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Abstract  

Designing high-performance, fault-tolerant multisensory electronic systems for 

hostile environments such as nuclear plants and outer space within the constraints of 

cost, power and flexibility is challenging. Issues such as ionizing radiation, extreme 

temperature and ageing can lead to faults in the electronics of these systems. In 

addition, the remote nature of these environments demands a level of flexibility and 

autonomy in their operations. The standard practice of using specially hardened 

electronic devices for such systems is not only very expensive but also has limited 

flexibility.  

This thesis proposes novel techniques that promote the use of Commercial Off-The-

Shelf (COTS) reconfigurable devices to meet the challenges of high-performance 

systems for hostile environments. Reconfigurable hardware such as Field 

Programmable Gate Arrays (FPGA) have a unique combination of flexibility and 

high performance. The flexibility offered through features such as dynamic partial 

reconfiguration (DPR) can be harnessed not only to achieve cost-effective designs as 

a smaller area can be used to execute multiple tasks, but also to improve the 

reliability of a system as a circuit on one portion of the device can be physically 

relocated to another portion in the case of fault occurrence. However, to harness 

these potentials for high performance and reliability in a cost-effective manner, novel 

runtime management tools are required. Most runtime support tools for 

reconfigurable devices are based on ideal models which do not adequately consider 

the limitations of realistic FPGAs, in particular modern FPGAs which are 

increasingly heterogeneous. Specifically, these tools lack efficient mechanisms for 

ensuring a high utilization of FPGA resources, including the FPGA area and the 

configuration port and clocking resources, in a reliable manner. 

To ensure high utilization of reconfigurable device area, placement management is a 

key aspect of these tools. This thesis presents novel techniques for the management 

of hardware task placement on COTS reconfigurable devices for high performance 

and reliability. To this end, it addresses design-time issues that affect efficient 

hardware task placement, with a focus on reliability. It also presents techniques to 
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maximize the utilization of the FPGA area in runtime, including techniques to 

minimize fragmentation. Fragmentation leads to the creation of unusable areas due to 

dynamic placement of tasks and the heterogeneity of the resources on the chip. 

Moreover, this thesis also presents an efficient task reuse mechanism to improve the 

availability of the internal configuration infrastructure of the FPGA for critical 

responsibilities like error mitigation. The task reuse scheme, unlike previous 

approaches, also improves the utilization of the chip area by offering 

defragmentation. 

Task relocation, which involves changing the physical location of circuits is a 

technique for error mitigation and high performance. Hence, this thesis also provides 

a functionality-based relocation mechanism for improving the number of locations to 

which tasks can be relocated on heterogeneous FPGAs. As tasks are relocated, clock 

networks need to be routed to them. As such, a reliability-aware technique of clock 

network routing to tasks after placement is also proposed.  

Finally, this thesis offers a prototype implementation and characterization of a 

placement management system (PMS) which is an integration of the aforementioned 

techniques. The performance of most of the proposed techniques are tested using 

data processing tasks of a NASA JPL spectrometer application. The results show that 

the proposed techniques have potentials to improve the reliability and performance of 

applications in hostile environment compared to state-of-the-art techniques. The task 

optimization technique presented leads to better capacity to circumvent permanent 

faults on COTS FPGAs compared to state-of-the-art approaches (48.6% more errors 

were circumvented for the JPL spectrometer application). The proposed task reuse 

scheme leads to approximately 29% saving in the amount of configuration time. This 

frees up the internal configuration interface for more error mitigation operations. In 

addition, the proposed PMS has a worst-case latency of less than 50% of that of state-

of-the-art runtime placement systems, while maintaining the same level of placement 

quality and resource overhead.  
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Chapter 1: Introduction 
 

Future space systems, robots for nuclear plants and other critical applications as well 

as general embedded systems have a wide range of constraints which their 

electronics need to meet. These constraints including reliability, low power, 

flexibility, area constraints and cost have continued to drive the growth of the 

electronics industry. This growth has been unprecedented, finding applications in 

varied aspects of human life, and changing the way we live, interact and work over 

the last few decades. The growth of electronic components in many fields, including 

aerospace, is projected not only to be sustained but anticipated to witness the highest 

growth among other component types over the next five years [1]. The sustenance of 

the growth in the electronics industry is largely driven by the desire for faster 

computing capability within these constraints. To meet these constraints, many 

research efforts are targeted at new computing architectures and hardware platforms.  

The main computing hardware platforms including processors, reconfigurable 

hardware such as Field-Programmable Gate Arrays (FPGAs) and Application 

Specific Integrated Circuits (ASICs) provides varying degree of solution to the 

constraints above [2], [3]. A significant amount of computing is done on processor 

platforms, mostly general purpose processors (GPPs). Processors have the highest 

level of flexibility among the computing platforms identified above, thus making 

them appliable in a wide range of applications. In addition, the aboundant tool 

support for GPPs, mostly in the form of operating systems (OS), compilers, libraries 

and the relative ease with which programmes targeted at GPPs can be written have 

helped to increase the productivity of GPP-based computers.  It remains the most 

dominant computing platform by far as every server needs them and numberless 

applications are written to run on them [4]. However, alternative processing 

platforms are increasingly gaining attention due to new applications domains such as 

artificial intelligence. Other requirements of electronic equipments especially 

reliability for systems in hostile environents, low power and high performance are 

also major reasons for developers to consider other computing platforms. 
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GPPs are fundamentally sequential elements which are based on a repetitive 

execution of fetch-decode-execute cycles of a stored programe. Thus improving the 

speed of processing is achieved either by increasing clock frequency or by using 

multiple processors. Although modern fabrication technology makes it possible to 

reduce the dimention of transistors, which in theory could mean that they could be 

driven at higher freqencies, there is a limitation as to the maximum operating 

frequency to which transisitors can operate because of the problem of heat extraction. 

This leads to the so called power wall [5]. On the otherhand, while using multicore 

processors means that multiple instructions could be executed in parallel, their 

performance is dependent on a variety of factors. These include: the ability to 

parallelise the application at hand effectively [6], efficient management of the 

possibility of increasing percentages of dark or dim silicon and the effect of Amdel’s 

law on multicore architectures and workloads [7].  

Due to their flexibility, GPPs are generally targeted at general applications, and may 

not provide sufficient low power, high performance and adequate reliability 

especially for hostile environments. Many reseachers foresee a more heterogenous 

computing platform to meet these challenges, depending on the application [7]. The 

challenge of reliability of the hardware design is an important one in the context of 

this thesis. Thus, it is important to state that GPPs do not have an adequate means of 

managing damage to the underlying silicon on which they are built. 

Application Specific Integrated Circuits (ASICs) provide certain advantages in 

certain domains compared to GPPs. Custom ASICs have much higher throughput 

and low power compared to processors as they are fine-tunned to the targeted 

application. Example of ASICs include Graphics Processing Units (GPUs) which are 

optimized for targeted applications in the domain of image procesing, and Digital 

Signal Processors (DSPs) which target a wide variety of signal processing 

applications. In practice, these ASICs often operate in conjuction with GPPs. In a 

sharp constrast to GPPs, ASICs do not have a high level of flexibility. Thus, the set 

of applications they handle is significantly less than GPPs. 
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While ASICs have inherent potentials to have low power and high performance, their 

lack of flexibility is a huge disadvantage. Due to this lack of flexibility and the 

increasing cost of fabrication process, ASICs are very expensive and are mostly 

deployed for large scale applications so that they can benefit from the economy of 

scale. In addition, like GPPs, their capability to deal with damage to their underlying 

hardware is also limited. For critical applications, special hardening techniques are 

use to improve the relaibility of ASICs. This further adds to the cost of an already 

expensive technology. 

Reconfigurable hardware occupies a middle ground, both interms of flexibility and 

performance, between GPPs and ASICs. Reconfigurable hardware such as FPGAs 

have a unique combination of flexibility and high performance. Although their 

flexibility is lower than GPPs and their performance and power efficiency lower than 

ASICs, their unique combination of these features make them applicable to various 

applications in a way which neither GPPs nor ASICs can. With FPGAs, an 

application can be easily updated even from a remote location without having to take 

down the system. 

Reconfigurable hardware has stood in between conventional processors and ASICs 

for decades. However, their degree of flexibility, which is enabled by their 

reconfiguration capability, has continually improved. An example of this is the 

introduction of partial reconfiguration in FPGAs. This has further positioned them 

closer to processors in terms of flexibility and versatility. Partial reconfiguration 

allows the behaviour (of part) of a chip to be redefined without interfering with the 

normal operation of the other parts of the chip. In addition, this can be done in 

runtime while the other applications continue to operate. This is called Dynamic 

Partial Reconfiguration (DPR). Hence, it is possible to swap hardware tasks (circuits) 

in and out of the chip, and effectively turning it into a platform which can both be 

time and area-shared among multiple tasks [8], [9] in runtime. 

FPGAs were traditionally used for prototyping ASIC designs; however, their 

improved flexibility and performance have contributed to making them being 

harnessed for runtime applications just like GPPs and ASICs. Big player like amazon 
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and Intel have included FPGAs in their products and services. Amazon uses FPGAs 

for cloud computing [10], [11], [12] while intel has become a key player in the 

FPGAs industry with their purchase of Altera [13]. These points to the growing 

potentials of FPGAs in the electronics industry. 

One of the special interests in the context this thesis is that the flexibility offered by 

Commercial Off-The-Shelf (COTS) FPGAs can be applied to mitigating both 

transient and permanent faults in critical applications [14] while still maintaining high 

performance. Techniques have been presented which correct transient faults by 

reconfiguration and permanent faults by relocation [8]. Relocation to circumvent 

parmanet damage is an advantage of FPGAs that GPPs and AISCs are yet to provide 

an equivalence for in their current architecture. 

In terms of the application design process, GPPs have remained the most attractive 

platform, compared to ASICs and FPGAs. The long years of investment in the 

development of design tools targeted at GPPs as well as the wealth of knowledge 

application developers have amassed in the use of these tools are important reasons 

for the ease of developing applications for processors. Tools for developing 

applications for GPPs are far more developed than those for FPGAs. This is a reason 

why many application developers prefer GPPs for some applications which could 

have benefitted more from the capabilities of FPGAs. In addition to this, productivity, 

skill and as well as price are other reasons why GPPs are preferred to FPGAs. GPPs 

design tools are well developed with numerous operating system support, compilers 

and libraries.  

Although FPGAs tools are nowhere close to the GPPs tools, there have been rapid 

developmental trends in the tools for FPGA platforms. The number of design 

automation tools have consistently increased in recent years, with support both from 

the industry and the academia. This is evident with respect to the industry as Xilinx 

(who own the largest market share of the FPGA market [15]) has continually invested 

in design tool chain. An example is the developments in the Vivado Integrated Design 

Environment (IDE), as well as continually increasing their library of IPs which users 

can simply integrate into designs. In addition to these, there is a growing research to 

support High Level Synthesis (HLS) by Xilinx chain of tools [16] with commercial 
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products already available. Another example of industry growing tool support is the 

recent Intel® Quartus® Prime software [17] for developing application targeted at 

Intel FPGAs. 

 In addition to the growing industry tools, many academic efforts aim to provide 

resources that facilitate the use of FPGAs, both at design time and runtime [18]. Many 

of these take the industrial devices beyond the traditional support offered by the 

industry tools, and some aim to improve the versatility of FPGAs by supporting 

COTS FPGAs for critical applications [19]. Tools for COTS FPGAs for critical 

application has the potential of significantly lowering the cost of these critical 

applications in contrast to developing special parts for them. 

The idea of operating system support for FPGAs was first envisioned over 2 decades 

ago [20] and it is generally agreed that reconfigurable operating system (ROS) would 

revolutionize the entire FPGA industry. However, a lot of research, both on the FPGA 

hardware platforms themselves as well as the design and implementation of 

algorithms to harness the potentials of the platform, is required to actualize the dream. 

State-of-the-art ROSes have not yet reached a stage where reconfigurable computing 

can appeal to many application designers even when it is obvious that they have better 

performance and/or cost benefits than GPPs and custom ASICs.  

More research effort is required to develop efficient and user-friendly ROS for FPGA 

platforms. There are many fundamental aspects of an ROS that need to be addressed 

to make ROS more popular. In particular, the lack of efficient and generic runtime 

tools to manage the placement of hardware circuits (called hardware tasks) on the 

FPGA limits the efficiency and adoption of ROS in many scenarios. The main aim of 

this thesis is to develop a runtime placement management system for ROS targeting 

high performance and reliability. The thesis explores a wide range of issues relating to 

runtime placement management on FPGAs, including design time optimization of 

hardware tasks to enhance their place-ability in runtime, efficient and robust 

fragmentation minimization techniques in the placement of tasks on COTS FPGAs, 

achieving low time overhead defragmentation on state-of-the-art FPGAs within the 

context of their relatively large reconfiguration time, relocation of hardware tasks on 

FPGA platforms, providing access to clock nets at the right clock frequency during 
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runtime placement of tasks while ensuring that the placement process does not impact 

on the performance and reliability of a design. The techniques proposed in this thesis 

uses Xilinx FPGAs are case studies since Xilinx has the largest share of the FPGA 

market [15] 

 

1.1 Thesis Objectives   

The primary objective of this thesis is to design and implement efficient placement 

management techniques for reconfigurable computing targeting high performance 

and reliability. It aims to develop generic routines and procedures as well as provide 

their implementation strategies that can be integrated into the design of efficient ROS 

on COTS FPGAs platforms for different applications. The specific objectives of the 

research presented in this thesis are as follows:  

i) To develop an efficient design-time optimization strategy for hardware tasks 

with a view of enhancing their place-ability on reconfigurable hardware in 

runtime. 

ii) To design and implement efficient and robust fragmentation minimization 

techniques in the placement of tasks on COTS FPGAs, and comparing these 

to state-of-the-art fragmentation minimization mechanisms. 

iii) To implement hardware task reuse strategies to circumvent the relatively 

large reconfiguration time of COTS FPGA using a fragmentation-aware task 

replacement policy 

iv) To develop novel techniques for improving the relocation of hardware tasks 

on FPGA platforms 

v) To integrate mechanism of providing access to clock nets at the right clock 

frequency to hardware tasks placed in runtime while ensuring that the process 

does not impact on the performance and reliability of the design. 

vi) To provide an implementation case study of a placement management system 

for ROS based on ii) to v). 
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1.2 Summary of Novelty and Contribution 

The first contribution of this thesis is the development of an offline optimization flow 

that aims to improve the number and distribution of task placement locations on the 

FPGA in runtime [21]. With the increase in the degree of heterogeneity of COTS 

FPGA, the technique leads to a reduction in the incidence of overlapping locations for 

tasks in runtime scenario even when the execution order of the tasks is not known at 

design time. Moreover, the minimization of the variance in the number of potential 

matching locations ensure that some application components are not denied placement 

while others have abundant locations, leading to a pre-mature failure of the 

application. The proposed optimization technique leads to greater reliability in 

applications where relocation technique is used to circumvent permanent damage on 

the chip. 

The second contribution of this thesis is the presentation of a task reuse mechanism on 

COTS FPGAs to circumvent their large reconfiguration overhead in runtime 

applications [22]. The reuse mechanism is based on a novel replacement policy which 

not only aim to preserve tasks with large configuration overhead on the chip, but also 

uses each task replacement window to offer some defragmentation of the FPGA area 

[23].  

In addition, an efficient fragmentation quantification technique suited to 

heterogeneous FPGA platforms is developed. The aim of the fragmentation metric is 

to address the limitation in heterogeneous FPGAs where matching locations for tasks 

are not guaranteed to be found at the border of existing placements or the border of 

the chip as is the case on homogenous FPGAs. This was reported as part of [23]. In 

addition, a technique called Expanding the unusable Area Scheme (EUAS) is also 

presented to further improve chip area utilization and to circumvent the creation of 

unusable areas due to the heterogeneous nature of the chip is also presented and 

reported in [21]. 

The fourth contribution in the thesis is functionality-based runtime relocation 

technique for hardware tasks on heterogeneous FPGAs [24]. The technique is used to 
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augment direct bitstream relocation techniques by replacing the functionality of 

certain tasks by a look-up-table (or memory). This makes it possible for them to be 

placed on locations which does not match the original task’s bitstream due to the 

heterogeneous nature of COTS FPGA. Hardware task relocation is a beneficial 

technique in reconfigurable computing which can potentially be applied to 

circumvent permanent faults on the chip, achieve defragmentation and load 

balancing. Thus, the proposed technique which improves the number of possible 

relocations of tasks on COTS FPGA enables ROS to potentially improve the 

reliability and performance of applications. 

The final major contribution of this thesis is an efficient and reliable runtime clock 

network delivery technique to hardware tasks placed in runtime [25]. The technique 

is resource efficient as it is done through the configuration layer of the FPGA. This is 

necessary to support the runtime placement of tasks on any matching location on the 

FPGA. To this end the architecture of the configuration bitstream was studied and 

key control bits for clock net routing were identified. Furthermore, to avoid 

jeopardizing the reliability of the system in the process of editing configuration 

bitstream, a runtime frame error correcting code (Frame ECC) re-computation 

controller is implemented to re-compute Frame ECC values after edits in such a 

manner as not to impact the performance of the system. 

Lastly, the techniques developed in the thesis are integrated into an implementation 

of a prototype placement management system to show their practicability. The 

performance of most of the proposed techniques are tested using data processing 

tasks of a NASA JPL spectrometer application. The results show that the proposed 

techniques lead to improvement in the reliability and performance of applications for 

hostile environment over state-of-the-art techniques. Hence, they have potentials to 

contribute to the design of low-cost, high-performance, fault-tolerant multisensory 

electronic systems for hostile environments such as nuclear plants and outer space. 

It is important to note that the work presented in this thesis is part of a larger effort at 

the Ewireless Research Group, University of Edinburgh aimed at developing a 

reliable real-time operating system for COTS FPGAs. Therefore, it is necessary to 
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acknowledge the contribution of Adewale Adetomi who developed and implemented 

a flexible communication infrastructure that supports dynamic placement and 

relocation of hardware tasks without the need for pre-defined partitions [26]. The 

communication mechanism is necessary to support the generic placement techniques 

presented in this thesis. In addition, he also designed and implemented a 

configuration controller which is used both for configuring tasks on the FPGA after 

placement decisions and also for soft error mitigation techniques [27]. However, the 

reverse engineering experiments carried out as part of this thesis were used in the 

design and implementation of the configuration controller. The configuration 

controller is used for the relocation technique presented in chapter 6 to coordinate the 

copying of data through the configuration memory. It is also used in chapter 8 in the 

online routing of clock nets to newly placed tasks.  
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  1.3 Publications Arising from Thesis 

The following are the publications which have been drawn from the research work 

contained in this thesis: 

Journals 

G. Enemali, A. Adetomi, G. Seetharaman and T. Arslan, “A Functionality-Based 

Runtime Relocation System for Circuits on Heterogeneous FPGAs,” IEEE 

Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 612–616, 

May 2018. 

Conferences 

G. Enemali, A. Adetomi, and T. Arslan, "FAReP: Fragmentation-Aware 

Replacement Policy for Task Reuse on Reconfigurable FPGAs", in 2017 IEEE 

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 

2017, pp. 202 – 206, 10.1109/IPDPSW.2017.153. 

G. Enemali, A. Adetomi, and T. Arslan, "A Placement Management Circuit for 

Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable Autonomous 

Systems", in 2017 IEEE International Symposium on Circuit and Systems (ISCAS 

2017), 2017, pp. 2030 – 2033, 10.1109/ISCAS.2017.8050796 

G. Enemali, A. Adetomi, and T. Arslan, "Expanding the Un-usable Area Strategy 

for Improved Utilization of Reconfigurable FPGAs", in 2017 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2017, 

10.1109/AHS.2017.8046370. 

G. Enemali, A. Adetomi, and T. Arslan, "Efficient Runtime Frame ECC Re-

computation for Reliable Task Execution on Xilinx FPGAs ", in 2018 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2018, pp. 59 – 65. 

10.1109/AHS.2018.8541471 

A. Adetomi, G. Enemali, and T. Arslan, "Relocation-Aware Communication 

Network for Circuits on Xilinx FPGAs”, in 2017 International Conference on Field 
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Programmable Logic and Applications (FPL), 2017, pp. 1-7, 

10.23919/FPL.2017.8056818. 

A. Adetomi, G. Enemali, and T. Arslan, "A Fault-Tolerant ICAP Controller with a 

Selective-Area Soft Error Mitigation Engine", in 2017 NASA/ESA Conference on 

Adaptive Hardware and Systems (AHS), 2017, pp. 192-199, 

10.1109/AHS.2017.8046378. 

A. Adetomi, G. Enemali, and T. Arslan, “R3TOS-Based Integrated Modular Space 

Avionics for On-Board Real-Time Data Processing,” in 2018 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2018. Pp. 1- 8. 

10.1109/AHS.2018.8541369 
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1.4 Thesis Outline 

This thesis is organized in nine chapters. In this chapter, an introduction to the use of 

FPGAs in electronics and computing devices as well as the contribution and aim of 

the thesis have been presented. The remainder of this thesis is organized as follows: 

 

Chapter 2: Introduction to Dynamic Partial Reconfiguration Reliability and Clocking 

Infrastructure on FPGAs  

This chapter presents background information relating to dynamic partial 

reconfiguration as well as a review of comercial tools to harness the potentials of 

DPR. The chapter also gives relevant background information on reliability isues in 

FPGAs. The clocking infrastructure of FPGAs that enable clock network delivery in 

circuits in runtime is also reviewed.  

 

Chapter 3: Runtime Placement Management and Low Power Computation on FPGAs 

A review of related research efforts at developing reconfigurable computing tools to 

harness the potentials of DPR for high performance and reliability in applications 

beyond the capabilities offered by comercial tools is presented in the chapter. The 

focus of the chapter is on placement management as a key part of reconfigurable 

computing tools, thus a review of the relevenat research work on runtime placment 

of hardware tasks on FPGAs is presented. The three aspects of placement 

management reviewed include: managing the FPGA area for efficient utilization, 

configuration overhead management in runtime placement systems and runtime 

clock routing to tasks after placement. In addition, the chapter also reviews the 

methods of power consumption minimization on FPGAs. 

 

Chapter 4: Offline Design Optimization for Efficient Runtime Placement and 

Reliability 

Design-time optimization techniques aimed at improving the performance of the 

hardware tasks in runtime is presented in this chapter. A series of optimization steps 
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is presented that transforms an RTL design into optimized partial bitstreams with a 

selection of synthesis locations for the tasks that ensures an optimal number and 

distribution of placement location for constituent tasks. With these optimizations, the 

reliability of applications is improved. In addition, an optional technique for 

achieving low power computation based on memoization is proposed for tasks with 

low port width. 

 

Chapter 5: Runtime Placement on FPGAs for High Performance and Reliability 

This chapter focuses on the runtime phase of placement management for high 

performance and reliability. It gives the details of techniques in efficient runtime task 

placement on heterogeneous COTS FPGAs. The techniques include a novel 

fragmentation quantification and efficient task reuse techniques. The fragmentation 

quantification technique is based on measuring the isolation of an area of the chip 

that can be potentially occupied by hardware tasks and aims to select task placement 

locations to minimize the fragmentation of the chip area. In addition, a task reuse 

mechanism is presentation that circumvent configuration of certain tasks to reduce 

the workload of the configuration engine. The task reuse scheme is based on a novel 

task replacement policy which offer some defragmentation of the chip area during 

task replacement. By improving the utilization of the chip area, more application 

components can be executed on the chip leading to lower task rejection ratio and 

potential for a greater number of task relocation. In addition, by circumventing task 

configuration, the configuration port is more available for soft error mitigation. 

 

Chapter 6: Techniques for Task Relocation on FPGAs 

The chapter discribes relocation techniques for hardware tasks on COTS FPGAs. A 

functionality-based relocation technique is proposed to augument direct bistream 

relocation on hetergoneous FPGAs. The aim of the proposed functionality-based 

relocation technique is to replicate the functionality of certain hardware tasks at 

another location on the chip where the original bitstream cannot be configured due to 
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lack of matching resource. The proposed technique is based on memorizing the 

computations of tasks’ output over the normal execution duration of the tasks and 

using these to create a look-up-table at a destination location. The techique is limited 

to only referencially transparent tasks with low port widths. 

 

Chapter 7: Placement Management System Implementation and Characterization 

The techniques developed in chapters 5 and 6 are integrated into a case study 

implementation of a placement management system. The Xilinx 7 series FPGA is 

used as a case study to show the practicability of the proposed techniques. However, 

the algorithms and heuristics can be extended to other reconfigurable FPGAs.  The 

implementation is characterized in terms of the timing behavior as well as the 

resource overhead, and its performance is compared with another state-of-the-art 

placement system. The results show that the proposed placement management 

system has a worst-case placement duration of less than 50% of a comparable system, 

while having a comparable placement quality and resource overhead. 

 

Chapter 8: Towards a Reliability-Aware Efficient Runtime Clock Routing in 

Reconfigurable Computing. 

This chapter address the challenge of delivering clock networks to tasks after 

placement in runtime. It presents a technique of routing clock networks to hardware 

tasks in runtime via the configuration layer by editing the configuration bitstream. 

However, there are reliability issues associated with editing the content of the 

configuration memory in runtime as the frame error correcting codes stored as part of 

the bitstream becomes invalid. Thus, the chapter also presents an efficient means of 

re-computing Frame ECCs after editing configuration bits in such a way that the 

performance of the system is not degraded. 
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Chapter 9: Conclusion and Future work 

This chapter gives the conclusion of the research work presented in the thesis. It also 

outlines the significance of the results, identifies the limitations of the work and 

suggests future works. 
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Chapter 2: Introduction to Dynamic Partial 

Reconfiguration, Clocking Infrastructure 

and Reliability Issues on FPGAs 
 

FPGAs are reconfigurable devices which are used to implement circuits. They offer 

hardware performance similar to ASICs. Their architecture can be divided into the 

physical layer (which contains functional resources such as look up tables, flip flops, 

etc.) and a configuration layer. The functionality of the physical layer at any time is 

defined by the design programmed into their configuration layer. The process of 

programming an FPGA can be repeated frequently and a great number of times. In 

practical terms, the number of times SRAM-based FPGAs can be reprogrammed 

could be regarded as indefinite [28], thus making FPGAs highly flexible. In addition, 

the performance offered by circuits configured on FPGAs is based on an actual 

(re)wiring of hardware resources to build circuits. Hence, these circuits can be 

optimized to have a class of hardware performance close to that of ASICs [29]. Thus, 

FPGAs have a unique combination of high performance and flexibility which can be 

harnessed to revolutionize many system designs.  

Advances in modern FPGA architectures and tools have equipped them to be used to 

implement complex systems. From a humble beginning of including only 85,000 

transistors (forming only 64 CLBs and 58 I/O block) [30], FPGAs have grown by 

more than 104 times in capacity, 102 times in performance, while energy 

consumption and cost have reduced by more than 103 times [31]. They now include 

dedicated signal processors, block of RAM, hard multi-core processors. Thus, they 

have great potentials to be used to implement cost-effective complex SoCs in a short 

time. 

Their flexibility is especially desirable for many reasons, including easy update of 

FPGA-based designs. This can translate to huge savings in cost compared to ASIC 

based in applications that need to be upgraded to use better (or different) algorithms 

[32]. Thus, FPGA-based designs are future-proof. In addition, design updates can be 

carried out much more quickly, reducing system down-time and improving 
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reliability. Also, the fact that the configuration bitstream can be sent remotely is a 

great advantage for remote systems where physical access to the system is restricted. 

One key technology that has significantly contributed to these feats achieved by 

FPGAs is DPR [33]. It opened even further possibilities for FPGAs to be harnessed 

for high performance and reliability applications. DPR makes it possible for a part of 

an application operating on an FPGA to be changed without affecting the 

functionality of the other parts of the application. However, runtime management 

tools and techniques are needed to harness these potentials of modern COTS FPGAs 

to achieve high performance and reliability. 

For the remainder of this chapter, the concept of DPR would be explained with a 

description of how it could be harnessed for high performance and reliability. 

Thereafter, an overview of a commercial tool for harnessing DPR on COTS FPGAs 

in runtime applications will be presented. The limitations of the tool are also 

identified.  

Furthermore, the chapter gives an overview of clocking architecture of FPGAs that 

enable clock network delivery to circuits in runtime. In addition, an introduction to 

reliability isues in FPGAs is given with a focus on possible ways of addressing the 

challenge. Most of the terminologies used in this chapter are for Xilinx FPGAs, 

however similar terms exist for other classes of FPGAs also and the underlying 

concepts can be extended to these other FPGA families or even other reconfigurable 

hardware types in some cases. 

 

2.1 Introduction to Dynamic Partial Reconfiguration 

DPR allows the behaviour of part of a chip to be redefined without stopping the 

operation of the other parts of the chip. Hence, it is possible to swap hardware tasks 

(circuits) in and out of the chip, and effectively turn it into a platform which can both 

be time and area-shared among multiple tasks [8] while offering high performance. 

Circuits (or a subset of circuit(s)) configured on an FPGA with DPR capabilities 
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could be removed when not needed to make room for other circuits or to modify the 

functionality of the system. The concept of DPR is illustrated in Figure 2.1. 

 

 

Figure 2.1: Dynamic Partial Reconfiguration in FPGAs 

 

Tasks 1 to N shown in the figure can be loaded onto the reconfigurable region of the 

FPGA dynamically using DPR without affecting the operation of the static part of the 

chip. In fact, even the part of the reconfigurable region which the task being loaded 

does not overlap can retain its functionality. DPR is applicable to SRAM-based 

FPGAs [34] [35] such as Xilinx FPGAs. SRAM-based FPGAs holds their 

configuration bits in a Static RAM on the FPGA called the configuration memory 

spread around the chip in a configuration layer. DPR simply writes a section of the 

configuration memory, altering the functionality of the part of the chip where that 

section of memory controls.  

While a full configuration (over)writes the entire content of the configuration 

memory and thus alters the behaviour of an entire chip, a partial configuration writes 

only part of the memory. A full configuration is done when a full bitstream type is 

loaded on the FPGA, as opposed to loading a partial bitstream on the chip for partial 

reconfiguration. DPR loads partial bitstreams unto sections of the configuration 

memory in runtime. Furthermore, while a full bitstream must be a specific length for 

an FPGA chip, partial bitstreams vary in sizes, depending on the amount of 

functionality desired to be changed in runtime [36]. Theoretically, their size could be 

as large as the full bitstream and could be as small as just a single configuration 
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frame. A configuration frame is an addressable unit of the configuration bitstream. 

Further details of the configuration bitstream is presented in section 2.3.2. 

While, it is worth noting that any addressable unit of the configuration memory can 

be written in runtime, in practice, partial bitstreams are created during an off-line 

design process that involves selecting a set of components as a partial reconfigurable 

region [37]. This region can only include certain types of components which 

generally vary from device to device. As an example, Table 2.1 shows an overview 

of reconfigurable (✔) and non-reconfigurable (✘) components in the Xilinx 7 series 

and UltraScale devices. Non-reconfigurable components must be left in the static 

region of a design. 

Although some components cannot be included in the reconfigurable region of a 

design using the regular flow supported by the commercial FPGA design tools, by 

using special reconfigurable computing techniques, DPR can be extended to these 

components to control their behaviour in runtime. For example, some clock buffers 

in Xilinx 7 series devices can be enabled and disabled by writing specific locations 

of the configuration memory in runtime, even though they cannot be included in a 

reconfigurable region. Such techniques are used in this thesis to extend the 

advantages of DPR to components that cannot be placed the in reconfigurable region. 

 

Table 2.1: Reconfigurable Resources in Xilinx 7 Series and UltraScale FPGAs 

Component Type 7 Series UltraScale 

CLB ✔ ✔ 

BRAM ✔ ✔ 

DSP ✔ ✔ 

PCI Express ✔ ✔ 

Clock Modifying logic (e.g. clock buffers, PLL, etc.) ✘ ✔ 

Clock Nets and PIPs ✔ ✔ 

I/O and I/O related components ✘ ✔ 

Serial Transceivers  ✘ ✔ 

XADC and System Monitor ✘ ✔ 

Configuration Components (ICAP, Frame_ECC, etc.) ✘ ✘ 
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A DPR-based design creates the enabling environment to dynamically multiplex 

hardware tasks on an FPGA. This leads to a plethora of advantages and possibilities 

including: reduction of area, power and cost of resources required to implement 

desired functionality. It is worth noting that the frequency of performing DPR 

depends on the type of application and the size of the FPGA. For example, an 

application consisting of 2 units in a reconfigurable partition would require that DPR 

be performed twice per execution cycle, if both units must be executed in each cycle. 

However, cleaver algorithms and frameworks have been proposed to reduce the 

number of reconfigurations in dynamic computation scenario such as [38].   

DPR also leads to ease of updating designs, providing flexibility in the algorithms to 

be implemented for an application and improving reliability [36]. However, it is 

worth noting that DPR designs have additional overheads. For example, in Xilinx 

FPGAs, design constraints commonly used in DPR flows results in additional 

overheads in timing and resource utilization in a DPR-based design compared to an 

equivalent design without DPR [36]. Two examples of such constraint are 

“CONTAIN_ROUTING” (used to ensure that routing wires belonging to a specified 

reconfigurable module are contained within certain boundaries) and restrictions on 

optimization across reconfigurable module boundaries. Nevertheless, DPR remains a 

great technique with so much potentials that more design tools are needed to reap 

many of its benefits. 

 

2.2 Xilinx Tool Support for DPR 

Xilinx support for DPR could be classified into two main classes: 

a) Flow for creating partial reconfiguration bitstreams for modules (done 

offline) 

b) Provision of partial reconfiguration controller that enables self-

programmability from within the FPGA (supports runtime DPR). 
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2.2.1 Creating Partial Reconfiguration Bitstreams 

The procedure for partial bitstream creation for Xilinx FPGAs is documented in [37]. 

In addition to the partial bitstreams, a full bitstream is also created to be used for the 

initial configuration of the entire device.  An optional ‘Black-box’ bitstream can also 

be created for each partition which can be used to wipe out a configuration when not 

needed. 

Figure 2.2 shows a summarised Xilinx partial reconfiguration flow using Vivado 

(v15.1) IDE. First, the design top module is synthesized after removing all other files 

from the design. The top module contains those segments of the design that translates 

to the static part of the design shown in Figure 2.1. The synthesized result for the top 

module is saved as checkpoint (.dcp file). The process is repeated for each 

reconfigurable module (RM) present in the design, each time removing all other files 

from the design, setting the target RM as the ‘top’ module, running synthesis and 

saving the design check point file. Next, the saved checkpoints are loaded up, 

assembled together and each of the RMs are set as partially reconfigurable. A floor-

plan area is then created and assigned for each partition. Each floor-plan area is 

referred to as p-block. The area covered by a p-block must include sufficient number 

of resources required by the RM(s) it is meant to accommodate. A partition could 

accommodate more than a single RM, in which case, the partition must contain a 

superset of the resources required by all RMs to be placed in that partition.  

Attributes are set for the design before performing a design rule check (DRC) and 

running implementation. Two examples of attributes set for the design at this stage 

are ‘RESET_AFTER_RECONFIG’ to enable dedicated initialization of an RM after 

its reconfiguration and CONTAIN_ROUTING to instruct the place and route process 

to keep all routings belonging to a RM within the partition to which it is assigned. 

DRC step ensures that essential constraints are met before attempting to implement 

the design. 
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Figure 2.2: Summary of Xilinx Partial Reconfiguration Flow 
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2.2.2 Xilinx Partial Reconfiguration Controller 

A configuration controller fetches the bitstream from memory and delivers it to a 

configuration port. The configuration controller can either be self-contained in the 

programmable logic itself or reside in an external device such as a processor. The 

ICAP is the port available to the internal logic resources after the device is 

programmed. It enables the chip to be programmed from within itself, and it is the 

primary port for DPR in Xilinx FPGAs. It is important to note that a full 

configuration is always required after device power-up before partial configuration is 

supported. Examples of other configuration ports include: SelectMap, Serial, JTAG 

interfaces. In addition, processor configuration access port (PCAP) and media 

configuration access port (MCAP) can be used for downloading bitstreams on 

Zynq®-7000 SoC devices and UltraScale devices respectively. 

Xilinx provides a customizable Partial Reconfiguration Controller (PRC) IP that can 

be used to manage partial reconfiguration in runtime. Xilinx PRC receives interrupts 

from a higher system manager, coordinates the fetching of partial bitstreams from 

eternal memory and deliver them to the ICAP [36].  It supports enclosed designs 

where the RMs are known to the controller [39]. It has a capacity of managing up to 

32 reconfigurable partitions with a maximum of 128 RMs per partition. When the set 

of RMs to be managed in a system changes in runtime, the PRC must be 

reconfigured using its AXI-lite register interface.  

The PRC’s architecture is composed of a set of virtual socket managers. Independent 

socket managers control different reconfigurable partitions simultaneously as they 

can operate in parallel. However, the access to the path for fetching the partial 

bitstream from memory as well as the configuration port can accommodate only a 

single request at a time. The socket managers respond to external triggers which 

could originate from a processor or another hardware management source. Figure 2.3 

shows the operation flow of a socket manager. After an interrupt is received, any RM 

in the target partition is first cleared out before initiating the configuration of a new 

RM on the same partition. This is an optional step as there might be no RM in the 

target partition. Similarly, after the configuration of a new RM on a partition, start-up 
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operations such as coupling it to the static part might be required. The optional steps 

are shown in dotted rectangles in the figure.  

 

 

Figure 2.3: Main Steps of a Virtual Socket Manager [Adapted from [39]] 

 

 2.2.3 Limitations of Xilinx Partial Reconfiguration Controller 

Although Xilinx’s support for DPR, offers many useful features that explores some 

of the potentials of DPR, there are several important limitations with the tool support. 

Three major ones are: 

i) Inefficient use of FPGA Area 

The architecture supported by the process of generating partial bitstream using Xilinx 

reconfiguration flow and their runtime placement on the FPGA chip do not optimize 

the use of FPGA area. A major reason for this is the use of pre-determined slots 

(called reconfigurable partitions) for RMs. The use of partitions mean that a slot 

assigned to a set of RMs must contain a superset of all resources of the RMs. This 

leads to internal fragmentation [18] as smaller RMs would have unused area in the 

slots they share with larger RMs. Fragmentation leads to increased area usage per 

application which in turn leads to higher power consumption and cost.  

In addition to the reconfigurable partitions themselves being resource inefficient, the 

resource utilization of the PRC [39] is quite high compared to a custom 

implementation of a runtime configuration controller. This is illustrated in Table 2.2. 

From the table, it is easy to see that the custom PRC implementation [27] has an 

overhead of only 31.17% and 62.94% of the amount of FFs and LUTs required by 
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the Xilinx PRC. However, it is important to note that the PRC has functionalities 

which are not present in [27] and vice versa. For example, the [39] has decoupling 

functionalities not reported in [27], while the [27] has bitstream relocation feature 

and capacity to handle encrypted bitstreams not present in the [39]. Nevertheless, 

most of operations surrounding dynamic loading of partial bitstreams are reported in 

both. 

 

Table 2.2: Resource Overhead of Xilinx PRC on Kintex7 Device 

Resource Type Xilinx PRC [39]  Custom Controller [27]  

FF 1203 375 

LUT 1171 737 

BRAM - 3 
 

 

ii) Encrypted Partial Bitstream not Supported 

Xilinx PRC does not fully support the runtime configuration of encrypted partial 

bitstreams even on its very recent devices such as the 7 series FPGA [39]. On the 

UltraScale devices, the PRC offers limited support for the configuration of encrypted 

partial bitstreams. But in the case of error occurrence during configuration, the 

system would not be able to recover. In this age when data and application security is 

very important, such lack of full support for encryption creates opportunity for IP 

theft and other security threats [40], [41] [42] [12].  

iii) Lack of Bitstream Relocation Support 

Xilinx PRC does not support bitstream relocation. Hence, a partial bitstream 

synthesised at one location on the chip cannot be placed at another location of the 

chip in runtime. Bitstream relocation is a potentially beneficial technique in many 

FPGA-based applications. It has the advantage that fewer number of partial 

bitstreams can be stored and configured at different locations when needed in 

runtime. In addition, bitstream relocation can be used in critical applications to 

circumvent damages on the chip such that in the event of fault, a circuit can be 

relocated to another location. Another advantage of bitstream relocation is 
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defragmentation of the chip area. Without support for runtime bitstream relocation, 

Xilinx PRC does not meet the need of most modern reconfigurable computing 

systems. 

Given the limitations identified above and the numerous prospects of DPR, several 

academic efforts have been directed towards developing tools that would better 

manage the FPGA resources in runtime [43] [18] [44]. In addition to harnessing the 

prospects offered by DPR in several application domains, many of the tools also aim 

to simplify the process of deploying DPR. This is to enable DPR to be available to 

ordinary users by abstracting low level details. Notable examples of proposed ROS 

and reconfigurable computing tools include: R3TOS [8], ReconOS [45], CAP-OS 

[46], LEAP FPGA OS [47], RIFFA [48] and RTSM [49]. More details on these tools 

and techniques is provided in chapter 3. 

2.3 Clocking Infrastructure and Bitstream Format of 

FPGAs 

After the placement of task in runtime in a scenario where there are no pre-

determined partitions for the tasks, it becomes necessary to route clock networks to 

the newly placed task. The proposed technique in this thesis is to achieve efficient 

clock routing through the configuration layer. In this section, first, the clocking 

architecture of an FPGA is reviewed with a focus on the opportunities the clocking 

infrastructure offer for efficiently delivering clocking network to a task in runtime. 

Next, a brief description of the structure of configuration bitstream is presented, 

identifying sections to be edited in runtime to achieve clock routing and the sections 

for error monitoring. The discussion uses the Xilinx 7 series FPGA family as an 

example.  

2.3.1 General Structure of Clocking Network on Xilinx FPGA 

Like most recent FPGAs, each Xilinx’s 7 series FPGA device is divided into units 

called clock regions. The number of clock regions in a device varies from 2 to 24 

depending on the device size [50]. All clock regions have a height of 50 CLBs 

(equivalent to 10 36-kb Block RAMs or 20 DSPs). The number of columns in a 
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clock region varies by device, ranging from 20 in the small Artix 7 device to 62 in a 

Virtex 7 device. A clock region defines the area of the device serviced by dedicated 

clock nets and buffers. 

The major clocking resources present in a clock region of a Xilinx 7 series FPGA 

consists mainly of clock buffers, clock nets and programmable interconnection points 

(PIPs). These are briefly described below. 

Clock Buffers:  

There are 4 types of clock buffers in each clock region. These include 12 horizontal 

clock buffers (BUFH) and 4 regional clock buffers (BUFR). These can be used to 

directly drive logic resources such as flip flops, BRAMs and DSPs. The other two 

clock buffers in a clock region are the multi-regional clock buffer (BUFMR) and the 

I/O clock buffer (BUFIO). BUFMR and BUFIO cannot be used to feed logic 

directly.  BUFMRs feeds BUFRs which in turn drives an intended logic resource 

while BUFIO drives the I/O clock tree. Since BUFIOs are not involved in driving 

reconfigurable logic, they are not used in the process of delivering clock network to 

placed tasks and hence they have been omitted from the following descriptions and 

figures. In addition to the buffer types listed above, there are 32 global clock buffers 

(BUFGs) which are not located in any specific clock region, but are part of the global 

clock tree and are collectively located at the centre of the device.  

It is worth noting that the type of buffer that can be used to deliver clock signal to a 

task is determined by 3 factors: 

i) the size of the task (in terms of the number of clock regions the task 

spans),  

ii) task shape (in terms of the orientation of the task – whether the task spans 

clock regions in the vertical or horizontal directions) and  

iii) the location of the tasks on the chip. 

Figure 2.4 shows five tasks with a list of the buffers which can be used to feed clock 

signal to each. Tasks which span more than one clock region in the vertical directions 

only but limited to 3 clock regions (such as Task A and Task C) can only be fed by 
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BUFG and BUFMR. It should be noted that BUFMR must be routed via a BUFR to 

the task. Tasks which are limited to a single clock region (e.g. Task D) can be fed by 

all buffers capable of feeding logic. Tasks spanning more than a clock region in the 

horizontal directions only (such as task E) can be fed by BUFG and BUGH only. 

Finally, a task which does not conform to any of the above three categories (such as 

Task B) must be fed with a BUFG. In addition to the reach of each clock buffer, 

characteristics such as clock division capability, runtime Enable/Disable capability as 

well as limitation on the number of available buffers play a role in the selection of 

buffer to feed a task in runtime. For example, tasks requiring the frequency of 

available clock to be divided by a factor must be routed through BUFR as only 

BUFRs have the clock division capability.  

BUFG (x32)

BUFR (x4)

BUFMR (x2)

BUFH (x12)BUFH (x12)BUFR (x4)

BUFMR (x2)

Task A
Task C

Task B

Task D

Task E

Clock Source:

BUFG only

Clock Source:

a) BUFG

b) BUFR

c) BUFH

d) BUFMR*

Clock Source:

a) BUFG

b) BUFH

Clock Source:

a) BUFG
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Clock Source:

a) BUFG
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Figure 2.4: Example Tasks and List of Clock Buffers for Clock Network Delivery 
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Clock Nets and PIPs:  

In the 7 series, there are 16 horizontal clock nets in each clock region. These are 

divided into two groups: 12 nets which are in the horizontal clock row (HROW), and 

4 dedicated regional nets. The nets are physically located at the middle of the 

columns which occur between 25 upper CLBs and 25 lower CLBs in a clock region. 

They are available to all columns of the region with logic resources. The nets can be 

routed to all synchronous elements using a set of PIPs. The PIPs serve as connectors 

from clock buffers to clock nets, and clock nets to other nets/trees. In each column of 

the device, the PIPs enable the possible routing of the clock nets to the synchronous 

elements in the column. Figure 2.5 shows a simplified illustration of the 

arrangements of BUFHs, clock nets and PIPs. This arrangement facilitates the 

routing of clock nets to any column in the region with synchronous elements. As 

shown, the 12 BUFHs in a clock region can normally drive 12 of the 16 horizontal 

nets. These 12 nets can also be driven by BUFGs. The other 4 dedicated nets are 

driven by the BUFRs in the clock region in which they are located. 

 

Figure 2.5: A Simplified Illustration of BUFHs, Clock Nets and PIPs 
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In addition, a set of PIPs can potentially switch a net vertically to deliver any 12 of 

the 16 horizontal clock nets in a clock region to the synchronous elements in a 

column. As shown there are 6 nets which enter a column from the HROW for each 

column: 6 PIPs (TOP0, TOP1, … TOP5) deliver clock signals to the resources in the 

upper half of the column and 6 to the lower half (BOT0, BOT1, … BOT5). In 

addition to these, 6 clock nets from an adjacent column can also be delivered to the 

upper part column and lower parts. Hence, a maximum of 12 clock nets can be 

routed to synchronous elements in a column simultaneously. 

2.3.2 Overview of Relevant Sections of Xilinx Bitstream Format 

Figure 2.6 shows major sections of the configuration bitstream of a typical Xilinx 7 

series FPGA. Four distinct sections of the bitstream can be identified. The first is a 

pre-amble and synchronization section which contains data relating to setting up the 

configuration interface. An example of a set of data contained in this section of the 

bitstream is the bus width auto detection sequence which is used to adjust the 

configuration port to a desired width. Supported port width are 8, 16 and 32 bits.  
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Figure 2.6: A simplified Illustration of Sections of the Configuration Bitstream 
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The bus width detection logic looks for the following patterns on bit [7:0] in the 

configuration bitstream pre-amble section to set the bus width for configuration:  

i) for 8 bit: D[7:0] = 0xBB, followed by 0x11 on the same bits in the next word 

ii) for 16 bit: D[7:0] = 0xBB, followed by 0x22 on the same bits in the next word 

iii)  for 32 bit: D[7:0] = 0xBB, followed by 0x44 on the same bits in the next word 

This section of the bitstream also contains the synchronization word which signals to 

the device that configuration data is about to be loaded and aligns the configuration 

data with the configuration logic. For the 7 series and UltraScale FPGAs the 

synchronization word is: 0xAA995566. 

The second section of the bitstream consists of device ID check, setting of 

configuration registers to control parameters such as number words to be configured, 

etc. The device ID check avoids the configuration of a bitstream meant for a different 

device. The ID of a device has the format shown in Table 2.3. As an example, the 

Xilinx 7 series chip on Digilent’s basys3 FPGA board has a unique ID CODE: 

0x0362D093. 

 

Table 2.3: Format of Device ID Code in Configuration Bitstream 

[31:28] [27:21] [20:12] [11:0] 

Version FPGA Family Code Array Code* Company Code 

*array code includes 4-bit sub-family and 5-bit device code 

 

The fourth section of the bitstream consist of instructions to confirm CRC values as a 

means of data integrity check. During loading of configuration data, CRC values are 

computed for the data loaded unto the device. This section of the bitstream contains 

instructions to load the value of the computed CRC and compare this with that in the 

bitstream. The fourth section also contain commands to de-synchronize the 

configuration port. 

The third section is the actual configuration data which are written to the 

configuration memory (CMEM) of the FPGA. It is the largest part of the 
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configuration bitstream and contains the data specific to the RTL design being 

configured as well as all components in the region of the FPGA being configured. The 

data are organized in configuration frames. A configuration frame is the smallest 

resolution of configuration on a Xilinx FPGA chip. For the 7 series, a configuration 

frame consists of 101 words, each word being 32-bits wide. Each frame is identified 

by a specific frame address and can be written to the configuration memory of the 

device to change the characteristics of the primitive (or part of it) which the frame 

controls. 

A configuration frame is built up from individual primitives in a unit of the 

components listed in Table 2.1. The components are organized in columns and rows 

on most modern Xilinx FPGAs. Several rows are further grouped together to form a 

clock region. For example, in the 7 series devices, a clock region consists of 50 CLB 

rows  [36]. Thus, a column of CLB has a width of 1 and a height of 50 CLBs. 

Similarly, a BRAM column has a width of 1 and a height of 20 BRAMs. A number of 

configuration frames are required to write the configuration memory corresponding to 

a column of components. The number of frames vary by component type. 

The number of configuration frames 𝑁 is constant for a full bitstream of a specific 

device. For partial bitstreams, 𝑁 is directly proportional to the number and type of 

resources on the chip area to be configured. Table 2.4 shows the number of frames 

required to configure each reconfigurable resource type [25]. It is worth noting that 

the table have been organized in pairs of columns because a pair of reconfigurable 

resource column share a routing network in the 7 series FPGAs. 

 

Table 2.4: Number of Configuration Frames in Reconfiguration Resource Pair on 

Xilinx 7 series FPGA 

 

Resource Pair CLB-CLB CLB-DSP CLB-BRAM 

Number of Frames 72 64 192 

 

Each configuration frame in the bitstream is referenced by a frame address whose 

format is shown in Table 2.5 The frame address links the data in the frame to physical 
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resources on the chip by defining its row, column and resource type [51]. It also 

specifies whether the resource is in the upper or lower half of the device and the 

specific section of the device to be configured. For example, the frequency of the 

clock signal routed via a BUFR in a specific clock region may be controlled by re-

writing a specific frame in a specific column of the device. 

 

Table 2.5: Frame Address Format in Xilinx 7 series FPGA 

 

Address Type Block Top/Bottom Row Column Minor 

Bit Index [25:23] 22 [21:17] [16:7] [6:0] 

 

 

Each configuration frame consists of 101 32-bit words, labelled word 0 to 100 in 

Figure 2.6. Word 50 is of special interest here as it contains the ECC values of the 

data contained in the frame. As shown in the figure, the ECC values are located in the 

lower 13 bits of the word. These bits are monitored in runtime to detect any changes 

to the composition of the data contained in the frame. In section 2.4.1, details of how 

they are used to detect and correct errors in the CMEM is presented.  

The 50th word of each frame also contains important information relating to the 

clocking resources such as clock buffers as well as some information about the clock 

nets and PIPs in the HCLK. This information is mostly found on bits [31:13] of the 

word and include the clock frequency division factors of BUFR, clock enable bits for 

BUFH, etc. Further clock net information is also found in words 48, 49, 51 and 52 of 

a configuration frame. The locations of these control bits are not disclosed by Xilinx 

and were obtained using reverse engineering experiments. Details of these are given 

in chapter 8 of this thesis. 
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2.4 Reliability Issues in FPGAs 

COTS FPGAs based on SRAM configuration memory are susceptible to bit flips. 

These are called temporal faults. These unwanted bit flips are often caused by effects 

such as ionizing radiation and extreme temperatures [52]. Temporal faults in the 

configuration memory can affect the functionality of an application leading to soft 

errors. However, not every bit flip lead to soft errors. For soft error to occur, the flip 

must affect a critical bit in the design. In addition, the number of configuration bits 

not used by a design reduces the soft error rate. Xilinx reports the effective soft error 

rate on their devices using device vulnerability factor (DVF). The DVF for a typical 

design is reported as 5% with a worst case value of 10% for their devices [53]. The 

number of failures on 7 series devices was reported as 75 FIT/Mb, were one FIT 

refer to one failure per one billion device hours, and Mb is 106 of memory bits. 

Nevertheless, when FPGAs are used in critical applications, soft errors need to be 

managed to prevent application failure. Correction of temporal faults often involve 

reversing the bits that have flipped. 

In addition to temporal faults, there are permanent faults that occur on a chip. These 

are not easily correctable like temporal faults. Examples include latch-up, damage to 

the underlying silicon through effect of electromigration, hot-carrier injection and 

other ageing related effects [54], [55]. Common approach to mitigate the effect of 

permanent fault in runtime is by using circuit relocation or other application design 

techniques like triple modular redundancy (TMR). Figure 2.7 shows some of the 

mains cause of faults in electronic chips.  

 

Figure 2.7: Temporal and Permanent Faults Occurrence on Electronic Chips 

Extreme 

Temperature Radiation Ageing effects, (e.g. 

hot-carrier injection) 

Temporal Faults 

Permanent Faults 
+ 



Chapter 2: DPR, Reliability and Clocking Infrastructure on FPGAs 

 

 

 

35 

While electromigration, hot carrier injection and other ageing effects generally lead 

to permanent faults, ionizing radiation and extreme temperatures generally lead to 

temporal faults. Both of these poses reliability issues in FPGAs-based designs. 

 

2.4.1 Soft Error Mitigation in FPGAs 

Configuration scrubbing is the technique typically used to detect and possibly correct 

un-wanted bit flips in FPGAs whose CMEM are based on SRAM technology [28]. 

Xilinx have developed a proprietary solution which monitors errors in a manner 

which is transparent to users who only need to include the IP in their designs. This is 

called the Xilinx Soft Error Mitigation (SEM) IP [56]. Many custom solutions have 

also been developed to detect and/or correct soft errors on Xilinx FPGAs. Notable 

examples include [27], [57] and [58] which present many variants of scrubbing 

optimizations. However, all the techniques rely on the same fundamental principle as 

the SEM IP which is summarized below. 

There are generally four types of memories on the FPGAs which can potentially be 

affected by bit flips. Arranged in decreasing order of size and hence likelihood of bit 

flip occurrence, these are: CMEM, block RAM (BRAM), distributed RAM (DRAM) 

and Flip Flops (FF). Generally, soft error mitigation in these memories except the 

CMEM can be performed in the design itself, by using techniques such as triple 

modular redundancy [56]. The SEM IP detects errors only in the CMEM. Also, it 

does not have the capability to avoid soft errors, but only reacts to correct them and 

thus mitigate their effect. Given that the IP continually scans the CMEM using the 

Internal Configuration Access Point (ICAP) bandwidth, Xilinx recommends that at 

least 99% of the ICAP bandwidth be dedicated to the SEM IP’s operations [59]. With 

this recommendation, the typical error detection and correction latency is 25ms [56]. 

However, error classification can be used to improve the performance while some 

implementations also restrict the scanning to certain parts of the chip containing user 

designs and hence improves on the average speed of error detection [27]. 

Xilinx SEM IP implements five main functionalities: initialization, error injection, 

error detection, error correction and error classification. These are shown in Table 2.6. 
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As shown, all the functions except initialization and detection are optional and must 

be enabled by the user by setting specific registers. To achieve error correction in a 

design after the initialization stage, the SEM Controller monitors the integrated soft 

error detection status (based only on calibrated Frame ECC values). When an error is 

detected and localized, the SEM IP either corrects the error by reversing the bit flip 

(repair) if a single bit error occurs or reconfigures the entire frame if multiple bits are 

affected within the same frame (replace). The SEM IP can also operate in an 

advanced repair mode during which adjacent double bits errors in the same frame can 

be corrected. However, the advanced repair mode requires the use of both the Frame 

ECC and the CRC of the configuration bitstream.  

At the heart of the error detection capability of the SEM IP is the FRAME_ECC 

primitive which provides a SYNDROME value used to determine the location of the 

error in the CMEM. However, the Frame_ECC primitive cannot differentiate between 

a user operation editing bits and soft errors (which could be caused by ionizing 

radiations), since it reports any bit flips as errors. Hence, since many operations in 

reconfigurable computing such as the runtime clock network routing is carried out 

through the configuration layer, it is important to update the Frame ECC values after 

editing the content of the configuration memory. The technique of doing this is 

presented in chapter 8 of this thesis as part of the runtime clock routing mechanism. 

 

Table 2.6:  Main Operations of Xilinx SEM IP 

Function Type 

Initialization Necessary 

Error detection Necessary 

Error injection Optional 

Error correction Optional 

Error classification Optional 
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2.4.2 Permanent Fault Mitigation in FPGAs 

Unlike temporal faults which can be corrected by reversing a bit flip or (re)writing 

sections of the configuration memory, permanent faults on the chip are managed 

differently. In addition to techniques such as TMR, hardware task relocation has 

been proposed to circumvent permanent faults on a reconfigurable chip. The 

technique involve the re-configuration of a hardware task affected by a permanent 

fault at another location on the chip [19]. Circuit relocation technique need to meet 

certain requirements. For example, it needs to provide a means of communication 

with the other parts of the system or external ports on the chip. There is also the need 

to manage the chip area efficiently to ensure availability of free area on which to 

place circuits during relocation. The challenge of delivering clock networks to 

relocated tasks also need to be addressed. This thesis provides techniques to address 

the latter two of these challenges, and hence improve circuit relocation. Details of 

area management to improve relocation of tasks are covered in chapter 4, 5, 6 and 7 

of this thesis while clock net routing is covered in chapter 8. 

 

2.5 Chapter Conclusion 

In this chapter, the concept of DPR was introduced and an overview of commercial 

tools support for DPR was presented, using Xilinx FPGAs as case study. The chapter 

also identified the limitations of Xilinx tools for DPR especially as it relates to 

efficient use of the chip resources. In addition, the clock architecture of a typical 

FPGA chip was reviewed and the resources that enable clock network delivery to 

tasks in runtime were identified. As the mechanism involves editing the 

configuration bits in runtime, the structure of a typical Xilinx configuration bitstream 

was also reviewed in this chapter. A description of the reliability challenges 

associated with runtime bit editing was also discussed. Finally, an introduction to 

reliability isues in FPGAs was given with a focus on how they might be addressed. 
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Chapter 3: Runtime Placement Management and 

Low Power Computation on FPGAs 
 

Placement management is a key aspect of reconfigurable computing. It helps to 

harness the potentials of DPR for high performance and reliability. Reconfigurable 

computing involves performing computations using the area of programmable 

devices such as FPGAs in a dynamic application scenario [44]. Several 

reconfigurable computing techniques have been proposed to harness the potentials of 

DPR for high performance and reliability. Some authors refer to tools for managing 

reconfigurable computing as reconfigurable operating system (ROS), a convention 

that is adopted for the remainder of this thesis. Runtime placement management is 

aimed at ensuring an optimal utilization of the reconfigurable device resources, 

including the area of the chip as well as the configuration port. Maximizing the 

utilization of the chip area improves application performance, not only by improving 

the number of hardware tasks that can be executed on the chip, but also creating 

room on the chip for task relocation. Relocation is applicable for the purposes of 

circumventing permanent damage on the chip, thermal balancing, etc. Similarly, 

managing the reconfiguration port is essential to maintain a healthy balance among 

the various essential responsibilities of the single port such as task configuration and 

soft error mitigation.  

In addition, low power computation is an important aspect of reconfigurable 

computing. Reconfigurable computing techniques can potentially be used to lower 

the energy consumption on FPGAs. In addition to minimizing energy bills, low 

power consumption also reduces the risk of electromigration and increases the life 

span of the chip as well as battery life.  

In this chapter, a review of runtime placement management and low-power 

computation on reconfigurable hardware is presented. Regarding placement 

management, this includes a review of various placement management systems 

developed for reconfigurable computing tools. A review of underlying issues that 

affect quality of placements such as fragmentation and configuration overhead is also 

presented. Finally, an overview of low power consumption on reconfigurable 
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hardware, with a focus on reusing computation results to lower power consumption 

is discussed.  

3.1 Review of Runtime Placement Management on FPGAs 

for Reconfigurable Computing 

Most ROS have a form of runtime placement manager in their architectures. R3TOS 

[8] is composed of 3 main parts; scheduler, allocator (which is its placement 

manager) and configuration manager. R3TOS uses a non-slotted computing model, 

where there are no fixed partitions for RMs (or hardware tasks). Thus, tasks can be 

placed at any free matching location on the chip. The advantage of using a non-

slotted (or non-partitioned) model is that it avoids internal fragmentation. Tasks only 

occupy resources which they require for their computation and hence other areas of 

the chip are free to be used by other tasks. A major focus of R3TOS is achieving 

reliability by relocating tasks affected by a permanent damage on the FPGA to 

another location on the chip and thus increase the reliability of critical applications in 

hostile environments [60]. In a slot-based model, should a single unit of resource 

become damaged in a slot, the entire slot becomes unusable thereby wasting all the 

other resources in the slot. This, the authors argued, reduces the number of 

relocations of tasks, and hence reduces the degree of fault tolerance of an application 

[19]. 

However, the challenge of non-slotted computing model is the associated difficulty 

of achieving communication among RMs and the FPGA ports, as well as the 

complex allocation process. Figure 3.1 illustrates advantages and disadvantages of 

slotted and non-slotted reconfigurable computing architectures.  

To address the challenge of inter-tasks communication, R3TOS explored the use of 

the configuration layer for communicating among tasks [61]. Special wrappers are 

created for each task which essentially enables the task to read its inputs from an 

input data buffer (IDB) and save its computation results in an output data buffer 

(ODB). When task communication is required, the internal configuration access 

point is used to copy data from the ODB of a source task to the IDB of a destination 

task. 
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To address the challenge of delivering clock network to a task in runtime after its 

placement on the chip, R3TOS also uses the configuration layer to route clock 

networks to RMs [62]. The technique used by R3TOS involved carefully examining 

the configuration bitstream to identify configuration bits that control the state of the 

programmable interconnection points (PIP) in the paths of clock nets. This 

information is used to route clock signals to all clocking points of each flip flops, 

BRAM and DSPs in a design. 

Slot 1 Slot 2

Static Region

Task B

Task A

Static Communication Routes Clock Nets

Internally fragmented areas due to slots

 

(a) 

Static Region
Task B

Task A

 

(b) 

Figure 3.1: Slotted Versus Non-Slotted Reconfigurable Computing 

a) Slotted Architecture has clearly defined boundaries reducing the complexity of 

task allocation, communication and clock networks delivery but leads to inefficient 

resource usage. b) Non-slotted architecture has potentials for better resource 

utilization but requires more complex runtime task placement management. Clock 

network delivery to task and task communication are also more challenging 
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The placement manager (allocator) in R3TOS keeps track of the resources on the 

FPGA chip and decides location for incoming tasks with the aim of maximizing the 

utilization of the chip area. Placement locations are not limited by static 

communication ports or pre-defined boundaries for tasks [63]. Thus, RMs can be 

placed on any matching location on the chip which is free. The allocator architecture 

consists of an architecture checker (AC), an empty area descriptor updater (EADU) 

and an allocator quality evaluator (AQE). The AC checks the feasibility of placing an 

RM on a location on the FPGA by comparing the resource layout of the RM’s 

architecture and that of potential locations. The AQE computes the quality of 

potential locations. It does this by comparing the fragmentation contribution of each 

of the potential placement location and selecting the location with the least 

fragmentation. The main algorithm implemented by the allocator to optimize the 

FPGA area utilization is Empty Area Compaction (EAC) algorithm which is a 

derivative of the Maximum Empty Rectangle (MER) algorithm [64]. 

Unlike R3TOS, ReconOS [45] is targeted only at high performance applications, and 

not reliability of critical applications in hostile environments. The key idea of 

ReconOs is to extend the capabilities of a traditional host OS to support hardware 

threads [65] [45]. ReconOS manages threads from a software perspective and 

delegates appropriate threads to the reconfigurable hardware platform when needed 

in runtime.  ReconOS aims to extend the multithreading programming model on 

processors to a mixture of processors and reconfigurable hardware platforms. Thus, 

from the application’s appearance, a unified hardware and software thread is 

presented. To use ReconOS for applications, a user first executes a multithreaded 

application only in software for functionality testing. Secondly, the application is 

executed on an embedded CPU in a targeted FPGA platform. Thereafter, the 

application designer uses profiling to identify threads suited to CPU execution, 

threads suited to be executed on the reconfigurable hardware and threads that can be 

executed on both. Finally, the designer synthesizes the hardware threads and 

configures them on the FPGA ready to be executed when required. In runtime an 

implementation of each task to assigned to either software or hardware when needed 

depending on the runtime scenario.  
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ReconOS uses pre-defined slots for executing RMs (hardware threads) in runtime 

[66] [18]. Thus, the attendant challenges of runtime placement seem not to be a 

complex one as in the case of R3TOS which uses a non-slotted architecture. In 

addition, the use of slots simplifies the communication and clock network delivery 

process. However, as mentioned above, the efficiency of area utilization in slotted (or 

partition-based) runtime placement architecture is significantly less than those of a 

non-slotted architecture. 

The CAP-OS targets real time applications [46] [67]. It manages tasks in runtime by 

coordinating the schedule of tasks’ reconfiguration, their runtime allocation to 

specific processing elements (in the form of processors). The objectives of the 

scheduling and allocation are: meeting tasks’ deadline, improve resource utilization 

and lower power consumption. The OS manages access to the configuration port 

with a consideration of its configuration overhead. It includes the possibility to reuse 

tasks to reduce the workload of the configuration port.  

The placement management technique presented by CAP-OS involves checking the 

availability of free processors to execute a requested task, and in their absence a new 

processor is configured. No detail of area management technique (such as 

minimizing fragmentation) is presented. This seem to suggest that a partition-based 

architecture was used. The implementation of CAP-OS was also reported as 

partition-based in [18]. 

Like CAP-OS, LEAP OS and RIFFA are also partition-based reconfigurable 

operating systems and do not give any detail of runtime placement management 

relating to optimizing the use of FPGA area. Rather, the main focus of LEAP OS is 

the abstraction of communication infrastructures on the FPGA chip by using the idea 

of latency-insensitive design presented in [68]. RIFFA, on its part, provides 

communication and synchronization by offering a consistent and generic interface 

between hardware and software on FPGA SoCs. Similarly, GOAHEAD [69] is a 

design-time tool that offers support for runtime reconfigurable systems. No detailed 

area management strategy was provided. 
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Finally, RTSM presented a management system that aims to manage both hardware 

and software tasks on FPGAs in runtime. Although, the technique – like many of the 

foregoing – is partition-based, the authors use a mechanism named best fit in space to 

improve the utilization of the partitions in runtime. In essence, best-fit in space 

allocates tasks to partitions which leaves the least unused area in the slot.  In 

addition, RTSM includes a form of task reuse in its runtime placement scheme to 

achieve better overall execution time. This technique, called best fit in time, checks if 

a task is already present in any of the partitions before configuring another copy. 

However, to support the possibility of a task’s partial bitstream being configured on 

multiple partitions, different versions of the task’s bitstream must be stored, a 

technique which often require large storage. 

It is clear from the foregoing that most ROS use the partition-based (slotted) 

architecture for runtime placement of RMs on FPGAs despite the potentials for a 

better area utilization with non-slotted architecture. Only R3TOS uses the non-slotted 

architecture. As identified above, the main reasons for adopting slotted architecture 

in most ROS revolve around the complexity in developing novel placement 

techniques that are practicable for ROS. Other reasons include developing 

communication and clock network delivery to tasks after their runtime placement. In 

addition to these, another challenge with using COTS FPGA in runtime applications 

generally is their large reconfiguration overhead.  

In the following sub-sections, a review of some previous relevant research efforts 

towards addressing the challenges of efficient runtime area management, large 

reconfiguration time and clock routing to tasks after their placement is given. 

Communication is not addressed in this thesis. 

 

3.1.1 Review of FPGA Area Management in Runtime Placement 

Systems 

The runtime placement of tasks on homogenous reconfigurable hardware have been 

well studied by many authors. A foundational work in modern efficient management 

of FPGA area was presented in [64]. The authors presented both a design time and a 
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runtime algorithm for task placement on the FPGA. The runtime placement involves 

keeping track of the MERs on the chip area and using either a best fit or first fit 

technique to decide how to split the area to accommodate a requested task. The aim 

of the splitting technique is to minimize fragmentation of the chip area. Another 

notable work is the use of Vertex List Set (VLS) to keep the contour information of 

free area on the chip [70]. In a later work [71], the authors proposed an adjacency-

based heuristic that uses the information in a VLS to determine a location for a task. 

The MER and VLS techniques are reported to have high accuracies but have high 

computational overhead [72]. In addition, these techniques are not inherently 

targeted at heterogeneous FPGAs. Hence, additional computation is required to apply 

them to COTS FPGAs which are heterogeneous as done by the placement system 

reported in [63].  

Authors in [73], proposed runtime placement algorithms for heterogeneous 

reconfigurable platforms. One of the main ideas of the placement system is to speed 

up the process of scanning the FPGA area to find location for an RM using the 

locations of the heterogeneous resources such as BRAMs and DSPs on the chip. 

Since there are typically fewer of these resources, the scanning process can quickly 

decide if the architecture of an available location on the chip matches that of an 

arriving RM (or task). When multiple possible locations exist on the chip to place a 

task, the layout of the other tasks on a scheduled queue is checked to see which of 

the locations blocks the least number of scheduled tasks. That location is chosen for 

the task. 

However, to simplify the problem the allocation problem, the authors assume that the 

heterogeneous blocks on the FPGA platforms are regularly spaced-out. In addition, 

their techniques rely on a Virtual Bitstream (VBS) format which is independent of a 

task’s location on the chip. None of these two assumptions apply to conventional 

COTS FPGAs. The authors proposed a new FPGA architecture for their algorithm. 

This is a different approach from the focus of this thesis which is to use COTS FPGA 

architectures rather than propose new ones. 
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The work in [74] presents two algorithms for the placement of tasks on heterogeneous 

platforms (targeted at COTS FPGAs). They are Static Utilization Probability (SUP) 

Fit and Run-time Utilization Probability (RUP) fit. These correspond to offline and 

runtime phases of placement management respectively. The basic principle of both is 

that tasks with many potential placement locations on the chips are not placed on 

locations required by tasks with few potential placement locations. SUP fit generates 

a utilization probability for each cell on the chip using the matching location of all 

tasks to be placed. This was done by analyzing overlap graphs of each cell on the 

chip. The weights of all feasible positions are determined and sorted in ascending 

order. This is done offline, at the application design stage. At runtime, when a request 

is made for a task’s placement, the next suitable position for the task which is least 

probably used by other tasks in the set is assigned to the task.  

The authors also presented an alternative RUP fit. RUP fit dynamically computes 

position weight for the cells at runtime instead of the design time approach used by 

SUP. A drawback of these techniques is that a foreknowledge of all tasks to be placed 

on the chip in runtime is required for SUP fit. Furthermore, the technique does not 

consider the distribution of the number of feasible positions among the constituent 

tasks of an application. Thus, it is prone to a situation where some tasks have 

abundant areas and others have too little. In addition, updating the position weights in 

the RUP fit in runtime is quite time consuming.  

The work in [75] presents a technique for relocating a design bitstream synthesized 

for a location with a DSP to another location with a BRAM replacing the DSP. 

However, the technique is based on online editing of configuration bitstream which is 

time consuming. In addition, the routing between the DSP and BRAM are required to 

be identical, and neither the DSP nor the BRAM must be used by the design. 

Commercial FPGA do not have the same routing for DSP and BRAM resources. 

Furthermore, the work in [71] presented an adjacency-based heuristics for measuring 

and minimizing fragmentation on chip area. Adjacency based techniques are better 

suited to homogenous chips, as heterogeneous hardware tasks have definite layout 
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requirements which mean that a matching location to accommodate a task may not be 

adjacent to another task or the chip boundary. 

Also, the authors in [76] and [77] presented a design optimization technique to 

improve place-ability of tasks at runtime using overlap graphs. The main principle of 

the work is based on the intuition that the placement locations for a task is determined 

by the selected synthesis position in its design (or offline) phase. Thus, synthesis 

location that are least contested for by other tasks in the application is selected for 

each task. Since these works are based on minimizing overlap like [74], they are 

prone to variation in the number of feasible location for constituent tasks.  

An integral aspect of runtime placement is the quantification of fragmentation of the 

chip area. Most existing techniques for quantifying fragmentation on reconfigurable 

chips are well suited to homogenous ones. They use the assumption that the chips 

only consist of a single resource type – mostly Configurable Logic Blocks (CLBs). 

Hence, they are not directly applicable to heterogeneous chips. The work in [63] 

presented a version of MER which is applicable to heterogeneous chips by proposing 

additional computation using an architecture checker. 

In [78], a metric for fragmentation was presented. The technique measure 

fragmentation by computing the contribution, 𝑓𝑖 of individual slots, 𝑖 (called hole) 

using (3.1a).  𝑓𝑖 is then used to compute the degree of fragmentation, 𝐹 of the entire 

chip using (3.1b). 𝑘 represents the number of free cells in a slot and 𝑁 the total 

number of cells on the chip. An advantage of the technique is that is it fast and hence 

suitable for runtime placement management systems where fast placement decisions 

are key. However, the computation of 𝑓𝑖 is based only on the number of free cells and 

does not consider the distribution of the occupied or free cells within the hole. Hence 

the metric cannot discriminate between holes having same number of occupied cells 

distributed differently. Thus, using the approach as presented, the two slots shown in 

Figure 3.2 would produce the same value of 𝑓𝑖. Consequently, the approach would 

not be efficient in deciding the location of a task in runtime. 
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𝑓𝑖 =
𝑘

𝑁2
                                (3.1𝑎) 

𝐹 = 1 − (∏ 𝑓𝑖
𝑖

)               (3.1𝑏) 

  

Free cell

Used cell
 

       (a)     (b) 

Figure 3.2: Distribution of Occupied and Free Cells in a Slot 

 

A different approach of quantifying fragmentation was proposed by Handa et al. in 

[79]. The main idea of the model is to compute the contribution of each cell on the 

chip to the total fragmentation of the chip. Then, an averaging technique is used to 

determine the degree of fragmentation of a partition. Using the technique, the 

fragmentation contribution of a cell is determined by the number of empty cells in its 

vicinity, both in the horizontal and vertical directions. These are computed using 

equations 3.2(a) and 3.2(b) where 𝑣𝑥 and 𝑣𝑦 refers to the sum of the number of 

empty cells in the horizontal and vertical directions of the cell respectively. The 

parameters 𝐿𝑥 and 𝐿𝑦 represent twice the average width and height respectively of 

the set of tasks to be placed on the chip. As shown in the equations, when there is no 

empty cell in the vicinity of a target cell in a certain direction (e.g. when 𝑣𝑥 = 0), the 

fragmentation contribution in that direction is 1 (maximum).  

On the other hand, when the number of empty cells in the vicinity of a target cell is 

greater than twice the average width (or height) of the tasks being placed, the 

fragmentation contribution in that direction is 0 (minimum). The total fragmentation 

contribution of a cell (𝑇𝐹𝐶𝐶) is the sum of its horizontal and vertical contributions as 

shown in 3.2(c). To compute the fragmentation contribution of an area consisting of 

multiple cells (𝐴𝐹𝐶) such as an area (to be) occupied by a task, or the entire FPGA 

area, an overage of the fragmentation contributions of the constituent cells is 
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computed using 3.2(d), where 𝑁 is the number of cells in the area. Fragmentation 

contribution is only defined for empty cells as the aim is to determine a potential 

location for an incoming task.  

 

𝐹𝐶𝐶𝑥 = {
1 −

𝑣𝑥

𝐿𝑥 − 1
, 𝑣𝑥 < 𝐿𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  3.2(𝑎) 

 

𝐹𝐶𝐶𝑦 = {
1 −

𝑣𝑦

𝐿𝑦 − 1
, 𝑣𝑦 < 𝐿𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  3.2(𝑏) 

 

𝑇𝐹𝐶𝐶 = 𝐹𝐶𝐶𝑥 +  𝐹𝐶𝐶𝑦                                            3.2(𝑐) 

 

𝐴𝐹𝐶 =
1

𝑁
∑ 𝑇𝐹𝐶𝐶𝑖

𝑁

𝑖=0
                                           3.2(𝑑) 

 

The technique is in principle more accurate than [78] as it accounts for the state of 

each cell in a slot. However, the process of computing fragmentation for individual 

cells in a slot could be expensive and time consuming for a runtime scenario. In 

addition, the computation only considers the number of empty cells in the vicinity of 

a target cell and not the distribution of the empty cells. It does not differentiate 

between cells on the left and right of the target cell. Consequently, the technique 

does not account for the isolation of a slot as a unit from other tasks or the border of 

the chip in the fragmentation quantification process. To illustrate this, Figure 3.3 

shows two chip areas, each with a slot, 𝑆𝑙𝑜𝑡 𝐴 and 𝑆𝑙𝑜𝑡 𝐵. Both slots have the same 

fragmentation coefficient according to [79]. Each slot has 16 cells, and have equal 

number of empty cells in their vicinity in both horizontal and vertical directions. 

However, 𝑆𝑙𝑜𝑡 𝐴 is better aligned to the border of the chip and hence would keep the 

empty areas on the chip more compacted compared to 𝑆𝑙𝑜𝑡𝐵. In addition, if any of 

the slots were to be shifted in the same plane (either horizontal or vertical), the 

proposed technique cannot differentiate between the different locations created. 
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Slot A

 

Slot B

 

Figure 3.3: Slots with Same Fragmentation Metric but Different Placement Effects 

 

3.1.2 Configuration Overhead Management in Runtime Placement 

Systems 

A major technique required in utilizing FPGAs for runtime applications is the 

management of their relatively large configuration overhead [38]. Current COTS 

FPGA have a single internal configuration port which can perform a single task at 

once [51]. The port is often required to handle many critical duties in addition to 

writing the configuration memory. An example of such duty is monitoring and 

correction temporal faults in the configuration memory [27] [80]. Furthermore, when 

task configurations, which require external memory access operations, are requested 

frequently, the power consumption of the system could also increase significantly 

[81]. Thus, it is important to keep the number of reconfigurations as low as possible; 

not only so that the configuration port can be more available for other critical 

operations, but also to enhance the performance of the system [59]. 

Consequently, techniques have been proposed to manage the configuration overhead 

of COTS FPGAs. The two most important of these as it relates to ROS are: Prefetch 

and Task Reuse [82]. Prefetch aims to overlap the computation of certain hardware 

tasks with the configuration of new ones before the new ones are required for 

computation [73] [83]. Prefetching does not aim to reduce the number of 

configurations, but rather manages the distribution of the configuration to meet tasks’ 

requirements. 
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On the other hand, task reuse is aimed at reducing the number of hardware tasks 

configuration. This is achieved by retaining carefully selected tasks on the chips even 

after their computation, such that if they are required again in the future, their 

configuration will be circumvented [38] [23]. This means that the cumulative 

occupancy of the configuration port is reduced, making it more available for other 

critical operations [22], while also avoiding frequent external memory access. To this 

end, many task reuse techniques have been proposed. Notable example are [84] [85] 

[86] and [38].  

Closely linked to the efficiency of any task reuse technique is the policy used to 

decide which tasks are to be preserved on the chip and which to eject in the case that 

resources are required to accommodate an arriving task [87] [88]. This is called the 

replacement policy. As pointed out by [84], an incorrect replacement decision will 

not only fail to reduce the total number of reconfiguration, but would increase it. 

Multiple options exist for which task(s) to be replaced on the chip as illustrated in 

Figure 3.4.  

 

Figure 3.4: Multiple options for Task Replacement 

 

The pioneering work by Compton et al. [84] surveyed a number of replacement 

policies for different FPGA architectures. These include Simulated Annealing (SA), 
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Least Recently Used (LRU) and penalty-based task replacement algorithm. The 

authors compared the performance of the algorithms on different FPGA types and 

reported that the penalty-based algorithm had better performance. The penalty-based 

algorithm used was a combination of the reconfiguration overhead and the number of 

times tasks were used since their (re)configuration.  

In a similar fashion, the authors in [85] proposed a penalty-based replacement 

technique called Reconfiguration-to-Execution Ratio (RER). To choose a candidate 

to be replaced, they compute an RER value for each potential candidate as the ratio 

of its reconfiguration time to execution time, multiplied by execution frequency. 

However, the architecture proposed by the authors composed of both FPGA and 

CPU. Hence, before candidates for replacement are evaluated for the FPGA, a factor 

called speedup is computed. The factor measures the performance gained by 

executing a task on the FPGA over executing it on the CPU. A task can only be 

replaced by an arriving task if its speedup is lower than that of the arriving task. 

Thus, only tasks with lower speedups than the arriving task are evaluated for 

replacement using their RER values.  The candidate with lowest RER value is 

replaced first. The efficiency of their technique was evaluated by comparing it with 

other placement routines which did not include task reuse. 

A Reuse-Based Scheduling (RBS) algorithm is presented in  [86]. In the proposed 

scheme, only significant tasks are preserved on the chip. The significance of tasks is 

computed using the configuration overhead and the probability of recurrence in the 

future. The configuration cost is computed as the ratio of configuration latency to 

execution latency, while probability of recurrence of a task, 𝑝𝑖, is computed using 

equation 3.3. 𝜆𝑖 is the average number of arrived instances of task 𝑇𝑖 in the past time 

interval 𝛥𝑡. The authors indicate that two threshold values 𝑘1 and 𝑘2 are defined for 

configuration overhead and probability of reuse respectively. A task is designated as 

significant if both the configuration cost and the probability of reuse exceed the 

threshold values. 

𝑝∆𝑡 = 𝜆𝑖 𝑥 𝑒−𝜆𝑖 = 𝑝𝑖                3.3 
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To minimize fragmenting the chip area due to the preservation of certain tasks while 

others are removed, the authors propose to have two resizable regions on the chip. 

One of the regions is reserved for significant tasks (which are preserved) and the 

other for non-significant tasks (which are not preserved). The sizes of the regions are 

resized in runtime using the relative number of significant and non-significant tasks. 

Two replacement policies were surveyed: Best-Fit (BF) and Least Probability of 

Recurrence (LPR). The first favours the replacement of the task with the smallest 

size that can accommodate the newly arriving task. LPR on the other hand favours 

the replacement of tasks with low values of 𝑝𝑖. The authors reported a better 

performance for LPR. 

3.1.3 Review of Runtime Clock Routing Techniques 

The authors in [62] proposed an online clock routing technique for a runtime task 

placement scenario. The technique is based on finding the location of PIPs relating to 

the clock tree and controlling their states in runtime. The location of the essential 

configuration bitstream information obtained by reverse engineering experiments 

was proposed to be used to route clock signals to newly placed tasks and to switch 

from a failed clock buffer to a functional one. In addition, the authors proposed 

techniques for dividing clock frequencies of regional clock buffers in runtime, 

making it possible for tasks designed for different clock frequencies to be placed in 

the same clock region.  

However, one of the drawbacks of their technique is that the number of bits to route a 

clock signal to a task is quite high, leading to large time overhead in online clock 

routing. For example, according to the proof of concept of the work and its Table II, 

to route a clock signal from a buffer to a task occupying a single CLB column on a 

Xilinx 7 series FPGA chip, a total of 98 bits, distributed as follows is required. First, 

the appropriate net is selected (1 bit), then the clock signal must be routed to all the 

sequential components in the column (96 bits). Finally, the clock buffer is switched 

on (1-bit). These bits are located in different configuration frames and since the 

smallest resolution of reconfiguration is a frame, a large amount of configuration is 

required. This is a very significant overhead, given that these operations are carried 
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out by a single configuration port in runtime, adding to the already large 

configuration overhead of state-of-the-art FPGAs [38]. A second weakness of the 

paper is that no practical means of mitigating the reliability issue caused by online bit 

editing was presented. As discussed in chapter 2, the configuration memory of 

SRAM-based FPGAs is subject to bit flips (known as transient faults) which are 

mostly managed using frame ECC values. Changing the values of bits in a frame at 

runtime without recomputing ECC values would put the reliability of the entire 

design at risk. Although this was acknowledged in the work, no solution was 

presented. 

The work in [89] also proposed an online bit editing strategy as a means of routing 

clock networks to circuits placed in runtime. No clear information on the number of 

bits that need to be activated or deactivated to route a clock signal to a circuit was 

presented. However, the statement by the author that the clock connection to each 

CLB in a design need to be examined to route a signal suggests a significant amount 

of routing bits similar to [62]. In addition, the paper did not offer any means of 

dealing with the loss of reliability due to runtime editing of configuration bitstream. 

 

3.2 Power consumption on FPGAs 

Minimizing power consumption is one of the top goals of many system designers. 

The desire for low power designs on many systems is not only aimed at reducing 

energy bills and increasing battery life, but also to increase the life span of the device 

and its reliability, as well as reduce the burden of cooling systems [90]. Low power 

consumption also reduces the risk of electromigration. FPGA based applications are 

not left out. Consequently, many techniques have been proposed to reduce various 

components of energy consumption of both applications [91] [92] and FPGA 

platforms [93]. 

 

3.2.1 Components of Power Consumption of FPGAs 

The main components of power consumed by a circuit on an FPGAs are static power 

and dynamic power [93]. In addition to these, extra power is drawn during 



Chapter 3: Runtime Placement Management on FPGAs 

 

 

 

54 

(re)configuration [94]. This is associated with SRAM based FPGAs. It includes the 

power of the configuration engine and memory access when configuration is done 

through the Internal Configuration Access Port. 

Static power is consumed by the FPGA even when no active computation is being 

done by the chip – when no signals are changing [93]. It is basically due to leakage 

current in transistors. For Xilinx FPGAs, most of the processing elements, including 

CLBs and DSPs, contribute a constant value to the static power consumption of the 

device whether they are used by a design or not. However, the BRAMs in the 7 series 

and ultra-scale devices only contribute to the static power when they are used by the 

design [95]. Consequently, the static power consumption of many FPGAs tends to be 

relatively constant for a specific chip irrespective of the circuit configured on it. 

Generally, static power for FPGAs varies with device size. This is illustrated in Figure 

3.5. It shows the power consumption of a Xilinx CORDIC IP computing the 

hyperbolic Tangent on various Xilinx FPGAs.  

 

 

Figure 3.5: Power Consumption Components of a CORDIC Circuit on Different 

COTS FPGA  
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Table 3.1 shows a summary of the resources present on the devices. As shown, the 

static power of the chips in Figure 3.5 varies with the amount of resources present in 

the chips shown in Table 3.1. Techniques to minimize static power in not considered 

here. Rather, to minimize it, the smallest device size that can fit an intended design is 

selected. 

 

Table 3.1: Resource Distribution of Selected Xilinx's 7 Series FPGA 

Device 

 
IOB LUTs FFs BRAMs DSPs 

Artix-7 

 
106 20800 41600 50 90 

Kintex-7 

 
500 203800 407600 445 840 

Virtex-7 

 
700 303600 607200 1030 2800 

ZYNQ 

Kintex-7 
362 277400 554800 775 2020 

 

Dynamic power is consumed only when signals of a design are switching. Its value is 

affected by the clock frequency, the loading capacitance and the supply voltage. This 

is shown in equation 3.4. The term 𝑣 is the supply voltage, c the capacitance, 𝛼 the 

(switching) activity on the components and 𝑓 the clock frequency. Dynamic energy 

component is dependent on the specific design implemented on the FPGA, and in 

many designs, constitute the most significant energy consumption component of an 

entire system. Therefore, minimizing this component is not only an effective way of 

saving significant energy, but it is also one that can be achieved in runtime, unlike 

static energy of the device. 

 

𝑃 = 𝑣2. 𝐶𝑙. 𝑓. 𝛼                     (3.4) 

 

To minimize this component of energy, the 𝑣 component may be reduced using 

adaptive voltage scaling [96] or power gating [97]. It is worth noting that dynamic or 

adaptive voltage scaling can significantly reduce static power consumption in 

FPGAs. The work is [96] reported over 85% saving in energy compared to nominal 
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voltage designs. Also, power savings can be obtained by gating the 𝑓 term when a 

circuit is not required to operate, or reduced if possible. In addition, the activity on 

the circuit may also be minimized [98]. 

3.2.2 Minimizing Dynamic Power Using Memoization 

Memoization involves reusing the result of a previous computation when a request is 

made for computation with the same set of inputs that produced them. Thus, the 

process of re-computing the result is circumvented – together with its attendant 

energy consumption. 

Although many advantages have been advanced for the technique of using 

memoization either to speed up computations or save energy, their actual 

implementation on FPGAs have remained challenging. One of the most important 

challenge is the balance between the overhead of the memoization logic and the 

power saving it offers. These overheads include its own energy consumption per 

transaction. This is important as the memoization circuit is always executed before 

the original circuit for each transaction. Therefore, to benefit from the technique, it is 

important to ensure that the memoization block’s overhead is significantly less than 

the circuit it is meant to work with, and that a high Miss rate is avoided. To 

maximize the benefit of the technique, the block should also be able to carry out a 

fast comparison of input(s) in a limited number of clock cycles. This would reduce 

its energy consumption per transaction as well as reduce the total delay in the 

application’s path, especially in the case of a Miss. A greedy search procedure of the 

block’s memory would greatly increase the energy consumption per transaction, even 

for a moderately sized memory. 

 

3.2.3 Review of Memoization Techniques for Low Power on FPGAs 

Memoization techniques in processors and declarative languages have been well 

investigated. The work in [99] gives a good summary of memoization as it relates to 

software scenarios. In this section, the focus would be the implementation and 
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evaluation of the technique as it relates to FPGA platforms. The author is not aware of 

any prior work that gives the low-level implementation details of a memoization 

block which are applicable to FPGA-based proprietary IPs as presented in this thesis. 

Many prior works regarding power saving in hardware circuits on FPGA have used 

approaches involving the design of imprecise hardware. The works in [91] and [92] 

are good examples. The imprecise hardware generally produces acceptable results 

while their power consumption is significantly lower compared to circuits producing 

accurate results. The authors in [100] presented a similar technique. However, unlike 

[91] and [92], an imprecise hardware is generated from an original behavioural (RTL) 

description of the circuit and not manually.  They reported an up to 50% saving in 

power. These approaches are different from the approach in this thesis since they are 

focused on altering the architecture of the original circuit, and do not involve any 

memoization. 

The work in [101] uses a different approach. Although new circuit architectures are 

generated as in  [100], the new circuits use memoization to achieve lower power in 

addition to their imprecision. The work presented a design flow that uses a high-level 

synthesis tool to generate memoization based circuits. The technique involves 

specifying an input 𝐶 routine together with a threshold for accuracy and power. Using 

these, the flow iteratively synthesizes hardware circuits until the specified constraints 

are met. The quality of each of the circuits that meets the specified criteria is then 

evaluated by computing the ratio of its dynamic power saving to its area overhead 

(power saving per Area, PSPA). The circuit with the highest PSPA is chosen as the 

best candidate. The experimental results presented show up to 20% saving in dynamic 

power consumption. Their technique relies heavily on the accuracy of the test data 

provided. It does not benefit from any runtime information of the system as it is 

completely a design time approach. For instance, if the accuracy threshold changes 

during the runtime phase of the circuit, there is no means of using this information to 

improve the design. This could lead to design failure or spend resources and power 

needlessly. In addition, the quality (in terms of resources) of circuits generated using 

HLS is known to be lower than designing directly with HDL. Also, their technique 
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does not provide a means of incorporating memoization and approximation 

capabilities into a proprietary IP which one simply wishes to reuse without changing 

its architecture. In [102], the implementation of a memoization technique for an image 

processing application was presented. The design presented is very specific to the 

application, and no detail is given about extending the technique to other applications. 

 

3.3 Chapter Conclusion 

In this chapter, runtime placement management techniques for reconfigurable 

computing have been reviewed, including the underlying aspects of runtime 

placement such as fragmentation and managing reconfiguration overhead. In 

addition, power minimization techniques in FPGAs were discussed with a focus on 

reducing dynamic power consumption using memoization. 

As shown in the review above, a large percentage of existing runtime placement 

management systems are not targeted at state-of-the-art COTS FPGAs. They either 

assume a homogeneous architecture, or a regular heterogeneous architecture, both of 

which is not the case with COTS FPGAs. Although few existing works such as [74] 

and [75] targets COTS FPGAs, the techniques presented require a foreknowledge of 

all tasks to be placed on the chip in runtime or can have prohibitively high execution 

times, which are not suitable for runtime scenarios. In addition, they are not 

optimised for reliability.  

Similarly, existing techniques for managing the relatively large configuration 

overhead of COTS FPGAs does not include a consideration of the spatial features of 

the chip area such as ongoing fragmentation. A shown in chapter 5 of this thesis, 

addressing ongoing fragmentation leads to better configuration overhead 

management.  

Furthermore, existing techniques for routing clock networks to hardware circuits in 

runtime are not only expensive, taking up a significant bandwidth of configuration 

port, but also do not address a major reliability concern associated with the method 
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used. In chapter 8, a better online clock routing scheme which addresses these two 

limitations of existing runtime clock routing technique is presented. 

In the next chapter, efficient design-time optimization techniques are presented. The 

optimizations are aimed at improving the quality of task placement achieved in 

runtime, increase the reliability of applications and improve the efficiency of 

computation in a dynamic reconfiguration environment. 
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Chapter 4: Offline Design Optimization for 

Efficient Runtime Placement and 

Reliability 
 

Efficient offline optimization of designs is central to runtime placement management 

system for high quality and fast placement decisions. In many circumstances, 

runtime placement decisions are required to be made fast so as not to impact the 

performance of the overall application in a dynamic reconfiguration environment. 

For many reconfigurable hardware such as COTS FPGAs, this mean that it is often 

infeasible to change the physical layout of the hardware task in runtime as 

(re)synthesis and implementation of tasks take a long time. Hence, for fast and 

efficient placement, the layout of tasks should be optimized such that pre-synthesized 

tasks (in form of their partial bitstreams) can be efficiently placed on the chip in 

runtime with minimum adjustments. 

In addition, the programmable logic of COTS FPGAs are practically heterogeneous. 

This is due to the presence of hard blocks such as BRAMs and DSPs which are 

spread around the chip often in an irregular manner. They place greater limitations 

on runtime placement of hardware tasks on heterogeneous chips compared to their 

homogeneous counterparts. Their presence limits the maximum number of possible 

locations on the chip where a pre-synthesized circuit can be placed in runtime. 

Unlike task placement on homogeneous FPGAs where the task’s area requirement is 

simply to be satisfied in terms of length and breadth of task alone, on heterogeneous 

chips, the layout – that is, the specific order of the resources – also need to match 

those of the original implementation location of the task. Therefore, it is important to 

optimize a hardware task at design time to obtain better placement quality in runtime. 

In this chapter an offline optimization flow is presented. The proposed flow aims not 

only to improve the maximum number of locations for each task on the chip, but also 

achieve a fair distribution among all tasks which will share the chip area concurrently 

in runtime. Furthermore, during this phase, the task is provided with a wrapper to 

support communication after placement. In addition, an optional wrapper based on 

memoization for low power computation is proposed for tasks with low port width. 
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4.1 Offline Optimization to Improve the Number of 

Placement Locations 
 

In reconfigurable computing, hardware tasks are usually pre-synthesized in an offline 

design, ready to be loaded on demand in runtime. This is necessitated mainly by the 

large synthesis and implementation time required to turn an RTL designs into 

configuration bitstreams, which could be in the order of hours [103]. However, one 

limitation that comes with pre-implementation of a task offline is that once 

implemented, most of its features are fixed and cannot be easily changed in runtime. 

For example, its shape and layout remain fixed. However, this offline design stage 

can be harnessed to optimize some of the features of the tasks to make their 

performance in runtime more efficient.  

With regard to runtime placement on the chip, the maximum number of locations on 

the chip on which a task can be placed in runtime is determined by the 

implementation location chosen during the offline stage of the task design [76]. 

Figure 4.1 illustrates this point. The two floor plans shown are intended for a 

hypothetical circuit with a utilization of 30 CLBs. Using the floor plan in Figure 

4.1(a), only one location (LOC 1) exists for the task in runtime. Should this location 

become permanently damaged or be occupied by another task in runtime, it would 

become infeasible to execute the task on the chip. On the other hand, Figure 4.1 (b) 

shows that the same task can be floor-planned differently such that two non-

overlapping locations (LOC 1 and LOC 2) are available for the task. This later floor 

plan gives the task a higher chance of being placed on the chip in runtime in the 

presence of other tasks and the possibility of permanent damage occurrence. Though, 

it is worth noting that the later floor plan comes with an overhead of a slightly higher 

overall area. Thus, it is important to select implementation location for each task that 

would maximize the chance of finding a location for the tasks on the chip in a 

dynamic runtime scenario.  

In the following sub-sections, a flow that aims to select optimized implementation 

location for a set of tasks sharing chip area simultaneously is presented. It is a set of 
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stages that transforms RTL description of tasks to their configuration partial 

bitstreams. 

 

LOC 1

 
(a) 

 

LOC 1

LOC 2

 
 

(b) 

Figure 4.1: Implementation Location Determines Number of Runtime Placement 

Locations  

a) Only 1 location available  

b) 2 locations available 
 

The optimization procedure is divided into 5 stages which are: 

a) Synthesis (using Vivado IDE) to obtain estimate of resource utilization of 

task(s) 

b) Conversion of the resource estimation to FPGA resource columns 

c) Determination of optimized implementation location for task(s) 
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d) Execution of script-based Partial reconfiguration routine for partial bitstream 

generation 

e) Copying of bitstream to a desired bitstream storage for ready for runtime 

execution 

These stages are shown in Figure 4.2. The details of each stage are provided below. 

 

Vivado Synthesis to 

produce resource 

requirement

TCL scrip to read 

resource requirement 

from vivado

C- simulator to 

compute the best 

synthesis location

Bitstream 

Storage

Partial 

reconfiguration with 

p-block location

Generated Bitstream 

copied to desired 

location

RTL of

 Task

 

Figure 4.2: Stages of Offline Optimization of Tasks 
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4.1.1 Initial Synthesis to Determine the Resource Utilization of Task(s) 

Commercial FPGA CAD tools can be used to transform an RTL description of a task 

to a netlist. The Xilinx Vivado IDE is a good example. After synthesis and 

implementation step, an estimate of the amount of FPGA resources required to 

implement the task is also reported. With the default setting of Vivado, this is 

available in the project folder, and can be read directly with a script. As an example, 

Figure 4.3 shows a section of the resource utilization report after implementation of a 

CORDIC application implemented using Xilinx’s CORDIC IP [104]. This report 

provides a good starting point in the selection of a suitable implementation location 

for a task. First, it provides an initial estimate of the amount of resources required by 

the task. The estimate obtained by this step is refined to obtain a suitable resource 

layout and subsequently used to select an implementation location by further stages 

of the optimization flow described below. 

 

4.1.2 Conversion of Resource Estimation to FPGA Columns 

The resources reported by Vivado CAD tools, usually in terms of numbers of FFs, 

LUTs, BRAMs and DSPs, are converted to device rows and columns. To simplify 

the optimization analysis and implementation, the resource utilization is converted to 

number of columns and rows, assuming that the task physical area will have a 

minimum resolution of 1 device column and 1 device row.  

It is worth noting that the task could be easily designed such that the number of 

columns can include fractions of a column, with the resource utilization contained in 

a section of a column without occupying an entire column. That is, without making 

the resolution of the task’s width equal to the row height of the chip. However, 

selecting an entire column of resources, aligned to the height of the clock region of 

the device has three major advantages: 

a) The configuration engine is naturally aligned to the configuration of an entire 

device column within each row [27]. Although, it is possible to choose task 

configurations that overlap clock regions heights, it means that when the 
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tasks are to be configured, any other tasks in a shared device column must be 

stopped, their context saved and their bitstream 𝑂𝑅𝑒𝑑 with the new task’s 

configuration bitstream. This is a time-consuming process which, in addition 

to disrupting the execution of already computing tasks, adds to the challenge 

of large reconfiguration overhead of COTS FPGAs as explained in chapter 5 

of this thesis. 

 

 

Figure 4.3: Section of a Typical Resource Utilization Report from Vivado IDE 

 

b) It leads to a significant reduction in the amount of time required by the online 

placement routine to scan the chip area to find a location for a task. A 

reduction of approximately 50 times is obtained on the 7 series FPGA chip.  
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c) The memory required to keep the state of the FPGA resources by the runtime 

placement system is significantly reduced. This is also in addition to a 

proportional reduction in the amount of time needed to update the state of the 

chip in memory after each placement activity. 

The area required by the task is computed in terms of number of target device 

columns (aligned to a clock region height) using (4.1). 

 

𝑁𝐶𝐿𝐵_𝑐𝑜𝑙 = max (⌈
𝑛𝐹𝐹

𝑃
⌉ , ⌈

𝑛𝐿𝑈𝑇

𝑄
⌉) 

𝑁𝐵𝑅𝐴𝑀_𝑐𝑜𝑙 =  ⌈
𝑛𝐵𝑅𝐴𝑀

𝑅
⌉                                               4.1 

𝑁𝐷𝑆𝑃_𝑐𝑜𝑙 =  ⌈
𝑛𝐷𝑆𝑃

𝑆
⌉ 

 

Where 𝑁𝐶𝐿𝐵_𝑐𝑜𝑙 , 𝑁𝐵𝑅𝐴𝑀_𝑐𝑜𝑙 and 𝑁𝐷𝑆𝑃_𝑐𝑜𝑙 refer to the number of CLBs, BRAMs and 

DSP columns respectively required by the task. The terms, 𝑛𝐹𝐹 , 𝑛𝐿𝑈𝑇 , 𝑛𝐵𝑅𝐴𝑀 and 

𝑛𝐷𝑆𝑃 denotes the number of flip flops, LUTs, BRAMs and DSPs obtained from the 

synthesis report of the RTL explained in section 4.1.1 above. Also,  𝑃, 𝑄, 𝑅 and 𝑆 are 

the number of the respective primitives in a column of the device. For the 7 series, 

these are 800, 400, 10 and 20 respectively. As an illustration, Table 4.1 shows a 

conversion of the resource utilization of the data processing tasks of a NASA JPL 

Fourier Transform Spectrometer (FTS) application [105] and the corresponding 

number of device columns estimated using 4.1. These initial estimations are fed into 

the next stage of the proposed flow to determine optimized implementation locations 

for the tasks shown. 

 

Table 4.1: Resource Utilization of JPL Spectrometer Application and Corresponding 

Number of Device Columns* 

Tasks 𝒏𝑭𝑭 𝒏𝑳𝑼𝑻 𝒏𝑩𝑹𝑨𝑴 𝒏𝑫𝑺𝑷 𝒏𝑪𝑳𝑩_𝒄𝒐𝒍 𝒏𝑩𝑹𝑨𝑴_𝒄𝒐𝒍 𝒏𝑫𝑺𝑷_𝒄𝒐𝒍 

STAT 576 868 3 15 3 1 1 

FFT 20,521 18,325 66 132 46 7 7 

ZPD 1,080 9,729 14 32 25 2 2 

*The resource requirement for task communication have been included (Details section 4.2) 
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4.1.3 Determination of the Optimized Implementation Location of 

Task(s) 

For certain design scenarios, tasks are known to occupy the FPGA area alone or are 

such that other tasks which could share the chip area with them concurrently are 

unknown at design time. In that scenario, an implementation location is chosen to 

maximize the total number of such positions present on the chip. On the other hand, 

as in most practical cases, tasks sharing the chip area simultaneously (or at 

overlapping times) are known. For this later case, implementation positions are 

selected such that: 

a) a maximum number of non-overlapping positions for each task is obtained 

b) An optimum distribution in the number of location of the tasks is achieved. 

This is done iteratively as summarized by Algorithm 4.1. First, a function 

𝐷𝑒𝑡𝑅𝑠𝐼𝑑𝑠() is used to determine all possible implementation position for each task. 

These are saved in an array (Array). This is an iterative process (line 3 - 5), with the 

function returning only after a valid location is found, or the end of the chip is 

reached. The value returned by the function is the index of the start column of a 

matching location of the chip (𝑅𝑠𝐼𝑑), the length of the task (𝑙), and its width (𝑤). 

These are collected in an array indexed using 𝑅𝑠𝐼𝑑 values. Thereafter, for each 

combination of implementation location for the constituent tasks, a function 

(𝑄𝑢𝑎𝑙𝑖𝑡𝑦()) computes a measure of the quality of placement achievable using the 

selected locations (line 11 – 24). The terms 𝑘1, 𝑘2, … 𝑘𝑛, refers to the number of 

distinct possible start locations for each task. 

The function, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(), consists of another function, 𝑠𝑐𝑎𝑛() which scans the chip 

area to determine the number of locations matching each of the current 

implementation positions on the chip (𝑛𝑖). This is then used to compute a term that 

measures the quality, 𝑞 of the selected implementation locations. Equation 4.1 shows 

how 𝑞 is computed. The process is repeated until all possible combinations of 

implementation locations for the constituent tasks have been examined, each time 

comparing the current 𝑞 to a previous value, 𝑄 and updating the value of 𝑄 when a 

better combination of implementation location (i.e. a higher value of q) is found. In 
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addition, an array (𝑜𝑝𝐴𝑟𝑟𝑎𝑦) keeps the potential implementation locations of the 

tasks corresponding to the value currently stored in 𝑄. 

It is worth noting that for the 7-series device, a pair of resource column share a 

common set of routing resources. Typically, all columns of CLB, BRAM and DSP 

have orientations designated as left or right. The general and clock routing networks 

are located between a left and a right column as shown in Figure 4.4. This technique 

helps to improve density of resources on the chip, improving the quality of automatic 

place and route operations [106]. 

 

Algorithm 4.1: Pseudo code for selecting optimized implementation location for 
improved placement 

Inputs: FPGA Model, Number of Tasks in application (N), Resource requirement for 
each task (expressed in number of columns e.g. of CLBs, BRAMs and DSPs) 

Output: Task Layout (𝑜𝑝𝑝𝐴𝑟𝑟𝑎𝑦) 𝑇𝑖 = {𝑙𝑖;  𝑤𝑖;  𝑅𝑠𝐼𝑑𝑖}, 𝑖 = 0 𝑡𝑜 𝑁 − 1 
 

1. for (𝑖 = 0 to 𝑁){ 

2.  𝑘 = 0  

3. while (𝑅𝑠𝐼𝑑[𝑘] ≠ 𝑁𝑢𝑙𝑙){ 

4.        𝑅𝑠𝐼𝑑[𝑘] ← 𝐷𝑒𝑡𝑅𝑠𝐼𝑑𝑠(𝑁𝐶𝐿𝐵𝑐𝑜𝑙
, 𝑁𝐵𝑅𝐴𝑀𝑐𝑜𝑙

, 𝑁𝐷𝑆𝑃𝑐𝑜𝑙
, 𝐹𝑃𝐺𝐴 𝑀𝑜𝑑𝑒𝑙) 

5.       𝑘++ 
6. } 

7.  𝐴𝑟𝑟𝑎𝑦[𝑁] ← {𝑅𝑠𝐼𝑑[𝑘]} 
8. } 

9. OpArray [N] ← 𝑁𝑢𝑙𝑙 
10. 𝑄 = 0 

11. for (𝑖 = 0 to 𝑘1) { 

12.  for(j = 0 to 𝑘2){ 

   ⋮ 
17.      for(k = 0 to 𝑘𝑛){ 

18.   𝑞𝑖= 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴𝑟𝑟𝑎𝑦[𝑘1], 𝐴𝑟𝑟𝑎𝑦[𝑘2] … 𝐴𝑟𝑟𝑎𝑦[𝑘𝑛], FPGA Model) 

19.      if (𝑞𝑖 > 𝑄){ 

20.                   𝑄 ← 𝑞𝑖 

21.                   OpArray ← {Array[𝑘1], Array[𝑘2], …Array[𝑘𝑛]} 
22.       }  
23.     } 
24.  } 
25. } 
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However, it introduces a constraint in the location of P-block for partial 

reconfiguration. To use the Vivado PR-flow, the boundaries of a P-block cannot be 

located between a left-right pair of resources; a P-block must begin with a column of 

resource with left orientation and end with a column with right orientation. 

Consequently, the 𝑙 parameter is increased by 1 in the right direction whenever a 

potential location ends on a column with left orientation. 

 

 

 

Figure 4.4: Routing Structure in a pair of CLB Columns of Xilinx 7 Series FPGA 

[106] 

 

The quality term, 𝑞 in Algorithm 4.1, is computed using equation 4.2 for all 

combinations of implementation locations for the constituent tasks. The set of 

locations with the maximum value of q is used for implementing the tasks and 

generating partial bitstreams. In Equation 4.2, 𝑛 is the number of tasks occupying the 

chip area concurrently, 𝐿 is the sum of locations for the tasks, 𝐸𝐿 is sum of non-

overlapping locations, 𝜖 is a small constant term to avoid ambiguous 0 products, and y 

is chosen to give relative significance to the terms. In the simulations, y=2 was used 

to give a greater significance to the sum of non-overlapping locations (EL) over the 

sum of all locations (L). Algorithm 4.1 takes the model of the FPGA, number of task 

(N), and resource requirement of each task as inputs. The model of the FPGA is 

Left CLB column Right CLB column Shared routing resource 
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required for the scan operation. During the scan operation the layout of the task is 

compared to segments of the chip to determine a matching location for the task.  

The FPGA platform is modelled using equation 4.3. The model defines the 

heterogeneous columns in the chip which are reconfigurable. The final output of 

Algorithm 4.1 is an array of the optimized layout information of each task, consisting 

of the start column index of the task (called 𝑅𝑠𝐼𝑑 for the rest of this thesis), the length 

(𝑙) and width (𝑤) of the task expressed in the number of adjacent device columns and 

rows respectively required by the task. The parameters 𝑙 and 𝑤 specify the area 

requirement of a task.  𝑅𝑠𝐼𝑑, specifies a column on the target chip such that the next 

(𝑙 − 1) contiguous columns to the right of 𝑅𝑠𝐼𝑑 is the matching position for the task 

on an intended heterogeneous chip with the optimum number of locations on the chip. 

This parameter makes the model applicable for heterogeneous tasks and chips. 

 

𝑞 = [(∑ 𝐿𝑖

𝑛

𝑖=0

) + (∏(𝐸𝐿 + 𝜖)𝑖

𝑛

𝑖=0

)

𝑦

]                           (4.2) 

 

𝑃 = {𝐿 𝑥 𝑊; (𝐵𝑖), (𝐷𝑗) | 𝑖 ≠ 𝑗; 0 ≤ 𝑖, 𝑗, ≤ 𝐿}             (4.3)  

To illustrate this step, the resource utilization of the data processing tasks of a NASA 

JPL spectrometer application developed in [105] on Xilinx’s xc7z100ffg900-2 FPGA 

chip (shown in Table 4.1) was fed into Algorithm 4.1. Figure 4.5 gives an overview 

of 𝑞 values for some of the combinations using the technique described above. Only 

combinations with q ≥ 0.2 have been shown for clarity purposes. The values of 𝑞 were 

computed with (4.2) using a heuristic approach with 𝜖 chosen to be 0.1 and 𝑦 =  2. 

Possible combinations are represented on the horizontal axis. The number of non-

overlapping locations (𝐸𝐿) for each of the three tasks are shown in bars, utilizing the 

vertical scale on the left, while the total sum of locations (including overlapping ones) 

for tasks (𝐿) and the computed Quality, 𝑞 values use the right vertical axis. As can be 

seen, combination 6 which gives both the peak quality and maximum sum is the 
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preferred combination. The individual tasks are then assigned locations on the chip 

corresponding to combination 6. 

To validate the effect of the optimization technique, the ability of the tasks in Table 

4.1 to cope with errors by relocation to different locations on the chip in the event of 

permanent damage on the chip was evaluated. 1000 set of 200 errors were simulated 

and applied to two different implementations of the tasks in Table 4.1. The first 

implementation used the maximum number of potential locations as criteria to 

determine the implementation positions of the tasks. In this case, several layouts of 

each task were constructed and the number of potential locations for each layout was 

computed. For each task, a matching location of its layout with the highest number of 

potential locations was chosen as implementation location. The implementation 

location of the second implementation of tasks used Algorithm 4.1 described above. 

During the simulated error injection for both implementations, if a location occupied 

by a task is affected by an error, the task is relocated to a different location on the 

chip. Figure 4.6 shows the number of errors each implementation survived before 

failure. The assumption used was that a system fails if any of its component tasks can 

no longer be relocated on the detection of a fault at its current location. As shown in 

the figure, it was observed that using the proposed optimization technique improves 

the relocation capability of the tasks of an application compared to selecting 

implementation locations that only maximizes the total number of locations for each 

task. An average of 48.6% more errors were survived due to relocation. 

 

 



  Chapter 4: Offline Design Optimization  

 

 

 

72 

 

 

Figure 4.5: Optimal Implementation Location Selection for Spctrometer Tasks on 

Xilinx’s 7z100 Chip 

  

It is important to state that the combination in Figure 4.5 refer to the set of potential 

implementation location for JPL application consisting of CLB, DSP and BRAM 

columns. For each of the three tasks, all the matching locations are determined by 

comparing the resource requirement of the task to the model of the chip layout. All 

possible combinations of the chip are then evaluated by computing the quality term 

described above. A ′𝐶′ routine was written for the evaluating the combinations. Only 

the twelve best combinations have been shown in the figure for clarity purposes. 
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*Using same comparison base as [77]  

Figure 4.6: Effect of Offline Optimization on Tasks Number of Successful 

Relocation 

 

4.1.4 Execution of Script-Based Partial Reconfiguration Routine for 

Bitstream Generation 

TCL scripting is used to execute a partial reconfiguration routine to generate partial 

bitstreams for the tasks. The script is essentially based on the tool-chain of the 

Xilinx’s Vivado 2015.1, augmented with information from the optimization 

procedure above. In addition to the standard partial reconfiguration flow (PR-flow) 

of Vivado, the TCL script created for this step includes two additional features: 

a) This step takes the optimized implementation location of the tasks as input 

and uses them to draw p-blocks for the process. 

b) Allowance is made for overlapping optimized implementation location (p-

block) locations.  

The second feature is necessary as the output for stage 3 could include overlapping 

positions as optimal implementation location. The standard Xilinx DPR flow cannot 
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handle overlapping p-block locations. To support this feature, the augmented script 

considers alternate matching locations for the task on the chip and selects it as a 

synthesis location if it does not overlap another tasks’ location. In the case when no 

other identical location exists, the tasks with overlapping implementation locations 

are placed on the chip one after the other and PR-flow repeated for each. 

It is important to note that partial reconfiguration designs often have additional area 

overhead compared to flat designs that does not use partial reconfiguration [107]. 

The actual additional resource requirement varies from design to design [36]. 

Examples of factors which lead to increased resource utilization is: number of 

interface pins and shape of the p-block. In addition, the application of partial 

reconfiguration constraints such as “Contain Routing” mean that the density of the 

resource in an area is less than that of an equivalent flat design [36]. Therefore, it is 

possible that the bitstream generation process could fail due to the P-block size 

estimated using algorithm 4.1 (in section 4.1.1) being smaller than the resource 

requirement of the PR-procedure. To account for this, the stages 3 and 4 in the 

proposed flow are repeated until stage 4 is successful. That is, when stage 4 fails due 

to insufficient P-block size, stage 3 is repeated. 

To re-execute stage 3 after a failure resulting from insufficient P-block size, 

additional column(s) is added to the failing P-block. The amount of resource added is 

the minimum resolution supported by the target FPGA family. For the 7 series chips, 

this is often a pair of columns due to the routing structure discussed above (see 

Figure 4.4). It is worth stating, however that the chances of failures due to 

insufficient P-block resources in the stages described here-in is low. In fact, for the 

spectrometer application shown in Table 4.1, there was no failure in stage 4 as the 

implementation location outputted by algorithm 4.1 was sufficient to generate partial 

bitstreams for the tasks. Two factors leading to the low chance of this failure 

occurring are: 

a) The computation of the number of columns takes the upper bound of the 

number of columns (this can be seen in equation 4.2). 
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b) The resources computed using (4.2) are aligned to end on a device column 

with a right-orientation, thereby increasing the amount of estimated resources 

by a whole device column (within each row) in some cases 

Thus, the outputs of the Algorithm 4.1 already contain extra resources which in most 

cases can cater for the resource overhead due to the PR-flow. However, in cases 

where failure occurs, step 3 is repeated. 

 

4.1.5 Configuration Bitstream Storage and Task Model 

The bitstreams of all tasks are each assigned a serial number and saved in a memory 

off-chip. Without loss of generality, the DDR memory present on the Xilinx’s 7z100 

was used in this thesis, although any suitable off-chip memory could be used in a 

similar fashion provided a controller is available to transfer the bitstream to the chip 

in runtime. In addition to this, an on-chip memory is used to store runtime 

information about the tasks including its spatial properties: 𝑅𝑠𝐼𝑑, 𝑙 and 𝑤; as well as 

its temporal properties: configuration time (𝑡𝑐) and execution time (𝑡𝑒). The 

parameter, 𝑡𝑐 refer to the time to setup the task on the chip by a configuration 

manager; 𝑡𝑒 is the duration required by the task for active computation. An additional 

timing parameter, task deadline (𝑡𝑑) is included in the task model, however, its value 

is determined in runtime. The deadline, 𝑡𝑑, is the maximum time before which a 

task's output must be available to be useful.  

The values of the parameter 𝑅𝑠𝐼𝑑 for the tasks are obtained after stage 3 (section 

4.1.3), while the 𝑙 and 𝑤 are obtained after a successful PR in section 4.1.4. The 𝑡𝑐 of 

the task is computed using the: 

 

a) number of frames in the configuration bitstream and  

b) timing characteristics of the configuration controller. 
 

The number of frames in the configuration partial bitstream of a task is dependent on 

both the composition and size of the implementation location selected for the task. 

Table 2.4 (chapter 2) shows the number of configuration frames in Xilinx’s 7 series 

FPGA for each selectable type of device pair. It is worth noting that there are 128 
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BRAM content frames per column for partition selections including BRAM 

columns, as against 72 frames for 2 columns of CLB. Thus, a smaller area including 

BRAM columns have larger partial bitstreams compared to equivalent area 

composed of only CLB columns, and thus have larger configuration time. 

The configuration controller used in this thesis [27] has the timing characteristics 

given in equation (4.4) and (4.5) respectively for a non-BRAM frame and a BRAM 

frame for the same FPGA series. Where 𝑁 is the number of frames to be written to 

the configuration memory, 𝑀 is the number of instances of the task to be configured 

and 𝑡𝑐 is the number of clock cycles required to write the configuration memory with 

𝑁 frames and 𝑀 instances. The model also accounts for the initial data in the pre-

amble section of the configuration bitstream, thus 𝑁 is the number of frames in the 

configuration data of the partial bitstream which is determined purely by the 

properties of the reconfigurable resources. For example, to configure one instance of 

a task with 𝑤 = 1 and 𝑙=2 consisting of a CLB-BRAM pair, a total of 25676 clock 

cycles is required. This consists of 8230 clock cycles for writing the 64 non-Bram 

frames and the remaining 17446 clock cycles configure the 128 BRAM content 

frames.  

 

𝑡𝑐(𝑁𝑜𝑛−𝐵𝑟𝑎𝑚 𝐹𝑟𝑎𝑚𝑒) = 27 +  128𝑁 +  11𝑀                     (4.4) 
 

 

𝑡𝑐(𝐵𝑟𝑎𝑚 𝐹𝑟𝑎𝑚𝑒) = 19 +  136𝑁 +  19𝑀                             (4.5) 
 

 

The parameter 𝑡𝑒 for a task is measured by executing the tasks and examining its 

characteristics. For tasks with varying execution time, the worst-case value is chosen. 

The deadline parameter (𝑡𝑑) is determined in runtime when the task is scheduled by a 

top application. Thus, the task, modeled as a collection of these six parameters as 

shown in (4.6). 

 

𝑇 = (𝑙, 𝑤, 𝑅𝑠𝐼𝑑, 𝑡𝑐 , 𝑡𝑒 , 𝑡𝑑)                                        (4.6) 
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Table 4.2 is an example of these parameters for selected hardware tasks after the 

execution of the steps 4.1.1 to 4.1.5 described above. The components tasks of each 

of the two applications shown were optimized such that they can be placed on the 

chip area currently in an efficient way under runtime scenarios. It worth noting the 

adjustments made by Algorithm 4.1 to some of the parameters of the tasks compared 

to their initial values in Table 4.1. For example, the sum of the number of resource 

column for the STAT task is 5 from Table 4.1, however, its final output after step 3 

and 4 of the flow was augmented to 6 as shown in Table 4.2. This was because the p-

block for the STAT task attempted to split interconnects between a left-right pair of 

resources. 

 

Table 4.2: Example of Task Hardware Parameters after Optimization Steps* 

Application 
Component 

tasks 
𝒍 𝒘 𝑹𝒔𝑰𝒅 𝒕𝒄(µs) 𝒕𝒆 (µs) 

FTS 

Application 

STAT 6 1 2 430.84 100 

FFT 76 1 4 4629.24 200 

ZPD 30 1 82 1587.96 750 

CORDIC 

Square Root 2 1 8 92.54 15 

Sine/Cosine 2 1 16 92.54 19 

Hyperbolic 

Tan 
6 1 0 441.08 56 

*The resource requirement for task communication have been included (Details section 4.2) 

 

 

 

4.2 Communication Interface Wrapper 

A non-slotted model is used for the placement techniques presented in this thesis. 

Thus, tasks are not constrained to pre-determined slots. This helps to improve the 

utilization of the chip area. The alternative model, slotted architecture, is faced with 

the challenge of internal fragmentation as pointed out in chapter 3. Slotted ROS 

architecture such as [45] places pre-synthesized circuits in pre-defined slots in 

runtime. The slots are fixed in size and resource layout and can accommodate one 

hardware task at a time. There are several disadvantages with the slotted architecture. 

First is the determination of an appropriate size of the slots as hardware tasks would 
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generally have different sizes and layout requirements. In addition, the use of slotted 

architecture is susceptible to internal fragmentation in the placement of tasks which 

in turn leads to wastage of resources. This is because a smaller task would have to 

use an entire slot. Also, should a part of a slot become damaged, the entire slot could 

become useless. These leads to inefficient resource usage which is a major goal of 

ROS. However, slotted architecture has the advantage that tasks placed in slots can 

easily maintain communication and clocking access with other tasks and the FPGA 

ports.  

On the other hand, non-slotted ROS architecture such as [8] has the potential 

advantage of better area utilization as circuits can be placed on any matching location 

on the chip. This translates to less fragmentation and better area utilization, as well as 

better reliability of an application where relocation is used in the avoidance of 

permanent damage. However, the non-slotted ROS architecture faces two challenges 

(in addition to more complex area management): maintaining communication with 

other circuits or with the FPGA ports and clock network delivery to circuits placed in 

runtime. It has been argued that the slot-less architecture has the potential to have far 

better performance than the slotted architecture if these limitations could be 

addressed [8]. To address the challenge of communication, a technique which uses 

the clock buffers and nets on the FPGA chip for communication is adopted [26]. The 

technique developed by Adewale, a fellow researcher in the group, adapts the unused 

clock buffers and nets on Xilinx FPGAs for communication. An overview of the 

technique is shown in Figure 4.7. The technique is quite scalable and can be easily 

adopted for different designs by using a custom wrapper. The wrapper adds an 

overhead of 249 LUTs and 87 FF for each pair of 32-bit input and output. These 

resource overheads are included in the resource utilization of the tasks before 

executing the design optimization flow in section 4.1. Complete details of the 

communication technique can be seen in [26], [108] and [109]. 



  Chapter 4: Offline Design Optimization  

 

 

 

79 

 

Figure 4.7: Mechanism of Data Transfer Using Clock Buffers as Serial Bit 

Transceivers [109].  

The signal transitions show an example of the transmission of an 8-bit binary data 

10011010  

 
 

4.3 Additional Optimization for Low Power for Low Porth 

Width Applications 

Certain applications can be optimized to benefit from power savings by keeping 

track of previous computations. In this section, an explanation of how this could be 

achieved for a task is given. Like the communication interface wrapper, this 

technique is applied to qualifying tasks before the optimization flow to improve 

runtime placement outlined in section 4.1 

Memoization is a technique that has been proposed for low power designs on 

FPGAs, though it has been previously applied to other fields, especially software. 
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Memoization involves reusing the result of a previous computation when a request is 

made for computation with the same set of inputs that produced them. Thus, the 

process of re-computing the result is circumvented – together with its attendant 

energy consumption. This advantage is, of course, at the expense of additional 

storage and logic resources. Therefore, the gains of memoization must be balanced 

against its overheads. Figure 4.8 shows an illustration of a circuit and its 

memoization block. In this architecture, the original circuit is only enabled to 

compute new results for a set of inputs if the memoization block fails to find the 

result(s) for the input(s) in memory. The results of the computation are saved to the 

memoization block’s memory after each computation if not already present. 

 

 

Figure 4.8: A circuit and its Memoization block 

 

Memoization is only applicable to systems which are referentially transparent – 

systems that produce the same outputs for the same set of inputs. Systems whose 

outputs depend on some internal states or are determined by other factors than the 

current input(s) are not directly implemented by the memoization technique 

presented in this section. 

The focus in this section is to minimize dynamic power using memoization 

technique. It involves disabling a circuit if the result of a requested computation is 

already present in memory. For the memoization technique to be gainful, the 

additional resources required for its implementation, together with its power 

consumption must be balanced against that of the original circuit(s) on which 

dynamic power is aimed to be saved.  

The low-level details of implementing a low power memoization wrapper for a design 

while retaining the architecture of the original circuit is presented below. The 
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technique presented is directly applicable for applications with low interface width. 

The main contributions are: 

i) An actual implementation of a memoization technique for applications with 

low interface port widths. A low-level implementation details of a 

memoization block architecture which can interface to FPGA-based circuit(s), 

including proprietary IPs is presented. 

ii) A technique for achieving negligible energy overhead for a memoization block, 

by using memory space reservation to achieve a fast decision in a fixed number 

of clock cycles. 

 

4.3.1 Architecture and Operation of Memoization Wrapper 

 

a) Task Memoization Module Architecture 

The memorization module adds a pre-processing step to the computations of an 

application. The application could consist of a single or multiple circuit (or tasks). 

Figure 4.9 shows the block diagram of a memoization module which is easily 

adaptable to applications with both single and multiple tasks. Its architecture consists 

of a task memory, an input data memory, output data memory and memoization 

logic. During an application’s initialization stage, its component tasks are loaded into 

the task memory with each task assigned a unique ID. This unique ID also doubles as 

the address of the task in the Task Memory. The data stored for each task 

corresponds to the start of the address space allocated to the task in the 

memoization’s block input and output memories. The depth of the task memory is 

determined by the maximum number of memoizable tasks in the application(s). Its 

width is determined by the number of tasks, sum of the number of inputs of the 

constituent tasks that are memoizable and the tolerance of the tasks. For example, for 

an application (or a set of applications) consisting of 4 tasks, with each task having a 

single 8-bit memoizable input and an input tolerance of 0, the task memory in Figure 

4.9 is configured with a depth of 4 and a width of 10 bits. For the same number of 

tasks and inputs, but with tolerance of 2 bits, a task memory of depth 4 and width 8 

bits would suffice. In the implementation, 5 additional bits are added to the width of 
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the task memory – 4 are used to specify the tolerance of the task and 1 (at the LSB) is 

checked for validity of the value stored at an address. 

The memoization FSM checks the task memory to decide if a task has been saved or 

not. This check only takes 2 clock cycles as the task ID used for the check 

corresponds to the input address of the task memory. The output of this memory 

corresponds to the beginning of the section of the input memory hosting the inputs of 

the addressed task. Thus, it is the base address (base_addr) in the input memory. An 

offset value is added to this base address to form the input address of the input 

memory. The offset is determined using the task’s current input and its tolerance 

value. Information of the tasks’ tolerance are stored in the task memory as steps, 

where a step of 1 correspond to tolerance 0, step of 2 corresponds to tolerance of 1, 

etc. A straight forward approach is to reserve sufficient memory for all potential data 

inputs. In this way, the offset value is determined as follows. The data input is 

augmented (approximated) to the nearest reference value address by taking its 

tolerance into account. For a data input of 4 and a tolerance of step 2, the offset of 

(4/2 = 2) is obtained.  This offset is added to the base address and the sum forms the 

input address to the memoization block’s input memory. 

Input 
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Memoization 
Logic FSM Output 

Memory

Task 
Memory

Data Input

Data Output
Mode
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Task ID
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Address

Ready

Compute
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M_Data Out

Base_Addr 
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Figure 4.9: Block Diagram of Memoization Module 

 



  Chapter 4: Offline Design Optimization  

 

 

 

83 

The output of the input memory is checked to determine if current data input has 

been saved or not. In the proposed memory space reservation technique, only the 

LSB of the output of the input memory is checked to determine if the value stored at 

the address is valid (‘1’) or not (‘0’). Hence, there is no greedy search procedure, 

where a series of values from memory are compared against the current input, 

involved. In addition, the addresses of the results in the memoization block’s output 

memory corresponds to the addresses of inputs in the input memory. For example, if 

an input for a task is saved at address 8 in the input memory, the results of that input 

would be saved at address 8 in the output memory. If a ‘valid’ is returned, the 

corresponding address is read out as the result of the computation. Otherwise, the 

task would have to be enabled to compute an output for the current input. 

For a set of tasks to share a single memoization block, two conditions need to be 

satisfied. First, all the constituent tasks must have similar interface, with the same 

data width. Second, no two tasks will be required compute at the same time. Groups 

of tasks which fulfil these conditions could share a single memoization block to save 

logic. When a single task owns a memoization block, the task memory sub-block in 

Figure 4.9 is removed from its architecture.  

 

b) Memory Size Management 

The amount of memory reserved for a task in the input memory of the memoization 

block is determined by the number (and size) of its potential inputs as well as its 

tolerance. For example, a task with single input of 8 bits and a tolerance of 0 (step 1) 

would require 255 address spaces in input memory. As can be seen, the memory 

requirement increases very rapidly with the input size and number. Two suggestions 

are proposed for reducing this (huge) memory. First by saving only certain reference 

values of the inputs within the tolerance of task as mentioned earlier. For example, if 

the same task above has a tolerance of 1 (step 2) then the input memory requirement 

is reduced by 50% compared to the step 1 case. For this strategy, an additional 

resource saving can be obtained in the output memory as follows. Recall that the 

LSB of the output of the input memory is reserved to be checked if the current task 
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input has been saved or not. The other bits at the same address are free to be used for 

other purposes. They may be used to save address of the corresponding output in the 

Output Memory. In this way, there is no need to duplicate outputs that are the same. 

A single result value can be stored, and all inputs producing that output would have 

this address at their (𝑛 − 1)th bit positions. However, some greedy search would 

need to be done to identify duplicate outputs, thus leading to higher timing and 

energy overhead. 

A second possible technique of reducing the memory requirement of the 

memoization block is to reserve memory only for those inputs which are regularly 

assessed. A fixed amount of memory is reserved for the task’s inputs to be 

memorized, and their corresponding outputs. In this case, all arriving inputs are 

initially saved, and when the predetermined memory is filled, a replacement policy is 

used to displace least frequently used ones. However, some search would be 

necessary to decide if the computation result for the current input has been saved or 

not. In addition, some logic overhead is incurred in implementing both the search and 

replacement schemes. None of these two techniques were implemented in the 

proposed wrapper as the target in this section is low port width applications. 

 

c) Task Memoization Module Operation 

The operations of the memoization module is in 2 modes: CHECK mode and SAVE 

mode. Figure 4.10 shows a generalized operation of the memoization block shared 

by a single task. Its operations are controlled by an FSM in its logic. In the CHECK 

mode, inputs to the application are evaluated by the memoization module to see if the 

result for the requested computation is already present in memory. It takes the input 

of the task (Data Input) as well as the task number (Task ID). These inputs are 

checked against the memorized data. The outcome of this check is either a HIT, 

when result(s) is present in memory for this input(s), or a MISS otherwise. 

Misses are expected (frequently) at the early stages of the applications execution but 

expected to decrease over the lifespan of the application. After a long period of 

execution, the miss rate is proportional to the size of the memory and, in the case 
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where the memory is insufficient for all inputs, the efficacy of the policy used to 

select which inputs to save and which not to save. When a MISS occurs, the 

COMPUTE and READY signals of the memoization block are set high. If the input 

qualifies to be memorized, the FSM waits for the computation to complete and then 

switches to SAVE mode to save the results of the computation. The total energy for a 

MISS operation is higher for a task with memoization than just that of the original 

task since both the memoization block and the task are executed. It is important that 

the energy of the memoization block is significantly lower than that of the original 

task to minimize the overhead of a miss. This requires that the memoization check 

must be done in very few clock cycles, in order to minimize power consumption. 

In the case of a HIT no computation is required by the original task. READY is set 

high, the OUTPUT corresponding to the current input is set on the OUTPUT port 

and COMPUTE signal is set low. The memoization module remains in the CHECK 

mode and the application is ready for a new input. This case circumvents 

computation energy. Memoization blocks are designed to achieve high HIT rate in 

the steady state of the tasks execution. In the SAVE mode, the module monitors the 

input to the task and its output. Both are saved respectively in the input and output 

memory of the module in the sections corresponding to their Task ID. To activate 

this mode, the CHECK mode must have been evaluated and resulted in the results of 

the computation not being found in its input memory. 
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Figure 4.10: Flow chart of a memoization block 

 

4.3.2 Energy Efficiency of Memoization Wrapper 

The anticipated energy implication of the outcomes of the memoization block’s 

operation is shown in Table 4.3. As shown, the value of the energy of the 

memoization block affects the average energy consumption significantly. Given that 

the factors that determine the HIT and MISS rates are often not completely known at 

design time, reducing the energy of the memoization block is one of the best ways of 

ensuring that the average energy consumption of an application with a memoization 

block remains considerably low, even in the case of frequent misses. Considering a 

hypothetical situation in which a memoization block has 50% miss rate. Figure 4.11 

shows that the energy per transaction of the block needs to be less than 50% of the 

original task’s energy to make any energy gain. In the figure both axes are expressed 

as percentages of the original task energy consumption. Considering that additional 

resources and time overhead are incurred by the memoization block, even more 

significant saving in the energy overhead of the memoization block is always 

required. 
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An important aim here is to lower the energy consumption of a memoization block 

by significantly reducing the number of its operating clock cycles. This is achieved 

by using input values as address offsets both for the input and output memories of the 

memoization block. This avoids the need for a time-consuming search step, thus 

reducing dynamic energy. In addition, the proposed technique offers the advantage 

that the processing time of the memoization block is independent of the size of the 

memory or number of inputs present in it. For a task with multiple inputs, the inputs 

are concatenated so that the check time remains constant. Thus, it offers 

predictability both in processing time and its energy consumption. However, this 

technique requires that space be reserved for all potential inputs. This seeming 

disadvantage in fact means that decisions about miss operations are reported after 

very few clock cycles and thus lower energy. Nevertheless, it must be acknowledged 

that to keep the miss ratio reasonable, the port width of the task must be small. 

However, there are many applications which can benefit from our scheme even with 

this limitation. Examples include a CORDIC task designed to compute the 

trigonometry of radian inputs, an RGB to YCrCb colour conversion task, and 

multiplier circuits just to mention 3. 

 

Table 4.3: Possible Outcomes of Memoization Wrapper and Energy Implication 

Status 
Energy Change (with respect to original task) 

Static Dynamic 

MISS No change Increased by energy of Memoization block 

HIT No change Replaced by energy of Memoization block 
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Figure 4.11: Variation of Memoization Wrapper Energy with Average Energy of 

Task and memoization Wrapper 

 

4.3.4 An Implementation and a Case Study 

The proposed memoization flow was implemented for a low port width application 

to test the efficacy of the technique. First, a simple CORDIC task which computes 

the hyperbolic tangent of an input angle was implemented. Two Xilinx IPs: a 

CORDIC Sinh/Cosh IP and a Division IP were used for the implementation. The first 

takes an 8-bit angle input (𝑃ℎ𝑎𝑠𝑒_𝐼𝑛) and generates a 16-bit output, with the 8 MSBs 

of the output representing 𝐶𝑜𝑠ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛) and the remaining 8 bits representing 

𝑆𝑖𝑛ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛). The division IP takes these two 8-bit vectors and perform a 

division to give an output of 𝑇𝑎𝑛ℎ(𝑃ℎ𝑎𝑠𝑒_𝐼𝑛). Table 4.4 shows the resource 

utilization of the task and the number of clock cycles required for a single round of 

processing or a transaction. The implementation of the task has a dynamic power 

consumption of 112mW on the Xilinx’s XC7A35T FPGA chip on which the 

corresponding static power is 72mW.  

In addition, the memoization wrapper architecture and flow described above was 

implemented for this task. Being a single task, the task memory in Figure 4.9 was 

removed. The memory requirement for this block is 256 8-bit data locations for all 

potential inputs, and the same memory size for maximum distinct outputs. The 

resource utilization of the memoization module is shown in the second row of Table 
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4.4. It takes an average of only 5 clock cycles to complete its operation for a 

transaction. For a hit, it takes 5 clock cycles to produce the result from memory. A 

miss takes 3 clock cycles to report, and an additional 2 clock cycles to store the result 

of a computation of a task (in SAVE MODE). The power consumption of the 

memoization module is only 9mW. Given that each operation takes 5 clock cycles, 

the energy per transaction of the block is only 0.45nJ with a 100MHz clock.  

 

Table 4.4: Implementation Data of a CORDIC Circuit and its Memoization Wrapper 

Module 

Resources utilization 
Clock 

Cycles 

Power 

(mW) LUTs 
Flip 

Flops 

BRAMs 

(18Kb) 

Cordic (Tanh) 1569 2243 - 25 112 

Memo Wrapper 10 11 2 5 9 

Wrapper overhead (%) 0.64 0.49 - 20 8.04 

 

4.3.5 Results and Discussion 

Table 4.5 shows the total (dynamic) energy per transaction for the design described 

in section 4.3.4 running at 100MHz. It shows that the energy overhead of the 

memoization block is only 0.96% in case of a miss, which is very small compared to 

the saving of 98% in the case of a hit. If the computed result is to be saved by the 

memoization wrapper in the case of a miss, the energy overhead increases to 1.6%, 

which is still significantly smaller than the savings obtained in a hit situation. In 

addition, the resource overhead is only 0.64% and 0.49% of the number of LUTs and 

FFs used by the original application, in addition to two 18kb BRAM. This is very 

small compared to the huge saving in energy. The timing overhead is only 5 clock 

cycles which is an increase of 20% compared to the original task. With these values, 

even if the miss rate is as high as 90% an energy savings of over 8% is still obtained. 
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Table 4.5: Energy Overhead/Transaction of CORDIC Task with Memoization 

Wrapper 

Module 
Energy per 

Trans. (nJ) 

Energy 

Diff (%) 

Cordic Task Only 28.00 - 

Task and Memo Wrapper (Miss) 28.27 + 0.96 

Task and Memo Wrapper (Hit) 00.45 - 98.4 

Memo Wrapper (Save Mode) 00.18 + 0.64 

 

In addition, Figure 4.12 shows the variation of average energy per transaction as the 

number of transactions progress for the CORDIC task with a memoization block. 

Each point on the graph corresponds to an average for 16 transactions. The input data 

used were randomly generated from Excel and had about 33% repetition. 33% is 

chosen in keeping with the common practice in data sets used for simulations in 

approximate computing [101] [110]. After 256 transactions, the average energy 

consumption was 18.35nJ which is 34.5% less than the task without memoization. It 

is worth noting that the energy consumption decreases significantly with subsequent 

input data, hence after a long period of execution, energy consumption would reduce 

significantly due to decrease in miss rate. 

 

Figure 4.12: Variation of Average Energy/Transaction 
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In this section, an architecture for implementing very low power memoization block 

for applications with low port-widths has been presented. The technique uses 

memory space reservation to achieve a fast decision in a fixed number of clock 

cycles. It can be used with proprietary IPs; whose internal workings is unknown, 

provided its output at any point is a function of only the current inputs. Its 

architecture is directly applicable to many low port width applications, with only 

minor adjustment to memory sizes and address widths. The implementation results 

show that the technique leads to a significant reduction in average energy 

consumption at the expense of few resource overhead in many low port-width 

applications. For example, in a CORDIC circuit, the energy savings achieved in the 

case of a hit was over 96% and the energy overhead of a miss is only 1.6%. An 

average energy saving of 34.5% was obtained after 256 transactions. Its resource 

overhead was only 10 LUTs, 11 Flip Flops, a single 18Bb BRAMs. The wrapper 

introduced only a fixed 5 clock cycles overhead. 

 

4.4 Chapter Conclusion 

In this chapter, an overview of the various techniques applied to tasks in order to 

improve their runtime placement and efficient computation in a dynamic 

reconfiguration environment was presented. The chapter described an offline flow to 

improve the placement quality of tasks in runtime. The technique is based selecting 

implementation locations for tasks to minimize overlap in the potential placement 

locations of tasks occupying the FPGA area simultaneously. Placement quality 

optimization also aim to minimize the variance in the number of potential locations 

of each task to avoid a situation where some tasks have abundant areas and others 

have too little. This leads to an improvement in the number of placements in runtime 

for each task and increases the fault tolerance of an application.  

The chapter also considers wrapping tasks according to format that supports 

communication in runtime without using pre-determined slots for tasks. In addition, a 

power optimization technique using memoization is applied to the task to reduce 

tasks’ dynamic power consumption. The resource overhead of both the wrapper and 
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the memoization implementation are added to tasks’ resource utilization before 

optimizing them for placement locations. The content of this chapter was published 

as part of the following papers: 

 G. Enemali, A. Adetomi, and T. Arslan, "Expanding the Un-usable Area 

Strategy for Improved Utilization of Reconfigurable FPGAs", in 2017 

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2017, 

10.1109/AHS.2017.8046370. 

In the next chapter, the runtime placement of task is considered and techniques to 

mitigate runtime time fragmentation and manage the relatively large reconfiguration 

overhead of COTS FPGAs are presented.  
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Chapter 5: Runtime Placement on FPGAs for 

High Performance and Reliability 
 

Efficient runtime placement techniques are required in reconfigurable computing to 

achieve high performance and reliability. For state-of-the-art COTS FPGA platforms, 

two key challenges that need to be addressed by runtime placement management 

systems are fragmentation and the limitation of relatively large reconfiguration time 

overhead of COTS FPGAs. Fragmentation leads to wastage of chip area, which in 

turn leads to hardware tasks rejection in runtime. For application scenarios where 

hardware tasks are relocated on the chip to circumvent permanent damage, better 

chip area utilization positively impacts application reliability [19]. On the other hand, 

large reconfiguration time overhead, if not well managed, could lead to missed 

deadlines in real-time applications. Frequent reconfiguration can also increase energy 

consumption of applications. It also impacts the availability of the configuration port 

for error correction, and hence affects the reliability of applications. As mentioned 

chapter 1, although specialized FPGAs can be used for each application demand, this 

adds to the cost of designs and leads to longer application development time. 

In this chapter, novel techniques which minimizes fragmentation and the effects of 

large reconfiguration time on COTS FPGAs in runtime are presented. First, a method 

of quantifying fragmentation which takes the heterogeneous nature of state-of-the-art 

COTS FPGAs into consideration is presented. Unlike previous and most current 

techniques of quantifying fragmentation, the proposed technique is based on the 

degree of isolation of the area occupied by a hardware task rather than its degree of 

contact with other tasks (or the chip boundaries). Second, an expansion strategy is 

proposed to avoid placement decisions that could create pockets of unusable 

resources on the chip, considering the heterogeneous nature of the chip and tasks 

dimensions. Finally, a task reuse strategy that aims to reduce the number of 

reconfigurations carried out in a runtime application scenario is proposed. The task 

reuse strategy includes a novel task replacement policy, FAReP. FAReP not only aim 

to circumvent reconfigurations and thus make the configuration port more available 
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to other important operations like error monitoring and correction, but also offer 

some defragmentation on the chip area as part of the replacement process. 

 

5.1 Fragmentation on Heterogenous FPGAs 

In runtime, the optimized tasks are scheduled to be placed on the chip, often in a 

dynamic manner decided by an application. Placements can also be requested when 

there is a need to relocate a task due to occurrence of faults on the chip. In addition 

(re)placement or relocation can be requested to balance system workload on the chip. 

In each of these cases, pre-synthesized tasks, in the form of configuration bitstreams 

are loaded onto the chip. As already discussed in section 4.1, the bitstream can 

normally be loaded on locations which matches the implementation location of the 

hardware task on the chip. However, since more than one of such locations exists on 

the chip, it is necessary to choose locations which will minimize the fragmentation of 

the chip area considering the current state of the chip area. Area fragmentation has 

been identified as the greatest obstacle to good chip utilization [111]. Finding a 

location for a task on the chip with minimal fragmentation in the shortest possible 

time is the goal of most runtime placement management systems. This is because 

minimizing fragmentation improves the utilization of the chip which in effect 

translates to better fault tolerance for critical applications, and lower task rejection 

ratio in other scenarios. It is also important that locations are decided quickly so that 

scheduled tasks do not miss their deadlines.  

A major step in minimizing fragmentation is quantifying it. Therefore, a method of 

quantifying fragmentation on heterogeneous FPGA chips is presented with the 

objective of reduced computational complexity compared to state-of-the-art 

approaches while still leading to superior or comparable placement decisions. In 

addition to a fast and efficient fragmentation computation scheme, an additional 

technique called Expanding the unusable Area Scheme (EUAS) is also presented to 

further improve chip area utilization and to circumvent the creation of unusable areas 

due to the heterogeneous nature of COTS FPGA is also presented. 
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5.1.1 Quantifying Fragmentation  

As pointed out in chapter 3, many state-of-the-art techniques for computing 

fragmentation such as the adjacency [63] or vertex based heuristics [71] do not suit a 

heterogeneous chip (which is the target in this thesis). This is because tasks’ location 

on heterogeneous chips have definite start and end points which, often, do not fall at 

the border of existing placements [23]. The approach proposed in this sub-section, is 

based on computing the degree of isolation (as well as the adjacency – if it exists) of 

the possible location area (to be) occupied by task(s). The location with the minimum 

isolation is chosen. This is done using equation 5.1, which computes the average 

degree of isolation in the horizontal and vertical direction. This term is referred to as 

fragmentation coefficient (FC) for the remainder of this chapter.  

In 5.1, �̅�𝑓ℎ and �̅�𝑏ℎ refer to the average distance – in number of CLB cells – in the 

forward and backward horizontal directions of a potential placement area. Similarly, 

�̅�𝑓𝑣 and �̅�𝑏𝑣 is the number of unit cells to the top and bottom of the area. The term 𝑟ℎ 

(𝑟𝑣) is the range of the distances, and α is chosen to give appropriate relative 

significance between the distance and range terms.  The parameters 𝑚 and 𝑛 are the 

horizontal and vertical dimensions of the chip. Number of CLB is used here as most 

FPGA chips are organized in grids and CLBs represents the smallest resolution of 

configurable physical units. The physical span of other reconfigurable units such as 

DSPs and BRAMs can be easily expressed in multiples of CLBs. In addition, only 

rectangular areas are considered. 

 

 

𝐹𝐶 = [
((�̅�𝑓ℎ + �̅�𝑏ℎ)/𝑚)𝛼

𝑟ℎ
+ 

((�̅�𝑓𝑣 + �̅�𝑏𝑣)/𝑛)𝛼

𝑟𝑣
]            (5.1) 
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Figure 5.1:  Quantifying Task Area Fragmentation 

 

Figure 5.1 shows how the FC of an area is computed. As shown, there are 3 tasks’ 

area on the chip marked P, Q and R. The distances around 𝑃 are shown for 3 

directions: forward horizontal (𝑑𝑓ℎ), background horizontal (𝑑𝑏ℎ) and downward 

vertical (𝑑𝑑𝑣). The distance in the upward vertical direction in this case is 0 as the 

area is located at the border of the device. The average distance in the forward 

direction, �̅�𝑓ℎ is computed using equation 5.2, where 𝑛 is the height of the task area 

and 𝑑𝑓ℎ𝑖 represents individual distance of the task segment from the closet task or the 

device border as shown in Figure 5.1. The average distances in the other 3 directions 

are computed similarly. The horizontal range term (𝑟ℎ) is computed as the difference 

the forward and background horizontal distances of the area. The vertical range term 

is similarly computed. 

�̅�𝑓ℎ =
1

𝑛
∑ 𝑑𝑓ℎ𝑖

𝑛

𝑖=0

            (5.2) 

As an illustration, consider Figure 5.2 which shows different areas for tasks on a 

chip. For the chip shown, 𝑚 =  10 and 𝑛 =  8. The value of 𝛼 =  3 was used. This 

was chosen to give appropriate relative significance between the distance and range 

terms and thus increase the accuracy of the FC. Although higher value of α leads to 
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greater accuracy, it would nevertheless increase the computational complexity of 

calculating FC. 

To illustrate how we selected the value of α for the chip shown. Consider α = 1. The 

values of the FC for the 4 areas on the chip would be: 0.425, 0.282, 0.725 and 0.425. 

Hence, the accuracy is quite low as only half of the areas has a unique FC. Increasing 

α to 2, all the areas have unique FC values (0.145, 0.150, 0.471 and 0.250) 

respectively. However, the first two values are quite close. α = 3 give unique values 

as shown in Table 5.1 below. 

Table 5.1 shows the fragmentation coefficients for the scenarios shown in Figure 5.2 

using our technique. As shown, Task 1 has the least FC (0.051) maintaining the least 

isolation and having the highest contact at its borders. Task 4 has the highest FC as 

shown. It is worth noting that although both tasks 1 and 4 have the same adjacency at 

their borders, their FC values are very different, hence, adjacency alone may not be a 

good metric for fragmentation on heterogeneous chips. 

 

 

 

Figure 5.2: Task Areas on a Chip 
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Table 5.1: Fragmentation Computation 

Tasks 

 

Fragmentation Coefficient 

Horizontal Vertical Resultant 

1 0.027 0.024 0.051 

2 0.048 0.031 0.079 

3 0.064 0.244 0.308 

4 0.108 0.024 0.132 

 

There are many other techniques of measuring fragmentation on FPGA chips. As 

noted in chapter 3, many fragmentation metrics gives the fragmentation of the entire 

chip, and hence are closely aligned to applications requiring the state of the chip. An 

example of the application scenario where the fragmentation state of the entire chip 

is necessary is to monitor when to trigger defragmentation. However, in many 

scenarios fragmentation metrics are used as cost functions to decide location of task 

on the chip in runtime. This later scenario is the aim of the fragmentation coefficient 

presented here. In order to test the effectiveness of the proposed fragmentation 

quantification scheme, a comparison is done with some approaches where 

fragmentation metrics is used as a cost function in runtime placement of tasks. 

The most widely reported metric for quantifying a form of fragmentation in deciding 

location for incoming task on a chip is the MER approach [64]. Although, the 

technique does not compute fragmentation directly, it uses the MER technique for 

the purpose of task placement in runtime. However, it is known to be a very 

expensive process even though it has a very high accuracy in deciding locations for 

tasks [72]. Many variants of MER have been introduced, which are approximations 

to improve the computational intensity of the original MER algorithm. An example 

of this is presented by Iturbe et al. in [63] where a version of MER called Empty 

Area Compaction (EAC) is used in deciding placement locations for tasks. On the 

other hand, in [78], Ejnioui et al. presented a fast fragmentation metric which is 

suitable for runtime applications is presented. The major disadvantage of the 
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fragmentation metric presented is that its accuracy is very low. The technique can be 

used to compute the fragmentation of different areas quickly without considering the 

entire chip area. The technique presented by Handa et al. in [79] though require more 

computation than [78], is more accurate. It also measures the fragmentation of an 

area to enable fast placement but does so by considering the contribution of each cell 

in the area. 

Figure 5.3 shows a comparison of the level of accuracy of three fragmentation 

metrics together with the proposed technique using the tasks in Figure 5.2 as a case 

study. The accuracy is computed based on the capacity of the metrics to assign 

different values to each of the four tasks’ area shown on the chip (called 

Discrimination in the figure). As shown, the EAC technique (Iturbe) has the highest 

accuracy. In selecting tasks for each of the areas on the chip, the metric values are all 

unique. The technique in  [78] (Ejnioui) has the least accuracy of 25%, 3 out of the 4 

task areas on the chip have the same metric value. The fragmentation metric used by 

the technique is 𝑓 =
𝑘

𝑁2, where 𝑓 is the number of (free) cells in an area, and 𝑁2 is 

the number of cells in the chip. For the case study in Figure 5.2, Task 1, 2 and 4 all 

have fragmentation metric of 0.1, with only task 3 having a different metric of 0.05. 

Thus only 1 of the 4 areas have a distinct value. The fragmentation metric in [79] 

(Handa) is shown in equation 3.2. Using those equations, the values of the 

fragmentation metric for the tasks shown in Figure 5.2 were computed. Since the 

equations require information about the task size (given that the parameter 𝐿𝑥 and 𝐿𝑦 

represent the average width and height respectively of the set of tasks to be placed on 

the chip), we assumed an upper band performance and subtracted those occasions 

where, in principle, the metric cannot differentiate between the tasks given its very 

form. For the case at hand, Task 1 and 4 would have the same number of empty cells 

in their vicinity (𝑣𝑥 and 𝑣𝑦). Thus, the upper bound performance of the metric in this 

case would be 75%.  

As shown in Figure 5.3, the proposed technique also has distinct values for all the 

Task locations. It can be observed that the improvement of the proposed technique in 

terms of accuracy of differentiating the fragmentation metric of similar but different 

potential task location over [79], is based on the fact that the technique does not only 
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compute the empty cells around a cell, but also considers if the empty cells are 

located to the right or left (for horizontal direction) or in the upper or lower direction 

(for the vertical direction) of the slot. Additionally, the computation does not 

consider each cell in the slot but treats the slot as a unit – and thus have lower 

computational intensity. Table 5.2 shows the time complexity of the four techniques 

whose accuracy are compared in Figure 5.3. As shown, although Iturbe [63] has a 

high accuracy, its time complexity is also high. On the other hand, while Ejnioui  

[78] has a constant time complexity, its accuracy is low. The complexity of the 

proposed technique is 𝑂(𝑛) where 𝑛 is (half) the perimeter of the task area evaluated, 

which is comparable to that of Handa [79], however the proposed technique have a 

better accuracy. 

 

 

 

Figure 5.3: Comparison of Accuracy of Fragmentation (Cost) Quantifying  

Techniques for Task Areas in Figure 5.2 
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Table 5.2: Fragmentation Computation Complexity 

Technique Complexity 

Iturbe [63] 𝑂(𝑛2) 

Ejuioui [78] 𝑂(1) 

Handa [79] 𝑂(𝑛) 

Proposed 𝑂(𝑛) 

 

5.1.2 Expanding the Unusable Area Strategy (EUAS) for Improved 

Utilization  

During runtime placement, tasks are configured on the FPGA by choosing positions 

for them that would not hinder subsequent tasks as much as possible. For 

applications where all component tasks do not fit into the chip at once, when a task 

finishes its computation, and another demands the resources it holds, it is removed 

from the chip, and the new task configured. For all placement requests, whether 

initial or due to a task being removed from the chip to make room for another or due 

to a damage to (part of) the resource on which a task is located, a new location is 

found by the placement scheme with the aim of avoiding the creation of unusable 

resources. This is the aim of the fragmentation metrics as detailed in section 5.1.1. 

Unusable resources in this context mean those chip resources (CLBs, BRAMs or 

DSPs) which occur between the border of two placements and which cannot 

accommodate any of the constituent tasks of the application. Whenever possible (that 

is, when other placement locations exist for the task on the chip) placements which 

create unusable locations are avoided.  

Fragmentation metrics such as adjacency is not a good way to quantify fragmentation 

when aiming to avoid the problem of creating pockets of unusable resource segments 

on a heterogeneous chip. This is because these metrics are often based on the amount 

of contact a task has with other tasks or the device. This is unreliable in 

heterogeneous devices because the tasks have start positions which are constrained 

by their layout, and often do not begin at the border of an existing placement [21]. 
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On the other hand, fragmentation techniques which tries to evaluate the quality of a 

placement by computing the degree of fragmentation of the entire chip (e.g. EAC) is 

not only time consuming, but also not able to deal with the problem at hand 

efficiently. Computing the degree of fragmentation of the entire chip does not reveal 

complete information about the size or nature of individual contiguous free locations. 

Moreover, other fast metrics, such as the proposed technique could produce two 

areas with same metric under strict conditions. Hence, additional techniques need to 

be integrated to refine placement decisions in runtime, in addition to conventional 

fragmentation quantification. In this section, one of such technique is proposed called 

Expanding the Unusable Area Strategy (EUAS). 

The basic idea of EUAS is illustrated as follows. Consider Figure 5.4 which shows a 

chip with section 𝐴 of the chip containing a task which is involved in active 

computation. Suppose a new task 𝑋 is scheduled to be placed on the same chip, and 

that in the set of tasks to be placed, the minimum width is known to be 2. Suppose 

also that locations 𝐶 and 𝐷 are matching locations for the task and have comparable 

fragmentation metrics. Although both 𝐶 and 𝐷 are matching positions for 𝑋 on the 

chip, choosing 𝐶 makes section B of the chip unusable for the duration for which 

tasks occupying 𝐴 and 𝐶 remain in their positions. A cumulative effect of many such 

unusable portions of the chip can lead to waste of the chip area. On the other hand, 

placing 𝑋 at position 𝐷 means that all columns between A and D are potentially 

usable. The aim of integrating EUAS with the fragmentation metric is to avoid 

placements which render certain portions of the chip unusable whenever possible. 

 

Figure 5.4: Effect of a Placement on the Usability of Adjoining Resource 
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It is worth noting that often, the size of all tasks to be placed is known after their 

design phase, hence the minimum dimension of tasks is known. Alternatively, an 

approximation could be obtained using the history of tasks requested to be placed by 

the placement scheme. This is used to determine if a location would be unusable or 

not. 

Performance Evaluation 

i) Experimental Set-up 

To evaluate the effect of integrating EUAS with the fragmentation metric for 

placement of tasks with varying properties, we implemented a simulation framework 

on an Intel(R) Core™ i7 processor, running at 3.40GHz. The reconfigurable platform 

simulated was that of the Programmable logic of the Xilinx xc7z100ffg900-2 chip. In 

that chip, each row is made up of 134 columns, consisting of 12 BRAM columns, 15 

DSP columns and 107 CLB columns. It has 7 identical rows. 

The tasks used for the simulations were based on utilization and estimates of 

execution time of common hardware tasks, obtained from [86]. 20 sets each 

consisting of 100 tasks were generated. The results presented is an average of these. 

Each set varied in the range of values for 𝑙, 𝑤 and s𝑅𝑠𝐼𝑑. For example, set 1 has 

parameters in the following range 2 ≤ 𝑙 ≤ 8; 1 ≤ 𝑤 ≤ 3 and 0 ≤ 𝑅𝑠𝐼𝑑 ≤ 20 

while set 20 has their area parameters in the range: 58 ≤ 𝑙 ≤ 64; 4 ≤ 𝑤 ≤ 7 and 

40 ≤ 𝑅𝑠𝐼𝑑 ≤ 64. Random values were then generated for these parameters within 

assigned limits for each set. Configuration time, 𝑡𝑐 was computed based on the 

equivalent resource utilization of each task using Table 2.4. Execution time was 

randomly generated within the limits of 50 − 200𝜇𝑠 and task deadlines were 

randomly assigned during placement requests. Task placement requests were 

generated randomly. As soon as request is received, and the placer and configuration 

manager were ready, the placement scheme is executed. If more than one request is 

received per time, an Earliest Deadline First (EDF) scheme [112] which first services 

the task with the nearest deadline was used. The placement scheme simulated 

included a task reuse strategy such that tasks are not deallocated from the chip except 

when their area is required by another task. 
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ii) Result and Discussion 

Figure 5.5 shows the variation of the task rejection ratio for three device sizes. It 

compares the relative performance of the proposed EUAS scheme and that without it. 

The FPGA sizes A, B and C refer to approximately 25%, 50% and 100% of the 

xc7z100ffg900-2 chip. The corresponding logic equivalent are shown in Table 5.3. 

The FPGA sizes were chosen to reflect the effect of small, medium and large FPGA 

sizes on the placement schemes. It can be seen, that for all three cases, EUAS has a 

less task rejection ratio. It is worth noting that the performance of EUAS is more 

pronounced for medium device size. For small sizes, due to limited placement 

positions on the chip, both schemes end up with similar placement decisions. 

Similarly, for large device sizes, a greater number of tasks can be accommodated. 

However, for medium device sizes, a difference of almost 10% in task rejection ratio 

exist between the schemes. 

It is worth noting that although EUAS leads to an improvement in the number of 

successful placements, it does not guarantee that the ‘freed’ resources will be usable 

by an incoming task. Basically, the technique aims to avoid the existence of unusable 

resources when an alternative location exists, but it was observed that some of these 

freed areas have resource layouts which do not match the layout of an arriving task, 

and hence remain unused. However, the scheme increases the probability of their 

usage. This explains why the performance of the scheme is offers only 9.4% 

improvement.  
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Figure 5.5: Effect of EUAS on Task Rejection Ratio 

 

 

Table 5.3: Reconfigurable Resources of Simulation Platform 

FPGA Size CLBs BRAMs (36kb) DSPs 

A 9400 200 600 

B 18800 400 1120 

C 34675 755 2020 

 

5.2 Task Reuse to Circumvent Large Reconfiguration 

Overhead on COTS FPGAs 

Online placement management systems on reconfiguration hardware such as COTS 

FPGAs must circumvent constraints associated with the target hardware platforms. 

For COTS FPGAs, two main interrelated constraints are large reconfiguration 
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duration and ongoing fragmentation. The former of these need to be well managed to 

avoid tasks missing deadlines in critical applications with real-time constraints and to 

free up the configuration port for other important activities. The later, if not well 

managed would lead to under-utilization of the chip resources due to fragmentation. 

The reconfiguration duration of state-of-the-art COTS FPGAs is quite significant, 

often in the order of milliseconds [38]. It is worth noting that COTS FPGAs have a 

single configuration port which is charged with multiple responsibilities including 

critical duties like being used for error mitigation [113] [56], freeing it up from some 

configuration activities will make it more available for these other important tasks. 

This in turn leads to more reliable designs for example. 

Large configuration duration is not well amenable to the runtime scenario of many 

embedded systems requiring frequent context switches of its tasks [114] as it could 

lead to longer delays which can translate to missed deadlines.  It also translates to 

large system down time where relocation is used to circumvent permanent damage on 

a chip. To cope with this, hardware task reuse have been proposed [38] [82] [86] [84]. 

Task reuse aims to preserve tasks with high configuration duration on the chip even 

after their execution, if they are likely to be required again soon. 

However, the frequent addition and removal of circuits while preserving others on the 

chip will, very often, lead to fragmentation of its area, in an ongoing manner. Ongoing 

fragmentation happens even when individual tasks are carefully well-placed on their 

initial arrival as it is a result of the dynamic runtime activities of the chip [71]. 

Therefore, defragmentation of the chip area is required to achieve an efficient use of 

the chip resources in addition to good offline optimization and runtime placement 

techniques. Ongoing fragmentation would have been grossly reduced by 

defragmentation, which involves a time-to-time rearrangement of tasks on the chip 

[88]. However, large reconfiguration time makes such defragmentation very 

challenging on the current COTS FPGA architecture. In the following sub-sections, 

details of task reuse mechanism that aims to reduce the workload of the configuration 

port while also achieving a form of defragmentation is presented. 
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5.2.1 Task Reuse on COTs FPGAs  

A highly promising technique aimed at addressing the problem of large 

reconfiguration time in run-time placement of hardware circuits on reconfigurable 

chips is circuit reuse [85]. It aims to circumvent (re)configuration overhead of certain 

tasks by retaining them on the chip after completing their execution, so that they do 

not have to be reconfigured for subsequent executions. In essence, once configured on 

the chip, hardware tasks are not deallocated until the resources they occupy on the 

chip is required by another task. Thus, on arrival of a new task (𝑁𝑇), the placement 

scheme checks if an instance already present on chip can be used to execute the task. 

It is only in the event that none is present that a new location is sought for the task on 

the chip, and the configuration engine used to write the configuration memory. 

Under such condition, the possible outcomes in an attempt to place an arriving task 

are as follows: first, it could be assigned to an idle instance if any is found capable of 

executing the task. This is possible as circuits are not removed from the chip until 

their location is required by another task. The second option is to queue it, waiting on 

a computing task so as to reuse an already configured instance. This is possible if a 

suitable instance is configured on the chip but is actively involved in computation, 

and would become free in time for the execution of 𝑁𝑇 without violating its deadline 

requirements. This possibility is checked by verifying that the required wait time, 𝑡𝑤 

of the new task (equation 5.3) is less than the remaining computation time, 𝑡𝑟 of the 

busy instance. These two options leverages task reuse, and configuration time is 

circumvented, freeing the configuration engine for other activities. 

 

𝑡𝑤 = 𝑡𝑑 − 𝑡𝑒                        (5.3) 

 

The third possible option and last resort in the placement of 𝑁𝑇 is to scan for a new 

location for the task on the chip. To determine an initial placement, a scan function 

obtains the set of available locations. For each of these positions, a fragmentation 

coefficient (FC) is computed as described in section 5.1.1. The available location with 

the least FC is chosen for placement of the NT.   
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If all three of the above fail to allocate a position to the task, the task is not yet 

rejected since there are some idle instances on the chip which could be deallocated to 

accommodate the task, depending on the its criticality relative to the idle instances. 

The policy used to select a candidate for replacement is presented in section 5.2.2. 

 

5.2.2 FAReP: Fragmentation-Aware Replacement Policy for Task Reuse 

on COTs FPGAs 

Preserving hardware circuits on the chip to enhance task reuse have potentials to 

circumvent reconfiguration overhead for tasks. However, since all tasks cannot be 

preserved on the chip, some would need to be replaced at some point. As stated 

earlier, the choice of which task to replace is key to the performance of any reuse 

scheme [88]. State-of-the-art schemes uses the reconfiguration cost (often a product of 

reconfiguration time and likelihood of future reuse) as the criteria for replacement 

[85], [88]. However, this does not account for the fragmentation which the chip area 

undergoes due to frequent addition and removal of tasks. Our work differs from these 

because, in addition to reconfiguration cost minimization, we use each replacement 

window as an opportunity to also offer defragmentation. This leads to a replacement 

policy which in addition to preserving costly reconfiguration tasks on the chip, uses 

each replacement window as a defragmentation opportunity. 

The proposed task replacement policy scheme considers, in addition to 

reconfiguration overhead and likelihood of future reuse, the degree to which a 

possible candidate contributes to fragmenting the chip is considered to determine 

which to replace. The basic idea is this: for a set of potential candidates of 

replacement with comparable reconfiguration cost, that which contributes most to the 

fragmentation of the device is considered for removal ahead of others. FAReP relies 

on three parameters to determine which of the idle instances to replace:  

i) reconfiguration overhead, c,  

ii) likelihood of reusing an instance in the near future, and  

iii) fragmentation coefficient of the hardware task.  
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The reconfiguration overhead (𝑡𝑐) is a function of the initial implementation area of 

the task and the characteristics of the runtime configuration controller. The value of 𝑡𝑐 

is stored in addition to the task’s other parameters. The likelihood of re-use of an 

instance can be projected using its execution history. This is done as follows: a 

parameter, number of reuse (NU) is maintained for each configured instance. This 

parameter is initialized for each task after each (re)configuration. It is incremented 

each time the instance is used to execute a task. The cost of reconfiguration, ψ, is 

computed as: 𝜓 = 𝑡𝑐 𝑥 NU.  

When a task replacement is required, 𝜓 is computed for all idle instances which could 

be potentially replaced to place an incoming task. Now, a threshold α is defined such 

that all instances whose differences in ψ is less than α have comparable 

reconfiguration cost. The instance of these with the highest 𝐹𝐶 is chosen to be 

replaced ahead of others, provided their replacement will enable the placement of the 

requested task. The effect of α values is discussed in the result section. 

Figure 5.6 shows an example that points outs the benefit of the proposed replacement 

policy. A set of tasks (𝐴 – 𝐸) are requested to be executed on the chip twice, in the 

order A to E with the configuration overhead of 𝐵 and 𝐶 assumed to be comparable, 

but with 𝐵’s slightly lower. The figure shows a comparison between 𝐹𝐴𝑅𝑒𝑃 and 

another replacement policy called 𝑅𝐸𝑅 [85]. RER is based on reconfiguration 

duration and execution rate of configured instance.  

Each stage in the figure represents a new task placement (and removal of another if 

necessary). As shown in the figure, during the first execution cycle, the three initial 

placements (𝐼1,2,3) are the same for both schemes as there is no need for any 

replacement. For stage 𝐼4, to place D, FAReP (figure a) chooses to replace C because 

its 𝐹𝐶 (computed with equation 5.1) is 0.1 as against 0.08 for B. However, 𝑅𝐸𝑅 

(figure b) chooses B since its reconfiguration overhead is smaller than that of 𝐶. The 

advantage of replacing instance 𝐶 is that both 𝐷 and 𝐸 can be configured onto the 

chip without having to remove 𝐵 in addition as is the case with the 𝑅𝐸𝑅. This is 

because the removal of C made other fragmented spaces around it useable, thus 

constituting a form of defragmentation activity. In the second cycle of execution (after 
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𝑡1), only two configurations are required for FAReP, those of instances 𝐶 and 𝐷. On 

the other head, 𝑅𝐸𝑅 requires 4 configurations (𝐵, 𝐶, 𝐷 and 𝐸) in the second cycle. Not 

only will the reconfiguration activities occupy the single configuration port longer, 

keeping it from other essential activities like error monitoring, but it also leads to 

delayed execution of the tasks themselves. 

 

                     

Tasks A- E to be placed on chip in 2 cycles 

 

Figure 5.6: Comparison of Replacement Policies for Task Execution on a Chip 

   a) FAReP Policy b) RER policy 

 

Performance Evaluation 

To evaluate the performance of the proposed replacement policy, the same set of 

tasks and simulation platform in section 5.1.2 were used, with the exception that the 

algorithm implemented was the replacement policies. The performance of FAReP 

was compared with 2 other major hardware task re-use schemes. These are the RER 

in [85] and RBS in [86]. RER replacement policy is based on configuration cost and 

frequency of reuse. RBS uses a policy which is based on a form of frequency of reuse 

(called Least Probability of Recurrence, LPR). RBS preserves only certain tasks 

(called significant tasks) in a region on the chip while another region is used to 
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execute less significant tasks which are not preserved. The comparison is based on: 

task rejection ratio (TRR), average unused area at task rejection (AUATR), and 

Average Configuration Clock Cycles Saved (ACCCS). We define TRR as the ratio of 

the number of task rejections to the total of placement requests; AUATR= ratio of 

sum of unused area when task rejection due to area occurs to number of tasks rejected 

for lack of area. Finally, ACCCS refers to the sum of the configuration clock cycles of 

all tasks which reused idle instances, and hence did not have to be configured. 

Figure 5.7 shows the variation of the TRR for RER, FAReP and RBS. FAReP is 

evaluated for various values of α. For the results shown, α is computed as 10%, 20%, 

40%, 80% and 100% of the difference between the least and the largest configuration 

times of the tasks. As shown, FAReP with α = 0.1 has the least TRR of 6%, compared 

to the 10% and 11% respectively for RER and RBS. It can also be seen that the 

performance of FAReP degrades with increase in α. The successive degrading 

performance of FAReP with increase in α is due to the loss in the significance of 

configuration cost and frequency of reuse relative to fragmentation with increasing α. 

This conforms with [84] and [85] which found that configuration time and frequency 

of use of any instance are major factors in any replacement policy. 

Table 5.4 shows additional performance data for the replacement policies. The values 

shown have been normalized to a base of the RER values to present a clearer 

comparison. As shown, 𝐹𝐴𝑅𝑒𝑃 saves the configuration engine about 29% of 

configuration clock cycles compared to 𝑅𝐸𝑅. This is a significant improvement as it 

could translate to amount of time the configuration port is freed up for other important 

tasks. On the other hand, the performance figure for 𝑅𝐵𝑆 shows that the configuration 

port was occupied at about 16% more than the case of 𝑅𝐸𝑅. In addition, the average 

wasted area when a task is rejected (AUATR) is lower for FAReP than RER by 14% 

showing a better utilization of the chip area. For 𝑅𝐵𝑆, its value is higher by 5%. This 

is due to the defragmentation offered by FAReP However, the computation time of 

𝐹𝐴𝑅𝑒𝑃 is slightly larger (9% more) than that of 𝑅𝐸𝑅. This is due to extra 

computational steps required to compute fragmentations. However, it is faster than 

RBS by 7%. 
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Figure 5.7: Variation of the Task Rejection Ratio for Replacement Policies 

 

Table 5.4: Relative Performance Metrics of Replacement Policies* 

 
RER RBS FAReP 

ACCCS 
1 0.84 1.29 

Runtime of Scheme  
1 1.16 1.09 

AUATR 
1 1.05 0.86 

*Normalised to a base of RER values 

 

5.3 Chapter Conclusion 

In this chapter, two major techniques relating to the runtime phase of a placement 

management on COTS FPGAs have been presented. First a method of quantifying 

fragmentation on heterogeneous FPGAs was proposed. The fragmentation 

quantification technique measures the isolation of potential task areas to choose a 

candidate for an arriving task in runtime. The accuracy of the proposed technique 

was compared to other techniques for quantifying fragmentation in runtime and it 
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was found to have high accuracy compared to state-of-the-art techniques. In runtime, 

this is augmented by a technique, EUAS – expanding unusable area strategy. EUAS 

involves using the information on the minimum size of tasks to be placed to avoid 

placement decision that creates pockets of unusable areas on the chip. This is 

necessitated by the heterogeneous nature of COTS FPGA where tasks placements do 

not fall at the border of existing placements due to layout requirements. 

The second technique presented in the chapter is a task reuse strategy to circumvent 

the large configuration overhead of COTS FPGAs. The task reuse flow includes a 

task replacement policy, FAReP which in addition to preserving costly 

reconfiguration tasks on the chip, uses each replacement window as a defragmentation 

opportunity. FAReP choose candidate to be replaced from the chip using the 

reconfiguration overhead of instances, the likelihood of future reuse and the 

contribution of an instance to the fragmentation of the chip. The proposed 

replacement policy was tested by comparing its performance with state-of-the-art 

replacement policies. The comparison results showed that with FAReP, a reduction in 

the number of reconfigurations can be obtained and a greater number of tasks can be 

placed in runtime compared to other reuse schemes with different replacement 

policies. Reduced number of configurations translates to reduction in the occupancy 

of the single configuration port of COTS FPGAs. Thus, the configuration port can be 

more available to other important tasks like error monitoring. In addition, due to the 

defragmentation offered by FAReP a better utilization of the chip area is obtained. 

This leads to better placement quality which not only translate to greater higher 

performance for applications, but also a higher reliability in applications where 

relocation is used to circumvent permanent faults on the chip. The content of this 

chapter has been published in the following papers: 

 G. Enemali, A. Adetomi, and T. Arslan, "FAReP: Fragmentation-Aware 

Replacement Policy for Task Reuse on Reconfigurable FPGAs", in 2017 

IEEE International Parallel and Distributed Processing Symposium 

Workshops (IPDPSW), 2017, pp. 202 – 206, 10.1109/IPDPSW.2017.153. 
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 G. Enemali, A. Adetomi, and T. Arslan, "A Placement Management Circuit 

for Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable 

Autonomous Systems", in 2017 IEEE International Symposium on Circuit 

and Systems (ISCAS 2017), 2017, pp. 2030 – 2033, 

10.1109/ISCAS.2017.8050796 

In the next chapter, techniques relating to task relocation on heterogeneous FPGAs is 

discussed. The chapter will explore techniques of dealing with lack of matching 

locations on heterogeneous FPGAs by proposing a functionality-based relocation 

system to augment direct bitstream relocation on COTS FPGAs.  
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Chapter 6: Techniques for Task Relocation on 

FPGAs 
 

Relocation of hardware tasks on FPGAs is a key technique used in reconfigurable 

computing to manage many desirable features. It is beneficial for many reasons. Three 

important ones are: to circumvent permanent damages on chips and consequently 

improve fault tolerance of critical applications in hostile environments such as space 

[19], to achieve defragmentation of the chip area [22] and hence provide a better 

utilization of the chip, and to maintain a desired thermal distribution on the chip 

[115]. Task relocation on COTS FPGA involve the movement of a circuit from one 

physical location on the chip to another.  Although task relocation has many 

potentials, its implementation is constrained by provision of dynamic on-chip 

communication support for relocated tasks and finding suitable locations on the chip 

that matches the architecture of the tasks’ original implementation location. The 

second of these constraints is becoming increasingly challenging to manage on COTS 

FPGA which are increasingly heterogeneous. 

The aim of this chapter is to present techniques that improve the number of runtime 

task relocations on heterogeneous COTS FPGAs. The proposed relocator augments 

Direct Bitstream Relocation (DBR) with a Functionality-Based Relocation (FBR). As 

shown in the chapter, DBR alone is quite limited on COTS FPGAs due to their 

heterogeneity, while the proposed FBR technique is limited in relocating tasks which 

are not referentially transparent or have large port width. Hence, the chapter proposes 

to merge both techniques for improved performance. 

This chapter is organized as follows: first, an overview of DBR is presented. This 

includes two approaches: generating unique bitstreams for different locations and 

manipulation of selected location-dependent information in the bitstream to change 

its location during configuration. Second, detail of the proposed FBR scheme is 

presented. The FBR technique presented in this chapter relies on the mechanism of 

replicating the functionality of a circuit with a look-up-table (LUT) or a memory 
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block in runtime for selected circuits.  The chapter concludes with a comparison 

between the traditional DBR and the proposed FBR to show the improvement in 

number of relocations obtained by a merger of the two using a case study. 

 

6.1 Direct Bitstream Relocation 

Bitstream relocation techniques allow the use of a single partial bitstream at different 

locations on the FPGA. However, each partial bitstream has location specific 

information embedded within it. This information enables the configuration 

controller to determine which location to configure the bitstream on. For a bitstream 

to be directly relocatable to another location, the location information in the 

bitstream must match that of the intended destination. Since runtime placement 

management techniques determine location of hardware tasks in runtime, it is 

important to consider how the location dependent information in a partial bitstream is 

managed to enable relocation. 

 

6.1.1 Methods of Direct Bitstream Relocation 

One possible method of DBR is to synthesize a partial bitstream at all potential 

locations that it might be placed on in runtime. In that case, the process of relocation 

essentially reduces to searching which version of the partial bitstream matches an 

intended location. This approach is not only time consuming but has large memory 

overhead for storing the various versions of partial bitstreams [116].  

A more efficient technique of bitstream relocation is to modify the location 

dependent portions of a bitstream in runtime [6]. For most modern COTS FPGAs, 

this modification does not constitute a huge overhead as only a single reference 

information needs to be modified in a partial bitstream for each resource type. For 

example, all CLBs configuration bits share a common location reference information 

which points to the beginning of the collection of CLBs to be configured by the 

bitstream. In addition, in most recent Xilinx FPGAs, CLB and DSP resources share a 

common block type and hence have the same reference location information. 
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BRAMs have a separate location reference. To this end, there are a maximum of only 

two location dependent information (typically called Frame Address) that need to be 

edited in runtime to relocate a bitstream, provided the destination location is 

physically identical to the source location of the bitstream without considering 

communication and clocking nets. Just after each frame address reference, are 

several frames required to configure the area of the FPGA whose functionality is 

represented by configuration data in that section. This is illustrated in Figure 6.1. 

Each location-dependent field to be replaced is a 32-bit word and can be efficiently 

replaced by the location found by the placement manager in runtime using the 

configuration controller in [27] adopted in this thesis. The configuration controller 

looks for the unique FAR command and once detected, the next word is replaced by 

that of the desired destination. It is worth noting that each frame has a unique frame 

address, but this is not stored in the bitstream as the reference frame address is 

increased by 1 automatically after each frame is loaded. 

 

Figure 6.1: Achieving Direct Bitstream Relocation Using Runtime Frame Address 

Modification 

32-bit Default Frame 

Address Ref 1 

𝑁 frames of Configuration 

Data for CLBs, DSPs and 
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6.1.2 Limitations of Direct Bitstream Relocation 

A major condition that needs to be satisfied for relocation of a circuit to be possible in 

runtime using DBR is that the resource composition of the original location for which 

the task was synthesized should be the same as the intended destination location. That 

is, the source and destination are required to have identical chip area, not only in size, 

but also in the type, number, order and orientation of the resources they contain. This 

condition was easily satisfiable in older versions of FPGAs which were essentially 

homogeneous. Modern FPGA chips, in a bid to improve performance and lower 

power consumption, have hard blocks such as memory blocks (BRAMs) and digital 

signal processors (DSPs) sandwiched between the conventional CLBs [117]. In 

addition, these BRAMs, DSPs and CLBs sometimes have different orientations (left 

and right) which differ in routing types as in the Xilinx 7 series FPGAs. Thus, FPGAs 

have become increasingly heterogeneous, and this places greater restrictions on the 

relocation of circuits. The result of this increase in heterogeneity is that the number of 

direct bitstream relocations possible for typical tasks has reduced with newer 

generations of FPGAs. Figure 6.2 illustrates this point. The figure shows that while on 

a homogeneous chip the circuit on LOC 1 could be relocated to 2 additional identical 

locations (LOC 2 and LOC 3), on the heterogeneous chip no identical location can be 

found. 

Therefore, in the next session, a novel functionality-based relocation is proposed to 

improve the number of relocations possible for a circuit in runtime. 
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LOC 1 LOC 2 LOC 3

  

(a) 

LOC 1

 

CLB   BRAM  DSP  

(b) 

Figure 6.2: Number of relocations on homogeneous and heterogeneous FPGAs  

a) Up to 2 relocations are possible b) No relocation is possible 

 

6.2 Functionality-Based Relocation 

The basic idea of FBR is to memorize the outputs of tasks during their normal 

execution, so that its functionality can be mimicked using a look up table (LUT) or a 

memory block in runtime. The basic idea of the concept is illustrated in Figure 6.3. It 

shows an original logic-based circuit on the left transformed into a memory-based 

circuit on the right. The aim of the transformation is so that the new circuit can be 
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relocatable to additional locations which do not match the resource layout of the 

implementation location of the original circuit. 

 

 

Figure 6.3: Transformation of Logic Block to Memory Block 

 

6.2.1 FBR: Operation and Architecture 

The proposed functionality-based relocation is done when an exact matching position 

for the circuit’s original bitstream is either not available, or would lead to undesirable 

effects, such as increased fragmentation of the chip area. A circuit to be relocated 

using this technique has its computation results memorized during its normal 

operation using a dedicated system which is referred to as relocation module 

hereafter. In addition, a generic bitstream of an LUT or memory resource template is 

pre-synthesized and stored in an off-chip memory at design time. When relocation is 

required in runtime, a destination location is configured with the bitstream template, 

and its memory content filled with the outputs of the original circuit previously 

memorized.  

The operational flow of the relocation mechanism is shown in Figure 6.4 and can be 

summarized as follows. When a request is received to relocate a circuit (after 

attempts to find an exact location for the original bitstream on the chip is found to be 

infeasible or unprofitable), a duration evaluator carries out a check to see if the 
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timing constraints associated with the relocation request can be met. Next, an area 

check is done to find a suitable location for a pre-synthesized memory template. The 

details of the time required for a relocation procedure is given in section 6.2.1b 

below while Section 6.2.1c explains the procedure for the area check. If both checks 

are successful, then the relocation request is accepted and executed in 3 additional 

steps: 

i) The outputs of the circuit not present in memory are computed and saved 

ii) A memory template is configured on the chip 

iii) Data is copied from the original circuit’s memory unto the already 

configured template.  

Area 

Check

Duration 

Check

Report 

Success

Configure 

Template

Copy 

Data

Compute 

Missing 

Outputs

Success

Failure

FailureSuccess

Decline 

Request

Stop

Configure 

Bitstream

SuccessFailure

Success

Failure

Start

DBR 

Check

FBR 

Check

 

Figure 6.4: Operational Flow of the Proposed Functionlaity-Based Relocation 

Technique 
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These operations are managed by various units of a relocation module discussed 

below. The architectural composition of the proposed relocation module consists of 

an Output Memorizer, Duration Evaluator, and Area Finder.  

 

a) Output Memorizer 

The architecture of the output memorizer is similar to memorization module in 

section 4.3.1. It basically saves the results of computations of selected circuits in 

memory in runtime. Thus, it connects to the circuits whose outputs it memorizes. It 

has 3 units: task memory, evaluation logic (which is called memo logic for the 

remainder of this chapter) and output memory. These are shown in Figure 6.5. The 

task memory saves the list of circuits which are currently configured on the FPGA 

chip and are potentially relocatable by functionality. The memo logic manages the 

conversion of the raw inputs to address values, determines if the output for an input 

has been previously saved and switches mode to save the current output of the 

application when it has not been saved previously. Each circuit has a unique 

identifier (Circuit ID) which corresponds to its address in the task memory 

(Base_Addr). The memo logic has a fixed 3 clock cycle overhead when operating in 

the CHECK mode where it verifies if an input has been previously saved, and an 

overhead of 2 clock cycles when in the SAVE mode where it saves an output unto its 

output memory if not already saved.  

Basically, the fixed number of clock cycles is achieved by concatenating the inputs 

of a circuit into a unique address value (Base_Addr + offset), with Base_Addr being 

the start of the memory location assigned to the circuit and offset determined using 

information on the circuit’s input and tolerance. Hence, our proposed technique is 

based on memory space reservation (since each input translates to a unique address) 

rather than a greedy search procedure, where a series of values from memory is 

compared against the current input. In the CHECK mode, the memo logic operates in 

parallel with the operation of the original circuit, and thus does not add any pre-

processing overhead to circuits which take at least 3 clock cycles for their normal 
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operations. In the SAVE mode (executed only when an input has not been previously 

saved in memory), 2 post-processing clock cycles are needed.  

The output memory contains the results of computations. An application with 

multiple outputs has these outputs concatenated and saved at an address. The Least 

Significant Bit (LSB) of each output memory location is reserved to be checked for 

validity of the value stored at that address as shown in Figure 6.6. This bit is checked 

to determine if results of a computation are available in memory or not. A value of 

‘1’ at that location indicates that a previous value has been saved and is valid and a 

‘0’ means that valid output is missing for this input and the original circuit would 

have to compute it. 

To compute missing outputs in runtime after a request to relocate a circuit is 

received, the memo logic iterates through the LSBs of the section of its own output 

memory dedicated to memorizing the circuit’s outputs. The LSB of a missing output 

has a value of ‘0’. The address indices (which correspond to inputs) of missing 

outputs are then each decoupled and fed into the original circuit as inputs for it to 

compute corresponding outputs. It is worth restating that the LSBs of the output 

memory are used to keep track of valid outputs. This is because in reconfigurable 

computing, the functionality of a circuit could be changed in runtime, for example, 

when a part of that circuit is reconfigured with a different functionality in runtime 

using DPR. Under such conditions, the memo logic refreshes previously computed 

outputs by resetting the LSBs of the output locations to ‘0’. 
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Figure 6.5: Architectural overview of the output memorizer 
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Figure 6.6: Data Distribution in Output Memory of Output Memorizer 

 

The sizes of the task and output memories of the Output Memorizer are determined 

by the number of relocatable circuits on the chip, the sum of the number of inputs of 

the constituent circuits and the tolerance of the circuits. By tolerance, it is meant 

permissible variation in a circuit’s outputs. Since this technique requires that space is 

reserved for all potential outputs, its memory overhead could be a major bottleneck 

for large-port-width applications that require numerous distinct outputs to be saved. 

Hence, we acknowledge that to keep the memory requirement reasonable, the port 

width of the circuits which can be relocated using this mechanism must be small, or 

if the port width is large, then the application tolerance must be large as well. 

Moreover, the functionality-based relocation proposed in this work is only applicable 

to circuits which are referentially transparent – that is, circuits implementing systems 

that produce the same set of outputs for the same set of inputs. Circuits whose current 

outputs depend on some internal states, or are determined by factors other than the 

current input(s) are not directly relocatable by the technique proposed in this work. 

Nevertheless, there are many applications which can profit from the proposed 

scheme even with these limitations. Three Examples are: an RGB to YCrCb colour 

conversion circuit which is widely used in computer graphics, CORDIC circuits 

designed to compute the trigonometry of angular inputs, and multiplier circuits 

which form the basis for many other applications. 
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b) Duration Evaluator 

This unit checks if the requested relocation can be completed within the time 

constraint associated with the request. Its architecture consists of an LUT RAM 

which contains the essential parameters of the circuits, including the duration 

associated with the circuit’s operations such as the configuration time, the number of 

clock cycles for computation of outputs (e) as well as the duration of data transfer 

from the output memorizer’s memory to a memory template. The time constraint of a 

relocation request is evaluated using equation 6.1. The term 𝑅𝑡 in equation 6.1 is the 

total time required for relocation, 𝐶𝑡 is the time required for the memory template to 

be configured on the chip; and 𝑒 is the time required to compute a missing output of 

the circuit(s) to be relocated, with 𝑛 being the number of the missing (yet to be 

saved) outputs. 𝑀𝑡 is time required for the memorized memory content to be 

transferred to the template. It is worth noting that the operation of the area finder and 

the computation of the missing outputs of a circuit to be relocated are done in 

parallel, thus equation (6.1) uses the value of the greater of time required to complete 

these two operations. 𝑒 is initially measured at design time just like the configuration 

duration of the circuit. However, since 𝑒 depends on the architecture and 

functionality of a circuit, when these are changed by DPR, its new value is measured 

(by observing the duration required by the updated circuit to change a set of inputs 

into outputs) and updated in runtime. 

 

𝑅𝑡 = ∑ 𝑒𝑖
𝑛
𝑖=0 +  𝐶𝑡 +  𝑀𝑡 (6.1) 

 

c) Area Finder 

The area finder basically checks if there is an area on the chip for a template to be 

placed on. It has access to a RAM containing the state of the chip (State Memory), as 

well as a memory containing all the potential locations of the template. The State 

Memory represents the state of all resources on the chip by an M x N Matrix, where 

M and N are respectively the number of rows and columns in the device. An 

available resource is represented by a ‘0’ and a used or damaged resource by a ‘1’. 
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Thus, each element in the matrix defines the state of a specific reconfigurable 

resource on the chip. A scan function is used to check the availability of potential 

locations for the circuit in the light of the current state of the chip. Further details of 

the scan procedure can be seen in chapter 7. 

Finally, it is worth stating that the memory template consists of a generic memory 

block capable of holding all potentially required output data of the circuit(s) it is 

designed to replace. It also contains associated logic to manage functionalities such 

as memory read and delay management. Its memory size is determined like the 

output memory of the output memorizer discussed in section 6.2.1(a) above. The 

delay management block manages the difference between the timing behavior of the 

memory template and the original circuit so as to maintain the timing characteristics 

of the entire system. It does this by delaying the assertion of ‘done’ by the difference 

in the number of clock cycles between the operation of the memory template and that 

of the original circuit.  

 

6.2.2 FBR Implementation Details 

a) Case-Study Application: CORDIC 

To test the proposed FBR flow a CORDIC application was implemented using 

Xilinx IP blocks. The application consists of 3 independent circuits: Square root, 

Sine/Cosine trigonometric operations and the hyperbolic tangent (Tanh) computing 

circuits. CORDIC  was chosen as it is an important algorithm for various 

mathematical functions [118]. Details of the circuits’ operations as well as their data 

format can be found in [104]. A custom wrapper was created for the circuits for easy 

compatibility with the proposed FBR model. Each circuit was optimized to take an 8-

bit 𝐷𝑎𝑡𝑎𝐼𝑛 and produce an 8-bit 𝐷𝑎𝑡𝑎𝑂𝑢𝑡 and 𝑎𝑝_𝑑𝑜𝑛𝑒 signal. The application and 

its components, along with a top wrapper module were synthesized using Xilinx 

Vivado suite for the Xilinx xc7a35tcpg236-1 FPGA chip. The top wrapper includes a 

𝑇𝑎𝑠𝑘𝐼𝑑 signal that is used to select a particular circuit. Table 6.1 shows the resource 
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utilization of the circuits, while Table 6.2 shows the number of clock cycles for each 

operation. The partial bitstream of the application is 140 kB in size.  

 

Table 6.1: Resource Utilization of a CORDIC Circuit Case-Study Application 

Circuits LUTs 
Memory 

LUTs 
Flip Flops BRAM 

Square Root 71 1 100 - 

Sine/ Cosine 277 4 307 - 

Hyperbolic 

Tangent 
1583 4 2218 - 

Wrapper + All 

modules 
2226 13 2920 - 

Memo Block 

Template 
14 14 21 1 

 

 

Table 6.2: Latency of CORDIC Circuit Case-Study Application 

 

Circuits Clock Cycles (e) 

Square Root 15 

Sine/Cosine 19 

Hyperbolic Tangent 56 

Memo Block Template  2 

 

 

b) Relocation Module 

The relocation module, comprising of an output memorizer, duration checker and 

area finder described in section 6.2.1 was implemented using the Xilinx Vivado 15.1 

design tools. Its resource utilization is shown in Table 6.3. A total of 66 LUTs, 58 
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flip flops and a single 18-Kb BRAM were used on the xc7a35tcpg236-1 chip. It is 

worth noting that the size of the memory used is dependent on the application. We 

chose an 18-kb memory because it is sufficient to save all the outputs of our target 

case-study application. The relocation module connects to the inputs and outputs of 

application(s) to memorize new computations by the application. It is also worth 

noting that practical relocation techniques require access to the configuration 

memory of the FPGA, as well as a means of communicating between a relocated 

module and other parts of the chip. Thus, a self-reconfiguration controller [27] with 

the required access to the configuration memory was instantiated. The controller is 

used for configuring the chip, as well as copying of data between block memories of 

the relocation module and the relocated module via the configuration layer. To 

address the need of a communication technique that supports relocation, the 

technique described in [26] which makes use of those clock buffers not used by 

applications for on-chip communication was adopted. The CORDIC case-study 

application used a single BUFG out of the 32 available on the xc7a35tcpg236-1 for 

clock network delivery. Thus, the remaining 12 BUFH and 2 BUFMR per clock 

region present on the chip are available for on-chip communication without any 

conflict with our case-study application or relocation management module. The 

technique is used to maintain communication between the relocated circuits and 

other circuits on the chip and/or the FPGA ports. 

 

Table 6.3:  Resource Utilization of Proposed Relocation Module 

Unit LUT FF BRAM 

Output Memorizer 10 11 1 

Duration Checker 36 30 - 

Area Finder 20 17 - 

Total 66 58 1 
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Next, a memory template for relocation was implemented. This template reserves 10 

kB of memory and manages the delay of the application it replaces. This memory 

size was determined by the maximum memory requirement of the circuits whose 

functionality it is intended to replace. The actual resource utilization of the memory 

template on the target FPGA is 14 LUTs, 21 Flip flops, and 18-kb RAM and it has a 

delay of 2 clock cycles. The bitstream size of the template is 76.9 kB. The delay 

mechanism is used to ensure that the relocated equivalent does not alter the timing of 

the relocated application so as not to lose synchronization with the entire system. 

 

6.2.3 Performance Evaluation and Comparison with DBR 

At runtime, a relocation request was initiated when 50% of the outputs of the 

application have been saved by the output memorization module. The floor plan of 

the application required a pattern of 8 contiguous CLB columns on the 

xc7a35tcpg236-1 chip. This pattern occurs only once on that chip. Hence, only a 

functionality-based relocation was possible. The timing constraint associated with 

the relocation request was such that the relocation was required to take a maximum 

of 1ms.  The total time duration for the relocation was measured as 306.80 µs at 100 

MHz, with the configuration of memory template taking 82.30 µs, the computation 

of missing outputs taking 175.36 µs, and the copying of data from memorization unit 

memory to the template taking 49.14 µs. The worst-case relocation duration for this 

module was also measured as 361.86 µs and best case as 131.44 µs. This was done 

by generating relocation requests when 0% (worst case) and 100% (best case) 

respectively of the outputs had been saved. The time required for the configuration of 

the memory template and the copying of data is constant for an application, 

irrespective of when a relocation request is received.  

It was also observed that the outputs of both the original circuit and the relocated 

equivalent for the same inputs. The results were the same for both circuits – in both 

cases, the value of 𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 when the 𝑎𝑝_𝑑𝑜𝑛𝑒 signal goes high was the same. This 

is shown in Figure 6.7. In addition, the improvement in the number of possible 
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relocations brought about by incorporating the proposed technique into the state-of-

the-art direct bitstream relocation technique was evaluated. Table 6.4 shows the 

result for different Xilinx FPGA chips. As shown, the proposed technique leads to a 

significant improvement in the number of relocations. For the chips compared, an 

average of about 36 more relocations (an increase of over 260%) of the case-study 

circuits could be obtained using the proposed technique. This is a great advantage in 

applications which aim to improve reliability by circumventing permanent damage 

on the chip. It means that augmenting the traditional direct bitstream relocation with 

the proposed functionality-based technique would significantly improve the fault 

tolerance of a design. 

 

 

(a) 

 

 

(b) 

Figure 6.7: Output Waveforms of Original and Funtionality-Based Relocated 

Circuits.  

a) Original CORDIC Circuit b) Relocated Equivalent 
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Table 6.4: Improvements in Number of Possible Relocations Due to FBR 

 

Target Chip Only DBR DBR+FBR 

Artix-7 (xc7a35tcpg236-1) 1 8 

Kintex-7(xc7k325tffg900c-2) 19 64 

Virtex-7 (xc7vx485tffg1761c-2) 21 77 

Total 41 149 

 

As already noted above (and shown in the relocation case study used), the relocator 

resorts to a functionality-based relocation when the bitstream of the original design 

cannot be placed on a matching location on the chip, leads to undesired effects, or 

where access to the location information of the bitstream is not possible (such as in 

encrypted bitstreams). The technique is especially suitable on modern heterogeneous 

FPGA chips, such as the Xilinx 7 Series and UltraScale FPGAs, which are rich in 

memory resources, many of which are sometimes unused. It has also been noted 

above that relocation by functionality is only applicable to circuits with low port 

width. This is due to its memory overhead not scaling well with port width, and thus 

resulting in large overheads for large-port-width circuits. To this end, it is important 

to restate that the relocator system presented is also capable of bitstream relocation 

for circuits which cannot be memorized.  

In addition, the time overheads of direct bitstream relocation and the proposed 

functionality-based relocation were compared. Table 6.5 shows the relocation time 

for both techniques for 3 different circuits: CORDIC [104], RGB to YCrCb colour 

converter  [119] and a multiplier circuit [120]. All the circuits were implemented 

using Xilinx IPs from Xilinx Vivado 15.1 for the xc7a35tcpg236-1 chip. As shown, 

functionality-based relocation technique has a larger time overhead than direct 

bitstream relocation for a majority (2 out of 3) of the cases. For example, direct 

bitstream relocation duration for a 12-bit RGB to YCrCb colour converter circuit 

would only require 174.46 µs as against a minimum of 326.15 µs required for the 
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functionality-based technique. It is worth noting that the relocation time for the 

functionality-based technique is proportional to the port width of the circuit. Hence, 

for the CORDIC circuit with 10-bits inputs, its relocation time is smaller than direct 

bitstream relocation. With increase in port width, the relocation time for direct 

bitstream relocation has better performance. A major disadvantage of functionality-

based relocation technique is that it does not scale well with increase in port width. 

In fact, the memory requirement doubles for each bit increase in port width. 

However, since direct relocation is impossible in certain cases such as for encrypted 

bitstreams and when an identical location is not present on the chip, servicing 

relocation requests whose time constraint can be satisfied in those cases is always an 

advantage. Therefore, it is an added layer of advantage to relocate circuits by 

functionality whenever direct bitstream relocation is impossible or leads to undesired 

effects. 

Table 6.5: Comparison of the Relocation Time Overhead of Different Relocation 

Techniques 

Circuit 

Port 

Width (no 

of bits) 

Relocation Time Overhead (µs) 

Direct 

Bitstream 

Functionality-

based (best case) 

Functionality-

based (worst case) 

CORDIC 10 369.02 131.44 361.86 

RGB to 

YCrCb  
12 174.46 326.15 367.63 

Multiplier  16 92.54 774.88 1430.26 

 

Finally, the size of the additional memory template bitstream required for 

functionality-based relocation is only 55% of that of the original circuits’ in our case 

study. Hence, in terms of additional memory required, the functionality-based 

technique would be better compared to having to store multiple bitstreams of the 

original circuit, not to mention that since it is an empty memory template most of the 

bits in its bitstreams are ‘0’s and would be much smaller when compressed compared 

to the original circuit’s bitstream.  
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6.3 Chapter Conclusion 

In this chapter, a novel functionality-based technique has been proposed to 

complement direct bitstream relocation on COTS FPGAs. This aims to alleviate the 

effect of lack of matching locations on heterogeneous FPGAs programmable logic 

which limits DBR. The additional FBR capability is based on replicating the 

functionality of the original circuit by memorizing its previous computation results. 

The memorized results are then used to mimic the functionality of the original circuit 

at another location on the chip where the original circuit cannot be configured due to 

lack of matching resource, but which supports the memory template. The 

performance evaluation of the proposed technique shows that it has the potential to 

increase the amount of relocation that can be carried out on heterogeneous COTS 

FPGAs. Given that relocation is a major technique used by ROS for achieving both 

high performance and reliability, the FBR proposed technique has the potential to 

improve the degree of performance and reliability of ROS based on a combined DBR 

and FBR.  

However, the proposed FBR is only applicable to certain circuits – those whose 

outputs do not depend on internal states, but rather on only the current input. In 

addition, its memory overhead is significant for applications with large port width. 

Hence, the proposed technique is limited to circuits with low port width and are 

referentially transparent. Thus, FBR is recommended to be used to augment DBR. 

The content of this chapter is included in the following publication: 

 G. Enemali, A. Adetomi, G. Seetharaman and T. Arslan, “A Functionality-

Based Runtime Relocation System for Circuits on Heterogeneous FPGAs,” 

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, 

pp. 612–616, May 2018. 

In the next chapter, some of the low-level practical implementation details of a 

prototype placement management system incorporating the proposed techniques in 

the previous chapters are presented. It aims to show the practicality of the proposed 

techniques on an actual COTS FPGAs. 
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Chapter 7: Placement Management System 

Implementation and Characterization 
 

This chapter presents a prototype hardware implementation of the proposed 

placement management system (PMS). The techniques relating to runtime placement 

of circuits discussed in the previous chapters are implemented and characterised in 

this chapter. The low-level implementation details are also discussed. In addition to 

bringing together the various components of the placement system described above, 

it also shows the practicality of the ideas proposed. Unlike many other proposed 

runtime placement systems, one of the aims of this work is to avoid proposing an 

ideal system for an ideal platform, rather, the proposed system is designed for actual 

COTS FPGAs. In this implementation, Xilinx 7 series FPGA platforms have been 

used, but this is easily extensible to other versions of reconfigurable FPGAs. In 

addition, Xilinx Vivdao v15.1 design tool has been used to carry out the experiments, 

including timing and resource overhead measurements. 

The implementation presented here relates only to the run-time phase of the 

placement management system. Details of the design phase of the system is 

presented in chapter 4 of this thesis. Also, it has been assumed that placement 

requests are generated by a higher application which requires pre-synthesized tasks 

to be placed in runtime. A task graph has been used to replace the function of such an 

application to enable easy testing of the placement module presented here. In 

addition, the routines for delivering clock networks to place tasks, and the means of 

maintaining communication with a newly placed task (or a relocated task) are not 

discussed here. Efficient clock network delivery routine via the configuration layer 

discussed in the next chapter. Task communication is not covered in this thesis. 

Details of the communication architecture adopted in this thesis can be found in [26].  

This chapter is organized as follows: first, a flow of the runtime phase of the 

placement request management is presented. This includes the various stages the 

PMS goes through in a bid to service a typical placement request, leading to task 
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placement location or task reject. Thereafter, details of the architecture of the 

proposed PMS is presented with each component discussed and analyzed. Finally, 

the hardware implementation results are discussed and compared with other 

placement systems on FPGAs, with a discussion on the balance between the overhead 

of the proposed PMS and its features. 

 

7.1 Summary of Runtime Placement Flow 

Figure 7.1 presents a summarized flowchart of the runtime placement management 

system. An initialization step is required by the placement system. This step is 

executed at the beginning of placements when changing the set of tasks which the 

placement system manages. The step consists in reserving space for the parameters 

of each of the tasks to be managed on a memory by saving the tasks’ parameters on 

the Task Memory. 

After initialization, the system waits in an idle state for interrupts. Two types are 

anticipated in regard to tasks placement on the chip: New Task Placement (NTP) and 

Pending Task Placement (PTP). When the former is requested (by a scheduler), the 

timing constraints of the request is checked to see if its deadline can be met. The 

possible result of this test and their associated decisions are: 

i) Insufficient compute time (𝑡𝑒 > 𝑡𝑑) – in this case the task is rejected 

immediately. 

ii) Sufficient compute time, but insufficient configuration duration (𝑡𝑒 >

𝑡𝑑; 𝑡𝑒 + 𝑡𝑐 < 𝑡𝑑) – the placement system proceeds to check if an already 

configured instance can be used to execute the task. The instance could be 

idle, or executing another task which would end soon. If an idle instance 

exists, it is assigned to the newly arriving task. In the absence of an idle 

instance, the arriving task is set to queue if a computing instance is found 

which satisfy the condition that: (𝑡𝑟 < 𝑡𝑑 − 𝑡𝑒), where 𝑡𝑟 is the remaining 

execution time of the computing instance. If none of these two 

possibilities exists, the task is rejected for timing reasons. 
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Figure 7.1: Summary of Main Operations of runtime Placement Management System 

 

 

iii) Sufficient compute time and configuration duration (𝑡𝑒 + 𝑡𝑐 > 𝑡𝑑). In this 

case, both of the tests in (ii) are carried out, however if both of these fail, 
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instead of rejecting the task, a third option is considered: a scan of the 

chip area is done to find a location of the chip where the task’s bitstream 

can be configured. Failing to find an unoccupied location on the chip, a 

final option of replacing idle instance(s) to accommodate the new task 

according to the replacement policy described in chapter 5 of the thesis is 

considered. The task is rejected if none of these is successful.  

A task can be successfully placed by being assigned to an already configured 

instance or by a new location being assigned to it on the chip. In the former case, the 

placement system updates only the states of the task in the memory to correctly 

designate them as either computing or pending. In the later, an FPGA State Matrix, 

which keeps the states of each resource, is also updated to reflect the current state of 

the chip. The process of updating the memory of the placement system is done 

concurrently with the process of task configuration. Thus, the configuration manager 

is signalled to begin writing of the configuration memory as soon as a new location is 

found for an arriving task. 

 

7.2 Placement System Architecture 

Figure 7.2 shows a block diagram of the architecture of the placement management 

system. It consists of 5 main modules and 3 blocks of memory. The modules are: 

initialization, reuse, scan, replace and update modules. In addition to these, 3 

memory blocks are used to keep track of the state of the tasks and the chip area. They 

include: Arriving Tasks Queue (ATQ), FPGA State Matrix and Layout memory 

(FSML), and a Task State Buffer (TSB). The details of these modules, from an 

implementation perspective, are discussed below. 
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Figure 7.2:  Block Diagram of the Placement Management System 

 

7.2.1 Initialization Module: 

The architecture of this module consists of a simple state machine which reads the 

content of the constituent tasks in an init buffer (IB) and uses the information to 

reserve space and initialize the parameters of the tasks in the TSB. Prior to the 

assertion of the ‘Initialize’ signal, the 𝐼𝐵 must contain all the essential parameters of 

all potentials tasks.  

The parameters of a task in this case study implementation include a set of area 

related information: Length, 𝑙, Width, 𝑤, and a start column on an intended 

heterogeneous chip, 𝑅𝑠𝐼𝑑, such that the next (𝑙 − 1) contiguous columns to the right 

of 𝑅𝑠𝐼𝑑 is a matching position for the task on an intended heterogeneous chip. These 

are distributed in the 𝐼𝐵 as shown in Figure 7.3 (a). In addition, a set of time-related 

information: configuration time (𝑡𝑐) and execution time (𝑡𝑒) are also stored in the 𝐼𝐵 

as shown in Figure 7.3 (b). A task is stored in the 𝐼𝐵 using two 33-bit words with the 

first (Word A) containing the area related information and the second (Word B) for 

time related information. Some of the bits in the 𝐼𝐵 are reserved (𝑅) as the memory 
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has been configured to be compatible with other memory blocks in the system for 

ease of data exchange. The first address of the buffer contains the number of tasks 

(𝑁) to be managed by the system. 

 

 [32:20] [19:17] [16:9] [8:1] [0] 

Word A 𝑅 𝑤 𝑙 𝑅𝑠𝐼𝑑 𝑅 

(a) 
 

 [32:17] [16:6] [5:0] 

Word B 𝑡𝑐 𝑡𝑒 𝑅 

(b) 

Figure 7.3:  Data Distribution in Init Buffer of Placement System 

 

 

During the initialization process, the 𝐹𝑆𝑀𝐿 which holds a matrix corresponding to 

the resources on the chip, is initialized to ‘0’ with the exception of damaged 

resources which are marked-off with a ‘1’ at their location. The 𝐹𝑆𝑀𝐿 Memory is 

configured as 32-bit wide, with its useable depth dependent on the size of the chip. 

For example, the content of the section of the state matrix in the 𝐹𝑆𝑀𝐿 buffer for a 

Xilinx xc7z100ffg900-2 chip is shown in Figure 7.4. The device consists of 134 

columns of dynamically reconfigurable resources organised in 7 rows as shown in 

the figure. It is worth noting that the portion of the memory between the end of the 

134th columns of a row and beginning of the 1st column of the next row is marked 

off permanently as not available as shown.  
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Address 32-bit Word (0x) 

000 00000000 

001 00000000 

⋮ ⋮ 

004 FFFFFFC0 

 

005 00000000 

006 00000000 

⋮ ⋮ 

009 FFFFFFC0 

⋮ 

030 00000000 

031 00000000 

⋮ ⋮ 

034 FFFFFFC0 

 

Figure 7.4: Example of Initialized State Matrix in the 𝐹𝑆𝑀𝐿 Buffer for a Xilinx 

xc7z100ffg900-2 FPGA 

The 𝑇𝑆𝐵 is also initialized. The memory, organised as 33-bit wide similar to the 𝐼𝐵, 

is divided into 3 sections. The first holds parameters of idle instances, the second 

those of computing instances and the third contains pending tasks, waiting on 

computing instances. The idle instance section is designed to contain information 

relating to:  

1. the physical location of the instance on the chip, expressed as start column 

and row (𝑥, 𝑦) 

2. area properties of the instance, including the width (𝑤), length (𝑙) and the 

start column of first matching location on the chip (𝑅𝑠𝐼𝑑) 

3. configuration time of the task 

4. number of times the instance has been reuse since its latest configuration on 

the chip 

Resources state for 𝑅𝑜𝑤 0 

of device (134 columns) 

Resources state for 

𝑅𝑜𝑤 1 of device 

Resources state for 

𝑅𝑜𝑤 6 of device 
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The first 2 of the information are contained in the first word (Word A) of each 

instance, with the bits distributed similar to that in of the 𝐼𝐵, but with the exception 

that the reserved fields (𝑅) are now allocated for the desired content. Bits [32:25] are 

designated to store the horizontal location information (𝑥) of the instance, bits 

[24:22] store the vertical location information (𝑦), bits [21:20] of Word A is reserved 

(𝑅) for idle instance, while bit [0] (valid bit, 𝑣) is monitored to ascertain if the 

instance is idle (value ‘1’) or not (value ‘0’). The last 2 information saved for an idle 

instance (i.e. 3 and 4 in the list above) is contained in the second word (Word B) of 

the instance, with its upper 16 bits [32:17] used to save the configuration time and 

lower 16 bits [15:0] containing the number of instance reuse, 𝑁𝑟. Bit [16] is reserved. 

 During the initialization stage, bit [0] of Word A is set to ‘0’ for all tasks as 

placement is yet to commence, bits [19:1] of Word A are copied from corresponding 

bits in the 𝐼𝐵, bits [21:20] are not used since they are reserved, hence they are each 

set to ‘0’, bits [24:22] and [32:25] (location 𝑥 and 𝑦 respectively) are set to a value 

equivalent to an invalid location on the chip. For example, for the xc7z100ffg900-2 

FPGA, they are set to all ‘1’s. In runtime, when a task finishes, and their instance is 

marked as idle, 𝑣 is set to ‘1’, and the location of the instance is updated to instance’s 

current location. For word B, bits [32:17] are copied from corresponding bits in the 

𝐼𝐵 while bits [15:0] which correspond to number of reuse are all set to ‘0’. Figure 7.5 

shows the distribution and initialization values a typical idle instance section of 𝑇𝑆𝐵. 

The computing instance section of the 𝑇𝑆𝐵 contains 5 words (Words A – E) per task. 

Like the idle instance section, Word A of the computing task section contains the 

information about the current location of the instance on the chip (𝑥, 𝑦) as well as the 

area properties of the instance (𝑙, 𝑤 and 𝑅𝑠𝐼𝑑) while its 𝑙𝑠𝑏 indicates the state of the 

task (currently computing or not). However, bit [20] is used to indicate whether 

another task is waiting on the currently computing instance or not. This bit is set (‘1’) 

if a task in a pending state is waiting to use the same instance, otherwise its value 

remains ‘0’. The entire bits in the second word (B) for an instance in this section 

contain the start time of the task currently computing on it. 
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 [32:25] [24:22] [21:20] [19:17] [16:9] [8:1] [0] 

Word A 𝑥 𝑦 𝑅 𝑤 𝑙 𝑅𝑠𝐼𝑑 𝑣 

(a) 

 

 

 

 

 [32:17] [16] [15:0] 

Word B 𝑡𝑐 𝑅 𝑁𝑟 

(b) 

Figure 7.5: Data Distribution and Initialization Value of an Idle Instance 

 

Word C store the configuration and execution duration of the task, similar to Word B 

of the 𝐼𝐵, with the exception that bits [5:0] which are reserved in the 𝐼𝐵 are used to 

keep the unique 𝐼𝐷 of the task computing on the instance. Word D contains the 

deadline information of the task and Word E contains the total execution duration of 

all tasks waiting on the instance. During the initialization process, Word A is set to 

the same bits as word A of the idle instance section of the TSB, word C is copied 

from the 𝐼𝐵, while all bits in Words B, D and E are set to ‘0’. 

The pending task section of the 𝑇𝑆𝐵 uses three 33-bit words per task to save the state 

of a task waiting to use a configured instance which is busy. The bits in the first word 

are distributed exactly like Word A of the idle instance section. Similarly, the bits 

distribution in the second and third words are the same as the Word C and Word D of 

the computing task section respectively and are initialized to the same values. 

 

Set to ‘1’s at 

initialization Set to ‘0’s 
Set to same value 

as init buffer  
Set to ‘0’  

Set to same value 

as init buffer 

Set to ‘0’  

Set to ‘0’s 
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7.2.2 Reuse Module 

The reuse module aims to reduce the number of configurations carried out during 

runtime placement of tasks on a chip. As explained in chapter 5, reconfiguration 

overhead constituent a bottleneck that need to be addressed when FPGAs are used 

for runtime applications. Task reuse is a technique used to reduce the amount of 

reconfiguration needed for runtime applications and thus make the single 

configuration access port more available to other duties as such as soft error 

mitigation [22].  

Before new tasks are configured on the chip, the reuse module checks to see if any 

configured instance is suitable to execute the requested task. As shown in Figure 7.1, 

this module checks a list of idle instances and the computing instances. In order to 

avoid a greedy search of the entire list of idle and computing instances, a memory 

reservation technique is adopted where the 𝑙𝑠𝑏 of the word A of the idle instance and 

computing instance are checked to see if the idle or computing. To do this, request 

for task placement is done by the scheduler using an address of tasks in the ATQ. 

The reuse module decodes the address and requests the states of instances in the idle 

and computing instance sections of the 𝑇𝑆𝐵. This check takes 3 clock cycles, with 

the first being used to set address to the 𝑇𝑆𝐵 and 2 clock cycles needed to read the 

content of the memory. 𝑇𝑆𝐵 is configured as a true dual port memory [95], thus the 

states of both the matching idle and computing instance are checked simultaneously.    

 

7.2.3 Scan Module: 

The scan module looks for a matching physical location for a task on the chip. This 

module is enabled only after the reuse module reports an absence of an idle instance 

that can immediately execute the task and there is either no matching computing 

tasks or the timing constraints of the placement request is such that the task cannot 

wait for a computing instance to become free. 
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When a task placement request is received, a suitable location is found for the task 

on the chip. This is done by first scanning the chip (with the scan module) to 

determine the availability of matching positions, which is a subset of the total 

number of possible locations. To do this, an up-to-date state of the chip is maintained 

in a buffer called Chip State as a 2D matrix, M. Each element, 𝑀(𝑥 ,𝑦)in the matrix 

corresponds to a unit of resource located at the horizontal distance 𝑥 and a vertical 

distance 𝑦 from the top left corner of the chip. For instance, M(0, 0) refer to the 

resource in the first row of the first column. The value at each of these positions 

indicate whether the resource is available (value ‘0’) or not (value ‘1’). Both 

resources temporary occupied by a task or permanently damaged have same value of 

1, but a record of permanently damaged resources are maintained differently. 

For a chip scan operation, the Chip State is read and compared with the resource 

requirements of the task to be placed. The parameter 𝑅𝑠𝐼𝑑 is used as the start 

position of the first scan. The scan begins by checking the state of the resource at the 

position corresponding to the horizontal position of the first row (i.e. 𝑀(𝑅𝑠𝐼𝑑,   0)) and 

progresses by checking other elements to the right of 𝑅𝑠𝐼𝑑 until the length 

requirement 𝑙 of the task is satisfied. (i.e. 𝑀(𝑅𝑠𝐼𝑑+1,   0), 𝑀(𝑅𝑠𝐼𝑑+2,   0)… 

𝑀(𝑅𝑠𝐼𝑑+(𝑙−1),   0)). Thereafter, the vertical term, 𝑦 is incremented (with 𝑥 reinitialised 

to 𝑅𝑠𝐼𝑑) until the width requirement 𝑤 of the task is satisfied. At every stage in the 

comparison, if any value of the matrix term is ‘1’, the search is aborted, the values of 

𝑙 and 𝑤 reinitialised and the scan restarted using the next row. This is repeated for 

each encounter of ‘1’ until all vertical locations corresponding to the current 𝑅𝑠𝐼𝑑 

are scanned. Next, a new horizontal scan location is determined by computing 𝑅𝑠𝐼𝑑𝑠 

for the task. 

New 𝑅𝑠𝐼𝑑𝑠 for a task can be computed first by constructing the layout of the task 

using its original 𝑅𝑠𝐼𝑑 and 𝑙. This is compared with the static layout of the first row 

of the chip until a matching layout is found. This process can often be time 

consuming. Since this is done in runtime, it is necessary to optimize the process for 

speedy determination of placement locations. Two approaches are considered 

depending on the application requirements. The first is an extension of the technique 
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proposed in [73] which is to search for matching locations using the heterogeneous 

resources which has the least number of occurrence in the task’s layout. Searches are 

made using locations of heterogeneous resources (mostly BRAMs and DSPs) first, 

before checking the location of the more abundant homogenous resources (CLBs). 

However, they assumed that the heterogeneous resources are regularly spaced on the 

chip which is not the case for COTS FPGAs. Nevertheless, the technique can be 

extended to chips with irregularly-spaced heterogeneous resources as well.  To do 

this, the location of the heterogeneous resources in a task’s layout are checked 

against the known location of corresponding heterogeneous resource on the chip.  

This is illustrated as follows: for the STAT task in Table 4.2 on a Xilinx 

xc7z100ffg900-2 chip. The task has 𝑙 = 6, 𝑤 = 1, and a possible matching of 

location of the task has 𝑅𝑠𝐼𝑑 = 4 and resource layout of 𝐵𝑅𝐴𝑀 − 𝐶𝐿𝐵 − 𝐶𝐿𝐵 −

𝐷𝑆𝑃 − 𝐶𝐿𝐵 − 𝐶𝐿𝐵. The chip layout consists of 12 BRAM columns (located in 

columns (4, 15, 20, 32, 43, 57, 77, 94, 108, 115, 121,128) of the device. The search 

for a new 𝑅𝑠𝐼𝑑 begins from the BRAM location on the chip next to the previous 

𝑅𝑠𝐼𝑑 location. This is illustrated in Figure 7.6. In this case, the search for a new start 

location (𝑅𝑠𝐼𝑑1) begins from column 15 of the device, then successively checking if 

column 16, 17 … matches the layout of the task. If a matching location does not 

result from the search, then the search restarts from the next BRAM column of the 

device which is column 20 (𝑅𝑠𝐼𝑑2). In this example, a matching location would be 

found for with a start scan from 𝑅𝑠𝐼𝑑2. 

 

Figure 7.6: Start Scan Locations to Accelerate Resource Scanning 

 𝑅𝑠𝐼𝑑0  𝑅𝑠𝐼𝑑1  𝑅𝑠𝐼𝑑2 
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The location of the heterogeneous resource used as a start column does not 

necessarily have to be the first column of the task. In cases where the heterogeneous 

resource is located at the kth location in the task’s resource layout, the chip is scanned 

first in the forward direction by 𝑙 − 𝑘 locations beginning from the heterogeneous 

resource before scanning 𝑘 locations to the 𝑙𝑒𝑓𝑡 of the heterogenous resource 

location. A speed up of approximately 11 times is obtained by beginning search from 

the locations of BRAMs and 9 times by beginning search from DSPs on the 

xc7z100ffg900-2 chip compared to linearly searching all columns on the chip. 

Another means of speeding-up finding potential placement locations is to 

precompute all possible 𝑅𝑠𝐼𝑑s for the task on the chip at design time and store these 

in addition to the task parameters described in section 4.1. This simplifies the 

runtime phase to reading the potential locations from memory and scanning the chip 

to determine if all the columns in the location are available or not. The main 

disadvantage of this over runtime computation of 𝑅𝑠𝐼𝑑𝑠 is its increased memory 

overhead. However, it is a good choice for applications which require faster runtime 

placement where the required memory overhead is not a constraint.  

An important aspect for the scan module is being able to quickly find an optimal 

location for the task on the chip if it exists. It is worth noting that the reuse module 

has a constant execution time, due to the memory reservation technique. However, 

the scan duration of the module depends on the task properties and the state of the 

chip at the time of scan, and therefore varies for each operation. Hence, it is 

important to minimize the worst-case scan time of this module. To achieve this, a 

method similar to that proposed in [6] was adopted where possible horizontal start 

locations, 𝑅𝑠𝐼𝑑𝑖
′, of tasks on the chip are stored along with the task parameters. 

These are read into the 𝑇𝑆𝐵 during the initialization process. In addition, for each 

𝑅𝑠𝐼𝑑, scans are conductor vertically first as each row on our target device have the 

same repeated pattern in all rows.  

The worst-case timing requirement for a scan depends on three factors: 

i) the number of 𝑅𝑠𝐼𝑑′ available for the task on the chip, 
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ii) the length, 𝑙, and width, 𝑤, of the task 

iii) amount of time required to compute the fragmentation of a potential 

location. 

Table 7.1 shows the number of clock cycles required for the constituent operations of 

the scan module. As shown, a total of 6 clock cycles are required to read a word from 

the 𝐹𝑆𝑀𝐿 and determine if the corresponding location of the chip is available or not. 

In addition to those shown, two additional clock cycles are required at the beginning 

of the scan operation (used to compute initial read address to the 𝐹𝑆𝑀𝐿 memory). An 

additional clock cycle is also required to assign a location to the PMS port. These are 

incurred once and hence have been omitted from the table since the analysis will first 

focus on recurrent operations. They would be added at the final stage.  

For a task with length, 𝑙 and width, 𝑤 the total number of clock cycles require to scan 

an area 𝑡𝑠𝑐𝑎𝑛 equivalent to the task is given by the expression in 7.1. The ceiling 

operation in 7.1 represents the number of times the 𝐹𝑆𝑀𝐿 is read to cover the length 

of the task when the memory is configured as 32-bit. For example, a task with 𝑙 = 32 

and 𝑅𝑠𝐼𝑑 = 2, 𝐹𝑆𝑀𝐿 would be read twice per row per scan. Since scan are done 

vertically first, the worst-case scan duration (𝑡𝑤𝑐 𝑠𝑐𝑎𝑛) for each 𝑅𝑠𝐼𝑑 is given by 

equation 7.2, where 𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 is the number of rows in the device. 

 

Table 7.1:  Clock Cycles Required for Constituent Operations of Scan Module 

Operation Duration Clock cycles) 

Read State (32-bit word) 1 

Align word to task 2 

Check availability 1 

Task width check 1 

Task length check 1 

Total 6 
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𝑡𝑠𝑐𝑎𝑛 = 6𝑤 ∗ ⌈
𝑙 + ⌈

𝑅𝑠𝐼𝑑
32 ⌉

32
⌉      (7.1) 

𝑡𝑤𝑐 𝑠𝑐𝑎𝑛 = (𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 − (𝑤 − 1))𝑡𝑠𝑐𝑎𝑛      (7.2) 

 

It is worth noting that since the proposed placement module aims to minimize 

fragmentation of the chip area, a fragmentation coefficient (𝐹𝐶) is computed for each 

successful scan before proceeding to the next. The details of how 𝐹𝐶 is computed is 

shown in chapter 5 section 5.1.1. Hence, the overall worst-case scan duration for the 

scan module is shown in equation 7.3, where the 𝑡𝑓𝑐 is the duration required to 

compute the fragmentation co-efficient of a potential location and 𝑁𝑅𝑠𝐼𝑑′ is the 

number of possible horizontal start locations for the task. Two additional clock 

cycles are incurred to retrieve subsequent 𝑅𝑠𝐼𝑑′𝑠. Equation 7.4 is an estimation of 

the worst-case overhead for computing the fragmentation coefficient for each 

location. As shown by equations 5.1 and 5.2, the computation is a function of the 

dimension of the chip and the task size. Three fixed clock cycles are incurred: 2 at 

the beginning of reading the 𝐹𝑆𝑀𝐿 content and an additional clock cycle for 

computing 𝐹𝐶. 

 

𝑇𝑤𝑐 𝑠𝑐𝑎𝑛 = (𝑡𝑤𝑐 𝑠𝑐𝑎𝑛 + 𝑡𝑓𝑐 + 2)𝑁𝑅𝑠𝐼𝑑′      (7.3) 

 

𝑡𝑓𝑐 =
1

2
((𝑁𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑙)𝑙 + (𝑁𝐷𝑒𝑣𝑖𝑐𝑒 𝑟𝑜𝑤 − 𝑤)𝑤 + 3)     (7.4) 

 

 

7.2.4 Replace Module 

In the event that none of the instances present on chip can be used to execute the 

requested task and a vacant location cannot be found in the current state of the chip, 

the 𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑀𝑜𝑑𝑢𝑙𝑒 is activated to select idle instance(s) to be deallocated from the 
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chip area to accommodate new placement requests. It uses FAReP, a fragmentation 

aware replacement policy [23] to select a candidate instance to be replaced. To 

minimize the total amount of configuration required by an application as well 

enhance a better area utilization in the process, this module uses three main factors to 

decide a candidate for eviction: 

- The configuration duration of an instance (instance with large configuration 

duration are more likely to be preserved) 

- The frequency of instance reuse (more frequently used instances are more 

likely to be preserved) 

- The fragmentation coefficient of an instance (instances whose location are 

such that they contribute lower 𝐹𝐶 to the chip are more likely to be 

preserved). 

This module sorts idle instances (potential candidates for replacement) using the 

above factors. The sorting process is done concurrently with the scanning of the chip. 

The sorting duration is proportional to the number of idle instances on the chip, as 

well as the number of duplicates. The worst-case duration for the sorting process 

(𝑡𝑤𝑐 𝑠𝑜𝑟𝑡) is given by equation 7.5 where 𝑁𝑖𝑑𝑙𝑒 is the number of potential candidates 

for replacement. 

 

𝑡𝑤𝑐 𝑠𝑜𝑟𝑡 = 2 + 2𝑁𝑖𝑑𝑙𝑒(𝑁𝑖𝑑𝑙𝑒 − 1)             (7.5) 

 

The replace module sends out one victim per time from the sorted list until the new 

task can be placed or all candidates have been tested. 

 

7.2.5 Update Module 

After each placement (or deallocation) operation, the update module updates the 𝑇𝑆𝐵 

and the 𝐹𝑆𝑀𝐿. In addition, it uses interrupts from a computing task which has 

finished to update the 𝑇𝑆𝐵. In the case when a computing task which is waited upon 
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finishes, a PTP interrupt (shown in Figure 7.1) is generated for the PMS. There are 

seven scenarios involving the update manager and Table 7.2 gives a summary of the 

operations and the duration required to update the memories. 

 

Table 7.2: Summary of Operations and Time Overhead for Update Module 

 Placement 

Outcome 

Memory Duration 

(Clock 

Cycles) 

Operations/Remark 

1 New Task 

on Idle 

Instance 

 

𝑇𝑆𝐵 8 Set 𝑙𝑠𝑏 of idle instance (to ‘0’), increase 

number of reuse of idle instance, Set 𝑙𝑠𝑏 

of computing instance (to ‘1’), update 

timing parameter of computing instance 

2 New Task 

on Pending 

List 

𝑇𝑆𝐵 5 Write task to corresponding address on 

pending task section of 𝑇𝑆𝐵, mark 

computing task as waited upon, increase 

duration of tasks waiting on instance 

3 New Task 

on New 

Location 

𝑇𝑆𝐵, 
 𝐹𝑆𝑀𝐿 

7 + 8 ∗ 𝑤 Set 𝑙𝑠𝑏 of computing instance (to ‘1’), 

update location and timing parameters of 

computing instance, mark corresponding 

location of new task in 𝐹𝑆𝑀𝐿 as 

unavailable 

4 Idle Instance 

Replaced 
𝑇𝑆𝐵, 

 𝐹𝑆𝑀𝐿 

10 + 8
∗ 𝑤 

Set 𝑙𝑠𝑏 of idle instance (to ‘0’), reset 

location and number of reuse of idle 

instance, update location and timing 

parameters of computing instance, mark 

corresponding location of new task in 

𝐹𝑆𝑀𝐿 as unavailable  

5 New Task 

Rejected 
-  -  -  

6 Pending 

Task on Idle 

Instance 

𝑇𝑆𝐵 11 Same as 1 

 

7.3 Hardware Implementation Results 

The component modules described above were implemented for Xilinx’s 

xc7z100ffg900-2 FPGA using Vivado 15.2. VHDL was used to code the routines in 

order to maximize the performance of the placement system tapping into the 
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parallelism offered by the hardware platform while sacrificing some of the chip 

resources. In this section, the implementation results are discussed.  

7.3.1 Interface Signals 

The case-study implementation of the placement management system has 5 main 

inputs and 4 outputs. Figure 7.7 shows the prescribed order for the assertion of the 

signals in order to perform operations using the system. As shown, the ‘Initialize’ 

signal which is used to control the set-up of the various memories of the system is 

asserted for one clock cycle to trigger a one-time initialization process, which is only 

needed when new set of applications begin to execute, or a complete system reset is 

necessary, say, after power-down. After pulsing the ‘Initialize’ signal, the user is 

required to wait for the system to finish initialization which is indicated by ‘Ready’ 

going high. Table 7.3 shows the main interface signals’ properties as well as possible 

values for this example implementation. 

The ‘Request Type’ signal dictates the operations the placement system will perform. 

Its value must be set before asserting the ‘Initialize’ or ‘Enable’ signals. Except 

when set to a value of “Initialization”, where it must be held at that value for a 

minimum of one clock cycle, the ‘Request Type’ must be held at its value after the 

assertion of ‘Enable’ until the going high of the output signal ‘Done’. This constraint 

is also true for ‘Task Address’ and ‘Task Deadline’ as well. ‘Task Address’ and ‘Task 

Deadline’ are respectively used to state the location of the task parameters in ATQ 

and the deadline of the task. The values shown in the figure are random values 

chosen for illustrative purposes only. Enable is pulsed for each operation after setting 

all the other input values. 

New placement requests are queued until ‘Ready’ and ‘Done’ are both high. ‘Done’ 

goes high once a placement decision and location have been obtained. Task 

configuration can begin after that, while the placement system updates its memories. 

‘Ready’ goes high after all memory updates are completed and the system is ready to 

accept new placement request. It is worth noting that the ‘Update Status’ signal is an 

internal signal and is shown in figure 7.7 for clarity purposes only. 
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Table 7.3: Interface Signal Properties of PMS 

Signal Direction Width Remark 

Initialize In 1 — 

Request Type In 2 “00” – No operation 

“01” – PTP 

“10” – NTP 

“11” – Initialization 

Enable In 1 — 

Task Address In 9 — 

Task Deadline In 33 — 

Ready Out 1 — 

Place Dec & 

Loc 

Out 20 [19:16] – Placement decision: 

“0xF” – invalid;  

“0x2” – New Task Assigned to idle 

Instance; 

“0x3” – Pending Task Placed on idle 

instance; 

“0x4” – New Task Placed on Pending List 

“0x5” - New Location for new Task 

“0x6” – Idle instance replaced for new task 

“0x7” - New task Rejected (timing issues) 

“0x9” – New task Rejected (no area) 

[15:0] – Location of task (if successful 

placement)  

 

 

7.3.2 Resource Utilization  

As a potential core component of an ROS, the proposed placement management 

system has been implemented to support a variety of features. Not all these features 

are necessarily required by all ROS. Thus, the system has been designed to support 

easy removal of features not needed to reduce its resource utilization as desired. 

Table 7.4 shows the resource utilization of the different components in the full 

implementation of the proposed PMS. The full PMS utilizes 2155 FFs and 2818 

LUTs in addition to 4 BRAMs on the 7 series FPGA. This represent only about 
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5.18%, 11.55% and 5.33% respectively of the total FFs, LUTs and BRAMs present in 

the smallest 7 series device (xc7a35t). On the largest device in the series (xc7v2000t), 

these represent 0.09%, 0.23% and 0.31% respectively of the total resources present. 

An additional DSP is used in the top module due to address computation. These 

figures represent the resource overhead when the full features of the PMS are desired 

in an ROS. Hence, the resource overhead is lower in other scenarios. For example, 

when an ROS does not support task reuse, the Reuse and Replace modules could be 

stripped from the PMS reducing its resource overhead by 293 FF and 606 LUTs and 1 

BRAM. In addition, the section of the update module’s resources dedicated to 

updating the 𝑇𝑆𝐵 as well as the 𝑇𝑆𝐵 memory could be stripped off, including some 

resource savings from the initialization module. This leaves a resource utilization of 

the version without task reuse at 615 FF, 776 LUTs and 1 BRAM. The equivalent 

number of slices on the 7 series is 198. 

 

Table 7.4: Resource Utilisation of PMS on a 7 Series FPGA 

Component module Flip Flop LUT BRAM DSP 

Initialization and Top 1258 614 3 1 

Reuse 69 196 0 0 

Scan 274 570 0 0 

Replace  224 410 1 0 

Update 330 1028 0 0 

Total 2155 2818 4 1 

   

Figure 7.8 shows the floorplan of an implementation of the proposed PMS (with 

other associated circuits) with a case study application on the xc7z100ffg900-2 chip. 

The chip area is divided into a static region and a reconfigurable region. The static 

region contains the core PMS, a configuration manager and a mechanism of 
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transferring configuration data from an off-chip memory (DDR Memory) to the 

CMEM which was implemented using the Xilinx’s Direct Memory Access (DMA) 

IP. The DMA engine have a resource overhead of 1020 Flip Flops and 918 LUTs. 

These are included in a static region shown in the figure. The top 3 rows (row 0 to 2, 

with a read border in figure 5) of the chip is reserved for the static region due to the 

large IO requirement of the DMA engine. The other rows (row 3 to 6) is reserved as 

reconfigurable region and is shown hosting the data processing tasks of the NASA 

JPL spectrometer application The details of the application can be found in [105] and 

[121]. The tasks have been shown in their initial placement location on the chip with 

empty area for relocation in the case of permanent faults. 

 

Figure 7.8:Floorplan of PMS, Configuration Controller, DMA Engine and A Case 

Study FTS Application 
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7.4 Comparison with Another Placement Management 

Module 

Compared with existing solution, the PMS described above has a fair resource 

overhead considering the features supported by the PMS. The implementation results 

of the proposed PMS is compared with that of the R3TOS allocator in [63] which is 

also aimed at a non-slotted based ROS as well as being targeted for practical 

implementation on a COTS FPGA. Table 7.5 shows a comparison in terms of the 

supported features, the timing overhead and the hardware resource utilization of the 

two implementations. As shown, the R3TOS allocator does not include a task reuse 

strategy which can lead to significant configuration overhead in runtime applications. 

Configuration overhead also lead to a higher occupancy of the configuration interface, 

keeping it away from critical duties such as soft error mitigation. In addition, the 

proposed PMS has a faster placement time than the R3TOS allocator. The worst-case 

placement time for the R3TOS allocator was reported as 300 µs at 100 MHz for an 

FPGA consisting of 15 columns and 12 rows. This includes a 200 µs duration used to 

update the MER information on the chip (which the authors refer to as empty area 

descriptor updating). For the same FPGA size at the same frequency, the proposed 

PMS has a worst-case placement duration of less than 50% of that of R3TOS 

allocator. With a faster placement time, the proposed PMS is potentially able to react 

to permanent fault on the chip at least 2x faster than the R3TOS allocator, thus 

reducing system down-time in the case of fault occurrence. 

Table 7.5: Comparison of Features and Overheads of PMS with Similar Schemes 

Placement 

Scheme 

Feature Worst-case 

Placement 

Time 

(Clock 

Cycles) 

Resource 

Utilisation 

 Heterogenous 

FPGA Support 

Task 

Reuse 

Slices BRAM 

R3TOS 

Allocator [63] 

YES  NO 30,000 459+ 4 

PMS YES YES 14,868 198 1 

+ Virtex 4 FPGAs have 4 input LUTs while 7 series used for PMS implementation have 6 input LUTs  
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The resource utilization of the two implementations were also compared. The R3TOS 

allocator has an overhead of 459 slices and 4 BRAMs. For the proposed PMS, the 

resource overhead are 198 slices and 1 BRAM without considering the reuse 

functionalities. The resource overhead of the reuse functionality was stripped before 

comparison as the R3TOS allocator does not include reuse. However, it is important 

to note that R3TOS allocator utilization was reported for a Virtex 4 FPGA which has 

two 4 input LUTs in a slice while 7 series used for PMS implementation have four 6 

input LUTs in a slice. It follows that the number of LUTs come to approximately 918 

4 input LUTs for R3TOS allocator, while 776 6-LUTs were used for the proposed 

PMS.  

 

 

7.5 Chapter Conclusion 

An implementation of the proposed runtime PMS was presented in this chapter. The 

aim of the chapter is to show the practicability of the techniques proposed in the 

thesis on COTS FPGA. The performance of the proposed PMS with respect to 

resource and timing overhead was also presented. To achieve a close connection 

between the PMS and other components of an ROS, part of the FPGA resources is 

sacrificed for the implementation of the PMS.  A summary of the flow chart of PMS 

was presented and then detailed architecture of the proposed PMS system was 

discussed and analyzed providing low level implementation steps adopted in the 

prototype. A comparison of the hardware implementation result was also made with 

a similar runtime placement system. The results show that the proposed PMS is 

capable making placement decisions at least twice as fast as comparable systems, 

while having comparable resource utilization. It addition, it has additional features 

not present in the comparable system. 

In the next chapter, a technique of routing clock networks to hardware tasks in 

runtime via the configuration layer is presented. The major control bits in the 

configuration layer that can be edited to route clock signals are identified, and a 

proposal of how the routing can be achieved in runtime is described. This is achieved 
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without jeopardizing the reliability of an application. Hence, the chapter also presents 

a means of avoiding the loss of reliability by an efficient means of re-computing 

Frame ECCs after editing configuration bits. This helps an application to retain its 

capacity to benefit from soft error mitigation techniques. 
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Chapter 8: Towards a Reliability-Aware 

Efficient Clock Routing for 

Reconfigurable Computing 
 

In this chapter, a runtime mechanism of clock delivery to tasks in runtime after 

placement on the chip is presented. When the locations of tasks are changed in 

runtime, the question of how clock nets can be delivered to the tasks reliably arise. 

As a step towards addressing this challenge, the proposed approach in this chapter is 

based on manipulating essential bits in the bitstream of an application in runtime. 

This involves identifying key control bits in the bitstream of the FPGA and 

controlling them in runtime.  

The process of runtime editing of configuration bitstream is one which need to be 

done with care. First, the exact bits required to route a clock signal must be discerned 

to avoid editing wrong bits which can constitute a major damage to both the 

application and the device. As the locations of these bits are not provided by Xilinx, 

careful reverse engineering experiments are required.  

In addition, the process of editing the content of the configuration memory of an 

SRAM FPGA in runtime can lead to a major reliability risk for critical applications. 

This is because the configuration memory itself is affected by soft errors in the form 

of unwanted bit flips due to causes such as ionizing radiation. Unwanted bit flips in 

the configuration memory are monitored and corrected in critical applications using 

SEM techniques. These techniques use information stored as part of the bitstream 

generation process (called Frame ECC) to check if any bits have flipped. This 

correction mechanism cannot differentiate between intentional bit edits and soft 

errors. Hence, this chapter also present an efficient implementation of a runtime 

Frame ECC re-computation controller that enables soft errors to be tracked in 

designs where bitstream editing is used. The Xilinx 7 series FPGA is used as the 

target architecture in this chapter.  
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8.1 Efficient Runtime Clock Delivery  

Figure 8.1 gives an illustration of the proposed clock routing process. In (a) the chip 

area is shown with the task yet to be configured. Sections of two clock regions have 

been shown containing buffers, clock nets and PIPs and the potential paths to 

synchronous elements. Each synchronous element on the chip can be routed to the 

clock source by enabling the PIPs in its path. For example, to deliver clock net to the 

CLB in the top left corner of the chip, PIPs 𝑚0, 𝑡0 and 𝑖0 as well as BUF 0 must be 

enabled. 

    

(a) FPGA Area before Task Placement
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(b) Task Configured on Chip      (c) Clock Net Completely Routed 

Figure 8.1: Runtime Clock Routing Process 
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A single clock buffer has been shown for each clock region. Also, a single clock net 

path is shown for each column and synchronous element. This is for illustration 

purpose only, the actual number/arrangement of clock buffers and nets in the 7 series 

was discussed in section 2.3.1, and a more detailed illustration shown in Figure 2.5. 

More details are also given later in this chapter. In addition, the routing of PIPs and 

nets within the processing elements (all represented with CLBs) have been omitted 

for simplicity.  

In Figure 8.1 (b), a task is shown configured on the chip, but the clock nets are yet to 

be completely routed to it. The task occupies 4 columns on the chip area within one 

row. During the design-time synthesis and implementation of the task, clock nets are 

routed to all used synchronous elements automatically. However, to make it possible 

for different clock buffers and nets to be routable to tasks, as well as to ease task 

relocation, the PIPs in the HROW (e.g. 𝑡0 and 𝑏0) are cleared in the task’s partial 

bitstream at design time so that the desired buffers and nets can be routed to the task 

in runtime. Hence, after the task configuration shown, PIPs 𝑖0 − 𝑖99 are already 

enabled as required while 𝑡0, 𝑡1, 𝑏0 and 𝑏1 are disabled. Finally, Figure 8.1 (c) shows 

the clock net completely routed. The PIPs 𝑡0, 𝑡1, 𝑏1 and 𝑏2 are enabled to completely 

route the clock net to the task in runtime after its placement. The clock buffer (BUF 

0) is also enabled at this stage. As shown in Figure 8.1 (a) PIPs 𝑚0 − 𝑚3 are enabled 

during the design phase of the application as they are in the static part. 

As stated in chapter 2, the major clocking resources present in a clock region of a 7 

series FPGA consists mainly of clock buffers, clock nets and PIPs. The arrangement 

and types of clock buffers, nets and PIPs in FPGAs provides a unique opportunity to 

address the challenge of clocking management in reconfigurable computing. It is 

possible to switch from one network to another on the fly, or even route new nets 

completely to a reconfigurable module. When a task’s location is changed in 

runtime, it is challenging to deliver and maintain clock signals in an efficient way to 

applications. Three important challenges that need to be addressed include: 
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i) Ensuring that the right clock frequency is delivered to a task in runtime. 

This is important as different tasks allocated to the same clock region 

might require different operating clock frequencies 

ii) Actual (re)routing of the clock signals to tasks. This might be done 

through the configuration layer by changing the states of the bits which 

control PIPs on clock routes to a task. These bits need to be identified by 

reverse engineering experiments as their locations are not disclosed by 

manufacturers. 

iii) Power saving considerations. Given that clock buffer primitives must be 

in a static part of the design ready to be connected to tasks [62], adequate 

measures are required to minimize their power consumption. 

In the next two sub-sections, details of the proposed clock network delivery 

architecture to address these challenges on Xilinx FPGAs are presented. This 

involves identifying the location of the bits in the configuration bitstream, an 

information not provided by Xilinx. The location of essential clock controlling 

configuration bits are determined by experimenting with various design variants.  

The proposed clock delivery architecture involves instantiating all potentially useable 

clock buffers in the static part of the design. This is necessitated by the fact that clock 

buffers cannot be included in the reconfigurable part of a design on most FPGAs, 

including the 7 series. Clock signals are fed to the buffers’ inputs, but their outputs 

are left unconnected. In runtime, their outputs are then routed to a reconfigurable 

module after its configuration by enabling appropriate bits in the configuration 

memory to activate corresponding PIPs via the configuration layer. The static part of 

the design also includes a configuration controller (CC) and the PMS. These manage 

the execution of the reconfigurable modules placed on the reconfigurable part of the 

design on demand. The CC is used for task configuration as well as writing bit 

locations to route clock nets while the PMS determines a location for a task on the 

chip.  

Clock buffers which can be instantiated for runtime clock routing include all the 

BUFHs, BUFRs and BUFMRs in a clock region. These buffers are fed by the 
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BUFGs or the clock capable inputs of the chip. There are 12 BUFHs, 4 BUFRs and 2 

BUFMRs in each clock region of a Xilinx 7 series FPGA. The BUFMR cannot drive 

logic directly; they must be routed through another buffer such as the BUFR. There 

are 16 dedicated clock nets which can be used to connect the clock buffers to 

synchronous elements such as flip flips, BRAMs and DSPs. These run across all 

columns in the clock region. They are routed all the way to each synchronous 

element. 

Outputs of clock buffers cannot be left unconnected during the synthesis and 

implementation phase of a design. Tool optimization would remove the instantiated 

buffers, and if optimization is turned off (or a DONT_TOUCH attribute is set on 

them), bitGen would report “partial antennae” error and would not run. Hence, to 

ensure that the synthesis tool does not optimize the buffers, dummy reconfigurable 

modules can be included in the floor plan of static module, which are driven by the 

instantiated clock buffers. These modules are blanked-out immediately after the 

initial configuration of the static part. To ensure that a consistent architecture is 

adapted for connecting the buffers and nets in all clock regions, the BUFH are 

initially connected to the lower 12 of the 16 nets in a clock region. The upper 4 nets 

are driven by the BUFRs. 

The choice of which net to route to which task is made in runtime according to the 

clocking requirement of each task. For example, a task placed in a clock region 

where it requires a different clock frequency than that present there would be 

connected to a net driven by a BUFR since BUFRs have clock division capability. 

Similarly, a task which extends to the adjacent clock region can be routed to a net 

driven by a BUFH. The routing is achieved by editing configuration bits that control 

PIPs in the path of the chosen nets to FFs, BRAMs and DSPs. The location of 

synchronous elements can be floor-planned to limit the number of bits to route to a 

task. However, the intersection of the HROW nets and the columns containing the 

synchronous elements must be routed via PIPs. A set of PIPs can potentially switch a 

net vertically to deliver any 12 of the 16 clock nets in the HROW to the synchronous 

elements in a column. Six nets enter a column from the HROW for each column 
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which are connected by 6 PIPs (TOP0, TOP1, … TOP5). These deliver clock signals 

to the upper half of the column and 6 to the lower half (BOT0, BOT1, … BOT5).  

 

8.1.1 Selecting the Right clock Frequency for a Task  

To select an appropriate net and buffer for a task, the frequency requirement of the 

task is considered. For tasks with special clock frequency requirement, a net driven 

by a BUFR is chosen to feed the task. The output frequency of the BUFR can be 

divided by any integer between 1 and 8 by writing specific 4-bit values to specific 

locations in the configuration memory. Table 8.1 shows the bit positions in the 

configuration memory used to divide the clock frequency, and Table 8.2 shows the 

values to be written for each division factor. The bits positions in Table 8.1 refer to 

the 50th word of frame address Minor 33 of the IOB column type. the subscript 𝑟 in 

the table refer to the row of the device in which the BUFR is located while 𝑐 denotes 

the specific index of the buffer. 

 

Table 8.1: Bit Positions for BUFR Clock Frequency Division Factor 

BUFR Bit Positions 

𝑋𝑟𝑌𝑐 18 – 21 

𝑋𝑟𝑌𝑐+1 14 – 17 

𝑋𝑟𝑌𝑐+2 23 – 26 

𝑋𝑟𝑌𝑐+3 27 - 30 
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Table 8.2: Clock Division Factors and Corresponding Values 

Clock Division 

Factor 

Value to be written 

to bit positions (0x) 

1 8 

2 9 

3 A 

4 B 

5 C 

6 D 

7 E 

8 F 

 

As an example, consider a VGA controller tasks which requires 25MHz for correct 

operation. When placed in a clock region on the Xilinx’s basys3 board running at 

100MHz, a value 0xB would be written to the bit location of one of the four BUFRs 

to achieve a frequency division of a factor of 4 and then it is routed to the task. For 

tasks where the general frequencies available on the chip would suffice, a BUFH is 

normally chosen, reserving the BUFRs for tasks requiring clock division. It is also 

important that tasks requiring frequency division must either be contained in a single 

clock region, or driven by multiple BUFRs (one for each clock region) connected to 

a BUFMR and must have a maximum height of 3 clock regions.  

 

8.1.2 Routing a Clock Net to a Task 

After choosing a net, driven by the appropriate clock buffer based on the requirement 

of a task, the chosen net is connected to the clocking point(s) of the task. During the 

floor-planning and implementation of a task, the sequential elements are constrained 

to pre-determined locations and routed to clock points in HROW. It is recommended 

that all timing constraints be addressed at design time. In runtime, an appropriate 

active clock net must be selected and routed. This is done via the configuration layer 

by activating the set of PIPs needed to route the clock signal from the buffer to the 

net in the HROW of each the columns of the FPGA occupied by the task. The 
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columns in the Xilinx FPGA are organized in pairs, classified as left (L) and right 

(R) columns. An L-R pair share common routing resources, and thus the bits to 

enable/disable PIPs are located in either the ‘L’ or ‘R’ column. In addition, any of the 

16 nets can be routed to a column via a set of Routes. Table 8.3 shows the set of bits 

in the configuration memory to be activated to route any of the 16 clock nets in the 

HROW to a column through the BOT0 PIP. Because of the similarity in the bit 

positions between ‘even’ and ‘odd’ nets, the rows are organized in pairs as shown. 

It can be seen from the table that each net is routed via BOT0 by activating 3 bits in 

the configuration memory. However, two of these are shared by groups of nets, with 

only one being unique to each net. One of the shared bits may be described as a 

‘group selection bit’ as it determines the ‘group’, G to which the net belongs. The 16 

nets may be grouped into 4: Net 0 – Net 3 (G1) which are selected by writing a ‘1’ to 

bit position 14 of frame minor 1 (M1), Nets 5 – 7 (G2) are controlled by bit position 

15 of minor 0 (M0). Similarly, Nets 8 – 11 (G3) and Nets 12 – 15 (G4) are controlled 

by bit 15 of M1 and bit 16 of M0 respectively.  

 

Table 8.3: Bit Position and Frame Address Minors of PIPs via BOT0 

 Bit Position in Word 50 of Frame 

Net M0 M1 M2 M3 M4 M5 

0, 2 14, 22 14, 14  — 14, 15  

1, 3 — 
14, 14; 

19, 22 
 14, 15 —  

4, 6 
15, 15; 

23, 31 
—  — 14, 15  

5, 7 15, 15 23, 31  14, 15 —  

8, 10 14, 22 15, 15  — 14, 15  

9, 11 — 
15, 15; 

19, 22 
 14, 15 —  

12, 14 
16, 16; 

23, 31 
—  — 14, 15  

13, 15 16, 16 23, 31  14, 15 —  



 Chapter 8: Reliability-Aware Runtime Clock Routing 

 

 

 

 

168 

The second shared bit may be described as ‘regular distance bit’, D-bit. The D-bit is 

shared by every fourth net, such that Nets 0, 4, 8 and 12 (D1) are controlled by bit 

position 14, and Nets 2, 6, 10 and 14 (D2) controlled by bit 15 of minor 4 (M4). The 

odd-numbered nets are controlled by the same bit positions in minor 3 (M3). That is, 

Nets 1, 5, 9 and 13 (D3), and nets 3, 7, 11 and 15 (D4) are respectively controlled by 

bit 14 and 15 of M3. 

The third bit is unique for each net. Even numbered nets between 0 and 7, i.e. Net 0, 

2, 4 and 6 are controlled by bit positions 14, 22, 23 and 31 of M0, while odd 

numbered nets are controlled by positions 19, 22, 23 and 31 in frame M1. Nets 8 to 

16 are controlled by the same bit positions in the same minors, but of the adjacent 

column. Recall that an L-R pair of columns share a routing resource in the 7 series. 

To use another route such as BOT1, … BOT5 or TOP1 to TOP5, the bit positions are 

organized in a similar fashion to that of BOT0 shown in  Table 8.3. The unique bits 

remain the same for all routes, both in position and frame address, to that of BOT0 

described above. The location of the two other shared bits – the G-bit and the D-bit 

relating to each net for all other routes except BOT0 are shown in Table 8.4 and 

Table 8.5 respectively. 

Table 8.4:  Bit Position for G- bit of Clock Net in HROW 

 G1 G2 G3 G4 

 Bit M Bit M Bit M Bit M 

BOT1 16 3 16 5 16 4 28 2 

BOT2 18 0 17 1 17 0 16 1 

BOT3 17 2 17 4 17 5 17 3 

BOT4 20 0 21 1 21 0 21 1 

BOT5 22 3 22 5 22 4 22 2 

TOP0 30 1 29 0 29 0 29 1 

TOP1 29 2 29 4 29 5 29 3 

TOP2 26 0 28 1 28 0 28 1 

TOP4 25 1 24 0 24 1 24 0 

TOP5 23 2 23 4 23 5 23 3 
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Table 8.5:  Bit Position for D- bit of Clock Net in HROW 

 D1 D2 D3 D4 

Route Bit M Bit M Bit M Bit M 

BOT1 14 2 14 5 15 2 15 5 

BOT2 19 5 19 2 18 5 18 2 

BOT3 19 3 19 4 18 3 18 4 

BOT4 20 4 20 3 21 4 21 3 

BOT5 20 2 20 5 21 2 21 5 

TOP0 31 5 31 2 30 5 30 2 

TOP1 31 3 31 4 30 3 30 4 

TOP2 26 4 26 3 27 4 27 3 

TOP3 26 2 26 5 27 2 27 5 

TOP4 25 5 25 2 24 5 24 2 

TOP5 25 3 25 4 24 3 24 4 

 

It is worth noting that only 7 bits per column are required to be modified to route a 

clock signal to a task. These are: 1 bit to turn-on the buffer routed to the desired net, 

3 bits to route the net to a PIP feeding the upper half of the column and 3 bits to feed 

its lower part. This is a significant improvement compared to the 98 bits required by 

the technique in [62] especially as the bits are located in different configuration 

frames. However, to achieve this, additional design-time steps are needed. 

 

8.1.3 Low Power Considerations 

With the architecture described above, it is noted that the instantiation of the clock 

buffers would lead to increased power consumption of the system. Hence, it is 

important to turn off the clock buffers which are not currently required. This can be 

done via the configuration layer. Table 8.6 shows the bits positions that control the 

enabling and disabling of the BUFHs. Writing a ‘0’ to the respective bit positions 

turns off the buffer while writing a ‘1’ to that location turns it on. The BUFHs are 
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located in the middle column of the device (e.g. column 23 for the basys3 board). 

The word and bit position shown are in frame MINOR = 26. It can be observed that 

only the even-numbered buffers are shown, the location for the odd-number buffers 

are the same as that of the even ones, except that the frame MINOR = 28 for the odd 

numbered buffers.  

 

Table 8.6: Enable/Disable Bit Position for BUFHs in a Row 

 C = 0 C = 1 

 Word Bit Word Bit 

XcYr+0 48 19 47 3 

XcYr+2 49 3 47 19 

XcYr+4 49 19 48 3 

XcYr+6 51 3 52 19 

XcYr+8 51 19 53 3 

XcYr+10 52 3 53 19 

 

There are 2 BUFMR per clock region. The ON/OFF bit of the first of these is in bit 

28 of word 5, minor 27 of the IOB frame type. The ON/OFF bit for the second is 

found at the same location of minor 28. It is worth noting that the BUFRs cannot be 

switched on/off via the configuration layer. Thus, to control them, the buffer driving 

a BUFR is turned off. BUFRs are normally driven by BUFMR. 

 

8.2 Reliability Considerations 

It can be observed that the entire clock delivery technique presented in the first 

section of this chapter is hinged on changing specific bits in a configuration frame in 

runtime. In addition to delivering the right clock frequency to a task placed in 

runtime or route clock signal to tasks, a variety of techniques used by ROS depend 

on editing the content of the configuration bitstream in runtime. Examples include 
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the following: Runtime bitstream modification has also proposed for the relocation of 

circuits to non-matching locations on the FPGA [75]. Establishing communication 

with tasks whose location on the FPGA have changed in runtime have also been 

proposed to be done using techniques that involve runtime bitstream editing [61] 

[122]. These examples involve editing the bit values inside a configuration frame. 

However, there is a major reliability concern with changing bits in a frame of a 

configuration bitstream in runtime especially for safety-critical applications. SRAM-

based FPGA CMEM are volatile, and the bits stored in them could be flipped due to 

undesired effects such as radiation and extreme temperatures [52]. To mitigate the 

effects of unwanted bit flips, each configuration frame in the bitstream of Xilinx 

FPGAs is protected by a Frame Error Correcting Code (Frame ECC). A Frame ECC 

is a set of bits representing a value computed based on the parity of the data in the 

frame and stored as part of the frame. It is monitored for changes in the content of 

the frame and can be used to correct single bit errors and detect multiple bit errors 

[123]. The bit-flip detection and correction technique (usually implemented via the 

SEM IP [56] or custom scrubbing techniques [27]) does not distinguish between 

intentional changes in bits and soft errors due to radiation or extreme temperatures. 

This is illustrated in Figure 8.2. 

One means of addressing this challenge is to re-compute the Frame ECC values each 

time a bit is intentionally changed. In this way the soft error mitigation technique in 

place would continue to function normally so that the design does not lose the 

protection offered by the Frame ECC. It is worth noting that the Frame ECC values 

are generated as part of the undisclosed bitgen process when Xilinx design tools are 

used to implement a design. Indeed, the publicly available technical information on 

the Frame ECC for the Xilinx 7 series FPGA is limited to the number of bits reserved 

for the frame ECC, their location in the frame of a configuration bitstream and how 

custom Xilinx IPs uses these values to report bit flips. A clear information as to how 

their values are generated is not provided. 

Hence the strategy proposed in this work is to re-compute the Frame ECC bits and 

include updated values in a frame after bit editing, just before configuration of the 
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updated frame. Soft errors in Xilinx FPGAs are monitored using both Frame ECC 

(which monitors bits flips in a frame) and CRC values (which monitor bit flips in the 

entire configuration data). However, this section focuses only on the use of Frame 

ECC bits to detect errors since it is uncommon that errors not caught by the ECC 

mechanism are detected by CRC [56].  

 

01 01

01 00

Ionizing 

radiation

Extreme 

Temperature
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Memory 

Before

Memory 

After

Intentional 

Operation
 

Figure 8.2: Bit flips in Memories of SRAM-based FPGA  

 

In this section, an efficient implementation of the mechanism for recomputing the 

Frame ECC of Xilinx FPGA configuration bitstream in runtime is presented. Without 

loss of generality, the implemented algorithm will target Xilinx 7 series FPGAs, but 

is easily extensible to other FPGA architectures as well. It is worth noting that since 

the complete routine for computing Frame ECC in Xilinx FPGAs is not completely 

disclosed, we first present our findings on how to completely re-compute the Frame 

ECC before moving on to its implementation. 

 

8.2.1 Frame ECC Re-computation Routine 

As stated in the last section, it is important to re-compute the Frame ECC values each 

time a bit is intentionally changed, so that these changes are not interpreted as soft 

errors and overturned by the SEM IP or similar soft error mitigation mechanisms. One 
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alternative that can be used to avoid intended bit edits being overwritten is to disable 

the SEM mechanism. However, this would make the entire design lose the protection 

offered by the frame ECC, and thus constituent a significant reliability concern in 

critical applications. Xilinx offers only very limited details as to how the frame ECC 

in their devices are computed. Generally, the Frame ECC values are computed as part 

of an undisclosed bitgen step done by the design tools such as Vivado. For the 7 series 

FPGA, the information provided is limited to the location of the frame ECC and the 

number of bits reserved for its value. Basic idea of computing ECC for a block of data 

such as a configuration frame may be seen in [123]. In the following, the details of 

our findings as to how to exactly re-compute the values of the Frame ECC in runtime 

is presented.  

The computation of the frame ECC is an iterative process carried out on all the words 

in the frame, where the ECC bits computed for a word are XORed with that for the 

next word until all the words in the frame have been used. For the Xilinx FPGAs, 

configuration frames are organized in 32-bit words which are indexed by an integer 

number, 𝐼. Each bit in a frame can be referenced by using the relation: 32. 𝐼 +  𝑘, 

where 𝑘 ranges from 0 to 31 for each 𝐼. The range of the values of 𝐼 is determined by 

the number of words in a frame of the configuration bitstream and the number of 

powers of 2 in the range. Values of 𝐼 corresponding to powers are 2 are skipped as 

these are reserved for the frame ECC indexes [123]. It was observed that lower values 

of 𝐼 are avoided since powers of 2 occur more frequently in that range. For Xilinx 

virtex 4 FPGA which have 41 words in a configuration frame, the ECC is computed 

with 𝐼 ranging from 22 to 63. For the 7 series with 101 words in a frame, it was found 

that it ranges from an initial value, 𝐼𝑖 = 25 to terminal value, 𝐼𝑡 = 127. In general, we 

found that for an FPGA series, the value of 𝐼𝑡 is obtained by aligning the last bit in the 

frame (32. 𝐼𝑡 + 31) to the position 2(𝑛−1) − 1, where 𝑛 is the number of bits required 

to store the frame ECC values. Thus, for the 7 series since 13 bits are reserved for the 

frame ECC values [56], the value of 𝐼𝑡 would computed to 127. Consequently, to 

account for 101 words, 𝐼𝑠 evaluates to 25, with 64 and 32 skipped since there are 

powers of 2. 
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Finally, an ECC polynomial defines which bits of each of the words in a frame are 

XORed at every stage of the iterative process. Equation (8.1) – (8.6) define the 

polynomial for the computation of each stage of ECC for a 32-bit word. Each bit of 

the ECC value (bit 1 to 12) is computed by XORing selected bits of the current word. 

The selected bits are determined using (8.1) – (8.6). Each equation defines the set of 

bit positions of the word which participates in the computation of that specific ECC 

bit. For example, for the computation of ECC bit 1, E(1), only the odd bit positions in 

the current word are selected. Thus, all odd bits of the 32-bit word are XORed 

together to determine the current value of E(1). Similarly, for the computation of bit 3 

of the ECC bits, E(3), bits 4 to 7, 12 to 15, 20 to 23 and 28 to 31 of the current word 

are XORed together. The computation of the other ECC bits follow similar pattern, 

using the bit positions dictated by the corresponding equation.  

As can be seen from the equations, the computation of ECC bits 1 to 5 is dependent 

only on the value of the current word and not on its position in the frame, 𝐼. This is 

different for bits 6 to X where both the value of the word and its relative location in 

the frame contribute to determining the value of the ECC bit. For example, to 

compute bit 6 of the ECC for a word, all the bits of the word are XORed if the least 

significant bit of the word’s location is 1, otherwise that ECC bit is simply 0. In (6), j 

refers to the bit index of the current word’s location in the frame. For example, for 

𝐼 =  25 (=  011001𝑏), 𝐼𝑗=0  =  1, 𝐼𝑗=1 = 0, etc. In addition, 𝑋 is determined by the 

number of bits reserved for the final ECC value. For Xilinx’s Virtex 4 and 7 series 

FPGA, X = 5 and 6 respectively. All bits in each word are XORed to determine E(0) 

for that word, thus bit 0 of the ECC is the parity of the entire frame. 

An iteration step consists in computing all the bits of ECC in a word. These bits are 

XORed with the values obtained from the previous word of the frame to get the 

current partial ECC. The process is repeated until all the words in the frame have been 

considered.  It is worth mentioning that process described above is applied to all 

words in the frame. However, for word 50 in which the ECC bits are located. i.e., for 

𝐼 = 50, 𝑘 iterates from 13 to 31, omitting the location of the ECC bits.  
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𝑬(𝟏) =  {𝒌, ∀ 𝒌 ≠ 𝒆𝒗𝒆𝒏, 𝒌 ≤ 𝟑𝟏} (8.1 ) 

 

𝑬(𝟐) = {
𝟏

𝟐
(𝟒(𝒌 + 𝟏) + (−𝟏)𝒌+𝟐 − 𝟏), 𝟎 ≤ 𝒌 ≤ 𝟏𝟓} (8.2 ) 

 

𝑬(𝟑) = {
𝟏

𝟐
[𝟒(𝒌 + 𝟏) − (𝟏 − 𝒊)(−𝒊)𝒏+𝟏 − (𝟏 + 𝒊)(𝒊)𝒏+𝟏 + (−𝟏)𝒏+𝟐 + 𝟏]: 𝟎 ≤

𝒌 ≤ 𝟏𝟓, 𝒊𝟐 = −𝟏} (8.3 ) 

 

𝑬(𝟒) = {𝒌: 𝟕 ≤ 𝒌 ≤ 𝟏𝟓, 𝟐𝟒 ≤ 𝒌 ≤ 𝟑𝟏} (8. 4 ) 

 

𝑬(𝟓) = {𝒌: 𝟏𝟔 ≤ 𝒌 ≤ 𝟑𝟏} (8. 5 ) 

 

𝑬(𝟔 + 𝒋) =  {   𝟎 ≤ 𝒌 ≤ 𝟑𝟏, 𝟎 ≤ 𝒋 ≤ 𝑿
∅,𝒊𝒇 𝑰𝒋=𝟎 

𝒌,𝒊𝒇 𝑰𝒋=𝟏 
}       (8.6 ) 

 

8.2.2 Implementation Case Study 

To test the performance of the proposed Frame ECC re-computation scheme, a 

design consisting of the frame ECC re-computation scheme, a custom configuration 

controller and a case study application were implemented. Details of each of these is 

give below. In addition, Xilinx Integrated Logic Analyzer (ILA) as well as the 

Virtual Input Output (VIO) probes were included in the design. The ILA was used to 

observe internal signals of Frame ECC primitive, the Frame ECC re-computation 

engine and the configuration controller. The VIO was used to send commands to the 

configuration controller and the Frame ECC re-computation engine such as to initiate 

configuration and read-back operations on the configuration controller and enable the 

Frame ECC engine. 
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i) Frame ECC Re-computation Engine 

The frame ECC re-computation routine described in above was implemented on a 

Xilinx xc7a35tcpg236-1 chip using Vivado 15.1 design tool. Table 8.7 shows the 

resource overhead of the implementation in terms of FPGA resources. The 

implementation of runtime Frame ECC re-computation has a latency of 104 clock 

cycles. A BRAM is used to buffer the frame data which contains the configuration 

bits to be edited (e.g. the clock division bits). The buffer was configured to be 96-bit 

wide and 34 words deep. It is capable of holding a frame of configuration bitstream 

(101 32-bit words) at a time. Its output feeds into 3 instances of the ECC re-

computation engine which requires 3 clock cycles to obtain the partial ECC for each 

word, thus obtaining a partial ECC for 3 words in 3 clock cycles. Two additional 

clock cycles are used to write the final ECC values to the buffer of the configuration 

controller. The time overhead of the Frame ECC (re)computation routine does not 

impact the timing behaviour of the task configuration as the re-computation of ECC 

can be done concurrently with configuration as explained in the next section. 

 

Table 8.7: Resource Utilization of Frame ECC Re-computation Routine 

Resource Used Available % Utilization 

FF 364 41600 0.875 

LUT 193 20800 1.159 

Bram 18kb 3 150 2.000 

 

 

ii) Configuration Controller 

A task Configuration controller described in [27] was also instantiated in the design. 

In addition to task configuration, that controller implements an optimized version of 

soft error mitigation strategy using the Frame_ECC primitive. As mentioned in 

chapter 2, the basic principle of soft error mitigation depends on monitoring the value 

of ECC in the CMEM. The difference between the strategy in [27] and the SEM IP 
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[56] is that the former limits the region of CMEM monitored for error to only those 

parts of the chip with actively computing circuits. Technical details of the soft error 

mitigation of the controller can be found in [27].  

The major operations and their associated latencies of the controller used are shown 

in Table 8.8. It is worth mentioning that the timing characteristics of the controller 

and that of the Frame ECC re-computation engine is such that no delay is introduced 

to task configuration by the Frame ECC re-computation engine. As shown in the 

table, the configuration controller has a minimum configuration latency of a frame to 

be 166 clock cycles. This consists of 65 clock cycles overhead at the start of a 

configuration and 101 cycles for writing the 101 words in a frame. Since the ECC 

word is located at word 50, a total of 115 clock cycles is spent by the configuration 

controller before getting to the Frame ECC word. Thus, initiating the re-computation 

of Frame ECC at the same time as the configuration process, no additional clock 

cycle is incurred in the configuration of tasks. This is illustrated in Figure 8.3. As 

shown, the re-computed Frame ECC value is available 10 clock cycles before it is 

required.  

 

Table 8.8: Time Overheads for the Operations of the Configuration controller at A 

Frequency of 100 Mhz [27] 

Operation 
Minimum 

Time (μs) 

Time for 𝑵 Frames 

and 𝑴 Replicas (μs) 

Readback 2.37 1.36 + 1.01𝑁 

Configuration (non-BRAM frame) 1.66 0.27 + 1.28𝑁 + 0.11M 

Configuration (BRAM frame) 1.74 0.19 + 1.36𝑁 + 0.19𝑀 

Blanking 1.56 1.39 + 0.17𝑁 

Register Read 0.29 0.29 

Custom Write 0.23 0.23+ 1.01𝑁 

Operation Abort 0.05 0.05 

SEM Scan 2.37 1.36 + 1.01𝑁 

SEM Correction (Repair) 1.66 1.66 

SEM Correction (Replace) 2.68 2.68 
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Time (us)0.65 1.05 1.15 1.66

Frame_ECC Computation

Configuration overhead at 
start of frame

Configuration duration for 
word 0 - 49

Configuration duration for 
word 50 - 101

Word 50 (with frame_ECC) 
is fetched

 

Figure 8.3: Timing Characteristics of Configuration and Frame_ECC re-computation 

Controllers 

 

 

iii) Case Study Scenario: Online Clock Frequency Control.  

A simple 4-bit counter whose outputs can be easily observed on LEDs on the Xilinx 

xc7a35tcpg236-1 chip was used for the test. The counter increments every second. 

The aim in this experiment was to change the clock frequency delivered to the 

counter in runtime using bit editing and observe the change in its count rate. At the 

same time, the output of the soft error mitigation mechanism would be observed to 

see if any error is detected. As a control, the Frame ECC re-computation routine will 

then be disabled and the same changes will be attempted and then the result of 

scenarios would be compared.  

The output frequency of the BUFR in the Xilinx 7 series FPGA can be divided by 

any integer between 1 and 8 by writing specific 4-bit values to specific locations in 

the configuration memory. Therefore, a BUFR was instantiated and its output clock 

signal was routed to the counter as its clock source. The clock input to the BUFR was 

routed via a BUFMR so that the clock can disabled and enabled in runtime as BUFRs 

do not have clock enable pins. The location of the clock division bits for BUFRs in 

the configuration bitstream are shown in Table 8.1 while the division factors are 
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shown in Table 8.2. The first BUFMR in a clock region is enabled by writing a ‘1’ to 

bit position 28 of frame Minor 27 of word 50 of the IOB column type. The second is 

BURMR is enabled by similar location of frame Minor 28. The locations of the 

buffers were constrained to the first BUFMR (BUFMRCE_X0Y0) and the second 

BUFR (BUFR_X0Y1) of the upper left clock region of the chip in this experiments 

using constraints in XDC file. 

 

8.2.3 Result and Discussion 

The initial design was programmed on a basys3 FPGA board running at 100 MHz 

with the counter incrementing every second. During the normal operation of the 

system a frequency division process was initiated. Frame minor 33 of column 0 row 

0 in the bottom part of the design of block type IOB was read back. This was done by 

issuing a readback command to the configuration controller using the VIO. The 

bitstream read back (101 words) was saved in a buffer. As shown in Table 8.1 and 

Table 8.2, the clock division bits are in word 50, bits [14:17]. The value of the bits 

was observed to be 0x8. The value of the clock division bits was updated to 0x9 in 

the buffer in accordance with Table 8.2, aiming to divide the frequency of the clock 

by 2. In addition, the frame ECC bits were reset to 0s in the buffer. At this point, the 

design was not affected.  

Thereafter, the Frame ECC re-computation engine was enabled and the configuration 

of the frame to the CMEM was also enabled. After the configuration was done, it 

was observed that the rate of the counter was reduced to 0.5 seconds. The output of 

the soft error monitoring scheme (Frame ECC primitive) was observed after a 

readback operation was performed. No error was reported. This is shown in Figure 

8.4 (a). As shown in the figure, the ECC value (shown on bit 12:0 of the signal 

output_icap_to_fsm) in the frame was updated (from “0x19b2” to “0x1007”), and the 

signal “ECCERROR” remained at ‘0’ to indicate no soft error. In addition, an error 

was injected in the CMEM by writing ‘0’ to the Enable/Disable bit of the BUFMR 

(i.e. bit 28 of Minor 27 of column 0) without enabling the re-computation of the 
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Frame ECC. No effect was noticed on the counter – the design continued to function 

normally at the rate of 0.5 seconds.   

Next, the FPGA board was power-cycled and reprogrammed with the original 

bitstream of the design. The same steps as above were repeated except that the Frame 

ECC re-computation engine was not enabled. That is, the frame containing the clock 

division factor was readback into the buffer and the clock division parameter was 

updated to 0x9. Then the frame was written to the configuration memory. After 

configuration was done, it was observed that the counter continued to increment at 

the initial rate of 1 second. It was also observed that the frame ECC primitive 

reported a soft error. This is shown in Figure 8.4 (b). However, the soft error 

mitigation routine over-wrote the entire frame with the golden configuration 

bitstream. Thus, without re-computing the ECC values, runtime bit editing can be 

classified as a soft error and over-ridden. Also, Writing ‘0’ to the Enable/Disable bit 

of the BUFMR also did not have any effect on the counter as it was also corrected by 

the soft error mitigation mechanism. 

 

(a) 

 

(b) 

Figure 8.4: Waveform of Frame ECC Primitive 
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Finally, the experiment was repeated with both the Frame ECC re-computation 

routine and the SEM routine disabled. This time after changing the frequency of the 

clock, the counter rate was found to decrease to 0.5 seconds as expected. However, 

writing a ‘0’ to the Enable/Disable bit of the BUFMR make the counter completely 

freeze and stopped incrementing. 

 

Table 8.9: Summary of Features in Designs with and without SEM and Frame ECC 

Re-computation Engines  

Features 
Design 

Only 

Design + SEM 

Controller 

Design + SEM ad 

Frame ECC 

Controllers 

Soft errors recovery    

Support for runtime 

configuration bit editing    

Soft error recovery and 

runtime configuration bit 

editing 
   

 

Table 8.9 summarises the features of designs depending on the presence of SEM and 

runtime frame ECC re-computation mechanism. Comparing the results of the three 

experiments above, and assuming that editing the frequency of the counter was 

intended by a user, while disabling the BUFMR was a soft error, it can be concluded 

that re-computing the frame ECC as in the first scenario make it possible to control a 

design protected by soft error mitigation techniques as desired. It allows users to 

make intended runtime bit editing while the design is still robust against un-intended 

bit flips. In the first scenario, the frequency of the counter was successfully updated 

while the error injected by disabling the BUFMR was detected and corrected. In the 

second scenario, the soft error mitigation technique interpreted all bit edits as soft 

errors and reversed them because the Frame ECC was not re-computed. In the third 

scenario when the soft error mitigation mechanism was disabled, the design responds 

to all changes to the content of its CMEM. The frequency of the design was 

successfully updated but the design also failed due to a soft error on an essential bit. 
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8.3 Chapter Conclusion 

In this chapter, we have presented an efficient runtime mechanism of clock delivery 

to circuits placed in runtime without jeopardizing the reliability of the system. The 

technique depends on identifying key clock signal routing bits in the configuration 

bitstream of the class of FPGA. These are controlled in runtime to route a clock 

signal to circuits. To avoid losing the error monitoring offered by the frame ECC, the 

value of the ECC is recomputed for any frame in which bits are changed to route a 

clock signal. The distinctive features of the proposed technique are that it is aimed at 

minimizing the number of bits changed in runtime and recalculating the ECC for the 

affected frames. By using different design variants, the location of the essential clock 

routing and buffer enable/disable bits in Xilinx 7 series FPGA were determined. The 

frame ECC computing scheme for the same class of FPGAs was implemented. Based 

on these, it is possible to route a clock signal in runtime by bit editing without losing 

the protection offered by the Frame ECC.  

The results show that for clock routing, only 7 bits per column are required to be 

modified to route a clock signal to a task as against the 98 bits required by similar 

approaches. The implementation of frame ECC re-computation controller occupies 

only 364 LUT, 193 flip flops and 3 18-Kb BRAM on the Xilinx xc7a35tcpg236-1 

chip and has a latency of only 104 clock cycles for each frame. It was also shown 

that its latency does not introduce any delay in configuration procedure. 

A major limitation of the proposed approach is its dependence on a family of FPGA. 

The format of the configuration bitstream changes from one FPGA family to another. 

Hence, the reverse engineering experiments will have to be repeated to apply the 

technique to another family of FPGA. The content of this chapter is included in the 

following publication: 

 G. Enemali, A. Adetomi, and T. Arslan, "Efficient Runtime Frame ECC 

Recomputation for Reliable Task Execution on Xilinx FPGAs ", in 2018 

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018. 

pp. 59- 65  
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Chapter 9: Conclusion and Future Work 

 

This thesis has presented techniques towards the development of future high-

performance, fault-tolerant electronic systems for hostile environments such as 

nuclear plants and outer space within the constraints of cost, power and flexibility. 

The placement management system presented in this thesis is the design and 

implementation of several techniques to achieve efficient runtime placements in 

COTS FPGAs which have a high degree of heterogeneity. Techniques relating to 

optimizing the utilization of the FPGA area, managing its relatively large 

configuration overhead, relocating tasks on its heterogeneous area and managing 

clock network routing to placed tasks were presented.  

These techniques provide a means that enables future ROS to better harness the 

capabilities of COTS FPGA using DPR to achieve reliability and high performance. 

With the continual increase in the degree of heterogeneity of COTS FPGAs, runtime 

placement and task relocation which are techniques used by ROS to achieve high 

performance and reliability have become increasing challenging to implement. In 

addition, circumventing the relatively large reconfiguration overhead of COTS 

FPGA while managing fragmentation of the device area is an important requirement 

in ROS. Moreover, delivering clock networks to tasks after placement on the FPGA 

is also challenging. The proposed placement techniques address these challenges. 

While many traditional placement techniques are based on ideal models which are 

not well suited to COTS FPGA platforms, the proposed techniques not only aim to 

have better performance but also to be practicable. The practicality of the proposed 

techniques is demonstrated by presenting its implementation details in chapter 7, thus 

addressing many design and implementation issues in runtime placement 

management on COTS FPGAs.  

This chapter gives a summary of the research work presented in this thesis. It 

highlights the main results and draws conclusion from them, showing the potential 
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impacts and significance of the techniques. The limitations of the techniques 

presented are identified, and future works are also suggested. 

 

9.1 Summary of Thesis 

The first three chapters of this thesis presented background information on the 

unique attributes of COTS FPGAs – especially on the potentials provided by DPR 

and reviewed support tools and techniques developed to harness the huge potentials 

of DPR with a focus on runtime placement. The major contributions of the thesis are 

contained in chapters 4 to chapter 8. Chapter 4 presented a design-time optimization 

for reliability. The design flow presented is aimed at not only improving the 

maximum number of locations for each task on the chip, but also to achieve a fair 

distribution among all tasks which will share the chip area concurrently in runtime. 

The technique is based selecting implementation locations for tasks to minimize 

overlap in the potential placement locations of tasks occupying the FPGA area 

simultaneously. The offline placement quality optimization also aims to minimize the 

variance in the number of potential locations of each task and thus avoid a situation 

where some tasks have abundant potential placement locations and others have too 

little. A balanced distribution and minimized overlap of implementation location 

leads to an improvement in the number of placements in runtime for each task and 

increases the performance and fault tolerance of applications. 

Chapter 4 also presented an architecture of a generic task wrapper based on 

memoization for achieving low power computation on FPGAs for tasks with low 

port width. The power optimization technique using memoization is applied to tasks 

to reduce their dynamic power consumption. The technique involves reusing the 

result of a previous computation when a request is made for computation with the 

same set of inputs that produced them. Thus, the process of re-computing the result 

for the input is avoided – together with its dynamic energy consumption. To achieve 

this, results of previous computations are remembered, leading to memory and logic 

overheads. Hence, it is imperative that these overheads of the memoization wrapper 
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are minimized. To achieve energy minimization, a place reservation technique is 

used which ensures that the search for previous results are done efficiently in few 

(and fixed) number of clock cycles. Space reservation technique also keeps the MISS 

rate low, leading to greater energy savings. However, to keep the memory overhead 

reasonable, the wrapper is only suitable for tasks with low port width. The chapter 

also includes a discussion of a communication wrapper for all tasks. The resource 

overheads of both the wrapper for dynamic power minimization and that for 

communication are added to the task’s resource utilization before the optimization 

procedure for selecting implementation locations.  

Unlike the design time techniques presented in Chapter 4, Chapter 5 gives two key 

techniques relating to the runtime phase of placement management for high 

performance and reliability. These are: efficient minimization of chip area 

fragmentation and efficient task reuse to reduce the amount reconfiguration engaged 

in by the configuration port. To minimize fragmentation on the chip, a fragmentation 

quantification technique suitable for use on heterogeneous FPGAs was proposed. 

The method of quantifying fragmentation aims to balance speed and accuracy such 

that it could be fast enough for runtime placement and yet produce accurate results. 

The fragmentation measure is based on the isolation of a task placement location 

from other tasks on the FPGA as well as the FPGA borders. A comparison of the 

proposed technique with others showed that its accuracy is better than those schemes 

with comparable computational overhead, while being comparable to others with 

higher computationally intensity. It was shown that since tasks’ location on 

heterogeneous chips are constrained by their layout, the placement location of one 

task may not fall at the border of another even with good fragmentation 

quantification techniques. Hence, an expansion strategy, EUAS, was proposed. 

EUAS uses information on the dimension of the tasks to be placed to decide the 

amount of expansion during placement. Using simulations, it was shown that a lower 

task rejection ratio is obtained when EUAS was used. 

Chapter 5 also presented a task reuse strategy to circumvent the reconfiguration of 

carefully selected tasks. The tasks to retain were decided using a novel 
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fragmentation-aware replacement policy – FAReP. The replacement policy selected 

tasks to be retained on the chip based on their reconfiguration overhead, frequency of 

reuse and the amount of fragmentation which their current location contribute to the 

chip area. Thus, in addition to preserving tasks with costly and frequent 

reconfigurations on the chip, FAReP offers some degree of defragmentation of the 

chip area during each task replacement. The chapter results showed that the number 

of reconfigurations circumvented using FAReP is greater than that of other task 

replacement policies. A reduction in the number of reconfigurations leads to greater 

availability of the configuration interface for other very key operations in critical 

applications such as soft error mitigation.  

Chapter 6 addressed the challenge of task relocation on COTS FPGAs. The chapter 

first introduced the concept of DBR on FPGAs and explained the process involved in 

DBR. DBR is commonly achieved by either generating partial bitstreams for all 

potential locations of the task on the chip or by modifying the location dependent 

sections in its partial bitstream in runtime. The later has the advantage that fewer 

number of partial bitstreams are required to be managed in runtime.  The chapter 

further identified a major limitation of DBR which is that the resource constituents of 

the original implementation location on which the partial bitstream was generated 

must match a destination location for most practical cases. However, COTS FPGAs 

have heterogeneous columns arranged in no particular order. In fact, even a single 

resource column type typically has left or right orientations further increasing the 

number of different resource columns on the chip and decreasing the chance of 

finding a location matching the original location of partial bitstream. This reduces the 

number of locations a task can be relocated to using DBR. Another limitation of 

DBR is that it cannot be applied to encrypted bitstreams when access to the location 

information of the bitstream is not available. The chapter thereafter proposed FBR 

strategy.  

The chapter described the process of FBR which essentially involve transforming the 

logic represented by the task into a look-up-table or a block of memory. The 

advantage is that the LUT or memory block which replicates the functionality of the 
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original circuit can be relocated to locations on the chip which do not match the 

resource arrangement of the original implementation location of the task. However, 

the chapter also identified the limitation of FBR. FBR cannot be applied to tasks 

which are not referentially transparent and have huge memory overhead for 

applications with large ports. Therefore, the chapter proposes a merger of both DBR 

and FBR and showed that augmenting the later with the former would lead to a 

significant increase in the total number of task relocations that can be obtained on 

COTS FPGAs. Since relocation is a central technique used by ROS to achieve high 

performance and reliability, improving the amount of relocation obtainable on the 

chip is a huge potential. 

Chapter 7 shows the practicality of the proposed techniques by describing the 

implementation of a prototype PMS which includes the techniques proposed in 

previous chapters. Low level implementation issues of the PMS were presented. The 

chapter also characterized the implementation of the PMS and reported its 

performance including timing and resource overheads. The performance results of 

the implementation were compared with a similar runtime task placement scheme. 

The comparison showed that the proposed PMS has more features and is more than 2 

times faster than a comparable runtime placement system. Based on this, faster 

placement decisions can be made which reduces the chances of missed deadlines in 

runtime scenarios. In addition, new placement locations can be decided more quickly 

and hence reduce an application down-time in a case where a task need to be 

relocated due to occurrence of permanent faults on the FPGA. 

Chapter 8 discusses clock network delivery to tasks after their placement in runtime. 

A method of runtime clock routing was presented that involve controlling 

configuration bits in the configuration memory to change the states of PIPs in the 

path of clock signal to tasks. The frequency of the clock is also adjusted in some 

cases to accommodate tasks of different clock frequencies in the same clock region. 

The chapter described an architecture that supports runtime clock routing by 

instantiating clock buffers in the static part of an application during its design phase. 

The chapter also presented the results of reverse engineering experiments to 
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determine the location of the essential configuration bits that need to be controlled in 

runtime to achieve clock network routing or frequency division operations.  

In addition, chapter 8 also presented a technique of re-computing the frame ECC in 

the configuration bitstream after editing bits in runtime. The chapter presents the 

implementation of efficient frame ECC re-computation routine to address the 

challenge posed by editing configuration bits in runtime. COTS FPGAs based on 

SRAM configuration memory are susceptible to bit flips (soft errors). These are 

managed by using soft error mitigation techniques. However, since these techniques 

do not differentiate between unwanted bit flips and intentional bit edits, the chapter 

proposed a re-computation of the frame ECC after bit edits. This makes it possible 

for SEM techniques to continue to track and correct soft errors while still benefiting 

from techniques that involve configuration bitstream editing. 

 

9.2 Significance of the Research 

The research presented in this thesis is significant in three main domains. These are: 

improving the reliability of FPGA-based applications, high-performance and low-

power computation on FPGAs. These are summarized below. 

9.2.1 Impact on the Reliability of FPGA-Based Applications  

The techniques presented in this thesis address both permanent and temporal faults in 

COTS FPGA-based applications. The keys ways in which the reliability of 

applications is improved are as follows: 

i) The design-time application optimization technique presented in chapter 4 

leads to better capacity to circumvent permanent faults on COTS FPGAs. 

This was tested by using data from a practical application, namely data 

processing tasks of a NASA JPL spectrometer application. The results 

presented in Figure 4.6 show that an average of 48.6% more errors were 

survived due to the proposed optimization techniques. In addition, the 
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functionality-based runtime relocation technique presented in chapter 6 have 

potentials to improve the relocatability of hardware tasks with low-port 

widths on modern COTS FPGAs. 

ii) The task reuse scheme presented in chapter 4 provides a means of reducing 

the occupancy of the ICAP and thus leaves more of its resources to be 

devoted to soft error mitigation techniques. As the simulation results in Table 

5.4 shows, the proposed task reuse scheme leads to approximately 29% 

saving in the amount of configuration compared to state-of-the-art techniques. 

This saving in the occupancy of the ICAP can be devoted to soft error 

mitigation operations to ensure that soft errors are detected and corrected more 

readily. 

iii) The frame ECC re-computation engine presented as part of chapter 8 also 

improves the reliability of applications. Specifically, it enables designs to 

benefit from a variety of reconfigurable computing techniques which rely on 

runtime bitstream editing without losing the protected offered by soft error 

mitigation strategies. By ensuring that the value of ECC for each frame is 

correct after each operation involving bitstream edit(s), unwanted bit flips due 

to ionizing radiations, extreme temperatures, etc. can be tracked and corrected 

in reconfigurable computing applications. 

 

9.2.2 Potentials for Low Power Computation and High Performance 

The task wrapper based on memoization presented in chapter 4 leads to significant 

saving in power consumption for referentially transparent tasks with low port widths. 

For a case study CORDIC circuit, an average of 34.5% of power saving was obtained 

using the proposed task wrapper. In addition, the proposed task reuse scheme in 

chapter 5 also has the potential to reduce power consumption as memory accesses 

associated with task configuration is an energy intensive operation [124]. Low power 

computation is a major goal of many system designers. It not only reduces energy 

bills and increases battery life, but also increases the life span of devices and reduces 

the risk of electromigration. 
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In addition, the placement techniques presented in this thesis targets high 

performance. The worst-case latency of the proposed PMS is less than 50% of that of 

a state-of-the-art runtime placement system. This leads to shorter placement 

overheads of hardware tasks thus reducing task’s overall execution time. Furthermore, 

the task rejection ratio of the proposed PMS is lower than that of comparable 

placement systems. This means that more application components can be executed on 

the chip in a dynamic runtime placement scenario leading to better performance 

compared to similar placement systems. 

 

9.3 Limitations and Future Work 

There are some limitations associated with the placement management system 

proposed in this thesis. One limitation is that certain aspects of the techniques 

presented in the PMS are specific to an FPGA family. An example of this is the 

proposed runtime clock network routing technique. The technique involves the use of 

runtime configuration bit editing. This is a technology dependent technique which 

cannot be directly applicable to other FPGA families. The bit locations for routing 

clock nets presented in chapter 8 are specific to the Xilinx 7 series FPGA family. To 

apply the runtime clock routing to another family of FPGA such as the UltraScale 

FPGA family, the reverse engineering experiments must be repeated to identify the 

location of the clock buffer and PIP control bits for that FPGA family. This 

limitation also applies to the Frame ECC re-computation technique presented in 

chapter 8. Bitstream specific information are necessary for the implementation of the 

Frame ECC re-computation process, and hence must be re-implemented for another 

family of FPGA to be useful on them. Another technology dependent technique is 

DBR using frame address modification. To relocate a bitstream in runtime, the 

location information in the bitstream must be identified and changed in runtime. 

Usually, location-dependent information in the bitstream changes between FPGA 

family, and a relocation controller would need to be updated for each new family of 

device.  
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Another technique that is quite limited is the proposed functionality-based relocation 

technique in chapter 6 and the low-power wrapper proposed in chapter 4. Both of 

these can only be applied to tasks whose output does not depend on internal states, 

but only on the current inputs. Some practical applications have outputs which 

depend on internal states and hence this technique cannot be used to relocate them or 

minimize their power consumption. Additionally, the techniques use a place 

reservation technique to ensure that the checks for previously computed outputs are 

carried out in a pre-determined number of clock cycles. This leads to a high memory 

overhead for tasks with large port width. Essentially, the size of the memory required 

to save each output of a task doubles with every increase in the number of its input 

bits. 

In addition, many of the techniques in this thesis require the use of an internal 

configuration circuitry (which uses the ICAP). This enables an FPGA to be 

programmed from within itself. However, the configuration circuitry or even the 

ICAP can be affected by both soft and hard errors which can result in system failure.   

To address the challenges identified above, several possibilities can be explored as 

future work. The following are some possible recommendations for future work: 

 

 System Integration and Application Testing: The proposed PMS was 

implemented as a prototype in this thesis and was tested with a separately 

implemented communication infrastructure based on the clock buffers [26] 

and a configuration controller [27] also separately implemented. A next 

natural step would be to integrate these units into a complete stand-alone 

ROS and test its performance with real life/critical applications. This would 

be a next major step in the development of future high-performance, fault-

tolerant multisensory electronic systems for hostile environments such as 

nuclear plants and outer space within the constraints of cost, power and 

flexibility. 
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 Support Across Different FPGA Family: As identified above, FPGA 

architecture is continually evolving, and this leads to changes in the 

configuration bitstream format. Hence, techniques which are dependent on 

specific formats of the bitstream is not directly applicable across different 

device families. One way to address this limitation could be for FPGA 

vendors such as Xilinx to standardize the configuration bitstream format so 

that designs can be future proof by forecasting locations of essential bits. An 

additional possibility is for FPGA designers to adopt the virtual bitstream 

format recommended in [73] which makes tasks bitstream independent of 

their location on the chip. 

 Improving the scope of low power and functionality-based relocation 

techniques:  The wrapper for low task computation using memoization as 

well as the relocation techniques presented in chapters 4 and 6 respectively 

are practicable for only low port width applications because of the huge 

memory requirement for applications with large port width. Future work 

could explore the possibility of using data compression mechanisms to extend 

the proposed technique to circuits with larger port widths. Fast data 

compression algorithms which is targeted at in-memory data such as [125] is 

worth investigating for this. 

 External configuration for reliability: 

To mitigate the effect of the configuration engine or the ICAP failing, it will 

be important to extend the reliability of the configuration process by 

implementing a fall-back configuration engine. A future work could explore 

the implementation of an efficient configuration using an external processor 

by extending techniques such as the one illustrated in [126]. The external 

processor could be radiation hardened to reduce the chances of fault 

occurrence on it. 

 Performance Testing: Fault injection was used to test many of the 

experiments presented in this thesis. As fault injection is not enough to reveal 

all fault conditions, a future work for this project would be to carry out more 

testing in actual hostile environments. It is expected such testing would be 
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carried out in the next phase of the project using the existing collaboration 

between the University of Edinburgh and NASA JPL. 
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