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ABSTRACT

The availability of recombinant peptides, involved in linear growth, has invigorated
the investigation of the neuroregulation of growth. The potentially unlimited quantities of
GH available has led to an expansion in criteria for therapy to encompass children with
growth failure from causes other than classical growth hormone deficiency, adults with
growth hormone deficiency, and the elderly. Synthetic GHRH is a potent tool in the
investigation of the growth axis and an alternative to GH therapy. Further understanding
of the dynamics of growth should result from the recent availability of recombinant IGF-I
for therapy of diseases associated with growth hormone resistance, and for the investigation
of growth physiology. The studies described in this thesis take advantage of these advances
to further understanding of the neuroregulation ofGH secretion in man.

In a cohort of healthy male volunteers, a single subcutaneous injection of 40 pg/kg
of IGF-I was not associated with side-effects, in particular hypoglycaemia was not a
problem. Frequent venous sampling over 24 hours revealed a fall in plasma TSH, but
secretion of the other pituitary hormones was unperturbed. IGF-I did not alter the pulsatile
nature and quantity of GH secretion over 24 hours, but did result in potentiation of the GH
response to GHRH.

The regulation of linear growth is dependent on many factors. An experimental
paradigm of pharmacological tests and overnight sampling compared GH dynamics in
groups of tall and short young men. Insulin-induced hypoglycaemia and GHRH were
unable to differentiate between the two groups. Overnight profiles of spontaneous GH
secretion suggested mean pulse amplitude to be greater in taller individuals although the
difference did not reach significance.

Plasma growth hormone levels correlate with plasma oestrogen levels and are
therefore greater in young women than men. In a group ofhealthy young men and women,
no difference existed in either the GH responses to GHRH in a group of young men and
women, or in the women at different stages of the menstrual cycle, indicative of a
hypothalamic site of action for oestrogens.

Many characteristics of the adult GH deficiency syndrome are associated with
"normal" aging. Spontaneous GFI secretion decreases with age as did the response to
GHRH in the subjects studied here. Modulation of cholinergic-regulated somatostatin
secretion, with the anticholinesterase, pyridostigmine, augmented the GH response in all
ages. However, the influence of pyridostigmine also diminished with age.

Elevated circulating glucocorticoids are associated with impaired GH secretion and
growth failure in children. Pretreatment with a potent synthetic glucocorticoid,
dexamethasone, virtually obliterated the GH response to GHRH. However, pyridostigmine
significantly increased the GH response, indicative that increased somatostatin secretion
is responsible for the acute glucocorticoid-induced diminished GH secretion.

GHRH therapy is of proven efficacy in the treatment of short stature and offers a
theoretical advantage over GH of restoring pulsatile GH secretion. However, the short half-
life of GHRH and the necessity of, at least, twice daily injection, limit its use. DC-21-346
was designed as a superpotent, degradation-resistant GHRH analogue, and in rats was fifty
times as potent as conventional GHRH. Unfortunately, in normal volunteers DC-21-346
was only equipotent with conventional GHRH and therefore has no therapeutic future.

It is anticipated that these findings will be the foundation of further studies of the
neuroregulation ofGH secretion and ultimately improved management of disorders of the
growth axis.
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AIMS

AIMS

The research presented in this thesis was designed to explore aspects of the neuroregulation

of growth hormone secretion in man and the relationship between quantitative growth

hormone secretion and adult height.

Insulin-like growth factor-I is a potent metabolic regulator and mediator ofmany functions

ascribed to GH. Plasma IGF-I is principally hepatic in origin and predominantly regulated

by GH. The availability of recombinant IGF-I offers new opportunities for therapy of

disorders associated with GH resistance and investigation of IGF-I's physiological role. In

vivo and vitro studies indicate IGF-I can autoregulate its plasma levels via feedback on GH

secretion. A strategy of frequent sampling of the anterior pituitary hormones over 24 hours,

and measurement ofGH after GHRH stimulation, enabled the consequences of IGF-I for

pituitary function to be delineated.

Normal linear growth is dependent on a complex genetic and environmental milieu, which

can be disturbed by amultiplicity of factors such as psychological stress, incidental illness,

malnutrition, and gonadal or thyroidal dysfunction. Growth hormone commands a pivotal

role in the stimulation of linear growth, although its secretion and efficacy are sensitive to

influence by many factors. The dynamics ofGH secretion and its relationship to growth

velocity have been extensively studied in children, predominantly those with abnormal

growth. Investigation ofgrowth in truly normal children is limited by ethical considerations

and the cross-sectional nature of studies in normal children. By studying young adults and
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AIMS

defining the population by a solid endpoint, namely final height, it was possible to

circumvent the problems inherent in investigating children. The experimental design

combined measurement of spontaneous and pharmacologically-stimulated GH secretion in

groups of tall and short normal individuals with the intention of defining the relationship

of quantitative GH secretion to final height.

A positive correlation exists between plasma growth hormone and oestrogen levels and

hence GH levels are higher in young women than men. However, controversy persists as

to the influence of oestrogens and gender on the GH response to GHRH; it is variously

reported that the response is either higher or lower or the same in women compared to men.

Further topics of interest are the age-related decline which occurs in GH secretion and the

inhibition by glucocorticoids ofGH secretion. The nature and aetiology of the influence

of gender, age and glucocorticoids on GH secretion were examined by an amalgamation of

intravenous boluses ofGHRH(1.29)NH2, in combination with modulation of the cholinergic

nervous system using the anti-cholinesterase pyridostigmine.

GHRH treatment is a proven alternative to GH therapy for growth failure, with the

theoretical attraction of producing a more physiological pattern of plasma GH levels than

recombinant GH. Currently, the necessity of at least twice daily injection limits the use of

GHRH therapy. DC-21-346 was synthesised as a superpotent, degradation-resistant

analogue ofGHRH(I_29)NH2. It is fifty times as potent at stimulating GH secretion from rat

somatotrophs as conventional GHRH. The initial human studies of this peptide are

included here.
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ABBREVIATIONS

ACTH, adrenocorticotrophin

AUC, area under the curve
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FSH, follicle stimulating hormone
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GHD, growth hormone deficiency

GHRH, growth hormone-releasing hormone

IC-GH, integrated concentration of growth hormone
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INTRODUCTION

INTRODUCTION

The discovery ofgrowth hormone-releasing hormone (GHRH) in 1982 provided a powerful

tool for investigating the regulation of growth hormone (GH) secretion and the treatment

of short stature. In the intervening decade, synthetic GHRH has been used successfully

to treat both children with GH- and non-GH deficient short stature (Thorner et al. 1988;

Brain et al. 1990; Duck et al. 1992; Ross et al. 1987c; Kirk et al. 1994). The studies

described in this thesis have used synthetic GHRH to investigate the relationship between

quantitative GH secretion and final height, and aspects of the regulation ofGH secretion.

GROWTH HORMONE-RELEASING HORMONE

Pituitary comes from the Latin "pituita" meaning mucus. For centuries it was thought that

the pituitary was responsible for the regulation of the secretion of phlegm. Our modern

understanding of pituitary function started with the speculation, more than three hundred

years ago, by Richard Lower (1631-1691) that substances passed from the brain to the

pituitary and were then distilled into the blood. In 1886, the French neurologist Pierre

Marie (1853-1940), in his original description of acromegaly, noted the enlargement of the

pituitary. However, Marie failed to appreciate the significance ofhis observation, believing

it to be a secondary phenomenon paralleling the enlargement of other organs. Early this

century, the observations and experiments of Harvey Cushing, a Baltimore and Boston

neurosurgeon (1869-1939), laid the foundations of modern clinical neuroendocrinology.
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INTRODUCTION

He postulated the causative link between pituitary tumours and acromegaly, and in the

syndrome that bears his name. He performed hypophysectomies on dogs and recorded the

consequences, thereby establishing the true function of the pituitary. He coined the words

hypo- and hyper-pituitarism to describe the pathological consequences ofdisturbed pituitary

function. (Cushing, 1910). A decade later, proof that the anterior pituitary contained a

growth promoting substance came from the observation that the intraperitoneal

administration of crushed bovine pituitary tissue into rats stimulated somatic growth (Evans

& Long, 1921).

In 1930, a Hungarian anatomist, Popa, identified the vascular nature of the connection

between the hypothalamus and pituitary. He mistakenly believed the flow was from the

pituitary to the hypothalamus. This misconception was corrected by Wislocki and King

(1936). In 1947, Green and Harris proffered the first evidence supporting and extending

Lower's theory of pituitary function and regulation. They and others suggested that the

central nervous system controlled pituitary activity via a neuro-humoral relay (Scharrer &

Scharrer, 1954). Reichlin (1961) showed a reduction in GH content of the pituitary, and

also growth, in rats with lesions of the ventral hypothalamus. This demonstrated the

importance of the hypothalamus in regulating GH secretion. Deuben and Meites in 1964

established that rat hypothalamic extracts could stimulate GH release from rat pituitary in

vitro. Despite the evidence for the existence of a hypothalamic factor that acted on the

pituitary to stimulate GH secretion, it proved the most elusive of the hypothalamic factors

to identify. Between 1969 and 1981, thyrotrophin-releasing hormone, gonadotrophin-
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INTRODUCTION

releasing hormone, somatostatin (vide infra) and corticotrophin-releasing hormone were

isolated from ovine and porcine hypothalami (Rezek & Novin, 1977; Schally et al. 1971;

Boler et al. 1969; Burgus et al. 1970; Vale et al. 1981; Seeburg & Adelman, 1984). In

addition, dopamine was identified as the tonic inhibitor of prolactin secretion (MacLeod

& Lehmeyer, 1974; MacLeod et al. 1970). The characterisation of GHRH in 1982 was

exceptional for its extraction from human tissue taken from only two patients with

acromegaly due to the ectopic production ofGHRH from neuroendocrine tumours of the

pancreas. This contrasts with the 50 tons of fresh frozen ovine tissue processed between

1964 and 1973 in the hunt for the hypothalamic secretagogues.

As early as 1960 an association between acromegaly and a bronchial carcinoid tumour had

been noted and it was subsequently reported that, in similar patients, the acromegaly could

be cured by removal of the carcinoid tumour (Southern, 1960; Sonksen et al. 1976). In

1979 two groups demonstrated GH-releasing activity in the tumour extracts ofpatients with

carcinoid tumours and acromegaly (Shalet et al. 1979; Saeed uz Zafar et al. 1979).

Thorner in 1982 reported an acromegalic patient in whom somatotroph hyperplasia was

found at transsphenoidal hypophysectomy. Subsequent investigation revealed a pancreatic

tumour, the removal ofwhich cured the acromegaly. Portions of the tumour were provided

to both the groups of Vale and Guillemin. Guillemin also obtained pancreatic

neuroendocrine tumour of the carcinoid type from another patient (Sassolas et al. 1983).

Within one year both groups had extracted and sequenced GHRH and reports from four of

these studies appeared in November 1982 (Guillemin et al. 1982; Esch et al. 1982; Spiess
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INTRODUCTION

et al. 1982; Rivier et al. 1982).

Figure 1

The structure ofGHRH(1-29)NH2 and its C-terminal shortened analogues

Three forms ofGHRH were identified from the two tumours: GHRH(1-40)OH, GHRH(1-

44)NH2 and GHRH(1-37)NH2 (Figure 1). Both 40 and 44 residue peptides identical to that

from the pancreatic tumours were subsequently extracted from human hypothalami (Lin et

al. 1984). Rat GHRH consists of43 amino acids and differs from the human by 15 residues

(Speiss et al. 1983). GHRH immunostaining has been demonstrated in the arcuate nucleus

of the hypothalamus with fibres projecting to the median eminence and ending in contact

with the portal vessels (Bloch et al. 1983). The human GHRH gene has been mapped to

chromosome 20 (Mayo et al. 1985). It has been demonstrated, in vitro, that GHRH
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INTRODUCTION

stimulates transcription of the GH gene as well as GH secretion (Barinaga et al. 1985).

There is evidence from in vitro studies in rats of at least two functional compartments for

storage of GH in the somatotroph: a readily releasable pool, and a pool that responds to

more prolonged stimulation (Stachura & Tyler, 1987). GHRH stimulates release of GH

from the readily releasable pituitary pool ofGH (Chao et al. 1988). The biological activity

of GHRH appears to reside in the first 29 amino acids, as analogues of this length with

deletions from the C-terminal end of the intact hormone retain their full GH-releasing

activity (Lance et al. 1984), but the N-terminal residues need to be preserved (Ling et al.

1984). At doses of 1-3 pg/kg, all three analogues when given intravenously, selectively

stimulated GH secretion in normal males (Gelato et al. 1983; Rosenthal et al. 1983;

Grossman et al. 1983), eliciting an identical pattern of GH secretion (Grossman et al.

1984b; Losa et al. 1984). Dose-response studies established 1 pg/kg intravenously to be

a supra-maximal dose (Grossman et al. 1983). The only side-effect of intravenous GHRH

is facial flushing, which typically occurs within one minute and resolves in five.

Further understanding of the action of GHRH should follow the recent cloning and

sequencing of its receptor. The GHRH receptor is homologous to other peptide receptors,

notably secretin, vasoactive intestinal peptide and ACTH. In common with these receptors,

it is a cell surface G protein-coupled receptor with seven trans-membrane domains (Mayo,

1992). The G-protein complex activates adenylate cyclase and results in both increased

gene transcription and hormone release. GH release is cyclic AMP and calcium-dependent

while GH transcription is cAMP-dependent but calcium independent. Constitutively active
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mutations of the Ga subunit have been found in 40% of GH secreting pituitary tumours

(Spadaeta/. 1993).

SOMATOSTATIN

The discovery of somatostatin was a by-product of the search for a growth hormone-

releasing factor. While looking for a growth hormone-releasing factor in rat hypothalami,

a substance that inhibited GH release was unexpectedly detected (Krulich et al. 1968). At

about the same time, Hellman and Lernmark described a factor that inhibited pancreatic

insulin secretion (Hellman & Lernmark, 1969a; Hellman & Lernmark, 1969b). Brazeau

et al. (1973) extracted and sequenced somatostatin from ovine hypothalamic extracts and

established it to be a cyclical tetradecapeptide (Figure 2). The tetradecapeptide is one of

a family of somatostatin-related peptides and is synthesised as part of a larger precursor,

preprosomatostatin, which is approximately eight times the size. In addition to the

tetradecapeptide, post-transcriptional modification ofpreprosomatostatin results in several

variants that include an amino-terminal extended 28 residue variant which is fully

biologically active and prosomatostatin (Takahara et al. 1975). The physiological role of

the different post-transcriptional products is uncertain, but evidence exists for differences

between tissues in post-transcriptional modification.

Somatostatin-14 is synthesised in many tissues including the brain, hypothalamus and

pancreatic islet cells, and is highly conserved between species. Evidence exists for

29



INTRODUCTION

somatostatin as a neurotransmitter. Somatostatin positive neurons are to be found in the

cerebral cortex, hippocampus, thalamus, caudate, brain stem nuclei and spinal cord

(Robbins, 1988). Much remains to be understood of the multiple functions of somatostatin

within the central nervous system. Evidence from rats suggests a role in thermoregulation

and, within the dorsal hypothalamic area, to inhibit adrenomedullary adrenaline secretion

(Brown, 1983; Brown et al. 1981). Decreased cerebrospinal fluid somatostatin levels have

been noted in numerous diseases of the cerebral cortex, including Alzheimer's disease,

multiple sclerosis and Huntington's chorea, although the physiological significance of these

observations is uncertain (Robbins, 1988). Centrally administered somatostatin has

analgesic properties and other opiate-like effects (Rezek et al. 1978).

The somatostatin neurones involved in the regulation of GH secretion are located in the

anterior periventricular nucleus of the hypothalamus. Nerve fibres originating in these

neurons project to the median eminence from where somatostatin is released into the

hypothalamo-pituitary portal circulation.

The evidence for a physiological role of somatostatin in the control ofGH secretion comes

from many sources. In humans, exogenous somatostatin blocks the GH response to

exercise, arginine, hypoglycaemia and GHRH (Hall et al. 1973; Mortimer et al. 1973;

Wehrenberg et al. 1982b; Davies et al. 1985). The administration of anti-somatostatin

antiserum increases trough levels ofGH and reverses the growth hormone-inhibitory effect

of stress and starvation in rats (Arimura et al. 1976; Terry & Martin, 1981; Wehrenberg et
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al. 1982a). The interaction of GHRH and somatostatin in the regulation ofGH secretion

is discussed below.

The gastrointestinal system is rich in somatostatin-secreting cells and the peptide acts as

both a neurotransmitter and hormone. The endocrine cells of the fundus and antrum of the

stomach are the main source of circulating somatostatin. Somatostatin is also to be found

in the neural structures in the deep submucosa, muscularis and muscularis mucosa.

Intravenous somatostatin or the long-acting analogue octreotide inhibit secretion ofmany

gastrointestinal peptides, namely, insulin, glucagon, vasoactive intestinal peptide, gastrin,

secretin, pancreatic polypeptide, cholecystokinin (CCK), secretin, GIP and motilin.

Exogenous somatostatin has inhibitory actions apparently unrelated to peptide secretion on

gastric emptying, pancreatic exocrine function, gallbladder contraction and intestinal

motility (Johansson et al. 1978; Boden et al. 1975). The physiological function of

somatostatin in these sites is unclear; the relative contribution of endocrine, paracrine or

neural mechanisms remains to be clarified. The presence of somatostatin in the D cells of

the islets of Langerhans in such close proximity to the glucagon and insulin-containing a

and P cells is intriguing, and it seems probable that somatostatin has a paracrine action

inhibiting glucagon and insulin release (Unger & Orci, 1977). The diverse biological

functions of the somatostatin peptides are mediated by a family of somatostatin receptors.

Five subtypes have been cloned and characterised. As with the GHRFI receptor, each has

a seven transmembrane hydrophobic region coupled to G-proteins. The amino acid

homology varies between 42 and 60% and they differ in their ability to couple G-proteins
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and inactivate adenyl cyclase activity. Differences in affinity exist between receptors for

various somatostatin analogues. The four amino acids in positions 7-10 at the P-turn are

most important for receptor binding (Veber et al. 1978; Veber et al. 1981). Octreotide

binds with greatest affinity to the type 2 and 5 receptors (Raynor et al. 1993b; Raynor et al.

1993a). The details of the relationship between the families of somatostatin peptides and

receptors remain to be clarified.

Figure 2

The amino acid sequence and structure of somatostatin-14
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Figure 3

The amino acid sequence and structure of growth hormone

GROWTH HORMONE BIOLOGY

Growth hormone is a single chain, 191 amino acid in man, peptide with a molecular weight

of 22,000 daltons. It has two intramolecular disulphide bonds, but in contrast to LH, FSH

and TSH, is not glycosylated (Figure 3). In addition to the 22 KDa form, a 20 KDa species

as well as larger aberrant forms have been isolated. GH is a member of a group of peptides

with intramolecular disulphide bridges, including human chorionic somatomammotrophin,
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a placental peptide secreted in large quantities (84 % homology) and prolactin (16%

homology). The primate GH molecule and receptor have diverged from other species, with

the consequence that until recombinant GH became available only human pituitary GH

could be used in man.

As its name implies, GH promotes linear growth. However, the actions of GH are more

complex and varied than might be gathered from its name and continue after the cessation

of linear growth. The recognition of clinical sequelae of GH deficiency in adults has

resulted in an appreciation of the role of GH in adult life (Salomon et al. 1989; Cuneo et

al. 1992). Growth hormone promotes protein anabolism and the diversion of amino acid

from oxidative to protein synthetic pathways (Griffin & Miller, 1974; Fain et al. 1965).

Lipolysis and fat oxidation increase in response to GH, with a concomitant reduction in

subcutaneous fat in children with GH deficiency (Clemmons et al. 1981). GH reduces

insulin sensitivity, possibly secondary to changes in fatty acid and muscle metabolism.

Longitudinal growth is the result ofproliferation of chondrocytes in the epiphyseal growth

plate. GH acts on the germinal zone of the growth plate to stimulate proliferation and

differentiation of prechondrocytes. Clonal expansion and maturation of chondrocytes is

IGF-I dependent (Isgaard et al. 1986). GH also promotes protein synthesis and mineral

retention in bone and calcium absorption from the gut.
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GROWTH HORMONE-BINDING PROTEINS

Two discrete GH-binding proteins (GH-BP) have been described in human plasma

(Baumann et al. 1986; Herington et al. 1986). The predominant GH-BP is a high affinity

60 kD single-chain glycoprotein structurally identical to the extracellular domain of the GH

receptor (Baumann, 1991). One molecule ofGH can bind two ofGHBP however, due to

the low concentration ofGHBP the 1:1 complex is more prevalent. Plasma concentrations

ofGHBP are low in the fetus and neonate and rise gradually to a plateau by the late teens

and remain constant throughout adult life (Daughaday et al. 1987; Silbergeld et al. 1989).

Levels are slightly higher in women. The relationship between GH and GHBP is still under

investigation. GHBP levels are reported to be unaltered in adult GH deficiency but

increased in children with GHD, while acromegalics have low levels (Dempsher et al.

1990; Baumann et al. 1989a). GH therapy in children with GHD is reported not to alter

plasma GHBP levels (Martha et al. 1992).

Forty to 50% of circulating GH is bound to GHBP, increasing to 80% following a pulse of

GH secretion (Veldhuis et al. 1993; Baumann et al. 1988a). The half-life of bound GH is

approximately 10 times greater than free hormone (Veldhuis et al. 1993). The pulsatile

nature ofGH secretion appears to be important for its action (see below), it is therefore a

paradox of GHBP function that it smooths out the fluctuations in plasma GH caused by

pulses of pituitary GH secretion but appears to enhance the effect of GH, presumably by

lengthening the half-life.
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The clinical significance of and usefulness ofGHBP measurement is still being assessed.

GHBP is low in patients with GH receptor abnormalities, eg Laron's syndrome and

Pygmies (Rosenbloom et al. 1992; Baumann et al. 1991). Low plasma GHBP levels are

also seen in systemic disorders associated with growth failure: malnutrition, diabetes,

cirrhosis, renal failure, hypothyroidism and intensive care unit patients (Hochberg et al.

1992; Baumann et al. 1988b; Mercado et al. 1992; Hattori et al. 1992; Postel-Vinay et al.

1991; Amit et al. 1991).

INSULIN-LIKE GROWTH FACTOR !

Daughaday observed that cartilage from hypophysectomised rats was unresponsive to GH

added in vitro, but incorporated sulphate in response to normal rat serum and serum from

GH treated hypophysectomised rats (Salmon & Daughaday, 1957). This "somatomedin

theory" resulted in the appreciation that many of the actions of GH are not direct but rather

the consequence of an intermediary. The term somatomedin is now regard as a generic

designation for the GH-dependent growth factors. Insulin-like growth factor-I (IGF-I) has

been shown to be the mediator ofmany of the metabolic actions of growth hormone. It is

a peptide with a molecular weight of 7649 daltons and has a high degree of sequence

homology with human proinsulin (Daughaday et al. 1972; Rinderknecht & Humbel, 1978).

Growth hormone is the principal determinant of circulating IGF-I levels, with

concentrations being high in acromegaly and low in growth hormone deficiency and Laron's

syndrome (Hall & Sara, 1984). Fasting and malnutrition result in low plasma IGF-I levels,
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although GH levels rise with fasting (Isley et al. 1983; Ho et al. 1988). The metabolic

effects of IGF-I can be subdivided into insulin-like and growth-promoting (Froesch & Zapf,

1985). Although, insulin and IGF-I have their own receptors, some cross-affinity exists

which possibly accounts for the mechanism by which IGF-I can induce hypoglycaemia

(Humbel, 1990). Circulating IGF-I avidly binds in serum to specific binding proteins (IGF-

BPs), ofwhich six so far have been identified, such that under normal circumstances less

than 1 % is unbound and physiologically active (Ballard et al. 1989)(vide infra). Circulating

IGF-II is largely hepatic in origin, but the physiological role of this 7471 dalton peptide

remains obscure, as do the regulators of its secretion.

As alluded to above, IGF-I has direct effects on rat epiphyseal chondrocytes in vitro, but

appears to act via different mechanisms on different cell populations (Lindahl et al. 1987c;

Lindahl et al. 1987a; Lindahl et al. 1987b; Madsen et al. 1983). IGF-I is a potent stimulator

of every anabolic process measured in muscle (Florini, 1987). The ability of GH to

increase renal plasma flow and glomerular filtration rate is mediated by IGF-I (Guler et al.

1989). Studies in man suggest that IGF-I has a minimal effect on plasma free fatty acid

concentrations and the regulation of lipolysis (Guler et al. 1987). One week of

subcutaneous IGF-I did not effect plasma free fatty acid levels (Takano et al. 1991). It is

probable that any effects that IGF-I has on adipose tissue is via activation of insulin

receptors.
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IGF-BINDING PROTEINS (IGF-BPs)

IGF-I and -II bind avidly to specific binding proteins that are to be found in serum and all

extracellular fluids. The amino acid sequence of six IGF-BPs have been determined (Ooi

& Flerington, 1990; Zapf et al. 1990; Shimasaki el al. 1990). The function of the IGF-BPs

appear to be diverse and complex. IGF-BPs variously act as delivery molecules, a

reservoir of circulating IGFs and, in different tissues and under distinct conditions, both to

attenuate and potentiate the actions of IGF-BPs.

IGF-BP1 is a single chain peptide with a molecular weight of 25700 daltons. Circulating

levels display a circadian pattern with high levels at night and are inversely related to and

controlled by plasma insulin levels (Cotterill el al. 1993b). IGF-BP3 is the most abundant

of the binding proteins and hence the main carrier of circulating IGF-I. The peptide core

has a molecular weight of approximately 42000 but circulates as a ternary complex

(molecular weight approximately 150,000) in association with an acid-labile subunit

(Baxter, 1988). It has similar affinities for both IGF-I and -II. In parallel with IGF-I and -II,

the liver is the main source of circulating IGF-BP3 (Schwander et al. 1983). The principal

determinant of circulating levels is GH. IGF-BP3 levels do not change in response to a

pulse ofGFI or to a single bolus of exogenous GH but rather fluctuate more slowly without

circadian variation. Plasma IGF-BP3 levels correlate closely with integrated GH secretion

(Blum et al. 1990). An example of the importance of IGF-BP3 in modulating the activity

of IGF-I is discussed on page 45. Circulating IGF-BP4 is probably hepatic in origin, but
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is expressed in many organs, ranging from brain to ovaries. It binds IGF-I and -II with

equal high affinity and may modulate IGF-I activity, particularly in the brain (Brar &

Chernausek, 1993).

IGF-BP2 is the major binding protein of the central nervous system. It was first identified

from cerebrospinal fluid with subsequent studies demonstrating its wide distribution

throughout the central nervous system (Rosenfeld et al. 1989). Similarly, IGF-BP6 is a

predominately CNS binding protein and, in common with IGF-BP2, has high affinity for

IGF-II, but is unique in having only 16 cysteine residues compared to the 18 found in the

other IGF-BPs. IGF-BP5 distinguishes itself by binding tightly to extracellular matrix and

may serve as a reservoir for IGFs.

THE PHYSIOLOGY OF GH SECRETION

Growth hormone secretion is pulsatile, as the result of a dynamic equilibrium between

somatostatin and GHRH, with pulses occurring every 3-4 hours. The regulation of

hypothalamic somatostatin and GHRH secretion is controlled through a complex network

of neurons and neurotransmitters (vide infra).

Many pieces of evidence demonstrate the importance ofpulsatile, as opposed to continuous

GH secretion. Pulsatile GH administration to GH-deficient dwarfmice had a greater effect

on the hepatic enzyme carbonic anhydrase III than continuous GFI exposure (Jeffery et al.
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1990). Similarly, a daily dose of GH divided into nine pulses stimulates greater growth

ofGH deficient rats than the same dose administered as either one or three pulses (Clark

et al. 1985). Further, pulsatile GH exposure is necessary for optimal stimulation of IGF-I

mRNA in growth plate and muscle (Isgaard et al. 1988).

A pulse of GH is initiated by GHRH; however, the size of pulse is determined by the

condition of the somatotrophs. Studies in rats, given GHRH after pre-treatment with anti-

somatostatin antiserum, suggest that there is tonic secretion of both GHRH and

somatostatin into hypophyseal portal blood; superimposed onto this there is a 3 to 4 hourly

pulse ofGHRH, associated with trough levels of somatostatin, resulting in a pulse of GH

(Tannenbaum & Ling, 1984). Similarly anti-GHRH antiserum blocks pulsatile GH release

in the rat (Wehrenberg et al. 1982a). Hindmarsh et al. (1991), in a series of studies on

normal volunteers entailing combinations of somatostatin or saline infusions paired with

boluses of either saline or GHRH or somatostatin, demonstrated that the greatest pulse of

GH secretion occurs after a bolus ofGHRH at the termination of a somatostatin infusion.

Similarly, Devesa et al. (1989) subdivided GH responses to GHRH by the status of

endogenous somatostatin secretion. Further support for the importance of the endogenous

somatostatin tone in the aetiology of GH pulses comes from the observation that a

continuous infusion ofGHRH can restore normal pulsatile GH secretion. This model is in

accord with the known actions ofGHRH and somatostatin on the somatotroph; the former

stimulates GH synthesis and release, while the latter only inhibits secretion. GH feedback

on the hypothalamus and GHRH secretion stimulates somatostatin secretion, which in turn
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terminates the pulse (discussed below).

The magnitude and frequency of GH pulses is dependent on age, being greatest during

puberty and declining thereafter (Finkelstein et al. 1972). The greatest release of GH

occurs during deep sleep (Quabbe et al. 1966), but other factors such as stress, exercise, and

postprandial glucose decline also induce GH secretion (Martin, 1976). Fasting increases

GH secretion and might explain the nocturnal predominance ofGH secretion (Hartman et

al. 1992; Ho et al. 1988). However, this cannot be the full explanation as the majority of

GH secretion occurs in the first three hours of sleep rather than progressively increasing and

peaking before the morning meal (Takahashi et al. 1968). GH secretion frequently

coincides with the first episode of slow-wave sleep. There has been considerable debate

as to whether this nocturnal GH release and slow-wave sleep are interdependent or only

temporally related. There is clear evidence that GH release is a sleep related event, in that

delaying sleep delays GH release (Takahashi et al. 1968). Slow-wave sleep is frequently

associated with GH release; in the jet-lag model the major nocturnal GH secretion remains

associated with slow wave sleep (Golstein et al. 1983). However, this is not invariably so,

and GH release frequently occurs before the onset of slow-wave sleep.

Pyridostigmine fails to enhance spontaneous or GHRH-induced GH secretion at night

indicative that cholinergic tone is greater at night and hence somatostatin secretion less

(Ghigo et al. 1990a). This phenomenon may account for the predominance ofGH secretion

at night.
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GROWTH HORMONE AUTOREGULATION

GH regulates its own secretion by two negative feedback loops: a direct effect exerted by

the hormone itself, and an indirect one by IGF-I.

The secretion of GH can be inhibited by exogenous GH in vivo both in man and animal

models (Abrams et al. 1971; Hagen et al. 1972; Sakuma & Knobil, 1970; Abe et al. 1983).

Ross et al. (1987a) showed that pretreatment with GH attenuated the GH response to a

subsequent bolus of GHRH, before any rise in plasma IGF-I had time to occur. Further,

they demonstrated that inhibition of hypothalamic somatostatin secretion restored the

GHRH induced rise in GH, suggesting that the GH autofeedback is mediated by

hypothalamic somatostatin secretion (Ross et al. 1987d); this was subsequently confirmed

by others (Kelijman & Frohman, 1991). Similarly, repeated doses of GHRH induce

somatotroph refractoriness, an effect reversed by pyridostigmine (Hulse et al. 1986;

Massara et al. 1986b).

Another level ofGH autoregulation is mediated by IGF-I. A decade ago, Rosenfeld et al.

(1984) identified IGF-I receptors, and even greater numbers of IGF-II receptors, on cultured

rat anterior pituitary cells, and similarly both IGF-I and -II receptors have also been

demonstrated in the hypothalamus (Goodyer et al. 1984). Lesniak et al. (1988) used an

autoradiographic technique to study the distribution of IGF-I and IGF-II receptors (now

better called IGF type I and 2 receptors) and showed the greatest concentration in the rat
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brain to be in the median eminence of the hypothalamus, the site of secretion ofGHRH and

somatostatin into the portal venous circulation of the stalk. Equally high concentrations of

both receptors were noted in the rat pituitary.

Early evidence for an action of IGF-I on GH secretion came from the studies of Berelowitz

et al. (1981). Isolated rat hypothalami incubated in a highly purified somatomedin-C

preparation released somatostatin in a dose-dependent manner. Similar studies on the effect

of IGF-I on hypothalamic GE1RH secretion have been contradictory (Aquila, 1991;

Shibasaki et al. 1986). Berelowitz and colleagues also demonstrated a direct effect of

somatomedin-C on growth hormone secretion from dispersed rat anterior pituitary cells.

No effect of somatomedin-C on basal or stimulated GH secretion was seen after four hours

incubation, but at 24 hours stimulated GH secretion was completely abolished. Similarly,

incubation of pituitary cells with somatomedin-C reduces GH mRNA (Yamashita &

Melmed, 1986).

In free-moving conscious rats with chronic indwelling cerebroventricular cannulae, a single

intracerebroventricular bolus ofhighly purified somatomedin-C resulted in inhibition ofGH

secretion (Tannenbaum et al. 1983). The studies of both Berelowitz and Tannenbaum

indicated an important role for the hypothalamus, and possibly somatostatin, in the

feedback regulation of IGF-I on GH secretion, with a probable additional delayed effect at

the pituitary. However, the interpretation ofmany of these early studies is complicated by

the suspicion that the highly purified somatomedin-C preparations contained both IGF-I and
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-II.

With the availability of recombinant preparations of both IGF-I and -II, Tannenbaum

repeated her earlier studies using the same experimental paradigm. Neither

intracerebroventricular recombinant IGF-I (in doses up to 10 pg) nor IGF-II (at doses up

to 1 pg) affected GH secretion. However, intriguingly a dose of 1 pg IGF-I administered

in conjunction with 1 pg IGF-II completely inhibited GH secretion (Harel & Tannenbaum,

1992b; Harel & Tannenbaum, 1992a). The synergy of centrally administered IGF-I and -II

in inhibiting GH secretion in rats supports the belief that the somatomedin-C preparations

contained both IGF-I and -II and underlines the importance of the hypothalamus in the

regulation of GH secretion, possibly via somatostatin.

Initial studies in man with rhIGF-I involved the administration of single intravenous

boluses at doses that induced hypoglycaemia. The consequential stimulation of growth

hormone and Cortisol secretion, in a manner analogous to insulin-induced hypoglycaemia,

suggests an effect of hypoglycaemia rather than a direct effect of rhIGF-I on the

hypothalamo-pituitary axis (Laron et al. 1988; Guler et al. 1987).

Detailed studies of the effects of rhIGF-I on GH secretion in euglycaemic normal volunteers

have been limited. A subcutaneous infusion of 20 pg/kg/hr rhIGF-I inhibited nocturnal GH

secretion in a single subject, and the GH response to GHRH in one of two subjects (Guler

et al. 1989). Hartman and colleagues (1993) studied GH dynamics in a group of fasted
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normal volunteers during an infusion of rhIGF-I. It was reasoned that feeding, in particular

certain amino-acids and glucose, alter GH secretion, and hence subjects were studied

fasting during euglycaemic "clamps". A clear and rapid inhibition of growth hormone

secretion was found when rhIGF-I was infused intravenously at a dose of 10 pg/kg/hr.

These data clearly indicate that in man rhIGF-1 can inhibit GH secretion, although it must

be remembered that fasting itself increases GH secretion and causes changes in the IGF-

binding proteins (IGF-BPs), in particular a rise in IGF-BP1 (Cotterill et al. 1993b).

Cotterill et al. (1993a) studied the effects of IGF-I therapy on GH secretion in two subjects

with the GH-insensitivity syndrome. Pre-treatment overnight GH profiles proved levels to

be grossly elevated. After six months of IGF-I therapy (120 pg twice daily), repeat profiles

showed GH secretion to be inhibited following the evening dose of rhIGF-I, but to rise

again gradually in the early hours of the morning. The return ofGH secretion corresponded

to falling plasma IGF-I levels. The shortened plasma half-life of exogenous IGF-I in the

GH-insensitivity syndrome compared to normal volunteers can be explained by differences

in IGF-binding proteins. IGF-BP3 is the principal plasma binding protein and the low

levels associated with the GH-insensitivity syndrome allow rapid clearance of IGF-I from

the circulation. This is an excellent example of the importance of IGF-BPs in modulating

IGF-I action.
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INFLUENCE OF THYROID HORMONE

Normal linear growth is dependent upon complex interactions of many metabolic and

endocrine systems; disturbance of any element may result in growth failure.

The interaction ofGH and thyroid hormones is pivotal to normal growth and development.

Hypothyroidism is associated with growth failure and diminished GH secretion in response

to hypoglycaemia, arginine, GHRH and sleep; the changes are all reversible with treatment

(Williams et al. 1985; Valcavi et al. 1986; Iwatsubo et al. 1967). Similarly, childhood

thyrotoxicosis results in an increased number and size of spontaneous GH pulses and

accelerated growth (Schlesinger et al. 1973; Iranmanesh et al. 1991). Thyroid hormones

act directly on the pituitary to influence somatotroph numbers and the expression of the GH

gene (Nyborg et al. 1984; Franklyn et al. 1986).

INFLUENCE OF GONADAL HORMONES

Oestrogens have a significant influence on GH secretion and account for the differences in

GH release between men and women, and the changes in GH secretion seen during puberty.

Oestrogens, both endogenous and exogenous, are known to enhance basal and stimulated

GH release. Women have higher basal levels of GH than men, especially during the high

oestrogenic phase of the menstrual cycle, and oestrogen pretreatment in men increases basal

and arginine-stimulated GH secretion (Unger et al. 1965; Frantz & Rabkin, 1965; Merimee

et al. 1966). Oestrogen priming is known to increase the GH response to hypoglycaemia;
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however, pretreatment with the synthetic oestrogen stilboestrol does not effect the GH

response to GHRH in children with short stature (Ross et al. 1987b). These data suggest

that oestrogens act on the hypothalamus to increase GH secretion, possibly by increasing

endogenous GHRH secretion.

INFLUENCE OF METABOLIC FACTORS

An apparent paradox exists in the effect of hyperglycaemia on GH secretion. In non-

diabetic subjects, acute hyperglycaemia reduces basal and stimulated GH levels, while

hypoglycaemia stimulates GH secretion (Roth et al. 1963; Penalva et al. 1989). The

mechanism of hypoglycaemia provoked GH release is not fully established. It is

independent ofhypothalamic GHRH, as GHRH and hypoglycaemia have additive effects

on GH secretion and GHRH pretreatment does not attenuate the GH response to

hypoglycaemia (Shibasaki et al. 1985b; Page et al. 1987; Schulte et al. 1986; Shibasaki et

al. 1985a). Somatostatin appears to play little part, as cholinergic blockade with atropine

abolishes the GH response to GHRH but only slightly reduces the response to

hypoglycaemia (Evans et al. 1985).

The regulation of growth hormone secretion is disturbed in diabetics. In contrast to normal

volunteers, poorly controlled type-one diabetics have higher basal GH levels, larger and

more frequent pulses and an exaggerated response to GHRH and exercise (Penalva et al.

1989; Asplin et al. 1989). Improved glycaemic control results in normalisation of GH
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dynamics (Press et al. 1992).

The apparent paradox of poor linear growth despite increased growth hormone secretion,

in diabetics, is indicative of end-organ resistance to the actions ofGH and a compensatory

rise in GH secretion. The low serum IGF-I levels seen in poorly controlled diabetics

support this hypothesis (Tan & Baxter, 1986; Schaper et al. 1990).

Growth hormone is an important counter-regulatory hormone to the hypoglycaemic effect

of insulin and in excess can cause insulin resistance. Diabetes mellitus occurs in twenty-

five percent of acromegalics (Davidoff, 1926).

Free fatty acid (FFA) administration to normal subjects reduces the GH response to a

variety of stimuli including hypoglycaemia and GHRH. The mechanism in man is unclear.

Evidence in rats, pretreated with anti-somatostatin antibodies, suggests a role for

somatostatin (Imaki et al. 1986). However, in man inhibition of somatostatin secretion

with pyridostigmine does not restore the GH response to GHRH after FFA administration,

indicative of a possible direct effect on the somatotroph (Penalva et al. 1990a).

NEUROTRANSMITTERS

The hypothalamic peptides GHRH and somatostatin are released from the nerve terminals

in the median eminence into the portal circulation of the stalk and hence act on the
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somatotrophs to regulate GH secretion. The release of GHRH and somatostatin are

themselves under the regulation of a complex network of neurones and neurotransmitters.

The amine neurotransmitters eg catecholamines (dopamine, adrenaline, noradrenaline),

indoleamines (serotonin and melatonin) and histamine are secreted from neurones that arise

in the brain stem (or pineal) and ascend in ventral and dorsal pathways to innervate limbic

and hypothalamic structures, including the internal (noradrenaline, serotonin) and external

(dopamine) layers of the median eminence. The tuberoinfundibular-dopamine pathway,

which projects from the arcuate nucleus to the median eminence, releases dopamine directly

into the hypophyseal portal pathways. Acetylcholine-containing neurones are to be found

in the supraoptic nucleus and in the lateral pre-optic area, and it is believed that their

neurones project to the median eminence. The mediobasal, posterior and median

hypothalamus all contain y-amino-butyric acid (GABA) neurones that project into the

external layer of the median eminence. Great potential exists within the hypothalamus for

interactions between neurotransmitters and between neurotransmitters and hypothalamic

peptides. The ability of various drugs to act as agonists and antagonists for the

neurotransmitters has been exploited in efforts to understand the role of the various

neurotransmitters in the hypothalamic regulation of pituitary function.

ADRENERGIC PATHWAYS

It has been known for a long time that central adrenergic pathways play an important role

in GH secretion. The pharmacological depletion of brain catecholamines by a-methyl-p-
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tyrosine leads to abolition of pulsatile GH secretion in the rat, an effect negated by the

administration of an a2-adrenoceptor agonist, such as clonidine (Durand et al. 1977). The

non-selective a-adrenergic antagonist phentolamine, and selective oc2-antagonist yohimbine,

partially inhibit GH secretion during insulin-induced hypoglycaemia in healthy young men,

while the a,-antagonist prazosin had no effect (Tatar & Vigas, 1984). The results suggest

that GH release during insulin hypoglycaemia is, in part, mediated by a2-adrenoceptors.

Clonidine stimulates GH release in man, an effect that can be blunted by yohimbine (Lanes

& Hurtado, 1982; Lai et al. 1975; Krulich et al. 1982). Contradictory evidence exists as

to whether a2-adrenergic stimulation of GH release is via stimulation of GHRH or

inhibition of somatostatin. Studies using specific antisera to somatostatin (anti-

somatostatin) and GHRH (anti-GHRH) have suggested that a2-adrenoceptor activation acts

by stimulating GHRH secretion. In freely moving rats, clonidine stimulated GH secretion

in anti-somatostatin treated and control rats, but failed to in anti-GHRH treated rats (Eden

et al. 1981; Miki et al. 1984; Katakami et al. 1984). Clonidine was also able to stimulate

GHRH secretion from perfused rat hypothalami (Kabayama et al. 1986). Studies in humans

and rabbits indicate that clonidine acts via inhibition of somatostatin secretion. In 1990,

two papers were published in the Journal of Clinical Endocrinology and Metabolism from

different groups in Santiago de Compostela, Spain: Cordido et al. (1990) studied clonidine

in combination with pyridostigmine, arginine and GHRH and concluded that clonidine

acted on the hypothalamus to stimulate GHRH secretion, while Devesa et al. (1990)

demonstrated potentiation of GHRH-induced GH secretion by clonidine, and surmised an

action via somatostatin. A similar conclusion to the latter was reached in an independently
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performed study of short children (Reiter et al. 1988). Further, Cordido's study is open to

alternative interpretation. An additive effect of clonidine plus pyridostigmine compared

to clonidine alone was taken as evidence that they act by different mechanisms: this

assumption is only valid if supramaximal doses of clonidine and pyridostigmine are used

and may not have been the case as the doses of both drugs are limited by side-effects.

Devesa et al. (1991) have since published additional data confirming and extending their

original observations. Minamitani et al. (1989) demonstrated in rabbits and Arce et al.

(1990) in dogs that clonidine acts via inhibition of somatostatin rather than stimulation of

GHRH. Although controversial, the balance of evidence indicates that a2-adrenoceptor

stimulation results in inhibition of somatostatin secretion in man, rabbits and dogs, but in

rats via GHRH secretion.

p-adrenergic antagonists, such as atenolol, enhance the GH response to GHRH and insulin-

induced hypoglycaemia (Chihara et al. 1985; Kelijman & Frohman, 1989; Martha et al.

1990). Similarly, P-adrenergic agonists, for example salbutamol, inhibit GH secretion and

attenuate the GH response to GHRH, indicative that activation of P-adrenergic pathways

inhibit GH secretion by stimulation of somatostatin release (Mazza et al. 1990; Martina

et al. 1992).

The dopaminergic regulation of GH secretion in man has acquired particular significance

because of the utilisation of the therapeutic use of dopamine agonists and the disparity of

effect in physiological and pathological states. Under normal circumstances, dopamine and
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the dopamine agonists, eg bromocriptine, potentiate the GH response to GHRH and

increase spontaneous GH secretion, implying a somatostatin-mediated effect (Delitala et

al. 1987a; Vance et al. 1987; Miell et al. 1991). In contrast, in acromegaly bromocriptine

and other dopaminergic agonists inhibit GH secretion by a direct action via D2 dopamine

receptors on tumourous somatotrophs (Besser et al. 1978).

CHOLINERGIC PATHWAYS

The availability ofdrugs capable ofmodulating the cholinergic nervous system has enabled

extensive investigation of its role in the regulation of GH secretion. The cholinergic

muscarinic antagonists atropine and pirenzepine block nocturnal and GHRH-induced GH

secretion (Casanueva et al. 1986; Jordan et al. 1986; Peters et al. 1986; Delitala et al.

1987b). The anticholinesterase drug, pyridostigmine, increases cholinergic tone and

thereby increases GH secretion and augments the GH response to a supramaximal dose of

GHRH (Leveston & Cryer, 1980; Massara et al. 1986a). The ability of pyridostigmine to

augment a supramaximal dose of GHRH is indicative that cholinergic regulation of GH

secretion is independent of hypothalamic GHRH release. Acetylcholine and neostigmine

inhibit somatostatin secretion from rat hypothalami in culture, an effect blocked by atropine

(Richardson et al. 1980). Further evidence that the cholinergic tone on GH secretion is via

somatostatin comes from the use of cysteamine, a somatostatin-depleting agent. In rats,

cysteamine blocks GH secretion induced by the cholinergic agonist pilocarpine and the

ability of atropine and pirenzepine to inhibit GHRH-induced GH secretion (Locatelli et al.

52



INTRODUCTION

1986). Cholinergic nicotinic receptors are not involved in the regulation of GH secretion

(Betti et al. 1985; Richardson et al. 1980).

GAMMA-AMINO-BUTYRIC ACID (GABA) PATHWAYS

In the human, basal GH secretion is stimulated by GABA and by a number of GABAergic

drugs such as muscimol, baclofen and diazepam (Fioretti et al. 1978; Tamminga et al.

1978; Cavagnini et al. 1977). In contrast, GABA is able to reduce the GH response to

insulin-induced hypoglycaemia and arginine (Cavagnini et al. 1980). The major

tranquilliser and dopamine antagonist, pimozide, reduces the effect of GABA on GH

secretion (Delitala et al. 1984), and a dualistic role of GABA on dopamine secretion and

GH release has been suggested by Bercu & Diamond (1986).

OPIATE PATHWAYS

In man, morphine and P-endorphin do not stimulate GH secretion, whereas the long-acting

analogue ofmet-enkephalin DAMME (D-Ala2,MePhe4-Met-enkephalin-(0)-l) stimulate

GH secretion through naloxone-sensitive mechanisms (Tolis et al. 1975; Stubbs et al. 1978;

Delitala et al. 1983). Naloxone fails to alter basal GH secretion but inhibits exercise-

induced GH secretion in athletes. DAMME potentiates the GH response to GHRH,

suggesting that opiates stimulate GH secretion by inhibiting somatostatin (Delitala et al.

1989). The role of opiates in the neuroregulation ofGH secretion appears to be particularly
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important at times of stress and during exertion.

CURRENT INVESTIGATION

IGF-I is a potent metabolic regulator with a diversity of actions. Recombinant IGF-I has

therapeutic potential in states of acquired or inherited GH resistance, as well as an insulin-

sparing effect in diabetes. As already discussed, plasma GH is the primary regulator of

circulating IGF-I levels, while IGF-I is an important component in the feedback regulation

of GH secretion. The influence of recombinant human IGF-I administered, by the

therapeutic route, on pituitary function, in particular GH secretion, is studied here.

Much is known about the regulation of growth hormone secretion and its influence on

linear growth; however, the relationship of quantitative GH secretion to final height has

never been established. Previous investigations have related GH secretion to linear growth

in children. For ethical reasons it is difficult to study truly normal children, which has

resulted in a predominance of short children in studies. Pubertal status, age and growth

velocity are all important variables which can be eliminated be studying young adults. The

intention of this thesis is to relate final height to growth hormone secretion under various

circumstances in young adults who have recently stopped growing and achieved their final

height.

Studies on the influence of gender on the GH response to GHRH have reached
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contradictory conclusions. The GH response to GHRH has been variously reported to be

greater, the same and smaller in men than women. Any gender difference in GHRH

responsiveness is clearly an important factor in recruiting volunteers for studies and in the

interpretation of results. To clarify the situation, the GH response to GHRH has been

compared between the sexes. In light of the existing confusion only male volunteers were

used in the other studies included in this thesis.

Growth hormone secretion decreases with age. Many of the features of aging are

comparable with the effects of GH deficiency in adults. With potentially unlimited

supplies of GH, therapeutic trials are being undertaken of GH in the elderly. The

mechanism of the age-related decline, and in particular the influence of the cholinergic

nervous system in GH secretion has been studied in men.

Elevated plasma glucocorticoids are catabolic and inhibit the secretion ofGH, an important

anabolic hormone. A study of the mechanism of glucocorticoid-induced inhibition of GH

secretion and a means of reversing it are included.

GHRH has been successfully used in the treatment of short stature and as the indications

for GH therapy expand so the therapeutic potential for GHRH increases. GHRH has the

advantage over recombinant GH, of inducing pulses ofGH secretion rather than chronically

elevated GH levels seen with GH therapy. Currently, it has the disadvantage compared to

GH therapy of the necessity of at least twice-daily administration. Hence, cheaper to
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synthesis and longer acting or orally active analogues ofGHRH are of potential therapeutic

interest. DC-21-346 is a new analogue of GHRH which in rats has been demonstrated to

be 50 times more potent than conventional GHRH in stimulating GH release. The ability

of DC-21-346 to stimulate GH secretion in man has therefore been studied.
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SUBJECTS AND METHODS

VOLUNTEERS

Normal volunteers were recruited from medical, non-medical students and medical

graduates at St. Bartholomew's Hospital and The City University. Great difficulty was

experienced in the recruitment of certain groups of volunteers. It proved to be extremely

difficult to recruit "short" and to a lesser extent "tall" subjects, and in addition "elderly"

subjects. The necessary tall and short subjects were therefore recruited and studied in

collaboration with Professor G. Delitala in Sassari, Sardinia, Italy. The elderly subjects

were recruited and studied in collaboration with Professor M. Giusti in Genoa, Italy. For

fear that oestrogen status may alter plasma GH, excepting one study which specifically

looked at GH secretion in women, adult male volunteers were used throughout. All

volunteers were healthy and non-obese (body mass index < 27 kg/m2) as obesity is known

to influence GH secretion (Castro et al. 1990). The female volunteers had a regular

menstrual cycle of 28 days ± 2. All volunteers answered a basic questionnaire concerning

their past health, incidental or therapeutic medication, alcohol and tobacco, and had a full

medical examination to exclude disease. Any form of concurrent medication was an

exclusion criteria. Prior to participation a full blood count, urea and electrolytes and liver

function tests, ECG and urinalysis were performed: any abnormality resulted in exclusion

of the volunteer. In the case of students, the Dean of the relevant college was informed of

their entry into a study.
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CLASSIFICATION OF VOLUNTEERS

Normal volunteers Age > 18 years, male

"Tall" subjects Age range 18-27 years, male

Height > 183 cm (> 90th centile, Tanner and

Whitehouse 1975)

"Short" subjects Age range 18-26 years, male

Height < 166 cm (< 10th centile, Tanner and

Whitehouse 1975)

Female subjects Not on oral contraceptive

Regular menstrual cycle (28 days ± 2)

"Elderly" subjects 6 age ranges:

21-30 years

31-40 "

41-50 "

51-60 "

61-70 "

>70 "
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DESIGN OF STUDIES

Where possible, and as stated in the relevant section, studies were performed in a

randomised, double-blind and placebo-controlled design. Randomisation was performed

using a Latin square.

BLOOD SAMPLES AND TESTS

All subjects, unless otherwise stated, were studied within the investigation unit on Francis

Fraser ward at St. Bartholomew's Hospital. Subjects arrived on the ward between 08.00 h

and 08.30 h following an overnight fast. They remained supine on a bed for the duration

of the study; a cannula was placed in a forearm vein at least 30 minutes before starting each

study. Insulin tolerance tests (ITT) and GHRH tests were started between 08.00 h and

09.00 h and blood was obtained through the in-dwelling cannula.

As already indicated, some of the "tall" and "short" subjects were studied in the Department

of Endocrinology, University of Sassari, Sardinia, Italy. All the "elderly" subjects were

studied in the Department of Endocrinology, University ofGenoa, Italy under conditions

similar to those detailed above.
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PROTOCOLS

HANDLING OF SPECIMENS

For all studies, except the recombinant IGF-I study, blood was collected in a similar manner

for the following hormone assays: GH, IGF-I, Cortisol, testosterone, oestradiol and SHBG.

Whole blood was collected into plastic tubes and centrifuged at 5000 rpm for 5 minutes and

the serum separated and stored at -20° C. Samples from individual subjects were measured

in the same assay.

For the IGF-I study, blood for measurement of GH, LH, FSH, TSH, Cortisol, ACTH,

prolactin, IGF-I, IGF-II, IGF bioactivity, glucose, insulin, C-peptide and IGF-binding

protein was collected into lithium-heparin tubes. The tubes were then immediately placed

in a centrifuge at 4°C and spun at 2500 rpm for 15 minutes. Plasma was immediately

separated into plastic tubes and stored at -20°C.

Insulin Tolerance Test (ITT): Subjects remained supine and in a quiet environment for

the duration of the test. Insulin (Actrapid, Novo Nordisk, Crawley) 0.15 U/kg was

administered as an acute iv bolus, and blood taken basally and at 30 minute intervals (plus

at 45 minutes) for 2 h for Cortisol, GH, and blood sugar. At the termination of the test, a

glucose drink (Lucozade, 380 mis containing 75 gms glucose) was given, followed by a

substantial meal.

60



SUBJECTS AND METHODS

GHRH TESTS: Subjects remained supine and in a quiet environment for the duration of

the test. The acute intravenous administration of GHRH provides a test of the readily

releasable pool ofpituitary GH. One hundred pg of intravenous GHRH(1 -29)NH2 has been

demonstrated to induce a maximal GH response (Grossman et al. 1984a).

Oral pyridostigmine 120 mg or placebo was administered (time -60 min) one hour prior to

an iv bolus of 100 pg GHRH(1-29)NH2 (time 0 min). Blood was taken for measurement

ofGH at -75, -60, -15, 0, 15, 30, 45, 60, 75, 90, 105, 120 minutes.

DC-21-346 TESTS: Subjects remained supine and in a quiet environment for the duration

of the test. DC-21-346 was administered as a iv bolus at time 0 min and blood was taken

at -15, 0, 15, 30, 45, 60, 75, 90, 105, 120 minutes.

GH, LH and FSH PROFILES: 24 hour and overnight GH profiles were performed in a

similar manner, starting at either 09.00 h or 21.00 h. Samples for GH, and when

appropriate LH and FSH, measurement were obtained at 20 minute intervals. At the start

of the study a 22 gauge "Quik-Cath" cannula was placed in a forearm vein, connected to a

30 cm extension (Lectro-Cath, volume 0.3 ml), and a 3 way tap. The cannula was kept

patent with a 1 ml flush after each blood sample (50 units heparin/ml). Before each blood

sample 0.6 ml was withdrawn from the 3 way tap and discarded, then a 1 ml sample for GH

was taken.
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IGF-I ADMINISTRATION

Subjects attended the investigation ward fasted at 08.00 h. They were given a bed and an

antecubital vein was cannulated. At 09.00 h a subcutaneous injection of either recombinant

IGF-I (rhIGF-I) (40 gig/kg) or placebo (diluent only) was administered.

Blood was obtained at 20 minute intervals for measurement ofplasma GH, LH, FSH; at 60

minutes intervals for plasma prolactin, TSH, Cortisol, ACTH, glucose assay and at 6 hourly

intervals for plasma IGF bioactivity, IGF-I, IGF-II, insulin, C-peptide, and IGF binding

proteins measurements over 24 hours. Twenty-four hours after rhIGF-I or placebo

administration, an intravenous bolus of 100 pg of GHRH was administered and blood

obtained for plasma GH measurement at 15 minute intervals for a further two hours.

Bedside glucose monitoring (BM stix, Reflolux S, Boehringer Mannheim, Brighton, UK)

was also performed at hourly intervals throughout the study.

One hour after the subcutaneous injection, breakfast was provided and the subjects were

thereafter allowed to move freely within the ward. Meals were served at standardised times

and bedtime was 22.30 h.

DEXAMETHASONE ADMINISTRATION

Subjects received 2 mg oral dexamethasone or placebo at precisely 6-hourly intervals
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(09.00, 15.00, 21.00, 03.00, 09.00, 15.00, 21.00, 03.00 h) for 48 h before reporting to our

investigation ward at 08.00 h, having eaten and drunk nothing since midnight, for a GHRH

test.

ORIGINS OF DRUGS

For all the studies except the IGF-I study, the GHRH tests were performed using synthetic

GHRH(1-29)NH2, which was donated by Serono Laboratories (UK) Ltd (Welwyn Garden

City).

For the IGF-I study, synthetic GHRH(1-29)NH2 and IGF-I were donated by Pharmacia

(Milton Keynes).

2 mg dexamethasone tablets were purchased from Organon Laboratories Ltd (Cambridge).

Synthetic DC-21-346 was a gift from Professor David H Coy of Tulane University School

ofMedicine, New Orleans, USA.

Identical 60 mg pyridostigmine and placebo capsules were manufactured by the pharmacy

of St Bartholomew's Hospital.
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HORMONE ASSAYS

GH, ACTH, TSH, LH, FSH and prolactin were measured by specific and sensitive

immuno-radiometric assays (IRMA) developed by the North East Thames Regional

Immunoassay unit (NETRIA). All assays were performed in duplicate and radioactivity

was counted using NE1600 multihead y-counters. The reagents for all the IRMAs were

standardised.

IRMA reagents

Stock Phosphate Buffer

15.3 g NaH2PO4.2H20

57.1 gNa2HP04

to 1 litre with distilled water

Assay Buffer (prepared fresh for each assay)

10 ml stock phosphate buffer

1 ml 10% sodium azide

1 g bovine serum albumin - Fraction V

5 ml 10 % Tween 20

to 100 ml distilled water

Wash Buffer
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100 ml stock 0.5 M phosphate buffer

10 ml 10% sodium azide

50 ml 10% Tween 20

to 1 litre distilled water

GROWTH HORMONE

A sheep anti-GH antiserum and a mouse monoclonal anti-GH antibody are used in this

assay. The reaction is carried out at room temperature overnight with all reagents added

simultaneously. Separation was achieved using low g centrifugation. Two simple washing

steps are used to minimise the non-specific binding (blank). The sensitivity of the assay

was 0.5 mU/1 and the coefficient of variation 5.3% at 5.3 mU/1 and 1.9% at 32 mU/1.

Procedure:

100 pi sample/standard

300 pi assay buffer

50 pi l25I-labelled antibody (-100,000 counts per minute)

50 pi solid phase first antibody

vortex and placed on rotary mixer overnight

add 2 ml wash buffer

centrifuge for 5 minutes at 1000 g.

decant supernatant and repeat washing step

decant and count for 300 seconds
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TSH, LH and FSH

A sheep anti-LH or FSH anti-serum and a purified anti-LH antibody (monoclonal for FSH)

were the basis for a specific and sensitive IRMA for human LH and FSH. For the TSH

assay, a sheep anti-TSH antiserum and a mouse monoclonal anti-TSH antibody were used.

The reaction is carried out at room temperature overnight with all reagents added

simultaneously. Separation was achieved using low g centrifugation. Two simple washing

steps are used to minimise the non-specific binding (blank). The sensitivity of the TSH

assay was 0.04 mU/1; LH and FSH 0.2 mU/1. The coefficient of variation for TSH was

4.1% at 1.1 mU/1 and 2.3% at 10 mU/1, for LH 3.5% at 2.2 m U/l and 2.3% at 9.6 mU/1, and

for FSH 7.0% at 2.6 mU/1 and 4.4% at 9.6 mU/1.

Procedure:

50 pi sample/standard

300 pi assay buffer

50 pi 12T-labelled antibody (-60,000 counts per minute)

50 pi solid phase first antibody

vortex and placed on rotary mixer overnight

add 2 ml wash buffer

centrifuge for 5 minutes at 1000 g.

decant supernatant and repeat washing step

decant and count for 300 seconds
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PROLACTIN

The two antibodies were a sheep anti-prolactin and mouse monoclonal anti-prolactin

antibody. The solid phase was reacted with the sample/standard at room temperature for

approximately 3 hours. Following a wash step, the radioiodinated antibody was added and

the reaction continued overnight. All reagents were added simultaneously. Separation was

achieved using low g centrifugation. Two simple washing steps were used to minimise the

non-specific binding (blank). The assay was sensitive down to 10 mU/1 and the coefficient

of variation was 5.3% at 151 mU/1 and 2.9% at 460 mU/1.

Procedure:

50 pi sample/standard

400 pi assay buffer

50 pi solid phase antibody

vortex and placed on rotary mixer overnight

add 2 ml wash buffer

centrifuge for 5 minutes at 1000 g.

decant supernatant and repeat washing step

decant and add:

400 pi assay buffer

50 pi l25l-labelled antibody (-60,000 counts per minute)

vortex tubes and place on rotary mixer overnight

add 2 ml wash buffer
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centrifuge for 5 minutes at 1000 g.

decant supernatant and repeat washing step

count for 100 seconds

ADRENOCORTICOTROPHIN (ACTH)

Antibodies raised in rabbits against the two ends of the ACTH peptide (N-terminal and C-

terminal) anti-( 1-24)ACTH and anti-(18-39)ACTH antibody. The solid phase is reacted

with the sample/standard at room temperature overnight. Following a wash step, the

radioiodinated antibody is added and the reaction continued for 4 hours. The limit of

detection was 10 ng/1 and the coefficient of variation 9.5% at 58 ng/ml.

Procedure:

200 pi sample standard

50 pi solid phase First antibody (anti-(l-24)ACTH)

vortex tubes, then place on rotary mixer overnight

add 2 ml wash buffer

centrifuge for 5 min at 1000 g.

decant supernatant and repeat washing step

decant and add:

200 pi assay buffer

50 pi l25I-labelled antibody (anti-(18-39)ACTH) (25,000 cpm)

vortex tubes and place on a rotary mixer for 4 hours
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add 2 ml wash buffer

centrifuge for 5 min at 1000 g

decant supernatant and repeat washing step

decant and count for 300 seconds

INSULIN-LIKE GROWTH FACTOR-I

IGF-I was measured by radioimmunoassay.

Reagents

Assay buffer 0.03 M phosphate, with added protamine sulphate (0.04% w/v), sodium azide

(0.04% w/v), EDTA (0.74% w/v) and Tween 20 (0.05% w/v); the buffer was titrated to pH

7.5 using sodium hydroxide. The first antibody, UBK 487, was raised in rabbit against

IGF-I (Dr L Underwood and Dr JJ Van Wyk, University ofNorth Carolina, USA). UBK

487 was stored at -20°C as 40 pi aliquots of 1/10 diluted serum until use, and then diluted

to 1/1800 with reagent buffer. The final working dilution ofUBK 487 was 1/18,000 (see

below). The standard used in the assay was extracted pooled normal human serum.

Normal human serum was defined as containing 1.0 U IGF-I/ml and equivalent to 159

ng/ml of a highly purified preparation of IGF-I. The extracted standard was stored as assay

aliquots for each assay to give a standard curve of 71.4, 35.7, 17.9, 8.93, 4.46, 2.23, 1.12

mU/1 (see below). Aliquots of l25I-labelled IGF-I (prepared from recombinant human IGF-I

(Pharmacia batch no. 2107) were diluted with reagent buffer to give 10,000 cpm/100 pi.

The second antibody was donkey anti-rabbit Sac-cell.
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Method of extraction

Before RIA, samples were first extracted using a standard acid ethanol method. 100 pi of

sample was mixed with 400 pi of the acid ethanol mixture (12.5% 2 M hydrochloric acid

and 87.5% absolute ethanol). After vortexing and standing for 5 minutes, the extraction

mixture was centrifuged at 10,000 rpm for 5 minutes. 200 pi of the supernatant was

removed and neutralised with 80 pi of Tris base (hydroxymethyl-amino-methane)(0.86 M).

This neutralised extractionmixture, after vortexing and standing for 30 minutes at 4°C, was

centrifuged as before. The supernatant was then used in the assay and will be termed the

extracted sample. An extracted buffer was prepared using 100 pi of reagent buffer to which

was added 400 pi, this mixture was then diluted with 3.6 ml of reagent buffer. The final

preparation was used in the standard curve and will be termed extracted buffer. The

extracted sample were diluted a further 32 times before assay.

Procedure:

To 50 pi aliquots of duplicate extracted samples, standard or buffer (zero and NSB tubes)

was added 350 pi of reagent buffer followed by 50 pi of antibody and 50 pi of l2"I-labelled

IGF-I. Label alone was added to empty total count tubes. UBK 487 was not added to NSB

tubes, being replaced by a further 100 pi of reagent buffer. After vortexing, the assay tubes

were incubated overnight at 4°C. 50 pi of Sac-cell was added to all tubes except to total

count tubes. After vortexing, the assay tubes stood for 1 hour at 4°C, and then 1 ml of

distilled water was added to all tubes except to total count tubes. After vortexing the assay

tubes were centrifuged at 2000 rpm at 4°C for 30 minutes. The supernate was aspirated

to waste. The pellet was then counted for 120 seconds. The assay working range was 0.25 -
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1.6 U/ml (40 - 254 (j.g/1). Within assay coefficient of variation was less than 5% and the

between assay coefficient of variation was less than 10%.

INSULIN-LIKE GROWTH FACTOR-II

IGF-II was measured by radioimmunoassay after acid-ethanol extraction using the same

methodology and procedure as for IGF-I. An IGF-II monoclonal antibody (MAS 324, clone

Sl-F2;Seralab, Crawley Down, Sussex, UK) was used at a dilution of 1 in 54 000.

Recombinant IGF-II (Pharmacia, Stockholm, Sweden) was used as standard to give an

analytical range of 5 - 1250 pg/1. Bound and free ,25I-labelled IGF-II were separated using

a solid-phase second antibody. Within assay coefficient of variation was 12.9% and

between assay coefficient of variation was 4.7%. The cross-reactivity of IGF-I was 1.5%

and insulin did not interfere in the assay.

IGF BIOASSAY

IGF bioactivity was measured by an Eluted Stain Assay (ESTA) using the Fischer rat

thyroid cell line FRTL-5. This assay is based on the colour change seen in tetrazolium salts

on mild reduction. One of these salts, MTT when reduced turns to its purple formazan.

The formazan reaction, on addition to cell cultures, is only possible in the presence of

viable and metabolically active cells.

Procedure:
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FRTL-5 cells were routinely cultured in 6H medium (contains Cortisol, insulin, TSH,

transferrin, somatostatin and glycol-L-histidyl-L-lysine acetate) and plated out into 96-well

microtitre plates. After 4 days OH medium (no hormones), supplemented with 5% serum,

was substituted and the cells grown for a further 9 days. For a further 48 hours, cells were

grown in 100 pi OH medium with 0.1% bovine serum albumin (BSA). Samples (100 pi)

were added to the microtitre wells and incubated for a further 48 hours. Cell activity was

calculated by adding 10 pi of the tetrazolium salt MTT to each well and incubating for 30

minutes at 37°C. The formazan reaction product was then eluted from the cells into the

medium by addition of acidified Triton X-100 (50 pl/well). The microtitre plates were

agitated for a further 20 minutes at room temperature. The optical density of each well was

measured using a Bio-Rad microtitre plate reader at test wavelength 595 nm and reference

wavelength 655 nm. Within assay variation was 14% and between assay variation 13%

(Claffey et al. 1994).

INSULIN

Insulin was measured by radioimmunoassay.

Reagents

Assay buffer was 0.05 M phosphate saline, with added bovine serum albumin (0.05% w/v),

EDTA (0.37% w/v) and thiomersal (0.1% w/v); the buffer was titrated to pH 7.4 using

sodium hydroxide. Antiserum, raised in guinea-pig against bovine insulin, was diluted to

1/32,000 with assay buffer to give a final dilution of 1/48,000. The standard used in this
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assay was recombinant insulin, double diluted with reagent buffer to give a standard curve

200, 100, 50, 20, 10, 5, 2, 1 mU/1. 125I-labelled insulin was obtained from Amersham

International (Amersham, UK), stored as 2 pCi aliquots which were then diluted with

reagent buffer to give 30,000 cpm/100 pi. The second antibody was sheep anti-guinea-pig

gamma globulin prepared for each assay by dilution to 1/500 with reagent buffer, to which

was added guinea-pig (carrier) serum at a dilution of 1/4000. This was mixed with the

precipitating agent polyethylene glycol (PEG) (3% w/v), sodium chloride (0.09% w/v) and

triton X-100 (50 pl/100 ml distilled water).

Procedure:

To 100 pi of duplicate sample, standard or buffer (zero and NSB tubes) was added 100

pi of 125I-labelled insulin and 400 pi of anti-insulin antibody. Anti-insulin antibody was not

added to NSB tubes being replaced by a further 400 pi of reagent buffer. Label alone was

added to empty tubes (total count tubes). After vortexing, the assay tubes were incubated

overnight at 4°C. 400 pi of second antibody/precipitating solution was added to each tube

except total count tubes. After vortexing, the assay tubes were stood for 2 hours at 4°C, and

then centrifuged at 2500 rpm for 30 minutes at 4°C. The supernate was aspirated and

discarded, and the pellet washed with a further 1.5 ml of wash buffer. After vortexing, the

assay tubes were centrifuged at 2500 rpm at 4°C for 30 minutes. The supernate was

aspirated and discarded. The radioactivity in the solid phase pellet was then counted for

180 seconds. The working range of the assay was 1 - 200 mU/1. The within assay

coefficient variation ranged from 4 - 6% and the between assay coefficient variation ranged

from 8 - 10%.
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C-PEPTIDE

Blood collected into trasylol was rapidly separated and the plasma frozen immediately at

-20°C. Plasma C-peptide was measured in duplicate in using with second antibody

separation. Sensitivity was 0.05 nmol/1 and the within assay coefficient of variation was

less than 4% and the between coefficient of variation was less than 15%.

CORTISOL

Cortisol was measured by an in-house radioimmunoassay.

Reagents

The assay buffer was 0.05 M phosphate; the buffer was titrated to pH 7.4 using sodium

hydroxide. Antiserum to cortisol-3-carboxy-methyl-oxime (3CMO) attached to Keyhole

limpet haemocyanin was raised in a sheep. Antiserum was diluted to 1/5,000 with assay

buffer to which was added second antibody (donkey anti-sheep serum) to give a dilution

of 1 in 20. Standards were prepared in human "charcoal stripped" serum to give a standard

curve of 2000, 1000, 500, 250, 100, 50 nmol/1. An aliquot of l25I-labelled cortisol-3CMO

was diluted with reagent buffer containing ANS (12 mg/ml) to give 10,000 cpm/100 pi.

The precipitating agent was polyethylene glycol 6000 (5% w/v).

Procedure:

To 50 pi of duplicate sample or standard was added 100 pi of !25I-labelled Cortisol 3CMO

(with 12 mg/ml ANS) and 100 pi of antiserum. Label only was added to empty tubes for
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the total count tubes. After vortexing the assay tubes were incubated for 90 minutes at

21°C. 1 ml of precipitating solution was added to each tube except total count tubes. After

vortexing, the assay tubes were centrifuged at 3000 rpm for 30 minutes at 21°C. The

supernate was aspirated to waste. Pellet radioactivity was counted for 100 seconds. The

working range for this assay was 50 - 2000 nmol/1. The within assay coefficient variation

for this assay was less than 5% and the between assay coefficient variation was < 7%.

TESTOSTERONE

Total testosterone in serum was determined, after ether extraction, by RIA.

Reagents

Standards, l25I-Testosterone (10,000 cpm/100 pi; purchased from Dr M Wheeler, St

Thomas' Hospital, London) and sheep antiserum (1:60,000 initial dilution; raised in-house

against testosterone-3-CMO-KLH) were all in assay buffer (0.05 M phosphate).

Procedure:

Patient serum (0.1 ml for males / 0.5 ml for females) was extracted with 5 ml diethyl ether.

The aqueous layer was "flash frozen" and the organic layer decanted into a clean glass tube.

The ether was evaporated to dryness and the residue reconstituted in 500 pi 50 mmol

phosphate buffer (pH 7.5). To 100 pi standard or reconstituted sample was added 100 pi

i25I-testosterone (10,000 cpm) and 100 pi antiserum. Separation ofantibody-bound and free

hormone was achieved using 500 pi dextran coated charcoal suspension (1% w/v).

Thereafter, radioactivity in the control pellet was determined. The assay had three quality
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control values at approximately 2.0, 5.0 and 12.0 nmol/1. Between assay variability at these

concentrations was less than 10 % (Samaras et al. 1992).

OESTRADIOL

Oestradiol was measured with a commercial kit purchased from Diagnostic Products

Limited (Llanberis, Wales). It is a double antibody kit that uses a simple late addition of

tracer.

Procedure:

Patient serum was incubated with antiserum for 1 hour, after which 125I-oestradiol was

added and the mixture incubated for a further 2 hours. A PEG-assisted second antibody

solution was used to stop the RIA. After centrifugation (3000 rpm for 30 min at 18°C) and

aspiration of the supernate, the radioactivity in the pellet was determined, and, by

extrapolation from serum standards, the concentration in the patient's serum was derived.

The assay had three quality control samples at approximately 150, 600 and 1100 pmol/1.

The between assay variability at these concentrations was less than 8%.

PROGESTERONE

Progesterone was measured by direct RIA, using in-house reagents.

Procedure:

The assay used a phosphate/citrate buffer at pH 4.0 in order to obviate the necessity of an
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extraction step. Patient serum/standards and QC's were incubated with 125I-progesterone

and a goat raised anti-progesterone antibody. After incubation for two and a half hours,

separation was achieved by adding 20% polyethylene glycol. Three QC samples were used

at 6, 30 and 60 nmol/1. Between assay variability was less than 10% at these concentrations

(Wathen et al. 1984).

SEX HORMONE BINDING GLOBULIN

SHBG was measured by a competitive protein binding assay, based upon the binding of 3H-

DHT to SHBG.

Procedure:

The assay was performed in duplicate with four tubes for each patient sample. To each

tube 400 pi serum diluted 8 fold with 50 mmol phosphate buffer was added. To two tubes

100 pi of a mixture of 0.75 ng DHT, including 15 000 dpm JH-DHT (D tubes), in buffer

was added and to two further "quenching" tubes 100 pi of a mixture of 100 ng DHT,

including 15 000 dpm 3H-DHT (T tubes). All tubes were incubated for 10 minutes at 4°C.

The SHBG was precipitated by addition of an equal volume of saturated ammonium

sulphate (4°C) mixed and incubated for a further 10 minutes. This was followed by

centrifugation (3000 rpm, 20 min., 4°C). The supernate (free fraction) was decanted into

a vial containing scintillation fluid (4 ml). Percentage of DHT-bound was calculated by:

(counts in T - D tubes/ counts in T tubes) x 100
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This figure was then used to read the value for SHBG from the standard curve. The assay

employs three QC samples at 20, 40 and 80 nmol/1. Between assay variability at these

concentrations was less than 6% (Fattah and Chard, 1981).

GLUCOSE

Plasma glucose was measured by the hexokinase/glucose dehydrogenase method using the

Coulter CPA analyzer.
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STATISTICS

Samples below the level of assay sensitivities were assigned a value of zero. "Area under

the curve" (AUC) was calculated by the trapezoidal method. Data with a Gaussian

distribution were analysed by paired or unpaired t-tests. Non-parametric paired data were

analysed by the Wilcoxon rank sum test and unpaired data with the Mann-Whitney U test

(Siegel, 1956). One-way analysis of variance was used as indicated. For ease of viewing

in this thesis, however, the raw data have been presented graphically. Error bars have not

been included in figures if both the data lack statistical significance and inclusion of error

bars would detract from the clarity of the figure. In every case, statistical significance was

taken as P < 0.05. Two-tailed probability tables were used except where indicated.

GH pulsatility was analysed using the "Pulsar" programme of Merriam and Wachter.

This software is fundamentally a "threshold' method, scaled to the assay standard deviation,

as in the modified Santen and Bardin method (1973). Essentially, Santen and Bardin

defined a peak as a rise of 20% or more from a nadir. The criterion of 20% represented

approximately 3 coefficients of variation of the assay. As the CV of an assay varies at

different points on the standard curve, this method was modified such that a peak was

defined in terms of "n" times the CV for the appropriate point on the standard curve.

Pulsar calculates a "baseline" to represent the contribution of circadian rhythms and long-

term trends purged of ultradian rhythms i.e. trends with time constants less than 6-12
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hours. Pulses are judged against a baseline rather than a single point nadir, the width of

peaks is considered in setting the threshold for a peak, ie wide peaks need not be as high

as narrow ones, and the method iterates to attempt to distinguish clusters of peaks from

trends. The programme was originally developed for gonadotrophin analysis, and has been

adapted for analysis of GH data. This involved assessing default characteristics within

pulsar for the analysis ofGH (see below).

This method has the advantage over alternative pulse analysis algorithms that peaks are

measured from smoothed baselines, which are less vulnerable to single bad datum points

or "notches" in peaks. Peak heights are scaled in terms of assay noise, and amplitude of the

noise can vary depending upon the dose; this is most useful when the data lie towards one

end of the standard curve. Peaks do not have to be as high if they are sustained, which

random variations are less likely to be.

A large number of pooled samples were analysed, and means and standards deviation were

calculated at the various different GH levels (see below). Assay noise was then represented

by a linear equation describing the assay standard deviation (SD) at any GH concentration

(y):-

standard deviation = (0.89y + 14.5)/100

Using the linear equation the G-values (the number of SD's a rise ofGH must exceed for

1, 2, 3, 4 and 5 times points respectively in order to represent a GH pulse) were assessed
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empirically.

Ten representative 9-hour GH profiles were plotted, and visual assessment for peaks was

performed blind by ten observers. The G-value were then set by eye to minimise the false-

negative and false-positive results of the visually assessed peaks. Various G-values

produced from probability theory were assessed, but found to produce large numbers of

false positive GH pulses. The higher G values that have been derived by Hindmarsh et al.

(1987) were found to be the most suitable.

When a smoothing time of 540 minutes was used (the automatic default value in interactive

mode) there was a tendency for peaks in certain profiles to be missed, with a concomitant

increase in the baseline. Reduction of the smoothing time to 6 hours (360 minutes)

appeared to resolve this problem.

The remaining default values for the GH

Number of iterations: 6

Weight assigned to peak points: 0.10

Peak splitting (SD): 3.0

G(l): 6.50

G(2): 5.20

G(3): 3.80

G(4): 3.00

G(5): 2.40
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TABLE 1

Within and between assay coefficient of variation for the GH IRMA

WITHIN ASSAY BETWEEN ASSAY

Mean GH CV(%) Mean GH CV(%)
(mU/1) (mU/1)
0.4 22.7 2.7 8.5
5.3 5.3 11.0 4.8
12.7 2.0 30.3 6.9
32.5 1.9 74.4 9.7
82.8 2.4

153.3 4.4
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RESULTS

THE EFFECT OF SUBCUTANEOUS RECOMBINANT IGF-I (rhIGF-1 40

M-g/kg) ON ANTERIOR PITUITARY FUNCTION

Twelve healthy non-obese male volunteers were studied on two occasions in random order.

The two limbs of the study were rhIGF-I (40 pg/kg subcutaneously) followed by GHRH

(100 jig intravenously) at 24 hours and placebo followed by GHRH. The rhIGF-I was

administered and GHRFI tests were performed in the manner described in the previous

chapter. All studies were carried out at a minimum interval of two weeks in a randomized

double-blind manner. The details of the subject are given in Table 2.

Analysis for a treatment-period interaction indicated that there was neither an order nor

carry-over effect between the two limbs (Jones & Kenward, 1989).

There was a significant increase of 80% in AUC for plasma IGF-I measured by

radioimmunoassay following rhIGF-I administration compared with placebo (Table 3).

Mean plasma IGF-I immunoactivity peaked at six hours and thereafter gradually declined

but was still above baseline at 24 hours, although within the normal range (Figure 4). A

significant reduction of approximately 15% in AUC for plasma IGF-II was seen following

rhIGF-I administration (Figure 5). AUC for IGF bioactivity was significantly increased by

30% following rhIGF-I administration. As with IGF-I immunoreactivity, the peak occurred
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at 6 hours and thereafter decreased (Figure 6).

There was no biochemical or clinical evidence of hypoglycaemia, the lowest laboratory

blood glucose recorded was 3.9 mmol/1, and no difference in mean blood glucose between

the two limbs of the study (rhIGF-I mean 5.43 mmol/1 SEM ± 0.06 v placebo 5.55 ±

0.06)(Figure 7).

No difference existed in AUC, pulse number or pulse amplitude for plasma GH, LH or FSH

between the two limbs of the study (Tables 4, 5, Figures 8, 9, 10). The AUC for GH

following intravenous GHRH (100 pg) was not significantly different, but the peak GH

response was greater following rhIGF-I (mean 97.5 ± SEM 14.6 v 56.3 mU/1 ± 9.6, p =

0.05, Figure 11). Administration of rhIGF-I resulted in a significant fall in AUC for plasma

TSH and at each individual time-point mean plasma TSH was lower following rhIGF-I than

placebo. The circadian rhythm of TSH remained intact (Figure 12). There was no change

in free thyroxine and free triiodothyronine 24 hours after rhIGF-I administration. No

change was seen in AUC for plasma ACTH, Cortisol or prolactin (Table 4, Figures 13, 14,

15).

Both mean plasma C-peptide (0.91 nmol/1 ± 0.05 v 0.73 ± 0.06, p = 0.03, Wilcoxon sign

rank test) and insulin (15.36 mU/1 ± 1.18 v 10.81 ± 1.02, p = 0.03, Wilcoxon sign ranked

test) were lower following rhIGF-I. As C-peptide and insulin were measured only at 6

hourly intervals, it is not possible to be precise about the time scale of the changes; however
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plasma levels had returned to baseline 18 hours after rhIGF-I (Figures 16, 17).

IGF-BP3 was the most abundant binding protein identified on the Western ligand blots and

did not alter with administration of rhIGF-1. Evaluation of IGF-BP1 levels showed no

discernible change with rhIGF-I (Table 6, Figure 18).

All subjects experienced transient discomfort at the injection site, probably due to the pH

of the diluent. No side-effects were encountered with IGF-I, specifically no symptoms of

hypoglycaemia were reported. Short-lived facial flushing following GFIRH was uniform.

In summary, a single subcutaneous dose of 40 pg/kg of recombinant human IGF-I increased

AUC for plasma IGF-I by 80%, measured by radioimmunoassay, and IGF bioactivity by

60%. Blood glucose did not change but plasma insulin and C-peptide fell by 20%. The

primary object of this study was to examine the effect of IGF-I, by the therapeutic route, on

anterior pituitary function. No change was seen in physiological GH secretion but

pretreatment with IGF-I augmented the GH response to an intravenous bolus of 100 pg

GHRH 24 hours later. Area under the curve for TSH fell by 30% following IGF-I but no

change occurred in ACTH (or Cortisol), LH, FSH or prolactin secretion.
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Table 2

The age, weight, height and body mass index of the 12 subjects receiving IGF-I

SUBJECT AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)
1 22 75.0 1.70 24.2
2 23 66.9 1.76 23.1
3 23 61.2 1.69 21.4
4 26 82.3 1.88 23.1
5 22 84.9 1.90 23.5
6 22 66.6 1.77 21.2
7 24 64.2 1.81 19.6
8 21 84.5 1.84 25.0
9 27 67.5 1.81 20.6
10 23 89.5 1.91 24.5
11 23 71.6 1.68 25.3
12 23 66.5 1.71 22.7
MEAN 23.4 73.4 1.79 22.9
RANGE 21-27 61.2-89.5 1.68-1.91 19.6-25.4

Table 3

The 24 hour mean "area under the curve" for IGF-I and IGF-II measured by
radioimmunoassay and IGF bioactivity (mean ± SEM shown)

Drug IGF-I(RIA) IGF-II(RIA) IGF(bio)

(ng.h/ml) (ng.h/ml) (U.h/1)

rhIGF-I 7065 ±33' 9308 ±403 22.5 ± 3.4:

Placebo 3895 ±204 11052 ± 4511 14.2 ± 1.8

1
p < 0.0001,2 p = 0.001 vs placebo
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Table 4

The 24 hour mean "area under the curve" for each of the anterior pituitary hormones (mean
± SEM shown)

Area under curve

GH (mU.h/1)

LH (mU.h/1)

FSH (mU.h/1)

TSH (mU.h/1)

ACTH (ng.h/1)

Cortisol (nmol.h/1)

Prolactin (mU.h/1)

1
p = 0.01 vs placebo

placebo

86.6 ± 14.7

123 ± 13.2

85.0 ±26.5

42.5 ± 5.98

279.8 ± 18.0

4986 ± 290

7201 ±2336

IGF-I

79.2 ± 14.6

122 ± 10.5

83.9 ±23.4

33.0 ±3.361

272.9 ±22.8

4849 ±314

7152 ±2250

Table 5

The results of"pulsar" analysis ofGH and LH secretion

number of pulses mean pulse amplitude (mU/1)

placebo IGF-I placebo IGF-I

GH 4.1 ±0.9 2.7 ± 0.4 22.3 ±4.5 28.5 ±6.7

LH 10.8 ±0.6 11.2 ±0.8 2.8 ±0.2 2.8 ±0.2
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Table 6

Plasma IGF-BPs, measured by Western Ligand Blot and quantified by densitometry,
following recombinant human IGF-I or placebo in 12 healthy volunteers. Mean values
expressed in arbitory units

TREATMENT rhIGF-I

TIME 08.40 09.00 15.00 21.00 03.00 09.00

BP4 1103 980 846 1029 1094 1094
BP1 1974 1639 1856 1826 1640 1625
BP2 4449 5396 6778 5951 4810 5164
BP3 12913 13428 15085 14430 13175 13916

Placebo

BP4 1069 1134 991 1082 1158 999
BPI 1887 1868 1534 1632 1619 1561
BP2 4803 4429 6162 6200 3788 5178
BP3 13300 12597 12773 12721 12729 14282
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Figure 4

24 hour profile for mean plasma IGF-I measured by radioimmunoassay in 12 healthy
subjects following 40 pg/kg rhIGF-I or placebo at 09.00 h given subcutaneously (mean
± SEM shown)
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Figure 5

24 hour profile for mean plasma IGF-II measured by radioimmunoassay in 12 healthy
subjects following 40 pg/kg rhIGF-I or placebo given subcutaneously at 09.00 h (mean
± SEM shown).
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Figure 6

24 hour profile ofmean plasma IGF bioactivity in 12 healthy subjects following 40
pg/kg rhIGF-I or placebo given subcutaneously at 09.00 h (mean ± SEM shown).
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Figure 7

24 hour profile for mean plasma glucose in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (mean ± SEM shown).
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Figure 8

24 hour profile for mean plasma growth hormone in 12 healthy subjects following 40
pg/kg rhIGF-I or placebo given subcutaneously at 09.00 h (error bars not shown).
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Figure 9

24 hour profile for mean plasma LH in 12 healthy subjects following 40 |ig/kg rhIGF-I
or placebo given subcutaneously at 09.00 h (error bars not shown).
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Figure 10

24 hour profile for mean plasma FSH in 12 healthy subjects following 40 pg/kg rhIGF-I
or placebo given subcutaneously at 09.00 h (error bars not shown).
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Figure II

Mean GH values in 12 healthy subjects following intravenous GHRH (100 pg) at time 0
(09.00 h day 2), 24 hours after either rhIGF-I (40 gig/kg) or placebo (mean ± SEM
shown).
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Figure 12

24 hour profile for mean plasma TSH in 12 healthy subjects following 40 pg/kg rhlGF-
I or placebo given subcutaneously at 09.00 h (mean ± SEM shown).
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Figure 13

24 hour profile for mean plasma ACTH in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (SEM not shown).
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Figure 14

24 hour profile for mean plasma Cortisol in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (SEM not shown).
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Figure 15

24 hour profile for mean plasma prolactin in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (SEM not shown).
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Figure 16

24 hour profile for mean plasma insulin in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (mean ± SEM shown).
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Figure 17

24 hour profile for mean plasma C-peptide in 12 healthy subjects following 40 pg/kg
rhIGF-I or placebo given subcutaneously at 09.00 h (mean ± SEM shown).
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Treatment IGF-I Placebo
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Figure 18

The effect of subcutaneous rhIGF-I (40 (Jg/kg) on IGF-BPs measured by Western
Ligand Blot in one subject.
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A COMPARISON OF QUANTITATIVE GROWTH HORMONE SECRETION

BETWEEN TALL (> 183 cm) AND SHORT (< 166 cm) YOUNG MEN

Twenty tall and twenty short endocrinologically-normal young men (see previous chapter)

were studied on four occasions in random order. An insulin tolerance test, overnight

sampling and GHRH tests, with and without pyridostigmine, were performed in the manner

described in the previous chapter. All studies were performed at a minimum of weekly

intervals. The details of the subjects are given in table 7.

The tall (mean 187.7 cm± SEM 1.0) subjects were significantly older (mean 22.8 years ±

SEM0.5 v 20.9 ±0.6, p< 0.001) and heavier (81.1 kg ± 2.0 v 60.1 ± 1.1, p < 0.001) than

the shorter (mean 163.5 cm ± 0.4) subjects, but no difference existed in body mass index

(23.0 kg/m2± 5.4 v 22.5 ± 3.7, NS).

No difference existed between the two groups in either the peak or "area under the curve"

for the GH response to GHRH with and without pyridostigmine (Figures 19, 20). Similarly,

the GH response to hypoglycaemia was the same in both groups (Figures 21).

Analysis of spontaneous GH secretion between 21.00 h and 06.00 h was performed by

calculation of the "area under the curve" and using the pulse analysis software pulsar (see

previous chapter). The AUC for the 9 hour sampling period did not differ between the two

groups, but examination of GH secretion during the time of maximal secretion 00.00 -
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03.00 suggested secretion rates to be greater in the tall subjects (Figure 22, Table 10).

Pulsar analysis failed to reveal differences in pulse number, length or amplitude of the

largest pulse between the two groups, but a trend towards mean pulse amplitude being

greater in the tall subjects was detected although this did not reach statistical significance

(Table 9).

No relationship was found between serum IGF-I and the GH response to hypoglycaemia

or GHRH or spontaneous nocturnal secretion. Likewise, there was no relationship between

serum IGF-I and height. No difference existed in serum IGF-I, testosterone or thyroxine

values between the two groups (Table 8).

In summary, the GH response to pharmacological stimuli, hypoglycaemia and GHRH, did

not differ between the tall and short subjects. No statistically significant difference in

spontaneous GH secretion was detected, although AUC for the period of maximal

secretion, namely midnight to 03.00 h, and mean pulse amplitude tended towards being

greater in the tall subjects (Tables 9 and 10).
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Table 7

Age, weight, height and body mass index in 20 "tall" (> 183 cm) and 20 "short" (< 166
cm) subjects

SUBJECT AGE WEIGHT HEIGHT BODY MASS INDEX

(years) (kg) (m) (kg/m2)
TALL
1 26 80 1.89 22.4
2 21 81 1.94 21.5
3 22 86 1.91 23.6
4 24 74 1.81 22.6
5 21 87 1.87 24.9
6 21 83 1.89 23.2
7 21 80 1.97 20.9
8 22 91 1.89 25.4
9 22 86 1.84 25.4
10 20 70 1.94 18.6
11 26 77 1.84 22.7
12 18 80 1.85 23.4
13 23 89 1.90 24.6
14 23 75 1.83 22.4
15 24 73 1.84 21.6
16 26 110 1.90 30.4
17 27 84 1.90 23.2
18 23 76 1.86 22.0
19 22 72 1.84 21.3
20 24 68 1.83 20.3
MEAN 22.8 81.1 187.7 23.0
RANGE 18-27 68-110 183-197 18.6-30.4

SHORT
21 20 53 1.63 20.0
22 20 60 1.60 23.4
23 26 60 1.66 21.8
24 24 60 1.65 22.0
25 21 65 1.66 23.6
26 22 65 1.66 23.6
27 19 55 1.64 20.5
28 18 66 1.64 24.6
29 22 67 1.64 25.0
30 23 65 1.63 24.5
31 18 53 1.60 20.7
32 24 63 1.63 23.8
33 18 60 1.64 22.3
34 18 53 1.61 20.4
35 18 53 1.64 19.7
36 25 59 1.64 22.0
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SUBJECT AGE WEIGHT HEIGHT BODY MASS INDEX

(years) (kg) (m) (kg/m2)
37 19 58 1.63 21.8
38 25 66 1.64 24.6
39 20 60 1.63 22.6
40 19 62 1.63 23.4
MEAN 20.9 60.1 163.5 22.5
RANGE 18-25 53-67 160-166 19.7-25.0

Table 8

Serum IGF-I, testosterone and thyroxine values in 20 "tall" (> 183 cm) and 20 "short"
166 cm) subjects

SUBJECT IGF-I Testosterone T4

(ng/ml) (nmol/1) (nm<

TALL
1. 179 14.0 105
2. 210 17.0 46
3. 195 24.4 74
4. 291 26.3 87
5. 230 19.6 74
6. 377 28.0 70
7. 301 21.0 66
8. 172 21.5 68
9. 321 23.3 85
10. 57 18.9 78
11. 186 26.0 115
12. 227 17.5 113
13. 232 25.0 91
14. 175 20.5 125
15. 272 14.5 116
16. 188 9.5 132
17. 230 11.5 93
18. 238 20.0 99
19. 301 10.5 110
20. 228 21.0 91
MEAN 230.5 19.5 91.9
SEM 15.37 1.2 5.0
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SUBJECT IGF-I Testosterone T4

(ng/ml) (nmol/1) (nmol/I)
SHORT
21. 228 21.0 100
22. 298 21.1 62
23. 221 19.1 85
24. 162 23.6 87
25. 203 18.9 97
26. 125 25.0 93
27. 248 20.0 98
28. 323 18.0 85
29. 115 13.0 115
30. 70 14.5 89
31. 281 27.0 116
32. 216 9.0 106
33. 351 15.5 85
34. 233 15.5 145
35. 442 47.5 110
36. 169 20.5 84
37. 242 22.5 103
38. 234 16.5 120
39. 200 17.5 115
40. 251 14.0 94
MEAN 230.6 19.9 99.9
SEM 18.9 1.7 3.9
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Table 9

The results of pulse analysis of overnight spontaneous GH (mU/1) secretion by "pulsar"

Subjects

TALL SHORT

number of pulses 2.45 ± 0.24 3.0 ±0.24

mean amplitude 20.3 ±3.4 13.6 ± 2.8

largest peak 32.1 ±5.9 26.3 ±2.8

mean length (min) 113.9 ± 10.4 90.4 ±8.0

Table 10

"Area under the curve" for overnight spontaneous GH secretion

Subjects

Time TALL SHORT

21.00 h-06.00 h 198 ±38.8 151 ± 21.6 (mU.min/1)

00.00 h- 03.00 h 124.8 ±29.0 68.1 ± 10.4
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Figure 19

The mean GH response to GHRH (100 pg iv) and pyridostigmine (120 mg, oral) in 20
"tall" (^ 183 cm) and "short" (< 166 cm) healthy volunteers. Mean ± SEM shown.
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TIME (minutes)

Figure 20

The mean GH response to GHRH (100 pg iv) and placebo in 20 "tall" (> 183 cm) and
20 "short" (< 166 cm) healthy volunteers. Mean ± SEM shown.
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Figure 21

The serum GH response to hypoglycaemia (blood sugar < 2.2 mmol/1) in 20 "tall" (> 183
cm) and 20 "short" (< 166 cm). Mean ± SEM shown.
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Figure 22

Mean serum GH nocturnal profiles in 20 "tall" (> 183 cm) and 20 "short" (< 166 cm)
(error bars not shown).
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THE GH RESPONSE TO GHRH IN MEN AND WOMEN, AND IN WOMEN AT

DIFFERENT STAGES IN THE MENSTRUAL CYCLE

Eight healthy non-obese male and female volunteers were studied. The men underwent two

GHRH tests, with and without pyridostigmine. The female volunteers were not on the oral

contraceptive pill and had regular menstrual cycles, 28 days ± 2. The women were studied

on four occasions; two GHRH tests were performed, with and without pyridostigmine,

between days 1-3 of the menstrual cycle and again between days 14-16, a total of four

GHRH tests. The GHRH tests were performed in the manner described in the Methods

chapter. Studies were carried out at a minimum of two day intervals in a randomized

double-blind manner. The details of the subjects are provided in Table 11.

The male subjects were significantly older (mean 36.6 year ± SEM 3.2 v 26.7 ± 1.8,

unpaired t-test p = 0.02), heavier (72.2 kg ± 4.5 v 61.3 ± 1.6, unpaired t-test p = 0.04) and

taller (mean 1.77 m ± 0.03 v 1.62 ± 0.02, unpaired t-test p = 0.002) but no difference

existed in body mass index (22.7 kg/m2± 0.87 v 23.7 ± 0.98, NS). Mean serum oestradiol

levels were appropriate for the stages of the menstrual cycle and serum testosterone in the

reference range in all subjects (Table 13). Two subjects (# 1,2) had a mid-cycle serum

progesterone indicative of ovulation.

No difference existed in the mean AUC for GH following GHRH between men and

women, or women at different stages of the menstrual cycle. Similarly, although pre-
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treatment with pyridostigmine increased the GH response to GHRH, again no difference

existed between the three groups (Table 12, Figures 23, 24). The increment and peak GH

response were very similar in each group (Figures 25, 26). Serum IGF-I levels did not

differ either between women at different stages of the menstrual cycle (mean 165.0 ng/ml

± SEM 16.5 v 156.8 ± 15.3, NS) or between men and women (mean 165.0 ng/ml ± SEM

16.5 or 156.8 ± 15.3 v 165.6 ± 16.7, NS) (Table 13).

In summary, no difference was found in the GH response to GHRH between men and

women or in women at different stages of the menstrual cycle.
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Table 11

The age, weight, height and body mass index of the 8 males and 8 females studied

SUBJECT AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)
FEMALE
1 27 64.8 1.63 24.4
2 30 54.8 1.67 21.1
3 30 57.5 1.53 24.5
4 26 60.2 1.51 26.4
5 36 67.1 1.59 26.6
6 22 57.2 1.74 18.9
7 21 67.2 1.61 25.9
8 22 62.3 1.68 22.1
MEAN 26.7 61.3 1.62 23.7
RANGE 21-36 54.8-67.2 1.51-1.74 18.9-26.6

MALE
9 46 72.7 1.77 23.2
10 25 64.2 1.69 22.5
11 35 99.2 1.91 27.2
12 34 75.4 1.76 24.4
13 44 54.4 1.66 19.7
14 26 67.2 1.79 21.0
15 33 73.0 1.76 23.6
16 50 72.0 1.89 20.1
MEAN 36.6 72.2 1.77 22.7
RANGE 25-50 54.4-99.2 1.66-1.91 19.7-27.2

Table 12

"Area under the curve" (mU.min/1) for serum GH following GHRH (100 jag, iv) in
combination with either pyridostigmine (PD) or placebo (PL) (mean ± SEM shown)

Limb Early-luteal Mid-cycle Male

GHRH + PL 151.5 ±68.3 149.7 ±42.7 165.1 ±65.2

GHRH ±PD 499.8 ± 80.7 439.4 ± 106.6 554.7 ±108.3
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Table 13

Serum oestradiol, progesterone, testosterone and IGF-I of subjects sub-divided into early
luteal, mid-cycle and male

SUBJECT E2 Prog. Test. IGF-I

(pmol/l) (nmol/1) (nmol/1) (ng/ml)

FEMALE - EARLY CYCLE
1 132 7.8 2.7 102
2 84 1.7 1.8 175
3 122 <4 1.2 150
4 92 <4 1.9 126
5 187 13.4 1.4 132
6 59 <4 1.4 245
7 79 4.5 1.3 183
8 93 <4 1.9 207
MEAN 106 4.5 1.7 165.0
RANGE 59-187 <4-13.4 1.2-1.9 102-245

FEMALE- MID-CYCLE
1 328 20.5 2.3 108
2 839 54 2.4 172
3 804 <4 1.7 144
4 170 <4 1.4 171
5 677 <4 1.7 107
6 381 <4 2.3 230
7 784 <4 2.2 195
8 360 <4 2.3 128
MEAN 542.9 12.4 2.1 156.8
RANGE 170-839 <4-54 1.4-2.3 107-230

MALE
9 83 N/A 22.3 180
10 84 N/A 25.5 104
11 97 N/A 19.3 218
12 108 N/A 22.3 153
13 106 N/A 35.8 135
14 127 N/A 30.5 247
15 60 N/A 20.8 155
16 129 N/A 22.5 133
MEAN 99.2 N/A 24.8 165.6
RANGE 60-129 N/A 19.3-35.8 104-247
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Figure 23

The "area under the curve" for serum GH following GHRH (100 jag, iv) and oral placebo
in eight males and females. Mean ± SEM shown.
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Figure 24

The "area under the curve" for serum GH following GHRH (100 gig, iv) and 120 mg oral
pyridostigmine in eight males and females. Mean ± SEM shown.
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Figure 25

The serum GH response to GHRH (100 pg, iv) plus oral placebo in eight males and
females (error bars not shown).
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Figure 26

The AUC for serum GH following GHRH (100 pg, iv) plus pyridostigmine (120 mg,
oral) or placebo in eight males and females (error bars not shown).
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THE EFFECT OF AGE ON THE GH RESPONSE TO GHRH IN MEN

Six healthy non-obese male volunteers in each of the six decades from the twenties to the

seventies were studied. Each subject underwent two GHRH tests, with and without

pyridostigmine. The GHRH tests were performed in the manner described in the previous

chapter. Studies were carried out at a minimum of seven day intervals in a randomized

double-blind manner. The mean age of each group of volunteers was in the middle of their

decade and there was no significant difference in body mass index between the ages (Table

14).

The mean GH response and AUC following GHRH preceded by an oral placebo for each

of the age groups are given in Figures 27, 29, and for GHRH combined with

pyridostigmine in Figures 28, 30. One-way analysis of variance demonstrates that the GH

response to GHRH falls with age (ANOVA, p < 0.05). At all ages pyridostigmine

potentiates the GH response to GHRH. To allow a comparison of the changes in the

relative influence of pyridostigmine on GH secretion with age, the proportional effect of

pyridostigmine on GH secretion in each subject was calculated by the formula:

(AUC for GHRH plus pyridostigmine - GHRH plus placebo)/ GHRH plus placebo.

One-way analysis of variance demonstrates that, as with exogenous GHRH, the ability of

pyridostigmine to stimulate GH secretion declines with age (ANOVA, p < 0.05). Age was

negatively correlated with AUC for GH (r = -0.4, p = 0.016).
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An additional analysis of the data, comparing the youngest 12 subjects the oldest 12

subjects, demonstrated that the younger subjects had a significantly greater AUC for GH

following GHRH (162.7 mU.min/1 ± 40.4 v 86.4 ± 15.6, unpaired t-test p < 0.01) and

although the relative effect of pyridostigmine declined it was not significantly different

between the young and elderly subjects (2.5 ± 0.5 v 1.3 ± 0.4, NS). The mean serum IGF-I

levels were lower in the over 70 age group compared to the 20- 30 year olds (224.8 ng/ml

± 10.1 v 161.2 ± 37.4, unpaired t-test p < 0.01)(Table 15).
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Table 14

Age, weight, height and body mass index of subjects sub-divided by age

SUBJECTS AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)
20s
1 24 77 1.71 26.3
2 21 119 1.95 31.3
3 20 76 1.76 24.6
4 25 70 1.65 25.7
5 30 82 1.80 25.3
6 27 65 1.72 22.0
MEAN 24.5 81.5 1.76 25.8
RANGE 20-30 65-119 1.71-1.95 22.0-31.3
30s
7 34 57 1.66 20.7
8 35 63 1.85 18.4
9 38 85 1.91 23.3
10 35 88 1.85 25.7
11 36 70 1.69 24.5
12 31 80 1.80 24.6
MEAN 34.8 73.8 1.79 22.8
RANGE 31-38 57-88 1.66-1.91 18.4-25.7
40s
13 41 66 1.80 20.3
14 47 65 1.74 22.0
15 48 64 1.68 22.6
16 46 70 1.71 23.9
17 42 56 1.66 20.3
18 46 72 1.77 23.2
MEAN 45.0 65.5 1.72 22.0
RANGE 41-48 56-72 1.66-1.80 20.3-23.9
50s
19 59 77 1.80 23.7
20 58 67 1.69 23.5
21 51 75 1.77 23.9
22 59 60 1.70 20.7
23 58 72 1.60 28.1
24 50 72 1.89 20.1
MEAN 55.8 70.5 1.74 23.3
RANGE 50-59 60-77 1.60-1.89 20.1-23.9
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SUBJECTS

60s
25
26
27
28
29

MEAN
RANGE

70s
30
31
32
33
34
35

MEAN
RANGE

Table 15

Serum IGF-I and testosterone of subjects sub-divided by age

SUBJECTS IGF-I Testosterone

(ng/ml) (nmol/l)
20s
1 199 16.0
2 210 10.5
->
J 241 14.5
4 200 10.0
5 244 13.0
6 255 18.0
MEAN 224 13.66
RANGE 199-255 10-18

30s
7 161 14.5
8 161 20.0
9 154 14.5
10 283 10.0
11 158 15.0
12 211 9.0
MEAN 188.0 13.8
RANGE 154-283 9-20

AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)

69 80 1.70 27.6
68 75 1.70 25.9
62 60 1.75 19.6
61 88 1.91 24.1
61 65 1.69 22.8
64.2 73.6 1.75 24.0
61-69 60-88 1.69-1.91 19.6-27.6

79 53 1.68 18.7
74 74 1.75 24.1
74 62 1.73 20.7
71 70 1.72 23.7
88 77 1.80 23.7
71 70 1.69 24.5
76.1 67.6 1.72 22.6
71-88 53-77 1.68-1.75 18.7-24.5
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40s
13
14
15
16
17
18
MEAN
RANG]

50s
19
20
21
22
23
24

MEAN
RANG)

60s
25
26
27
28
29
MEAN
RANG!

70s
30
31
32
33
34
35
MEAN

RESULTS

IGF-I

(ng/ml)

129
116
171
248
115
190
161.5
115-248

155
157
287
164
120
129
168.7
155-287

428
139
119
91
209
197.2
91-428

Testosterone

(nmol/1)

9.0
14.0
12.5
10.5
15.5
26.0
14.5
9-26

13.5
14.0
21.2
22.8
11.8
30.5
18.9
11.8-30.5

14.5
8.0
11.5
15.0
13.0
12.4
8-15

155 15.0
155 5.0
129 12.5
109 12.0
339 15.0
80 12.5
161.2 12.0
80-339 5-15
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Figure 27

The AUC for serum GH following GHRH (100 |ag, iv) plus placebo in six male
volunteers from each of six decades (20 - 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69, > 70 yr).
Values are means ± SEM.
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Figure 28

The AUC for serum GH following GHRH (100 jug, iv) plus pyridostigmine (120 mg,
oral) in six male volunteers from each of six decades (20 - 29, 30 - 39, 40 - 49, 50 - 59,
60 - 69, > 70 yr). Values are means ± SEM.
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Figure 29

The mean serum GH response to GHRH (100 pg, iv) plus pyridostigmine (120 mg, oral)
or placebo in six male volunteers from each of six decades (20 - 29, 30 - 39, 40 - 49, 50 -

59, 60 - 69, > 70 yr). Error bars not shown.
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Figure 30

The mean serum GH response to GHRH (100 pg, iv) plus pyridostigmine (120 mg, oral)
or placebo in six male volunteers from each of six decades (20 - 29, 30 - 39, 40 - 49, 50 -

59, 60 - 69, > 70 yr). Error bars not shown.
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THE EFFECT OF PRE-TREATMENT WITH DEXAMETHASONE ON THE

GH RESPONSE TO INTRAVENOUS GHRH

Eight healthy non-obese male volunteers were studied on three occasions in random order.

The three limbs of the study were placebo-placebo-GHRH [experiment 1],

dexamethasone-pyridostigmine-GHRH [experiment 2] and dexamethasone-placebo-GHRH

[experiment 3]. The dexamethasone administration and GHRH tests were performed in the

manner described in the previous chapter. All studies were carried out at a minimum of

weekly intervals in a randomized double-blind manner. The details of the subjects are

given in Table 16.

Pretreatment with 2 mg dexamethasone at 6-hourly intervals for 48 h (experiment 3)

produced a clear and significant attenuation in the AUC for GH response to GHRH

compared with placebo treatment (634 ±211 vs 4267 ±1183 mU.min/1, Wilcoxon test p

< 0.02). The AUC for the GH response to GHRH after dexamethasone was significantly

greater when preceded by 120 mg pyridostigmine rather than placebo (1938 ± 631 vs 634

±211 mU.min/1, Wilcoxon test p < 0.02). However, the response to GHRH was still

significantly less after dexamethasone and pyridostigmine than in the placebo control study

(1938 ±631 to 4267 mU.min/1 ± 1183, p < 0.02). The effect of 48 h of dexamethasone or

placebo and pyridostigmine or placebo on the GH response to GHRH for each of the

experiments is shown in Figures 31 and 32.
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All subjects experienced transient facial flushing with GHRH and two subjects complained

of nausea with pyridostigmine, but no side-effects were encountered with dexamethasone.

In summary, in normal volunteers 8 mg per day of oral dexamethasone inhibits the GH

response of GHRH. 120 mg pyridostigmine partially reverses the inhibitory defect of

dexamethasone on GH secretion, indicative that dexamethasone-induced inhibition ofGH

may be at least in part somatostatin mediated. The dose of pyridostigmine which can be

used is restricted by side-effects. It is possible that the effect of dexamethasone might be

fully reversed by a larger dose of pyridostigmine.
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Table 16

The age, weight, height and body mass index of the 8 subjects receiving dexamethasone

SUBJECT AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)
1 35 66 1.78 20.8
2 24 60 1.66 21.8
3 25 80 1.89 22.4
4 23 71 1.74 23.6
5 31 60 1.73 20.0
6 21 84 1.84 25.0
7 22 74 1.79 23.1
8 30 82 1.94 21.8
mean 26.4 72.1 1.79 22.3

range 21-35 60-84 1.66-1.94 20.0-25.0
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Figure 31

The "area under curve" for serum GH following GHRH administration in eight healthy
subjects given dexamethasone (Dex) or placebo (PI) for 48 hours with 120 mg
pyridostigmine (PD) or placebo 60 min before GHRH. Values are means ± SEM.
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Figure 32

The serum GH response to GHRH (100 pg) in eight subjects given dexamethasone
(Dex) or placebo (PL) for 48 hours with 120 mg pyridostigmine (PD) or placebo 60 min
(first arrow) before the GHRH (second arrow). Means ± SEM are shown.
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A COMPARISON OF THE GH RESPONSE TO GHRH(1-29)NH2 AND A

SYNTHETIC GHRH ANALOGUE (DC-21-346) IN HEALTHY VOLUNTEERS

The GHRH analogue DC-21-346 had not previously been administered to a human.

Therefore, it was necessary to perform a preliminary dose-finding study. Three subjects

received intravenous doses of 1, 5, 10, 100 and 200 pg and subcutaneous doses of 50 and

100 pg DC-21-346 (Figures 33, 34). The lack of GH response to DC-21-346 at doses of

1, 5 and 10 pg established the need for larger doses to be used and given intravenously for

the principal study, hence doses of 50, 100 and 200 pg of DC-21-346 were adopted.

Eight healthy non-obese male volunteers were studied on four occasions. Each subject

received DC-21-346 at three doses 50, 100 and 200 pg plus on a further occasion 100 pg

GHRH(1-29)NH2. The DC-21-346 and GHRH tests were performed in the manner

described in the Methods chapter. Studies were carried out at a minimum of seven day

intervals in a randomized double blind manner determined by a Latin square. The details

of the subject are given in Table 17.

The GH response to DC-21-346 was very variable and consequently no statistically

significant difference existed in the AUC or peak GH response between 100 pg GHRH and

50, 100, 200 pg DC-21-346 (Table 18; Figures 35 and 36). There was a trend towards a

greater response to 100 pg than 50 pg DC-21-346, the former response being comparable

with that seen with 100 pg GHRH. However, the AUC for 200 pg was less than the
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response to 100 pg DC-21-346. Similarly, in the pilot study, the greatest response was seen

in the two subjects when they received 100 pg DC-21-346 and both had a more modest GH

response to 200 pg (Figure 33).

The only side-effects encountered with DC-21-346 were short-lived flushing and

tachycardia. Subjectively, the flushing experienced with DC-21-346 was more severe than

with GHRH.

In summary, in healthy volunteers an intravenous bolus of 100 pg DC-21-346 was

approximately equipotent with 100 pg of GHRH(1 -29)NH2.
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Table 17

Age, weight, height and body mass index of subjects receiving DC-21-346

SUBJECTS AGE WEIGHT HEIGHT BMI

(years) (kg) (m) (kg/m2)
1 30 78.9 1.74 26.1
2 26 70.1 1.76 22.6
3 29 75.6 1.83 22.6
4 24 60.0 1.66 21.8
5 26 68.1 1.79 21.2
6 24 73.5 1.77 20.7
7 22 76.8 1.86 22.2
8 21 82.0 1.89 22.9
MEAN 25.3 73.1 1.78 22.5
RANGE 21-30 60.0-82.0 1.66-1.89 20.7-26.1

Table 18

The mean "area under the curve" for serum GH following either 50, 100, 200 |4g ofDC-

346 and 100 jig GHRH (mean ± range shown)

GHRH DC-21-346

100 jig 50 jig 100 jig 200 jig

MEAN (mU.min/1) 403.3 157.7 481.1 282.8

RANGE 90- 885 65 -309 96- 1552 145 -462
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Figure 33

Serum GH responses, in individual subjects, to intravenously administered 1, 5, 10, 100
and 200 pgDC-21-346.
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Figure 34

Serum GH responses, in individual subjects, to subcutaneously administered 50 and 100
pgDC-21-346.
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The mean "area under the curve" for serum GH following either 50, 100, 200 (jg of DC-
21-346 and 100 gig GHRH (mean ± SEM shown).
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Figure 36

The mean serum GH response to intravenously administered GHRH (100 pg) or DC-
21-346 (50, 100 and 200 pg) in eight healthy subjects (error bars not shown).
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DISCUSSION

THE EFFECT OF SUBCUTANEOUS RECOMBINANT IGF-I (rhIGF-I 40 pg/kg)

ON ANTERIOR PITUITARY FUNCTION

This study was designed to investigate the effect of rhIGF-I on basal anterior pituitary

function using a dose (40 pig/kg) which was unlikely to cause hypoglycaemia. This dose

was sufficient to raise the circulating levels of bioactive IGF by 60%, and resulted in

changes in plasma insulin, C-peptide and TSFI.

The fall seen in plasma IGF-II following rhIGF-I administration has been reported

previously (Walker et al. 1991; Guler et al. 1989). IGF-I and -II have similar affinities to

IGFBP-3 and the fall in IGF-II is probably due to the displacement of IGF-II by IGF-I from

the IGFBPs, principally IGFBP-3 (Martin & Baxter, 1986), with the dislodged non protein-

bound IGF-II then subject to rapid clearance from the circulation.

As discussed in the Introduction, IGF-I can autoregulate its own secretion by acting on the

hypothalamo-pituitary axis to modulate GH secretion. In vitro, IGF-I is involved in the

feedback regulation of GH secretion, with reported effects on both the hypothalamus and

pituitary. Berelowitz et al. (1981) demonstrated that isolated rat hypothalami incubated

with highly purified natural somatomedin-C released somatostatin in a dose-dependent

manner. Studies on the effect of IGF-I on GHRH secretion have produced contradictory
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results (Aquila, 1991; Shibasaki et al. 1986). Both GH mRNA and secretion are reduced

by incubation with highly purified somatomedin-C (Berelowitz et al. 1981; Yamashita &

Melmed, 1986). Further, when given intracerebroventricularly (icv), highly purified

somatomedin-C has been shown to inhibit GH secretion in conscious rats (Tannenbaum et

al. 1983; Abe et al. 1983). However, it is now believed that the preparations of highly

purified somatomedin-C used in many of these early experiments, contained both IGF-I and

-II. In contrast, icv recombinant IGF-I, in doses up to 10 pg, failed to alter GH secretion

in rats. Likewise, icv recombinant IGF-II did not inhibit GH secretion. However, 1 pg IGF-

I administered icv with 1 pg IGF-II resulted in a significant inhibition of GH secretion

(Harel & Tannenbaum, 1992b; Harel & Tannenbaum, 1992a). The synergy of centrally

administered IGF-I and -II in inhibiting GH secretion in rats underlines the importance of

the hypothalamus in the regulation ofGH secretion, possibly via modulating somatostatin

secretion.

In a study of two euglycaemic men, a subcutaneous infusion of rhIGF-I at 20 pg/hr/kg

inhibited nocturnal and GHRH-induced GH secretion in one of the subjects (Guler et al.

1989). Likewise, plasma GH levels were inhibited in a single subject with Laron's

syndrome by an infusion of up to 24 pg/kg/hr of rhIGF-I (Walker et al. 1991). Cotterill et

al. (1993a) demonstrated, in two children with Laron's syndrome, inhibition of GH

secretion in the hours immediately after 120 pg/kg rhIGF-I subcutaneously. The inhibition

was short-lived as the low IGFBP-3 levels associated with Laron's syndrome resulted in

rapid clearance of rhIGF-I from the plasma. An intravenous infusion of 10 pg/kg/hr to

144



DISCUSSION

fasted normal volunteers, during euglycaemic clamps, resulted in suppression of GH

secretion rates within 60 minutes, by which time total plasma IGF-I levels were increased

1.6 fold (Hartman et al. 1993). However, the interpretation is complicated by the increase

in GH secretion and IGFBP-1 associated with fasting (Cotterill et al. 1993b). The lack of

effect of IGF-I on GH secretion in this study in normal volunteers is in accordance with the

results ofMiell et al. (1992): using the same dose of subcutaneous rhIGF-I, they failed to

demonstrate a change in GH secretion in patients catabolic after surgery.

It is probable that rhIGF-I, in larger doses than used here (Hartman et al. 1993), may inhibit

GH secretion, but the route of administration may also be important. The slower entry of

subcutaneously administered IGF-I may avoid saturating the binding capacity of the IGF-

BPs although ultimately more IGF-I is available for release to target tissues. The increase

in IGF bioactivity, without concurrent hypoglycaemia, supports this contention and

contrasts with the uniformly hypoglycaemic effect seen in studies using intravenously

administered IGF-I. The potentiation by rhIGF-I of the GH response following GHRH has

not previously been reported. The potentiation of the GHRH response may be the result

of either IGF-I induced inhibition of hypothalamic GHRH secretion or increased

hypothalamic somatostatin secretion with a consequential accumulation of GH within

somatotrophs that is then released in response to synthetic GHRH. The effect of the

recombinant IGF-I on the secretion of these hypothalamic peptides must be subtle as no

change in spontaneous GH secretion could be discerned. This area requires further

exploration.

145



DISCUSSION

While GH, prolactin, LH and FSH levels or patterns of pulsatility did not change, there was

a significant reduction in plasma TSH of the order of 30% (Figures 8, 9, 10, 12 and 15).

This has previously been reported in adults with Laron's syndrome as well as in healthy

volunteers (Laron et al. 1990; Lieberman et al. 1992).

Reduced TSH secretion might have been a consequence of IGF-I acting on the

hypothalamus to stimulate secretion of somatostatin, an important regulator of TSH

secretion (Hall et al. 1973). This seems unlikely however because no associated change

in GH was seen. A more plausible possibility is a peripheral action of IGF-I to increase

conversion of T4 to T3, with T3 being the more active at the hypothalamus and pituitary to

inhibit TSH secretion. In support of the latter hypothesis, Salomon and colleagues (1989)

observed that in GH-deficient adults treated with GH, several subjects on fixed doses of

thyroxine replacement therapy developed symptoms of thyrotoxicosis associated with a rise

in plasma T3. In a group of normal subjects given 0.125 mg GH daily for 4 days, a fall in

plasma TSH and T4 and a rise in T3 was seen (Grunfeld et al. 1988), a finding confirmed

by Jorgensen et al. (1994). Similar changes in thyroid function plus an increase in

metabolic rate have been reported with one week of rhIGF-I therapy in normal volunteers

(Zenobi, 1993). No change was seen in our study, however, in plasma free T4 and free T3.

This may be indicative that any change in the values of plasma thyroid hormones, with the

limitation of free thyroid hormone assays, may be too small to detect by 24 hours.

Tachycardia on commencing rhIGF-I therapy has been reported and may be indicative of

mild transient thyrotoxicosis (Vasconez et al. 1994). The effects of IGF-I on thyroid
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function need to be further studied. For example, changes in thyroid function may account

for alterations in lipid profiles with IGF-I therapy and thyroid dysfunction itself alters

IGFBPs (Miell et al. 1993).

Recombinant IGF-I did not alter plasma ACTH or Cortisol. All subjects had a plasma

Cortisol of < 50 nmol/1 at some point between 24.00 h and 02.00 h (Figures 13, 14).

Plasma insulin and C-peptide levels fell in parallel following rhIGF-I and in the absence

of any change in blood glucose (Figures 7, 16 and 17). Suppression of insulin secretion in

the absence of hypoglycaemia has been reported previously (Guler et al. 1989; Walker et

al. 1991; Lieberman et al. 1992) and Boulware et al. (1992) demonstrated insulin

suppression during a 5 mmol/1 euglycaemic clamp in subjects receiving an intravenous

infusion of 20 pg/kg/hr rhIGF-I. It is difficult to differentiate between the relative

influences of increased glucose clearance caused by IGF-I (Moxley et al. 1990; Jacob et

al. 1989) and a secondary fall in plasma insulin from a direct effect of IGF-I on pancreatic

islet cells to inhibit insulin secretion in vitro, as has been shown by Leahy and

Vanderkerkhove (1990). Fifty pg/kg rhIGF-I eight hourly in lambs resulted in a small but

significant rise in blood sugar presumably secondary to the documented suppression of

insulin secretion (Cottam et al. 1992), and similarly Walker et al. (1991) noted post¬

prandial hyperglycaemia in a single patient with Laron's syndrome, treated by a continuous

intravenous infusion of IGF-I. Hyperglycaemia in combination with low plasma insulin

levels suggests that IGF-I inhibits insulin secretion in vivo. In our study, there was no
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evidence of hyperglycaemia.

Circulating IGFBP-3 is principally hepatic in origin and is quantitatively the most important

of the IGF-I binding proteins (Blum et al. 1990). Plasma levels are regulated by GH and

it is therefore not surprising that, in the absence of an effect of rhIGF-I on GH secretion,

IGFBP-3 levels do not change. Plasma IGFBP-1 levels are inversely related to circulating

insulin levels and therefore an increase would be expected secondary to the inhibition of

insulin secretion by rhIGF-I seen in this study (Darendeliler et al. 1990; Holly et al. 1988).

That no change was observed in IGFBP-1 may reflect the fact that insulin levels only fell

by 30%, and a corresponding increase in IGFBP-1 is unlikely to be detected on Western

ligand blotting (Table 6, Figure 18).

In conclusion, our data confirm 40 pg/kg of rhIGF-I subcutaneously does not cause

hypoglycaemia, but increases IGF bioactivity. The data support the belief that IGF-I acts

directly to inhibit insulin secretion. No changes were seen in anterior pituitary function

other than a fall in plasma TSH. The influence of rhIGF-I on thyroid function requires to

be studied further. The GH response to GHRH was enhanced 24 hours after the IGF-I

administration. There was no evidence ofGH suppression at any time during the study.
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THE INFLUENCE OF PYRIDOSTIGMINE ON GROWTH HORMONE

SECRETION

Pyridostigmine has been extensively used in this research to modulate GH secretion. As

alluded to in the introduction, pyridostigmine is thought to act on cholinergic neurones to

inhibit somatostatin secretion and hence stimulate GH secretion. Appreciation of the

importance of the cholinergic nervous system in the regulation of GH secretion was

hindered by the observation that the cholinergic antagonist, atropine, did not block the GH

response to hypoglycaemia (Blackard & Waddell, 1969). However, the significance of

cholinergic neurones in the regulation ofGH secretion was established by subsequent in

vitro and vivo experiments. The addition of acetylcholine to rat hypothalamic segments

inhibits somatostatin release (Richardson et al. 1980). In vitro in rats, the ability of

cholinergic drugs to influence GH secretion is lost following pretreatment with the

somatostatin-depleting drug, cysteamine, or anterolateral deafferentation of the mediobasal

hypothalamus (Locatelli et al. 1986). In man, pyridostigmine augments and atropine

abolishes the GH response to GHRH. However, atropine applied directly to cultured

anterior pituitary cells is unable to inhibit the effect of GHRH, indicative that the

cholinergic effect on GH secretion is not at the level of the pituitary (Massara et al. 1986a;

Casanueva et al. 1986). The median eminence is the probable site of the cholinergic-

somatostatinergic neuronal interaction. Both somatostatin nerve terminals and muscarinic

cholinergic receptors are present in the median eminence which lies outwith the blood brain

barrier, allowing systemically administered drugs, such as pyridostigmine , to demonstrate
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their pharmacological properties on the neurones of the median eminence (Epelbaum et al.

1981; Morley et al. 1977).

Physostigmine, an extract of the calabar bean, was the first reversible acetylcholinesterase

inhibitor to be identified. Kleinwachter (1864) described its use as an antidote to atropine

poisoning, and the initial report of its value in mysthaenia gravis was published in 1934

(Walker, 1934). Therapeutically, physostigmine has been superseded by the synthetic

muscarinic cholinergic agonists pyridostigmine and neostigmine. They are both quaternary

ammonium compounds and as such unlikely to cross the blood-brain barrier (Borland et al.

1985). The peak plasma concentration of pyridostigmine occurs 1 - 2 hours after oral

administration (Aquilonius et al. 1980). Side-effects encountered with pyridostigmine are

dose related: gastro-intestinal cramps or diarrhoea, nausea, sweating and excess salivation.

In patients with mysthaenia gravis overdosage results in increased muscle weakness. The

side-effects encountered in the subjects reported here were limited to minimal gastro¬

intestinal disturbance.

The standard dose of pyridostigmine used in studies ofGH secretion in adults is 120 mg

(Ghigo et al. 1990c; Ghigo et al. 1990e; Ross et al. 1987d; Penalva et al. 1989; Corsello

et al. 1992). Barbarino et al. (1991) demonstrated in men that the effect of pyridostigmine

on GH secretion is dose-dependent between 30 and 120 mg, without any evidence of

plateauing at the top dose studied. Castro et al. (1990) showed a greater peak GH response

following 180 mg pyridostigmine than with 120 mg in obese subjects, although this did not
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reach statistical significance because of the limited numbers tested. Evidence exists that

150 and 180 mg pyridostigmine stimulate greater secretion ofGH than 120 mg (G. Delitala,

personal communication). However, more detailed investigation of this, and adoption of

a larger dose in clinical studies, has been limited by the side-effects. Hence, the dose of

pyridostigmine discussed here, 120 mg, is not at the top of the dose-response curve but is

rather the maximum tolerable dose. This is important in considering the results presented,

as the influence of somatostatin on GH secretion is only partially modulated by 120 mg

pyridostigmine.
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THE RELATIONSHIP OF GROWTH HORMONE TO LINEAR GROWTH

The regulation of growth is complex and many factors determine growth velocity and final

height. The rudimentary observation that children with GH-secreting pituitary adenomas

become "giants", demonstrates a quantitative relationship between growth velocity and GH

secretion. However, on more detailed scrutiny the relationship is more complex and non¬

linear. In children with GHD, doubling the dose ofGH (10 to 20 mIU/1 or 30 to 60 mIU/1)

increases linear growth velocity only 1.3 fold (Preece et al. 1976; Frasier et al. 1981).

Detailed study of the relationship of growth velocity and GH dose indicates a log-linear

response, ie growth velocity increases in a linear fashion as a function of the logarithm of

the dose (Frasier et al. 1981). The contribution ofGH to final height accounts for less than

33% of adult height. Children with either absolute GHD or GH resistance, eg Laron's

syndrome, attain a final height of approximately 110 - 140 cm; the mean male adult height

in Britain is 175 cm. Many factors, in addition to GH, play a role in determining growth

velocity and final height, some being clearly defined and understood, while others are just

starting to be considered.

The influence of sex steroids on growth has long been known. Growth rate is maximal at

puberty and syndromes of sex steroid deficiency and excess are associated with aberrant

growth patterns. Sex steroids regulate growth by two means; a quantitative effect on GH

secretion and a direct effect on bone. Mean adult height is 13 cm greater in men than

women. Therefore, it might appear paradoxical that young women secrete more GH than
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men. Thompson (1972a) was the first to demonstrate integrated GH secretion to be greater

in young women than men ofcorresponding age. More recently, Ho et al. (1987) confirmed

these findings and revealed a greater decline in total and pulsatile GH in older women than

men. GH secretion correlated with plasma oestradiol levels. Similarly, the GH response

to arginine and insulin-induced hypoglycaemia is larger in women, and oestrogens, but not

androgens, result in an augmented response to these stimuli (Merimee et al. 1969; Merimee

& Fineberg, 1971). Likewise, oestrogen therapy increases the GH response to exercise,

arginine and hypoglycaemia (Frantz & Rabkin, 1965; Wiedemann et al. 1976; Merimee et

al. 1969).

In men, no relationship exists between spontaneous or stimulated GH secretion and plasma

testosterone levels (Butenandt et al. 1976; Thompson et al. 1972b; Ho et al. 1987).

However, pretreatment with testosterone has been variously reported to increase and

alternatively to have no effect on GH secretion in response to arginine and hypoglycaemia

(Illig & Prader, 1970; Martin et al. 1968; Merimee et al. 1969). A possible explanation of

these apparently contradictory results comes from studies using oxandrolone, a synthetic

derivative of testosterone which has a higher anabolic to androgenic ratio compared to that

of testosterone (Fox et al. 1962). Link et al. (1986) compared, in peripubertal boys, the

effect of testosterone and oxandrolone on 24 hour GH profiles. GH secretion increased 4.3

fold from baseline in the testosterone-treated boys but no change was seen in the

oxandrolone-treated group. Bierich (1983) also failed to demonstrate an increase in mean

24 hour GH secretion with oxandrolone therapy. Oxandrolone, in contrast to testosterone,
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cannot be aromatised to 17P-oestradiol. It is probable that the increased GH release

following testosterone therapy is the result ofa secondary increase in plasma 17P-oestradiol

levels. A physiological role for oestrogens in the male pubertal growth spurt is supported

by the correlation between integrated GH concentrations and plasma oestradiol levels,

while no correlation exists with testosterone levels (Ho et al. 1987; Thompson et al. 1972b;

Butenandt et al. 1976). Further, evidence for the importance of the oestrogens in contrast

to androgens is from the androgen resistance syndrome. These phenotypic females, but

with a XY karyotype, have normal physiological male levels of oestradiol, secondary to

aromisation, and a normal pubertal growth spurt again indicating the role of oestrogens

rather than androgens in regulating growth in males (Zachman et al. 1986).

The elevated plasma androgen levels ofuntreated or inadequately treated congenital adrenal

hyperplasia result in premature epiphyseal fusion and consequent short stature; mean adult

height is 153 cm in men and 150 cm in women in untreated patients (Klingensmith et al.

1977; Urban et al. 1978). Children with syndromes associated with hypogonadism, such

as Kallman's and Klinefelter's syndrome, have normal prepubertal growth but lack a

pubertal growth spurt. However, final height is increased secondary to delayed epiphyseal

fusion. These examples do not clarify whether it is androgens per se or aromatisation-

derived oestrogens that regulate epiphyseal fusion. Insight can be gained from the report

of a man with end-organ resistance to the effects of oestrogens, secondary to a mutation of

the oestrogen receptor, with elevated plasma oestradiol levels and normal androgen levels.

At 28 years of age he was 204 cm tall with a bone age of 15. His upper to lower body
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segment ratio was 0.88 (normal 0.96) and the limited auxological data available suggests

that he did not have a pubertal growth spurt (Smith et al. 1994). Many lessons can be

learned from this case. The delayed epiphyseal fusion in this male with normal plasma

androgens is indicative that, in males as well as females, epiphyseal fusion is an oestrogen-

dependent process. The abnormal body proportion is comparable with that seen in

syndromes of hypogonadism, such as Klinefelter's and Kallman's. The pubertal spurt in

sitting height is predominantly sex steroid dependent and GH independent, while the

increase in leg length is GH dependent (Copeland et al. 1977). The lack of a pubertal

growth spurt is further evidence of the importance of oestrogens in the pubertal growth

spurt in males (discussed above).

Evidence for a GH independent action of androgens on linear growth is limited. In the

studies of oxandrolone, described above, an increase in growth velocity was documented

in the absence of increased GH secretion (Link et al. 1986; Bierich, 1983). There is no

evidence that androgens are involved in the regulation of growth in females.

Adequate nutrition is paramount in ensuring optimal linear growth. The best studied

example of the influence of nutrition on growth of a population group is the Japanese

experience since the Second World War. Improved nutrition between 1948 and 1978

resulted in a mean increase in the height of a Japanese six year old of 6.7 cm. At times of

calorie shortage, nutrition is the most important factor in promoting the linear growth.

Evidence indicates that the Japanese have reached their maximal height but remain on
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average approximately 7 cm shorter than Europeans and Americans (Murata & Hibi, 1992).

The difference is probably the consequence of as yet unidentified genetic factors.

Genetic factors underlying racial differences in height are important determinants of final

height, although the relative contributions of genes and environment can be difficult to

determine. The Pygmy race is synonymous with short stature. Pygmies have a normal

plasma GH response to hypoglycaemia but the plasma IGF-I response to a fixed dose ofGH

is impaired; plasma IGF-I and GHBP levels are low, indicative of an abnormality of the GH

receptor or related second messenger pathways (Merimee et al. 1989; Merimee et al. 1990;

Rimoin et al. 1967; Baumann et al. 1989b). The Mountain Ok people of Papua-New

Guinea are almost as short as the Pygmies but have normal plasma IGF-I levels and low

GHBP, indicative of a different defect in the growth axis (Baumann et al. 1991). Each

level of the GH axis; the GH receptor, GHBP, the ability to generate IGF-I, the IGF-BP,

the IGF-I receptor, is a potential site for racial variation and by extrapolation may contribute

to the variation in the general population. Gross abnormalities, eg Laron's syndrome, result

in a clear phenotype; more subtle defects are less readily identified. The IGF-I generate

test, which measures the IGF-I response to a standard dose of GH, is an attempt to

recognise more elusive genetic anomalies (Cotterill et al. 1994). The persistence, after

correction of dietary deficiencies, of a difference in final height between Japanese and

Europeans may be a consequence of the adolescent growth spurt occurring younger age in

the Japanese (Murata & Hibi, 1992). The underlying trigger to this phenomenon is not

understood but probably is genetic rather than environmental. The importance of non-GH
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axis genetic factors are even more difficult to quantitate. Ogata and Matsuo (1993) showed

that the final height of patients with sex chromosome aberrations is defined by the dosage

of pseudoautosomal and Y-specific growth genes. It must be envisaged that genetic

studies such as these will ultimately cast light on the non-GH cellular events regulating

growth.
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A COMPARISON OF QUANTITATIVE GROWTH HORMONE SECRETION

BETWEEN TALL (k 183 cm) AND SHORT (< 166 cm) YOUNG MEN

In the study reported in this thesis, the relationship of GH secretion to final height was

explored by comparing quantitative GH in a group of tall (> 90th centile) and short (> 10th

centile) young men. The subjects were healthy, post-pubertal, endocrinologically normal

men between the ages of 18 and 27. Adults were studied in preference to children/juveniles

for three reasons. Firstly, it is extremely difficult to gain access to a group of truly normal

healthy children, particularly a group of tall and short children. Secondly, by studying a

younger group defined by height, growth velocity, age and pubertal stage would be

variables. Such a design would also fail to answer the intrinsic question of the relationship

ofGH secretion to final height. In addition, as others have noted, it is extremely difficult

for ethical reasons to study normal children (Hindmarsh et al. 1987), particularly, as

insulin-induced hypoglycaemia, in inexperienced hands, has resulted in children's deaths

(Shah et al. 1992).

A potential drawback in studying adults, would exist if there is any change in GH secretion

between puberty and maturity. Linear growth does not stop due to reduced GH secretion,

but rather as a result of fusion of the long bone epiphyses. No apparent difference exists

in the GH response to pharmacological stimuli between puberty and the age range of this

study. As demonstrated in this thesis, the GH response to GHRH falls with age, but is

unlikely to be significant by the age of 27. The GH response to insulin-induced
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hypoglycaemia is unaltered in middle-aged men compared to younger subjects

(Wakabayashi et al. 1986; Kalk et al. 1973).

Studies of spontaneous GH secretion have, with near uniformity, indicated an age-related

decline. Alone, Dudl et al. failed to demonstrate a decline in GH secretion with age, a

result at odds with all other groups (Prinz et al. 1988; Dudl et al. 1973; Carlson el al. 1972;

Finkelstein et al. 1972; Rudman et al. 1981; Ho et al. 1987). Data on changes in

spontaneous GH secretion between the end ofpuberty and the age of subjects in this study

are very limited. Zadik and colleagues in two studies of integrated concentration of GH

(IC-GH) secretion studied 292 subjects between 7 and 65 years of age. No decline was

noted in IC-GH before 18 years of age (Zadik et al. 1990b). Although IC-GH fell with age,

normal stature men and women may retain GH levels typical of puberty into the third

decade of life, despite completing puberty and achieving final height (Zadik et al. 1985).

In conclusion, although IC-GH has its limitations, it seems reasonable to believe no

significant age related decrease in spontaneous GH secretion will have occurred yet in the

subjects studied here.

The optimal manner of assessing GH secretion is controversial. Prior to the availability of

recombinant GH, pharmacological tests of GH secretion were used to determine the

eligibility of short children for treatment with cadaveric GH. The eligibility criteria related

"supply and demand" rather than any biological markers ofgrowth. Historically, a "normal

response" meant GH therapy was not indicated. Clonidine, levodopa, arginine, exercise,
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GHRH and insulin-induced hypoglycaemia all have their proponents as tests ofGH reserve.

All these tests are pharmacological rather than physiological tests of GH secretion, and

although capable of identifying children with short stature due to severe GHD, are less good

at discriminating between normal and children with short stature (Donaldson et al. 1991;

Gelato et al. 1986; Hindmarsh et al. 1987).

A more physiological approach to the assessment of GH secretion is to measure

spontaneous secretion over time. Two strategies exist for measuring 24 hour growth

hormone levels: the measurement ofGH on discrete samples collected at fixed intervals,

eg 20 minutes as in this study, or measurement on continuously drawn samples, eg each

sample being drawn over thirty minutes and aliquots of each being pooled to calculate an

integrated concentration of GH. IC-GH measurement is performed with a continuous

withdrawal pump and hence is less laborious for the investigator and less disruptive for the

subject, but has the major disadvantage of not allowing GH pulsatility to be studied. The

optimal frequency of discrete blood samples for GH is controversial. Evans and colleagues

demonstrated that five-minute sampling identified more pulses than either fifteen or twenty

minute samples (Evans et al. 1987), while Holl et al. (1991) showed that a sampling

frequency of thirty seconds further enhanced pulse identification. The biological

significance of micropulses remains to be determined.

The results of two 24 hour integrated concentrations of GH from different occasions

correlate better than the results of repeated provocative pharmacological stimulation tests
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(Zadik et al. 1990a). However, reproducibility of results is also a problem with secretion

profiles; pooled overnight GH samples in children with short stature showed a between-

night variation of -62 to +162% (Donaldson et al. 1989). Albertsson-Wikland and

colleagues (1992) obtained two 24 hour GH profiles in nine prepubertal children with a

mean interval of 1.5 years between samples. As a group no differences existed between the

initial and repeat sampling; however the number and amplitude of peaks varied in

individuals by ± 30% and it was concluded that one must have "a sound scepticism relating

biological phenomena to a single profile of an individual child".

Although GH profiles are a more physiological test of GH secretion than provocative

stimuli, they offer little diagnostic advantage when evaluating a short child. Rose et al.

(1988) identified a group of short children with low stimulated GH values and normal mean

24 hour GH concentrations and concluded that GH profiles were inferior to

pharmacological tests. Alternatively, it has been argued that stimulated GH values may

underestimate spontaneous GH secretion (Donaldson et al. 1991; Siegel et al. 1984;

Plotnick et al. 1979). This controversy largely revolves around relating biological

phenomena to "normal ranges". It is extremely difficult, for ethical reasons, to obtain

reference ranges from a truly normal cross-section of children. The situation is further

complicated by differences in response depending on pubertal stage. The difficulty in

selecting children, particularly those with milder GH insufficiency, for GH therapy based

on pharmacological criteria, is reflected in the trend towards greater reliance on height and

growth velocity (Brook, 1992).

161



DISCUSSION

For the purposes of this study, to maximise information growth hormone secretion was

assessed under four conditions. All subjects underwent testing with insulin-induced

hypoglycaemia as this is both a potent stimulus and a widely used test ofGH reserve. The

GH response to GHRH was used as a measure of the readily releasable pool ofGH. GHRH

was combined with pyridostigmine to gauge the contribution of cholinergic tone to GH

secretion. Spontaneous overnight (9 hour) GH profiles, with a sampling interval of 20

minutes, were performed as a measure of spontaneous GH secretion. A sample interval of

20 minutes was chosen as it allows identification ofmajor GH pulses.

In this study, no difference existed in the GH response to hypoglycaemia or GHRH with

and without pyridostigmine between the tall and the short groups (Figures 19, 20 and 21),

consistent with the observations, discussed above, that pharmacological tests are poor at

discriminating between short and normal individuals. No consensus exists as to the

minimum stimulated GH response in a short child needed to exclude GH insufficiency, but

20 to 30 mU/1 are commonly suggested cut-offs. It is noteworthy that the mean GH

response, in this study, to hypoglycemia was 106 mU/1 (range 30 - 195) and to GHRH

without pyridostigmine 59.6 mU/1 (range 2.6 to 233) and 126 mU/1 (range 23 - 233) with

pyridostigmine.

The only previous study to relate the GH response to GHRH to final height reported a

greater response in tall subjects compared to controls of average height. Batrinos and

colleagues (1989) documented a greater response in a group of 20 tall (height > 187 cm)
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members of the Greek Presidential Guard compared to 17 civilians of normal stature

(height range 171 - 177 cm). The data contained in this thesis are at odds with Batrinos'

results. Differences in variables such as diet, body fat and physical fitness between civilian

volunteers and members of the Presidential guard may explain the discrepancy. Percentage

body fat and physical fitness are known to influence GH secretion (Weltman et al. 1994)

and Hagberg et al. (1988) improved the GH response of an elderly cohort with 12 weeks

of treadmill training. In keeping with the data presented here, Gelato et al. (1986)

performed GHRH tests in normal children and failed to document a relationship between

GH response and height.

The results of both insulin tolerance and GHRH tests support the data from children that,

excluding those with severe growth hormone deficiency, pharmacological tests are poor at

discriminating between short and tall normal individuals.

This is the first study to relate final height to spontaneous GH secretion. Previous studies

have related quantitative GH secretion, growth velocity and pubertal status before final

height has been achieved. In a group of 119 children of normal stature, ranging between

Tanner stages I and V, no correlation existed between growth rate and 24-hour IC-GH;

however, pulses cannot be analysed by this technique (Zadik et al. 1990b). This is

consistent with the lack of a difference in area under the curve for the nine hour overnight

sampling period in this study. In both children and adults, a large proportion of GH

secretion occurs within 2 hours of the onset of sleep (Quabbe et al. 1966; Takahashi et al.
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1968; Honda et al. 1969; Eastman & Lazarus, 1973; Parker et al. 1969). The lights-out

time, for subjects in this study, was 22.30 h, although the subjects did not instantly fall

sleep. The area under the curve for GH secretion during the period of maximal GH

secretion (24.00 h - 03.00 h) appears greater in the tall subjects (Table 10, Figure 22),

although failing to reach statistical significance. Hindmarsh and colleagues (1987), in a

study of poorly growing prepubertal children, noted an asymptotic relationship between

height velocity (expressed in terms of a standard deviation score) and the sum ofGH pulse

amplitudes. Stated a different way, faster growing subjects secreted more GH than slower

growing subjects but the range is a continuum with no dividing point between a short and

normal child. The population studied was very different from ours, the fast growing child

had an SDS of+ 0.4 and the subjects were subdivided on the basis of the growth hormone

response to hypoglycaemia, < 7 mU/1, < 15 mU/1 and > 15 mU/1. This contrasts with the

mean response in our subjects of 106 mU/1. At the opposite end of the growth spectrum,

Albertsson-Wikland (1983) noted children growing at +2 SDS secreted more GH than short

children. Mean pulse amplitude data from this study were interesting, with tall subjects

secreting more (mean 20.3 mU/1 ± SEM 3.4 v 13.6 ± 2.8) although the difference did not

reach statistical significance.

In conclusion, this study was designed to explore the relationship of quantitative GH

secretion to final height. Dynamic stimulation tests were unable to discriminate between

the tall and short groups of subjects, indicative of the limitations of the diagnostic value of

these tests. Assessment of nocturnal GH secretion was interesting. Although no difference
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existed in the area under the curve for GH secretion for the total sampling period, there was

a suggestion that in the tall subjects the area under the curve for the period midnight and

03.00 h and the mean pulse amplitude for the nine hour sampling period were greater,

although neither reached significance. However, it must be concluded that no significant

difference in GH secretion dynamics could be detected between the tall and short healthy

young men in this study.
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THE GH RESPONSE TO GHRH IN MEN AND WOMEN, AND IN WOMEN AT

DIFFERENT STAGES IN THE MENSTRUAL CYCLE

Publications are contradictory as to whether there is a difference in the GH response to

GHRH between men and women. For this reason, the studies included in this thesis, other

than this one, were confined to men. As discussed above, it is undisputed that spontaneous

and insulin-induced GH secretion is greater in young women than young men. In both

sexes, the GH response correlates with plasma oestrogen levels, in which case it might be

anticipated that if a difference exists between the sexes in the GH response to GHRH, then

variation should be seen in the menstrual cycle.

This study was designed to clarify three points not previously addressed in a single cohort,

viz., does a difference exist between men and women in the response GH to GHRH, is there

a difference in cholinergic tone between the sexes and finally, does the response to GHRH

vary during the menstrual cycle ? Eight healthy young women with regular menstrual

cycles (28 ± 2 days) and eight young men were studied. The men underwent two GHRH

tests, with and without GHRH, while the women were studied in a similar manner in early

and mid-menstrual cycle.

Several groups have previously compared the GH response to GHRH between men and

women but there has been a lack of consensus in the results. Smals et al. (1986b) reported

a greater response in men while conversely both Lang et al. (1987) and Benito et al. (1991)
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found a greater response in women. Gelato and various colleagues, in a study of

peripubertal children and in a separate study in adults, failed to demonstrate a difference

between the sexes, a finding corroborated by Arvat et al. (1993)(Gelato et al. 1984; Gelato

et al. 1986).

In this study, no difference existed in AUC or peak GH response to GHRH either between

the sexes, or in the women, at different stages of the menstrual cycle. The effect of

pyridostigmine was the same on all limbs of the study (Table 12, Figures 23, 24, 25 and

26). No relationship existed between oestradiol levels and the GH response to GHRH

(Table 13).

It is difficult to explain the contradictory results of other studies. The remarkable feature

of the Benito study is that the mean peak GH response to GHRH in the men was

approximately a quarter of that found in the women, much greater than the differences

between the sexes in the GH response to other stimuli (Merimee et al. 1969; Merimee &

Fineberg, 1971). If circulating oestrogen levels accounted for the difference, then a

variation with the menstrual cycle might be anticipated, but this was not seen (male 9.26

± 4.62 nmol/1, female day 1, 80.34 ± 23.8 nmol/1 and, day 12, 74.68 ± 20.74 nmol/1 [in

original paper stated in ng/ml, conversion factor 2]). Smals et al. alone found a greater GH

response in men. It is interesting to note that the peak GH response in the men was 82 ±

22 nmol/1, compared with 30 ± 8 nmol/1 in women (Smals et al. 1986b). The GH response

to GHRH is known to be very variable, in part due to fluctuating cholinergic and
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somatostatinergic tone and this may explain the disparate results reported (Penalva et al.

1990b).

Two previous studies have used pyridostigmine to circumvent the influence of variable

cholinergic tone on the GH response to GHRH, and reached very different conclusions.

Uniquely, Barbarino et al. (1991) reported that pyridostigmine enhanced the GH response

to GHRH in men, but had no effect in women at doses of 30, 60 and 120 mg. Another

atypical feature of this study is the authors' comment that "women taking 120 mg

pyridostigmine had more severe side-effects then men", and hence only five of the eight

female subjects received 120 mg of pyridostigmine. The data provided are generally

difficult to interpret, the AUC for the GH response to GHRH alone, for both men and

women, is presented in the form of a bar chart, but no analysis is offered. The results

presented here clearly demonstrate that pyridostigmine potentiates the GH response to

GHRH in both sexes equally (Table 12, Figures 23, 24, 25 and 26), a conclusion supported

by Arvat et al. (1993).

Merimee and Fineberg (1971) noted that the GH response to hypoglycaemia is greater pre-

and post-ovulation than during menstruation. No difference existed in the GH response in

the women studied here nor in any of the other studies that have compared the GH

response to GHRH during the menstrual cycle (Evans et al. 1984; Benito et al. 1991;

Gelato et al. 1984).
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The ability of oestrogens to augment the GH response to hypoglycaemia and arginine, but

not GHRH, requires examination. Ross et al. (1987b) treated a group of 14 prepubertal

children with stilboestrol or placebo for 48 hours on two occasions, prior to performing

insulin tolerance and GHRH tests. Stilboestrol enhanced the GH response to

hypoglycaemia, but the response to GHRH was unaltered. This implies that oestrogens act

on the hypothalamus rather than on the pituitary. Support for this conclusion comes from

rodent experiments. Data from rats indicate that oestrogen replacement therapy reverses

the decrease in hypothalamic somatostatin mRNA following oophorectomy, although the

effect on somatostatin may be indirect and mediated via oestrogen-induced changes in

catecholamine metabolism (Werner et al. 1988; McEwen, 1980).

In conclusion, the GH response to GHRH does not differ between the beginning and middle

of the menstrual cycle or between the sexes. Taken in conjunction with studies of

spontaneous and insulin-induced hypoglycaemia, oestrogens appear to exert their influence

on GH secretion at a hypothalamic level, rather than directly on the pituitary. The results

of this study imply that it is not necessary to exclude women from studies involving the

administration of exogenous GHRH and indeed that they may be studied throughout the

first 14 days of the cycle and possibly at any stage of the menstrual cycle.
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THE EFFECT OF AGE ON THE GH RESPONSE TO GHRH IN MEN

Growth hormone, as its name implies, is intimately involved in the regulation of linear

growth. However, as discussed in the introduction, GH has a multitude of actions in

addition to its effects on epiphyseal growth plates. An appreciation of the importance of

the metabolic effects of GH has come with recognition of the consequences of growth

hormone deficiency (GHD) in adults.

Patients with hypopituitarism on full conventional replacement therapy, but not GH, are

reported to have increased morbidity and mortality, specifically from cardiovascular

problems (Rosen & Bengtsson, 1990). This observation and detailed investigation of adults

with GHD has led to the description of a syndrome of adult GH deficiency (Cuneo et al.

1992). Adults with GHD are said to have depression, anxiety, reduced vitality, increased

social isolation, reduced cardiac function, increased abdominal adiposity, reduced strength

and exercise capacity and cold intolerance (Rosen et al. 1993a; Rosen et al. 1993b;

Salomon et al. 1992; Bengtsson et al. 1992; Salomon et al. 1993; Cittadini et al. 1994;

Merola et al. 1993). Growth hormone therapy in such adults is associated with improved

well-being and plasma lipid profile, increased strength, lean body mass, muscle mass and

bone density (Salomon et al. 1989; Orme et al. 1992; O'Halloran et al. 1993; Whitehead

et al. 1992; Russell-Jones et al. 1993; Eden et al. 1993; Vandeweghe et al. 1993;Beshyah

et al. 1994; Thuesen et al. 1994; Sartorio & Narici, 1994), indicative that GH is a potent

metabolic regulator in addition to a stimulator of linear growth in children. Many of the
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traits of adult GHD are characteristic of the "normal aging process". Aging is associated

with reduced protein synthesis, a decrease in lean body mass and bone density, increase in

body fat and weight gain (Forbes & Reina, 1970; Forbes & Halloran, 1976; Chon et al.

1980; Riggs et al. 1981; Sherman et al. 1990). In particular, the distribution of age-related

adipose tissue is typically intra-abdominal rather than gluteal. Excess abdominal fat results

in insulin resistance, raised lipids and increased risk of diabetes mellitus, hypertension and

coronary heart disease (Kalkhoff et al. 1983). Twenty-four GH profiles have confirmed

that spontaneous GH secretion is reduced by between 15 and 70% (Finkelstein et al.

1972; Zadik et al. 1985; Ho et al. 1987; Vermeulen, 1987; Corpas et al. 1992a), with a

reduction in the frequency and amplitude of nocturnal pulses ofGH (Carlson et al. 1972;

Prinz et al. 1988; Rudman et al. 1981). It has been proposed that the decline in GH

secretion with age is contributory to many of the deleterious metabolic consequences of

aging, and might be reversed with GH therapy (Hoffman et al. 1992; Zachwieja et al. 1994;

Rudman et al. 1990). In both adults with GHD and the elderly, large therapeutic studies

are on-going to determine whether long-term benefits accrue.

This study was designed to explore the aetiology of the age-related decline in GH secretion.

To determine whether the reduced GH secretion was hypothalamic or pituitary in origin,

a combination of intravenous GHRH and pyridostigmine or placebo was used to stimulate

GH secretion in men aged 20 through 88 years.

Consistent with previously published data, there was a progressive fall in the GH response
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to GHRH with age (Figure 27). The majority of publications on the GH response to

GHRH have found an age-related fall in GH secretion (Ghigo et al. 1992; Iovino et al.

1989; Giusti et al. 1992; Coiro et al. 1991), although two groups failed to demonstrate a

difference (Corpas et al. 1992b; Pavlov et al. 1986). Pavlov et al. (1986) explained the

decrease in GH response with age on the basis of increased body fat. The absence of a

difference in body mass index between the groups excludes the possibility of body fat as

an explanation of the data presented here.

In this study, pyridostigmine administration, in combination with GHRH, resulted in an

augmented GH response at all ages but did not eliminate the age-dependent decline in GH

secretion (Figure 28). Previous studies with pyridostigmine have found similar results

(Giusti et al. 1992; Ghigo et al. 1992). Analysis for the relative effect of pyridostigmine

demonstrated that, as with exogenous GHRH, its ability to stimulate GH secretion

diminished with age. In other words, the reduced GH response to GHRH cannot be

explained purely in terms of increased cholinergic-regulated somatostatin secretion.

In contrast to pyridostigmine, arginine, in combination with GHRH, is able to fully restore

the GH response in the elderly (Ghigo et al. 1990d). Arginine is believed to inhibit

somatostatin secretion by an alternative pathway to pyridostigmine, possibly via nitric

oxide. This implies, contrary to the results with pyridostigmine, that the effect of

somatostatin increases with age. Several explanations are possible to explain this

discrepancy. The cholinergic regulation of somatostatin secretion may be less important
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in the elderly than arginine related mechanisms, or the aging hypothalamus may be less

sensitive to pyridostigmine. These explanations are improbable as arginine in clinical

studies of obesity, hypoglycaemia, anorexia nervosa, hyperthyroidism, obesity and

Cushing's syndrome consistently induces greater GH secretion than pyridostigmine (Ghigo

et al. 1990b; Giustina et al. 1992; Cappa et al. 1993; Ghigo et al. 1993; Procopio et al.

1995). As discussed, 120 mg of pyridostigmine is the maximum tolerated dose of

pyridostigmine, but is not at the top of the dose-response curve. Thirty grammes of

arginine intravenously have a maximal effect on GH secretion. Hence, the ability of

arginine to stimulate greater GH secretion may be a phenomenon of dosage rather than a

reflection of any true difference in inhibition of somatostatin secretion. No data exist to

indicate an age-related difference in the clearance of pyridostigmine.

The reduced GH response with age to GHRH is indicative of a pituitary responsiveness

which may be primary or secondary to hypothalamic changes. The ability of arginine to

restore GH secretion implies a role for hypothalamic somatostatin. The ability of repetitive

administration ofGHRH to elderly men to stimulate GH secretion, such that IGF-I levels

return to normal, implies down-regulation of somatotroph function in the elderly secondary

to reduced GHRH secretion (Muller et al. 1988; Corpas et al. 1992b). Likewise, the health

of the somatotroph is indicated by the lack of age-related difference in the response to

hypoglycaemia (Ghigo et al. 1990d; Kalk et al. 1973; Wakabayashi et al. 1986). Data from

rats indicate reduced GHRH and increased somatostatin secretion in elderly animals (Ge

et al. 1989; De Gennaro Colonna et al. 1989; Morimoto et al. 1988). The increase in
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somatostatin secretion is in keeping with the observation of reduced acetylcholine secretion

in the brains of elderly rats (Gibson et al. 1981). In vitro data from rats also imply changes

in the elderly pituitary. The in vivo data from man indicating reduced GH secretion in

response to GHRH are paralleled by in vitro studies in elderly rats, where somatostatin

secretion is not a factor (Ceda et al. 1986). Contradictory evidence exists on the viability

of second messenger pathways in aging somatotrophes. Initial reports suggested reduced

activity of the GHRH-cyclic adenosine-3 ',5 '-monophosphate (cAMP) signal pathway, but

a recent report has suggested that the second messenger pathway is intact but the population

of functioning somatotrophs is only 50-60% of that in young rats (Ceda et al. 1986;

Robberecht et al. 1986; Shimokawa et al. 1994).

In conclusion, the serum GH response to GHRH decreases with age. Modulation of

somatostatin secretion with pyridostigmine augments the GH response at all ages. The

influence of pyridostigmine is not greater in the elderly, indicating that the age-related

decline cannot entirely be attributed to an age-related increase in cholinergic nervous-

system regulated somatostatin secretion. Studies with arginine have demonstrated that GH

secretion can be fully restored, suggesting that increased somatostatin is the principal cause

ofdiminished GH secretion in the elderly, although alteration in somatotroph function may

also contribute.
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THE EFFECT OF PRE-TREATMENT WITH DEXAMETHASONE ON THE

GH RESPONSE TO INTRAVENOUS GHRH

The inhibitory effects of supraphysiological levels of glucocorticoids on growth have long

been known, both when they have been used for the suppression of inflammation, as well

as in management of Cushing's syndrome (Friedman & Strang, 1966; McArthur et al. 1979;

Preece, 1976). Basal levels of growth hormone (GFI) and the response to insulin-induced

hypoglycaemia and GH-releasing hormone (GHRH) are impaired in Cushing's syndrome

(Demura et al. 1972; Smals et al. 1986a; Burguera et al. 1990) and in healthy volunteers

given oral glucocorticoids to simulate Cushing's syndrome (Hartog et al. 1964; Nakagawa

et al. 1969; von Werder et al. 1971; Burguera et al. 1990). However, the site of action of

corticosteroids in this situation remains uncertain. Previous studies have indicated that the

failure ofGHRH to stimulate GH secretion in the presence of exogenous GH, glucose, free

fatty acids and obesity can be reversed, at least partially, with pyridostigmine (Ross et al.

1987d; Penalva et al. 1989; Penalva et al. 1990a; Castro et al. 1990), implying that the

reduction in GH under these conditions, without pyridostigmine, is due to increased

somatostatinergic tone. This study was designed to investigate the mechanism of the

inhibitory effect of short-term sustained increased circulating corticosteroid levels on

stimulated GH secretion.

The inhibitory effects of sustained elevated plasma glucocorticoid levels on linear growth

and GH secretion are well known. However, confusion exists as to the acute effects of
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glucocorticoids on GH secretion. Casanueva and colleagues (1990) have shown that

dexamethasone, given at 4 mg intravenously or 8 mg orally, stimulates secretion ofGH.

The same workers have, in addition, shown that 4 mg dexamethasone iv potentiates the GH

response to GHRH administered 3 h later (Burguera et al. 1990). In contrast, 25 mg oforal

cortisone acetate administered 60 min before GHRH has been reported to ablate the GH

response (Giustina et al. 1990a). Dexamethasone (8 mg) given orally 12 h before GHRH

or 22 mg given over 48 h have both been shown to inhibit the GH response to GHRH,

although 1 mg 9 h earlier had no effect (Burguera et al. 1990; Del Balzo et al. 1990;

Rupprecht et al. 1990). The results of this study demonstrate a loss of the GH response to

GHRH in healthy volunteers after 48 h of elevated plasma glucocorticoid levels, a result

in accordance with the findings of Burguera et al. (1990). The failure of a

supraphysiological dose ofGHRH(1-29)NH2 to restore GH secretion makes it unlikely that

the glucocorticoid-induced inhibition of GH secretion is due simply to suppression of

hypothalamic GHRH. In this study the response to GHRH is significantly, although only

partially, restored by 120 mg oral pyridostigmine administered 60 min before the GHRH,

a result in accordance with those of others (Del Balzo et al. 1990; Giustina et al. 1991).

Giustina et al. (1990b) demonstrated that 50 mg oral cortisone acetate 60 min before GHRH

could inhibit the subsequent GH response, and that the addition of pyridostigmine fully

restored the GH response. It therefore seems probable that dexamethasone acts acutely to

inhibit GH secretion by increasing hypothalamic somatostatin secretion. The failure of

pyridostigmine to reverse the dexamethasone-induced inhibition ofGH secretion fully is

in accord with the finding that 120 mg pyridostigmine also failed to restore the GH

response to GHRH in subjects pretreated with glucose and GH (Penalva et al. 1989; Ross
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et al. 1987d). However, as discussed above, the adoption of a larger dose in clinical studies

has been limited by the side-effects. The inability of pyridostigmine to reverse the

dexamethasone-induced inhibition ofGH release completely may be dose-related, 120 mg

being insufficient to inhibit hypothalamic somatostatin secretion entirely. The partial

reversibility of the GH response to GHRH seen in this study after 48 hours of

dexamethasone administration, contrasts with the full reversibility reported by Giustina et

al. (1990b) 60 minutes after cortisone acetate. It seems possible that after 2 days of

elevated plasma glucocorticoid levels, the exposure to increased somatostatin may have

substantially depleted the readily releasable pool of GH. In patients with Cushing's

syndrome, pyridostigmine was unable to restore, even partially, the GH response to GHRH

(Leal-Cerro et al. 1990), indicating that somatostatin secretion is less important in inducing

inhibition ofGH secretion in subjects with chronically elevated circulating glucocorticoids.

A direct effect of dexamethasone on somatotrophs in the present studies cannot be

excluded.

In conclusion, this study has demonstrated that 2 mg of dexamethasone administered every

6 hours for 48 hours inhibits the GH response to GHRH. The effect ofGHRH can in part

be restored by 120 mg pyridostigmine, indicating that the mechanism of the inhibition may

be increased hypothalamic somatostatin secretion. The failure of pyridostigmine to restore

the GH response fully may be due to the use of a submaximal dose ofpyridostigmine being

used, or alternatively to the fact that other mechanisms are also involved, such as reduced

pituitary stores of readily releasable GH.
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A COMPARISON OF THE GH RESPONSE TO GHRH(1-29)NH2 AND A

SYNTHETIC GHRH ANALOGUE (DC-21-346) IN HEALTHY VOLUNTEERS

The potential therapeutic indications for GH are expanding beyond children with classical

GH insufficiency. In children, GH therapy increases growth velocity in children with

Turner's syndrome and renal failure, and is under investigation in inflammatory bowel

disease and other disorders associated with growth failure (Rosenfeld et al. 1992; Fine et

al. 1994). In adults, as already discussed, evidence is accumulating for the benefits ofGH

therapy in adults with growth hormone deficiency, and the elderly. The value of GH

therapy is being studied in patients on long-term glucocorticoid therapy (Giustina et al.

1995).

Growth hormone treatment is limited by the necessity of parental administration, expense

and, at least theoretically, by the resultant unphysiological chronically elevated plasma GH

levels. GHRH has emerged as a potential alternative to GH therapy in many clinical

settings. The majority of children with isolated GH deficiency have a hypothalamic defect

of synthesis or release ofGHRH (Grossman et al. 1984b). Continuous infusion ofGHRH

has been demonstrated to result in augmentation of pulsatile GH secretion in normal men

and GH-insufficient children (Tannenbaum & Ling, 1984; Vance et al. 1985; Sassolas et

al. 1986; Rochiccioli et al. 1986; Kirk et al. 1994). GHRH is a simpler molecule to

synthesise and, therefore, has the potential to be cheaper than GH therapy. The first

demonstration of the therapeutic long-term efficacy of GHRH came from Ross et al.
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(1987c). They demonstrated that twice daily subcutaneously-administered GHRH(1 -29)NH2

could stimulate linear growth in approximately 50% of children with severe GH deficiency,

a finding subsequently GHRH confirmed and extended to children without classical GH

insufficiency (Thorner et al. 1988; Brain et al. 1990; Duck et al. 1992; Kirk et al. 1994).

The demonstration that repetitive administration ofGHRH to elderly men and patients with

Cushing's syndrome augments GH secretion suggests that GHRH therapy may have a

therapeutic role in these situations and other conditions of reduced GH secretion with an

intact pituitary (Muller et al. 1988; Corpas et al. 1992b; Leal-Cerro et al. 1993). The

current disadvantage ofGHRH therapy is the need for parental administration at least twice

daily, compared to once a day for GH, or else the necessity for a child to wear an infusion

pump continuously.

The recognition of the value ofGHRH therapy has spurred research in two areas, viz. the

development of a depot preparation of slow release GHRH and superpotent GHRH

analogues. No depot preparation of GHRH is currently available.

In order to be a viable proposition, an analogue of GHRH would either have to be a

superagonist at the GHRH receptor and/or resistant to degradation. The native forms of

GHRH are shown in Figure 1, with the GH releasing activity ofGHRH residing in the N-

terminal 29 amino acids (Lance et al. 1984; Ling et al. 1984).

Studies on the tertiary structure of GHRH underlie attempts to develop a superpotent
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GHRH analogue. GHRH has considerable sequence homology with glucagon, vasoactive

intestinal peptide (VIP) and secretin, and can thus be classified as a member of the secretin-

glucagon family of peptides. Physicochemical studies suggest that the C-terminal two

thirds of the human GHRH(1.29)NH2 (residues 13 - 29) possess a distinct amphiphilic a-

helical structure both in solution and when receptor-bound (Velicelebi et al. 1986). GHRH,

in common with other peptide hormones acting at the membrane, eg calcitonin, has a

characteristic amphiphilic secondary structure: one face of the molecule has preferentially

hydrophobic residues, whereas the hydrophilic domain is on the opposite side (DeGrado

et al. 1981).

The preferred confirmation of the N-terminal decapeptide region is less well established.

Coy et al. (Coy et al. 1985) demonstrated the favoured structure is a P-bend (residues 8 -

12), formed around the Asn in position 8 (Gamier et al. 1978). The presence of an aromatic

residue at position-1 has also been shown to be a requirement for full receptor-ligand

interaction (Ling et al. 1984). Moreover, the residues in positions-1&2 are important in the

metabolism ofGHRH. In vivo plasma studies have shown that enzymatic degradation of

GHRH is initiated by a dipeptidylpeptidase which recognises the NH2-terminal Tyr'-Ala2-

sequence (Frohman et al. 1986).

Many strategies have been used to enhance the GH releasing activity of GHRH.

Enhancement of the amphiphilic a-helical properties of the central and C-terminal regions

ofGHRH by substitution with helix-favouring amino acids, particularly Ala, can result in
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4k'>r

Asp

Ala

Figure 37

The amino acid sequence and structure ofDC-21-346, with substitutions

significant improvements in GH-releasing potencies in vitro (Velicelebi et al. 1986; Tou

et al. 1986). Substitution of the Asn in position in 8 with D-Asn has been shown to

stabilise the P-bend. Lance et al. (1984) demonstrated that a substitution of D-Ala in

position 2 resulted in a 50-fold increase in GH secretion in anaesthetised rats and as D-

amino acids are known to favour P-bend formation, this adds further support to the belief

that the N-terminal adopts a P-bend configuration. Modifications, such as D-Tyr in

position-1, result in large increases in in vivo potency by blocking dipeptidylpeptidase
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activity (Felix et al. 1988).

DC-21-346 was selected for clinical trials from a series ofGHRH analogues tested for GH

releasing activity on a monolayer of dispersed rat anterior pituitary (Coy et al. 1991). DC-

21-346 is a 29 amino acid peptide with four substitutions intended to increase the GH

releasing potency ofGHRH( 1.29)NH2 (Figure 37). The D-Ala substitution in position-2 has

been shown to increase activity many fold possibly due to improved biological stability,

although in vitro data and time course experiments indicate that the high activity may be

the result of increased receptor affinity. Alanine is the best amino acid a-helix-inducing

residue (Lyu et al. 1990; O'Neil & DeGrado, 1990). The Ala substitutions for Asn in

position-8 and Ser in position-9 increase the probability of a-helix formation at the expense

of P-turn formation from positions-5 through -10. Similarly, the Ala substitution for Gly15

enhances a-helix structure. DC-21-346 stimulated 49 times more GH release than GHRH(I.

29)NH2 from monolayers of rat anterior pituitary cells (Coy et al. 1991).

Disappointingly, as the data presented here indicate, DC-21-346 has no advantage over

human sequence GHRH(1-29)NH2 and possibly has antagonistic properties at high doses

(200 pg) (Table 18, Figures 35, 36).

Human and rat GHRH have 30 % non-homology; 13 amino acids in 43, 8 in the C-terminal

29. Rat GHRH is two to three times more potent in stimulating GH secretion from rat

pituitary than human (Speiss et al. 1983). Similarly, rat and mouse GHRH are equipotent
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in inducing GH secretion from mouse somatotrophs, both being more potent than human.

However, the encouraging data from the cultured rat pituitary cells justified a clinical study,

in the hope that DC-21-346 would be a more potent alternative to GHRH and hence

cheaper therapeutic option. Unfortunately, DC-21-346 has no obvious therapeutic

advantage. No human somatotroph cell line exists to test analogues prior to clinical

studies.

In conclusion, the expanding indications for GH therapy, and the emergence ofGHRH as

alternative, has spawned development ofGH secretagogues. DC-21-346 is a 29 amino acid

synthetic analogue of GHRH (1.29)NH2 designed to have greater affinity at the GHRH

receptor and resistance to degradation. In vitro studies demonstrated DC-21-346 to be 49

times more potent than GHRH (|.,9)NH2 in stimulating GH secretion from rat anterior

pituitary cells. Unfortunately, the data presented here indicates DC-21-346 to be no more

effective in stimulating GH, in man, than GHRH (,.29)NH2. Differences in the GHRH

receptor between man and rat probably account for the discrepancy in potency. In the

absence of a primate somatotroph cell line, it remains difficult to screen GHRH analogues

meaningfully and studies on a second non-rodent species prior to human trials are indicated.
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CONCLUSIONS

CONCLUSIONS

The work reported explored the neuroregulation of growth hormone secretion in man. In

particular, the consequences for pituitary function of IGF-I were studied. In previous

studies, hypoglycaemia has complicated IGF-I administration, but, at the dose and by the

route of administration used here, hypoglycaemia was not a problem. The only change

observed in spontaneous pituitary hormone secretion was a reduction in TSH secretion.

Although no change was detected in spontaneous GH secretion over the 24 hours following

IGF-I, the GH response to GHRH, administered at 24 hours, was potentiated by prior IGF-I

administration.

In a unique comparison of quantitative GH secretion in tall and short normal young adults,

provocative tests were unable to distinguish between the two cohorts. Assessment of

spontaneous nocturnal of GH secretion suggested that mean GH pulse amplitude was

greater in the tall subjects, although the difference did not reach significance.

Previous studies have drawn contradictory conclusions on the influence of gender and

oestrogens on the GH response to GHRH. It has been variously reported that the response

is greater, smaller or no different in females compared to males. The data included show

that no difference exists between the sexes, nor at different stages of the menstrual cycle.

As plasma GH is known to correlate with plasma oestrogen levels, these results are

indicative that oestrogens exert their leverage on GH secretion at a hypothalamic, rather
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than pituitary, site.

Many clinical and biochemical stigmata of aging are found in adults with growth hormone

deficiency, suggesting an aetiological role for diminished GH secretion in the aging

process. Improved understanding of the mechanism of the age-related decline in GH

secretion may allow endogenous GH secretion to be pharmacologically manipulated. Data

presented here confirm previous reports of a progressive fall in the GH response to GHRH

with age in the subjects, who ranged between 20 and 88 years. Modulation of somatostatin

secretion, with the anticholinesterase pyridostigmine, augmented GH release at all ages but,

as with GHRH, the effect of pyridostigmine declined with age. This implies that

diminished GH secretion cannot be attributed entirely to increased cholinergic-regulated

somatostatin secretion, but that other factors, such as changes in endogenous GHRH or

reduced somatotroph sensitivity, may play an important role.

Elevated circulating glucocorticoid levels inhibit spontaneous and pharmacologically

provoked GH secretion. The catabolic properties of glucocorticoids may, in part, be due

to inhibition of, the anabolic hormone, GH. The results proffered show that in the short-

term, pyridostigmine is able partially to restore the GH response to GHRH, suggesting that

glucocorticoids act on the hypothalamus to stimulate somatostatin secretion. High doses

ofpyridostigmine result in uncomfortable gastrointestinal side-effects which makes 120 mg

the largest acceptable dose, although not the maximal for GH secretion. The inability of

pyridostigmine fully to restore the GH response to GHRH may signify additional
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mechanisms by which glucocorticoids inhibit GH secretion, but more probably a dose of

120 mg of pyridostigmine had a submaximal effect. Better tolerated inhibitors of

somatostatin secretion may be better able to restore GH secretion in the presence of

elevated plasma glucocorticoid levels.

GHRH therapy has successfully stimulated linear growth in both short children with severe

GH deficiency and normal growth hormone dynamics. The therapeutic potential ofGHRH

is limited by the necessity for twice daily injection. DC-21-346, a GHRH analogue, proved

to be a potent stimulus for GH release in rats, fifty times more potent than conventional

GHRH. Unfortunately, in normal volunteers, DC-21-346 offered no advantage over

GHRH(1.29)NH2. The human and rat GHRH receptors differ; future GHRH analogues will

need to be tested on primate rather than rodent somatotrophs.

It is hoped that the findings presented in this thesis will be used to advance our knowledge

of this important subject, and that further research will enable the new questions that have

emerged during these studies to be addressed.
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Summary

OBJECTIVE Insulin-like growth factor-l is the mediator of
many of the actions of GH and is a potent metabolic
regulator. Recombinant IGF-I (rhIGF-l) is of potential
value in the treatment of syndromes associated with
either GH or insulin resistance. This study was designed
to assess the effects of subcutaneous (s.c.) rhIGF-l on
anterior pituitary function.
DESIGN Double-blind, placebo controlled, randomized
cross-over study. The interval between investigations
was 2 weeks.

SUBJECTS Twelve normal volunteers received on one

occasion a single s.c. dose of 40 pglkg rhIGF-l and on the
other, placebo.
MEASUREMENTS Circulating levels were measured,
over 24 hours, of GH, LH, FSH, PRL, TSH, Cortisol,
ACTH, glucose, IGF-I, IGF-II, insulin, C-peptide; IGF bind¬
ing proteins by Western ligand blotting; total IGF bio-
activity using FRTL-5 thyroid cells; and glucose by the
glucose oxidase method.
RESULTS Recombinant IGF-I increased AUC for plasma
IGF-I, measured by radioimmunoassay (rhIGF-i mean

7065 ±SEM 33 vs 3895 ± 204 pgll, P< 0 0001) and IGF
bioactivity (22 5 ±3 4 vs 14-2 ± 1-8 U/ml, P < 0 001) but
plasma IGF-II fell (9308 ± 403 vs 11052 ± 451 pgl\,
P < 0 0001). There was no biochemical or clinical evi¬
dence of hypoglycaemia and no difference in mean

glucose levels. No difference existed in AUC for GH, LH,
FSH, ACTH and Cortisol between rhIGF-l and placebo;
additionally, pulse number and amplitude for GH and LH
were unaffected. TSH fell following rhIGF-l (33 0 ± 3 36 vs

42-5 ± 5-98 mU h/l, P = 0 01). Both mean plasma C-
peptide (0-73 ±0 06 vs 0-91 ±0-05nmol/l, P = 0 03), and
insulin (10-81 ± 102 vs 15-36 ± 1 18mU/l, P = 0-03) were

Correspondence: Dr Peter J. Trainer, Department of
Endocrinology, St Bartholomew's Hospital, West Smithfield,
London EC1A 7BE, UK.

lower following rhIGF-l. There was no change in IGFBPs.
CONCLUSION A single injection of 40 pglkg of sub¬
cutaneous rhIGF-l does not cause hypoglycaemia. IGF
bioactivity was increased without inhibition of GH
secretion. The only change observed in anterior pituitary
function was a fall in plasma TSH.

Insulin-like growth factor-I (IGF-I) has been shown to be the
mediator of many of the actions of growth hormone while
having a high degree of sequence homology with human
proinsulin (Daughaday et al., 1972; Rinderknecht &
Humbel, 1978). Growth hormone is the principal deter¬
minant of circulating IGF-I with levels being high in
acromegaly and low in growth hormone deficiency and
Laron's syndrome (Hall & Sara, 1984). The metabolic
actions of IGF-I can be subdivided into insulin-like effects

and growth promotion (Froesch & Zapf, 1985). Although
insulin and IGF-I have their own receptors, some cross-

affinity exists which may account for the mechanism by
which IGF-I, in high doses, can induce hypoglycaemia
(Humbel, 1990). Circulating IGF-I in serum binds to specific
binding proteins (IGFBPs), ofwhich six have been identified,
such that under normal circumstances less than 1% is

unbound and physiologically active (Ballard et al., 1989).
Recombinant gene technology has made human sequence

IGF-I (rhIGF-I) available for clinical studies. Possible
therapeutic uses include the treatment of conditions such
as Laron's syndrome, stress induced catabolic states,
diabetes mellitus, renal impairment and hyperlipidaemia.
Studies of the effect of IGF-I on pituitary function have

been almost exclusively limited to its effects on GH secretion.
The highest concentrations in the rat brain of both type I

and type II IGF receptors are to be found in the median
eminence of the hypothalamus (Lesniak et al., 1988), the site
of secretion of both growth hormone-releasing hormone
and somatostatin. The anterior pituitary has equally high
concentrations of both receptors, suggesting a possible
second site of regulation of pituitary function by IGF-I
(Lesniak et al., 1988).
It has been suggested that growth hormone therapy in

children with short stature causes earlier onset of puberty
and accelerated bone maturation with consequent loss of
growth potential (Darendeliler et al., 1990; Stanhope et al.,
1991; Russell et al., 1989). The underlying mechanism is ill
understood but may relate to the elevation of circulating
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IGF-I levels acting at the hypothalamus or pituitary. It is
therefore necessary to clarify the impact of rhIGF-I on
anterior pituitary function before embarking on long-term
therapeutic trials, particularly in peri-pubertal patients.
This study was designed to assess any acute effects on

anterior pituitary function of rhIGF-I administered by the
therapeutic route, namely subcutaneously, in a dose that
does not cause hypoglycaemia.

Materials and methods

Twelve healthy non-obese male volunteers (mean age 23-4
years, range 21-3-27-6, mean body mass index 22-9 kg/m2,
range 19-6-25-4) were studied on two occasions in a
randomized double blind cross-over design. The interval
between studies was 2 weeks.

Subjects fasted from midnight prior to attending the
investigation ward at 0800 h. They lay on a bed and an
antecubital vein was cannulated. At 0900 h a s.c. injection of
either rhIGF-I (40/rg/kg) or placebo (diluent only) was
administered. Blood was obtained every 20 minutes for 24
hours for measurement of GH, LH, FSH and at hourly
intervals for PRL, TSH, Cortisol, ACTH and glucose assay.
Plasma IGF-I, IGF-II, insulin, C-peptide and IGF binding
proteins were measured at 6-hourly intervals throughout the
day. Twenty-four hours after rhIGF-I administration, an
i.v. bolus of 100/ig of GHRH was administered and blood
obtained for GH measurement at 15-minute intervals for a

further 2 hours. Bedside glucose monitoring (BM Stix,
Reflolux S, Beohringer Mannheim, Brighton, UK) was also
performed at hourly intervals throughout the study. All
blood samples were collected into lithium heparin tubes,
cold spun and rapidly frozen.
One hour after the s.c. injection a standard breakfast was

provided and the subjects were thereafter allowed to move

freely within the ward. Meals were served at standardized
times and lights were extinguished at 2230 h and the subjects
went to sleep.
The study was approved by the Research Ethics

Committee of the City and Hackney Health Authority and
Medical College of St Bartholomew's Hospital.

Assays

All assays were performed on plasma. Cortisol was
measured by radioimmunoassay, intra-assay coefficient of
variation (CV) 6% at both 100 and 1000nmol/l. GH (CV
8-9% at l-2mU/l, 4-3% at 24mU/l), TSH (CV 4-1% at
1-1 mU/1, 2-3% at 10mU/l, LH (CV 3-5% at 2-2mU/l, 2-3%
at 9-6mU/1), FSH (CV 7-0% at 2-6 mU/1, 4-4% at 9-6 mU/1),
ACTH (CV 9-5% at 58 ng/1), and PRL (CV 5-3% at

151mU/l, 2-9% at 460mU/l) were measured by immuno-
radiometric assays (NETRIA, London, UK). Blood glucose
was measured by the glucose oxidase method. Radio¬
immunoassays were used to meausure IGF-I, IGF-II
(CV 4-7% at 510/rg/l), insulin (CV 3-9% at 38mU/l) and
C-peptide (CV 7-1% at 0-42pmol/l). IGF bioactivity was
measured by the eluted stain assay system using the stable,
non-transformed thyroid cell line FRTL-5 (Claffey et al.,
1994). In common with other bioassays it does not
discriminate between IGF-I and IGF-II bioactivity. IGF
binding proteins were estimated by Western ligand blotting
(Davies et al., 1991), and quantified by densitometry (KLB
Ultrascan XL, model 2400 Laser Densitometer).

Statistical analysis

Analysis was performed according to the standard cross¬
over model described by Jones and Kenward (1989).
The area under the curve (AUC) was calculated by the

trapezoidal method for GH, LH, FSH, TSH, ACTH, PRL,
IGF-I and IGF-II between time zero and 24 hours. AUC

was also calculated for GH for the 2 hours following the
bolus of GHRH. Samples below the level of assay
sensitivities were assigned a value of half the limit of assay
sensitivity.
The pulsatilities of GH, LH and FSH were analysed by

the Pulsar program (Merriam & Wachter, 1982).
Comparisons of AUC and means were performed as

appropriate by either Student's paired /-test and/or
Wilcoxon's signed rank test, statistical significance being
defined by a P value of =% 0-05.

Results

Analysis for a treatment-period interaction indicated there
was neither an order nor carry-over effect between the two
limbs.

There was a significant increase of 80% in AUC for
plasma IGF-I measured by radioimmunoassay following
rhIGF-I administration compared with placebo (Table 1).
Mean plasma IGF-I immunoactivity peaked at 6 hours and
thereafter gradually declined but was still above baseline at
24 hours, although within the normal range (Fig. 1). A
significant reduction of approximately 15% in AUC for
plasma IGF-II was seen following rhIGF-I. AUC for IGF
bioactivity was significantly increased by 30% following
rhIGF-I administration. As with IGF-I immunoreactivity
the peak occurred at 6 hours and thereafter decreased
(Fig. 1).
There was no biochemical or clinical evidence of

hypoglycaemia. The lowest laboratory blood glucose
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Table 1 The 24-hour AUC for IGF-I and II measured by
radioimmunoassay and IGF bioactivity (mean ± SEM).

IGF-I(RIA) IGF-II(RIA) IGF(bio)
Drug (pg/D (MS/0 (U/l)

rhIGF-I 7065 ± 33* 9308 ± 403 22-5 ± 3-4f
Placebo 3895 ± 204 11052 ±451* 14 2 ± 1-8

*P < 0 0001, tP < 0 001.

recorded was 3-9mmol/l, and there was no difference in
mean blood glucose between the two limbs of the study
(rhIGF-I mean 5-43mmol/l SEM ± 0 06 vs placebo
5-55 ±0-06) (Fig. 2).
No difference existed in AUC, pulse number or pulse

amplitude for plasma GF1, LH or FSH between the two
limbs of the study (Table 2). The AUC for GH following
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Fig. 1 Twenty-four-hour profiles mean for mean plasma a,
IGF-I {P < 0 0001) and b, IGF-II (P < 0 0001) measured by
radioimmunoassay and c, mean plasma IGF bioactivity
(P < 0-001) (mean ± SEM shown, rhIGF-I (40pg/kg
at 0900 h), placebo).
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Fig. 2 Twenty-four-hour profiles mean for mean plasma a,

glucose (P NS); b, insulin (P = 0 03) and c, C-peptide (P = 0 03)
(mean ± SEM shown, rhIGF-I (40 pg/kg at 0900 h),

placebo).

intravenous GHRH (100^g) was not significantly different
but the peak GH response was greater following rhIGF-I
(Fig. 3). Administration of rhIGF-I resulted in a significant
fall in AUC for plasma TSH (Table 2) and at each individual
time-point mean plasma TSH was lower following rhIGF-I
than placebo (Fig. 4). The circadian rhythm of TSH
remained intact. There was no change in free thyroxine or
free triiodothyronine 24 hours after rhIGF-I adminis¬
tration. No change was seen in AUC for plasma ACTH,
Cortisol or prolactin (Table 2).
Both mean plasma C-peptide (0-91 ± 0-05 v.? 0-73 ± 0-06

nmol/1, P = 0-03, Wilcoxon signed rank test) and insulin
(15-36mU//± 1-18 vs 10-81 ± 1-02, P = 0 03, Wilcoxon
signed rank test) were lower following rhIGF-I (Fig.
2). As C-peptide and insulin were measured only at 6-
hourly intervals, it is not possible to be precise about the
time scale of the changes. However, plasma levels had
returned to baseline 18 hours after rhIGF-I.

IGFBP-3 was the most abundant binding protein
identified on the Western ligand blots and did not alter
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Table 2 The 24-hour AUC for each of the anterior pituitary hormones (mean ± SEM)

Pulse

Area under curve number amplitude

placebo IGF-I placebo IGF-I placebo IGF-I

GH (mU h/1)
LH (mU h/1)
FSH (mU h/1)
TSH (mU h/1)
ACTH (ng h/1)
Cortisol (nmol h/1)
Prolactin (mU h/1)

86-6 ± 14-7

123 ± 13-2
85-0 ±26-5

42-5 ± 5-98
279-8 ± 18 0
4986 ± 290

7201 ± 2336

79-2 ± 14-6
122 ± 10-5
83-9 ±23-4

33-0 ±3-36*
272-9 ± 22-8
4849 ±314

7152 ±2250

4-1 ±0-9

10-8 ±0-6

2-7 ±0-4
11-2 ± 0-8

22-3 ±4-5 28-5 ±6-7
2-8 ±0-2 2-8 ±0-2

*P = 0-01.

with administration of rhIGF-I. The evaluation of

IGFBP-1 levels showed no discernible change with rhIGF-I
(data not shown).
All subjects experienced transient discomfort at the

injection site, due to the pH of the diluent. No side-effects
were encountered with IGF-I; specifically, no symptoms of
hypoglycaemia were reported. Short-lived facial flushing
following GHRH was uniform.
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Fig. 4 Twenty-four-hour profiles mean for mean plasma a,
Cortisol; b, ACTH; c, LH; d, FSH; e, prolactin and f, TSH
(P a-e, NS; Pf = 0 01) (error bars shown only for TSH,

rhIGF-I (40 /xg/kg at 0900 h), placebo).

Fig- 3a, Twenty-four-hour profiles mean for mean plasma GH
(P NS) (error bars not shown, rhIGF-I (40pg/kg at 0900 h),

placebo); b, the GH response to i.v. GHRH (100 |ig)
24 hours after IGF-I or placebo (*P = 0 05) (mean ± SEM
shown, rhIGF-I, placebo).
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Discussion

This study was designed to investigate the effect of rhIGF-I
on basal anterior pituitary function using a dose (40 pg/kg)
which was unlikely to cause hypoglycaemia. This dose was
sufficient to raise the circulating levels of bioactive IGF and
resulted in changes in plasma insulin, C-peptide, TSH.
The fall seen in plasma IGF-II following rhIGF-I

administration has been reported previously (Walker et
al., 1991; Guler et al., 1989). IGF-I and II have similar
affinities for IGFBP-3 and the fall in IGF-II is probably a
result of the displacement of IGF-II by IGF-I from the
IGFBPs, principally IGFBP-3 (Martin & Baxter, 1986),
with the dislodged IGF-II being rapidly degraded.
Although it seems likely that GH can autoregulate its

secretion independently of IGF-I (Ross et al., 1987), at the
same time IGF-I can negatively modulate GH secretion.
In vitro, IGF-I has been shown to be involved in the
feedback regulation ofGH secretion with reported effects on
both the hypothalamus and pituitary. Berelowitz et al.
(1981) demonstrated that isolated rat hypothalami incu¬
bated with highly purified somatomedin-C released somato¬
statin in a dose-dependent manner. Studies on the effect of
IGF-I on GHRH secretion have produced contradictory
results (Aquila, 1991; Shibasaki et al., 1986). Both GH
mRNA and secretion are reduced by incubation with highly
purified somatomedin-C (Berelowitz et al., 1981; Yamashita
& Melmed, 1986). Further, when given intracerebroventri-
cularly (i.c.v.), highly purified somatomedin-C has been
shown to inhibit GH secretion in conscious rats (Tannen-
baum et al., 1983; Abe et al., 1983). However, it is now
believed that the preparations of highly purified somato¬
medin-C used in many of these early experiments contained
both IGF-I and II. In contrast, i.c.v. recombinant IGF-I, in
doses up to 10 pg, failed to alter GH secretion in rats.
Likewise, i.c.v. recombinant IGF-II did not inhibit GH
secretion. However, 1 pg IGF-I administered i.c.v. with 1 pg
IGF-II resulted in a significant inhibition of GH secretion
(Harel & Tannenbaum, 1992a,b). The synergy of centrally
administered IGF-I and II in inhibiting GH secretion in rats
underlines the importance of the hypothalamus in the
regulation of GH secretion, possibly via modulating
somatostatin secretion.

In a study of two euglycaemic men, a s.c. infusion of
rhIGF-I at 20 pg/kg/h inhibited nocturnal and GHRH
induced GH secretion in one (Guler et al., 1989). Likewise,
plasma GH levels were inhibited in a single subject with
Laron's syndrome by an infusion of up to 24/rg/kg/h of
rhIGF-I (Walker et al., 1991). Cotterill et al. (1993a)
demonstrated inhibition of GH secretion in the hours

immediately after 120/rg/kg rhIGF-I in two children with

Laron's syndrome. The inhibition was short-lived as the low
IGFBP-3 levels associated with Laron's syndrome resulted
in rapid clearance of rhIGF-I from the plasma. An i.v.
infusion of 10/rg/kg/h to fasted normal volunteers, during
euglycaemic clamps, resulted in suppression ofGH secretion
rates within 60 minutes when total plasma IGF-I levels were
increased 1-6-fold (Hartman et al., 1993). However, the
interpretation is complicated by the increase in GH
secretion and IGFBP-1 associated with fasting (Cotterill
et al., 1993b). The lack of effect of IGF-I on GH secretion in
this study in normal volunteers, is in accord with the results
ofMiell et al. (1992). Using the same dose of rhIGF-I, they
failed to demonstrate a change in GH secretion in patients
catabolic after surgery.
It seems likely that rhIGF-I in larger doses than we have

used may inhibit GH secretion but the route of administra¬
tion may also be important. Our data indicate that it is
possible to increase circulating IGF bioactivity without
inhibiting GH secretion. The potentiation by rhIGF-I of the
GH response following GHRH has not previously been
reported and needs to be further explored. It is unlikely to be
a result of the falling IGF levels even though this was from
an elevated level towards normal.

While GH, PRL, LH and FSH levels or patterns of
pulsatility did not change, there was a significant reduction
in plasma TSH of the order of 30%. This has previously
been reported in adults with Laron's syndrome as well as in
healthy volunteers (Laron et al., 1990; Lieberman et al.,
1992).
Reduced TSH secretion might have been a consequence

of IGF-I acting on the hypothalamus to stimulate secretion
of somatostatin, an important regulator of TSH secretion
(Hall et al., 1973), but this seems unlikely because no
associated change in GH was seen. A more plausible
possibility is a peripheral action of IGF-I to increase
conversion of T4 to T3, with T3 being the more active at
the hypothalamus and pituitary to inhibit TSH secretion. In
support of the latter hypothesis, Salomon and colleagues
(1989) observed that in GH-deficient adults treated with
GH, several subjects on fixed doses of thyroxine replace¬
ment therapy developed symptoms of thyrotoxicosis
associated with a rise in plasma T3. In a group of normal
subjects given 0-125 mg GH daily for 4 days, a fall in plasma
TSH and T4 and a rise in T3 were seen (Grunfeld et al.,
1988). Similar changes in thyroid function plus an increase
in metabolic rate have been reported following one week of
rhIGF-I therapy in normal volunteers (Zenobi, 1993);
however, no change was seen in our study in plasma free
T4 or free T3. This may indicate that any change in the
values of plasma thyroid hormones, with the limitation
of free thyroid assays, may be too small to detect by
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24 hours. Tachycardia on commencing rhIGF-I therapy
has been reported (Vasconez el al., 1994). It seems probable
that IGF-I causes increased peripheral conversion of T4 to
T3 and possible mild transient thyrotoxicosis. The
effects of IGF-I on thyroid function need to be studied
further. For example, changes in thyroid function may
account for alterations in lipid profiles with IGF-I therapy
and thyroid dysfunction itself alters IGFBPs (Miell et al.,
1993).
Plasma insulin and C-peptide levels fell in parallel

following rhIGF-I and in the absence of any change in
blood glucose. Suppression of insulin secretion in the
absence of hypoglycaemia has been reported previously
(Guler et al., 1989; Walker et al., 1991; Lieberman et al.,
1992) and Boulware et al. (1992) demonstrated insulin
suppression during a 5 mmol/1 euglycaemic clamp in
subjects receiving an i.v. infusion of 20/rg/kg/h rhIGF-I.
It is difficult to differentiate between the relative influences

of increased glucose clearance caused by IGF-I (Moxley et
al., 1990; Jacob et al., 1989) and a secondary fall in plasma
insulin resulting from a direct effect of IGF-I on

pancreatic islet cells to inhibit insulin secretion, as has
been shown by Leahy and Vanderkerkhove (1990) in vitro.
Fifty Mg/kg rhIGF-I 8-hourly in lambs resulted in a small
but significant rise in blood sugar, presumably secondary
to the documented suppression of insulin secretion
(Cottam et al., 1992), and similarly Walker et al. (1991)
noted post-prandial hyperglycaemia in a single patient
with Laron's syndrome treated by a continuous i.v.
infusion of IGF-I. Hyperglycaemia in combination with
low plasma insulin levels suggests IGF-I inhibits insulin
secretion in vivo. In our study, there was no evidence of
hyperglycaemia.
Plasma IGFBP-1 levels are inversely related to circulat¬

ing insulin levels and therefore an increase would be
expected secondary to the inhibition of insulin secretion
by rhIGF-I seen in this study (Holly et al., 1988). That no
change was observed in IGFBP-1 may reflect that insulin
levels fell by only 30% and a corresponding increase in
IGFBP-1 is unlikely to be detected on Western ligand
blotting.
In conclusion, our data confirm 40/rg/kg of s.c. rhIGF-I

does not cause hypoglycaemia but does increase IGF-I
bioactivity. The data support the belief that IGF-I acts
directly to inhibit insulin secretion. No change other than
a fall in plasma TSH was seen in anterior pituitary
function. The influence of rhIGF-I on thyroid function
requires further study. The GH response to GHRH was
enhanced 24 hours after the IGF-I administration. There

was no evidence of GH suppression at any time during the
study.
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ABSTRACT

The GH response to insulin-induced hypoglycaemia
and growth hormone-releasing hormone (GHRH)
has been shown to be impaired in subjects with Cush-
ing's syndrome and in healthy volunteers given oral
glucocorticoids. Pyridostigmine is an anticholinester¬
ase that stimulates GH secretion, probably by inhibi¬
tion of hypothalamic somatostatin secretion. This
work was designed to study the site of action of gluco¬
corticoids in inhibiting the secretion of GH.
Eight healthy male volunteers were studied on three

occasions in random order. They took 2 mg oral
dexamethasone or placebo at precisely 6-hourly
intervals for 48 h before receiving 120 mg oral
pyridostigmine or placebo, followed 60 min later by
GHRH (100 pg) i.v. Samples for measuring GH were
obtained at 15 min intervals for 2 h.

The 'area under the curve' (AUC) for each of the
treatments was significantly different: dexametha-
sone-pyridostigmine-GHRH (mean ±s.e m., 1938 ±
631 mU/min per 1), dexamethasone placebo-GHRH
(634 ±211) and placebo placebo GHRH (4267±
1183) (P<0 02, Wilcoxon test).
In conclusion, dexamethasone given for 48 h sig¬

nificantly inhibited the AUC for GH following treat¬
ment with GHRH. However, pretreatment with
pyridostigmine significantly reversed the inhibition
although this was still partial. Our data suggested that
this short-term suppressive effect of dexamethasone
was independent of GHRH, and most probably
relates to stimulation of the release of somatostatin.
Journal of Endocrinology (1992) 134, 513-517

INTRODUCTION

The inhibitory effects of supraphysiological levels of
glucocorticoids on growth have long been known,
both when they have been used for the treatment of
inflammation as well as in spontaneous Cushing's
syndrome (Friedman & Strang, 1966; McArthur,
Cloutier, Hayles & Sprague, 1972; Preece, 1976).
Basal levels of growth hormone (GH) and the
response to insulin-induced hypoglycaemia and
GH-releasing hormone (GHRH) are impaired in
Cushing's syndrome (Demura, Demura, Nunokawa
et al. 1972; Smals, Pieters, Benraad & Kloppenborg,
1986; Burguera, Muruais, Penalva et al. 1990)
and in healthy volunteers given oral glucocorti¬
coids to simulate Cushing's syndrome (Hartog,
Gaafar & Fraser, 1964; Nakagawa, Horiuchi &
Mashimo, 1969; von Werder, Hane & Forsham,

1971; Burguera et al. 1990). However, the site of
action of corticosteroids in this situation remains
uncertain.

Pyridostigmine, an anticholinesterase, stimulates
GH secretion both in vivo and in vitro (Locatelli,
Torsello, Redaelli et al. 1986; Penalva, Muruais,
Casanueva & Dieguez, 19906). The mode of action
of pyridostigmine is believed to be the inhibition of
somatostatin secretion secondary to the increased
hypothalamic cholinergic tone. Previous studies have
indicated that the failure of GHRH to stimulate GH
secretion in the presence of exogenous GH, glucose,
free fatty acids and obesity can be reversed, at least
partially, with pyridostigmine (Ross, Tsagarakis,
Grossman et al. 1987; Penalva, Burguera, Casabiell
et al. 1989; Penalva, Gaztambide, Vazquez et al.
1990a; Castro, Vieira, Chacra et al. 1990), implying
that the reduction in GH under these conditions,

Journal of Endocrinology (1992) 134, 513-517 © 1992 Journal of Endocrinology Ltd Printed in Great Britain
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without pyridostigmine, is due to increased somato-
statinergic tone.
The study was designed to investigate the mecha¬

nism of the inhibitory effect of short-term sustained
increased corticosteroid levels on stimulated GH
secretion.

MATERIALS AND METHODS

Eight healthy non-obese male volunteers were studied
on three occasions in random order. They received
2 mg oral dexamethasone (Organon Laboratories
Ltd, Cambridge, U.K.) or placebo at precisely 6-
hourly intervals (09.00, 15.00, 21.00, 03.00, 09.00,
15.00, 21.00, 03.00 h) for 48 h before reporting to our
investigation ward at 08.00 h, having eaten and drunk
nothing since midnight. A forearm cannula was
inserted and the subjects remained supine for the
duration of the study. Thirty (- 90 min) and 60 min
after cannulation, and again immediately before tak¬
ing pyridostigmine or placebo ( — 60 min), basal
blood samples were obtained and the subjects then
took orally either 120 mg pyridostigmine (Roche,
Welwyn Garden City, Herts, U.K.) or placebo. A
further 60 min later 100 pg GHRH(1-29)NH2
(Serono Laboratories Ltd, Welwyn Garden City,
Herts, U.K.) was administered as a single bolus, and
thereafter blood was sampled for estimation of serum
GH every 15 min for 2 h. The three parts of the study
were placebo-placebo-GHRH (experiment 1), dexa-
methasone-pyridostigmine-GHRH (experiment 2)
and dexamethasone placebo GHRH (experiment 3).
All studies were carried out at a minimum of weekly
intervals in a randomized double-blind manner.

The study was approved by the Research Ethics
Committee of St Bartholomew's Medical College and
the City and Hackney Health Authority. The subjects
all gave informed consent in writing.

Assay
GH was measured by an immunoradiometric assay
(NETRIA, St Bartholomew's Hospital, London,
U.K.). The intra-assay coefficient of variation at
1-2mU/l was 8-9% and at 24mU/l 4-3%, and the
interassay coefficient of variation was 10-3% at
2-7mU/l and 61% at 30mU/l. The lower limit of
detection of the assay was 0- 5 mU/I (Knott, Hourd
& Edwards, 1985). All samples were assayed in dupli¬
cate, the samples for each subject being included in
the same assay.

Statistics

The 'area under the curve' (AUC) for GH was
calculated by the trapezoid method, and the values
were compared by the non-parametric Wilcoxon test
(Siegel, 1956). Significance was taken at 5% confi¬
dence limits. All data are given as means ±s.e.m.
In the analysis, GH samples with a value of <0-5
mU/1 were assigned the value zero.

RESULTS

Figure 1 shows the changes in AUC for GH following
GHRH for each of the experiments. Values are
means is.e.m. Pretreatment with 2 mg dexametha¬
sone at 6-hourly intervals for 48 h (experiment 3) pro¬
duced a clear and significant attenuation in the AUC
for GH response to GHRH compared with placebo
treatment (634 ±211 vs 4267 ± 1183 mU/min per 1,
P< 0 02). The AUC for the GH response to GHRH
after dexamethasone was significantly greater when
preceded by 120 mg pyridostigmine rather than
placebo (1938 ±631 vs 634 ± 211 mU/min per 1,
P<0 02). However, the response to GHRH was still
significantly less after dexamethasone and pyrido¬
stigmine than in the placebo control study
(1938 ±631 mU/min per 1 to 4267 ± 1183 mU/min
per 1, P<0 02).
Figure 2 shows the effect of 48 h of dexamethasone

or placebo and pyridostigmine or placebo on the GH
response to GHRH for each of the experiments.
Means ±s.e.m. are shown.
All subjects experienced transient facial flushing

with GHRH, two subjects complained of nausea with
pyridostigmine but no side effects were encountered
with dexamethasone.

DISCUSSION

The inhibitory effects of sustained elevated plasma
glucocorticoid levels on linear growth and GH secre¬
tion are well known. However, confusion exists as to
the acute effects of glucocorticoids on GH secretion.
Casanueva, Burguera, Muruais & Dieguez (1990)
have shown that dexamethasone given at 4 mg intra¬
venously or 8 mg orally stimulates secretion of GH.
The same workers have, in addition, shown that 4 mg
dexamethasone i.v. potentiates the GH response to
GHRH administered 3 h later (Burguera et al. 1990).
In contrast, 25 mg oral cortisone acetate administered
60 min before GHRH has been reported to ablate the
GH response (Giustina, Doga, Bodini et al. 1990a).
Dexamethasone (8 mg) given orally 12 h before

Journal of Endocrinology (1992) 134, 513-517
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figure 1. The 'area under the curve' (AUC) for GH following GH-
releasing hormone (GHRH) administration in eight healthy subjects
given dexamethasone or placebo for 48 h and 120 mg pyridostigmine
or placebo 60 min before GHRH. There were three experiments:
placebo-placebo-GHRH (PI PI GHRH), dexamethasone-pyrido-
stigmine-GHRH (Dex-PD-GHRH) and dexamethasone-
placebo-GHRH (Dex-Pl-GHRH). Values are means ±s.e.m.

Time (min)

figure 2. The GH response to GH-releasing hormone (GHRH) (100 pg)
in eight subjects given dexamethasone or placebo for 48 h and 120 mg
pyridostigmine or placebo 60 min (first arrow) before the GHRH (second
arrow). Means±s.e.m. are shown. There were three experiments: placebo-
placebo-GHRH (♦), dexamethasone-pyridostigmine-GHRH (□) and
dexamethasone-placebo-GHRH (A).

GHRH or 22 mg given over 48 h have both been
shown to inhibit the GH response to GHRH,
although 1 mg 9 h earlier had no effect (Burguera et
al. 1990; Del Balzo, Salvatori, Cappa & Gertner,
1990; Rupprecht, Niehaus & Lesch, 1990).
The results of this study demonstrate a loss of the

GH response to GHRH in healthy volunteers after

48 h of elevated plasma glucocorticoid levels, a result
in accordance with the findings of Burguera et al.
(1990). The failure of a supraphysiological dose of
GHRH(1-29)NH2 to restore GH secretion makes it
unlikely that the glucocorticoid-induced inhibition of
GH secretion is due to suppression of hypothalamic
GHRH.

Journal of Endocrinology (1992) 134, 513-517
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Pyridostigmine increases hypothalamic cholinergic
tone and hence reduces somatostatin secretion
(Locatelli el al. 1986). In this study the response to
GHRH is significantly, although only partially,
restored by 120 mg oral pyridostigmine administered
60 min before the GHRH, a result in accordance with
others (Del Balzo et al. 1990; Giustina, Girelli,
Alberti et al. 1991). Giustina, Girelli, Doga et al.
(19906) demonstrated that 50 mg oral cortisone acet¬
ate administered 60 min before GHRH could inhibit
the subsequent GH response, and that the addition
of pyridostigmine fully restored the GH response. It
therefore seems probable that dexamethasone acts to
inhibit GH secretion by increasing hypothalamic
somatostatin secretion.
The failure of pyridostigmine to reverse the dexa-

methasone-induced inhibition of GH secretion fully
is in accord with the finding that 120 mg pyridostig¬
mine also failed to restore the GH response to
GHRH in subjects pretreated with glucose and GH
(Penalva et al. 1989; Ross et al. 1987). Castro et al.
(1990) showed a greater peak GH response after
administration of 180 mg pyridostigmine than after
administration of 120mg in obese subjects, although
this did not reach statistical significance. Evidence
exists that 150 and 180 mg pyridostigmine stimulate
greater secretion of GH than 120 mg (G. Delitala,
personal communication). However, more detailed
investigation of this, and adoption of a larger dose in
clinical studies, has been limited by the side effects.
The inability of pyridostigmine to reverse the dexa-
methasone-induced inhibition of GH release com¬

pletely may be dose-related, 120 mg being insufficient
to inhibit hypothalamic somatostatin secretion
entirely.
The partial reversibility of the GH response to

GHRH seen in this study after 48 h of dexamethasone
administration contrasts with the full reversibility
reported by Giustina et al. (1990b) 60 min after corti¬
sone acetate administration. It seems possible that
after 2 days of elevated plasma glucocorticoid levels,
the exposure to increased somatostatin may have sub¬
stantially depleted the readily releasable pool of GH.
In patients with Cushing's syndrome, pyridostigmine
was unable, even partially, to restore the GH response
to GHRH (Leal-Cerro, Pereira, Garcia-Luna et al.
1990), indicating that somatostatin secretion is less
important in inducing inhibition of GH secretion in
subjects with chronically elevated circulating gluco¬
corticoids. However, a direct effect of dexamethasone
on somatostatin cannot be excluded.
In conclusion, this study has demonstrated that

2 mg dexamethasone administered every 6 h for 48 h
inhibits the GH response to GHRH. The effect of
GHRH can, in part, be restored by 120 mg pyridostig¬
mine, indicating that the mechanism of the inhibition

Journal of Endocrinology (1992) 134, 513-517

may be increased hypothalamic somatostatin secre¬
tion. The failure of pyridostigmine to restore the GH
response fully may be due to a submaximal dose of
pyridostigmine being used, or alternatively to the fact
that other mechanisms are also involved, such as
reduced pituitary stores of readily releasable GH.
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