it immediately

denies.

(119) Although p, q presupposes p′ > ¬q′
where p′ and q′ are propositions that are generalizations of p and q.

(120) ∀x(beau(x) > marry(x)), beau(g),¬marry(g) |6≈ marry(g)

Other than, on the other hand, does not presuppose an expectation. Rather,

it tests whether one exists. If so, it is denied. For instance, not considering Sam,

if every officer attended the meeting, there is an expectation that Sam attended

the meeting as well (as long as Sam is an officer). But if two officers attended

the meeting, there is no such expectation. These are the sort of expectations

that other than tests for, as shown formally in the left-hand side of (121) by the

expression p(λx.g(x) ∧ ¬f(x)) > p(f). I will refer to this expectation as Ep,g,f in

the following discussion.

(121) Ep,g,f ↔ ¬p(f)

where p is a property, g is the ground, and f is the figure.

(122) a. Ep,g,f → ¬p(f)

b. ¬Ep,g,f → p(f)

The formulas in (122) follow from the formula in (121). (122a) means that if

the expectation exists, then we deny the expectation. From (122b), if the ex-

pectation does not exist, then we affirm the truth of the expectation. In a nut-

shell, other than denies the expectation of its assertion in a way very similar to

although. It is useful to go through the examples step by step:

(123) Other than Sam, every officer attended the meeting.

a. assertion: attended(λx.officerevery(x) ∧ ¬sam(x))

translation: Not considering Sam, every officer attended the meeting.
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b. expectation: attended(sam)

translation: The assertion normally entails that Sam also attended

the meeting.

c. Ep,g,f → ¬p(f)

d. Ep,g,f is true. Therefore, by our formula, ¬p(f), is also true. This

contradicts the expectation by saying that Sam did not, in fact, attend

the meeting.

(124) Other than Sam, two officers attended the meeting.

a. assertion: attended(λx.officertwo(x) ∧ ¬sam(x))

translation: Not considering Sam, two officers attended the meeting.

b. expectation:

translation: There is no expectation.

c. ¬Ep,g,f → p(f).

d. Ep,g,f is false. Therefore, by our formula, p(f), is true. This says that

although we had no reason to believe that Sam attended the meeting

from the assertion, he did, in fact, attend.

But where do these expectations come from? I will simply express these expec-

tations explicitly. For example, existing in the knowledge base is an expectation

that if an entity is a member of a set and a property is true for every member of

that set (not considering the entity), then the property is normally true of that

entity. This is expressed in (125), although a more general rule might say that

if the property is true for more than a certain percentage of the set, then the

property is true of the entity. Expectations such as this one, along with defeasi-

ble modus ponens, can validate Ep,g,f in the formula in (121). Other determiners,

such as some, would not validate Ep,g,f .

(125) ∀p, f, g[(∀x.f(x)→ g(x)) ∧ p(λx.gevery(x) ∧ ¬f(x)) > p(f)]

This interacts very well with our data. Consider one of the examples in (114a):

Other than Sam, every officer attended the meeting. The presupposition in (121)

is instantiated to:

(126) attend(λx.officerevery(x) ∧ ¬sam(x)) > attend(sam)↔ ¬attend(sam)

We now need to test to see whether attend(λx.officerevery(x) ∧ ¬sam(x)) does

defeasibly imply attend(sam). The expectation in (125) can be instantiated as

in (127).
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(127) (∀x.sam(x)→ officer(x)) ∧ attend(λx.officerevery(x) ∧ ¬sam(x))

> attend(sam)

Thus, by defeasible modus ponens, every officer attending the meeting (not con-

sidering Sam) does defeasibly imply that Sam attended, as long as we believe that

Sam is an officer. Without conflicting information, this can be accommodated,

explaining why the sentences in (114a) communicate that Sam is an officer.

However, in certain situations, it is not possible to accomodate that Sam is an

officer (or, more generally, that the figure has the property of the ground) because

the discourse has contradicted this. This is true in (115A’) where the contrastive

stress (and the knowledge that John is male) contributes to the belief that the

director is not an actress. Therefore, there is no expectation from actresses at-

tending the premiere that the director is attending the premiere. Through the

same reasoning as in (124), we conclude that the director is attending the pre-

miere.

(114b) is a similar case because I have not specified any expectation saying

that if a property is true of two/many/some x, then it is true of an arbitrary

entity of type x2. Two officers attending does not imply that any particular officer

attended. Thus the defeasible implication in (127) is not possible. According to

the original presupposition in (121) and the reasoning in (124) we conclude that

Sam did attend the meeting.

At this point, I have explained two of the three cases. First, I explained why,

for universals such as every, the sentence communicates that Sam is an officer

and did not attend the meeting. I also explained why, in the case of quantifiers

like two and some, the sentence communicates that Sam attended the meeting,

but nothing about Sam being an officer. It remains to show why quantifiers like

few and no behave like two and some but also specify that, like with every, Sam

is an officer.

4.3.4 Negative Environments

Negative Quantifiers

Consider (128), where in some cases it is required that the figure be an actress.

Denying this, as in (128A’), leads to an unacceptable sentence. For other exam-

ples, (128A”), this is not the case.

2There is nothing preventing such expectations being specified. Many, in particular, is a

borderline case.
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(128) Q: Do you know who is attending the premiere? I’m trying to get au-

tographs from my favorite actresses Mary and Sally.

A: Other than Mary, few/no/less than ten actresses are attending the

premiere.

So Mary is there but Sally is probably not.

A’: #Other than John, the director, few/no/less than ten ACTRESSES

are attending the premiere.

A”: Other than John, the director, many/some/three ACTRESSES are

attending the premiere.

Examples that require the figure to be an actress share the characteristic that

they are environments which allow negative polarity items, i.e. negative polarity

triggers (see Ladusaw (1979) for an in-depth description of negative polarity items

and their triggers). Some classic negative polarity items include bother, any, and

anymore, as in (129).

(129) a. I didn’t bother notifying him.

*I bothered notifying him.

b. I didn’t write any email.

*I wrote any email.

c. He never writes anymore.

*He writes anymore.

Example (130) shows that these cases also work for the environments shown

in our original examples. However, this is more awkward for other quantifiers,

(131). This dichotomy is noted in (Ladusaw, 1979, ch. 6).

(130) a. Few/no/less than ten actresses bothered attending the premiere.

b. Few/no/less than ten actresses have any hope of attending the pre-

miere.

c. Few/no/less than ten actresses attend premieres anymore.

(131) a. * Many/some/three actresses bothered attending the premiere.

b. * Many/some/three actresses have any hope of attending the pre-

miere.

c. * Many/some/three actresses attend premieres anymore.



58 Free Alternative Phrases

The interesting thing about negative quantifiers is that they are equivalent to

positive contexts with the predicate negated (discussed in depth in Horn 1989).

This can be viewed as invoking an alternative set of negated propositions. For

example, few actresses attended invokes the alternatives summarized by (132)—

e.g. most actresses did not attend.

(132) λx.actress(x) ∧ ¬attend(x)

Consequently, the same mechanism that we applied earlier to every and most

also applies to few and no, with the only difference being that the predicate is

negated. Thus, Other than Sam, few officers attended the meeting is treated as

Other than Sam, most officers did not attend the meeting. The expectation, then,

is that Sam is one of the alternatives that did not attend the meeting. However,

Sam is an exception, and, as long as Sam is considered an officer, the sentence

communicates that he did attend the meeting. Again, this is the same mechanism

used for universals and near-universals.

Wh-questions

In addition to few, Ladusaw notes that questions, including wh-questions, are

negative polarity triggers, although not in as clear a way as the other triggers I

have discussed so far. (He points out that such questions are not always meant

to elicit information. The question in (133c), for example, is more expressing

disbelief that actresses attend premieres.)

(133) a. ? What actresses bothered attending the premiere?

b. What actresses have any hope of attending the premiere?

c. What actresses attend premieres anymore?

This coincides with the interesting observation that questions with free alternative

phrases behave more like few than many in (128). The question in (134a) strongly

suggests that Mary is an actress. Thus, choosing a figure that is clearly not an

actress, as in (134a), causes the question to be difficult to interpret. But the

effect is not as strong as with the contexts discussed above, just as the degree of

“negativeness” is not as extreme.

(134) a. Other than Mary, what actresses are attending the premiere?

b. ? Other than John, the director, what ACTRESSES are attending

the premiere?
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Since I have just shown that wh-questions have a degree of negativeness, I

propose that they behave similarly to other negative polarity triggers like few

and no. That is, for the purposes of this analysis, there there is a preference

that the predicate (attending the meeting) not be true for any given officer. The

negated question is the reverse. In what officers did not attend the meeting?,

there is a preference that the predicate (not attending the meeting) is true for

any given officer. This case, as with few and no, validates the expectation Ep,g,f .

Since Sam is an exception to the expectation, the question communicates that he

did attend the meeting. Furthermore, Ep,g,f is only validated if Sam is an officer,

explaining why this is communicated by the question.

This hypothesis must be verified by a great deal more research into the prop-

erties of wh-questions. This is beyond the scope of this thesis, and I leave it for

future work.

4.3.5 A Further Consideration

In this analysis, I have conflated what some have considered to be different phe-

nomena. I find the distinction dubious, but include it for the sake of complete-

ness. Von Fintel observes that in some examples the removal of the figure from

the ground is not necessary for the quantification to be true, while in others it is

required. For example, he suggests that for the sentences in (135), most cabinet

members liking the proposal can be true without removing Joan from the set of

cabinet members. Similarly, few employees accepting the pay cut can be true

without removing John. Joan and John, he says, might be considered “notable

exceptions” to these statements.

(135) a. Except for Joan, most cabinet members like the proposal.

b. Except for John, few employees accepted the pay cut.

(136) Except for the assistant professors, most faculty members supported the

dean.

On the other hand, in the restrictive example (136), the assistant profes-

sors must be removed from faculty members before it is true that most of them

supported the dean. This is more easily observed when one substitutes when

excluding for except for.

As I mentioned, I have conflated these two phenomena in the hopes of pro-

viding a unified analysis for determining when and how the information in (116)

is communicated. I have skirted the issue by simply stating that the assertion is

p(λx.g(x) ∧ ¬f(x)), which is consistent with examples like those in (136).
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In some cases, it does no harm to have this as the assertion for (135). Consider

that if most cabinet members excluding Joan like the proposal, then it is true

that most of the complete set of cabinet members like the proposal. However,

if few employees when excluding John accepted the pay cut, it may not be the

case that few employees including John accepted the paycut. I, like von Fintel,

will basically ignore this and continue to treat the assertion as restrictive. This

is consistent with my general program which is primarily concerned with the

presuppositional properties of these words and what they tell us about the figure.

More importantly, I believe that this distinction is very difficult to discern. At

first blush, the examples in (135) are the same as that in (136), and, in fact, when

one looks at the sentences closely, their actual meanings are somewhat unclear.

Although there is clearly a concern with respect to these examples, I leave further

investigation to future work.

4.3.6 Lexical Entries

Given these syntactic and semantic observations, I add the following lexical entry

for other than:

(137) other than `





syn : (S/NP)|(S/NP)/NP

sem : λfλpλg.





assert : p(λx.g(x) ∧ ¬f(x))

presup : Ep,g,f ↔ ¬p(f)

alts(f, g)

The lexicon also must contain an entry for the type-raised NP adjunct, as in

(139) and (140). Ultimately, the semantics turns out the same, but I will show it

for completeness sake. Here, tID ≡ t(λx.x).

(138) other than `





syn : (S/(S|iNP))|(S/(S|iNP))/NP

sem : λfλtλp.





assert : t(λg.p(λx.g(x) ∧ ¬f(x)))

presup : Ep,tID,f ↔ ¬p(f)

alts(f, tID)

As the assertion is a little odd, I show derivations where it is used in both

indicative and interogative contexts.

(139) Other than Sam, every officer attended...

(S/(S|iNP))|(S/(S|iNP)) :
−→
NP: λp.p(officer) S\NP : λx.attend(x)

λtλp.t(λg.p(λx.g(x) ∧ ¬sam(x)))
>−→

NP: λp.p(λx.officer(x) ∧ ¬sam(x))
>

S : attend(λx.officer(x) ∧ ¬sam(x))



4.3. Other (than) 61

(140) Other than Sam, who attended...?

(S/(S|iNP))|(S/(S|iNP)) :
−→
NP: λx.x S\NP : λx.attend(x)

λtλp.t(λg.p(λx.g(x) ∧ ¬sam(x)))
>−→

NP: λp.λg.p(λx.g(x) ∧ ¬sam(x))
>

S : λg.attend(λx.g(x) ∧ ¬sam(x))

The result of an interrogative is interpreted as the characteristic function for the

answer to the query. Because the assertion in (140)is of type 〈〈e, t〉, t〉, the result

is the set of functions, g, for which attend(λx.g(x) ∧ ¬sam(x)) is true. These

functions can be sets of entities, kinds, and anything else of type 〈e, t〉. Thus,

when testing whether Bill attended the meeting, for instance, the proposition to

test is (141a). This, in turn, is the same as (141b) since the only entity who is

Bill but not Sam is Bill.

(141) a. attend(λx.bill(x) ∧ ¬sam(x))

b. attend(bill)

(142) attend(λx.sam(x) ∧ ¬sam(x))

When testing Sam, though, the resulting proposition is (142). There are no

entities who, at the same time, are and are not Sam. The proposition is false,

given that attend(∅) is interpreted as “nobody attended”, and Sam is correctly

excluded.

4.3.7 More Examples

There are several other free alternative markers that behave in a similar manner

to other than. Besides, for some dialects, exhibits the same characteristics as

the examples of other than shown so far.

Except for is the interesting case that is treated extensively by von Fintel

and Hoeksema. Unlike other than, except for cannot be used in the contexts

shown in (143). Hoeksema presents an analysis that excludes these by requiring

except for to combine with universal statements.

(143) a. * Except for Sam, the officer attended the meeting.

b. * Except for Sam, some officers attended the meeting.

c. * Except for Sam, many officers attended the meeting.

Furthermore, unlike with other than, (116b), the fact that Sam is an officer must

be communicated. This can be seen by substituting except for for other than in
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the sentences (115). The resulting sentences are clearly odd. I therefore add p(f)

as a presupposition. As mentioned earlier, excluding works in a similar way.

Finally, in addition to completely does away with the presupposition pro-

posed in (121). The property is always true for the figure, so we use p(f) instead.

It is therefore not possible to accommodate that the figure is a member of the

ground, but the possibility of that being so is not precluded. Note that in the

contexts of (114b), other than reduces to this semantics.

4.4 (Un)like

4.4.1 Syntax

X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

subject object

Unlike the president, the secretary attended the meeting. ∗
The secretary, unlike the president, attended the meeting. ∗
∗ ∗
The secretary attended the meeting, unlike the president. ∗
∗ ∗
∗ ∗
Who, unlike the president, attended the meeting? ∗
∗ ∗
∗ ∗
Who attended the meeting, unlike the president? ∗

Figure 4.4: Syntactic Distribution of Unlike

Unlike the words in the previous section, unlike’s positions of attachment are

restricted to the subject for the basic examples shown in Figure 4.4. This is easily

handled syntactically by restricting all S|NP categories to S\NP.

However, it is also the case that unlike can refer to the object of topicalized

sentences, as shown in (144).

(144) a. Unlike Bill, John, I will never understand.

b. John, unlike Bill, I will never understand.

c. John, I will never understand, unlike Bill.

In CCG, topicalization is accounted for by assigning the category S/(S/NP) to the

topicalized noun phrase (Steedman, 1987). The first two sentences, then, can be

accepted by giving the alternative phrase the category (S/(S|iNP))|(S/(S|iNP)).

Note that this is consistent with the categories for other than given in Section 4.3.
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Since other than can also occur with topicalized sentences, this is a good predic-

tion.

Since the new category is a relaxation of slashes for unlike, everything ac-

counted for previously is still accepted. However, this will now allow the ungram-

matical question Unlike the president, who did the meeting include?. Since all al-

lowed questions can be accounted for with a VP adjunct category, (S\NP)|(S\NP),

I just require that the other category only combine with indicative sentences.

(145) shows a derivation for the first topicalized sentence in (144).

(145) Unlike Bill, John, I will never understand

(S/(S|iNP))|(Sind/(S|iNP)) Sind/(S/NP) S/NP
>

S/(S/NP)
>

S

The third topicalized sentence, (144c), can be allowed with the category

(S/NP)\(S/NP). However, this also allows the sentence John eats, unlike spam,

beans, which we can restrict with a topic feature. By default, noun phrases are

given the category NPtopic− while topicalized noun phrases are S/(S/NPtopic+).

The new category for unlike is then (S/NP)\(S/NPtopic+).

4.4.2 Semantics

Unlike is semantically similar to in addition to in that it does not have the full

presupposition in (121). But rather than having the presupposition p(f), it has

¬p(f). The lexical entries for unlike are given below, and some derivations are

shown in Section 3.6.1.

(146) unlike `





syn : (S\NP)|(S\NP)/NP

sem : λfλpλg





assert : p(g)

presup : ¬p(f)

alts(f, g)

(147) unlike `





syn : (S/(S|iNP))|(Sind/(S|iNP))/NP

sem : λfλtλp





assert : t(λg.p(g))

presup : ¬p(f)

alts(f, tID)

One might argue that ¬p(x) should be an assertion rather than a presupposition.

This is a tricky issue because the presupposition tests discussed in Section 3.4.1 are
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often inappropriate or difficult to apply with complex sentences (Beaver, 1995).

I now discuss this in more depth.

4.4.3 Presupposition Tests

The negation test is often difficult to apply in these cases because one must

use a somewhat artificial means, such as it is not the case that, to establish a

negated context around the entire sentence. The un-negated sentence, (148a),

communicates (148c), but this is less clear for (148b).

(148) a. Unlike John, Mary hates spam.

b. It is not the case that unlike John, Mary hates spam.

c. John does not hate spam.

That John does not hate spam does seem to project through the question in

(149b), but it is not so clear that it projects out of the modal context in (149a).

(149) a. It is possible that unlike John, Mary hates spam.

b. Does Mary, unlike John, hate spam?

c. John does not hate spam.

I now apply the test in which preceding context that supports the presuppo-

sition creates an acceptable discourse while context that contradicts the presup-

position does not.

(150) a. John is fond of spam. Unlike John, Mary hates spam.

b. #John finds spam repulsive. Unlike John, Mary hates spam.

c. John does not hate spam.

The second sentence of both (150a) and (150b) contain the presupposition in

(150c). The first example, where the context is consistent with the presupposition,

is acceptable, while the second is not. This test shows that ¬p(x) cannot be an

implicature because implicature is defeasible. However, the same effect would be

observed if ¬p(x) were an assertion, and thus this test does not help us choose

between presupposition and assertion.

The final test is that a presupposition should not project past a conditional

whose antecedent communicates the same things as the presupposition. In (151),

the presupposition that Mary did not eat the spam survives the conditional,

causing the second sentence to be unacceptable since it communicates that she
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did eat the spam. In (152), the presupposition that Mary did not eat the spam

does not project. Had it, the next sentence would be odd because it implies that

there is a possibility that she did eat the spam. But these examples take a great

deal of effort to interpret and are not unequivocal.

(151) If he is sick, then, unlike Mary, John ate the spam.

#But if not, Mary must have eaten it all herself.

(152) If Mary did not eat the spam, then, unlike Mary, John ate the spam.

But if she ate the spam, John had the baked beans.

In the end, I can only conclude that the presupposition tests are inconclusive

and that it is not certain whether ¬p(x) is a presupposition or an assertion.

Fortunately, this distinction does not appear to matter for my purposes, and until

better tests are developed for complex phenomena like free alternative phrases, I

will continue to treat them as presuppositions.

4.4.4 Some Interesting Constructions

Up till this point, I have only considered data in which the alternative marker

subcategorizes for a noun phrase. Furthermore, I have carefully created examples

to work out as simply as possible. I now take a brief look at other, more complex

examples that I have observed in real data—most of which comes from the British

National Corpus (Burnard, 1995). I choose to do this with unlike, because unlike

seems slightly more prolific than other alternative markers, but much of this

discussion is applicable to them as well.

Relative Clauses

I have already shown that alternative phrases perform correctly with wh-extraction.

However, I have yet to do so for extraction from relative clauses. (153) shows how

our existing categories suffice for subject extraction in the phrase ...independent

producers which, unlike utilities, aren’t regulated....

(153) producers which ,unlike utilities, aren′t regulated

NP : NP\NP/(S\NP) : (S\NP)|(S\NP) : S\NP :
prod λpλqλg.p(g) ∧ q(g) λpλg.p(g) λx.¬reg(x)

>
S\NP : λg.¬reg(g)

>
NP\NP : λq.λg.¬reg(g) ∧ q(g)

<
NP : λg.¬reg(g) ∧ prod(g)
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presupposition set:

{
¬¬reg(util) ≡ reg(util)

alts(util, prod)

The derivation correctly produces the presupposition that utilities are regulated.

The assertion can be read as non-regulated entities that are also independent

producers.

The Copula

My analysis for unlike is also sufficient to handle the following interesting copular

example.

(154) Among the senior Nazis with whom I came into daily contact was Re-

ichsmarshal Hermann Goering, but unlike the three other officers I have

previously mentioned, here was a man I detested from the first moment I

came across him.

Example (155) is a derivation for a simpler version of the relevant portion of this

sentence. I take the semantics of here to be a reference to an entity, e (actually,

a singleton set containing the entity). A full account of the semantics would also

involve information about the location of the entity, but that is not relevant here.

(155) unlike the other officers, here was a man I detested

−→
NP /

−→
NP /NP : NP :

−→
NP: S\NP/(S\NP) : S\NP :

λfλtλp.t(λg.p(g)) λx.o(x) ∧ ¬f(x) λp.p(e) λpλx.p(x) λx.m(x) ∧ d(I, x)
> >−→

NP /
−→
NP : λtλp.t(λg.p(g)) S\NP : λx.m(x) ∧ d(I, x)

>−→
NP : λp.p(e)

>
S : m(e) ∧ d(I, e)

presupposition set:





∀x.f(x)→ officer(x)

alts(f, λx.officer(x) ∧ ¬f(x))

¬(man(λx.officer(x) ∧ ¬f(x))∧
detest(I, λx.officer(x) ∧ ¬f(x)))

alts(e, λx.officer(x) ∧ ¬f(x))

I begin by discussing the presuppositions, of which the first two come from

other and the last two from unlike. As always, we can unify the two alts rela-

tions to identify the figure—in this case, e. Thus the remaining presuppositions

correctly propose that the entity is an officer and that the other officers were not

men that the speaker detested.

The assertion states that the the entity being referred to is a man and the

speaker detests him.



4.4. (Un)like 67

Prepositional Arguments

Until this point, I have only been concerned with constructions where unlike sub-

categorizes for a noun phrase. However, as the following examples from the Penn

Treebank show, it is also possible for unlike to subcategorize for prepositional

phrases.

(156) a. One reason futures are said to add volatility is that– unlike in stocks–

people can speculate in futures with little money down.

b. According to Institutional Brokers Estimate System, Wall Street mar-

ket strategists see only a 2.4% jump in company profits in 1990 – unlike

in 1987, when profits a year out looked good (they did soar 36% in

1988).

In my previous analyses, I have treated unlike and other alternative phrases

as adjuncts, but not sentential adjuncts. I argued for this on the basis that

the possible syntactic positions of the alternative phrases and locations of the

complement, while problematic for sentential adjuncts, were well predicted by a

more specific analysis.

With prepositional phrase arguments, restrictions are relaxed a bit, but some

of the objections still remain. The primary objection is still that there are ac-

ceptable coordinate sentences that would not be allowed by a sentential adjunct

analysis: e.g. example (157). Even so, there are some things we no longer have

to worry about. For example, (158) shows that unlike can now appear after the

verb, which was not the case in (100a). Furthermore, as in these examples and

in (156′), the complement does not have to appear in the sentence—giving a dis-

tinctly anaphoric feel to the examples. This contrasts to our previous examples

where the possible locations for the complement were more restricted.

(157) Mary entered the tournament and, unlike in previous attempts, made it

to the second round.

(158) Mary took a trip to Rio.

There Mary experienced, unlike in her UK vacation, only a few rainy days.

(156′) a. Futures are said to add volatility. One reason is that– unlike in

stocks– people can speculate with little money down.

b. According to Institutional Brokers Estimate System, Wall Street mar-

ket strategists see only a 2.4% jump in company profits– unlike in

1987.
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I therefore propose another lexical entry for unlike in (159). Syntactically, this

category is very permissive, allowing the various constructions I have mentioned.

However, it does not attempt to syntactically identify the complement, c, but

instead anaphorically presupposes its existence. That complement is presupposed

to be an alternative to the figure and, furthermore, in a relationship (specified

by the preposition) with a property that is related to the original sentence. In

addition, that property does not hold for the figure.

(159) unlike `





syn : (S|iNP)|(S|iNP)/NP/(PP/NP)

sem : λqλfλp





assert : p

presup : q(c, p′)

¬q(f, p′)
alts(f, c)

(160) Assertion: in(futures, can(speculate(people)))

Presuppositions: in(c, p′)

¬in(stocks, p′)

alts(stocks, c)

For example, the assertion and presuppositions for ...unlike in stocks, people can

speculate in futures... are shown in (160). The most obvious values for c and p′

are futures and can(speculate(people)) because the assertion, from which p′

should be taken, proposes the appropriate relation between them. Furthermore,

the resulting alts relation between stocks and futures should be considered

acceptable to the KB since they are both forms of investment. The remaining

presupposition says that people cannot speculate in stocks (with little money

down). It may seem odd that the first presupposition turns out to be the same

as the assertion in this example. This is because, here, the complement and p′

are explicitly available in the assertion, but this is not always the case.

If the complement and p′ are not available in the assertion, as in (156′), this

information must be accessed anaphorically from the discourse. At this point,

it is important to point out that the logical form in(c, p′) is simply notation for

what is likely to be a far more complex and interesting knowledge representation.

I do not propose that we find c and p′ through a process of unification. But as

the precise nature of a knowledge representation that will allow a search for the

relevant relationships is beyond the scope of this dissertation, I leave that for

future work.

It is not always the case that the relationship between p′ and the figure and

complement is explicitly specified—consider (161). For cases like these, I propose
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a lexical entry, (162), which is very similar to the one above except that the

relationship is unspecified.

(161) But unlike ordinary prisons, members of most societies conform freely and

willingly...

(162) unlike `





syn : (S|iNP)|(S|iNP)/NP

sem : λfλp





assert : p

presup : q(c, p′)

¬q(f, p′)
alts(f, c)

The presuppositions and a possible paraphrase for the assertion for this sentence

is shown in (163). Here, in a similar manner as above, the complement can be

found to be societies and p′, conform(members). Thus, it is also presupposed,

correctly, that in prisons, the members do not conform. I do not deny that

this analysis requires a great deal from knowledge representation and reasoning.

Nevertheless, I do not believe this is unreasonable and, as mentioned, propose it

for future research.

(163) Assertion: in(societies, conform(members))

Presuppositions: q(c, p′)

¬q(prisons, p′)

alts(prisons, c)

4.5 Especially

Finally, there are also “specifiers” such as especially, in particular, particularly,

and specifically, which promote certain entities as being good examples within

an alternative set. Figure 4.5 shows several examples.

Semantically, all constructions of this sort communicate at least the fact that

the figure has the property of the ground, (116b). In the case of the examples,

this is that stocks are risky funds. In addition to this, I add the assertion that

the figure is an exemplar of a combination of the ground and the predicate of

the sentence. In the case of John recommends risky funds, especially stocks, this

would mean that stocks are a good example of risky funds that John recommends.

especially `





syn : (S|iNP)\(S|iNP)/NP

sem : λfλpλg





assert : p(g) ∧ exemplar(f, λx.p(x) ∧ g(x))

presup : ∀x.f(x)→ g(x)

alts(f, g)
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X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Subject

∗
Risky funds, especially stocks, can devastate the short-term investor.
∗
Risky funds can devastate the short-term investor, especially stocks.
∗
∗
∗
What funds, especially stocks, can devastate short-term investors?
∗
What funds can devastate short-term investors, especially stocks?

X s v o
s X v o
s v X o
s v o X

X wh s v
X wh v o
wh X s v
wh X v o
wh s v X
wh v o X

Object

∗
∗
∗
John recommends risky funds, especially stocks.
∗
∗
What funds, especially stocks, does John recommend?
∗
What funds does John recommend, especially stocks?
∗

Figure 4.5: Syntactic Distribution of Especially

especially `





syn :
←→
NP \

←→
NP

sem : λfλtλp





assert : t(p) ∧ exemplar(x, λx.p(x) ∧ tID(x))

presup : ∀x.f(x)→ tID(x)

alts(f, tID)

It is interesting to point out that the evaluation of this relation depends on the

point of reference. For example, the sentence John recommends risky funds,

especially stocks is a statement that the hearer is requested to take on in their

own knowledge. Thus, with the proposition in (164) the hearer should now believe

that stocks are a good example of risky funds that John recommends.

(164) exemplar(stocks, λx.risky funds(x) ∧ recommend(john, x))

However, in a question like What risky funds, especially stocks, does John

recommend?, the hearer attributes the exemplar relation to the questioner but

does not take it on himself. Thus, especially communicates to the hearer what

type of answers the questioner would prefer. In the case of this example, the

hearer should reply with stocks before anything else.

There is a lot going on here, and I leave further investigation for future work.
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4.6 Conclusion

In the last two chapters, I have given an in-depth account of the semantics of

alternative phrases using alternative sets, presupposition, and a “use existing

objects” heuristic also used in abductive approaches to discourse interpretation.

Although I only treat a subset of alternative phrases, I still go significantly fur-

ther than previous research. Up till this point, formal semantic analyses have been

restricted to a few examples (but and except for) and are primarily concerned

with the assertional semantics. Pattern-matching techniques which attempt to

handle more examples are not effective for free alternative phrases and would

need to be extended to account for alternative phrases with anaphoric reference.

I have discussed the connected alternative markers besides, such (as), and

other (than) and the free alternative markers besides, other (than), excluding,

except for, in addition to, unlike, especially, and more. This is significantly

more breadth than previous semantic approaches. It is true that I do not display

the same depth regarding assertional semantics (determining only the referred-to

set), but I believe my approach can incorporate the previous work. The major

new contribution of my analyses is what is being expressed about the figure, the

NP argument of the alternative marker. These properties also put these analyses

on a deeper theoretic level than the pattern-matching approaches.
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Chapter 5

A Robust CCG System

This chapter is the result of joint work with Jason Baldridge and Julia

Hockenmaier. More details can be found in Hockenmaier et al. (2000)

and Hockenmaier (2000).

5.1 Introduction

The computational analysis provided earlier is only “useful” if it can be imple-

mented in a real-world NLP system. Many efforts have been made to produce

wide-coverage systems, but they face a particular challenge when required to

support the analysis of alternative phrases.

In this chapter, I begin by discussing the requirements for an NLP system

that can support the analysis presented in Chapters 2–4 as well as the practical

application in Chapter 6. I then briefly discuss several systems and evaluate

them with respect to these requirements. Finally, I describe an implemented

NLP system, Grok, and show how it addresses the necessary requirements.

5.2 Requirements for an NLP System

There are several requirements for a system to be capable of supporting my

analysis of alternative phrases in a real-world application.

When an NLP system describes itself as wide-coverage , it can mean one of

two things.

Syntactic Coverage First, the term can pertain to the ability of its grammar to

recognize a large variety of linguistic constructions—often the focus of hand-

built grammars. This is certainly necessary for our system. We require a

system flexible enough to accommodate the analyses of connected and free



74 A Robust CCG System

alternative phrases that are my primary focus. In addition, it must cover as

wide a range of constructions as possible to support the natural language

information retrieval application in Chapter 6 as well as future applications.

Parsing Coverage We also require the ability to parse significant portions of

free text. This notion of wide coverage corresponds much more to the view

generally held among statistical NLP researchers. For them, one of the

foremost concerns of parsing should be the ability to assign a linguistic

analysis (structure, derivation, etc.) to virtually all the data one processes,

giving less importance to issues such as grammaticality.

It is not the case that syntactic coverage leads to parsing coverage. To achieve

parsing coverage, we require a large lexicon, which is independent of the syntactic

analyses. There must also be support for classes of words that are too large to

list in a lexicon: e.g. proper nouns. Finally, the system must handle input that

has not been tokenized, edited, or cleaned up in any way.

Conversely, wide parsing coverage does not imply good syntactic coverage.

Being able to assign structure to a large proportion of text does not mean that

the structures are consistent with linguistic analysis or form a coherent basis for

compositional semantics.

Semantics and Presupposition The system must be capable of processing the

semantics of alternative phrases in a manner sufficient to support the prac-

tical application in Chapter 6. This does not require particularly in-depth

semantic theory. For instance, I do not need intensionality, possible worlds,

temporality, modalities, etc.

However, simple dependency relations are not enough. I require the ability

to support the semantics described in Section 2.2.1; basically the first-order

extensional part of Montague semantics. A system must also support a

basic understanding of relations (such as the alts relation) and have some

way of representing presuppositions.

Lexicalized Grammar A further requirement is that the system use a highly

lexicalized grammar. This reflects the nature of the analyses in Chapter 3

and Chapter 4 but is not, in general, a requirement for a robust natural

language understanding system.

Anaphora Resolution, Knowledge Representation, etc. The previous re-

quirements deal primarily with the coverage and expressiveness of a system’s
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grammar. However, a system that supports alternative phrases must also

be able to perform anaphora resolution, and therefore maintain a discourse

and salience list. In addition, the alts relation used in the presuppositions

in Chapter 3 and Chapter 4 requires that alternative sets be maintained in

some manner.

Given that the grammar and parsing requirements are met in a system,

these more interpretation-oriented requirements can be added in a relatively

modular manner. I therefore restrict my discussion of previous work to the

previous requirements.

5.3 Previous Work

5.3.1 Statistical Parsing

Very wide parsing coverage is usually achieved through statistical approaches.

Charniak (1999) and Collins (1998) are currently the cutting edge of this research

with parsers that produce around 90% precision/recall on the Wall Street Journal

Corpus. The parsing coverage of these techniques is very impressive, but they

do not necessarily provide particularly good syntactic structure. Collins’ second

model, for instance, labels all verbs within object extracted relative clauses as

intransitive (Collins, 1998, p. 176).

In addition, from these statistical methods one can obtain some dependency

analysis but, as discussed, this does not meet my semantic needs. Finally, in

general these parsers are not based on lexicalized grammars, and it would be

difficult to incorporate the lexical semantics presented in this dissertation.

As I shall show, these problems are not intrinsic, and statistical techniques

will play an important role in making Grok robust.

5.3.2 Hand-Built Grammars

Hand-built grammars, on the other hand, are usually more concerned with syntac-

tic coverage, i.e. providing adequate syntactic analyses of a wide range of linguistic

phenomena. For example, the XTAG project has built a substantial English LTAG

lexicon which covers an extensive number of English constructions (XTAG-group,

1999; Joshi and Schabes, 1992). Similarly, LinGO is a large hand-built grammar

for HPSG (Copestake, 1999; Pollard and Sag, 1994).

While possessing wide syntactic coverage, by themselves these grammars are
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not particularly robust. Many hand-built grammars have rather small lexicons,

and the larger ones (like XTAG and LinGO) were time-consuming and expensive

to build. And unlike in statistical approaches, hand-built grammars contain no

information regarding the preference of one lexical entry over another. There-

fore, they can produce many analyses for a sentence, but they cannot effectively

choose between them unless they have associated semantic forms that violate

some semantic property.

In addition, hand-built grammars are often lacking in semantics. The XTAG

lexicon, for example, contains no semantic information. There is no theoretical

reason why LTAG should not be capable of handling semantics and even pre-

suppositions, as demonstrated in Joshi and Vijay-Shanker (1999); Webber et al.

(1999b); Stone and Doran (1997); Palmer and Wu (1995), but so far this has

not been incorporated into a wide-coverage grammar. LinGO, on the other hand,

does have semantics, but does not yet incorporate lexical presupposition or its

projection into clausal semantics (Copestake, 1999). That grammar, then, would

have to be extended to account for alternative phrases.

DORIS (Bos, 2000) is a good example of a system with a hand-built grammar,

but with rather different emphasis than XTAG and LinGO. DORIS is fully capable

of fulfilling all of the semantic requirements, including presupposition. It even

has an analysis of other, although only in contexts like Mary took the Volvo and

John took the other car. However, as of now it has very low parsing coverage with

a lexicon of only a few thousand words.

5.3.3 Lexicon Acquisition

To address the problem of low parsing coverage and/or accuracy in hand-built

grammars researchers have turned their attention to the use of corpora in or-

der to extract lexical syntactic information. Such techniques have been used to

create grammars semi-automatically for LFG (Kuhn et al., 1998; van Genabith

et al., 1999). Also, Villavicencio (1997) did a semi-automatic translation of the

Alvey Natural Language Tools English grammar (Grover et al., 1993) to create

a large CCG lexicon. The original Alvey lexicon was, in itself, acquired semi-

automatically. Xia (1999) has automatically acquired LTAG lexicons from the

University of Pennsylvania Treebank (Marcus et al., 1993a). And IBM’s Slot

Grammar also uses an acquired lexicon (McCord, 1990).

Since these systems or grammars are based on formal linguistic systems, in

general they provide wide syntactic coverage. And since the lexicons were ac-

quired automatically or semi-automatically, they achieve a much higher level of



5.4. A Lexicon 77

parsing coverage than simple hand-built grammars. However, they are still in-

sufficient in that they do not have a semantic component capable of handling

the analysis for alternative phrases. The Alvey grammar has the most developed

semantic component but does not incorporate presupposition. It is also the case

that the Alvey grammar uses a form of Generalized Phrase Structure Grammar

(GPSG) which, while attributing some semantic information to lexical entries, is

not as lexicalized as would be necessary to easily incorporate the proposed se-

mantics for alternative sets. This is reflected in the fact that in Villavicencio’s

translation to CCG, much of the semantic information appears to have been lost.

5.3.4 Grok

Grok, a modular NLP system written in Java, provides a CKY-style chart parser

(Kasami, 1965; Younger, 1967) and maintains a discourse model including alter-

native sets, a salience list based on centering (Grosz et al., 1995), and a dynamic

ISA hierarchy. More importantly, Grok supports a wide-coverage CCG lexicon

with both assertional and presuppositional semantics. Like the systems in Sec-

tion 5.3.3, the lexicon is both acquired and based on a formal grammar system.

The result is both good syntactic and parsing coverage. The rest of this chapter

will show how the lexicon (including lexical entries for alternative markers like

those given in Chapter 3) has been created for Grok. I also discuss performing

efficient parsing with this grammar and show how the results are interpreted and

stored in a discourse model.

5.4 A Lexicon

5.4.1 An Acquired Lexicon

Recent work by Hockenmaier (2000) has shown that a large CCG lexicon can

be induced from an annotated corpus such as the Penn Treebank (Marcus et al.

1993b). For unseen data withheld from the same source, this lexicon contains the

correct category for 97.25% of the words. This is not due to extremely ambiguous

lexical entries as the average number of categories per word is 1.7. Not only does

this technique bootstrap a wide-coverage lexicon, it also is capable of collecting

the frequency of a category for a given word. This allows simple probabilistic

parsers to be written as described in Section 5.5. These parsers can be made more

general and accurate by incorporating the context-sensitive probabilities produced

by super-tagging (Bangalore, 1997) or more advanced probabilistic models (as in



78 A Robust CCG System

work currently being carried out). But they still have the problem, described

in Section 5.3.1, that no semantics (assertional or presuppositional) is associated

with the categories. In addition, little morphological information is available from

the acquired lexicon.

The following sections describe how these two problems are solved.

5.4.2 A Hand-Built Lexicon for Closed-class Items and Open-class

Categories

Structure of the Lexicon

A hand-built lexicon is used to supplement the acquired lexicon described above.

This lexicon consists of entries for closed-class words such as prepositions and de-

terminers. In addition, categories are included for open class words, but the words

themselves are not listed in the lexicon, being instead supplied by a morphologi-

cal analyzer. (Grok’s morphological information is actually retrieved from a large

database provided by the XTAG project.) Given a lexical item, a morphological

analyzer provides one or more possibilities for the item’s part of speech, stem,

and morphological features. These features are then incorporated into the lexicon

for every entry of the given stem and part of speech. Thus, a simple lexical entry

such as (165a) specifies the syntactic and semantic category for a stem. This,

together with the information provided by the morphological analyzer (165b),

expands to the categories in (165c).

(165) a. walk ` S\NP : λx.walk(x)

b. walks: V walk 3sg pres

walked: V walk past

V walk pparticiple

c. walks ` S3,sing,pres\NP : λx.walk(x)

walked ` Spast\NP : λx.walk(x)

walked ` Sppart\NP : λx.walk(x)

Actually, the hand-built lexicon does not have specific lexical entries like

(165a), but rather uses the notion of families from XTAG to organize the hand-

built lexicon into collections of categories. Each family is marked with an associ-

ated part of speech corresponding to the POS tags produced by the morphological

analyzer. Thus, rather than lexical entries for each open class word, we have open
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class families such as (166)1. A semantic form for an open class family is a tem-

plate for the semantics of the lexical items in that family. The variable P is filled

by the stem of the lexical item. For example, the semantics of the intransitive

word walks would be λx.P (x) where P is bound to walk: i.e. λx.walk(x).

(166) a. Intransitive: V S\NP λx.P (x)

b. Transitive: V S\NP/NP λxλy.P (y, x)

c. Ditransitive: V S\NP/NP/NP λxλyλz.P (z, y, x)

S\NP/PP/NP λxλyλz.P (z, x, y)

d. Sent Comp: V S\NP/Sind|int λpλx.P (x, p)

S\S|NP λxλp.P (x, p)

e. Control: V S\NP/(Sto\NP) λpλx.P (x, p)

f. Noun: N NPbare+,comp− λx.P (x)

g. Adjective: A NPcomp−/NPbare+ λpλx.P (x) ∧ p(x)

h. Comparative: A NPcomp+/NPbare+ λpλx.P (x, f) ∧ p(x)

NPcomp+\NP/NP/“than” λ λfλpλx.P (x, f) ∧ p(x)

Open-class words are assumed to belong to all families with a part of speech

suggested by the morphological analyzer. For instance, the morphological entries

in (165b) associate walked with the V part of speech. Walked therefore belongs

to all families with the V part of speech and is given every entry of those families.

These are the intransitive, transitive, ditransitive, sentential complement, and

control families shown in (166).

Our families include nouns, pronouns, verbs with a variety of subcategoriza-

tion frames, adjectives, comparatives, adverbs, modals, small clauses, wh-words,

prepositions, conjunctions, and more. Many of these are described in Chapter 2.

We do not, though, include a family for everything. For instance we do not list

the categories that would be needed to construct proper nouns: e.g. “Mr. P. T.

Barnum” and “Royal Bank of Scotland”. Section 5.7.1 discusses this in more

detail.

Over-generation

Used alone, this hand-built lexicon would achieve wide coverage, but at the price

of high ambiguity and over-generation. For example, the word devoured will be

given an intransitive entry even though it can only appear in a transitive context.

1This list of families is an example and is not complete. In addition, some families have

more entries than are shown, and I have only included some of the more important features on

the categories.
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However, over-generation is not necessarily a bad thing. Dialects vary in the

possible families for particular words. For example, enjoy can be used in an

intransitive context in some dialects but not in others. By being permissive, the

hand-built lexicon has no problem in accommodating these differences.

Research in language acquisition shows that such permissiveness is present in

children (Bowerman, 1982). They often generalize a phenomenon and only later

apply it to a restricted set of lexical items—e.g. sentences expressing cause and

effect relations. Bowerman notes that children seem to generalize constructions

like Harry pulled his socks up and produce sentences like those in (167). Although

these sentences are odd, especially the second, they are understandable.

(167) a. Don’t hug me off my chair.

b. I’ll jump that down. [about to jump on a bathmat put on top of water

in tub]

So starting with an over-generating lexicon is not unreasonable. We would

still like to reduce the over-generation for the sake of parsing efficiency and to use

the same lexicon for generation (Section 7.3). The next section shows how the

hand-built lexicon can be restricted to categories observed in a particular corpus.

5.4.3 Merging the Lexicons

In Grok, various modules, such as the parser, query the lexicon module for the

lexical entries of a particular word. That module, in turn, queries the hand-built

and acquired lexicons. These two sets of results must then be combined. The ideal

case would be for the lexical entries of the hand-built lexicon to mirror those of

the acquired lexicon. Then, it would be a simple matter to take the morphological

features and the semantics from the hand-built lexicon to supplement the acquired

one. Unfortunately, it is common for each lexicon to propose some categories that

the other does not. This gives rise to three situations:

The first is the simple case where a syntactic category is proposed both by the

hand-built lexicon and the acquired lexicon. In this case, the category is accepted.

A small concern is that the categories are probably not exactly the same since the

hand-built lexicon generally proposes significantly more morphological informa-

tion. Thus, we unify the two syntactic categories and include the semantics from

the hand-built category and the statistical information from the acquired cate-

gory. For example, (168) shows compatible categories for that proposed in both

lexicons. The hand-built syntactic category has more morphological information,
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and the acquired lexicon specifies that the extracted argument is the subject2.

The unified category contains all of this information. The combined lexical entry

also contains the semantics from the hand-built entry and the probability from

the acquired entry.

(168) a. Hand-Built

that ` (NPbare+\NPbare+)/(Sind|NP) : λpλqλx.p(x) ∧ q(x)

b. Acquired

that ` (NP\NP)/(Sind\NP), P = .24

c. Combined

that ` (NPbare+\NPbare+)/(Sind\NP) : λpλqλx.p(x) ∧ q(x), P = .24

The second case is where, for a particular word, a category is specified in the

hand-built lexicon but not in the acquired lexicon. It is tempting to disregard

such a category as being the result of the lexicon’s over-generation: e.g. proposing

an intransitive category for devours. However, it is possible that the category is

valid but could not be acquired from the corpus. For example, the acquisition

algorithm is not capable of acquiring categories for multi-word lexical items like

other than and such as, which are given categories in the hand-built lexicon.

Fortunately, these categories almost always occur for closed-class items. Thus,

we employ the heuristic of taking the category if it is in a closed-class family

and disregarding it otherwise. Of course, no statistical information is available

for these categories and further research is necessary to determine how best to

provide an approximation for this (Section 7.2). For now, we simply assign them

an arbitrary, high probability. This prefers hand-built, closed-class entries over

acquired ones.

The third and most difficult case is when a word has an acquired category not

in the hand-built lexicon. This frequently occurs in large open classes where the

word does not occur in our morphological database. For example, the morpho-

logical database in Grok does not have an entry for sneaker while the acquired

lexicon correctly proposes an NP category.

Lacking a corresponding entry in the hand-built lexicon results in impover-

ished morphology and no semantic information. One might expect that the tight

connection of syntax and semantics inherent in CCG would allow one to deduce

semantics directly from categories. Were it the case that each syntactic category

had exactly one possible semantic category, this would indeed be trivial. But this

2If the acquired lexicon also proposes the object extraction category, this would be included

as well.
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is not the case, as shown by (169). In this simple example, big and dog are both

NP modifiers. However, while big compositionally combines with an NP, such as

house, to denote an entity which is both a house and big, dog house does not

denote an entity which is both a house and a dog. Instead, a different semantic

relation, rel, is communicated. I do not attempt to determine what this relation

is (it is different for dog house, dog sled, dog slobber, etc.) since this is a diffi-

cult, well-studied problem that is not germane to this thesis. Rather, the point is

that adjectives and nouns have a common syntactic category in this lexicon but

different semantics. This is one example of a general problem.

(169) a. big ` NP/NP : λpλy.p(y) ∧ big(y)

b. dog ` NP/NP : λpλy.p(y) ∧ rel(dog, y)

It seems obvious in this case that these examples can be distinguished by

the fact that dog, in the Treebank, is annotated with the noun POS tag (NN)

while big is annotated as an adjective (JJ). This is true, but there are many

possible features that can affect these choices—syntactic arity, syntactic features,

morphology, etc. Therefore, rather than attempting to hand-code heuristics to

determine semantic categories from syntactic categories, I have used a machine

learning approach.

5.4.4 Learning Semantics for Acquired Categories

I started with randomly selected entries from the acquired lexicon while main-

taining the distribution of word/category pairs observed in the corpus. I excluded

numbers, punctuation, and proper names as these are handled in Grok through

other means (see Section 5.6).

For each of these lexical entries, I produced training data consisting of the

following features: the orthography of the word, its suffix, the number of syntactic

arguments, various features of the acquired category, and whether the syntactic

category is a verb, verb modifier, noun phrase, or noun phrase modifier. Also

included is the correct semantic template for the lexical entry. These semantic

forms include those for basic verbs, adjectives, pronouns, determiners, noun-noun

constructions (e.g. dog house), prepositions, and alternative phrases. There are

21 semantic templates in all. These semantic forms contain several ambiguities

like that in (169), but even so, it is still a rather impoverished set. It is sufficient,

though, to fulfill the goals in the practical applications in Chapter 6. Also, there

is no information about the semantics for categories that do not appear in the

hand-built lexicon. But, as discussed later this section, these are not frequent.
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I tested both the decision tree and maximum entropy approaches to machine

learning on this task. I use Ripper (Cohen, 1995) to induce a decision tree. Max-

imum entropy is a powerful statistical method for estimating decisions by com-

bining diverse pieces of information. Ratnaparkhi (1998) explores the maximum

entropy framework with respect to many linguistic problems and demonstrates

how tools using it can achieve high accuracy and domain independence.

I began with 10,000 entries from the acquired lexicon. Of these, 8866 were

contained in the hand-built lexicon and thus had associated semantics with which

to train the models. 90% of the data points were used for training and 10% for

testing.

training testing

Baseline 86.4% 73.2%
Ripper 97.2% 97.3%
Maxent 97.8% 97.1%

Table 5.1: Evaluation of Inferring Semantics

As shown in Table 5.1, both the decision tree and the maximum entropy

approaches perform in the ninety-seventh percentile at predicting the correct

semantic form given the features described above. I compare these results to a

baseline which simply chooses the most frequent semantic form for a word and

guesses the overall most frequent semantic form if the word is unknown. As one

can see, this performs significantly worse than both machine learning techniques.

To interpret the usefulness of these results, I present a few more statistics,

illustrated in Figure 5.1. For 95.8% of the tokens in the training corpus for the

acquired lexicon, the syntactic category was available in the hand-built lexicon.

For 88.7% of the tokens, the exact entry was found in the hand-built lexicon.

These are data on which the models were trained but not on which they will be

used.

These statistics mean that for 7.1% of the tokens, the hand-built lexicon had

the appropriate category but was unable to associate that category with the

lexical item. These are the cases for which we believe our models will provide

good performance for guessing semantic templates. It is possible these particular

lexical items are fundamentally different from the other 88.7%, which is why their

entries were not found in the hand-built lexicon. However, our morphological

analyzer is simply a large database and does not contain a number of open class

words (e.g. sneaker, as described above). Thus, it is exactly for these tokens that

the approaches evaluated in Table 5.1 are meant. We believe, then, that for this
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7.1%, we can predict the correct semantic form around 97% of the time.

Category in HL
but not with word

Category
not in HL

HL
AL

Entry in HL
88.7%

7.1%

4.2%

Figure 5.1: Supplying Semantics to the Acquired Lexicon

The remaining 4% of the tokens are those for which the hand-built lexicon

does not even contain the syntactic category. Since the training data only consists

of entries contained in the hand-built lexicon, we have no reason to believe that

the statistical models will perform well in predicting their semantic forms. It

would be possible to test this by hand-building a test set from this class, but I

have not done so for two reasons. First, many of these categories are the result of

noise in the Treebank and can be discounted. Second, the lexical entries produced

when creating a test set could be easily integrated into the grammar and used

to retrain the statistical models. In fact, this process was used to improve the

hand-built grammar.

5.5 Efficient Parsing

The acquired lexicon specifies a set of possible categories for each word, and

also includes unigram probabilities (of the form P (category | word) or P (word |
category)). The task of the parser is then to select the appropriate categories

from this lexicon. As a baseline evaluation, I have used a lexicon which includes

probabilities for a word having a particular category, and I have incorporated

the following first-best search strategy into Grok’s chart parser: Each edge in

the chart is given a “measure” which is the average of the probabilities of its

composite categories. Edges are sorted based on the measure and processed in



5.6. Preprocessing 85

descending order. Termination occurs when there are no more edges or a sentence

is derived for the entire string.

This parser processed a list of 41 hand-created sample sentences (meant to

exercise the system on various linguistic constructions) in 32.83 seconds compared

to 160.73 seconds when there is no preference between edges. This is an 80%

reduction in run time. While speed alone is not a rigorous performance criterion,

this can be viewed as confirmation that the simple unigram probabilities are

already good predictors of categories during parsing. The accuracy of the parser

has not been tested since its construction was meant to satisfy an engineering

rather than a theoretical goal, but it is unlikely that the accuracy is worse than

the basic chart parser where there are not even the simple unigram probabilities

to help choose among parses.

A long-term goal is more realistic statistical parsing with CCG, and in order

to do this, we need a statistical model, such as Collins (1998), which includes

lexical head-dependency probabilities. Hockenmaier (2000) is an important first

step towards this goal, and current research is promising. An extremely naive

statistical model has already performed at 79% accuracy on the labeling task for

unseen Treebank text.

5.6 Preprocessing

I have discussed a robust way of generating a CCG lexicon which does not depend

on using extensive human labor. Nonetheless, even the Wall Street Journal text

tends to be quite messy from the perspective of a CCG parser. For instance, the

following passage from the WSJ contains a number of problems:

(170) Pierre Vinken, 61 years old, will join the board as a nonexecutive director

Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing

group.

The most obvious problems are tokenization and sentence detection. Is “Vinken,”

one token or two? Where is the sentence boundary in “...Nov.29. Mr. Vinken...”?

Other issues include subsets of the unknown word problem: e.g. recognizing dates

and named entities and dealing with abbreviated terms and numerical units in

the text.

These are problems faced by all natural language understanding systems, and

a great deal of research has gone into preprocessing techniques to deal with them.

We have implemented a number of preprocessing modules within an open archi-

tecture (see Section 5.8) in the hopes that the open standards will facilitate the
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reuse of code. In Section 5.8, I discuss how Grok is already being used in the NLP

community. In the rest of the section, I briefly discuss the implementation of

some of these components. I also point out how certain preprocessing techniques

can, in particular, help parsers of lexicalized grammars.

We have created a pipeline of preprocessing components which use XML doc-

uments in the input/output specifications. XML (World Wide Web Consortium,

1997) provides an elegant means for structuring texts. We have built the compo-

nents themselves by using maximum entropy probability models.

At present, we have built a tokenizer and sentence detector which use max-

imum entropy models with features based on those presented in Ratnaparkhi

(1998) and Reynar and Ratnaparkhi (1997), respectively. Other tasks such as

paragraph detection or dealing with figures and tables have not been implemented

as yet, but the existing components have been designed to work with XML doc-

uments in a manner which permits additions such as these with minimal effort.

With tokenized and sentence detected data in hand, we are much closer to the

goal of feeding the text to the CCG parser. However, there are still many things

we can do to ease the parser’s work and reduce the burden on the lexicon. One

such task is named entity recognition. We feel that names should not be derived

through standard CCG derivations for several reasons. First, the acquired lexicon

is limited to those names it observes in the data. Furthermore, for a name such

as John, the acquired lexicon produces two categories: NP for John alone and

NP/NP as in John Smith. This is particularly detrimental since a large factor in

the efficiency of CCG parsing is dependent on lexical ambiguity and there tend

to be a lot of names in text. Finally, names lack recursive structure, are not

compositional, and fit a somewhat standard format, so finding a CCG derivation

for them will not tell us much. We thus choose to put the burden of deriving

names on another component. Then, when a sentence is given to the parser, it

receives names as a chunk whose components are invisible. A side benefit of this

is that we can use the results of name detection to know whether or not we can

decapitalize sentence initial words so that we do not need dual lexical entries for

non-names occurring at the beginning of sentences.

Our maximum entropy software, based on Ratnaparkhi (1997), has allowed

us to implement a simple though high-performing named entity recognizer in less

than a day. The results for evaluation on 20,468 training sentences and 4552

unseen testing sentences are given in Table 5.2. Named entity recognition is a

well-studied task, and it should be a simple matter to substitute a more developed

approach such as Mikheev (1999), which achieves about 98.5% accuracy on unseen
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data and was used in the winning entry in MUC-7 (Mikheev et al., 1998).

training testing

precision 96.1% 95.9%
recall 96.9% 94.8%

Table 5.2: Evaluation of Name Detection

This approach can be extended to other phenomena such as dates, appositives,

and compound nouns. Dates can be handled similarly to names. Both nominal

appositives (such as the Dutch publishing group) and adjectival appositives (such

as 61 years old) have a very restricted syntactic positioning and are clearly de-

limited by commas, so we expect another maximum-entropy component would do

well in detecting them. However, unlike names, appositives have a compositional

meaning and can have recursive structure. Even so, at the top they are still of

the category NP or NP/NP. With appositives detected, we could give the parser

the appositive’s lexical items with the goal NP for nominal appositives or NP/NP

for adjectival appositives in order to compute its meaning before proceeding with

the rest of the sentence.

Cutting up the text in the manner described above can yield significant gains

for a CCG parser. The text in (170) provides an excellent example of the bene-

fits. If we were to perform name, date, and appositive detection on that text, a

standard chart parser would visit only 25% of the cells it would using the unpro-

cessed tokens. Furthermore, since the complexity for lexicalized grammars such

as CCG is also dependent on the number of categories per word, the reduction in

the number of categories for dates, numbers, and names provided by dealing with

them in this way will translate into yet more efficiency gains, especially since the

maximum entropy components themselves are extremely efficient.

5.7 Representing and Working with Knowledge

The anaphoric aspects of my analysis for alternative phrases requires that Grok

must have some way of storing, accessing, and manipulating the semantics gener-

ated by the parser. This is, of course, an enormous task. What I will show with

the Grok system is that it is not necessary to pay particularly close attention to

every aspect of such a system. At the same time, something must be done about

everything.

Modularity is the key. Grok uses the philosophy that complex behavior can

result from the interaction of simple pieces. In a well-engineered system, if more
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attention must be paid to a particular task, a more complex module can be

substituted for a simpler one and the system will continue to function as before but

with the improved functionality of the new module. This is handled through Java

interfaces—requirements a module must implement. For example, the interface

for a tokenizer is shown in (171b).

(171) a. public interface Pipelink {

public void process(NLPDocument doc);

public Set requires();

}

b. public interface Tokenizer extends Pipelink {

public String[] tokenize(String s);

}

This interface specifies that a tokenizer must have a function tokenize that takes

a string of text and returns an array of strings which are the tokens. The modifier

extends Pipelink means that a Tokenizer must also implement the Pipelink

interface which allows it to be used in a pipeline. This requires two methods. One

takes an XML document and processes it (in this case, by identifying tokens) and

the second returns a set of modules that must be present earlier in the pipeline.

A tokenizer, for instance, might require that a sentence detector be earlier in

the pipeline. Grok’s pipeline implementation ensures that such requirements are

satisfied. How these interfaces are organized and implemented is described in

Section 5.8.

The rest of this section describes aspects of the Grok knowledge system that

are directly relevant to the interpretation of alternative phrases.

5.7.1 Presupposition

The dissertation so far has shown how the rules of CCG direct the evaluation of

syntax and assertional semantics in a derivation, but not how presuppositions are

evaluated.

I have indicated that presuppositions are stored lexically and are scoped by

the same parameters as the assertional semantics. During parsing, as adjacent

strings are combined via CCG rules, the corresponding presuppositions are com-

bined as well. This is a compositional, monotonic approach that does not address

the projection problem (Karttunen and Peters, 1979). Since I only consider pre-

supposition to the extent necessary to drive my analysis, I do not address this

well-studied problem here.
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Packaging presuppositions within the derivation allows Grok to entertain mul-

tiple interpretations simultaneously if it uses a parsing technique that builds many

derivations in parallel. At this time, Grok does not do incremental consistency

checking, but rather waits until a particular parse is chosen. This maintains the

monotonicity of the KB but does not exploit the disambiguating effect of pre-

suppositions and, in turn, the potential reduction of parsing time. Incremental

interpretation also requires incremental anaphora resolution since presupposed

figures can be realized by pronouns. To this end, I have implemented the incre-

mental centering model given in Strube (1998). An evaluation of the utility of

incremental processing is ultimately desirable, but I leave this for future work.

5.7.2 Resolution

The anaphoric nature of some alternative phrases makes resolution an important

issue. The two important aspects of resolution are restrictions and salience.

Salience is currently computed based on the ideas of centering theory (Grosz

et al., 1995). This produces an ordered list of possible antecedents. Resolution

consists of choosing the first antecedent that is consistent with the restrictions. A

simple example of restrictions are syntactic features such as gender and number.

Another type of restriction is the dominance restriction. Given a logical form,

we compute three things for each portion, x, of the logical form: external domi-

nators of x, local dominators of x, and things dominated by x. Local dominators

are within the same predicate-argument structure and external dominators are

outside. So, the sentence John thinks he likes other dogs produces the logical

form in (172a) and the dominance relations in (172b). The dominance relation

described here is c-command as it is described in Steedman (1996, p.19). It is

basically the traditional view of c-command except that we compute on semantic,

not syntactic, structures—that is, it should more properly be called f-command

(Bach and Partee, 1980).

Steedman (1996) summarizes how these relations are used to restrict anaphora

resolution in a theory similar to that of Chomsky (1981). Reflexives, for instance,

must be bound to a local dominator, Condition A. Other anaphors are restricted

by Condition B which states that they cannot bind to local dominators. All

anaphors are restricted by Condition C which states that they cannot be bound

by anything they dominate. Finally, referring expressions such as definite NPs

cannot resolve to any dominator or anything it dominates.

(172) a. think(john, like(x, λx.dog(x) ∧ ¬f(x))
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b. think

john



external :

internal :

dominated :dog, f, x, λx.dog(x) ∧ ¬f(x)




like

x



external : john

internal :

dominated :dog, f, λx.dog(x) ∧ ¬f(x)




...

dog



external : john, x

internal :

dominated :f




f



external : john, x

internal : dog

dominated :




The consequence of these restrictions in the above example is that the pronoun

he cannot resolve to dog, λx.dog(x)∧¬f(x), or f . Thus, it must resolve to john

or something else earlier in the discourse. f , the figure of other dogs, cannot

resolve to dog but can resolve to anything else, including john and the referent

of x.

As noted in Section 3.6.3, figures have further restrictions placed on them.

John thinks other dogs like Mary presupposes that the figure of other dogs is a

dog. This restriction is attached to f so that it can be used in the resolution

process. Thus, when attempting to bind f to john, a check is made to see if

John is a dog. If so, John is chosen. If John is not to be a dog, he is rejected. If

John is consistent with being a dog and there are no salient dogs available in the

discourse, John is chosen and the fact that he is a dog is accommodated. Grok

does not handle cataphora, so Mary is not considered as a possible referent of f .

5.7.3 Interpretation and Hierarchical Relations

Grok maintains alternative sets as nodes in a single-rooted inheritance hierarchy

with two types of relations, member and subtype. The distinction between these

two relations corresponds to a general ambiguity in the interpretation of NPs in

general. This is particularly relevant to the presupposition of many alternative

markers that the elements of the figure have the property of the ground.

For example, I have taken names, e.g. Netscape and Bushwackers, to denote

individuals. Inclusion in an alt-set therefore corresponds to being a member of

its corresponding node in the hierarchy: e.g. from browsers other than Netscape,

netscape becomes a member of browser. Bare plural NPs, e.g. browsers, can

denote kinds. Inclusion in an alt-set here corresponds to being a subtype. For

example, in applications other than browsers, browser must be inserted as a
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subtype of the node corresponding to application.

As discussed in Carlson and Pelletier (1995), there is a general ambiguity in

English as to whether singular NPs (definite or indefinite) should be interpreted

specifically (173) or generically (174).

(173) a. The lion frightened my sister.

b. A lion walks into a bar and says to the bartender, ...

(174) a. The lion lives in Africa.

b. A lion is a powerful beast.

This same ambiguity leads to a problem for determining whether a singular

NP should be represented as a member or a subtype. I have not tried to solve

the problem in full generality. Rather, I use the following heuristic:

For the proposition ∀x.f(x) → g(x), g is a node of the hierarchy (a kind).

For f , bare plurals are interpreted as kinds. Definite singulars are interpreted as

individuals if an antecedent can be found in the discourse or common ground,

and kinds otherwise. As above, if f denotes a kind, then f is made a subtype of

g. If f denotes individuals, they become members of g.

For example, in applications other than browsers, browsers is interpreted as a

kind which is therefore made a subtype of application. In an animal other than

the lion, if a particular lion is in the discourse or common ground, that entity

becomes a member of animal. Otherwise, the lion is interpreted as a kind and

becomes a subtype of animal. Indefinite singulars are highly ambiguous; with

alternative phrases they are interpreted as kinds, as in an application other than

a browser.

Another issue regarding the ISA hierarchy is that a complete KB is far too

large to load into memory when running Grok. The solution is to have an in-

dependent server to supply this information on demand. When Grok requires

information about browsers, for instance, it sends the request to the server and

receives the entry for browser as well as all its paths to the root. This caches

relevant information in the local KB but does not make it discourse-relevant since

the discourse model is a separate data structure. I assume these hierarchies will

be highly branching but relatively shallow. This is supported by the hypernym

structure of WordNet (Miller, 1990)—whose maximum depth is sixteen nodes.

Such a system has been implemented in Grok although a taxonomy has not yet

been incorporated.
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5.8 The Grok System

As stated earlier, modularity is very important in building a large, complex system

such as Grok. This not only makes for easier development, but it also allows many

developers to work on a system. To facilitate this, we have started an OpenNLP

API, a specification for NLP resources, so that people can write modules to be

transparently used in the larger system. Adding the probabilistic parser described

in Section 5.4.3 will be handled in this way. Some of the OpenNLP API is as

follows, and more interfaces can be easily added. What I have been calling Grok

is a particular implementation of the specifications in the OpenNLP API.

AccommodatePolicy // Determines what should be accommodated

Category // Syntactic and semantic forms

Denoter // Semantic Form

Abstraction // Equivalent of a lambda extraction

FC // A thing in the world---like an entity of event

Kind // A generic

Variable // A variable

Synner // Syntactic Form

Derivation // Represents derivation information from a parse

DominanceHandler // maintains dominance information for Denoters

Feature // Feature information

Generator // Translates syntax and semantics to natural lang

KB // Knowledge base

Lexicon // A storage location for lexical items

Constituent // Orthography plus syntactic/semantic info

Mouth // An object that presents a string to a user

Synthesizer // Performs text to speech

Parser // Parses a string

Rules // Describes how lexical items combine

SalienceList // Maintains salience information

Hierarchy // Any sort of hierarchy- ISA, Part-Whole, ...

Pipelink // An element in a pipeline

Tokenizer // Text tokenization

POSTagger // Part of speech tagging

NameFinder // Name identification

SentenceDetector // End of sentence detection

5.8.1 Comparison to GATE

This philosophy of a modular NLP system to support the reuse of components is

similar to that of GATE, another modular NLP system. (Cunningham et al. (1997)

has a nice overview of GATE as well as other large natural language systems.)

There are a few main differences between GATE and OpenNLP. First, GATE is a

software system that manages modules, tracks data, etc. This involves installing
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GATE before being able to use a system with GATE components. OpenNLP, on

the other hand, is strictly an API. That is, there is no implementation involved,

simply interfaces requiring components to provide a certain amount of support,

and thus installation of OpenNLP is simply the downloading of a file—opennlp.jar.

Having a central system handle information produced by modules also in-

herently causes GATE to be biased towards certain aspects of NLP, namely text

analysis:

For modules like taggers, parsers, discourse analyzers (i.e. just about
anything that performs an analysis task) the GATE integration model
provides a convenient and powerful abstraction layer based on storing
information in association with the text under analysis. For resources
like lexicons or corpora, no such layer exists. Similarly, for modules
that do generation-side tasks, since there is no text under analysis, the
utility of a text-based model is limited.

Cunningham et al. (1999)

Although a new version of GATE is under development to solve this problem,

the OpenNLP architecture is not subject to the problem since it is simply an

API. The other side of the coin is that GATE, as a full system, comes with much

more support and is a mature system. OpenNLP is very new and requires a great

deal more work. This brings me to the second main difference between the two

systems—that OpenNLP is a free, open-source project while GATE is not. This

means that anyone may enhance OpenNLP in any way as long the enhancements

are made available for all. Given sufficient interest in the community, this allows

very rapid and sophisticated development as has been shown by such successful

projects as Linux, Apache, and Perl. At the time of this writing, three months

after its first release, several people have written to say that they are using Grok

for a variety of projects including topic identification in web pages, representing

intonation, and writing a Turkish grammar. Grok is also being considered for

use in an intelligent tutoring system, an information extraction system, and the

dialogue system of the RIALIST (RIALIST, 2000) group at NASA. Grok has been

downloaded 509 times, it’s homepage has had 20,760 page views, and it is in the

top 7% of the most active projects on SourceForge, a centralized host for more

than 7000 open-source projects.

5.8.2 The Grok Architecture

Grok is a particular implementation of the OpenNLP API. The Grok architecture

is still in flux, but Figure 5.2 represents many of the current modules and how
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they communicate with each other. Function calls always follow links down the

page and return values follow them up the page. The information being passed

between modules is represented as labels on the links. For type1/type2, type1 is

the parameter and type2 is the return type. If there is a single label, then it

is both the parameter and the return type unless the arrow is uni-directional in

which case there is no return type. Note that for simplicity, whenever possible I

label modules by the interface they implement. However, the structure of Grok

is in no way enforced by OpenNLP. OpenNLP is merely an API—a collection of

conventions about how to write modules. Grok puts these modules together in a

structured form.

The following discussion is a step-by-step look at Grok’s major components.

I focus on the parts of Grok relevant to this thesis and, throughout, I refer the

reader to the sections of the thesis where these issues were discussed.

The Grok architecture is divided into four primary sections which communicate

via a few external modules. The Agent is the primary entry point into the system.

Most user interfaces to Grok create an agent, send it natural language input, and

retrieve syntactic and semantic information.

Preprocessing

When the agent receives natural language input, it first sends it to the prepro-

cessor. The preprocessor creates an XML document called an NLPDocument and

sends it to each element, or Pipelink, in a pipeline. The Pipelink interface is

shown and described on page 88. To summarize, each Pipelink takes an XML

document and adds information to it. For instance, the Tokenizer would take

every sentence in the document and separate them into tokens. A Pipelink must

also specify what modules must be present earlier in the preprocessing pipeline.

For instance, Grok’s tokenizer requires that the document be sentence-detected

first.

The output in (175b) shows the state of an NLP document for the sentence

in (175a) after being modified by both the sentence detector and the tokenizer.

The name finder, in (175c), adds the information that Mary Jones is a name.

As mentioned in Section 5.4.2, this is used to relieve pressure from the lexicon

where sparse data problems make it unlikely that an exhaustive list of names can

be listed. In addition, parsing efficiency is improved since names are combined

before the parsing process—e.g. the category NP/NP is not needed for first names

to combine with last names.

(175) a. Mary Jones saw the other dog.
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b. <NLPDOC>

<TEXT>

<PAR>

<SENT>

<TOK> <LEX>Mary</LEX> </TOK>

<TOK> <LEX>Jones</LEX> </TOK>

<TOK> <LEX>saw</LEX> </TOK>

<TOK> <LEX>the</LEX> </TOK>

<TOK> <LEX>other</LEX> </TOK>

<TOK> <LEX>dog</LEX> </TOK>

<TOK> <LEX>.</LEX> </TOK>

</SENT>

</PAR>

</TEXT>

</NLPDOC>

c. <NLPDOC>

<TEXT>

<PAR>

<SENT>

<NAME>

<TOK> <LEX>Mary</LEX> </TOK>

<TOK> <LEX>Jones</LEX> </TOK>

</NAME>

<TOK> <LEX>saw</LEX> </TOK>

<TOK> <LEX>the</LEX> </TOK>

<TOK> <LEX>other</LEX> </TOK>

<TOK> <LEX>dog</LEX> </TOK>

<TOK> <LEX>.</LEX> </TOK>

</SENT>

</PAR>

</TEXT>

</NLPDOC>

For more information on the importance of preprocessing in NLP systems,

see Section 5.6. The section also discusses maximum entropy, which is used to

implement all of Grok’s preprocessing components.

Parsing

The agent takes the NLP document returned by the preprocessor and passes it on

to the parsing component. Several parsers are implemented in Grok including a

standard CKY chart parser as well as the unigram probabilistic parser described

in Section 5.5.

Grok parsers assume a lexical grammar and make use of two modules, Rules

and Lexicon. First, the parser sends the NLP document to the lexicon which

returns a list of possible lexical entries for each token in the document. Lexical
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entries are created as described in Section 5.4. The parser then uses the Rules

module to construct constituents out of the lexical entries. For the CCG imple-

mentation, the rules consist of combinators such as application, composition, and

type-raising. However, an implementation of another formalism can certainly be

done. For example, a TAG implementation would encode adjunction and substi-

tution.

The parser then returns the results that satisfy certain restrictions. This is

usually that the resulting syntactic category unify with Sind|int. In the case of the

document in (175c), the result is the bundled category of syntax, assertion, and

presupposition shown in (176).

(176)




syntax: Sind

assertion: saw(Mary Jones, λx.dog(x) ∧ ¬f(x))

presup: ∀x.f(x)→ dog(x)

Resolution

The agent now passes the results from the parser to the “brain”. The brain

contains all system knowledge, including discourse and world knowledge. It be-

gins processing a parse by having a module compute the dominance relations

of the semantic portion of the parse. This process, described in Section 5.7.2,

places restrictions on what logical forms can refer to. The brain then uses the

Instantiator and Resolver modules3 to instantiate logical forms to referables,

e.g. events, kinds, or entities.

The salience list is used to find the most salient entity that satisfies the re-

strictions of the logical form. Presuppositions are resolved before the assertion,

so for (176), ∀x.f(x) → dog(x) would be resolved first. There are two items to

resolve in this logical form, f and dog. The first thing the resolver does is to add

the restriction that f be consistent with the property λx.dog(x) as described in

Section 3.6.2. Assuming that the salience list has the entities in (177), the first

entity consistent with f is John 1. (Referables are indexed by a unique number.

The preceding descriptive text is purely for readability.)

(177) [John 1, Mary 2]

As discussed in Section 5.7.3, dog is interpreted as a kind. However, our

discourse does not contain the kind dog. At this point the resolver must decide

whether it should create, or accommodate, such a kind. The AccommmodatePolicy

3These modules are so closely linked that they will most likely become a single module in a

future version of Grok.
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module contains information about what sorts of referables may be accommo-

dated. In our implementation, kinds can be accommodated but, for example,

antecedents for pronouns cannot.

When evaluating the assertion, f and dog have already been resolved. Mary

Jones is resolved to the entity Mary 2 since it is the first consistent entity on the

salience list. The only thing remaining is the entity referred to by λx.dog(x) ∧
¬f(x)) (i.e. a dog that is not John). Such an entity does not exist on the salience

list so, again, the AccommodatePolicy module is consulted. The accommodation

is allowed and so a new dog is created. A new event is then created for the entire

proposition, shown in (178a). The resulting ISA hierarchy now includes the new

information in (178b).

(178) a. see(Mary 2, dog 3) 4

b. All Things

λx.see(x, dog 3)

Mary 2

λx.see(Mary 2, x)

dog 3

dog

dog 3 John 1

Output

These components control how information is transmitted back to a user of Grok.

The brain might desire to communicate with the user for a number of reasons.

First, its input might have been a query, in which case the brain would commu-

nicate the answer. The brain might also communicate a message when there is a

problem. For instance, if the sentence She likes spam is given in isolation, Grok

communicates I do not know who you are referring to.

The brain communicates with the outside world through Mouth modules. The

mouths implemented in Grok are a text field in the user interface and a connection

to the Festival speech synthesis system (Black and Taylor, 1997). Thus Grok can

produce both text and speech output.

This segment of Grok is not as relevant to this thesis as the others, but the

Generator module is used in Algorithms 1 and 2 in Chapter 6.

Categories

In my discussion of Grok’s architecture, I have mentioned several data structures:

categories, referables, kinds, events, variables, etc. These are sub-types of the

Category interface.
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Figure 5.3 shows the hierarchical structure of these categories. These are the

syntactic and semantic data structures passed throughout much of the system.

Here, interfaces are contained in boxes and classes, in ovals. Dotted lines in-

dicate the implementation of an interface while solid lines indicate the subclass

relation. I include this diagram as an example of how Grok and OpenNLP in-

terrelate. Here, all interfaces (rectangles) are module specifications in OpenNLP

and all classes (ovals) are implementations of those interfaces in Grok. This par-

ticular implementation encodes CCG categories, but this is hidden from many

modules. For instance, the Grok parser only relies on OpenNLP interfaces and not

on any particular implementation of them. Therefore, it would readily accept an

implementation of TAG, for instance, instead of CCG without any change.

More Information

For a more detailed discussion of the modules and what they do, see the Grok

and OpenNLP homepages:

http://grok.sourceforge.net

http://opennlp.sourceforge.net

5.9 Conclusion

This chapter has discussed a number of aspects of producing a robust, wide-

coverage system that will support the analysis of alternative phrases presented in

Chapter 3. This is both a contribution to the community and a bridge between

the analyses and their relevance to practical applications discussed in Chapter 6.

First and foremost, I discussed ongoing research in developing a large English

lexicon as a combination of an acquired lexicon and a lexically incomplete, hand-

built one. The hand-built lexicon is meant to provide precise semantics and syntax

for closed-class sets of words and semantics for open class words acquired through

techniques described in Hockenmaier (2000) and Hockenmaier et al. (2000). I

then described how this wide-coverage lexicon is embedded in a larger system

that supports parsing, generation, and knowledge representation.

Preliminary experimentation with the system supports the belief that a well-

designed, modular system can produce satisfactory results even when the modules

themselves are sometimes fast and simple solutions for complex problems. Fur-

thermore, with a well-designed system, these modules can be easily and transpar-

ently replaced with more interesting modules to produce, hopefully, better results.
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Importantly, at this time, the system successfully supports most of the work pre-

sented in Chapter 3. I do not handle certain aspects of free alternative phrases

(common-sense reasoning), but the implementation is more than sufficient for the

discussion of practical application in Chapter 6.
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Chapter 6

Practical Application

In Chapter 3 and Chapter 4, I presented an in-depth analysis of a class of

frequently-occurring words I call alternative markers. In Chapter 5, I showed

that this analysis can be implemented within a large system. In this chapter I

argue that there are practical benefits to this, that there are applications in which

understanding alternative phrases is valuable.

Any application where type information about referables is useful would ben-

efit from the work in this dissertation. For instance, Hearst (1992) showed that

these constructions are useful for finding hyponyms, and thus for automatic the-

saurus construction and similar tasks. Also, named entity classification would

benefit in cases where alternative phrases disambiguate people, companies, coun-

tries, etc. A related task is information extraction, where data is collected from a

document and used to fill a template. Alternative phrases can indicate what slot

in the template an entity should fill. Coreference also needs to take alternative

phrases into account to avoid, for example, the phrase other X coreferring with

the original X: e.g. other dogs probably does not corefer to the golden retriev-

ers mentioned in the previous sentence. Furthermore, knowledge of alternative

phrases helps identify coreference in cases like (179) where the other substance

corefers with spam.

(179) Spam and beef are quite different—beef comes from cows while the origin

of the other substance is unknown.

One need not use the full extent of the analysis presented in this thesis for these

tasks. However, this thesis points the way to how one might implement sim-

pler instantiations. For example, while pattern recognition can be effective to a

certain point, it becomes insufficient by itself for examples containing anaphora

and examples with free alternative phrases where there are many possibilities for

the ground or complement. Furthermore, sophisticated noun phrase detection is
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necessary for pattern matching techniques to be at all effective, as evidenced by

the patterns given by Hearst in (34).

Another important application, one that inspired this thesis, is information

retrieval systems. With the large and rapidly increasing amount of information

available in databases and the World Wide Web, easy and accurate information

retrieval is (and has been for many years) a heavily researched area. Much of

this research has been directed towards the back end of information retrieval

systems—that is, given a query in a convenient format (such as Boolean algebra),

finding the answer or a set of relevant documents. Now that millions of people

have regular access to these information sources, researchers are considering the

problem that most users have never seen a Boolean expression. How, then, can

a system allow an average user to create effective queries that can be used by

these back end systems? One answer is to allow users to use what they know

best—natural language.

Many systems exist which accept natural language queries, and the techniques

they employ work to varying degrees of effectiveness for single, non-discourse em-

bedded queries. However, they do not take into account alternative phrases, which

people use to narrow the search space or more precisely identify the information

they want when normally formulating one-shot or follow-up questions.

Applying this research to NLIR amounts to increasing the amount of informa-

tion in a query recognized as relevant and to use that information correctly. "web

browsers" AND netscape, for example, is not an appropriate search request for

What are some web browsers besides Netscape and yet that is what many systems

produce. With the approach presented in this dissertation a more reasonable

query can be formed.

This chapter begins with a discussion of NLIR systems and shows that they

fail to account for alternative phrases. I then show how this dissertation can

benefit NLIR systems, taking The Electric Monk as an example.

6.1 Why Natural Language?

The purpose of applying my analysis of alternative phrases to natural language

information retrieval is to show the importance of this class of words and to prove

that my analysis can support real world applications. However, it is important

to consider why natural language is important to IR in the first place. Why are

keyword-based Boolean queries not enough?

The first, simple, reason is that not all users are willing or able to learn how
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to express Boolean queries. Small children are a good example, as indicated by

the following hearsay evidence from a user of The Electric Monk:

As an early elementary school teacher I love your site. It makes it so
easy for young students. No keywords!! which I’ve had trouble trying
to explain. I’m passing your address on to other teachers and parents.

Monk (1999)

Search engines often attempt to simplify the use of Boolean queries by implic-

itly conjoining the set of keywords entered by the user. However, conjunction is

not always sufficient, and the user must learn how to express concepts like nega-

tion. This is complicated by the fact that there is no external force requiring IR

systems to use consistent notation for Boolean expressions. For instance, nega-

tion is often expressed with the minus, -, symbol but can also be expressed with

the reserved word NOT. Documentation describing the notation is often extensive.

Natural language, on the other hand, is, well, natural. Lewis and Sparck-Jones

(1996) point this out as an important aspect of the text retrieval agenda. Refer-

ring to “Boolean logic or other user-befuddling query syntax”1, they claim that

“users should not be required to express their needs in a heavily controlled and

highly artificial language.”

While I believe it is valid, the above argument is mostly an expression of

the intuition many people have about NLIR. A more precise argument is that the

anaphoric nature of natural language allows it to be much more terse than Boolean

expressions. The simple use of pronouns (as in Section 6.3) is one example. A

more interesting example is the anaphoric reference of other in example (1a),

above. Questions are not asked in isolation, and being able to refer to previous

discourse can greatly simplify queries.

Finally and most important, Boolean algebra simply cannot express some per-

fectly normal queries. For instance, how might one express ...other web browsers

than Netscape...? One possibility is ‘‘web browser’’ AND NOT Netscape. This,

however, will exclude all pages with the string Netscape. Since relevant pages

probably list a number of web browsers, including Netscape, this is undesirable.

An better approximation can probably be achieved using the NEAR operator pro-

vided by many document IR systems, but this is still not really the intended

meaning of the original sentence. I discuss this issue in relation to the Monk in

Section 6.4.

1The analysis in this paper, incidentally, would infer from this that Boolean logic is user-

befuddling query syntax.
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Another example, a slightly modified form of (1c), is Where can I find shoes

such as Bushwackers? (discussed in Section 3.4.2). This requests shoes that have

some set of properties in common with Bushwackers (that they be comfortable,

for instance). In this particular case, a Boolean query could include the relevant

keyword, comfortable, but the purpose of this construction is to express this

information through example, possibly meaning that the user cannot, or does not

care to, express the properties explicitly.

It is true that document retrieval systems, in general, do not support an op-

erational semantics for expressing these queries any better than Boolean algebra.

This is because they do not know enough about the meaning of the documents.

However, other retrieval systems support a more precise operational semantics.

It makes sense, then, to abstract away from the operational semantics of the re-

trieval system. A user should at least be able to express the full meaning of their

query in a front-end system (natural language being the obvious choice), and

then that query can be translated into the most precise form that the back-end

retrieval system can handle. For many queries, this will already be better than

what can be expressed in Boolean algebra. Furthermore, as particular retrieval

systems improve their operational semantics, the results of these queries can be

improved in a way that is transparent to the user.

6.2 Previous Work

There are many different levels of sophistication in automatically understanding

natural language queries. These approaches include key word extraction, machine

learning, pattern recognition, and full parsing. In this section, I briefly review

and describe an implementation of each of these techniques.

To give a basic idea of how these systems perform on the queries that this

dissertation has been interested in, I show the results of these systems for the

query, What are some states besides Texas?. The domain of this query was dic-

tated by my test of Geoquery, a natural language front end to a geographical data

base. Note that it is intrinsically unfair to judge these systems based on their

response to this question, as some are designed to perform well for different types

of questions and have varying degrees of coverage. The test is merely to give a

general sense of how they behave.
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6.2.1 Keyword Extraction

Keyword extraction is by far the simplest of the techniques. It makes no attempt

to understand the query. Instead it removes all function words from the query

and uses the conjunction of the remaining words as a Boolean query. Of course,

the words we have been interested in (other (than), such (as), besides, etc.) are

often the very words (“stop words”) that are removed.

Consequently, systems that use keyword extraction usually prefer pages with

the very items that are meant to be excluded. An example of such a system is

Alta Vista (Alta Vista, 2000). Below are the results of the query What are some

states besides Texas?. In all cases, even where it cannot be seen in the summary,

Texas appears in the page. In fact, it is worse than this because the results only

refer to Texas and no other state.

(180) 1. No Title

BACKGROUND: I was born on October 4, 1979...

2. State and Local Immigration Issues

3. billhicks.com

4. Re: Tax Lien Certificates advice.

5. www.artec-usa.com/San Francisco Chronicle

What They Said About the Meyerson Symphony Center,

Dallas,Texas.

6. No Title

Confessional Study Groups. around the state of Texas.

7. About Me

A Little About Me... I am originally from El Paso, Texas

8. Leigh and Dan

...Our incredible hosts (and tourguides) in Austin, Texas.

More sophisticated techniques can be, and are, incorporated into keyword

extraction: stemming, synonym and hyponym expansion, special analysis of the

source documents, etc. However, none of this overcomes not recognizing a user’s

desire to exclude a certain set of answers from the results.

6.2.2 Pattern Recognition

The Electric Monk uses pattern recognition to attempt to classify a natural lan-

guage query. It is not interested in understanding the question, per se, but rather

tries to understand enough about the question to be able to transform it into

a series of increasingly general Boolean queries that can be used with standard

back-end retrieval techniques. The query is filtered through a hierarchy of regular

expressions until it reaches the most general. At this point, hand-crafted rules

are used to extract information from the query into Boolean expressions. The
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regular expression matching is aided by an ISA hierarchy such that generaliza-

tions of keywords can be captured. For instance, if the query refers to a golden

retriever, the Monk will successfully match against patterns about animals.

This technique suffers from the fact that, in order to be tractable, only a

certain number of sentence types can be treated. Thus, important information in

the query is often lost in the process. This can be seen in (181) where, as before,

all results refer to Texas (although sometimes, states besides Texas as well).

(181) State and Local Immigration Issues

Immigrants tend to concentrate... Yet many states

besides California, Texas and Florida are facing a

major challenge from immigration.

Sound

Besides being one of the continent’s biggest under-rated

concert attractions, all four of ZZ Top’s albums...

WER: Wisconsin and Its Resources [Chapter 3]

In regard to the value of improved lands in the new

States... the same report shows that the average value

is: in Illinois, 7.99; in Iowa, 6.09; in Texas, 1.09;

Complete Book: "PRESUMED GUILTY

Roffman in this book states the charge explicitly: "When

the Commissioners decided in advance that the wrong man

was the lone assassin, whatever their intentions, they

protected the real assassins.

6.2.3 Parsing

Other systems attempt to perform a full syntactic/semantic parse of the query so

that relevant information can be extracted and used for the information retrieval

stage of the system

Ask Jeeves is such a system. At this time, I do not know exactly how Ask

Jeeves performs its analysis except for the following information, which, in all

honesty, could mean anything:

Ask Jeeves attempts to understand the precise nature of the question by
using a question-processing engine. Using natural language processing
technology, Ask Jeeves determines both the meaning of the words in the
question (semantic processing) as well as the meaning in the grammar
of the question (syntactic processing).

Ask Jeeves (2000)
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After the analysis, Ask Jeeves compares the result to a database of questions

for which an answering page has been found by hand. These questions are then

presented to the user. The results for our sample sentence (182) shows that their

grammar does not appear to account for alternative markers like besides.

(182) You asked: What are some states besides Texas?

I know the answer to the following questions.

Click the Ask! button next to the best one.

Where can I find the newspaper Abilene Reporter News?

Where can I find a landform map of the state Texas?

Where can I find government... for the state Texas?

Where can I find the official Web site for cities in Texas?

Where is/are Texas?

While matching against hand-indexed queries might perform well for small

domains, it is unclear how well it scales. A technique they seem to use is to have

a small number of general pages that can answer a large number of questions.

Consequently, questions with alternative phrases are sometimes accidentally an-

swered appropriately because of the generality of the matching questions.

Parsing systems such as Ask Jeeves would not be an appropriate type of system

to use Grok because Grok itself parses and therefore the work would be duplicated.

However, if the system uses a lexical grammar, it is possible that it could incor-

porate the analysis of alternative phrases that Grok uses.

6.2.4 Machine Learning

There are also machine learning techniques for understanding natural language

queries. There are several systems based on CHILL (Zelle and Mooney 1993).

CHILL takes as input sentences and their associated semantic representation. It

then produces a shift-reduce parser that performs the mapping from sentences

into semantic representations. This system has been used for the more specific

purpose of mapping natural language questions into database queries, in par-

ticular in a U.S. geography domain (Zelle and Mooney 1996) and a job search

domain (Thompson et al. 1997). For Geoquery (Geoquery, 2000), our sample

query produces the results in (183).

Obviously, this is the incorrect result. But this is perhaps not the fault of the

methodology and is simply due to the lack of training data. But this pinpoints the

general problem with supervised learning techniques—that they are intrinsically

tied to a particular domain.
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(183) YOUR QUESTION:

What are some states besides Texas?

RESULT:

TEXAS

LOGICAL QUERY:

ANSWER(_2463,(STATE(_2463),CONST(_2463,STATEID(TEXAS))))

I have several goals regarding information retrieval, but none of them are

meant to replace the methods described in this section. Instead I intend to

show how these methods can be augmented by a front-end, such as Grok, that

implements the ideas in this dissertation.

It is possible that some of the techniques in the previous section could imple-

ment some of the ideas in the dissertation. For instance, it is possible for machine

learning techniques, like those built on CHILL, and for parsing techniques, such

as Ask Jeeves, to understand some alternative phrases.

My approach is to provide a front end that converts a query to something a

back-end NLIR system understands. This sometimes involves producing a query

that is a hybrid between natural and artificial language. I will be using the Monk

as my back-end system.

6.3 Anaphora Resolution

Given a system like Grok, it is natural to want to use its discourse capabilities for

an NLIR system. Handling anaphoric reference is certainly one way of doing so.

A certain amount of this (pronouns, reflexives, and reference in presupposition)

has already been implemented in Grok. This section should be read as a gentle

introduction into the next section which discusses alternative phrases.

I have already described in Section 5.7.2 how Grok performs anaphor reso-

lution. The question, then, is how to use this information to produce a new

query with the anaphors filled. One possible solution is to generate the sentence

from scratch given that we have the logical form as well as the anaphoric referents.

However, this is time-consuming and not necessary. Instead we use the derivation

from the original parse. Consider the simple discourse in (184).

(184) Who is Madonna?

(search results)

What does she wear?
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At this point, it must be reiterated that semantics in Grok are handled, not

with the lambda calculus, but simply through unification in exactly the same

way as the syntax. For example, whereas the analysis for likes was expressed

as S\NP/NP : λxλy.like(y, x) in Section 2.2.2, it is really represented in Grok

as S : like(y, x)\NP : y/NP : x. Thus, (185) shows the derivation of What does

she wear? as it is actually represented in Grok. This is important to keep the

matching simple and to not have to employ higher-order unification techniques

on lambda expressions.

After the parse, in addition to the derivation, we know how anaphoric refer-

ences, e.g. ana, were resolved. In this case, we have {ana = madonna}. Our

algorithm for producing the new query is to recursively descend the derivation,

producing orthography at the leaves, and if a variable in our resolution set is

encountered, we generate a description of the antecedent rather than the orthog-

raphy of the anaphor. The algorithm is shown in Algorithm 1. Given, What

does she wear? and the table given above, it will produce the string What does

Madonna wear? since she’s semantics is found in the table and will therefore

be replaced by Madonna. This can then be sent to the Monk (or any other NL

search engine).

(185) what does she wear

S : (p|x)/(S :p/NP :x) S :x/S :x NP :ana S :wear(y, x)\NP :y/NP :x
>T

T :p/(T :p\NP :ana)
>

S :wear(ana, x)/NP :x
>B

S :wear(ana, x)/NP :x
>

S :wear(ana, x)|x

Algorithm 1 (Anaphor Filling)
resolved = mapping from anaphors to their antecedents
function query-xform(Constituent constituent)

if resolved.containsKey(constituent.semantics)
return generate(resolved.get(constituent.semantics))

else if constituent.derivation.isEmpty()
return constituent.getOrthography()

else
answer = “”
for-each l:constituent.derivation.children

answer = append(answer, query-xform(l))
return answer



112 Practical Application

6.4 Alternative Phrases

6.4.1 The Monk’s Operational Semantics

The previous section showed how pronouns in queries could be filled before the

query was sent to a back-end retrieval engine. No special operational semantics

is required from the retrieval engine to accommodate this transformed query.

This is not the case when transforming queries with alternative phrases. My

approach to this task is to remove the alternative phrase from the query and

present it independently of the resulting query in a way the back-end retrieval

engine can understand. The retrieval engine must have some operational seman-

tics for allowing this. For The Electric Monk, this is done with a hybrid query

which combines a natural language query with further restrictions added in a

system-specific language. The syntax is shown in (186a).

(186) a. NL Query : | : ANSWER [NOT|PREF] NEAR num (| word list)

b. What are some web browsers? : | : ANSWER NOT NEAR 8 (| netscape)

The natural language query is separated from the restrictions by the | : symbol.

The restrictions specify that the answer to the query must not be (or preferably

be) num words near to certain words.

The hybrid query in (186b), for example, is a transformation of the original

query What are some web browsers besides Netscape?. The Monk uses the natural

language part of the query to initially locate possible answering documents. The

rest of the query is used when gathering evidence for including a document in the

final results. The Monk finds a location in the document that should answer the

query and then compares it against the criteria appended to the end of the query.

If it does not meet the criteria (that it not be within eight words of Netscape),

another location is tried. If there are no more possible answers, the document is

rejected.

This is, of course, not exactly what the original query meant. However, it

is superior to queries like ‘‘browsers’’ AND NOT ‘‘netscape’’ which rejects

all pages containing Netscape, even if they also contain other browsers. The

evaluation in Section 6.6 shows that this operational semantics is sufficient to

dramatically improve the results for queries with alternative phrases.

6.4.2 The Algorithm

The algorithm to produce these hybrid queries is similar to Algorithm 1. It is a

postprocessing of the derivation created when parsing the sentence with the full
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analyses given in this thesis. In addition to searching for anaphors and filling

them, the algorithm searches for Boolean operations that result from alternative

phrases and performs a simplification. For example, with excision words like

other (than) and besides, we look for logical forms whose predicate is the ∧¬
operator, as in derivation (188) from the discourse in (187).

(187) What is the drinking age in Afghanistan?

(search results)

What is the drinking age in other countries?

(188) other countries

NP :λx.g(x) ∧ ¬f(x))/NP :g NP :country
>

NP :λx.country(x) ∧ ¬f(x)

Given such a logical form, in general λx.g(x) ∧ ¬f(x), we instantiate all

anaphoric variables to their antecedents and then generate descriptions for f

and g. Note that these anaphoric variables include the reference to the figure.

Section 3.6 describes and evaluates how these antecedents are found. The first

argument of the logical form is returned and the second argument is saved to be

attached to the final string as extra information. In this example, “countries”

would be returned and “Afghanistan” would be saved. The resulting query is

shown in (189). Algorithm 2 is an extension of Algorithm 1 that does this.

(189) What is the drinking age in countries? : | : ANSWER NOT NEAR (| Afghanistan)

The natural language portion of this query is odd, but The Electric Monk’s

regular expression matching is not sensitive to this level of detail. The rest of

the information in the query is used to return documents that contain answers

that are not located near an occurrence of the word Afghanistan. Providing extra

information in this way is very coarse, but being more specific causes problems. In

this example, for instance, we should not require that the answer not be equal to

Afghanistan since the answer will actually be a number—i.e., drinking age—not

a country. This is why we use the more general NEAR operator.

Algorithm 2 (Simplifying Alternative Phrases)
resolved = mapping from anaphors to their antecedents
function query-xform-help(Constituent constituent, Set notNear)

if resolved.containsKey(constituent.semantics)
return generate(resolved.get(constituent.semantics))

else if isAndNot(constituent.semantics)
sem = fill(constituent.semantics, resolved)
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notNear.add(generate(sem.arg2))
return generate(sem.arg1)

else if constituent.derivation.isEmpty()
return constituent.getOrthography()

else
answer = “”
for-each l:constituent.derivation.children

answer = append(answer, query-xform-help(l))
return str

function query-xform(Constituent constituent)
notNear = {}
answer = query-xform-help(constituent, notNear)
return append(answer, “ | ANSWER NOT NEAR ”, notNear)

6.4.3 Other Alternative Phrases

The above technique describes how to transform queries that use excision words—

e.g. besides, other, except, etc. For questions with these alternative markers, the

algorithms given above provide a way to find appropriate answers (see Section 6.6

for evaluation) without world knowledge. This can be more difficult with other

alternative markers.

Such

The two varieties of such, for example, do not have a simple approximation in

the limited operational semantics available in most NLIR systems. Non-restrictive

such, as in Where can I find shoes made by Buffalino, such as the Bushwackers?,

is used to give a representative example of the noun phrase it modifies. Such

information might be used in NLIR systems with clustering techniques. That

is, if Bushwackers is a representative example, it might be useful for the search

to include other words that tend to appear near it. Without this information,

the best that can be done is to pay special attention to pages which contain

Bushwackers in the hope that other examples will appear on the same pages.

Since most NLIR techniques already use the figures of alternative phrases as

keywords, this will happen without any special processing.

The restrictive version of such requires even more world knowledge. In the

query Where can I find such shoes as the Bushwackers?, it is necessary to identify

the property, exemplified by Bushwackers, that the speaker is interested in: e.g.

that they are made by Buffalino, are comfortable, etc. Sometimes this is available

in the context, in which case it can be included in the query. More generally,
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though, this requires a far more extensive knowledge base than is usually available.

Despite the difficulties these queries present, it is at least the case that an

NLIR system can still learn world knowledge from them that can be used to

better answer future queries (see Section 7.4.2).

Comparatives

Like restrictive such, comparatives require a great deal of world knowledge. For

example, in the question What are some bigger dogs than poodles?, we are unlikely

to be able to properly exclude all dogs smaller than poodles, but we can at

least exclude poodles themselves. Unfortunately, a user will most likely be more

surprised by finding a chihuahua in the results than pleased at not finding a

poodle. However, as is evident in the evaluation in Section 6.2 and Section 6.6,

standard NLIR techniques would return pages almost exclusively about poodles.

Simply not making this mistake is an important part of handling these queries

correctly.

In Chapter 7, I discuss the possibility of learning some of the information

necessary to answer these questions more effectively. Such learning might be

possible with questions like Other than chihuahuas, what are some dogs smaller

than poodles?.

Specifiers

In contrast to the previous examples, alternative markers like especially and

in particular are easy to handle. An example sent to The Electric Monk is Tell me

about religious cults, in particular Waco. This indicates a preference for pages

with Waco, although it does not exclude other pages about religious cults. This

sort of information can be conveyed to the Monk with the PREF NEAR operator

which indicates that the answer to the query preferably be near the figure, e.g.

Waco.

This query is also a good example of when learned information may not be

trustworthy. Waco is not a religious cult; rather it was the location of a religious

cult. I discuss this further in Section 7.4.2.

Unlike, In addition to, etc.

Alternative markers such as unlike and in addition to are mostly useful in con-

junction with other alternative makers to help identify the figure, as described in

Section 3.6.1.

It might also be possible to use these phrases more directly. Consider the ques-
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tion What presidents, in addition to Lincoln, were assassinated. The knowledge

that Lincoln was assassinated could help point to pages about other assassina-

tions. But how this might be done is very unclear. It is far more useful to not

handle the alternative phrase incorrectly.

As I discussed in relation to comparatives, standard NLIR techniques tend to

use the elements of alternative phrases as keywords. Simply excluding Lincoln

from the search is a large improvement over this.

6.5 A Note on Implementation

Most of the ideas discussed in this thesis have been implemented, but some have

not. In general, though, I have endeavored to ensure that everything relevant to

NLIR is implemented. In particular, sentences like those in (1) are successfully

parsed by Grok while accommodating the correct presuppositions.

Connected Alternative Phrases

Nearly all aspects of connected alternative phrases discussed in Chapter 3 have

been implemented. This includes the various techniques used to identify the

figure with alternative markers that depend on anaphora, e.g. other and such.

The grammar only includes entries for other, such, and besides, but adding more

is simply a matter of time rather than any theoretical issue.

I do not implement the reasoning portion of my discussion of scoping in Sec-

tion 3.5 or the discussion of determiners in Section 3.7.

Free Alternative Phrases

This aspect of the theory is far less implemented. Entries are included in the

lexicon for common examples like other than and unlike. However, I do not

implement their full analyses. In particular, I do not implement the common-

sense reasoning used in parts of the analysis as it is too tangential to the thrust

of the thesis.

Query Transformation and The Electric Monk

I have implemented a program which performs Algorithm 2, communicates the re-

sulting query to the Monk, and displays the final document set in a web browser.

The implementation is restricted to handling excision alternative phrases like

another, other, and besides because they are, by far, the most common. They

account for 94% of the alternative phrases shown in Table 6.1. The issues in-
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volved in implementing support for other alternative phrases are discussed in

Section 6.4.3.

6.6 Evaluation

It is necessary to evaluate how well the techniques described in this chapter

actually improve results for information retrieval.

6.6.1 Frequency of Alternative Phrases

First, it is useful to determine how many queries contain alternative phrases in

order to judge how large a problem this really is. Unfortunately, this is compli-

cated by the fact that users, in general, know that such constructions are not

understood by search engines, so they avoid them. In fact, even in NLIR sys-

tems, users often use keywords even though doing so performs worse than asking

natural language questions. They do this because they do not trust the system.

Work will be necessary to improve users’ awareness of NL capabilities through

advertising and by implementing new user interfaces. A simple idea in this vein is

to show a history of questions that have been asked so that the user is more aware

that the system is remembering. Also, more accurately providing the question’s

answer in the document summary will allow users to avoid following too many

links and losing track of the discourse. The fact that searching is an interactive

process is often ignored, even in large-scale document-retrieval competitions such

as the Text Retrieval Conference (TREC, 2000). As noted by Lewis and Sparck-

Jones (1996), these results then do not necessarily reflect the experience many

users have with retrieval systems.

In the meantime, I have attempted to find a baseline for this number by

considering two corpora of human/human dialogues. The corpora are both from

tutorial situations where a mentor helps a student through problems in the subject

of Physics for one corpus (VanLehn et al., 1998, in press), and Basic Electricity

and Electronics (Rose et al., 1999), for the other. Tutoring dialogues are an ideal

place to look for data relevant to NLIR because they consist entirely of one party

attempting to elicit information from the other. In some cases, it is the tutor

eliciting information from the student, and in others it is the other way around.

Table 6.1 shows the frequencies of some alternative phrases that have been

discussed in this thesis. A more illuminating statistic is how often alternative

phrases appear in a single dialogue. I consider a dialogue to be a single session
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Physics EE Total
Alternative Phrase (AP) Student Tutor Student Tutor
in addition to 0 0 0 3 3
besides 1 3 0 2 6
another 56 124 10 38 228
especially 0 1 0 0 1
except 0 17 1 1 19
other 107 484 36 59 686
in particular 0 6 0 0 6
such 2 18 3 10 33
unlike 0 0 0 1 1
Total 166 653 50 114 983

Alternative Phrases per Dialogue
Dialogues 203 203 66 66 269
AP/dialogue 0.82 3.22 0.76 1.73 3.65

Alternative Phrases in Queries per Dialogue
Query APs 51 261 16 86 414
Query AP/dialogue 0.25 1.29 0.24 1.3 1.54

Table 6.1: Frequency of Alternative Phrases in Dialogue

between the student and tutor where the discussion of each problem is considered

a separate session. The table shows that in 269 total dialogues, each dialogue

contained, on average, 3.65 alternative phrases. If one only considers alterna-

tive phrases that occur in the context of a question, there are, on average, 1.54

alternative phrases per dialogue. I consider an alternative phrase to be in a ques-

tion context if it is in the same dialogue turn as a question. Because tutors ask

questions in order to lead the listener to the answer, it is perhaps better to con-

sider just the student data, where a quarter of the dialogues contained question

contexts with alternative phrases.

This data is not meant to be considered a rigorous result, but it is a strong

indication that any query-answering system has an excellent chance of having

to deal with an alternative phrase during the course of interacting with a user.

Furthermore, the data shows that during the course of the interaction it will be

appropriate for the system to respond using an alternative phrase—see Section 7.3

for more on this.

It is also interesting to note that a wide variety of alternative phrases occur

in this data. (190) contains some examples. Because excision words, especially

other, are by far the most frequent, I will only consider them in the evaluation
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of the next few sections.

(190) a. The battery is the green cylinder right? I don’t see anything negative

other than #5.

b. I guess until 0 or should I examine negative values...is there such a

thing?

c. And what do you have in addition to voltage?

d. I don’t exactly remember what the letters stand for, except for r.

e. Are there any other forces on that knob besides that one you’ve

labeled W1?

6.6.2 Potential Improvement

I now informally test the potential for improvement for various search engines.

That is, given a set of queries (cleaned up from The Electric Monk and listed in

Appendix A) containing alternative phrases, how well do these systems perform

now? Table 6.2 shows the performance of Alta Vista, Ask Jeeves, and the Monk

on eight excision examples taken from the corpus of Monk queries. For a data

entry “x/y, z”, y is the total number of returned documents and x are those

which contain an answer to the query. z are the number of answers that are

wrong because they are about the subject that was explicitly being excluded in

the query.

AV Jeeves Monk

Cancer 2/9, 6 2/5, 3 2/3, 0
Bidfind 2/7, 5 1/6, 0 0/0, 0
Jobs 2/9, 0 2/5, 0 3/9, 6
Warts 0/9, 6 1/4, 2 0/1, 1
Drinking 4/10, 0 0/5, 1 0/2, 0
Browsers 2/8, 6 3/5, 2 0/9, 8
Witches 0/10, 10 0/5, 4 0/0, 0
Hondo 0/7, 6 1/6, 3 0/0, 0

Avr. Precision 17% 25% 20%
Avr. % false positives due
to searching for the figure

67% 53% 58%

Table 6.2: Potential Improvement for NLIR Systems

As the data shows, none of the search engines fare particularly well. The

precision for all three is around 20%. That is, only about one in five of the
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responses contained the answer to the query. Furthermore, from a half to two

thirds of the incorrect responses were specifically about the subject the query

wanted to exclude, displaying little or no understanding of excision alternative

phrases.

It is, of course, unreasonable to draw any conclusions about the relative merits

of the search engines from this test. The systems were built for different purposes

and have widely varying coverage—clearly factors which have an impact on the

results. The important point is that each NLIR system shows room for improve-

ment. Since I will demonstrate that improvement only for The Electric Monk,

next, this shows that that improvement is not due to exceptionally bad prior

performance by the Monk.

6.6.3 Evaluation of Section 6.4

Table 6.3 shows the results of asking the Monk questions in three different forms:

without an alternative phrase, with an alternative phrase that has not been trans-

lated, and with the alternative phrase translated as described in Section 6.4. The

first row of the table, for instance, refers to the questions in (191). The remaining

sentences can be found in Appendix A. Although Grok is capable of performing

the translation in Section 6.4, I did this by hand for this evaluation to abstract

away from parsing issues.

(191) What are some works by Edgar Allan Poe?

What are some works by Edgar Allan Poe other than the Raven?

What are some works by Edgar Allan Poe? : | : ANSWER NOT NEAR 8 (| raven)

Unfortunately, at the time of this evaluation, Electric Knowledge (the creators

of The Electric Monk) had taken down their public portal in favor of providing

search for the web pages of specific clients. This means that the large index used

to process the queries in Table 6.2 was no longer available, and I therefore used

different indices and different queries for this evaluation. I used indices of pages

about American history and literature—each about 11,000 pages. These new,

more specialized, indices have the benefit of abstracting this evaluation away

from coverage issues (explaining the differences in precision between Table 6.2

and Table 6.3).

I created the questions in two ways. For several, I began by asking a question

without an alternative phrase. I then added an alternative phrase in order to re-

move some responses I was not interested in. For example, when I asked Who are

the romantic poets?, all responses were about female romantic poets. I there-
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Baseline Original Query
Translated by
Algorithm 2

Tot Good Top 5 Tot Good Top 5 Tot Good Top 5

Poe 12 6.5 3 10 0.5 0.5 10 5.5 2.5

Romantics 10 0 0 15 0 0 10 3 3

Witch Hunts 10 8 3 14 2 1 10 8 5

US Wars 15 12 2 0 0 0 16 13 4

Sonnets 15 10 5 10 2 0 10 8 4

Presidents 15 2 2 15 0 0 15 2 2

Epics 10 7 4 10 5 3 10 7 4

Dec of Ind 10 2 0 0 0 0 10 5.5 2

Avr. Precision 48% 47.5% 14.9% 15% 58% 66.3%

Table 6.3: Evaluation of Improvement for NLIR Systems

fore used the query Who are the romantic poets not including women? in

the evaluation. Some queries were made without first trying the non-alternative

phrase version: What are some epics besides Beowulf?, for example. This

variation reflects the fact that it is unclear which is more common, excluding

clutter from a set of responses or a priori excluding cases that the questioner

is not interested in. The queries also vary in their syntactic structure, informa-

tion requested, and alternative phrase used. The purpose of varying the queries

in these ways is to ensure that the results do not simply reflect a quirk in the

Monk’s implementation.

For each query, Table 6.3 shows total, the number of documents returned; good,

the number of true positives; and top 5, the number of true positives in the top five

returned documents. A true positive was given to a document if it contained an

answer to the question, and half a point was given to a document that contained

an obvious link to a document with an answer to the question. Precision is

computed for all documents and for the top five. It is important to note that

the scores for the queries without alternative phrases are still computed with

respect to the alternative phrase. That is, documents only about the “Raven”

are considered false positives. In this way, we can view these scores as a baseline—

what would have happened had the system simply removed the alternative phrase.

This should be taken with a grain of salt because, in many cases, I chose the query

because there were documents to remove (as in the Romantics example). However,

a concern was that the transformed query would cause numerous false negatives.

This is not the case as seen by the fact that the precision of the transformed

query is not lower than the baseline. In fact, in no example was the precision less

than the baseline, and at worse, the precision remained the same.
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Performance on questions containing alternative phrases was quite poor, with

an average of 15% precision. This is significantly worse than the transformed

query, and even the baseline. The performance drop is due to the fact that the

complex syntax of the query confuses the Monk’s analysis. The Monk is forced to

reduce the query to a simple set of keywords including the figure, which we were

trying to avoid.

Baseline Original Query
Translated by
Algorithm 2

FPF FPF/Tot FPF FPF/Tot FPF FPF/Tot

Poe 1 .08 1 .1 1 .1

Romantics 8 .8 15 1 2 .2

Witch Hunts 2 .2 1 .07 0 0

US Wars 3 .2 3 .19

Sonnets 5 .33 8 .8 2 .2

Presidents 5 .33 10 .67 2 .13

Epics 0 0 0 0 0 0

Dec of Ind 3 .3 2 .2

28.1% 44% 12.8%

Table 6.4: False Positives Containing Figure

Thus as predicted in the discussion of potential improvement, not accounting

for alternative phrases can greatly increase the number of false positives contain-

ing the figure (FPF), the very thing the query is attempting to exclude. Table 6.4

shows that in the baseline case, where there is no alternative phrase, on average

for 28% of the returned documents the only answer was the one we wanted to

exclude. Adding the alternative phrase has the opposite of the intended effect as

the percentage of FPFs increases to 44% for reasons described above. Transform-

ing the query, on the other hand, causes the desired effect, more than halving the

percentage of FPFs of the baseline.

6.7 Conclusion

This chapter has shown that an analysis of alternative phrases has significant

practical application. In particular, I consider the task of natural language infor-

mation retrieval. I first show that in human/human dialogues, alternative phrases

are quite common, and we would expect the same to be true in NLIR if users truly

believed that the system could understand their questions. I go on to show that

current systems for NLIR perform poorly when faced with these constructions. In

fact, they perform more poorly than if they had simply ignored the construction
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altogether. Finally, I demonstrate that performance can be improved substan-

tially even with simple operational semantics for the back-end retrieval system.

Much of this performance improvement can be achieved without implement-

ing the full analysis of Chapter 3 and Chapter 4, but in order to implement

approximations it is very helpful to understand the underlying theory. Otherwise

the resulting heuristics are ad-hoc and can interact in unpredictable ways. My

analysis can direct the construction of consistent, efficient systems for practical

applications dealing with alternative phrases.
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Chapter 7

Future Work

In this chapter, I discuss future directions in which I would like to take the

research presented in this dissertation. First, I describe more work that must be

done with the analysis of alternative phrases and with Grok and the OpenNLP

project.

Also, I have been concerned here with the understanding of alternative phrases.

However, generation is also an important issue which I have begun to explore.

This can also be used to allow a search engine to inform the user of ways to

improve the results of a query. For instance, if the results of the query What are

some web browsers? are overwhelmed by pages about Netscape, the message,

Shall I search for web browsers other than Netscape? could be generated as text

or speech.

The acquisition of knowledge in an ISA hierarchy, discussed in Chapter 3, is

also pertinent to NLIR. As described in Cooper (1997), The Electric Monk uses

an ISA hierarchy to help classify queries. By inferring knowledge from users’

questions topical information is automatically made available to the Monk to

improve the results for future queries.

7.1 Further Analysis

Chapters 3 and 4 delve into the syntax and semantics of connected and free alter-

native phrases. In the course of my investigation, I made a number of interesting

observations that I simply was unable to follow up on without straying too far

from the goals of the thesis.

In particular, I focused primarily on what alternative phrases presupposition-

ally communicate about their figures. However, the assertional semantics deserves

more attention in future work. For example, the assertions of restrictive such and

especially were merely glossed over in this thesis. Considering that their inter-
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pretations rely heavily on world and discourse knowledge, further investigation

can also help in the construction of better knowledge representations in Grok.

I have also discussed some interactions of alternative phrases with themselves

and other phenomena that seem to validate, to a certain extent, my analysis. For

example, scope ambiguity accounts for different readings involving post-modifiers

(Section 3.4.3) and my analysis makes the right predictions regarding different

scopings of such, other, and comparatives. It would be very useful to follow up

on these interactions and also to look for others.

Finally, a closer look at the syntax of alternative phrases is in order. In partic-

ular, I would like to produce a nicer account of commas in free alternative phrases.

A possible avenue of research in this direction is Categorial Type Logic (CTL)

and its connection to CCG. CTL, like CCG, is an extension of basic categorial

grammar, but the two theories differ in their emphasis. CCG is concerned with

restricting generative capacity and has been shown to have the minimum power

necessary to account for observed linguistic phenomena. CTL, on the other hand,

can support anything from context-free to Turing-complete power based on what

structural rules are used in a given grammar. But, CTL has a logical framework

(see Moortgat 1997 for details) which CCG lacks. These differences are recon-

ciled in Kruijff and Baldridge (2000), who show that a fragment of CTL is weakly

equivalent to CCG, thus providing a logical basis for CCG. The logic of CTL uses

binary and unary modalities. The unary modality �↓ represents the lock and key

mechanism and has been used to account for word order in Dutch (Oehrle, 1998),

extraction (Morrill 1994, ch. 8; Hepple 1990), morphology (Heylen, 1999; Kruijff,

forthcoming), and more. This mechanism can allow a simple account of commas,

(192), and alternative phrases, (193).

(192) a. X|�↓X

b. X/, /�↓X

(193) a. �↓((S|NP)|(S|NP))

b. �↓((S|(S|NP))|(S|(S|NP)))

Research into the connection between CTL and CCG is still new, and the

question of how much, if any, computation power such an analysis adds to the

system requires further investigation.
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7.2 More to Grok

There is much left to do in the Grok system. First, although the hand-built

lexicon is extensive, it should be expanded. More closed-class items and more

categories for open-class items should be added. This could be pursued by study-

ing the most common entries in the acquired lexicon that do not appear in the

hand-built lexicon. Also, more semantic distinctions (such as different types of

adjectives and verbs) should be encoded, and the models for predicting semantics,

described in Section 5.4.4, must be expanded to accommodate them. Finally, a

more theoretically sound way should be found to assign probabilities (of a word

having a particular category) to closed class entries in the hand-built lexicon that

do not appear in the acquired lexicon.

The final goal can really only be considered when an accurate probabilistic

model for CCG parsing is found. This will also open the door to more efficient

parsing, and techniques will have to be developed to incorporate semantics into

these new parsing techniques.

Finally, the knowledge-based component of Grok, while sufficient for most

of this thesis, is quite lacking. The primary concern is that Grok has no rea-

soning capabilities, which would be useful in the implementation of generation

(Section 7.3), a deeper instantiation of the “use existing objects” heuristic used

throughout my analysis, and handling expectations as described in Section 4.3.3.

The related issue of incremental processing must also be considered.

7.3 Generation

Whenever a linguistic analysis is developed for a phenomenon—particularly of

discourse—and is shown to work in a robust natural language understanding sys-

tem, it is worth considering how well it holds up in a generation system. In the

case of alternative phrases, this is particularly interesting given their presuppo-

sitional and (sometimes) anaphoric nature. Generating with alternative phrases

would, in certain situations, provide more textual economy (as described in Stone

and Webber (1998)) than would be possible otherwise. For example, (194a) is

clearly more compact than (194b).

(194) a. Cameron walked Fido and the other dogs.

b. Cameron walked the dogs. Fido was one of the dogs.

In this section, I discuss what would need to be done to allow successful

generation of alternative phrases with the analysis provided in Chapter 3. I
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propose a plan of attack for this problem.

I begin by listing the requirements for a generation system to generate alter-

native phrases — in particular for the analysis given in this dissertation. I then

briefly discuss some standard generation techniques with respect to these require-

ments. Finally, I choose generation techniques compatible with my requirements

and discuss what enhancements must be made.

7.3.1 An Alternative Phrase-Friendly Generator

1. Multiple Communicative Goals

Any system that wants to use alternative phrases to exploit their textual

economy must be able to entertain multiple communicative goals with re-

spect to the same clause. Consider the examples in (194) where each is

communicating two goals:

(195) walked(cameron, dogs)

dog(fido)

Any generator that only considered fulfilling goals in distinct clauses would

be unable to generate (194a).

2. A Lexicalized System

As my analysis is given in terms of lexical semantics, the generation system

must support some lexical grammar. Although the analysis can potentially

be done in any lexical formalism, it is preferable for the generation system

to be general enough to handle CCG.

3. Presuppositions

The analysis requires presuppositions, and therefore the generator should

be able to use presuppositions to satisfy goals through accommodation as

well as testing whether an item’s presuppositions are already satisfied. Fur-

thermore, presuppositions must help drive lexical choice, as I discuss below.

4. Anaphoric Reference

Such and other can refer anaphorically to the figure. To fully exploit

textual economy, one would like to generate (196a) instead of (196b) when

the context is appropriate.

(196) a. What is the drinking age in other countries?

b. What is the drinking age in other countries than Afghanistan?



7.3. Generation 129

A generation system must therefore support anaphoric reference (beyond

simply choosing whether to realize an NP as a pronoun), and consequently,

will most likely need access to a discourse model during the generation

process.

7.3.2 Generation Techniques

Template Based

There are many types of generation systems that range from simple to very so-

phisticated. On the simple end of the spectrum are template-based generation

systems, often known as mail-merge systems. These are commonly used for gener-

ating form letters and for other very constrained tasks, and work by substituting a

small number of parameters into hand-crafted sentences. There are also more so-

phisticated techniques that use nested templates to produce more complex results

(McKeown, 1985).

These methods suffer from the fact that they do not make use of a grammar

that encodes linguistic analyses; in essence, they are the grammar and have com-

piled out the interesting features in a less flexible form. One consequence of this

is that the same grammatical information used to understand, or parse, cannot

be used for generation. From a generality standpoint, this and the fact that the

possible generated sentences are very limited are serious drawbacks.

Of course, in constrained situations, template based techniques might be suf-

ficient. Section 7.4.1 discusses this possibility for suggesting alternate queries in

information retrieval.

Systemic Grammars

Another generation technique uses systemic grammars (Mann and Matthiessen

1983; The PenMan Project 1989). A systemic grammar is a set of hierarchies

called systems. Systems are designed to choose different aspects of the structure

of a sentences such as mood, tense, and voice. Each node in a system is a choice

whose answer leads to newly relevant choices. Each choice is decided functionally

by querying the knowledge base and other sources of information. Along the way,

features are collected that will describe the final surface representation of the

sentence.

This integration of the grammar with the control structure, while pinpointing

many of the interesting distinctions that must be made in the generation process,

makes it difficult to see how such a system could work directly with a lexicalized
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grammar such as CCG. Furthermore, the control structure described in Mann and

Matthiessen (1983) works from a single communicative goal, and it is unclear how

multiple goals (and therefore lexical selection through presupposition) could be

handled.

Semantic Head Driven Generators

Semantic head driven generation uses the structure of the logical form to guide

the generation (Shieber et al. 1989). This is a bidirectional algorithm in that it

traverses its derivation tree top-down and bottom-up. The input to the algorithm

is a logical form. The algorithm moves down the tree by choosing a lexical head,

a lexical item whose semantics unifies with the logical form. The algorithm then

moves back up the tree by applying rules with this logical form as one of the right

hand side arguments. The other elements of the right hand side are recursively

generated. This step is continued until the resulting left hand side of the rule

equals the original root.

Many extensions have been proposed to this algorithm to make it more general.

van Noord (1993) proposes to relax the restriction that the semantics of a lexical

head must unify with that of its parent. We will see that this becomes important

for CCG. He also suggests extending the algorithm to take syntactic information

into account when choosing the lexical head. This is important for handling

lexical items that do not contribute to the semantics, but simply “pass them on”.

An example is the sentential complement that whose semantics is simply λx.x.

Additionally, many efficiency optimizations have been suggested, but I will not

be concerned with those here.

Head driven generation is compatible with our requirements because it is

mainly a search algorithm that requires little of an analysis except that one be

able to locate lexical heads.

Spud

The Spud generator (Stone and Doran 1997; Stone 1998) works on a very different

principle. Spud requires a grammar written in the Lexicalized Tree Adjoining

Grammar (LTAG) formalism. LTAG is a tree-based formalism which supports

two rules, substitution and adjunction. Substitution allows a tree to be attached

to another tree’s leaf that matches its root. With adjunction, a tree is inserted

into an interior node of another tree. See Joshi et al. (1975) and Joshi and Schabes

(1992) for more information.
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Spud generates from a set of two types of goals. The first tells Spud to distin-

guish a semantic form (an entity or an event) using a particular syntactic category.

The rest are communicative goals which tell Spud to include certain propositions

in the description. Spud proceeds by building a tree that uniquely identifies the

original semantic form while attempting to include information that satisfies the

communicative goals. At each iteration, Spud chooses from a set of elementary

trees that can substitute or adjoin into the current description. Preference is given

to trees that satisfy more communicative goals. Interestingly, for our purposes,

these goals can be satisfied through presupposition. Termination occurs when all

goals are satisfied and there are no empty substitution sites in the tree.

As mentioned, Spud takes presupposition into account, but only syntax is

used to find the set of possible elementary trees. Presupposition is simply used

to choose among those trees: if a tree contributes to satisfying goals both compo-

sitionally and presuppositionally, it is more likely to be chosen. What we desire,

though, is for the goal to be able to choose the lexical item with the presupposi-

tion even if it contributes no compositional information. While Spud’s technique

of data-directed generation does not ignore any possibilities, goal-directed gener-

ation would provide a more precise approach that is very possibly more efficient.

Also, the implementation of Spud’s sentence realizer relies on a particular

grammatical formalism, LTAG, and would have to be generalized to CCG. Finally,

nothing prevents Spud from handling anaphoric reference, but it has not yet been

implemented. Spud has the benefit that the generator can add content anywhere

within the tree, and this flexibility can be used to enforce a left to right constraint

on the description of entities. This would yield the appropriate salience updating

for generating anaphoric reference. Spud implements support for this restriction

for use in REA, an embodied conversational agent system, (Cassell et al., 2000).1

In general, the Spud philosophy is consistent with the requirements for gener-

ating alternative phrases, but the implementation requires a number of changes.

7.3.3 Generating Alternative Phrases

In the discussion of generation techniques above, both semantic head-driven gen-

eration and Spud are consistent with generating alternative phrases. I will there-

fore continue with a discussion of what would be necessary to generate alternative

phrases in a CCG analysis using a combination of semantic head driven generation

and Spud techniques.

1Personal communication with Matthew Stone.
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A few issues arise when doing head generation for CCG. One issue is alluded

to by van Noord’s suggested relaxation of head restrictions. In standard semantic

head driven generation, the semantics of the lexical head must unify with the

original logical form. However, this is not possible with standard CCG semantics

because CCG semantic forms are often functions which are reduced through func-

tion application and β-reduction2. Therefore given the logical form in (197a), the

lexical head, likes, would have the semantics in (197b) which, of course, does not

unify with the original logical form. Note that this formatting denotes referables

— i.e. entities and kinds.

(197) a. like(john ,mary)

b. λxλy.like(y, x)

c. like(y, x)

Van Noord states that in general, for non-standard head definitions it is nec-

essary to compute the transitive and reflexive closures of the relations between

parents and heads. Fortunately, this is a simple task for these relations as the

desired logical form is simply the innermost body of the λ-expression, (197c).

This, of course, still leaves the problem of lexical items that do not contribute

any semantics of their own to the logical form — e.g. sentential complements.

This problem is handled in Spud by attempting to use these lexical items if no

other choices are possible.

The key problem regarding generation in this dissertation is how to use pre-

suppositions to help direct lexical choice. Consider the two communicative goals

in (198).

(198) have(car , engine)

car(volvo)

(199) a. Cars have engines. A Volvo is a car.

b. Cars, such as Volvos, have engines.

One way to realize these goals is (199a). However, as discussed in Section 7.3,

this is not doing much for textual economy. I would much rather produce (199b).

Through the normal techniques of head driven generation, even including the

use of syntax for lexical choice, we cannot do this. There must be an added

component to lexical choice that considers presuppositions as well as assertions.

2As noted in Section 2.2.2 and Section 6.3, this is not strictly true. However, in principle,

the problem remains.
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How, exactly, this should be done requires further research. I can give a hint,

though, of how things might work out. The generation process must start with

a particular goal. First, we perform semantic head driven generation, stopping

when we reach a referable (an entity, kind, or event). This produces a structure

that is very similar to an LTAG tree. The goal have(car , engine) produces

the tree in (200), for example. Notice that generation has stopped at car and

engine , which are kinds.

(200) S : have(car , engine)

NP : car S\NP : have(car , engine)\car

S\NP/NP : have(car , engine)\car/engine

have

NP : engine

Now, we look at each unfinished node on the tree from left to right and pro-

ceed in a manner very similar to Spud. We attempt to add to the tree until the

added content is equivalent to the semantics of the original node, where the trees

being added are recursively created through semantic head driven generation.

Syntactically, we can use operations very similar to substitution and adjunc-

tion. Substitution corresponds to expanding the referable to a description of like

syntactic type (the entity john to the expression λx.john(x) or john(x)|x, for

instance). Adjunction is equivalent to the CG operation application.

For example, a planner may decide that the best way to describe car , in our

tree, is simply as car(x)|x — the car property. This is an NP and is thus attached

through substitution:

(201) S : have(car , engine)

NP : car

NP : car(x)|x

cars

S\NP : have(car , engine)\car

S\NP/NP : have(car , engine)\car/engine

have

NP : engine

At the same time, we must also be opportunistically looking for ways to

communicate our other goals, either through assertion or presupposition. For

instance, we might have the goal car(volvo) and notice that such has a pre-

supposition that satisfies this goal. The original lexical entry is (53b) and is
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instantiated through the goal to be (202). Recursively generating the goal with

this as the lexical head produces the tree in (203).

(202) such as `





syn : NPeq+,comp−\NP/NP

sem : λSλF





assert : car ∪ volvo = car

presup : car(volvo)

alts(volvo, car)

(203) NP : car

NP : car NP\NP : car\car

NP\NP/NP : car\car/volvo

such as

NP : volvo

NP : volvo(x)|x

volvos

This tree can now be adjoined into the original tree to produce the desired

sentence. Furthermore, this technique allows us to distinguish between restrictive

and non-restrictive such. The above example, since it does not reduce the cars

being discussed, is non-restrictive, i.e. a parenthetical. However, we can also

have sentences like Cars such as Volvos do well on crash tests. In this case, we

are talking about cars that have some properties in common with Volvos — that

they are safe, for instance.

The above algorithm will continue to add content to a node until the added

content matches the semantics of the node. In our previous example, no more

content needed to be added, so we used the non-restrictive such (which could

be realized textually with commas or prosodically with a lower pitch). However,

in the example about crash tests, we do need to restrict the cars we are talking

about, so the best move is to pick the restrictive lexical entry whose semantics

will reduce the set of cars. If instead we pick the non-restrictive entry, our tree

will not be complete because the cars described will not be the same as the cars

in the target node. This could be fixed using an adjective, producing a sentence

like Safe cars, such as Volvos, do well on crash tests.

There are still questions left unanswered.

1. Does this method have the right level of generality? Perhaps it does not

capture all of the phenomena we would like; perhaps it captures too many.
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So far, I have only demonstrated a few alternative phrases—what about a

wider variety?

2. How exactly do we order our lexical possibilities so that we try the most

textually economic one first? This is especially interesting when we may

want to use lexical items with anaphoric reference (which might be in the

presuppositions).

3. I have left much unsaid about how semantics is evaluated as the descrip-

tions are built. How does one use a description’s semantics to determine

what information should be added next? How does one check the effect of

presuppositions on the hearer? Does it matter that the algorithm sketched

above leaves added information local to the description subtree and does

not percolate it to the rest of the tree? What about lexical items that have

the identity semantics?

Some of these issues are the focus of Stone (1998).

I began by presenting several requirements for a generator to handle my anal-

ysis of alternative phrases. I then reviewed several approaches to generation and

discussed their merits regarding these restrictions. I concluded that a combina-

tion of semantic head driven generation and Spud techniques is a fruitful line of

inquiry.

Although there are challenges to generating within CCG, integrating presup-

position is the most interesting problem. I hypothesize that the issue comes down

to efficient and effective use of presuppositions to direct lexical choice in a multi-

goal environment. Much more work is required to test this hypothesis and work

out the details.

7.4 More with NLIR and Queries

7.4.1 Suggesting Alternative Queries

In Section 7.3, I discussed how one can generate sentences containing alternative

phrases and cited textual economy as the reason for wanting to do this. A further

reason is to allow a NLIR system to interact with a user by suggesting alternative

queries if their previous query generated unsatisfactory results.

For instance, if the search results are overwhelmed by one particular response

(as can frequently happen if there has been a recent incident relevant to the
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question), Grok can suggest an alternate query, as in (204)3.

(204) User: What presidents have been impeached?

Monk: Shall I look for presidents other than Clinton?

Although not all NLIR systems would be capable of detecting such problems,

the Monk can do it with its ISA hierarchy. The hierarchy would contain a list

of presidents which could be compared against the documents returned by the

query to determine if any one president occurred too frequently.

There are still several unanswered questions.

• By what metric does the Monk decide if an entity occurs in too many doc-

uments?

• What other things might a system want to communicate with a user?

One possibility is clarifying questions which, for example, are ambiguous

or anaphorically refer to an unknown antecedent.

• What protocol should be used for the NLIR system to send this information

to Grok?

• Do we even need to perform full generation? Would template filling be suf-

ficient? This depends on the answers to the previous questions. If there are

many things that we might want to communicate to the user and they can

be sent to Grok in a general way, then generation has more scalability than

template filling. In addition, improvements in the grammar and generator

will improve the responses, while templates are static and would need to be

individually changed.

7.4.2 Learning from a Query

Chapter 3 and Chapter 4 not only show how to analyze the assertions of alter-

native phrases in order to direct search, they also show how properties of kinds

and individuals can be learned from the presuppositions of alternative phrases.

This is also very useful for systems like the Monk. Section 6.2.2 describes how

the Monk uses an ISA hierarchy to answer questions. This runs into problems,

however, if words appear in a query that are not in the hierarchy. Proper names

are especially prone to this as new ones, such as Clinton, become topical all the

time. So, if the system was unable to make the suggestion in (204), the user

3The other president was Andrew Johnson.
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might follow up with What about presidents other than Clinton?. The system

would then learn that Clinton is a president, which can be used both to classify

questions, as described above, and to make suggestions the next time a question

about presidents comes around.

There are still questions to be answered here, too:

• What information do we really need to remember?

It would be useful to have a concept of “forgetting” so that if learned in-

formation is not referenced in some time, then it will leave the database to

free up space. After all, it probably is not useful to remember that John

Smith is a teacher in Kansas.

• When can we trust information we learn?

Because this information is being learned through presuppositions, it is

perhaps not particularly likely people would intentionally try to mislead

the system. However, the system would certainly not be immune to such

attacks. In addition, people innocently convey misinformation due to their

own incorrect knowledge. We need a theory of trust so that we know when

we can start using information we learn. In addition, it would be useful to

know how harmful it would be to use incorrect information. In some cases,

the effect might not even be noticed.
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Chapter 8

Conclusions

The primary thrust of this thesis has been to provide an in-depth account of

the semantics of alternative phrases using alternative sets, presupposition, and

a “use existing objects” heuristic also used in abductive approaches to discourse

interpretation.

Although I only treat a subset of alternative phrases, I still go significantly

further than previous research. Until now, formal semantic analyses have been

restricted to a few examples (but and except for) and are primarily concerned

with the assertional semantics. Pattern-matching techniques which attempt to

handle more examples are not effective for free alternative phrases and would

need to be extended to account for alternative phrases with anaphoric reference.

I have discussed the connected alternative markers besides, such (as), and

other (than) and the free alternative markers besides, other (than), excluding,

except for, in addition to, unlike, especially, and more. This is significantly

more breadth than previous semantic approaches. It is true that I do not display

the same depth regarding assertional semantics (determining only the referred-to

set), but I believe my approach can incorporate the previous work. The major

new contribution of my analyses is what is being expressed about the figure, the

NP argument of the alternative marker. These properties also put these analyses

on a deeper theoretic level than the pattern matching approaches.

As this is a computational analysis, it is meant to be used in real systems. This

thesis introduced such an NLP system, Grok. I discussed how Grok incorporates a

large English CCG lexicon into a larger system that supports parsing, generation,

and many aspects of knowledge representation. Preliminary experimentation with

the system supports the belief that a well designed, modular system can produce

satisfactory results even when the modules themselves are sometimes fast and

simple solutions for complex problems. Furthermore, with a well designed system,

these modules can be easily and transparently replaced with more interesting
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modules to produce, hopefully, better results. Importantly, at this time, the

system successfully supports most of the work presented in Chapter 3.

The Grok system is free, open-source software available to anyone from:

http://grok.sourceforge.net.

Grok, and the module interfaces of OpenNLP, are a contribution to the community

meant to instigate greater modularity and reuse of code in the NLP community.

At this time, Grok has already been used in several projects and is in the top 7%

of the most active projects on SourceForge, a centralized host for more than 7000

open source projects.

I use Grok and my analysis of alternative phrases in the task of natural lan-

guage information retrieval. I first show that in human/human dialogues, alter-

native phrases are quite common, and we would expect the same to be true in

NLIR if users truly believed that the system could understand their questions.

I go on to show that current systems for NLIR perform poorly when faced with

these constructions. In fact, they perform more poorly than if they had simply

ignored the construction altogether. Finally, I demonstrate that performance can

be improved substantially even with simple operational semantics for the back-

end retrieval system.

Until now, natural language search engines have largely ignored the seman-

tics of discourse-related phenomena. However, if users are to ever have a truly

effective natural language interaction with an information retrieval system, such

constructions must be considered. This thesis takes a first step by showing that

properly considering alternative phrases can have dramatic results. It is my hope

that this research will inspire innovation in this area and in user interfaces so that

users are better able to exercise their natural querying abilities.
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Evaluation Sentences

Sentences for Table 6.2:

1. Does a pap smear test for anything other than cancer cells?

2. Are there other auction search engines besides BidFind?

3. How do I find job opportunities in other countries?

4. What growths can occur in the vaginal area other than warts?

5. What is the drinking age in other countries?

6. Where can I find web browsers other than netscape?

7. Were there any witch trials in America besides Salem?

8. Besides John Wayne, who was in Hondo?

Sentences for Table 6.3:

1. What are some works by Edgar Allan Poe?

What are some works by Edgar Allan Poe other than the Raven?

What are some works by Edgar Allan Poe? :|: ANSWER NOT NEAR 8

(| raven)

2. Who are the romantic poets?

Who are the romantic poets not including women?

Who are the romantic poets :|: ANSWER NOT NEAR 8 (| women)

3. Where did witch hunts occur?

Where did witch hunts occur besides the Wyandot?

Where did witch hunts occur? :|: ANSWER NOT NEAR 8 (| wyandot)
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4. In what wars was the US involved?

In what wars was the US involved besides the world wars?

In what wars was the US involved? :|: ANSWER NOT NEAR 8 (| world)

5. Who wrote sonnets?

Other than Shakespeare, who wrote sonnets?

Who wrote sonnets? :|: ANSWER NOT NEAR 8 (| shakespeare)

6. What presidents were assassinated?

What presidents were assassinated besides Kennedy?

What presidents were assassinated? :|: ANSWER NOT NEAR 8

(| kennedy)

7. What are some epics?

What are some epics besides Beowulf?

What are some epics? :|: ANSWER NOT NEAR 8 (| beowulf)

8. Who signed the declaration of independence?

Who, excluding Georgians, signed the declaration of independence?

Who signed the declaration of independence? :|: ANSWER NOT NEAR 8

(| georgians)
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