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Analysis and synthesis of intonation using the Tilt model
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This paper introduces th€ilt intonational model and describes how this model can be used to
automatically analyze and synthesize intonation. In the model, intonation is represented as a linear
sequence of events, which can be pitch accents or boundary tones. Each event is characterized by
continuous parameters representing amplitude, duration, an@ titieasure of the shape of the
even). The paper describes an event detector, in effect an intonational recognition system, which
produces a transcription of an utterance’s intonation. The features and parameters of the event
detector are discussed and performance figures are shown on a variety of read and spontaneous
speaker independent conversational speech databases. Given the event locations, algorithms are
described which produce an automatic analysis of each event in terms of the Tilt parameters.
Synthesis algorithms are also presented which genEiateontours from Tilt representations. The
accuracy of these is shown by comparing synthEfic contours to reaF0 contours. The paper
concludes with an extensive discussion on linguistic representations of intonation and gives
evidence that the Tilt model goes a long way to satisfying the desired goals of such a representation
in that it has the right number of degrees of freedom to be able to describe and synthesize intonation
accurately. ©2000 Acoustical Society of Amerid&0001-4966)0)01802-4

PACS numbers: 43.72.Ar, 43.72.Ja, 43.72[NleH]

INTRODUCTION (e.g., Woodlancet al,, 1995, the phonetics are modeled by
A. Robust intonational models for speech technology hidden Markov modelsHMMs) and the g_rammar is mod-
applications eled by an-gram language model. Neither HMMs nor
) } ) ) n-grams are a particularly “good” model of phonetics or
~ This paper presents a phonetic model of intonation déyrammar and it is known that there are many phenomena in
signed specifically to facilitate robust computational anaIyS|s[he respective domains that neither can model. Furthermore,
and synthesis. While intonational models of various typeshe use of HMMs andn-grams has not arisen through
have been used in text-to-spee@'S) synthesis for some  phonetic/linguistic studies which have advocated their suit-
tlme_, intonation is st|I.I _typlcally ignored completely in auto- ability: HMMs and n-grams are used because they provide
matic speech recognitiofASR) systems. Some studies have gimple and robust techniques for modeling their domains.
shown uses for intonation and prosody in ASR systdmes,  crycially they are amenable to automatic training and be-
1980; Waibel, 1986 but these components rarely make Upcayse of their statistical nature allow principled ways of
part of state of the art large vocabulary ASR systems. Thgmqgothing, interpolation, merging, analysis, etc. It is our be-
two most commonly cited reasof@ranstrom, 1997for the it that the main reason preventing intonation being used in

absence of intonation in ASR systems are: ASR systems is the lack of an equivalent model for the in-

(1) Intonation is not a mature field and much more basictonational domain. In other words we disagree with state-
research is needed studying the phonetics and linguistid®ent (1) above, and argue that instead of fundamental re-
of intonation before we can apply this knowledge. Spe-search holding back the application of intonation, it is the
cifically, we need to discover a sophisticated and univerlack of a suitable model which is robust, easily trainable, and
sal intonation model before applications that use such @menable to statistical interpretation.
model can be built. The response to the second point stems from the re-

(2) Intonation has many functions in language, such as helpSPonse to the first. For the sake of argument, let us suppose
ing syntactic disambiguation, distinguishing new/giventhat a 5% relative decrease in word error rate could be
information, signifying word emphasis, identifying achieved if ways were found to use the above cited functions
speech acts, etc. None of these alone is significarf intonation in an ASR system. If an ASR system builder _
enough to merit the redesign of an ASR system. In othePad to adopt a separate approach for each of these, the addi-
words, it would take a lot of effort to include a specific tion in complexity to the overall system would probably be

intonational component in a recognizer and not mucrdeemed to be too great a cost for the potential increase in
benefit would ensue from its inclusion. performance. If, on the other hand, a single robust intonation

model could provide the basic information needed to harness

While more basic research will certainly help the devel-all these functions, it would reduce the cost and might swing
opment of intonation applications, we do not think this is thethe balance in favor of using the intonational information.

main reason for the absence of intonation components in  While other speech technology applications such as TTS

speech recognizers. In a typical contemporary ASR systerhave long made use of more traditional intonational models,
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we believe that these applications can also benefit from thene without these properties. Furthermore the properties of

provision of a robust intonational model. In the past, TTSthe linguistic representation interact with the two further

systems typically had just a single “voice.” Recently much goals:

attention has been given to the notion of having large num-

bers of voices in synthesis systeifrtunt and Black, 1996

A logistic requirement of this is that the speech on which "~ .
HUISIIC representation.

these voices are modeled should be acquired quickly whic Automatic analysis. It should be possible to derive the

implies automatic transcription techniques for all compo-. “.". . . }
. L . linguistic representation automatically from an utterance’s
nents including intonation. Hence we need some way to au-

Automatic synthesis. The model should have an auto-
matic mechanism for generatirig0 contours from the lin-

. . . acoustics.
tomatically analyze and parameterize data so that the intona-""""" . _ o
tional characteristics of a speaker can be captured. It is fairly easy to design a representation which is a ame-

nable to automatic analysis and synthesis if one is not wor-
ried about the linguistic relevance of the representation.
Given the interaction between these desires, we have
The basic aim of intonation models is to provide a sys-developed a model of intonation that tackles these problems
tem of intonational description that is Iinguistically meaning- together in an attempt to pro\/ide a reasonable balance be-
ful in such a way that representations in this system can bgyveen them. Thdilt modelprovides a linguistic representa-
automatically derived from the relevant parts of an utterion which is compact, has wide coverage, and is linguisti-
ance’s acoustics, and that the acoustics can be automaticaliglly meaningful. Importantly, the model has been
synthesized from the representation. specifically designed to facilitate automatic analysis and syn-
By “linguistically meaningful” we mean a representa- thesis. The following sections now describe the representa-
tion which contains information which is significant to the tion system and the analysis and synthesis systems which

linguistic interpretation of an utterance’s intonation. This eX-allow mappings between the representation andrtbecon-
cludes effects which are purely redundant, or phenomengyyr.

which affect theFO contour but which are not important in
this sense(e.g., segmental perturbationsNVe do include | ovERVIEW OF THE MODEL
phenomena that affect intonation on the syntactic, semantic,
pragmatic levels, and also what has traditionally been de- The basic unit in the Tilt model is thatonational event
scribed as “paralinguistic,” but an explanation of how theseEVents occur as instants with nothing between them, as op-
levels relate to the phonetic Tilt model is outside the scope oPoSed to segmental based phenomena where units occur in a
this paper. contiguous sequence. The basic types of intonational event
Existing linguistic representations range from relatively are pitch accentsand (following the popular terminology
low-level phonetic descriptions such as the Fujisaki modePoundary tonesPitch accentddenoted by the lettea) are
(Fujisaki and Ohno, 1997 the Hirst model(Hirst, 1992,  FO excursions associated with syllables which are used by
and the RFC mode(Taylor, 1995, to higher-level systems the speaker to give some degree of emphasis to a particular
such as the IPO modé'Hart and Collier, 1975 to phono-  Word or syllable. In the Tilt model, boundary tonés) are
logical systems such as Pierrehumber¢Rierrehumbert, 1iSing FO excursions which occur at the edges of intonational
1980, Ladd’s (Ladd, 1996, and ToBI (Silvermanetal, Phrases and as well as giving the hearer a cue as to the end of
1992. A full discussion of the issue of linguistic representa-the phrase, can also signal effects such as continuation and
tion is given in Sec. IV, but we will now give the main duestioning. A combination evertb occurs when a pitch
desired properties of such a representation: accent and boundary tone occur so close to one another that
) ) only a single pitch movement is observed. There are differ-
(1) Constrained. The representation should be as compact gt kinds of pitch accents and boundary tones: the choice of
possible having few degrees of freedom. Specifically, repjtch accent and boundary tone allows the speaker to pro-
dundancy should be absent so that one part of the reprepce different global intonational tunes which can indicate
sentation cannot be derived from another. questions, statements, moods, etc., to the hearer.
(2) Wide coverage. The representation should cover as Tpe Tilt model can be regarded aphoneticmodel of
many intonational phenomena as possible and should btonation in that it describes the intonational phenomena
capable of expressing distinctions in utterances whichhpservable in afF0 contour. This contrasts with phono-

are perceptually different. logical model which is concerned with the underlying struc-
(3) Linguistically meaningful. The form of the representa- yre of the intonation. It is only in a few practical cases that

tion should be such that its parameters can be interpretegis gistinction actually matters much, for example, with the

and generated by higher-level components. treatment of “level accents.” These are pitch accents which

It is clear that these properties have a tradeoff: an unhave no observableO behavior and hence should be present
constrained system with many degrees of freedom will havén a phonological transcription but not a phonetic one.
wider coverage than a system with few. The notion of pro-  The sequence of events in an utterance is callethan
viding constrained, compact models is common throughoutonational streamA full intonational description is obtained
linguistics and it is a general rule of thumb that a compacby joining the intonational stream to tteegmental stream
representation system with low redundancy and an orthogdathe sequence of phonesor the utterance. Bidirectional
nal description space is a better linguistic representation thalinks can exist between units in one stream and units in the

B. Requirements of an intonational model
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connectiongdenotedc) and are also described by an ampli-
tude and duration(The connection is described further in
FO contour Sec. IVQ.
While the RFC model can accurately describ@ con-
tours, the mechanism is not ideal in that the RFC parameters

Y t Y

i . :
- a a a b intonational for each contour are not as easy to interpret and manipulate
; : as one might like. For instance there are two amplitude pa-
! ; / i ' rameters for each event, when it would make sense to have
s s s s s s s s s s syllable . .
nucleii only one. TheTilt representation helps solve these problems

FIG. 1. Schematic representationfd, intonational event stream and seg- by tranSformmg the fo_ur RFC parameters_ mfto three Tilt pa-
ment stream in the Tilt model. The linguistically relevant parts of Fite r_am?ter_si namelyluration amp_“tUde andtilt 'tself' Dura- )
contour, which correspond to intonational events, are circled. The eventdjon is simply the sum of the rise and fall durations. Ampli-
labeleda for pitch accent and for boundary are linked to the syllable tyde is the sum of the magnitudes of the rise and fall
nuclei of the syllable stream. Note that every event is linked to a syIIabIe,amp“tudes. The tilt parameter is a dimensionless number
but some syllables do not have events. . .

which expresses the overalhapeof the event, independent

of its amplitude or duration. It is calculated by taking the

other stream, with the restriction that links cannot cross"@tio Of the differences and sums of the rise and fall ampli-

Events are linked to syllabic nucldusually vowels, as tudes and durations, as explained in Sec. IVB. The RFC

shown in Fig. 1. In this way the intonation stream and thePOSition pa_rameter IS kept u_nchanggd in the Tilt representa-
segment stream can be analyzed separately and one can s?fﬁtn T_het;' ”: rteﬁ resfe ntation Is surt)enor tt?] th? RFC_:f_repr:zlsen-
find out whether a particular intonational unit is linked to a ation In that it nas tewer parameters without significant loss

particular segment or syllable. In generative phonology sucf(ﬂc accuracy. Importantly, it can be arguéste Sec. Vlthat

descriptions are calledutosegmentaliagrams consisting of the -glt E)_ararr:ﬁters(,j T\\r/e molrg l';‘gu'f;'c?)"y m;anlngf;ﬂ. ‘
tiers (stream$ and association linegGoldsmith, 1989 becllon? d?n exp;taln OV\,’ € outlj arlezohevents
Viewing intonation in this way is useful in that one can can be located Irom an utlerance's acoustics and how auto-

decouple the intonation part from the segmental part and thtfg,‘a_t'C RFC and Tilt analysis is perform_ed. Sectlon_v de-
compare intonation descriptions independently of the actuaﬁcr'beS hOWFO contours can be synthe3|z_ed from Tilt rep-
text they are associated with. There is no loss of descriptivéesentat'ons' af‘d the_paper goncludes \.N't.h a d'SCUSS'On. on
power in this; one can still ask whether a syllable or segmen| € gonc_:ept of Ilngws_tlc meaningfulness in intonation and its
is “accented” or not. implications for the Tilt and other models.

Unlike traditional intonational phonology schen@ser-
rehumbert, 1980; Silvermast al, 1992 which impose a
categorical classification on events, we use a set of continu-
ous parameters. These parameters, collectively knowfiitas - DATA
parameters are determined from examination of the local
shape of the event’B0 contour. A previous papdilaylor,
1995 presented the rise/fall/connecti@RFC) model. In this
model, each event is fully described by a rise shape, a fal
shape, or a rise shape followed by a fall shape. Each event i
parameterized by measuring the amplitudes and durations 0
the rises and falls which can be done by hand or by the curve  This is a corpus of 216 dialogues collected by Canada’s
fitting algorithm described in Sec. IVA. For a rise—fall Defense and Civil Institute of Environmental Medicine
shape, three points are defined which correspond to the staidCIEM) (Bard et al,, 1995. Each dialogue consists of re-
of the event, the peafthe highest point and the end of the cordings of two participants playing a game called the
event. The rise duration is the distance in time from the stannaptask, where one participant describes a route on a map to
of the event to the peak, and the fall duration is the distancéhe other participant. The maps are designed to be confusing,
from the peak to the end; likewise, the rise amplitude is thewith the aim of eliciting interesting dialogue structures from
difference inFO between thé 0 value at the peak and at the the participants. The speech is fully spontaneous and con-
start, and the fall amplitude is tHe0 distance from the end tains many disfluencies. The database has a particularly rich
to the peak(Hence rise amplitudes are always positive andvariety of types of utterance, e.g., it contains many questions,
fall amplitudes are always negatiyén this way each event instructions, statements, confirmations, back-channels, etc. A
is characterized by four parameters: rise amplitude, rise dusubset of 25 dialogue@bou 2 h of speechwas used here.
ration, fall amplitude, and fall duration. If an event has only Two partitions of the corpus were used. The first is a speaker
a rise component, its fall amplitude and duration are set to Gndependent set and comprised 20 dialogues for training and
Likewise when an accent only has a fall. These four param5 for testing with none of the speakers in the training set
eters are “local” to the event—a fifth paramefgositionis  being in the test set. All the results reported in Secs. IV E and
used to specify the alignment of the event to the syllable an&/ are on the test set from this partition. One of the speakers
is usually measured as the distance from the start of thi& the corpus set appeared in several dialogues and a speaker
vowel. The sections of contour between events are calledependent partition containing just his speech was also used.

The three databases used in the experiments are briefly
described below. Further technical details about the corpora
ﬁtnd their availability can be found in Appendix B.

DCIEM maptask
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B. Boston radio news corpus E. Labeling consistency

This is a corpus of news stories read by professional In assessing any labeling scheme it is important to give

news reader, collected at Boston UniversgiDstendorfet al,, consistency figures. As well as demonstrating the inherent
1995. A subset of 34 stories of about 48 min from one reliability of the task they also serve to set an upper measur-
speaker was used for experiments here. able limit of performance for an automatic systéiris con-

ceivable that the system could beat a human labeler, but we

would not be able to tell As the automatic event detector

described below is tested against human transcriptions, it is
C. Switchboard important to know how many errors in the human transcrip-

Switchboard is a corpus of about 2000 spontaneoufOns We can expect. _
speech dialogues collected live over the US telephone net- Five labelers were used, all of whom were Edinburgh
work (Godfreyet al, 1992. Experiments reported here are University Ph. D. students studying various intonation topics.
based on a 1-h subset, chog®y researchers at ICSI, Ber- For comparison purposes, each of the labelers transcribed the
keley) to achieve maximum acoustic and phonetic variabilityS@me DCIEM dialogue. Their transcriptions were compared
across the corpus. Within this hour there are about 100 dif/Sing & modified form of the dynamic programming scoring
ferent speakers from all parts of the United States. Fifty minlgorithm that is standard in the speech recognition fisée

utes were used for training and 10 for testing. Young et al, 1996 for an explanation This scoring algo-
rithm produces two figures, % correct which gives the total

number of events correctly identified and % accuracy which
is % correct minus the percentage of false insertions. The
D. Hand labeling standard algorithm is modified to penalize situations where

. . rr label nce is presen he timin r
The databases were hand labeled to produce mtonanngie co ect_ abe sequence IS prese t but the t gs are
D _ . wrong. In intonation transcriptions, because of the small

transcriptions. The transcriptions were produced by using an . . . o

. ; . . . number of labels, there is a quite high probability that two

interactive speech analysis tool which displayed the wave; . .

. label sequences will match by chance. To ensure that this is

form andFO contour, and allowed the labelers to listen to the o

. . not taken as correct, a further constraint is enforced whereby

speech. The labelers were instructed to locate pitch accents .

. . . . abels have to have a temporal overlap of 50% to be consid-

and boundaries within each utterance, in accordance with the
. . . ered the same.
intonational event model described above. A few extra fea- .

The pairwise scores for all the labelers were 81.6% cor-

tures were added to make the labeling easier from a human ; : :
. ) . : rect with 60.4% accuracy. When ignoring the accents
point of view and to help in the error analysis of the auto-

matic system: markeq with the minor diacritic, the agreement is 88.6% cor-
rect with 74.8% accuracy, showing that a large number of
e Level accents give the perception of accentuation but haverrors were caused by minor accents. Looking at the types of
no discernibleFO movement associated with them. Al- events separately, the agreement for pitch accents is 81.6%
though we previously said that these should not be part oforrect, 58.1% accuracy and the agreement for boundaries is
a phonetic description of intonation, these were marked ir83.3% correct and 64.1% accuracy. There are very few other
the database as normal pitch accents withl aacritic.  studies published on inter-labeling accuracy, but Pitrelli
The diacritic making allows these to be ignored at a lateret al. (1994 cite an accuracy figure of 80.6%. We feel their
stage if desired. higher figure is mostly due to their comparison data having
o One of the biggest problems in hand labeling intonation ismore read speech, as the accent location task is virtually
that there are a large number of cases, especially in predentical to ours.
nuclear position, where there is a “hint” of a pitch accent,
but it is difficult to tell with certainty whether it is actually
there or not. Often this is because a syllable is cIearIy“I' AUTOMATIC DETECTION OF EVENTS
perceived as being stressed, but there is only a Ffle This section describes the first stage of the automatic
movement observable in th€) contour. Labelers marked analysis process, namely determining the approximate event
these as being accented and gave them a separate diacrgiart and end positions as mentioned in Sec. IV A. The sec-
indicating they were “minor” accents. ond stage, whereby events are assigned Tilt parameters, is
e In the Tilt model, only rising boundaries are classed adiscussed in Sec. IV.
events. Falling boundaries are the default case and are nxt
classified as true events. However, when labeling the cor-"
pus it was decided to give the labels to rising bound- This section describes aimtonational event detector
aries andb to falling boundaries, again with the idea that which locates intonational events from the acoustic informa-
the fb labels could be ignored later if desired. Normal tion alone. It is important to note the distinction between this
well-formed utterances always end in one of these twdype of system and amtonational classifierwhich uses a
labels. In spontaneous speech, however, many utterancésguistic segmentation of the utterance to perform intona-
are abandoned and hence it is possible for utterances t@mnal analysis. An intonational event detector is analogous
end with no boundary event. to a speech recogniser in that it determines a sequence of
e Silence was labeledil. linguistic units (words or phones in the case of a speech

Detection versus classification
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recognizer, pitch accents, and boundaries for intonationahput utterance. A number of units are defined and an HMM
event3 from the acoustic input alone. An intonational clas- is trained on examples of that kind from a pre-labeled train-
sifier, on the other hand, starts with a linguistic segmentatioing corpus using the Baum—Welch algoritiBaum, 1972
(for purposes of discussion we will assume these are sylEach utterance in the corpus is acoustically processed so that
lables, but words and phones are also possiue performs it can be represented by a sequence of evenly spaced frames.
a classificationto determine which one oN intonational Each frame is a multi-component vector representing the
categorieqincluding unaccentgda linguistic unit has. Each acoustic information for the time interval centered around
approach has strengths and weaknesses which we will nottie frame.
briefly discuss. Recognition is performed by forming a network com-
Intonational classifiers have an easier task in some senggising the HMMs for each unit in conjunction with an
because once given a linguistic segmentation, much of tha-gram language model which gives the prior probability of
work has already been done. However, in a fully automatica sequence af units occurring. To perform recognition on
system the linguistic segmentation must be done automatian utterance, the network is searched using the standard Vit-
cally also, and in certain situatiorie.g., when recognizing erbi algorithm to find the most likely path through the net-
Switchboard datathe linguistic segmentations can be very work given the input sequence of acoustic vectors.
error prone. This may weaken classification performance  Using the HTK toolkit(Young et al, 1996, a series of
considerably. The systems also differ with respect to alignexperiments was performed, each following the same experi-
ment and association. The temporal relationship between gental procedure. First an HMM set is defined, with each
pitch accent and its associated syllable is not simple. Experimm representing one intonational unisuch asa or c).
ments with the Tilt model have shown that only about 50%gach HMM has three states, each of which initially has a
of accents have their peak within the boundaries of the assgingle Gaussian which gives the probability density function
ciated syllable: the remainder have either late or early peakr the acoustic data. The HMM parameters are initialized
which are actually closer to adjacent syllables. Event detecgsing the Viterbi algorithm to provide starting estimates for
tors show the precise location of events in time but do(itot  the model parameters. Training proper is performed using
the first instanceshow which syllable or word is accented. the Baum—Welch algorithm. A number of training iterations
Conversely, classifiers show that a certain syllable is acgre performed until convergence is reached. The single
cented or unaccented, but do not say where in relation to thgayssian is then split into two Gaussian components to form
syllable the accent is to be found. a Gaussian mixture for that state and the Baum—Welch algo-
The choice of which approach to take is based on whafithm is run again. This process is repeated for models of 2,
the intonational analysis system is to be used for. Specifi3 4 5 6,7, 8, 10, 12, 14, 16, 20, 24, and 28 components. All
cally, it depends on whether it is reasonable to assume thatge experiments used the nonembedded form of the Baum—
linguistic segmentation is actually available, and which is\we|ch algorithm. In this style of training each HMM is
more important for the particular application: knowing the trained on frames of speech lying within the boundaries of its
precise location of the accent or knowing which syllables arg, units only, as opposed to embedded style training where
accented. Here we report an automatic intonational event deyy the sequence of units is given and it is up to the training
tector; work by others has already been performed on intozigorithm to assign frames appropriately. Experiments

national classifiere.g., Ross and Ostendorf, 1995he Tilt  gjwed that this style of training consistently produced bet-
model itself can work with either approach; all it needs is theys results than embedded training.

approximate location of the events, which both approaches Testing is performed by running the trained system over
can provide. test data and comparing the transcriptions to those produced
A final point concerns accuracy measurements of the,, 4 hand labeler using the procedure outlined in Sec. IIl E.
systems. It is important to note that it is not possible tOhis technique simply decides if an event in the automatic
meaningfully compare accuracy figures for the two types O} anscription corresponds to an event in the reference tran-
system. The accuracy figures for classification systems cagy.intion. In most of the results reported below, all events are
always be expected to be considerably higher for two redgeateq as the same category, so a pitch accent in the test
sons. F|rstf for_ reasons of system development, the I'ngu'St'ﬁ‘anscription can be successfully matched to either a pitch
segmentation is normally assumed to be perfect and so Som@ .o\ o1 houndary tone in the reference transcription. Sec-
degradation is to be expected when used with a fully autog, b gives individual scores for pitch accents and
matic system. Second, and more importantly, classificatiorg)oundary tones. The comparison procedure gives %correct

resultz nolrlmslllly ri\porthhow well the.sylsl,tem |dent|f|fed gggc'and %accuracy for the standard case and for the case where
cented syllables. As ,t ese may typl_cg y account for >“minor accents are ignored. In all cases, the %accuracy for the
80% of the syllables in the test set, it is important to see th

baseli ; h bei his fi fétandard case is taken to be the most important measure, and
aseline accuracy for such systems as being this figure. i y,o one ysed for determining the highest scoring system.

_event_ detection, _there is no such baseline and because of Sections 111 C and 1 D report experiments on different
insertion errors, figures may even be worse than 0%. feature and label configuration for the DCIEM test data. Sec-
tion IIlE compares these with results for the Boston Radio
News Corpus and Switchboard. It should be noted that none
The automatic event detector uses continuous densitgf this data was used in the development of the RFC and Tilt
hidden Markov models to perform a segmentation of themodels. The HMM event detector was developed on a train-

B. Event detector overview
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TABLE I. Performance in terms of % correct and % accuracy for different feature sets.

Features % corr % acc % major corr % major acc
F1FO and energy 57.7 26.6 69.6 46.3
F2 NormalizedF0 and energy 61.7 33.6 73.0 51.7
F3 NormalizedF0 and energy-deltas 65.6 43.8 76.7 56.1
F4 NormalizedF0 and energy-deltastacc 72.7 47.7 81.9 60.7

ing and development test set which are now included in thézed, delta and delta—delta coefficients. As featureFset
DCIEM training set, and the test sets for the corpora cargave the best results, its feature combination was used for all
properly be considered unseen evaluation data. the subsequent experiments.

D. Labels

C. Features As far as the Tilt model is concerned, there are only five

The super-resolution pitch detection algoritiMedan  intonation labels, namelg, b, ab, ¢, andsil. However, for
et al, 1991 was used to extradeO contours from wave- the reasons described in Sec. II D, a richer label set was used
forms for the DCIEM database. This algorithm has beerfor hand labeling which differentiated rising and falling
shown to be one of the most accurd@ detection algo- boundaries, and had diacritics for level and minor accents. A
rithms currently availabléBagshawet al, 1993, but con-  series of experiments were performed to see which label set
tours extracted from any state-of-the-art algorithm should bavas the optimal for the HMM event detector. These experi-
adequate for use in the model. The integrated pitch trackingnents investigated whether level accents, minor accents, and
algorithm (Secrest and Doddington, 1983vas used for falling boundaries should be included in the label set.
Switchboard because it gave better results on telephone Four label sets, shown in Table Il, were defined to in-
speech(which is often missing the fundamentaRms en-  vestigate the various issues just outlined. Labeldeis the
ergy was calculated in the standard way. TH@ and rms  simplest possible set, where pitch accent and boundary labels
values were combined to give a feature representation are mapped to a single labglrepresenting all events. In sets
10-ms frame intervals. L2 andL3, rising boundaries are labeldx falling bound-

Table | gives the results for four experiments on differ- aries are ignoredi.e., they are labeled), and pitch accents
ent acoustic feature sets. Experimé&rit used plainFO and  are labeleda. In setL2, level, minor, and normal pitch ac-
rms energy. Experimerf2 used a simple form of speaker cents are grouped into a single accent categpwhile in set
and channel normalization, whereby the mean and standatd3, only normal accents are labeledlevel and minor ac-
deviation of each speakerB0 and energy was calculated cents are ignoredlabeledc). In setL4, all variations are
and used to normalize all the data for that speaker. given their own label, so that level accents are labéled

It has been shown befor@.g., Taylor, 1995that the  minor accentsm, and the combined accent and boundary
changein FO is a particularly salient cue to the presence oflabels for eacliab for normal accentsare also marked sepa-
a pitch accent, and so the normalizé@ and energy mea- rately.
sures were supplemented by their delta coefficients. Deltas A separate recognition experiment was performed for
were calculated in the standard way by taking an estimate afach set of labels. In testing, as before, the identities of the
the first derivative of a value over a period of four frames. Itevent labels were treated as equivalent, allowing direct com-
is also possible to calculate a second order delta which givegarison across label sets. It is clear from the results given in
the rate of change of the normal delta coefficients. ExperiTable Ill that the sets with finer event distinctions out per-
mentF3 gives the results for the normalized and delta coefform the sets where different types of events are grouped
ficients and experimerf4 gives the results for the normal- together. The best performing setlid, where each possible
type of event has its own HMM. Hence this label set was
adopted as the standard set in the event detector and used for
all the other experiments, including those previously re-
Name Labels Description ported on feature usage.

In all the results reported here, events of one label
matching events of another are considered correct. To show

TABLE Il. Description of different label sets.

L1 sil, ¢, ande Major pitch accents and rising
boundaries aree. Fallingboundaries,
minor and level pitch accents ace

L2 sil, ¢, a, ab, b Major, minor and level pitch accents are  TABLE III. Performance in terms of % correct and % accuracy for different
a; all rising boundaries aré, falling label sets.
boundaries are
L3 sil, ¢, a, ab, b Normal pitch accents aren; rising  Labels % corr % acc % major corr % major acc
boundaries aré; minorand level pitch
accents and falling boundaries are L1 60.2 43.8 73.4 56.9
L4 sil, ¢, a, fb, rb, afb, full label set L2 70.5 46.9 80.4 56.9
arb, m, mfb, mrb, L3 67.6 44.1 77.9 54.4
I, Irb, Ifb L4 727 47.7 81.9 60.7
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TABLE IV. Individual performance in terms of % correct and % accuracy detector. There is a clear improvement in performance from
for different labels. the speaker independent to the speaker dependent test.
The three different results of the Radio News corpus

Reference label Test label % correct % accuracy
correspond to different labeling situations, RN1 corresponds
f‘n ; 7;;? 72315; to the L4 label set as used in the other experiments, while
| | 98 504 RN2 and RN3 correspond to transcriptions which have auto-
alm alm 70.9 44.2 matically been converted from ToBI transcriptions. The RN
fb rb fb rb 58.0 19.2 corpus had been previously labeled at Boston University us-
][E frs j’;’-i’ 723;34;38 ing the ToBI scheme and we investigated whether a database

already labeled with the ToBI scheme could be converted
into the Tilt model scheme. The mapping, which is quite

o . . ___complex, is described in Appendix A. There are two vari-
individual labeling accuracy, however, a set of comparisons

. ants. In RN2 all ToBI boundary tones are labeledaand in
were performed where labels had to match their own type t(hN3 H% tones are labeled ag andL % tones are labeled

be considered correct. Table IV shows that labels often do

: asfb. The RN corpus is from a single speaker only and so it
not match themselves very well, for instance wlaesiccents . e
. S is somewhat surprising that the results, although better than
are compared t@ accents in the reference transcription the

. . SI-DCIEM, are not as good as SD-DCIEM. This result led us
accuracy is only 25.9%. As expected, minor and level ac; : .

e to further analysis of the SI-DCIEM where we examined the
cents are extremely difficult to detect and have very low

accuracy(—24.2% and—52.4%. However, wherg, |, and errors attributed to each of the ten speakers in the test set

. separately. We found there was quite a large variation in
m accents are allowed to match with each other, the perfor- . .
performance, with the best speaker having 76.3% correct and

mance is substantially higher. The accuracy for boundar 0 0 0
event detection is relatively low at 19.2%. The further results%&g/0 accuracy, and the worst 64.3% correct and 33.9%

for boundary detection show that the source of errors is alaeeuracy. The (_j|ffer¢nc_:e n performance between_ SD-
most entirely due to falling boundarigb being missed DCIEM and RN I|e§ within this range and hence.the differ-
(—25.999, the score for rising boundary detection is substanSnces may be attributed to some speakers being naturally
tially higher at 34.8% accuracy. These figures tell us two 1Or€ _su!ted to t_he approach than others.

It is interesting to note that the best results for the ToBI

things. First, events which are not distinct acoustically are
detected with much lower accuracy than those which havgnapped labelgRN2 and RN3 are nearly the same as the

prominent acoustic features. In acoustic tefms often just Lesults fo-r the Tilt IﬁbelﬁRNl)' Tg's IS an |mpr?rt_ant r((jesult ibed
a section of flat0 contour, whereasb often has a promi- ecause it means that the event detection technique describe

nent risingF0. Second, although discrimination between thehere can be used on databases already labeled with the ToBl

three accent types is poor, collectively they actually producéCheme' However, although the performance of the RN1 and

better accent recognition than when a single model is trainef{N3 iS similar, the actual transcriptions they produce are
for a, I, andm (label setL2 gives 73.1% correct 40.5% significantly different. The results in the table were obtained
accu}a(,:y for accents by testing the RN1 trained event detector against the test set

labeled using RN1. Likewise the RN3 event detector was
tested against an RN3 labeled test set. When the RN1 event
E. Datasets detector is tested on the RN3 labeled test set, the perfor-

The above results give event detection performance offl@nce drops to 49.1% correct with 40.2% accuracy. The

the speaker independent DCIEM test §8EDCIEM). Fur-  biggest discernible difference in the two sets is that the Tilt
ther experiments were performed on a single speaker subse®t(RN1) has many more accent labels than the TGRBIN3)

of this (SD-DCIEM), the Boston University Radio News Se€t. Whether this is due to a fundamental difference in the
Corpus(RN) and SwitchboardSWB), all using theF4 fea- Iqb_eling schemes, or just a discrgpancy b_etween labelers is
ture set. Results are shown in Table V. The results for thélifficult to say. In summary then, it is possible to map ToBI
SI-DCIEM corpus are the same as those in Tables | and ll/labeled data into event labels and train an accurate event
The SD-DCIEM corpus contains about 30 min from a singledetector, but one should not assume that the resulting label-
speaker, and this was used to examine the differences b#1d from this is the same as from a Tilt event detector.

tween a Speaker independent and Speaker dependent event The results for Switchboard are worse than for the other
datasets. Accurate word transcription of Switchboard has

% accuracy for different PYoved a notoriously difficult task for speech recognition

TABLE V. Performance in terms of % correct and

data sets. systems, which often perform much worse on this task than
others. Many reasons are given for Switchboard’s difficulty
Dataset %corr  %acc % majorcorr % majoracc jncluding disfluencies, “poor” pronunciations.e., substan-
SI-DCIEM 72.7 47.7 81.9 60.7 tially different from citation formgand low acoustic quality.
SD-DCIEM 821 63.1 88.1 70.2 As regards the performance of the event detector we can
Radio News 3 69.4 49.7 79.4 59.3 probably rule out the spontaneous nature of the speech as
223:2 mgxz; 23'? 32'3 :;g :;Z being the source of the poorer performance. Although the
Switchboard 60.7 351 715 474 task is different, the DCIEM corpus is fully spontaneous also

and contains highly diffluent speech. The DCIEM corpus is
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recorded from speakers of a fairly homogeneous regiona| Approximate fall boundaries
accent group, while Switchboard is from speakers from e
across the entire United States and this may account fo
some of the worse performance. However, in our opinion it
is the differences in acoustic quality which are probably the
most important factor. While DCIEM was recorded with

high quality close talking microphones in a quiet room,
Switchboard was recorded live over the US telephone net;
work. The acoustic quality of Switchboard is very bad in

places, with background noise, and telephone network arti
facts. The poor acoustic quality affects feature extraction
with many more errors ifk0 being present than with other

databases. However, given that Switchboard is such a diffi-
cult database, the figures of 60.7% correct and 35.1% accu-

stop region

start region

1

FIG. 2. Search regions for fall accents.

rate may not be too bad. (using the technique described in Seq. far each of these
start and end combinationén our example this is 10

IV. DERIVING TILT PARAMETERS FROM EVENT =100 curves Each of these curves is compared with the

BOUNDARIES AND FO CONTOURS values of the actuaF0 contour at that point and the curve

The event detector produces a segmentation of the utte‘r“-’ith the lowest Euclidean distance is taken to be the best fit.
OCompound rise—fall events are treated similarly, but in this

ance from which it is possible to derive the start and en ) :
positions of the events. This information is used to delimit acase two searches are performed. The first seéodind the

region of contour that is first turned into RFC parameters an&'ze).tgiﬂnelf gz ;tatrrt];eir:i] ;igéonefjngefggénp#é ';Eg end
then Tilt parameters. Each of these processes is now dé- sttion 1S fix S peax. S N : .
scribed in turn. all) has a fixed start position at the peak and has a variable

end search region as above. This procedure is continued until
A. Automatic RFC analysis all the precise start, peak, and end times have been located

Automatic RFC analysis involves determining the pre-T0r €very eventin the utterance.

cise locations of the start, peak, and end positions and using

the values to calculate the rise amplitude, rise duration, fall

amplitude, and fall duration of the event. This process isB. Automatic tilt analysis
explained in more detail in Tayldd995; here we present a
summary.

RFC analysis operates only on sectionskéf contour
which have been delimited by the event detection procedur
Each of these sections is smoothed using a median smoot X ) ) . X
ing algorithm, and unvoiced regions are interpolated throughr(al"’r['ve sizes of the amphtude; "’?”d QUrat|ons of the rises and
This ensures that the RFC analysis sees only smooth fullg)a"S for an event. Amplitude tilt is given by
voiced contours. Smoothing serves a number of purposes. |Avisd = | Agal
First, median smoothing is useful for removing isolated spu-  tilt ;= m 1
rious FO values produced by the errors in the extraction pro- fis fall
cess. Second, it helps remove the natural minor perturbationghd duration tilt is given by
in FO periods which result from natural variations in the
speaker’'s production. While these perturbations affect . Dise™ Dran
speech quality, they are not important in intonation analysis tilt o= Diiset Dian”
and synthesis and can be removed without distorting the in-
tonational content of the contour. A median filter with a win- Empirical evidence has shown that these parameters are
dow of about 7—11 points is sufficient to smooth the contourhighly correlated(see Sec. IV [Eto the extent that a single

After smoothing, a peak-picking algorithm is used to Parameter can be used for both amplitude and durational tilt.
determine whether the event is a rise, fall, or combined rise-This single value is calculated from the averages of both:
fall. If a peak is found, then the event is classified as a com- Aved — A D -D
bined rise—fall. The peak positiofif preseni and the start tilt = ——1° fall rise “fall
and end position as given by the event detector, are used to 2(|Avisd + [Asail) * 2(Dyiset Dran)

definesearch regionsin the case of a single rise or fall event The other two tilt parameters, amplitude and duration, are

(as shown in Fig. Pthe search regions are defined to be 20%calculated in terms of the sum of the magnitudes of the rises

before and after the approximate event detector boundarleg1hd falls:
Typically this will correspond to ten 10-ms frames for the '

The Tilt representation is easily derived from the RFC
representation by application of the equations described be-
ow. Thetilt parameter itself is an abstract description of the
Aﬁo shape of an event. Tilt is calculated by comparing the

2

()

start and ten frames at the end. Each start frame position in - A_,..=|Avisd + | Atal (4
combination with each end frame position is taken as a po-
tential start and end point, andR0 curve is synthesized Devent Dyiset Dianl - (5)
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C. Segmental and event based views prominence it will receive. Amplitude is measured using the

So far events have been described using what amoun[@ear Hertz scale. This. h as the advan tage of being casy o
to local information about their amplitude, duration, and'nterpret, but some additional processing is often required to

shape. There are a number of ways to describe further infoﬁbta,in a more Iinguistically representative prominence value.
mation, specifically how events are located in time with re_For instance, pitch range often narrows toward the end of an
spect to the rest of the utterance utterance and hence an accent excursion of si#e at the
There are two possible formally equivalent ways to doStart of an utterance will be perceived as less prominent than
this. The first makes use of the filler umibnnectionimply- an accent ok Hz at the endLiberman and Pierrehumbert,

ing a segmentally based view in which all the information is1984. . ) ,
presented as a contiguous sequence of units, one ending Duration is measured in seconds. Compared with the
where the next starts. In this view, connections take dura®her Tilt parameters, duration does not contain much genu-
tions such that the total duration of an intonational descripin€ high-level intonational information. While it would in
tion can be calculated by summing the durations of the conPrinciple be possible to collapse amplitude and duration into
nections and events. Connections also have amplitudes §SiNgle quantity of intonationalize the correlation studies
that the starting=0 value of an event following a connection (described in Sec. IVEhave shown that duration and am-
is given by the endFO value of the previous event plus the plitude are not highly co_rrelated and the|r_ amalgamation
amplitude of the connection. would result in a substantial loss of synthesis accuracy. The
An alternative view, which does away with the need forvariance in the duration parameter mainly arises because of
connections, is closer to the philosophy of the event basef'® interaction between the intonation and segmental
formulation described in the overview. Connections can bétreams. Differences in duration are often a function of the
eliminated by explicitly attaching time and distance from size of the voiced interval that an event can be realized
baseline parameters to the events. ForRBevalue we des- within: some syllables are longer than others and crucially
ignate a parametestartFO which specifies the height in Hz Some have substantially more voicing. It is common to see
to the start of the event. The simplest way to specify theeVents associated with short syllablesg., “pot”) to have
position parameter is with respect to the start of the uttershort durations, while events associated with longer syllables
ance, for example, saying that the start of the event is 2.5 €-9., “strength’) to have longer duration.
from the start of the utterance. An alternative is to measure  Tilt is a measure of event shape and represents the rela-
position with respect to the syllable with which the event istive sizes of the rise and fall components of an event. A
associated. In practice we have to use a measure which giv&¥glue of +1.0 indicates a rise, a value of1.0 indicates a
the distance from the start of the nucleus of the syllabldall, a value of—0.5 indicates an accent with a rise but which
(usually the vowelto the peakthe join between the rise and has a larger fall, and a value of 0.0 indicates an event with
fall) of the event. If the event is rise only the end of the riseequal sized rise and fall components. Values of 1.0 are often
is used, if the event is fall only the start of the fall is used.found in boundary eventgpure rise§ negative values
The start of the nucleus is used because it is easy to locate in—0.3 are often found in down-stepped accents, while val-
a segmented utterance and because the start of the syllables around 0.0 often typify simple hat B* style accents.
itself (that is, the boundary between the current syllable andrigure 3 shows five different event shapes with their tilt val-
the previous onk is often difficult to determine. ues. Tilt is dimensionless and is not dependent on amplitude
Measurement with respect to the start of the utteranc@r duration.
(absolute positionand with respect to the associated syllable ~ In addition to the three core Tilt parameters it is also
(syllabic position each have their own advantages. Absoluteworth mentioning the significance of thgyllabic position
position is useful when the intonation stream is produced irparameter. As Ladd1996 points out, when discussing tem-
isolation and where the syllable stream is not present. Sylporal relations, it is important to distinguistssociatiorfrom
labic position is useful in that it behaves similarly to the alignment Association describes the structural relationship
three proper Tilt parameters, and can be considered to bek®tween the intonation stream and the segment stream by
local parameter which carries intonational significance. saying which units in one are linked to units in the other.
The information in all the formulations is exactly Alignment on the other hand describes the temporal relation-
equivalent and one can be mapped to another without loss ship between units, and can be important in distinguishing
information. The decision to use one rather than another ipitch accent type. The syllabic position parameter is used to
often made on the basis of the practical application in whichrepresent alignment in the Tilt model. In rise—fall events,
the model is being used. syllabic position is the distance between the peak of the
event(i.e., the boundary between the rise and)falhd the
start of the nucleus of the syllable that the event is associated
with (the accented syllableln simple rise or fall events it is
Here we briefly describe the significance of each of thethe distance between the start of the event and the start of the
Tilt parameters. Amplitude corresponds to the phonetiovowel of the accented syllable. An event which has the same
prominence of an event. While the correspondence is ofteamplitude, duration, and tilt parameters can signal different
complex and dependent on context as Gussenhoven and Riffects depending on its position. For instance, what are
etveld (1988 have shown, in general, it is the case that theknown asH* andH+L* accents in the Pierrehumbert no-
bigger the amplitude of an event in a given location the mordation can often be realized by a simple falling contour: the

D. Interpretation of tilt parameters
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= TABLE VII. Correlation matrix for Tilt parameters.

’ +1.0 Amplitude Duration Tilt
4
g Amplitude 1.0
Duration 0.17 1.0
Tilt 0.06 —0.09 1.0
-~ N
,/ ~ . +0.5
/
7 As explained above, the tilt parameter is calculated by

averaging amplitude tilt and duration tilt into a single param-
eter and it is this which allows the four RFC parameters to be
PRalN reduced to three Tilt parameters. Is this justified? By com-
, N bining the two tilt parameters in E@3) we are effectively
’ \ 0.0 saying that they are equal: taking the average of the two is
-~ ~ - simply more robust than using either one alone. We can re-
arrange the equivalence E@) to give Eq.(7)

PSRN | Avisel — | Atall _ Drise™ Dra
\ -0.5 (|Arisel + |Afall|) (Drise+ Dfall) ’

= |Arisel _ |Afall| @
Drise I:)fall ’

(6)

\ which states that the magnitude of the gradient of the rise
\ -1.0 part is equal to the magnitude to the gradient of the fall part.
N When we actually measure the correlation of the rise and fall
gradients for our data we get a high correlation of 0.64,
FIG. 3. Examples of five events with varying values of tilt. which is higher that any shown in Table VI. The correlation
between the amplitude and duration tilt parameters them-
difference is that thé4* occurs much later with respect to selves is 0.73. Hence collapsing the amplitude and duration
the vowel than théd + L* . Further discussion of the position tilt parameters based on correlation is justifiable. Table VI
parameter is given in Sec. VID. shows the correlation matrix of the tilt parameters for the
same data. There is a slight correlation between amplitude

and duration(0.17), but virtually no correlation between tilt

The motivation behind mapping RFC parameters into  In theory, it is easy to map a set ofdimensional pa-
Tilt parameters is to produce a new representation which had@meters to a set af—1 dimensional parameters using stan-
less redundancy and is more linguistically meaningful. Andard techniques such as principal component analysis. What
assessment of the linguistic relevance of the Tilt model is lefts more difficult is to achieve parameter reduction without
to Sec. VI, but here we can give some evidence about thaignificant loss of information. While the correlation figures
redundancy in the RFC and Tilt representations. just quoted prove that the Tilt system provides a compact set

A useful way to examine redundancy in a set of data iof intonational control parameters which are independent of
to calculate its correlation matrix, which shows the correla-One another, it is important to prove that little information
tion of every parameter against every other parameter. Tabfgas been lost in the process. The next section explains how
VI shows the correlation matrix for the RFC parameters aftFC and Tilt representations can be converted backFito
measured on the DCIEM test set. We can see clearly frorfontours and examines the accuracy of this process. Cru-
the table that a number of parameters are correlated to songélly, we show that the reduction of the four RFC param-
extent, for instance, rise amplitude against fall amplitude an@ters to the three Tilt parameters is achieved without signifi-
rise duration against fall duration. cant information loss.

TABLE VI. Correlation matrix for RFC parameters. Values near 1.0 indi- \/ T|LT SYNTHESIS
cate positive correlation, values neaf..0 indicate negative correlation and

values near 0.0 indicate little correlation. Note that the matrix is symmetric The synthesis process of converting Tilt representations
and hence only the bottom left corner is shown for clarity. into FO contours involves two steps: converting Tilt repre-
Rise Rise Fall Eall sentations into RFC representations and then converting
amplitude  duration  amplitude  duration these intoFO contours. Given the Tilt parameters for an
event, the RFC parameters can be calculated by equations

Rise amplitude 1.0

Rise duration 0.33 1.0 formed by rearranging Eg$3), (4), and(5):
Fall amplitude —-0.48 -0.04 1.0 ;

+
Fall duration -0.18 —0.46 0.025 1.0 Aevenf 1 +tilt)

Ase= ", ®
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Acvenf 1—tilt) TABLE VIIl. Accuracy figures for RFC and Tilt synthesis.

Aval 2 ' © Raw Raw Smooth p Smooth

b L+l Representation FO rmse FOp FO rmse FO

_l’_

Drise:M, (100  Complete RFC 14.60 0.651 6.94 0.837
2 Complete Tilt 14.58 0.647 7.14 0.829
, Event only RFC 12.86 0.630 6.82 0.798
D _ Devenf 1 —tilt) (11  Eventonly Tit 13.13 0.620 7.15 0.786
fall =~ 2 ' Automatic RFC 15.11 0.651 7.16 0.841
Automatic Tilt 15.25 0.644 7.51 0.833

The conversion process first involves converting event
style descriptions into segmental style descriptithat is

start FO andpositionparameters are converted into connec- o
tion information. Next, Egs.(8)—(11) are used to produce Process. For each utterance, the original raw and smoothed

the RFC parameters for the events. Each event is deconf-O contours were compared with the contours generated

which is synthesized using the following equation: rms error and correlatiofp) for the comparisons. _
5 Two clear patterns emerge from the table. First, looking
fo(t) =AmstA—2A.(t/D)%, 0<t<D/2, at the first two rows of the table, we see that the artificial

(12)  contours match the smoothed contours much better than the
raw contours. The smoothing technique elimind@strack-
whereA is rise or fall amplitudeD is rise or fall duration, ing errors and segmental perturbations, so it can be argued
and A, is the absolutd=0 value at the start of the rise or that the smoothed contours are a more meaningful represen-
fall, which is given by the end value of the previous event ortation to measure against than the raw contours. In a simple
connection. Connections are synthesized using straight lineattempt to focus on the relevant parts of the contourR@ie
regions within the event boundaries were subjected to the
fo(t)=Aapst A.(/D),  0<t<D, (13 sa?ne analysis. Rows 3 and 4 show the resuIJts. There are
whereA is connection amplitude) is connection duration, slight improvements in rms error and slight reductions in
andA,is as before. correlation, but the overall pattern is the same as the errors
for the complete contour. Rows 5 and 6 show the results for
the contours synthesized from automatically detected events.
We now address the question of synthesis accuracy. ThiShe correlations are about the same and the rms errors are
is measured by taking a Tilt representation for an utterancslightly worse than for the hand detected events.

fo(t)=Amst 2A.(1—t/D)2, D/2<t<D,

A. Synthesis accuracy

in the data, synthesizing &m0 contour from this and mea- The second pattern we find is that although RFC con-
suring the difference between the synthesized and real coteurs are closer to originals than Tilt contours are to origi-
tours. nals, the difference is very small and often insignificant. In

It is well known that listeners are more sensitive to someother words, the advantage in being able to convert RFC
parts of FO contours then others, for instance, listeners camepresentations into Tilt representations is not at the expense
perceive differences in peak height more readily than valof much synthesis accuracy. To demonstrate this point fur-
leys. Unfortunately there is no known comparison techniqueher, a comparison was conducted between the synthetic
that can mimic this behavior and so we are forced to use &FC contours and the synthetic Tilt contours. The rms error
cruder approach whereby all parts of the contour are treatedn hand detected events was 0.975 and the correlation was
equally. To measurd-0 contour similarity we use root- 0.992, on automatically detected events the rms error was
mean-squared error and correlation, which are somewhdt.26 and the correlation 0.98. To all intents the contours are
standard in the literaturée.g., Dusterhoff and Black, 1997; identical. From the comparison of synthesis accuracy of the
Fujisaki and Ohno, 1997; Ross and Ostendorf, 199dith Tilt and RFC we can conclude that there is very little infor-
root mean squared error, it is not possible to say that onenation lost in the RFC to Tilt mapping process. While Sec.
system is better than another if it only has a slightly lowerlV E showed that the three parameters in the Tilt representa-
error, but in general the measure is accurate enough to allotion are quite independent, the synthesis result shows that the
confident conclusions to be made about systems with largdimension reduction in RFC to Tilt does not throw away
differences in error(For example, we cannot really conclude much information.
that an error of 14.6 is definitely better than an error of  In the Introduction we described one of the goals of an
15.11, but we can state more confidently that a system witintonation model as being “wide coverage.” In fact the test
an error of 6.94 is better than a system with an error ofas to whether or not a model has wide coverage can be for-
15.11) mulated in terms of a synthesis test. Taken independently

Accuracy experiments were conducted on the 1061 utfrom the other two goals, all “wide coverage” actually
terances in the DCIEM test set. To obtain the Tilt and RFCmeans is that the representation being used, in conjunction
representations for testing, we used the automatic analysisith its analysis and synthesis processes, is powerful enough
procedure described in Sec. IVA. This analysis was perto describe the data under examination. By “describe” we
formed on the events derived from the hand transcriptionsnean having the ability to code the original data without
and on the events found by the automatic event detectiomformation loss. So to check the coverage capability of a
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representation, all we have to do is analyze it in terms of the  The Tilt model has also been successfully applied to
representation, synthesize the data from this, and compare gpeech recognition. Wright and Tayld997 describe a sys-

the original. Representations giving low errors have widetem for automatically recognizing the dialogue act of an ut-
coverage. Of course, it is relatively easy to produce an arbiterance from an analysis of its intonation. Each utterance is
trary coding scheme which can do this if one does not payutomatically analyzed using the Tilt model and an HMM
attention to the other goals. But so far Wwaveshown that classifier is used to assign it to one of 12 dialogue act types
the Tilt modelhassatisfied goals 1, 4, and 5, namely that it (such as acknowledgement, yes—no quegtidhis classifier

uses a constrained representation, and is capable of autas been used as a component in a speech recognition system
matic synthesis and analysis. We now turn to a discussion aind has been shown to help reduce word error (Bas/lor

the model's fulfilment of the final goal, namely linguistic et al, 1998.

meaningfulness. While the automatic analysis component has been
shown to produce Tilt representations that are useful in sys-
VI. LINGUISTIC MEANING tems such as speech recognizers, it is clear that the use of the

The most frequent criticism that has been made abo mod_el n othe_r potential appllcayons Is still some way off.
: . . . or instance, it would be helpful if the analysis system could
the RFC and Tilt models is they are “only a coding of the : . .
. 2 . . . automatically transcribe data for use for experimental data-
FO contour, and are not linguistically meaningful.” A strict . .
T L2 . base analysis. Such a use is not recommended, however, as
definition of the term linguistically meaningful has been .
: . L . . the considerable number of errors produced may have an
avoided until now, because it is a complex issue and requires

discussion in the light of the results reported above. It isadverse affect on further analysis.

difficult to come up with firm(i.e., experimentalevidence : . . .
o ; B. The bias against continuous representations
for the model's linguistic meaningfulness as there are no
simple measures of this, in contrast to the fairly straightfor- ~ The Tilt representation uses continuous variables to de-
ward methods used to demonstrate the Tilt model's successgribe pitch accents, unlike more traditional representations
at the other stated goals. However, when we look at thigvhich use discrete categories. Here we take some time to
issue more thoroughly, it is clear that it is very difficult to argue that continuous variables can legitimately form part of
justify the linguistic relevance afny existing model of in-  a linguistic intonational description.
tonation. The following sections discuss various aspects of It is traditional in linguistics to deal with categorical
this issue. (i.e., discretg representations alone, to such an extent that
continuous representations are often deemed unlinguistic in
some sense. This has led to properties of intonation that are
We have stated that the Tilt model has been designed tolearly continuous, such as pitch range and prominence, be-
facilitate intonational processing for speech technology aping largely ignored, and study concentrating on categorical
plications, and hence in the first instance we should addresssues only, such as pitch accent type. Despite virtually over-
the concept of “linguistically meaningful” in this sense. For whelming evidence that prominence and pitch range follow
applications, the main requirement is that the Tilt represenregular patterns and have an important linguistic function
tation is “usable.” In a speech analysis environméag., a (Gussenhoven and Rietveld, 1988; Terken, 1991; Ladd,
speech recognition systenthis means that Tilt representa- 1996, 1994, these parts of intonation are often called “para-
tions should be interpretable by other system componentinguistic” and omitted from intonational representations
which need to use intonational information. In a synthesissimply because of their continuous nature. The bias toward
environment(e.g., a text-to-speech systethe requirement purely discrete representations in linguistics is a hang-over
is that high-level modules in the system can generate Tilfrom traditional linguistics and has often been justified be-
parameters from other linguistic representations. cause such representations are seen as being properly “cog-
The model has been used as the last component in sewmitive” (Pierrehumbert, 1990Massard1998 questions the
eral TTS intonation models. In Taylor and Bla(©94) nor-  whole basis of categorical perception in linguistics, explain-
malized (speaker independenTilt parameters were gener- ing that the dominance of this idea arises from equating dis-
ated from rule based feature descriptions. Speaker specif@imination with identification, an equivalence which does
parameters were then used to produce normal Tilt represemot really hold. In recent years there has been a growing
tations from whichFO contours were generated. Black acceptance of continuous representations in linguistics,
(1997 describes a method for learning Tilt parameters autopartly through the acceptance of connectionist models as le-
matically from data and then generating them at synthesigitimate cognitive science. As such, the corollary that only
run time. In an extension of this work, Dusterhoff and Blackdiscrete phenomena can be considered cognitive does not
(1997 describe a method for using CART to gener&t®  hold.
contours from high-level information in a text-to-speech sys-  The proponents of what Ladd1996 terms the
tem. They do this by training the decision trees to producéAutosegmental-MetricalAM) school of intonation(Pierre-
Tilt parameters. This study is particularly interesting in thathumbert, 1980; Liberman, 1975; Bruce, 19have argued
they perform a direct comparison between the Tilt represenstrongly that intonation has a phonological level of represen-
tation and a ToBI labeling of the same data. The Tilt repretation, in the same way as segmental phonology/phonetics
sentation gave slightly better performance, showing that adoes, and that the sound patterns of intonation are best de-
least in this setup it is a useful representation. scribed with such representations. Much of the evidence for

A. Applications

1708 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000 Paul Taylor: Tilt model of intonation 1708



the phonological level has stemmed from showing that thidining properties of a categorical system, namely that there
solved many problems with previous approaches becausshould be strict and identifiable boundaries between the cat-
with a phonology, sound patterns can be described in akegories.
stract ways, without having to deal with pitch values directly. Further evidence for problems with categorical intona-
This allows meaningful comparison of intonation acrosstional classification come from consideration of how one
speakers who have different pitch ranges, for instance. Whilevould actually go about producing a phonological inventory
we believe that this is one of the major contributions to modfor a new accent or language. In segmental linguistics, the
ern intonation research, we believe the success of this aglassical way to determine the phonological units of a lan-
proach is due to the adoption of aibstractlevel of repre- guage is via the use of minimal pairs. This is how one can
sentation in the broad sense, rather than a necessarilind out whether, for instancér] and[l] are distinct phono-
phonologicalone in the traditional discrete sense. Just bedogical units(as in English or whether they are allophonic
cause abstract representations have proved useful, and Hes in Japane$eBy knowing that the words “crown” and
cause they share many similarities with the structures of seg-clown” have clearly different meanings, we know that in
mental phonology, it does not follow that abstract English[r] and[l] are phonologically distinct units. No one
intonational representations are necessarily phonological has yet produced an equivalent test for intonational units.
the same way Traditionally the argument about categorization in into-
A crucial property of segmental phonology is that thenation has revolved about a false dichotomy, namely that the
connection between the semantic and phonological propefelationship between sound and meaning can either be as in
ties of a lexical item is arbitrary. This is proved by showing Segmental phonology, where the relationship is completely
that two words (for example, “pill” and “bill” ) which  arbitrary, or as in paralanguage, where the relationship is a
sound similar do not necessarily mean similar things. Crusimple linear one. In fact this is an inappropriate application
cially, we can prove that the segmental phonological space igf the law of the excluded middle and one does not have to
discrete by showing that is impossible perceivea sound choose either of these positions: a third position is that into-
which is half way between a /b/ or a /p/. It has been shown ifation is continuous with regard to both sound and meaning,
synthesis experiments that if listeners are played a pattern &ut that the relationship between the two is highly complex
words such as “pill,” each time with more voicing in the and nonlinear. Adopting such a position can explain why
initial stop, at some stage they will start to perceive the wordsimple attempts to prove direct correspondence between
“bill.” At no point, however, although the sound pattern is Sound and meaning in intonation have failed, but also why it
half-way between a normal /p/ and /b/, will the listeners con-S S0 hard to produce evidence for categorical boundaries. In
jure up a half-way semantic image of an entity which is a bitthiS view pitch accents occupy positions in a multi-
“pill"-like and a bit “pill”-like. Thus although there might ~ dimensional sound space, and in effect whigt and L*,

be an acoustic continuum, there is a sharp perceptual boun8lC-. represent are points of particular importance in this
ary which prohibits interim semantic representations. space. One can think of this as somewhat analogous to how
There is no evidence that intonation behaves in such Re0Ple describe the temperature of an object when they are
way. It is clear that different acoustic intonation patterns carfouching it. Physically, temperature is a continuum with no
give rise to different semantic interpretations, but the cruciafliStinct categories, but it is helpful to have terms such as hot

point is that the connection between intonational sound an@nd cold which describe certain temperature situations. This

meaning is not arbitrary in the same way, and that if intonalS Nt troublesome as long as we accept this as just a con-

tional soundS, gives rise to meaningl , and soundSg vention, and we do not insist that underlying temperature is

gives rise to meaning/5, then a sound half-way between categorical. It is pointless to go further and try to define strict

S, and S can certainly give rise to a meaning somewherePoundaries on what is underlyingly a continuous phenom-

betweenM , and Mg. In other words, there has been no €N°N- While there will be a lot of agreement as to what hot

evidence to show that there are strict boundaries betweed'd cold represent under these conditions, there will always

intonational units which signal abrupt changes in meaning.be temperatures between the two which are impossible to

Some studies have showi{ohler, 1991b, 1991a; Pierrehu- categorize either way. Going back to intonation, it is clear

H * H i H *
mbert and Steele, 1989hat subjects do assign distinct se- thatatypicaH™ accent s different from a typical™ accent,
§\e point is that there are accents in between which could be

mantic categories to certain pitch accent patterns. Thes X ) _ . .
studies lend support, however, to the idea that the mappin escribed as either. We again re-iterate the point that proof

from the acoustic to semantic space is complex and nonlin—'c the existence of categories depends on the proof of the

ear, but do not prove the key point with regard to categories(,EXIStence of category boundaries.

i.e., that there is a sharp semantic boundary occurring withi
a continuous acoustic range.

Ladd (1996 in fact uses just this argument as support The Tilt representation as described here can be termed
for there being proper, discrete phonological categories iphoneticbecause its purpose is to describe observable lin-
intonation. In linguisticqincluding the phonological part of guistic sound phenomena. Although the focus of our paper is
intonation he claims that “close similarity of phonetic form on this representation and its relationship with the acoustics,
is generally of no relevance for meaning” and states that int is useful to informally discuss the relationship between the
contrast “semantic continua are matched by phonetic ones’phonetic Tilt representation and higher-level, phonological
in paralinguistics. Crucially, he does not state #iwtualde-  representations. The parameters used to describe events in

%. Phonetics and phonology in the Tilt model
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the Tilt representation are quite literal with respect to mea- @
surable acoustic quantities, and hence we have duration anc
position measure in seconds, and amplitude in Hertz. We
advocate that a phonological representation in the Tilt model
should have the same parameters as the phonetic representa(b)
tion (with the possible exception of duration, see beldwut
that theirscalesshould be modified so as to represent higher
level phenomena more appropriately.

For instance, the amplitude parameter should reflect
genuine perceptual prominence, rather than simple acoustic

magnitude. Different speakers have different pitch ranges
andg these differences ghould be accounted forPin a hgn(g-lG' 4. Examples of Tilt and AM representations for various common types
. ) . p f utterance. The dashed boxes delimit the events, while the dotted vertical
logical representation. It has been widely shoW®ohen jines show the boundaries of the accented vowel.
et al, 1982; Pierrehumbert, 1980; Liberman and Pierrehum-
be(rjt, 1f984; Ij[?dd’ 198‘_?_?]‘?[ pitch raTrg]]etnarrF:Wr;s towar(td tTet downdrift in intonation can be accounted for by a combina-
etn to fan u tterance. ISd meat?s ata pll'tcd act;:]en a h[?on of pitch accent downstepping and gradual falls in pitch
star 9{ ?Thu ergr:ce nze s a I%fg@t afmp| ul € than an range, and hence that downdrift should not be modeled by
accent at In€ end to produce an etiect of equal prominence I§'Iobal phrase patterns. While the phonetic aspects of the AM
a listener. Hence it would be desirable for phonological Tilt re often ignored, both models agree that intonation can be
amphtude to be normalized with respect to _p|tch rangeé anQyescriped using a high level abstract sound representation,
that amplitude should be a measure of perceived prominence, phonology

As stated in Sec. IV D, the duration and position param- Some differences arise from the phonetics/phonology
eters are dependent on .the local segmental c_ontent_of t ismatch of the models. Phrase tofflds andL-) are used in
uFterance Wh'(.:h.ls undgswable from a phoholog|cal point %%he AM model as a mechanism to differentiate four types of
view. In fact it is possible that the duration parameter IS, ¢ clear intonation. Phrase tones are purely phonological
wholly dependent on segmental content and carries no ph Inits, having no direcEO realization and hence there is no

nological information at all. If this were the case, then theequivalent for these in the Tilt model. In a similar way, there

number of parameters in the_ phonological Tilt representa‘ﬁorﬂS no equivalent for the low boundary tofie%s). Falling post
could be rgduc_ed. The position parameter, which Certa'n%uclear intonation is usually modeled by a single connection,
does contain high-level information, should be normalize and only rising boundaries have an event. The observed
with respect to the segmental content. variation in post nuclear intonation is modeled by using dif-

The tilt parameter itself is dimensionless and so is indeTerent parameters for the connections and rising events.

pendent of amplitude and time scales. Hence it is possible ., o Jccents may legitimately be part of a phonological

that J.[hls IS allr.ead'y as abstract as it needs to be and does r}%tpresentation but are absent from the phonetic one because
require modification.

. . . . o . they have no observableO behavior. If deemed desirable,
It I|ght of our previous dlgcussmn we th"_‘k it is entirely such accents could be accommodated in the Tilt model as
appropriate for the phonological representation to have COMentities with zero amplitude, duration, and tilt, and hence the

tinuous parameters. _The_ key point about_ the scales c_)f ph(?ésue as to whether or not level accents should be represented
nological representation is that events which are perceived q’ﬁay not be of great consequence

being the same should have the same values in the Tilt rep- Accepting that Tilt duration is probably a purely pho-

resentation. . . . .
. . ) netic phenomena, we now discuss the relationship of the
The difference between phonetic and phonological rep- P P

. . ) ; ore phonological Tilt parametefamplitude, tilt, and posi-
resentations in the Tilt model can also be versed in terms leon) with respect to the AM model. To simplify the discus-

speaker dependence. All speakers of the same accent agl%n, we assume that these three parameters have been nor-

H+L*
T=1.0
P=-70ms

H+L* H- H%
T=-1.0 T=+1.0
P=-70ms P=100ms

) ; 3 L* L-H%

\_‘J T=0.0

P=0.0

r'way described in Sec. VIC. Some varieties of the AM

the phonetic Tilt parameters of these speakers would be e’fﬁodel, for example the original Pierrehumbert syst@ier-

pected to differ, due to speaking style and physiology. Henc?ehumbert, 1980; Ladd, 1987actually have an amplitude

a phongtms—phonology component.of the model would beparameter very similar to the type we propose for the pho-
responsible for modeling speaker differences. nological Tilt model. Because of the paralinguistic argument,
this is often treated separately from the system used to de-
scribe accent type. Having accounted for duration and am-
We now discuss the similarities between the Tilt modelplitude, we now turn to showing how the the position and tilt
and the AM/ToBI models. In many respects the models argparameters relate to the tonal accent classification system of
very similar. Both adopt the same approach to intonationathe AM model. Figure 4 shows typical tilt and position pa-
primitives, namely that the intonational representation of amameters for some accent and boundary tone combinations.
utterance should be a linear sequence of event based intorf@igure 5 is an impressionistic plot, with one axis represent-
tional entities, associated with syllables/segments in an autang tilt and the other position. This plot maps the space of
segmental structure. Following from this, both agree thapossible pitch accents and shows how tilt and position reflect

D. Comparison with the AM /ToBl models
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Teeo y ~-c The Fujisaki mode{Fujisaki and Ohno, 1997as many
falling similarities to the Tilt model. It is a fully formal and quanti-

FIG. 5. Two dimensional schematic representation of intonational spacet.at“_/e phonetic model and hence has a def_med synthe5|§ al-
The letters in brackets refer to the example contours in Fig. 4. It is clea@Orithm. It too models accents as events, with no categorical
from this digram that many AM accents have large overlapping distribu-accent types built in to the model and it uses an amplitude
tions, while there are also substantial areas of this space that are not covergthd a duration parameter for event parameterization.
by any AM accent type. However, the models differ in significant ways. First, the
Tilt model allows the gradients of the rise and fall parts of
the natural variation in pitch accent types. The relevant AMeyents to vary. While some gradient variation in the rises and
accents and boundary tones have been marked to show hqyjis of the Fujisaki models accents is possible, this is minor
each relates to the tilt parameters. and indirect and due to the gradient of the underlying phrase
As should be clear by now, the main area in where the;omponent. From our study of rise and fall pitch accent gra-
models disagree is that the Tilt representation uses continiients in our database, it is clear that substantial variation is
ous parameters to model events whereas the AM model us@gssible, and that any model which advocates fixed gradients
discrete classes. Although we think that it is an importaniyj|| have substantially worse synthesis accuracy that the Tilt
point in its own right to demonstrate the tenuous nature ofnpdel. Second, the Fujisaki model makes use of a phrase
categorical descriptions in intonation, we further argue tha&omponent, which dictates the global shape of Figecon-
the adoption of such description mechanisms is actuallfour over the length of a phrase. The shape of this is shown
harmful in that it does not provide a satisfactory means tqnp Fig. 6. Again, we think this is too constrained and cannot
describe intonational events. The first problem is that begzccount for the wide range of observed long term contour
cause of the difficulty in defining class boundaries, it is veryshapes in English. For example, in the contour shown in Fig.
difficult for machines and humans to label naturally occur-7, the intonation is slowly and steadily rising after the first
ring speech using the AM system. While it is simple enoughevent. Fujisaki(personal communicatiorhas suggested that
for experts to produce canonical examples of different pitchhis can be modeled by stacking several phrase components
accents and get agreement when labeling these, the situatigf top of each other in short intervals. While such a solution
is very different in natural speech. Leaving the distributioncoyld recreate the shape shown in the contour, it is has a
problem aside(see below; it has been our experience that severe price, in that all reference between the position of the

even |inguiStS trained in intonation find it difficult to decide phrase Component and its |inguistic meaningfu'ness has been
which class a particular accent belongs to. As human labelefggt.

must prOVide the data on Wh|Ch automatic SyStemS are to be In Summary' it seems the FuJ|Sak| mode| does not have

trained and tested, badly labeled data cannot be expected éjough degrees of freedom to synthesize English intonation

facilitate accurate automatic systems. The second problem g still keep some sense of linguistic relevance.

that in naturally occurring speech, the distribution of AM

pitch accent types is extremely uneven. In the RN corpus

about 79% of all accents in the corpus fall into #Hé& cat- 500

egory, and 15% into the+H* category. From an informa-

tion theoretic point of view, any classification system which

lumps the vast majority of tokens into a single type is not 200
. ; FO

very useful because it does not actually provide tell us much

about the tokens. Importantly, within the vast class, there

actually is a substantial amount of variation which is linguis-

tically meaningful and this information is lost. % ' '

These problems of labeling difficulty and unevenness of 00 v 20 e
distribution are not present in the Tilt model as the continu- time
ous parameters express the differences in pitch accents natu- FIG. 7. Contour with slowly rising intonation.
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A number of other intonation models have been pro-figures on the DCIEM data of 72.7% correct, 47.7% accu-
posed in more recent years includif§trom, 1995; Portele racy for all accents and 81.9% and 60.7% for nonminor ac-
and Heuft, 1998; Sproat, 1998; Mier and Conkle, 1998  cents there is obviously room for improvement. It should be
All of these models have been designed for mainly speecpointed out that it is not necessary to use this particular event
technology purposes and it is striking that they moB@l  detection algorithm with the Tilt model: any system that can
contours with continuous parameters. SoffRortele and locate events and give their boundaries can be used. As ex-
Heuft, 1998; Mdiler and Conkie, 1998in particular bear a plained in Sec. Il A our system is an evetgtectorbut there
strong resemblance to the RFC model providing support fors nothing to stop an evemiassifier(e.g., Ross and Osten-
the idea that the parameters of the RFC madeld the Tilt  dorf, 1995 being used in conjunction with the model. The

model derived from jtare not purely arbitrary. choice of a classifier or detector essentially depends on
whether a phonetic segmentation is available in the applica-
VII. CONCLUSION tion.

Table VIII shows that the Tilt model can synthesizé
contours with a high degree of accuracy. Given that the just
noticeable difference foF0 in natural speech has been esti-
mated at about 4 HgHess, 198§ the figures for the com-
parison between the synthesized and smoothed contours

freedomof a model. Put simply, a model with too many how that th theti ¢ v identical to th
degrees of freedom will be able to model the data well pyt oW that In€ synthelic contours are nearly identical to the
smoothed ones. Raw contours differ from smoothed ones

will have a large amount of redundancy in its representation?” .
A model with too few degrees of freedom will have a Com_malnly due to the presence of segmental glitches and pertur-

pact representation but will not be able to synthesize the dat%at'ons' The Tilt synthesis procedure has not attempted to

accurately nor differentiate certain phenomena. The results imo?el these in any way,_and hence the errors for the syn-
Table VII show that the Tilt representation is compact and € IIC VErsus raw comrp])arlsonhare Wtcr)1rste.th Tilt model h
has low redundancy, while still producing wide coverage, a N summary, we have shown that the it model has

shown by the synthesis accuracy results in Table VIII. We een fairly successful ‘.’ﬂ fulfiling our original goals. We
therefore conclude that an appropriate balance has be ve tested the model rigorously on read speech and sponta-

found between constraint and wide coverage. We have statdlf ous dlalogue _speech f“’m a number of different speakers
n different situations. We think the success of the model has

that the duration parameter may be purely phonetic in natur% ) . -
and that only amplitude, position, and tilt should be consid- een to find a suitable balance between the conflicting goals,

ered as parameters with a phonological correspondence. so that the model facilitates automatic analysis and synthesis

The proof of any representation’s linguistic meaningful- gnd provides a useful and elegant linguistic representation of

ness is difficult, but we hope that the discussion of this issydttonation.
in Sec. VI has at least shown that continuous parameters can
form the basis of a high-level intonational representation and\CKNOWLEDGMENTS

that, furthermore, the tilt and position parameters map the  The author wishes to acknowledge the support of the
intonational space elegantly. In the end we take a pragmatig g Engineering and Physical Science Research Council,
approach to the issue of deciding whether one representatiQpng funded much of the work on automatic analysis and
system is better than another. If the bias against Continuour%cognition (Grant No. GR J55106 Steve Isard and Bob
representations is removed, we think that the Tilt model 54q poth offered detailed comments on all the work re-
compares well against the AM model in that it provides apqrted, The many discussions with them lead to useful in-
simple representation which solves many of the problemsjgnts into how best to explain this work. Thanks also to the
that categorical representations impose. two reviewers who offered a considerable amount of advice
_ A'long raging argument in the field has been whetherg how to improve this article. Some of the Tilt theory was
intonation should be regarded as a tonal or contshape developed during my stay at ATR Interpreting Telecommu-

phenomenorisee Ladd, 1996 While this may be an inter- pications labs, and | am grateful to everyone there for their
esting theoretical question, for the computational goals Présupport during that period.

sented here, it is somewhat beside the point. For practical

purposes, a more important goal than discovering the naturgo o\ by 2. MAPPING FROM ToBI TO TILT LABELS

of intonational primitives is to assess a model in terms of the

criteria explained in the Introduction. A model with good Despite the statement in Sec. VI A that the Tilt and AM

coverage, accuracy, and linguistic meaningfulness is bettenodels are both based on intonational events, there are im-

than a model without these, regardless of which one is tongbortant technical differences in the way that AMe., ToBl)

or contour. and Tilt label files are actually constructed. In Sec. Il E we
It is in the area of automatic analysis that perhaps mostlescribed experiments where a Tilt transcription of the Bos-

future improvement could be made. Spontaneous speaker iten University Radio NewgRN) corpus was derived by

dependent conversational speech is one of the most challenfyjom the original ToBI transcriptions. We briefly explain

ing types of speech for any system, and hence it is a solihow this was done.

achievement that the event detector can achieve the level of The RN corpus was labeled using the guidelines in

success that it does on this task. However, with performancBeckman and Ayer&1993 and the transcriptions are format-

We conclude with an examination of how well the Tilt
model has fulfilled the five goals described in the Introduc-
tion. The issues ofonstraintandwide coveragego hand in
hand as they are essentially concerned with degrees of
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