

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Efficient Runtime Placement

Management for High Performance

and Reliability in COTS FPGAs

By

Godwin Enemali

A thesis submitted in partial fulfilment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

The University of Edinburgh

March 2019

i

Declaration

I hereby declare that this thesis was composed and originated entirely by myself, that

the work contained herein is my own except where explicitly stated otherwise in the

text, and that this work has not been submitted for any other degree or professional

qualifications.

Godwin Enemali

ii

To Our Lady Seat of Divine Wisdom

iii

Acknowledgements

I would like to express my immense gratitude to my supervisor, Professor Tughrul

Arslan for his enormous support and excellent supervision of my PhD work. His vast

knowledge and wide experience are invaluable to the completion of my research

work and thesis. In addition to the many opportunities he offered me during my time

in Edinburgh, his availability, patience, gentle guidance and kindness were not only

helpful to me on the PhD programme, but have inspired me to be a better person.

My sincere appreciation also goes to my second supervisor, Dr Alister Hamilton for

introducing me to FPGAs during my MSc programme and his advice throughout my

PhD programme. I am also grateful for the teaching experience I gathered from the

courses I had the opportunity of tutoring under his guidance. His reminders to finish

up the PhD is also very much appreciated.

I also thank members of the research group in which I carried out my research. First,

I would like to thank a close colleague Adewale Adetomi for his treasured support on

the PhD programme and for sharing many of his experiences on FPGA designs with

me. I would also like to thank other members of the group: Riza, Amalina, Yichen,

Fengzhou, Yue, Aliyu and Imran for the great time at the SMC Portacabin.

In a very special way, I would like to thank members of my family who are very

precious to me and remained my greatest heroes. I cannot thank my parents, Mr and

Mrs Isaac Enemali, enough for all they have done for me and for their love. And to

you, my siblings, my best friends and highest human support: Dr Felix, Fr Wilfred,

Joy, Joseph, Peter, Paul and Emmanuel, may God bless you.

I would also like to thank members of Catholic community at Sacred Heart Church,

St Mary Cathedral and Our lady Cause of Our Joy Preasidium of the Legion Mary

for the sense of community and worship of God I had among you. I cannot forget my

dear friend Johanna for her immense kindness and friendship. May God reward you.

Most importantly, I am grateful to God for all His blessings which I cannot number

and the opportunity to have studied in Edinburgh.

iv

Abstract

Designing high-performance, fault-tolerant multisensory electronic systems for

hostile environments such as nuclear plants and outer space within the constraints of

cost, power and flexibility is challenging. Issues such as ionizing radiation, extreme

temperature and ageing can lead to faults in the electronics of these systems. In

addition, the remote nature of these environments demands a level of flexibility and

autonomy in their operations. The standard practice of using specially hardened

electronic devices for such systems is not only very expensive but also has limited

flexibility.

This thesis proposes novel techniques that promote the use of Commercial Off-The-

Shelf (COTS) reconfigurable devices to meet the challenges of high-performance

systems for hostile environments. Reconfigurable hardware such as Field

Programmable Gate Arrays (FPGA) have a unique combination of flexibility and

high performance. The flexibility offered through features such as dynamic partial

reconfiguration (DPR) can be harnessed not only to achieve cost-effective designs as

a smaller area can be used to execute multiple tasks, but also to improve the

reliability of a system as a circuit on one portion of the device can be physically

relocated to another portion in the case of fault occurrence. However, to harness

these potentials for high performance and reliability in a cost-effective manner, novel

runtime management tools are required. Most runtime support tools for

reconfigurable devices are based on ideal models which do not adequately consider

the limitations of realistic FPGAs, in particular modern FPGAs which are

increasingly heterogeneous. Specifically, these tools lack efficient mechanisms for

ensuring a high utilization of FPGA resources, including the FPGA area and the

configuration port and clocking resources, in a reliable manner.

To ensure high utilization of reconfigurable device area, placement management is a

key aspect of these tools. This thesis presents novel techniques for the management

of hardware task placement on COTS reconfigurable devices for high performance

and reliability. To this end, it addresses design-time issues that affect efficient

hardware task placement, with a focus on reliability. It also presents techniques to

v

maximize the utilization of the FPGA area in runtime, including techniques to

minimize fragmentation. Fragmentation leads to the creation of unusable areas due to

dynamic placement of tasks and the heterogeneity of the resources on the chip.

Moreover, this thesis also presents an efficient task reuse mechanism to improve the

availability of the internal configuration infrastructure of the FPGA for critical

responsibilities like error mitigation. The task reuse scheme, unlike previous

approaches, also improves the utilization of the chip area by offering

defragmentation.

Task relocation, which involves changing the physical location of circuits is a

technique for error mitigation and high performance. Hence, this thesis also provides

a functionality-based relocation mechanism for improving the number of locations to

which tasks can be relocated on heterogeneous FPGAs. As tasks are relocated, clock

networks need to be routed to them. As such, a reliability-aware technique of clock

network routing to tasks after placement is also proposed.

Finally, this thesis offers a prototype implementation and characterization of a

placement management system (PMS) which is an integration of the aforementioned

techniques. The performance of most of the proposed techniques are tested using

data processing tasks of a NASA JPL spectrometer application. The results show that

the proposed techniques have potentials to improve the reliability and performance of

applications in hostile environment compared to state-of-the-art techniques. The task

optimization technique presented leads to better capacity to circumvent permanent

faults on COTS FPGAs compared to state-of-the-art approaches (48.6% more errors

were circumvented for the JPL spectrometer application). The proposed task reuse

scheme leads to approximately 29% saving in the amount of configuration time. This

frees up the internal configuration interface for more error mitigation operations. In

addition, the proposed PMS has a worst-case latency of less than 50% of that of state-

of-the-art runtime placement systems, while maintaining the same level of placement

quality and resource overhead.

vi

Content

DECLARATION ... I

ACKNOWLEDGEMENTS ... III

ABSTRACT .. IV

CONTENT .. VI

LIST OF FIGURES ... IX

LIST OF TABLES ..XII

LIST OF ABBREVIATIONS ... XIV

CHAPTER 1: INTRODUCTION ... 1

1.1 Thesis Objectives .. 6

1.2 Summary of Novelty and Contribution ... 7

1.3 Publications Arising from Thesis ...10

1.4 Thesis Outline ...12

CHAPTER 2: INTRODUCTION TO DYNAMIC PARTIAL RECONFIGURATION,

CLOCKING INFRASTRUCTURE AND RELIABILITY ISSUES ON FPGAS16

2.1 Introduction to Dynamic Partial Reconfiguration ..17

2.2 Xilinx Tool Support for DPR ...20

2.2.1 Creating Partial Reconfiguration Bitstreams ..21

2.2.2 Xilinx Partial Reconfiguration Controller ..23

2.2.3 Limitations of Xilinx Partial Reconfiguration Controller ...24

2.3 Clocking Infrastructure and Bitstream Format of FPGAs ..26

2.3.1 General Structure of Clocking Network on Xilinx FPGA ..26

2.3.2 Overview of Relevant Sections of Xilinx Bitstream Format ..30

2.4 Reliability Issues in FPGAs ..34

2.4.1 Soft Error Mitigation in FPGAs ..35

2.4.2 Permanent Fault Mitigation in FPGAs ...37

2.5 Chapter Conclusion ..37

CHAPTER 3: RUNTIME PLACEMENT MANAGEMENT AND LOW POWER

COMPUTATION ON FPGAS ...38

3.1 Review of Runtime Placement Management on FPGAs for Reconfigurable Computing39

3.1.1 Review of FPGA Area Management in Runtime Placement Systems43

3.1.2 Configuration Overhead Management in Runtime Placement Systems49

3.1.3 Review of Runtime Clock Routing Techniques ...52

vii

3.2 Power consumption on FPGAs...53

3.2.1 Components of Power Consumption of FPGAs ...53

3.2.2 Minimizing Dynamic Power Using Memoization ..56

3.2.3 Review of Memoization Techniques for Low Power on FPGAs ..56

3.3 Chapter Conclusion ...58

CHAPTER 4: OFFLINE DESIGN OPTIMIZATION FOR EFFICIENT RUNTIME

PLACEMENT AND RELIABILITY ..60

4.1 Offline Optimization to Improve the Number of Placement Locations61

4.1.1 Initial Synthesis to Determine the Resource Utilization of Task(s)64

4.1.2 Conversion of Resource Estimation to FPGA Columns ...64

4.1.3 Determination of the Optimized Implementation Location of Task(s)67

4.1.4 Execution of Script-Based Partial Reconfiguration Routine for Bitstream Generation73

4.1.5 Configuration Bitstream Storage and Task Model ...75

4.2 Communication Interface Wrapper ...77

4.3 Additional Optimization for Low Power for Low Porth Width Applications79

4.3.1 Architecture and Operation of Memoization Wrapper ...81

4.3.2 Energy Efficiency of Memoization Wrapper ..86

4.3.4 An Implementation and a Case Study ...88

4.3.5 Results and Discussion ...89

4.4 Chapter Conclusion ...91

CHAPTER 5: RUNTIME PLACEMENT ON FPGAS FOR HIGH PERFORMANCE AND

RELIABILITY 93

5.1 Fragmentation on Heterogenous FPGAs ..94

5.1.1 Quantifying Fragmentation ...95

5.1.2 Expanding the Unusable Area Strategy (EUAS) for Improved Utilization101

5.2 Task Reuse to Circumvent Large Reconfiguration Overhead on COTS FPGAs105

5.2.1 Task Reuse on COTs FPGAs..107

5.2.2 FAReP: Fragmentation-Aware Replacement Policy for Task Reuse on COTs FPGAs ...108

5.3 Chapter Conclusion ...112

CHAPTER 6: TECHNIQUES FOR TASK RELOCATION ON FPGAS115

6.1 Direct Bitstream Relocation ..116

6.1.1 Methods of Direct Bitstream Relocation ..116

6.1.2 Limitations of Direct Bitstream Relocation ..118

6.2 Functionality-Based Relocation ..119

6.2.1 FBR: Operation and Architecture ...120

6.2.2 FBR Implementation Details ..126

6.2.3 Performance Evaluation and Comparison with DBR ...129

viii

6.3 Chapter Conclusion ...133

CHAPTER 7: PLACEMENT MANAGEMENT SYSTEM IMPLEMENTATION AND

CHARACTERIZATION ..134

7.1 Summary of Runtime Placement Flow ...135

7.2 Placement System Architecture ..137

7.2.1 Initialization Module: ...138

7.2.2 Reuse Module ...143

7.2.3 Scan Module: ..143

7.2.4 Replace Module ..148

7.2.5 Update Module ...149

7.3 Hardware Implementation Results ...150

7.3.1 Interface Signals ...151

7.3.2 Resource Utilization ...153

7.4 Comparison with Another Placement Management Module ..156

7.5 Chapter Conclusion ..157

CHAPTER 8: TOWARDS A RELIABILITY-AWARE EFFICIENT CLOCK ROUTING

FOR RECONFIGURABLE COMPUTING ...159

8.1 Efficient Runtime Clock Delivery ..160

8.1.1 Selecting the Right clock Frequency for a Task ...165

8.1.2 Routing a Clock Net to a Task ..166

8.1.3 Low Power Considerations ...169

8.2 Reliability Considerations ...170

8.2.1 Frame ECC Re-computation Routine ...172

8.2.2 Implementation Case Study ..175

8.2.3 Result and Discussion ...179

8.3 Chapter Conclusion ...182

CHAPTER 9: CONCLUSION AND FUTURE WORK ..183

9.1 Summary of Thesis ...184

9.2 Significance of the Research ..188

9.2.1 Impact on the Reliability of FPGA-Based Applications ...188

9.2.2 Potentials for Low Power Computation and High Performance189

9.3 Limitations and Future Work ...190

REFERENCES ..194

ix

List of Figures

Figure 2.1: Dynamic Partial Reconfiguration in FPGAs ... 18

Figure 2.2: Summary of Xilinx Partial Reconfiguration Flow 22

Figure 2.3: Main Steps of a Virtual Socket Manager [Adapted from [39]] 24

Figure 2.4: Example Tasks and List of Clock Buffers for Clock Network Delivery. 28

Figure 2.5: A Simplified Illustration of BUFHs, Clock Nets and PIPs 29

Figure 2.6: A simplified Illustration of Sections of the Configuration Bitstream 30

Figure 2.7: Temporal and Permanent Faults Occurrence on Electronic Chips 34

Figure 3.1: Slotted Versus Non-Slotted Reconfigurable Computing......................... 40

Figure 3.2: Distribution of Occupied and Free Cells in a Slot 47

Figure 3.3: Slots with Same Fragmentation Metric but Different Placement Effects 49

Figure 3.4: Multiple options for Task Replacement .. 50

Figure 3.5: Power Consumption Components of a CORDIC Circuit on Different

COTS FPGA .. 54

Figure 4.1: Implementation Location Determines Number of Runtime Placement

Locations .. 62

Figure 4.2: Stages of Offline Optimization of Tasks ... 63

Figure 4.3: Section of a Typical Resource Utilization Report from Vivado IDE 65

Figure 4.4: Routing Structure in a pair of CLB Columns of Xilinx 7 Series FPGA

[106] ... 69

Figure 4.5: Optimal Implementation Location Selection for Spctrometer Tasks on

Xilinx’s 7z100 Chip ... 72

Figure 4.6: Effect of Offline Optimization on Tasks Number of Successful

Relocation .. 73

Figure 4.7: Mechanism of Data Transfer Using Clock Buffers as Serial Bit

Transceivers [109]. ... 79

Figure 4.8: A circuit and its Memoization block ... 80

Figure 4.9: Block Diagram of Memoization Module ... 82

Figure 4.10: Flow chart of a memoization block .. 86

Figure 4.11: Variation of Memoization Wrapper Energy with Average Energy of

Task and memoization Wrapper .. 88

x

Figure 4.12: Variation of Average Energy/Transaction ... 90

Figure 5.1: Quantifying Task Area Fragmentation ... 96

Figure 5.2: Task Areas on a Chip .. 97

Figure 5.3: Comparison of Accuracy of Fragmentation (Cost) Quantifying 100

Figure 5.4: Effect of a Placement on the Usability of Adjoining Resource 102

Figure 5.5: Effect of EUAS on Task Rejection Ratio .. 105

Figure 5.6: Comparison of Replacement Policies for Task Execution on a Chip.... 110

Figure 5.7: Variation of the Task Rejection Ratio for Replacement Policies 112

Figure 6.1: Achieving Direct Bitstream Relocation Using Runtime Frame Address

Modification ... 117

Figure 6.2: Number of relocations on homogeneous and heterogeneous FPGAs ... 119

Figure 6.3: Transformation of Logic Block to Memory Block 120

Figure 6.4: Operational Flow of the Proposed Functionlaity-Based Relocation

Technique ... 121

Figure 6.5: Architectural overview of the output memorizer 123

Figure 6.6: Data Distribution in Output Memory of Output Memorizer 124

Figure 6.7: Output Waveforms of Original and Funtionality-Based Relocated

Circuits. .. 130

Figure 7.1: Summary of Main Operations of runtime Placement Management System

 .. 136

Figure 7.2: Block Diagram of the Placement Management System 138

Figure 7.3: Data Distribution in Init Buffer of Placement System 139

Figure 7.4: Example of Initialized State Matrix in the 𝐹𝑆𝑀𝐿 Buffer for a Xilinx

xc7z100ffg900-2 FPGA ... 140

Figure 7.5: Data Distribution and Initialization Value of an Idle Instance 142

Figure 7.6: Start Scan Locations to Accelerate Resource Scanning 145

Figure 7.7: Example Waveform for Placement System Interface Signals 152

Figure 7.8:Floorplan of PMS, Configuration Controller, DMA Engine and A Case

Study FTS Application ... 155

Figure 8.1: Runtime Clock Routing Process .. 161

Figure 8.2: Bit flips in Memories of SRAM-based FPGA 172

file:///C:/Users/Godwin/Dropbox/Thesis/forms/Corrections/PhDThesis%20v4.docx%23_Toc2780881

xi

Figure 8.3: Timing Characteristics of Configuration and Frame_ECC re-computation

Controllers .. 178

Figure 8.4: Waveform of Frame ECC Primitive .. 180

xii

List of Tables

Table 2.1: Reconfigurable Resources in Xilinx 7 Series and UltraScale FPGAs 19

Table 2.2: Resource Overhead of Xilinx PRC on Kintex7 Device 25

Table 2.3: Format of Device ID Code in Configuration Bitstream 31

Table 2.4: Number of Configuration Frames in Reconfiguration Resource Pair on

Xilinx 7 series FPGA ... 32

Table 2.5: Frame Address Format in Xilinx 7 series FPGA 33

Table 2.6: Main Operations of Xilinx SEM IP ... 36

Table 3.1: Resource Distribution of Selected Xilinx's 7 Series FPGA 55

Table 4.1: Resource Utilization of JPL Spectrometer Application and Corresponding

Number of Device Columns* ... 66

Table 4.2: Example of Task Hardware Parameters after Optimization Steps* 77

Table 4.3: Possible Outcomes of Memoization Wrapper and Energy Implication 87

Table 4.4: Implementation Data of a CORDIC Circuit and its Memoization Wrapper

 .. 89

Table 4.5: Energy Overhead/Transaction of CORDIC Task with Memoization

Wrapper .. 90

Table 5.1: Fragmentation Computation ... 98

Table 5.2: Fragmentation Computation Complexity ... 101

Table 5.3: Reconfigurable Resources of Simulation Platform 105

Table 5.4: Relative Performance Metrics of Replacement Policies* 112

Table 6.1: Resource Utilization of a CORDIC Circuit Case-Study Application 127

Table 6.2: Latency of CORDIC Circuit Case-Study Application 127

Table 6.3: Resource Utilization of Proposed Relocation Module........................... 128

Table 6.4: Improvements in Number of Possible Relocations Due to FBR 131

Table 6.5: Comparison of the Relocation Time Overhead of Different Relocation

Techniques ... 132

Table 7.1: Clock Cycles Required for Constituent Operations of Scan Module 147

Table 7.2: Summary of Operations and Time Overhead for Update Module 150

Table 7.3: Interface Signal Properties of PMS... 153

Table 7.4: Resource Utilisation of PMS on a 7 Series FPGA 154

xiii

Table 7.5: Comparison of Features and Overheads of PMS with Similar Schemes 156

Table 8.1: Bit Positions for BUFR Clock Frequency Division Factor 165

Table 8.2: Clock Division Factors and Corresponding Values 166

Table 8.3: Bit Position and Frame Address Minors of PIPs via BOT0 167

Table 8.4: Bit Position for G- bit of Clock Net in HROW 168

Table 8.5: Bit Position for D- bit of Clock Net in HROW 169

Table 8.6: Enable/Disable Bit Position for BUFHs in a Row 170

Table 8.7: Resource Utilization of Frame ECC Re-computation Routine 176

Table 8.8: Time Overheads for the Operations of the Configuration controller at A

Frequency of 100 mhz [27] .. 177

Table 8.9: Summary of Features in Designs with and without SEM and Frame ECC

Re-computation Engines .. 181

xiv

List of Abbreviations

AC Architecture Checker

AQE Allocator Quality Evaluator

ASIC Application Specific Integrated Circuit

ATQ Arriving Tasks Queue

BF Best Fit

BUFG Global clock buffer

BUFH Horizontal Clock Buffer

BUFIO I/O clock buffer

BUFMR Multi-Regional Clock Buffers

BUFR Regional Clock Buffers

CLB Configurable Logic Block

CMEM Configuration Memory

COTS Commercial Off-The-Shelf

DBR Direct Bitstream Relocation

DPR Dynamic Partial Reconfiguration

DRAM Distributed RAM

DRC Design Rule Check

DSP Digital Signal Processor

DVF Device Vulnerability Factor

EAC Empty Area Compaction

EADU Empty Area Descriptor Updater

ECC Error Correcting Code

EDF Earliest Deadline First

EUAS Expanding the Unusable Area Strategy

FAReP Fragmentation-Aware Replacement Policy

FBR Functionality-Based Relocation

FC Fragmentation Coefficient

FPGA Field Programmable Gate Arrays

FSML FPGA State Matrix and Layout memory

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

IB Init Buffer

ICAP Internal Configuration Access Port

IDB Input Data Buffer

IDE Integrated Design Environment

ILA Integrated Logic Analyzer

LPR Least Probability of Recurrence

LRU Least Recently Used

LSB Least Significant Bit

LUT Look Up Table

MER Maximum Empty Rectangle

NTP New Task Placement

ODB Output Data Buffer

PIP Programmable Interconnection Points

xv

PMS Placement Management System

PRC Partial Reconfiguration Controller

PTP Pending Task Placement

FAR Frame Address Register

RBS Reuse-Based Scheduling

RER Reconfiguration-to-Execution Ratio

RM Reconfigurable Module

ROS Reconfigurable Operating System

RUP Runtime Utilization Probability

SA Simulated Annealing

SEM Soft Error Mitigation

SUP Static Utilization Probability

TMR Triple Modular Redundancy

TSB Task State Buffer

VBS Virtual Bitstream

VIO Virtual Input Output

VLS Vertex List Set

XDC Xilinx Design Constraints

1

Chapter 1: Introduction

Future space systems, robots for nuclear plants and other critical applications as well

as general embedded systems have a wide range of constraints which their

electronics need to meet. These constraints including reliability, low power,

flexibility, area constraints and cost have continued to drive the growth of the

electronics industry. This growth has been unprecedented, finding applications in

varied aspects of human life, and changing the way we live, interact and work over

the last few decades. The growth of electronic components in many fields, including

aerospace, is projected not only to be sustained but anticipated to witness the highest

growth among other component types over the next five years [1]. The sustenance of

the growth in the electronics industry is largely driven by the desire for faster

computing capability within these constraints. To meet these constraints, many

research efforts are targeted at new computing architectures and hardware platforms.

The main computing hardware platforms including processors, reconfigurable

hardware such as Field-Programmable Gate Arrays (FPGAs) and Application

Specific Integrated Circuits (ASICs) provides varying degree of solution to the

constraints above [2], [3]. A significant amount of computing is done on processor

platforms, mostly general purpose processors (GPPs). Processors have the highest

level of flexibility among the computing platforms identified above, thus making

them appliable in a wide range of applications. In addition, the aboundant tool

support for GPPs, mostly in the form of operating systems (OS), compilers, libraries

and the relative ease with which programmes targeted at GPPs can be written have

helped to increase the productivity of GPP-based computers. It remains the most

dominant computing platform by far as every server needs them and numberless

applications are written to run on them [4]. However, alternative processing

platforms are increasingly gaining attention due to new applications domains such as

artificial intelligence. Other requirements of electronic equipments especially

reliability for systems in hostile environents, low power and high performance are

also major reasons for developers to consider other computing platforms.

 Chapter 1: Introduction

2

GPPs are fundamentally sequential elements which are based on a repetitive

execution of fetch-decode-execute cycles of a stored programe. Thus improving the

speed of processing is achieved either by increasing clock frequency or by using

multiple processors. Although modern fabrication technology makes it possible to

reduce the dimention of transistors, which in theory could mean that they could be

driven at higher freqencies, there is a limitation as to the maximum operating

frequency to which transisitors can operate because of the problem of heat extraction.

This leads to the so called power wall [5]. On the otherhand, while using multicore

processors means that multiple instructions could be executed in parallel, their

performance is dependent on a variety of factors. These include: the ability to

parallelise the application at hand effectively [6], efficient management of the

possibility of increasing percentages of dark or dim silicon and the effect of Amdel’s

law on multicore architectures and workloads [7].

Due to their flexibility, GPPs are generally targeted at general applications, and may

not provide sufficient low power, high performance and adequate reliability

especially for hostile environments. Many reseachers foresee a more heterogenous

computing platform to meet these challenges, depending on the application [7]. The

challenge of reliability of the hardware design is an important one in the context of

this thesis. Thus, it is important to state that GPPs do not have an adequate means of

managing damage to the underlying silicon on which they are built.

Application Specific Integrated Circuits (ASICs) provide certain advantages in

certain domains compared to GPPs. Custom ASICs have much higher throughput

and low power compared to processors as they are fine-tunned to the targeted

application. Example of ASICs include Graphics Processing Units (GPUs) which are

optimized for targeted applications in the domain of image procesing, and Digital

Signal Processors (DSPs) which target a wide variety of signal processing

applications. In practice, these ASICs often operate in conjuction with GPPs. In a

sharp constrast to GPPs, ASICs do not have a high level of flexibility. Thus, the set

of applications they handle is significantly less than GPPs.

 Chapter 1: Introduction

3

While ASICs have inherent potentials to have low power and high performance, their

lack of flexibility is a huge disadvantage. Due to this lack of flexibility and the

increasing cost of fabrication process, ASICs are very expensive and are mostly

deployed for large scale applications so that they can benefit from the economy of

scale. In addition, like GPPs, their capability to deal with damage to their underlying

hardware is also limited. For critical applications, special hardening techniques are

use to improve the relaibility of ASICs. This further adds to the cost of an already

expensive technology.

Reconfigurable hardware occupies a middle ground, both interms of flexibility and

performance, between GPPs and ASICs. Reconfigurable hardware such as FPGAs

have a unique combination of flexibility and high performance. Although their

flexibility is lower than GPPs and their performance and power efficiency lower than

ASICs, their unique combination of these features make them applicable to various

applications in a way which neither GPPs nor ASICs can. With FPGAs, an

application can be easily updated even from a remote location without having to take

down the system.

Reconfigurable hardware has stood in between conventional processors and ASICs

for decades. However, their degree of flexibility, which is enabled by their

reconfiguration capability, has continually improved. An example of this is the

introduction of partial reconfiguration in FPGAs. This has further positioned them

closer to processors in terms of flexibility and versatility. Partial reconfiguration

allows the behaviour (of part) of a chip to be redefined without interfering with the

normal operation of the other parts of the chip. In addition, this can be done in

runtime while the other applications continue to operate. This is called Dynamic

Partial Reconfiguration (DPR). Hence, it is possible to swap hardware tasks (circuits)

in and out of the chip, and effectively turning it into a platform which can both be

time and area-shared among multiple tasks [8], [9] in runtime.

FPGAs were traditionally used for prototyping ASIC designs; however, their

improved flexibility and performance have contributed to making them being

harnessed for runtime applications just like GPPs and ASICs. Big player like amazon

 Chapter 1: Introduction

4

and Intel have included FPGAs in their products and services. Amazon uses FPGAs

for cloud computing [10], [11], [12] while intel has become a key player in the

FPGAs industry with their purchase of Altera [13]. These points to the growing

potentials of FPGAs in the electronics industry.

One of the special interests in the context this thesis is that the flexibility offered by

Commercial Off-The-Shelf (COTS) FPGAs can be applied to mitigating both

transient and permanent faults in critical applications [14] while still maintaining high

performance. Techniques have been presented which correct transient faults by

reconfiguration and permanent faults by relocation [8]. Relocation to circumvent

parmanet damage is an advantage of FPGAs that GPPs and AISCs are yet to provide

an equivalence for in their current architecture.

In terms of the application design process, GPPs have remained the most attractive

platform, compared to ASICs and FPGAs. The long years of investment in the

development of design tools targeted at GPPs as well as the wealth of knowledge

application developers have amassed in the use of these tools are important reasons

for the ease of developing applications for processors. Tools for developing

applications for GPPs are far more developed than those for FPGAs. This is a reason

why many application developers prefer GPPs for some applications which could

have benefitted more from the capabilities of FPGAs. In addition to this, productivity,

skill and as well as price are other reasons why GPPs are preferred to FPGAs. GPPs

design tools are well developed with numerous operating system support, compilers

and libraries.

Although FPGAs tools are nowhere close to the GPPs tools, there have been rapid

developmental trends in the tools for FPGA platforms. The number of design

automation tools have consistently increased in recent years, with support both from

the industry and the academia. This is evident with respect to the industry as Xilinx

(who own the largest market share of the FPGA market [15]) has continually invested

in design tool chain. An example is the developments in the Vivado Integrated Design

Environment (IDE), as well as continually increasing their library of IPs which users

can simply integrate into designs. In addition to these, there is a growing research to

support High Level Synthesis (HLS) by Xilinx chain of tools [16] with commercial

 Chapter 1: Introduction

5

products already available. Another example of industry growing tool support is the

recent Intel® Quartus® Prime software [17] for developing application targeted at

Intel FPGAs.

 In addition to the growing industry tools, many academic efforts aim to provide

resources that facilitate the use of FPGAs, both at design time and runtime [18]. Many

of these take the industrial devices beyond the traditional support offered by the

industry tools, and some aim to improve the versatility of FPGAs by supporting

COTS FPGAs for critical applications [19]. Tools for COTS FPGAs for critical

application has the potential of significantly lowering the cost of these critical

applications in contrast to developing special parts for them.

The idea of operating system support for FPGAs was first envisioned over 2 decades

ago [20] and it is generally agreed that reconfigurable operating system (ROS) would

revolutionize the entire FPGA industry. However, a lot of research, both on the FPGA

hardware platforms themselves as well as the design and implementation of

algorithms to harness the potentials of the platform, is required to actualize the dream.

State-of-the-art ROSes have not yet reached a stage where reconfigurable computing

can appeal to many application designers even when it is obvious that they have better

performance and/or cost benefits than GPPs and custom ASICs.

More research effort is required to develop efficient and user-friendly ROS for FPGA

platforms. There are many fundamental aspects of an ROS that need to be addressed

to make ROS more popular. In particular, the lack of efficient and generic runtime

tools to manage the placement of hardware circuits (called hardware tasks) on the

FPGA limits the efficiency and adoption of ROS in many scenarios. The main aim of

this thesis is to develop a runtime placement management system for ROS targeting

high performance and reliability. The thesis explores a wide range of issues relating to

runtime placement management on FPGAs, including design time optimization of

hardware tasks to enhance their place-ability in runtime, efficient and robust

fragmentation minimization techniques in the placement of tasks on COTS FPGAs,

achieving low time overhead defragmentation on state-of-the-art FPGAs within the

context of their relatively large reconfiguration time, relocation of hardware tasks on

FPGA platforms, providing access to clock nets at the right clock frequency during

 Chapter 1: Introduction

6

runtime placement of tasks while ensuring that the placement process does not impact

on the performance and reliability of a design. The techniques proposed in this thesis

uses Xilinx FPGAs are case studies since Xilinx has the largest share of the FPGA

market [15]

1.1 Thesis Objectives

The primary objective of this thesis is to design and implement efficient placement

management techniques for reconfigurable computing targeting high performance

and reliability. It aims to develop generic routines and procedures as well as provide

their implementation strategies that can be integrated into the design of efficient ROS

on COTS FPGAs platforms for different applications. The specific objectives of the

research presented in this thesis are as follows:

i) To develop an efficient design-time optimization strategy for hardware tasks

with a view of enhancing their place-ability on reconfigurable hardware in

runtime.

ii) To design and implement efficient and robust fragmentation minimization

techniques in the placement of tasks on COTS FPGAs, and comparing these

to state-of-the-art fragmentation minimization mechanisms.

iii) To implement hardware task reuse strategies to circumvent the relatively

large reconfiguration time of COTS FPGA using a fragmentation-aware task

replacement policy

iv) To develop novel techniques for improving the relocation of hardware tasks

on FPGA platforms

v) To integrate mechanism of providing access to clock nets at the right clock

frequency to hardware tasks placed in runtime while ensuring that the process

does not impact on the performance and reliability of the design.

vi) To provide an implementation case study of a placement management system

for ROS based on ii) to v).

 Chapter 1: Introduction

7

1.2 Summary of Novelty and Contribution

The first contribution of this thesis is the development of an offline optimization flow

that aims to improve the number and distribution of task placement locations on the

FPGA in runtime [21]. With the increase in the degree of heterogeneity of COTS

FPGA, the technique leads to a reduction in the incidence of overlapping locations for

tasks in runtime scenario even when the execution order of the tasks is not known at

design time. Moreover, the minimization of the variance in the number of potential

matching locations ensure that some application components are not denied placement

while others have abundant locations, leading to a pre-mature failure of the

application. The proposed optimization technique leads to greater reliability in

applications where relocation technique is used to circumvent permanent damage on

the chip.

The second contribution of this thesis is the presentation of a task reuse mechanism on

COTS FPGAs to circumvent their large reconfiguration overhead in runtime

applications [22]. The reuse mechanism is based on a novel replacement policy which

not only aim to preserve tasks with large configuration overhead on the chip, but also

uses each task replacement window to offer some defragmentation of the FPGA area

[23].

In addition, an efficient fragmentation quantification technique suited to

heterogeneous FPGA platforms is developed. The aim of the fragmentation metric is

to address the limitation in heterogeneous FPGAs where matching locations for tasks

are not guaranteed to be found at the border of existing placements or the border of

the chip as is the case on homogenous FPGAs. This was reported as part of [23]. In

addition, a technique called Expanding the unusable Area Scheme (EUAS) is also

presented to further improve chip area utilization and to circumvent the creation of

unusable areas due to the heterogeneous nature of the chip is also presented and

reported in [21].

The fourth contribution in the thesis is functionality-based runtime relocation

technique for hardware tasks on heterogeneous FPGAs [24]. The technique is used to

 Chapter 1: Introduction

8

augment direct bitstream relocation techniques by replacing the functionality of

certain tasks by a look-up-table (or memory). This makes it possible for them to be

placed on locations which does not match the original task’s bitstream due to the

heterogeneous nature of COTS FPGA. Hardware task relocation is a beneficial

technique in reconfigurable computing which can potentially be applied to

circumvent permanent faults on the chip, achieve defragmentation and load

balancing. Thus, the proposed technique which improves the number of possible

relocations of tasks on COTS FPGA enables ROS to potentially improve the

reliability and performance of applications.

The final major contribution of this thesis is an efficient and reliable runtime clock

network delivery technique to hardware tasks placed in runtime [25]. The technique

is resource efficient as it is done through the configuration layer of the FPGA. This is

necessary to support the runtime placement of tasks on any matching location on the

FPGA. To this end the architecture of the configuration bitstream was studied and

key control bits for clock net routing were identified. Furthermore, to avoid

jeopardizing the reliability of the system in the process of editing configuration

bitstream, a runtime frame error correcting code (Frame ECC) re-computation

controller is implemented to re-compute Frame ECC values after edits in such a

manner as not to impact the performance of the system.

Lastly, the techniques developed in the thesis are integrated into an implementation

of a prototype placement management system to show their practicability. The

performance of most of the proposed techniques are tested using data processing

tasks of a NASA JPL spectrometer application. The results show that the proposed

techniques lead to improvement in the reliability and performance of applications for

hostile environment over state-of-the-art techniques. Hence, they have potentials to

contribute to the design of low-cost, high-performance, fault-tolerant multisensory

electronic systems for hostile environments such as nuclear plants and outer space.

It is important to note that the work presented in this thesis is part of a larger effort at

the Ewireless Research Group, University of Edinburgh aimed at developing a

reliable real-time operating system for COTS FPGAs. Therefore, it is necessary to

 Chapter 1: Introduction

9

acknowledge the contribution of Adewale Adetomi who developed and implemented

a flexible communication infrastructure that supports dynamic placement and

relocation of hardware tasks without the need for pre-defined partitions [26]. The

communication mechanism is necessary to support the generic placement techniques

presented in this thesis. In addition, he also designed and implemented a

configuration controller which is used both for configuring tasks on the FPGA after

placement decisions and also for soft error mitigation techniques [27]. However, the

reverse engineering experiments carried out as part of this thesis were used in the

design and implementation of the configuration controller. The configuration

controller is used for the relocation technique presented in chapter 6 to coordinate the

copying of data through the configuration memory. It is also used in chapter 8 in the

online routing of clock nets to newly placed tasks.

 Chapter 1: Introduction

10

 1.3 Publications Arising from Thesis

The following are the publications which have been drawn from the research work

contained in this thesis:

Journals

G. Enemali, A. Adetomi, G. Seetharaman and T. Arslan, “A Functionality-Based

Runtime Relocation System for Circuits on Heterogeneous FPGAs,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 612–616,

May 2018.

Conferences

G. Enemali, A. Adetomi, and T. Arslan, "FAReP: Fragmentation-Aware

Replacement Policy for Task Reuse on Reconfigurable FPGAs", in 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2017, pp. 202 – 206, 10.1109/IPDPSW.2017.153.

G. Enemali, A. Adetomi, and T. Arslan, "A Placement Management Circuit for

Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable Autonomous

Systems", in 2017 IEEE International Symposium on Circuit and Systems (ISCAS

2017), 2017, pp. 2030 – 2033, 10.1109/ISCAS.2017.8050796

G. Enemali, A. Adetomi, and T. Arslan, "Expanding the Un-usable Area Strategy

for Improved Utilization of Reconfigurable FPGAs", in 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017,

10.1109/AHS.2017.8046370.

G. Enemali, A. Adetomi, and T. Arslan, "Efficient Runtime Frame ECC Re-

computation for Reliable Task Execution on Xilinx FPGAs ", in 2018 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2018, pp. 59 – 65.

10.1109/AHS.2018.8541471

A. Adetomi, G. Enemali, and T. Arslan, "Relocation-Aware Communication

Network for Circuits on Xilinx FPGAs”, in 2017 International Conference on Field

 Chapter 1: Introduction

11

Programmable Logic and Applications (FPL), 2017, pp. 1-7,

10.23919/FPL.2017.8056818.

A. Adetomi, G. Enemali, and T. Arslan, "A Fault-Tolerant ICAP Controller with a

Selective-Area Soft Error Mitigation Engine", in 2017 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2017, pp. 192-199,

10.1109/AHS.2017.8046378.

A. Adetomi, G. Enemali, and T. Arslan, “R3TOS-Based Integrated Modular Space

Avionics for On-Board Real-Time Data Processing,” in 2018 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2018. Pp. 1- 8.

10.1109/AHS.2018.8541369

 Chapter 1: Introduction

12

1.4 Thesis Outline

This thesis is organized in nine chapters. In this chapter, an introduction to the use of

FPGAs in electronics and computing devices as well as the contribution and aim of

the thesis have been presented. The remainder of this thesis is organized as follows:

Chapter 2: Introduction to Dynamic Partial Reconfiguration Reliability and Clocking

Infrastructure on FPGAs

This chapter presents background information relating to dynamic partial

reconfiguration as well as a review of comercial tools to harness the potentials of

DPR. The chapter also gives relevant background information on reliability isues in

FPGAs. The clocking infrastructure of FPGAs that enable clock network delivery in

circuits in runtime is also reviewed.

Chapter 3: Runtime Placement Management and Low Power Computation on FPGAs

A review of related research efforts at developing reconfigurable computing tools to

harness the potentials of DPR for high performance and reliability in applications

beyond the capabilities offered by comercial tools is presented in the chapter. The

focus of the chapter is on placement management as a key part of reconfigurable

computing tools, thus a review of the relevenat research work on runtime placment

of hardware tasks on FPGAs is presented. The three aspects of placement

management reviewed include: managing the FPGA area for efficient utilization,

configuration overhead management in runtime placement systems and runtime

clock routing to tasks after placement. In addition, the chapter also reviews the

methods of power consumption minimization on FPGAs.

Chapter 4: Offline Design Optimization for Efficient Runtime Placement and

Reliability

Design-time optimization techniques aimed at improving the performance of the

hardware tasks in runtime is presented in this chapter. A series of optimization steps

 Chapter 1: Introduction

13

is presented that transforms an RTL design into optimized partial bitstreams with a

selection of synthesis locations for the tasks that ensures an optimal number and

distribution of placement location for constituent tasks. With these optimizations, the

reliability of applications is improved. In addition, an optional technique for

achieving low power computation based on memoization is proposed for tasks with

low port width.

Chapter 5: Runtime Placement on FPGAs for High Performance and Reliability

This chapter focuses on the runtime phase of placement management for high

performance and reliability. It gives the details of techniques in efficient runtime task

placement on heterogeneous COTS FPGAs. The techniques include a novel

fragmentation quantification and efficient task reuse techniques. The fragmentation

quantification technique is based on measuring the isolation of an area of the chip

that can be potentially occupied by hardware tasks and aims to select task placement

locations to minimize the fragmentation of the chip area. In addition, a task reuse

mechanism is presentation that circumvent configuration of certain tasks to reduce

the workload of the configuration engine. The task reuse scheme is based on a novel

task replacement policy which offer some defragmentation of the chip area during

task replacement. By improving the utilization of the chip area, more application

components can be executed on the chip leading to lower task rejection ratio and

potential for a greater number of task relocation. In addition, by circumventing task

configuration, the configuration port is more available for soft error mitigation.

Chapter 6: Techniques for Task Relocation on FPGAs

The chapter discribes relocation techniques for hardware tasks on COTS FPGAs. A

functionality-based relocation technique is proposed to augument direct bistream

relocation on hetergoneous FPGAs. The aim of the proposed functionality-based

relocation technique is to replicate the functionality of certain hardware tasks at

another location on the chip where the original bitstream cannot be configured due to

 Chapter 1: Introduction

14

lack of matching resource. The proposed technique is based on memorizing the

computations of tasks’ output over the normal execution duration of the tasks and

using these to create a look-up-table at a destination location. The techique is limited

to only referencially transparent tasks with low port widths.

Chapter 7: Placement Management System Implementation and Characterization

The techniques developed in chapters 5 and 6 are integrated into a case study

implementation of a placement management system. The Xilinx 7 series FPGA is

used as a case study to show the practicability of the proposed techniques. However,

the algorithms and heuristics can be extended to other reconfigurable FPGAs. The

implementation is characterized in terms of the timing behavior as well as the

resource overhead, and its performance is compared with another state-of-the-art

placement system. The results show that the proposed placement management

system has a worst-case placement duration of less than 50% of a comparable system,

while having a comparable placement quality and resource overhead.

Chapter 8: Towards a Reliability-Aware Efficient Runtime Clock Routing in

Reconfigurable Computing.

This chapter address the challenge of delivering clock networks to tasks after

placement in runtime. It presents a technique of routing clock networks to hardware

tasks in runtime via the configuration layer by editing the configuration bitstream.

However, there are reliability issues associated with editing the content of the

configuration memory in runtime as the frame error correcting codes stored as part of

the bitstream becomes invalid. Thus, the chapter also presents an efficient means of

re-computing Frame ECCs after editing configuration bits in such a way that the

performance of the system is not degraded.

 Chapter 1: Introduction

15

Chapter 9: Conclusion and Future work

This chapter gives the conclusion of the research work presented in the thesis. It also

outlines the significance of the results, identifies the limitations of the work and

suggests future works.

16

Chapter 2: Introduction to Dynamic Partial

Reconfiguration, Clocking Infrastructure

and Reliability Issues on FPGAs

FPGAs are reconfigurable devices which are used to implement circuits. They offer

hardware performance similar to ASICs. Their architecture can be divided into the

physical layer (which contains functional resources such as look up tables, flip flops,

etc.) and a configuration layer. The functionality of the physical layer at any time is

defined by the design programmed into their configuration layer. The process of

programming an FPGA can be repeated frequently and a great number of times. In

practical terms, the number of times SRAM-based FPGAs can be reprogrammed

could be regarded as indefinite [28], thus making FPGAs highly flexible. In addition,

the performance offered by circuits configured on FPGAs is based on an actual

(re)wiring of hardware resources to build circuits. Hence, these circuits can be

optimized to have a class of hardware performance close to that of ASICs [29]. Thus,

FPGAs have a unique combination of high performance and flexibility which can be

harnessed to revolutionize many system designs.

Advances in modern FPGA architectures and tools have equipped them to be used to

implement complex systems. From a humble beginning of including only 85,000

transistors (forming only 64 CLBs and 58 I/O block) [30], FPGAs have grown by

more than 104 times in capacity, 102 times in performance, while energy

consumption and cost have reduced by more than 103 times [31]. They now include

dedicated signal processors, block of RAM, hard multi-core processors. Thus, they

have great potentials to be used to implement cost-effective complex SoCs in a short

time.

Their flexibility is especially desirable for many reasons, including easy update of

FPGA-based designs. This can translate to huge savings in cost compared to ASIC

based in applications that need to be upgraded to use better (or different) algorithms

[32]. Thus, FPGA-based designs are future-proof. In addition, design updates can be

carried out much more quickly, reducing system down-time and improving

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

17

reliability. Also, the fact that the configuration bitstream can be sent remotely is a

great advantage for remote systems where physical access to the system is restricted.

One key technology that has significantly contributed to these feats achieved by

FPGAs is DPR [33]. It opened even further possibilities for FPGAs to be harnessed

for high performance and reliability applications. DPR makes it possible for a part of

an application operating on an FPGA to be changed without affecting the

functionality of the other parts of the application. However, runtime management

tools and techniques are needed to harness these potentials of modern COTS FPGAs

to achieve high performance and reliability.

For the remainder of this chapter, the concept of DPR would be explained with a

description of how it could be harnessed for high performance and reliability.

Thereafter, an overview of a commercial tool for harnessing DPR on COTS FPGAs

in runtime applications will be presented. The limitations of the tool are also

identified.

Furthermore, the chapter gives an overview of clocking architecture of FPGAs that

enable clock network delivery to circuits in runtime. In addition, an introduction to

reliability isues in FPGAs is given with a focus on possible ways of addressing the

challenge. Most of the terminologies used in this chapter are for Xilinx FPGAs,

however similar terms exist for other classes of FPGAs also and the underlying

concepts can be extended to these other FPGA families or even other reconfigurable

hardware types in some cases.

2.1 Introduction to Dynamic Partial Reconfiguration

DPR allows the behaviour of part of a chip to be redefined without stopping the

operation of the other parts of the chip. Hence, it is possible to swap hardware tasks

(circuits) in and out of the chip, and effectively turn it into a platform which can both

be time and area-shared among multiple tasks [8] while offering high performance.

Circuits (or a subset of circuit(s)) configured on an FPGA with DPR capabilities

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

18

could be removed when not needed to make room for other circuits or to modify the

functionality of the system. The concept of DPR is illustrated in Figure 2.1.

Figure 2.1: Dynamic Partial Reconfiguration in FPGAs

Tasks 1 to N shown in the figure can be loaded onto the reconfigurable region of the

FPGA dynamically using DPR without affecting the operation of the static part of the

chip. In fact, even the part of the reconfigurable region which the task being loaded

does not overlap can retain its functionality. DPR is applicable to SRAM-based

FPGAs [34] [35] such as Xilinx FPGAs. SRAM-based FPGAs holds their

configuration bits in a Static RAM on the FPGA called the configuration memory

spread around the chip in a configuration layer. DPR simply writes a section of the

configuration memory, altering the functionality of the part of the chip where that

section of memory controls.

While a full configuration (over)writes the entire content of the configuration

memory and thus alters the behaviour of an entire chip, a partial configuration writes

only part of the memory. A full configuration is done when a full bitstream type is

loaded on the FPGA, as opposed to loading a partial bitstream on the chip for partial

reconfiguration. DPR loads partial bitstreams unto sections of the configuration

memory in runtime. Furthermore, while a full bitstream must be a specific length for

an FPGA chip, partial bitstreams vary in sizes, depending on the amount of

functionality desired to be changed in runtime [36]. Theoretically, their size could be

as large as the full bitstream and could be as small as just a single configuration

Task 1

Task 2

Task 3

Task N

 Static

Region
Reconfigurable

Region

DPR

Partial

bitstreams

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

19

frame. A configuration frame is an addressable unit of the configuration bitstream.

Further details of the configuration bitstream is presented in section 2.3.2.

While, it is worth noting that any addressable unit of the configuration memory can

be written in runtime, in practice, partial bitstreams are created during an off-line

design process that involves selecting a set of components as a partial reconfigurable

region [37]. This region can only include certain types of components which

generally vary from device to device. As an example, Table 2.1 shows an overview

of reconfigurable (✔) and non-reconfigurable (✘) components in the Xilinx 7 series

and UltraScale devices. Non-reconfigurable components must be left in the static

region of a design.

Although some components cannot be included in the reconfigurable region of a

design using the regular flow supported by the commercial FPGA design tools, by

using special reconfigurable computing techniques, DPR can be extended to these

components to control their behaviour in runtime. For example, some clock buffers

in Xilinx 7 series devices can be enabled and disabled by writing specific locations

of the configuration memory in runtime, even though they cannot be included in a

reconfigurable region. Such techniques are used in this thesis to extend the

advantages of DPR to components that cannot be placed the in reconfigurable region.

Table 2.1: Reconfigurable Resources in Xilinx 7 Series and UltraScale FPGAs

Component Type 7 Series UltraScale

CLB ✔ ✔

BRAM ✔ ✔

DSP ✔ ✔

PCI Express ✔ ✔

Clock Modifying logic (e.g. clock buffers, PLL, etc.) ✘ ✔

Clock Nets and PIPs ✔ ✔

I/O and I/O related components ✘ ✔

Serial Transceivers ✘ ✔

XADC and System Monitor ✘ ✔

Configuration Components (ICAP, Frame_ECC, etc.) ✘ ✘

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

20

A DPR-based design creates the enabling environment to dynamically multiplex

hardware tasks on an FPGA. This leads to a plethora of advantages and possibilities

including: reduction of area, power and cost of resources required to implement

desired functionality. It is worth noting that the frequency of performing DPR

depends on the type of application and the size of the FPGA. For example, an

application consisting of 2 units in a reconfigurable partition would require that DPR

be performed twice per execution cycle, if both units must be executed in each cycle.

However, cleaver algorithms and frameworks have been proposed to reduce the

number of reconfigurations in dynamic computation scenario such as [38].

DPR also leads to ease of updating designs, providing flexibility in the algorithms to

be implemented for an application and improving reliability [36]. However, it is

worth noting that DPR designs have additional overheads. For example, in Xilinx

FPGAs, design constraints commonly used in DPR flows results in additional

overheads in timing and resource utilization in a DPR-based design compared to an

equivalent design without DPR [36]. Two examples of such constraint are

“CONTAIN_ROUTING” (used to ensure that routing wires belonging to a specified

reconfigurable module are contained within certain boundaries) and restrictions on

optimization across reconfigurable module boundaries. Nevertheless, DPR remains a

great technique with so much potentials that more design tools are needed to reap

many of its benefits.

2.2 Xilinx Tool Support for DPR

Xilinx support for DPR could be classified into two main classes:

a) Flow for creating partial reconfiguration bitstreams for modules (done

offline)

b) Provision of partial reconfiguration controller that enables self-

programmability from within the FPGA (supports runtime DPR).

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

21

2.2.1 Creating Partial Reconfiguration Bitstreams

The procedure for partial bitstream creation for Xilinx FPGAs is documented in [37].

In addition to the partial bitstreams, a full bitstream is also created to be used for the

initial configuration of the entire device. An optional ‘Black-box’ bitstream can also

be created for each partition which can be used to wipe out a configuration when not

needed.

Figure 2.2 shows a summarised Xilinx partial reconfiguration flow using Vivado

(v15.1) IDE. First, the design top module is synthesized after removing all other files

from the design. The top module contains those segments of the design that translates

to the static part of the design shown in Figure 2.1. The synthesized result for the top

module is saved as checkpoint (.dcp file). The process is repeated for each

reconfigurable module (RM) present in the design, each time removing all other files

from the design, setting the target RM as the ‘top’ module, running synthesis and

saving the design check point file. Next, the saved checkpoints are loaded up,

assembled together and each of the RMs are set as partially reconfigurable. A floor-

plan area is then created and assigned for each partition. Each floor-plan area is

referred to as p-block. The area covered by a p-block must include sufficient number

of resources required by the RM(s) it is meant to accommodate. A partition could

accommodate more than a single RM, in which case, the partition must contain a

superset of the resources required by all RMs to be placed in that partition.

Attributes are set for the design before performing a design rule check (DRC) and

running implementation. Two examples of attributes set for the design at this stage

are ‘RESET_AFTER_RECONFIG’ to enable dedicated initialization of an RM after

its reconfiguration and CONTAIN_ROUTING to instruct the place and route process

to keep all routings belonging to a RM within the partition to which it is assigned.

DRC step ensures that essential constraints are met before attempting to implement

the design.

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

22

Figure 2.2: Summary of Xilinx Partial Reconfiguration Flow

For example, DRC run indicates an error if a p-block includes invalid sites or have

insufficient number of resources to accommodate all RMs assigned to that partition.

Users can select which of the design rules to be checked in their design using the

Tools tab in Vivado. After a successful DRC, the design is implemented, and the

current checkpoint saved. This checkpoint is later loaded to generate the design

bitstreams. First, a full configuration bitstream is generated for the entire design, and

partial bitstreams are generated for each RM in each partition. To generate an

optional ‘black-box’ bitstream in addition to full and partial bitstreams; after the

implementation step, the design is updated with ‘black-boxes’ (essentially empty

designs for each partition) and a checkpoint created for the updated design. This later

checkpoint is loaded to create ‘black-box’ bitstreams. These are blanking bitstreams

used for removing the functionality an RM.

Synthesize each

RM (save RM

checkpoints)

Synthesize Top

Module (save

static checkpoint)

Load Checkpoints

(Static + RM),

Assemble Design,

Set parameters

Draw P-blocks and

Save checkpoints

Set Attributes

and Perform

DRC

Implement

Design, save

checkpoint

Update Design

with ‘Black

boxes’ save

checkpoints

Load

checkpoints

and Generate

Bitstreams

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

23

2.2.2 Xilinx Partial Reconfiguration Controller

A configuration controller fetches the bitstream from memory and delivers it to a

configuration port. The configuration controller can either be self-contained in the

programmable logic itself or reside in an external device such as a processor. The

ICAP is the port available to the internal logic resources after the device is

programmed. It enables the chip to be programmed from within itself, and it is the

primary port for DPR in Xilinx FPGAs. It is important to note that a full

configuration is always required after device power-up before partial configuration is

supported. Examples of other configuration ports include: SelectMap, Serial, JTAG

interfaces. In addition, processor configuration access port (PCAP) and media

configuration access port (MCAP) can be used for downloading bitstreams on

Zynq®-7000 SoC devices and UltraScale devices respectively.

Xilinx provides a customizable Partial Reconfiguration Controller (PRC) IP that can

be used to manage partial reconfiguration in runtime. Xilinx PRC receives interrupts

from a higher system manager, coordinates the fetching of partial bitstreams from

eternal memory and deliver them to the ICAP [36]. It supports enclosed designs

where the RMs are known to the controller [39]. It has a capacity of managing up to

32 reconfigurable partitions with a maximum of 128 RMs per partition. When the set

of RMs to be managed in a system changes in runtime, the PRC must be

reconfigured using its AXI-lite register interface.

The PRC’s architecture is composed of a set of virtual socket managers. Independent

socket managers control different reconfigurable partitions simultaneously as they

can operate in parallel. However, the access to the path for fetching the partial

bitstream from memory as well as the configuration port can accommodate only a

single request at a time. The socket managers respond to external triggers which

could originate from a processor or another hardware management source. Figure 2.3

shows the operation flow of a socket manager. After an interrupt is received, any RM

in the target partition is first cleared out before initiating the configuration of a new

RM on the same partition. This is an optional step as there might be no RM in the

target partition. Similarly, after the configuration of a new RM on a partition, start-up

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

24

operations such as coupling it to the static part might be required. The optional steps

are shown in dotted rectangles in the figure.

Figure 2.3: Main Steps of a Virtual Socket Manager [Adapted from [39]]

 2.2.3 Limitations of Xilinx Partial Reconfiguration Controller

Although Xilinx’s support for DPR, offers many useful features that explores some

of the potentials of DPR, there are several important limitations with the tool support.

Three major ones are:

i) Inefficient use of FPGA Area

The architecture supported by the process of generating partial bitstream using Xilinx

reconfiguration flow and their runtime placement on the FPGA chip do not optimize

the use of FPGA area. A major reason for this is the use of pre-determined slots

(called reconfigurable partitions) for RMs. The use of partitions mean that a slot

assigned to a set of RMs must contain a superset of all resources of the RMs. This

leads to internal fragmentation [18] as smaller RMs would have unused area in the

slots they share with larger RMs. Fragmentation leads to increased area usage per

application which in turn leads to higher power consumption and cost.

In addition to the reconfigurable partitions themselves being resource inefficient, the

resource utilization of the PRC [39] is quite high compared to a custom

implementation of a runtime configuration controller. This is illustrated in Table 2.2.

From the table, it is easy to see that the custom PRC implementation [27] has an

overhead of only 31.17% and 62.94% of the amount of FFs and LUTs required by

Idle state

(wait for

interrupt)

Disable and

remove

existing RM

Start up

new RM

Load new

RM

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

25

the Xilinx PRC. However, it is important to note that the PRC has functionalities

which are not present in [27] and vice versa. For example, the [39] has decoupling

functionalities not reported in [27], while the [27] has bitstream relocation feature

and capacity to handle encrypted bitstreams not present in the [39]. Nevertheless,

most of operations surrounding dynamic loading of partial bitstreams are reported in

both.

Table 2.2: Resource Overhead of Xilinx PRC on Kintex7 Device

Resource Type Xilinx PRC [39] Custom Controller [27]

FF 1203 375

LUT 1171 737

BRAM - 3

ii) Encrypted Partial Bitstream not Supported

Xilinx PRC does not fully support the runtime configuration of encrypted partial

bitstreams even on its very recent devices such as the 7 series FPGA [39]. On the

UltraScale devices, the PRC offers limited support for the configuration of encrypted

partial bitstreams. But in the case of error occurrence during configuration, the

system would not be able to recover. In this age when data and application security is

very important, such lack of full support for encryption creates opportunity for IP

theft and other security threats [40], [41] [42] [12].

iii) Lack of Bitstream Relocation Support

Xilinx PRC does not support bitstream relocation. Hence, a partial bitstream

synthesised at one location on the chip cannot be placed at another location of the

chip in runtime. Bitstream relocation is a potentially beneficial technique in many

FPGA-based applications. It has the advantage that fewer number of partial

bitstreams can be stored and configured at different locations when needed in

runtime. In addition, bitstream relocation can be used in critical applications to

circumvent damages on the chip such that in the event of fault, a circuit can be

relocated to another location. Another advantage of bitstream relocation is

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

26

defragmentation of the chip area. Without support for runtime bitstream relocation,

Xilinx PRC does not meet the need of most modern reconfigurable computing

systems.

Given the limitations identified above and the numerous prospects of DPR, several

academic efforts have been directed towards developing tools that would better

manage the FPGA resources in runtime [43] [18] [44]. In addition to harnessing the

prospects offered by DPR in several application domains, many of the tools also aim

to simplify the process of deploying DPR. This is to enable DPR to be available to

ordinary users by abstracting low level details. Notable examples of proposed ROS

and reconfigurable computing tools include: R3TOS [8], ReconOS [45], CAP-OS

[46], LEAP FPGA OS [47], RIFFA [48] and RTSM [49]. More details on these tools

and techniques is provided in chapter 3.

2.3 Clocking Infrastructure and Bitstream Format of

FPGAs

After the placement of task in runtime in a scenario where there are no pre-

determined partitions for the tasks, it becomes necessary to route clock networks to

the newly placed task. The proposed technique in this thesis is to achieve efficient

clock routing through the configuration layer. In this section, first, the clocking

architecture of an FPGA is reviewed with a focus on the opportunities the clocking

infrastructure offer for efficiently delivering clocking network to a task in runtime.

Next, a brief description of the structure of configuration bitstream is presented,

identifying sections to be edited in runtime to achieve clock routing and the sections

for error monitoring. The discussion uses the Xilinx 7 series FPGA family as an

example.

2.3.1 General Structure of Clocking Network on Xilinx FPGA

Like most recent FPGAs, each Xilinx’s 7 series FPGA device is divided into units

called clock regions. The number of clock regions in a device varies from 2 to 24

depending on the device size [50]. All clock regions have a height of 50 CLBs

(equivalent to 10 36-kb Block RAMs or 20 DSPs). The number of columns in a

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

27

clock region varies by device, ranging from 20 in the small Artix 7 device to 62 in a

Virtex 7 device. A clock region defines the area of the device serviced by dedicated

clock nets and buffers.

The major clocking resources present in a clock region of a Xilinx 7 series FPGA

consists mainly of clock buffers, clock nets and programmable interconnection points

(PIPs). These are briefly described below.

Clock Buffers:

There are 4 types of clock buffers in each clock region. These include 12 horizontal

clock buffers (BUFH) and 4 regional clock buffers (BUFR). These can be used to

directly drive logic resources such as flip flops, BRAMs and DSPs. The other two

clock buffers in a clock region are the multi-regional clock buffer (BUFMR) and the

I/O clock buffer (BUFIO). BUFMR and BUFIO cannot be used to feed logic

directly. BUFMRs feeds BUFRs which in turn drives an intended logic resource

while BUFIO drives the I/O clock tree. Since BUFIOs are not involved in driving

reconfigurable logic, they are not used in the process of delivering clock network to

placed tasks and hence they have been omitted from the following descriptions and

figures. In addition to the buffer types listed above, there are 32 global clock buffers

(BUFGs) which are not located in any specific clock region, but are part of the global

clock tree and are collectively located at the centre of the device.

It is worth noting that the type of buffer that can be used to deliver clock signal to a

task is determined by 3 factors:

i) the size of the task (in terms of the number of clock regions the task

spans),

ii) task shape (in terms of the orientation of the task – whether the task spans

clock regions in the vertical or horizontal directions) and

iii) the location of the tasks on the chip.

Figure 2.4 shows five tasks with a list of the buffers which can be used to feed clock

signal to each. Tasks which span more than one clock region in the vertical directions

only but limited to 3 clock regions (such as Task A and Task C) can only be fed by

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

28

BUFG and BUFMR. It should be noted that BUFMR must be routed via a BUFR to

the task. Tasks which are limited to a single clock region (e.g. Task D) can be fed by

all buffers capable of feeding logic. Tasks spanning more than a clock region in the

horizontal directions only (such as task E) can be fed by BUFG and BUGH only.

Finally, a task which does not conform to any of the above three categories (such as

Task B) must be fed with a BUFG. In addition to the reach of each clock buffer,

characteristics such as clock division capability, runtime Enable/Disable capability as

well as limitation on the number of available buffers play a role in the selection of

buffer to feed a task in runtime. For example, tasks requiring the frequency of

available clock to be divided by a factor must be routed through BUFR as only

BUFRs have the clock division capability.

BUFG (x32)

BUFR (x4)

BUFMR (x2)

BUFH (x12)BUFH (x12)BUFR (x4)

BUFMR (x2)

Task A
Task C

Task B

Task D

Task E

Clock Source:

BUFG only

Clock Source:

a) BUFG

b) BUFR

c) BUFH

d) BUFMR*

Clock Source:

a) BUFG

b) BUFH

Clock Source:

a) BUFG

b) BUFMR*

Clock Source:

a) BUFG

b) BUFMR*

Figure 2.4: Example Tasks and List of Clock Buffers for Clock Network Delivery

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

29

Clock Nets and PIPs:

In the 7 series, there are 16 horizontal clock nets in each clock region. These are

divided into two groups: 12 nets which are in the horizontal clock row (HROW), and

4 dedicated regional nets. The nets are physically located at the middle of the

columns which occur between 25 upper CLBs and 25 lower CLBs in a clock region.

They are available to all columns of the region with logic resources. The nets can be

routed to all synchronous elements using a set of PIPs. The PIPs serve as connectors

from clock buffers to clock nets, and clock nets to other nets/trees. In each column of

the device, the PIPs enable the possible routing of the clock nets to the synchronous

elements in the column. Figure 2.5 shows a simplified illustration of the

arrangements of BUFHs, clock nets and PIPs. This arrangement facilitates the

routing of clock nets to any column in the region with synchronous elements. As

shown, the 12 BUFHs in a clock region can normally drive 12 of the 16 horizontal

nets. These 12 nets can also be driven by BUFGs. The other 4 dedicated nets are

driven by the BUFRs in the clock region in which they are located.

Figure 2.5: A Simplified Illustration of BUFHs, Clock Nets and PIPs

To other

columns

ENB

ENB

To Synchronous components

of upper half of column

To Synchronous components

of lower half of column

Net 0

Net 11

PIPs
BUFH

(x12)

CLK_IN

CLK_IN

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

30

In addition, a set of PIPs can potentially switch a net vertically to deliver any 12 of

the 16 horizontal clock nets in a clock region to the synchronous elements in a

column. As shown there are 6 nets which enter a column from the HROW for each

column: 6 PIPs (TOP0, TOP1, … TOP5) deliver clock signals to the resources in the

upper half of the column and 6 to the lower half (BOT0, BOT1, … BOT5). In

addition to these, 6 clock nets from an adjacent column can also be delivered to the

upper part column and lower parts. Hence, a maximum of 12 clock nets can be

routed to synchronous elements in a column simultaneously.

2.3.2 Overview of Relevant Sections of Xilinx Bitstream Format

Figure 2.6 shows major sections of the configuration bitstream of a typical Xilinx 7

series FPGA. Four distinct sections of the bitstream can be identified. The first is a

pre-amble and synchronization section which contains data relating to setting up the

configuration interface. An example of a set of data contained in this section of the

bitstream is the bus width auto detection sequence which is used to adjust the

configuration port to a desired width. Supported port width are 8, 16 and 32 bits.

Pre-amble and Synchronization

Device ID Check and Reg

Settings

Configuration Data

Post-amble

(CRC, De-synchronization, etc.)

W
o
rd

 0

Frame 0

Frame 1

Frame (N-1)

W
o
rd

 5
0

W
o
rd

 1
0
0

Frame ECC bits

[0:12]

HCLK

Configuration bits

[13:31]

Figure 2.6: A simplified Illustration of Sections of the Configuration Bitstream

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

31

The bus width detection logic looks for the following patterns on bit [7:0] in the

configuration bitstream pre-amble section to set the bus width for configuration:

i) for 8 bit: D[7:0] = 0xBB, followed by 0x11 on the same bits in the next word

ii) for 16 bit: D[7:0] = 0xBB, followed by 0x22 on the same bits in the next word

iii) for 32 bit: D[7:0] = 0xBB, followed by 0x44 on the same bits in the next word

This section of the bitstream also contains the synchronization word which signals to

the device that configuration data is about to be loaded and aligns the configuration

data with the configuration logic. For the 7 series and UltraScale FPGAs the

synchronization word is: 0xAA995566.

The second section of the bitstream consists of device ID check, setting of

configuration registers to control parameters such as number words to be configured,

etc. The device ID check avoids the configuration of a bitstream meant for a different

device. The ID of a device has the format shown in Table 2.3. As an example, the

Xilinx 7 series chip on Digilent’s basys3 FPGA board has a unique ID CODE:

0x0362D093.

Table 2.3: Format of Device ID Code in Configuration Bitstream

[31:28] [27:21] [20:12] [11:0]

Version FPGA Family Code Array Code* Company Code

*array code includes 4-bit sub-family and 5-bit device code

The fourth section of the bitstream consist of instructions to confirm CRC values as a

means of data integrity check. During loading of configuration data, CRC values are

computed for the data loaded unto the device. This section of the bitstream contains

instructions to load the value of the computed CRC and compare this with that in the

bitstream. The fourth section also contain commands to de-synchronize the

configuration port.

The third section is the actual configuration data which are written to the

configuration memory (CMEM) of the FPGA. It is the largest part of the

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

32

configuration bitstream and contains the data specific to the RTL design being

configured as well as all components in the region of the FPGA being configured. The

data are organized in configuration frames. A configuration frame is the smallest

resolution of configuration on a Xilinx FPGA chip. For the 7 series, a configuration

frame consists of 101 words, each word being 32-bits wide. Each frame is identified

by a specific frame address and can be written to the configuration memory of the

device to change the characteristics of the primitive (or part of it) which the frame

controls.

A configuration frame is built up from individual primitives in a unit of the

components listed in Table 2.1. The components are organized in columns and rows

on most modern Xilinx FPGAs. Several rows are further grouped together to form a

clock region. For example, in the 7 series devices, a clock region consists of 50 CLB

rows [36]. Thus, a column of CLB has a width of 1 and a height of 50 CLBs.

Similarly, a BRAM column has a width of 1 and a height of 20 BRAMs. A number of

configuration frames are required to write the configuration memory corresponding to

a column of components. The number of frames vary by component type.

The number of configuration frames 𝑁 is constant for a full bitstream of a specific

device. For partial bitstreams, 𝑁 is directly proportional to the number and type of

resources on the chip area to be configured. Table 2.4 shows the number of frames

required to configure each reconfigurable resource type [25]. It is worth noting that

the table have been organized in pairs of columns because a pair of reconfigurable

resource column share a routing network in the 7 series FPGAs.

Table 2.4: Number of Configuration Frames in Reconfiguration Resource Pair on

Xilinx 7 series FPGA

Resource Pair CLB-CLB CLB-DSP CLB-BRAM

Number of Frames 72 64 192

Each configuration frame in the bitstream is referenced by a frame address whose

format is shown in Table 2.5 The frame address links the data in the frame to physical

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

33

resources on the chip by defining its row, column and resource type [51]. It also

specifies whether the resource is in the upper or lower half of the device and the

specific section of the device to be configured. For example, the frequency of the

clock signal routed via a BUFR in a specific clock region may be controlled by re-

writing a specific frame in a specific column of the device.

Table 2.5: Frame Address Format in Xilinx 7 series FPGA

Address Type Block Top/Bottom Row Column Minor

Bit Index [25:23] 22 [21:17] [16:7] [6:0]

Each configuration frame consists of 101 32-bit words, labelled word 0 to 100 in

Figure 2.6. Word 50 is of special interest here as it contains the ECC values of the

data contained in the frame. As shown in the figure, the ECC values are located in the

lower 13 bits of the word. These bits are monitored in runtime to detect any changes

to the composition of the data contained in the frame. In section 2.4.1, details of how

they are used to detect and correct errors in the CMEM is presented.

The 50th word of each frame also contains important information relating to the

clocking resources such as clock buffers as well as some information about the clock

nets and PIPs in the HCLK. This information is mostly found on bits [31:13] of the

word and include the clock frequency division factors of BUFR, clock enable bits for

BUFH, etc. Further clock net information is also found in words 48, 49, 51 and 52 of

a configuration frame. The locations of these control bits are not disclosed by Xilinx

and were obtained using reverse engineering experiments. Details of these are given

in chapter 8 of this thesis.

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

34

2.4 Reliability Issues in FPGAs

COTS FPGAs based on SRAM configuration memory are susceptible to bit flips.

These are called temporal faults. These unwanted bit flips are often caused by effects

such as ionizing radiation and extreme temperatures [52]. Temporal faults in the

configuration memory can affect the functionality of an application leading to soft

errors. However, not every bit flip lead to soft errors. For soft error to occur, the flip

must affect a critical bit in the design. In addition, the number of configuration bits

not used by a design reduces the soft error rate. Xilinx reports the effective soft error

rate on their devices using device vulnerability factor (DVF). The DVF for a typical

design is reported as 5% with a worst case value of 10% for their devices [53]. The

number of failures on 7 series devices was reported as 75 FIT/Mb, were one FIT

refer to one failure per one billion device hours, and Mb is 106 of memory bits.

Nevertheless, when FPGAs are used in critical applications, soft errors need to be

managed to prevent application failure. Correction of temporal faults often involve

reversing the bits that have flipped.

In addition to temporal faults, there are permanent faults that occur on a chip. These

are not easily correctable like temporal faults. Examples include latch-up, damage to

the underlying silicon through effect of electromigration, hot-carrier injection and

other ageing related effects [54], [55]. Common approach to mitigate the effect of

permanent fault in runtime is by using circuit relocation or other application design

techniques like triple modular redundancy (TMR). Figure 2.7 shows some of the

mains cause of faults in electronic chips.

Figure 2.7: Temporal and Permanent Faults Occurrence on Electronic Chips

Extreme

Temperature Radiation Ageing effects, (e.g.

hot-carrier injection)

Temporal Faults

Permanent Faults
+

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

35

While electromigration, hot carrier injection and other ageing effects generally lead

to permanent faults, ionizing radiation and extreme temperatures generally lead to

temporal faults. Both of these poses reliability issues in FPGAs-based designs.

2.4.1 Soft Error Mitigation in FPGAs

Configuration scrubbing is the technique typically used to detect and possibly correct

un-wanted bit flips in FPGAs whose CMEM are based on SRAM technology [28].

Xilinx have developed a proprietary solution which monitors errors in a manner

which is transparent to users who only need to include the IP in their designs. This is

called the Xilinx Soft Error Mitigation (SEM) IP [56]. Many custom solutions have

also been developed to detect and/or correct soft errors on Xilinx FPGAs. Notable

examples include [27], [57] and [58] which present many variants of scrubbing

optimizations. However, all the techniques rely on the same fundamental principle as

the SEM IP which is summarized below.

There are generally four types of memories on the FPGAs which can potentially be

affected by bit flips. Arranged in decreasing order of size and hence likelihood of bit

flip occurrence, these are: CMEM, block RAM (BRAM), distributed RAM (DRAM)

and Flip Flops (FF). Generally, soft error mitigation in these memories except the

CMEM can be performed in the design itself, by using techniques such as triple

modular redundancy [56]. The SEM IP detects errors only in the CMEM. Also, it

does not have the capability to avoid soft errors, but only reacts to correct them and

thus mitigate their effect. Given that the IP continually scans the CMEM using the

Internal Configuration Access Point (ICAP) bandwidth, Xilinx recommends that at

least 99% of the ICAP bandwidth be dedicated to the SEM IP’s operations [59]. With

this recommendation, the typical error detection and correction latency is 25ms [56].

However, error classification can be used to improve the performance while some

implementations also restrict the scanning to certain parts of the chip containing user

designs and hence improves on the average speed of error detection [27].

Xilinx SEM IP implements five main functionalities: initialization, error injection,

error detection, error correction and error classification. These are shown in Table 2.6.

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

36

As shown, all the functions except initialization and detection are optional and must

be enabled by the user by setting specific registers. To achieve error correction in a

design after the initialization stage, the SEM Controller monitors the integrated soft

error detection status (based only on calibrated Frame ECC values). When an error is

detected and localized, the SEM IP either corrects the error by reversing the bit flip

(repair) if a single bit error occurs or reconfigures the entire frame if multiple bits are

affected within the same frame (replace). The SEM IP can also operate in an

advanced repair mode during which adjacent double bits errors in the same frame can

be corrected. However, the advanced repair mode requires the use of both the Frame

ECC and the CRC of the configuration bitstream.

At the heart of the error detection capability of the SEM IP is the FRAME_ECC

primitive which provides a SYNDROME value used to determine the location of the

error in the CMEM. However, the Frame_ECC primitive cannot differentiate between

a user operation editing bits and soft errors (which could be caused by ionizing

radiations), since it reports any bit flips as errors. Hence, since many operations in

reconfigurable computing such as the runtime clock network routing is carried out

through the configuration layer, it is important to update the Frame ECC values after

editing the content of the configuration memory. The technique of doing this is

presented in chapter 8 of this thesis as part of the runtime clock routing mechanism.

Table 2.6: Main Operations of Xilinx SEM IP

Function Type

Initialization Necessary

Error detection Necessary

Error injection Optional

Error correction Optional

Error classification Optional

Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs

37

2.4.2 Permanent Fault Mitigation in FPGAs

Unlike temporal faults which can be corrected by reversing a bit flip or (re)writing

sections of the configuration memory, permanent faults on the chip are managed

differently. In addition to techniques such as TMR, hardware task relocation has

been proposed to circumvent permanent faults on a reconfigurable chip. The

technique involve the re-configuration of a hardware task affected by a permanent

fault at another location on the chip [19]. Circuit relocation technique need to meet

certain requirements. For example, it needs to provide a means of communication

with the other parts of the system or external ports on the chip. There is also the need

to manage the chip area efficiently to ensure availability of free area on which to

place circuits during relocation. The challenge of delivering clock networks to

relocated tasks also need to be addressed. This thesis provides techniques to address

the latter two of these challenges, and hence improve circuit relocation. Details of

area management to improve relocation of tasks are covered in chapter 4, 5, 6 and 7

of this thesis while clock net routing is covered in chapter 8.

2.5 Chapter Conclusion

In this chapter, the concept of DPR was introduced and an overview of commercial

tools support for DPR was presented, using Xilinx FPGAs as case study. The chapter

also identified the limitations of Xilinx tools for DPR especially as it relates to

efficient use of the chip resources. In addition, the clock architecture of a typical

FPGA chip was reviewed and the resources that enable clock network delivery to

tasks in runtime were identified. As the mechanism involves editing the

configuration bits in runtime, the structure of a typical Xilinx configuration bitstream

was also reviewed in this chapter. A description of the reliability challenges

associated with runtime bit editing was also discussed. Finally, an introduction to

reliability isues in FPGAs was given with a focus on how they might be addressed.

38

Chapter 3: Runtime Placement Management and

Low Power Computation on FPGAs

Placement management is a key aspect of reconfigurable computing. It helps to

harness the potentials of DPR for high performance and reliability. Reconfigurable

computing involves performing computations using the area of programmable

devices such as FPGAs in a dynamic application scenario [44]. Several

reconfigurable computing techniques have been proposed to harness the potentials of

DPR for high performance and reliability. Some authors refer to tools for managing

reconfigurable computing as reconfigurable operating system (ROS), a convention

that is adopted for the remainder of this thesis. Runtime placement management is

aimed at ensuring an optimal utilization of the reconfigurable device resources,

including the area of the chip as well as the configuration port. Maximizing the

utilization of the chip area improves application performance, not only by improving

the number of hardware tasks that can be executed on the chip, but also creating

room on the chip for task relocation. Relocation is applicable for the purposes of

circumventing permanent damage on the chip, thermal balancing, etc. Similarly,

managing the reconfiguration port is essential to maintain a healthy balance among

the various essential responsibilities of the single port such as task configuration and

soft error mitigation.

In addition, low power computation is an important aspect of reconfigurable

computing. Reconfigurable computing techniques can potentially be used to lower

the energy consumption on FPGAs. In addition to minimizing energy bills, low

power consumption also reduces the risk of electromigration and increases the life

span of the chip as well as battery life.

In this chapter, a review of runtime placement management and low-power

computation on reconfigurable hardware is presented. Regarding placement

management, this includes a review of various placement management systems

developed for reconfigurable computing tools. A review of underlying issues that

affect quality of placements such as fragmentation and configuration overhead is also

presented. Finally, an overview of low power consumption on reconfigurable

Chapter 3: Runtime Placement Management on FPGAs

39

hardware, with a focus on reusing computation results to lower power consumption

is discussed.

3.1 Review of Runtime Placement Management on FPGAs

for Reconfigurable Computing

Most ROS have a form of runtime placement manager in their architectures. R3TOS

[8] is composed of 3 main parts; scheduler, allocator (which is its placement

manager) and configuration manager. R3TOS uses a non-slotted computing model,

where there are no fixed partitions for RMs (or hardware tasks). Thus, tasks can be

placed at any free matching location on the chip. The advantage of using a non-

slotted (or non-partitioned) model is that it avoids internal fragmentation. Tasks only

occupy resources which they require for their computation and hence other areas of

the chip are free to be used by other tasks. A major focus of R3TOS is achieving

reliability by relocating tasks affected by a permanent damage on the FPGA to

another location on the chip and thus increase the reliability of critical applications in

hostile environments [60]. In a slot-based model, should a single unit of resource

become damaged in a slot, the entire slot becomes unusable thereby wasting all the

other resources in the slot. This, the authors argued, reduces the number of

relocations of tasks, and hence reduces the degree of fault tolerance of an application

[19].

However, the challenge of non-slotted computing model is the associated difficulty

of achieving communication among RMs and the FPGA ports, as well as the

complex allocation process. Figure 3.1 illustrates advantages and disadvantages of

slotted and non-slotted reconfigurable computing architectures.

To address the challenge of inter-tasks communication, R3TOS explored the use of

the configuration layer for communicating among tasks [61]. Special wrappers are

created for each task which essentially enables the task to read its inputs from an

input data buffer (IDB) and save its computation results in an output data buffer

(ODB). When task communication is required, the internal configuration access

point is used to copy data from the ODB of a source task to the IDB of a destination

task.

Chapter 3: Runtime Placement Management on FPGAs

40

To address the challenge of delivering clock network to a task in runtime after its

placement on the chip, R3TOS also uses the configuration layer to route clock

networks to RMs [62]. The technique used by R3TOS involved carefully examining

the configuration bitstream to identify configuration bits that control the state of the

programmable interconnection points (PIP) in the paths of clock nets. This

information is used to route clock signals to all clocking points of each flip flops,

BRAM and DSPs in a design.

Slot 1 Slot 2

Static Region

Task B

Task A

Static Communication Routes Clock Nets

Internally fragmented areas due to slots

(a)

Static Region
Task B

Task A

(b)

Figure 3.1: Slotted Versus Non-Slotted Reconfigurable Computing

a) Slotted Architecture has clearly defined boundaries reducing the complexity of

task allocation, communication and clock networks delivery but leads to inefficient

resource usage. b) Non-slotted architecture has potentials for better resource

utilization but requires more complex runtime task placement management. Clock

network delivery to task and task communication are also more challenging

Chapter 3: Runtime Placement Management on FPGAs

41

The placement manager (allocator) in R3TOS keeps track of the resources on the

FPGA chip and decides location for incoming tasks with the aim of maximizing the

utilization of the chip area. Placement locations are not limited by static

communication ports or pre-defined boundaries for tasks [63]. Thus, RMs can be

placed on any matching location on the chip which is free. The allocator architecture

consists of an architecture checker (AC), an empty area descriptor updater (EADU)

and an allocator quality evaluator (AQE). The AC checks the feasibility of placing an

RM on a location on the FPGA by comparing the resource layout of the RM’s

architecture and that of potential locations. The AQE computes the quality of

potential locations. It does this by comparing the fragmentation contribution of each

of the potential placement location and selecting the location with the least

fragmentation. The main algorithm implemented by the allocator to optimize the

FPGA area utilization is Empty Area Compaction (EAC) algorithm which is a

derivative of the Maximum Empty Rectangle (MER) algorithm [64].

Unlike R3TOS, ReconOS [45] is targeted only at high performance applications, and

not reliability of critical applications in hostile environments. The key idea of

ReconOs is to extend the capabilities of a traditional host OS to support hardware

threads [65] [45]. ReconOS manages threads from a software perspective and

delegates appropriate threads to the reconfigurable hardware platform when needed

in runtime. ReconOS aims to extend the multithreading programming model on

processors to a mixture of processors and reconfigurable hardware platforms. Thus,

from the application’s appearance, a unified hardware and software thread is

presented. To use ReconOS for applications, a user first executes a multithreaded

application only in software for functionality testing. Secondly, the application is

executed on an embedded CPU in a targeted FPGA platform. Thereafter, the

application designer uses profiling to identify threads suited to CPU execution,

threads suited to be executed on the reconfigurable hardware and threads that can be

executed on both. Finally, the designer synthesizes the hardware threads and

configures them on the FPGA ready to be executed when required. In runtime an

implementation of each task to assigned to either software or hardware when needed

depending on the runtime scenario.

Chapter 3: Runtime Placement Management on FPGAs

42

ReconOS uses pre-defined slots for executing RMs (hardware threads) in runtime

[66] [18]. Thus, the attendant challenges of runtime placement seem not to be a

complex one as in the case of R3TOS which uses a non-slotted architecture. In

addition, the use of slots simplifies the communication and clock network delivery

process. However, as mentioned above, the efficiency of area utilization in slotted (or

partition-based) runtime placement architecture is significantly less than those of a

non-slotted architecture.

The CAP-OS targets real time applications [46] [67]. It manages tasks in runtime by

coordinating the schedule of tasks’ reconfiguration, their runtime allocation to

specific processing elements (in the form of processors). The objectives of the

scheduling and allocation are: meeting tasks’ deadline, improve resource utilization

and lower power consumption. The OS manages access to the configuration port

with a consideration of its configuration overhead. It includes the possibility to reuse

tasks to reduce the workload of the configuration port.

The placement management technique presented by CAP-OS involves checking the

availability of free processors to execute a requested task, and in their absence a new

processor is configured. No detail of area management technique (such as

minimizing fragmentation) is presented. This seem to suggest that a partition-based

architecture was used. The implementation of CAP-OS was also reported as

partition-based in [18].

Like CAP-OS, LEAP OS and RIFFA are also partition-based reconfigurable

operating systems and do not give any detail of runtime placement management

relating to optimizing the use of FPGA area. Rather, the main focus of LEAP OS is

the abstraction of communication infrastructures on the FPGA chip by using the idea

of latency-insensitive design presented in [68]. RIFFA, on its part, provides

communication and synchronization by offering a consistent and generic interface

between hardware and software on FPGA SoCs. Similarly, GOAHEAD [69] is a

design-time tool that offers support for runtime reconfigurable systems. No detailed

area management strategy was provided.

Chapter 3: Runtime Placement Management on FPGAs

43

Finally, RTSM presented a management system that aims to manage both hardware

and software tasks on FPGAs in runtime. Although, the technique – like many of the

foregoing – is partition-based, the authors use a mechanism named best fit in space to

improve the utilization of the partitions in runtime. In essence, best-fit in space

allocates tasks to partitions which leaves the least unused area in the slot. In

addition, RTSM includes a form of task reuse in its runtime placement scheme to

achieve better overall execution time. This technique, called best fit in time, checks if

a task is already present in any of the partitions before configuring another copy.

However, to support the possibility of a task’s partial bitstream being configured on

multiple partitions, different versions of the task’s bitstream must be stored, a

technique which often require large storage.

It is clear from the foregoing that most ROS use the partition-based (slotted)

architecture for runtime placement of RMs on FPGAs despite the potentials for a

better area utilization with non-slotted architecture. Only R3TOS uses the non-slotted

architecture. As identified above, the main reasons for adopting slotted architecture

in most ROS revolve around the complexity in developing novel placement

techniques that are practicable for ROS. Other reasons include developing

communication and clock network delivery to tasks after their runtime placement. In

addition to these, another challenge with using COTS FPGA in runtime applications

generally is their large reconfiguration overhead.

In the following sub-sections, a review of some previous relevant research efforts

towards addressing the challenges of efficient runtime area management, large

reconfiguration time and clock routing to tasks after their placement is given.

Communication is not addressed in this thesis.

3.1.1 Review of FPGA Area Management in Runtime Placement

Systems

The runtime placement of tasks on homogenous reconfigurable hardware have been

well studied by many authors. A foundational work in modern efficient management

of FPGA area was presented in [64]. The authors presented both a design time and a

Chapter 3: Runtime Placement Management on FPGAs

44

runtime algorithm for task placement on the FPGA. The runtime placement involves

keeping track of the MERs on the chip area and using either a best fit or first fit

technique to decide how to split the area to accommodate a requested task. The aim

of the splitting technique is to minimize fragmentation of the chip area. Another

notable work is the use of Vertex List Set (VLS) to keep the contour information of

free area on the chip [70]. In a later work [71], the authors proposed an adjacency-

based heuristic that uses the information in a VLS to determine a location for a task.

The MER and VLS techniques are reported to have high accuracies but have high

computational overhead [72]. In addition, these techniques are not inherently

targeted at heterogeneous FPGAs. Hence, additional computation is required to apply

them to COTS FPGAs which are heterogeneous as done by the placement system

reported in [63].

Authors in [73], proposed runtime placement algorithms for heterogeneous

reconfigurable platforms. One of the main ideas of the placement system is to speed

up the process of scanning the FPGA area to find location for an RM using the

locations of the heterogeneous resources such as BRAMs and DSPs on the chip.

Since there are typically fewer of these resources, the scanning process can quickly

decide if the architecture of an available location on the chip matches that of an

arriving RM (or task). When multiple possible locations exist on the chip to place a

task, the layout of the other tasks on a scheduled queue is checked to see which of

the locations blocks the least number of scheduled tasks. That location is chosen for

the task.

However, to simplify the problem the allocation problem, the authors assume that the

heterogeneous blocks on the FPGA platforms are regularly spaced-out. In addition,

their techniques rely on a Virtual Bitstream (VBS) format which is independent of a

task’s location on the chip. None of these two assumptions apply to conventional

COTS FPGAs. The authors proposed a new FPGA architecture for their algorithm.

This is a different approach from the focus of this thesis which is to use COTS FPGA

architectures rather than propose new ones.

Chapter 3: Runtime Placement Management on FPGAs

45

The work in [74] presents two algorithms for the placement of tasks on heterogeneous

platforms (targeted at COTS FPGAs). They are Static Utilization Probability (SUP)

Fit and Run-time Utilization Probability (RUP) fit. These correspond to offline and

runtime phases of placement management respectively. The basic principle of both is

that tasks with many potential placement locations on the chips are not placed on

locations required by tasks with few potential placement locations. SUP fit generates

a utilization probability for each cell on the chip using the matching location of all

tasks to be placed. This was done by analyzing overlap graphs of each cell on the

chip. The weights of all feasible positions are determined and sorted in ascending

order. This is done offline, at the application design stage. At runtime, when a request

is made for a task’s placement, the next suitable position for the task which is least

probably used by other tasks in the set is assigned to the task.

The authors also presented an alternative RUP fit. RUP fit dynamically computes

position weight for the cells at runtime instead of the design time approach used by

SUP. A drawback of these techniques is that a foreknowledge of all tasks to be placed

on the chip in runtime is required for SUP fit. Furthermore, the technique does not

consider the distribution of the number of feasible positions among the constituent

tasks of an application. Thus, it is prone to a situation where some tasks have

abundant areas and others have too little. In addition, updating the position weights in

the RUP fit in runtime is quite time consuming.

The work in [75] presents a technique for relocating a design bitstream synthesized

for a location with a DSP to another location with a BRAM replacing the DSP.

However, the technique is based on online editing of configuration bitstream which is

time consuming. In addition, the routing between the DSP and BRAM are required to

be identical, and neither the DSP nor the BRAM must be used by the design.

Commercial FPGA do not have the same routing for DSP and BRAM resources.

Furthermore, the work in [71] presented an adjacency-based heuristics for measuring

and minimizing fragmentation on chip area. Adjacency based techniques are better

suited to homogenous chips, as heterogeneous hardware tasks have definite layout

Chapter 3: Runtime Placement Management on FPGAs

46

requirements which mean that a matching location to accommodate a task may not be

adjacent to another task or the chip boundary.

Also, the authors in [76] and [77] presented a design optimization technique to

improve place-ability of tasks at runtime using overlap graphs. The main principle of

the work is based on the intuition that the placement locations for a task is determined

by the selected synthesis position in its design (or offline) phase. Thus, synthesis

location that are least contested for by other tasks in the application is selected for

each task. Since these works are based on minimizing overlap like [74], they are

prone to variation in the number of feasible location for constituent tasks.

An integral aspect of runtime placement is the quantification of fragmentation of the

chip area. Most existing techniques for quantifying fragmentation on reconfigurable

chips are well suited to homogenous ones. They use the assumption that the chips

only consist of a single resource type – mostly Configurable Logic Blocks (CLBs).

Hence, they are not directly applicable to heterogeneous chips. The work in [63]

presented a version of MER which is applicable to heterogeneous chips by proposing

additional computation using an architecture checker.

In [78], a metric for fragmentation was presented. The technique measure

fragmentation by computing the contribution, 𝑓𝑖 of individual slots, 𝑖 (called hole)

using (3.1a). 𝑓𝑖 is then used to compute the degree of fragmentation, 𝐹 of the entire

chip using (3.1b). 𝑘 represents the number of free cells in a slot and 𝑁 the total

number of cells on the chip. An advantage of the technique is that is it fast and hence

suitable for runtime placement management systems where fast placement decisions

are key. However, the computation of 𝑓𝑖 is based only on the number of free cells and

does not consider the distribution of the occupied or free cells within the hole. Hence

the metric cannot discriminate between holes having same number of occupied cells

distributed differently. Thus, using the approach as presented, the two slots shown in

Figure 3.2 would produce the same value of 𝑓𝑖. Consequently, the approach would

not be efficient in deciding the location of a task in runtime.

Chapter 3: Runtime Placement Management on FPGAs

47

𝑓𝑖 =
𝑘

𝑁2
 (3.1𝑎)

𝐹 = 1 − (∏ 𝑓𝑖
𝑖

) (3.1𝑏)

Free cell

Used cell

 (a) (b)

Figure 3.2: Distribution of Occupied and Free Cells in a Slot

A different approach of quantifying fragmentation was proposed by Handa et al. in

[79]. The main idea of the model is to compute the contribution of each cell on the

chip to the total fragmentation of the chip. Then, an averaging technique is used to

determine the degree of fragmentation of a partition. Using the technique, the

fragmentation contribution of a cell is determined by the number of empty cells in its

vicinity, both in the horizontal and vertical directions. These are computed using

equations 3.2(a) and 3.2(b) where 𝑣𝑥 and 𝑣𝑦 refers to the sum of the number of

empty cells in the horizontal and vertical directions of the cell respectively. The

parameters 𝐿𝑥 and 𝐿𝑦 represent twice the average width and height respectively of

the set of tasks to be placed on the chip. As shown in the equations, when there is no

empty cell in the vicinity of a target cell in a certain direction (e.g. when 𝑣𝑥 = 0), the

fragmentation contribution in that direction is 1 (maximum).

On the other hand, when the number of empty cells in the vicinity of a target cell is

greater than twice the average width (or height) of the tasks being placed, the

fragmentation contribution in that direction is 0 (minimum). The total fragmentation

contribution of a cell (𝑇𝐹𝐶𝐶) is the sum of its horizontal and vertical contributions as

shown in 3.2(c). To compute the fragmentation contribution of an area consisting of

multiple cells (𝐴𝐹𝐶) such as an area (to be) occupied by a task, or the entire FPGA

area, an overage of the fragmentation contributions of the constituent cells is

Chapter 3: Runtime Placement Management on FPGAs

48

computed using 3.2(d), where 𝑁 is the number of cells in the area. Fragmentation

contribution is only defined for empty cells as the aim is to determine a potential

location for an incoming task.

𝐹𝐶𝐶𝑥 = {
1 −

𝑣𝑥

𝐿𝑥 − 1
, 𝑣𝑥 < 𝐿𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 3.2(𝑎)

𝐹𝐶𝐶𝑦 = {
1 −

𝑣𝑦

𝐿𝑦 − 1
, 𝑣𝑦 < 𝐿𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 3.2(𝑏)

𝑇𝐹𝐶𝐶 = 𝐹𝐶𝐶𝑥 + 𝐹𝐶𝐶𝑦 3.2(𝑐)

𝐴𝐹𝐶 =
1

𝑁
∑ 𝑇𝐹𝐶𝐶𝑖

𝑁

𝑖=0
 3.2(𝑑)

The technique is in principle more accurate than [78] as it accounts for the state of

each cell in a slot. However, the process of computing fragmentation for individual

cells in a slot could be expensive and time consuming for a runtime scenario. In

addition, the computation only considers the number of empty cells in the vicinity of

a target cell and not the distribution of the empty cells. It does not differentiate

between cells on the left and right of the target cell. Consequently, the technique

does not account for the isolation of a slot as a unit from other tasks or the border of

the chip in the fragmentation quantification process. To illustrate this, Figure 3.3

shows two chip areas, each with a slot, 𝑆𝑙𝑜𝑡 𝐴 and 𝑆𝑙𝑜𝑡 𝐵. Both slots have the same

fragmentation coefficient according to [79]. Each slot has 16 cells, and have equal

number of empty cells in their vicinity in both horizontal and vertical directions.

However, 𝑆𝑙𝑜𝑡 𝐴 is better aligned to the border of the chip and hence would keep the

empty areas on the chip more compacted compared to 𝑆𝑙𝑜𝑡𝐵. In addition, if any of

the slots were to be shifted in the same plane (either horizontal or vertical), the

proposed technique cannot differentiate between the different locations created.

Chapter 3: Runtime Placement Management on FPGAs

49

Slot A

Slot B

Figure 3.3: Slots with Same Fragmentation Metric but Different Placement Effects

3.1.2 Configuration Overhead Management in Runtime Placement

Systems

A major technique required in utilizing FPGAs for runtime applications is the

management of their relatively large configuration overhead [38]. Current COTS

FPGA have a single internal configuration port which can perform a single task at

once [51]. The port is often required to handle many critical duties in addition to

writing the configuration memory. An example of such duty is monitoring and

correction temporal faults in the configuration memory [27] [80]. Furthermore, when

task configurations, which require external memory access operations, are requested

frequently, the power consumption of the system could also increase significantly

[81]. Thus, it is important to keep the number of reconfigurations as low as possible;

not only so that the configuration port can be more available for other critical

operations, but also to enhance the performance of the system [59].

Consequently, techniques have been proposed to manage the configuration overhead

of COTS FPGAs. The two most important of these as it relates to ROS are: Prefetch

and Task Reuse [82]. Prefetch aims to overlap the computation of certain hardware

tasks with the configuration of new ones before the new ones are required for

computation [73] [83]. Prefetching does not aim to reduce the number of

configurations, but rather manages the distribution of the configuration to meet tasks’

requirements.

Chapter 3: Runtime Placement Management on FPGAs

50

On the other hand, task reuse is aimed at reducing the number of hardware tasks

configuration. This is achieved by retaining carefully selected tasks on the chips even

after their computation, such that if they are required again in the future, their

configuration will be circumvented [38] [23]. This means that the cumulative

occupancy of the configuration port is reduced, making it more available for other

critical operations [22], while also avoiding frequent external memory access. To this

end, many task reuse techniques have been proposed. Notable example are [84] [85]

[86] and [38].

Closely linked to the efficiency of any task reuse technique is the policy used to

decide which tasks are to be preserved on the chip and which to eject in the case that

resources are required to accommodate an arriving task [87] [88]. This is called the

replacement policy. As pointed out by [84], an incorrect replacement decision will

not only fail to reduce the total number of reconfiguration, but would increase it.

Multiple options exist for which task(s) to be replaced on the chip as illustrated in

Figure 3.4.

Figure 3.4: Multiple options for Task Replacement

The pioneering work by Compton et al. [84] surveyed a number of replacement

policies for different FPGA architectures. These include Simulated Annealing (SA),

Chapter 3: Runtime Placement Management on FPGAs

51

Least Recently Used (LRU) and penalty-based task replacement algorithm. The

authors compared the performance of the algorithms on different FPGA types and

reported that the penalty-based algorithm had better performance. The penalty-based

algorithm used was a combination of the reconfiguration overhead and the number of

times tasks were used since their (re)configuration.

In a similar fashion, the authors in [85] proposed a penalty-based replacement

technique called Reconfiguration-to-Execution Ratio (RER). To choose a candidate

to be replaced, they compute an RER value for each potential candidate as the ratio

of its reconfiguration time to execution time, multiplied by execution frequency.

However, the architecture proposed by the authors composed of both FPGA and

CPU. Hence, before candidates for replacement are evaluated for the FPGA, a factor

called speedup is computed. The factor measures the performance gained by

executing a task on the FPGA over executing it on the CPU. A task can only be

replaced by an arriving task if its speedup is lower than that of the arriving task.

Thus, only tasks with lower speedups than the arriving task are evaluated for

replacement using their RER values. The candidate with lowest RER value is

replaced first. The efficiency of their technique was evaluated by comparing it with

other placement routines which did not include task reuse.

A Reuse-Based Scheduling (RBS) algorithm is presented in [86]. In the proposed

scheme, only significant tasks are preserved on the chip. The significance of tasks is

computed using the configuration overhead and the probability of recurrence in the

future. The configuration cost is computed as the ratio of configuration latency to

execution latency, while probability of recurrence of a task, 𝑝𝑖, is computed using

equation 3.3. 𝜆𝑖 is the average number of arrived instances of task 𝑇𝑖 in the past time

interval 𝛥𝑡. The authors indicate that two threshold values 𝑘1 and 𝑘2 are defined for

configuration overhead and probability of reuse respectively. A task is designated as

significant if both the configuration cost and the probability of reuse exceed the

threshold values.

𝑝∆𝑡 = 𝜆𝑖 𝑥 𝑒−𝜆𝑖 = 𝑝𝑖 3.3

Chapter 3: Runtime Placement Management on FPGAs

52

To minimize fragmenting the chip area due to the preservation of certain tasks while

others are removed, the authors propose to have two resizable regions on the chip.

One of the regions is reserved for significant tasks (which are preserved) and the

other for non-significant tasks (which are not preserved). The sizes of the regions are

resized in runtime using the relative number of significant and non-significant tasks.

Two replacement policies were surveyed: Best-Fit (BF) and Least Probability of

Recurrence (LPR). The first favours the replacement of the task with the smallest

size that can accommodate the newly arriving task. LPR on the other hand favours

the replacement of tasks with low values of 𝑝𝑖. The authors reported a better

performance for LPR.

3.1.3 Review of Runtime Clock Routing Techniques

The authors in [62] proposed an online clock routing technique for a runtime task

placement scenario. The technique is based on finding the location of PIPs relating to

the clock tree and controlling their states in runtime. The location of the essential

configuration bitstream information obtained by reverse engineering experiments

was proposed to be used to route clock signals to newly placed tasks and to switch

from a failed clock buffer to a functional one. In addition, the authors proposed

techniques for dividing clock frequencies of regional clock buffers in runtime,

making it possible for tasks designed for different clock frequencies to be placed in

the same clock region.

However, one of the drawbacks of their technique is that the number of bits to route a

clock signal to a task is quite high, leading to large time overhead in online clock

routing. For example, according to the proof of concept of the work and its Table II,

to route a clock signal from a buffer to a task occupying a single CLB column on a

Xilinx 7 series FPGA chip, a total of 98 bits, distributed as follows is required. First,

the appropriate net is selected (1 bit), then the clock signal must be routed to all the

sequential components in the column (96 bits). Finally, the clock buffer is switched

on (1-bit). These bits are located in different configuration frames and since the

smallest resolution of reconfiguration is a frame, a large amount of configuration is

required. This is a very significant overhead, given that these operations are carried

Chapter 3: Runtime Placement Management on FPGAs

53

out by a single configuration port in runtime, adding to the already large

configuration overhead of state-of-the-art FPGAs [38]. A second weakness of the

paper is that no practical means of mitigating the reliability issue caused by online bit

editing was presented. As discussed in chapter 2, the configuration memory of

SRAM-based FPGAs is subject to bit flips (known as transient faults) which are

mostly managed using frame ECC values. Changing the values of bits in a frame at

runtime without recomputing ECC values would put the reliability of the entire

design at risk. Although this was acknowledged in the work, no solution was

presented.

The work in [89] also proposed an online bit editing strategy as a means of routing

clock networks to circuits placed in runtime. No clear information on the number of

bits that need to be activated or deactivated to route a clock signal to a circuit was

presented. However, the statement by the author that the clock connection to each

CLB in a design need to be examined to route a signal suggests a significant amount

of routing bits similar to [62]. In addition, the paper did not offer any means of

dealing with the loss of reliability due to runtime editing of configuration bitstream.

3.2 Power consumption on FPGAs

Minimizing power consumption is one of the top goals of many system designers.

The desire for low power designs on many systems is not only aimed at reducing

energy bills and increasing battery life, but also to increase the life span of the device

and its reliability, as well as reduce the burden of cooling systems [90]. Low power

consumption also reduces the risk of electromigration. FPGA based applications are

not left out. Consequently, many techniques have been proposed to reduce various

components of energy consumption of both applications [91] [92] and FPGA

platforms [93].

3.2.1 Components of Power Consumption of FPGAs

The main components of power consumed by a circuit on an FPGAs are static power

and dynamic power [93]. In addition to these, extra power is drawn during

Chapter 3: Runtime Placement Management on FPGAs

54

(re)configuration [94]. This is associated with SRAM based FPGAs. It includes the

power of the configuration engine and memory access when configuration is done

through the Internal Configuration Access Port.

Static power is consumed by the FPGA even when no active computation is being

done by the chip – when no signals are changing [93]. It is basically due to leakage

current in transistors. For Xilinx FPGAs, most of the processing elements, including

CLBs and DSPs, contribute a constant value to the static power consumption of the

device whether they are used by a design or not. However, the BRAMs in the 7 series

and ultra-scale devices only contribute to the static power when they are used by the

design [95]. Consequently, the static power consumption of many FPGAs tends to be

relatively constant for a specific chip irrespective of the circuit configured on it.

Generally, static power for FPGAs varies with device size. This is illustrated in Figure

3.5. It shows the power consumption of a Xilinx CORDIC IP computing the

hyperbolic Tangent on various Xilinx FPGAs.

Figure 3.5: Power Consumption Components of a CORDIC Circuit on Different

COTS FPGA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Artix 7 Kintex 7 Virtex 7 Kintex 7 (ZYNQ)

P
o

w
er

 (
W

)

Device Type

Dynamic Static

Chapter 3: Runtime Placement Management on FPGAs

55

Table 3.1 shows a summary of the resources present on the devices. As shown, the

static power of the chips in Figure 3.5 varies with the amount of resources present in

the chips shown in Table 3.1. Techniques to minimize static power in not considered

here. Rather, to minimize it, the smallest device size that can fit an intended design is

selected.

Table 3.1: Resource Distribution of Selected Xilinx's 7 Series FPGA

Device

IOB LUTs FFs BRAMs DSPs

Artix-7

106 20800 41600 50 90

Kintex-7

500 203800 407600 445 840

Virtex-7

700 303600 607200 1030 2800

ZYNQ

Kintex-7
362 277400 554800 775 2020

Dynamic power is consumed only when signals of a design are switching. Its value is

affected by the clock frequency, the loading capacitance and the supply voltage. This

is shown in equation 3.4. The term 𝑣 is the supply voltage, c the capacitance, 𝛼 the

(switching) activity on the components and 𝑓 the clock frequency. Dynamic energy

component is dependent on the specific design implemented on the FPGA, and in

many designs, constitute the most significant energy consumption component of an

entire system. Therefore, minimizing this component is not only an effective way of

saving significant energy, but it is also one that can be achieved in runtime, unlike

static energy of the device.

𝑃 = 𝑣2. 𝐶𝑙. 𝑓. 𝛼 (3.4)

To minimize this component of energy, the 𝑣 component may be reduced using

adaptive voltage scaling [96] or power gating [97]. It is worth noting that dynamic or

adaptive voltage scaling can significantly reduce static power consumption in

FPGAs. The work is [96] reported over 85% saving in energy compared to nominal

Chapter 3: Runtime Placement Management on FPGAs

56

voltage designs. Also, power savings can be obtained by gating the 𝑓 term when a

circuit is not required to operate, or reduced if possible. In addition, the activity on

the circuit may also be minimized [98].

3.2.2 Minimizing Dynamic Power Using Memoization

Memoization involves reusing the result of a previous computation when a request is

made for computation with the same set of inputs that produced them. Thus, the

process of re-computing the result is circumvented – together with its attendant

energy consumption.

Although many advantages have been advanced for the technique of using

memoization either to speed up computations or save energy, their actual

implementation on FPGAs have remained challenging. One of the most important

challenge is the balance between the overhead of the memoization logic and the

power saving it offers. These overheads include its own energy consumption per

transaction. This is important as the memoization circuit is always executed before

the original circuit for each transaction. Therefore, to benefit from the technique, it is

important to ensure that the memoization block’s overhead is significantly less than

the circuit it is meant to work with, and that a high Miss rate is avoided. To

maximize the benefit of the technique, the block should also be able to carry out a

fast comparison of input(s) in a limited number of clock cycles. This would reduce

its energy consumption per transaction as well as reduce the total delay in the

application’s path, especially in the case of a Miss. A greedy search procedure of the

block’s memory would greatly increase the energy consumption per transaction, even

for a moderately sized memory.

3.2.3 Review of Memoization Techniques for Low Power on FPGAs

Memoization techniques in processors and declarative languages have been well

investigated. The work in [99] gives a good summary of memoization as it relates to

software scenarios. In this section, the focus would be the implementation and

Chapter 3: Runtime Placement Management on FPGAs

57

evaluation of the technique as it relates to FPGA platforms. The author is not aware of

any prior work that gives the low-level implementation details of a memoization

block which are applicable to FPGA-based proprietary IPs as presented in this thesis.

Many prior works regarding power saving in hardware circuits on FPGA have used

approaches involving the design of imprecise hardware. The works in [91] and [92]

are good examples. The imprecise hardware generally produces acceptable results

while their power consumption is significantly lower compared to circuits producing

accurate results. The authors in [100] presented a similar technique. However, unlike

[91] and [92], an imprecise hardware is generated from an original behavioural (RTL)

description of the circuit and not manually. They reported an up to 50% saving in

power. These approaches are different from the approach in this thesis since they are

focused on altering the architecture of the original circuit, and do not involve any

memoization.

The work in [101] uses a different approach. Although new circuit architectures are

generated as in [100], the new circuits use memoization to achieve lower power in

addition to their imprecision. The work presented a design flow that uses a high-level

synthesis tool to generate memoization based circuits. The technique involves

specifying an input 𝐶 routine together with a threshold for accuracy and power. Using

these, the flow iteratively synthesizes hardware circuits until the specified constraints

are met. The quality of each of the circuits that meets the specified criteria is then

evaluated by computing the ratio of its dynamic power saving to its area overhead

(power saving per Area, PSPA). The circuit with the highest PSPA is chosen as the

best candidate. The experimental results presented show up to 20% saving in dynamic

power consumption. Their technique relies heavily on the accuracy of the test data

provided. It does not benefit from any runtime information of the system as it is

completely a design time approach. For instance, if the accuracy threshold changes

during the runtime phase of the circuit, there is no means of using this information to

improve the design. This could lead to design failure or spend resources and power

needlessly. In addition, the quality (in terms of resources) of circuits generated using

HLS is known to be lower than designing directly with HDL. Also, their technique

Chapter 3: Runtime Placement Management on FPGAs

58

does not provide a means of incorporating memoization and approximation

capabilities into a proprietary IP which one simply wishes to reuse without changing

its architecture. In [102], the implementation of a memoization technique for an image

processing application was presented. The design presented is very specific to the

application, and no detail is given about extending the technique to other applications.

3.3 Chapter Conclusion

In this chapter, runtime placement management techniques for reconfigurable

computing have been reviewed, including the underlying aspects of runtime

placement such as fragmentation and managing reconfiguration overhead. In

addition, power minimization techniques in FPGAs were discussed with a focus on

reducing dynamic power consumption using memoization.

As shown in the review above, a large percentage of existing runtime placement

management systems are not targeted at state-of-the-art COTS FPGAs. They either

assume a homogeneous architecture, or a regular heterogeneous architecture, both of

which is not the case with COTS FPGAs. Although few existing works such as [74]

and [75] targets COTS FPGAs, the techniques presented require a foreknowledge of

all tasks to be placed on the chip in runtime or can have prohibitively high execution

times, which are not suitable for runtime scenarios. In addition, they are not

optimised for reliability.

Similarly, existing techniques for managing the relatively large configuration

overhead of COTS FPGAs does not include a consideration of the spatial features of

the chip area such as ongoing fragmentation. A shown in chapter 5 of this thesis,

addressing ongoing fragmentation leads to better configuration overhead

management.

Furthermore, existing techniques for routing clock networks to hardware circuits in

runtime are not only expensive, taking up a significant bandwidth of configuration

port, but also do not address a major reliability concern associated with the method

Chapter 3: Runtime Placement Management on FPGAs

59

used. In chapter 8, a better online clock routing scheme which addresses these two

limitations of existing runtime clock routing technique is presented.

In the next chapter, efficient design-time optimization techniques are presented. The

optimizations are aimed at improving the quality of task placement achieved in

runtime, increase the reliability of applications and improve the efficiency of

computation in a dynamic reconfiguration environment.

60

Chapter 4: Offline Design Optimization for

Efficient Runtime Placement and

Reliability

Efficient offline optimization of designs is central to runtime placement management

system for high quality and fast placement decisions. In many circumstances,

runtime placement decisions are required to be made fast so as not to impact the

performance of the overall application in a dynamic reconfiguration environment.

For many reconfigurable hardware such as COTS FPGAs, this mean that it is often

infeasible to change the physical layout of the hardware task in runtime as

(re)synthesis and implementation of tasks take a long time. Hence, for fast and

efficient placement, the layout of tasks should be optimized such that pre-synthesized

tasks (in form of their partial bitstreams) can be efficiently placed on the chip in

runtime with minimum adjustments.

In addition, the programmable logic of COTS FPGAs are practically heterogeneous.

This is due to the presence of hard blocks such as BRAMs and DSPs which are

spread around the chip often in an irregular manner. They place greater limitations

on runtime placement of hardware tasks on heterogeneous chips compared to their

homogeneous counterparts. Their presence limits the maximum number of possible

locations on the chip where a pre-synthesized circuit can be placed in runtime.

Unlike task placement on homogeneous FPGAs where the task’s area requirement is

simply to be satisfied in terms of length and breadth of task alone, on heterogeneous

chips, the layout – that is, the specific order of the resources – also need to match

those of the original implementation location of the task. Therefore, it is important to

optimize a hardware task at design time to obtain better placement quality in runtime.

In this chapter an offline optimization flow is presented. The proposed flow aims not

only to improve the maximum number of locations for each task on the chip, but also

achieve a fair distribution among all tasks which will share the chip area concurrently

in runtime. Furthermore, during this phase, the task is provided with a wrapper to

support communication after placement. In addition, an optional wrapper based on

memoization for low power computation is proposed for tasks with low port width.

 Chapter 4: Offline Design Optimization

61

4.1 Offline Optimization to Improve the Number of

Placement Locations

In reconfigurable computing, hardware tasks are usually pre-synthesized in an offline

design, ready to be loaded on demand in runtime. This is necessitated mainly by the

large synthesis and implementation time required to turn an RTL designs into

configuration bitstreams, which could be in the order of hours [103]. However, one

limitation that comes with pre-implementation of a task offline is that once

implemented, most of its features are fixed and cannot be easily changed in runtime.

For example, its shape and layout remain fixed. However, this offline design stage

can be harnessed to optimize some of the features of the tasks to make their

performance in runtime more efficient.

With regard to runtime placement on the chip, the maximum number of locations on

the chip on which a task can be placed in runtime is determined by the

implementation location chosen during the offline stage of the task design [76].

Figure 4.1 illustrates this point. The two floor plans shown are intended for a

hypothetical circuit with a utilization of 30 CLBs. Using the floor plan in Figure

4.1(a), only one location (LOC 1) exists for the task in runtime. Should this location

become permanently damaged or be occupied by another task in runtime, it would

become infeasible to execute the task on the chip. On the other hand, Figure 4.1 (b)

shows that the same task can be floor-planned differently such that two non-

overlapping locations (LOC 1 and LOC 2) are available for the task. This later floor

plan gives the task a higher chance of being placed on the chip in runtime in the

presence of other tasks and the possibility of permanent damage occurrence. Though,

it is worth noting that the later floor plan comes with an overhead of a slightly higher

overall area. Thus, it is important to select implementation location for each task that

would maximize the chance of finding a location for the tasks on the chip in a

dynamic runtime scenario.

In the following sub-sections, a flow that aims to select optimized implementation

location for a set of tasks sharing chip area simultaneously is presented. It is a set of

 Chapter 4: Offline Design Optimization

62

stages that transforms RTL description of tasks to their configuration partial

bitstreams.

LOC 1

(a)

LOC 1

LOC 2

(b)

Figure 4.1: Implementation Location Determines Number of Runtime Placement

Locations

a) Only 1 location available

b) 2 locations available

The optimization procedure is divided into 5 stages which are:

a) Synthesis (using Vivado IDE) to obtain estimate of resource utilization of

task(s)

b) Conversion of the resource estimation to FPGA resource columns

c) Determination of optimized implementation location for task(s)

 Chapter 4: Offline Design Optimization

63

d) Execution of script-based Partial reconfiguration routine for partial bitstream

generation

e) Copying of bitstream to a desired bitstream storage for ready for runtime

execution

These stages are shown in Figure 4.2. The details of each stage are provided below.

Vivado Synthesis to

produce resource

requirement

TCL scrip to read

resource requirement

from vivado

C- simulator to

compute the best

synthesis location

Bitstream

Storage

Partial

reconfiguration with

p-block location

Generated Bitstream

copied to desired

location

RTL of

 Task

Figure 4.2: Stages of Offline Optimization of Tasks

 Chapter 4: Offline Design Optimization

64

4.1.1 Initial Synthesis to Determine the Resource Utilization of Task(s)

Commercial FPGA CAD tools can be used to transform an RTL description of a task

to a netlist. The Xilinx Vivado IDE is a good example. After synthesis and

implementation step, an estimate of the amount of FPGA resources required to

implement the task is also reported. With the default setting of Vivado, this is

available in the project folder, and can be read directly with a script. As an example,

Figure 4.3 shows a section of the resource utilization report after implementation of a

CORDIC application implemented using Xilinx’s CORDIC IP [104]. This report

provides a good starting point in the selection of a suitable implementation location

for a task. First, it provides an initial estimate of the amount of resources required by

the task. The estimate obtained by this step is refined to obtain a suitable resource

layout and subsequently used to select an implementation location by further stages

of the optimization flow described below.

4.1.2 Conversion of Resource Estimation to FPGA Columns

The resources reported by Vivado CAD tools, usually in terms of numbers of FFs,

LUTs, BRAMs and DSPs, are converted to device rows and columns. To simplify

the optimization analysis and implementation, the resource utilization is converted to

number of columns and rows, assuming that the task physical area will have a

minimum resolution of 1 device column and 1 device row.

It is worth noting that the task could be easily designed such that the number of

columns can include fractions of a column, with the resource utilization contained in

a section of a column without occupying an entire column. That is, without making

the resolution of the task’s width equal to the row height of the chip. However,

selecting an entire column of resources, aligned to the height of the clock region of

the device has three major advantages:

a) The configuration engine is naturally aligned to the configuration of an entire

device column within each row [27]. Although, it is possible to choose task

configurations that overlap clock regions heights, it means that when the

 Chapter 4: Offline Design Optimization

65

tasks are to be configured, any other tasks in a shared device column must be

stopped, their context saved and their bitstream 𝑂𝑅𝑒𝑑 with the new task’s

configuration bitstream. This is a time-consuming process which, in addition

to disrupting the execution of already computing tasks, adds to the challenge

of large reconfiguration overhead of COTS FPGAs as explained in chapter 5

of this thesis.

Figure 4.3: Section of a Typical Resource Utilization Report from Vivado IDE

b) It leads to a significant reduction in the amount of time required by the online

placement routine to scan the chip area to find a location for a task. A

reduction of approximately 50 times is obtained on the 7 series FPGA chip.

 Chapter 4: Offline Design Optimization

66

c) The memory required to keep the state of the FPGA resources by the runtime

placement system is significantly reduced. This is also in addition to a

proportional reduction in the amount of time needed to update the state of the

chip in memory after each placement activity.

The area required by the task is computed in terms of number of target device

columns (aligned to a clock region height) using (4.1).

𝑁𝐶𝐿𝐵_𝑐𝑜𝑙 = max (⌈
𝑛𝐹𝐹

𝑃
⌉ , ⌈

𝑛𝐿𝑈𝑇

𝑄
⌉)

𝑁𝐵𝑅𝐴𝑀_𝑐𝑜𝑙 = ⌈
𝑛𝐵𝑅𝐴𝑀

𝑅
⌉ 4.1

𝑁𝐷𝑆𝑃_𝑐𝑜𝑙 = ⌈
𝑛𝐷𝑆𝑃

𝑆
⌉

Where 𝑁𝐶𝐿𝐵_𝑐𝑜𝑙 , 𝑁𝐵𝑅𝐴𝑀_𝑐𝑜𝑙 and 𝑁𝐷𝑆𝑃_𝑐𝑜𝑙 refer to the number of CLBs, BRAMs and

DSP columns respectively required by the task. The terms, 𝑛𝐹𝐹 , 𝑛𝐿𝑈𝑇 , 𝑛𝐵𝑅𝐴𝑀 and

𝑛𝐷𝑆𝑃 denotes the number of flip flops, LUTs, BRAMs and DSPs obtained from the

synthesis report of the RTL explained in section 4.1.1 above. Also, 𝑃, 𝑄, 𝑅 and 𝑆 are

the number of the respective primitives in a column of the device. For the 7 series,

these are 800, 400, 10 and 20 respectively. As an illustration, Table 4.1 shows a

conversion of the resource utilization of the data processing tasks of a NASA JPL

Fourier Transform Spectrometer (FTS) application [105] and the corresponding

number of device columns estimated using 4.1. These initial estimations are fed into

the next stage of the proposed flow to determine optimized implementation locations

for the tasks shown.

Table 4.1: Resource Utilization of JPL Spectrometer Application and Corresponding

Number of Device Columns*

Tasks 𝒏𝑭𝑭 𝒏𝑳𝑼𝑻 𝒏𝑩𝑹𝑨𝑴 𝒏𝑫𝑺𝑷 𝒏𝑪𝑳𝑩_𝒄𝒐𝒍 𝒏𝑩𝑹𝑨𝑴_𝒄𝒐𝒍 𝒏𝑫𝑺𝑷_𝒄𝒐𝒍

STAT 576 868 3 15 3 1 1

FFT 20,521 18,325 66 132 46 7 7

ZPD 1,080 9,729 14 32 25 2 2

*The resource requirement for task communication have been included (Details section 4.2)

 Chapter 4: Offline Design Optimization

67

4.1.3 Determination of the Optimized Implementation Location of

Task(s)

For certain design scenarios, tasks are known to occupy the FPGA area alone or are

such that other tasks which could share the chip area with them concurrently are

unknown at design time. In that scenario, an implementation location is chosen to

maximize the total number of such positions present on the chip. On the other hand,

as in most practical cases, tasks sharing the chip area simultaneously (or at

overlapping times) are known. For this later case, implementation positions are

selected such that:

a) a maximum number of non-overlapping positions for each task is obtained

b) An optimum distribution in the number of location of the tasks is achieved.

This is done iteratively as summarized by Algorithm 4.1. First, a function

𝐷𝑒𝑡𝑅𝑠𝐼𝑑𝑠() is used to determine all possible implementation position for each task.

These are saved in an array (Array). This is an iterative process (line 3 - 5), with the

function returning only after a valid location is found, or the end of the chip is

reached. The value returned by the function is the index of the start column of a

matching location of the chip (𝑅𝑠𝐼𝑑), the length of the task (𝑙), and its width (𝑤).

These are collected in an array indexed using 𝑅𝑠𝐼𝑑 values. Thereafter, for each

combination of implementation location for the constituent tasks, a function

(𝑄𝑢𝑎𝑙𝑖𝑡𝑦()) computes a measure of the quality of placement achievable using the

selected locations (line 11 – 24). The terms 𝑘1, 𝑘2, … 𝑘𝑛, refers to the number of

distinct possible start locations for each task.

The function, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(), consists of another function, 𝑠𝑐𝑎𝑛() which scans the chip

area to determine the number of locations matching each of the current

implementation positions on the chip (𝑛𝑖). This is then used to compute a term that

measures the quality, 𝑞 of the selected implementation locations. Equation 4.1 shows

how 𝑞 is computed. The process is repeated until all possible combinations of

implementation locations for the constituent tasks have been examined, each time

comparing the current 𝑞 to a previous value, 𝑄 and updating the value of 𝑄 when a

better combination of implementation location (i.e. a higher value of q) is found. In

 Chapter 4: Offline Design Optimization

68

addition, an array (𝑜𝑝𝐴𝑟𝑟𝑎𝑦) keeps the potential implementation locations of the

tasks corresponding to the value currently stored in 𝑄.

It is worth noting that for the 7-series device, a pair of resource column share a

common set of routing resources. Typically, all columns of CLB, BRAM and DSP

have orientations designated as left or right. The general and clock routing networks

are located between a left and a right column as shown in Figure 4.4. This technique

helps to improve density of resources on the chip, improving the quality of automatic

place and route operations [106].

Algorithm 4.1: Pseudo code for selecting optimized implementation location for
improved placement

Inputs: FPGA Model, Number of Tasks in application (N), Resource requirement for
each task (expressed in number of columns e.g. of CLBs, BRAMs and DSPs)

Output: Task Layout (𝑜𝑝𝑝𝐴𝑟𝑟𝑎𝑦) 𝑇𝑖 = {𝑙𝑖; 𝑤𝑖; 𝑅𝑠𝐼𝑑𝑖}, 𝑖 = 0 𝑡𝑜 𝑁 − 1

1. for (𝑖 = 0 to 𝑁){

2. 𝑘 = 0

3. while (𝑅𝑠𝐼𝑑[𝑘] ≠ 𝑁𝑢𝑙𝑙){

4. 𝑅𝑠𝐼𝑑[𝑘] ← 𝐷𝑒𝑡𝑅𝑠𝐼𝑑𝑠(𝑁𝐶𝐿𝐵𝑐𝑜𝑙
, 𝑁𝐵𝑅𝐴𝑀𝑐𝑜𝑙

, 𝑁𝐷𝑆𝑃𝑐𝑜𝑙
, 𝐹𝑃𝐺𝐴 𝑀𝑜𝑑𝑒𝑙)

5. 𝑘++
6. }

7. 𝐴𝑟𝑟𝑎𝑦[𝑁] ← {𝑅𝑠𝐼𝑑[𝑘]}
8. }

9. OpArray [N] ← 𝑁𝑢𝑙𝑙
10. 𝑄 = 0

11. for (𝑖 = 0 to 𝑘1) {

12. for(j = 0 to 𝑘2){

 ⋮
17. for(k = 0 to 𝑘𝑛){

18. 𝑞𝑖= 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴𝑟𝑟𝑎𝑦[𝑘1], 𝐴𝑟𝑟𝑎𝑦[𝑘2] … 𝐴𝑟𝑟𝑎𝑦[𝑘𝑛], FPGA Model)

19. if (𝑞𝑖 > 𝑄){

20. 𝑄 ← 𝑞𝑖

21. OpArray ← {Array[𝑘1], Array[𝑘2], …Array[𝑘𝑛]}
22. }
23. }
24. }
25. }

 Chapter 4: Offline Design Optimization

69

However, it introduces a constraint in the location of P-block for partial

reconfiguration. To use the Vivado PR-flow, the boundaries of a P-block cannot be

located between a left-right pair of resources; a P-block must begin with a column of

resource with left orientation and end with a column with right orientation.

Consequently, the 𝑙 parameter is increased by 1 in the right direction whenever a

potential location ends on a column with left orientation.

Figure 4.4: Routing Structure in a pair of CLB Columns of Xilinx 7 Series FPGA

[106]

The quality term, 𝑞 in Algorithm 4.1, is computed using equation 4.2 for all

combinations of implementation locations for the constituent tasks. The set of

locations with the maximum value of q is used for implementing the tasks and

generating partial bitstreams. In Equation 4.2, 𝑛 is the number of tasks occupying the

chip area concurrently, 𝐿 is the sum of locations for the tasks, 𝐸𝐿 is sum of non-

overlapping locations, 𝜖 is a small constant term to avoid ambiguous 0 products, and y

is chosen to give relative significance to the terms. In the simulations, y=2 was used

to give a greater significance to the sum of non-overlapping locations (EL) over the

sum of all locations (L). Algorithm 4.1 takes the model of the FPGA, number of task

(N), and resource requirement of each task as inputs. The model of the FPGA is

Left CLB column Right CLB column Shared routing resource

 Chapter 4: Offline Design Optimization

70

required for the scan operation. During the scan operation the layout of the task is

compared to segments of the chip to determine a matching location for the task.

The FPGA platform is modelled using equation 4.3. The model defines the

heterogeneous columns in the chip which are reconfigurable. The final output of

Algorithm 4.1 is an array of the optimized layout information of each task, consisting

of the start column index of the task (called 𝑅𝑠𝐼𝑑 for the rest of this thesis), the length

(𝑙) and width (𝑤) of the task expressed in the number of adjacent device columns and

rows respectively required by the task. The parameters 𝑙 and 𝑤 specify the area

requirement of a task. 𝑅𝑠𝐼𝑑, specifies a column on the target chip such that the next

(𝑙 − 1) contiguous columns to the right of 𝑅𝑠𝐼𝑑 is the matching position for the task

on an intended heterogeneous chip with the optimum number of locations on the chip.

This parameter makes the model applicable for heterogeneous tasks and chips.

𝑞 = [(∑ 𝐿𝑖

𝑛

𝑖=0

) + (∏(𝐸𝐿 + 𝜖)𝑖

𝑛

𝑖=0

)

𝑦

] (4.2)

𝑃 = {𝐿 𝑥 𝑊; (𝐵𝑖), (𝐷𝑗) | 𝑖 ≠ 𝑗; 0 ≤ 𝑖, 𝑗, ≤ 𝐿} (4.3)

To illustrate this step, the resource utilization of the data processing tasks of a NASA

JPL spectrometer application developed in [105] on Xilinx’s xc7z100ffg900-2 FPGA

chip (shown in Table 4.1) was fed into Algorithm 4.1. Figure 4.5 gives an overview

of 𝑞 values for some of the combinations using the technique described above. Only

combinations with q ≥ 0.2 have been shown for clarity purposes. The values of 𝑞 were

computed with (4.2) using a heuristic approach with 𝜖 chosen to be 0.1 and 𝑦 = 2.

Possible combinations are represented on the horizontal axis. The number of non-

overlapping locations (𝐸𝐿) for each of the three tasks are shown in bars, utilizing the

vertical scale on the left, while the total sum of locations (including overlapping ones)

for tasks (𝐿) and the computed Quality, 𝑞 values use the right vertical axis. As can be

seen, combination 6 which gives both the peak quality and maximum sum is the

 Chapter 4: Offline Design Optimization

71

preferred combination. The individual tasks are then assigned locations on the chip

corresponding to combination 6.

To validate the effect of the optimization technique, the ability of the tasks in Table

4.1 to cope with errors by relocation to different locations on the chip in the event of

permanent damage on the chip was evaluated. 1000 set of 200 errors were simulated

and applied to two different implementations of the tasks in Table 4.1. The first

implementation used the maximum number of potential locations as criteria to

determine the implementation positions of the tasks. In this case, several layouts of

each task were constructed and the number of potential locations for each layout was

computed. For each task, a matching location of its layout with the highest number of

potential locations was chosen as implementation location. The implementation

location of the second implementation of tasks used Algorithm 4.1 described above.

During the simulated error injection for both implementations, if a location occupied

by a task is affected by an error, the task is relocated to a different location on the

chip. Figure 4.6 shows the number of errors each implementation survived before

failure. The assumption used was that a system fails if any of its component tasks can

no longer be relocated on the detection of a fault at its current location. As shown in

the figure, it was observed that using the proposed optimization technique improves

the relocation capability of the tasks of an application compared to selecting

implementation locations that only maximizes the total number of locations for each

task. An average of 48.6% more errors were survived due to relocation.

 Chapter 4: Offline Design Optimization

72

Figure 4.5: Optimal Implementation Location Selection for Spctrometer Tasks on

Xilinx’s 7z100 Chip

It is important to state that the combination in Figure 4.5 refer to the set of potential

implementation location for JPL application consisting of CLB, DSP and BRAM

columns. For each of the three tasks, all the matching locations are determined by

comparing the resource requirement of the task to the model of the chip layout. All

possible combinations of the chip are then evaluated by computing the quality term

described above. A ′𝐶′ routine was written for the evaluating the combinations. Only

the twelve best combinations have been shown in the figure for clarity purposes.

 Chapter 4: Offline Design Optimization

73

*Using same comparison base as [77]

Figure 4.6: Effect of Offline Optimization on Tasks Number of Successful

Relocation

4.1.4 Execution of Script-Based Partial Reconfiguration Routine for

Bitstream Generation

TCL scripting is used to execute a partial reconfiguration routine to generate partial

bitstreams for the tasks. The script is essentially based on the tool-chain of the

Xilinx’s Vivado 2015.1, augmented with information from the optimization

procedure above. In addition to the standard partial reconfiguration flow (PR-flow)

of Vivado, the TCL script created for this step includes two additional features:

a) This step takes the optimized implementation location of the tasks as input

and uses them to draw p-blocks for the process.

b) Allowance is made for overlapping optimized implementation location (p-

block) locations.

The second feature is necessary as the output for stage 3 could include overlapping

positions as optimal implementation location. The standard Xilinx DPR flow cannot

 Chapter 4: Offline Design Optimization

74

handle overlapping p-block locations. To support this feature, the augmented script

considers alternate matching locations for the task on the chip and selects it as a

synthesis location if it does not overlap another tasks’ location. In the case when no

other identical location exists, the tasks with overlapping implementation locations

are placed on the chip one after the other and PR-flow repeated for each.

It is important to note that partial reconfiguration designs often have additional area

overhead compared to flat designs that does not use partial reconfiguration [107].

The actual additional resource requirement varies from design to design [36].

Examples of factors which lead to increased resource utilization is: number of

interface pins and shape of the p-block. In addition, the application of partial

reconfiguration constraints such as “Contain Routing” mean that the density of the

resource in an area is less than that of an equivalent flat design [36]. Therefore, it is

possible that the bitstream generation process could fail due to the P-block size

estimated using algorithm 4.1 (in section 4.1.1) being smaller than the resource

requirement of the PR-procedure. To account for this, the stages 3 and 4 in the

proposed flow are repeated until stage 4 is successful. That is, when stage 4 fails due

to insufficient P-block size, stage 3 is repeated.

To re-execute stage 3 after a failure resulting from insufficient P-block size,

additional column(s) is added to the failing P-block. The amount of resource added is

the minimum resolution supported by the target FPGA family. For the 7 series chips,

this is often a pair of columns due to the routing structure discussed above (see

Figure 4.4). It is worth stating, however that the chances of failures due to

insufficient P-block resources in the stages described here-in is low. In fact, for the

spectrometer application shown in Table 4.1, there was no failure in stage 4 as the

implementation location outputted by algorithm 4.1 was sufficient to generate partial

bitstreams for the tasks. Two factors leading to the low chance of this failure

occurring are:

a) The computation of the number of columns takes the upper bound of the

number of columns (this can be seen in equation 4.2).

 Chapter 4: Offline Design Optimization

75

b) The resources computed using (4.2) are aligned to end on a device column

with a right-orientation, thereby increasing the amount of estimated resources

by a whole device column (within each row) in some cases

Thus, the outputs of the Algorithm 4.1 already contain extra resources which in most

cases can cater for the resource overhead due to the PR-flow. However, in cases

where failure occurs, step 3 is repeated.

4.1.5 Configuration Bitstream Storage and Task Model

The bitstreams of all tasks are each assigned a serial number and saved in a memory

off-chip. Without loss of generality, the DDR memory present on the Xilinx’s 7z100

was used in this thesis, although any suitable off-chip memory could be used in a

similar fashion provided a controller is available to transfer the bitstream to the chip

in runtime. In addition to this, an on-chip memory is used to store runtime

information about the tasks including its spatial properties: 𝑅𝑠𝐼𝑑, 𝑙 and 𝑤; as well as

its temporal properties: configuration time (𝑡𝑐) and execution time (𝑡𝑒). The

parameter, 𝑡𝑐 refer to the time to setup the task on the chip by a configuration

manager; 𝑡𝑒 is the duration required by the task for active computation. An additional

timing parameter, task deadline (𝑡𝑑) is included in the task model, however, its value

is determined in runtime. The deadline, 𝑡𝑑, is the maximum time before which a

task's output must be available to be useful.

The values of the parameter 𝑅𝑠𝐼𝑑 for the tasks are obtained after stage 3 (section

4.1.3), while the 𝑙 and 𝑤 are obtained after a successful PR in section 4.1.4. The 𝑡𝑐 of

the task is computed using the:

a) number of frames in the configuration bitstream and

b) timing characteristics of the configuration controller.

The number of frames in the configuration partial bitstream of a task is dependent on

both the composition and size of the implementation location selected for the task.

Table 2.4 (chapter 2) shows the number of configuration frames in Xilinx’s 7 series

FPGA for each selectable type of device pair. It is worth noting that there are 128

 Chapter 4: Offline Design Optimization

76

BRAM content frames per column for partition selections including BRAM

columns, as against 72 frames for 2 columns of CLB. Thus, a smaller area including

BRAM columns have larger partial bitstreams compared to equivalent area

composed of only CLB columns, and thus have larger configuration time.

The configuration controller used in this thesis [27] has the timing characteristics

given in equation (4.4) and (4.5) respectively for a non-BRAM frame and a BRAM

frame for the same FPGA series. Where 𝑁 is the number of frames to be written to

the configuration memory, 𝑀 is the number of instances of the task to be configured

and 𝑡𝑐 is the number of clock cycles required to write the configuration memory with

𝑁 frames and 𝑀 instances. The model also accounts for the initial data in the pre-

amble section of the configuration bitstream, thus 𝑁 is the number of frames in the

configuration data of the partial bitstream which is determined purely by the

properties of the reconfigurable resources. For example, to configure one instance of

a task with 𝑤 = 1 and 𝑙=2 consisting of a CLB-BRAM pair, a total of 25676 clock

cycles is required. This consists of 8230 clock cycles for writing the 64 non-Bram

frames and the remaining 17446 clock cycles configure the 128 BRAM content

frames.

𝑡𝑐(𝑁𝑜𝑛−𝐵𝑟𝑎𝑚 𝐹𝑟𝑎𝑚𝑒) = 27 + 128𝑁 + 11𝑀 (4.4)

𝑡𝑐(𝐵𝑟𝑎𝑚 𝐹𝑟𝑎𝑚𝑒) = 19 + 136𝑁 + 19𝑀 (4.5)

The parameter 𝑡𝑒 for a task is measured by executing the tasks and examining its

characteristics. For tasks with varying execution time, the worst-case value is chosen.

The deadline parameter (𝑡𝑑) is determined in runtime when the task is scheduled by a

top application. Thus, the task, modeled as a collection of these six parameters as

shown in (4.6).

𝑇 = (𝑙, 𝑤, 𝑅𝑠𝐼𝑑, 𝑡𝑐 , 𝑡𝑒 , 𝑡𝑑) (4.6)

 Chapter 4: Offline Design Optimization

77

Table 4.2 is an example of these parameters for selected hardware tasks after the

execution of the steps 4.1.1 to 4.1.5 described above. The components tasks of each

of the two applications shown were optimized such that they can be placed on the

chip area currently in an efficient way under runtime scenarios. It worth noting the

adjustments made by Algorithm 4.1 to some of the parameters of the tasks compared

to their initial values in Table 4.1. For example, the sum of the number of resource

column for the STAT task is 5 from Table 4.1, however, its final output after step 3

and 4 of the flow was augmented to 6 as shown in Table 4.2. This was because the p-

block for the STAT task attempted to split interconnects between a left-right pair of

resources.

Table 4.2: Example of Task Hardware Parameters after Optimization Steps*

Application
Component

tasks
𝒍 𝒘 𝑹𝒔𝑰𝒅 𝒕𝒄(µs) 𝒕𝒆 (µs)

FTS

Application

STAT 6 1 2 430.84 100

FFT 76 1 4 4629.24 200

ZPD 30 1 82 1587.96 750

CORDIC

Square Root 2 1 8 92.54 15

Sine/Cosine 2 1 16 92.54 19

Hyperbolic

Tan
6 1 0 441.08 56

*The resource requirement for task communication have been included (Details section 4.2)

4.2 Communication Interface Wrapper

A non-slotted model is used for the placement techniques presented in this thesis.

Thus, tasks are not constrained to pre-determined slots. This helps to improve the

utilization of the chip area. The alternative model, slotted architecture, is faced with

the challenge of internal fragmentation as pointed out in chapter 3. Slotted ROS

architecture such as [45] places pre-synthesized circuits in pre-defined slots in

runtime. The slots are fixed in size and resource layout and can accommodate one

hardware task at a time. There are several disadvantages with the slotted architecture.

First is the determination of an appropriate size of the slots as hardware tasks would

 Chapter 4: Offline Design Optimization

78

generally have different sizes and layout requirements. In addition, the use of slotted

architecture is susceptible to internal fragmentation in the placement of tasks which

in turn leads to wastage of resources. This is because a smaller task would have to

use an entire slot. Also, should a part of a slot become damaged, the entire slot could

become useless. These leads to inefficient resource usage which is a major goal of

ROS. However, slotted architecture has the advantage that tasks placed in slots can

easily maintain communication and clocking access with other tasks and the FPGA

ports.

On the other hand, non-slotted ROS architecture such as [8] has the potential

advantage of better area utilization as circuits can be placed on any matching location

on the chip. This translates to less fragmentation and better area utilization, as well as

better reliability of an application where relocation is used in the avoidance of

permanent damage. However, the non-slotted ROS architecture faces two challenges

(in addition to more complex area management): maintaining communication with

other circuits or with the FPGA ports and clock network delivery to circuits placed in

runtime. It has been argued that the slot-less architecture has the potential to have far

better performance than the slotted architecture if these limitations could be

addressed [8]. To address the challenge of communication, a technique which uses

the clock buffers and nets on the FPGA chip for communication is adopted [26]. The

technique developed by Adewale, a fellow researcher in the group, adapts the unused

clock buffers and nets on Xilinx FPGAs for communication. An overview of the

technique is shown in Figure 4.7. The technique is quite scalable and can be easily

adopted for different designs by using a custom wrapper. The wrapper adds an

overhead of 249 LUTs and 87 FF for each pair of 32-bit input and output. These

resource overheads are included in the resource utilization of the tasks before

executing the design optimization flow in section 4.1. Complete details of the

communication technique can be seen in [26], [108] and [109].

 Chapter 4: Offline Design Optimization

79

Figure 4.7: Mechanism of Data Transfer Using Clock Buffers as Serial Bit

Transceivers [109].

The signal transitions show an example of the transmission of an 8-bit binary data

10011010

4.3 Additional Optimization for Low Power for Low Porth

Width Applications

Certain applications can be optimized to benefit from power savings by keeping

track of previous computations. In this section, an explanation of how this could be

achieved for a task is given. Like the communication interface wrapper, this

technique is applied to qualifying tasks before the optimization flow to improve

runtime placement outlined in section 4.1

Memoization is a technique that has been proposed for low power designs on

FPGAs, though it has been previously applied to other fields, especially software.

 Chapter 4: Offline Design Optimization

80

Memoization involves reusing the result of a previous computation when a request is

made for computation with the same set of inputs that produced them. Thus, the

process of re-computing the result is circumvented – together with its attendant

energy consumption. This advantage is, of course, at the expense of additional

storage and logic resources. Therefore, the gains of memoization must be balanced

against its overheads. Figure 4.8 shows an illustration of a circuit and its

memoization block. In this architecture, the original circuit is only enabled to

compute new results for a set of inputs if the memoization block fails to find the

result(s) for the input(s) in memory. The results of the computation are saved to the

memoization block’s memory after each computation if not already present.

Figure 4.8: A circuit and its Memoization block

Memoization is only applicable to systems which are referentially transparent –

systems that produce the same outputs for the same set of inputs. Systems whose

outputs depend on some internal states or are determined by other factors than the

current input(s) are not directly implemented by the memoization technique

presented in this section.

The focus in this section is to minimize dynamic power using memoization

technique. It involves disabling a circuit if the result of a requested computation is

already present in memory. For the memoization technique to be gainful, the

additional resources required for its implementation, together with its power

consumption must be balanced against that of the original circuit(s) on which

dynamic power is aimed to be saved.

The low-level details of implementing a low power memoization wrapper for a design

while retaining the architecture of the original circuit is presented below. The

 Chapter 4: Offline Design Optimization

81

technique presented is directly applicable for applications with low interface width.

The main contributions are:

i) An actual implementation of a memoization technique for applications with

low interface port widths. A low-level implementation details of a

memoization block architecture which can interface to FPGA-based circuit(s),

including proprietary IPs is presented.

ii) A technique for achieving negligible energy overhead for a memoization block,

by using memory space reservation to achieve a fast decision in a fixed number

of clock cycles.

4.3.1 Architecture and Operation of Memoization Wrapper

a) Task Memoization Module Architecture

The memorization module adds a pre-processing step to the computations of an

application. The application could consist of a single or multiple circuit (or tasks).

Figure 4.9 shows the block diagram of a memoization module which is easily

adaptable to applications with both single and multiple tasks. Its architecture consists

of a task memory, an input data memory, output data memory and memoization

logic. During an application’s initialization stage, its component tasks are loaded into

the task memory with each task assigned a unique ID. This unique ID also doubles as

the address of the task in the Task Memory. The data stored for each task

corresponds to the start of the address space allocated to the task in the

memoization’s block input and output memories. The depth of the task memory is

determined by the maximum number of memoizable tasks in the application(s). Its

width is determined by the number of tasks, sum of the number of inputs of the

constituent tasks that are memoizable and the tolerance of the tasks. For example, for

an application (or a set of applications) consisting of 4 tasks, with each task having a

single 8-bit memoizable input and an input tolerance of 0, the task memory in Figure

4.9 is configured with a depth of 4 and a width of 10 bits. For the same number of

tasks and inputs, but with tolerance of 2 bits, a task memory of depth 4 and width 8

bits would suffice. In the implementation, 5 additional bits are added to the width of

 Chapter 4: Offline Design Optimization

82

the task memory – 4 are used to specify the tolerance of the task and 1 (at the LSB) is

checked for validity of the value stored at an address.

The memoization FSM checks the task memory to decide if a task has been saved or

not. This check only takes 2 clock cycles as the task ID used for the check

corresponds to the input address of the task memory. The output of this memory

corresponds to the beginning of the section of the input memory hosting the inputs of

the addressed task. Thus, it is the base address (base_addr) in the input memory. An

offset value is added to this base address to form the input address of the input

memory. The offset is determined using the task’s current input and its tolerance

value. Information of the tasks’ tolerance are stored in the task memory as steps,

where a step of 1 correspond to tolerance 0, step of 2 corresponds to tolerance of 1,

etc. A straight forward approach is to reserve sufficient memory for all potential data

inputs. In this way, the offset value is determined as follows. The data input is

augmented (approximated) to the nearest reference value address by taking its

tolerance into account. For a data input of 4 and a tolerance of step 2, the offset of

(4/2 = 2) is obtained. This offset is added to the base address and the sum forms the

input address to the memoization block’s input memory.

Input
Memory

Memoization
Logic FSM Output

Memory

Task
Memory

Data Input

Data Output
Mode
Enable

Task ID

Task Base

Address

Ready

Compute

Data Output

Base_Addr

+ offset

Read/write

M_Data Out

Base_Addr

+ offset

Figure 4.9: Block Diagram of Memoization Module

 Chapter 4: Offline Design Optimization

83

The output of the input memory is checked to determine if current data input has

been saved or not. In the proposed memory space reservation technique, only the

LSB of the output of the input memory is checked to determine if the value stored at

the address is valid (‘1’) or not (‘0’). Hence, there is no greedy search procedure,

where a series of values from memory are compared against the current input,

involved. In addition, the addresses of the results in the memoization block’s output

memory corresponds to the addresses of inputs in the input memory. For example, if

an input for a task is saved at address 8 in the input memory, the results of that input

would be saved at address 8 in the output memory. If a ‘valid’ is returned, the

corresponding address is read out as the result of the computation. Otherwise, the

task would have to be enabled to compute an output for the current input.

For a set of tasks to share a single memoization block, two conditions need to be

satisfied. First, all the constituent tasks must have similar interface, with the same

data width. Second, no two tasks will be required compute at the same time. Groups

of tasks which fulfil these conditions could share a single memoization block to save

logic. When a single task owns a memoization block, the task memory sub-block in

Figure 4.9 is removed from its architecture.

b) Memory Size Management

The amount of memory reserved for a task in the input memory of the memoization

block is determined by the number (and size) of its potential inputs as well as its

tolerance. For example, a task with single input of 8 bits and a tolerance of 0 (step 1)

would require 255 address spaces in input memory. As can be seen, the memory

requirement increases very rapidly with the input size and number. Two suggestions

are proposed for reducing this (huge) memory. First by saving only certain reference

values of the inputs within the tolerance of task as mentioned earlier. For example, if

the same task above has a tolerance of 1 (step 2) then the input memory requirement

is reduced by 50% compared to the step 1 case. For this strategy, an additional

resource saving can be obtained in the output memory as follows. Recall that the

LSB of the output of the input memory is reserved to be checked if the current task

 Chapter 4: Offline Design Optimization

84

input has been saved or not. The other bits at the same address are free to be used for

other purposes. They may be used to save address of the corresponding output in the

Output Memory. In this way, there is no need to duplicate outputs that are the same.

A single result value can be stored, and all inputs producing that output would have

this address at their (𝑛 − 1)th bit positions. However, some greedy search would

need to be done to identify duplicate outputs, thus leading to higher timing and

energy overhead.

A second possible technique of reducing the memory requirement of the

memoization block is to reserve memory only for those inputs which are regularly

assessed. A fixed amount of memory is reserved for the task’s inputs to be

memorized, and their corresponding outputs. In this case, all arriving inputs are

initially saved, and when the predetermined memory is filled, a replacement policy is

used to displace least frequently used ones. However, some search would be

necessary to decide if the computation result for the current input has been saved or

not. In addition, some logic overhead is incurred in implementing both the search and

replacement schemes. None of these two techniques were implemented in the

proposed wrapper as the target in this section is low port width applications.

c) Task Memoization Module Operation

The operations of the memoization module is in 2 modes: CHECK mode and SAVE

mode. Figure 4.10 shows a generalized operation of the memoization block shared

by a single task. Its operations are controlled by an FSM in its logic. In the CHECK

mode, inputs to the application are evaluated by the memoization module to see if the

result for the requested computation is already present in memory. It takes the input

of the task (Data Input) as well as the task number (Task ID). These inputs are

checked against the memorized data. The outcome of this check is either a HIT,

when result(s) is present in memory for this input(s), or a MISS otherwise.

Misses are expected (frequently) at the early stages of the applications execution but

expected to decrease over the lifespan of the application. After a long period of

execution, the miss rate is proportional to the size of the memory and, in the case

 Chapter 4: Offline Design Optimization

85

where the memory is insufficient for all inputs, the efficacy of the policy used to

select which inputs to save and which not to save. When a MISS occurs, the

COMPUTE and READY signals of the memoization block are set high. If the input

qualifies to be memorized, the FSM waits for the computation to complete and then

switches to SAVE mode to save the results of the computation. The total energy for a

MISS operation is higher for a task with memoization than just that of the original

task since both the memoization block and the task are executed. It is important that

the energy of the memoization block is significantly lower than that of the original

task to minimize the overhead of a miss. This requires that the memoization check

must be done in very few clock cycles, in order to minimize power consumption.

In the case of a HIT no computation is required by the original task. READY is set

high, the OUTPUT corresponding to the current input is set on the OUTPUT port

and COMPUTE signal is set low. The memoization module remains in the CHECK

mode and the application is ready for a new input. This case circumvents

computation energy. Memoization blocks are designed to achieve high HIT rate in

the steady state of the tasks execution. In the SAVE mode, the module monitors the

input to the task and its output. Both are saved respectively in the input and output

memory of the module in the sections corresponding to their Task ID. To activate

this mode, the CHECK mode must have been evaluated and resulted in the results of

the computation not being found in its input memory.

 Chapter 4: Offline Design Optimization

86

Figure 4.10: Flow chart of a memoization block

4.3.2 Energy Efficiency of Memoization Wrapper

The anticipated energy implication of the outcomes of the memoization block’s

operation is shown in Table 4.3. As shown, the value of the energy of the

memoization block affects the average energy consumption significantly. Given that

the factors that determine the HIT and MISS rates are often not completely known at

design time, reducing the energy of the memoization block is one of the best ways of

ensuring that the average energy consumption of an application with a memoization

block remains considerably low, even in the case of frequent misses. Considering a

hypothetical situation in which a memoization block has 50% miss rate. Figure 4.11

shows that the energy per transaction of the block needs to be less than 50% of the

original task’s energy to make any energy gain. In the figure both axes are expressed

as percentages of the original task energy consumption. Considering that additional

resources and time overhead are incurred by the memoization block, even more

significant saving in the energy overhead of the memoization block is always

required.

 Chapter 4: Offline Design Optimization

87

An important aim here is to lower the energy consumption of a memoization block

by significantly reducing the number of its operating clock cycles. This is achieved

by using input values as address offsets both for the input and output memories of the

memoization block. This avoids the need for a time-consuming search step, thus

reducing dynamic energy. In addition, the proposed technique offers the advantage

that the processing time of the memoization block is independent of the size of the

memory or number of inputs present in it. For a task with multiple inputs, the inputs

are concatenated so that the check time remains constant. Thus, it offers

predictability both in processing time and its energy consumption. However, this

technique requires that space be reserved for all potential inputs. This seeming

disadvantage in fact means that decisions about miss operations are reported after

very few clock cycles and thus lower energy. Nevertheless, it must be acknowledged

that to keep the miss ratio reasonable, the port width of the task must be small.

However, there are many applications which can benefit from our scheme even with

this limitation. Examples include a CORDIC task designed to compute the

trigonometry of radian inputs, an RGB to YCrCb colour conversion task, and

multiplier circuits just to mention 3.

Table 4.3: Possible Outcomes of Memoization Wrapper and Energy Implication

Status
Energy Change (with respect to original task)

Static Dynamic

MISS No change Increased by energy of Memoization block

HIT No change Replaced by energy of Memoization block

 Chapter 4: Offline Design Optimization

88

Figure 4.11: Variation of Memoization Wrapper Energy with Average Energy of

Task and memoization Wrapper

4.3.4 An Implementation and a Case Study

The proposed memoization flow was implemented for a low port width application

to test the efficacy of the technique. First, a simple CORDIC task which computes

the hyperbolic tangent of an input angle was implemented. Two Xilinx IPs: a

CORDIC Sinh/Cosh IP and a Division IP were used for the implementation. The first

takes an 8-bit angle input (𝑃ℎ𝑎𝑠𝑒_𝐼𝑛) and generates a 16-bit output, with the 8 MSBs

of the output representing 𝐶𝑜𝑠ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛) and the remaining 8 bits representing

𝑆𝑖𝑛ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛). The division IP takes these two 8-bit vectors and perform a

division to give an output of 𝑇𝑎𝑛ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛). Table 4.4 shows the resource

utilization of the task and the number of clock cycles required for a single round of

processing or a transaction. The implementation of the task has a dynamic power

consumption of 112mW on the Xilinx’s XC7A35T FPGA chip on which the

corresponding static power is 72mW.

In addition, the memoization wrapper architecture and flow described above was

implemented for this task. Being a single task, the task memory in Figure 4.9 was

removed. The memory requirement for this block is 256 8-bit data locations for all

potential inputs, and the same memory size for maximum distinct outputs. The

resource utilization of the memoization module is shown in the second row of Table

-40 -20 0 20 40 60

20

40

50

60

80

100

Average Energy Overhead (%)

En
er

gy
/T

ra
n

sa
ct

io
n

 o
f

M
em

o

B
lo

ck
 (

%
)

 Chapter 4: Offline Design Optimization

89

4.4. It takes an average of only 5 clock cycles to complete its operation for a

transaction. For a hit, it takes 5 clock cycles to produce the result from memory. A

miss takes 3 clock cycles to report, and an additional 2 clock cycles to store the result

of a computation of a task (in SAVE MODE). The power consumption of the

memoization module is only 9mW. Given that each operation takes 5 clock cycles,

the energy per transaction of the block is only 0.45nJ with a 100MHz clock.

Table 4.4: Implementation Data of a CORDIC Circuit and its Memoization Wrapper

Module

Resources utilization
Clock

Cycles

Power

(mW) LUTs
Flip

Flops

BRAMs

(18Kb)

Cordic (Tanh) 1569 2243 - 25 112

Memo Wrapper 10 11 2 5 9

Wrapper overhead (%) 0.64 0.49 - 20 8.04

4.3.5 Results and Discussion

Table 4.5 shows the total (dynamic) energy per transaction for the design described

in section 4.3.4 running at 100MHz. It shows that the energy overhead of the

memoization block is only 0.96% in case of a miss, which is very small compared to

the saving of 98% in the case of a hit. If the computed result is to be saved by the

memoization wrapper in the case of a miss, the energy overhead increases to 1.6%,

which is still significantly smaller than the savings obtained in a hit situation. In

addition, the resource overhead is only 0.64% and 0.49% of the number of LUTs and

FFs used by the original application, in addition to two 18kb BRAM. This is very

small compared to the huge saving in energy. The timing overhead is only 5 clock

cycles which is an increase of 20% compared to the original task. With these values,

even if the miss rate is as high as 90% an energy savings of over 8% is still obtained.

 Chapter 4: Offline Design Optimization

90

Table 4.5: Energy Overhead/Transaction of CORDIC Task with Memoization

Wrapper

Module
Energy per

Trans. (nJ)

Energy

Diff (%)

Cordic Task Only 28.00 -

Task and Memo Wrapper (Miss) 28.27 + 0.96

Task and Memo Wrapper (Hit) 00.45 - 98.4

Memo Wrapper (Save Mode) 00.18 + 0.64

In addition, Figure 4.12 shows the variation of average energy per transaction as the

number of transactions progress for the CORDIC task with a memoization block.

Each point on the graph corresponds to an average for 16 transactions. The input data

used were randomly generated from Excel and had about 33% repetition. 33% is

chosen in keeping with the common practice in data sets used for simulations in

approximate computing [101] [110]. After 256 transactions, the average energy

consumption was 18.35nJ which is 34.5% less than the task without memoization. It

is worth noting that the energy consumption decreases significantly with subsequent

input data, hence after a long period of execution, energy consumption would reduce

significantly due to decrease in miss rate.

Figure 4.12: Variation of Average Energy/Transaction

0

5

10

15

20

25

30

0 5 10 15 20

A
ve

ra
ge

 E
n

er
gy

 (
n

J)

Number of Transactions

 Chapter 4: Offline Design Optimization

91

In this section, an architecture for implementing very low power memoization block

for applications with low port-widths has been presented. The technique uses

memory space reservation to achieve a fast decision in a fixed number of clock

cycles. It can be used with proprietary IPs; whose internal workings is unknown,

provided its output at any point is a function of only the current inputs. Its

architecture is directly applicable to many low port width applications, with only

minor adjustment to memory sizes and address widths. The implementation results

show that the technique leads to a significant reduction in average energy

consumption at the expense of few resource overhead in many low port-width

applications. For example, in a CORDIC circuit, the energy savings achieved in the

case of a hit was over 96% and the energy overhead of a miss is only 1.6%. An

average energy saving of 34.5% was obtained after 256 transactions. Its resource

overhead was only 10 LUTs, 11 Flip Flops, a single 18Bb BRAMs. The wrapper

introduced only a fixed 5 clock cycles overhead.

4.4 Chapter Conclusion

In this chapter, an overview of the various techniques applied to tasks in order to

improve their runtime placement and efficient computation in a dynamic

reconfiguration environment was presented. The chapter described an offline flow to

improve the placement quality of tasks in runtime. The technique is based selecting

implementation locations for tasks to minimize overlap in the potential placement

locations of tasks occupying the FPGA area simultaneously. Placement quality

optimization also aim to minimize the variance in the number of potential locations

of each task to avoid a situation where some tasks have abundant areas and others

have too little. This leads to an improvement in the number of placements in runtime

for each task and increases the fault tolerance of an application.

The chapter also considers wrapping tasks according to format that supports

communication in runtime without using pre-determined slots for tasks. In addition, a

power optimization technique using memoization is applied to the task to reduce

tasks’ dynamic power consumption. The resource overhead of both the wrapper and

 Chapter 4: Offline Design Optimization

92

the memoization implementation are added to tasks’ resource utilization before

optimizing them for placement locations. The content of this chapter was published

as part of the following papers:

 G. Enemali, A. Adetomi, and T. Arslan, "Expanding the Un-usable Area

Strategy for Improved Utilization of Reconfigurable FPGAs", in 2017

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2017,

10.1109/AHS.2017.8046370.

In the next chapter, the runtime placement of task is considered and techniques to

mitigate runtime time fragmentation and manage the relatively large reconfiguration

overhead of COTS FPGAs are presented.

93

Chapter 5: Runtime Placement on FPGAs for

High Performance and Reliability

Efficient runtime placement techniques are required in reconfigurable computing to

achieve high performance and reliability. For state-of-the-art COTS FPGA platforms,

two key challenges that need to be addressed by runtime placement management

systems are fragmentation and the limitation of relatively large reconfiguration time

overhead of COTS FPGAs. Fragmentation leads to wastage of chip area, which in

turn leads to hardware tasks rejection in runtime. For application scenarios where

hardware tasks are relocated on the chip to circumvent permanent damage, better

chip area utilization positively impacts application reliability [19]. On the other hand,

large reconfiguration time overhead, if not well managed, could lead to missed

deadlines in real-time applications. Frequent reconfiguration can also increase energy

consumption of applications. It also impacts the availability of the configuration port

for error correction, and hence affects the reliability of applications. As mentioned

chapter 1, although specialized FPGAs can be used for each application demand, this

adds to the cost of designs and leads to longer application development time.

In this chapter, novel techniques which minimizes fragmentation and the effects of

large reconfiguration time on COTS FPGAs in runtime are presented. First, a method

of quantifying fragmentation which takes the heterogeneous nature of state-of-the-art

COTS FPGAs into consideration is presented. Unlike previous and most current

techniques of quantifying fragmentation, the proposed technique is based on the

degree of isolation of the area occupied by a hardware task rather than its degree of

contact with other tasks (or the chip boundaries). Second, an expansion strategy is

proposed to avoid placement decisions that could create pockets of unusable

resources on the chip, considering the heterogeneous nature of the chip and tasks

dimensions. Finally, a task reuse strategy that aims to reduce the number of

reconfigurations carried out in a runtime application scenario is proposed. The task

reuse strategy includes a novel task replacement policy, FAReP. FAReP not only aim

to circumvent reconfigurations and thus make the configuration port more available

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

94

to other important operations like error monitoring and correction, but also offer

some defragmentation on the chip area as part of the replacement process.

5.1 Fragmentation on Heterogenous FPGAs

In runtime, the optimized tasks are scheduled to be placed on the chip, often in a

dynamic manner decided by an application. Placements can also be requested when

there is a need to relocate a task due to occurrence of faults on the chip. In addition

(re)placement or relocation can be requested to balance system workload on the chip.

In each of these cases, pre-synthesized tasks, in the form of configuration bitstreams

are loaded onto the chip. As already discussed in section 4.1, the bitstream can

normally be loaded on locations which matches the implementation location of the

hardware task on the chip. However, since more than one of such locations exists on

the chip, it is necessary to choose locations which will minimize the fragmentation of

the chip area considering the current state of the chip area. Area fragmentation has

been identified as the greatest obstacle to good chip utilization [111]. Finding a

location for a task on the chip with minimal fragmentation in the shortest possible

time is the goal of most runtime placement management systems. This is because

minimizing fragmentation improves the utilization of the chip which in effect

translates to better fault tolerance for critical applications, and lower task rejection

ratio in other scenarios. It is also important that locations are decided quickly so that

scheduled tasks do not miss their deadlines.

A major step in minimizing fragmentation is quantifying it. Therefore, a method of

quantifying fragmentation on heterogeneous FPGA chips is presented with the

objective of reduced computational complexity compared to state-of-the-art

approaches while still leading to superior or comparable placement decisions. In

addition to a fast and efficient fragmentation computation scheme, an additional

technique called Expanding the unusable Area Scheme (EUAS) is also presented to

further improve chip area utilization and to circumvent the creation of unusable areas

due to the heterogeneous nature of COTS FPGA is also presented.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

95

5.1.1 Quantifying Fragmentation

As pointed out in chapter 3, many state-of-the-art techniques for computing

fragmentation such as the adjacency [63] or vertex based heuristics [71] do not suit a

heterogeneous chip (which is the target in this thesis). This is because tasks’ location

on heterogeneous chips have definite start and end points which, often, do not fall at

the border of existing placements [23]. The approach proposed in this sub-section, is

based on computing the degree of isolation (as well as the adjacency – if it exists) of

the possible location area (to be) occupied by task(s). The location with the minimum

isolation is chosen. This is done using equation 5.1, which computes the average

degree of isolation in the horizontal and vertical direction. This term is referred to as

fragmentation coefficient (FC) for the remainder of this chapter.

In 5.1, �̅�𝑓ℎ and �̅�𝑏ℎ refer to the average distance – in number of CLB cells – in the

forward and backward horizontal directions of a potential placement area. Similarly,

�̅�𝑓𝑣 and �̅�𝑏𝑣 is the number of unit cells to the top and bottom of the area. The term 𝑟ℎ

(𝑟𝑣) is the range of the distances, and α is chosen to give appropriate relative

significance between the distance and range terms. The parameters 𝑚 and 𝑛 are the

horizontal and vertical dimensions of the chip. Number of CLB is used here as most

FPGA chips are organized in grids and CLBs represents the smallest resolution of

configurable physical units. The physical span of other reconfigurable units such as

DSPs and BRAMs can be easily expressed in multiples of CLBs. In addition, only

rectangular areas are considered.

𝐹𝐶 = [
((�̅�𝑓ℎ + �̅�𝑏ℎ)/𝑚)𝛼

𝑟ℎ
+

((�̅�𝑓𝑣 + �̅�𝑏𝑣)/𝑛)𝛼

𝑟𝑣
] (5.1)

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

96

Figure 5.1: Quantifying Task Area Fragmentation

Figure 5.1 shows how the FC of an area is computed. As shown, there are 3 tasks’

area on the chip marked P, Q and R. The distances around 𝑃 are shown for 3

directions: forward horizontal (𝑑𝑓ℎ), background horizontal (𝑑𝑏ℎ) and downward

vertical (𝑑𝑑𝑣). The distance in the upward vertical direction in this case is 0 as the

area is located at the border of the device. The average distance in the forward

direction, �̅�𝑓ℎ is computed using equation 5.2, where 𝑛 is the height of the task area

and 𝑑𝑓ℎ𝑖 represents individual distance of the task segment from the closet task or the

device border as shown in Figure 5.1. The average distances in the other 3 directions

are computed similarly. The horizontal range term (𝑟ℎ) is computed as the difference

the forward and background horizontal distances of the area. The vertical range term

is similarly computed.

�̅�𝑓ℎ =
1

𝑛
∑ 𝑑𝑓ℎ𝑖

𝑛

𝑖=0

 (5.2)

As an illustration, consider Figure 5.2 which shows different areas for tasks on a

chip. For the chip shown, 𝑚 = 10 and 𝑛 = 8. The value of 𝛼 = 3 was used. This

was chosen to give appropriate relative significance between the distance and range

terms and thus increase the accuracy of the FC. Although higher value of α leads to

𝒅𝒃𝒉𝟏

𝒅𝒃𝒉𝟑

𝒅𝒇𝒉𝟏

𝒅𝒇𝒉𝟐

𝒅𝒇𝒉𝟑

𝒅𝒇𝒉𝟒 𝒅𝒃𝒉𝟒

𝒅
𝒅

𝒗
𝟏

𝒅
𝒅

𝒗
𝟐

𝒅𝒃𝒉𝟐

𝒅
𝒅

𝒗
𝟑

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

97

greater accuracy, it would nevertheless increase the computational complexity of

calculating FC.

To illustrate how we selected the value of α for the chip shown. Consider α = 1. The

values of the FC for the 4 areas on the chip would be: 0.425, 0.282, 0.725 and 0.425.

Hence, the accuracy is quite low as only half of the areas has a unique FC. Increasing

α to 2, all the areas have unique FC values (0.145, 0.150, 0.471 and 0.250)

respectively. However, the first two values are quite close. α = 3 give unique values

as shown in Table 5.1 below.

Table 5.1 shows the fragmentation coefficients for the scenarios shown in Figure 5.2

using our technique. As shown, Task 1 has the least FC (0.051) maintaining the least

isolation and having the highest contact at its borders. Task 4 has the highest FC as

shown. It is worth noting that although both tasks 1 and 4 have the same adjacency at

their borders, their FC values are very different, hence, adjacency alone may not be a

good metric for fragmentation on heterogeneous chips.

Figure 5.2: Task Areas on a Chip

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

98

Table 5.1: Fragmentation Computation

Tasks

Fragmentation Coefficient

Horizontal Vertical Resultant

1 0.027 0.024 0.051

2 0.048 0.031 0.079

3 0.064 0.244 0.308

4 0.108 0.024 0.132

There are many other techniques of measuring fragmentation on FPGA chips. As

noted in chapter 3, many fragmentation metrics gives the fragmentation of the entire

chip, and hence are closely aligned to applications requiring the state of the chip. An

example of the application scenario where the fragmentation state of the entire chip

is necessary is to monitor when to trigger defragmentation. However, in many

scenarios fragmentation metrics are used as cost functions to decide location of task

on the chip in runtime. This later scenario is the aim of the fragmentation coefficient

presented here. In order to test the effectiveness of the proposed fragmentation

quantification scheme, a comparison is done with some approaches where

fragmentation metrics is used as a cost function in runtime placement of tasks.

The most widely reported metric for quantifying a form of fragmentation in deciding

location for incoming task on a chip is the MER approach [64]. Although, the

technique does not compute fragmentation directly, it uses the MER technique for

the purpose of task placement in runtime. However, it is known to be a very

expensive process even though it has a very high accuracy in deciding locations for

tasks [72]. Many variants of MER have been introduced, which are approximations

to improve the computational intensity of the original MER algorithm. An example

of this is presented by Iturbe et al. in [63] where a version of MER called Empty

Area Compaction (EAC) is used in deciding placement locations for tasks. On the

other hand, in [78], Ejnioui et al. presented a fast fragmentation metric which is

suitable for runtime applications is presented. The major disadvantage of the

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

99

fragmentation metric presented is that its accuracy is very low. The technique can be

used to compute the fragmentation of different areas quickly without considering the

entire chip area. The technique presented by Handa et al. in [79] though require more

computation than [78], is more accurate. It also measures the fragmentation of an

area to enable fast placement but does so by considering the contribution of each cell

in the area.

Figure 5.3 shows a comparison of the level of accuracy of three fragmentation

metrics together with the proposed technique using the tasks in Figure 5.2 as a case

study. The accuracy is computed based on the capacity of the metrics to assign

different values to each of the four tasks’ area shown on the chip (called

Discrimination in the figure). As shown, the EAC technique (Iturbe) has the highest

accuracy. In selecting tasks for each of the areas on the chip, the metric values are all

unique. The technique in [78] (Ejnioui) has the least accuracy of 25%, 3 out of the 4

task areas on the chip have the same metric value. The fragmentation metric used by

the technique is 𝑓 =
𝑘

𝑁2, where 𝑓 is the number of (free) cells in an area, and 𝑁2 is

the number of cells in the chip. For the case study in Figure 5.2, Task 1, 2 and 4 all

have fragmentation metric of 0.1, with only task 3 having a different metric of 0.05.

Thus only 1 of the 4 areas have a distinct value. The fragmentation metric in [79]

(Handa) is shown in equation 3.2. Using those equations, the values of the

fragmentation metric for the tasks shown in Figure 5.2 were computed. Since the

equations require information about the task size (given that the parameter 𝐿𝑥 and 𝐿𝑦

represent the average width and height respectively of the set of tasks to be placed on

the chip), we assumed an upper band performance and subtracted those occasions

where, in principle, the metric cannot differentiate between the tasks given its very

form. For the case at hand, Task 1 and 4 would have the same number of empty cells

in their vicinity (𝑣𝑥 and 𝑣𝑦). Thus, the upper bound performance of the metric in this

case would be 75%.

As shown in Figure 5.3, the proposed technique also has distinct values for all the

Task locations. It can be observed that the improvement of the proposed technique in

terms of accuracy of differentiating the fragmentation metric of similar but different

potential task location over [79], is based on the fact that the technique does not only

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

100

compute the empty cells around a cell, but also considers if the empty cells are

located to the right or left (for horizontal direction) or in the upper or lower direction

(for the vertical direction) of the slot. Additionally, the computation does not

consider each cell in the slot but treats the slot as a unit – and thus have lower

computational intensity. Table 5.2 shows the time complexity of the four techniques

whose accuracy are compared in Figure 5.3. As shown, although Iturbe [63] has a

high accuracy, its time complexity is also high. On the other hand, while Ejnioui

[78] has a constant time complexity, its accuracy is low. The complexity of the

proposed technique is 𝑂(𝑛) where 𝑛 is (half) the perimeter of the task area evaluated,

which is comparable to that of Handa [79], however the proposed technique have a

better accuracy.

Figure 5.3: Comparison of Accuracy of Fragmentation (Cost) Quantifying

Techniques for Task Areas in Figure 5.2

0

0.2

0.4

0.6

0.8

1

1.2

Iturbe Ejnioui Handa Proposed

A
m

o
u

n
t

o
f

lo
ca

ti
o

n
s

u
n

iq
u

el
y

Id
en

ti
fi

ed

Fragmentation Techniques

Relative Accuracy of Fragmentation
Quatifying Techniques

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

101

Table 5.2: Fragmentation Computation Complexity

Technique Complexity

Iturbe [63] 𝑂(𝑛2)

Ejuioui [78] 𝑂(1)

Handa [79] 𝑂(𝑛)

Proposed 𝑂(𝑛)

5.1.2 Expanding the Unusable Area Strategy (EUAS) for Improved

Utilization

During runtime placement, tasks are configured on the FPGA by choosing positions

for them that would not hinder subsequent tasks as much as possible. For

applications where all component tasks do not fit into the chip at once, when a task

finishes its computation, and another demands the resources it holds, it is removed

from the chip, and the new task configured. For all placement requests, whether

initial or due to a task being removed from the chip to make room for another or due

to a damage to (part of) the resource on which a task is located, a new location is

found by the placement scheme with the aim of avoiding the creation of unusable

resources. This is the aim of the fragmentation metrics as detailed in section 5.1.1.

Unusable resources in this context mean those chip resources (CLBs, BRAMs or

DSPs) which occur between the border of two placements and which cannot

accommodate any of the constituent tasks of the application. Whenever possible (that

is, when other placement locations exist for the task on the chip) placements which

create unusable locations are avoided.

Fragmentation metrics such as adjacency is not a good way to quantify fragmentation

when aiming to avoid the problem of creating pockets of unusable resource segments

on a heterogeneous chip. This is because these metrics are often based on the amount

of contact a task has with other tasks or the device. This is unreliable in

heterogeneous devices because the tasks have start positions which are constrained

by their layout, and often do not begin at the border of an existing placement [21].

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

102

On the other hand, fragmentation techniques which tries to evaluate the quality of a

placement by computing the degree of fragmentation of the entire chip (e.g. EAC) is

not only time consuming, but also not able to deal with the problem at hand

efficiently. Computing the degree of fragmentation of the entire chip does not reveal

complete information about the size or nature of individual contiguous free locations.

Moreover, other fast metrics, such as the proposed technique could produce two

areas with same metric under strict conditions. Hence, additional techniques need to

be integrated to refine placement decisions in runtime, in addition to conventional

fragmentation quantification. In this section, one of such technique is proposed called

Expanding the Unusable Area Strategy (EUAS).

The basic idea of EUAS is illustrated as follows. Consider Figure 5.4 which shows a

chip with section 𝐴 of the chip containing a task which is involved in active

computation. Suppose a new task 𝑋 is scheduled to be placed on the same chip, and

that in the set of tasks to be placed, the minimum width is known to be 2. Suppose

also that locations 𝐶 and 𝐷 are matching locations for the task and have comparable

fragmentation metrics. Although both 𝐶 and 𝐷 are matching positions for 𝑋 on the

chip, choosing 𝐶 makes section B of the chip unusable for the duration for which

tasks occupying 𝐴 and 𝐶 remain in their positions. A cumulative effect of many such

unusable portions of the chip can lead to waste of the chip area. On the other hand,

placing 𝑋 at position 𝐷 means that all columns between A and D are potentially

usable. The aim of integrating EUAS with the fragmentation metric is to avoid

placements which render certain portions of the chip unusable whenever possible.

Figure 5.4: Effect of a Placement on the Usability of Adjoining Resource

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

103

It is worth noting that often, the size of all tasks to be placed is known after their

design phase, hence the minimum dimension of tasks is known. Alternatively, an

approximation could be obtained using the history of tasks requested to be placed by

the placement scheme. This is used to determine if a location would be unusable or

not.

Performance Evaluation

i) Experimental Set-up

To evaluate the effect of integrating EUAS with the fragmentation metric for

placement of tasks with varying properties, we implemented a simulation framework

on an Intel(R) Core™ i7 processor, running at 3.40GHz. The reconfigurable platform

simulated was that of the Programmable logic of the Xilinx xc7z100ffg900-2 chip. In

that chip, each row is made up of 134 columns, consisting of 12 BRAM columns, 15

DSP columns and 107 CLB columns. It has 7 identical rows.

The tasks used for the simulations were based on utilization and estimates of

execution time of common hardware tasks, obtained from [86]. 20 sets each

consisting of 100 tasks were generated. The results presented is an average of these.

Each set varied in the range of values for 𝑙, 𝑤 and s𝑅𝑠𝐼𝑑. For example, set 1 has

parameters in the following range 2 ≤ 𝑙 ≤ 8; 1 ≤ 𝑤 ≤ 3 and 0 ≤ 𝑅𝑠𝐼𝑑 ≤ 20

while set 20 has their area parameters in the range: 58 ≤ 𝑙 ≤ 64; 4 ≤ 𝑤 ≤ 7 and

40 ≤ 𝑅𝑠𝐼𝑑 ≤ 64. Random values were then generated for these parameters within

assigned limits for each set. Configuration time, 𝑡𝑐 was computed based on the

equivalent resource utilization of each task using Table 2.4. Execution time was

randomly generated within the limits of 50 − 200𝜇𝑠 and task deadlines were

randomly assigned during placement requests. Task placement requests were

generated randomly. As soon as request is received, and the placer and configuration

manager were ready, the placement scheme is executed. If more than one request is

received per time, an Earliest Deadline First (EDF) scheme [112] which first services

the task with the nearest deadline was used. The placement scheme simulated

included a task reuse strategy such that tasks are not deallocated from the chip except

when their area is required by another task.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

104

ii) Result and Discussion

Figure 5.5 shows the variation of the task rejection ratio for three device sizes. It

compares the relative performance of the proposed EUAS scheme and that without it.

The FPGA sizes A, B and C refer to approximately 25%, 50% and 100% of the

xc7z100ffg900-2 chip. The corresponding logic equivalent are shown in Table 5.3.

The FPGA sizes were chosen to reflect the effect of small, medium and large FPGA

sizes on the placement schemes. It can be seen, that for all three cases, EUAS has a

less task rejection ratio. It is worth noting that the performance of EUAS is more

pronounced for medium device size. For small sizes, due to limited placement

positions on the chip, both schemes end up with similar placement decisions.

Similarly, for large device sizes, a greater number of tasks can be accommodated.

However, for medium device sizes, a difference of almost 10% in task rejection ratio

exist between the schemes.

It is worth noting that although EUAS leads to an improvement in the number of

successful placements, it does not guarantee that the ‘freed’ resources will be usable

by an incoming task. Basically, the technique aims to avoid the existence of unusable

resources when an alternative location exists, but it was observed that some of these

freed areas have resource layouts which do not match the layout of an arriving task,

and hence remain unused. However, the scheme increases the probability of their

usage. This explains why the performance of the scheme is offers only 9.4%

improvement.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

105

Figure 5.5: Effect of EUAS on Task Rejection Ratio

Table 5.3: Reconfigurable Resources of Simulation Platform

FPGA Size CLBs BRAMs (36kb) DSPs

A 9400 200 600

B 18800 400 1120

C 34675 755 2020

5.2 Task Reuse to Circumvent Large Reconfiguration

Overhead on COTS FPGAs

Online placement management systems on reconfiguration hardware such as COTS

FPGAs must circumvent constraints associated with the target hardware platforms.

For COTS FPGAs, two main interrelated constraints are large reconfiguration

20

30

40

50

60

70

A B C

Ta
sk

 R
e

je
ct

io
n

 R
at

io
 (

%
)

FPGA Sizes

Task Rejection Ratio

No EUAS With EUAS

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

106

duration and ongoing fragmentation. The former of these need to be well managed to

avoid tasks missing deadlines in critical applications with real-time constraints and to

free up the configuration port for other important activities. The later, if not well

managed would lead to under-utilization of the chip resources due to fragmentation.

The reconfiguration duration of state-of-the-art COTS FPGAs is quite significant,

often in the order of milliseconds [38]. It is worth noting that COTS FPGAs have a

single configuration port which is charged with multiple responsibilities including

critical duties like being used for error mitigation [113] [56], freeing it up from some

configuration activities will make it more available for these other important tasks.

This in turn leads to more reliable designs for example.

Large configuration duration is not well amenable to the runtime scenario of many

embedded systems requiring frequent context switches of its tasks [114] as it could

lead to longer delays which can translate to missed deadlines. It also translates to

large system down time where relocation is used to circumvent permanent damage on

a chip. To cope with this, hardware task reuse have been proposed [38] [82] [86] [84].

Task reuse aims to preserve tasks with high configuration duration on the chip even

after their execution, if they are likely to be required again soon.

However, the frequent addition and removal of circuits while preserving others on the

chip will, very often, lead to fragmentation of its area, in an ongoing manner. Ongoing

fragmentation happens even when individual tasks are carefully well-placed on their

initial arrival as it is a result of the dynamic runtime activities of the chip [71].

Therefore, defragmentation of the chip area is required to achieve an efficient use of

the chip resources in addition to good offline optimization and runtime placement

techniques. Ongoing fragmentation would have been grossly reduced by

defragmentation, which involves a time-to-time rearrangement of tasks on the chip

[88]. However, large reconfiguration time makes such defragmentation very

challenging on the current COTS FPGA architecture. In the following sub-sections,

details of task reuse mechanism that aims to reduce the workload of the configuration

port while also achieving a form of defragmentation is presented.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

107

5.2.1 Task Reuse on COTs FPGAs

A highly promising technique aimed at addressing the problem of large

reconfiguration time in run-time placement of hardware circuits on reconfigurable

chips is circuit reuse [85]. It aims to circumvent (re)configuration overhead of certain

tasks by retaining them on the chip after completing their execution, so that they do

not have to be reconfigured for subsequent executions. In essence, once configured on

the chip, hardware tasks are not deallocated until the resources they occupy on the

chip is required by another task. Thus, on arrival of a new task (𝑁𝑇), the placement

scheme checks if an instance already present on chip can be used to execute the task.

It is only in the event that none is present that a new location is sought for the task on

the chip, and the configuration engine used to write the configuration memory.

Under such condition, the possible outcomes in an attempt to place an arriving task

are as follows: first, it could be assigned to an idle instance if any is found capable of

executing the task. This is possible as circuits are not removed from the chip until

their location is required by another task. The second option is to queue it, waiting on

a computing task so as to reuse an already configured instance. This is possible if a

suitable instance is configured on the chip but is actively involved in computation,

and would become free in time for the execution of 𝑁𝑇 without violating its deadline

requirements. This possibility is checked by verifying that the required wait time, 𝑡𝑤

of the new task (equation 5.3) is less than the remaining computation time, 𝑡𝑟 of the

busy instance. These two options leverages task reuse, and configuration time is

circumvented, freeing the configuration engine for other activities.

𝑡𝑤 = 𝑡𝑑 − 𝑡𝑒 (5.3)

The third possible option and last resort in the placement of 𝑁𝑇 is to scan for a new

location for the task on the chip. To determine an initial placement, a scan function

obtains the set of available locations. For each of these positions, a fragmentation

coefficient (FC) is computed as described in section 5.1.1. The available location with

the least FC is chosen for placement of the NT.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

108

If all three of the above fail to allocate a position to the task, the task is not yet

rejected since there are some idle instances on the chip which could be deallocated to

accommodate the task, depending on the its criticality relative to the idle instances.

The policy used to select a candidate for replacement is presented in section 5.2.2.

5.2.2 FAReP: Fragmentation-Aware Replacement Policy for Task Reuse

on COTs FPGAs

Preserving hardware circuits on the chip to enhance task reuse have potentials to

circumvent reconfiguration overhead for tasks. However, since all tasks cannot be

preserved on the chip, some would need to be replaced at some point. As stated

earlier, the choice of which task to replace is key to the performance of any reuse

scheme [88]. State-of-the-art schemes uses the reconfiguration cost (often a product of

reconfiguration time and likelihood of future reuse) as the criteria for replacement

[85], [88]. However, this does not account for the fragmentation which the chip area

undergoes due to frequent addition and removal of tasks. Our work differs from these

because, in addition to reconfiguration cost minimization, we use each replacement

window as an opportunity to also offer defragmentation. This leads to a replacement

policy which in addition to preserving costly reconfiguration tasks on the chip, uses

each replacement window as a defragmentation opportunity.

The proposed task replacement policy scheme considers, in addition to

reconfiguration overhead and likelihood of future reuse, the degree to which a

possible candidate contributes to fragmenting the chip is considered to determine

which to replace. The basic idea is this: for a set of potential candidates of

replacement with comparable reconfiguration cost, that which contributes most to the

fragmentation of the device is considered for removal ahead of others. FAReP relies

on three parameters to determine which of the idle instances to replace:

i) reconfiguration overhead, c,

ii) likelihood of reusing an instance in the near future, and

iii) fragmentation coefficient of the hardware task.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

109

The reconfiguration overhead (𝑡𝑐) is a function of the initial implementation area of

the task and the characteristics of the runtime configuration controller. The value of 𝑡𝑐

is stored in addition to the task’s other parameters. The likelihood of re-use of an

instance can be projected using its execution history. This is done as follows: a

parameter, number of reuse (NU) is maintained for each configured instance. This

parameter is initialized for each task after each (re)configuration. It is incremented

each time the instance is used to execute a task. The cost of reconfiguration, ψ, is

computed as: 𝜓 = 𝑡𝑐 𝑥 NU.

When a task replacement is required, 𝜓 is computed for all idle instances which could

be potentially replaced to place an incoming task. Now, a threshold α is defined such

that all instances whose differences in ψ is less than α have comparable

reconfiguration cost. The instance of these with the highest 𝐹𝐶 is chosen to be

replaced ahead of others, provided their replacement will enable the placement of the

requested task. The effect of α values is discussed in the result section.

Figure 5.6 shows an example that points outs the benefit of the proposed replacement

policy. A set of tasks (𝐴 – 𝐸) are requested to be executed on the chip twice, in the

order A to E with the configuration overhead of 𝐵 and 𝐶 assumed to be comparable,

but with 𝐵’s slightly lower. The figure shows a comparison between 𝐹𝐴𝑅𝑒𝑃 and

another replacement policy called 𝑅𝐸𝑅 [85]. RER is based on reconfiguration

duration and execution rate of configured instance.

Each stage in the figure represents a new task placement (and removal of another if

necessary). As shown in the figure, during the first execution cycle, the three initial

placements (𝐼1,2,3) are the same for both schemes as there is no need for any

replacement. For stage 𝐼4, to place D, FAReP (figure a) chooses to replace C because

its 𝐹𝐶 (computed with equation 5.1) is 0.1 as against 0.08 for B. However, 𝑅𝐸𝑅

(figure b) chooses B since its reconfiguration overhead is smaller than that of 𝐶. The

advantage of replacing instance 𝐶 is that both 𝐷 and 𝐸 can be configured onto the

chip without having to remove 𝐵 in addition as is the case with the 𝑅𝐸𝑅. This is

because the removal of C made other fragmented spaces around it useable, thus

constituting a form of defragmentation activity. In the second cycle of execution (after

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

110

𝑡1), only two configurations are required for FAReP, those of instances 𝐶 and 𝐷. On

the other head, 𝑅𝐸𝑅 requires 4 configurations (𝐵, 𝐶, 𝐷 and 𝐸) in the second cycle. Not

only will the reconfiguration activities occupy the single configuration port longer,

keeping it from other essential activities like error monitoring, but it also leads to

delayed execution of the tasks themselves.

Tasks A- E to be placed on chip in 2 cycles

Figure 5.6: Comparison of Replacement Policies for Task Execution on a Chip

 a) FAReP Policy b) RER policy

Performance Evaluation

To evaluate the performance of the proposed replacement policy, the same set of

tasks and simulation platform in section 5.1.2 were used, with the exception that the

algorithm implemented was the replacement policies. The performance of FAReP

was compared with 2 other major hardware task re-use schemes. These are the RER

in [85] and RBS in [86]. RER replacement policy is based on configuration cost and

frequency of reuse. RBS uses a policy which is based on a form of frequency of reuse

(called Least Probability of Recurrence, LPR). RBS preserves only certain tasks

(called significant tasks) in a region on the chip while another region is used to

Task

Task

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

111

execute less significant tasks which are not preserved. The comparison is based on:

task rejection ratio (TRR), average unused area at task rejection (AUATR), and

Average Configuration Clock Cycles Saved (ACCCS). We define TRR as the ratio of

the number of task rejections to the total of placement requests; AUATR= ratio of

sum of unused area when task rejection due to area occurs to number of tasks rejected

for lack of area. Finally, ACCCS refers to the sum of the configuration clock cycles of

all tasks which reused idle instances, and hence did not have to be configured.

Figure 5.7 shows the variation of the TRR for RER, FAReP and RBS. FAReP is

evaluated for various values of α. For the results shown, α is computed as 10%, 20%,

40%, 80% and 100% of the difference between the least and the largest configuration

times of the tasks. As shown, FAReP with α = 0.1 has the least TRR of 6%, compared

to the 10% and 11% respectively for RER and RBS. It can also be seen that the

performance of FAReP degrades with increase in α. The successive degrading

performance of FAReP with increase in α is due to the loss in the significance of

configuration cost and frequency of reuse relative to fragmentation with increasing α.

This conforms with [84] and [85] which found that configuration time and frequency

of use of any instance are major factors in any replacement policy.

Table 5.4 shows additional performance data for the replacement policies. The values

shown have been normalized to a base of the RER values to present a clearer

comparison. As shown, 𝐹𝐴𝑅𝑒𝑃 saves the configuration engine about 29% of

configuration clock cycles compared to 𝑅𝐸𝑅. This is a significant improvement as it

could translate to amount of time the configuration port is freed up for other important

tasks. On the other hand, the performance figure for 𝑅𝐵𝑆 shows that the configuration

port was occupied at about 16% more than the case of 𝑅𝐸𝑅. In addition, the average

wasted area when a task is rejected (AUATR) is lower for FAReP than RER by 14%

showing a better utilization of the chip area. For 𝑅𝐵𝑆, its value is higher by 5%. This

is due to the defragmentation offered by FAReP However, the computation time of

𝐹𝐴𝑅𝑒𝑃 is slightly larger (9% more) than that of 𝑅𝐸𝑅. This is due to extra

computational steps required to compute fragmentations. However, it is faster than

RBS by 7%.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

112

Figure 5.7: Variation of the Task Rejection Ratio for Replacement Policies

Table 5.4: Relative Performance Metrics of Replacement Policies*

RER RBS FAReP

ACCCS
1 0.84 1.29

Runtime of Scheme
1 1.16 1.09

AUATR
1 1.05 0.86

*Normalised to a base of RER values

5.3 Chapter Conclusion

In this chapter, two major techniques relating to the runtime phase of a placement

management on COTS FPGAs have been presented. First a method of quantifying

fragmentation on heterogeneous FPGAs was proposed. The fragmentation

quantification technique measures the isolation of potential task areas to choose a

candidate for an arriving task in runtime. The accuracy of the proposed technique

was compared to other techniques for quantifying fragmentation in runtime and it

0

2

4

6

8

10

12

14

RER RBS FAReP 0.1 FAReP 0.2 FAReP 0.4 FAReP 0.8 FAReP 1.0

Ta
sk

 R
ej

ec
ti

o
n

 R
at

io
 (

%
)

Replacement Policies

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

113

was found to have high accuracy compared to state-of-the-art techniques. In runtime,

this is augmented by a technique, EUAS – expanding unusable area strategy. EUAS

involves using the information on the minimum size of tasks to be placed to avoid

placement decision that creates pockets of unusable areas on the chip. This is

necessitated by the heterogeneous nature of COTS FPGA where tasks placements do

not fall at the border of existing placements due to layout requirements.

The second technique presented in the chapter is a task reuse strategy to circumvent

the large configuration overhead of COTS FPGAs. The task reuse flow includes a

task replacement policy, FAReP which in addition to preserving costly

reconfiguration tasks on the chip, uses each replacement window as a defragmentation

opportunity. FAReP choose candidate to be replaced from the chip using the

reconfiguration overhead of instances, the likelihood of future reuse and the

contribution of an instance to the fragmentation of the chip. The proposed

replacement policy was tested by comparing its performance with state-of-the-art

replacement policies. The comparison results showed that with FAReP, a reduction in

the number of reconfigurations can be obtained and a greater number of tasks can be

placed in runtime compared to other reuse schemes with different replacement

policies. Reduced number of configurations translates to reduction in the occupancy

of the single configuration port of COTS FPGAs. Thus, the configuration port can be

more available to other important tasks like error monitoring. In addition, due to the

defragmentation offered by FAReP a better utilization of the chip area is obtained.

This leads to better placement quality which not only translate to greater higher

performance for applications, but also a higher reliability in applications where

relocation is used to circumvent permanent faults on the chip. The content of this

chapter has been published in the following papers:

 G. Enemali, A. Adetomi, and T. Arslan, "FAReP: Fragmentation-Aware

Replacement Policy for Task Reuse on Reconfigurable FPGAs", in 2017

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 202 – 206, 10.1109/IPDPSW.2017.153.

Chapter 5: Efficient Runtime Placement Techniques for COTS FPGAs

114

 G. Enemali, A. Adetomi, and T. Arslan, "A Placement Management Circuit

for Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable

Autonomous Systems", in 2017 IEEE International Symposium on Circuit

and Systems (ISCAS 2017), 2017, pp. 2030 – 2033,

10.1109/ISCAS.2017.8050796

In the next chapter, techniques relating to task relocation on heterogeneous FPGAs is

discussed. The chapter will explore techniques of dealing with lack of matching

locations on heterogeneous FPGAs by proposing a functionality-based relocation

system to augment direct bitstream relocation on COTS FPGAs.

115

Chapter 6: Techniques for Task Relocation on

FPGAs

Relocation of hardware tasks on FPGAs is a key technique used in reconfigurable

computing to manage many desirable features. It is beneficial for many reasons. Three

important ones are: to circumvent permanent damages on chips and consequently

improve fault tolerance of critical applications in hostile environments such as space

[19], to achieve defragmentation of the chip area [22] and hence provide a better

utilization of the chip, and to maintain a desired thermal distribution on the chip

[115]. Task relocation on COTS FPGA involve the movement of a circuit from one

physical location on the chip to another. Although task relocation has many

potentials, its implementation is constrained by provision of dynamic on-chip

communication support for relocated tasks and finding suitable locations on the chip

that matches the architecture of the tasks’ original implementation location. The

second of these constraints is becoming increasingly challenging to manage on COTS

FPGA which are increasingly heterogeneous.

The aim of this chapter is to present techniques that improve the number of runtime

task relocations on heterogeneous COTS FPGAs. The proposed relocator augments

Direct Bitstream Relocation (DBR) with a Functionality-Based Relocation (FBR). As

shown in the chapter, DBR alone is quite limited on COTS FPGAs due to their

heterogeneity, while the proposed FBR technique is limited in relocating tasks which

are not referentially transparent or have large port width. Hence, the chapter proposes

to merge both techniques for improved performance.

This chapter is organized as follows: first, an overview of DBR is presented. This

includes two approaches: generating unique bitstreams for different locations and

manipulation of selected location-dependent information in the bitstream to change

its location during configuration. Second, detail of the proposed FBR scheme is

presented. The FBR technique presented in this chapter relies on the mechanism of

replicating the functionality of a circuit with a look-up-table (LUT) or a memory

 Chapter 6: Task Relocation on COTS FPGAs

116

block in runtime for selected circuits. The chapter concludes with a comparison

between the traditional DBR and the proposed FBR to show the improvement in

number of relocations obtained by a merger of the two using a case study.

6.1 Direct Bitstream Relocation

Bitstream relocation techniques allow the use of a single partial bitstream at different

locations on the FPGA. However, each partial bitstream has location specific

information embedded within it. This information enables the configuration

controller to determine which location to configure the bitstream on. For a bitstream

to be directly relocatable to another location, the location information in the

bitstream must match that of the intended destination. Since runtime placement

management techniques determine location of hardware tasks in runtime, it is

important to consider how the location dependent information in a partial bitstream is

managed to enable relocation.

6.1.1 Methods of Direct Bitstream Relocation

One possible method of DBR is to synthesize a partial bitstream at all potential

locations that it might be placed on in runtime. In that case, the process of relocation

essentially reduces to searching which version of the partial bitstream matches an

intended location. This approach is not only time consuming but has large memory

overhead for storing the various versions of partial bitstreams [116].

A more efficient technique of bitstream relocation is to modify the location

dependent portions of a bitstream in runtime [6]. For most modern COTS FPGAs,

this modification does not constitute a huge overhead as only a single reference

information needs to be modified in a partial bitstream for each resource type. For

example, all CLBs configuration bits share a common location reference information

which points to the beginning of the collection of CLBs to be configured by the

bitstream. In addition, in most recent Xilinx FPGAs, CLB and DSP resources share a

common block type and hence have the same reference location information.

 Chapter 6: Task Relocation on COTS FPGAs

117

BRAMs have a separate location reference. To this end, there are a maximum of only

two location dependent information (typically called Frame Address) that need to be

edited in runtime to relocate a bitstream, provided the destination location is

physically identical to the source location of the bitstream without considering

communication and clocking nets. Just after each frame address reference, are

several frames required to configure the area of the FPGA whose functionality is

represented by configuration data in that section. This is illustrated in Figure 6.1.

Each location-dependent field to be replaced is a 32-bit word and can be efficiently

replaced by the location found by the placement manager in runtime using the

configuration controller in [27] adopted in this thesis. The configuration controller

looks for the unique FAR command and once detected, the next word is replaced by

that of the desired destination. It is worth noting that each frame has a unique frame

address, but this is not stored in the bitstream as the reference frame address is

increased by 1 automatically after each frame is loaded.

Figure 6.1: Achieving Direct Bitstream Relocation Using Runtime Frame Address

Modification

32-bit Default Frame

Address Ref 1

𝑁 frames of Configuration

Data for CLBs, DSPs and

Inter-connect

32-bit Default Frame

Address Ref 2

𝑀 frames of

Configuration Data for

BRAM content

Location-dependent

words to be changed in

runtime for relocation

 Chapter 6: Task Relocation on COTS FPGAs

118

6.1.2 Limitations of Direct Bitstream Relocation

A major condition that needs to be satisfied for relocation of a circuit to be possible in

runtime using DBR is that the resource composition of the original location for which

the task was synthesized should be the same as the intended destination location. That

is, the source and destination are required to have identical chip area, not only in size,

but also in the type, number, order and orientation of the resources they contain. This

condition was easily satisfiable in older versions of FPGAs which were essentially

homogeneous. Modern FPGA chips, in a bid to improve performance and lower

power consumption, have hard blocks such as memory blocks (BRAMs) and digital

signal processors (DSPs) sandwiched between the conventional CLBs [117]. In

addition, these BRAMs, DSPs and CLBs sometimes have different orientations (left

and right) which differ in routing types as in the Xilinx 7 series FPGAs. Thus, FPGAs

have become increasingly heterogeneous, and this places greater restrictions on the

relocation of circuits. The result of this increase in heterogeneity is that the number of

direct bitstream relocations possible for typical tasks has reduced with newer

generations of FPGAs. Figure 6.2 illustrates this point. The figure shows that while on

a homogeneous chip the circuit on LOC 1 could be relocated to 2 additional identical

locations (LOC 2 and LOC 3), on the heterogeneous chip no identical location can be

found.

Therefore, in the next session, a novel functionality-based relocation is proposed to

improve the number of relocations possible for a circuit in runtime.

 Chapter 6: Task Relocation on COTS FPGAs

119

LOC 1 LOC 2 LOC 3

(a)

LOC 1

CLB BRAM DSP

(b)

Figure 6.2: Number of relocations on homogeneous and heterogeneous FPGAs

a) Up to 2 relocations are possible b) No relocation is possible

6.2 Functionality-Based Relocation

The basic idea of FBR is to memorize the outputs of tasks during their normal

execution, so that its functionality can be mimicked using a look up table (LUT) or a

memory block in runtime. The basic idea of the concept is illustrated in Figure 6.3. It

shows an original logic-based circuit on the left transformed into a memory-based

circuit on the right. The aim of the transformation is so that the new circuit can be

 Chapter 6: Task Relocation on COTS FPGAs

120

relocatable to additional locations which do not match the resource layout of the

implementation location of the original circuit.

Figure 6.3: Transformation of Logic Block to Memory Block

6.2.1 FBR: Operation and Architecture

The proposed functionality-based relocation is done when an exact matching position

for the circuit’s original bitstream is either not available, or would lead to undesirable

effects, such as increased fragmentation of the chip area. A circuit to be relocated

using this technique has its computation results memorized during its normal

operation using a dedicated system which is referred to as relocation module

hereafter. In addition, a generic bitstream of an LUT or memory resource template is

pre-synthesized and stored in an off-chip memory at design time. When relocation is

required in runtime, a destination location is configured with the bitstream template,

and its memory content filled with the outputs of the original circuit previously

memorized.

The operational flow of the relocation mechanism is shown in Figure 6.4 and can be

summarized as follows. When a request is received to relocate a circuit (after

attempts to find an exact location for the original bitstream on the chip is found to be

infeasible or unprofitable), a duration evaluator carries out a check to see if the

Delay Block

Memory

Inputs

Logic Block

Outputs

Address

(Inputs collection)

Outputs

 Chapter 6: Task Relocation on COTS FPGAs

121

timing constraints associated with the relocation request can be met. Next, an area

check is done to find a suitable location for a pre-synthesized memory template. The

details of the time required for a relocation procedure is given in section 6.2.1b

below while Section 6.2.1c explains the procedure for the area check. If both checks

are successful, then the relocation request is accepted and executed in 3 additional

steps:

i) The outputs of the circuit not present in memory are computed and saved

ii) A memory template is configured on the chip

iii) Data is copied from the original circuit’s memory unto the already

configured template.

Area

Check

Duration

Check

Report

Success

Configure

Template

Copy

Data

Compute

Missing

Outputs

Success

Failure

FailureSuccess

Decline

Request

Stop

Configure

Bitstream

SuccessFailure

Success

Failure

Start

DBR

Check

FBR

Check

Figure 6.4: Operational Flow of the Proposed Functionlaity-Based Relocation

Technique

 Chapter 6: Task Relocation on COTS FPGAs

122

These operations are managed by various units of a relocation module discussed

below. The architectural composition of the proposed relocation module consists of

an Output Memorizer, Duration Evaluator, and Area Finder.

a) Output Memorizer

The architecture of the output memorizer is similar to memorization module in

section 4.3.1. It basically saves the results of computations of selected circuits in

memory in runtime. Thus, it connects to the circuits whose outputs it memorizes. It

has 3 units: task memory, evaluation logic (which is called memo logic for the

remainder of this chapter) and output memory. These are shown in Figure 6.5. The

task memory saves the list of circuits which are currently configured on the FPGA

chip and are potentially relocatable by functionality. The memo logic manages the

conversion of the raw inputs to address values, determines if the output for an input

has been previously saved and switches mode to save the current output of the

application when it has not been saved previously. Each circuit has a unique

identifier (Circuit ID) which corresponds to its address in the task memory

(Base_Addr). The memo logic has a fixed 3 clock cycle overhead when operating in

the CHECK mode where it verifies if an input has been previously saved, and an

overhead of 2 clock cycles when in the SAVE mode where it saves an output unto its

output memory if not already saved.

Basically, the fixed number of clock cycles is achieved by concatenating the inputs

of a circuit into a unique address value (Base_Addr + offset), with Base_Addr being

the start of the memory location assigned to the circuit and offset determined using

information on the circuit’s input and tolerance. Hence, our proposed technique is

based on memory space reservation (since each input translates to a unique address)

rather than a greedy search procedure, where a series of values from memory is

compared against the current input. In the CHECK mode, the memo logic operates in

parallel with the operation of the original circuit, and thus does not add any pre-

processing overhead to circuits which take at least 3 clock cycles for their normal

 Chapter 6: Task Relocation on COTS FPGAs

123

operations. In the SAVE mode (executed only when an input has not been previously

saved in memory), 2 post-processing clock cycles are needed.

The output memory contains the results of computations. An application with

multiple outputs has these outputs concatenated and saved at an address. The Least

Significant Bit (LSB) of each output memory location is reserved to be checked for

validity of the value stored at that address as shown in Figure 6.6. This bit is checked

to determine if results of a computation are available in memory or not. A value of

‘1’ at that location indicates that a previous value has been saved and is valid and a

‘0’ means that valid output is missing for this input and the original circuit would

have to compute it.

To compute missing outputs in runtime after a request to relocate a circuit is

received, the memo logic iterates through the LSBs of the section of its own output

memory dedicated to memorizing the circuit’s outputs. The LSB of a missing output

has a value of ‘0’. The address indices (which correspond to inputs) of missing

outputs are then each decoupled and fed into the original circuit as inputs for it to

compute corresponding outputs. It is worth restating that the LSBs of the output

memory are used to keep track of valid outputs. This is because in reconfigurable

computing, the functionality of a circuit could be changed in runtime, for example,

when a part of that circuit is reconfigured with a different functionality in runtime

using DPR. Under such conditions, the memo logic refreshes previously computed

outputs by resetting the LSBs of the output locations to ‘0’.

Memo

 Logic

Output

Memory

Task

Memory

Data Input

Data Output

Mode

Task ID

Task Base

Address

Done

Output Data

Base_Addr

+ offset

Figure 6.5: Architectural overview of the output memorizer

 Chapter 6: Task Relocation on COTS FPGAs

124

Figure 6.6: Data Distribution in Output Memory of Output Memorizer

The sizes of the task and output memories of the Output Memorizer are determined

by the number of relocatable circuits on the chip, the sum of the number of inputs of

the constituent circuits and the tolerance of the circuits. By tolerance, it is meant

permissible variation in a circuit’s outputs. Since this technique requires that space is

reserved for all potential outputs, its memory overhead could be a major bottleneck

for large-port-width applications that require numerous distinct outputs to be saved.

Hence, we acknowledge that to keep the memory requirement reasonable, the port

width of the circuits which can be relocated using this mechanism must be small, or

if the port width is large, then the application tolerance must be large as well.

Moreover, the functionality-based relocation proposed in this work is only applicable

to circuits which are referentially transparent – that is, circuits implementing systems

that produce the same set of outputs for the same set of inputs. Circuits whose current

outputs depend on some internal states, or are determined by factors other than the

current input(s) are not directly relocatable by the technique proposed in this work.

Nevertheless, there are many applications which can profit from the proposed

scheme even with these limitations. Three Examples are: an RGB to YCrCb colour

conversion circuit which is widely used in computer graphics, CORDIC circuits

designed to compute the trigonometry of angular inputs, and multiplier circuits

which form the basis for many other applications.

Circuit output result

(n – 1) bits

Base_addr

+ offset

Valid Bit

(LSB)
Output Memory Data (n-bits)

 Chapter 6: Task Relocation on COTS FPGAs

125

b) Duration Evaluator

This unit checks if the requested relocation can be completed within the time

constraint associated with the request. Its architecture consists of an LUT RAM

which contains the essential parameters of the circuits, including the duration

associated with the circuit’s operations such as the configuration time, the number of

clock cycles for computation of outputs (e) as well as the duration of data transfer

from the output memorizer’s memory to a memory template. The time constraint of a

relocation request is evaluated using equation 6.1. The term 𝑅𝑡 in equation 6.1 is the

total time required for relocation, 𝐶𝑡 is the time required for the memory template to

be configured on the chip; and 𝑒 is the time required to compute a missing output of

the circuit(s) to be relocated, with 𝑛 being the number of the missing (yet to be

saved) outputs. 𝑀𝑡 is time required for the memorized memory content to be

transferred to the template. It is worth noting that the operation of the area finder and

the computation of the missing outputs of a circuit to be relocated are done in

parallel, thus equation (6.1) uses the value of the greater of time required to complete

these two operations. 𝑒 is initially measured at design time just like the configuration

duration of the circuit. However, since 𝑒 depends on the architecture and

functionality of a circuit, when these are changed by DPR, its new value is measured

(by observing the duration required by the updated circuit to change a set of inputs

into outputs) and updated in runtime.

𝑅𝑡 = ∑ 𝑒𝑖
𝑛
𝑖=0 + 𝐶𝑡 + 𝑀𝑡 (6.1)

c) Area Finder

The area finder basically checks if there is an area on the chip for a template to be

placed on. It has access to a RAM containing the state of the chip (State Memory), as

well as a memory containing all the potential locations of the template. The State

Memory represents the state of all resources on the chip by an M x N Matrix, where

M and N are respectively the number of rows and columns in the device. An

available resource is represented by a ‘0’ and a used or damaged resource by a ‘1’.

 Chapter 6: Task Relocation on COTS FPGAs

126

Thus, each element in the matrix defines the state of a specific reconfigurable

resource on the chip. A scan function is used to check the availability of potential

locations for the circuit in the light of the current state of the chip. Further details of

the scan procedure can be seen in chapter 7.

Finally, it is worth stating that the memory template consists of a generic memory

block capable of holding all potentially required output data of the circuit(s) it is

designed to replace. It also contains associated logic to manage functionalities such

as memory read and delay management. Its memory size is determined like the

output memory of the output memorizer discussed in section 6.2.1(a) above. The

delay management block manages the difference between the timing behavior of the

memory template and the original circuit so as to maintain the timing characteristics

of the entire system. It does this by delaying the assertion of ‘done’ by the difference

in the number of clock cycles between the operation of the memory template and that

of the original circuit.

6.2.2 FBR Implementation Details

a) Case-Study Application: CORDIC

To test the proposed FBR flow a CORDIC application was implemented using

Xilinx IP blocks. The application consists of 3 independent circuits: Square root,

Sine/Cosine trigonometric operations and the hyperbolic tangent (Tanh) computing

circuits. CORDIC was chosen as it is an important algorithm for various

mathematical functions [118]. Details of the circuits’ operations as well as their data

format can be found in [104]. A custom wrapper was created for the circuits for easy

compatibility with the proposed FBR model. Each circuit was optimized to take an 8-

bit 𝐷𝑎𝑡𝑎𝐼𝑛 and produce an 8-bit 𝐷𝑎𝑡𝑎𝑂𝑢𝑡 and 𝑎𝑝_𝑑𝑜𝑛𝑒 signal. The application and

its components, along with a top wrapper module were synthesized using Xilinx

Vivado suite for the Xilinx xc7a35tcpg236-1 FPGA chip. The top wrapper includes a

𝑇𝑎𝑠𝑘𝐼𝑑 signal that is used to select a particular circuit. Table 6.1 shows the resource

 Chapter 6: Task Relocation on COTS FPGAs

127

utilization of the circuits, while Table 6.2 shows the number of clock cycles for each

operation. The partial bitstream of the application is 140 kB in size.

Table 6.1: Resource Utilization of a CORDIC Circuit Case-Study Application

Circuits LUTs
Memory

LUTs
Flip Flops BRAM

Square Root 71 1 100 -

Sine/ Cosine 277 4 307 -

Hyperbolic

Tangent
1583 4 2218 -

Wrapper + All

modules
2226 13 2920 -

Memo Block

Template
14 14 21 1

Table 6.2: Latency of CORDIC Circuit Case-Study Application

Circuits Clock Cycles (e)

Square Root 15

Sine/Cosine 19

Hyperbolic Tangent 56

Memo Block Template 2

b) Relocation Module

The relocation module, comprising of an output memorizer, duration checker and

area finder described in section 6.2.1 was implemented using the Xilinx Vivado 15.1

design tools. Its resource utilization is shown in Table 6.3. A total of 66 LUTs, 58

 Chapter 6: Task Relocation on COTS FPGAs

128

flip flops and a single 18-Kb BRAM were used on the xc7a35tcpg236-1 chip. It is

worth noting that the size of the memory used is dependent on the application. We

chose an 18-kb memory because it is sufficient to save all the outputs of our target

case-study application. The relocation module connects to the inputs and outputs of

application(s) to memorize new computations by the application. It is also worth

noting that practical relocation techniques require access to the configuration

memory of the FPGA, as well as a means of communicating between a relocated

module and other parts of the chip. Thus, a self-reconfiguration controller [27] with

the required access to the configuration memory was instantiated. The controller is

used for configuring the chip, as well as copying of data between block memories of

the relocation module and the relocated module via the configuration layer. To

address the need of a communication technique that supports relocation, the

technique described in [26] which makes use of those clock buffers not used by

applications for on-chip communication was adopted. The CORDIC case-study

application used a single BUFG out of the 32 available on the xc7a35tcpg236-1 for

clock network delivery. Thus, the remaining 12 BUFH and 2 BUFMR per clock

region present on the chip are available for on-chip communication without any

conflict with our case-study application or relocation management module. The

technique is used to maintain communication between the relocated circuits and

other circuits on the chip and/or the FPGA ports.

Table 6.3: Resource Utilization of Proposed Relocation Module

Unit LUT FF BRAM

Output Memorizer 10 11 1

Duration Checker 36 30 -

Area Finder 20 17 -

Total 66 58 1

 Chapter 6: Task Relocation on COTS FPGAs

129

Next, a memory template for relocation was implemented. This template reserves 10

kB of memory and manages the delay of the application it replaces. This memory

size was determined by the maximum memory requirement of the circuits whose

functionality it is intended to replace. The actual resource utilization of the memory

template on the target FPGA is 14 LUTs, 21 Flip flops, and 18-kb RAM and it has a

delay of 2 clock cycles. The bitstream size of the template is 76.9 kB. The delay

mechanism is used to ensure that the relocated equivalent does not alter the timing of

the relocated application so as not to lose synchronization with the entire system.

6.2.3 Performance Evaluation and Comparison with DBR

At runtime, a relocation request was initiated when 50% of the outputs of the

application have been saved by the output memorization module. The floor plan of

the application required a pattern of 8 contiguous CLB columns on the

xc7a35tcpg236-1 chip. This pattern occurs only once on that chip. Hence, only a

functionality-based relocation was possible. The timing constraint associated with

the relocation request was such that the relocation was required to take a maximum

of 1ms. The total time duration for the relocation was measured as 306.80 µs at 100

MHz, with the configuration of memory template taking 82.30 µs, the computation

of missing outputs taking 175.36 µs, and the copying of data from memorization unit

memory to the template taking 49.14 µs. The worst-case relocation duration for this

module was also measured as 361.86 µs and best case as 131.44 µs. This was done

by generating relocation requests when 0% (worst case) and 100% (best case)

respectively of the outputs had been saved. The time required for the configuration of

the memory template and the copying of data is constant for an application,

irrespective of when a relocation request is received.

It was also observed that the outputs of both the original circuit and the relocated

equivalent for the same inputs. The results were the same for both circuits – in both

cases, the value of 𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 when the 𝑎𝑝_𝑑𝑜𝑛𝑒 signal goes high was the same. This

is shown in Figure 6.7. In addition, the improvement in the number of possible

 Chapter 6: Task Relocation on COTS FPGAs

130

relocations brought about by incorporating the proposed technique into the state-of-

the-art direct bitstream relocation technique was evaluated. Table 6.4 shows the

result for different Xilinx FPGA chips. As shown, the proposed technique leads to a

significant improvement in the number of relocations. For the chips compared, an

average of about 36 more relocations (an increase of over 260%) of the case-study

circuits could be obtained using the proposed technique. This is a great advantage in

applications which aim to improve reliability by circumventing permanent damage

on the chip. It means that augmenting the traditional direct bitstream relocation with

the proposed functionality-based technique would significantly improve the fault

tolerance of a design.

(a)

(b)

Figure 6.7: Output Waveforms of Original and Funtionality-Based Relocated

Circuits.

a) Original CORDIC Circuit b) Relocated Equivalent

 Chapter 6: Task Relocation on COTS FPGAs

131

Table 6.4: Improvements in Number of Possible Relocations Due to FBR

Target Chip Only DBR DBR+FBR

Artix-7 (xc7a35tcpg236-1) 1 8

Kintex-7(xc7k325tffg900c-2) 19 64

Virtex-7 (xc7vx485tffg1761c-2) 21 77

Total 41 149

As already noted above (and shown in the relocation case study used), the relocator

resorts to a functionality-based relocation when the bitstream of the original design

cannot be placed on a matching location on the chip, leads to undesired effects, or

where access to the location information of the bitstream is not possible (such as in

encrypted bitstreams). The technique is especially suitable on modern heterogeneous

FPGA chips, such as the Xilinx 7 Series and UltraScale FPGAs, which are rich in

memory resources, many of which are sometimes unused. It has also been noted

above that relocation by functionality is only applicable to circuits with low port

width. This is due to its memory overhead not scaling well with port width, and thus

resulting in large overheads for large-port-width circuits. To this end, it is important

to restate that the relocator system presented is also capable of bitstream relocation

for circuits which cannot be memorized.

In addition, the time overheads of direct bitstream relocation and the proposed

functionality-based relocation were compared. Table 6.5 shows the relocation time

for both techniques for 3 different circuits: CORDIC [104], RGB to YCrCb colour

converter [119] and a multiplier circuit [120]. All the circuits were implemented

using Xilinx IPs from Xilinx Vivado 15.1 for the xc7a35tcpg236-1 chip. As shown,

functionality-based relocation technique has a larger time overhead than direct

bitstream relocation for a majority (2 out of 3) of the cases. For example, direct

bitstream relocation duration for a 12-bit RGB to YCrCb colour converter circuit

would only require 174.46 µs as against a minimum of 326.15 µs required for the

 Chapter 6: Task Relocation on COTS FPGAs

132

functionality-based technique. It is worth noting that the relocation time for the

functionality-based technique is proportional to the port width of the circuit. Hence,

for the CORDIC circuit with 10-bits inputs, its relocation time is smaller than direct

bitstream relocation. With increase in port width, the relocation time for direct

bitstream relocation has better performance. A major disadvantage of functionality-

based relocation technique is that it does not scale well with increase in port width.

In fact, the memory requirement doubles for each bit increase in port width.

However, since direct relocation is impossible in certain cases such as for encrypted

bitstreams and when an identical location is not present on the chip, servicing

relocation requests whose time constraint can be satisfied in those cases is always an

advantage. Therefore, it is an added layer of advantage to relocate circuits by

functionality whenever direct bitstream relocation is impossible or leads to undesired

effects.

Table 6.5: Comparison of the Relocation Time Overhead of Different Relocation

Techniques

Circuit

Port

Width (no

of bits)

Relocation Time Overhead (µs)

Direct

Bitstream

Functionality-

based (best case)

Functionality-

based (worst case)

CORDIC 10 369.02 131.44 361.86

RGB to

YCrCb
12 174.46 326.15 367.63

Multiplier 16 92.54 774.88 1430.26

Finally, the size of the additional memory template bitstream required for

functionality-based relocation is only 55% of that of the original circuits’ in our case

study. Hence, in terms of additional memory required, the functionality-based

technique would be better compared to having to store multiple bitstreams of the

original circuit, not to mention that since it is an empty memory template most of the

bits in its bitstreams are ‘0’s and would be much smaller when compressed compared

to the original circuit’s bitstream.

 Chapter 6: Task Relocation on COTS FPGAs

133

6.3 Chapter Conclusion

In this chapter, a novel functionality-based technique has been proposed to

complement direct bitstream relocation on COTS FPGAs. This aims to alleviate the

effect of lack of matching locations on heterogeneous FPGAs programmable logic

which limits DBR. The additional FBR capability is based on replicating the

functionality of the original circuit by memorizing its previous computation results.

The memorized results are then used to mimic the functionality of the original circuit

at another location on the chip where the original circuit cannot be configured due to

lack of matching resource, but which supports the memory template. The

performance evaluation of the proposed technique shows that it has the potential to

increase the amount of relocation that can be carried out on heterogeneous COTS

FPGAs. Given that relocation is a major technique used by ROS for achieving both

high performance and reliability, the FBR proposed technique has the potential to

improve the degree of performance and reliability of ROS based on a combined DBR

and FBR.

However, the proposed FBR is only applicable to certain circuits – those whose

outputs do not depend on internal states, but rather on only the current input. In

addition, its memory overhead is significant for applications with large port width.

Hence, the proposed technique is limited to circuits with low port width and are

referentially transparent. Thus, FBR is recommended to be used to augment DBR.

The content of this chapter is included in the following publication:

 G. Enemali, A. Adetomi, G. Seetharaman and T. Arslan, “A Functionality-

Based Runtime Relocation System for Circuits on Heterogeneous FPGAs,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5,

pp. 612–616, May 2018.

In the next chapter, some of the low-level practical implementation details of a

prototype placement management system incorporating the proposed techniques in

the previous chapters are presented. It aims to show the practicality of the proposed

techniques on an actual COTS FPGAs.

134

Chapter 7: Placement Management System

Implementation and Characterization

This chapter presents a prototype hardware implementation of the proposed

placement management system (PMS). The techniques relating to runtime placement

of circuits discussed in the previous chapters are implemented and characterised in

this chapter. The low-level implementation details are also discussed. In addition to

bringing together the various components of the placement system described above,

it also shows the practicality of the ideas proposed. Unlike many other proposed

runtime placement systems, one of the aims of this work is to avoid proposing an

ideal system for an ideal platform, rather, the proposed system is designed for actual

COTS FPGAs. In this implementation, Xilinx 7 series FPGA platforms have been

used, but this is easily extensible to other versions of reconfigurable FPGAs. In

addition, Xilinx Vivdao v15.1 design tool has been used to carry out the experiments,

including timing and resource overhead measurements.

The implementation presented here relates only to the run-time phase of the

placement management system. Details of the design phase of the system is

presented in chapter 4 of this thesis. Also, it has been assumed that placement

requests are generated by a higher application which requires pre-synthesized tasks

to be placed in runtime. A task graph has been used to replace the function of such an

application to enable easy testing of the placement module presented here. In

addition, the routines for delivering clock networks to place tasks, and the means of

maintaining communication with a newly placed task (or a relocated task) are not

discussed here. Efficient clock network delivery routine via the configuration layer

discussed in the next chapter. Task communication is not covered in this thesis.

Details of the communication architecture adopted in this thesis can be found in [26].

This chapter is organized as follows: first, a flow of the runtime phase of the

placement request management is presented. This includes the various stages the

PMS goes through in a bid to service a typical placement request, leading to task

Chapter 7: PMS Implementation and Characterization

135

placement location or task reject. Thereafter, details of the architecture of the

proposed PMS is presented with each component discussed and analyzed. Finally,

the hardware implementation results are discussed and compared with other

placement systems on FPGAs, with a discussion on the balance between the overhead

of the proposed PMS and its features.

7.1 Summary of Runtime Placement Flow

Figure 7.1 presents a summarized flowchart of the runtime placement management

system. An initialization step is required by the placement system. This step is

executed at the beginning of placements when changing the set of tasks which the

placement system manages. The step consists in reserving space for the parameters

of each of the tasks to be managed on a memory by saving the tasks’ parameters on

the Task Memory.

After initialization, the system waits in an idle state for interrupts. Two types are

anticipated in regard to tasks placement on the chip: New Task Placement (NTP) and

Pending Task Placement (PTP). When the former is requested (by a scheduler), the

timing constraints of the request is checked to see if its deadline can be met. The

possible result of this test and their associated decisions are:

i) Insufficient compute time (𝑡𝑒 > 𝑡𝑑) – in this case the task is rejected

immediately.

ii) Sufficient compute time, but insufficient configuration duration (𝑡𝑒 >

𝑡𝑑; 𝑡𝑒 + 𝑡𝑐 < 𝑡𝑑) – the placement system proceeds to check if an already

configured instance can be used to execute the task. The instance could be

idle, or executing another task which would end soon. If an idle instance

exists, it is assigned to the newly arriving task. In the absence of an idle

instance, the arriving task is set to queue if a computing instance is found

which satisfy the condition that: (𝑡𝑟 < 𝑡𝑑 − 𝑡𝑒), where 𝑡𝑟 is the remaining

execution time of the computing instance. If none of these two

possibilities exists, the task is rejected for timing reasons.

Chapter 7: PMS Implementation and Characterization

136

Available

NTP**PTP* Interrupt Type

Start

Initialized?

Yes

No

Assign Instance

Report Success

Idle (wait

Interrupt)

Timing Check

Failure

Reject Task

Idle Instance

Success

Absent

Computing

Instance

New task can

wait?

Available

Absent

Place on Pend

Queue

Scan Chip
Suitable Loc.

Available?
Assign Task Loc

Signal CM to

Start

Yes

Update FPGA

State Matrix

Update Task

State Mem

No

Replaceable

Candidate?

Update FPGA

State Matrix

(temp)
Yes

No

NoYes

*PTP = Pending task Placement

**NTP = New Task Placement

Figure 7.1: Summary of Main Operations of runtime Placement Management System

iii) Sufficient compute time and configuration duration (𝑡𝑒 + 𝑡𝑐 > 𝑡𝑑). In this

case, both of the tests in (ii) are carried out, however if both of these fail,

Chapter 7: PMS Implementation and Characterization

137

instead of rejecting the task, a third option is considered: a scan of the

chip area is done to find a location of the chip where the task’s bitstream

can be configured. Failing to find an unoccupied location on the chip, a

final option of replacing idle instance(s) to accommodate the new task

according to the replacement policy described in chapter 5 of the thesis is

considered. The task is rejected if none of these is successful.

A task can be successfully placed by being assigned to an already configured

instance or by a new location being assigned to it on the chip. In the former case, the

placement system updates only the states of the task in the memory to correctly

designate them as either computing or pending. In the later, an FPGA State Matrix,

which keeps the states of each resource, is also updated to reflect the current state of

the chip. The process of updating the memory of the placement system is done

concurrently with the process of task configuration. Thus, the configuration manager

is signalled to begin writing of the configuration memory as soon as a new location is

found for an arriving task.

7.2 Placement System Architecture

Figure 7.2 shows a block diagram of the architecture of the placement management

system. It consists of 5 main modules and 3 blocks of memory. The modules are:

initialization, reuse, scan, replace and update modules. In addition to these, 3

memory blocks are used to keep track of the state of the tasks and the chip area. They

include: Arriving Tasks Queue (ATQ), FPGA State Matrix and Layout memory

(FSML), and a Task State Buffer (TSB). The details of these modules, from an

implementation perspective, are discussed below.

Chapter 7: PMS Implementation and Characterization

138

Initialization

Module

Reuse

Module

Multiplexer

Arriving

Tasks

Queue

(ATQ)

Task

State

Bram

(TSB)

Scan

Module

Replace

Module

Update

Module

A
T

Q
 M

em
 P

o
rt

 B

T
S

B
 M

em
 P

o
rt

s
A

 &
 B

FPGA

State

Matrix

and

Layout

(FSML)

F
S

M
L

 M
em

P
o

rt
s

A
 &

 B

A
T

Q
 (

B
),

 F
S

M
L

(A
,

B
)

Initialize

Request

Init Bram ATQ Mem Port A

Ready

Done

Placement Dec

and Location

Error Report

Enable

A
T

Q
 (

B
),

 T
S

B

(A
,

B
)

A
T

Q
 (

B
),

F
S

M
L

 (
A

,
B

)

F
S

M
L

 (
A

,
B

)

F
S

M
L

 (
A

,
B

),
 T

S
B

 (
A

,
B

)

Top Module

Task Adrr

Task Deadline

Figure 7.2: Block Diagram of the Placement Management System

7.2.1 Initialization Module:

The architecture of this module consists of a simple state machine which reads the

content of the constituent tasks in an init buffer (IB) and uses the information to

reserve space and initialize the parameters of the tasks in the TSB. Prior to the

assertion of the ‘Initialize’ signal, the 𝐼𝐵 must contain all the essential parameters of

all potentials tasks.

The parameters of a task in this case study implementation include a set of area

related information: Length, 𝑙, Width, 𝑤, and a start column on an intended

heterogeneous chip, 𝑅𝑠𝐼𝑑, such that the next (𝑙 − 1) contiguous columns to the right

of 𝑅𝑠𝐼𝑑 is a matching position for the task on an intended heterogeneous chip. These

are distributed in the 𝐼𝐵 as shown in Figure 7.3 (a). In addition, a set of time-related

information: configuration time (𝑡𝑐) and execution time (𝑡𝑒) are also stored in the 𝐼𝐵

as shown in Figure 7.3 (b). A task is stored in the 𝐼𝐵 using two 33-bit words with the

first (Word A) containing the area related information and the second (Word B) for

time related information. Some of the bits in the 𝐼𝐵 are reserved (𝑅) as the memory

Chapter 7: PMS Implementation and Characterization

139

has been configured to be compatible with other memory blocks in the system for

ease of data exchange. The first address of the buffer contains the number of tasks

(𝑁) to be managed by the system.

 [32:20] [19:17] [16:9] [8:1] [0]

Word A 𝑅 𝑤 𝑙 𝑅𝑠𝐼𝑑 𝑅

(a)

 [32:17] [16:6] [5:0]

Word B 𝑡𝑐 𝑡𝑒 𝑅

(b)

Figure 7.3: Data Distribution in Init Buffer of Placement System

During the initialization process, the 𝐹𝑆𝑀𝐿 which holds a matrix corresponding to

the resources on the chip, is initialized to ‘0’ with the exception of damaged

resources which are marked-off with a ‘1’ at their location. The 𝐹𝑆𝑀𝐿 Memory is

configured as 32-bit wide, with its useable depth dependent on the size of the chip.

For example, the content of the section of the state matrix in the 𝐹𝑆𝑀𝐿 buffer for a

Xilinx xc7z100ffg900-2 chip is shown in Figure 7.4. The device consists of 134

columns of dynamically reconfigurable resources organised in 7 rows as shown in

the figure. It is worth noting that the portion of the memory between the end of the

134th columns of a row and beginning of the 1st column of the next row is marked

off permanently as not available as shown.

Chapter 7: PMS Implementation and Characterization

140

Address 32-bit Word (0x)

000 00000000

001 00000000

⋮ ⋮

004 FFFFFFC0

005 00000000

006 00000000

⋮ ⋮

009 FFFFFFC0

⋮

030 00000000

031 00000000

⋮ ⋮

034 FFFFFFC0

Figure 7.4: Example of Initialized State Matrix in the 𝐹𝑆𝑀𝐿 Buffer for a Xilinx

xc7z100ffg900-2 FPGA

The 𝑇𝑆𝐵 is also initialized. The memory, organised as 33-bit wide similar to the 𝐼𝐵,

is divided into 3 sections. The first holds parameters of idle instances, the second

those of computing instances and the third contains pending tasks, waiting on

computing instances. The idle instance section is designed to contain information

relating to:

1. the physical location of the instance on the chip, expressed as start column

and row (𝑥, 𝑦)

2. area properties of the instance, including the width (𝑤), length (𝑙) and the

start column of first matching location on the chip (𝑅𝑠𝐼𝑑)

3. configuration time of the task

4. number of times the instance has been reuse since its latest configuration on

the chip

Resources state for 𝑅𝑜𝑤 0

of device (134 columns)

Resources state for

𝑅𝑜𝑤 1 of device

Resources state for

𝑅𝑜𝑤 6 of device

Chapter 7: PMS Implementation and Characterization

141

The first 2 of the information are contained in the first word (Word A) of each

instance, with the bits distributed similar to that in of the 𝐼𝐵, but with the exception

that the reserved fields (𝑅) are now allocated for the desired content. Bits [32:25] are

designated to store the horizontal location information (𝑥) of the instance, bits

[24:22] store the vertical location information (𝑦), bits [21:20] of Word A is reserved

(𝑅) for idle instance, while bit [0] (valid bit, 𝑣) is monitored to ascertain if the

instance is idle (value ‘1’) or not (value ‘0’). The last 2 information saved for an idle

instance (i.e. 3 and 4 in the list above) is contained in the second word (Word B) of

the instance, with its upper 16 bits [32:17] used to save the configuration time and

lower 16 bits [15:0] containing the number of instance reuse, 𝑁𝑟. Bit [16] is reserved.

 During the initialization stage, bit [0] of Word A is set to ‘0’ for all tasks as

placement is yet to commence, bits [19:1] of Word A are copied from corresponding

bits in the 𝐼𝐵, bits [21:20] are not used since they are reserved, hence they are each

set to ‘0’, bits [24:22] and [32:25] (location 𝑥 and 𝑦 respectively) are set to a value

equivalent to an invalid location on the chip. For example, for the xc7z100ffg900-2

FPGA, they are set to all ‘1’s. In runtime, when a task finishes, and their instance is

marked as idle, 𝑣 is set to ‘1’, and the location of the instance is updated to instance’s

current location. For word B, bits [32:17] are copied from corresponding bits in the

𝐼𝐵 while bits [15:0] which correspond to number of reuse are all set to ‘0’. Figure 7.5

shows the distribution and initialization values a typical idle instance section of 𝑇𝑆𝐵.

The computing instance section of the 𝑇𝑆𝐵 contains 5 words (Words A – E) per task.

Like the idle instance section, Word A of the computing task section contains the

information about the current location of the instance on the chip (𝑥, 𝑦) as well as the

area properties of the instance (𝑙, 𝑤 and 𝑅𝑠𝐼𝑑) while its 𝑙𝑠𝑏 indicates the state of the

task (currently computing or not). However, bit [20] is used to indicate whether

another task is waiting on the currently computing instance or not. This bit is set (‘1’)

if a task in a pending state is waiting to use the same instance, otherwise its value

remains ‘0’. The entire bits in the second word (B) for an instance in this section

contain the start time of the task currently computing on it.

Chapter 7: PMS Implementation and Characterization

142

 [32:25] [24:22] [21:20] [19:17] [16:9] [8:1] [0]

Word A 𝑥 𝑦 𝑅 𝑤 𝑙 𝑅𝑠𝐼𝑑 𝑣

(a)

 [32:17] [16] [15:0]

Word B 𝑡𝑐 𝑅 𝑁𝑟

(b)

Figure 7.5: Data Distribution and Initialization Value of an Idle Instance

Word C store the configuration and execution duration of the task, similar to Word B

of the 𝐼𝐵, with the exception that bits [5:0] which are reserved in the 𝐼𝐵 are used to

keep the unique 𝐼𝐷 of the task computing on the instance. Word D contains the

deadline information of the task and Word E contains the total execution duration of

all tasks waiting on the instance. During the initialization process, Word A is set to

the same bits as word A of the idle instance section of the TSB, word C is copied

from the 𝐼𝐵, while all bits in Words B, D and E are set to ‘0’.

The pending task section of the 𝑇𝑆𝐵 uses three 33-bit words per task to save the state

of a task waiting to use a configured instance which is busy. The bits in the first word

are distributed exactly like Word A of the idle instance section. Similarly, the bits

distribution in the second and third words are the same as the Word C and Word D of

the computing task section respectively and are initialized to the same values.

Set to ‘1’s at

initialization Set to ‘0’s
Set to same value

as init buffer
Set to ‘0’

Set to same value

as init buffer

Set to ‘0’

Set to ‘0’s

Chapter 7: PMS Implementation and Characterization

143

7.2.2 Reuse Module

The reuse module aims to reduce the number of configurations carried out during

runtime placement of tasks on a chip. As explained in chapter 5, reconfiguration

overhead constituent a bottleneck that need to be addressed when FPGAs are used

for runtime applications. Task reuse is a technique used to reduce the amount of

reconfiguration needed for runtime applications and thus make the single

configuration access port more available to other duties as such as soft error

mitigation [22].

Before new tasks are configured on the chip, the reuse module checks to see if any

configured instance is suitable to execute the requested task. As shown in Figure 7.1,

this module checks a list of idle instances and the computing instances. In order to

avoid a greedy search of the entire list of idle and computing instances, a memory

reservation technique is adopted where the 𝑙𝑠𝑏 of the word A of the idle instance and

computing instance are checked to see if the idle or computing. To do this, request

for task placement is done by the scheduler using an address of tasks in the ATQ.

The reuse module decodes the address and requests the states of instances in the idle

and computing instance sections of the 𝑇𝑆𝐵. This check takes 3 clock cycles, with

the first being used to set address to the 𝑇𝑆𝐵 and 2 clock cycles needed to read the

content of the memory. 𝑇𝑆𝐵 is configured as a true dual port memory [95], thus the

states of both the matching idle and computing instance are checked simultaneously.

7.2.3 Scan Module:

The scan module looks for a matching physical location for a task on the chip. This

module is enabled only after the reuse module reports an absence of an idle instance

that can immediately execute the task and there is either no matching computing

tasks or the timing constraints of the placement request is such that the task cannot

wait for a computing instance to become free.

Chapter 7: PMS Implementation and Characterization

144

When a task placement request is received, a suitable location is found for the task

on the chip. This is done by first scanning the chip (with the scan module) to

determine the availability of matching positions, which is a subset of the total

number of possible locations. To do this, an up-to-date state of the chip is maintained

in a buffer called Chip State as a 2D matrix, M. Each element, 𝑀(𝑥 ,𝑦)in the matrix

corresponds to a unit of resource located at the horizontal distance 𝑥 and a vertical

distance 𝑦 from the top left corner of the chip. For instance, M(0, 0) refer to the

resource in the first row of the first column. The value at each of these positions

indicate whether the resource is available (value ‘0’) or not (value ‘1’). Both

resources temporary occupied by a task or permanently damaged have same value of

1, but a record of permanently damaged resources are maintained differently.

For a chip scan operation, the Chip State is read and compared with the resource

requirements of the task to be placed. The parameter 𝑅𝑠𝐼𝑑 is used as the start

position of the first scan. The scan begins by checking the state of the resource at the

position corresponding to the horizontal position of the first row (i.e. 𝑀(𝑅𝑠𝐼𝑑, 0)) and

progresses by checking other elements to the right of 𝑅𝑠𝐼𝑑 until the length

requirement 𝑙 of the task is satisfied. (i.e. 𝑀(𝑅𝑠𝐼𝑑+1, 0), 𝑀(𝑅𝑠𝐼𝑑+2, 0)…

𝑀(𝑅𝑠𝐼𝑑+(𝑙−1), 0)). Thereafter, the vertical term, 𝑦 is incremented (with 𝑥 reinitialised

to 𝑅𝑠𝐼𝑑) until the width requirement 𝑤 of the task is satisfied. At every stage in the

comparison, if any value of the matrix term is ‘1’, the search is aborted, the values of

𝑙 and 𝑤 reinitialised and the scan restarted using the next row. This is repeated for

each encounter of ‘1’ until all vertical locations corresponding to the current 𝑅𝑠𝐼𝑑

are scanned. Next, a new horizontal scan location is determined by computing 𝑅𝑠𝐼𝑑𝑠

for the task.

New 𝑅𝑠𝐼𝑑𝑠 for a task can be computed first by constructing the layout of the task

using its original 𝑅𝑠𝐼𝑑 and 𝑙. This is compared with the static layout of the first row

of the chip until a matching layout is found. This process can often be time

consuming. Since this is done in runtime, it is necessary to optimize the process for

speedy determination of placement locations. Two approaches are considered

depending on the application requirements. The first is an extension of the technique

Chapter 7: PMS Implementation and Characterization

145

proposed in [73] which is to search for matching locations using the heterogeneous

resources which has the least number of occurrence in the task’s layout. Searches are

made using locations of heterogeneous resources (mostly BRAMs and DSPs) first,

before checking the location of the more abundant homogenous resources (CLBs).

However, they assumed that the heterogeneous resources are regularly spaced on the

chip which is not the case for COTS FPGAs. Nevertheless, the technique can be

extended to chips with irregularly-spaced heterogeneous resources as well. To do

this, the location of the heterogeneous resources in a task’s layout are checked

against the known location of corresponding heterogeneous resource on the chip.

This is illustrated as follows: for the STAT task in Table 4.2 on a Xilinx

xc7z100ffg900-2 chip. The task has 𝑙 = 6, 𝑤 = 1, and a possible matching of

location of the task has 𝑅𝑠𝐼𝑑 = 4 and resource layout of 𝐵𝑅𝐴𝑀 − 𝐶𝐿𝐵 − 𝐶𝐿𝐵 −

𝐷𝑆𝑃 − 𝐶𝐿𝐵 − 𝐶𝐿𝐵. The chip layout consists of 12 BRAM columns (located in

columns (4, 15, 20, 32, 43, 57, 77, 94, 108, 115, 121,128) of the device. The search

for a new 𝑅𝑠𝐼𝑑 begins from the BRAM location on the chip next to the previous

𝑅𝑠𝐼𝑑 location. This is illustrated in Figure 7.6. In this case, the search for a new start

location (𝑅𝑠𝐼𝑑1) begins from column 15 of the device, then successively checking if

column 16, 17 … matches the layout of the task. If a matching location does not

result from the search, then the search restarts from the next BRAM column of the

device which is column 20 (𝑅𝑠𝐼𝑑2). In this example, a matching location would be

found for with a start scan from 𝑅𝑠𝐼𝑑2.

Figure 7.6: Start Scan Locations to Accelerate Resource Scanning

 𝑅𝑠𝐼𝑑0 𝑅𝑠𝐼𝑑1 𝑅𝑠𝐼𝑑2

Chapter 7: PMS Implementation and Characterization

146

The location of the heterogeneous resource used as a start column does not

necessarily have to be the first column of the task. In cases where the heterogeneous

resource is located at the kth location in the task’s resource layout, the chip is scanned

first in the forward direction by 𝑙 − 𝑘 locations beginning from the heterogeneous

resource before scanning 𝑘 locations to the 𝑙𝑒𝑓𝑡 of the heterogenous resource

location. A speed up of approximately 11 times is obtained by beginning search from

the locations of BRAMs and 9 times by beginning search from DSPs on the

xc7z100ffg900-2 chip compared to linearly searching all columns on the chip.

Another means of speeding-up finding potential placement locations is to

precompute all possible 𝑅𝑠𝐼𝑑s for the task on the chip at design time and store these

in addition to the task parameters described in section 4.1. This simplifies the

runtime phase to reading the potential locations from memory and scanning the chip

to determine if all the columns in the location are available or not. The main

disadvantage of this over runtime computation of 𝑅𝑠𝐼𝑑𝑠 is its increased memory

overhead. However, it is a good choice for applications which require faster runtime

placement where the required memory overhead is not a constraint.

An important aspect for the scan module is being able to quickly find an optimal

location for the task on the chip if it exists. It is worth noting that the reuse module

has a constant execution time, due to the memory reservation technique. However,

the scan duration of the module depends on the task properties and the state of the

chip at the time of scan, and therefore varies for each operation. Hence, it is

important to minimize the worst-case scan time of this module. To achieve this, a

method similar to that proposed in [6] was adopted where possible horizontal start

locations, 𝑅𝑠𝐼𝑑𝑖
′, of tasks on the chip are stored along with the task parameters.

These are read into the 𝑇𝑆𝐵 during the initialization process. In addition, for each

𝑅𝑠𝐼𝑑, scans are conductor vertically first as each row on our target device have the

same repeated pattern in all rows.

The worst-case timing requirement for a scan depends on three factors:

i) the number of 𝑅𝑠𝐼𝑑′ available for the task on the chip,

Chapter 7: PMS Implementation and Characterization

147

ii) the length, 𝑙, and width, 𝑤, of the task

iii) amount of time required to compute the fragmentation of a potential

location.

Table 7.1 shows the number of clock cycles required for the constituent operations of

the scan module. As shown, a total of 6 clock cycles are required to read a word from

the 𝐹𝑆𝑀𝐿 and determine if the corresponding location of the chip is available or not.

In addition to those shown, two additional clock cycles are required at the beginning

of the scan operation (used to compute initial read address to the 𝐹𝑆𝑀𝐿 memory). An

additional clock cycle is also required to assign a location to the PMS port. These are

incurred once and hence have been omitted from the table since the analysis will first

focus on recurrent operations. They would be added at the final stage.

For a task with length, 𝑙 and width, 𝑤 the total number of clock cycles require to scan

an area 𝑡𝑠𝑐𝑎𝑛 equivalent to the task is given by the expression in 7.1. The ceiling

operation in 7.1 represents the number of times the 𝐹𝑆𝑀𝐿 is read to cover the length

of the task when the memory is configured as 32-bit. For example, a task with 𝑙 = 32

and 𝑅𝑠𝐼𝑑 = 2, 𝐹𝑆𝑀𝐿 would be read twice per row per scan. Since scan are done

vertically first, the worst-case scan duration (𝑡𝑤𝑐 𝑠𝑐𝑎𝑛) for each 𝑅𝑠𝐼𝑑 is given by

equation 7.2, where 𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 is the number of rows in the device.

Table 7.1: Clock Cycles Required for Constituent Operations of Scan Module

Operation Duration Clock cycles)

Read State (32-bit word) 1

Align word to task 2

Check availability 1

Task width check 1

Task length check 1

Total 6

Chapter 7: PMS Implementation and Characterization

148

𝑡𝑠𝑐𝑎𝑛 = 6𝑤 ∗ ⌈
𝑙 + ⌈

𝑅𝑠𝐼𝑑
32 ⌉

32
⌉ (7.1)

𝑡𝑤𝑐 𝑠𝑐𝑎𝑛 = (𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 − (𝑤 − 1))𝑡𝑠𝑐𝑎𝑛 (7.2)

It is worth noting that since the proposed placement module aims to minimize

fragmentation of the chip area, a fragmentation coefficient (𝐹𝐶) is computed for each

successful scan before proceeding to the next. The details of how 𝐹𝐶 is computed is

shown in chapter 5 section 5.1.1. Hence, the overall worst-case scan duration for the

scan module is shown in equation 7.3, where the 𝑡𝑓𝑐 is the duration required to

compute the fragmentation co-efficient of a potential location and 𝑁𝑅𝑠𝐼𝑑′ is the

number of possible horizontal start locations for the task. Two additional clock

cycles are incurred to retrieve subsequent 𝑅𝑠𝐼𝑑′𝑠. Equation 7.4 is an estimation of

the worst-case overhead for computing the fragmentation coefficient for each

location. As shown by equations 5.1 and 5.2, the computation is a function of the

dimension of the chip and the task size. Three fixed clock cycles are incurred: 2 at

the beginning of reading the 𝐹𝑆𝑀𝐿 content and an additional clock cycle for

computing 𝐹𝐶.

𝑇𝑤𝑐 𝑠𝑐𝑎𝑛 = (𝑡𝑤𝑐 𝑠𝑐𝑎𝑛 + 𝑡𝑓𝑐 + 2)𝑁𝑅𝑠𝐼𝑑′ (7.3)

𝑡𝑓𝑐 =
1

2
((𝑁𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑙)𝑙 + (𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 − 𝑤)𝑤 + 3) (7.4)

7.2.4 Replace Module

In the event that none of the instances present on chip can be used to execute the

requested task and a vacant location cannot be found in the current state of the chip,

the 𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑀𝑜𝑑𝑢𝑙𝑒 is activated to select idle instance(s) to be deallocated from the

Chapter 7: PMS Implementation and Characterization

149

chip area to accommodate new placement requests. It uses FAReP, a fragmentation

aware replacement policy [23] to select a candidate instance to be replaced. To

minimize the total amount of configuration required by an application as well

enhance a better area utilization in the process, this module uses three main factors to

decide a candidate for eviction:

- The configuration duration of an instance (instance with large configuration

duration are more likely to be preserved)

- The frequency of instance reuse (more frequently used instances are more

likely to be preserved)

- The fragmentation coefficient of an instance (instances whose location are

such that they contribute lower 𝐹𝐶 to the chip are more likely to be

preserved).

This module sorts idle instances (potential candidates for replacement) using the

above factors. The sorting process is done concurrently with the scanning of the chip.

The sorting duration is proportional to the number of idle instances on the chip, as

well as the number of duplicates. The worst-case duration for the sorting process

(𝑡𝑤𝑐 𝑠𝑜𝑟𝑡) is given by equation 7.5 where 𝑁𝑖𝑑𝑙𝑒 is the number of potential candidates

for replacement.

𝑡𝑤𝑐 𝑠𝑜𝑟𝑡 = 2 + 2𝑁𝑖𝑑𝑙𝑒(𝑁𝑖𝑑𝑙𝑒 − 1) (7.5)

The replace module sends out one victim per time from the sorted list until the new

task can be placed or all candidates have been tested.

7.2.5 Update Module

After each placement (or deallocation) operation, the update module updates the 𝑇𝑆𝐵

and the 𝐹𝑆𝑀𝐿. In addition, it uses interrupts from a computing task which has

finished to update the 𝑇𝑆𝐵. In the case when a computing task which is waited upon

Chapter 7: PMS Implementation and Characterization

150

finishes, a PTP interrupt (shown in Figure 7.1) is generated for the PMS. There are

seven scenarios involving the update manager and Table 7.2 gives a summary of the

operations and the duration required to update the memories.

Table 7.2: Summary of Operations and Time Overhead for Update Module

 Placement

Outcome

Memory Duration

(Clock

Cycles)

Operations/Remark

1 New Task

on Idle

Instance

𝑇𝑆𝐵 8 Set 𝑙𝑠𝑏 of idle instance (to ‘0’), increase

number of reuse of idle instance, Set 𝑙𝑠𝑏

of computing instance (to ‘1’), update

timing parameter of computing instance

2 New Task

on Pending

List

𝑇𝑆𝐵 5 Write task to corresponding address on

pending task section of 𝑇𝑆𝐵, mark

computing task as waited upon, increase

duration of tasks waiting on instance

3 New Task

on New

Location

𝑇𝑆𝐵,
 𝐹𝑆𝑀𝐿

7 + 8 ∗ 𝑤 Set 𝑙𝑠𝑏 of computing instance (to ‘1’),

update location and timing parameters of

computing instance, mark corresponding

location of new task in 𝐹𝑆𝑀𝐿 as

unavailable

4 Idle Instance

Replaced
𝑇𝑆𝐵,

 𝐹𝑆𝑀𝐿

10 + 8
∗ 𝑤

Set 𝑙𝑠𝑏 of idle instance (to ‘0’), reset

location and number of reuse of idle

instance, update location and timing

parameters of computing instance, mark

corresponding location of new task in

𝐹𝑆𝑀𝐿 as unavailable

5 New Task

Rejected
- - -

6 Pending

Task on Idle

Instance

𝑇𝑆𝐵 11 Same as 1

7.3 Hardware Implementation Results

The component modules described above were implemented for Xilinx’s

xc7z100ffg900-2 FPGA using Vivado 15.2. VHDL was used to code the routines in

order to maximize the performance of the placement system tapping into the

Chapter 7: PMS Implementation and Characterization

151

parallelism offered by the hardware platform while sacrificing some of the chip

resources. In this section, the implementation results are discussed.

7.3.1 Interface Signals

The case-study implementation of the placement management system has 5 main

inputs and 4 outputs. Figure 7.7 shows the prescribed order for the assertion of the

signals in order to perform operations using the system. As shown, the ‘Initialize’

signal which is used to control the set-up of the various memories of the system is

asserted for one clock cycle to trigger a one-time initialization process, which is only

needed when new set of applications begin to execute, or a complete system reset is

necessary, say, after power-down. After pulsing the ‘Initialize’ signal, the user is

required to wait for the system to finish initialization which is indicated by ‘Ready’

going high. Table 7.3 shows the main interface signals’ properties as well as possible

values for this example implementation.

The ‘Request Type’ signal dictates the operations the placement system will perform.

Its value must be set before asserting the ‘Initialize’ or ‘Enable’ signals. Except

when set to a value of “Initialization”, where it must be held at that value for a

minimum of one clock cycle, the ‘Request Type’ must be held at its value after the

assertion of ‘Enable’ until the going high of the output signal ‘Done’. This constraint

is also true for ‘Task Address’ and ‘Task Deadline’ as well. ‘Task Address’ and ‘Task

Deadline’ are respectively used to state the location of the task parameters in ATQ

and the deadline of the task. The values shown in the figure are random values

chosen for illustrative purposes only. Enable is pulsed for each operation after setting

all the other input values.

New placement requests are queued until ‘Ready’ and ‘Done’ are both high. ‘Done’

goes high once a placement decision and location have been obtained. Task

configuration can begin after that, while the placement system updates its memories.

‘Ready’ goes high after all memory updates are completed and the system is ready to

accept new placement request. It is worth noting that the ‘Update Status’ signal is an

internal signal and is shown in figure 7.7 for clarity purposes only.

Chapter 7: PMS Implementation and Characterization

152

F
ig

u
re

 7
.7

:
E

x
am

p
le

 W
av

ef
o
rm

 f
o
r

P
la

ce
m

en
t

S
y
st

em
 I

n
te

rf
ac

e
S

ig
n
al

s

Chapter 7: PMS Implementation and Characterization

153

Table 7.3: Interface Signal Properties of PMS

Signal Direction Width Remark

Initialize In 1 —

Request Type In 2 “00” – No operation

“01” – PTP

“10” – NTP

“11” – Initialization

Enable In 1 —

Task Address In 9 —

Task Deadline In 33 —

Ready Out 1 —

Place Dec &

Loc

Out 20 [19:16] – Placement decision:

“0xF” – invalid;

“0x2” – New Task Assigned to idle

Instance;

“0x3” – Pending Task Placed on idle

instance;

“0x4” – New Task Placed on Pending List

“0x5” - New Location for new Task

“0x6” – Idle instance replaced for new task

“0x7” - New task Rejected (timing issues)

“0x9” – New task Rejected (no area)

[15:0] – Location of task (if successful

placement)

7.3.2 Resource Utilization

As a potential core component of an ROS, the proposed placement management

system has been implemented to support a variety of features. Not all these features

are necessarily required by all ROS. Thus, the system has been designed to support

easy removal of features not needed to reduce its resource utilization as desired.

Table 7.4 shows the resource utilization of the different components in the full

implementation of the proposed PMS. The full PMS utilizes 2155 FFs and 2818

LUTs in addition to 4 BRAMs on the 7 series FPGA. This represent only about

Chapter 7: PMS Implementation and Characterization

154

5.18%, 11.55% and 5.33% respectively of the total FFs, LUTs and BRAMs present in

the smallest 7 series device (xc7a35t). On the largest device in the series (xc7v2000t),

these represent 0.09%, 0.23% and 0.31% respectively of the total resources present.

An additional DSP is used in the top module due to address computation. These

figures represent the resource overhead when the full features of the PMS are desired

in an ROS. Hence, the resource overhead is lower in other scenarios. For example,

when an ROS does not support task reuse, the Reuse and Replace modules could be

stripped from the PMS reducing its resource overhead by 293 FF and 606 LUTs and 1

BRAM. In addition, the section of the update module’s resources dedicated to

updating the 𝑇𝑆𝐵 as well as the 𝑇𝑆𝐵 memory could be stripped off, including some

resource savings from the initialization module. This leaves a resource utilization of

the version without task reuse at 615 FF, 776 LUTs and 1 BRAM. The equivalent

number of slices on the 7 series is 198.

Table 7.4: Resource Utilisation of PMS on a 7 Series FPGA

Component module Flip Flop LUT BRAM DSP

Initialization and Top 1258 614 3 1

Reuse 69 196 0 0

Scan 274 570 0 0

Replace 224 410 1 0

Update 330 1028 0 0

Total 2155 2818 4 1

Figure 7.8 shows the floorplan of an implementation of the proposed PMS (with

other associated circuits) with a case study application on the xc7z100ffg900-2 chip.

The chip area is divided into a static region and a reconfigurable region. The static

region contains the core PMS, a configuration manager and a mechanism of

Chapter 7: PMS Implementation and Characterization

155

transferring configuration data from an off-chip memory (DDR Memory) to the

CMEM which was implemented using the Xilinx’s Direct Memory Access (DMA)

IP. The DMA engine have a resource overhead of 1020 Flip Flops and 918 LUTs.

These are included in a static region shown in the figure. The top 3 rows (row 0 to 2,

with a read border in figure 5) of the chip is reserved for the static region due to the

large IO requirement of the DMA engine. The other rows (row 3 to 6) is reserved as

reconfigurable region and is shown hosting the data processing tasks of the NASA

JPL spectrometer application The details of the application can be found in [105] and

[121]. The tasks have been shown in their initial placement location on the chip with

empty area for relocation in the case of permanent faults.

Figure 7.8:Floorplan of PMS, Configuration Controller, DMA Engine and A Case

Study FTS Application

Chapter 7: PMS Implementation and Characterization

156

7.4 Comparison with Another Placement Management

Module

Compared with existing solution, the PMS described above has a fair resource

overhead considering the features supported by the PMS. The implementation results

of the proposed PMS is compared with that of the R3TOS allocator in [63] which is

also aimed at a non-slotted based ROS as well as being targeted for practical

implementation on a COTS FPGA. Table 7.5 shows a comparison in terms of the

supported features, the timing overhead and the hardware resource utilization of the

two implementations. As shown, the R3TOS allocator does not include a task reuse

strategy which can lead to significant configuration overhead in runtime applications.

Configuration overhead also lead to a higher occupancy of the configuration interface,

keeping it away from critical duties such as soft error mitigation. In addition, the

proposed PMS has a faster placement time than the R3TOS allocator. The worst-case

placement time for the R3TOS allocator was reported as 300 µs at 100 MHz for an

FPGA consisting of 15 columns and 12 rows. This includes a 200 µs duration used to

update the MER information on the chip (which the authors refer to as empty area

descriptor updating). For the same FPGA size at the same frequency, the proposed

PMS has a worst-case placement duration of less than 50% of that of R3TOS

allocator. With a faster placement time, the proposed PMS is potentially able to react

to permanent fault on the chip at least 2x faster than the R3TOS allocator, thus

reducing system down-time in the case of fault occurrence.

Table 7.5: Comparison of Features and Overheads of PMS with Similar Schemes

Placement

Scheme

Feature Worst-case

Placement

Time

(Clock

Cycles)

Resource

Utilisation

 Heterogenous

FPGA Support

Task

Reuse

Slices BRAM

R3TOS

Allocator [63]

YES NO 30,000 459+ 4

PMS YES YES 14,868 198 1

+ Virtex 4 FPGAs have 4 input LUTs while 7 series used for PMS implementation have 6 input LUTs

Chapter 7: PMS Implementation and Characterization

157

The resource utilization of the two implementations were also compared. The R3TOS

allocator has an overhead of 459 slices and 4 BRAMs. For the proposed PMS, the

resource overhead are 198 slices and 1 BRAM without considering the reuse

functionalities. The resource overhead of the reuse functionality was stripped before

comparison as the R3TOS allocator does not include reuse. However, it is important

to note that R3TOS allocator utilization was reported for a Virtex 4 FPGA which has

two 4 input LUTs in a slice while 7 series used for PMS implementation have four 6

input LUTs in a slice. It follows that the number of LUTs come to approximately 918

4 input LUTs for R3TOS allocator, while 776 6-LUTs were used for the proposed

PMS.

7.5 Chapter Conclusion

An implementation of the proposed runtime PMS was presented in this chapter. The

aim of the chapter is to show the practicability of the techniques proposed in the

thesis on COTS FPGA. The performance of the proposed PMS with respect to

resource and timing overhead was also presented. To achieve a close connection

between the PMS and other components of an ROS, part of the FPGA resources is

sacrificed for the implementation of the PMS. A summary of the flow chart of PMS

was presented and then detailed architecture of the proposed PMS system was

discussed and analyzed providing low level implementation steps adopted in the

prototype. A comparison of the hardware implementation result was also made with

a similar runtime placement system. The results show that the proposed PMS is

capable making placement decisions at least twice as fast as comparable systems,

while having comparable resource utilization. It addition, it has additional features

not present in the comparable system.

In the next chapter, a technique of routing clock networks to hardware tasks in

runtime via the configuration layer is presented. The major control bits in the

configuration layer that can be edited to route clock signals are identified, and a

proposal of how the routing can be achieved in runtime is described. This is achieved

Chapter 7: PMS Implementation and Characterization

158

without jeopardizing the reliability of an application. Hence, the chapter also presents

a means of avoiding the loss of reliability by an efficient means of re-computing

Frame ECCs after editing configuration bits. This helps an application to retain its

capacity to benefit from soft error mitigation techniques.

159

Chapter 8: Towards a Reliability-Aware

Efficient Clock Routing for

Reconfigurable Computing

In this chapter, a runtime mechanism of clock delivery to tasks in runtime after

placement on the chip is presented. When the locations of tasks are changed in

runtime, the question of how clock nets can be delivered to the tasks reliably arise.

As a step towards addressing this challenge, the proposed approach in this chapter is

based on manipulating essential bits in the bitstream of an application in runtime.

This involves identifying key control bits in the bitstream of the FPGA and

controlling them in runtime.

The process of runtime editing of configuration bitstream is one which need to be

done with care. First, the exact bits required to route a clock signal must be discerned

to avoid editing wrong bits which can constitute a major damage to both the

application and the device. As the locations of these bits are not provided by Xilinx,

careful reverse engineering experiments are required.

In addition, the process of editing the content of the configuration memory of an

SRAM FPGA in runtime can lead to a major reliability risk for critical applications.

This is because the configuration memory itself is affected by soft errors in the form

of unwanted bit flips due to causes such as ionizing radiation. Unwanted bit flips in

the configuration memory are monitored and corrected in critical applications using

SEM techniques. These techniques use information stored as part of the bitstream

generation process (called Frame ECC) to check if any bits have flipped. This

correction mechanism cannot differentiate between intentional bit edits and soft

errors. Hence, this chapter also present an efficient implementation of a runtime

Frame ECC re-computation controller that enables soft errors to be tracked in

designs where bitstream editing is used. The Xilinx 7 series FPGA is used as the

target architecture in this chapter.

 Chapter 8: Reliability-Aware Runtime Clock Routing

160

8.1 Efficient Runtime Clock Delivery

Figure 8.1 gives an illustration of the proposed clock routing process. In (a) the chip

area is shown with the task yet to be configured. Sections of two clock regions have

been shown containing buffers, clock nets and PIPs and the potential paths to

synchronous elements. Each synchronous element on the chip can be routed to the

clock source by enabling the PIPs in its path. For example, to deliver clock net to the

CLB in the top left corner of the chip, PIPs 𝑚0, 𝑡0 and 𝑖0 as well as BUF 0 must be

enabled.

(a) FPGA Area before Task Placement

t0 t1 t2

b0 b1 b2

i0 i1

i2 i3

i99

BUF 0

BUF 1

Clock
Source

m0

m1

m3

m2

Synchronous
element

Clock Buffer

Clock Net

PIP

161

(b) Task Configured on Chip (c) Clock Net Completely Routed

Figure 8.1: Runtime Clock Routing Process

t0 t1 t2

b0 b1 b2

i0 i1

i2 i3

i99

BUF 0

BUF 1

Clock
Source

m0

m1

m3

m2

t0 t1 t2

b0 b1 b2

i0 i1

i2 i3

i99

BUF 0

BUF 1

Clock
Source

m0

m1

m3

m2

 Chapter 8: Reliability-Aware Runtime Clock Routing

162

A single clock buffer has been shown for each clock region. Also, a single clock net

path is shown for each column and synchronous element. This is for illustration

purpose only, the actual number/arrangement of clock buffers and nets in the 7 series

was discussed in section 2.3.1, and a more detailed illustration shown in Figure 2.5.

More details are also given later in this chapter. In addition, the routing of PIPs and

nets within the processing elements (all represented with CLBs) have been omitted

for simplicity.

In Figure 8.1 (b), a task is shown configured on the chip, but the clock nets are yet to

be completely routed to it. The task occupies 4 columns on the chip area within one

row. During the design-time synthesis and implementation of the task, clock nets are

routed to all used synchronous elements automatically. However, to make it possible

for different clock buffers and nets to be routable to tasks, as well as to ease task

relocation, the PIPs in the HROW (e.g. 𝑡0 and 𝑏0) are cleared in the task’s partial

bitstream at design time so that the desired buffers and nets can be routed to the task

in runtime. Hence, after the task configuration shown, PIPs 𝑖0 − 𝑖99 are already

enabled as required while 𝑡0, 𝑡1, 𝑏0 and 𝑏1 are disabled. Finally, Figure 8.1 (c) shows

the clock net completely routed. The PIPs 𝑡0, 𝑡1, 𝑏1 and 𝑏2 are enabled to completely

route the clock net to the task in runtime after its placement. The clock buffer (BUF

0) is also enabled at this stage. As shown in Figure 8.1 (a) PIPs 𝑚0 − 𝑚3 are enabled

during the design phase of the application as they are in the static part.

As stated in chapter 2, the major clocking resources present in a clock region of a 7

series FPGA consists mainly of clock buffers, clock nets and PIPs. The arrangement

and types of clock buffers, nets and PIPs in FPGAs provides a unique opportunity to

address the challenge of clocking management in reconfigurable computing. It is

possible to switch from one network to another on the fly, or even route new nets

completely to a reconfigurable module. When a task’s location is changed in

runtime, it is challenging to deliver and maintain clock signals in an efficient way to

applications. Three important challenges that need to be addressed include:

 Chapter 8: Reliability-Aware Runtime Clock Routing

163

i) Ensuring that the right clock frequency is delivered to a task in runtime.

This is important as different tasks allocated to the same clock region

might require different operating clock frequencies

ii) Actual (re)routing of the clock signals to tasks. This might be done

through the configuration layer by changing the states of the bits which

control PIPs on clock routes to a task. These bits need to be identified by

reverse engineering experiments as their locations are not disclosed by

manufacturers.

iii) Power saving considerations. Given that clock buffer primitives must be

in a static part of the design ready to be connected to tasks [62], adequate

measures are required to minimize their power consumption.

In the next two sub-sections, details of the proposed clock network delivery

architecture to address these challenges on Xilinx FPGAs are presented. This

involves identifying the location of the bits in the configuration bitstream, an

information not provided by Xilinx. The location of essential clock controlling

configuration bits are determined by experimenting with various design variants.

The proposed clock delivery architecture involves instantiating all potentially useable

clock buffers in the static part of the design. This is necessitated by the fact that clock

buffers cannot be included in the reconfigurable part of a design on most FPGAs,

including the 7 series. Clock signals are fed to the buffers’ inputs, but their outputs

are left unconnected. In runtime, their outputs are then routed to a reconfigurable

module after its configuration by enabling appropriate bits in the configuration

memory to activate corresponding PIPs via the configuration layer. The static part of

the design also includes a configuration controller (CC) and the PMS. These manage

the execution of the reconfigurable modules placed on the reconfigurable part of the

design on demand. The CC is used for task configuration as well as writing bit

locations to route clock nets while the PMS determines a location for a task on the

chip.

Clock buffers which can be instantiated for runtime clock routing include all the

BUFHs, BUFRs and BUFMRs in a clock region. These buffers are fed by the

 Chapter 8: Reliability-Aware Runtime Clock Routing

164

BUFGs or the clock capable inputs of the chip. There are 12 BUFHs, 4 BUFRs and 2

BUFMRs in each clock region of a Xilinx 7 series FPGA. The BUFMR cannot drive

logic directly; they must be routed through another buffer such as the BUFR. There

are 16 dedicated clock nets which can be used to connect the clock buffers to

synchronous elements such as flip flips, BRAMs and DSPs. These run across all

columns in the clock region. They are routed all the way to each synchronous

element.

Outputs of clock buffers cannot be left unconnected during the synthesis and

implementation phase of a design. Tool optimization would remove the instantiated

buffers, and if optimization is turned off (or a DONT_TOUCH attribute is set on

them), bitGen would report “partial antennae” error and would not run. Hence, to

ensure that the synthesis tool does not optimize the buffers, dummy reconfigurable

modules can be included in the floor plan of static module, which are driven by the

instantiated clock buffers. These modules are blanked-out immediately after the

initial configuration of the static part. To ensure that a consistent architecture is

adapted for connecting the buffers and nets in all clock regions, the BUFH are

initially connected to the lower 12 of the 16 nets in a clock region. The upper 4 nets

are driven by the BUFRs.

The choice of which net to route to which task is made in runtime according to the

clocking requirement of each task. For example, a task placed in a clock region

where it requires a different clock frequency than that present there would be

connected to a net driven by a BUFR since BUFRs have clock division capability.

Similarly, a task which extends to the adjacent clock region can be routed to a net

driven by a BUFH. The routing is achieved by editing configuration bits that control

PIPs in the path of the chosen nets to FFs, BRAMs and DSPs. The location of

synchronous elements can be floor-planned to limit the number of bits to route to a

task. However, the intersection of the HROW nets and the columns containing the

synchronous elements must be routed via PIPs. A set of PIPs can potentially switch a

net vertically to deliver any 12 of the 16 clock nets in the HROW to the synchronous

elements in a column. Six nets enter a column from the HROW for each column

 Chapter 8: Reliability-Aware Runtime Clock Routing

165

which are connected by 6 PIPs (TOP0, TOP1, … TOP5). These deliver clock signals

to the upper half of the column and 6 to the lower half (BOT0, BOT1, … BOT5).

8.1.1 Selecting the Right clock Frequency for a Task

To select an appropriate net and buffer for a task, the frequency requirement of the

task is considered. For tasks with special clock frequency requirement, a net driven

by a BUFR is chosen to feed the task. The output frequency of the BUFR can be

divided by any integer between 1 and 8 by writing specific 4-bit values to specific

locations in the configuration memory. Table 8.1 shows the bit positions in the

configuration memory used to divide the clock frequency, and Table 8.2 shows the

values to be written for each division factor. The bits positions in Table 8.1 refer to

the 50th word of frame address Minor 33 of the IOB column type. the subscript 𝑟 in

the table refer to the row of the device in which the BUFR is located while 𝑐 denotes

the specific index of the buffer.

Table 8.1: Bit Positions for BUFR Clock Frequency Division Factor

BUFR Bit Positions

𝑋𝑟𝑌𝑐 18 – 21

𝑋𝑟𝑌𝑐+1 14 – 17

𝑋𝑟𝑌𝑐+2 23 – 26

𝑋𝑟𝑌𝑐+3 27 - 30

 Chapter 8: Reliability-Aware Runtime Clock Routing

166

Table 8.2: Clock Division Factors and Corresponding Values

Clock Division

Factor

Value to be written

to bit positions (0x)

1 8

2 9

3 A

4 B

5 C

6 D

7 E

8 F

As an example, consider a VGA controller tasks which requires 25MHz for correct

operation. When placed in a clock region on the Xilinx’s basys3 board running at

100MHz, a value 0xB would be written to the bit location of one of the four BUFRs

to achieve a frequency division of a factor of 4 and then it is routed to the task. For

tasks where the general frequencies available on the chip would suffice, a BUFH is

normally chosen, reserving the BUFRs for tasks requiring clock division. It is also

important that tasks requiring frequency division must either be contained in a single

clock region, or driven by multiple BUFRs (one for each clock region) connected to

a BUFMR and must have a maximum height of 3 clock regions.

8.1.2 Routing a Clock Net to a Task

After choosing a net, driven by the appropriate clock buffer based on the requirement

of a task, the chosen net is connected to the clocking point(s) of the task. During the

floor-planning and implementation of a task, the sequential elements are constrained

to pre-determined locations and routed to clock points in HROW. It is recommended

that all timing constraints be addressed at design time. In runtime, an appropriate

active clock net must be selected and routed. This is done via the configuration layer

by activating the set of PIPs needed to route the clock signal from the buffer to the

net in the HROW of each the columns of the FPGA occupied by the task. The

 Chapter 8: Reliability-Aware Runtime Clock Routing

167

columns in the Xilinx FPGA are organized in pairs, classified as left (L) and right

(R) columns. An L-R pair share common routing resources, and thus the bits to

enable/disable PIPs are located in either the ‘L’ or ‘R’ column. In addition, any of the

16 nets can be routed to a column via a set of Routes. Table 8.3 shows the set of bits

in the configuration memory to be activated to route any of the 16 clock nets in the

HROW to a column through the BOT0 PIP. Because of the similarity in the bit

positions between ‘even’ and ‘odd’ nets, the rows are organized in pairs as shown.

It can be seen from the table that each net is routed via BOT0 by activating 3 bits in

the configuration memory. However, two of these are shared by groups of nets, with

only one being unique to each net. One of the shared bits may be described as a

‘group selection bit’ as it determines the ‘group’, G to which the net belongs. The 16

nets may be grouped into 4: Net 0 – Net 3 (G1) which are selected by writing a ‘1’ to

bit position 14 of frame minor 1 (M1), Nets 5 – 7 (G2) are controlled by bit position

15 of minor 0 (M0). Similarly, Nets 8 – 11 (G3) and Nets 12 – 15 (G4) are controlled

by bit 15 of M1 and bit 16 of M0 respectively.

Table 8.3: Bit Position and Frame Address Minors of PIPs via BOT0

 Bit Position in Word 50 of Frame

Net M0 M1 M2 M3 M4 M5

0, 2 14, 22 14, 14 — 14, 15

1, 3 —
14, 14;

19, 22
 14, 15 —

4, 6
15, 15;

23, 31
— — 14, 15

5, 7 15, 15 23, 31 14, 15 —

8, 10 14, 22 15, 15 — 14, 15

9, 11 —
15, 15;

19, 22
 14, 15 —

12, 14
16, 16;

23, 31
— — 14, 15

13, 15 16, 16 23, 31 14, 15 —

 Chapter 8: Reliability-Aware Runtime Clock Routing

168

The second shared bit may be described as ‘regular distance bit’, D-bit. The D-bit is

shared by every fourth net, such that Nets 0, 4, 8 and 12 (D1) are controlled by bit

position 14, and Nets 2, 6, 10 and 14 (D2) controlled by bit 15 of minor 4 (M4). The

odd-numbered nets are controlled by the same bit positions in minor 3 (M3). That is,

Nets 1, 5, 9 and 13 (D3), and nets 3, 7, 11 and 15 (D4) are respectively controlled by

bit 14 and 15 of M3.

The third bit is unique for each net. Even numbered nets between 0 and 7, i.e. Net 0,

2, 4 and 6 are controlled by bit positions 14, 22, 23 and 31 of M0, while odd

numbered nets are controlled by positions 19, 22, 23 and 31 in frame M1. Nets 8 to

16 are controlled by the same bit positions in the same minors, but of the adjacent

column. Recall that an L-R pair of columns share a routing resource in the 7 series.

To use another route such as BOT1, … BOT5 or TOP1 to TOP5, the bit positions are

organized in a similar fashion to that of BOT0 shown in Table 8.3. The unique bits

remain the same for all routes, both in position and frame address, to that of BOT0

described above. The location of the two other shared bits – the G-bit and the D-bit

relating to each net for all other routes except BOT0 are shown in Table 8.4 and

Table 8.5 respectively.

Table 8.4: Bit Position for G- bit of Clock Net in HROW

 G1 G2 G3 G4

 Bit M Bit M Bit M Bit M

BOT1 16 3 16 5 16 4 28 2

BOT2 18 0 17 1 17 0 16 1

BOT3 17 2 17 4 17 5 17 3

BOT4 20 0 21 1 21 0 21 1

BOT5 22 3 22 5 22 4 22 2

TOP0 30 1 29 0 29 0 29 1

TOP1 29 2 29 4 29 5 29 3

TOP2 26 0 28 1 28 0 28 1

TOP4 25 1 24 0 24 1 24 0

TOP5 23 2 23 4 23 5 23 3

 Chapter 8: Reliability-Aware Runtime Clock Routing

169

Table 8.5: Bit Position for D- bit of Clock Net in HROW

 D1 D2 D3 D4

Route Bit M Bit M Bit M Bit M

BOT1 14 2 14 5 15 2 15 5

BOT2 19 5 19 2 18 5 18 2

BOT3 19 3 19 4 18 3 18 4

BOT4 20 4 20 3 21 4 21 3

BOT5 20 2 20 5 21 2 21 5

TOP0 31 5 31 2 30 5 30 2

TOP1 31 3 31 4 30 3 30 4

TOP2 26 4 26 3 27 4 27 3

TOP3 26 2 26 5 27 2 27 5

TOP4 25 5 25 2 24 5 24 2

TOP5 25 3 25 4 24 3 24 4

It is worth noting that only 7 bits per column are required to be modified to route a

clock signal to a task. These are: 1 bit to turn-on the buffer routed to the desired net,

3 bits to route the net to a PIP feeding the upper half of the column and 3 bits to feed

its lower part. This is a significant improvement compared to the 98 bits required by

the technique in [62] especially as the bits are located in different configuration

frames. However, to achieve this, additional design-time steps are needed.

8.1.3 Low Power Considerations

With the architecture described above, it is noted that the instantiation of the clock

buffers would lead to increased power consumption of the system. Hence, it is

important to turn off the clock buffers which are not currently required. This can be

done via the configuration layer. Table 8.6 shows the bits positions that control the

enabling and disabling of the BUFHs. Writing a ‘0’ to the respective bit positions

turns off the buffer while writing a ‘1’ to that location turns it on. The BUFHs are

 Chapter 8: Reliability-Aware Runtime Clock Routing

170

located in the middle column of the device (e.g. column 23 for the basys3 board).

The word and bit position shown are in frame MINOR = 26. It can be observed that

only the even-numbered buffers are shown, the location for the odd-number buffers

are the same as that of the even ones, except that the frame MINOR = 28 for the odd

numbered buffers.

Table 8.6: Enable/Disable Bit Position for BUFHs in a Row

 C = 0 C = 1

 Word Bit Word Bit

XcYr+0 48 19 47 3

XcYr+2 49 3 47 19

XcYr+4 49 19 48 3

XcYr+6 51 3 52 19

XcYr+8 51 19 53 3

XcYr+10 52 3 53 19

There are 2 BUFMR per clock region. The ON/OFF bit of the first of these is in bit

28 of word 5, minor 27 of the IOB frame type. The ON/OFF bit for the second is

found at the same location of minor 28. It is worth noting that the BUFRs cannot be

switched on/off via the configuration layer. Thus, to control them, the buffer driving

a BUFR is turned off. BUFRs are normally driven by BUFMR.

8.2 Reliability Considerations

It can be observed that the entire clock delivery technique presented in the first

section of this chapter is hinged on changing specific bits in a configuration frame in

runtime. In addition to delivering the right clock frequency to a task placed in

runtime or route clock signal to tasks, a variety of techniques used by ROS depend

on editing the content of the configuration bitstream in runtime. Examples include

 Chapter 8: Reliability-Aware Runtime Clock Routing

171

the following: Runtime bitstream modification has also proposed for the relocation of

circuits to non-matching locations on the FPGA [75]. Establishing communication

with tasks whose location on the FPGA have changed in runtime have also been

proposed to be done using techniques that involve runtime bitstream editing [61]

[122]. These examples involve editing the bit values inside a configuration frame.

However, there is a major reliability concern with changing bits in a frame of a

configuration bitstream in runtime especially for safety-critical applications. SRAM-

based FPGA CMEM are volatile, and the bits stored in them could be flipped due to

undesired effects such as radiation and extreme temperatures [52]. To mitigate the

effects of unwanted bit flips, each configuration frame in the bitstream of Xilinx

FPGAs is protected by a Frame Error Correcting Code (Frame ECC). A Frame ECC

is a set of bits representing a value computed based on the parity of the data in the

frame and stored as part of the frame. It is monitored for changes in the content of

the frame and can be used to correct single bit errors and detect multiple bit errors

[123]. The bit-flip detection and correction technique (usually implemented via the

SEM IP [56] or custom scrubbing techniques [27]) does not distinguish between

intentional changes in bits and soft errors due to radiation or extreme temperatures.

This is illustrated in Figure 8.2.

One means of addressing this challenge is to re-compute the Frame ECC values each

time a bit is intentionally changed. In this way the soft error mitigation technique in

place would continue to function normally so that the design does not lose the

protection offered by the Frame ECC. It is worth noting that the Frame ECC values

are generated as part of the undisclosed bitgen process when Xilinx design tools are

used to implement a design. Indeed, the publicly available technical information on

the Frame ECC for the Xilinx 7 series FPGA is limited to the number of bits reserved

for the frame ECC, their location in the frame of a configuration bitstream and how

custom Xilinx IPs uses these values to report bit flips. A clear information as to how

their values are generated is not provided.

Hence the strategy proposed in this work is to re-compute the Frame ECC bits and

include updated values in a frame after bit editing, just before configuration of the

 Chapter 8: Reliability-Aware Runtime Clock Routing

172

updated frame. Soft errors in Xilinx FPGAs are monitored using both Frame ECC

(which monitors bits flips in a frame) and CRC values (which monitor bit flips in the

entire configuration data). However, this section focuses only on the use of Frame

ECC bits to detect errors since it is uncommon that errors not caught by the ECC

mechanism are detected by CRC [56].

01 01

01 00

Ionizing

radiation

Extreme

Temperature

Bit Flip

Memory

Before

Memory

After

Intentional

Operation

Figure 8.2: Bit flips in Memories of SRAM-based FPGA

In this section, an efficient implementation of the mechanism for recomputing the

Frame ECC of Xilinx FPGA configuration bitstream in runtime is presented. Without

loss of generality, the implemented algorithm will target Xilinx 7 series FPGAs, but

is easily extensible to other FPGA architectures as well. It is worth noting that since

the complete routine for computing Frame ECC in Xilinx FPGAs is not completely

disclosed, we first present our findings on how to completely re-compute the Frame

ECC before moving on to its implementation.

8.2.1 Frame ECC Re-computation Routine

As stated in the last section, it is important to re-compute the Frame ECC values each

time a bit is intentionally changed, so that these changes are not interpreted as soft

errors and overturned by the SEM IP or similar soft error mitigation mechanisms. One

 Chapter 8: Reliability-Aware Runtime Clock Routing

173

alternative that can be used to avoid intended bit edits being overwritten is to disable

the SEM mechanism. However, this would make the entire design lose the protection

offered by the frame ECC, and thus constituent a significant reliability concern in

critical applications. Xilinx offers only very limited details as to how the frame ECC

in their devices are computed. Generally, the Frame ECC values are computed as part

of an undisclosed bitgen step done by the design tools such as Vivado. For the 7 series

FPGA, the information provided is limited to the location of the frame ECC and the

number of bits reserved for its value. Basic idea of computing ECC for a block of data

such as a configuration frame may be seen in [123]. In the following, the details of

our findings as to how to exactly re-compute the values of the Frame ECC in runtime

is presented.

The computation of the frame ECC is an iterative process carried out on all the words

in the frame, where the ECC bits computed for a word are XORed with that for the

next word until all the words in the frame have been used. For the Xilinx FPGAs,

configuration frames are organized in 32-bit words which are indexed by an integer

number, 𝐼. Each bit in a frame can be referenced by using the relation: 32. 𝐼 + 𝑘,

where 𝑘 ranges from 0 to 31 for each 𝐼. The range of the values of 𝐼 is determined by

the number of words in a frame of the configuration bitstream and the number of

powers of 2 in the range. Values of 𝐼 corresponding to powers are 2 are skipped as

these are reserved for the frame ECC indexes [123]. It was observed that lower values

of 𝐼 are avoided since powers of 2 occur more frequently in that range. For Xilinx

virtex 4 FPGA which have 41 words in a configuration frame, the ECC is computed

with 𝐼 ranging from 22 to 63. For the 7 series with 101 words in a frame, it was found

that it ranges from an initial value, 𝐼𝑖 = 25 to terminal value, 𝐼𝑡 = 127. In general, we

found that for an FPGA series, the value of 𝐼𝑡 is obtained by aligning the last bit in the

frame (32. 𝐼𝑡 + 31) to the position 2(𝑛−1) − 1, where 𝑛 is the number of bits required

to store the frame ECC values. Thus, for the 7 series since 13 bits are reserved for the

frame ECC values [56], the value of 𝐼𝑡 would computed to 127. Consequently, to

account for 101 words, 𝐼𝑠 evaluates to 25, with 64 and 32 skipped since there are

powers of 2.

 Chapter 8: Reliability-Aware Runtime Clock Routing

174

Finally, an ECC polynomial defines which bits of each of the words in a frame are

XORed at every stage of the iterative process. Equation (8.1) – (8.6) define the

polynomial for the computation of each stage of ECC for a 32-bit word. Each bit of

the ECC value (bit 1 to 12) is computed by XORing selected bits of the current word.

The selected bits are determined using (8.1) – (8.6). Each equation defines the set of

bit positions of the word which participates in the computation of that specific ECC

bit. For example, for the computation of ECC bit 1, E(1), only the odd bit positions in

the current word are selected. Thus, all odd bits of the 32-bit word are XORed

together to determine the current value of E(1). Similarly, for the computation of bit 3

of the ECC bits, E(3), bits 4 to 7, 12 to 15, 20 to 23 and 28 to 31 of the current word

are XORed together. The computation of the other ECC bits follow similar pattern,

using the bit positions dictated by the corresponding equation.

As can be seen from the equations, the computation of ECC bits 1 to 5 is dependent

only on the value of the current word and not on its position in the frame, 𝐼. This is

different for bits 6 to X where both the value of the word and its relative location in

the frame contribute to determining the value of the ECC bit. For example, to

compute bit 6 of the ECC for a word, all the bits of the word are XORed if the least

significant bit of the word’s location is 1, otherwise that ECC bit is simply 0. In (6), j

refers to the bit index of the current word’s location in the frame. For example, for

𝐼 = 25 (= 011001𝑏), 𝐼𝑗=0 = 1, 𝐼𝑗=1 = 0, etc. In addition, 𝑋 is determined by the

number of bits reserved for the final ECC value. For Xilinx’s Virtex 4 and 7 series

FPGA, X = 5 and 6 respectively. All bits in each word are XORed to determine E(0)

for that word, thus bit 0 of the ECC is the parity of the entire frame.

An iteration step consists in computing all the bits of ECC in a word. These bits are

XORed with the values obtained from the previous word of the frame to get the

current partial ECC. The process is repeated until all the words in the frame have been

considered. It is worth mentioning that process described above is applied to all

words in the frame. However, for word 50 in which the ECC bits are located. i.e., for

𝐼 = 50, 𝑘 iterates from 13 to 31, omitting the location of the ECC bits.

 Chapter 8: Reliability-Aware Runtime Clock Routing

175

𝑬(𝟏) = {𝒌, ∀ 𝒌 ≠ 𝒆𝒗𝒆𝒏, 𝒌 ≤ 𝟑𝟏} (8.1)

𝑬(𝟐) = {
𝟏

𝟐
(𝟒(𝒌 + 𝟏) + (−𝟏)𝒌+𝟐 − 𝟏), 𝟎 ≤ 𝒌 ≤ 𝟏𝟓} (8.2)

𝑬(𝟑) = {
𝟏

𝟐
[𝟒(𝒌 + 𝟏) − (𝟏 − 𝒊)(−𝒊)𝒏+𝟏 − (𝟏 + 𝒊)(𝒊)𝒏+𝟏 + (−𝟏)𝒏+𝟐 + 𝟏]: 𝟎 ≤

𝒌 ≤ 𝟏𝟓, 𝒊𝟐 = −𝟏} (8.3)

𝑬(𝟒) = {𝒌: 𝟕 ≤ 𝒌 ≤ 𝟏𝟓, 𝟐𝟒 ≤ 𝒌 ≤ 𝟑𝟏} (8. 4)

𝑬(𝟓) = {𝒌: 𝟏𝟔 ≤ 𝒌 ≤ 𝟑𝟏} (8. 5)

𝑬(𝟔 + 𝒋) = { 𝟎 ≤ 𝒌 ≤ 𝟑𝟏, 𝟎 ≤ 𝒋 ≤ 𝑿
∅,𝒊𝒇 𝑰𝒋=𝟎

𝒌,𝒊𝒇 𝑰𝒋=𝟏
} (8.6)

8.2.2 Implementation Case Study

To test the performance of the proposed Frame ECC re-computation scheme, a

design consisting of the frame ECC re-computation scheme, a custom configuration

controller and a case study application were implemented. Details of each of these is

give below. In addition, Xilinx Integrated Logic Analyzer (ILA) as well as the

Virtual Input Output (VIO) probes were included in the design. The ILA was used to

observe internal signals of Frame ECC primitive, the Frame ECC re-computation

engine and the configuration controller. The VIO was used to send commands to the

configuration controller and the Frame ECC re-computation engine such as to initiate

configuration and read-back operations on the configuration controller and enable the

Frame ECC engine.

 Chapter 8: Reliability-Aware Runtime Clock Routing

176

i) Frame ECC Re-computation Engine

The frame ECC re-computation routine described in above was implemented on a

Xilinx xc7a35tcpg236-1 chip using Vivado 15.1 design tool. Table 8.7 shows the

resource overhead of the implementation in terms of FPGA resources. The

implementation of runtime Frame ECC re-computation has a latency of 104 clock

cycles. A BRAM is used to buffer the frame data which contains the configuration

bits to be edited (e.g. the clock division bits). The buffer was configured to be 96-bit

wide and 34 words deep. It is capable of holding a frame of configuration bitstream

(101 32-bit words) at a time. Its output feeds into 3 instances of the ECC re-

computation engine which requires 3 clock cycles to obtain the partial ECC for each

word, thus obtaining a partial ECC for 3 words in 3 clock cycles. Two additional

clock cycles are used to write the final ECC values to the buffer of the configuration

controller. The time overhead of the Frame ECC (re)computation routine does not

impact the timing behaviour of the task configuration as the re-computation of ECC

can be done concurrently with configuration as explained in the next section.

Table 8.7: Resource Utilization of Frame ECC Re-computation Routine

Resource Used Available % Utilization

FF 364 41600 0.875

LUT 193 20800 1.159

Bram 18kb 3 150 2.000

ii) Configuration Controller

A task Configuration controller described in [27] was also instantiated in the design.

In addition to task configuration, that controller implements an optimized version of

soft error mitigation strategy using the Frame_ECC primitive. As mentioned in

chapter 2, the basic principle of soft error mitigation depends on monitoring the value

of ECC in the CMEM. The difference between the strategy in [27] and the SEM IP

 Chapter 8: Reliability-Aware Runtime Clock Routing

177

[56] is that the former limits the region of CMEM monitored for error to only those

parts of the chip with actively computing circuits. Technical details of the soft error

mitigation of the controller can be found in [27].

The major operations and their associated latencies of the controller used are shown

in Table 8.8. It is worth mentioning that the timing characteristics of the controller

and that of the Frame ECC re-computation engine is such that no delay is introduced

to task configuration by the Frame ECC re-computation engine. As shown in the

table, the configuration controller has a minimum configuration latency of a frame to

be 166 clock cycles. This consists of 65 clock cycles overhead at the start of a

configuration and 101 cycles for writing the 101 words in a frame. Since the ECC

word is located at word 50, a total of 115 clock cycles is spent by the configuration

controller before getting to the Frame ECC word. Thus, initiating the re-computation

of Frame ECC at the same time as the configuration process, no additional clock

cycle is incurred in the configuration of tasks. This is illustrated in Figure 8.3. As

shown, the re-computed Frame ECC value is available 10 clock cycles before it is

required.

Table 8.8: Time Overheads for the Operations of the Configuration controller at A

Frequency of 100 Mhz [27]

Operation
Minimum

Time (μs)

Time for 𝑵 Frames

and 𝑴 Replicas (μs)

Readback 2.37 1.36 + 1.01𝑁

Configuration (non-BRAM frame) 1.66 0.27 + 1.28𝑁 + 0.11M

Configuration (BRAM frame) 1.74 0.19 + 1.36𝑁 + 0.19𝑀

Blanking 1.56 1.39 + 0.17𝑁

Register Read 0.29 0.29

Custom Write 0.23 0.23+ 1.01𝑁

Operation Abort 0.05 0.05

SEM Scan 2.37 1.36 + 1.01𝑁

SEM Correction (Repair) 1.66 1.66

SEM Correction (Replace) 2.68 2.68

 Chapter 8: Reliability-Aware Runtime Clock Routing

178

Time (us)0.65 1.05 1.15 1.66

Frame_ECC Computation

Configuration overhead at
start of frame

Configuration duration for
word 0 - 49

Configuration duration for
word 50 - 101

Word 50 (with frame_ECC)
is fetched

Figure 8.3: Timing Characteristics of Configuration and Frame_ECC re-computation

Controllers

iii) Case Study Scenario: Online Clock Frequency Control.

A simple 4-bit counter whose outputs can be easily observed on LEDs on the Xilinx

xc7a35tcpg236-1 chip was used for the test. The counter increments every second.

The aim in this experiment was to change the clock frequency delivered to the

counter in runtime using bit editing and observe the change in its count rate. At the

same time, the output of the soft error mitigation mechanism would be observed to

see if any error is detected. As a control, the Frame ECC re-computation routine will

then be disabled and the same changes will be attempted and then the result of

scenarios would be compared.

The output frequency of the BUFR in the Xilinx 7 series FPGA can be divided by

any integer between 1 and 8 by writing specific 4-bit values to specific locations in

the configuration memory. Therefore, a BUFR was instantiated and its output clock

signal was routed to the counter as its clock source. The clock input to the BUFR was

routed via a BUFMR so that the clock can disabled and enabled in runtime as BUFRs

do not have clock enable pins. The location of the clock division bits for BUFRs in

the configuration bitstream are shown in Table 8.1 while the division factors are

 Chapter 8: Reliability-Aware Runtime Clock Routing

179

shown in Table 8.2. The first BUFMR in a clock region is enabled by writing a ‘1’ to

bit position 28 of frame Minor 27 of word 50 of the IOB column type. The second is

BURMR is enabled by similar location of frame Minor 28. The locations of the

buffers were constrained to the first BUFMR (BUFMRCE_X0Y0) and the second

BUFR (BUFR_X0Y1) of the upper left clock region of the chip in this experiments

using constraints in XDC file.

8.2.3 Result and Discussion

The initial design was programmed on a basys3 FPGA board running at 100 MHz

with the counter incrementing every second. During the normal operation of the

system a frequency division process was initiated. Frame minor 33 of column 0 row

0 in the bottom part of the design of block type IOB was read back. This was done by

issuing a readback command to the configuration controller using the VIO. The

bitstream read back (101 words) was saved in a buffer. As shown in Table 8.1 and

Table 8.2, the clock division bits are in word 50, bits [14:17]. The value of the bits

was observed to be 0x8. The value of the clock division bits was updated to 0x9 in

the buffer in accordance with Table 8.2, aiming to divide the frequency of the clock

by 2. In addition, the frame ECC bits were reset to 0s in the buffer. At this point, the

design was not affected.

Thereafter, the Frame ECC re-computation engine was enabled and the configuration

of the frame to the CMEM was also enabled. After the configuration was done, it

was observed that the rate of the counter was reduced to 0.5 seconds. The output of

the soft error monitoring scheme (Frame ECC primitive) was observed after a

readback operation was performed. No error was reported. This is shown in Figure

8.4 (a). As shown in the figure, the ECC value (shown on bit 12:0 of the signal

output_icap_to_fsm) in the frame was updated (from “0x19b2” to “0x1007”), and the

signal “ECCERROR” remained at ‘0’ to indicate no soft error. In addition, an error

was injected in the CMEM by writing ‘0’ to the Enable/Disable bit of the BUFMR

(i.e. bit 28 of Minor 27 of column 0) without enabling the re-computation of the

 Chapter 8: Reliability-Aware Runtime Clock Routing

180

Frame ECC. No effect was noticed on the counter – the design continued to function

normally at the rate of 0.5 seconds.

Next, the FPGA board was power-cycled and reprogrammed with the original

bitstream of the design. The same steps as above were repeated except that the Frame

ECC re-computation engine was not enabled. That is, the frame containing the clock

division factor was readback into the buffer and the clock division parameter was

updated to 0x9. Then the frame was written to the configuration memory. After

configuration was done, it was observed that the counter continued to increment at

the initial rate of 1 second. It was also observed that the frame ECC primitive

reported a soft error. This is shown in Figure 8.4 (b). However, the soft error

mitigation routine over-wrote the entire frame with the golden configuration

bitstream. Thus, without re-computing the ECC values, runtime bit editing can be

classified as a soft error and over-ridden. Also, Writing ‘0’ to the Enable/Disable bit

of the BUFMR also did not have any effect on the counter as it was also corrected by

the soft error mitigation mechanism.

(a)

(b)

Figure 8.4: Waveform of Frame ECC Primitive

 Chapter 8: Reliability-Aware Runtime Clock Routing

181

Finally, the experiment was repeated with both the Frame ECC re-computation

routine and the SEM routine disabled. This time after changing the frequency of the

clock, the counter rate was found to decrease to 0.5 seconds as expected. However,

writing a ‘0’ to the Enable/Disable bit of the BUFMR make the counter completely

freeze and stopped incrementing.

Table 8.9: Summary of Features in Designs with and without SEM and Frame ECC

Re-computation Engines

Features
Design

Only

Design + SEM

Controller

Design + SEM ad

Frame ECC

Controllers

Soft errors recovery

Support for runtime

configuration bit editing

Soft error recovery and

runtime configuration bit

editing

Table 8.9 summarises the features of designs depending on the presence of SEM and

runtime frame ECC re-computation mechanism. Comparing the results of the three

experiments above, and assuming that editing the frequency of the counter was

intended by a user, while disabling the BUFMR was a soft error, it can be concluded

that re-computing the frame ECC as in the first scenario make it possible to control a

design protected by soft error mitigation techniques as desired. It allows users to

make intended runtime bit editing while the design is still robust against un-intended

bit flips. In the first scenario, the frequency of the counter was successfully updated

while the error injected by disabling the BUFMR was detected and corrected. In the

second scenario, the soft error mitigation technique interpreted all bit edits as soft

errors and reversed them because the Frame ECC was not re-computed. In the third

scenario when the soft error mitigation mechanism was disabled, the design responds

to all changes to the content of its CMEM. The frequency of the design was

successfully updated but the design also failed due to a soft error on an essential bit.

 Chapter 8: Reliability-Aware Runtime Clock Routing

182

8.3 Chapter Conclusion

In this chapter, we have presented an efficient runtime mechanism of clock delivery

to circuits placed in runtime without jeopardizing the reliability of the system. The

technique depends on identifying key clock signal routing bits in the configuration

bitstream of the class of FPGA. These are controlled in runtime to route a clock

signal to circuits. To avoid losing the error monitoring offered by the frame ECC, the

value of the ECC is recomputed for any frame in which bits are changed to route a

clock signal. The distinctive features of the proposed technique are that it is aimed at

minimizing the number of bits changed in runtime and recalculating the ECC for the

affected frames. By using different design variants, the location of the essential clock

routing and buffer enable/disable bits in Xilinx 7 series FPGA were determined. The

frame ECC computing scheme for the same class of FPGAs was implemented. Based

on these, it is possible to route a clock signal in runtime by bit editing without losing

the protection offered by the Frame ECC.

The results show that for clock routing, only 7 bits per column are required to be

modified to route a clock signal to a task as against the 98 bits required by similar

approaches. The implementation of frame ECC re-computation controller occupies

only 364 LUT, 193 flip flops and 3 18-Kb BRAM on the Xilinx xc7a35tcpg236-1

chip and has a latency of only 104 clock cycles for each frame. It was also shown

that its latency does not introduce any delay in configuration procedure.

A major limitation of the proposed approach is its dependence on a family of FPGA.

The format of the configuration bitstream changes from one FPGA family to another.

Hence, the reverse engineering experiments will have to be repeated to apply the

technique to another family of FPGA. The content of this chapter is included in the

following publication:

 G. Enemali, A. Adetomi, and T. Arslan, "Efficient Runtime Frame ECC

Recomputation for Reliable Task Execution on Xilinx FPGAs ", in 2018

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018.

pp. 59- 65

183

Chapter 9: Conclusion and Future Work

This thesis has presented techniques towards the development of future high-

performance, fault-tolerant electronic systems for hostile environments such as

nuclear plants and outer space within the constraints of cost, power and flexibility.

The placement management system presented in this thesis is the design and

implementation of several techniques to achieve efficient runtime placements in

COTS FPGAs which have a high degree of heterogeneity. Techniques relating to

optimizing the utilization of the FPGA area, managing its relatively large

configuration overhead, relocating tasks on its heterogeneous area and managing

clock network routing to placed tasks were presented.

These techniques provide a means that enables future ROS to better harness the

capabilities of COTS FPGA using DPR to achieve reliability and high performance.

With the continual increase in the degree of heterogeneity of COTS FPGAs, runtime

placement and task relocation which are techniques used by ROS to achieve high

performance and reliability have become increasing challenging to implement. In

addition, circumventing the relatively large reconfiguration overhead of COTS

FPGA while managing fragmentation of the device area is an important requirement

in ROS. Moreover, delivering clock networks to tasks after placement on the FPGA

is also challenging. The proposed placement techniques address these challenges.

While many traditional placement techniques are based on ideal models which are

not well suited to COTS FPGA platforms, the proposed techniques not only aim to

have better performance but also to be practicable. The practicality of the proposed

techniques is demonstrated by presenting its implementation details in chapter 7, thus

addressing many design and implementation issues in runtime placement

management on COTS FPGAs.

This chapter gives a summary of the research work presented in this thesis. It

highlights the main results and draws conclusion from them, showing the potential

 Chapter 9: Conclusion and Future Work

184

impacts and significance of the techniques. The limitations of the techniques

presented are identified, and future works are also suggested.

9.1 Summary of Thesis

The first three chapters of this thesis presented background information on the

unique attributes of COTS FPGAs – especially on the potentials provided by DPR

and reviewed support tools and techniques developed to harness the huge potentials

of DPR with a focus on runtime placement. The major contributions of the thesis are

contained in chapters 4 to chapter 8. Chapter 4 presented a design-time optimization

for reliability. The design flow presented is aimed at not only improving the

maximum number of locations for each task on the chip, but also to achieve a fair

distribution among all tasks which will share the chip area concurrently in runtime.

The technique is based selecting implementation locations for tasks to minimize

overlap in the potential placement locations of tasks occupying the FPGA area

simultaneously. The offline placement quality optimization also aims to minimize the

variance in the number of potential locations of each task and thus avoid a situation

where some tasks have abundant potential placement locations and others have too

little. A balanced distribution and minimized overlap of implementation location

leads to an improvement in the number of placements in runtime for each task and

increases the performance and fault tolerance of applications.

Chapter 4 also presented an architecture of a generic task wrapper based on

memoization for achieving low power computation on FPGAs for tasks with low

port width. The power optimization technique using memoization is applied to tasks

to reduce their dynamic power consumption. The technique involves reusing the

result of a previous computation when a request is made for computation with the

same set of inputs that produced them. Thus, the process of re-computing the result

for the input is avoided – together with its dynamic energy consumption. To achieve

this, results of previous computations are remembered, leading to memory and logic

overheads. Hence, it is imperative that these overheads of the memoization wrapper

 Chapter 9: Conclusion and Future Work

185

are minimized. To achieve energy minimization, a place reservation technique is

used which ensures that the search for previous results are done efficiently in few

(and fixed) number of clock cycles. Space reservation technique also keeps the MISS

rate low, leading to greater energy savings. However, to keep the memory overhead

reasonable, the wrapper is only suitable for tasks with low port width. The chapter

also includes a discussion of a communication wrapper for all tasks. The resource

overheads of both the wrapper for dynamic power minimization and that for

communication are added to the task’s resource utilization before the optimization

procedure for selecting implementation locations.

Unlike the design time techniques presented in Chapter 4, Chapter 5 gives two key

techniques relating to the runtime phase of placement management for high

performance and reliability. These are: efficient minimization of chip area

fragmentation and efficient task reuse to reduce the amount reconfiguration engaged

in by the configuration port. To minimize fragmentation on the chip, a fragmentation

quantification technique suitable for use on heterogeneous FPGAs was proposed.

The method of quantifying fragmentation aims to balance speed and accuracy such

that it could be fast enough for runtime placement and yet produce accurate results.

The fragmentation measure is based on the isolation of a task placement location

from other tasks on the FPGA as well as the FPGA borders. A comparison of the

proposed technique with others showed that its accuracy is better than those schemes

with comparable computational overhead, while being comparable to others with

higher computationally intensity. It was shown that since tasks’ location on

heterogeneous chips are constrained by their layout, the placement location of one

task may not fall at the border of another even with good fragmentation

quantification techniques. Hence, an expansion strategy, EUAS, was proposed.

EUAS uses information on the dimension of the tasks to be placed to decide the

amount of expansion during placement. Using simulations, it was shown that a lower

task rejection ratio is obtained when EUAS was used.

Chapter 5 also presented a task reuse strategy to circumvent the reconfiguration of

carefully selected tasks. The tasks to retain were decided using a novel

 Chapter 9: Conclusion and Future Work

186

fragmentation-aware replacement policy – FAReP. The replacement policy selected

tasks to be retained on the chip based on their reconfiguration overhead, frequency of

reuse and the amount of fragmentation which their current location contribute to the

chip area. Thus, in addition to preserving tasks with costly and frequent

reconfigurations on the chip, FAReP offers some degree of defragmentation of the

chip area during each task replacement. The chapter results showed that the number

of reconfigurations circumvented using FAReP is greater than that of other task

replacement policies. A reduction in the number of reconfigurations leads to greater

availability of the configuration interface for other very key operations in critical

applications such as soft error mitigation.

Chapter 6 addressed the challenge of task relocation on COTS FPGAs. The chapter

first introduced the concept of DBR on FPGAs and explained the process involved in

DBR. DBR is commonly achieved by either generating partial bitstreams for all

potential locations of the task on the chip or by modifying the location dependent

sections in its partial bitstream in runtime. The later has the advantage that fewer

number of partial bitstreams are required to be managed in runtime. The chapter

further identified a major limitation of DBR which is that the resource constituents of

the original implementation location on which the partial bitstream was generated

must match a destination location for most practical cases. However, COTS FPGAs

have heterogeneous columns arranged in no particular order. In fact, even a single

resource column type typically has left or right orientations further increasing the

number of different resource columns on the chip and decreasing the chance of

finding a location matching the original location of partial bitstream. This reduces the

number of locations a task can be relocated to using DBR. Another limitation of

DBR is that it cannot be applied to encrypted bitstreams when access to the location

information of the bitstream is not available. The chapter thereafter proposed FBR

strategy.

The chapter described the process of FBR which essentially involve transforming the

logic represented by the task into a look-up-table or a block of memory. The

advantage is that the LUT or memory block which replicates the functionality of the

 Chapter 9: Conclusion and Future Work

187

original circuit can be relocated to locations on the chip which do not match the

resource arrangement of the original implementation location of the task. However,

the chapter also identified the limitation of FBR. FBR cannot be applied to tasks

which are not referentially transparent and have huge memory overhead for

applications with large ports. Therefore, the chapter proposes a merger of both DBR

and FBR and showed that augmenting the later with the former would lead to a

significant increase in the total number of task relocations that can be obtained on

COTS FPGAs. Since relocation is a central technique used by ROS to achieve high

performance and reliability, improving the amount of relocation obtainable on the

chip is a huge potential.

Chapter 7 shows the practicality of the proposed techniques by describing the

implementation of a prototype PMS which includes the techniques proposed in

previous chapters. Low level implementation issues of the PMS were presented. The

chapter also characterized the implementation of the PMS and reported its

performance including timing and resource overheads. The performance results of

the implementation were compared with a similar runtime task placement scheme.

The comparison showed that the proposed PMS has more features and is more than 2

times faster than a comparable runtime placement system. Based on this, faster

placement decisions can be made which reduces the chances of missed deadlines in

runtime scenarios. In addition, new placement locations can be decided more quickly

and hence reduce an application down-time in a case where a task need to be

relocated due to occurrence of permanent faults on the FPGA.

Chapter 8 discusses clock network delivery to tasks after their placement in runtime.

A method of runtime clock routing was presented that involve controlling

configuration bits in the configuration memory to change the states of PIPs in the

path of clock signal to tasks. The frequency of the clock is also adjusted in some

cases to accommodate tasks of different clock frequencies in the same clock region.

The chapter described an architecture that supports runtime clock routing by

instantiating clock buffers in the static part of an application during its design phase.

The chapter also presented the results of reverse engineering experiments to

 Chapter 9: Conclusion and Future Work

188

determine the location of the essential configuration bits that need to be controlled in

runtime to achieve clock network routing or frequency division operations.

In addition, chapter 8 also presented a technique of re-computing the frame ECC in

the configuration bitstream after editing bits in runtime. The chapter presents the

implementation of efficient frame ECC re-computation routine to address the

challenge posed by editing configuration bits in runtime. COTS FPGAs based on

SRAM configuration memory are susceptible to bit flips (soft errors). These are

managed by using soft error mitigation techniques. However, since these techniques

do not differentiate between unwanted bit flips and intentional bit edits, the chapter

proposed a re-computation of the frame ECC after bit edits. This makes it possible

for SEM techniques to continue to track and correct soft errors while still benefiting

from techniques that involve configuration bitstream editing.

9.2 Significance of the Research

The research presented in this thesis is significant in three main domains. These are:

improving the reliability of FPGA-based applications, high-performance and low-

power computation on FPGAs. These are summarized below.

9.2.1 Impact on the Reliability of FPGA-Based Applications

The techniques presented in this thesis address both permanent and temporal faults in

COTS FPGA-based applications. The keys ways in which the reliability of

applications is improved are as follows:

i) The design-time application optimization technique presented in chapter 4

leads to better capacity to circumvent permanent faults on COTS FPGAs.

This was tested by using data from a practical application, namely data

processing tasks of a NASA JPL spectrometer application. The results

presented in Figure 4.6 show that an average of 48.6% more errors were

survived due to the proposed optimization techniques. In addition, the

 Chapter 9: Conclusion and Future Work

189

functionality-based runtime relocation technique presented in chapter 6 have

potentials to improve the relocatability of hardware tasks with low-port

widths on modern COTS FPGAs.

ii) The task reuse scheme presented in chapter 4 provides a means of reducing

the occupancy of the ICAP and thus leaves more of its resources to be

devoted to soft error mitigation techniques. As the simulation results in Table

5.4 shows, the proposed task reuse scheme leads to approximately 29%

saving in the amount of configuration compared to state-of-the-art techniques.

This saving in the occupancy of the ICAP can be devoted to soft error

mitigation operations to ensure that soft errors are detected and corrected more

readily.

iii) The frame ECC re-computation engine presented as part of chapter 8 also

improves the reliability of applications. Specifically, it enables designs to

benefit from a variety of reconfigurable computing techniques which rely on

runtime bitstream editing without losing the protected offered by soft error

mitigation strategies. By ensuring that the value of ECC for each frame is

correct after each operation involving bitstream edit(s), unwanted bit flips due

to ionizing radiations, extreme temperatures, etc. can be tracked and corrected

in reconfigurable computing applications.

9.2.2 Potentials for Low Power Computation and High Performance

The task wrapper based on memoization presented in chapter 4 leads to significant

saving in power consumption for referentially transparent tasks with low port widths.

For a case study CORDIC circuit, an average of 34.5% of power saving was obtained

using the proposed task wrapper. In addition, the proposed task reuse scheme in

chapter 5 also has the potential to reduce power consumption as memory accesses

associated with task configuration is an energy intensive operation [124]. Low power

computation is a major goal of many system designers. It not only reduces energy

bills and increases battery life, but also increases the life span of devices and reduces

the risk of electromigration.

 Chapter 9: Conclusion and Future Work

190

In addition, the placement techniques presented in this thesis targets high

performance. The worst-case latency of the proposed PMS is less than 50% of that of

a state-of-the-art runtime placement system. This leads to shorter placement

overheads of hardware tasks thus reducing task’s overall execution time. Furthermore,

the task rejection ratio of the proposed PMS is lower than that of comparable

placement systems. This means that more application components can be executed on

the chip in a dynamic runtime placement scenario leading to better performance

compared to similar placement systems.

9.3 Limitations and Future Work

There are some limitations associated with the placement management system

proposed in this thesis. One limitation is that certain aspects of the techniques

presented in the PMS are specific to an FPGA family. An example of this is the

proposed runtime clock network routing technique. The technique involves the use of

runtime configuration bit editing. This is a technology dependent technique which

cannot be directly applicable to other FPGA families. The bit locations for routing

clock nets presented in chapter 8 are specific to the Xilinx 7 series FPGA family. To

apply the runtime clock routing to another family of FPGA such as the UltraScale

FPGA family, the reverse engineering experiments must be repeated to identify the

location of the clock buffer and PIP control bits for that FPGA family. This

limitation also applies to the Frame ECC re-computation technique presented in

chapter 8. Bitstream specific information are necessary for the implementation of the

Frame ECC re-computation process, and hence must be re-implemented for another

family of FPGA to be useful on them. Another technology dependent technique is

DBR using frame address modification. To relocate a bitstream in runtime, the

location information in the bitstream must be identified and changed in runtime.

Usually, location-dependent information in the bitstream changes between FPGA

family, and a relocation controller would need to be updated for each new family of

device.

 Chapter 9: Conclusion and Future Work

191

Another technique that is quite limited is the proposed functionality-based relocation

technique in chapter 6 and the low-power wrapper proposed in chapter 4. Both of

these can only be applied to tasks whose output does not depend on internal states,

but only on the current inputs. Some practical applications have outputs which

depend on internal states and hence this technique cannot be used to relocate them or

minimize their power consumption. Additionally, the techniques use a place

reservation technique to ensure that the checks for previously computed outputs are

carried out in a pre-determined number of clock cycles. This leads to a high memory

overhead for tasks with large port width. Essentially, the size of the memory required

to save each output of a task doubles with every increase in the number of its input

bits.

In addition, many of the techniques in this thesis require the use of an internal

configuration circuitry (which uses the ICAP). This enables an FPGA to be

programmed from within itself. However, the configuration circuitry or even the

ICAP can be affected by both soft and hard errors which can result in system failure.

To address the challenges identified above, several possibilities can be explored as

future work. The following are some possible recommendations for future work:

 System Integration and Application Testing: The proposed PMS was

implemented as a prototype in this thesis and was tested with a separately

implemented communication infrastructure based on the clock buffers [26]

and a configuration controller [27] also separately implemented. A next

natural step would be to integrate these units into a complete stand-alone

ROS and test its performance with real life/critical applications. This would

be a next major step in the development of future high-performance, fault-

tolerant multisensory electronic systems for hostile environments such as

nuclear plants and outer space within the constraints of cost, power and

flexibility.

 Chapter 9: Conclusion and Future Work

192

 Support Across Different FPGA Family: As identified above, FPGA

architecture is continually evolving, and this leads to changes in the

configuration bitstream format. Hence, techniques which are dependent on

specific formats of the bitstream is not directly applicable across different

device families. One way to address this limitation could be for FPGA

vendors such as Xilinx to standardize the configuration bitstream format so

that designs can be future proof by forecasting locations of essential bits. An

additional possibility is for FPGA designers to adopt the virtual bitstream

format recommended in [73] which makes tasks bitstream independent of

their location on the chip.

 Improving the scope of low power and functionality-based relocation

techniques: The wrapper for low task computation using memoization as

well as the relocation techniques presented in chapters 4 and 6 respectively

are practicable for only low port width applications because of the huge

memory requirement for applications with large port width. Future work

could explore the possibility of using data compression mechanisms to extend

the proposed technique to circuits with larger port widths. Fast data

compression algorithms which is targeted at in-memory data such as [125] is

worth investigating for this.

 External configuration for reliability:

To mitigate the effect of the configuration engine or the ICAP failing, it will

be important to extend the reliability of the configuration process by

implementing a fall-back configuration engine. A future work could explore

the implementation of an efficient configuration using an external processor

by extending techniques such as the one illustrated in [126]. The external

processor could be radiation hardened to reduce the chances of fault

occurrence on it.

 Performance Testing: Fault injection was used to test many of the

experiments presented in this thesis. As fault injection is not enough to reveal

all fault conditions, a future work for this project would be to carry out more

testing in actual hostile environments. It is expected such testing would be

 Chapter 9: Conclusion and Future Work

193

carried out in the next phase of the project using the existing collaboration

between the University of Edinburgh and NASA JPL.

194

References
[1] N. Desk, “Highest Growth Forecast for Electronics Components in Mil-Aero

Market,” EPS News, 13-Mar-2018. Retrieved from:

 https://epsnews.com/2018/03/13/highest-growth-forecast-electronics-

components-mil-aero-market/ [Accessed] May 25, 2018.

[2] C. Cullinan, C. Wyant, and T. Frattesi, “Computing Performance Benchmarks

among CPU, GPU, and FPGA.” 2012. Retrieved from

https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-

123508/unrestricted/Benchmarking_Final.pdf [Accessed] May 25, 2018.

[3] M. Vestias and H. Neto, “Trends of CPU, GPU and FPGA for high-

performance computing,” in 2014 24th International Conference on Field

Programmable Logic and Applications (FPL), 2014, pp. 1–6.

[4] The Economist “The rise of artificial intelligence is creating new variety in the

chip market, and trouble for Intel,” The Economist, 25-Feb-2017. Retrieved

from https://www.economist.com/business/2017/02/25/the-rise-of-artificial-

intelligence-is-creating-new-variety-in-the-chip-market-and-trouble-for-intel

[Accessed] May 25, 2018.

[5] M. Fagan, J. Schlachter, K. Yoshii, S. Leyffer, K. Palem, M. Snir, S. M. Wild,

and C. Enz, "Overcoming the power wall by exploiting inexactness and

emerging COTS architectural features: Trading precision for improving

application quality,” in 2016 29th IEEE International System-on-Chip

Conference (SOCC), 2016, pp. 241–246.

[6] A. Ebrahim, “Dynamic Partial Reconfiguration Management for High

Performance and Reliability in FPGAs,” PhD Thesis, University of Edinburgh,

United Kingdom, 2015.

[7] C. Märtin, “Multicore Processors: Challenges, Opportunities, Emerging

Trends,” in proc. Embedded World Conference 2014.

[8] X. Iturbe, Khaled Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, T.

Arslan, and J. Perez, ‘R3TOS: A novel reliable reconfigurable real-time

operating system for highly adaptive, efficient, and dependable computing on

FPGAs’, IEEE Trans. Comput., vol. 62, no. 8, pp. 1542–1556, Aug. 2013

[9] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new approach for on-

line placement on reconfigurable devices,” in Parallel and Distributed

Processing Symposium, 2004. Proceedings. 18th International, 2004, pp. 134-

140.

[10] F. Cornevaux-Juignet, M. Arzel, P. H. Horrein, T. Groléat, and C. Person,

“Open-source flexible packet parser for high data rate agile network probe,” in

2017 IEEE Conference on Communications and Network Security (CNS),

2017, pp. 610–618.

[11] L. D. Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio, “The Role

of CAD Frameworks in Heterogeneous FPGA-Based Cloud Systems,” in 2017

IEEE International Conference on Computer Design (ICCD), 2017, pp. 423–

426.

[12] A. Adetomi, G. Enemali, and T. Arslan, “Towards an efficient intellectual

property protection in dynamically reconfigurable FPGAs,” in 2017 Seventh

International Conference on Emerging Security Technologies (EST), 2017, pp.

150–156.

 References

195

[13] “Intel FPGA and SoC.” [Online]. Available: https://www.altera.com/.

[Accessed: 03-Jun-2018].

[14] X. Iturbe, D. Keymeulen, P. Yiu, D. Berisford, K. Hand, R. Carlson and E.

Ozer., “A Highly-Efficient, Adaptive and Fault-Tolerant SoC Implementation

of a Fourier Transform Spectrometer Data Processing,” in 2015 IEEE 23rd

Annual International Symposium on Field-Programmable Custom Computing

Machines, 2015, pp. 231–231.

[15] H. Chauhan, “Can Intel Dominate This Market by Overcoming This Smaller

Rival?,” The Motley Fool, 24-Nov-2017. [Online]. Available:

https://www.fool.com/investing/2017/11/24/can-intel-dominate-this-market-by-

overcoming-this.aspx. [Accessed: 19-Aug-2018].

[16] “Vivado High-Level Synthesis.” [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado/integration/esl-

design.html. [Accessed: 03-Jun-2018].

[17] “Intel® Quartus® Prime Software - Overview.” [Online]. Available:

https://www.altera.com/products/design-software/fpga-design/quartus-

prime/overview.html. [Accessed: 03-Jun-2018].

[18] M. Eckert, D. Meyer, J. Haase, and B. Klauer, “Operating System Concepts for

Reconfigurable Computing: Review and Survey,” International Journal of

Reconfigurable Computing, vol. 2016, pp. 11 - 22, 2016.

[19] X. Iturbe, A. Ebrahim, K. Benkrid, C. Hong, T. Arslan, J. Perez, D. Keymeulen,

M. D. Santambrogio, ‘R3TOS-Based autonomous fault-tolerant systems’, IEEE

Micro, vol. 34, no. 6, pp. 20–30, Nov. 2014.

[20] G. Brebner, “A virtual hardware operating system for the Xilinx XC6200,” in

Field-Programmable Logic Smart Applications, New Paradigms and Compilers,

vol. 1142, R. W. Hartenstein and M. Glesner, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1996, pp. 327–336.

[21] G. Enemali, A. Adetomi, and T. Arslan, “Expanding the un-usable area strategy

for improved utilization of reconfigurable FPGAs,” in 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 139–144.

[22] G. Enemali, A. Adetomi, and T. Arslan, “A placement management circuit for

efficient realtime hardware reuse on FPGAs targeting reliable autonomous

systems,” 2017, pp. 1–4.

[23] G. Enemali, A. Adewale, and T. Arslan, “FAReP: Fragmentation-Aware

Replacement Policy for Task Reuse on Reconfigurable FPGAs,” in 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), Orlando, 2017.

[24] G. Enemali, A. Adetomi, and T. Arslan, “A Functionality-Based Runtime

Relocation System for Circuits on Heterogeneous FPGAs,” IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 612–616, May

2018.

[25] G. Enemali, A. Adetomi, and T. Arslan, “Efficient Runtime Frame ECC

Recomputation for Reliable Task Execution on Xilinx FPGAs,” in 2018

NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

Edinburgh, 2018. In Press.

[26] A. Adetomi, G. Enemali, and T. Arslan, “Relocation-aware communication

network for circuits on Xilinx FPGAs,” in proc. of 2017 International

 References

196

Conference on Field-Programmable Logic and Applications (FPL), 2017, pp.

1–7.

[27] A. Adetomi, G. Enemali, and T. Arslan, “A fault-tolerant ICAP controller with

a selective-area soft error mitigation engine,” in 2017 NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), 2017, pp. 192–199.

[28] I. Kuon, R. Tessier, and Jonathan Rose, FPGA Architecture: Survey and

Challenges. Now Publishers Inc, 2008.

[29] L. Kechiche, L. Touil, and B. Ouni, “Toward the Implementation of an ASIC-

Like System on FPGA for Real-Time Video Processing with Power

Reduction,” International Journal of Reconfigurable Computing, 2018.

[Online]. Available: https://www.hindawi.com/journals/ijrc/2018/2843582/abs/.

[Accessed: 06-Mar-2019].

[30] P. Alfke, I. Bolsens, B. Carter, M. Santarini, and S. Trimberger, “It’s an

FPGA!,” IEEE Solid-State Circuits Mag., vol. 3, no. 4, pp. 15–20, Fall 2011.

[31] S. M. S. Trimberger, “Three Ages of FPGAs: A Retrospective on the First

Thirty Years of FPGA Technology,” IEEE Solid-State Circuits Mag., vol. 10,

no. 2, pp. 16–29, Spring 2018.

[32] R. Singh, “FPGA vs ASIC: Differences between them and which one to use? |

Numato Lab Help Center.” [Online]. Available:

https://numato.com/blog/differences-between-fpga-and-asics/. [Accessed: 27-

Feb-2019].

[33] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial Reconfiguration: A

Survey of Architectures, Methods, and Applications,” ACM Comput. Surv.,

vol. 51, no. 4, pp. 1–39, Jul. 2018.

[34] J. L. Nunes, “Improving the dependability of FPGA-based real-time embedded

systems with partial dynamic reconfiguration,” in 2013 43rd Annual IEEE/IFIP

Conference on Dependable Systems and Networks Workshop (DSN-W), 2013,

pp. 1–4.

[35] J. Vliegen. Partial and dynamic FPGA reconfiguration for security applications.

 PhD thesis, KU Leuven, 2014. Nele Mentens and Ingrid Verbauwhede

(promotors).

[36] I. Xilinx, “Vivado Design Suite User Guide: Partial Reconfiguration (UG909).”

2016.

[37] “Vivado Design Suite Tutorial: Partial Reconfiguration (UG947),” 2016.

[38] J. A. Clemente, J. Resano, C. Gonzalez, and D. Mozos, “A Hardware

Implementation of a Run-Time Scheduler for Reconfigurable Systems,” IEEE

Trans. Very Large Scale Integr. VLSI Syst., vol. 19, no. 7, pp. 1263–1276, Jul.

2011.

[39] I. Xilinx, “Partial Reconfiguration Controller.” 2018.

[40] A. Adetomi, G. Enemali, and T. Arslan, “Relocating Encrypted Partial

Bitstreams by Advance Task Address Loading,” in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 188–191.

[41] G. Bloom, B. Narahari, R. Simha, A. Namazi, and R. Levy, “FPGA SoC

architecture and runtime to prevent hardware Trojans from leaking secrets,” in

2015 IEEE International Symposium on Hardware Oriented Security and Trust

(HOST), 2015, pp. 48–51.

 References

197

[42] Z. Zhang, Q. Yu, L. Njilla, and C. Kamhoua, “FPGA-oriented moving target

defense against security threats from malicious FPGA tools,” in 2018 IEEE

International Symposium on Hardware Oriented Security and Trust (HOST),

2018, pp. 163–166.

[43] G. Wigley, D. Kearney, and others, “Research issues in operating systems for

reconfigurable computing,” in proceedings of the International Conference on

Engineering of Reconfigurable System and Algorithms (ERSA), 2002, pp. 10–

16.

[44] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable Computing

Architectures,” Proc. IEEE, vol. 103, no. 3, pp. 332–354, Mar. 2015.

[45] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and C.

Plessl, “ReconOS: An operating system approach for reconfigurable

computing,” IEEE Micro, vol. 34, no. 1, pp. 60–71.

[46] D. Gohringer, M. Hubner, E. N. Zeutebouo, and J. Becker, “CAP-OS:

Operating system for runtime scheduling, task mapping and resource

management on reconfigurable multiprocessor architectures,” in 2010 IEEE

International Symposium on Parallel Distributed Processing, Workshops and

Phd Forum (IPDPSW), 2010, pp. 1–8.

[47] K. Fleming, H.-J. Yang, M. Adler, and J. Emer, “The LEAP FPGA operating

system,” in 2014 24th International Conference on Field Programmable Logic

and Applications (FPL), 2014, pp. 1–8.

[48] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration framework for

FPGA accelerators,” in 2013 23rd International Conference on Field

programmable Logic and Applications, 2013, pp. 1–8.

[49] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos,

“Hardware Task Scheduling for Partially Reconfigurable FPGAs,” in Applied

Reconfigurable Computing, vol. 9040, K. Sano, D. Soudris, M. Hübner, and P.

C. Diniz, Eds. Cham: Springer International Publishing, 2015, pp. 487–498.

[50] Xilinx Inc, “7 Series FPGAs Data Sheet: Overview (DS180)”, 2018.

[51] Xilinx Inc, “7 Series FPGAs Configuration User Guide (UG470),” 2018.

[52] C. R. Julien, B. J. LaMeres, and R. J. Weber, “An FPGA-based radiation

tolerant SmallSat Computer System,” in 2017 IEEE Aerospace Conference,

2017, pp. 1–13.

[53] Xilinx Inc, “Device Reliability Report, Seconf Half 2017" (UG116),” 2018

[54] K. Vittala, M. Niamat, and S. Vemuru, “Early lifetime failure detection in

FPGAs using delay faults,” in NAECON 2014 - IEEE National Aerospace and

Electronics Conference, 2014, pp. 391–395.

[55] A. Amouri, F. Bruguier, S. Kiamehr, P. Benoit, L. Torres, and M. Tahoori,

“Aging effects in FPGAs: an experimental analysis,” in 2014 24th International

Conference on Field Programmable Logic and Applications (FPL), 2014, pp. 1–

4.

[56] I. Xilinx, “Soft Error Mitigation Controller v4.1 (PG036).” 2015.

[57] H. Michel, A. Belger, T. Lange, B. Fiethe, and H. Michalik, “Read back

scrubbing for SRAM FPGAs in a data processing unit for space instruments,” in

2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

2015, pp. 1–8.

 References

198

[58] Q. Martin and A. D. George, “Scrubbing optimization via availability

prediction (SOAP) for reconfigurable space computing,” in 2012 IEEE

Conference on High Performance Extreme Computing, 2012, pp. 1–6.

[59] M. Welter, “Demonstration of Soft Error Mitigation IP and Partial

Reconfiguration Capability on Monolithic Devices - XAPP1261 (v1.0)’.”

Xilinx Inc, 2015.

[60] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, A. T. Erdogan, and I. Martinez,

“Enabling FPGAs for future deep space exploration missions: Improving fault-

tolerance and computation density with R3TOS,” in 2011 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2011, pp. 104–112.

[61] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, “Methods and

Mechanisms for Hardware Multitasking: Executing and Synchronizing Fully

Relocatable Hardware Tasks in Xilinx FPGAs,” in 2011 21st International

Conference on Field Programmable Logic and Applications, 2011, pp. 295–

300.

[62] X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan, “Online clock

routing in Xilinx FPGAs for high-performance and reliability,” in 2012

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2012, pp.

85–91.

[63] X. Iturbe, K. Benkrid, Chuan Hong, A. Ebrahima, T. Arslan, and I. Martinez,

“Runtime Scheduling, Allocation, and Execution of Real-Time Hardware Tasks

onto Xilinx FPGAs Subject to Fault Occurrence,” Int. J. Reconfigurable

Comput., pp. 1–32, Jan. 2013.

[64] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement for

reconfigurable computing systems,” IEEE Des. Test Comput., vol. 17, no. 1,

pp. 68–83, Jan. 2000.

[65] E. Lubbers and M. Platzner, “ReconOS: An RTOS Supporting Hard-and

Software Threads,” in 2007 International Conference on Field Programmable

Logic and Applications, 2007, pp. 441–446.

[66] D. Andrews and M. Platzner, “Programming models for reconfigurable

manycore systems,” in 2016 11th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), 2016, pp. 1–8.

[67] D. Göhringer, M. Hübner, L. Hugot-Derville, and J. Becker, “Message Passing

Interface support for the runtime adaptive multi-processor system-on-chip

RAMPSoC,” in Modeling and Simulation 2010 International Conference on

Embedded Computer Systems: Architectures, 2010, pp. 357–364.

[68] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory of

latency-insensitive design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[69] C. Beckhoff, D. Koch, and J. Torresen, “Go Ahead: A Partial Reconfiguration

Framework,” in 2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines, 2012, pp. 37–44.

[70] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “A low fragmentation heuristic

for task placement in 2D RTR HW management,” Field Program. Log. Appl.,

pp. 241–250, 2004.

 References

199

[71] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “Allocation heuristics and

defragmentation measures for reconfigurable systems management,” Integr.

VLSI J., vol. 41, no. 2, pp. 281–296, 2008.

[72] J. Septien, D. Mozos, H. Mecha, J. Tabero, and M. A. G. de Dios, “Perimeter

quadrature-based metric for estimating FPGA fragmentation in 2D HW

multitasking,” in 2008 IEEE International Symposium on Parallel and

Distributed Processing, 2008, pp. 1–8.

[73] Q.-H. Khuat, D. Chillet, and M. Hubner, “Considering reconfiguration

overhead in scheduling of dependent tasks on 2D reconfigurable FPGA,” in

2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

2014, pp. 1–8.

[74] M. Koester, M. Porrmann, and H. Kalte, “Task placement for heterogeneous

reconfigurable architectures,” in Field-Programmable Technology, 2005.

Proceedings. 2005 IEEE International Conference on, 2005, pp. 43–50.

[75] T. Becker, W. Luk, and P. Y. Cheung, “Enhancing relocatability of partial

bitstreams for run-time reconfiguration,” in Field-Programmable Custom

Computing Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on,

2007, pp. 35–44.

[76] M. Koester, W. Luk, J. Hagemeyer, and M. Porrmann, “Design optimizations to

improve placeability of partial reconfiguration modules,” in Proceedings of the

Conference on Design, Automation and Test in Europe, 2009, pp. 976–981.

[77] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruckert, “Design

Optimizations for Tiled Partially Reconfigurable Systems,” IEEE Trans. Very

Large Scale Integr. VLSI Syst., vol. 19, no. 6, pp. 1048–1061, Jun. 2011.

[78] A. Ejnioui and R. F. DeMara, “Area Reclamation Strategies and Metrics for

SRAM-Based Reconfigurable Devices.,” in Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA’05), 2005, pp. 196–202.

[79] M. Handa and R. Vemuri, “Area Fragmentation in Recon?gurable Operating

Systems,” In Proc. of the International Conference on Engineering of

Reconfigurable Systems and Algorithms. CSREA Press, Jun. 2004.

[80] A. Ebrahim, T. Arslan, and X. Iturbe, “On enhancing the reliability of internal

configuration controllers in FPGAs,” in 2014 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2014, pp. 83–88.

[81] Y. Lu, K. Bertels, and G. Gaydadjiev, “Efficient hardware task reuse and

interrupt handling mechanisms for FPGA-based partially reconfigurable

systems,” in 2010 International Conference on Field-Programmable

Technology, 2010, pp. 324–327.

[82] A. Morales-Villanueva, R. Kumar, and A. Gordon-Ross, “Configuration

prefetching and reuse for preemptive hardware multitasking on partially

reconfigurable FPGAs,” in 2016 Design, Automation Test in Europe

Conference Exhibition (DATE), 2016, pp. 1505–1508.

[83] A. Lifa, P. Eles, and Z. Peng, “Minimization of average execution time based

on speculative FPGA configuration prefetch,” in 2012 International Conference

on Reconfigurable Computing and FPGAs, 2012, pp. 1–8.

 References

200

[84] Z. Li, K. Compton, and S. Hauck, “Configuration caching management

techniques for reconfigurable computing,” in Field-Programmable Custom

Computing Machines, 2000 IEEE Symposium on, 2000, pp. 22–36.

[85] K. Sigdel, C. Galuzzi, K. Bertels, M. Thompso, and A. D. Pimentel, “Runtime

task mapping based on hardware configuration reuse,” in Reconfigurable

Computing and FPGAs (ReConFig), 2010 International Conference on, 2010,

pp. 25–30.

[86] M. Mansub Bassiri and H. Shahriar Shahhoseini, “Configuration Reusing in

On-Line Task Scheduling for Reconfigurable Computing Systems,” J. Comput.

Sci. Technol., vol. 26, no. 3, pp. 463–473, May 2011.

[87] J. A. Clemente, D. Mozos, and J. Resano, “A Replacement Technique to

Maximize Task Reuse in Reconfigurable Systems,” in 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and Phd Forum,

2011, pp. 250–257.

[88] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck, “Configuration relocation

and defragmentation for run-time reconfigurable computing,” IEEE Trans. Very

Large Scale Integr. VLSI Syst., vol. 10, no. 3, pp. 209–220, Jun. 2002.

[89] C. Schuck, B. Haetzer, M. Hubner, and J. Becker, “Online Routing of FPGA

Clock Networks for Module Relocation in Partial Reconfigurable Multi Clock

Designs,” 2011, pp. 181–188.

[90] Y. Wu, S. Thomson, H. Sun, D. Krause, S. Yu, and G. Kurio, “Free Razor: A

Novel Voltage Scaling Low-Power Technique for Large SoC Designs,” IEEE

Trans. Very Large Scale Integr. VLSI Syst., vol. 23, no. 11, pp. 2431–2437,

Nov. 2015.

[91] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, “Energy-

efficient approximate multiplier design using bit significance-driven logic

compression,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2017, 2017, pp. 7–12.

[92] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality tradeoff

using imprecise hardware,” in DAC Design Automation Conference 2012,

2012, pp. 504–509.

[93] Altera, “Reducing Power Consumption and Increasing Bandwidth on 28-nm

FPGAs.” Retrieved from https://www.intel.com/content/dam/altera-

www/global/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf.

Accessed 26 Sept 2017.

[94] A. Nafkha and Y. Louet, “Accurate measurement of power consumption

overhead during FPGA dynamic partial reconfiguration,” in 2016 International

Symposium on Wireless Communication Systems (ISWCS), 2016, pp. 586–

591.

[95] I. Xilinx, “7 Series FPGAs Memory Resources.” 2016.

[96] J. L. Nunez-Yanez, “Adaptive Voltage Scaling with In-Situ Detectors in

Commercial FPGAs,” IEEE Trans. Comput., vol. 64, no. 1, pp. 45–53, Jan.

2015.

[97] H. Qi, O. Ayorinde, and B. Calhoun, “An Energy-Efficient Near/Sub-Threshold

FPGA Interconnect Architecture Using Dynamic Voltage Scaling and Power-

Gating,” in International Conference on Field-Programmable Technology

(FPT), China, 2016, pp. 20–27.

 References

201

[98] H. Park, S. Vijayvargiya, and A. DeHon, “Energy minimization in the time-

space continuum,” in 2015 International Conference on Field Programmable

Technology (FPT), Queenstown, New Zealand, 2015, pp. 64–71.

[99] C. Alvarez, J. Corbal, and M. Valero, “Dynamic Tolerance Region Computing

for Multimedia,” IEEE Trans. Comput., vol. 61, no. 5, pp. 650–665, May 2012.

[100] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for

automated behavioral synthesis of approximate computing circuits,” in 2014

Design, Automation Test in Europe Conference Exhibition (DATE), 2014, pp.

1–6.

[101] S. Sinha and W. Zhang, “Low-Power FPGA Design Using Memoization-

Based Approximate Computing,” IEEE Trans. Very Large Scale Integr. VLSI

Syst., vol. 24, no. 8, pp. 2665–2678, Aug. 2016.

[102] F. Khalvati and M. D. Aagaard, “Window memoization: an efficient

hardware architecture for high-performance image processing,” J. Real-Time

Image Process., vol. 5, no. 3, pp. 195–212, Sep. 2010.

[103] M. Gort and J. Anderson, “Design re-use for compile time reduction in FPGA

high-level synthesis flows,” in 2014 International Conference on Field-

Programmable Technology (FPT), 2014, pp. 4–11.

[104] I. Xilinx, “CORDIC v6. 0 LogiCORE IP Product Guide.” 2017.

[105] X. Iturbe, D. Keymeulen, P. Yiu, D. Berisford, K. Hand, R. Carlson and E.

Ozer, “Towards a generic and adaptive System-on-Chip controller for space

exploration instrumentation,” in 2015 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), 2015, pp. 1–8.

[106] I. Xilinx, “7 Series FPGAs Configurable Logic Block User Guide (UG474).”

2016.

[107] I. Xilinx, “Partial Reconfiguration User Guide.” 2013.

[108] A. Adetomi, G. Enemali, and T. Arslan, “Clock Buffers, Nets, and Trees for

On-Chip Communication: A Novel Network Access Technique in FPGAs,” in

2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 219–222.

[109] A. Adetomi, G. Enemali, and T. Arslan, “Characterization of Clock Buffers

for On-Chip Inter-Circuit Communication in Xilinx FPGAs,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[110] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and

characterization of inherent application resilience for approximate computing,”

2013, p. 1.

[111] S. Joseph and K. Baskaran, “Performance analysis of various fragmentation

techniques in runtime partially reconfigurable FPGA,” Int. J. Comput. Appl.,

vol. 94, no. 8, 2014.

[112] F. Dittmann and S. Frank, “Hard Real-Time Reconfiguration Port

Scheduling,” in Automation Test in Europe Conference Exhibition 2007

Design, 2007, pp. 1–6.

[113] M. Walter, “Demonstration of Soft Error Mitigation IP and Partial

Reconfiguration Capability on Monolithic Devices.” Jun-2015.

[114] A. DeHon and S. Hauck, Reconfigurable Computing: Theory and Practice of

FPGA based computation. Amsterdam: Morgan Kaufmann, 2008.

 References

202

[115] L. Kirischian, V. Kirischian, and D. Sharma, “Mitigation of Thermo-cycling

effects in Flip-chip FPGA-based Space-borne Systems by Cyclic On-chip Task

Relocation,” in 2018 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), 2018, 2018.

[116] A. Lalevée, P. H. Horrein, M. Arzel, M. Hübner, and S. Vaton, “AutoReloc:

Automated Design Flow for Bitstream Relocation on Xilinx FPGAs,” in 2016

Euromicro Conference on Digital System Design (DSD), 2016, pp. 14–21.

[117] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 203–215,

Feb. 2007.

[118] H. T. Nguyen, X. T. Nguyen, and C. K. Pham, “A Low-Power Hybrid

Adaptive CORDIC,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no.

4, pp. 496–500, Apr. 2018.

[119] Xilinx, “RGB to YCrCb Color-Space Converter v7.1 LogiCORE IP Product

Guide.” 2015.

[120] Xilinx, “Multiplier v12.0 LogiCORE IP Product Guide.” 2015.

[121] A. Adetomi, G. Enemali, and T. Arslan, “R3TOS-Based Integrated Modular

Space Avionics for On-Board Real-Time Data Processing,” in 2018

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018,

Edinburgh, 2018. In press

[122] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-assisted fast routing,” in

Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2002, pp. 205–215.

[123] C. E. Warren, D. P. Schultz, and S. P. Young, “Error checking parity and

syndrome of a block of data with relocated parity bits,” US12188935, 2008.

[124] J. A. Clemente, E. P. Ramo, J. Resano, D. Mozos, and F. Catthoor,

“Configuration Mapping Algorithms to Reduce Energy and Time

Reconfiguration Overheads in Reconfigurable Systems,” IEEE Trans. Very

Large Scale Integr. VLSI Syst., vol. 22, no. 6, pp. 1248–1261, Jun. 2014.

[125] S.-J. Kwon, S.-H. Kim, H.-J. Kim, and J.-S. Kim, “LZ4m: A fast

compression algorithm for in-memory data,” in 2017 IEEE International

Conference on Consumer Electronics (ICCE), 2017, pp. 420–423.

[126] M. Nielson, “Using a Microprocessor to Configure 7 Series FPGAs via Slave

Serial or Slave SelectMAP Mode,” Xilinx ® 2012.

	cover sheet
	PhDThesisEnemaliGodwin

