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ABSTRACT

Some problems in knot theory

Following the work of Lickorish and Millett on the two variable 

polynomial, P(£,m), generalizations and geometric interpretations of 

the polynomial coefficients of all powers of m are investigated 

using the substitution t = 1. Corollaries regarding the reversal of 

orientations on the components of 2- and 3-component links and the 

effect on coefficients of the Conway polynomial are given as well as 

general reversing results for the Arf invariant of links.

The first c - 1 polynomial coefficients of P(-t,m) are shown 

to encode various products of linking numbers which generalize a 

result of Hoste's on the evaluation of the (normalized) Conway 

polynomial, V^(z), at z = 0.

Problems associated with chirality are studied via the braid 

groups. Using self-maps of B , non-trivial achiral closed braids 

are constructed. Braids constructed in this way are called visibly 

achiral and visibly reversed achiral. It is shown that a 3-braid is 

conjugate to its mirror image if and only if the braid is visibly 

achiral. In fact, as a converse to a conjecture of Kauffman's, it is 

shown that a necessary condition for knot represented by an 

alternating closed braid to have its graph isomorphic to its dual is 

that the braid be visibly achiral.

A new invariant of braid conjugacy class is presented and is 

used to show an example of an achiral alternating closed braid 

diagram on 5 strings that is not conjugate to its mirror image. It 

is then not visibly achiral and is hence a counter-example to 

Kauffman's conjecture.
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IV

PREFACE

Knot theory was born around the year 1867 in Scotland 

from the imagination of three physicists; two Scotsmen 

living in Edinburgh: J. C. Maxwell and P. G. Tait and one 

Irishman living in Glasgow: W. Thomson (Lord Kelvin). 

De La Harpe, Kervaire and Weber, 1986 [HKW, p.271].

In the past several years there has been a resurgence of the old 

view of using projections of knots and links and it is from such a 

framework of diagrams that this paper is based.

The following text is divided into two parts with chapters 1 

and 3 serving to introduce the notation, definitions and basic 

ideas necessary for the chapters that succeed them.

Chapter 2 deals with the Conway polynomial, V(z), and the 

two-variable generalization of the Jones polynomial, P(-t,m), more

precisly, with the invariants the evaluation at t = 1 yield in the

k Laurent polynomial coefficients of m . For a c-component link, the

substitution of t = 1 into the polynomial P(-C,m) yields the 

Conway poly nomial with the first c - 1 terms going to 0. After 

factoring out obvious zeros these first c - 1 terms then become 

non-trivial invariants of link type. A formula for their calculation 

is given in terms of products of linking numbers, generalizing an 

earlier result of Hoste's.

The total twisting of a c-component link, T C , is defined and

c + 1 shown to be (up to the sign) the coefficient of z in V(z). An



ordered list of the crossings of a knot diagram is used in an 

alternative definition of total twisting of a knot giving a much 

easier method of calculation. Likewise, t2 is computed in an 

analogous way. An example of the calculation is given which also 

demonstrates that T2 can detect the bond between two components 

with linking number zero.

Propositions 2.1.11 and 2.2.5 along with Appendix A are 

concerned with the reversing of orientations on components and its 

effect on t, t 2 and TS, respectively. 2.1.11 Relates the total 

twisting of knots obtained by nullifying corresponding crossings of 

two 2-component link diagrams that differ by an orientation on one of 

the components. A corollary to this is a formula for T of a 

(2,2q - 1) cable knot based on a companion. Using 2.2.5 a similar 

corollary is reached dealing with the (2,2q) cable link based on a 

companion.

Chapters 3 and 4 are concerned with braids. A new invariant 

$ is defined and an example is given where $ detects that two 

braids with isotopic closures are non-conjugate. The writhe (which 

plays an important role in the new polynomials) is investigated for 

ascending braids in order to obtain some corollaries. One of these 

is used in chapter 4 to show that the polynomial P(£,m) is 

symmetric in -t, - -t for any braid on 3 strings with zero 

writhe. This produces many examples where the symmetry property 

holds but the closed braid is chiral.

One way of obtaining achiral links is by exploiting certain 

flipping and reflecting operations within the rich structure of the 

braid groups. The braids so obtained are termed visibly achiral. It 

is shown that a 3-braid is conjugate to its mirror image if and only



VI

if it takes a certain symmetric form. Corollaries to this prove that 

if a 3-braid is conjugate to its mirror image then the closure is an 

alternating link, moreover, that any alternating closed braid diagram 

of such a braid must be in this symmetric form. Analogous results 

are established for braids conjugate to the reverse of their mirror 

image. The analysis has lead to a closed braid on 5 strings that 

is a counter-example to a conjecture by Kauffman. Finally, a 

converse to Kauffman 1 s conjecture for all n-stringed closed braids is 

proven.
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CHAPTER 1

1.1 Notation and definitions

A link consists of a finite disjoint union of oriented circles 

tamely embedded in 3-space. A link universe (or shadow) of a link is 

the image of the link under a projection to the plane, where the 

projection is such that there are at most finitely many 

self-intersection points and each such point is a transverse double 

point. A link diagram consists of a link universe together with an 

assignment of the overcrossing and undercrossing at each double point 

called a crossing. For a link universe with n crossings there are 

2 possible assignments, i.e. 2 possible link diagrams with that 

shadow. Two link diagrams A and B will be regarded as the same, 

denoted A = B if they are identical up to planar isotopy (motions 

of the diagrams that preserve the graphical strcture of the 

underlying universe as well as the assignment of over and 

undercrossings, (see [K3,p.3]) ). Every link diagram determines a 

link, up to isotopy, in the obvious way. Conversely, every suitable 

projection of a link determines a link diagram, which we say 

represents the link, and two links represented by the same diagram 

are isotopic.

Two link diagrams may yield the same link, up to isotopy. 

Indeed [Re], they do so if one can be obtained from the other by a



sequence of Reidemeister moves shown below

Rl.

R2.

R3. A/^< ~ '   /s.

Moreover, if K and L are links represented by diagrams A 

and B, repectively, such that K is isotopic to L, denoted K £ L, 

then A can be obtained from B by a sequence of Reidemeister 

moves. If K s L then we say A is isotopic to B and write 

A z B.

The number of components of a link L is denoted c(L) or 

c(A) where A is a diagram representing L. In particular, if 

c(L) = 1 then we say L is a knot and A a knot diagram. Write

£U for the link diagram of c components with no crossings. Say

c the link U represents the trivial link.

For each crossing of an oriented link diagram the assignment of 

over- and under-crossing is called the sign of the crossing and is 

denoted by e = ± 1 e Z according to the following:

Let A be a link diagram with n crossings di,d2 ,...,d n with signs 

ei > £ 2>     > £ n- Define the writhe of a link diagram A, u(A) to be 

the sum of the signs over all crossings;

n
= E 

i =1



If A has c(A) = k components, then we can label the 

components GI,C2,...,Ck. For a crossing dh of components Cj and 

Cj call dh a knot crossing of A if i = j and a link crossing 

of A otherwise. Define the linking of components Cj and C; , 

denoted A(Cj,Cj), to be one half the sum of the signs over all 

crossings of components Cj and Cj , i * j. Likewise, define the 

total linking of A, denoted A(A), as follows:

MA) = % S £j

where dj is a link crossing of A. Notice that the linking and 

total linking are always integer valued.

For a diagram A define the self-writhe of a component Cj to 

be the sum of the signs over all crossings of Cj with itself and 

define the self-writhe of A, sw(A), as follows;

sw(A) = £ ej

where dj is a knot crossing of A. We then have 

(1.1.1) "(A) = 2 A(A) + sw(A)

If A is a link diagram with crossings di,d2,...,dn and 

signs £i,£2?---> £ n then define the obverse of A to be the diagram 

A with crossings di,d2 ,...,d n but with signs -e t ,-£2,   >~ £ n> 

where A and A have the same shadow and orientation. The link L 

represented by the link diagram A is called the mirror image of the 

link L represented by A. If A and A represent isotopic links 

then L is said to be achiral. If A is the diagram A with its 

orientation reversed then L is said to be reversed achiral if A 

and A represent isotopic links. L is unorientedly achiral if L 

is either achiral or reversed achiral and is otherwise chiral.

Two easy methods of constructing achiral knots and links are by 

taking the connected sum of a diagram A and its obverse, denoted by



A # A, and by taking the separated union, denoted by A U A.

Diagram A Diagram A # A Diagram A U A

1.2 Link polynomials

The work of Conway [Co] and Jones [Jl] has inspired the 

construction of various new polynomials defined recursively using 

relations between diagrams of different "complexity". Roughly 

speaking, "complexity" is measured by the number of crossings in a 

link diagram and by the length of a sequence of crossing switches 

that yield the trivial link. Suppose the oriented diagrams A+, A_ 

and A0 are exactly the same except near one point where they differ 

as in the figure below.

Then A0 is "less complex" than either A+ or A_, and (for

suitable choice of crossing) one of A+ or A_ is "less complex"

than the other. Any such triple of diagrams will be referred to as

Conway diagrams.

Every link diagram has at least one sequence of crossing 

switches that yield a trivial link diagram. There is a canonical 

method of obtaining a trivial link diagram by switching



over-crossings to under-crossings and vice versa and the one 

described here is from [LM1]: For a link diagram A, choose a base 

point pj for each of the ordered components Ct ,C2 ,...,Cfc of A 

(Pi chosen not to be a crossing). Switch every link crossing so 

that Cj passes over Cj for 1 < i < j < k. Then starting from 

Pi for each i = l,2,...,k , traverse GI switching (where 

necessary) every knot crossing so that it is first encountered as an 

undercrossing. Define the resulting diagram to be ascending. If B
b-

is an ascending diagram with c(B) = k components then B * U .

Conway, in a paper released in 1969, noticed that the classical 

normalized Alexander polynomial invariant of a link represented by a 

diagram A, denoted A (t) satisfies
c\

A (t) - A (t) + (ft - t"% ) A (t) = 0
tt + H_ «Q 

I/

where t -is the formal square root of t. Hence, the Alexander 

polynomial could be defined and evaluated recursively. In [Jl], 

Jones found (via Von Neumann algebras and their relation to the braid 

groups) a new polynomial invariant V(t) that satisfies

t V. (t) - t' 1 V. (t) + (t^ - t"% ) V (t) = 0 
A+ «- Ho

Nowadays, there is a concrete geometrical interpretation of the 

(Hecke) algebras in terms of a diagram monoid, Dn , generated by 

elements called "hooks" that yield a representation of the braid 

groups. A trace funtion on Dn is then used to define the Jones

polynomial [K3].

Almost immediately after Jones 1 work became known, at least four 

other groups [HOMFLY], working independently generalized his 

polynomial to one on two variables that also gave the Alexander, 

Conway and Jones polynomials as particular instances.



1.3 The H.O.M.F.L.Y. polynomial

1.3.1 Definition: The H.O.M.F.L.Y. polynomial of a diagram A will 

be denoted P(A)(-t,m) 6 Z[t±l ,m±]-] or simply P(A). It satisfies 

the following axioms;

(i) If a diagram B is such that A £ B, then

P(A)(£,m) = P(B)(Jt,m) 

(ii) P(U)(JL,m) = 1

(iii) The fundamental relation;

t P(AJ(t,m) - C l P(A_)(£,m) + m P(A0 )(£,m) = 0, 

where A + , A_ and A0 are the Conway diagrams as 

previously defined.

When there is a need to be more specific about the point where 

the Conway diagams differ the notation will be as follows. Let A 

be a link diagram with crossings dj ,d2,...,d n , each with sign 

e l > £ 25   > £ n- Let ^jA denote the switching of dj in A from 

sign £j to sign -ej and r^A the nullifying of dj , i.e., if

A = A then A = ^jA and A0 = r^A. One notes that 
e i -e j

£i£jA = £j£iA, r^jTijA = TijTiiA and ^jT|jA = T^J^A for all crossings 

dj and dj .

Because of (i) above (for a proof of which the reader is referred 

to [HOMFLY]) we often write P(A)(£,m) = P(L)(£,m) or simply 

P(A) = P(L) where the diagram A represents the link L.

The following properties of P(A) will be needed and we will 

refer back to them frequently. All but P7. can again be found in 

[LMl] and the statements following each are intended more as



exemplification of the ideas than as rigorous proofs

Proprties of P(A)U,m)

PI. P((/C ) = ^ C ~ 1 ,where p. = - m' 1 (t - C l ).

Sketch: Let A + , A_ and A0 be as follows.

OO oo oo
A + A_ A0

Positive Kink Negative Kink

Then the fundamental relation yields

P(A0 ) = - m' 1 ^ P(A + ) - t~ l 

and by axiom (ii) A+ and A_ , being diagrams of the trivial knot, 

have polynomials P(A + ) = P(A_) = 1 and the result for c = 2 

follows. Similarly, by kinking one of the components of U and 

inducting on c one obtains the desired result. D

P2. The lowest power of m in P(L)(l,m) is 1 - c, where

c(L) = c and the powers of -t and m are either all even or all

odd accordingly as 1 - c is even or odd.

Sketch: Here we use induction on the "complexity" of the diagrams 

A+, A_ and A0 and assume that the property is true for A_ and

A0 . Notice that c(A + ) = c(A_) = c(A0 ) ± 1. The fundamental

-2 -1 
relation gives P(A + ) = £ P(A.) - t m P(A 0 ). By the induction,

the monomial t~ P(A_) in P(A) clearly satisfies P2. and because



1 - c(A0 ) is at most c and congruent to c (modulo 2), the monomial 

- t m P(A0 ) in P(A) also satisfies P2.. D

P3. Reversing the orientation of every component of L leaves the 

polynomial unchanged.

Here we need only note that reversing the orientation of every 

component of L does not affect either the sign of any crossing nor 

the "complexity" of the diagrams A+ , A_ and A0 . If the orientation 

of some of the components is reversed the polynomial will, in 

general, change. Some consequences of this will be looked at in 

chapter 2.

P4 . If A is the obverse of a diagram A then

Note that for every sequence of crossing switches that yield a 

trivial link for A there is an analogous sequence in A ; the role 

of A+ and A_ are simply switched in each set of Conway diagrams.

P5. P(A U U) = \L P(A) and hence for any diagram B, 

P(A U B) = \L P(A) P(B), where \i = m~ l (-t + t~ l ) .

Sketch: Assume inductively that Conway diagrams A_ and A 0 are 

"less complex" than A + . Then

P(A+ U B) = -T 2 P(A_ U B) - t~ l m P(A0 U B)

= [t~ 2 P(A_) - C 1 m P(A 0 )] P(B) M-

= P(A) P(B) n .



PjK_ P(A # B) = P(A) P(B) regardless of how the oriented union is 

formed.

Sketch: Analogous to the sketch proof of P5. D

P7. [Mo3] Let A be a link diagram with crossings d l5 d2,...,d n

with signs EJ , s 2 , .     , £ n   Define s(A) to be the number of

n
components in the diagram n r^A (i.e. the number of Seifert

i =1

circles). Let e and E denote the minimum and maximum powers of 

-t respectively and M to be the maximum power of m in P(A)(t,m), 

then

(i) - «(A) - [s(A) -l]<e<E<- co(A) + [s(A) - 1]

(ii) M < n - [s(A) -1] .

Sketch: (i) Using the relation between A and its obverse, one need 

only show that <p(A) < e where <p(A) = - co(A) - [s(A) - 1], or 

equivalently that t ^ ' P(A)(-t,m) has no negative powers of t. 

Use induction on the number of crossings and note that if A+, A_ 

and A0 are as previously defined then

<p(A + ) + 1 = <p(A0 ) = <p(A_) - 1. Hence, by the fundamental relation

0 = C^ ( ^\t P(AJ - t~ l P(A_) + m P(A0 )]

= CV(A^ P(AJ - ^<p(A - ) P(A.) + ^(Ao) m P(A0 ) 

so that by the induction ^^^' P(AJ is a polynomial with no 

negative powers of t if and only if t <f>( ~ ) P(A.) is. From this 

relation, one has that if A' is an ascending diagram obtained from
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A then t P(A) has no negative powers of t if and only if 

£ P(A') has none. Noting that the lowest power of L in 

P(A') is 1 - c(A) it remains to show that - <p(A') > c - 1. 

This, however, is true independently of the polynomial and (i) 

follows.

(ii) This is almost immediate from the definition of s(A) 

given above. 0

1.4 The Conway Polynomial

The following chapter looks at specific coefficients of the 

Conway polynomial. The purpose of this section is to obtain some of 

the basic results that will be used throughout the chapter.

The Conway polynomial, VA(Z), of a link diagram A may be 

obtained from P(A)(-t,m) using the substitution t = 1 and m = z. 

We may then adapt and summarize P2 and P5 as follows:

Cl. VA(Z) = VA(Z)/Z is a polynomial in z 2 .

C2 . V. n (z) = 0, where AUB denotes the separated union of 
ALJB

diagrams A and B.
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Using Cl, we write VA (z), the normalized Conway polynomial, in 

canonical form as follows:

N

(1-4.1) VA (z) = L a2i -z2i
i =0

for some N 6 2.

Nearly all proofs in the next chapter use an induction on a 

sequence of crossing switches that take a "complicated" link to a 

"simpler" one. Let A be a c-component link diagram and 

£l> 2>«'*>£s a sequence of crossing switches that change the sign of 

crossings di from &i to -ej resulting in a diagram B. Then, 

repeated use of the defining relation gives

(1.4.2) VA (Z) = VB (Z) - z.Z, £j -vAj (z)
tt

where Aj = (T)J n ^ )A.

1.4.3 Proposition:

(1) If A is a knot diagram then VA (0) [= VA (0)] = 1

(2) If A is a link diagram then VA (0) = -A(A)

Proof: Notice that for a knot crossing, dj , of a link diagram A, 

c(rijA) = c(A) + 1 and that for a link crossing c^A) = c(A) - 1. 

This implies that in the normalized Conway polynomial, VA (z), if 

££»--->£s is a sequence of knot crossings that unknot A then
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using (1.4.2) we have

s

(1.4.4) VA (z) = VB (z) - z2 Z £j V (z)
j =1 Aj

VB(Z) =1 by definition. Hence, putting zero in for z completes 

the proof of (1). Likewise, if £1 ,£2>•••>£s is a sequence of 

crossing switches that unlink the components of A then

(1.4.5) VA (Z) = VB (Z) - .Z, £j -vAj (z).

Here, VB (z) =0 by C2 and for each j, V (0) = 1 by (1)

Hence, VA (0) = -.S ej = - A(A).
s

D
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CHAPTER 2

2.1 The total twisting, T( K )

In [LM1], Lickerish and Millett define the total twisting, x(A), 

of anoriented knot diagram A and show that it can be calculated 

from P(A)(-t,m), thereby proving it is an invariant of knot type. 

This calculation is equivalent to finding the second coefficient 

of the normalized £onway polynomial, VA (z). The invariance of 

t(A) will be proved here using this relation to the Conway 

polynomial instead of P(A)(£,m). We now define t(A) as in [LM1].

2.1.1 Definition: Let A be a diagram which represents a knot K. 

Given a sequence of crossing switches, £j , j = l,2,...,r of 

crossings of sign ej , which yield a diagram of the trivial knot, 

there is an associated sequence of two component link diagrams

AJ = hj n $i)A = B U B
J1 JZ

from which one defines the total twisting

t(A) = S £j -A(B ,B
J Jl J2

2.1.2 Proposition: Let A be a diagram which represents a knot K 

Let a2 (K) be the coefficient of z2 in VA (z). Then

a2 (K) = t(K).

Proof: By (1.4.2) we may write

VA (z) = 1 - z 2 V (z)-£ij =1 A j
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Hence

a2 (A) = - S a0 (Aj)-£j

= S A(A). £j = t(A). Q

Let A be a knot diagram. Label the crossings d1} d2,...,d n 

and let EJ be the sign of dj . Let A' be a knot diagram obtained

from A by switching all the crossings in D = {d . ,d . . . . ,d . } .
Jl J2 Jr

Then the following defines a useful generalization of t(A).

2.1.3 Definition: Let A and A' be as above, then define t(A:A')

as follows.

(i) Starting at a base point p (not on a crossing) traverse 

A in the direction of the orientation. List all crossings in 

the order in which they occur. [Note that in one trip "around" 

A each crossing will be met twice and should appear twice in 

the list]. Define this to be the list of A and denote it by 

List(A).

(ii) Consider pairs (j,k) where dj 6 D and d^ £ D 

with d; occurring exactly once in between the two d^ in 

List(A).

(iii) Then 2-t(A:A') = S £j-£k where the sum is taken over 

all pairs (j,K) as defined in (ii).
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2.1.4 Examp1e:

Let A be a diagram of the 

figure-of-eight knot. A has 

crossings d1? ...,d4 , with signs 

£l =£4=-! and e 2 = £3 = 1.

Switching the crossings in D = 

yields a diagram, A' , of the trefoil 

knot. List(A) = dx ,d2 ,d3 ,d t ,d4 ,d3 ,d2 ,d4 . 

Then 2 T(A:A') = £l (s 2 + e 3 ) + e 4 (£ 2 + £ 3 )

= -2-2=-4. A' 

Hence, t(A:A') = - 2.

The invariance of T(A:A') is due to the invariance of t(A) 

and t(A'). We have

2.1.5 Proposition: Let A, and A 1 be any two diagrams with the

same shadow. Then

t(A) = t(A:A') + t(A').

Proof: Let £j , j = 1,2,..., r be a sequence of crossing changes 

that takes A to A 1 . Clearly, we have that

T(A) = .

where Aj = (TIJ II £i)A. We need only prove, then, that

t(A:A' ) = .2 ej -A(Aj )•
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For any crossing dj the link crossings of the diagram T]J A 

correspond to those in the List(A) that appear exactly once in 

between the two dj . Hence, for each j we have that 

ej-A(-njA) = 1/2 S £j -e^ ; where d^ appears once in between the two 

dj in the list List(A). This also implies that dj is a link 

crossing of ri h A if and only if dh is a link crossing of t]jA, so 

that if both dh,dj € D with j < h then the effect £j -e^ nas in 

£j -A(Aj ) is cancelled by the effect (eh)(~ £ j) has in e h -A(A h ) 

when summing over all £k'M A k) as k goes from 1 to r. 

Therefore, as the definition of T(A:A') states, we need only 

consider products £j-£h where one of dj or dh is in D. D

Hence t(A:A') is invariant under the knot types of A and 

A'. An interesting feature of t(A:A') for general A and A 1 is 

its additive nature.

2.1.6 Proposition: For any three knot diagrams A, A' and A" with 

the same shadow

T(A:A") = T(A.-A') + t(A' :A").

Proof: The proof is immediate from 2.1.5. D

Some corollaries to 2.1.6 are easily derived with various 

choices for the diagrams A, A 1 and A". Unless defined otherwise 

we take these diagrams to be any three that share the same shadow.
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2.1.7 Corollary: t(A:A') = - T(A':A).

Proof : Clearly t(A:A) = 0 so that by the proposition

0 = t(A:A) = t(A:A') + t(A':A). D

2.1.8 Corollary: t(A:A) = 0 , where A is the obverse of A.

Proof: Note first that if A" is any unorientedly achiral knot with 

the same shadow as A then A" and A" represent the same 

unoriented knot and so

t(A:A) = T(A:A") - t(A:A") 

= T(A:A") - x(A:A")

using the invariance of t(A:A"). Observe that for each 

term £i' £ j i n the calculation of T(A:A") we have the 

corresponding term (-£j)(-£j) in the calculation of (A:A"), 

hence the two must be equal. D

2.1.9 Corollary: Let A , A' be any two diagrams with ascending 

diagrams . B , B' , respectively. Then

t(A # A':B # B 1 ) = t(A:B) + T(A':B')

or equivalently

t(A # A 1 ) = t(A) + t(A')

proo f ; in the List(A # A'), no crossing of A appears in between

any two occurrences of a crossing of A' so that

t(A # A':A # B 1 ) = t(A':B') and T(A » B':B * B') = t(A:B).
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We have then that

x(A # A':B # B 1 ) = T(A # A':A # B') + t(A # B':B # B') 

and the result follows. D

2.1.10 Corollary (see [LMl]): Let A be the diagram of the twist 

knot with q twists, q € Z and A' a diagram of the unknot with the 

same shadow, then t(A:A f ) = t(A) = - q.

Proof: We have crossings dt ,d2 , 

with signs EI = £2 = 1 and 

EJ = -1 if q>0, EI = + 1 

otherwise, and that 

D = {di } (as shown) . 

List(A) = di ,d2 , . . . ,d2q +2 >d2 ,

2q+2
Hence, -c(A) = 1/2 S

i =3

,d2q +2

= - q

r tut

The following proposition will be the foundation of the theory 

to follow, and, as corollary 2.1.14 demonstrates, it can sometimes be 

useful in its own right. We set aside t(A:A') until the next 

section and now concentrate on t(A) as defined in [LMl].

Let A be a 2-component link diagram in which the components 

separately form knot diagrams B! and B2 . Denote by A the 

2-component link diagram A with its orientation reversed on exactly 

one of its components. Let A = A(A). Note that A(A) = - A(A) and 

that sw(A) = sw(A). Let d be a link crossing of A of sign e
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then d is also a link crossing of A, but of sign -e . Let 

A0 = i]A and A^ = i^A. Then we have

2.1.11 Proposition: Given the above conditions

t(A0 ) = - tU + 2 O(Bi) + t(B2 )] + l/2-A-(A - e).

Proof: To set up an induction on the length r, of a sequence of 

crossing switches that yield the separated union of components Bj 

and 82 (up to isotopy), suppose first that r = 0, that is, all 

the link crossings of A have BI pass over (say) 82 and so 

A = 0. Nullifying any link crossing yields both A 0 and A as 

connected sums and hence, by 2.1.9

T(AO ) = - T(AQO ) + 2 O(BI) + T(BZ )]

Now suppose r = 1, i.e. switching the link crossing d (say) 

gives (up to isotopy) the separated union of B± and 82- Then 

nullifying d also yields a connected sum with A - e = 0.

Assume inductively that the proposition has been established 

for all sequence lengths less than r and that di,d2,...,d r is a 

sequence of switches from sign z\ to -e, which gives the 

separated union of Bj and B2 . Nullifying d = di (say) in 

both A and A yields A0 and A^ respectively. Operating on 

d2 (say) in A0 we obtain from the definition of T(AO )

By the induction we get

t(A0 ) = - ^(^A) + 2-0(8!) + t(B2 )]

Notice that T(A) = ^(^A) + (-£2 ) ' A ( Tl2 A00 )QO ^ 00
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We now interrupt the proof to establish

2.1.12 Lemma: Given the above conditions

*(Tl2Ao) = A(Ti 2 AQo ) + A - l/2-(ei + £ 2 )

Pl> OQf: Consider the components B! and B2 in A. Let 

d r +1,...,d n be the remaining n - r crossings of A with EJ the 

sign of dj . Choose base points pj of Bj for j = 1 or 2. 

Starting at pj , traverse Bj in the direction of its orientation 

listing all crossings in the order in which they occur. Define this 

to be the sublist of Bj denoted by Sublist(Bj). Note that link 

crossings appear once in each sublist; knot crossings, twice. Also 

that List(Bj) = Sublist(Bj ) if and only if A is the distant union 

of components Bj and B2 .

Now choose pj such that di appears first in both sublists. 

Let Si ,j = {dk: k ± 1 and d^ appears before d2 in Sublist(Bj )} 

and S2 ,j = {dk: k * 1 and d^ appears after d2 in Sublist(Bj )}. 

Notice that Sj ,1 U S2 , 2 are precisely the crossings on one of the 

components of T] 2 A 0 and Si , 2 U S2 ,i are the crossings on the 

other component. Hence A(r]2 A0 ) = 1/2-S ej where dj is in 

{(Si,i U S2 , 2 ) n (S1?2 U S2 ,i)}. Similarly X(r\ 2 AJ = 1/2-E ^ 

where dj is in {(Si, t U S 1)2 ) n (S 2>1 U S2 , 2 )}, with the signs of 

S2 , i , for i = 1 or 2, switched. Then define (Sh,i ;Sj ,k) = 1/2-S e g 

such that one of the dg is in Sh ,i and the other is in Sj , k . 

Notice then that

(2.1.13) 1/2 S S (Si,!;Sj , 2 ) = A - l/2-( ei + e 2 )-
i =1 J =1
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The two 2-component link diagrams T]2 A0 and r^A will have 

linking numbers as follows:

2-Mri2 A0 ) = (S^nS!^) + (S1 , 1 ;S2 ,i) + (S2 ,2;S1 , 2 ) + (S2 , 2 ;S2 ,i) 

and

2-A.(T)2 A0 ) = (Si^Sjz,!) - (S1 , l ;S2>2 ) - (S^nSj^) + (S2 , 2 ;S1 , 2 ). 

Hence

A(ri2 A 0 ) - A(i]2 AJ = A - l/2-( £l + e 2 ) 

This completes the proof of the lemma. D

Proof of 2.1.11 (continued): Using 2.1.12 we have

t(A0 ) = ~ *U2AJ - (-e 2 ) M12AJ + 2.[T(Bi) + t(B2 )]

+ 1/2- (A - £ 2 )(A- e 2 - ei ) + £ 2 [A - l/2-( ei + £ 2 )]

2-[T(B!) + T(B2 )] + l/2-A-(A - el). D

2. 1. 14 Corollary: Let A0 q be a diagram of the (2,2q -1) cable knot 

based on its companion represented by A0 , q positive (see [Rol]). 

Then

t(A0 q ) = l/2-q.(q-l) + 4-t(A0 ).

Proof: Let Aq be the diagram representing the (2,2q) cable link, so 

that A(A) = q. Choose d to be a crossing corresponding to one of 

the 2q half twists of A. Then rjA represents A0 q and riA 

represents the trivial knot. Notice that T]Aq and r]Aq satisfy the 

conditions of proposition 2.1.11. The corollary is then immediate 

upon its application.
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The (2,6) cable link of the trefoil

T|A

The (2,7) cable knot 

of the trefoil

T]A

The unknot
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2.2 Total Twisting of a Link

In this section we consider a2 (A) of VA (z) (= VA (z)/zc " 1 ) 

where A is a c-component link diagram. Just as for knots, a2 (A) 

may also be calculated using the following

2.2.1 Proposition: Given a c-component link diagram, c>l, and a 

sequence of crossing switches £1 ,£ 2 , . . . ,£5 from sign £j to -£j 

which unlink one component of A (up to isotopy) there is an 

associated sequence of (c-1)-component link diagrams, Aj of the form

We then have that

a2 (A) of VA (z) = - £ £j -a2 (Aj )
J

Proof: By 1.4.2, VA (z) = -£ £j-VA (z) and the result follows. D

To avoid confusion we make the following definition.

2.2.2 Definition: Let A be a c-component link diagram. Then 

define Td (A) as

(i) _l £j .Td _!'(Aj ) if c = d > 1, where Aj is as in 2.2.1

(ii) t(A) as defined in [LMl] if c = d = 1

(iii) 0 if c * d .

Hence, if A is a c-component link diagram and a 2 (A) is the
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coefficient of z2 in VA (z) then

a2 (A) = (-

For the remainder of this section we concentrate on t 2 (L) 

where L is a 2-component link.

Calculation of

(1) Choose a diagram, A, of the link with components B { and B2 .

(2) Find a set of link crossings D = {dj ,d 2 , . . . ,d r } that when 

switched unlink the components of A. Label the remaining crossings 

d r +1 , . . . ,d n . Let crossing dj have sign £j .

(3) Choose base point pj for the component Bj and form the 

Sublist(Bj) as defined in the last section.

(4) For each pair of crossings dj ,dj 6 D consider all products

£ i ' £ j ' £ k where

(i) dfc is a knot crossing of component B^ that appears

exactly once between di and dj in Sublist(Bh). Denote the

sum of all such products by R. 

(ii) dk £ D is a link crossing of A such that d i? dj,d k

appear in the same order in both sublists. [Take dj,dk,dj and

dk,di,dj to be the same order as di,dj,d k ]. Denote the sum of

all such products by S.

(iii) d k e D such that dj ,dj ,d k appear in the same order in

both sublists. Denote this sum by T. 

(6) Then t2 (L) = 1/2 (R + S - T) + A(A) • [T(B! ) + t(B2 ) ] .
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2.2.4 Example: Let L be represented by the diagram A below, 

Then

= d5,d6 ,d7 ,d2,d8 ,d9 ,

dl > d 8 » d6 > d 5 > d 3 > d l 0 j d 4 , d l 1 ,

Sublist(B2 ) = d! ,d2 ,d3,d10 ,d4,

£ 6

£ 4 (£ 5 + £ 6 + eg)

+ £3 £ 4 (0) 

S = E! £ 2 (£ 9 ) + £1 

+ £ 10 + £11)

+ £3

+ £9 + e 10 £4(^7 + £ 9

+ £ 9 + £ 10 + £ 11 ) 

T = £1 £3 £4 + £ 2 £ 3 £4 with £ 3 = £ 4 = £ 5 = £ 6 = e 10 =£u=l

and e t = £ 2 = £7 = £ 8 = £9 = - 1 . Therefore R+S-T=-8 

Also B! = B2 = U so that T(Bt ) = -c(B2 ) = 0. Hence, T 2 (A) = - 4. 

Notice that t2 detects the linking of A even though A.(A) = 0

To see how this calculation yields t2 as defined, consider the

r-l r
knot diagram A r = t\ r FI ^A = r\ r ( U

k=l k=l
where is a

sequence that unlinks the components of A. Hence A r is simply the

connected sum of knots

A' = ( n 
k =

and B2 . Similarly, if we let

have that, for all i = l,2,...,r , r^A 1 is the 

connected sum of B^ and B2 . Let A" be the ascending diagram

obtained from A so that T]jA" is a diagram of the trivial knot
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with the same shadow as Ai. Thus we have 

-r(Ai) = -r(Ai :rIiA") = -r(Ai :Tli A') + -r(lli A' :lliA") 

-r(Ai:lliA') + -r(B1 # B2). 

Noting that, ~ gi A(A), we have that 

We need only show 

1/2 (R + S - T). 

For each i, define Di = {di+l ,di+2, ... ,dr } in D. Therefore, 

by the definition of -r(Ai :lliA'), we need only show that for each 

dj e Di and dk !t Di, the term gj gk is a summand in ei ther R, S or 

T. 

For each di e D, divide Sublist(B1 ) into three parts, Ci, di 

and Fi , such that Ci, di ,Fi = Sublist (B1 ) . Similarly, we have G· 1 

and Hi with Gi ,di ,Hi = Sublist(B2). Using the fact that 

List(Ai) = Fi ,Ci ,Hi ,Gi (up to a cyclic permutation depending on the 

choice of base paint in Ai), one can check that (4)(i) to (4)(iii) 

define all such gj ·gk. Notice that for dk e D, but dk!t Di 

i -1 
the sign of dk in Ai = lli.n ~jA is -gk. 

J =1 

- -Consider now two link diagrams, A and A, where A differs 

from A by a change in orientation on some of the components. The 

Jones polynomial, VA(t), has the property that 

VA(t) = t 3d VA(t) 

where d = 1/2 [A(A) - A(A)]. This is known in the literature as the 
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reversal theorem (see [LMl],[Mo2] and [Cm]). VA (z) does not

have a directly analogous property. The question arises: what is the

relationship between V.(z) and Vr(z)? Below, we look at a
A A

reversing result for t 2 (A), where A is a 2-component link 

diagram.

2.2.5 Proposition: Let A = BI U 82 be an oriented 2-component link 

diagram with A(A) = A . Let A be the diagram A with the 

orientation on 82 reversed, then

t 2 (A) = T2 (A) + 2-A.[t(B1 ) + t(B2 )] + l/6-(A3 - A).

Proof : The proof is by induction on the length of a sequence of 

crossing switches, ^i , i = l,2,...,r , that unlink the components 

of A. Note that when r = 0, A = 0 and t2 (A) = T 2 (A) = 0. 

Assume that switching a crossing d of sign e yields the diagram 

^A that satisfies the proposition. Let ^A denote the switching 

of the same crossing in A and rjA, its nullification. Then by 

the definition of T2

T2 (A) = t2 UA) + e

2-(A - e).[T(Bi) + t(B2 )] + 

l/6-[(A - e) 3 - (A - e)] + £"c(iiA) . 

Using proposition 2.1.11 we have

+ 2 [T(B!) + t(B2 )] + A :
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Thus

+ 2-A.[t(B1 ) + t(B2 )]

(A - e) 3 - (A - e) £-A2 - A 
6 2

which gives the desired result. D

2.2.6 Corollary: Let Kq be the (2,2q) cable link of K (see 

corollary 2.1.14), with q a positive integer, then

T 2 (Kq ) = t 2 (K°) + 4-q.T(K) + \q+1 ]
I 6 J

Proof: We need only note that T2 (Kq ) depends only on K. That is, 

if Kq denotes Kq with one of its components with reversed 

orientation then x2 (Kq ) is constant for all values of q since 

nullifying any of the 2q half twists in a diagram representing 

Kq yields the trivial knot. Therefore T 2 (Kq ) = t 2 (K°). The 

corollary is then obtained from two applications of the proposition 

since A(Kq ) = q. D

2.2.7 Corollary: If L and L are two 2-component links that 

differ only by the orientation on one component then

- T 2 (L) = 1 (modulo 2) if and only if A(L) = 2 (modulo 4).

3 Proof: By the .proposition we need only state that 1/6-(A - A) is

odd only when A = 2 (modulo 4) where A = A(L). D
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2.2.8 Proposition: Let A and B be c- and d-component link 

diagrams, respectively. Denote by A the obverse of A and let 

^c-l(A) = (-l) C~ 1 -a0 (A) and fld -i (B) = (-l)^ 1 -a0 (B) where a0 (A) 

and a0 (B) are the constant terms in the normalized Conway 

polynomials of A and B. Then

(i) a2 (A) = tc (A) 

(ii) TC (A * B) = ftc-l(A)-td (B) + fld-l(B)-Tc (A)

Proof of (i ) : Use induction on c = c(A). Let £1 5 ^2 > • • • > £r t> e a 

sequence of crossings switches that unlinks one component of 

A = BiUB2 U. . .UBC . For c = 1, (i) is true by proposition 2.1.2 and 

corollary 2.1.8. By the definition of tc (A) we have that

TC (A) = S £j -TC.J (Aj )
J

= (-I) 0' 1 S -ej.Tc.jCAj)
J

Hence, a2 (A) = (-1) 0' 1 • T C (A) = (-l) 2(c~ 1} -T C (A) = T C (A).

Proof of (ii) : Adapting P6 we have

so that

a2 (A#B) = a0 (A)-a2 (B) + a0 (B)-a2 (A).

Since c(A#B) = c + d - 1 and for any link diagram D 

a2 (D) = (-1) -t / n \(D) we arrive at the desired result. D

Remark: In [Ho] Hoste uses linking numbers to calculate ftc -l 

next section is devoted to a generalization of this result.

In general for link diagrams A,B , A = B does not imply
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that for any knot diagram C, A # C = B # C, however, because the 

polynomials of these diagrams will always be the same, so too will

Tc-

2.2.g (ii) implies that for an achiral link L with an even 

number of components, TC (L) =0. If K is a knot and K is as in 

2.2.6 then K achiral implies K achiral. Therefore, K is chiral if 

T2 (K ) is not 0. The two-variable polynomial detects chirality and 

one may ask if there exists a knot K such that P(K)(£,m) is 

symmetric in t and -t but T 2 (K ) is not 0? I guess not and 

conjecture that T 2 (K ) =0 for all knots K. If this is the case, 

then by 2.2.6 T 2 (K q ) depends only on t(K) and q. A stronger 

version of the question above asks whether there exists K such that 

P(K)(-t,m) is symmetric in t and -t~ l but P(K°)(-t,m) is not?

One of the main problems in knot theory at present is to 

interpret the coefficients of the new polynomials in terms of the 

geometry of the link. In this section we attempt to contribute to

this study.

M

For a link diagram A write P(A)(t,m) = Z P;(A)(£) m j wherej =1 -c

c = c(A), M is the maximum power of m in P(A)(£,m) and Pj(A)(t) 

is a polynomial in t and t . Recall that Pj (1) = 0 for 

j = c (modulo 2) (by P2.), for j < 1 - c (also by P2.) and for 

j > n - [s(A) - 1], where n is the number of crossings in A and 

s(A) is the number of S-fiifert circles (by P7.)-
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Since the substitution, -t = 1, m = z, gives the Conway 

polynomial we have that

Pk(A)(l) = ak (A)

in VA(Z). Hence, Pic (A)(l) yields no new information. However, by 

factorizing out the obvious zeros from the polynomials Pk(A)(£) for 

-c < k < c-2 , k = c-1 (modulo 2) we do obtain nontrivial invariants.

Start by rewriting the polynomial, P(L)(l,m), of a link L in 

a more natural form. Recall, P(L)(l,m) is defined recursively 

using the fundamental relation. At each step of the calculation, the 

polynomial of a link diagram is determined by the polynomials o
f two 

"less complex" link diagrams, as described in section 1.2. The 

result is an expression involving only ascending diagrams of varying 

numbers of components, each with a coefficient in Z[£~ ,m].

To each ascending diagram with c components, the polynomial

\i , |j. € Z[t~ ,m ], is assigned. It is here that we halt the

s: h 
process and look at coefficients of (i m . Formally, we have

2.3.1 Definition: Let A be a link diagram with crossings dj of 

sign £j for j = l,2,...,n. Given a tree of sequences, let T(A) = 

,D2 , . . . ,Dq) be the set of all ascending diagrams of the form Dj 

T| . . . T] £ ( >. ...<!; A such that if GJ = c(Dj) then

,m) =L [r i ]. Jtti .mri -
i =1

for some tj € Z and [TJ ] = ±1, where [i = -m (t - t ) 

Define

Qg , h (A)(t) = 

taken over all i = l,2,...,q such that cj - 1 = g and r; = ii
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2.3.2 Notes: (i) Ci > c(A) - FJ for all i, hence Qg ,h(A)(£) = 0 

for g + h < c(A).

(ii) In general, Qg,h(^) depends on the tree of sequences chosen, 

however, as we shall demonstrate, for certain values of g and h, 

Qg>h(l) is an invariant of knot type.

Key to this section is the following.

(2.3.3) E (-t + C 1 )* Qj , j+k (A)(t) = P k (A)(t)
J

(1) for k > c - I:

E (-t + r 1 ) j Q

+ 2 (-t 4-

This yields

(2.3.4) Pk(A)(l) = Qo, k (A)(l)

Hence Qo?h(A)(l) for h > c-1 are merely the coefficients of the

Conway polynomial.

(2) For l-c<k<c-l and k = c - l(modulo 2), let

a = 1/2 (c - 1 - k). Then by 2.3.2 (i)

E (-*. + t~ l ) j QJ , j+ -

Therefore,
-1 N -a

(2.3.5) (--t + ^ A ) "• P k (A)(l) = Qa,atk(A)(l).
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Summarizing, we have the following

2.3.6 Proposition: For any c-component link diagram, A, with 

0 < g,h € Z such that g + h = c - 1 or g=0 and h > c - 1

(!) Qg,h(A)(l) is invariant of link type,

(2) Qg, h (A)(l) = Qg, h UA)(l) - e-Qg^-i^AMl). Q

In particular,

2.3.7 Proposition: For any c-component link diagram

=1 (cf[LMlj)

Proof: Let V± be the one element in T(A) with the same shadow

as A. Notice that r 1 = 0 and c^ = c(A) so that
ri

Qc-i,o(A)(i) = Oil = n-ej = i D

In [Ho] Hoste obtains formulae for the constant term in the

Conway polynomial of a link L using both the linking matrix of L

snand a graphical repression of the link. It is the latter which we

investigate now.

Let L be a link with components KI ,K2 , . . . ,KC . Let G(L) be 

the complete graph with c vertices. Label the vertices 

Ki,K2 ,...,Kc and label the edge connecting Kj to Kj with their 

linking number, A(Ki,Kj). Now let H b (L), 0 < b < c-1 be the 

set of all subgraphs of G(L) that (1) consist of b distinct edges 

together with their vertices and (2) contain no loops. (Note that we 

allow elements of H b to be disconnected. For the case b = c-1
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though, g € HC.! if and only if g is connected ). If g e Hb , let 

g be the product of the b linking numbers associated to the edges 

of g. Define fl b (L) = S g and fl0 (L) = 1.

Hoste shows that if L is an oriented link with c components, 

then VL (0) = ftc _! (LX-l)C".We now show that Qb ( L ) is encoded in 

P(L)(£,m) for all 0 < b < c - 1 and hence generalizes 

Hoste's result.

2.3.8 Theorem: If L is a c-component link then

Proof: Using 2.3.5 we need only prove the following

(-l) b •Qc _ 1 _ b , b (L)(l) = nb (A).

The proof is by induction on the pair (c,s) ordered 

lexicographically, where c is the number of components and s is 

the length of a sequence of crossing switches, £1 ,£2 , . . • ,£s that 

unlink all the components of A. By 2.3.7, Qc _j, 0 (L)(l) = 1 for 

all c. Setting c = 1 starts the induction on c. Now assume A 

is a link diagram representing L with pair value (c,0). Then 

Qc-l -h»b( A ) (!) = Qc-l -b >b( UB i ) (1) where UBj is the separated union 

of all the components of A. This implies A(Bj,Bj) = 0 for all i,j

i^j). Clearly any sequence of switches and nullifications on this 

diagram will not decrease the number of components so that 

Qc-l-h»b( A )(!) = ° for a11 b > 0 and 2.3.7 proves the case when 

b = 0.
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Let A = UBj , i=l,2,...,c, be an oriented c-component link 

diagram with a sequence of s crossing switches, £j , j = l,2,...,s, 

that unlink the components of A. Let £A and r|A be diagrams that 

satisfy the proposition and that differ at a single crossing d of 

components Bj and 82 (say) where d has sign e. Denote by Cj 

for i = l,2,...,c , the components of ^A and Dj, i = 3,4, ...,c, 

the components of r\A that correspond to Bj in A, with Dj 2 the 

component of r|A that results from nullifying d. The fundamental 

relation gives

Qc-l-b,b(A)(l) = Qc-l-b,bUA)(l) - e-Qc _ b _ 1 ,b_ 

By the induction, noting that c(t]A) = c(A) - 1 , we have 

(2.3.9) Qc _ 1 _b, b (A)(l) = ft b (£A) + e-Ob.jCtiA).

2.3.10 Notes:

(1) A(Bj ,Bj ) = A(Ci ,Cj ) for all i,j except the pairs 1,2 or

2,1, where A(B1? B2 ) = A(d,C2 ) + e.

(2) A(D12 ,Dj ) = A(d,Cj ) + A(C2 ,Cj ) for all j = 3,4,...,c.

and A(Di? Dj) = A(Ci ,Cj ) otherwise.

By note (1) we need only look at the graphs g 6 Hb(£A) that 

include the edge between GI and C2 . (The products corresponding to 

those without this edge will be the same for both flb(A) and 

. Denote this set of graphs by Hb'UA). Then

Z g = W-A(d ,C2 )

for some W. Notice that if ftb-l^A) in (2.3.9) is equal to W
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we use note (1) again to complete the proof. So it remains to show 

that fib _! (riA) = W.

Let g be any graph in Hb'(£A). Construct a new graph g' 

using the following map: Consider F: Hb '(£A) — > Hb-i (riA) defined on 

the vertices by GI H Dj 2 , C2 H DI 2 and Cj H Dj otherwise. On 

the edges, send A(Ci,C2 ) to 0 and A(Cj ,Cj ) to 

A(F(Ci ),F(Cj )) otherwise.

Now if m > Q is the number of edges incident at Dj 2 in some

g 1 e Hb-i(riA) then 2 m graphs g in H b '(£A) map to g 1 by F.

Using note (2) we have that

g'-A(C! ,C2 )

Because F is onto we have

g

= w completing the proof. D
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2.4 The Arf Invariant of an oriented Link

In [Rob] Robejjtello introduces a modulo 2 invariant of Knot 

cobordism (now known as the Arf invariant of a Knot K, denoted 

Arf(K)) and shows that it can be calculated from the Alexander 

polynomial. It was then shown by Kauffman that the first coefficient 

of the Conway polynomial is all that need be examined to determine 

Arf(K), [K5]. Conway himself along with Gordon in [CG] show that for 

Conway diagrams A+, A_ and A0 where A+ and A_ represent 

knots

Arf(A + ) = Arf(A_) + A(A0 ) (modulo 2). 

Hence, it is easily seen that

t(K) = Arf(K) (modulo 2)

and the following are immediate from Proposition 2.1.11 and Corollary 

2.1.14.

2.4.1 Proposition: Given the conditions of Proposition 2.1.11 and 

Corollary 2.1.14

(1) t(A0 ) + T(A ) = l/2-A-(A - e) (modulo 2)

(2) x(A0 q ) H 0 (mod 2) if and only if q = 2 or 3 (mod 4) D

We turn our attention now to the Arf invariant of Links. First 

some necessary definitions.

2.4.2 Definition: Let L be a link with components KI ,K2,...,K C . 

L is said to be proper if for any choice of i,

A(L,L-Kj) = E A(KJ,KJ) is an even integer. Now let L be
j*i 

represented by the diagram A. Another link L 1 represented by A 1
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is said to be related to L if A 1 is obtained from A by smoothing 

a link crossing and links related to the same link are themselves 

said to be related.

2.4.3 Proposition (Robertello): If knots K and K' are both 

related to the same proper link L then Arf(K) = Arf(K'). 0

Hence, one defines the Arf invariant of a proper link to be the 

Arf invariant of any knot to which it is related. Now let L 1 be a 

sublink of a link L for which both L 1 and L - L 1 are themselves 

proper and denote this by L' < L. Wu [Y] proves the following.

2.4.4 Theorem (Ying-Qing) : For any c-component link L,

t c (L) = E Arf (L 1 ) (modulo 2) . 
L'< L

In particular, for 2-component links of the form L = Kj U K 2 ,

Arf(L) = T 2 (L) + T(K!) + T(K2 ) (modulo 2). D

Wu's theorem actually uses a2 (L) of V^(z) instead of T C (L) 

but by (2.2.3) the two are congruent modulo 2.

The aim now is to use Wu's Theorem to obtain results regarding 

the effect orientation of link components has on the Arf invariant. 

Our first result is the following proposition about t c (L).

2.4.5 Proposition: If A = B 1 UB2 U...UBC and A = E { U. . .UBC _ { UBC are

c-component link diagrams, where Bi indicates the orientation

on the i-th component is reversedj then T C (A) - t c (A) (modulo 2) is

a function of the linking numbers, A(Bj,Bj) for all i,j , i<j.
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: Our induction is on c, the number of components and on r, 

the number of pairs i,j such that Bj is nontrivially linked with 

Bj in A (Bj is trivially linked with Bj if at every crossing of 

Bj and Bj , Bj passes over Bj for i<j.) Note that iiA and TjA 

will not have the same shadow if the link crossing operated on 

involves the component whose orientation is being changed. Consider

first then the case where A has no linking other than on its c-th

c-l
component, i.e. A - Bc = U Bj (the separated union of the first c-l

i =1
components of A) .

Let DJ = BjU. . .UBj.iUBjU. . .UBC so that A = Dj and 

tc (A) = TC (DC ) (by P3) and hence we need only show that 

Tc(^i) ~ T c(^i+l) (modulo 2) is a function of the linking. The 

difference between DJ and Dj +1 is the orientation on the i-th 

component. In this case we can easily find a sequence of switches 

that unlinks a component from Bc without involving the i-th 

component of Di, for c>2. By reordering the components, the 

hypotheses of the proposition will be satisfied and crossings 

operated on will not involve the component whose orientation is being 

changed.

Corollary 2.2.7 shows that for 2-component link diagrams

T2 (A) - T 2 (A) = 1 (modulo 2) if and only if A(A) = 2 (modulo 4) which

c
starts the induction on c. Also tc ( U B, ) = 0 (modulo 2), by C2 ,

i =1

which starts the induction on r.

Assume now that c > 2 and r > 0. Choose a sequence of 

crossing switches £i , i=l,2,...,s that unlinks Bi from Bj for 

some pair i,j, i*j, and reduces the value r above. Denote the
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resulting diagram by D. The definition of tc (A) gives

T C (A) = T C (D) + E £ k
k = l

Likewise

TC (A) = T C (D) + 2 e k
k = l

where A k = (T] k n £ h )A and A k = (t] k n £h)A. Th e induction gives
h<k h<k

that for each k, tc _!(A k ) - t c -l ( A k) (modulo 2) is a function of 

their linking. However the linking numbers of A k are constant for 

all i = l,2,...,s. Combining we have 

tc (A) - T C (A) = t c (D) - T C (D)

+ A(Bi,Bj J-tTc.jCAj) - Tc.jCAj)].

Since the nontrivial linking of both D and Aj are determined by 

the linking of A the induction holds and the proof is complete. D

Using Wu's theorem we have the following corollary.

2.4.6 Corollary: The change in the Arf invariant of a proper link due 

to a change in the orientation on some of its components is a 

function of the linking numbers.

Proof: Wu notes that theorem 2.4.4 can be used inductively to 

calculate the Arf invariant of a link from tc (L') where L' < L and 

hence, by 2.4.5 a change in the Arf invariant due to a change in
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orientaion is a funtion of the linking numbers of all such L 1 . 

However, any linking number of such an L 1 is a linking number of L.D

Let L be a c-component link and G(L) its graph (as in section 

2.3). Let M(L) be the graph obtained from G(L) by reducing each 

MBi ,Bj ) modulo 2 and removing all edges whose linking is trivial. 

Murakami, in [Muk], shows that if L = K1 UK2 U...UKC is such that 

M(L) is a tree with no even edges, then tc (L) depends only on the (modi) 

total twisting of each Kj. Noting that the total twisting of a knot 

does not depend on the orientation we see that t c (L) for such a link 

is independent of the orientations on its components. However such 

links are never proper so that analogous results for the Arf 

invariant are not possible. A category of links that is proper and 

whose Arf invariant is independent of the orientation is the purely 

proper links. A link L = Kl U K2 U...U Kc is said to be frurely 

proper if A(Ki,Kj) is even for all i,j ,i*j.

2.4.7 Proposition: If L is a purely proper c-component link with 

c > 3 then Arf(L) does not depend on the orientation of its 

components.

Proof: Since all sublinks of a purely proper link are themselves

purely proper, we need only show that t c (L) s TC (L) (modulo 2).

By reconstructing the proof 2.4.5 and noting that A(Kj ,Kj ) = 0

(modulo 2) we see that the induction clearly goes through. D

To demonstrate a link whose Arf invariant is dependent on the 

orientation we turn once again to Murakami.
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2.4.8 Proposition: Let L = K 1 UK2 U...UKC be a c-component link such 

that M(L) is as shown below, where each A(tfj ,j(j ) is odd.

Then Arf(L) = TC (L) + (n+1) [ I, t(Ki)] D
i =1

2.4.9 Corollary. Let A = B1 UB2 U...UBC , c > 2, represent a link L 

such that M(L) is as shown above. Let A = B! UB2 U. . .UBC _! UBC be 

the diagram A with the orientation on the c-th component reversed. 

Then Arf(A) s Arf(A) (modulo 2) if and only if 

A.(BC _!,BC ) s A(BC ,B!) (modulo 4), i.e. A(A,A-BC ) = 2 (modulo 4).

Proof: Using the above proposition, once again we need only prove 

the result for t c (A). Induct on the number of components. Choose a 

sequence of crossing changes £1 ,£2> • • • >£s tnat unlinks Bj from 

BI +1 t i * c or c-1. Denote this diagram by D. Then

s
(2.4.10) tc (A) = t c (D) + 2 £k-tc -l( Ak)-

k = l

Notice that M(D) is a tree and by the above comments t c (D) = i c (D) 

(modulo 2) for all c > 3. Also, for c>3, A k satisfies the
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hypotheses of the proposition for all k = l,2,...,s, so that by the 

induction

Tc-lUk) = Tc-l( Ak) (modulo 2)

if and only if A(A,A-BC ) = 2 (modulo 4). Placing this information 

into (2.4.10) we have

Tc( A ) = Tc( A ) (modulo 2)

if and only if A(Bj,Bj) is odd and A(A,A-BC ) = 2 (modulo 4) 

But, because A(Bi,Bj +1 ) was chosen odd the induction holds.

For the case c = 3, A^ is a 2-component link diagram 

and by Corollary 2.2.7, the initial condition is satisfied and the 

proof is complete. D

Finally we construct a formula for determining if a link is 

proper or not.

2.4.11 Theorem: Let L be a c-component link. Then L is a proper

link if and only if

c-l
S ftt>( L ) = ° (modulo 2). 

b = l

Proof: Let L be represented by the link diagram A = BjUB2 U...UBC . 

If A is a purely proper link, that is, A(Bj,Bj ) is even for all 

i,j, i*j, then by the definition of both proper links and ftt,(A) tne 

result follows. Induct, then, on the number of A(Bj,Bj) that are

odd.

Given Conway diagrams A+, A_ and A0 where A+ and A_ differ 

at a link crossing we have that either none or exactly two of the 

three diagrams is proper. This is true since exactly one of A + or
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A_ is proper if and only if A0 is proper and neither is proper 

otherwise. The information in section 2.4 gives

flb(A+) H J7 b (A_) + ftb-lUo) (modulo 2)

Operating on a link crossing of A between two components whose 

linking is odd and noting that for any link diagram D, ft0 (D) = 1 and 

&c( D ) = 0, we have that

c-l c-i c(A0 )-l
£ ft b (A+) = S fi b (A_) + £ ft b (A0 ) + 1 (modulo 2)

b=l b=l b=1

and the result follows. D
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CHAPTER 3

3.1 The braid group, B• ————————— 2 —— *-* — n

The classical n-string braid group, BR [Ar], is the group 

generated by <r ,cr . . . ,cr _ subject to the relations
J. £* 11^ X

Bl. cr.a. .a. =cr. .cr.cri i+l i i+l i i+l

B2 . cr.cr . = cr .a. 
i J J i

for 1 < i < n-2

for 2.

The elements (n-braids) of the braid group Bn are thus 

equivalence classes of words (braid words) in the generators and 

their inverses. Each braid word corresponds to a unique oriented

braid diagram as follows:

A

cr. 
i

cr. 
i
-1

w-v
W

-R-

V i

In the braid diagram corresponding to the braid word 

W = n a £i , where 1 < 6. < n-1, e. = ± 1 for each i, we call the
e J

crossing corresponding to the i-th crossing and say that it is

in the _0.-th column.
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For two braids (3,7 e B we write (3 s 7 if (3,7 are 

conjugate in B . For two braid words W,V we write W = V if W,V 

are identical, W a V if W,V represent the same braid and W = V 

if W,V represent braids that are conjugate in B .

To every braid diagram W one can form a closed braid diagram
/s

W (or (W) ) by connecting n arcs so that there exists a point p
^ *

called the axis of W with the property that W rotates around p 

in a positive direction as in the figure below.

W

A closed braid represents a link, indeed an oriented link, 

since the braid strings are oriented from top to base. Markov [Ma] 

in 1935 showed that every link can be represented by a closed braid
A A

diagram and that closed braid diagrams W,V give the same link if 

and only if W can be obtained from V by a sequence of the following 

equivalences (now called Markov moves):

Ml. W = V;

±1M2. W ^ V cr , , where W and V represent braids in B and n-1' n

B . respectively. n-1

Details of the theory of braids quoted may be found in [Bi]. 

One standard means of obtaining braids that belong to a 

different conjugacy class but whose closed braids give the same link 

is by flyping. A flype is a move on a tangle (with two inputs and



two outputs) obtained by rotating the tangle 180° [13,p.27]. (See 

figure below)

By flyping one has that if A and B are two braid diagrams on only

k e 
the first n-1 strings then the closures of Aa _,Ba _ 1 for k € Z,

e k 
e «= ± 1 and ACT _,Bcr _. represent the same link [Mus] 4 (See figure)

Later in this chapter we shall prove by example using a new invariant 

that these two braids need not be conjugate.

Notice that this extends to flypes of tangles of more than two 

strings as shown below.
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3.2 The $ invariant of braid conjugacy class

To define this invariant we represent each braid word W in a 

new way, its lifting form, as follows. Label the strings in the 

braid diagram l,2,...,n in order according to their starting 

points. The braid word W determines a permutation, e^ say, of 

{l,2,...,n}, where e\y(i) is the end-point of the i-th string. We

then (uniquely) represent W by the expression

k

if at the i-th crossing, string 9. crosses string <p. , for

9 . < <p . , where e. = ± 1 is the sign of the i-th crossing in W

Example 1. W = a. has lifting form g. , e = ± 1
-L -L * A. ' A.

Example 2. W = a o <T O a e B has lifting form
- L 1 i O 4

g 0 ~o gi o Si o Si >• • ( See figure below).
/,0 1,0 1 , ^ 1 , ^

Braid word W

B

Braid diagram Lifting form

CT 0-5 2,3 s : pp p-
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4.».

Next we abelianize the product n g^ 1 to obtain the form

(3.2.1)

n
where r = n g

1 J =1 +1 * > J

braid relations

r r r1 2'" n-l

for 1 < i < j < n. Notice that under the

and B3.

this "abelianized" lifting form remains unchanged and so is an 

invariant of the braid class. In the case when the braid is a pure 

braid, i.e. e\y is the identity permutation, the abelianized lifting 

form is also invariant under conjugation up to a reordering of the 

gi ,j , although this is not true in general.

To overcome this drawback we next, in 3.2.1, identify g.

with g if e\y( i) ,e\v( j) are either k,-i or £,k. The

expression in 3.2.1 then results in an expression <I>(W) in the

g. .. Suppose V is any braid word. Then $(V WV) can be obtained
1 5 J

from $(W) by replacing g. by gev (i) 5 e v (j) f ° r each i '^' 

Thus up to reordering of the generators g. . , $ determines an
1 5 J

invariant of the braid conjugacy class.

Example 2. (continued from above) The braid word W has

abelianized lifting form
-1 +1 +1 -1

g g g« g.1,2 6 1,3 5 1,4 5 2,3 5 2,4 b 3,4 '

Under the identification 2 4 2 3 U

g g l 4 3 4
-2 2 = u v .

and
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Example 3. In [G], Garside defines the fundamental word of B ,n'

as follows: let ns be the word consisting of the generators 

Cr 1 ? CT 2 ' * ' ' ' CT S listed in ascending order so that

V

Then define

AH n n O ...IL .n n-1 n-2 1

The abelianized lifting form of A € B written as in 3 2 1
n n

has 6., . = i J n.

A,

Examp1e 4. Each of the following braid diagrams yields the trefoil 

knot. (The diagrams differ by a flype of the crossings in column 3.) 

However, $ shows that the two are not conjugate.

W =

V =

and *(W) = (ujv J )

and
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Example 5. If W is a braid word on n strings such that W is a 

knot diagram then $(W) takes the form u*1 i£2 ...u!*k (a. e Z)
12 K 1

where

{ (n-l)/2 if n is odd
k =

[ n/2 if n is even. 

In particular if n = 3, $(W) = u"^ .

3.3 Ascending braid diagrams

3.3.1 De f i n i t i on. A braid diagram W is ascending with base points 

k.,...,k if W is an ascending link diagram with base points at 

the top of the k.-th strings, i, = l,...,c (where c is the number 

of components in W).

3.3.2 Proposition. Let W be a braid diagram with n strings such 

that W represents a knot. If W is ascending with base point k, 

the writhe of W is given by

w(W) = n + 1 - 2k.

proof. The hypothesis that W is an ascending braid diagram with 

base point k means that the k-th string always passes under all other 

strings and the ew^M-th string always passes over all other 

strings. In general the ew 1 (k)-th string will always pass over the 

ew j (k)-th string for 0 < j < i < n . For this reason we may think 

of each string as being in its own "plane" in which it may "move" 

independently of all other strings^
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It follows that if braid diagram V also satisfies the 

hypothesis of the proposition and ey = ew then V * W. Noting that 

the exponent sum is not affected by the braid relation, this implies 

w(V) = w(W).

To establish the proposition we now use induction on the number 

of strings n. For n = 1,2 the proposition is easily verified. 

For the inductive step we suppose W has n strings and the 

proposition has been established for smaller values of n. For ease 

of notation set a = e\y (n), b = e\y(n) and note that b * n since
^

W is assumed to represent a knot.

Let U be any braid diagram on n-1 strings satisfying the 

following axioms:

1 Pr,m - I ew ^ i) for i = l,2,...,a-l,a+l, . . . ,n; 
Lm UUJ ~ 1 b for i = a

2. U is an ascending braid diagram with base point k, if 

k < n, and base point b, if k = n.

Note. It is possible to construct such a diagram by nullifying a 

crossing of the a-th and n-th strings in W (one must exist since 

e^y(a) = n) and then removing the n-th string entirely. Also, if two 

such diagrams exist they must be equal in B by the above 

statements.

Let U' be the diagram U with an extra trivial string

attached so that eu'(n) = n.

Define a braid V on n strings as follows. 

If k = n, take

v = Vi V2-"Vi ab 1 Vr"V2 Vi ;

if k < n, take

V = a £ n-l a e "-2. *b+l <T K a'^* 1 . . . cT e n-2 ^n-1 
n-1 n-2 b+1 b b-t-1 n-2 n-1
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where

+ 1 

-1

if i preceeds b in the ordered list
{ e u (k),e u2 (k),...,e u n - 1 (k) = k } 

otherwise.

OLverse of U'-V

We note that U,U' and V are such that

1. U satisfies the induction;

2. ey(b) = n, ey(n) = b and ey(i) = i for i * b,n so that 

) - ey 0 eu (i) = ew (i) ;

3. U'-V is an ascending braid diagram with a base point k.

Hence U' -V * W. But

o>(U' -V) = co(U') + o)(V) =
(n-2k) + (1) for n > k 

(n-2b) + (-2(n-l-b)-l) for n = k.

Therefore = n+l-2k. D

3.3.3 Corollary. Let W be any braid diagram, then

co(W) = n - c(W) (modulo 2) 

where c(W) is the number of components in W.
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Proof: Since changing the sign of any crossing leaves oo(W) fixed
A A

modulo 2, we have that w(W) = w(V) where V is an ascending

diagram obtained from W.

Let n(c.) be the number of strings that make up the i-th
/\

component of V and sw(c.) be the sum of signs of all crossings 

between the i-th component of V and itself, then

S n(c ) = n 
i 1

and

E sw(c.) = sw(V). 
i 1

Since V is assumed to be ascending we have, by 1.1.1,
* -» /*

sw(V) = w(V), since A(V) = 0. By use of the proposition on the i-th 

component considered separately as a braid whose closure is a knot we 

have

sw(c.) = n(c.) + 1 (modulo 2). 

Then summing over all components

w(V) = n + c(V) (modulo 2).

ft. yv /\ A

Hence co(W) = n + c(W) (modulo 2), since c(W) = c(V) and no term 

in this expression is affected by the braid relations. D

3.3.4 Corollary. Let W be any braid diagram. If

* A

|co(W) < n - c(W) then one can find crossings d ,...,d 2 of W 

such that

(1) the crossingsalternate in sign;

(2) when the signs of all the crossings are changed, the

resulting braid diagram is ascending for some base points 

b,,...,b, , where k = c(W).
1 K
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Proof: We first prove the corollary for the case when c(W) = k = 1, 

i.e. W is a knot diagram. Consider the ascending diagram V with 

the same knot shadow as W and base point at the top of the 

&[n + 1 - oo(W)]-th string. Notice that such a string exists if and
A A

only if |co(W) < n - 1, since w(W) = n + 1 (modulo 2) by corollary
A A

3.3.3. By the proposition w(V) = w(W) and so the number of 

positive and negative crossings that must be changed in converting W 

to V must be equal. By their independence we may order them so 

that they alternate in sign.
/\ j\

Suppose now c(W) = k > 1. Consider again V such that V is 

an ascending diagram with the same link shadow as W. For reasons
A *.

analogous to the knot case we need only show «(V) = "(W). Choose 

a. in Z , for i = l,2,...,c(W) such that:

(1) a. < n(c.) - 1

(2) a. s n(c.) + 1 (modulo 2)

(3) £ a. = w(W)

where n(c.) is the number of strings that make up the i-th
A

component of V.

Note: Such a. must exist by corollary 3.3.3 since

«(W) = £ a.= £ n(c.) + 1 = n + c(W) (modulo 2).

Consider c. , the i-th component of V, as a separate 

ascending braid diagram. If c. has base point
/s

5 = J£[n(c.) + 1 - a.] then w(c.) = a. by the proposition. 

Therefore,

w(W) = S a. = £ w(c.) = sw(V) = w(V)

since A(V) =0.
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In [Mol] a braid 768 is termed reducible if 7 = (3or ~ 

for some (3 € B . By use of the Markov moves, if a link has a 

reducible representative in B then it also has a representative in 

Bn_ 1 . The following corollary shows that by Markov moves that do not 

increase string number, any ascending braid W has an equivalent 

braid in B ,' (cf. [Mol]).

3.3.5 Corollary. Let W be an ascending braid diagram such that the
/s

closed braid W represents a knot. Then the braid represented by W 

is reducible. Moreover, there exist braid diagrams S,T on n - 1

strings such that W * S a ~ T , where either S-T or T-S isn-1

equivalent to an ascending braid diagram.

Proof. We observe that for U',V in the proof of the proposition the 

braid relations yield

1 n-1 1 b b+1 ""' n-2 n-1 n-2 b 

for n > k and

V * To a , To = (cr, a, , . . .a ) a (a . . .a ) 
z n-1 z v b b+1 n-2' n-1 n-2 b

for n = k , where T2 is the obverse of T2 . Thus

and

W * U'-V * U'-Ti' 1 CT , Ti ,for n > k1 n-1 L

W * U'-V a U'-T^" cr _ T2 ,for n = k.

and these have a single crossing in the n-1 column and are 

therefore reducible.

Let Si = IT-T^ 1 and S2 = IT-T^' 1 then;

(1) for n > k, SI-TI * U' and U' is by construction ascending,

(2) for n = k note first that because U'-V * U'-T2 a T2 are 

ascending with base point n then a _ To•U'•To is ascending



0 I

with base point n. Hence T2«S2 is ascending with base point

n - 1. D

Note: By induction, any ascending braid diagram in B , whose 

closure is a knot, has an equivalent braid (by Markov moves) in B 

If its closure is a link with c components, then the braid is

equivalent to a braid in B .
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CHAPTER 4

4.1 Chirality and the polynomials

This section focuses on chirality and the ability the Jones 

polynomial, V(t), and its two variable generalization, P(£,m) have 

in detecting it.

By their construction P(K)(l,m) and V(t) are identical to

P(K)(--t~ 1 ,m) and V-(-t-1 ), so that if P(K)(£,m) is not symmetricli

in -t and - t or Vv (t) is not symmetric in t and - t , thenK

the knot K is chiral (see P4. in section 1.3).

Unfortunately the converse is not true. The following two 

results show that if a link can be represented by a closed 3-braid 

diagram W such that «(W) = 0 then both P(W)(£,m) and V"(t) are 

symmetric in t and - -t and t and - t , repectively. Many chiral 

knots and links hold this property. The knot !0 4 o in tne 

Alexander-Briggs notation is the first of these. Note, though, that 

this knot's chirality is detected by the Kauffman polynomial (see 

[K4]).

4.1.1 Proposition: If W is any braid diagram on three strings such
-I 

that w(W) = 0 then P(W)(-t,m) is symmetric in t and - t .

Proof: We prove 4.1.1 by induction on the pair (r,s),ordered 

lexicographically, where 2r is the number of crossings in a diagram 

and 2s is, using corollary 3.3.4, the number of crossing switches 

in a sequence £j which result in an ascending diagram with writhe
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zero (for some choice of base point and ordering of the components). 

The statement is true for r = 0,1 and 2, as all the corresponding 

links are achiral. It is also trivially true for the pair (r,0), 

for all r > 0.

Notation: If W is the braid diagram

2n £i
W = n a. , 1 < 6i < n - 1, ei = ± 1 

i = l 6i

thenlet (£j *W) be the diagram W with the i-th crossing switched 

from sign e. to sign -e . and let (TIJ *W) be the diagram W with 

the i-th crossing nullified. Notice that the writhes of these

are w(W) - 2e. and oo(W) - e., respectively. For the 

remainder of this section, we take advantage of the correspondence 

between braid diagrams and closed braid diagrams and write P(W)(£,m)

for the HOMFLY polynomial of W.

2r e i
Now let W = n a be a braid diagram such that

i =1 y i

S e; = oo (W) = 0 and £. ,£. ,...,£. is a sequence of switches
l i 1 2 l s

that yield an ascending digram of zero writhe. Recall by corollary 

3.3.4 we can choose these crossings to alternate in sign. Bearing 

this in mind, apply the fundamental relation to a positive crossing 

of W;

p(w) = -e.' 2 P(£. +I w) - t~ l m P(T]. +I w).
!l M 

Then operating on a negative crossing in the sequence yields

-T* PU W) = PU-'V W) + C l m P(TI "^ W).

Choosing the corresponding crossing of (r\. W) and applying the 

relation gives

- C l m P(T! W) = - Urn PU.'V W) - m2 P(T! ~\ W) , 
l! 1 2 li 12 M
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so that

P(W) = P(* "^ W) + m \_C l P(TI ~V W) - -t PU ~\ W) 
12 li 12 ii 12 ll

- m2 P(TI ~Y W)
*2 *1

— 1 2 -1 By the induction P(£. £. W) and m P(n. n. W) are symmetric in*2 ii 12 !l 

£ and - t . Therefore P(W) is symmetric if and only if

(4.1.2) t P(T]. £. W) - -t P(£. T]. W) 

is symmetric.

Using corollary 3.3.4 on T| . £. W and <!;. T| . W we can 

find sequences of 2q crossings for each such that when their signs 

are changed they yield ascending diagrams with writhes of -1 and 

+1 ,respectively. By corollary 3.3.3, these diagrams must have 2 

components each.

Remark: In general the sequence lengths 2q and 2q ,as defined in 

3.3.4, will not be equal, i£. q < q_ (say); but by changing the sign 

of a single crossing 2(q - q ) times we can define q = q 9
£* X **

without affecting the proof at all.

The effort we have put into ensuring that our sequences of 

crossing switches alternate in sign allows us to define the following 

sequences of diagrams;

u = U +£ £ ~ £ .. •£ - £ ~ L T]." 1 ^- w)
K Jk Jk-1 J2 Jl !2 *1

for k = 0, i,...,2q, and where e = +1 or -1 if k is even or 

odd, respectively. Notice that «(U. ) = - «(V.) = -e. Hence
K K
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(4.1.3) C* P(Uk ) =t£ P(0k+1 ) +«'»P(l-: U k )

(4.1.4) -4P(Vk ) = -t- P(Vk+1 ) +e.m h

~ £
By the induction both P(T\. U ) and P(TI V ) are 

symmetric in t and - t . Hence adding (4.1.3) and (4.1.4) we

have that

(4.1.5) t~ e P(Uk ) - ^ P(Vk )

is symmetric in 1 and -1 if and only if

(4.1.6) te P( uk+1 ) - re P( vk+1 )

is symmetric in -t and - t . The substitution of k = 0 into 

(4.1.5) gives (4.1.2) and k = 2q into (4.1.5) gives the

following;

-1 -1 -9 2t[i-Jt[i = -m(-t+2-t),

where p, = -m (t - t ). Thus P(W) is symmetric in -t and - 1

D

4.1.7 Corollary: If W is any braid diagram on 3 strings such that 

co(W) = 0 then V\y(t) is symmetric in t and - t

Proof: The relation between P(W)(t,m) and V\v(t) is as 

follows [LJ:

Vw(t) = P(W)(t,t^ - t~^). 

The corollary is then immediate from proposition 4.1.1. D
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4.2 Visible achirality

Recall from section 1.1 that if A is a link diagram and A 

its obverse then both A # A and A U A are achiral. We call these 

links trivially achiral. This section looks at a nontrivial 

construction of achiral knots and links via the braid groups. We

first introduce three useful self-maps of B .^ n

(1) Define Garside's [Gl reflection of B , R : B —— > B to be
v ' L J ———————————— n' n n

defined on the generators or , a , . . . , a by R(a.) = <? .
1 i n— l i n— i

extend to yield an automorphism of B , and hence for braid words

V, W , if V * W then R(V) * fl(W) and we write /2({3) for the

braid they represent.

(2) Define the flip of B , F : B —— > B , F(<r.) = <r. for all

i = 1, 2, ...,n-l and F(V-W) = F(W)-F(V) . This anti-isomorphism

again is well defined for all (3 e B .

(3) Consistent with previous notation, define the map

Bar : B —— > B on the generators a , a , . . . ,CT by
—~— n n i z n i

k
Bar(a ) = a . Let Bar(W) = W so that if W = H a £i then 

1 x i=l ei

k
W = n cr £i . As with link diagrams, call W the obverse of W. 

i = l 6i

Clearly Bar is a well defined automorphism of B .



63

W

\

F(W) W

c
v

r

(4.2.1) Notes: (1) The maps R, F, and Bar commute.

(2) The compositions R ° R, F o F and Bar o Bar are the

identity map.
-1

(3) F(p) = (3 so that (3-F(p) * F((3)-(3 * 1 for all (3 6 B , where 

1 is the identity in B .

(4)(a) Considered as oriented link diagram^ the two closed braid 

diagrams W and fl(W)" are isotopic, i.e. W 3 fl(W)~, where /2(W)" 

is the closure of #(W).
*. A

(b) If V is W with its orientation reversed then 

V s F(W)".

(5) If A is the fundamental word in B (see example 3. in

section 3.1) and W is any word in B , then (a) A * fl(A ) andJ n n n

(b) A -W * fl(W-A ). v ' n v n y

Using the maps fl, F and Bar we have the following lemmas.

4.2.2 Lemma: Let (3 be any braid in B , then the closures of the 

following braids are achiral;

2.
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Proof: (1) p.p = p.p = p.p in B and by M2 . their closures are

isotopic .

(2) [p./2(p)]" £ [ R( p-fl(p)) ]

38 [ /2(P)-P

by note (4) above 

by note (2) 

by M2. D

4.2.3 Lemma: Let (3 be any braid in B , then the closures of the———————— j n i

following braids are reversed achiral.

1.

2. (p)

Proof: (1) By note (3) p-F(p) * 1 in B and hence has closure 

isotopic to U which is, in fact, trivially achiral.

(2) Let 7 be [p-F ° #(P)]~ with its orientation reversed,

then

7 s [F ° /2(P-F ° /2(P)) ]" by note (4) above

s [F o fl(P)-p ] by note (2)

3 [p-F by M2. D

4.2.4 Lemma: Let 768 be either of the two braids in 1., or 2 

of lemma 4.2.2 (respectively, 4.2.3), then the closure of 7 is 

achiral (respectively, reversed achiral).

Sketch: We need only note that for any braids (3, 7

/o \ m /a \ m~/o \(P-7) = (P-7) '(P-7) = Q / o\(3 = (7-P)

and that fl(pm ) = [/?(P)]m , F(pm ) = [F(p)]m and
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Repeating the steps in each of the above proofs yields the desired 

result. D

Suppose W-W is a braid word in B . Then
n

A -W-W-A ~ l * A -W-A ~ l -R(V1} a A • W-#(A~~^W). Hence for any braid of 
n n n n ' n n J

the form ((3-(3) € B for any integer m there exists 7 e B such 

that ((3-p) m = (7-fl(7)) m .

4.2.5 Definition: A braid 768 is said to be visibly achiral if 

for some (3€B , m e Z, 7= (|3-#((3)) m . Likewise, 7 is visibly 

reversed achiral if 7 = (p-F o fl(p))m .

For the remainder of this section we wish to investigate the set 

of visibly achiral and visibly reversed achiral 3-braids. We begin 

with the following.

4.2.6 Theorem: Let p be a braid in B . Then p is conjugate to 

its mirror image if and only if p is visibly achiral.

Proof:(<=) We have that p = (i-R(i)) m = (tf(7~)-7) m = (7-fl(7)) m s p

for some 768.

(=>) The canonical presentation of B^ is

P = ICTJ a2 : CTI a 2 ^ = a g ^ ^\

since the relation, B2. does not apply, p is equivalent to the

2 3 
presentation p' = |a,b: a = b |. (Take a = CT I a^ a^ and

2 3 
b = a a ). Letting a = b = c and noting that c generates the

1 Z

centre of 83 it is clear that any word in p 1 must be conjugate to
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one and only one of the following, for some integers m, n , with

m > 0 and both -t, t. = 1 or 2 , for i = 1, 2,...,m

i n1. c

o n2. c a

o n u*-3. c b

4. c ab 1 ab . ..ab m , up to a cyclic permutation

of (£1,^2,...,^).

(The above work is due to Murasugi in [Mus])

2 - -1 
We have that the obverses of a, b and b are a = c a ,

-2 2 ~2~ -2
b = c ab a and b = c aba, respectively. Hence, the obverses

of each of the forms above become 

1'. c'n 

2'. c-"- 1 a

3'. c~n~ l bk ,where k = 3 - t

. , -n-2m ,ki ,ko ,k m , , n n
4'. c ab 1 ab ^...ab m ,where k. = 3 - L.' i i

Assume now that (3 6 B is conjugate to its mirror image. The
o

conjugacy class of (3 has a unique representative in one of the 

forms 1. ,...,4. , so that if (3 = (3 , then both (3 and |3 must be

represented by the same word. The only possible non-trivial case is

n , £1 , -to , tm -n-2m ,ki ,ko ,km „. ., , 
when p s c ab 1 ab 2 . . .ab m = c ab l ab * . . .ab m . We then have

IIIthat n = - n - 2m and that the sequence of powers (t ,-t . . . ,
J. *t

is a cyclic permutation of the sequence of powers (k ,k ,...,k ). 

That is, n = - m and, that with subscripts considered modulo m,

£ = k for some x and for all i in Z . Since n = - m we 
i x+i m
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can rewrite (3, up to conjugacy, as

-1 tA -1 u-^2 -1 u^m 
& = c ab l c ab £ ... c ab '"

-1 2 -1 
Observe that c ab translates to a in p and c ab to

cr = R(a ) in B and that k. = 1,2 according as t. = 2,1, 
A z o i i

respectively. We complete the theorem with the aid of the following 

lemma.

4.2.7 Lemma: Given the conditions above, set d = GCD(2x,m). Then

(a) m is even (hence d is even)

(b) -t. = £ for all i e Z

(c) t = k. for all i e Z.

Proof of (a) : The sequence (£,£,...,£ ) is a cyclic permutation 

of (k ,k , ...,k ). Hence the number of t. = 1 must be the same as 

the number of k. = 1. Conversely, k. = 3 - t. so that the number

of t. = I must also be the same as the number of k. = 2. 
i i

Therefore m is even.

(b) t. = k . = 3 - H . = 3 - k 0 . = 3 - (3 - t. . ) = t. . , 
v ' i x+i x+i 2x+i 2x+i' 2x+i'

where subscrpts are interpreted modulo m. Likewise, £. = t
J. £* (J .X. ' X

for all q € Z. The result then follows.

(c) Suppose qd = 2x. By (b), kx+ . = £. = t^+i for all

i,s € Z . We note that if q = 2s for some s € Z. then we arrive 
' m

at the contradiction that t. = k.. Hence q is not even. We have

that t. =£ J .=k, 1 , ,.= k1/J/0 N . , for all i,s € Z and 
i sd+i sd+&qd+i £d(2s+q)+i ' ' m

can choose s so that 2s + q = 1 (modulo m) . D
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In conclusion

(3 = (c" 1 ab^.-.c" 1 able c" 1 ab^.-.c' 1 abkg ) r

-1 L- e- 
where e = £d and rd = m. Now if c ab 1 = a 1 theny i

c ab l = R(a- *) for 6. = 1,2, e, . Translating into p we have »i i

for some 768,
O

(3 = (7'fl(7)) r D

The analogous theorem for visibly reversed achiral 3-braids is

4.2.8 Theorem: Let (3 be a braid in B Then (3 is conjugate to 

the flip of its obverse if and only if (3 is visibly reversed 

achiral.

Proof: (<=) Obvious.

(=>) Once again the use of the presentation p 1 is very helpful. 

(Using Garside's summit word we can arrive at the same result only 

after a long tedious calculation). Setting a = cr a a and
J. £ 1

-t -1 L b = a a we have F(a) = a, F(c) = c and F(b ) = c ab where
J. £t

t = 1 or 2. The representatives of the flipped obverse of each of 

the forms in l.,...,4. are then

1". c~n

2". c^- 1 a

3". c~n~ l bk ,where k = 3 - -t

—n—2m , k m , k m _i , ki , , . , , . f 4". c ab '" ab m . . .ab 1 ,up to a cyclic permutation of

(k ,k ......ki), where k. = 3 - -t.v m' m-1' ' l ' ' i i

Assume now that (3 = F((3) so that both (3 and F(J3) are 

represented by the same word. Once again the only possible
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nontrivial case is when

(3 * c n ab*i ab**...ab*" , c^2"1 abk - ah""- 1 . . .abkl 

This implies n = -m and the sequence of powers, (£,£,... ,-t ) is
i. i (it

a cyclic permutation of sequence of powers (k ,k ...... k.).n ^ v m ' m- 1 ' ' 1

Considering subscripts modulo m we have for some x € Z ,m'

(a) m is even, for the same reason m was even in the proof

of 4.2.7.

(b) t. = k _., (see note below)
A -A."™ j.

(c) x is odd since x = 2s yields the contradiction

a = k 0 s 2s-s

(d) For z-fc(x-l), tz = kz+1 and = k ; simply

substitute i = z and i = z + &m into t. = ki x-i

We then have for e = z +

s (C"" 1 abV.-c" 1 ab^e c' 1 ab^.-.c" 1 abkz ) r

— !-€,• e • —Ik' — E •As before, if c ab l = cr fl J then c ab J = ft(cr J ). thenG i e i

translating p into p we have, for some 7^8
o

. D

Note : It is possible that x, as in (b) above, is not unique.

Suppose that t. = k . for some y =* x and for all i e Z . Then ^^ i y-i J . m

t = k = k . so that t. = t .. Set d = GCD(x-y,m) with i x-i y-i i x-y+i

rd = m. Because m is even and x,y are both odd , d must be

even. Then t. = t. , for all i e Z and writei i+d m
t - \ - u-2 - v\ P = ( c ab 1 c ab L . . . c ab a )

and we may proceed with the proof above replacing "m" by "d". 

Notice, though, that finding at least one x is sufficient to prove 

the theorem.
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It has been conjectured (informally, at least) that the isotopy 

classes of minimal string braid representatives are generated by 

conjugacy and flypes of the type in section 3.1. Notice that if a 

flype is possible on a word W in B Q , i.e. W = ci^1 a®2 cr^3 CTO £
O 1214

where a. € Z, e = ± 1 then W z [F(W)]~ since W is also 

represented by W = a^1 a. 6 0 «* a*2 = a 0 £ a*3 a*2 a*1 H F(W).
L L \. 2, 2, \. L \.

If the conjecture is true (at least for B ) then the conjugacy
o

classes of the 3-string braid diagrams W and F(W) generate all
A A

3-string braid representatives of W and W with its orientation
* ^

reversed, given that W is not represented by a 2-braid. Thus $,for

3 e B would be unorientedly achiral if and only if |3 is visibly
<5

unorientedly achiral. I conjecture that every (reversed) achiral 

link has a visibly (reversed) achiral representative in B for some 

n.

4.2.9 Corollary: If (3 is a braid in B such that (3 = (3 or
O

_,_ A

(3 = F((3) then the closure (3 is an alternating link.

Proof: As seen in the proofs of 4.2.6 and 4.2.8, if (3 is 

conjugate to its mirror image then it is conjugate to a word in the 

generators a and a . This is sufficient to show that its 

closure has an alternating link diagram. D

4.2.10 Corollary: Let W be a 3-string braid diagram such that W 

is an alternating closed braid diagram. Then, for some 3-string 

alternating diagrams V,S,T and integer m we have that

(i) if W s W then W = (V-/?(V)) m 

(ii) if W s F(W) then TS = (V-F o R(V)) m where W = ST.
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Proof: W alternating implies either W or W is a word in

a ,cr Without loss of generality we take W to be such a word.

Translating into p 1 we have that

W = c aD ... c ab . 

The proof of (i) follows from the proof of 4.2.6. For the proof of

c

where z is as in the proof of 4.2.8 from which the result follows.

D

(ii), let S = c' 1 ab^.-.c' 1 ab^2 ' 1 and T = ' 1

4.2.11 Corollary: If p € B , such that p = P or (3 = F((3) and (3 

is a knot then $((3) = u u . ..u, where k = &(n - 1).
1 Z iv

Proof: Note first that by results proved in chapter 3, n must be

odd for such a P to exist. Let m = n-k = n and let 7,(3 € B n

Write p in its abelianized lifting form as in expression (3.2.1) 

where 6j ,j is the power of gj ,j . Denote by L((3) the m-tuple 

(^i ,2 > &i >3> • • • j&n-i >n)• L(p) can be thought of as an element in 

the additive group Gm of m-tuples with integer entries, where the 

addition is defined coordinate-wise.

Recall from chapter 3 the natural homomorphism <p from Bn 

into Sn determined by the endpoints of the braids in Bn . Since 

is a homomorphism we have that for braids (3,7 € Bn , e o-i = e o

and e 0 = e °e 0 .
(37 7 P

Let S n act on Gm as follows: For each e € S n and L e G 

let

e-L = e'(6!,2, Si ,3 , • • • > 6 n-l >n)

= (6 e(l),e(2)' 6 e(l),e(3)'*- > ' 5 e(n-l),e(n) )

m
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For a,(3,7 € Bn we have the following

(4.2.12) ea-L(p-7) = ea-L((3) + e Oea

Hence

0 = 

so that

LO' 1 ) = - e p _!.L((3).

Using these facts suppose that (3,7 are such that |3 = 7" -|3-7, 

where (3 is the obverse of (3. Then 

L((3) = L( 7~ 1 'P-7)

_ 1

Since e .j -L((3) = - e _i -L((3) and 1(7 ) = - e _i -1(7) we have

0 = L((3) + e 7 .! 

Pre-multiplying by e yields

0 = e 7 -L(p) + L(p) + L(7) - e 7 OepOe 7 _ 1

= e 7 -L(p) + L(P) + L(7) - e p -L(7)

If we then let L((3) = (6 lj2 , Si ,3 > • • • > 6 n-i >n) and 

L(7) = (Cl,2> Cl ,3> • • • >Cn-l >n) then

Since B is assumed to be a knot, e fl (1) are unique for each 

i = 1,2,...,n with e fl (1) = 1. Also, using properties of the 

permutation group on n elements we have that if e is such that
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= e _ t Oe Q°e tnen e _ e l f or some o < i < n. From (4.2.13)

then

n 

i?i [ \(e '(IJhe^y+Ml)) + %'(D,^1+1 (D

n

Because e = e ft for some j we have

n

y

Similarly, we have that for all 1 < j < n,

n

= 2 i=i ,e

Notice now that $((3) identifies g j m with g i( . i+j
6 SB

n

for each i = l,2,...,n. Hence Z 6 j. . i + Jcn = ° are the

powers of Uj for 1 < j < £(n-l) in $((3) which completes the

proof. D

4.3 The Kauffman conjecture

For the remainder of chapter 4 we shall concern ourselves with 

a conjecture of Kauffman's [K3] and related matters. Henceforth, we 

assume that all braid diagrams yield closed braid diagrams that are 

alternating. Such a braid diagram, W will be called an alternating 

braid diagram and the braid it represents an alternating braid.
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Notice that the sign of all crossings in any one column of an 

alternating braid diagram are the same and must be opposite to the 

sign in any adjacent column.
A

For any braid diagram W let sh(W) denote the link diagram,
^ s*

W with a checkerboard shading as in [K3,p.22] and let U(W) be the

number of unshaded regions. (The set of unshaded regions includes the

unbounded region). Likewise, let V(W) be the number of shaded

regions. Also let p (i) be the sum of the signs of the crossings
W

in column i, of W. Then we have

(4.3.1)(1) For n odd, U(W) = [E p (k) + 1 if k is even and

V(W) - |E p (k)| + 1 if k is odd.

(2) For n even, U(W) = S p (k)| + 2 if k is even and

V(W) = |E p (k) if k is odd. 
W

Hence

(3) co(W) = 0 <=> U(W) - V(W)| =0 for n odd and

(4) w(W) = 0 <=> |U(W) - V(W)| =2 for n even.

For a link diagram A one defines the planar graph G(A) as in 

[K4] as follows: the vertices of G(A) are in one-to-one 

correspondence with the shaded regions of sh(A). For each crossing 

in the diagram in which two regions touch, the corresponding vertices 

are joined by an edge in the plane. Placed on each edge, e, is an 

orientation, which we say is either parallel to e or perpendicular
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to e, depending on the orientation of the link diagram (see figure

Parallel 
to e

Perpendicular 
to e

Call the graph an oriented graph if each edge has an orientation. 

Unless otherwise stated the orientations on the edges of the graph 

will be ignored.

The dual graph, D(A), is the planar graph obtained by taking 

the planar dual of G(A) and is identical to the graph found by 

replacing "shaded" by "unshaded" in the definition of G(A).

Also, for every graph G there is an induced unoriented link 

universe found by associating a double point to each edge of G. Two 

points are joined by an arc if their corresponding edges are incident 

at a vertex of G as shown by the following figure.
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(4.3.2) Notes: (1) Every (unoriented) link universe has two 

associated (unoriented) alternating link diagrams; one being the 

obverse of the other.

(2) If G(A) and H(A') are two oriented graphs obtained from link 

diagrams A and A' that differ only by the orientation on their 

components and if any edge of G(A) has a parallel orientation while 

the orientation on the corresponding edge in H(A') is perpendicular 

then c(A) = c(A') > 1.

(3) In this section all graphs will be assumed to be planar.

(4) If G is an oriented graph then clearly G induces an oriented 

link universe if and only if every two edges that meet at a vertex 

and are adjacent have one of the eight following orientations.

We now abstractly define a "braid graph" and note that every 

closed braid diagram satisfies the definition . However, the 

converse, that every braid graph defines a closed braid diagram, is 

not true.

4.3.3 Definition: An oriented graph G with vertices V and

edges E is said to be a braid graph if there exists (1) a partition

of V = U V such that for each V. = {v. ,v. ,...,v. } there 
j J Jl J2 Jk

exists a single edge with parallel orientation between v. ,v. if
Jh Ji

and only if h = i ± 1 (modulo k) (Call V. with the oriented edges
\j
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between its vertices the j-th cycle of G, C .) and (2) an edge of
\J

G with perpendicular orientation between C\ and <7j only if 

i = j ± 1 (up to a reordering of the indices).

4.3.4 Definition: Let G and H be graphs. A map <p : G —> H is

said to be a graph isomorphism if <p is a bijection between both

edges and vertices respecting incidences. We write G ~ H.

Remark: The existence of an isomorphism between the graphs of two 

reduced alternating diagrams of knots is a strong condition, which 

one might expect to be sufficient for the knots to be isotopic, 

possibly after^changing all the signs of the crossings of one of the 

knots. Such a conjecture would not extend to links. Example 1. 

below demonstrates two link diagrams with isomorphic graphs where the 

corresponding links are not isotopic (nor can be made isotopic by 

switching all the signs of one of the links).

Example 1.

We note that if the definition were extended to include the

orientations on the edges (as illustrated below) then cp(G(W)) for

some braid words W is a braid graph but need not be the graph of an
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oriented link diagram as the above example also demonstrates

—t—
We now resrict our attention to closed braid diagrams that are 

not only alternating but are knots diagrams as well.

In [K3,p.32], Kauffman conjectures that if a reduced 

alternating diagram A represents an [unorientedly] achiral knot, 

then |U(A) - V(A)| = 0 and the graph, G(A), obtained from the 

shading of A will be isomorphic to its dual, D(A).

Recall that by corollary 3.3.3 the writhe of a 1-component 

closed braid diagram is equal to one less than the number of strings 

modulo 2. Using the Tait conjecture, now proved by Thistlethwaite, 

[T] , the writhe of a reduced alternating diagram of an achiral knot 

must be zero and hence in Kauffman's conjecture we need only consider 

braid diagrams of odd string number. Immediately we have

|U(A) - V(A)| = 0.

However, using flypes on visibly achiral and visibly reversed 

achiral braid diagrams we construct examples of two five-stringed 

closed reduced alternating braid diagrams whose graphs are not 

isotopic to their duals (see examples 2. and 3.). Furthermore, by 

"weaving in" (see example 4.) another 2m strings for any positive 

integer m, we may also construct counter-examples in BR for all 

odd n > 3.

Example 2. Let W = V-/Z(V) where V = aj 1 a3 ffl aj a3 ^ . Using 

a flype as in section 3.1 we have that W is isotopic to W' where 

W > = (T2 1 CT 3 ^l 2 a2 2 *3 <*!• *3 ^ °~± l a3 2 ^ ̂  • Notice that W<
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is a reduced alternating knot diagram

Form the graph, G(W'), and dual graph, D(W'), of W . In G(W') 

there exists a vertex at which six edges are incident. This is not
^ ,

true for D(W), hence, there does not exist an isomorphism between 

the two.

G(W') D(W)

Example 3. Let W = V-F ° fl(V) where V = 
-12 -22 -1 -1 -2

W =
-22 -1 -1 CT 2 ' CT 3 CT 2 g 4

-12-2 
a2 CTJ a3 cr 2 then
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G(W') D(W')

Example 4. Given a reduced alternating braid word W on n strings 

whose closure is a knot, we can construct a new word, called the 

weave of W, with the same properties, on n + 2 strings by the 

following. Let a = &(n - 1) and e,6 = ± 1, then define

i|r : {Diagrams on n strings} ——» {Diagrams on n+2 strings} by

(i)

,.. N (11)

/ . . . v (in)

/ - \
(IV)

, for 1 < i < a
-6

a 
-6

6-6

-6

<J , for a+l<i<n-l

Thus, define the weave of W by

Weave(W) =

W Weave(W) /

The construction ensures that the Weave(W) is visibly reversed 

achiral if and only if W is visibly reversed achiral (a similar
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construction would give the same result for visibly achiral 

diagrams).

Pending the validity of the conjecture remarked on at the end of 

section 4.2, along with the corollaries 4.2.9 and 4.2.10, it 

would be true that every achiral knot with a three braid 

representative has an alternating closed braid diagram. Furthermore, 

every alternating 3-string closed braid diagram of an achiral knot 

would be of the form (V-fl(V)) m or (V-F ° #(V)) m . Noting that the 

graphs of such diagrams are clearly isomorphic to their duals, 

Kauffman's conjecture would be true for alternating closed braid 

diagrams on 3-strings. Note that we have deliberatly left out the

word "reduced" since non-reduced alternating braid diagrams on

k ±1 
3-string must be reducible braid words, i.e. of the form cr cr ,

up to conjugation. The only braid words of this form representing 

achiral knots are a cr or cr a whose graphs are isomorphic
J. & L £

to their duals.

We now consider a converse to Kauffman's conjecture.

4.3.5 Theorem: Let the knot diagram, W, be a reduced alternating 

closed braid diagram representing an alternating braid, (3 € B , 

then if G(W) ~ D(W), (3 is (visibly) unorientedly achiral.

Proof: Assume (3 € B and W are as in the theroem. We first 

point out that for such an isomorphism to exist implies U(W) = V(W)
A

and by 4.3.1 |w(W) = 0 or 2 accordingly as n is odd or even 

By corollary 3.3.4, however, the writhe of a knot W on an even
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number of strings must be odd. Hence, as before, we need only be 

concerned with W on an odd number of strings. Recall that with 

W 6 B for n odd, the region containing the axis point is shaded and 

the vertex of G(W) that corresponds to this region is denoted by 

vn . Likewise,the vertex of D(W) associated to the unbounded

region is denoted by v
o

The proof of the theorem hinges on the fact that the isomorphism 

sends v to v as well as sending cycles in G(W) to cycles in 

D(W), as the following two lemmas show.

4.3.6 Lemma: Let G(W) and H(U) be the graphs obtained from the 

closed braid diagrams of odd string number W, U, with V = U V, ,
J

j = l,3,...,n, a partition of the vertices of G(W). Let
A A

<p : G(W) —> H(U) be a graph isomorphism. Then there exists an 

orientation on the components of U such that <p(G(W)) is a braid 

graph using cp(V) = U <p(V.) as its partition.

Proof of lemma: If e is the single edge of the cycle C. with

endpoints v. , and v. - then certainly <p(e . ) is a single edge 
Ji Ji +1 Ji

between <p(v. ) and <p(v. ). Likewise, if e is an edge between 
Ji Ji +1

<7j and Cj + 1 then <p(e) is an edge between <p(<7j ) and <P(<?J+I). 

Hence we need only show that , for some orientation on U , 

the edges of <p((7j ) have parallel orientations and those between 

<p(Cj ) and <p(<7j), i * j, have perpendicular orientations. We prove 

this by constructing such an orientation.

Start with the point <p(v ) in H(U). For each of the

p (n - 1) edges incident at <p(v ) construct a perpendicular 
W
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orientation as in the figure below.

For the edges of <P(£» 2 ) tnat share an endpoint with one of the 

edges incident at <p(v ), place on the edge a parallel orientation as 

shown here.

This then allows a parallel orientation on all edges of <p(<? _ 0 )n z

and so <p(<7 ) becomes a cycle. In general each cycle, <p(<?.),
II"""" £* i.

induces a perpendicular orientation on the edges that have <v(C. ) 

and- <?(<?. o) as endpoints, which in turn induce a parallel

orientation on <p(C._ ). Hence, <p(C*.), 1 < j < n - 2, can be made
1 ^ J

into cycles. Using note (4.3.2)(3) we see that since each pair of 

adjacent edges with common endpoint is one of the eight allowable
/\

orientations and so <p(G(W)) with the constructed orientation admits 

a link universe. This completes the proof of the lemma. D

4.3.7 Lemma: Let W be a braid word in B , for n odd. If (a) W 

is a knot, (b) <p : G(W) —» D(W) is an isomorphism between the graph

^

of W and its dual and (c) C. for i = l,3,...,n - 2 and D . 

for j = n - l,n - 3,...,2 are the cycles of G(W) and D(W), 

repectively, then q>(C ) = ^n_ i -
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Proof of lemma: Suppose first that v in G(W) is not mapped by

<p to v in D(W). That is, <p(v ) is some vertex in D. for some 
o v ' ', v n j

yv

j. By the proof of lemma 4.3.6 there exists an orientation on W 

such that all edges incident at <p(v ) have perpendicular 

orientation, and since <p(v ) is in D. , W has an orientation such 

that at least one edge incident at <p(v ) is of parallel
A

orientation, contradicting the fact that W is a knot. Hence,

(4.3.8) <p(vn ) = VQ .

Suppose now for some k and for all j < k, j and k odd, that
/\

<p(<7j ) = £>n _j and that <p(C*k) * #n-k- Since W is a knot there 

exists an edge e of G(W) with endpoints in C^ and <?k-2- Bv tne 

induction <p(e) has an endpoint in ^n-k-t-2? and not ^ n
A

9(^-4) = ^n-k+4> and since #(W) is a braid graph, <p(e) must 

have its other endpoint in #n -k- That is, at least one vertex of 

C^ is mapped to #n -k- By the supposition, there exists an edge f 

of Ck that is not mapped to #n -k> i- e - <P(f) nas endpoints in 

Dn _k and ^n-k-2> so that by the proof of lemma 4.3.6 there exist 

orientations on W that yield both parallel and perpendicular 

orientations on f. This is a contradiction since W is a knot. 

Hence

(4.3.9) <p(<7i) = 0n _i

for all i = l,3,...,n - 2. This completes the proof of the lemma. D

Remark: The equivalent statement is not true for braid diagrams 

whose closures are links of more than one component. The following is
A A

an example of a closed braid with graph G(W) and dual D(W) such
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that the isomorphism between them takes v to a vertex in

To establish achirality and the theorem we employ the map 

rs>t : {Diagrams on n strings} ——> {Diagrams on 3 strings} for s,t 

such that |s - t| = 1 defined by as H a^ 5 <j t H cr2 and <TJ H 1 

for i ¥= s,t. When clear from the context we write r s , t when we 

mean r s , t (W) for a braid diagram W.

We use lemma 4.3.7 as a starting point. Not only must the 

edges incident at v of G(W) be in one-to-one correspondence with 

the edges incident at v in D(W), but their relation with 6^-2 

and D<2 , respectively, allow the following statement; if

Pi ~P2 „ P3 ~P4 „ Pk-1 Pkr l ,2 =

and

r.-l, B -2 -LI J. 7 II *J J. £* A t* A ^

where Pi ,7i are either all negative or all positive integers, then 

the sequence of integers (Pi,P2?•••»Pk) must be a cyclic permutation 

of (TI >725•••>7h)• That is, k = h and either $\ = 7 x+ j or 

Sj = 7 x -i f° r a ll i ^ Z and some x e 2Z, where subscripts are
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considered as elements in

In general, the sequence corresponding to the powers of rjji+i 

must be a cyclic permutation of the sequence corresponding to the 

powers of r n _i , n _i _ t . Specifically, if we let i = a = &(n - 1) we 

then have

for some m e Z, where oq are either all negative or all positive,

and that

ai -ao ao -0:4 ao m _i ~a2m r n-a,n-a-l = ra+l,a = CT 2 <*l CT 2 °~1 • • >°2 ^ L <TI

so that am = - ax for some odd x, 1 < x < 2m and either 

(a) oq = - ax + i for all i e Z2 m or (b) 04 = - ax _j for all

Case (a) This implies that cq = Q!2x + i f° r aH i € ^2m so 

that cq = a^+i where d = GCD(2x,2m). Let cd = 2m. Since x odd, 

& d is an odd integer. Hence, for e = & d

s (S-/?(S)) C ,for some braid word S 6 B .
o

Case (b) We have that if b = fc(x - 1) and f = % m then 

ab = ~ ab + l and ab + f = otb+f+i- Hence,

•••-:. -;. . . . 
Ji Ji +1

T-F ofl(f) ? f 0 r some braid word T e B
o

where jj = 1 or 2 and e = + 1 or - 1 accordingly 

as /£ m is odd or even and jj + i = - jj .

It is not hard to show that this structure on the centre two 

columns of W forces a similar structure on adjacent columns, hence,
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throughout W. We conclude that W is visibly unorientedly achiral 

and thus is unorientedly achiral.
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Appendix A

A reversing result for 3-component links

As with propositions 2.1.11 and 2.2.5 our aim is to consider 

the effect different orientations on the components of a 3-component 

link have on TS . The size and complexity of this result seem to 

highlight the difference between the Jones polynomial and its two 

variable generalization. We give the result in hopes that patterns 

might be seen or that it may help in testing future reversing 

conjectures for P(A)(-t,m).

Let A be a 3-component link diagram. Let the knot diagrams 

formed by the components, separately, be Bj ,62 and 83. Denote by 

Aj the two component link diagram obtained from A by removing the 

i-th component so that A = A^ U Bj . Notice that by P3. reversing 

the orientations of both Bj and 62 affects the Conway polynomial, 

and hence 13, in the same way as reversing only 83. Therefore, to 

see the affects on t3 of any orientation change we need only 

consider changing the orientation of 83 up to a reordering of the 

components. Then let Bj be the knot diagram with its orientation 

reversed and write A = A^ U 83 . We have then

Proposition: Let A, Aj , Bj , A and Bj be the link diagrams 

defined above. Let a = A(B1} B2 ), b = A(B1} B3 ) and c = A(B2 ,B3 ), 

then

- T3 (A)] = b-T2 (A!) + c.T2 (A2 ) + (b + c)-T2 (A3 )

+ a(b + c)-T(B3 ) - bc.[T(B!) + i(B2 ) + 2-T(B3 )]

C b3(: ~ 2bc +bc3 + a (° 3 + 3b2 c - b - c + 3bc 2 + c 3 )]
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Proof: We prove 2.4.1 in stages, each assuming more complicated 

linking than the stage before. Case (a) assumes one component is 

separated from the rest. Case (b) assumes B3 is unlinked with 

B! , yet linked with B2 . Case (c) has only B! and B2 unlinked, 

and case (d) is the general case where nothing is assumed about the 

linking.

Case (a) Assume A z Aj U Bj . By the definition t3 (A) = 

T3 (A) = t2(A2) = ^2(A3 ) = a = b = 0 and the result follows.

Case (b) Here assume = Bj U B3 so that t2( A2) = b = 0.

Let ^j , j = l,2,...,s be a sequence of crossing switches, from sign

and B2 . Then 

s

e; to -£j , that unlink

T 3 (A) = L £j -T2 (Cj )

where Cj = TIJ FI £jA. Let Cj = TIJ H ^A, then by 2.2.5
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j ) = T 2 (Cj ) + 2c[t(Tlj t(B3 )J + ( C - c)

Notes: (1) Z £j "c 2 (Cj ) = t3 (A)

(2) = T 2 (A3 )

(3) S £j = a

Thus

T 3 (A) = T 3 (A) + 2c-T 2 (A3 ) + 2ac-T(B3 ) + (c - c)

can

Case (c) Take A such that A3 = BI U B2 . Using case (b) we 

find the relation between T3 (A2 U B2 ) and s(A2 U B2 ), and

between T 3 (A2 U B2 ) = T 3 (Bi U B2 U B3 ) and

) = T 3 (A). Note that t 2 (A3 ) = a = 0 and thatU B2 U B3

A(B2 ,B3 ) = - c. Then

T 3 (A) = t 3 (A) 2c.T 2 (A 2 )

T(B2 ) + 2-T(B3 )]

(b 3 c - 2bc + be 3 )
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Case (d) For any 3-component link diagram A, let the 

sequence of crossing switches, £j, i = l,2,...,r , unlink the 

components Bj and B2 . The result is a diagram, A 1 , that 

satisfies the conditions of case (c). Hence,

T 3 (A) = L £j -T2(Cj) + T 3 (A')

where Cj = T|J n £j (A3 U B3 ). Using 2.2.5 once more on Cj we have

that

T2(Cj) = t 2 (Cj) + 2(b + C)[T(TIJ 0 £iA3 ) + t(B3 )]

+ | [(b + c) 3 - (b + c)]

Notes: Here we refer to the notes above replacing (1) by 

(I 1 ) I ej-t2 (Cj) + t3 (A') = T3 (A)

Thus

(A) = L £j -t 2 (Cj) + t3 (A') + 2(b + c)-T2 (A3 )

+ 2a(b + c)-T(B3 ) + [(b 4- C ) - (b 4- c)]

Substituting the right-hand-side of (*) into T3 (A') of (**) and 

applying note (I 1 ) gives the desired result. D
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