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Analysis and synthesis of intonation using the Tilt model
Paul Taylor
Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH1 1HN, United Kingdom

~Received 30 December 1998; revised 24 June 1999; accepted 18 October 1999!

This paper introduces theTilt intonational model and describes how this model can be used to
automatically analyze and synthesize intonation. In the model, intonation is represented as a linear
sequence of events, which can be pitch accents or boundary tones. Each event is characterized by
continuous parameters representing amplitude, duration, and tilt~a measure of the shape of the
event!. The paper describes an event detector, in effect an intonational recognition system, which
produces a transcription of an utterance’s intonation. The features and parameters of the event
detector are discussed and performance figures are shown on a variety of read and spontaneous
speaker independent conversational speech databases. Given the event locations, algorithms are
described which produce an automatic analysis of each event in terms of the Tilt parameters.
Synthesis algorithms are also presented which generateF0 contours from Tilt representations. The
accuracy of these is shown by comparing syntheticF0 contours to realF0 contours. The paper
concludes with an extensive discussion on linguistic representations of intonation and gives
evidence that the Tilt model goes a long way to satisfying the desired goals of such a representation
in that it has the right number of degrees of freedom to be able to describe and synthesize intonation
accurately. ©2000 Acoustical Society of America.@S0001-4966~00!01802-6#

PACS numbers: 43.72.Ar, 43.72.Ja, 43.72.Ne@JLH#
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INTRODUCTION

A. Robust intonational models for speech technology
applications

This paper presents a phonetic model of intonation
signed specifically to facilitate robust computational analy
and synthesis. While intonational models of various typ
have been used in text-to-speech~TTS! synthesis for some
time, intonation is still typically ignored completely in auto
matic speech recognition~ASR! systems. Some studies hav
shown uses for intonation and prosody in ASR systems~Lea,
1980; Waibel, 1986!, but these components rarely make
part of state of the art large vocabulary ASR systems. T
two most commonly cited reasons~Granstrom, 1997! for the
absence of intonation in ASR systems are:

~1! Intonation is not a mature field and much more ba
research is needed studying the phonetics and linguis
of intonation before we can apply this knowledge. Sp
cifically, we need to discover a sophisticated and univ
sal intonation model before applications that use suc
model can be built.

~2! Intonation has many functions in language, such as h
ing syntactic disambiguation, distinguishing new/giv
information, signifying word emphasis, identifyin
speech acts, etc. None of these alone is signific
enough to merit the redesign of an ASR system. In ot
words, it would take a lot of effort to include a specifi
intonational component in a recognizer and not mu
benefit would ensue from its inclusion.

While more basic research will certainly help the dev
opment of intonation applications, we do not think this is t
main reason for the absence of intonation component
speech recognizers. In a typical contemporary ASR sys
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~e.g., Woodlandet al., 1995!, the phonetics are modeled b
hidden Markov models~HMMs! and the grammar is mod
eled by a n-gram language model. Neither HMMs no
n-grams are a particularly ‘‘good’’ model of phonetics o
grammar and it is known that there are many phenomen
the respective domains that neither can model. Furtherm
the use of HMMs andn-grams has not arisen throug
phonetic/linguistic studies which have advocated their s
ability: HMMs and n-grams are used because they prov
simple and robust techniques for modeling their domai
Crucially they are amenable to automatic training and
cause of their statistical nature allow principled ways
smoothing, interpolation, merging, analysis, etc. It is our b
lief that the main reason preventing intonation being used
ASR systems is the lack of an equivalent model for the
tonational domain. In other words we disagree with sta
ment ~1! above, and argue that instead of fundamental
search holding back the application of intonation, it is t
lack of a suitable model which is robust, easily trainable, a
amenable to statistical interpretation.

The response to the second point stems from the
sponse to the first. For the sake of argument, let us supp
that a 5% relative decrease in word error rate could
achieved if ways were found to use the above cited functi
of intonation in an ASR system. If an ASR system build
had to adopt a separate approach for each of these, the
tion in complexity to the overall system would probably b
deemed to be too great a cost for the potential increas
performance. If, on the other hand, a single robust intona
model could provide the basic information needed to harn
all these functions, it would reduce the cost and might sw
the balance in favor of using the intonational information

While other speech technology applications such as T
have long made use of more traditional intonational mod
16977(3)/1697/18/$17.00 © 2000 Acoustical Society of America
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we believe that these applications can also benefit from
provision of a robust intonational model. In the past, T
systems typically had just a single ‘‘voice.’’ Recently muc
attention has been given to the notion of having large nu
bers of voices in synthesis systems~Hunt and Black, 1996!.
A logistic requirement of this is that the speech on wh
these voices are modeled should be acquired quickly wh
implies automatic transcription techniques for all comp
nents including intonation. Hence we need some way to
tomatically analyze and parameterize data so that the int
tional characteristics of a speaker can be captured.

B. Requirements of an intonational model

The basic aim of intonation models is to provide a s
tem of intonational description that is linguistically meanin
ful in such a way that representations in this system can
automatically derived from the relevant parts of an utt
ance’s acoustics, and that the acoustics can be automati
synthesized from the representation.

By ‘‘linguistically meaningful’’ we mean a representa
tion which contains information which is significant to th
linguistic interpretation of an utterance’s intonation. This e
cludes effects which are purely redundant, or phenom
which affect theF0 contour but which are not important i
this sense~e.g., segmental perturbations!. We do include
phenomena that affect intonation on the syntactic, sema
pragmatic levels, and also what has traditionally been
scribed as ‘‘paralinguistic,’’ but an explanation of how the
levels relate to the phonetic Tilt model is outside the scope
this paper.

Existing linguistic representations range from relative
low-level phonetic descriptions such as the Fujisaki mo
~Fujisaki and Ohno, 1997!, the Hirst model~Hirst, 1992!,
and the RFC model~Taylor, 1995!, to higher-level systems
such as the IPO model~t’Hart and Collier, 1975!, to phono-
logical systems such as Pierrehumbert’s~Pierrehumbert,
1980!, Ladd’s ~Ladd, 1996!, and ToBI ~Silverman et al.,
1992!. A full discussion of the issue of linguistic represent
tion is given in Sec. IV, but we will now give the mai
desired properties of such a representation:

~1! Constrained. The representation should be as compa
possible having few degrees of freedom. Specifically,
dundancy should be absent so that one part of the re
sentation cannot be derived from another.

~2! Wide coverage. The representation should cover
many intonational phenomena as possible and shoul
capable of expressing distinctions in utterances wh
are perceptually different.

~3! Linguistically meaningful. The form of the represent
tion should be such that its parameters can be interpr
and generated by higher-level components.

It is clear that these properties have a tradeoff: an
constrained system with many degrees of freedom will h
wider coverage than a system with few. The notion of p
viding constrained, compact models is common through
linguistics and it is a general rule of thumb that a comp
representation system with low redundancy and an ortho
nal description space is a better linguistic representation
1698 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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one without these properties. Furthermore the propertie
the linguistic representation interact with the two furth
goals:

Automatic synthesis. The model should have an au
matic mechanism for generatingF0 contours from the lin-
guistic representation.

Automatic analysis. It should be possible to derive t
linguistic representation automatically from an utteranc
acoustics.

It is fairly easy to design a representation which is a am
nable to automatic analysis and synthesis if one is not w
ried about the linguistic relevance of the representation.

Given the interaction between these desires, we h
developed a model of intonation that tackles these proble
together in an attempt to provide a reasonable balance
tween them. TheTilt modelprovides a linguistic representa
tion which is compact, has wide coverage, and is lingui
cally meaningful. Importantly, the model has be
specifically designed to facilitate automatic analysis and s
thesis. The following sections now describe the represe
tion system and the analysis and synthesis systems w
allow mappings between the representation and theF0 con-
tour.

I. OVERVIEW OF THE MODEL

The basic unit in the Tilt model is theintonational event.
Events occur as instants with nothing between them, as
posed to segmental based phenomena where units occu
contiguous sequence. The basic types of intonational e
are pitch accentsand ~following the popular terminology!
boundary tones. Pitch accents~denoted by the lettera! are
F0 excursions associated with syllables which are used
the speaker to give some degree of emphasis to a partic
word or syllable. In the Tilt model, boundary tones~b! are
rising F0 excursions which occur at the edges of intonatio
phrases and as well as giving the hearer a cue as to the e
the phrase, can also signal effects such as continuation
questioning. A combination eventab occurs when a pitch
accent and boundary tone occur so close to one another
only a single pitch movement is observed. There are diff
ent kinds of pitch accents and boundary tones: the choic
pitch accent and boundary tone allows the speaker to
duce different global intonational tunes which can indica
questions, statements, moods, etc., to the hearer.

The Tilt model can be regarded as aphoneticmodel of
intonation in that it describes the intonational phenome
observable in anF0 contour. This contrasts with aphono-
logical model which is concerned with the underlying stru
ture of the intonation. It is only in a few practical cases th
this distinction actually matters much, for example, with t
treatment of ‘‘level accents.’’ These are pitch accents wh
have no observableF0 behavior and hence should be prese
in a phonological transcription but not a phonetic one.

The sequence of events in an utterance is called anin-
tonational stream. A full intonational description is obtained
by joining the intonational stream to thesegmental stream
~the sequence of phones! for the utterance. Bidirectiona
links can exist between units in one stream and units in
1698Paul Taylor: Tilt model of intonation
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other stream, with the restriction that links cannot cro
Events are linked to syllabic nuclei~usually vowels!, as
shown in Fig. 1. In this way the intonation stream and
segment stream can be analyzed separately and one ca
find out whether a particular intonational unit is linked to
particular segment or syllable. In generative phonology s
descriptions are calledautosegmentaldiagrams consisting o
tiers ~streams! and association lines~Goldsmith, 1989!.
Viewing intonation in this way is useful in that one ca
decouple the intonation part from the segmental part and
compare intonation descriptions independently of the ac
text they are associated with. There is no loss of descrip
power in this; one can still ask whether a syllable or segm
is ‘‘accented’’ or not.

Unlike traditional intonational phonology schemes~Pier-
rehumbert, 1980; Silvermanet al., 1992! which impose a
categorical classification on events, we use a set of cont
ous parameters. These parameters, collectively known asTilt
parameters, are determined from examination of the loc
shape of the event’sF0 contour. A previous paper~Taylor,
1995! presented the rise/fall/connection~RFC! model. In this
model, each event is fully described by a rise shape, a
shape, or a rise shape followed by a fall shape. Each eve
parameterized by measuring the amplitudes and duration
the rises and falls which can be done by hand or by the cu
fitting algorithm described in Sec. IV A. For a rise–fa
shape, three points are defined which correspond to the
of the event, the peak~the highest point!, and the end of the
event. The rise duration is the distance in time from the s
of the event to the peak, and the fall duration is the dista
from the peak to the end; likewise, the rise amplitude is
difference inF0 between theF0 value at the peak and at th
start, and the fall amplitude is theF0 distance from the end
to the peak.~Hence rise amplitudes are always positive a
fall amplitudes are always negative.! In this way each even
is characterized by four parameters: rise amplitude, rise
ration, fall amplitude, and fall duration. If an event has on
a rise component, its fall amplitude and duration are set t
Likewise when an accent only has a fall. These four para
eters are ‘‘local’’ to the event—a fifth parameterposition is
used to specify the alignment of the event to the syllable
is usually measured as the distance from the start of
vowel. The sections of contour between events are ca

FIG. 1. Schematic representation ofF0, intonational event stream and se
ment stream in the Tilt model. The linguistically relevant parts of theF0
contour, which correspond to intonational events, are circled. The ev
labeleda for pitch accent andb for boundary are linked to the syllable
nuclei of the syllable stream. Note that every event is linked to a sylla
but some syllables do not have events.
1699 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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connections~denotedc! and are also described by an amp
tude and duration.~The connection is described further
Sec. IV C!.

While the RFC model can accurately describeF0 con-
tours, the mechanism is not ideal in that the RFC parame
for each contour are not as easy to interpret and manipu
as one might like. For instance there are two amplitude
rameters for each event, when it would make sense to h
only one. TheTilt representation helps solve these proble
by transforming the four RFC parameters into three Tilt p
rameters, namelyduration, amplitude, and tilt itself. Dura-
tion is simply the sum of the rise and fall durations. Amp
tude is the sum of the magnitudes of the rise and
amplitudes. The tilt parameter is a dimensionless num
which expresses the overallshapeof the event, independen
of its amplitude or duration. It is calculated by taking th
ratio of the differences and sums of the rise and fall am
tudes and durations, as explained in Sec. IV B. The R
position parameter is kept unchanged in the Tilt represe
tion. The Tilt representation is superior to the RFC repres
tation in that it has fewer parameters without significant lo
of accuracy. Importantly, it can be argued~see Sec. VI! that
the Tilt parameters are more linguistically meaningful.

Sections III and IV explain how the boundaries of even
can be located from an utterance’s acoustics and how a
matic RFC and Tilt analysis is performed. Section V d
scribes howF0 contours can be synthesized from Tilt re
resentations, and the paper concludes with a discussio
the concept of linguistic meaningfulness in intonation and
implications for the Tilt and other models.

II. DATA

The three databases used in the experiments are br
described below. Further technical details about the corp
and their availability can be found in Appendix B.

A. DCIEM maptask

This is a corpus of 216 dialogues collected by Canad
Defense and Civil Institute of Environmental Medicin
~DCIEM! ~Bard et al., 1995!. Each dialogue consists of re
cordings of two participants playing a game called t
maptask, where one participant describes a route on a ma
the other participant. The maps are designed to be confus
with the aim of eliciting interesting dialogue structures fro
the participants. The speech is fully spontaneous and c
tains many disfluencies. The database has a particularly
variety of types of utterance, e.g., it contains many questio
instructions, statements, confirmations, back-channels, et
subset of 25 dialogues~about 2 h of speech! was used here
Two partitions of the corpus were used. The first is a spea
independent set and comprised 20 dialogues for training
5 for testing with none of the speakers in the training
being in the test set. All the results reported in Secs. IV E a
V are on the test set from this partition. One of the speak
in the corpus set appeared in several dialogues and a spe
dependent partition containing just his speech was also u

ts,

,

1699Paul Taylor: Tilt model of intonation
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B. Boston radio news corpus

This is a corpus of news stories read by professio
news reader, collected at Boston University~Ostendorfet al.,
1995!. A subset of 34 stories of about 48 min from on
speaker was used for experiments here.

C. Switchboard

Switchboard is a corpus of about 2000 spontane
speech dialogues collected live over the US telephone
work ~Godfrey et al., 1992!. Experiments reported here a
based on a 1-h subset, chosen~by researchers at ICSI, Ber
keley! to achieve maximum acoustic and phonetic variabi
across the corpus. Within this hour there are about 100
ferent speakers from all parts of the United States. Fifty m
utes were used for training and 10 for testing.

D. Hand labeling

The databases were hand labeled to produce intonati
transcriptions. The transcriptions were produced by using
interactive speech analysis tool which displayed the wa
form andF0 contour, and allowed the labelers to listen to t
speech. The labelers were instructed to locate pitch acc
and boundaries within each utterance, in accordance with
intonational event model described above. A few extra f
tures were added to make the labeling easier from a hu
point of view and to help in the error analysis of the au
matic system:

d Level accents give the perception of accentuation but h
no discernibleF0 movement associated with them. A
though we previously said that these should not be par
a phonetic description of intonation, these were marked
the database as normal pitch accents with anl diacritic.
The diacritic making allows these to be ignored at a la
stage if desired.

d One of the biggest problems in hand labeling intonation
that there are a large number of cases, especially in
nuclear position, where there is a ‘‘hint’’ of a pitch accen
but it is difficult to tell with certainty whether it is actually
there or not. Often this is because a syllable is clea
perceived as being stressed, but there is only a littleF0
movement observable in theF0 contour. Labelers marke
these as being accented and gave them a separate dia
indicating they were ‘‘minor’’ accents.

d In the Tilt model, only rising boundaries are classed
events. Falling boundaries are the default case and are
classified as true events. However, when labeling the
pus it was decided to give the labelsrb to rising bound-
aries andfb to falling boundaries, again with the idea th
the fb labels could be ignored later if desired. Norm
well-formed utterances always end in one of these t
labels. In spontaneous speech, however, many uttera
are abandoned and hence it is possible for utterance
end with no boundary event.

d Silence was labeledsil.
1700 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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E. Labeling consistency

In assessing any labeling scheme it is important to g
consistency figures. As well as demonstrating the inher
reliability of the task they also serve to set an upper mea
able limit of performance for an automatic system~it is con-
ceivable that the system could beat a human labeler, bu
would not be able to tell!. As the automatic event detecto
described below is tested against human transcriptions,
important to know how many errors in the human transcr
tions we can expect.

Five labelers were used, all of whom were Edinbur
University Ph. D. students studying various intonation topi
For comparison purposes, each of the labelers transcribe
same DCIEM dialogue. Their transcriptions were compa
using a modified form of the dynamic programming scori
algorithm that is standard in the speech recognition field~see
Young et al., 1996 for an explanation!. This scoring algo-
rithm produces two figures, % correct which gives the to
number of events correctly identified and % accuracy wh
is % correct minus the percentage of false insertions. T
standard algorithm is modified to penalize situations wh
the correct label sequence is present but the timings
wrong. In intonation transcriptions, because of the sm
number of labels, there is a quite high probability that tw
label sequences will match by chance. To ensure that th
not taken as correct, a further constraint is enforced wher
labels have to have a temporal overlap of 50% to be con
ered the same.

The pairwise scores for all the labelers were 81.6% c
rect with 60.4% accuracy. When ignoring the acce
marked with the minor diacritic, the agreement is 88.6% c
rect with 74.8% accuracy, showing that a large number
errors were caused by minor accents. Looking at the type
events separately, the agreement for pitch accents is 81
correct, 58.1% accuracy and the agreement for boundari
83.3% correct and 64.1% accuracy. There are very few o
studies published on inter-labeling accuracy, but Pitr
et al. ~1994! cite an accuracy figure of 80.6%. We feel the
higher figure is mostly due to their comparison data hav
more read speech, as the accent location task is virtu
identical to ours.

III. AUTOMATIC DETECTION OF EVENTS

This section describes the first stage of the autom
analysis process, namely determining the approximate e
start and end positions as mentioned in Sec. IV A. The s
ond stage, whereby events are assigned Tilt parameter
discussed in Sec. IV.

A. Detection versus classification

This section describes anintonational event detecto
which locates intonational events from the acoustic inform
tion alone. It is important to note the distinction between t
type of system and anintonational classifierwhich uses a
linguistic segmentation of the utterance to perform inton
tional analysis. An intonational event detector is analogo
to a speech recogniser in that it determines a sequenc
linguistic units ~words or phones in the case of a spee
1700Paul Taylor: Tilt model of intonation
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Tilt
in-
recognizer, pitch accents, and boundaries for intonatio
events! from the acoustic input alone. An intonational cla
sifier, on the other hand, starts with a linguistic segmenta
~for purposes of discussion we will assume these are
lables, but words and phones are also possible! and performs
a classification to determine which one ofN intonational
categories~including unaccented! a linguistic unit has. Each
approach has strengths and weaknesses which we will
briefly discuss.

Intonational classifiers have an easier task in some s
because once given a linguistic segmentation, much of
work has already been done. However, in a fully automa
system the linguistic segmentation must be done autom
cally also, and in certain situations~e.g., when recognizing
Switchboard data! the linguistic segmentations can be ve
error prone. This may weaken classification performa
considerably. The systems also differ with respect to ali
ment and association. The temporal relationship betwee
pitch accent and its associated syllable is not simple. Exp
ments with the Tilt model have shown that only about 50
of accents have their peak within the boundaries of the a
ciated syllable: the remainder have either late or early pe
which are actually closer to adjacent syllables. Event de
tors show the precise location of events in time but do not~in
the first instance! show which syllable or word is accente
Conversely, classifiers show that a certain syllable is
cented or unaccented, but do not say where in relation to
syllable the accent is to be found.

The choice of which approach to take is based on w
the intonational analysis system is to be used for. Spe
cally, it depends on whether it is reasonable to assume th
linguistic segmentation is actually available, and which
more important for the particular application: knowing t
precise location of the accent or knowing which syllables
accented. Here we report an automatic intonational event
tector; work by others has already been performed on in
national classifiers~e.g., Ross and Ostendorf, 1995!. The Tilt
model itself can work with either approach; all it needs is
approximate location of the events, which both approac
can provide.

A final point concerns accuracy measurements of
systems. It is important to note that it is not possible
meaningfully compare accuracy figures for the two types
system. The accuracy figures for classification systems
always be expected to be considerably higher for two r
sons. First, for reasons of system development, the lingu
segmentation is normally assumed to be perfect and so s
degradation is to be expected when used with a fully au
matic system. Second, and more importantly, classifica
results normally report how well the system identified un
cented syllables. As these may typically account for 70%
80% of the syllables in the test set, it is important to see
baseline accuracy for such systems as being this figure
event detection, there is no such baseline and becaus
insertion errors, figures may even be worse than 0%.

B. Event detector overview

The automatic event detector uses continuous den
hidden Markov models to perform a segmentation of
1701 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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input utterance. A number of units are defined and an HM
is trained on examples of that kind from a pre-labeled tra
ing corpus using the Baum–Welch algorithm~Baum, 1972!.
Each utterance in the corpus is acoustically processed so
it can be represented by a sequence of evenly spaced fra
Each frame is a multi-component vector representing
acoustic information for the time interval centered arou
the frame.

Recognition is performed by forming a network com
prising the HMMs for each unit in conjunction with a
n-gram language model which gives the prior probability
a sequence ofn units occurring. To perform recognition o
an utterance, the network is searched using the standard
erbi algorithm to find the most likely path through the ne
work given the input sequence of acoustic vectors.

Using the HTK toolkit~Young et al., 1996!, a series of
experiments was performed, each following the same exp
mental procedure. First an HMM set is defined, with ea
HMM representing one intonational unit~such asa or c!.
Each HMM has three states, each of which initially has
single Gaussian which gives the probability density funct
for the acoustic data. The HMM parameters are initializ
using the Viterbi algorithm to provide starting estimates
the model parameters. Training proper is performed us
the Baum–Welch algorithm. A number of training iteratio
are performed until convergence is reached. The sin
Gaussian is then split into two Gaussian components to f
a Gaussian mixture for that state and the Baum–Welch a
rithm is run again. This process is repeated for models o
3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, and 28 components.
the experiments used the nonembedded form of the Bau
Welch algorithm. In this style of training each HMM i
trained on frames of speech lying within the boundaries of
own units only, as opposed to embedded style training wh
only the sequence of units is given and it is up to the train
algorithm to assign frames appropriately. Experime
showed that this style of training consistently produced b
ter results than embedded training.

Testing is performed by running the trained system o
test data and comparing the transcriptions to those produ
by a hand labeler using the procedure outlined in Sec. II
This technique simply decides if an event in the automa
transcription corresponds to an event in the reference t
scription. In most of the results reported below, all events
treated as the same category, so a pitch accent in the
transcription can be successfully matched to either a p
accent or boundary tone in the reference transcription. S
tion III D gives individual scores for pitch accents an
boundary tones. The comparison procedure gives %cor
and %accuracy for the standard case and for the case w
minor accents are ignored. In all cases, the %accuracy for
standard case is taken to be the most important measure
is the one used for determining the highest scoring syste

Sections III C and III D report experiments on differe
feature and label configuration for the DCIEM test data. S
tion III E compares these with results for the Boston Ra
News Corpus and Switchboard. It should be noted that n
of this data was used in the development of the RFC and
models. The HMM event detector was developed on a tra
1701Paul Taylor: Tilt model of intonation
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TABLE I. Performance in terms of % correct and % accuracy for different feature sets.

Features % corr % acc % major corr % major a

F1 F0 and energy 57.7 26.6 69.6 46.3
F2 NormalizedF0 and energy 61.7 33.6 73.0 51.7
F3 NormalizedF0 and energy1deltas 65.6 43.8 76.7 56.1
F4 NormalizedF0 and energy1deltas1acc 72.7 47.7 81.9 60.7
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ing and development test set which are now included in
DCIEM training set, and the test sets for the corpora c
properly be considered unseen evaluation data.

C. Features

The super-resolution pitch detection algorithm~Medan
et al., 1991! was used to extractF0 contours from wave-
forms for the DCIEM database. This algorithm has be
shown to be one of the most accurateF0 detection algo-
rithms currently available~Bagshawet al., 1993!, but con-
tours extracted from any state-of-the-art algorithm should
adequate for use in the model. The integrated pitch track
algorithm ~Secrest and Doddington, 1983! was used for
Switchboard because it gave better results on teleph
speech~which is often missing the fundamental!. Rms en-
ergy was calculated in the standard way. TheF0 and rms
values were combined to give a feature representatio
10-ms frame intervals.

Table I gives the results for four experiments on diffe
ent acoustic feature sets. ExperimentF1 used plainF0 and
rms energy. ExperimentF2 used a simple form of speake
and channel normalization, whereby the mean and stan
deviation of each speaker’sF0 and energy was calculate
and used to normalize all the data for that speaker.

It has been shown before~e.g., Taylor, 1995! that the
changein F0 is a particularly salient cue to the presence
a pitch accent, and so the normalizedF0 and energy mea
sures were supplemented by their delta coefficients. De
were calculated in the standard way by taking an estimat
the first derivative of a value over a period of four frames
is also possible to calculate a second order delta which g
the rate of change of the normal delta coefficients. Exp
mentF3 gives the results for the normalized and delta co
ficients and experimentF4 gives the results for the norma

TABLE II. Description of different label sets.

Name Labels Description

L1 sil, c, ande Major pitch accents and rising
boundaries aree. Fallingboundaries,
minor and level pitch accents arec

L2 sil, c, a, ab, b Major, minor and level pitch accents ar
a; all rising boundaries areb, falling
boundaries arec

L3 sil, c, a, ab, b Normal pitch accents area; rising
boundaries areb; minorand level pitch
accents and falling boundaries arec

L4 sil, c, a, fb, rb, afb,
arb, m, mfb, mrb ,
l, lrb, lfb

full label set
oc. Am., Vol. 107, No. 3, March 2000
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ized, delta and delta–delta coefficients. As feature setF4
gave the best results, its feature combination was used fo
the subsequent experiments.

D. Labels

As far as the Tilt model is concerned, there are only fi
intonation labels, namelya, b, ab, c, andsil. However, for
the reasons described in Sec. II D, a richer label set was u
for hand labeling which differentiated rising and fallin
boundaries, and had diacritics for level and minor accents
series of experiments were performed to see which labe
was the optimal for the HMM event detector. These expe
ments investigated whether level accents, minor accents,
falling boundaries should be included in the label set.

Four label sets, shown in Table II, were defined to
vestigate the various issues just outlined. Label setL1 is the
simplest possible set, where pitch accent and boundary la
are mapped to a single labele, representing all events. In se
L2 andL3, rising boundaries are labeledb, falling bound-
aries are ignored~i.e., they are labeledc!, and pitch accents
are labeleda. In setL2, level, minor, and normal pitch ac
cents are grouped into a single accent categorya, while in set
L3, only normal accents are labeleda, level and minor ac-
cents are ignored~labeledc!. In set L4, all variations are
given their own label, so that level accents are labeledl,
minor accentsm, and the combined accent and bounda
labels for each~ab for normal accents! are also marked sepa
rately.

A separate recognition experiment was performed
each set of labels. In testing, as before, the identities of
event labels were treated as equivalent, allowing direct co
parison across label sets. It is clear from the results give
Table III that the sets with finer event distinctions out pe
form the sets where different types of events are grou
together. The best performing set isL4, where each possible
type of event has its own HMM. Hence this label set w
adopted as the standard set in the event detector and use
all the other experiments, including those previously
ported on feature usage.

In all the results reported here, events of one la
matching events of another are considered correct. To s

TABLE III. Performance in terms of % correct and % accuracy for differe
label sets.

Labels % corr % acc % major corr % major acc

L1 60.2 43.8 73.4 56.9
L2 70.5 46.9 80.4 56.9
L3 67.6 44.1 77.9 54.4
L4 72.7 47.7 81.9 60.7
1702Paul Taylor: Tilt model of intonation
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individual labeling accuracy, however, a set of comparis
were performed where labels had to match their own type
be considered correct. Table IV shows that labels often
not match themselves very well, for instance whena accents
are compared toa accents in the reference transcription t
accuracy is only 25.9%. As expected, minor and level
cents are extremely difficult to detect and have very l
accuracy~224.2% and252.4%!. However, whena, l, and
m accents are allowed to match with each other, the per
mance is substantially higher. The accuracy for bound
event detection is relatively low at 19.2%. The further resu
for boundary detection show that the source of errors is
most entirely due to falling boundariesfb being missed
~225.9%!, the score for rising boundary detection is subst
tially higher at 34.8% accuracy. These figures tell us t
things. First, events which are not distinct acoustically
detected with much lower accuracy than those which h
prominent acoustic features. In acoustic termsfb is often just
a section of flatF0 contour, whereasrb often has a promi-
nent risingF0. Second, although discrimination between t
three accent types is poor, collectively they actually prod
better accent recognition than when a single model is trai
for a, l, and m ~label setL2 gives 73.1% correct 40.5%
accuracy for accents!.

E. Datasets

The above results give event detection performance
the speaker independent DCIEM test set~SI-DCIEM!. Fur-
ther experiments were performed on a single speaker su
of this ~SD-DCIEM!, the Boston University Radio New
Corpus~RN! and Switchboard~SWB!, all using theF4 fea-
ture set. Results are shown in Table V. The results for
SI-DCIEM corpus are the same as those in Tables I and
The SD-DCIEM corpus contains about 30 min from a sin
speaker, and this was used to examine the differences
tween a speaker independent and speaker dependent

TABLE IV. Individual performance in terms of % correct and % accura
for different labels.

Reference label Test label % correct % accuracy

a a 71.9 25.9
m m 3.4 224.2
l l 9.8 252.4
alm alm 70.9 44.2
fb rb fb rb 58.0 19.2
rb rb 55.0 34.8
fb fb 49.1 225.9

TABLE V. Performance in terms of % correct and % accuracy for differ
data sets.

Dataset % corr % acc % major corr % major acc

SI-DCIEM 72.7 47.7 81.9 60.7
SD-DCIEM 82.1 63.1 88.1 70.2
Radio News 3 69.4 49.7 79.4 59.3
Radio News 1 68.9 49.2 n/a n/a
Radio News 2 67.1 45.7 n/a n/a
Switchboard 60.7 35.1 71.5 47.4
1703 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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detector. There is a clear improvement in performance fr
the speaker independent to the speaker dependent test.

The three different results of the Radio News corp
correspond to different labeling situations, RN1 correspo
to the L4 label set as used in the other experiments, wh
RN2 and RN3 correspond to transcriptions which have au
matically been converted from ToBI transcriptions. The R
corpus had been previously labeled at Boston University
ing the ToBI scheme and we investigated whether a datab
already labeled with the ToBI scheme could be conver
into the Tilt model scheme. The mapping, which is qu
complex, is described in Appendix A. There are two va
ants. In RN2 all ToBI boundary tones are labeled asb, and in
RN3 H% tones are labeled asrb , andL% tones are labeled
asfb. The RN corpus is from a single speaker only and s
is somewhat surprising that the results, although better t
SI-DCIEM, are not as good as SD-DCIEM. This result led
to further analysis of the SI-DCIEM where we examined t
errors attributed to each of the ten speakers in the test
separately. We found there was quite a large variation
performance, with the best speaker having 76.3% correct
58.9% accuracy, and the worst 64.3% correct and 33
accuracy. The difference in performance between S
DCIEM and RN lies within this range and hence the diffe
ences may be attributed to some speakers being natu
more suited to the approach than others.

It is interesting to note that the best results for the To
mapped labels~RN2 and RN3! are nearly the same as th
results for the Tilt labels~RN1!. This is an important resul
because it means that the event detection technique desc
here can be used on databases already labeled with the
scheme. However, although the performance of the RN1
RN3 is similar, the actual transcriptions they produce
significantly different. The results in the table were obtain
by testing the RN1 trained event detector against the tes
labeled using RN1. Likewise the RN3 event detector w
tested against an RN3 labeled test set. When the RN1 e
detector is tested on the RN3 labeled test set, the per
mance drops to 49.1% correct with 40.2% accuracy. T
biggest discernible difference in the two sets is that the
set~RN1! has many more accent labels than the ToBI~RN3!
set. Whether this is due to a fundamental difference in
labeling schemes, or just a discrepancy between labele
difficult to say. In summary then, it is possible to map To
labeled data into event labels and train an accurate e
detector, but one should not assume that the resulting la
ing from this is the same as from a Tilt event detector.

The results for Switchboard are worse than for the ot
datasets. Accurate word transcription of Switchboard
proved a notoriously difficult task for speech recogniti
systems, which often perform much worse on this task th
others. Many reasons are given for Switchboard’s difficu
including disfluencies, ‘‘poor’’ pronunciations~i.e., substan-
tially different from citation forms! and low acoustic quality.
As regards the performance of the event detector we
probably rule out the spontaneous nature of the speec
being the source of the poorer performance. Although
task is different, the DCIEM corpus is fully spontaneous a
and contains highly diffluent speech. The DCIEM corpus

t

1703Paul Taylor: Tilt model of intonation
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recorded from speakers of a fairly homogeneous regio
accent group, while Switchboard is from speakers fr
across the entire United States and this may account
some of the worse performance. However, in our opinio
is the differences in acoustic quality which are probably
most important factor. While DCIEM was recorded wi
high quality close talking microphones in a quiet roo
Switchboard was recorded live over the US telephone
work. The acoustic quality of Switchboard is very bad
places, with background noise, and telephone network
facts. The poor acoustic quality affects feature extract
with many more errors inF0 being present than with othe
databases. However, given that Switchboard is such a d
cult database, the figures of 60.7% correct and 35.1% a
rate may not be too bad.

IV. DERIVING TILT PARAMETERS FROM EVENT
BOUNDARIES AND F0 CONTOURS

The event detector produces a segmentation of the u
ance from which it is possible to derive the start and e
positions of the events. This information is used to delim
region of contour that is first turned into RFC parameters
then Tilt parameters. Each of these processes is now
scribed in turn.

A. Automatic RFC analysis

Automatic RFC analysis involves determining the p
cise locations of the start, peak, and end positions and u
the values to calculate the rise amplitude, rise duration,
amplitude, and fall duration of the event. This process
explained in more detail in Taylor~1995!; here we present a
summary.

RFC analysis operates only on sections ofF0 contour
which have been delimited by the event detection proced
Each of these sections is smoothed using a median smo
ing algorithm, and unvoiced regions are interpolated throu
This ensures that the RFC analysis sees only smooth
voiced contours. Smoothing serves a number of purpo
First, median smoothing is useful for removing isolated s
riousF0 values produced by the errors in the extraction p
cess. Second, it helps remove the natural minor perturbat
in F0 periods which result from natural variations in th
speaker’s production. While these perturbations aff
speech quality, they are not important in intonation analy
and synthesis and can be removed without distorting the
tonational content of the contour. A median filter with a wi
dow of about 7–11 points is sufficient to smooth the conto

After smoothing, a peak-picking algorithm is used
determine whether the event is a rise, fall, or combined ri
fall. If a peak is found, then the event is classified as a co
bined rise–fall. The peak position~if present! and the start
and end position as given by the event detector, are use
definesearch regions. In the case of a single rise or fall eve
~as shown in Fig. 2! the search regions are defined to be 20
before and after the approximate event detector bounda
Typically this will correspond to ten 10-ms frames for th
start and ten frames at the end. Each start frame positio
combination with each end frame position is taken as a
tential start and end point, and aF0 curve is synthesized
1704 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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~using the technique described in Sec. V! for each of these
start and end combinations~in our example this is 102

5100 curves!. Each of these curves is compared with t
values of the actualF0 contour at that point and the curv
with the lowest Euclidean distance is taken to be the bes
Compound rise–fall events are treated similarly, but in t
case two searches are performed. The first search~to find the
rise! defines its start search region as before, but the
position is fixed as the peak. The second search~to find the
fall! has a fixed start position at the peak and has a varia
end search region as above. This procedure is continued
all the precise start, peak, and end times have been loc
for every event in the utterance.

B. Automatic tilt analysis

The Tilt representation is easily derived from the RF
representation by application of the equations described
low. The tilt parameter itself is an abstract description of t
F0 shape of an event. Tilt is calculated by comparing
relative sizes of the amplitudes and durations of the rises
falls for an event. Amplitude tilt is given by

tilt amp5
uAriseu2uAfallu
uAriseu1uAfallu

~1!

and duration tilt is given by

tilt dur5
D rise2D fall

D rise1D fall
. ~2!

Empirical evidence has shown that these parameters
highly correlated~see Sec. IV E! to the extent that a single
parameter can be used for both amplitude and durational
This single value is calculated from the averages of both

tilt5
uAriseu2uAfallu

2~ uAriseu1uAfallu!
1

D rise2D fall

2~D rise1D fall!
. ~3!

The other two tilt parameters, amplitude and duration,
calculated in terms of the sum of the magnitudes of the ri
and falls:

Aevent5uAriseu1uAfallu, ~4!

Devent5D rise1D fall . ~5!

FIG. 2. Search regions for fall accents.
1704Paul Taylor: Tilt model of intonation
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C. Segmental and event based views

So far events have been described using what amo
to local information about their amplitude, duration, a
shape. There are a number of ways to describe further in
mation, specifically how events are located in time with
spect to the rest of the utterance.

There are two possible formally equivalent ways to
this. The first makes use of the filler unitconnection, imply-
ing a segmentally based view in which all the information
presented as a contiguous sequence of units, one en
where the next starts. In this view, connections take du
tions such that the total duration of an intonational desc
tion can be calculated by summing the durations of the c
nections and events. Connections also have amplitude
that the startingF0 value of an event following a connectio
is given by the endF0 value of the previous event plus th
amplitude of the connection.

An alternative view, which does away with the need f
connections, is closer to the philosophy of the event ba
formulation described in the overview. Connections can
eliminated by explicitly attaching time and distance fro
baseline parameters to the events. For theF0 value we des-
ignate a parameterstart-F0 which specifies the height in H
to the start of the event. The simplest way to specify
position parameter is with respect to the start of the ut
ance, for example, saying that the start of the event is 2
from the start of the utterance. An alternative is to meas
position with respect to the syllable with which the event
associated. In practice we have to use a measure which g
the distance from the start of the nucleus of the sylla
~usually the vowel! to the peak~the join between the rise an
fall! of the event. If the event is rise only the end of the r
is used, if the event is fall only the start of the fall is use
The start of the nucleus is used because it is easy to loca
a segmented utterance and because the start of the sy
itself ~that is, the boundary between the current syllable a
the previous one!, is often difficult to determine.

Measurement with respect to the start of the uttera
~absolute position! and with respect to the associated syllab
~syllabic position! each have their own advantages. Absolu
position is useful when the intonation stream is produced
isolation and where the syllable stream is not present. S
labic position is useful in that it behaves similarly to th
three proper Tilt parameters, and can be considered to
local parameter which carries intonational significance.

The information in all the formulations is exactl
equivalent and one can be mapped to another without los
information. The decision to use one rather than anothe
often made on the basis of the practical application in wh
the model is being used.

D. Interpretation of tilt parameters

Here we briefly describe the significance of each of
Tilt parameters. Amplitude corresponds to the phone
prominence of an event. While the correspondence is o
complex and dependent on context as Gussenhoven an
etveld ~1988! have shown, in general, it is the case that
bigger the amplitude of an event in a given location the m
1705 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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prominence it will receive. Amplitude is measured using t
linear Hertz scale. This has the advantage of being eas
interpret, but some additional processing is often required
obtain a more linguistically representative prominence val
For instance, pitch range often narrows toward the end o
utterance and hence an accent excursion of sizex Hz at the
start of an utterance will be perceived as less prominent t
an accent ofx Hz at the end~Liberman and Pierrehumber
1984!.

Duration is measured in seconds. Compared with
other Tilt parameters, duration does not contain much ge
ine high-level intonational information. While it would in
principle be possible to collapse amplitude and duration i
a single quantity of intonationalsize, the correlation studies
~described in Sec. IV E! have shown that duration and am
plitude are not highly correlated and their amalgamat
would result in a substantial loss of synthesis accuracy.
variance in the duration parameter mainly arises becaus
the interaction between the intonation and segme
streams. Differences in duration are often a function of
size of the voiced interval that an event can be realiz
within: some syllables are longer than others and crucia
some have substantially more voicing. It is common to s
events associated with short syllables~e.g., ‘‘pot’’! to have
short durations, while events associated with longer syllab
~e.g., ‘‘strength’’! to have longer duration.

Tilt is a measure of event shape and represents the
tive sizes of the rise and fall components of an event.
value of 11.0 indicates a rise, a value of21.0 indicates a
fall, a value of20.5 indicates an accent with a rise but whic
has a larger fall, and a value of 0.0 indicates an event w
equal sized rise and fall components. Values of 1.0 are o
found in boundary events~pure rises!, negative values
,20.3 are often found in down-stepped accents, while v
ues around 0.0 often typify simple hat orH* style accents.
Figure 3 shows five different event shapes with their tilt v
ues. Tilt is dimensionless and is not dependent on amplit
or duration.

In addition to the three core Tilt parameters it is al
worth mentioning the significance of thesyllabic position
parameter. As Ladd~1996! points out, when discussing tem
poral relations, it is important to distinguishassociationfrom
alignment. Association describes the structural relationsh
between the intonation stream and the segment stream
saying which units in one are linked to units in the oth
Alignment on the other hand describes the temporal relat
ship between units, and can be important in distinguish
pitch accent type. The syllabic position parameter is used
represent alignment in the Tilt model. In rise–fall even
syllabic position is the distance between the peak of
event ~i.e., the boundary between the rise and fall! and the
start of the nucleus of the syllable that the event is associ
with ~the accented syllable!. In simple rise or fall events it is
the distance between the start of the event and the start o
vowel of the accented syllable. An event which has the sa
amplitude, duration, and tilt parameters can signal differ
effects depending on its position. For instance, what
known asH* and H1L* accents in the Pierrehumbert no
tation can often be realized by a simple falling contour: t
1705Paul Taylor: Tilt model of intonation
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difference is that theH* occurs much later with respect t
the vowel than theH1L* . Further discussion of the positio
parameter is given in Sec. VI D.

E. Modeling accuracy of the tilt and RFC models

The motivation behind mapping RFC parameters i
Tilt parameters is to produce a new representation which
less redundancy and is more linguistically meaningful.
assessment of the linguistic relevance of the Tilt model is
to Sec. VI, but here we can give some evidence about
redundancy in the RFC and Tilt representations.

A useful way to examine redundancy in a set of data
to calculate its correlation matrix, which shows the corre
tion of every parameter against every other parameter. T
VI shows the correlation matrix for the RFC parameters
measured on the DCIEM test set. We can see clearly f
the table that a number of parameters are correlated to s
extent, for instance, rise amplitude against fall amplitude
rise duration against fall duration.

FIG. 3. Examples of five events with varying values of tilt.

TABLE VI. Correlation matrix for RFC parameters. Values near 1.0 in
cate positive correlation, values near21.0 indicate negative correlation an
values near 0.0 indicate little correlation. Note that the matrix is symme
and hence only the bottom left corner is shown for clarity.

Rise
amplitude

Rise
duration

Fall
amplitude

Fall
duration

Rise amplitude 1.0
Rise duration 0.33 1.0
Fall amplitude 20.48 20.04 1.0
Fall duration 20.18 20.46 0.025 1.0
1706 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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As explained above, the tilt parameter is calculated
averaging amplitude tilt and duration tilt into a single para
eter and it is this which allows the four RFC parameters to
reduced to three Tilt parameters. Is this justified? By co
bining the two tilt parameters in Eq.~3! we are effectively
saying that they are equal: taking the average of the tw
simply more robust than using either one alone. We can
arrange the equivalence Eq.~6! to give Eq.~7!

uAriseu2uAfallu
~ uAriseu1uAfallu!

5
D rise2D fall

~D rise1D fall!
, ~6!

uAriseu
D rise

5
uAfallu
D fall

, ~7!

which states that the magnitude of the gradient of the
part is equal to the magnitude to the gradient of the fall p
When we actually measure the correlation of the rise and
gradients for our data we get a high correlation of 0.6
which is higher that any shown in Table VI. The correlatio
between the amplitude and duration tilt parameters the
selves is 0.73. Hence collapsing the amplitude and dura
tilt parameters based on correlation is justifiable. Table
shows the correlation matrix of the tilt parameters for t
same data. There is a slight correlation between amplit
and duration~0.17!, but virtually no correlation between til
and amplitude and tilt and duration.

In theory, it is easy to map a set ofn-dimensional pa-
rameters to a set ofn21 dimensional parameters using sta
dard techniques such as principal component analysis. W
is more difficult is to achieve parameter reduction witho
significant loss of information. While the correlation figure
just quoted prove that the Tilt system provides a compact
of intonational control parameters which are independen
one another, it is important to prove that little informatio
has been lost in the process. The next section explains
RFC and Tilt representations can be converted back intoF0
contours and examines the accuracy of this process. C
cially, we show that the reduction of the four RFC para
eters to the three Tilt parameters is achieved without sign
cant information loss.

V. TILT SYNTHESIS

The synthesis process of converting Tilt representati
into F0 contours involves two steps: converting Tilt repr
sentations into RFC representations and then conver
these intoF0 contours. Given the Tilt parameters for a
event, the RFC parameters can be calculated by equa
formed by rearranging Eqs.~3!, ~4!, and~5!:

Arise5
Aevent~11tilt !

2
, ~8!

c

TABLE VII. Correlation matrix for Tilt parameters.

Amplitude Duration Tilt

Amplitude 1.0
Duration 0.17 1.0
Tilt 0.06 20.09 1.0
1706Paul Taylor: Tilt model of intonation
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Aevent~12tilt !

2
, ~9!

D rise5
Devent~11tilt !

2
, ~10!

D fall5
Devent~12tilt !

2
. ~11!

The conversion process first involves converting ev
style descriptions into segmental style descriptions~that is
start F0 andpositionparameters are converted into conne
tion information!. Next, Eqs.~8!–~11! are used to produce
the RFC parameters for the events. Each event is dec
posed into its separate rise and fall components, eac
which is synthesized using the following equation:

f 0~ t !5Aabs1A22.A.~ t/D !2, 0,t,D/2,
~12!

f 0~ t !5Aabs12.A.~12t/D !2, D/2,t,D,

whereA is rise or fall amplitude,D is rise or fall duration,
and Aabs is the absoluteF0 value at the start of the rise o
fall, which is given by the end value of the previous event
connection. Connections are synthesized using straight li

f 0~ t !5Aabs1A.~ t/D !, 0,t,D, ~13!

whereA is connection amplitude,D is connection duration
andAabs is as before.

A. Synthesis accuracy

We now address the question of synthesis accuracy.
is measured by taking a Tilt representation for an uttera
in the data, synthesizing anF0 contour from this and mea
suring the difference between the synthesized and real
tours.

It is well known that listeners are more sensitive to so
parts ofF0 contours then others, for instance, listeners
perceive differences in peak height more readily than v
leys. Unfortunately there is no known comparison techniq
that can mimic this behavior and so we are forced to us
cruder approach whereby all parts of the contour are tre
equally. To measureF0 contour similarity we use root
mean-squared error and correlation, which are somew
standard in the literature~e.g., Dusterhoff and Black, 1997
Fujisaki and Ohno, 1997; Ross and Ostendorf, 1994!. With
root mean squared error, it is not possible to say that
system is better than another if it only has a slightly low
error, but in general the measure is accurate enough to a
confident conclusions to be made about systems with la
differences in error.~For example, we cannot really conclud
that an error of 14.6 is definitely better than an error
15.11, but we can state more confidently that a system w
an error of 6.94 is better than a system with an error
15.11.!

Accuracy experiments were conducted on the 1061
terances in the DCIEM test set. To obtain the Tilt and R
representations for testing, we used the automatic ana
procedure described in Sec. IV A. This analysis was p
formed on the events derived from the hand transcripti
and on the events found by the automatic event detec
1707 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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process. For each utterance, the original raw and smoo
F0 contours were compared with the contours genera
from the RFC and Tilt representations. Table VIII shows t
rms error and correlation~r! for the comparisons.

Two clear patterns emerge from the table. First, look
at the first two rows of the table, we see that the artific
contours match the smoothed contours much better than
raw contours. The smoothing technique eliminatesF0 track-
ing errors and segmental perturbations, so it can be arg
that the smoothed contours are a more meaningful repre
tation to measure against than the raw contours. In a sim
attempt to focus on the relevant parts of the contour, theF0
regions within the event boundaries were subjected to
same analysis. Rows 3 and 4 show the results. There
slight improvements in rms error and slight reductions
correlation, but the overall pattern is the same as the er
for the complete contour. Rows 5 and 6 show the results
the contours synthesized from automatically detected eve
The correlations are about the same and the rms errors
slightly worse than for the hand detected events.

The second pattern we find is that although RFC c
tours are closer to originals than Tilt contours are to ori
nals, the difference is very small and often insignificant.
other words, the advantage in being able to convert R
representations into Tilt representations is not at the expe
of much synthesis accuracy. To demonstrate this point
ther, a comparison was conducted between the synth
RFC contours and the synthetic Tilt contours. The rms er
on hand detected events was 0.975 and the correlation
0.992, on automatically detected events the rms error
1.26 and the correlation 0.98. To all intents the contours
identical. From the comparison of synthesis accuracy of
Tilt and RFC we can conclude that there is very little info
mation lost in the RFC to Tilt mapping process. While Se
IV E showed that the three parameters in the Tilt represe
tion are quite independent, the synthesis result shows tha
dimension reduction in RFC to Tilt does not throw aw
much information.

In the Introduction we described one of the goals of
intonation model as being ‘‘wide coverage.’’ In fact the te
as to whether or not a model has wide coverage can be
mulated in terms of a synthesis test. Taken independe
from the other two goals, all ‘‘wide coverage’’ actuall
means is that the representation being used, in conjunc
with its analysis and synthesis processes, is powerful eno
to describe the data under examination. By ‘‘describe’’ w
mean having the ability to code the original data witho
information loss. So to check the coverage capability o

TABLE VIII. Accuracy figures for RFC and Tilt synthesis.

Representation
Raw

F0 rmse
Raw
F0 r

Smooth
F0 rmse

r Smooth
F0

Complete RFC 14.60 0.651 6.94 0.837
Complete Tilt 14.58 0.647 7.14 0.829
Event only RFC 12.86 0.630 6.82 0.798
Event only Tilt 13.13 0.620 7.15 0.786
Automatic RFC 15.11 0.651 7.16 0.841
Automatic Tilt 15.25 0.644 7.51 0.833
1707Paul Taylor: Tilt model of intonation
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representation, all we have to do is analyze it in terms of
representation, synthesize the data from this, and compa
the original. Representations giving low errors have w
coverage. Of course, it is relatively easy to produce an a
trary coding scheme which can do this if one does not
attention to the other goals. But so far wehaveshown that
the Tilt modelhassatisfied goals 1, 4, and 5, namely that
uses a constrained representation, and is capable of a
matic synthesis and analysis. We now turn to a discussio
the model’s fulfilment of the final goal, namely linguist
meaningfulness.

VI. LINGUISTIC MEANING

The most frequent criticism that has been made ab
the RFC and Tilt models is they are ‘‘only a coding of th
F0 contour, and are not linguistically meaningful.’’ A stric
definition of the term linguistically meaningful has bee
avoided until now, because it is a complex issue and requ
discussion in the light of the results reported above. It
difficult to come up with firm~i.e., experimental! evidence
for the model’s linguistic meaningfulness as there are
simple measures of this, in contrast to the fairly straightf
ward methods used to demonstrate the Tilt model’s suc
at the other stated goals. However, when we look at
issue more thoroughly, it is clear that it is very difficult
justify the linguistic relevance ofany existing model of in-
tonation. The following sections discuss various aspects
this issue.

A. Applications

We have stated that the Tilt model has been designe
facilitate intonational processing for speech technology
plications, and hence in the first instance we should add
the concept of ‘‘linguistically meaningful’’ in this sense. Fo
applications, the main requirement is that the Tilt repres
tation is ‘‘usable.’’ In a speech analysis environment~e.g., a
speech recognition system!, this means that Tilt representa
tions should be interpretable by other system compon
which need to use intonational information. In a synthe
environment~e.g., a text-to-speech system! the requirement
is that high-level modules in the system can generate
parameters from other linguistic representations.

The model has been used as the last component in
eral TTS intonation models. In Taylor and Black~1994! nor-
malized ~speaker independent! Tilt parameters were gener
ated from rule based feature descriptions. Speaker spe
parameters were then used to produce normal Tilt repre
tations from which F0 contours were generated. Blac
~1997! describes a method for learning Tilt parameters au
matically from data and then generating them at synth
run time. In an extension of this work, Dusterhoff and Bla
~1997! describe a method for using CART to generateF0
contours from high-level information in a text-to-speech s
tem. They do this by training the decision trees to produ
Tilt parameters. This study is particularly interesting in th
they perform a direct comparison between the Tilt repres
tation and a ToBI labeling of the same data. The Tilt rep
sentation gave slightly better performance, showing tha
least in this setup it is a useful representation.
1708 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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The Tilt model has also been successfully applied
speech recognition. Wright and Taylor~1997! describe a sys-
tem for automatically recognizing the dialogue act of an
terance from an analysis of its intonation. Each utteranc
automatically analyzed using the Tilt model and an HM
classifier is used to assign it to one of 12 dialogue act ty
~such as acknowledgement, yes–no question!. This classifier
has been used as a component in a speech recognition sy
and has been shown to help reduce word error rate~Taylor
et al., 1998!.

While the automatic analysis component has be
shown to produce Tilt representations that are useful in s
tems such as speech recognizers, it is clear that the use o
model in other potential applications is still some way o
For instance, it would be helpful if the analysis system co
automatically transcribe data for use for experimental da
base analysis. Such a use is not recommended, howeve
the considerable number of errors produced may have
adverse affect on further analysis.

B. The bias against continuous representations

The Tilt representation uses continuous variables to
scribe pitch accents, unlike more traditional representati
which use discrete categories. Here we take some tim
argue that continuous variables can legitimately form par
a linguistic intonational description.

It is traditional in linguistics to deal with categorica
~i.e., discrete! representations alone, to such an extent t
continuous representations are often deemed unlinguisti
some sense. This has led to properties of intonation that
clearly continuous, such as pitch range and prominence,
ing largely ignored, and study concentrating on categor
issues only, such as pitch accent type. Despite virtually ov
whelming evidence that prominence and pitch range foll
regular patterns and have an important linguistic funct
~Gussenhoven and Rietveld, 1988; Terken, 1991; La
1996, 1994!, these parts of intonation are often called ‘‘par
linguistic’’ and omitted from intonational representation
simply because of their continuous nature. The bias tow
purely discrete representations in linguistics is a hang-o
from traditional linguistics and has often been justified b
cause such representations are seen as being properly ‘
nitive’’ ~Pierrehumbert, 1990!. Massaro~1998! questions the
whole basis of categorical perception in linguistics, expla
ing that the dominance of this idea arises from equating
crimination with identification, an equivalence which do
not really hold. In recent years there has been a grow
acceptance of continuous representations in linguist
partly through the acceptance of connectionist models as
gitimate cognitive science. As such, the corollary that o
discrete phenomena can be considered cognitive does
hold.

The proponents of what Ladd~1996! terms the
Autosegmental-Metrical~AM ! school of intonation~Pierre-
humbert, 1980; Liberman, 1975; Bruce, 1977! have argued
strongly that intonation has a phonological level of repres
tation, in the same way as segmental phonology/phone
does, and that the sound patterns of intonation are bes
scribed with such representations. Much of the evidence
1708Paul Taylor: Tilt model of intonation
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the phonological level has stemmed from showing that
solved many problems with previous approaches beca
with a phonology, sound patterns can be described in
stract ways, without having to deal with pitch values direct
This allows meaningful comparison of intonation acro
speakers who have different pitch ranges, for instance. W
we believe that this is one of the major contributions to mo
ern intonation research, we believe the success of this
proach is due to the adoption of anabstract level of repre-
sentation in the broad sense, rather than a necess
phonologicalone in the traditional discrete sense. Just
cause abstract representations have proved useful, and
cause they share many similarities with the structures of s
mental phonology, it does not follow that abstra
intonational representations are necessarily phonologicain
the same way.

A crucial property of segmental phonology is that t
connection between the semantic and phonological pro
ties of a lexical item is arbitrary. This is proved by showin
that two words ~for example, ‘‘pill’’ and ‘‘bill’’ ! which
sound similar do not necessarily mean similar things. C
cially, we can prove that the segmental phonological spac
discrete by showing that is impossible toperceivea sound
which is half way between a /b/ or a /p/. It has been shown
synthesis experiments that if listeners are played a patter
words such as ‘‘pill,’’ each time with more voicing in th
initial stop, at some stage they will start to perceive the w
‘‘bill.’’ At no point, however, although the sound pattern
half-way between a normal /p/ and /b/, will the listeners co
jure up a half-way semantic image of an entity which is a
‘‘bill’’-like and a bit ‘‘pill’’-like. Thus although there might
be an acoustic continuum, there is a sharp perceptual bo
ary which prohibits interim semantic representations.

There is no evidence that intonation behaves in suc
way. It is clear that different acoustic intonation patterns c
give rise to different semantic interpretations, but the cruc
point is that the connection between intonational sound
meaning is not arbitrary in the same way, and that if into
tional soundSA gives rise to meaningMA and soundSB

gives rise to meaningMB , then a sound half-way betwee
SA and SB can certainly give rise to a meaning somewhe
betweenMA and MB . In other words, there has been n
evidence to show that there are strict boundaries betw
intonational units which signal abrupt changes in meani
Some studies have shown~Kohler, 1991b, 1991a; Pierrehu
mbert and Steele, 1989! that subjects do assign distinct s
mantic categories to certain pitch accent patterns. Th
studies lend support, however, to the idea that the map
from the acoustic to semantic space is complex and non
ear, but do not prove the key point with regard to categor
i.e., that there is a sharp semantic boundary occurring wi
a continuous acoustic range.

Ladd ~1996! in fact uses just this argument as supp
for there being proper, discrete phonological categories
intonation. In linguistics~including the phonological part o
intonation! he claims that ‘‘close similarity of phonetic form
is generally of no relevance for meaning’’ and states tha
contrast ‘‘semantic continua are matched by phonetic on
in paralinguistics. Crucially, he does not state theactual de-
1709 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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fining properties of a categorical system, namely that th
should be strict and identifiable boundaries between the
egories.

Further evidence for problems with categorical inton
tional classification come from consideration of how o
would actually go about producing a phonological invento
for a new accent or language. In segmental linguistics,
classical way to determine the phonological units of a la
guage is via the use of minimal pairs. This is how one c
find out whether, for instance,@r# and@l# are distinct phono-
logical units~as in English! or whether they are allophoni
~as in Japanese!. By knowing that the words ‘‘crown’’ and
‘‘clown’’ have clearly different meanings, we know that i
English @r# and @l# are phonologically distinct units. No on
has yet produced an equivalent test for intonational units

Traditionally the argument about categorization in int
nation has revolved about a false dichotomy, namely that
relationship between sound and meaning can either be a
segmental phonology, where the relationship is comple
arbitrary, or as in paralanguage, where the relationship
simple linear one. In fact this is an inappropriate applicat
of the law of the excluded middle and one does not have
choose either of these positions: a third position is that in
nation is continuous with regard to both sound and mean
but that the relationship between the two is highly comp
and nonlinear. Adopting such a position can explain w
simple attempts to prove direct correspondence betw
sound and meaning in intonation have failed, but also wh
is so hard to produce evidence for categorical boundaries
this view pitch accents occupy positions in a mul
dimensional sound space, and in effect whatH* and L* ,
etc., represent are points of particular importance in t
space. One can think of this as somewhat analogous to
people describe the temperature of an object when they
touching it. Physically, temperature is a continuum with
distinct categories, but it is helpful to have terms such as
and cold which describe certain temperature situations. T
is not troublesome as long as we accept this as just a
vention, and we do not insist that underlying temperature
categorical. It is pointless to go further and try to define str
boundaries on what is underlyingly a continuous pheno
enon. While there will be a lot of agreement as to what h
and cold represent under these conditions, there will alw
be temperatures between the two which are impossible
categorize either way. Going back to intonation, it is cle
that a typicalH* accent is different from a typicalL* accent,
the point is that there are accents in between which could
described as either. We again re-iterate the point that p
of the existence of categories depends on the proof of
existence of category boundaries.

C. Phonetics and phonology in the Tilt model

The Tilt representation as described here can be ter
phoneticbecause its purpose is to describe observable
guistic sound phenomena. Although the focus of our pape
on this representation and its relationship with the acoust
it is useful to informally discuss the relationship between
phonetic Tilt representation and higher-level, phonologi
representations. The parameters used to describe even
1709Paul Taylor: Tilt model of intonation



ea
a

W
d
e

e

e
s

ge
n

m
e
t

e
il
n

nc
m
f t

o
i
h

he
tio
in
e

de
ib
s

ly
o
h

d
re

ep
s
t a
en
er
e

nc
b

e
ar
n
a

to
ut
ha

a-
ch
by

AM
be

tion,

gy

of
ical
o
re

on,
ved
if-
nts.
cal
ause
,

l as
the
nted

-
the

-
nor-
the

M

ho-
nt,
de-
m-

tilt
m of
a-
ons.
nt-
of
ect

pes
rtical
the Tilt representation are quite literal with respect to m
surable acoustic quantities, and hence we have duration
position measure in seconds, and amplitude in Hertz.
advocate that a phonological representation in the Tilt mo
should have the same parameters as the phonetic repres
tion ~with the possible exception of duration, see below!, but
that theirscalesshould be modified so as to represent high
level phenomena more appropriately.

For instance, the amplitude parameter should refl
genuine perceptual prominence, rather than simple acou
magnitude. Different speakers have different pitch ran
and these differences should be accounted for in a pho
logical representation. It has been widely shown~Cohen
et al., 1982; Pierrehumbert, 1980; Liberman and Pierrehu
bert, 1984; Ladd, 1984! that pitch range narrows toward th
end of an utterance. This means that a pitch accent at
start of an utterance needs a biggerF0 amplitude than an
accent at the end to produce an effect of equal prominenc
a listener. Hence it would be desirable for phonological T
amplitude to be normalized with respect to pitch range a
that amplitude should be a measure of perceived promine

As stated in Sec. IV D, the duration and position para
eters are dependent on the local segmental content o
utterance which is undesirable from a phonological point
view. In fact it is possible that the duration parameter
wholly dependent on segmental content and carries no p
nological information at all. If this were the case, then t
number of parameters in the phonological Tilt representa
could be reduced. The position parameter, which certa
does contain high-level information, should be normaliz
with respect to the segmental content.

The tilt parameter itself is dimensionless and so is in
pendent of amplitude and time scales. Hence it is poss
that this is already as abstract as it needs to be and doe
require modification.

It light of our previous discussion we think it is entire
appropriate for the phonological representation to have c
tinuous parameters. The key point about the scales of p
nological representation is that events which are perceive
being the same should have the same values in the Tilt
resentation.

The difference between phonetic and phonological r
resentations in the Tilt model can also be versed in term
speaker dependence. All speakers of the same accen
language should produce the same phonological repres
tion for say a common neutral fall type of accent. Howev
the phonetic Tilt parameters of these speakers would be
pected to differ, due to speaking style and physiology. He
a phonetics-phonology component of the model would
responsible for modeling speaker differences.

D. Comparison with the AM ÕToBI models

We now discuss the similarities between the Tilt mod
and the AM/ToBI models. In many respects the models
very similar. Both adopt the same approach to intonatio
primitives, namely that the intonational representation of
utterance should be a linear sequence of event based in
tional entities, associated with syllables/segments in an a
segmental structure. Following from this, both agree t
1710 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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downdrift in intonation can be accounted for by a combin
tion of pitch accent downstepping and gradual falls in pit
range, and hence that downdrift should not be modeled
global phrase patterns. While the phonetic aspects of the
are often ignored, both models agree that intonation can
described using a high level abstract sound representa
i.e., a phonology.

Some differences arise from the phonetics/phonolo
mismatch of the models. Phrase tones~H- andL-! are used in
the AM model as a mechanism to differentiate four types
post-nuclear intonation. Phrase tones are purely phonolog
units, having no directF0 realization and hence there is n
equivalent for these in the Tilt model. In a similar way, the
is no equivalent for the low boundary tone~L%!. Falling post
nuclear intonation is usually modeled by a single connecti
and only rising boundaries have an event. The obser
variation in post nuclear intonation is modeled by using d
ferent parameters for the connections and rising eve
Level accents may legitimately be part of a phonologi
representation but are absent from the phonetic one bec
they have no observableF0 behavior. If deemed desirable
such accents could be accommodated in the Tilt mode
entities with zero amplitude, duration, and tilt, and hence
issue as to whether or not level accents should be represe
may not be of great consequence.

Accepting that Tilt duration is probably a purely pho
netic phenomena, we now discuss the relationship of
more phonological Tilt parameters~amplitude, tilt, and posi-
tion! with respect to the AM model. To simplify the discus
sion, we assume that these three parameters have been
malized and are represented on phonological scales in
way described in Sec. VI C. Some varieties of the A
model, for example the original Pierrehumbert system~Pier-
rehumbert, 1980; Ladd, 1987!, actually have an amplitude
parameter very similar to the type we propose for the p
nological Tilt model. Because of the paralinguistic argume
this is often treated separately from the system used to
scribe accent type. Having accounted for duration and a
plitude, we now turn to showing how the the position and
parameters relate to the tonal accent classification syste
the AM model. Figure 4 shows typical tilt and position p
rameters for some accent and boundary tone combinati
Figure 5 is an impressionistic plot, with one axis represe
ing tilt and the other position. This plot maps the space
possible pitch accents and shows how tilt and position refl

FIG. 4. Examples of Tilt and AM representations for various common ty
of utterance. The dashed boxes delimit the events, while the dotted ve
lines show the boundaries of the accented vowel.
1710Paul Taylor: Tilt model of intonation
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the natural variation in pitch accent types. The relevant A
accents and boundary tones have been marked to show
each relates to the tilt parameters.

As should be clear by now, the main area in where
models disagree is that the Tilt representation uses con
ous parameters to model events whereas the AM model
discrete classes. Although we think that it is an import
point in its own right to demonstrate the tenuous nature
categorical descriptions in intonation, we further argue t
the adoption of such description mechanisms is actu
harmful in that it does not provide a satisfactory means
describe intonational events. The first problem is that
cause of the difficulty in defining class boundaries, it is ve
difficult for machines and humans to label naturally occ
ring speech using the AM system. While it is simple enou
for experts to produce canonical examples of different pi
accents and get agreement when labeling these, the situ
is very different in natural speech. Leaving the distributi
problem aside~see below!, it has been our experience th
even linguists trained in intonation find it difficult to decid
which class a particular accent belongs to. As human labe
must provide the data on which automatic systems are to
trained and tested, badly labeled data cannot be expecte
facilitate accurate automatic systems. The second proble
that in naturally occurring speech, the distribution of A
pitch accent types is extremely uneven. In the RN cor
about 79% of all accents in the corpus fall into theH* cat-
egory, and 15% into theL1H* category. From an informa
tion theoretic point of view, any classification system whi
lumps the vast majority of tokens into a single type is n
very useful because it does not actually provide tell us m
about the tokens. Importantly, within the vastH* class, there
actually is a substantial amount of variation which is lingu
tically meaningful and this information is lost.

These problems of labeling difficulty and unevenness
distribution are not present in the Tilt model as the contin
ous parameters express the differences in pitch accents

FIG. 5. Two dimensional schematic representation of intonational sp
The letters in brackets refer to the example contours in Fig. 4. It is c
from this digram that many AM accents have large overlapping distri
tions, while there are also substantial areas of this space that are not co
by any AM accent type.
1711 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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rally without having to resort to a forced classification.

E. Comparison with the Fujisaki and other models

The Fujisaki model~Fujisaki and Ohno, 1997! has many
similarities to the Tilt model. It is a fully formal and quant
tative phonetic model and hence has a defined synthesi
gorithm. It too models accents as events, with no categor
accent types built in to the model and it uses an amplitu
and a duration parameter for event parameterization.

However, the models differ in significant ways. First, th
Tilt model allows the gradients of the rise and fall parts
events to vary. While some gradient variation in the rises a
falls of the Fujisaki models accents is possible, this is min
and indirect and due to the gradient of the underlying phr
component. From our study of rise and fall pitch accent g
dients in our database, it is clear that substantial variatio
possible, and that any model which advocates fixed gradi
will have substantially worse synthesis accuracy that the
model. Second, the Fujisaki model makes use of a ph
component, which dictates the global shape of theF0 con-
tour over the length of a phrase. The shape of this is sho
in Fig. 6. Again, we think this is too constrained and cann
account for the wide range of observed long term cont
shapes in English. For example, in the contour shown in F
7, the intonation is slowly and steadily rising after the fir
event. Fujisaki~personal communication! has suggested tha
this can be modeled by stacking several phrase compon
on top of each other in short intervals. While such a solut
could recreate the shape shown in the contour, it is ha
severe price, in that all reference between the position of
phrase component and its linguistic meaningfulness has b
lost.

In summary, it seems the Fujisaki model does not ha
enough degrees of freedom to synthesize English intona
and still keep some sense of linguistic relevance.

e.
r
-
red

FIG. 6. Fujisaki phrase component.

FIG. 7. Contour with slowly rising intonation.
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A number of other intonation models have been p
posed in more recent years including~Strom, 1995; Portele
and Heuft, 1998; Sproat, 1998; Mo¨hler and Conkle, 1998!.
All of these models have been designed for mainly spe
technology purposes and it is striking that they modelF0
contours with continuous parameters. Some~Portele and
Heuft, 1998; Möhler and Conkie, 1998! in particular bear a
strong resemblance to the RFC model providing support
the idea that the parameters of the RFC model~and the Tilt
model derived from it! are not purely arbitrary.

VII. CONCLUSION

We conclude with an examination of how well the T
model has fulfilled the five goals described in the Introdu
tion. The issues ofconstraintandwide coveragego hand in
hand as they are essentially concerned with thedegrees of
freedomof a model. Put simply, a model with too man
degrees of freedom will be able to model the data well
will have a large amount of redundancy in its representat
A model with too few degrees of freedom will have a com
pact representation but will not be able to synthesize the
accurately nor differentiate certain phenomena. The resul
Table VII show that the Tilt representation is compact a
has low redundancy, while still producing wide coverage,
shown by the synthesis accuracy results in Table VIII. W
therefore conclude that an appropriate balance has b
found between constraint and wide coverage. We have st
that the duration parameter may be purely phonetic in nat
and that only amplitude, position, and tilt should be cons
ered as parameters with a phonological correspondence

The proof of any representation’s linguistic meaningf
ness is difficult, but we hope that the discussion of this is
in Sec. VI has at least shown that continuous parameters
form the basis of a high-level intonational representation
that, furthermore, the tilt and position parameters map
intonational space elegantly. In the end we take a pragm
approach to the issue of deciding whether one representa
system is better than another. If the bias against continu
representations is removed, we think that the Tilt mo
compares well against the AM model in that it provides
simple representation which solves many of the proble
that categorical representations impose.

A long raging argument in the field has been wheth
intonation should be regarded as a tonal or contour~shape!
phenomenon~see Ladd, 1996!. While this may be an inter-
esting theoretical question, for the computational goals p
sented here, it is somewhat beside the point. For prac
purposes, a more important goal than discovering the na
of intonational primitives is to assess a model in terms of
criteria explained in the Introduction. A model with goo
coverage, accuracy, and linguistic meaningfulness is be
than a model without these, regardless of which one is to
or contour.

It is in the area of automatic analysis that perhaps m
future improvement could be made. Spontaneous speake
dependent conversational speech is one of the most chal
ing types of speech for any system, and hence it is a s
achievement that the event detector can achieve the lev
success that it does on this task. However, with performa
1712 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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figures on the DCIEM data of 72.7% correct, 47.7% acc
racy for all accents and 81.9% and 60.7% for nonminor
cents there is obviously room for improvement. It should
pointed out that it is not necessary to use this particular ev
detection algorithm with the Tilt model: any system that c
locate events and give their boundaries can be used. As
plained in Sec. III A our system is an eventdetectorbut there
is nothing to stop an eventclassifier~e.g., Ross and Osten
dorf, 1995! being used in conjunction with the model. Th
choice of a classifier or detector essentially depends
whether a phonetic segmentation is available in the appl
tion.

Table VIII shows that the Tilt model can synthesizeF0
contours with a high degree of accuracy. Given that the
noticeable difference forF0 in natural speech has been es
mated at about 4 Hz~Hess, 1983!, the figures for the com-
parison between the synthesized and smoothed cont
show that the synthetic contours are nearly identical to
smoothed ones. Raw contours differ from smoothed o
mainly due to the presence of segmental glitches and pe
bations. The Tilt synthesis procedure has not attempted
model these in any way, and hence the errors for the s
thetic versus raw comparison are worse.

In summary, we have shown that the Tilt model h
been fairly successful at fulfilling our original goals. W
have tested the model rigorously on read speech and spo
neous dialogue speech from a number of different spea
in different situations. We think the success of the model
been to find a suitable balance between the conflicting go
so that the model facilitates automatic analysis and synth
and provides a useful and elegant linguistic representatio
intonation.
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APPENDIX A: MAPPING FROM ToBI TO TILT LABELS

Despite the statement in Sec. VI A that the Tilt and A
models are both based on intonational events, there are
portant technical differences in the way that AM~i.e., ToBI!
and Tilt label files are actually constructed. In Sec. III E w
described experiments where a Tilt transcription of the B
ton University Radio News~RN! corpus was derived by
from the original ToBI transcriptions. We briefly explai
how this was done.

The RN corpus was labeled using the guidelines
Beckman and Ayers~1993! and the transcriptions are forma
1712Paul Taylor: Tilt model of intonation
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ted in xwaves xlabel files. Xwaves files contain a list
elements, one per line, where each line contains a label n
and a time, normally representing the end of the label. In
ToBI files, the time in each line represents the notionalcen-
ter of the pitch accent, e.g., the time of anH* is marked at
its peak. As the Tilt event detector is trained on events wh
start and end times are marked, the ToBI transcriptions n
to be realigned so as accent start and end times rather
accent middles are marked. There is no single ‘‘right’’ wa
but we estimate the start and stop times by assuming tha
time given is the literal middle of the event, and then ma
ing the start and end times as beingd/2 before and after this
whered is the average duration of an event in another da
base (d5210 ms in the DCIEM corpus!. Connections are
inserted between non-contiguous events and phrase t
and low boundary tones are deleted.

APPENDIX B: SOFTWARE AND CORPORA
AVAILABILITY

The HTK toolkit was used in the event detection expe
ments. It is available under licence from Cambridge Entro
Labs, U.K.~Young et al., 1996!.

All the other software, including the super resolutio
pitch detection algorithm, Tilt analysis, Tilt synthesis a
transcription comparison code is included in the Edinbu
Speech Tools, a publicly available speech softw
toolkit available from http://www.cstr.ed.ac.uk/project
speech–tools.html.

The CART basedF0 generation algorithm~Dusterhoff
and Black, 1997! which uses the Tilt model is implemente
in the Festival speech synthesis system, available from
above address.

The original DCIEM, Boston University Radio New
and Switchboard databases can be licenced from the Ling
tic Data Consortium, http://www.ldc.upenn.edu. These da
bases contain the original waveforms and transcriptions.

Derived F0 and energy contours, and the Tilt mod
labelings for all the experiments reported here are availa
from http://www.cstr.ed.ac.uk/projects/intonation.
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