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Abstract

Markov Chain Monte Carlo algorithms are often used to sample combinatorial struc-

tures such as matchings and independent sets in graphs. A Markov chain is defined

whose state space includes the desired sample space, and which has an appropriate sta-

tionary distribution. By simulating the chain for a sufficiently large number of steps,

we can sample from a distribution arbitrarily close to the stationary distribution. The

number of steps required to do this is known as the mixing time of the Markov chain.

In this thesis, we consider a number of Markov chains for sampling matchings, both

in general and more restricted classes of graphs, and also for sampling independent sets

in claw-free graphs. We apply techniques for showing rapid mixing based on two main

approaches: coupling and conductance. We consider chains using single-site moves,

and also chains using large block moves.

Perfect matchings of bipartite graphs are of particular interest in our community.

We investigate the mixing time of a Markov chain for sampling perfect matchings in

a restricted class of bipartite graphs, and show that its mixing time is exponential in

some instances. For a further restricted class of graphs, however, we can show sub-

exponential mixing time.

One of the techniques for showing rapid mixing is coupling. The bound on the

mixing time depends on a contraction ratio β. Ideally, β < 1, but in the case β = 1 it

is still possible to obtain a bound on the mixing time, provided there is a sufficiently

large probability of contraction for all pairs of states. We develop a lemma which

obtains better bounds on the mixing time in this case than existing theorems, in the

case where β = 1 and the probability of a change in distance is proportional to the

distance between the two states. We apply this lemma to the Dyer-Greenhill chain for

sampling independent sets, and to a Markov chain for sampling 2∆-colourings.
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Chapter 1

Introduction

Traditional complexity analysis is typically concerned with the complexity of decision

problems - we are given a problem instance, and wish to determine whether some

condition holds. The natural context for studying the complexity of decision problems

is the complexity class NP. NP can be defined in terms of a polynomial-time witness-

checking predicate: given a problem instance, the condition of interest holds if and

only if there is at least one input for which the witness-checking predicate is true. For

example, if we consider the question “does the graph G contain an independent set of

size at least k”, then a hypothetical witness might be an independent set of at least that

size, and we would look for witnesses among the set of all subsets of the vertex set

of G. The witness-checking predicate in this case would answer the question “is w an

independent set of G of size at least k”.

This approach to defining NP for combinatorial problems naturally leads to the

question of how many verifiable witnesses exist. Instead of finding an independent

set, for example, we wish to know how many independent sets exist. The complexity

class #P is the class of counting problems for which the witnesses may be checked by

a polynomial-time predicate. We say that a problem f is #P-complete if every problem

in #P is Turing reducible to f , and f is itself a member of #P. Many NP-complete

decision problems lead to corresponding #P-complete counting problems. However,

there are also polynomial-time decision problems whose counting analogues are #P-

complete. One such problem is that of counting perfect matchings of graphs, as shown

by Valiant in [41].

While it is generally believed that we cannot efficiently count the number of wit-

nesses to an instance of a #P-complete problem exactly, in some cases it is possible to

approximately count the number of witnesses in polynomial time, to within a constant
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Chapter 1. Introduction 2

approximation factor. In many cases, it is possible to reduce the problem of approxi-

mately counting the number of witnesses to the problem of almost-uniform sampling

from the set of witnesses. In this thesis, we consider methods of sampling matchings

and independent sets in graphs, focusing on the Markov Chain Monte Carlo (MCMC)

method.

The Markov Chain Monte Carlo method can be described as follows: To sample

from the solution set of a problem instance, we define a Markov chain whose state

space includes the desired sample space, and which has the desired stationary distribu-

tion (often the uniform distribution). We can then sample from a distribution arbitrarily

close to the stationary distribution by simulating the chain for a sufficiently large num-

ber of steps. The time taken before the distribution of the chain is sufficiently close to

its stationary distribution is known as the mixing time. If the mixing time is polynomial

in the instance size, then the chain is referred to as a rapidly mixing chain.

There are several ways of bounding the mixing time of Markov chains. We focus

on techniques based on two main approaches: coupling and conductance.

In Chapter 2 we will introduce some of the methods for bounding the mixing time

of Markov chains. To illustrate the application of these techniques, we will consider

the insert-delete chain for sampling independent sets, which was shown to be rapidly

mixing by Luby and Vigoda [31], and the Jerrum-Sinclair chain for sampling match-

ings, which was shown to be rapidly mixing by Jerrum and Sinclair [25]. Both of these

chains sample structures from a graph G = (V,E) with maximum degree ∆, weighted

according to a parameter λ. The sizes of the vertex and edge sets of G are n = |V |
and m = |E|, respectively. We will present the argument that the insert-delete chain is

rapidly mixing for λ ≤ 1
∆−1 using path coupling, and that the Jerrum-Sinclair chain is

rapidly mixing for any constant λ using canonical paths.

One of the techniques for showing rapid mixing of Markov chains is coupling

- indeed, a Markov chain is rapidly mixing if and only if there exists a coupling that

converges in polynomial time (finding such a coupling, however, may be difficult [20]).

A particular technique used to obtain coupling results is path coupling [7]. When

we use path coupling arguments, we attempt to find a bound on a contraction ratio

β between two states, from which we can infer a bound on the mixing time. The

relationship between β and the mixing time is given by Theorem 2.15 of Chapter 2.

Ideally, we wish to show that β < 1, but in the case where β = 1 it may still be possible

to obtain a bound on the mixing time, provided there is a strictly positive probability

of contraction for all pairs of states.
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In Chapter 3 we will develop Theorem 3.3, which allows us to obtain better bounds

on the mixing time in the case β = 1 than existing theorems for path coupling, in cases

where the probability that there is a change in distance is proportional to the distance

between the two states. We will apply this theorem to the Dyer-Greenhill chain for

sampling independent sets [14], and also to a simple Markov chain for sampling 2∆-

colourings. We will also prove a slightly more general version of Theorem 2.15, which

can be applied in cases where the coupling uses a non-integer metric.

In Chapter 4, we will introduce a new Markov chain for sampling matchings in

bounded degree graphs. This new chain is based on Dyer and Greenhill’s chain for

sampling independent sets. We will use path coupling to show that the mixing time

of our chain is O(n3) provided λ ≤ ∆+
√

3∆2−5∆+2
2∆2−5∆+2 . We will also consider a family

of Markov chains for sampling matchings in lattice graphs using block moves, and

show that these have a mixing time of O(n log(n)) provided the choice of block size

is sufficiently large. We use comparison techniques to show that the Jerrum-Sinclair

chain for sampling matchings mixes in time O(nm) for the two-dimensional torus, an

improvement of log(n) over their result using canonical paths (but for a more restricted

class of graphs).

In Chapter 5, we will consider the problem of sampling independent sets in claw-

free graphs. In particular, we rely on the fact that the symmetric difference of two

independent sets in a given graph gives a set of alternating paths and cycles, provided

the underlying graph is claw-free. We adapt the Jerrum-Sinclair chain for sampling

matchings to sample independent sets of claw-free graphs, and show using canoni-

cal paths that the mixing time of our adapted chain is O(∆n3) for general claw-free

graphs, where n is the number of vertices. We also adapt our family of chains using

block moves from Chapter 4 to sample independent sets in claw-free graphs, and com-

bine this result with comparison techniques to show that our adaptation of the Jerrum-

Sinclair chain mixes in time O(∆n2) for claw-free lattices such as the triangular and

kagome lattices.

A problem which has received much interest in our community is that of sampling

perfect matchings in bipartite graphs. The number of perfect matchings in a bipar-

tite graph is equal to the permanent of its adjacency matrix. Furthermore, uniformly

sampling perfect matchings of a graph G = (V1,V2,E) corresponds to the problem of

uniformly sampling permutations of the vertex set V1, where each vertex is restricted

to a limited number of positions determined by the adjacency matrix of G. This type

of condition may arise in a class of statistical tests known as permutation tests. The
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problem of sampling (and approximately counting) perfect matchings was solved by

Jerrum, Sinclair and Vigoda in 2001 for general bipartite graphs [26]. In Chapter 6,

we study the mixing time of a simple chain using Diaconis moves, on a special class

of bipartite graphs. This special class corresponds to instances of permutation testing

where the data set is doubly truncated - that is, each dependent measurement can fall

into a single contiguous range determined by the independent variable. We will show

that the Diaconis chain is not rapidly mixing, even for this class of graphs. However,

we will present a further restricted class of bipartite graphs for which the mixing time

is sub-exponential, and which still covers many instances of doubly-truncated data. We

also show that the mixing time is polynomial in cases equivalent to sampling singly-

truncated data, but that in such cases it is straightforward to sample and count perfect

matchings exactly.



Chapter 2

Background

In this chapter we introduce the Markov chain Monte Carlo method for sampling prob-

lems, and some of the techniques used to show rapid mixing of Markov chains. We

illustrate these techniques by considering the insert-delete chain for sampling indepen-

dent sets, which was originally shown to be rapidly mixing in [31], and the Jerrum-

Sinclair chain for sampling matchings, which was originally shown to be rapidly mix-

ing in [25].

2.1 Counting and sampling

Traditional complexity analysis is concerned largely with decision problems: given

a problem instance, does some condition hold? Such a problem can be seen as a

boolean function ϕ : Σ∗→ {0,1} over some alphabet Σ. The complexity class P is the

set of decision problems that can be computed by a deterministic Turing machine in

polynomial time, while NP is the set of decision problems that can be computed by a

nondeterministic Turing machine in polynomial time [35].

We say that a decision problem represented by a function ϕ over an alphabet Σ is

reducible to another function ϕ′ over an alphabet Σ′ if there is a function f : Σ∗→ Σ′∗

such that for all x ∈ Σ∗, ϕ(x)⇔ ϕ′( f (x)). If ϕ is a boolean function and every problem

in NP is reducible to ϕ by some function that is computable in time polynomial in the

size of the input, then ϕ is said to be NP-hard. If ϕ is also in NP, then it is said to be

NP-complete. This form of reducibility is known as Karp reducibility.

An alternative way of defining NP is to consider a “witness-checking” predicate

χ : Σ∗×Σ∗→{0,1}. A function ϕ is in NP if and only if there exists such a predicate

χ that is computable in polynomial time by a deterministic Turing machine, and a

5
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polynomial p such that for all x ∈ Σ∗,

ϕ(x)⇔∃w ∈ Σ
∗ : χ(x,w)∧|w| ≤ p(|x|).

In the theory of counting, sometimes we are interested in counting how many wit-

nesses there are for a given problem instance. This question arises naturally when

we consider decision problems where witnesses are combinatorial structures such as

independent sets, matchings or graph colourings. These counting problems can be

represented as a function f : Σ∗ → N. We say that f ∈ FP if f can be computed by

a deterministic Turing machine transducer (that is, a Turing machine equipped with

a write-only output tape [35]) in polynomial time. Using a witness-checking charac-

terisation, the complexity class #P can be seen as a counting analogue of NP. Instead

of determining whether a witness exists, we are interested in how many witnesses ex-

ist: f ∈ #P if and only if there exists a polynomial-time checkable predicate χ and a

polynomial p as before, such that for all x ∈ Σ∗,

f (x) = |{w ∈ Σ
∗ : χ(x,w)∧|w| ≤ p(|x|)}|.

It is immediately clear that there are problems in #P that are at least as hard as

those in NP: if we know how many witnesses exist for a given problem instance, we

can certainly say whether at least one witness exists.

We can construct a hierarchy of counting problems in a similar way to decision

problems, by demonstrating reducibility between problems. Instead of Karp reducibil-

ity, we use Turing reducibility. A counting problem f is Turing reducible to a problem

f ′ if there exists a Turing machine that computes f , given an oracle for f ′. The key

difference between Karp reducibility and Turing reducibility is that a Turing reduction

is allowed to make many calls to f ′, whereas a Karp reduction is allowed to make only

one call to ϕ′.

A function f is said to be #P-hard if every problem in #P is Turing reducible to

f in time polynomial in the input size, and #P-complete if, additionally, f ∈ #P. The

standard reduction of Cook, which shows how to reduce any problem in NP to SAT

[18], preserves the number of witnesses of the original problem instance. Therefore

the counting analogue #SAT is #P-complete. Generally speaking, if there is a Turing

reduction from any #P-complete problem to some problem f that preserves the number

of witnesses, then f is #P-hard. Such witness-preserving reductions are said to be

parsimonious in the literature.

Many other NP-complete decision problems give rise to #P-complete counting

problems, although it is an open problem whether all NP-complete problems do
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so [24]. However, there also exist #P-complete problems that arise from non-NP-

complete decision problems. One such problem is that of counting perfect matchings

of a graph.

Definition 2.1. Given a graph G = (V,E), a matching is a subset of edges M ⊆ E such

that no two edges in M share a common endpoint. A perfect matching is a matching

that covers all vertices of G, that is,
S

(u,v)∈M{u,v}= V .

There are polynomial-time algorithms to determine whether a perfect matching

exists in a graph G, for both bipartite and general graphs [15]. However, counting

perfect matchings exactly is #P-complete [40].

A polynomial-time algorithm for any #P-complete problem would imply that

#P=FP. It is generally believed that no such algorithm exists. However, for some

#P-complete problems it is possible to approximately count the number of solutions to

a problem, to within a constant factor, in polynomial time.

Definition 2.2. A fully polynomial randomised approximation scheme (FPRAS) for

a problem f is a randomised algorithm such that, for every problem instance x, and

for ε > 0, the value X returned by the algorithm satisfies e−ε f (x) ≤ X ≤ eε f (x) with

probability at least 3
4 , and such that the running time is a polynomial in ε−1 and the

size of the problem instance, |x|.

A problem related to that of counting solutions to a problem instance is that of

sampling uniformly from the set of solutions. It is often possible to reduce from ap-

proximating the number of solutions to a given problem to almost-uniform sampling

from its solution set [27].

As an example, suppose we wish to approximately count the number of matchings

of a graph G = (V,E), with |E| = m. If we choose an (arbitrary) ordering of edges

e1, . . . ,em, then we can define a set of subgraphs:

Gi = (V,{e1, . . . ,ei}).

For any i > 1, we know that the matchings of Gi are a superset of the matchings of

Gi−1, and that for any matching M of Gi, M is a matching of Gi−1 if and only if ei 6∈M.

Define Ωi to be the set of matchings of Gi. We can therefore estimate the ratios |Ωi−1|
|Ωi| ,

by taking a sufficiently large number of samples from the set of matchings of Gi and

observing the proportion that contain ei. In order to obtain a good estimate of this ratio,

we also need to know a lower bound on the ratio value, for every i. This can be shown
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to be 1
2 , by noting that the set of matchings of Gi that do not contain ei is exactly

the set of matchings of Gi−1, and that there is an injective function from matchings

M of Gi that do contain ei to matchings M \ {ei} of Gi−1. Given this ratio, and the

approximate number of matchings of Gi−1, we can estimate the number of matchings

of Gi. Observing that G0 has exactly one matching (the empty set), if we know the

ratios |Ωi−1|
|Ωi| for all i, we can estimate the number of matchings of G, |Ω|:

|Ω|=
{
|Ωm−1|
|Ωm|

· · · |Ω0|
|Ω1|

}−1

.

The accuracy of this estimate of the number of matchings of G depends on the num-

ber of samples taken to estimate |Ωi−1|
|Ωi| , and the accuracy of our sampling procedure (if

we do not have a mechanism for exact sampling). In order to analyse almost-uniform

sampling algorithms, we need to be able to measure the distance of a probability dis-

tribution from the uniform distribution.

Definition 2.3. Let π and π′ be two probability distributions on a set Ω. The total

variation distance ‖π−π′‖TV between π and π′ is defined as

‖π−π
′‖TV =

1
2 ∑

ω∈Ω

|π(ω)−π
′(ω)|= max

A⊆Ω

|π(A)−π
′(A)|. (2.1)

We can now use the total variation distance to define a class of algorithms for

almost-uniform sampling.

Definition 2.4. Let x be an instance of a sampling problem, and W (x) be the set of

witnesses to x, that is,

W (x) = {w ∈ Σ
∗ : χ(x,w)∧|w| ≤ p(|x|)} .

A fully polynomial almost uniform sampler (FPAUS) is a randomised algorithm that

returns a random sample from a distribution whose total variation distance from the

uniform distribution on W (x) is no more than ε, and which runs in time polynomial in

ε−1 and the size of the problem instance |x|.

Returning to the problem of approximately counting matchings, if we can find

an FPAUS for approximate uniform sampling of matchings in a graph G, then it is

possible to estimate the ratios |Ωi−1|
|Ωi| , and thus approximate the number of matchings

of G. This reduction was first shown by Valiant in [40], and the following calculations

will summarise the steps of Jerrum’s presentation of this proof in [24]. For each ratio,

let Zi be the indicator variable of the event that a sample Mi from Ωi (selected according
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to the distribution of our FPAUS) belongs to Ωi−1. Let µi = E[Zi]. If we set δ = ε

6m ,

then from Definition 2.1 we have

|Ωi−1|
|Ωi|

− ε

6m
≤ µi ≤

|Ωi−1|
|Ωi|

+
ε

6m
.

If we take some set of s samples from Ωi, then the sample mean Zi that we obtain from

these samples will approximate µi. Specifically, let s = d74ε−2me. With this number

of samples, we obtain the following bound on the variance of Zi, using the previous

bound that |Ωi−1|
|Ωi| ≥ 1

2 :
Var[Zi]

µ2
i

≤ 2
s
≤ ε2

37m
.

We now consider the variance of the product of the Zi values, and obtain the bound

Var[Z1Z2 · · ·Zm]
(µ1µ2 · · ·µm)2 ≤ ε2

36
.

Therefore, by Chebyshev’s inequality,(
1− ε

3

)
µ1µ2 · · ·µm ≤ Z1Z2 · · ·Zm ≤

(
1+

ε

3

)
µ1µ2 · · ·µm,

with probability at least 3
4 . Applying our bound on the µi values with respect to Ωi−1

Ωi ,

we find that with probability at least 3
4 ,

e−ε|Ω|−1 ≤ Z1Z2 · · ·Zm ≤ eε|Ω|−1.

Therefore the algorithm for computing (Z1Z2 · · ·Zm)−1 is an FPRAS for |Ω|. The run-

time of this algorithm is sm ≤ 75ε−2m2 times the runtime of our FPAUS for sampling

matchings.

In section 2.3.5 we will demonstrate that the Jerrum-Sinclair chain for sampling

matchings is an FPAUS, and can therefore be used to estimate |Ω| in polynomial time.

One method of approximate sampling is Markov chain simulation. In Markov

chain Monte Carlo (MCMC), we define a Markov chain with a unique stationary dis-

tribution π equal to the desired distribution. By simulating the chain for a sufficiently

large number of steps, we can obtain a sample from a distribution very close to π.

When we apply Markov chain simulation, we need to prove that the chain approaches

the stationary distribution fairly quickly.

2.2 Markov chain Monte Carlo algorithms

Many sampling problems can be approximated using the Markov chain Monte Carlo

method.
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Definition 2.5. A Markov chain M on some state space Ω is a stochastic process

X1,X2, . . ., where Xi ∈ Ω for all i, such that for all n,

Pr(Xn+1 = x | Xn = xn, . . . ,X1 = x1) = Pr(Xn+1 = x | Xn = xn).

Informally, for any t ≥ 0, Xt+1 depends only on Xt .

Definition 2.6. A Markov chain M is said to be aperiodic if, for all possible states x,

gcd{n : Pr(Xn = x | X0 = x) > 0}= 1.

M is said to be irreducible if for every pair of states x and y, there is a sequence of

transitions, each with non-zero probability, from x to y. A Markov chain that is both

irreducible and aperiodic is called ergodic.

A stationary distribution of a Markov chain with transition matrix P is a probability

distribution π, such that πP = π. If a Markov chain is ergodic, then it has a unique

stationary distribution [24]. Furthermore, for any initial probability distribution π0, the

induced distribution after many steps of an ergodic Markov chain approaches π:

∀π0 lim
t→∞

π0Pt = π.

We can now use these definitions to define Markov chains for sampling from spe-

cific distributions. To sample from a distribution π on a sample space Ω′, we define an

ergodic Markov chain whose state space Ω contains Ω′ and whose stationary distribu-

tion is the desired distribution π. Usually Ω is exactly the sample space, but in some

cases we choose a chain where Ω is larger than Ω′, and π(Ω) is larger than π(Ω′) by no

more than a polynomial factor. Usually these conditions are equivalent, but there are

some chains for sampling perfect matchings where Ω is exponentially larger than Ω′,

whereas π(Ω) is only polynomially larger than π(Ω′) [26]. By simulating the chain

for a sufficiently large number of steps, we can obtain a random sample distributed

(almost) according to the stationary distribution. As we will see, in some cases - such

as sampling matchings and independent sets - we work in a more general setting than

just the world of uniform distributions, and sample from weighted distributions that

are not uniform.

Definition 2.7. Let P be the transition matrix of a Markov chain M on state space Ω,

and let π′ be a probability distribution on Ω. If for all x,y ∈ Ω,

π
′(x)P(x,y) = π

′(y)P(y,x), (2.2)
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then π′ is a stationary distribution of the Markov chain. This condition is known as

detailed balance. If Condition (2.2) holds for a given π′ and for all x,y ∈ Ω, and the

Markov chain is ergodic, then the chain is said to be time reversible.

Lemma 2.8. [24, Lemma 3.7] Let M be a time-reversible Markov chain with respect

to some distribution π′. π′ is a stationary distribution of M . If M is ergodic, then π′

is the unique stationary distribution π.

If we know that a chain is time-reversible with respect to a distribution π′, then we

can easily check whether it samples from the desired distribution. We will generally

only use time reversible Markov chains for sampling.

As an example, consider the problem of sampling independent sets of a graph G =

(V,E).

Definition 2.9. An independent set of a graph G = (V,E) is a subset of vertices I ⊆V

such that there is no pair of vertices u,v ∈ I for which (u,v) ∈ E.

We will consider a Markov chain MID whose state space Ω is the set of all indepen-

dent sets of G, and which samples independent sets weighted according to a parameter

λ. This chain was proposed by Luby and Vigoda [30], and analysed by Dyer and

Greenhill [14]. Our goal is that the stationary distribution should be

π(I) =
λ|I|

∑I′∈Ω λ|I
′| . (2.3)

The denominator ∑I′∈Ω λ|I
′| is known as the partition function. Note that if λ = 1

then π is the uniform distribution, and the partition function is equal to the number of

independent sets of G. We now define the transitions of the chain MID.

Definition 2.10. MID is referred to as the insert-delete chain for sampling independent

sets. Let Xt be the state of MID at time t. The state Xt+1 at time t +1 is determined by

the following process:

(ID1) Select a vertex v ∈V uniformly at random.

(ID2) With probability λ

1+λ
, let I = Xt ∪{v}; with the remaining probability 1

1+λ
,

let I = Xt \{v}.

(ID3) If I is an independent set, then let Xt+1 = I; otherwise, let Xt+1 = Xt .

We will now show that the stationary distribution of MID is the distribution π de-

fined in Equation (2.3).
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Lemma 2.11. The unique stationary distribution of MID is

π(I) =
λ|I|

∑I′∈Ω λ|I
′| .

Proof. Let Ω be the state space of MID - that is, the set of all independent sets of G. We

will demonstrate that our desired distribution π satisfies the detailed balance condition

(2.2).

Let n = |V | be the number of vertices of G. Consider a pair of independent sets

(I, I′) ∈ Ω×Ω. If I and I′ differ at more than one vertex, then clearly P(I, I′) =

P(I′, I) = 0, and so Condition (2.2) holds. Likewise, if I = I′ then trivially π(I) =

π(I′) and P(I, I′) = P(I′, I). Now suppose that I and I′ differ at exactly one vertex

v, and assume without loss of generality that v ∈ I and v 6∈ I′. Then π(I) = λπ(I′),

P(I, I′) = 1
n(1+λ) , and P(I′, I) = λ

n(1+λ) . Now

π(I)P(I, I′) = λπ(I′)
1

n(1+λ)

= π(I′)
λ

n(1+λ)

= π(I′)P(I′, I).

Condition (2.2) therefore holds for the distribution π for all pairs of states.

The uniqueness of π follows from the fact that every independent set is reachable

by a sequence of transitions from the empty set, and that there is a non-zero self-loop

probability for all states (note that for every x ∈ Ω, P(x,x) is at least min{ 1
1+λ

, λ

1+λ
}).

Therefore the chain is ergodic, and since Condition (2.2) holds, it is time-reversible

with respect to π. By Lemma 2.8, π is the unique stationary distribution of MID.

By definition, any ergodic Markov chain will approach its stationary distribution

as the number of steps t → ∞. We are interested, however, in how long it takes for the

total variation distance from π to fall below some ε > 0.

Definition 2.12. Let M be an ergodic Markov chain with transition matrix P and

stationary distribution π. The mixing time of M , for a given initial state x, is the

number of steps required for the total variation distance to fall below some value ε > 0:

τx(ε) = min{t : ‖Pt(x, ·)−π‖TV ≤ ε}.

We are usually interested in the mixing time of a Markov chain for an arbitrary start

state. This is obtained by considering the maximum mixing time over all states:

τ(ε) = max
x∈Ω

min{t : ‖Pt(x, ·)−π‖TV ≤ ε}. (2.4)
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If the mixing time τ(ε) is polynomial in the size of the problem instance, then we

refer to the Markov chain as rapidly mixing.

In the next section we will present a proof of rapid mixing for MID, in the case of

bounded degree and small λ, in order to demonstrate the use of the coupling technique.

2.3 Methods for bounding mixing times

While there are several methods of bounding mixing times, we focus here on those

based on two main techniques: those based on coupling arguments, and those based

on the conductance and spectral gap of Markov chains.

2.3.1 Coupling

Coupling was discovered by Doeblin in the 1930s, and its use for bounding the mixing

time of Markov chains was introduced by Aldous [1].

Let M be a Markov chain on state space Ω, and P be the transition matrix of M .

We consider two copies of M , X and Y . A coupling of X and Y is a stochastic process

Zt = (Xt ,Yt) on the state space Ωω×Ωω, such that the marginal distribution on Xt (and,

respectively, Yt) is identical to that of M , for every t.

If Zt is itself a Markov chain, then we say that Zt is a Markovian coupling. In this

instance, Zt can be defined on the state space Ω×Ω, and the following conditions hold:

Pr(Xt+1 = x′ | Xt = x,Yt = y) = P(x,x′),

Pr(Yt+1 = y′ | Xt = x,Yt = y) = P(y,y′).

In this thesis we will consider only Markovian couplings. However, there are also

techniques for finding non-Markovian couplings and using them to show rapid mixing

[21, 8].

The coupling lemma allows us to use coupling to bound the mixing time of Markov

chains.

Lemma 2.13 (Coupling lemma [1]). Let M be a Markov chain on state space Ω, and

Z = (X ,Y ) be a coupling of two copies of M . Let t(ε) be a function such that for all

x,y ∈ Ω,

Pr(Xt(ε) 6= Yt(ε) | X0 = x,Y0 = y)≤ ε.

Then the mixing time of M is bounded above by t(ε).
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We can use Lemma 2.13 to bound the mixing time of a Markov chain M if we are

able to define a coupling where the two copies Xt and Yt tend to converge with increas-

ing t. If we work with the basic coupling lemma above, it is necessary to define and

analyse the coupling over all possible pairs of states of M . However, other techniques

such as path coupling allow us to show rapid mixing by considering a coupling on a

subset of pairs of states.

When we apply coupling, and especially techniques such as path coupling, we

often use a metric to measure the distance between the two copies Xt and Yt . We say

that the distance between a pair of states x and y contracts if, for some β < 1,

E[d(Xt+1,Yt+1)] < βd(Xt ,Yt) when Xt = x,Yt = y.

A Markov chain M is rapidly mixing if and only if there exists a coupling that

contracts in time polynomial in the input size [20]. However, such a coupling need not

be Markovian, does not have to contract in every step, and may be difficult to find. In

Section 2.3.4 we will introduce alternative techniques that may be applied even when

a Markovian coupling does not exist.

2.3.2 Path coupling

Path coupling is a method introduced by Bubley and Dyer that allows us to use cou-

pling without the requirement of showing contraction for every possible pair of states

[7]. Instead of considering all pairs of states, we define an adjacency relation S. We

require that every pair of states is connected by a path in the adjacency graph formed

by S. The path coupling lemma states that if we have a coupling for which the value of

some metric can be shown to contract for all pairs of adjacent states, then a coupling

exists that contracts for all (not necessarily adjacent) pairs of states.

Lemma 2.14 (Path coupling lemma [7]). Let S ⊆ Ω×Ω be an adjacency relation on

the state space of M , such that for any two states Xt and Yt ∈ Ω, there exists a path

from Xt to Yt using only transitions in S. Let d be the path metric defined on Ω×Ω

induced by some metric on S. Suppose that for every pair (Xt ,Yt) ∈ S,

E[d(Xt+1,Yt+1) | Xt ,Yt ]≤ βd(Xt ,Yt).

Then the contraction condition E[d(Xt+1,Yt+1) | Xt ,Yt ]≤ βd(Xt ,Yt) holds for all pairs

(Xt ,Yt) ∈ Ω×Ω.
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The path coupling lemma gives a bound on the expected distance at time t +1 given

the distance at time t. Theorem 2.15 allows us to bound the mixing time of M given

such a bound.

Theorem 2.15 ([13]). Let (X ,Y ) be a coupling on M , d an integer-valued metric

defined on Ω×Ω, and D the maximum value that d can take for any pair of states in

Ω. Suppose that for some β ≤ 1,

E[d(Xt+1,Yt+1)]≤ βd(Xt ,Yt)

for all t. If β < 1 then the mixing time τ(ε) of M satisfies

τ(ε)≤ log(Dε−1)
1−β

.

If β = 1 and there exists some α > 0 such that

Pr(d(Xt+1,Yt+1) 6= d(Xt ,Yt))≥ α

for all t, then the mixing time satisfies

τ(ε)≤
⌈

eD2

α

⌉⌈
log(ε−1)

⌉
.

The case where β = 1 of Theorem 2.15 concerns the situation where the coupling

cannot be shown to contract in all cases, but can be shown not to expand. In this

situation, we additionally need to show that there is a minimum probability of a change

in distance for all pairs of states. This is often easier than showing contraction over

all pairs of states, but finding good bounds on the probability of d changing may be

difficult. However, in more recent work, Bordewich and Dyer have shown that it is

often sufficient to show that there is variance only for adjacent states [4]. Their theorem

requires that, for every pair of adjacent states (v,w), a single instance of a chain M
starting at state v has a minimum probability of moving at least some distance δ towards

state w.

Theorem 2.16 ([4]). Let P be a path coupling for a Markov chain M , and let S ⊆ Ω2

be the adjacency relation on which P is defined. Let d be the path metric defined on

Ω×Ω induced by some metric on S. Let Xt represent the state of M at time t. Define

the function p for all δ > 0 as follows:

p(δ) = min
(v,w)∈S

Pr(d(v,Xt+1)≥ δ,d(v,Xt+1)+d(Xt+1,w) = d(v,w) | Xt = v),
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That is, p(δ) represents the minimum probability over all pairs of adjacent states

(v,w) ∈ S that a single copy of M , starting from state v, moves at least distance δ

towards state w.

If β(M ,P )≤ 1 and there exists a δ > 0 such that p = p(δ) > 0, then there exists a

modified Markov chain M ∗ with the same stationary distribution as M , and a coupling

C of M ∗ such that β(M ∗,C )≤ 1 and σ2(M ∗,C )≥ pδ2

1+p .

The transition probabilities of M ∗ are given by:

PrM ∗(Xt+1 = x′ | Xt = x) =


PrM (Xt+1=x|Xt=x)+p

1+p if x′ = x
PrM (Xt+1=x′|Xt=x)

1+p otherwise.

The bound on σ2 given by Theorem 2.16, combined with the knowledge that β≤ 1,

allows us to obtain a bound on the mixing time of M ∗. It is not necessarily the case,

however, that we can obtain a bound on the mixing time of the original chain M .

In Chapter 3 we will prove a slightly more general form of Theorem 2.15 in the

case where β = 1, in which we will permit metrics that take non-integer values. We

will also show that we can achieve a better bound on the mixing time when β = 1, if

we have a lower bound on the probability that the distance changes that is linear in the

distance at time t.

We now return to the insert-delete chain for sampling independent sets. We will

demonstrate basic path coupling, using Theorem 2.15, but we will use Theorem 2.16

in Chapter 4. We can use path coupling to show that MID is rapidly mixing for small

values of λ. Dyer and Greenhill stated this result, but omitted the details of the proof

[14]. The result we will prove in Theorem 2.17 is quite weak in terms of the range of

λ values covered. Luby and Vigoda also obtained a proof of rapid mixing for MID, for

a larger range of values of λ than we consider [31]. The intent here is to illustrate the

technique of path coupling.

Theorem 2.17. Consider a graph G = (V,E) with maximum degree ∆ and |V | = n.

MID is rapidly mixing on G provided λ ≤ 1
∆−1 .

Proof. We say that two states I and I′ are adjacent if and only if I and I′ differ at exactly

one vertex v:

S = {(I, I′) : ∃v s.t. I′ = I∪{v}; I is an independent set }.

There is certainly a path between any arbitrary pair of states, because it is possible to

reach the empty set from any state using only transitions between adjacent states. We
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will use Hamming distance, that is, the number of vertices that differ between I and

I′, as our metric. Note that Hamming distance is the path metric that we obtain if we

consider states in S to be at distance 1.

Suppose we have two copies of MID, It and I′t , and that at time t their states differ

at a unique vertex v. Assume without loss of generality that I′t = It ∪{v}. Our path

coupling will update the same vertex u in each copy of the chain. If u = v, then with

probability λ

1+λ
we add u to It and make no change to I′t ; with the remaining probability

1
1+λ

, we remove u from I′t and make no change to It . Our path coupling therefore

couples with probability 1 in this case, and the expected distance at time t +1 decreases

by 1. If we select a vertex which is neither v nor adjacent to v, then we can make the

same transition in each copy of the chain, but the Hamming distance will not change.

Finally, if we select a vertex adjacent to v, then there are two cases:

1. If u is adjacent to some other v′ which is present in both copies of the chain, then

neither copy can change at time t +1 and so the Hamming distance is unchanged.

2. If there is no such v′, then we can insert u in one copy only, with probability λ

1+λ
.

The expected distance therefore increases by λ

1+λ
.

There are at most ∆ choices of u for which case 2 may occur. In the worst case,

therefore, the expected distance increases by 1
n( ∆λ

1+λ
−1).

Our choice of adjacency relation means that whenever the pair of states It and I′t
are adjacent, d(It , I′t ) = 1. Therefore, by Lemma 2.14,

E[d(It+1, I′t+1)]≤
(

1+
λ(∆−1)−1

(1+λ)n

)
d(It , I′t ),

and so the contraction ratio β is

β = 1+
λ(∆−1)−1

(1+λ)n
.

The contraction condition holds whenever β ≤ 1, and this occurs whenever λ ≤ 1
∆−1 .

We now apply Theorem 2.15 for the case when λ < 1
∆−1 , that is, when β < 1. The

mixing time of the insert-delete chain in this case satisfies

τ(ε)≤ n log(nε−1)(1+λ)
1−λ(∆−1)

,

observing that the maximum value of d(It , I′t ) is the number of vertices n.
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In the case λ = 1
∆−1 , observe that if d(It , I′t ) 6= 0 then there is always at least one

vertex v that differs between It and I′t , and that if v is selected then the distance changes

with probability at least 1
1+λ

. In this boundary case we therefore have

α =
1

n(1+λ)

=
1

n(1+ 1
∆−1)

=
∆−1

n∆
.

Applying the second part of Theorem 2.15, we obtain the following bound on the

mixing time when λ = 1
∆−1 :

τ(ε)≤
⌈

en3∆

∆−1

⌉⌈
log(ε−1)

⌉
.

Dyer and Greenhill considered a more complex chain, introducing an additional

drag move, and showed that their chain mixes rapidly for a wider range of values of

λ than we show here [14]. The drag move removes one vertex and inserts an adjacent

vertex in a single transition. They further showed that their results imply that the

insert-delete chain mixes rapidly for the same values of λ as they showed for their

chain. Dyer and Greenhill’s drag move allows us to make a move in both copies

of the chain in the case of the proof of Theorem 2.17 where the expected distance

increases. The probability of the drag move in their chain is optimised to minimise the

expected increase in distance [14]. Dyer and Greenhill were able to show that their

chain is rapidly mixing where λ ≤ 2
∆−2 . In Chapter 4 we will mimic their approach

and introduce a similar transition in a Markov chain for sampling matchings, to obtain

improved mixing times for matching chains.

In Chapter 3 we will develop a path coupling theorem that can be applied when

we can show that the probability of a change in distance is proportional to the current

distance, as is the case for MID when λ = 1
∆−1 . Our new theorem can be applied to

obtain a better bound on the mixing time than Theorem 2.15 in these cases.

2.3.3 Spatial mixing

Spatial mixing is a property that can be shown to hold on spin systems, which can be

used to infer rapid mixing of Markov chains on states of the spin systems. We will

derive spatial mixing results on a certain set of spin systems in Chapters 4 and 5.
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Definition 2.18. A spin system is a stochastic system consisting of a graph G = (V,E)

and a set of spins Q, such that each vertex v ∈ V is assigned a spin qv ∈ Q. The set

of spins that each vertex can take may be constrained, and such constraints may be

hard constraints (the spins that v can take, conditioned on the spins of neighbouring

vertices, are a subset of Q) or soft constraints (v can take any spin, but with varying

probabilities, which may depend on the spins of the vertices in its neighbourhood).

We can think of a spin system as being a Markov chain on the state space Q|V | that

chooses a vertex uniformly at random, and replaces its spin with one chosen from the

distribution induced by the spins of its neighbours. Spin systems with both hard and

soft constraints can be modelled in this way. Examples of spin systems include graph

colourings and the Ising model. We will define proper colourings of a graph G, which

are an example of a spin system with hard constraints, in Chapter 3, and show that a

simple Markov chain for sampling proper colourings is rapidly mixing when |Q|= 2∆,

where ∆ is the maximum degree of G. The Ising model, which we will not consider

further in this thesis, is an example of a spin system with soft constraints. In the Ising

model, the set of spins is Q = {1,−1}, and the probability that a vertex has a given

spin is a function of the numbers of adjacent vertices with the same and opposite spins,

referred to as the energy function.

Strong spatial mixing is a property which can be shown to hold for some spin

systems, whereby the effect of a single-site discrepancy at a vertex y on any set of

vertices Λ decays exponentially with the distance of Λ from y [44]. We describe this

property formally in what follows:

Consider a graph G = (V,E). We will refer to a finite subset of vertices R⊆V as a

region of G. The boundary of a region R is the set of vertices that belong to R and are

adjacent to at least one vertex of V \R.

Definition 2.19 ([44]). Let G = (V,E) be a graph. Let R ⊆ V be a non-empty finite

region of G, Λ ⊆ R a subset of R. Let ∂R be the set of vertices on the boundary of R,

and ∆ ⊆ ∂R be a subset of these vertices. Let B and B ′ be a pair of configurations of

∂R differing only at the vertices of ∆. Let πB,Λ and πB ′,Λ be the stationary distributions

of the region Λ, conditioned on the configurations B and B ′ respectively. A spin system

has strong spatial mixing if there exist constants β,β′ > 0 such that for every R, Λ, ∆,

B and B ′,

‖πB,Λ−πB ′,Λ‖TV ≤ β|Λ|e−β′d(∆,Λ), (2.5)

where d(∆,Λ) is the minimum distance from ∆ to Λ.
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The reason that we are interested in strong spatial mixing is because of its con-

nection to the mixing time of Markov chains. If the vertex neighbourhood of every

v ∈V grows sub-exponentially with increasing distance, strong spatial mixing implies

the existence of a rapidly mixing Markov chain for sampling configurations of the spin

system [19]. The proof of this connection is done by constructing a chain M with the

same distribution as the original spin system. The chain M selects a vertex v uniformly

at random, and replaces the configuration of a fixed radius region R around v with one

selected from the uniform distribution, conditioned on the configuration of ∂R. We

can use path coupling to show that the chain is rapidly mixing if the region R is large

enough.

In our applications in Chapters 4 and 5, we will demonstrate that the spatial mixing

property holds as part of a path coupling argument, where adjacent states differ at a

single vertex, y. We therefore need to consider only the case where ∆ = {y}. Weitz

notes that if G is an integer lattice Zd , then this weaker definition where ∆ contains

only one element is equivalent to Definition 2.19, but that this is not the case in general

[44].

The proof that strong spatial mixing implies rapid mixing proceeds along the fol-

lowing lines:

Let Xt and Yt be a pair of states of M , differing at a single vertex w, and consider

Xt+1 and Yt+1. We will use Hamming distance as a metric. If w falls within the region R

that is updated, then the configurations of ∂R in Xt and Yt are identical and we can select

Xt+1 = Yt+1. Likewise, if w is outside R and is not on the boundary ∂R, then we can

update R with the same configuration in each copy of the chain, and so the Hamming

distance does not increase. Finally, if w lies on ∂R, the spatial mixing property ensures

that the increase in Hamming distance is small. If |R| is sufficiently large compared to

|∂R|, then we can show that E[d(Xt+1,Yt+1)] ≤ d(Xt ,Yt), and hence that M is rapidly

mixing.

In practice, the large block transitions required to show rapid mixing of M can be

difficult to compute. The number of configurations of the boundary ∂R grows exponen-

tially as the size of R increases, so it becomes infeasible to enumerate these directly.

Van den Berg and Brouwer used a second Markov chain to update the configuration

of R, using single-site moves, to show rapid mixing of a Markov chain for sampling

matchings [42]. This results in the new configuration of R being chosen from an almost

uniform distribution, which they showed is sufficient for the upper-level chain to mix

rapidly. They also noted that it is possible to use comparison arguments, which we
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will see in Section 2.3.6, to bound the mixing time of a single-site chain with the same

stationary distribution, given a bound on the mixing time of a chain using block moves.

We follow this approach in Chapters 4 and 5, and use bounds on the mixing time of

Markov chains using block moves to bound the mixing time of single-site chains.

2.3.4 Conductance and the spectral gap

When a coupling with contraction ratio β ≤ 1 can be found for a Markov chain, cou-

pling generally gives good bounds on the mixing time of the chain. Indeed, for every

rapidly mixing Markov chain, there exists some coupling that bounds its mixing time

[20]. However, such a coupling may not be Markovian, and it is not always possible

to find a Markovian coupling that contracts. For example, Kumar and Ramesh have

shown that there is no Markovian coupling that contracts for the Jerrum-Sinclair chain

for sampling matchings [28]. Conductance provides an alternative way of bounding

mixing times. However, we require that a Markov chain be time-reversible if we are to

use conductance to bound its mixing time. All of the Markov chains we consider will

satisfy the detailed balance condition (2.2), and will therefore be time-reversible.

The conductance of a Markov chain gives an indication of how easy it is for the

chain to leave any subset of states. Intuitively, a high conductance implies a low prob-

ability that the chain can get “stuck” in a small part of the state space.

Definition 2.20. Let M be an ergodic time-reversible Markov chain on state space Ω,

and let P and π be the transition matrix and stationary distribution of M , respectively.

For any non-empty subset S ⊂ Ω, let CS = ∑x∈S π(x) be the total probability of S, and

FS = ∑x∈S,y6∈S π(x)P(x,y) be the ergodic flow out of S. Now let

ΦS =
FS

CS
=

∑
x∈S,y6∈S

π(x)P(x,y)

π(S)
.

Then the conductance of M is

Φ = min
S:0<π(S)≤ 1

2

ΦS.

The use of conductance to bound mixing time is justified by its relationship to the

spectral gap of a Markov chain. The spectral gap of an ergodic Markov chain M is

1− |λ1|, where λ1 is the second largest eigenvalue in absolute value of its transition

matrix (note that since M has a unique stationary distribution, the largest eigenvalue

is 1). If we can bound the spectral gap, then it is possible to bound the mixing time of

the Markov chain.
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Theorem 2.21 ([38]). Let M be an ergodic Markov chain on state space Ω, and let

λmin < · · · < λ2 < λ1 < 1 be the eigenvalues of the transition matrix of M . Let π∗ =

minx∈Ω π(x) be the smallest probability of any state in the stationary distribution π of

M . Then the mixing time of M satisfies:

τ(ε)≤ 1
1−max{|λmin|, |λ1|}

log
(

1
π∗ε

)
τ(ε)≥ |λ1|

2(1−max{|λmin|, |λ1|})
log
(

1
2ε

)
.

Sinclair and Jerrum showed that the spectral gap, and hence the mixing time, of a

Markov chain can be bounded in terms of the conductance.

Theorem 2.22 ([39, 11]). Let M be an ergodic time-reversible Markov chain with

transition matrix P, and let Φ be the conductance of M . The spectral gap 1− λ1

satisfies
Φ2

2
≤ 1−λ1 ≤ 2Φ.

Note that we assume that λ1 is positive. If this is not the case, then we can alter

the chain to make λ1 positive, by introducing a uniform self-loop probability to each

state. This does not affect the stationary distribution, and increases the mixing time of

the chain by only a small constant factor.

Theorems 2.21 and 2.22 provide both upper and lower bounds on the spectral gap

and mixing time. We can obtain a lower bound on the mixing time of a chain if we

are able to show that the conductance is small. To show this, it is sufficient to find a

single set S such that ΦS is small. We will use this approach in Chapter 6 to show that

the mixing time of a particular Markov chain for sampling perfect matchings is expo-

nential, for certain types of graph. We will not generally use conductance directly to

find upper bounds on the mixing time. Instead, we use a related value, the congestion,

which tends to give better upper bounds on the mixing time than those obtained by

attempting to bound conductance directly.

2.3.5 Congestion and canonical paths

We can bound the conductance of a Markov chain M by considering a suitable mul-

ticommodity flow problem. However, we will instead use this approach to bound a

different value, the congestion. In most cases, the congestion allows us to obtain a

tighter upper bound on the mixing time than that obtained by using canonical paths to

bound conductance [38].
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The canonical paths approach works as follows:

For each pair of states x and y in Ω, we define a canonical path γxy from x to y,

using the transitions of M . We define

Γ = {γxy | x,y ∈ Ω}

to be the set of canonical paths, and for each transition t of M , we define the function

cp(t) to be the set of canonical paths that contain t. Note that there may be many

possible choices of γxy for a particular pair of states. Hence there is a lot of freedom in

how we design a set of canonical paths for a Markov chain M . Given a particular set

of canonical paths Γ, we can now define the congestion:

Definition 2.23. Let M be an ergodic time-reversible Markov chain with stationary

distribution π and transition matrix P, and Γ be a set of canonical paths for M . The

congestion ρ(Γ) of M with respect to Γ is defined as

ρ(Γ) = max
t=(u,v)

{
1

π(u)P(u,v) ∑
(x,y)∈cp(t)

π(x)π(y)|γxy|

}
, (2.6)

where |γxy| denotes the length of the path γxy, and the maximum is over all pairs of

states (u,v) such that P(u,v) > 0.

To compute the congestion, we need to determine how many paths use each tran-

sition of M . We can do this by defining a function ηt for each transition, mapping the

start and end states x and y of each path using t to a single state in Ω. We will refer

to this function ηt as an encoding. If we can show that each ηt is injective, or at least

bound the number of paths mapping to each state, then we can give a bound on the

congestion [24].

Theorem 2.24 ([12, 10]). Let M be an ergodic time-reversible Markov chain, and let

Γ be any set of canonical paths for M . If the congestion of M with respect to Γ is ρ,

then the mixing time of M is bounded above by

τx(ε)≤ 2ρ(Γ)(2logε
−1 + logπ(x)−1).

We now illustrate the canonical paths method by considering the Jerrum-Sinclair

chain for sampling matchings of a graph G = (V,E) [25]. This presentation follows the

original proof of mixing of Jerrum and Sinclair [25]. As with independent sets, we are

interested in sampling from a distribution weighted according to a parameter λ, with

λ = 1 corresponding to the uniform distribution:

π(M) =
λ|M|

∑M′∈Ω λ|M
′| . (2.7)
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Definition 2.25. The Jerrum-Sinclair chain MJS for sampling matchings in a graph

G = (V,E) is defined as follows: Let Xt be the state of the chain MJS at time t. Then

the subsequent state Xt+1 is determined by the following sequence of steps:

(JS1) Select an edge e ∈ E uniformly at random.

(JS2) If e ∈ Xt then let M = Xt \{e}. If e 6∈ Xt and Xt ∪{e} is a matching then let

M = Xt ∪{e}. If e 6∈ Xt and there is exactly one e′ ∈ Xt such that e′ is adjacent to

e, then let M = Xt ∪{e}\{e′}. We refer to this third type of transition as a slide

move.

(JS3) With probability min
{

1, π(M′)
π(Xt)

}
, let Xt+1 = M. Otherwise, let Xt+1 = Xt .

This method of selecting Xt+1 is known as a Metropolis filter.

The Jerrum-Sinclair chain was inspired by Broder, who first proposed the use of a

Markov chain for sampling matchings [5, 6].

In order to bound the congestion of MJS, we analyse a modified version of the

chain in which there is an extra self-loop probability of 1
2 for each state. This modified

version is referred to as the lazy version of the Jerrum-Sinclair chain. This allows us

to easily show that the chain is aperiodic and that all the eigenvalues of its transition

matrix are positive. In Theorem 2.26 below, we will show how to construct a set

of canonical paths for MJS, and an encoding ηt for this set of paths. In Chapter 5

we will apply a very similar argument to a Markov chain for sampling independent

sets in claw-free graphs, and will include the details of the calculations following the

definition of ηt .

Theorem 2.26. Let G = (V,E) be a graph. Let n = |V | and m = |E|. The mixing time

of MJS (with the extra self-loop probabilities) on G is bounded above by

τ(ε)≤ nmλ
2
(4logε

−1 +2n logn+n|logλ|),

where λ = max{1,λ}.

Proof. Given a pair of matchings I and F , we define a canonical path γIF from I to

F by considering the symmetric difference I⊕F . This consists of a set of alternating

paths and even-length cycles. We define the path from I to F by processing I⊕F on a

component basis, taking components in order of the minimum vertex contained in each

component (given some ordering on the vertices of G). For each component, we define

a start vertex - either the smallest vertex in the case of a cycle, or the smaller endpoint
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in the case of an alternating path. Each cycle will have one edge in I incident to the

start vertex: we remove this edge, then proceed around the cycle using slide moves

until we reach the other edge incident to the start vertex. We complete the processing

of the cycle by adding this last edge. For each path, if there is an edge in I incident to

the start vertex then we remove it. We then proceed along the path using slide moves.

Once we have processed the rest of the path, if there is an edge in F incident to the end

vertex, then we add this edge.

We now have a set of canonical paths for MJS, and wish to bound the congestion

of this set of paths. We begin by defining the set cp(t) for each transition t = (M,M′),

which contains all pairs of states (I,F) for which t is a transition on the canonical path

from I to F :

cp(t) = {(I,F) | t ∈ γIF}.

For each transition t, we construct an encoding ηt as follows:

• If t is a slide move, (I,F) ∈ cp(t), and the component of γIF that contains the

edges affected by t is a cycle, then let eIF,t be the edge in I that is adjacent to the

start vertex of the current cycle, and let ηt = (I⊕F ⊕ (M∪M′))\{eIF,t}.

• Otherwise, let ηt = I⊕F ⊕ (M∪M′).

We can show that for all transitions and pairs of states (I,F) ∈ cp(t), ηt(I,F) is a

matching. Furthermore, we can recover I and F if we know t and ηt(I,F). It follows

that the range of ηt is no larger than Ω, and that ηt is injective. We can now show that

π(I)π(F)≤ mλ
2
π(M)P(M,M′)π(ηt(I,F)),

where λ = max{1,λ}, and compute the congestion:

ρ = max
t=(M,M′)

{
1

π(M)P(M,M′) ∑
(I,F)∈cp(t)

π(I)π(F)

}
|γIF |

≤ mλ
2

∑
(I,F)∈cp(t)

π(ηt(I,F))|γIF |

≤ nmλ
2
.

The bound on the mixing time follows, noting that logπ(x)−1 ≤ n logn+ 1
2n|logλ|.

In Chapter 4, we will analyse a modified version of this chain using path coupling

to show that the modified chain is also rapidly mixing for small values of λ. Our aim is
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to obtain an improved bound on the mixing time of our modified chain over the bound

given by canonical paths for the Jerrum-Sinclair chain. As we will see in Chapter 4,

however, the bound we are currently able to obtain is asymptotically worse than that

of Theorem 2.26.

2.3.6 Markov chain comparison

If we have two Markov chains M and M ′ on the same state space, with transition

probabilities P and P′ respectively, such that the transitions of M ′ can be encoded as

sequences of transitions of M , and M and M ′ have the same stationary distribution π,

then it is often possible to bound the mixing time of M in terms of the mixing time of

M ′ [12]. This is of particular interest where M ′ is difficult to implement efficiently,

as is the case when M ′ updates large blocks of vertices.

Definition 2.27. Let E∗(M ′) be the set of pairs (x,y) of (not necessarily distinct) states

of M ′ with P′(x,y) > 0. For each pair (x,y) ∈ E∗(M ′), let Px,y be the set of all paths

from x to y using transitions of M . Let P =
S

(x,y)∈E∗(M ′) Px,y be the set of all paths

between all pairs of states that are adjacent in M ′. An (M ,M ′)-flow is a function f

from P to the interval [0,1] such that for all pairs of states (x,y) ∈ E∗(M ′),

∑
γ∈Px,y

f (γ) = π
′(x)P′(x,y). (2.8)

If every path γ such that f (γ) > 0 contains an odd number of transitions, then we say

that f is an odd (M ,M ′)-flow.

For each path γ ∈ P , let r((z,w),γ) be the number of times the transition (z,w)

appears on the path γ.

For each (z,w) ∈ E∗(M ), the congestion [12, 10] of (z,w) in the flow f is

Az,w( f ) =
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

r((z,w),γ)|γ| f (γ).

The congestion of the flow f is the maximum congestion over all edges:

A( f ) = max
(z,w)∈E∗(M )

Az,w( f ).

Note that this definition of congestion differs slightly from the one stated in Definition

2.23 and used in the canonical paths argument. The canonical paths argument is a

special case of comparison in which M ′ is the trivial Markov chain in which P′(z,w) =

π(w) for all z and w. The two forms of congestion are equivalent when this substitution

is made.
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Theorem 2.28 ([37]). Let M and M ′ be two Markov chains with the same stationary

distribution π, and f be an odd (M ,M ′)-flow. Let τ(M ′,δ) be the mixing time τ(δ)

for the Markov chain M ′. Then for any 0 < δ < 1
2 , the mixing time of M with respect

to any start state x satisfies

τx(M ,ε)≤ A( f )
[

τ(M ′,δ)
log(1/2δ)

+1
]

log
1

επ(x)
.

While Theorem 2.28 requires that f is an odd flow, this requirement is not neces-

sary if the second largest eigenvalue of M is positive. This is the case for the lazy

version of the Jerrum-Sinclair chain, and also for any other chain with a sufficiently

high self-loop probability for each state.

We will use Theorem 2.28 in Chapters 4 and 5, where we demonstrate rapid mix-

ing of Markov chains using large block updates, and deduce that simpler chains (the

Jerrum-Sinclair chain for matchings and an analogous chain for sampling independent

sets in claw-free graphs) also mix rapidly. In the case of the Jerrum-Sinclair chain, this

comparison technique will give a tighter bound on the mixing time than that given by

Theorem 2.26, for certain graphs.

2.3.7 Continuous time

While we have considered only discrete time Markov chains so far, it is sometimes

easier to analyse chains that have been modified to run in continuous time.

If M is a discrete time chain performing single-site updates, then we can define a

related continuous-time chain that makes updates according to a Poisson process with

rate λ = 1. Equivalently, each site is independently updated according to a Poisson

process with rate 1
n , where n is the number of sites.

It is possible to analyse the Jerrum-Sinclair chain in continuous time, which avoids

the need for the extra self-loop probability we introduced to ensure aperiodicity [24].

We will also use a continuous-time setting in Chapter 3 to analyse a Markov chain for

sampling graph colourings.

The continuous time chain can be simulated by selecting t ′ from the Poisson distri-

bution with parameter t, and simulating the underlying discrete time chain for t ′ steps.

However, a bound on the mixing time of the continuous chain does not necessarily

imply a bound on the mixing time of the underlying chain, as the discrete form of the

chain may be periodic.
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The boundary case for coupling

When we use coupling to show that Markov chains are rapidly mixing, we aim to show

that the expected distance between two copies of a Markov chain at any time t + 1 is

no greater than the distance at time t. If we can show that the distance d(Xt+1,Yt+1)≤
βd(Xt ,Yt), and the contraction ratio β is strictly less than 1, then we can infer a bound

on the mixing time.

In this chapter, we consider the case where the contraction ratio β = 1. In such

cases, the bound on the mixing time does not immediately follow. Instead, we need to

show that there is a sufficiently large probability that the distance changes at each step.

We begin by proving a slightly more general version of Theorem 2.15, which can be

applied where the metric d can take non-integer values.

In Section 3.2, we consider the situation where the probability that the distance

changes at each step is proportional to the distance at time t. We show that the bound

on the mixing time in these cases is O(n2) - an improvement over the O(n3) that tends

to be obtained by naı̈vely applying Theorem 2.15, and also the O(n2 logn) achieved

by Dyer and Greenhill using a tailored argument for their Markov chain for sampling

independent sets [14]. We apply our new lemma to the Dyer-Greenhill chain, showing

that its mixing time is O(n2) when λ = 2
∆−2 .

Bordewich and Dyer also considered the case when β = 1. They showed that it is

often sufficient to show that there is a high probability of a change in distance for pairs

of adjacent states [4]. However, their result gives a constant bound on the probability

of a change in distance for all pairs of states, which means the resulting bound on the

mixing time tends to be O(n3). Our result differs in that we obtain a tighter bound on

the mixing time, but it is more difficult to show a suitable bound on the probability of

change.

28
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In Section 3.4, we apply our new lemma to the problem of sampling 2∆-colourings.

This is not a trivial application, as there are situations where the probability of a change

in distance is zero. This issue was also addressed by Bordewich and Dyer [4]. Instead

of applying our lemma directly, we consider the evolution of a Markov chain over

multiple steps, and show that this provides sufficient variance to obtain a bound on the

mixing time.

3.1 Constant probability of change

Here we prove the second part of Theorem 2.15, in which the contraction ratio β = 1.

We will in fact show a slightly more general version of the theorem, which is applicable

to non-integer metrics. We will use this version of the theorem in Section 4.1.2.

Theorem 3.1. Let (Xt ,Yt) be a coupling of a Markov chain M on state space Ω, and

d be a metric (not necessarily integer-valued) on (Xt ,Yt), such that E(d(Xt+1,Yt+1))≤
d(Xt ,Yt). Let D be the largest value that d can take. Suppose that whenever Xt 6= Yt ,

for some α and δ,

Pr[|d(Xt ,Yt)−d(Xt+1,Yt+1)|> δ]≥ α. (3.1)

Then the mixing time of M satisfies

τ(ε)≤
⌈

eD2

αδ2

⌉⌈
log(ε−1)

⌉
.

Proof. From Equation (3.1), we can see that

E[(d(Xt ,Yt)−d(Xt+1,Yt+1))2]≥ αδ
2,

and so

E[d(Xt+1,Yt+1)2]≥ 2d(Xt ,Yt)E[d(Xt+1,Yt+1)]−d(Xt ,Yt)2 +αδ
2. (3.2)

Consider the value E[(D−d(Xt+1,Yt+1))2]:

E[(D−d(Xt+1,Yt+1))2] = D2 +E[d(Xt+1,Yt+1)2]−2DE[d(Xt+1,Yt+1)].

By Equation (3.2),

E[(D−d(Xt+1,Yt+1))2]≥ D2−d(Xt ,Yt)2−2DE[d(Xt+1,Yt+1)]

+2E[d(Xt+1,Yt+1)]d(Xt ,Yt)+αδ
2

= D2−d(Xt ,Yt)2 +2E[d(Xt+1,Yt+1)](d(Xt ,Yt)−D)+αδ
2.
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Now, since D ≥ d(Xt ,Yt) and E[d(Xt+1,Yt+1)]≤ d(Xt ,Yt),

E[(D−d(Xt+1,Yt+1))2]≥ D2−d(Xt ,Yt)2 +2d(Xt ,Yt)(d(Xt ,Yt)−D)+αδ
2

= D2 +d(Xt ,Yt)2−2Dd(Xt ,Yt)+αδ
2

= (D−d(Xt ,Yt))2 +αδ
2.

Let T x,y represent the first time that Xt = Yt , conditioned on X0 = x,Y0 = y. Note that

T x,y depends only on values of Xt and Yt for t < T x,y, and so T x,y is a stopping time.

Define the process Z(t) as follows:

Z(t) = (D−d(Xt ,Yt))2−αδ
2 min{t,T x,y}.

For any time t < T x,y, consider the expected value of Z(t +1).

E[Z(t +1)] = E[(D−d(Xt+1,Yt+1))2]− (t +1)αδ
2

≥ (D−d(Xt ,Yt))2− tαδ
2

= Z(t).

This same inequality holds trivially when t ≥ T . Therefore Z is a submartingale with

respect to X0,Y0, . . . ,Xt ,Yt [33]. Note that the differences Z(t + 1)−Z(t) are bounded

for all t. Also note that since Z is a submartingale, −Z is trivially a supermartingale.

By the optional stopping theorem for supermartingales [45, Theorem 10.10],

E[Z(T x,y)]≥ Z(0)

⇒ E[D2−T x,y
αδ

2]≥ (D−d(x,y))2 since d(XT x,y,YT x,y) = 0

⇒ E[T x,y]≤ D2− (D−d(x,y))2

αδ2

=
d(x,y)(2D−d(x,y))

αδ2

≤ D2

αδ2 .

Now let T = eD2

αδ2 . By Markov’s inequality, Pr(T x,y ≥ T )≤ e−1. Suppose we run s

independent trials of length T . The probability that Xt and Yt have not coupled by time

sT is at most e−s. For any ε, we have e−s ≤ ε if and only if s ≥ log(ε−1). The number

of independent trials s is an integer, and so the mixing time satisfies

τ(ε)≤
⌈

eD2

αδ2

⌉⌈
log(ε−1)

⌉
,

as required.
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If we fix δ = 1, then Theorem 3.1 and the case of Theorem 2.15 where β = 1 are

equivalent.

Note that while Theorem 3.1 is stated in terms of requiring a minimum probability

of improvement by some constant, this is for convenience in application only. We

actually only require a bound on the variance σ2 = Var(d(Xt+1,Yt+1) | Xt ,Yt).

Corollary 3.2. Let (Xt ,Yt) be a coupling of a Markov chain M on state space Ω, and

d be a metric (not necessarily integer-valued) on (Xt ,Yt), such that E(d(Xt+1,Yt+1))≤
d(Xt ,Yt). Let D be the largest value that d can take. Suppose that the variance σ2 =

Var(d(Xt+1,Yt+1) | Xt ,Yt)≥ α. Then the mixing time of M satisfies

τ(ε)≤
⌈

eD2

α

⌉⌈
log(ε−1)

⌉
.

Proof. Observe that σ2 = E[(d(Xt ,Yt) − d(Xt+1,Yt+1))2], and so E[(d(Xt ,Yt) −
d(Xt+1,Yt+1))2] ≥ α. The result follows directly from the proof of Theorem 3.1,

replacing αδ2 with α throughout.

3.2 Linear probability of change

For some couplings, it is possible to show that the probability of a change in distance is

linearly proportional to the distance at time t. This is the case with the Dyer-Greenhill

chain for sampling independent sets, for example. If we try to apply Theorem 3.1

directly in these circumstances, then we tend to get a bound of O( 1
D) for α (by con-

sidering what happens when d takes its smallest non-zero value). The resulting bound

on the mixing time is O(n3). In their analysis of their chain for sampling independent

sets, Dyer and Greenhill considered the mixing time as a sum of random walks with

different values of α, and obtained a bound of O(n2 logn). In this section, we present

a theorem that shows that the mixing time in these cases is O(n2). We apply this new

theorem to the Dyer-Greenhill chain, in the boundary case where λ = 2
∆−2 .

Theorem 3.3. Let (Xt ,Yt) be a coupling of a Markov chain M on state space Ω, and

d be a metric (not necessarily integer-valued) on (Xt ,Yt), such that E(d(Xt+1,Yt+1))≤
d(Xt ,Yt). Let D be the largest value that d can take. Suppose that for some α and δ,

Pr[d(Xt ,Yt)−d(Xt+1,Yt+1) > δ]≥ αd(Xt ,Yt)
D

. (3.3)

Then the mixing time of M satisfies

τ(ε)≤
⌈

2eD2

αδ2

⌉⌈
log(ε−1)

⌉
.
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Proof. In the proof of Theorem 3.1, we showed a bound on E[(D− d(Xt+1,Yt+1))2],

and used this bound to construct a submartingale from which we could infer a bound

on the mixing time. In this proof, we use a similar approach, but instead of bounding

E[(D−d(Xt+1Yt+1))2)], we bound the expectation of a different function f , evaluated

at d(Xt+1,Yt+1). Define the function f as follows:

f (x) = x logx− (1+ logD)x+D.

Note that f is strictly decreasing over the range 0 < x < D, and that f (0) = D and

F(D) = 0.

Consider the distance d(Xt ,Yt) at time t. Since E[d(Xt+1,Yt+1)] ≤ d(Xt ,Yt), we

have

f (E[d(Xt+1,Yt+1)])≥ f (d(Xt ,Yt)).

We wish to obtain a relationship between E[ f (d(Xt+1,Yt+1))] and f (d(Xt ,Yt)). How-

ever, working with f directly is difficult. Instead, let a = d(Xt ,Yt), and define two

further functions g1 and g2:

g1(x) =
x2

2a
+ x(loga− logD−1)+D− a

2
g2(x) = x(loga− logD)+D−a.

g1 and g2 are chosen such that g1(a) = g2(a) = f (a), g′1(a) = g′2(a) = f ′(a), and

g′′1(a) = f ′′(a).

Observe that provided 0 ≤ a ≤ D, the following conditions hold:

g1(x)≤ f (x) for 0 ≤ x ≤ a, and (3.4)

g2(x)≤ f (x) for 0 ≤ x ≤ D. (3.5)

We now define a function h(x):

h(x) =

0 if x ≥ a

g1(x)−g2(x) if x < a

=

0 if x ≥ a

1
2a(x−a)2 if x < a.

By Equation (3.3), we see that E[h(d(Xt+1,Yt+1))]≥ αδ2

2D .
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Now we can bound E[ f (d(Xt+1,Yt+1))]:

E[ f (d(Xt+1,Yt+1))]≥ E[g2(d(Xt+1,Yt+1))+h(d(Xt+1,Yt+1))]

= g2(E[d(Xt+1,Yt+1)])+E[h(d(Xt+1,Yt+1))]

≥ g2(d(Xt ,Yt))+
αδ2

2D

= f (d(Xt ,Yt))+
αδ2

2D
.

Let T be the first time that Xt = Yt . T depends only on values of Xt and Yt for t ≤ T ,

and so is a stopping time. We now define the process Z(t):

Z(t) = f (d(Xt ,Yt))−
αδ2 min{t,T}

2D
.

For any time t < T ,

E[Z(t +1)] = E[ f (d(Xt+1,Yt+1))]−
αδ2(t +1)

2D

≥ f (d(Xt ,Yt))−
αδ2t
2D

= Z(t).

The same inequality holds trivially when t ≥ T . Hence, Z(t) is a submartingale with

respect to X0,Y0, . . . ,Xt ,Yt [33]. Note also that the values of Z(t) are bounded, and so

we can apply the optional stopping theorem for supermartingales [45, Theorem 10.10]

(noting again that if Z is a submartingale then −Z is a supermartingale). Since the

maximum possible value of d(X0,Y0) is D, we know that Z(0)≥ 0. Therefore

E[Z(T )]≥ Z(0)

⇒ E
[

f (d(XT ,YT ))− αδ2T
2D

]
≥ 0

⇒ E[ f (d(XT ,YT ))]≥ αδ2 E[T ]
2D

⇒ E[T ]≤ 2D2

αδ2 .

We can now proceed as in the proof of Theorem 3.1. Let T ′ =
⌈

2eD2

αδ2

⌉
. By Markov’s

inequality, the probability that Xt and Yt have not coupled by time T ′ is at most e−1.

If we run s independent trials of length T ′, then the probability that Xt and Yt have not

coupled by time sT ′ is at most e−s. Now let t = sT ′. e−s ≤ ε if and only if s≥ log(ε−1).

Since s is an integer, we need to take

t ≥ T ′ ⌈log(ε−1)
⌉
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to ensure that the chains couple with probability at least 1− ε. Thus, the mixing time

satisfies:

τ(ε)≤
⌈

2eD2

αδ2

⌉⌈
log(ε−1)

⌉
.

3.3 The boundary case for the Dyer-Greenhill chain

The Dyer-Greenhill chain is a Markov chain for sampling independent sets weighted

according to a parameter λ, distributed according to Equation (2.3). Luby and Vigoda

defined a Markov chain for sampling independent sets, and used coupling to show that

it is rapidly mixing when λ ≤ 1
∆−3 , provided ∆ ≥ 4. Dyer and Greenhill used path

coupling to show an improved upper bound on the mixing time of the Luby-Vigoda

chain, and also defined another Markov chain for sampling independent sets. They

showed that their chain is rapidly mixing when λ ≤ 2
∆−2 using path coupling [14]. In

the case λ = 2
∆−2 , they used a tailored argument to show that the mixing time of the

Dyer-Greenhill chain is O(n2 logn). In this section, we will apply Theorem 3.3 to

obtain an improved mixing time of O(n2) in the case λ = 2
∆−2 .

Definition 3.4. The transitions of the Dyer-Greenhill chain for sampling independent

sets, MDG, are defined as follows: Let Xt represent the state of MDG at time t. The

subsequent state of the chain, Xt+1, is determined by the following sequence of steps.

(DG1) Select a vertex v ∈V (G) uniformly at random.

(DG2) If v ∈ Xt , then let Xt+1 = Xt \{v} with probability 1
1+λ

.

(DG3) If v 6∈ Xt and there is no v′ ∈ Xt adjacent to v, then let Xt+1 = Xt ∪{v} with

probability λ

1+λ
.

(DG4) If v 6∈ Xt and there is exactly one v′ ∈ Xt adjacent to v, then let Xt+1 =

(Xt ∪{v})\{v′} with probability λ

4(1+λ) . This is referred to as a drag move.

(DG5) In all other cases, Xt+1 = Xt .

The probability of the drag move of the Dyer-Greenhill chain is chosen to maximise

the value of λ for which the chain is rapidly mixing.

Dyer and Greenhill showed that when λ = 2
∆−2 , the mixing time satisfies

τ(ε)≤
⌈
2n2e(1+λ)(log(n)+1)

⌉⌈
log(ε−1)

⌉
.
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We can use Theorem 3.3 to obtain a better bound on the mixing time. The analysis of

the Dyer-Greenhill chain uses Hamming distance as a metric, and the coupling always

updates the same vertex in each copy of the chain. Consider a vertex v that belongs to

Xt ⊕Yt . With probability 1
n(1+λ) , v is deleted from one independent set, decreasing the

Hamming distance. Therefore the probability that the Hamming distance changes is

at least d(Xt ,Yt)
n(1+λ) . Applying Theorem 3.3 with D = n, δ = 1 and α = 1

1+λ
, we obtain the

improved mixing time

τ(ε)≤
⌈
2en2(1+λ)

⌉⌈
log(ε−1)

⌉
.

In Chapter 4, we will use the Dyer-Greenhill chain to show that we can sample

weighted matchings of a graph G, with restricted λ, by considering independent sets

of the line graph of G.

3.4 Sampling 2∆-colourings

Given a graph G = (V,E) and a set of colours Q, a proper colouring is an assignment

of colours to the vertices of G, such that no two adjacent vertices are assigned the same

colour. We can define a Markov chain MC for sampling proper colourings using local

heat-bath updates.

Definition 3.5. MC is the heat-bath chain for sampling proper colourings of a graph

G = (V,E). Given the state Xt at time t, we determine the state Xt+1 at time t + 1 as

follows:

1. Select a vertex v ∈V uniformly at random.

2. Select a random colour q that is not present in the neighbourhood of v, and

recolour v with colour q.

A coupling argument using Hamming distance as a metric [23] shows that this

chain is rapidly mixing provided the maximum degree of G is bounded, and |Q|> 2∆.

Jerrum notes an observation by Frieze, that the argument can also be applied where

|Q|= 2∆. However, when |Q|= 2∆, the bound on the mixing time worsens by a factor

of about n2 [24].

Vigoda showed that this chain has a mixing time of O(n2 logn) where |Q| > 11∆

6 ,

by using a comparison argument with a different chain [43]. Bounds on the mixing
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Figure 3.1: A pair of configurations such that no update to the central vertex

can result in a change in distance.

time exist for smaller numbers of colours, but they impose additional restrictions on

the girth of G [17].

In this section we will show that the mixing time of MC is quadratic when the

number of colours |Q|= 2∆.

Theorem 3.6. The Markov chain MC for sampling colourings mixes in time O(n2) in

the case where |Q|= 2∆.

The main difficulty we face in showing that MC mixes rapidly is in bounding the

probability that the distance changes in any step. Consider the situation in Figure 3.1.

This shows a pair of configurations of a small section of a 2-dimensional lattice graph

with ∆ = 4 and |Q| = 8. We can easily see that there is no single colour q that can be

assigned to the central vertex in both copies of the graph. If we construct a coupling

that updates the same vertex in each copy of the graph and uses Hamming distance

as a metric, we cannot show any improvement in distance when this central vertex is

selected.

Furthermore, it is possible to construct a situation in which every vertex behaves

in this way. Figure 3.2 shows a pair of 8-colourings of a toroidal graph, in which

no single site update can result in a change in Hamming distance. We will overcome

this difficulty by considering a continuous-time version of MC, and defining a new

chain, each step of which is equivalent to running the continuous chain for time n log2

(this is the time required for each vertex to be updated at least once with probability
1
2 ). First, however, it is useful to prove a variation of Theorem 3.3. Where Theorem

3.3 requires a bound on the probability that the distance between the two copies of

our chain changes, Lemma 3.7 requires a bound on the expected absolute change in

distance.
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Figure 3.2: A pair of configurations of a 2-dimensional toroidal graph, where

the probability of a change in distance is zero.

Lemma 3.7. Let (Xt ,Yt) be a coupling of a Markov chain M on state space Ω, and

d be a metric on (Xt ,Yt), such that E(d(Xt+1,Yt+1)) ≤ d(Xt ,Yt). Let D be the largest

value that d can take. Suppose that for some α,

(E[|d(Xt+1,Yt+1)−d(Xt ,Yt)|])2 ≥ αd(Xt ,Yt)
D

. (3.6)

Then the mixing time of M satisfies

τ(ε)≤
⌈

8eD2

α

⌉⌈
log(ε−1)

⌉
.

Proof. As in the proof of Theorem 3.3, we will attempt to obtain a bound on

E[ f (d(Xt+1,Yt+1))] in terms of f (d(Xt ,Yt)), where f is the function

f (x) = x logx− (1+ logD)x+D.

Let a = d(Xt ,Yt), and let X = d(Xt+1,Yt+1) be a random variable implicitly conditioned

on Xt and Yt . Define the functions g1 and g2 as follows:

g1(x) =
x2

2a
+ x(loga− logD−1)+d− a

2
g2(x) = x(loga− logD)+D−a.

These are the same functions that we used in Theorem 3.3 to bound f , and Conditions

(3.4) and (3.5) hold. Define the function h(x) as follows:

h(x) =

0 if x ≥ a

g1(x)−g2(x) if x < a

=

0 if x ≥ a

1
2a(x−a)2 if x < a.
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Now we need to obtain a bound on h(X). Let X− = min{X ,a} and X+ = max{X ,a}.

Then

|X −a|= X+−X− = X −2X−+a.

Also observe that h(X) = (a−X−)2

2a . Therefore

E[|X −a|] = E[X ]−2E[X−]+a

≤ 2(a−E[X−]) (since E[X ]≤ a)

= 2E[a−X−].

Hence

(E[|X −a|])2 ≤ 4(E[a−X−])2 ≤ 4E[(a−X−)2] = 8aE[h(X)].

Substituting in the bound on (E[|X −a|])2 from Condition 3.6, we can obtain a bound

on E[h(X)]:

E[h(X)]≥ α

8D
.

We can now bound E[ f (d(Xt+1,Yt+1))]:

E[ f (d(Xt+1,Yt+1))]≥ E[g2(d(Xt+1,Yt+1))+h(d(Xt+1,Yt+1))]

= g2(E[d(Xt+1,Yt+1)])+E[h(d(Xt+1,Yt+1))]

≥ g2(d(Xt ,Yt))+
α

8D

= f (d(Xt ,Yt))+
α

8D
.

Now let T be the first time that Xt = Yt . T depends only on values of Xt and Yt for

t ≤ T , and so is a stopping time. Define the process Z(t):

Z(t) = f (d(Xt ,Yt))−
αmin{t,T}

8D
.

For any time t < T ,

E[Z(t +1)] = E[ f (d(Xt+1,Yt+1))]−
α(t +1)

8D

≥ f (d(Xt ,Yt))−
αt
8D

= Z(t).

This inequality also holds trivially when t ≥ T . Therefore Zt is a submartingale with

respect to X0,Y0, . . . ,Xt ,Yt . The values of Z(t) are bounded, and so we can apply the
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optional stopping theorem for supermartingales to −Z [45]. We know that d(X0,Y0)≤
D, and so Z(0)≥ 0. Therefore

E[Z(T )]≥ Z(0)

⇒ E
[

f (d(XT ,YT ))− αT
8D

]
≥ 0

⇒ E[ f (d(XT ,YT ))]≥ αE[T ]
8D

⇒ E[T ]≤ 8D2

α
.

Now let T ′ =
⌈

8eD2

α

⌉
. By Markov’s inequality, the probability that Xt and Yt have not

coupled by time T ′ is at most e−1. If we run s independent trials of length T ′, then the

probability that Xt and Yt have not coupled by time sT ′ is at most e−s. Now let t = sT ′.

e−s ≤ ε if and only if s ≥ log(ε−1). Since s is an integer, we require

t ≥ T ′ ⌈log(ε−1)
⌉

to ensure that the chains couple with probability at least 1− ε. Therefore the mixing

time satisfies

τ(ε)≤
⌈

8eD2

α

⌉⌈
log(ε−1)

⌉
,

as required.

In the proof of Theorem 3.6, we will require upper and lower bound tail inequalities

in order to bound the probability that the value of a random variable is at least some

distance from the mean. For the lower bound, it is not sufficient to consider just the

variance of our random variable for this - we also need a bound on the fourth moment.

The following lemma builds on a result shown by Petrov [36], and gives a lower bound

tail inequality where we have a sum of random variables with bounded second and

fourth central moments.

Lemma 3.8. Let Y1, . . . ,Yn be a sequence of independent random variables such that

for all i, and for some constants c1,c2,c3,

E[Yi] = µi

c1 ≤ E[(Yi−µi)2]≤ c2

E[(Yi−µi)4]≤ c3,

Let Y = ∑
n
i=1Yi. Then E[Y ] = µ = ∑

n
i=1 µi, and for any 0 ≤ b ≤√

nc1,

Pr(|Y −E[Y ]|> b)≥ (nc1−b2)2

nc3 +3n(n−1)c2
2
.
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Proof. We will use the following result by Petrov [36]: If X is a random variable and

the fourth central moment of X is finite, then for any 0 ≤ b ≤
√

Var(X),

Pr(|X −E[X ]|> b)≥ (Var(X)−b2)2

E[X −E[X ]]4
. (3.7)

First, let Xi = Yi−µi for all i, and let X = ∑
n
i=1 Xi. This ensures that E[X ] = E[Xi] =

0, and will simplify the proof somewhat. Since the Yi variables are independent, we

know that E[Y ] = E[X ]+∑
n
i=1 µi, as required.

To apply Equation (3.7), we need to find a lower bound on the variance of X , and

an upper bound on the fourth central moment of X . By standard properties of variance

for independent random variables, we have

nc1 ≤ Var(X)≤ nc2.

For the fourth central moment, we have

E[X4] = E

( n

∑
i=1

Xi

)4


= E

[
n

∑
i, j,k,l=1

XiX jXkXl

]

=
n

∑
i, j,k,l=1

E[XiX jXkXl]

Since the Xi variables are independent, each term in this expression is either of the

form E[X4
i ] for some i, of the form E[X2

i ]E[X2
j ] for distinct i and j, or zero, because

E[Xi] = 0 for all i. For each distinct i and j, the term E[X2
i ]E[X2

j ] appears six times in

the expansion of E[X4]. Let I(i 6= j) be the indicator function of the event i 6= j. We

therefore have

E[X4] =
n

∑
i=1

E[X4
i ]+6

n

∑
i, j=1

I(i 6= j)E[X2
i ]E[X2

j ]

≤ nc3 +3n(n−1)c2
2.

We can now use these bounds on the variance and fourth moment of X to bound

the probability that |X | is large. For 0 ≤ b ≤√
nc1,

Pr[|X |> b]≥ (nc1−b2)2

nc3 +3n(n−1)c2
2

Substituting Y −E[Y ] for X gives the stated result.
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The use of the fourth central moment in the proof of Lemma 3.8 is justified by the

fact that a small fourth central moment indicates that much of the variance is caused

by frequent small deviations, instead of infrequent large deviations. It is not possible

to obtain a lower bound tail inequality by considering variance alone.

There are a number of upper bound tail inequalities. However, the most general

(Markov’s inequality and Chebyshev’s inequality) do not provide useful values for

distances less than one standard deviation from the mean. In order to obtain both upper

and lower bounds with non-trivial values, we need a stronger upper bound based on

additional assumptions on our random variable. Hoeffding’s inequality applies where

we have a sum of bounded random variables.

Lemma 3.9 (Hoeffding’s inequality [22, 32]). Let Y1, . . . ,Yn be independent random

variables such that, for all i, there are constants ai and bi such that ai ≤ Yi ≤ bi. Let

Y = ∑
n
i=1Yi. Then for all positive t,

Pr(Y −E[Y ]≥ nt)≤ exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
, and

Pr(Y −E[Y ]≤−nt)≤ exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
.

Therefore

Pr(|Y −E[Y ]| ≥ nt)≤ 2exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
.

Finally, where we have a random variable that is a sum of Poisson trials, the follow-

ing Chernoff bound allows us to find a lower bound on the probability that the random

variable is close to the mean.

Lemma 3.10 ([33]). Let Y1, . . . ,Yn be independent Poisson trials such that Pr(Yi) = pi.

Let Y = ∑
n
i=1Yi, and µ = E[Y ]. Then, for 0 < δ < 1,

Pr(Y ≤ (1−δ)µ)≤ e−
µδ2

2 .

We now define the continuous-time version of the Markov chain, M ′
C, and the

upper-level chain M ∗
C . The transitions of M ′

C are the same as those of MC, but occur

at times determined by a Poisson process with parameter λ = 1. Each step of M ∗
C

is equivalent to running M ′
C for time n log2. This means that for any vertex v, the

probability that v is updated at least once in a single transition of M ∗
C is 1

2 , and is

independent of any other updates.

We can now continue with the proof of Theorem 3.6.
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Proof of Theorem 3.6. Consider a coupling on a pair of colourings, evolving according

to M ∗
C . We will focus on a small set of edges K, and show that even if the vertices of

these edges are blocked, there is a sufficient probability of a change in distance over

one step of M ∗
C .

Let D0 be the set of vertices that disagree in the two colourings (so the Hamming

distance between the colourings is |D0|), and select a set of edges K = {(ui,vi) : 1 ≤
i ≤ |K|}, satisfying the following properties:

1. For each edge (ui,vi) ∈ K, vi ∈ D0.

2. The edges in K do not share any endpoints

3. Let V0 =
S

(ui,vi)∈K{ui,vi}. Then for any pair of vertices w,w′ ∈ V0, either

(w,w′) ∈ K, or the shortest path between w and w′ in G has length at least 3.

Later in this proof, we will define a set M ⊆ K that depends on the set of vertices that

are updated during a transition of M ∗
C . These properties of K will ensure that the events

that each edge (ui,vi) ∈ K also belongs to M are independent.

We now show that we can find a set K such that |K| is proportional to |D0|.
Assume that G is connected, and consider the number of connected components

after selecting each edge (ui,vi)∈K, and removing all vertices within the ball of radius

2 around ui and vi from V . After selecting the first edge, there are at most 2(∆−1)3−
1 extra connected components. After selecting ` edges, we have removed at most

2`(∆2−∆+1) vertices, and have at most 1+2`((∆−1)3)− 1
2) components. Therefore,

if there are at least 2 + 2`(∆2−∆ + 1)+ 2`((∆− 1)3− 1
2) vertices in D0, then by the

pigeonhole principle there is at least one component with two or more D0 vertices, and

we can select another edge.

We can therefore always find a set K with |K| ≥
⌈

|D0|−2
2∆3−4∆2+4∆−1

⌉
.

We will now consider the behaviour of M ∗
C . In a single step, M ∗

C will update a

sequence of vertices selected uniformly at random, and of some length determined by

a Poisson distribution. We begin by fixing the sequence of vertices that are updated,

and then consider the effect of different assignments of colours to these vertices. In

doing so, we obtain a bound on the probability of a change in distance, conditioned on

that sequence of vertices. If we can obtain a lower bound on this probability for some

sequences, and a lower bound on the probability of selecting such a “good” sequence,

then we will be able to bound the mixing time of M ∗
C .

Having fixed the sequence of vertices to be updated by M ∗
C , we consider the prob-

ability of a change in distance, conditioned on that sequence of updates. If we hit both
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endpoints of an edge (ui,vi)∈K during this process, and ui is hit at least once before vi

is hit for the last time, then there is a constant probability of unblocking vi and reducing

the distance. We will show that this implies a bound on (E[|d(Xt+1,Yt+1)−d(Xt ,Yt)|])2

for M ∗
C , and use Lemma 3.7 to bound the mixing time. The bound on the mixing time

of the continuous time chain M ′
C follows from this.

Given the sequence of updates, let M ⊆ K be the set of edges satisfying the follow-

ing:

1. ui and vi are updated at least once each.

2. The last time that ui is updated occurs before the last time that vi is updated.

3. No other neighbours of ui and vi are updated during this transition.

For each edge (ui,vi)∈K, there is a constant non-zero probability that these conditions

are met, independent of whether they are met for any other edge in K. This indepen-

dence is a consequence of the minimum distance imposed between edges in K. If

this happens, then the updates to ui and vi lead to a change in distance with non-zero

probability.

Let ω′ represent the following information:

1. The sequence of all the sites that are updated during the transition.

2. The choices of colours for those vertices that are updated and are not endpoints

of the edges in K.

Let ω represent the choices of colours for the vertices that are endpoints of the edges in

K. Let X(ω′,ω) be the change in distance between the two colourings in the coupling,

when the sequence of updates defined by ω′ and ω is made.

We wish to show that E[|X |] is large, so that we can apply Lemma 3.7 and therefore

bound the mixing time of M ∗
C .

Define a random variable Y as follows:

Y (ω′) = E[X(ω′, ·)].

Y represents the expected change in distance for a given choice of ω′. We now define

a second variable U as follows:

U(ω′,ω) = X(ω′,ω)−Y (ω′).
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U is the deviation from Y for a given choice of ω, and we have the property that

X(ω′,ω) = Y (ω′)+U(ω′,ω). We wish to show that E[|X |] is sufficiently large. While

we do not know anything about the distribution of Y , we can consider the behaviour of

U conditioned on specific values of Y .

If, for a specific ω′, |Y (ω′)| is large, then we wish to show that E[|X |] is also large.

We can demonstrate this by showing that E[|U(ω′, ·)|] is small. Conversely, if |Y (ω′)|
is small, then we need to show that E[|U(ω′, ·)|] is large in order to show that E[|X |]
is also large. We can show this by considering upper and lower bound tail inequalities

for U .

Note first that due to the choice of K and the conditions for inclusion in M, U(ω′, ·)
is a sum of independent random variables, as required by Lemma 3.8, and is indepen-

dent of updates outside of M (once M has been established, we know that no neigh-

bours of edges in M are hit). Likewise, the choice of colours for vertices outside of

M is independent of ω, because no neighbours of the edges in M are hit, and so the

updates to M have no influence on the vertices outside of M. Also, for all ω′, we have

E[U(ω′, ·)] = 0.

We first consider the case where |Y | ≥ 2c
3

√
|M|, where c is a suitable constant (we

will give an upper bound on c later). We are interested in the cases where |U | ≤ c
3

√
|M|,

because in these cases we are guaranteed that |X | is reasonably large. For each edge

ei in M, let Ui be the random variable representing the change in Hamming distance of

the endpoints of ei after the transition of M ∗
C . Note that each Ui can take only a limited

range of discrete values (from -2 to 1). U is the sum of the Uis. To obtain a good upper

bound on Pr(|U | ≥ c
3

√
|M|), we apply Lemma 3.9:

Pr(U −E[U ]≥ nt)≤ exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
⇒ Pr(|U | ≥ c

3

√
|M|)≤ 2e−

2c2
81 .

Therefore, when |Y | ≥ 2c
3

√
|M|,

Pr
(
|X | ≥ c

3

√
|M|
)
≥ 1−2e−

2c2
81 .

Now we consider the case where |Y | ≤ 2c
3

√
|M|. Note that since each Ui can only

take a constant number of discrete values, it must therefore have finite moments. Fur-

thermore, we can enumerate all the possible configurations of ei and its neighbour-

ing vertices, and therefore find constant upper and lower bounds (for a fixed ∆) on

the variance and fourth moment of Ui. Let c1,c2,c3 be constants such that, for all i,
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c1 ≤ E[(Ui−E[Ui])2]≤ c2, E[(Ui−E[Ui])4]≤ c3, and c3 ≥ 3c2
2. We can now provide

bounds on the constant c: in order to obtain useful results from both Lemma 3.9 and

Lemma 3.8, we require that 0 < c <
√

c1.

We wish to find a lower bound on the probability that |U | is at least c
√
|M|. By

Lemma 3.8,

Pr(|U −E[U ]|> b)≥ (nc1−b2)2

nc3 +3n(n−1)c2
2

⇒ Pr(|U | ≥ c
√
|M|)≥ (c1− c2)2|M|

c3 +3(|M|−1)c2
2
.

Therefore, when |Y | ≤ 2c
3

√
|M|,

Pr(|X | ≥ c
3

√
|M|)≥ (c1− c2)2|M|

c3 +3(|M|−1)c2
2
.

This probability is smallest when |M| = 1 (using the condition that c3 ≥ 3c2
2), and so,

regardless of |M|,

Pr(|X | ≥ c
3

√
|M|)≥ (c1− c2)2

c3
.

Finally, in order to obtain a bound on E[|X |] from these bounds on the probability

that |X | is larger than some multiple of |M|, we need a bound on the probability that

|M| is large. Let E be the event that |M| ≥ c′|K|, where c′ is a positive constant such

that E[|M|] > c′|K|. Since the event that each edge in K belongs to M is independent,

|M| is a random variable given by a sum of Poisson trials, and so we can apply Lemma

3.10 to find a lower bound on Pr(E). The requirement that E[|M|] > c′|K| ensures that

this lower bound is non-zero.

We can now combine these results to obtain the following bound on E[|X |]:

E[|X |]≥ Pr(E)
c
3

√
c′|K|min

{
1−2e

−2c2
81 ,

(c1− c2)2

c3

}
.

We will now show that the bound on E[|X |] is proportional to
√

D0. It will follow

that (E[|d(Xt+1,Yt+1)− d(Xt ,Yt)|])2 is linear in |D0|. Recall the lower bound on |K|
that we obtained earlier:

|K| ≥
⌈

|D0|−2
2∆3−4∆2 +4∆−1

⌉
.

Also observe that when |D0| ≥ 4, we have the bound

|K| ≥ D0

4∆3−8∆2 +4∆−2
.
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We can combine this with our bound on E[|X |] to obtain the desired bound on

(E[|d(Xt+1,Yt+1)− d(Xt ,Yt)|])2. Let n = |V | be the number of vertices of the graph

(and thus the maximum possible value of |D0|). Subject to the assumption that

|D0| ≥ 4, we have

(E[|d(Xt+1,Yt+1)−d(Xt ,Yt)|])2 ≥
nPr(E)2c2c′min{1−2e

−2c2
81 , (c1−c2)2

c3
}2

36∆3−72∆2 +72∆−18
|D0|

n
.

(3.8)

When |D0|< 4, none of the vertices of D0 can be blocked (provided ∆≥ 3), and so

this bound still holds.

We now use the property that the expected distance does not increase when |Q| =

2∆ to apply Lemma 3.7. Set α =
nPr(E)2c2c′min{1−2e

−2c2
81 ,

(c1−c2)2

c3
}2

36∆3−72∆2+72∆−18 . From Lemma 3.7,

we obtain the bound on the mixing time for M ∗
C :

τ(ε)≤

 8en(36∆3−72∆2 +72∆−18)

Pr(E)2c2c′min{1−2e
−2c2

81 , (c1−c2)2

c3
}

⌈log(ε−1)
⌉
.

The mixing time of the continuous chain M ′
C therefore satisfies

τ(ε)≤ n log2

 8en(36∆3−72∆2 +72∆−18)

Pr(E)2c2c′min{1−2e
−2c2

81 , (c1−c2)2

c3
}

⌈log(ε−1)
⌉
.

This is O(n2) provided c1, c3, c and c′ are constant, and Pr(E) has a non-zero constant

lower bound. We will now show that this is the case.

Each Ui is a discrete random variable taking values in the range [−2,1], and there-

fore each Ui has finite moments. The distribution of each Ui depends on the number

and configuration of the vertices adjacent to the edge (ui,vi), and by the definition of

M, the configuration of these edges does not change during a transition of M ∗
C . The

number of possible configurations of ui, vi and their neighbouring edges is a function

only of ∆ (and |Q|, which is 2∆ in this case) and does not depend on n. Therefore, it is

possible to enumerate every such configuration, and find the minimum and maximum

possible values of the second and fourth moments of each Ui. Therefore, the values c1

and c2 depend only on ∆, and are constant with respect to n. c3 depends only on ∆ and

c2, and therefore is also constant.

c is a value such that 0 < c <
√

c1. We are free to choose any value of c within this

range, and since c1 is a constant, we can choose a constant value for c.

For each edge e in K, there is a constant non-zero probability that e belongs to M,

and these probabilities are independent due to the way K is selected. In the worst case,
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e has exactly 2∆−2 neighbouring vertices, and the probability that e belongs to M is
1

2∆+1 . The expected size of M is therefore at least |K|
22∆+1 . We require c′ to be chosen

such that 0 < c′ < 1 and E[|M|] > c′|K|. This is satisfied if 0 < c′ < 1
22∆+1 . This is

independent of n, and so we can choose a constant value for c′.

Finally, Pr(E) is the probability that |M| ≥ c′|K|. For convenience, we will actually

bound the probability of the event that |M| > c′|K|, which will give a lower bound on

Pr(E). Call this event E ′. As we have established, the probability that each edge

in K belongs to M is constant and at least 1
2∆+1 , and these events are independent.

Therefore |M| is a sum of independent Poisson trials. We also know that E[|M|] ≥
|K|

22∆+1 . Therefore

Pr(E ′) = 1−Pr(|M| ≤ c′|K|)

≥ 1−Pr(|M| ≤ c′22∆+1 E[|M|]

= 1−Pr(|M| ≤ (1− (1− c′22∆+1))E[|M|]).

By the choice of c′, we know that 0 < 1− c′22∆+1 < 1, and so we can apply Lemma

3.10 to obtain a lower bound on Pr(E ′):

Pr(E ′)≥ 1− e−
E |M|(1−c′22∆+1)2

2

≥ 1− e−
|K|(1−c′22∆+1)2

22∆+2 .

This probability is smallest when |K|= 1, and so we obtain a constant lower bound on

Pr(E) of

Pr(E)≥ 1− e−
(1−c′22∆+1)2

22∆+2 .

Therefore the mixing time of MC is O(n2), as required.

While we have focused here specifically on graph colourings, the argument used

to prove Theorem 3.6 could be applied to other spin systems, provided the following

conditions are met:

1. Moves are local, that is, all edges updated in the coupling are within a ball of

constant radius. This is clearly the case for MC, since updates are single-site and

the coupling always updates the same vertex in each copy of the chain.

2. The metric is local: for a given move, the change in distance is independent of

the state of any vertex more than a constant distance from the updated vertices.

This always applies when Hamming distance is used as a metric.
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3. In any situation where a vertex v disagrees in the two copies of the chain, and

there is no single move that can improve the distance, there is a constant length

sequence of moves (an “unlocking sequence”) that results in an improvement.

For MC, the unlocking sequence is short: we need to update any vertex adjacent

to v before we update v itself. In general, though, longer unlocking sequences

could be used, with a corresponding worsening of the constants in the bound on

the mixing time.



Chapter 4

Sampling matchings of general and

lattice graphs

Having introduced methods for bounding mixing times of Markov chains, we now ap-

ply these techniques to the problem of sampling matchings in graphs. We begin by

adapting Dyer and Greenhill’s chain for sampling independent sets to sample match-

ings in graphs with bounded degree, for restricted values of λ.

We also show that we can use block updates to sample matchings in lattice graphs

for arbitrary values of λ, and that this implies that the Jerrum-Sinclair chain mixes in

O(nm) time for these graphs.

We are already familiar with the concept of a matching and a perfect matching from

Definition 2.1. In addition, we will define a near-perfect matching as a matching with

exactly two uncovered vertices (sometimes called holes) v1 and v2:[
(u,v)∈M

{u,v}= V \{v1,v2}.

Near-perfect matchings have been important for existing Markov chains that use sim-

ulated annealing to sample perfect matchings in bipartite graphs [27]. In this chapter,

we will use near-perfect matchings in Theorem 4.1 to show that the Jerrum-Sinclair

chain for sampling general matchings that we introduced in Definition 2.25 of Chapter

2 cannot efficiently sample perfect matchings of general bipartite graphs.

It immediately follows from Definition 2.1 that M is a matching if and only if the

degree of every vertex v ∈V with respect to M is either 0 or 1. M is a perfect matching

if and only if the degree of every vertex v ∈V with respect to M is 1.

It is possible to determine in polynomial time whether a perfect matching exists

in any graph G = (V,E) by searching for augmenting paths [3, Theorem 5.1]. In this

49
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context, an augmenting path for a matching M is a path P in G such that the edges

of P alternately belong to M and E \M, and such that the first and last vertices of P

are unmatched in M. If G is bipartite, then an augmenting path (if one exists) can

be found by breadth-first search. Edmonds developed a polynomial time algorithm to

find a maximum matching in general graphs [15]. However, in common with many

combinatorial structure decision problems, the problem of counting perfect matchings

is #P-hard [40].

The problem of sampling or counting perfect matchings of a bipartite graph G =

(V1,V2,E) is of particular interest, because there are many #P-complete problems

which have a natural reduction to perfect matchings. The number of perfect match-

ings of a bipartite graph is equal to the permanent of its adjacency matrix. A perfect

matching also corresponds to a bijection between the two vertex sets V1 and V2. This

property is used in permutation tests in statistics, where it is necessary to generate

random permutations from the uniform distribution.

There are algorithms for approximately counting, and for almost-uniformly sam-

pling, perfect matchings of bipartite graphs in polynomial time [26]. These algorithms

use a Markov chain that samples from perfect and near-perfect matchings. In Chapter

6 we will investigate an alternative chain due to Diaconis, Graham and Holmes that

samples perfect matchings of bipartite graphs directly, and we will analyse this chain

in special classes of bipartite graphs. There are currently no known polynomial-time

algorithms for almost uniform sampling or approximately counting perfect matchings

in general graphs.

When sampling from all matchings, we often want to select matchings with varying

weights, depending on their size. Our goal is to sample from the stationary distribution

given in Equation (2.7),

π(M) =
λ|M|

∑M λ|M| .

The value Z = ∑M λ|M| is known as the partition function. When λ = 1, Z is equal to

the number of matchings of G. Determining Z in the case where λ = 1 is therefore

equivalent to counting the total number of matchings of G.

Note that when λ = 1, the distribution is uniform over all matchings. It is possible

to efficiently sample general matchings with arbitrary values of λ, using the Jerrum-

Sinclair chain we saw in Chapter 2 [25]. However it is not feasible to efficiently sample

perfect matchings using this chain, as we explain below.
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vu

Figure 4.1: A graph for which the Jerrum-Sinclair chain requires exponential

time to sample perfect matchings (case k = 3).

Theorem 4.1. The time required for the Jerrum-Sinclair chain to sample a perfect

matching from the uniform distribution is exponential in the worst case.

Proof. We will show that there exists a family of graphs for which the mixing time of

the Jerrum-Sinclair chain is exponential. Each graph in our family consists of a pair of

chains of hexagons. Figure 4.1 shows the graph G, in which each chain contains three

hexagons.

First, observe that the only moves available to the Jerrum-Sinclair chain from a

perfect matching are delete moves, and that these will necessarily yield a near-perfect

matching. Similarly, a perfect matching can only be reached from a near-perfect

matching, using an insert move. It follows that for any given perfect matching M,

there are exactly |M| near-perfect matchings from which M can be reached in a single

step.

Also note that, regardless of the choice of λ, every near-perfect matching has the

same probability in the stationary distribution of the Jerrum-Sinclair chain.

Consider the graph G in Figure 4.1. This consists of a pair of chains of hexagons,

each of length k, connected at each end by an additional vertex (Figure 4.1 shows the

case where k = 3). Call these extra vertices u and v. Suppose we have a perfect match-

ing of G that includes the edge leading upwards from u. Then the configuration of

the entire upper chain of hexagons is uniquely determined. Each hexagon in the lower

chain may take one of two configurations. G therefore has exactly 2k+1 perfect match-

ings. The additional factor of 2 comes from the initial choice of the edge covering



Chapter 4. Sampling matchings of general and lattice graphs 52

u.

Now consider the near-perfect matchings of G that leave the vertices u and v un-

covered. All of the hexagons in both chains have two possible configurations. There

are therefore at least 22k near-perfect matchings of G. There are also a large number of

additional near-perfect matchings which have different uncovered vertices.

If we wish to sample perfect matchings in polynomial time, we certainly need the

total weight of perfect matchings to be smaller than the total weight of near-perfect

matchings by at most a polynomial factor. Were this not the case, the expected number

of samples required to obtain a perfect matching would be super-polynomial. There-

fore we require

λ ≥ 2k−1

p(k)
,

where p(k) is a polynomial in k.

Now let S be the set of perfect matchings of G. The conductance of MJS on G is

no greater than

ΦS ≤
∑

x∈S,y6∈S
π(x)P(x,y)

π(S)

= (6k +1)P(x,y)

≤ (6k +1)p(k)
2k−1 .

Therefore by Theorem 2.22, the spectral gap is 1− |λ1| ≤ (6k+1)p(k)
2k−1 , and so by

Theorem 2.21 the mixing time is at least

τ(ε)≥ |λ1|
2(1−max{|λmin|, |λ1|})

log
(

1
2ε

)
≥
(

2k

(6k +1)p(k)
−2
)(

1
2ε

)
.

Therefore, the mixing time of MJS on the graph G is exponential in the size of G,

as required.

The Markov chain proposed by Broder [5] uses the same transitions as the Jerrum-

Sinclair chain, but with different transition probabilities and the state space restricted to

only perfect and near-perfect matchings. The argument used in the proof of Theorem

4.1 can also be applied to Broder’s chain.

Note that the proof of Theorem 4.1 relies on the fact that the Jerrum-Sinclair

chain described in Chapter 2 weights all near-perfect matchings equally. Existing
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polynomial-time algorithms for sampling perfect matchings in bipartite graphs sample

from perfect and near-perfect matchings, and use simulated annealing to approximate

weights for each possible pair of “holes” in near-perfect matchings [26]. Given these

weights, it is possible to set transition probabilities such that perfect matchings are

given a high enough weight to be sampled in polynomial time. The chain no longer

samples near-perfect matchings uniformly, instead giving a higher probability of se-

lecting near-perfect matchings that are close to perfect matchings. Markov chains for

sampling perfect matchings using simulated annealing have only been shown to mix

rapidly for bipartite graphs - it remains an open question whether a method exists for

efficiently sampling perfect matchings in general graphs.

In Chapter 6, we will consider an alternative way of sampling perfect matchings in

some special classes of bipartite graphs.

We can improve the bounds on the mixing time given by the canonical paths

argument for the Jerrum-Sinclair chain, for restricted values of λ, by adapting ex-

isting Markov chains for independent sets. In Section 4.1, we show a correspon-

dence between matchings and independent sets, and therefore show how to apply

Dyer and Greenhill’s chain for sampling independent sets [14] to the problem of sam-

pling matchings. We then define a similar chain for sampling matchings directly, and

show that the maximum λ for which this new chain is rapidly mixing can be improved

slightly over that achieved by applying Dyer and Greenhill’s chain directly.

In Section 4.2, we look at the problem of sampling matchings in regular lattice

graphs. We use spatial properties of these graphs to show that a Markov chain using

large but constant size block updates is rapidly mixing. We will follow the approach

of Van den Berg and Brouwer, who showed a similar result [42], and noted that im-

plementing these block moves is infeasible, even for relatively small blocks. They

overcame this problem by defining a second chain using single-site updates, and us-

ing this chain to approximate the moves made by their block chain. They also noted

that comparison techniques could be used to bound the mixing time of the single-site

chain, but that such techniques would lead to a worsening of the hidden constants in

the bound on the mixing time. We will follow this approach and use comparison tech-

niques to show that the mixing time of the Jerrum-Sinclair chain is O(nm) for lattice

graphs.
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4.1 Matchings in general graphs

In this section we will adapt the Dyer-Greenhill chain for sampling independent sets

to sample matchings. We begin by defining the Dyer-Greenhill chain.

4.1.1 The Dyer-Greenhill chain for independent sets

As with matchings, we are often interested in sampling independent sets weighted

by a parameter λ, distributed according to Equation (2.3). Luby and Vigoda defined

a Markov chain for sampling independent sets, and used coupling to show that it is

rapidly mixing when λ≤ 1
∆−3 , provided ∆≥ 4. Dyer and Greenhill used path coupling

to show an improved upper bound on the mixing time of the Luby-Vigoda chain, and

also defined another Markov chain for sampling independent sets. They showed that

their chain is rapidly mixing when λ≤ 2
∆−2 using path coupling [14]. In Chapter 3, we

introduced the Dyer-Greenhill chain, and showed that its mixing time when λ = 2
∆−2

is O(n2).

We now show how to apply the Dyer-Greenhill chain to matchings, by considering

the line graph of G, L(G). The line graph of a graph G is defined as follows:

Definition 4.2. Let G = (V,E) be a graph. Define a vertex set V ′ and an edge set E ′

on V ′ as follows:

V ′ = {ve | e ∈ E}

E ′ = {(ve,ve′) | e and e′ are edges incident to a common vertex in G}.

The line graph of G is L(G) = (V ′,E ′).

Suppose I is an independent set in L(G). Each vertex in I corresponds to an edge

of G. Since no pair of vertices of I are adjacent, no pair of the corresponding edges

share a common endpoint. Therefore, I corresponds to a matching in G. Similarly,

if M is a matching of G, then each edge in M corresponds to a vertex in L(G). No

pair of edges are incident to a common vertex, so there is no edge connecting any pair

of these vertices in L(G). There is therefore a bijection between matchings in G and

independent sets in L(G).

If the maximum degree of the original graph G is ∆, then the maximum degree of

L(G) is at most 2∆− 2, since each endpoint of an edge can be shared with at most

∆− 1 vertices. We can therefore sample matchings in G using the Dyer-Greenhill

chain, provided λ ≤ 1
∆−2 .
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This bijection allows us to sample matchings of line graphs. However, line graphs

also belong to a more general class of graphs called claw-free graphs. We will show

in Chapter 5 that we can modify the Jerrum-Sinclair chain for sampling matchings to

sample independent sets in general claw-free graphs.

4.1.2 A Markov chain for sampling matchings

In this section, we adapt the Dyer-Greenhill chain from Definition 3.4 to sample di-

rectly from weighted matchings, and hence obtain a proof of mixing for larger values

of λ. While Dyer and Greenhill’s analysis uses Hamming distance as a metric [14], we

introduce a new metric which allows us to improve the maximum value of λ for which

the chain is rapidly mixing. We will define a new chain MIDS, using the insert and

delete moves from Dyer and Greenhill’s chain, and a slide move based on their drag

move. MIDS is mostly analogous to the Dyer-Greenhill chain, but we assign a different

probability to the slide move.

Given a matching M in a graph G = (V,E), we call an edge e ∈ E “blocked” if

there is an edge e′ ∈M such that e and e′ share a common endpoint. e may be blocked

by one or two other edges. We can now define the transitions of MIDS as follows:

Definition 4.3. Let Xt be the state of MIDS at time t. The subsequent state Xt+1 is

determined by the following sequence of steps:

(IDS1) Select an edge e ∈ E uniformly at random.

(IDS2) If e ∈ Xt , then let Xt+1 = Xt \{e} with probability 1
1+λ

(delete).

(IDS3) If e 6∈ Xt , and e is not blocked, then let Xt+1 = Xt ∪{e} with probability
λ

1+λ
(insert).

(IDS4) If e 6∈ Xt , and e is blocked by exactly one edge e′ ∈ Xt , then let Xt+1 =

Xt ∪{e}\{e′} with probability p (slide).

(IDS5) Otherwise, let Xt+1 = Xt .

The slide move is a direct analogue of Dyer and Greenhill’s drag move. The prob-

ability p will be determined later, during the analysis of the mixing time of MIDS.

We will now show that MIDS is ergodic, and that its unique stationary distribution

is given by Equation (2.7).
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Lemma 4.4. The Markov chain MIDS is ergodic, and has the unique stationary distri-

bution

π =
λ|M|

∑M λ|M| .

Proof. Let M ⊆ E be a matching of G. Suppose that some edge e ∈ E is chosen in a

transition of MIDS. If e ∈ M, then with probability λ

1+λ
, e will remain in M. If e 6∈ M,

then with probability 1
1+λ

, e will not be added to M. Therefore, for any M, there is a

self-loop probability of at least min{ 1
1+λ

, λ

1+λ
}, and therefore MIDS is aperiodic.

To see that MIDS is irreducible, observe that delete moves always have non-zero

probability, and so the empty set can be reached from any matching by a sequence of

delete moves. Similarly, if we wish to reach a matching M from the empty set, we

can add each edge e ∈ M in turn. None of these edges can be blocked (since M is a

matching), and so these insert moves have non-zero probability. Therefore any two

matchings M and M′ are connected by a sequence of insert and delete moves, and so

MIDS is irreducible. It is therefore ergodic, and has a unique stationary distribution.

We now show that MIDS has the stationary distribution π = λ|M|

∑M λ|M| , by showing

that this distribution and the transition matrix P of MIDS satisfy the detailed balance

condition. We show that Condition (2.2) holds for every pair of matchings, M and M′.

We must consider the following cases:

1. |M| = |M′| and P(M,M′) 6= 0. Since |M| = |M′|, we know that π(M) = π(M′).

The only possible transition between two matchings of the same size is a slide

move, which occurs with probability p. Therefore P(M,M′) = P(M′,M), and

Condition (2.2) holds in this case.

2. There is some edge e such that M = M′ ∪ {e}. From the definition of π, we

know that π(M) = λπ(M′). M is reachable from M′ by an insert move, and so

P(M′,M) = λ

n(1+λ) . M′ is reachable from M by a delete move, and so P(M,M′) =
1

n(1+λ) . Therefore

π(M)P(M,M′) = λπ(M′)
1

n(1+λ)

= π(M′)
λ

n(1+λ)

= π(M′)P(M′,M).

3. There is some edge e such that M′ = M∪{e}. This case is analogous to case 2.
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4. In all other cases, P(M,M′) = P(M′,M) = 0, and so Condition (2.2) holds triv-

ially.

Therefore the detailed balance condition holds for every pair of states M and M′, and

so MIDS is time-reversible with respect to π. By Lemma 2.8, π is therefore the unique

stationary distribution of MIDS.

Theorem 4.5. For any 0 < λ≤ ∆+
√

3∆2−5∆+2
2∆2−5∆+2 , there is a value of p such that the mixing

time of MIDS is dominated by a binomial random variable τ∗ with expectation at most

E[τ∗(ε)]≤
⌈

max{en2(n(1+λ)+1),en2(2n(∆+
1
λ
)+1)}

⌉
dlog(ε−1)e

Proof. We will prove Theorem 4.5 by path coupling. Instead of Hamming distance,

we define a new metric. Let Xt and Yt be two copies of MIDS at time t. Consider

the symmetric difference Xt ⊕Yt . We will say that Xt and Yt are adjacent if either

|Xt ⊕Yt | = 1, or Xt ⊕Yt is a path of length two (these correspond to the cases where

there is a transition between Xt and Yt). The adjacency relation S is defined as follows:

S = {(M,M′) : |M⊕M′|= 1}∪{(M,M′) : ∃u,v,w s.t. M⊕M′ = {(u,v),(v,w)}}.

If |Xt ⊕Yt | = 1, then the distance d(Xt ,Yt) = 1. If Xt ⊕Yt is a path of length two, then

d(Xt ,Yt) = 1 + x, where x is a positive constant to be chosen later, and x < 1. We can

now extend d to a path metric on Ω×Ω: d(Xt ,Yt) is the minimum sum of distances of

the transitions from Xt to Yt , computed over all paths from Xt to Yt .

We can also define d in terms of the paths and cycles making up Xt ⊕Yt . For any

Xt and Yt , Xt ⊕Yt is composed of a set of paths and even-length cycles [25]. Each

even-length path of length ` is given the value `
2(1+ x); each odd-length path is given

the value `−1
2 (1+ x)+1; and each even-length cycle is given the value l−2

2 (1+ x)+2.

These values correspond to the shortest sequences of transitions from Xt to Yt for their

respective components. The distance d(Xt ,Yt) is simply the sum of the values assigned

to each component of Xt ⊕Yt .

Note that this metric does not necessarily take integer values, while Theorem 2.15

requires an integer-valued metric. We will instead use Corollary 3.2 to bound the

mixing time of MIDS. Corollary 3.2 requires a bound on the variance of d(Xt+1,Yt+1)

(conditioned on d(Xt ,Yt)), and avoids the need for an integer metric.

The parameters p and x will be determined later.

Assume that ∆ ≥ 3, λ > 0, and 0 ≤ p ≤ λ

1+λ
.
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We need to consider two cases to apply path coupling: when the distance

d(Xt ,Yt) = 1, and when d(Xt ,Yt) = 1 + x. From these cases, we will obtain a set of

bounds on the expected change in distance. First we consider d(Xt ,Yt) = 1.

Assume that there is a unique edge e0 such that e0 ∈ Xt \Yt (the other case, where

e0 ∈Yt \Xt , is equivalent). All other edges will be the same in both copies of the chain.

We select an edge e uniformly at random.

1. If e = e0, then with probability 1
1+λ

, we delete e from Xt and make no change to

Yt . With the remaining probability λ

1+λ
, we insert e into Yt and make no change

to Xt . Therefore, with probability 1, d(Xt+1,Yt+1) = d(Xt ,Yt)−1.

2. If e is incident to an endpoint of e0, and e is blocked by some edge e′ ∈ Xt ∩Yt ,

then there can be no change in Xt as e is blocked by both e0 and e′. In Yt , e is

blocked by exactly one edge, and so with probability p, Yt+1 = Yt ∪{e} \ {e′}.

This yields a path of three edges in Xt+1 ⊕Yt+1, so d(Xt+1,Yt+1) = d(Xt ,Yt)+

1+ x. Otherwise, with the remaining probability 1− p, there is no change.

3. If e is incident to an endpoint of e0 and there is no other edge blocking e, then we

make a slide move in Xt with probability p, and insert e into Yt with probability
λ

1+λ
. We would like to do both of these together with maximum probability, as

this will decrease the distance between X and Y . Since p≤ λ

1+λ
, d(Xt+1,Yt+1) =

d(Xt ,Yt)− 1 with probability p. With the remaining probability λ

1+λ
− p, we

insert e into Yt only, and d(Xt+1,Yt+1) = d(Xt ,Yt)+x. Therefore, in this case the

expected change in distance is ( λ

1+λ
− p)x− p.

4. In all other cases, e and all other edges incident to its endpoints agree in Xt and

Yt . We can make exactly the same move in Xt and Yt , so d(Xt+1,Yt+1) = d(Xt ,Yt).

We will now construct upper bounds on the expected change in distance

E[d(Xt+1,Yt+1)− d(Xt ,Yt)], conditioned on d(Xt ,Yt) ∈ {1,1 + x}. Note that there are

at most 2∆−2 edges for which cases 2 or 3 can apply. If G is ∆-regular, then there are

exactly 2∆− 2 such edges, and the expected change is guaranteed to lie between the

change when case 2 applies for every one of these edges, and the change when case 3

applies. If G is not ∆-regular, then there are fewer than 2∆−2 edges for which cases 2

or 3 can apply. Since case 2 always leads to an expected increase in distance when one

of these edges is chosen, it follows that the expected increase when case 2 applies to

every such edge is no greater than that for a ∆-regular graph. If the values of p and x

are such that case 3 leads to an expected increase in distance when one of these edges
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is chosen, then the increase when case 3 applies for all such edges is also no greater

for a non-∆-regular graph than a ∆-regular one. If case 3 leads to an expected decrease

in distance, then the formula f1 which we will construct as an upper bound is always

negative, regardless of the number of edges for which cases 2 and 3 can apply.

We will now state two formulae providing upper bounds on the expected change in

distance when d(Xt ,Yt) = 1. Let

f1 =
1
n

(
(2∆−2)

((
λ

1+λ
− p
)

x− p
)
−1
)

, and (4.1)

f2 =
1
n
((2∆−2)p(x+1)−1). (4.2)

f1 applies in the case where d(Xt ,Yt) = 1, G is ∆-regular, and case 3 applies to

every one of the 2∆−2 edges incident to the endpoints of e0. As we have discussed, if

G is not ∆-regular, then either f1 still provides an upper bound, or f1 (and the expected

change in this case, even for a non-∆-regular graph) is negative. f2 applies in the

case where d(Xt ,Yt) = 1, G is ∆-regular, and case 2 applies to every edge incident to

the endpoints of e0. f2 is always an upper bound on the change in distance, even for

non-∆-regular graphs.

Now suppose d(Xt ,Yt) = 1 + x. Assume that for some pair of edges e0 and e1,

e0 ∈ Xt \Yt , e1 ∈ Yt \Xt , and that e0 and e1 are incident to some common vertex v. As

before, we select an edge e uniformly at random, and consider the expected change in

distance for each possible position of e with respect to e0 and e1. Instead of always

updating the same edge in each copy of the chain, we update e in Xt and choose some

edge e′ that will be updated in Yt . The choices of e′ are such that Yt is still a faithful

copy of MIDS. In cases 1 and 2, the choice of e′ is either e0 or e1, with appropriate

probabilities; in cases 3 to 8, we always choose e′ = e.

1. If e = e0, then with probability p, let e′ = e0. Perform a slide move in Yt and make

no change in Xt . Both e0 and e1 now agree, so d(Xt+1,Yt+1) = d(Xt ,Yt)−(1+x).

With the remaining probability 1− p, let e′ = e1. With probability 1
1+λ

, remove

e from Xt and e′ from Yt . Again, d(Xt+1,Yt+1) = d(Xt ,Yt)− (1+ x).

2. If e = e1, then with probability p, let e′ = e1. Perform a slide move in Xt and

make no change in Yt . As in case 1, d(Xt+1,Yt+1) = d(Xt ,Yt)− (1+x). With the

remaining probability 1− p, let e′ = e0, and make no change in either copy of

the chain.

3. If e is not e0 or e1, e is incident to v, and e is blocked by some other edge in

Xt ∩Yt , then no change occurs in either chain, and d(Xt+1,Yt+1) = d(Xt ,Yt).
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4. If e is not e0 or e1, e is incident to v, and there is no edge in Xt ∩Yt blocking e,

then with probability p, make a slide move in both copies of the chain. e0, e1

and e now agree, so d(Xt+1,Yt+1) = d(Xt ,Yt)− (1+ x).

5. If e shares an endpoint with exactly one of e0 and e1, and is blocked by some

other edge, then with probability p, we perform a slide move in Yt and make

no change in Xt , and so d(Xt+1,Yt+1) = d(Xt ,Yt) + 1 + x. With the remaining

probability 1− p, we make no change. Note that the situation in this case is the

same as case 2 when d(Xt ,Yt) = 1, since only one of e0 and e1 shares an endpoint

with e.

6. If e shares an endpoint with exactly one of e0 and e1, and is not blocked by

any other edge, then with probability p, d(Xt+1,Yt+1) = d(Xt ,Yt)− x, and with

probability λ

1+λ
− p, d(Xt+1,Yt+1) = d(Xt ,Yt)+1. The coupling is equivalent to

case 3 when d(Xt ,Yt) = 1, but the change in distance is different since we start

with an even length path in Xt ⊕Yt instead of a single edge.

7. If e shares endpoints with both e0 and e1, but is not incident to v (that is, e forms

a triangle with e0 and e1), then with probability p, make a slide move in both

copies of the chain. e0, e1 and e now agree, so d(Xt+1,Yt+1) = d(Xt ,Yt)−(1+x).

8. In all other cases, make the same move in Xt and Yt , so d(Xt+1,Yt+1) = d(Xt ,Yt).

The total number of instances of cases 3 and 4 is at most ∆− 2, and the total

number of instances of cases 5 and 6 is at most 2∆− 2. We wish to construct upper

bounds on the expected change in distance, as we did for the case when d(Xt ,Yt) = 1.

Note that case 3 leads to no change in distance, and case 4 always leads to a decrease.

Therefore if we assume that case 3 applies for all edges incident to v, then the formulae

we construct will be upper bounds on the expected change in distance. Let

f3 =
1
n

(
(2∆−2)

(
λ

1+λ
− p(x+1)

)
−2p(x+1)− x+1

1+λ

)
, and (4.3)

f4 =
1
n

(
(2∆−4)p(1+ x)− 1+ x

1+λ

)
. (4.4)

f3 provides an upper bound for the situation where case 6 applies for all 2∆− 2

edges for which cases 5 and 6 can apply; f4 gives an upper bound for the situation

where case 5 applies for all of these edges. There may be situations where case 7 can

apply, depending on the structure of the graph. Since it can never lead to an increase

in distance, however, we may safely assume that it does not occur.
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We now have four formulae that provide upper bounds on the expected change in

distance where d(Xt ,Yt) = 1 or d(Xt ,Yt) = 1+x. If d(Xt ,Yt) = 1, then E[d(Xt+1,Yt+1)−
d(Xt ,Yt)] is bounded above by some weighted average of f1 and f2. Similarly, if

d(Xt ,Yt) = 1+ x then E[d(Xt+1,Yt+1)−d(Xt ,Yt)] is bounded above by a weighted av-

erage of f3 and f4. Therefore, when d(Xt ,Yt) = 1 or d(Xt ,Yt) = 1+ x,

E[d(Xt+1,Yt+1)−d(Xt ,Yt)]≤ max{ f1, f2, f3, f4}. (4.5)

We now wish to find values for p, x and λ such that max{ f1, f2, f3, f4}≤ 0. Observe

that f1 + f4− f2− f3 = 1
n(2∆−2) λ

1+λ
(x−1) < 0 (recall our assumptions that ∆≥ 3 and

x < 1). Therefore, if we are able to solve the system of equations { f1 = 0, f2 = 0, f3 =

0}, it will follow that f4 ≤ 0 and we will have an upper bound on E[d(Xt+1,Yt+1)−
d(Xt ,Yt)] of 0, conditioned on d(Xt ,Yt) ∈ {1,1+ x}.

We begin by observing that if f2 = 0 then p(x + 1) = 1
2∆−2 . By substituting this

equation into f1 and solving f1 = 0, we see that

(2∆−2)
((

λ

1+λ
− p
)

x− p
)
−1 = 0

⇒ (2∆−2)
(

λx
1+λ

− p(x+1)
)

= 1

⇒ (2∆−2)
λx

1+λ
= 2

⇒ x =
1+λ

λ(∆−1)
.

Now we may substitute this value for x back into the equation obtained from f2 to

obtain a value for p:

p
(

1+λ

λ(∆−1)
+1
)

=
1

2∆−2

⇒ p =
λ(∆−1)

(2∆−2)(1+λ+λ(∆−1))

=
λ

2(λ∆+1)
.

Finally, we substitute our equation from f2 and our value for x into the equation f3 = 0

and solve the resulting quadratic equation for λ:

(2∆−2)
(

λ

1+λ
− p(x+1)

)
−2p(x+1)− x+1

1+λ
= 0

⇒ (2∆−2)
λ

1+λ
−1− 1

∆−1
− 1

λ(∆−1)
− 1

1+λ
= 0

⇒ (∆−1)(2∆−2)λ2− (∆−1)λ(1+λ)−λ(1+λ)− (1+λ)−λ(∆−1) = 0

⇒ (2∆
2−5∆+2)λ2−2∆λ−1 = 0
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λ =
2∆±

√
12∆2−20∆+8

2(2∆2−5∆+2)

=
∆±

√
3∆2−5∆+2

2∆2−5∆+2
.

Since we are interested in maximising the value of λ for which MIDS is rapidly mixing,

we take the larger of the two solutions. We can verify that max{ f1, f2, f3, f4} ≤ 0

whenever λ is less than this larger value.

We therefore find that max{ f1, f2, f3, f4} ≤ 0 when

λ ≤ ∆+
√

3∆2−5∆+2
2∆2−5∆+2

x =
1+λ

λ(∆−1)

p =
λ

2(λ∆+1)
,

if ∆ ≥ 3.

We now apply Lemma 2.14 to show that there is a coupling such that

E[d(Xt+1,Yt+1)− d(Xt ,Yt)] is non-positive for all pairs of states Xt and Yt . It follows

from Lemma 2.14 that there exist values of x and p such that d(Xt+1,Yt+1)≤ d(Xt ,Yt)

for all pairs of states Xt , Yt , provided λ ≤ ∆+
√

3∆2−5∆+2
2∆2−5∆+2 . Note that p(x + 1) = 1

2∆−2 ,

and therefore f2 is independent of λ. It follows that for all λ, f2 = 0, and

so max{ f1, f2, f3, f4} = 0. The best bound we can obtain on β, such that

d(Xt+1,Yt+1)≤ βd(Xt ,Yt), is therefore β = 1.

Since we have β = 1, we are unable to apply the first part of Theorem 2.15 (which

requires β < 1) to bound the mixing time. Instead, we need to show that there is a

sufficiently large probability that the distance changes in any step of the Markov chain.

If the coupling given by the path coupling lemma always updates the same edge in

each copy of the chain, then this is straightforward: if we select an edge e ∈ Xt \Yt ,

then there is a non-zero probability of removing e from Xt and making no change to Yt .

However, since our coupling does not necessarily update the same edge in each copy,

we cannot generally guarantee that this occurs. We can easily see, however, that when

Xt and Yt are adjacent, there is an improvement of at least 1 with probability at least
2p
n . This allows us to use Bordewich and Dyer’s Theorem 2.16 to infer that a modified

chain exists that is rapidly mixing.

In order to apply Theorem 2.16, we need to find a δ > 0 such that the probability

p = p(δ) = min
(v,w)∈S

Pr(d(v,Xt+1)≥ δ,d(v,Xt+1)+d(Xt+1,w) = d(v,w) | Xt = v)
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is strictly greater than 0.

Suppose that d(v,w) = 1. Then there is a single edge e that differs between v and

w. If e ∈ Xt , then with probability 1
n(1+λ) , Xt+1 = w; if e 6∈ Xt , then with probability

λ

n(1+λ) , Xt+1 = w.

Now suppose d(v,w) = 1+x. Then there are two adjacent edges e and e′ that differ

between v and w. Assume that e ∈ Xt . With probability p = λ

2n(λ∆+1) , a slide move is

performed and Xt+1 = w. We do not consider the case where e is deleted, because this

fails to satisfy the condition that d(v,Xt+1)+d(Xt+1,w) = d(v,w).

We therefore see that p(1) = min{ 1
n(1+λ) ,

λ

2n(λ∆+1)}. Applying Theorem 2.16,

we see that there exists a modified chain M ∗
IDS which has a coupling C such that

β(M ∗
IDS,C )≤ 1 and σ2(M ∗

IDS,C )≥ min{ 1
n(1+λ)+1 , λ

2n(λ∆+1)+λ
}.

The transition probabilities of M ∗
IDS are given by:

PrM ∗
IDS

(Xt+1 = x′ | Xt = x) =


PrMIDS

(Xt+1=x|Xt=x)+p
1+p if x′ = x

PrMIDS
(Xt+1=x′|Xt=x)

1+p otherwise.

We can now apply Corollary 3.2 to bound the mixing time of M ∗
IDS:

τ(ε)≤
⌈

eD2

σ2

⌉
dlog(ε−1)e

=
⌈

max{en2(n(1+λ)+1),en2(2n(∆+
1
λ
)+1)}

⌉
dlog(ε−1)e.

Therefore, the mixing time of M ∗
IDS is polynomial, and the mixing time of MIDS is

dominated by a binomial random variable τ∗(ε) = Bin(τ(ε),(1+ p)−1) [4]. Since p is

positive, (1+ p)−1 ≤ 1, and so the expected mixing time of MIDS is bounded above by

E[τ∗(ε)]≤
⌈

max{en2(n(1+λ)+1),en2(2n(∆+
1
λ
)+1)}

⌉
dlog(ε−1)e

= O(n3).

For certain Markov chains, it is possible to show that the probability of a change

in distance at time t +1, α, is proportional to the distance at time t. We have not been

able to show that this is the case for MIDS, but it is possible to do so for the unmodified

Dyer-Greenhill chain. As we saw in Chapter 3, the bound on the mixing time of the

Dyer-Greenhill chain can be improved to O(n2) when the probability that the distance

changes is proportional to the distance, and therefore the Dyer-Greenhill chain mixes
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in time O(n2) for λ = 2
∆−2 - an improvement of logn over Dyer and Greenhill’s result

in the boundary case. It follows that if we use the Dyer-Greenhill chain to sample

matchings, as we did in Section 4.1.1, then we can sample matchings in time O(n2)

when λ = 1
∆−2 .

Unfortunately, we are not able to apply Theorem 3.3 to MIDS. The coupling we

used to show rapid mixing does not have the property that the same edge is updated

in each copy of the chain. It is therefore difficult to conclude that the probability of a

change in distance is linear.

4.2 Matchings in lattice graphs

In this section, we consider the problem of sampling matchings in graphs with a lat-

tice structure - in particular, the 2-dimensional torus. We will use a Markov chain

M` that updates large (but constant size) blocks of edges in a single step. While the

Jerrum-Sinclair chain for sampling general matchings that we introduced in Section

2.3.5 allows us to sample matchings with arbitrary values of λ, in this section we will

show mixing in O(n logn) time, albeit for a restricted class of graphs. We will also use

comparison techniques to show that the Jerrum-Sinclair chain mixes in O(nm) time for

these graphs, where n = |V | and m = |E| of the graph G = (V,E).

Our bound on the mixing time of M` in Lemma 4.9 relies on spatial properties

of the integer lattice, and is a duplication of a result by van den Berg and Brouwer

[42]. The details of our proof differ from theirs, but we obtain the same asymptotic

bound on the mixing time. We focus on the 2-dimensional torus, whereas van den Berg

and Brouwer showed that their block chain mixes rapidly on the d-dimensional torus.

Our proof technique could be applied to larger dimensions, with the replacement of

some constants with appropriate functions of d. In Chapter 5, we will use a similar

proof technique to show rapid mixing of a block chain for sampling independent sets

in claw-free lattices. While the result of Lemma 4.9 is not new, the proof illustrates

the techniques that we will use in Chapter 5 in the simpler setting of matchings. Our

results for claw-free lattices in Chapter 5 will not be restricted to only 2-dimensional

lattices.

It is infeasible to simulate a block chain such as M` for large blocks, because we

need some means of sampling random matchings of an `× ` region of the underlying

graph. Van den Berg and Brouwer used a second Markov chain to approximately

sample matchings within the region selected by their block chain [42]. They also noted
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that it is possible to use comparison techniques to infer the mixing time of a simpler

chain, such as the Jerrum-Sinclair chain, but that comparison methods would worsen

the mixing time by a factor of n. We will follow the comparison argument to bound

the mixing time of the Jerrum-Sinclair chain.

Fix a constant block size `. We will define a Markov chain M` that samples match-

ings from a 2-dimensional toroidal graph G = (V,E). Formally, the vertex and edge

sets are defined as follows: for some integer n,

V = {0, . . . ,n−1}×{0, . . . ,n−1}

E = {(u,v) : u,v ∈V ; u and v differ by 1 (modulo n−2) in exactly one dimension },

Let |V |= n = N2. Let M be the state of M` at time t. The state M′ at time t +1 is

determined by the following sequence of steps:

(`1) Select an `× ` block of vertices R uniformly at random. Let ∂R be the edge

boundary of R:

∂R = {(u,v) : u ∈ R,v ∈V \R,(u,v) ∈ E}.

Let R′ be the subgraph of G induced by the vertices R\V (∂R∩M), where V (∂R∩
M) is the set of endpoints of the edges of M in ∂R.

(`2) Select a matching MR of R′ according to the distribution given in Equation (2.7)

(this is the same weighted distribution that we used in Section 4.1).

(`3) Let M′ = (M \E(R′))∪MR.

Figure 4.2 shows a section of the 2-dimensional lattice, with a 4×4 region R out-

lined. The edge boundary ∂R consists of the edges crossing the solid line around the

region R, and the induced subgraph R′ is the region inside the dashed line.

Note that our definition of ∂R here differs from that of Section 2.3.3, because we

are concerned here with the configuration of edges instead of vertices.

We will now use path coupling to show that for a sufficiently large ` (determined

by a function of ∆ and λ), the chain M` is rapidly mixing. Let Xt and Yt be two copies

of M`. We say that Xt and Yt are adjacent if they differ at exactly one edge. The

distance d(Xt ,Yt) is the Hamming distance between the two states. Suppose that at

time t, d(Xt ,Yt) = 1. Then we can assume without loss of generality that there is some

edge e ∈ Xt , e 6∈ Yt . We now show how to construct a path coupling for (Xt ,Yt), by

considering three possible cases, depending on the position of e relative to R.
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Figure 4.2: An example of a region of the 2-dimensional lattice, showing the

induced subgraph R′.

1. If both endpoints of e are in R, then we can always choose the same MR in

each chain, thus making Xt+1 = Yt+1 with probability 1. When this occurs,

d(Xt+1,Yt+1) = d(Xt ,Yt)−1.

2. If both endpoints of e are in V \R, then we can choose the same MR in each

chain, and the distance is unchanged.

3. If e is in ∂R, then when we come to define R′, we have R′X = R′Y \ {u}, where

u is one of the endpoints of e. We must therefore choose MR from different

distributions in Xt and Yt . We can couple these distributions so that the distance

will either stay the same or increase (there is a non-zero probability of selecting

the same MR in each chain, since we are sampling from all matchings). The

increase in distance is bounded above by a geometrically distributed random

variable, as we will see in Lemma 4.7.

Observe that in the square lattice, there are 4` choices of R such that e lies on the

boundary of R, and there are `2− ` choices of R such that e lies within R. Let δ be the

expected increase in distance in case 3. The overall expected change in distance is

E[d(Xt+1,Yt+1)−d(Xt ,Yt)] =
4`δ− `2 + `

n
. (4.6)

If we choose ` ≥ 4δ + 1, then the expected change is non-positive and the chain is

rapidly mixing.



Chapter 4. Sampling matchings of general and lattice graphs 67

The requirement that our underlying graph is a torus comes from the method of

choosing R: if we have a simple finite 2-dimensional grid, then for edges e close to the

boundary of the underlying graph, the ratio of regions R containing e to regions R for

which e ∈ ∂R is constant, and so we cannot show contraction, regardless of the choice

of `. We could instead choose R by selecting a vertex v uniformly at random and letting

R be the ball around v of radius `. In this situation, however, |R| and |∂R| are no longer

necessarily uniform for all regions. More care is therefore required when we come to

choose an appropriate value of `. We will use this alternative method of choosing R in

Chapter 5.

We now show that δ is stochastically dominated by a geometrically distributed

random variable.

Definition 4.6. Let X and Y be two random variables with cumulative distribution

functions FX and FY respectively. We say that Y is stochastically dominated by X if, for

all x, FX(x)≤ FY (x).

Lemma 4.7. Let G be a 2-dimensional toroidal graph with maximum degree ∆, and

Xt and Yt two instances of M` on G such that |Xt ⊕Yt | = 1 and there is a unique edge

e∈ Xt , e 6∈Yt . There exists a coupling of (Xt ,Yt) such that the increase in distance when

e lies on the edge boundary of a region R is stochastically dominated by a geometrically

distributed random variable with mean at most δ ≤ max{λ,1}(∆−1).

Proof. Let R′X and R′Y be the regions of Xt and Yt to be updated. Note that there is a

unique vertex v such that R′Y = R′X ∪ v. We will choose two matchings MX and MY ,

of R′X and R′Y respectively, so that we conform to the correct distribution and couple

with some probability. We first consider the case where λ = 1 and all matchings are

weighted equally.

Suppose that v is covered by MY . Then there is some vertex v′, such that (v,v′) ∈
MY , and the subgraph R′′Y induced by V (R′Y ) \ {v,v′} is a subgraph of R′X . Therefore

MY \ {(v,v′)} is a matching of R′X , so the number of matchings of R′Y that cover v is

at most ∆−1 times the number of matchings of R′X . Now suppose v is not covered by

MY . Since V (R′Y )\{v} = V (R′X), the matchings of R′Y that do not cover v are exactly

the matchings of R′X .

Therefore, with probability at least 1
∆

, we can choose the same MX and MY . With

the remaining probability, we have to choose matchings of R′X and R′′Y . Note that

R′X = R′′Y ∪{v′}. We are now in the same situation as before, with the roles of R′X and

R′Y replaced with R′′Y and R′X respectively. If we choose a matching of R′X that does
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not cover v′ then we can choose the same matching for R′′Y . If we choose a matching

of R′X that does cover v′, then there is some vertex v′′ such that (v′,v′′) ∈ MX . The

subgraph R′′X induced by V (R′X) \ {v′,v′′} is a subgraph of R′′Y , and R′′Y = R′′X ∪{v′′}.

We now have two regions with the same properties as R′X and R′Y , both of which are

smaller than our original regions. We can assign matchings to these smaller regions by

recursively using the same process.

We can repeat this process until we reach a point where v is not covered and the

process terminates. This gives us a pair of matchings that differ only along an alternat-

ing path of edges (v,v′),(v′,v′′), . . . . The probability that the path terminates at each

step is at least 1
∆

, and each trial is independent. The length of the path is bounded

above by the number of failures before the path terminates. This is a geometrically

distributed random variable with parameter p = 1
∆

, and so the expected length of the

path is at most ∆−1.

If λ 6= 1, then different size matchings are given different weights. Let W (R′) be

the total weight of all matchings of R′. The set of matchings MY that do not cover v

is identical to the set of matchings MX of R′X , and so those matchings have the same

weights in both sets. However, among the matchings MY that cover v, these may be

larger than the matchings MX of R′X by 1. We therefore assign weights to the two cases:

the total weight of matchings that cover v is at most max{λ,1}(∆− 1)W (R′X), while

the total weight of matchings that do not cover v is exactly W (R′X). The probability of

terminating the alternating path at each step is now at least (max{λ,1}(∆−1)+1)−1,

and so the expected length of the path is at most max{λ,1}(∆−1), as required.

We use max{λ,1} in the upper bound on the weight of matchings that cover v

because we do not know when the path will end, and so we cannot say whether MY

will actually be larger than MX . This is not a problem when λ ≥ 1, because we are

calculating an upper bound. However, if λ < 1 and it turns out that |MY |= |MX |, then

it is not valid to say that the total weight is bounded above by λ(∆−1)W (R′X).

In principle, Lemma 4.7 may be applied to any graph with bounded degree. How-

ever, since the Markov chain M` is defined specifically on the 2-dimensional torus,

Lemma 4.7 is restricted to this type of graph.

Note that Lemma 4.7 does not give us a direct algorithm for obtaining MX or MY

from the appropriate distributions. During the proof of the lemma, we have a lower

bound on the proportion of matchings that do not cover v at each step, but we do not

know the proportion that includes each edge incident to v. We can therefore determine

an upper bound on |MX ⊕MY | in our coupling, but we do not give an efficient algorithm
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for finding either MX or MY . Van den Berg and Brouwer used the Jerrum-Sinclair chain

to efficiently obtain an almost-uniformly distributed matching to replace the contents

of a region. We will assume that some method for implementing large block moves

is available when we bound the mixing time of M` in Lemma 4.9. In Theorem 4.10

we will use our bound on the mixing time of M` to bound the mixing time of the

Jerrum-Sinclair chain, which can be implemented efficiently.

Corollary 4.8. The expected change in distance of M` on the 2-dimensional torus is

given by

E[d(Xt+1,Yt+1)−d(Xt ,Yt)]≤
12`max{λ,1}− `2 + `

n
.

We therefore require `≥ 12max{λ,1}+1 in order to ensure rapid mixing.

Proof. Combine Equation (4.6) and the result given in Lemma 4.7, noting that in the

square lattice, ∆ = 4.

We will now show that the mixing time of M` is O(n logn) on the 2-dimensional

torus in the case `≥ 12max{λ,1}+1.

Lemma 4.9. The mixing time of M` satisfies

τ(ε)≤ n log(nε−1)
`2−12`max{λ,1}− `

.

Proof. We will apply Lemma 2.14 and Theorem 2.15 to obtain a bound on the mixing

time. This requires us to find a β < 1 such that E[d(Xt+1,Yt+1)] ≤ βd(Xt ,Yt). By

Corollary 4.8, we know that we can achieve the contraction for any 0 < β < 1, since

we can always find a block size ` large enough to satisfy this requirement. We have

d(Xt ,Yt) = 1, so

E[d(Xt+1,Yt+1)] = 1+
12`max{λ,1}− `2 + `

n

= d(Xt ,Yt)
(

1+
12`max{λ,1}− `2 + `

n

)
.

Therefore we satisfy the criterion that E[d(Xt+1,Yt+1)] ≤ βd(Xt ,Yt) for any β > 0

such that

β ≤ 1+
12`max{λ,1}− `2 + `

n
,

which is equivalent to

1−β ≥−12`max{λ,1}− `2 + `

n
. (4.7)
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Applying Theorem 2.15, we obtain the following bound on the mixing time, for

any β satisfying Equation (4.7):

τ(ε)≤ log(Dε−1)
1−β

≤ n log(nε−1)
`2−12`max{λ,1}− `

.

This is O(n logn) provided ` > 12max{λ,1}+1 (since we require β < 1).

We can now build on this result to obtain a mixing time for the Jerrum-Sinclair

chain we defined in Section 2.3.5, by using the comparison technique.

Theorem 4.10. The mixing time of the lazy form of the Jerrum-Sinclair chain on the

2-dimensional torus with n vertices and m = 2n edges satisfies

τ(ε) = O(nm) = O(n2).

Proof. Let M be the lazy form of the Jerrum-Sinclair chain, and let P be its transition

matrix. Let M ′ our chain using block moves, with some ` such that M ′ is rapidly

mixing, and let P′ be its transition matrix.

Let P be the set of all paths γ using transitions of the Jerrum-Sinclair chain, be-

tween pairs of adjacent states of M ′. For any transition (z,w) in M , and any path

γ ∈ P , let r((z,w),γ) be the number of times that the transition (z,w) occurs on the

path γ. Recall the definition of congestion for the comparison method from Section

2.3.6:

Az,w( f ) =
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

r((z,w),γ)|γ| f (γ).

We consider the same set of canonical paths Γ = {γxy | x,y ∈ Ω} originally used in

Jerrum and Sinclair’s argument for showing rapid mixing of their chain and presented

in Theorem 2.26 of this thesis. We define an (M ,M ′)-flow f as follows:

f (γ) = π(x)P′(x,y) if ∃x,y ∈ Ω such that γ = γxy

f (γ) = 0 if there is no x,y ∈ Ω for which γ = γxy.

Note that f satisfies Condition (2.8), and so is a valid (M ,M ′)-flow. f is not nec-

essarily an odd flow, but since we use the lazy form of the chain, we know that all

eigenvalues are positive, and so this is not a problem.
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We now wish to compute the congestion Az,w( f ). Each transition can appear at

most once in any canonical path, so r((z,w),γ) = 1 if (z,w) appears on γ, or 0 oth-

erwise. The length of each path is at most 2`(`− 1) - that is, the number of edges

contained within a block.

Our aim is to rewrite the bound on the congestion for a transition (z,w) such that

it is a sum over regions containing z⊕w. We can then use the existing bound on the

congestion from Theorem 2.26 to obtain the congestion for each of these regions.

For a matching x, define πR(x) to be the probability of x conditioned on its config-

uration outside the region R, and πV\R(x) the probability of selecting a state with the

same configuration as x outside the region R. Pr(R) denotes the probability of selecting

the region R, so Pr(R) = 1
n . Note that

π(x) = πR(x)πV\R(x), and (4.8)

P′(x,y) = ∑
R:x⊕y⊆R

Pr(R)πR(y). (4.9)

Now we can compute the congestion:

Az,w( f ) =
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

r((z,w),γ)|γ| f (γ)

=
1

π(z)P(z,w) ∑
x,y:(z,w)∈γxy

π(x)P′(x,y)|γxy|

=
1

π(z)P(z,w) ∑
x,y:(z,w)∈γxy

∑
R:x⊕y⊆R

πR(x)πV\R(x)Pr(R)πR(y)|γxy|

= ∑
R:z⊕w⊆R

1
πR(z)πV\R(z)P(z,w)

Pr(R) ∑
x,y:(z,w)∈γxy,x⊕y⊆R

πV\R(x)πR(x)πR(y)|γxy|

= ∑
R:z⊕w⊆R

Pr(R)
1

πR(z)P(z,w) ∑
x,y:(z,w)∈γxy,x⊕y⊆R

πR(x)πR(y)|γxy|.

In the last line, we can cancel πV\R(z) and πV\R(x), based on the following observation:

if (z,w) ∈ γxy, then z agrees with x on all edges outside of x⊕ y. If, additionally,

x⊕ y ⊆ R, then z clearly agrees with x on all edges outside of R. Therefore, for every

choice of z, w, x, y and R such that the conditions of the two sums are satisfied, πV\R(z)

= πV\R(x).

This is a sum over regions containing z and w of the congestion defined in Defini-

tion 2.23, as required. We can therefore apply the result from Theorem 2.26, restricted
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to the region R, to bound the congestion for each region:

Az,w( f )≤ ∑
R:z⊕w⊆R

Pr(R)

nλ̄
2

∑
x,y:(z,w)∈γxy,x⊕y⊆R

πR(ηt(x,y))2`(`−1)


≤ ∑

R:z⊕w⊆R
Pr(R)2n`(`−1)λ̄2

≤ 2`2(`−1)2
λ̄

2.

This inequality applies uniformly for all choices of z and w, so the overall congestion

is

A( f )≤ 2`2(`−1)2
λ̄

2.

By Theorem 2.28, the mixing time of the Jerrum-Sinclair chain satisfies

τx(M ,ε)≤ A( f )
[

τ(M ′,δ)
log(1/2δ)

+1
]

log
1

επ(x)

≤ 2`2(`−1)2
λ̄

2

[
τ(M ′, 1

n)
log(n/2)

+1

](
log

1
ε

+m
)

≤ 2`2(`−1)2
λ̄

2
[

n log(n2)
(`2−12`λ̄− `) log(n/2)

+1
](

log
1
ε

+m
)

= O(nm).

While we focus here on the 2-dimensional torus, this technique can be applied to

any graph where the number of edges contained within a ball of radius r is greater than

the number of edges crossing its perimeter by at least a factor of r. In Chapter 5 we

will use a similar argument for sampling independent sets in claw-free graphs.



Chapter 5

Sampling independent sets in

claw-free graphs

In Chapter 4 we used the bijection between matchings in a graph G and independent

sets in the line graph L(G) to adapt the Dyer-Greenhill chain for sampling independent

sets to sample matchings. In fact, line graphs belong to a more general class of graphs

known as claw-free graphs. Independent sets in claw-free graphs share some of the

properties of matchings in general graphs, suggesting that we may be able to adapt

Markov chains for sampling matchings to sample independent sets in claw-free graphs.

In Section 5.1 we look at the problem of sampling independent sets in claw-free

graphs. We define a Markov chain MCF for sampling independent sets. Our chain uses

the same transitions as Dyer and Greenhill’s chain for sampling independent sets [14],

but with probabilities based on those of the Jerrum-Sinclair chain for sampling match-

ings which we introduced in Section 2.3.5. Lemma 5.2 will show that the symmetric

difference of two independent sets in a claw-free graph forms a set of alternating paths

and cycles. Using this fact, we use a canonical paths argument to show that MCF is

rapidly mixing.

In Section 5.2, we construct a family of chains for sampling independent sets using

block updates, and show that these chains mix in O(n logn) time on claw-free lattice

graphs. We will also show that MCF mixes in O(n2) time on such lattices, using the

same approach that we used in Chapter 4 to show that MJS mixes in O(nm) time on

the square lattice. The square lattice we used in Chapter 4 is not claw-free. However,

the set of claw-free graphs does include the triangular and kagome lattices.

73
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Figure 5.1: Left, a claw; right, a section of the claw-free kagome lattice.

5.1 Independent sets in claw-free graphs

Definition 5.1. The structure GC at the left of Figure 5.1 is referred to as a claw. A

graph G = (V,E) is called a claw-free graph if it does not contain GC as a vertex-

induced subgraph.

Formally, G is claw-free if there is no set of four vertices {v,v1,v2,v3} ⊆ V such

that

{(v,v1),(v,v2),(v,v3)} ⊆ E, and

{(v1,v2),(v2,v3),(v3,v1)}∩E = /0.

We used the bijection between matchings in a graph G and independent sets in the

line graph L(G) in Section 4.1.1. Line graphs are a special case of claw-free graphs: if

a line graph L(G) contained a claw, this would imply that there was an edge incident

to three other edges in G, no two of which share a common endpoint. Since each

edge has only two endpoints, this is impossible. Other claw-free graphs include the

triangular lattice and kagome lattice (shown in Figure 5.1) - in fact, the kagome lattice

is the line graph of the hexagonal lattice. We now show that the symmetric difference

of two independent sets in a claw-free graph is a collection of paths and cycles, as is

the case for the symmetric difference of two matchings in general graphs.

Lemma 5.2. For any pair of independent sets I and I′ in a claw-free graph G, the
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subgraph of G induced by the vertices of I⊕ I′ is a collection of alternating paths and

even-length cycles.

Proof. We first note that an odd-length cycle would have to contain two adjacent ver-

tices either from I or from I′, contradicting the fact that I and I′ are independent sets.

We can therefore immediately rule out the possibility that I⊕ I′ contains an odd-length

cycle.

Suppose that we have a component that is neither a path nor a cycle. Then there

must be some vertex v ∈ I⊕ I′ such that the degree of v in the subgraph of G induced

by I⊕ I′ is at least 3. Without loss of generality, say that v ∈ I. Therefore, there are at

least three vertices v1,v2,v3 ∈ I′ adjacent to v. Since I′ is an independent set, none of

the edges (v1,v2), (v2,v3) and (v1,v3) can be present in G, and therefore {v,v1,v2,v3}
is a claw. Hence, no such v can exist.

We now define the Markov chain MCF . The state space Ω is the set of all indepen-

dent sets in G. The stationary distribution of MCF is that defined in Equation (2.3),

π(I) =
λ|I|

∑I′∈Ω λ|I
′| .

As with matchings, the value Z = ∑I′∈Ω λ|I
′| is known as the partition function.

Definition 5.3. MCF is a Markov chain for sampling independent sets. If the state of

MCF at time t is Xt , then the state at time t +1 is determined by the following sequence

of steps:

(CF1) Select a vertex v ∈V uniformly at random.

(CF2) If v ∈ Xt , then let Xt+1 = Xt \{v} with probability min{1,λ−1}.

(CF3) If v 6∈ Xt , and there is no v′ ∈ Xt adjacent to v, then let Xt+1 = Xt ∪{v} with

probability min{1,λ}.

(CF4) If v 6∈ Xt , and there is exactly one v′ ∈ Xt adjacent to v, then let Xt+1 =

(Xt ∪{v})\{v′} with probability 1. We call this a drag move.

(CF5) In all other cases, let Xt+1 = Xt .

We will now show that the distribution in Equation (2.3) is a stationary distribution

of MCF .
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Lemma 5.4. Let G = (V,E) be a claw-free graph. The distribution

π(I) =
λ|I|

∑I′∈Ω λ|I
′| .

is a stationary distribution of MCF .

Proof. We will show that for all pairs of independent sets I0 and I1, the detailed balance

condition, Condition (2.2), holds. We first consider the case where I0 and I1 differ at a

single vertex.

Let I0 and I1 be two independent sets such that there exists a vertex v ∈V such that

I1 = I0∪{v}. Observe that π(I1) = λπ(I0).

π(I0)P(I0, I1) = π(I0)min{1,λ}

= π(I0)λmin{1,λ−1}

= π(I1)min{1,λ−1}

= π(I1)P(I1, I0),

as required. The situation where, for some vertex v, I0 = I1∪{v}, is analogous.

Now suppose that there exists an edge (v,v′) ∈ E such that I1 = (I0 ∪{v}) \ {v′}.

Then π(I1) = π(I0), and P(I0, I1) = P(I1, I0) = 1, and so Condition (2.2) holds.

If I0 = I1, then π(I0) = π(I1) and P(I0, I1) = P(I1, I0), and so Condition (2.2) holds

trivially.

In all other cases, there is no possible transition between I0 and I1, so P(I0, I1) =

P(I1, I0) = 0, and so Condition (2.2) holds trivially. Therefore, π(I) is a stationary

distribution of MCF .

We can see that MCF is irreducible by observing that any independent set is reach-

able from the empty set by a series of insert moves, and that the empty set is reachable

from any independent set by a series of delete moves. However, MCF is not necessarily

aperiodic, and so we cannot show that it is ergodic. Consider the graph consisting of

a single vertex v, and set λ = 1. MCF clearly oscillates between {v} and the empty

set with period 2. We will avoid the need for MCF to be aperiodic by introducing a

uniform self-loop probability, forming a lazy version of the chain, M ′
CF . The transition

matrix of M ′
CF is given by

P′ =
1
2

P+
1
2

I,

where P is the transition matrix of MCF and I is the identity matrix. This self-loop

probability means that M ′
CF is aperiodic, and therefore ergodic.
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We will show that the mixing time of M ′
CF is O(∆n3). Lemma 5.2 allows us to

construct a set of canonical paths between independent sets of a claw-free graph, in a

similar manner to those constructed in the proof of Theorem 2.26. We now state the

main result of Section 5.1.

Theorem 5.5. The mixing time of M ′
CF on claw-free graphs is bounded by

τ(ε)≤ 2(∆−1)n2
λ̄

2(2logε
−1 +n(log2+ |logλ|)),

where λ̄ = max{1,λ}.

The proof of Theorem 5.5 will closely follow Jerrum and Sinclair’s proof of an

upper bound for sampling matchings, using canonical paths to bound congestion [24].

We gave an overview of this proof in Section 2.3.5. We first need to define a set of

canonical paths Γ, and then show that the congestion of M ′
CF with respect to Γ is

small.

Given two states, I and F , we want to define a canonical path γIF . Consider the

symmetric difference I ⊕F . We know from Lemma 5.2 that I ⊕F induces a set of

alternating paths and cycles. If we have some arbitrary fixed ordering on V , then

we can impose an order on the components of I⊕F , based on the smallest vertex in

each component. We will construct a canonical path from I to F by processing the

components in this order. For each component C, there are two possible cases:

• If C is an alternating path, then we begin at the smaller endpoint of C, v. If v ∈ I,

then we remove v. We then perform a series of drag moves along the length of

the path. Finally, if the larger endpoint of C, v′, is in F , then we insert v′.

• If C is an even-length alternating cycle, we begin at the smallest vertex that is

present in I, v0 (this is not necessarily the smallest vertex in the cycle). We

remove this vertex, and proceed around the cycle with a series of drag moves,

starting in the direction of the larger neighbour of v0. Finally, we insert the

smaller neighbour of v0.

We can now define an encoding ηt(I,F) for each transition t = J → J′. If we

know t and ηt(I,F) (and one additional piece of information which we will describe

later), we will be able to recover I and F . This will form the basis of our bound on

the congestion of M ′
CF . If t is a transition on the canonical path from I to F , then we

consider the component C that the vertices affected by t belong to.
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• If C is a path, then let ηt(I,F) = I⊕F ⊕ (J∪ J′).

• If C is a cycle, then let ηt(I,F) = (I⊕F ⊕ (J∪ J′))\{v0}.

Figure 5.2 shows an example of the encoding ηt(I,F) for a transition made while

processing an 8-cycle in I ⊕F . v0 is marked on Figure 5.2, and the vertices of the

cycle are processed in clockwise order from this vertex. J is the intermediate point in

the path after v0 has been removed and two drag moves have been performed. Observe

that J∪ J′ agrees with F on those vertices that have already been processed, with I on

those that have not yet been processed, and includes both vertices that are affected by

the transition J → J′. Since the first transition while processing a cycle is to remove

v0, we can see that J ∪ J′ does not include v0 or its smaller neighbour (which has not

yet been processed and does not belong to I).

ηt(I,F) therefore agrees with I on those vertices that have already been processed,

with F on those that have not yet been processed, and does not include the vertices that

are affected by J → J′. It includes the smaller neighbour of v0, but not v0 itself because

this is explicitly excluded from ηt in the case of a cycle.

We now show that the sum of π(ηt) over all paths using any transition t is not too

large.

Lemma 5.6. Using the canonical paths defined above, let cp(t) be the set of paths

using transition t. Then

∑
(I,F)∈cp(t)

π(ηt(I,F))≤ ∆−1.

Proof. There are two parts to the proof. First, we show that ηt(I,F) is an independent

set. Secondly, we show that if we are given t, ηt(I,F) and v0 (if it exists), then it is

possible to determine the states I and F .

Assume that ηt(I,F) is not an independent set. Then there are two vertices v and

v′ in ηt(I,F) that are adjacent. Therefore one of v and v′ must belong to I and the

other to F , and so both belong to I⊕F . Therefore, neither v nor v′ belongs to J ∪ J′.

If we consider J∪ J′ for each transition J → J′ that occurs during the processing of a

component C, we see that the only time there can be two adjacent vertices in C\(J∪J′)

is when C is a cycle, and one of the vertices is v0. However, by definition it is not

possible for v0 to belong to ηt(I,F), and so no such v, v′ can exist. Hence, ηt(I,F) is

an independent set.

Clearly from ηt(I,F), J and J′, it is possible to reconstruct I⊕F if C is a path, or

(I⊕F)\{v0} if C is a cycle. If C is a cycle, then we also need to identify v0 to obtain
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v0 v0

v0 v0

v0 v0

I F

J J'

J∪J' ηt(I,F)

Figure 5.2: The encoding ηt(I,F) for a transition made while processing an

8-cycle.
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I⊕F . When sampling matchings, there is a similar problem: we can recover all but

one edge of a cycle. In the case of matchings, there is a unique edge that can complete

the cycle [25]. However, for independent sets, there are up to ∆− 1 possible choices

of v0.

To determine whether C is a path or a cycle, we look at ηt(I,F)⊕(J∪J′). This will

provide an alternating path on which t is a transition. If t is consistent with a canonical

path moving away from the smaller endpoint, then C is a path. If t is consistent with

a path moving towards the smaller endpoint, then C is a cycle and some v0 exists to

complete C.

Therefore, for each independent set J∗, there are at most ∆−1 pairs of states (I,F)

such that ηt(I,F) = J∗. Since ∑
J∗∈Ω

π(J∗) = 1, the required bound follows.

We now have a set of canonical paths and a suitable encoding ηt , and can proceed

with the proof of Theorem 5.5.

Proof of Theorem 5.5. To bound the mixing time using Theorem 2.24, we also need to

obtain a bound on the value of π(I)π(F) for the pairs of states (I,F) passing through

each transition t = (J,J′). Consider λ|I|λ|F | and λ|J∪J′|λ|ηt(I,F)|. Each vertex v ∈ V

contributes a factor of 1, λ, or λ2 to each of these. There are three mutually exclusive

cases:

• v ∈ I ∩ F . v contributes λ2 to λ|I|λ|F |. Since v is never removed during the

processing of γIF , it must be in both J and J′. Furthermore, v 6∈ I⊕F , and so

v ∈ ηt(I,F). Hence, the contribution to λ|J∪J′|λ|ηt(I,F)| is also λ2.

• v 6∈ I ∪F . In this case, we can easily see that v 6∈ I, v 6∈ F , v 6∈ J ∪ J′, and so

v 6∈ ηt(I,F). Therefore the contribution to both expressions is 1.

• v ∈ I⊕F . v is in exactly one of I and F , and so the contribution to λ|I|λ|F | is λ.

Assuming v 6= v0, we can see from the definition of ηt(I,F) that v ∈ ηt(I,F) if

and only if v 6∈ J∪J′. Therefore the contribution to λ|J∪J′|λ|ηt(I,F)| is λ. If v = v0,

then v 6∈ ηt(I,F), even if v 6∈ J∪ J′. Therefore the contribution to λ|J∪J′|λ|ηt(I,F)|

may be 1 in this case.

The contribution to each expression is the same for every vertex, except for v0 (where

it exists). λ|I|λ|F | may therefore be greater than λ|J∪J′|λ|ηt(I,F)| by at most a factor

of λ̄ = max{1,λ}. Hence, for any pair of independent sets (I,F) passing through

t = (J,J′), we have

λ
|I|

λ
|F | ≤ λ̄λ

|J∪J′|
λ
|ηt(I,F)|. (5.1)
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Observing that |J|, |J′| ≥ |J∪ J′|−1 and dividing by Z2, we get

π(I)π(F)≤ λ̄
2 min{π(J),π(J′)}π(ηt(I,F))

= nλ̄
2
π(J)P(J,J′)π(ηt(I,F)). (5.2)

We are now in a position to compute the congestion, and therefore the mixing time.

The congestion is

ρ = max
t=(J,J′)

{
1

π(J)P(J,J′) ∑
(I,F)∈cp(t)

π(I)π(F)|γIF |

}
≤ nλ̄

2
∑

(I,F)∈cp(t)
π(ηt(I,F))|γIF | by Equation (5.2)

≤ n2
λ̄

2
∑

(I,F)∈cp(t)
π(ηt(I,F))

≤ (∆−1)n2
λ̄

2 by Lemma 5.6.

Applying Theorem 2.24, we obtain the bound on the mixing time

τx(ε)≤ 2(∆−1)n2
λ̄

2(2logε
−1 + logπ(x)−1),

for a given start state x. Finally, we need to bound logπ(x)−1 for any x ∈ Ω. Observe

that there are at most 2n possible independent sets, and suppose that λ > 1. Then

logπ(x)−1 = log

(
∑S λ|S|

λ|x|

)
≤ log(2n

λ
n)

= n(log2+ |logλ|).

Now suppose λ < 1.

logπ(x)−1 ≤ log
(

2n

λn

)
= n(log2− logλ)

= n(log2+ |logλ|).

We therefore obtain the bound on the mixing time

τ(ε)≤ 2(∆−1)n2
λ̄

2(2logε
−1 +n(log2+ |logλ|)),

as required.
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Figure 5.3: A section of the 2-dimensional triangular lattice.

Note that we can improve on the bound on the mixing time given by Theorem 5.5

if the graph G contains no 4-cycles. In the proof of Lemma 5.6, we show that at most

∆−1 pairs of states (I,F) exist that can map to a given value of ηt . This bound arises

because, given a cycle with one vertex removed, there are up to ∆−1 possible ways to

add a vertex v0 that completes a cycle. If G contains no 4-cycles, then there is a unique

choice of v0. It follows that our bound on the mixing time of M ′
CF can be improved by

a factor of ∆− 1 in this case. The kagome lattice is an example of a claw-free graph

that contains no 4-cycles.

5.2 Claw-free lattices

We now consider the problem of sampling independent sets in claw-free graphs with a

lattice structure. While the square lattice is not claw-free, the 2-dimensional triangular

lattice (Figure 5.3) and the kagome lattice are. We will use a Markov chain that updates

large (but constant size) blocks of vertices in a single step. We will show that for any

∆ and λ, there exists a chain using block moves that mixes in time O(n logn). We will

use comparison techniques to show that the mixing time of MCF is O(n2) on claw-free

lattices, an improvement on the bound of O(n2 log(n)) for MCF that we obtained in

Section 5.1.

As before, we sample from the set of all independent sets of a graph G, according
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to the probability distribution π(I):

π(I) =
λ|I|

∑I′∈Ω λ|I
′| .

The critical property of lattice graphs that we require is as follows: for any vertex

v ∈V , the number of vertices at distance ` from v (as a function of `) is asymptotically

smaller than the number of vertices at distance less than ` from v. Formally, for any

v ∈ V and ` ∈ N, let R be the ball of radius ` around v. The vertex boundary of R is

defined as

∂R = {u ∈ R | ∃u′ ∈V \R s.t. (u,u′) ∈ E}.

In the case of a lattice of fixed size, note that if we choose v close to the boundary of

the lattice, the points at distance ` from v will not necessarily belong to ∂R if they lie

on the boundary of the lattice.

Definition 5.7. Let G = (V,E) be a graph. For any vertex v, let R be the ball of radius

` around v, and let ∂R be the vertex boundary of R. If, for all vertices v,

|R|
|∂R|

→ ∞ as `→ ∞, (5.3)

then we say that G satisfies the boundary condition that is required to show rapid

mixing of G using Lemma 5.9 and Theorem 5.10.

Condition (5.3) applies for all lattice graphs. Our results are applicable to non-

lattice graphs provided the boundary condition holds, but in practice it is easier to

demonstrate that this is the case for lattices. The boundary condition will not be re-

quired in the proof of Lemma 5.9 and Theorem 5.10, but it will be necessary when we

come to apply these lemmas to specific graphs.

Definition 5.8. Set a constant radius `. We define a Markov chain M ′
` for sampling

independent sets. Let Xt be the state of M ′
` at time t. The state at time t + 1, Xt+1 is

determined by the following sequence of steps:

(`1′) Select a vertex v uniformly at random. Let R be the ball of radius ` centred

on v, and ∂R be the vertex boundary of R. Let R′ be the subgraph of G induced by

the vertices R\ (∂R∪{u | ∃u′ ∈ ∂R∩Xt s.t. (u,u′) ∈ E}), where Xt is the current

state of the chain. That is, R′ contains the vertices of R that are not on the

vertex boundary, and are not adjacent to any member of Xt that is on the vertex

boundary.
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(`2′) Let ΩR′ be the set of independent sets of R′, and πR′(I) the weighted distri-

bution on independent sets on the graph induced by R′. Select an independent

set IR′ of R′ according to the distribution πR′ .

(`3′) Let Xt+1 = (Xt \R′)∪ IR′ .

Note that unlike the chain we defined in Section 4.2 for sampling matchings in

lattice graphs, M ′
` selects a vertex at random and replaces the ball around it, instead of

selecting a ball uniformly at random. This means that for the probability of selecting

any given vertex is exactly 1
n .

We can use path coupling to show that for a sufficiently large ` (determined by a

function of ∆ and λ), the chain M ′
` is rapidly mixing. Let Xt and Yt be two copies of

M ′
` . The distance d(Xt ,Yt) is the Hamming distance between the two states, and the

adjacency relation is the set of pairs (I, I′) of states such that d(I, I′) = 1. Suppose that

at time t, d(Xt ,Yt) = 1, with some vertex u ∈ Xt , u 6∈Yt . There are three possible cases,

depending on the position of u relative to R.

1. If u ∈ R \ ∂R, then our coupling will always choose the same IR′ in each chain.

Therefore we are guaranteed that d(Xt+1,Yt+1) = 0.

2. If u 6∈ R, then our coupling will always choose the same IR′ in each chain, and

the distance is unchanged.

3. If u ∈ ∂R, then the regions that we update in step `2′ may differ between Xt and

Yt , and in these cases we must choose IR′ from different distributions in Xt and

Yt . The distance in these cases will usually increase.

Let R∗ be the ball of radius ` around u. Observe that there are |∂R∗| choices of

v such that u lies on the boundary of R (so the distance may increase), and there are

|R∗ \∂R∗| choices of v such that u lies within R (so the distance will decrease). If δ is a

uniform upper bound on the expected increase when u lies on the boundary of R, and

δ is independent of |R|, then the expected change in distance is

E[d(Xt+1,Yt+1)−d(Xt ,Yt)] =
δ|∂R|− |R\∂R|

n
. (5.4)

Hence, if |R∗| is sufficiently large relative to its boundary, then the expected change

is non-positive and the chain is rapidly mixing. In particular, if |∂R∗| = o(|R∗ \∂R∗|),
then for some sufficiently large ` the chain M ′

` is rapidly mixing.
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For lattice graphs, |R∗| and |R∗ \ ∂R∗| are fixed values (in terms of `) for all but

an asymptotically small number of choices of u. The vertices for which this is not the

case are those lying close to the edge of the lattice itself, and we will need to consider

these special cases in order to show that the ratio |R∗|
|∂R∗| has a uniform lower bound for

all vertices u.

We will now use path coupling to show that there exists a coupling where the

increase in distance in case 3 is bounded above by a geometrically distributed random

variable.

Lemma 5.9. Let G be a claw-free graph with maximum degree ∆, and R be a ball of

radius ` centred on some vertex v. Let X and Y be two independent sets of G, and

let u be a unique vertex on the boundary ∂R such that u ∈ X, u 6∈ Y . There exists

a coupling such that the increase in Hamming distance between X and Y when R is

updated according to steps (`1′) and (`2′) of M ′
` is stochastically dominated by a

geometrically distributed random variable with mean at most (3∆− 1)λ̄, where λ̄ =

max{λ,1}.

Proof. Let R′X ,0 and R′Y,0 be the regions of X and Y to be updated. We will show that it

is possible to choose two independent sets IX and IY of R′X ,0 and R′Y,0 respectively, such

that the Hamming distance between IX and IY is not too large. Let V0 = R′Y,0 \R′X ,0 be

the set of vertices that may be in IY but not IX (that is, the neighbours of v that are in

R). We will select a number of independent vertices in V0 that will belong to IY , and

recursively select the remainder of IY conditioned on the choice of these vertices. For

the first part of this proof, the only assumption we make about the distributions we

choose from is that if we choose no vertices from V0, then the induced distribution on

the remainder of R′Y,0 is identical to the induced distribution on R′X ,0. We will consider

the weights given to different size independent sets in the distribution π(I) when we

come to bound the number of levels of recursion required to choose IX and IY .

If we have chosen IY ∩V0 = /0, then the distributions of IX and IY , given that IY ∩
V0 = /0, are identical. Therefore, in this case we can choose the same independent

set for IX and IY and the Hamming distance does not increase. We now consider the

coupling for sets where IY ∩V0 6= /0, considering IY first.

If one or more vertices exist in IY ∩V0, then any independent set of R′X ,0 must have

Hamming distance at least |IY ∩V0| from the independent set IY . Let V1 = R′X ,0∩Γ(IY ∩
V0), where Γ(IY ∩V0) is the set of vertices adjacent to those in IY ∩V0. Let R′X ,1 = R′X ,0

and R′Y,1 = R′X ,1 \V1. Since G is claw-free, |IY ∩V0| ≤ 2, and therefore |V1| ≤ 2∆−2.
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We now select the vertices in IX ∩V1. If no such vertices exist, then the distributions of

IX \V0 and IY \V0, conditional on the fact that IX ∩V1 = /0, are identical, as before. The

Hamming distance therefore increases by |IY ∩V0|, which is at most 2.

If IX ∩V1 is non-empty, then we set V2 = R′Y,1 ∩Γ(IY ∩V1), R′X ,2 = R′X ,1 \V2 and

R′Y,2 = R′Y,1. While there may be two vertices in IY ∩V0, we know that each of these

already has one neighbour in X , and therefore can have only one neighbour in V1 \V0.

Hence, |IX ∩V1| ≤ |IY ∩V0| ≤ 2. Iterating these steps, we can see that if we can bound

the expected number of steps t until (IX ∪ IY )∩Vt = /0, then the expected increase in

Hamming distance is at most 2t. We will now obtain a bound on the number of steps

required, as a function of ∆ and λ.

We wish to obtain a lower bound on the probability that (IX ∩ IY )∩ (Vt \Vt−1) = /0.

Without loss of generality, assume that t is even. We assign a weight w(I) = λ|I| to each

independent set. By the definition of the stationary distribution, the probability of any

given set I being selected is proportional to w(I). However, the proportion so assigned

to independent sets of both R′X ,0 and R′Y,0 will be different in the two distributions. Let

Z(IX \Vt) be the total weight of all independent sets of IX \Vt (Z is very much like

the partition function, but applied only to a subset of the vertices of G). If IY ∩ (Vt \
Vt−1) = /0, then Z(IY \Vt) = Z(IX \Vt). Otherwise, note that R′Y,t+1 ⊆R′X ,t , and therefore

Z(IY \Vt) ≤ max{λ,1}2Z(IX \Vt). There are at most (∆− 1)2 ways of choosing two

vertices from Vt that satisfy the conditions of an independent set. There are also at

most 2∆− 2 ways of choosing a single vertex, and one way of choosing none. The

total weight of independent sets where |IY ∩Vt |= 2 is at most

(∆−1)2 max{λ,1}2Z(IX \Vt),

the total weight of those where |SY ∩Vt |= 1 is at most

(2∆−2)max{λ,1}Z(IX \Vt)

≤ (2∆−2)max{λ,1}2Z(IX \Vt),

and the total weight of those where |SY ∩Vt |= 0 is

Z(IX \Vt)

≤ max{λ,1}2Z(IX \Vt).

There are two ways we can reach a time t such that |IY ∩Vt |= 0:
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1. |IX ∩Vt−1|= 2. The probability that |IY ∩Vt |= 0, given that |IX ∩Vt−1|= 2, is at

least

Z(IX \Vt)
((∆−1)2 +2∆−2+1)max{λ,1}2Z(IX \Vt)

=
1

∆2 max{λ,1}2 .

2. |IX ∩Vt−1| = 1. In this case, there is some time s, for which |IY ∩Vs| = 1 and

|IY ∩Vs−1|= 2 (assuming again that s is even - if not then the roles of IX and IY
are reversed). The probability that |IY ∩Vs| = 1, given that |IX ∩Vs−1| = 2, is at

least

(2∆−2)max{λ,1}Z(IX \Vs)
∆2 max{λ,1}2

=
2∆−2

∆2 max{λ,1}

≥ 1
∆max{λ,1}

(provided ∆ ≥ 2),

and the probability that |IY ∩Vt |= 0, given that |IY ∩Vt−1|= 1, is at least

Z(IX \Vt)
(2∆−1)max{λ,1}Z(IX \Vt)

=
1

(2∆−1)max{λ,1}
.

The time t is therefore stochastically dominated by either a geometrically dis-

tributed random variable with parameter at least 1
∆2 max{λ,1}2 , or by the sum of two

geometrically distributed random variables with parameters at least 2
∆max{λ,1} and

1
(2∆−1)max{λ,1} respectively, whichever occurs first.

E[t]≤ min{∆
2 max{λ,1}2,(3∆−1)max{λ,1}}

≤ (3∆−1)max{λ,1} (again assuming ∆ ≥ 2).

Now we can bound the ratio β of d(Xt ,Yt) and E[d(Xt1,Yt+1)], and thus apply The-

orem 2.15 to bound the mixing time.

Theorem 5.10. The mixing time of M ′
` on claw-free graphs satisfying the boundary

condition satisfies

τ(ε)≤ n log(nε−1)
|R\∂R|− (3∆−1)λ̄|∂R|

,

provided ∆ ≥ 2 and |R\∂R|> (3∆−1)λ̄|∂R|.
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Proof. Combining Equation (5.4) and Lemma 5.9, we obtain the following bounds on

the expected change in distance and the contraction ratio β:

E[d(Xt+1,Yt+1)−d(Xt ,Yt)] =
δ|∂R|− |R\∂R|

n

≤ (3∆−1)λ̄|∂R|− |R\∂R|
n

⇒ E[d(Xt+1,Yt+1)]≤ 1+
(3∆−1)λ̄|∂R|− |R\∂R|

n
since d(Xt ,Yt) = 1.

Therefore, in the context of the path coupling lemma, Lemma 2.14, we have the fol-

lowing bound on the contraction ratio β:

β ≤ 1+
(3∆−1)λ̄|∂R|− |R\∂R|

n

⇒ 1−β ≥ |R\∂R|− (3∆−1)λ̄|∂R|
n

.

Therefore, by Theorem 2.15, the mixing time of M ′
` satisfies

τ(ε)≤ log(Dε−1)
1−β

≤ log(nε−1)(n−|R|)
|R\∂R|− (3∆−1)λ̄|∂R|

.

If we have |R \ ∂R| > (3∆− 1)λ̄|∂R|, then this ensures that the expected distance de-

creases, and hence that β < 1 and we can apply Theorem 2.15.

The bound given by Theorem 5.10 applies for the Markov chain M ′
` which per-

forms block moves. We now use the comparison theorem, Theorem 2.28, to show that

the mixing time of the single-site chain MCF is O(n2) on lattice graphs.

Lemma 5.11. The mixing time of the lazy form of MCF on claw-free graphs satisfying

the boundary condition satisfies

τ(ε)≤ |R\∂R|2λ̄
2(∆−1)

[
2(n−|R|) logn

(|R\∂R|− (3∆−1)λ̄|∂R|)(logn− log2)

]
(log(1/ε)+n).

Proof. Let M be the lazy version of MCF , and let M ′ = M ′
` . Let P′ be the transition

matrix of M ′. We use the canonical paths of Section 5.1 to construct a canonical path

for every pair of independent sets x,y which are connected by a single transition of

M ′
` . Then we define the {M ,M ′}-flow f as follows:

f (γ) = π(x)P′(x,y) if ∃x,y ∈ Ω such that γ = γxy

f (γ) = 0 if there is no x,y ∈ Ω for which γ = γxy.
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Now we can compute the congestion of f . By construction, r((z,w),γ) ≤ 1 for

every canonical path γ, and |γ| ≤ |R|. Let πR(x) be the probability of state x conditioned

on its configuration outside the region R, and πV\R(x) be the probability of any state

that agrees with x outside of the region R. Pr(R) denotes the probability that we select

the region R in the first step of M ′
` (note that since R is selected by choosing a vertex

uniformly at random, Pr(R) = 1
n ). Then the following hold:

π(x) = πR(x)πV\R(x) (5.5)

P′(x,y) = ∑
R:x⊕y⊆R

Pr(R)πR(y) (5.6)

Now, the congestion Az,w( f ) satisfies

Az,w( f ) =
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

r((z,w),γ)|γ| f (γ)

=
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

π(x)P′(x,y)|γ|

=
1

π(z)P(z,w) ∑
γ∈P :(z,w)∈γ

∑
R:x⊕y⊆R

πR(x)πV\R(x)Pr(R)πR(y)|γ|

= ∑
R:z,w∈R

1
πR(z)πV\R(z)P(z,w)

πV\R(x)Pr(R) ∑
γ∈P :(z,w)∈γ,x⊕y⊆R

πR(x)πR(y)|γ|

= ∑
R:z,w∈R

Pr(R)
1

πR(z)P(z,w) ∑
γ∈P :(z,w)∈γ,x⊕y⊆R

πR(x)πR(y)|γ|.

Now let us return to the proof of Theorem 5.5. From Equation (5.1), we have

λ
|x|

λ
|y| ≤ λ̄λ

|z∪w|
λ
|ηt(x,y)|.

If we assume that for a region R, z,w ∈ R, and divide through by ZπV\R(z), we get

πR(x)πR(y)≤ λ̄
2 min{πR(z),πR(w)}πR(ηt(x,y))

= nλ̄
2
πR(z)P(z,w)πR(ηt(x,y)).

Therefore

Az,w( f )≤ ∑
R:z,w∈R

Pr(R)
1

πR(z)P(z,w) ∑
γ∈P :(z,w)∈γ,x⊕y⊆R

nλ̄
2
πR(z)P(z,w)πR(ηt(x,y))|γ|

= ∑
R:z,w∈R

Pr(R) ∑
γ∈P :(z,w)∈γ,x⊕y⊆R

nλ̄
2
πR(ηt(x,y))|γ|

= ∑
R:z,w∈R

∑
γ∈P :(z,w)∈γ,x⊕y⊆R

λ̄
2
πR(ηt(x,y))|γ|

≤ |R\∂R|2λ̄
2(∆−1).
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This inequality holds for all choices of z and w, so the overall congestion satisfies

A( f )≤ |R\∂R|2λ̄
2(∆−1).

The mixing time of MCF therefore satisfies

τx(MCF ,ε)≤ A( f )
[

τ(M ′
` ,δ)

log(1/2δ)
+1
]

log
(

1
επ(x)

)
≤ |R\∂R|2λ̄

2(∆−1)
[

τ(MCF ,1/n)
log(n/2)

+1
]
(log(1/ε)+n)

≤ |R\∂R|2λ̄
2(∆−1)

[
2n logn(log(1/ε)+n)

(|R\∂R|− (3∆−1)λ̄|∂R|)(logn− log2)

]
= O(n2),

subject to the restrictions that |R\∂R|> (3∆−1)λ̄|∂R| and ∆ ≥ 2.

5.2.1 Application to the triangular and kagome lattices

We now show that suitable values of ` exist for the triangular and kagome lattices.

Proposition 5.12. M ′
` mixes in time O(n logn) and MCF mixes in time O(n2) on the

triangular and kagome lattices, provided

`≥ 136λ̄+1
3

for the triangular lattice, and

`≥ 55
2

λ̄+1 for the kagome lattice.

Proof. We begin by showing some properties of the triangular lattice that allow us to

find a uniform lower bound on |R\∂R|
|∂R| .

The triangular lattice is such that for any fixed `, and for all but an asymptotically

small number of vertices v, the perimeter and area of the ball of radius ` around a vertex

are uniform. We can easily bound |R\∂R|
|∂R| for these vertices: |R \ ∂R| = 3`(`− 1)+ 1,

and |∂R|= 6`. Some difficulty arises when we consider those balls for which the area

and perimeter are not uniform. These are the balls around vertices that are at distance

less than `+1 from the boundary of the graph G.

Suppose we begin with a vertex v at distance `+ 1 from the boundary of G, and

consider the change in |∂R| and |R\∂R| as we move v towards the boundary. When we

move from distance `+ 1 to distance `, |∂R| decreases, and |R \ ∂R| increases. When

we move from distance ` to distance `− 1, we remove two vertices from ∂R, and we

remove `−1 vertices from R\∂R. As we move closer to the boundary, at each step we
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remove two vertices from ∂R, and an increasing number of vertices from R\∂R. These

changes in ∂R and R \ ∂R apply regardless of whether we move v towards a corner of

G or towards the centre of one side of the boundary of G.

Now, if we consider the ratio |R\∂R|
|∂R| as we move v towards the boundary, we see

that the ratio increases when we move from distance `+ 1 to distance `. As we move

v further towards the boundary, the ratio of the vertices we remove from R\∂R to the

vertices we remove from ∂R increases, and so |R\∂R|
|∂R| either never falls below its initial

value, or is at its lowest when the distance is 0 and v lies on the boundary of G. In this

situation, we have |R \ ∂R| = 3`2−`
2 and |∂R| = 3` + 1. We therefore have a uniform

lower bound on the ratio of the smaller of 3`(`−1)
6` and 3`2−`

6`+2 . We can easily see that the

former is `−1
2 . For the latter, we obtain a bound of

3`2− `

6`+2
≥ 3`2− `

8`
(if `≥ 1)

=
3`−1

8
,

and this is a lower bound on `−1
2 if `≥ 3.

We require that |R\∂R|
|∂R| > (3∆−1)λ̄ to show rapid mixing of M ′

` . For the triangular

lattice, this is satisfied if
3`−1

8
> (3∆−1)λ̄

⇒ ` >
8(3∆−1)λ̄+1

3

=
136λ̄+1

3
since ∆ = 6 for the triangular lattice.

For the kagome lattice, ∆ = 4, and the size of the boundary depends on whether `

is odd or even. If ` is odd, then |∂R|= 4`. If ` is even, then |∂R|= 5`. We know then

that the volume of R\∂R is at least ∑
`−1
i=1 4i, so |R\∂R| ≥ 2`(`−1). We therefore have

|R\∂R|
|∂R|

≥ 2`(`−1)
5`

,

and so M ′
` and MCF are rapidly mixing on the kagome lattice if ` > 55

2 λ̄+1.

Given the difficulty of determining the perimeter and volume of a ball in the

kagome lattice (we only give upper and lower bounds, respectively), we do not

consider the behaviour of the ratio |R\∂R|
|∂R| near the boundary of G. This bound on `

therefore only applies if G is defined on a torus, so that the lower bound on the ratio

is uniform for all vertices. The argument we used to show a uniform lower bound

for the triangular lattice should also apply to the kagome lattice if we are able to find

formulae for the perimeter and volume of balls near the boundary of G.



Chapter 6

Sampling perfect matchings of

bipartite graphs

We have looked at the problem of sampling from all matchings of a general graph,

weighted by a parameter λ, in Chapter 4. However, we are also interested in the prob-

lem of sampling from only the perfect matchings of a bipartite graph. If we can find

an algorithm to uniformly sample perfect matchings, then we can approximate the per-

manent of a 0-1 matrix by considering the matrix as the adjacency matrix of a bipartite

graph and approximately counting the number of perfect matchings of that graph. In

addition, permutation tests in the field of statistics require us to be able to sample ran-

domly from permutations [9]. This, too, is equivalent to sampling perfect matchings

of a bipartite graph.

While we have randomised algorithms for sampling weighted matchings of graphs,

it is not possible to sample perfect matchings using these algorithms, as we saw in

Theorem 4.1.

Recall from Definition 2.1 that a near-perfect matching of a graph G is a matching

that covers all but two vertices of G. In 2003, after decades of research in sampling

perfect matchings, Jerrum, Sinclair and Vigoda showed that it is possible to sample

perfect matchings of bipartite graphs in polynomial time using a Markov chain on

perfect and near-perfect matchings [26]. Rather than weighting near-perfect matchings

by their size, weights are determined by the positions of the two uncovered vertices.

For an appropriate choice of weights, it is possible to sample perfect matchings in a

polynomial number of steps. Simulated annealing is used to approximate the required

weights. With an appropriate cooling schedule, it is possible to approximately count

perfect matchings in time O(n7 log4 n) [2], and given sufficiently close approximations

92
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to the required weights, the time required to sample a perfect matching is O(n4 logn).

In this chapter, we examine a natural Markov chain for sampling perfect matchings

directly. We analyse the mixing time of this chain (the Diaconis chain) in a restricted

class of bipartite graphs that has applications in statistical testing. We show that this

chain is not rapidly mixing. However, we will see in Section 6.5 that the mixing time

of this chain is sub-exponential for graphs that satisfy additional requirements, and that

it is polynomial for a very special case in Section 6.6.

6.1 Truncated data and permutation testing

In this section, we give an overview of permutation testing using non-parametric test

statistics, in order to provide some motivation for investigating the specific classes of

graphs that we will consider in the remainder of this chapter.

Suppose we have two random variables X and Y with some joint distribution (X ,Y ),

and we wish to determine whether X and Y are independent. We can do this by select-

ing a uniformly random sample of n pairs from the joint distribution. Let S = {(Xi,Yi) |
1≤ i≤ n} be our sample. To determine independence, we compute a test statistic f (S),

and compare f (S) against a threshold value (either given by a formula or obtained from

a table of known values). This allows us to obtain a bound on the probability that X and

Y are independent. For the purposes of this section, we consider only non-parametric

test statistics - that is, those in which no assumptions are made on distributions X , Y .

Non-parametric tests are concerned with the relative order of the Xi and Yi values and

not their absolute values. We will also make the simplifying assumption that the Xi

and Yi values are distinct. This assumption is reasonable when we consider real-valued

data.

We may now assume without loss of generality that S is in fact an ordered sequence

of pairs (Xi,Yi), such that the Xi values are in ascending order. Let SY be the sequence

of the ranks of the Yi values in S. SY is therefore some permutation of the integers

1, · · · ,n, and our non-parametric test statistic is some function f of SY .

Suitable non-parametric test statistics (suitable f functions) include Spearman’s

rank correlation coefficient and the Kendall tau coefficient.

Definition 6.1. Let S = {(Xi,Yi)} be a sequence of paired data such that for each 1 ≤
i≤ n, Xi = i, and the Yis are distinct integers from 1 to n. Spearman’s rank correlation
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coefficient, ρ, is given by

ρ = 1− 6∑
n
i=1(Xi−Yi)2

n(n2−1)
.

The Kendall tau coefficient, τ, is given by

τ =
4∑

n
i=1|{(X j,Yj) ∈ S s.t. X j > i,Yj > i}|

n(n−1)
−1.

When we come to interpret f (SY ) to determine whether X and Y are independent,

we compare f (SY ) against the distribution πXY obtained by evaluating f for all possible

sequences SY , that is, all permutations of 1, · · · ,n. If f (SY ) is sufficiently far from the

expected value of this distribution, then we conclude that X and Y are not independent.

The level of confidence we place in our conclusion is determined by tail inequalities

of the distribution πXY .

The assumption that is made in the above paragraph is that our sample is selected

uniformly. If this is the case, then when X and Y are independent, every permutation

SY is equally likely to be selected. If we are unable to sample uniformly, we can still

test for independence, provided we compute the distribution πXY weighted according

to the probability that each SY would be selected, if X and Y were independent.

A particular situation of interest is that of restricted positions. In this situation, for

each Xi in our sample set, there is some set Ji ⊆ {1, · · · ,n}, such that, were X and Y in-

dependent, our sampling methodology could have obtained every pair (Xi,Yj) : j ∈ Ji,

and could not have obtained any pair (Xi,Yj) : j 6∈ Ji. We call the pairs that our method-

ology could have detected observable. Furthermore, the probability of selecting each

observable pair, assuming X and Y are independent, is 1
|Ji| . We call a permutation

Y1, · · · ,Yn an observable permutation if every pair (Xi,Yi) is observable. Under these

conditions, every observable permutation occurs with equal probability, and so to com-

pute suitable threshold values for our test statistic f , we wish to determine the distri-

bution of f over all observable permutations.

We can now see a connection between observable permutations and perfect match-

ings of bipartite graphs. Let G = (V1,V2,E) be a bipartite graph with |V1| = |V2| = n,

and let

E = {(ui,v j) | ui ∈V1,v j ∈V2, j ∈ Ji}.

That is, the edge (ui,v j) exists in G if and only if the pair (Xi,Yj) is observable. If

every pair (Xi,Yj) in a permutation is observable, then the set of the corresponding

edges M = {(ui,v j)} is a matching of G, and since each X and Y value is used exactly

once, M is a perfect matching. Conversely, if we have a perfect matching M of G, then
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every edge (ui,v j) ∈ M corresponds to an observable pair, each vertex in V1 and V2 is

used exactly once, and so the sequence [Y1, · · · ,Yn] is an observable permutation.

The problem of finding observable permutations is therefore equivalent to the prob-

lem of sampling perfect matchings in a bipartite graph, and the number of observable

permutations is equal to the permanent of the adjacency matrix of the corresponding

bipartite graph. This means that the problem of counting observable permutations is

#P-complete.

For large datasets, the number of observable permutations can be very high (in-

deed, if every permutation is observable, there are n! permutations), and it is infeasible

to enumerate every observable permutation. It is not necessary, however, to consider

every observable permutation: if we can estimate the value of f over a sufficiently

large number of almost-uniformly sampled observable permutations, we can still ob-

tain useable threshold values. This form of permutation test is also known as a random

permutation test [34].

In this chapter, we consider two specific types of data with restricted positions:

doubly truncated data and singly truncated data.

Definition 6.2. A sample space is referred to as doubly truncated if, for every 1≤ i≤ n,

the range of Yi for observable samples (Xi,Yi) is

Ji = {ai, · · · ,bi},

for some pair ai,bi ∈ N, with 1 ≤ ai ≤ bi ≤ n.

A sample space is referred to as singly truncated if, for every 1 ≤ i ≤ n, the range

of observable samples (Xi,Yi) is

Ji = {1, · · · ,bi},

for some bi ∈ N, with 1 ≤ bi ≤ n.

The reference to sample spaces in Definition 6.2 is a reflection of the fact that

truncation is not a property of individual samples, nor necessarily of the underlying

joint distribution. Rather, it is a property of the set of samples that our experimental

methodology allows. Truncation may occur as a result of limitations in equipment (in

which case the sample space is truncated but the underlying distribution is not) or, as in

the example concerning number of children and birth order given by Diaconis, Graham

and Holmes, as a result of some pairs (Xi,Yi) being meaningless in the context of the

experimental setup (in which case the underlying distribution itself is truncated) [9].
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Let G = (V1,V2,E) be a bipartite graph with |V1| = |V2| = n, and let ≤ be an or-

dering on V2. G corresponds to a doubly-truncated sample space if and only if the

following condition is satisfied:

∀u∀v,v1,v2 s.t. v1 ≤ v ≤ v2,{(u,v1),(u,v2)} ⊆ E ⇒ (u,v) ∈ E. (6.1)

This condition is equivalent to saying that each row of the adjacency matrix of G

contains a single contiguous block of 1s, and that all other entries are 0. Graphs that

satisfy this property are known as convex bipartite graphs [29]. We will consider the

special case of singly truncated data, for which results are already known [9], in Section

6.6.

6.2 A Markov chain for perfect matchings

We now define a Markov chain MPM, due to Diaconis, Graham and Holmes [9], whose

state space is the set of perfect matchings of a graph G. Current algorithms using sim-

ulated annealing use a version of the Jerrum-Sinclair chain that samples from perfect

and near-perfect matchings; MPM will sample only perfect matchings. We will show

that the state space of MPM is not connected for all bipartite graphs; however, it does

connect the state space in the case of the special bipartite graphs with which we are

concerned.

Definition 6.3. Let G = (V1,V2,E) be a bipartite graph with |V1|= |V2|= n and |E|=
m. Define the transitions of the Markov chain MPM on G as follows: Suppose that at

time t, we have a perfect matching Xt of G.

1. Choose two vertices u1 and u2 of V1 uniformly at random. Let (u1,v1) and

(u2,v2) be the edges in Xt incident to these vertices.

2. Let M be

M = Xt ∪{(u1,v2),(u2,v1)}\{(u1,v1),(u2,v2)}.

3. If M ⊆ E, then M′ is a perfect matching, and set Xt+1 = M. Otherwise, set

Xt+1 = Xt .

We call this a transposition move, and will refer to transposing pairs of edges. Such

moves are also referred to as Diaconis moves.



Chapter 6. Sampling perfect matchings of bipartite graphs 97

Note that the transition probability is non-zero exactly when {(u1,v1),(u2,v2)} ⊆
M, and {(u1,v1), (u1,v2), (u2,v2), (u2,v1)} is a 4-cycle in G. Every such valid transi-

tion has the same probability: P(M,M′) = 2
n2 . u1 and u2 are chosen with replacement,

which means there is a minimum self-loop probability of 1
n for all states. We will use

this property in Section 6.6.

Diaconis, Graham and Holmes showed that if the adjacency matrix of G satisfies

Condition 6.1, then the set of all perfect matchings in G is connected by this type of

transition [9]. Attempts to show rapid mixing using canonical paths also naturally lead

to a proof that the state space is connected, as we will see in Section 6.3.

The state space of perfect matchings of general bipartite graphs is not connected

by MPM. Consider the graph consisting of a single 6-cycle. This graph is bipartite and

has two perfect matchings, but as it contains no 4-cycles, no transitions are possible

and so the perfect matchings cannot be connected by transposition moves.

6.3 Adjacency matrices with contiguous rows only

Let G be a convex bipartite graph (that is, a graph satisfying Condition (6.1)). Given

two perfect matchings of G, M and M′, the symmetric difference M⊕M′ consists of

a set of even-length alternating cycles. This suggests that a canonical paths argument

could be used to bound the mixing time of a Markov chain on perfect matchings.

Strictly M⊕M′ is a set of edges. However, it will be useful to consider a cycle in terms

of its set of vertices. Let V (M⊕M′) =
S

(u,v)∈M⊕M′{u,v} be the set of all endpoints of

the edges in M⊕M′.

Lemma 6.4 will show that, given an alternating cycle, it is always possible to find

a pair of edges that can be transposed, yielding a smaller cycle. This immediately

implies that the state space of MPM is connected.

Lemma 6.4. Given a two perfect matchings M and M′ of a convex bipartite graph

G = (V1,V2,E), and a cycle C of length `≥ 6 in M⊕M′, there exists a 4-cycle C′ such

that three edges of C′ are edges of C, and C⊕C′ is a cycle of length l−2.

Proof. Let v0 be the smallest vertex of V2 in V (C), and a and b the two vertices of V2

such that, for some vertices c,d ∈V1, (c,v0), (c,a), (d,v0) and (d,b) are edges of C.

If a < b, then by Condition (6.1), (d,a) ∈ E, and the edges (c,v0), (d,v0), (d,a)

and (c,a) form the 4-cycle C′. Likewise, if a > b, then (c,b)∈ E, and the edges (c,v0),
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(d,v0), (d,b) and (c,b) make up C′. The case a = b cannot occur, as this would imply

C is already of length 4.

Corollary 6.5. The state space of perfect matchings in any convex bipartite graph G

is connected by transposition moves.

Proof. Given two perfect matchings M and M′ in G, and assuming M⊕M′ contains

an alternating cycle of length at least 6, Lemma 6.4 allows us to find a 4-cycle C′ such

that |M⊕M′⊕C′|= |M⊕M′|−2. If there is no such cycle, then let C′ be any 4-cycle

in M⊕M′. C′ corresponds to a valid transition either from M or from M′. Repeating

this process gives a sequence of transitions connecting M and M′.

Corollary 6.5 provides an obvious set of canonical paths connecting states of MPM.

However, for any cycle C of length at least 6, the cycle C′ that we obtain by applying

Lemma 6.4 contains only three edges of C, and the remaining edge is not necessarily a

member of M⊕M′. We need to modify at least one edge that is not in M⊕M′ in order

to move from M to M′, unless M⊕M′ consists entirely of 4-cycles. This extra edge

would require additional information to be supplied when we try to recover M and M′

from the encoding ηt later, and such additional information would increase the bound

on the mixing time.

In fact, we can easily see that there are cycles that require the use of at least three

extra edges to process in a path from M to M′, regardless of the choice of canonical

paths. Figure 6.1 shows the steps required to process a 12-cycle. Edges shown as

dashes are those that are implied by the ordering of the vertices, but which are not

in M⊕M′, and there are no additional edges between the vertices of the cycle that

are not shown. From the initial state (the bold edges), we may transpose either the 4-

cycle BbCc, or DdEe. Either choice adds two additional edges. Suppose we transpose

BbCc. In the second step, we transpose AaBb, which leaves only one additional edge

remaining (we could instead transpose DdEe, which would add two more additional

edges, giving four in total). We are now forced to transpose DdEe, and have three

additional edges. It is possible that cycles could be constructed that require arbitrary

numbers of additional edges, and repeatedly applying Lemma 6.4 does not necessarily

lead to the most efficient path. The paths given by Lemma 6.4 are therefore not a good

candidate for bounding congestion. Furthermore, as we will see in Theorem 6.6, it is

possible to construct graphs that satisfy Condition (6.1) that can be shown to have high

congestion.
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Figure 6.1: Processing a 12-cycle.



Chapter 6. Sampling perfect matchings of bipartite graphs 100

2

3

4

5

6

7

8

9

101

Figure 6.2: The graph (V1,V2,EH1∪EJ1) for k = 3.
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Figure 6.3: The graph (V1,V2,EH2∪EJ2) for k = 3.

In Section 6.5, we will consider a further restricted class of graphs, and give a

method for finding canonical paths that require at most a logarithmic number of ad-

ditional edges, yielding a sub-exponential bound on the mixing time for this more

restricted class of graphs.

We now show that there exist graphs whose adjacency matrices have contiguous

rows of 1s, for which the mixing time of MPM is exponential. We do this by con-

structing a family of such graphs and showing that their conductance is exponentially

small.

Theorem 6.6. The mixing time of MPM is exponential in the worst case, for the class

of graphs satisfying Condition (6.1).

Proof. We will construct a family of graphs, and show that their conductance is expo-

nentially small, and therefore the mixing time is exponential.

For any integer k ≥ 1, let V1 = {u1, . . . ,u6k+2}, and V2 = {v1, . . . ,v6k+2}. Now
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Figure 6.4: A graph with contiguous rows and high congestion.

define the following edge sets:

EH1 =
[

0≤i<k

{(u3i+1,v3i+2),(u3i+1,v3i+3),(u3i+2,v3i+2),

(u3i+2,v3i+3),(u3i+2,v3i+4),(u3i+3,v3i+3),(u3i+3,v3i+4)}

EH2 =
[

k≤i<2k

{(u3i+2,v3i+2),(u3i+2,v3i+3),(u3i+3,v3i+2),

(u3i+3,v3i+3),(u3i+3,v3i+4),(u3i+4,v3i+3),(u3i+4,v3i+4)}

EJ1 = {(u3k+1,v3k+1)}∪
[

0≤i<k

{(u3i+1,v3i+1)}

EJ2 = {(u3k+1,v3k+2)}∪
[

k≤i<2k

{(u3i+4,v3i+5)}

EW =
[

1≤i<6k+3

{(u6k+2,vi)}

E = EH1∪EH2∪EJ1∪EJ2∪EW .

EH1 and EH2 define two sets of hexagons, each with an extra edge to satisfy Condi-

tion (6.1). Each hexagon has exactly three perfect matchings, so the graph (V1,V2,EH1)

has 3k perfect matchings, as does the graph (V1,V2,EH2). EJ1 and EJ2 define edges con-

necting the hexagons of EH1 and EH2. Figure 6.2 shows the graph (V1,V2,EH1∪EJ1)

for k = 3, with the vi vertices labelled. Note that there is exactly one perfect matching

of this graph. Figure 6.3 shows the graph (V1,V2,EH2∪EJ2) for k = 3, also with the vi

vertices labelled. These two graphs differ only in the labelling of the vi vertices, and
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each has a unique perfect matching.

EW adds a set of “whisker” edges connecting u6k+2 to every vertex in V2. E is the

union of these sets. The graph G = (V1,V2,E) (again, for k = 3) is shown in Figure

6.4, also with the vi vertices labelled. Vertex u6k+2 is labelled W . It is straightforward

to verify that Condition (6.1) is satisfied for each of the ui vertices in this graph.

Any perfect matching must contain exactly one of the whisker edges connected to

W . Consider the case when (W,vx) exists in a perfect matching of G and x ≤ 3k + 1.

All the edges in EJ2 must be present, and so there is exactly one configuration for the

edges EH2 ∪EJ2. Similarly, if x ≥ 3k + 2 there is exactly one configuration for the

edges EH1∪EJ1.

When (W,v3k+1) or (W,v3k+2) is present in a perfect matching, there is exactly one

configuration for the remaining edges. Call these two states a and b respectively. Note

also that there is a unique transition, namely a → b, between a state where x ≤ 3k +1

and one where x ≥ 3k +2.

If (W,v1) is present in a matching, then the edges in EJ1 cannot be present, and

so there are 3k possible configurations of EH1. Likewise, if (W,v6k+2) is present, then

there are 3k possible configurations of EH2. This gives a lower bound on the total

number of perfect matchings: |Ω| ≥ 2(3k). Therefore, for any state s, π(s)≤ 1
2(3k) .

We will now show that the conductance is exponentially small. Let S be the set

of perfect matchings where x ≤ 3k + 1. By symmetry, note that |S| = |Ω \ S|, and so

π(S) = π(Ω\S) = 1
2 . Thus, the conductance is no greater than

Φ ≤
∑

x∈S,y6∈S
π(x)P(x,y)

π(S)

≤ 4π(a)
(2(6k +2))2

≤ 1
2(3k)(6k +2)2 .

Therefore by Theorem 2.22, the spectral gap is 1− |λ1| ≤ 1
2(3k)(6k+2)2 , and so by

Theorem 2.21 the mixing time is at least

τ(ε)≥ |λ1|
2(1−|λ1|)

log
(

1
2ε

)
≥ 2(3k)(6k +2)2−1

2
log
(

1
2ε

)
.
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Figure 6.5: The adjacency matrix of (V1,V2,E) for k = 6. The entries in bold

face correspond to the edges of one perfect matching.

6.4 Contiguous rows and columns

We will now attempt to find a further restricted class of graphs for which MPM is

rapidly mixing. Suppose that as well as an ordering on V2, the vertices in V1 are also

ordered.

Definition 6.7. We say that the adjacency matrix of a bipartite graph G = (V1,V2,E)

has contiguous rows and columns if we have an ordering on both V1 and V2, Condition

(6.1) holds, and additionally,

∀v∀u,u1,u2 s.t. u1 ≤ u ≤ u2,{(u1,v),(u2,v)} ⊆ E ⇒ (u,v) ∈ E. (6.2)

Informally, Definition 6.7 means that any row or column of the adjacency matrix of

G contains a single contiguous block of 1s, and all other entries are 0. Graphs satisfying

both Condition (6.1) and Condition (6.2) are also referred to as doubly convex [29].

It is clear that the counterexample from Section 6.3 does not fit into this more

restricted class of graphs. However, we can still find a family of graphs for which the

mixing time of MPM is exponential.

Theorem 6.8. The worst-case mixing time of MPM is exponential for graphs whose

adjacency matrices have contiguous rows and columns.

Proof. As before, we define a family of graphs and show that the conductance is expo-

nentially small. For k > 2, let V1 = {u1, . . . ,u2k−1} and V2 = {v1, . . . ,v2k−1}. The edge
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set is defined as:

E1 =
[

1≤i≤k
max(k−i,1)≤ j<k

{ui,v j}

E2 =
[

0≤i<k
k< j≤min(2k−i,2k−1)

{uk+i,v j}

E = E1∪E2.

Due to the number of edges, it is easier to see the structure of G in its adjacency

matrix. Figure 6.5 shows the adjacency matrix of G for k = 6, with the entries corre-

sponding to the edges of one perfect matching shown in bold face.

For a given matching M, consider the edge incident to uk. This edge corresponds

to a 1-entry in row k of the adjacency matrix. Suppose (uk,vx) ∈ M for some x.

If x > 1, then (uk−1,v1) must be in M. Generally, for every 1 ≤ y < min(x,k),

(uk−y,vy) ∈ M. Similarly, for every max(x,k) < y < 2k, (u3k−y,vy) ∈ M. It follows

that there is exactly one perfect matching M such that (uk,vk) ∈M. There are 2(k−1)

transitions that can be made from this state: k− 1 to states where x < k, and k− 1 to

states where x > k.

Observe that any transition involves four 1-entries in the adjacency matrix, and that

these entries must form the corners of a rectangle. It is not possible to move directly

from a state where x < k to one where x > k, because there is no choice of four 1-entries

such that at least one is in a column left of column k, at least one is in a column right

of column k, and the four entries are the corners of a rectangle. There is therefore no

path between any state where x < k to any state where x > k that does not pass through

the unique state where x = k.

For each y such that x < y ≤ k, given the edges incident to the vertices v1, . . . ,vy−1

(that is, the entries in columns 1 to y−1), there are exactly two possible edges incident

to vertex vy. This means that there are 2k−x perfect matchings for any 1 ≤ x ≤ k, and

therefore 2k−2 perfect matchings where x < k. Due to the symmetry of the adjacency

matrix, it immediately follows that there are 2k−2 perfect matchings where x > k.

We are now in a position to compute the conductance. Let S be the set of per-

fect matchings with x ≤ k. |S| = 2k − 1, |Ω| = 2k+1 − 3, and |Ω \ S| = 2k − 2. The
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conductance is

Φ ≤
∑

x∈S,y6∈S
π(x)P(x,y)

π(S)

=
2(2k+1−3)(k−1)

(2k−1)2(2k−1)(2k+1−3)

=
2(k−1)

(2k−1)2(2k−1)
,

where we are using the fact that n = (2k−1)2 in our substitution for π(x).

Then by Theorem 2.22 the spectral gap is 1−|λ1| ≤ 4(k−1)
(2k−1)2(2k−1) , and by Theorem

2.21 the mixing time satisfies

τ(ε)≥ |λ1|
2(1−|λ1|)

log
(

1
2ε

)
≥ (2k−1)2(2k−1)−4(k−1)

(2k−1)2(2k−1)
(2k−1)2(2k−1)

8(k−1)
log
(

1
2ε

)
=

(2k−1)2(2k−1)−4k +4
8k−8

log
(

1
2ε

)
.

6.5 Monotonic matrices

We now restrict the class of graphs we wish to sample from even further. This new

class of graphs still encompasses many of those associated with doubly truncated data,

such as the quasar data considered by Efron and Petrosian [16]. As in Section 6.4,

we require that there is an ordering on both V1 and V2. In the adjacency matrix of G,

we now require that for all i < j ≤ n, the leftmost 1 in row j is no further left than

the leftmost 1 in row i, and that the rightmost 1 in row j is no further left than the

rightmost 1 in row i. Formally, in addition to Condition (6.1), we require that for all

1 ≤ i ≤ j < n:

min
(ui,vk)∈E

vk ≤ min
(u j,vk)∈E

vk (6.3)

max
(ui,vk)∈E

vk ≤ max
(u j,vk)∈E

vk. (6.4)

Note that these properties automatically hold for columns as well as rows. We refer

to adjacency matrices satisfying Equations (6.1), (6.3) and (6.4) as monotonic because

the function f (i) = min
(ui,v j)∈E

v j is monotone, as are max
(ui,v j)∈E

v j, min
(u j,vi)∈E

u j and max
(u j,vi)∈E

u j.
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Diaconis, Graham and Holmes also considered matrices of this form, referring to

them as monotone. They showed that perfect matchings of graphs with monotone

adjacency matrices are connected under transpositions of adjacent rows and columns

in the matrix [9].

This is a further restriction to the case of contiguous rows and columns that we con-

sidered in Section 6.4. While we have been unable to show that MPM is rapidly mixing

for this class of graphs, we can at least show that its mixing time is sub-exponential.

Theorem 6.9. The mixing time of MPM on graphs with monotonic adjacency matrices

satisfies

τ(ε)≤ 2n3m2lgn(2logε
−1 +n logn).

We will prove Theorem 6.9 by using canonical paths to bound the congestion. For

each pair of states I and F , we will define a canonical path γIF from I to F using the

transitions of the Markov chain. The symmetric difference I⊕F consists of a set of

even length alternating cycles. Given I and F , we will process each cycle C in turn, in

some deterministic order (for example, increasing order of smallest vertex). We require

that the number of paths using each transition of the chain is not too large. Before

we proceed with the proof of Theorem 6.9, however, we will prove some additional

properties of graphs with monotonic adjacency matrices.

Lemma 6.10 will prove a property of these graphs that is useful for constructing

canonical paths.

Lemma 6.10. Let G = (V1,V2,E) be a bipartite graph with a monotonic adjacency

matrix A. Suppose that (a,b) and (c,d) are edges of G. If a < c and b > d, then (a,d)

and (c,b) are also edges of G.

Proof. Consider row a of A. From Condition (6.3), we know that min
(a,vi)∈E

vi ≤ d, and

since (a,b) ∈ E, that max
(a,vi)∈E

vi ≥ b. Therefore

min
(a,vi)∈E

vi ≤ d ≤ max
(a,vi)∈E

vi,

and so (a,d) ∈ E.

Applying Condition (6.4) in the same way to row c shows that (b,c) ∈ E.

For a cycle C, define a pair of parallel edges as two edges (a,b) and (c,d) of G,

such that (a,d) and (b,c) are edges present in C. Furthermore, we require that there is

a path from a to b along the cycle C that contains neither c nor d, and that there is a
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a

b

d

c

a d

c b

Figure 6.6: Above, a pair of parallel edges bisecting a cycle C. Below, a

pair of crossing edges - note that either (a,d) or (b,c) exists in any path

connecting a to b through the edges of C.

path from c to d along the cycle C that contains neither a nor b. This ensures that the

edges are “parallel” rather than crossing, as shown in Figure 6.6.

We will now show that a pair of parallel edges exists that bisects any cycle, i.e. by

removing (a,d) and (b,c), and adding (a,b) and (c,d), two cycles are formed whose

lengths differ by no more than 2. Since G is bipartite, it is not possible to exactly bisect

a cycle whose length is not a multiple of 4, so we must allow the new cycles to differ

slightly in length.

Lemma 6.11. Let C be a cycle of length ` ≥ 6 in a graph with a monotonic ad-

jacency matrix. There exists a pair of parallel edges (a,b) and (c,d), such that

C∪{(a,b),(c,d)} \ {(a,d),(b,c)} contains the edges of a pair of vertex-distinct cy-

cles, each of length no greater than `
2 +1. (We also permit the case where the cycle is

of length 6 and there is only one remaining cycle - in this case the result is a special

case of Lemma 6.4.)

Proof. Let the edges of C be (u0,v0), (u0,v1), (u1,v1), (u1,v2), . . . , (u `
2−1,v `

2−1),

(u `
2−1,v0), such that u0 is the smallest vertex of V1 in V (C), and some uα is the largest.

For convenience, indices will be computed modulo `
2 throughout this proof.

Define δ =
⌊

`
4

⌋
.

Consider a pair of edges (ui,vi) and (ui+δ,vi+δ), and examine the signs of ui−ui+δ

and vi − vi+δ. If exactly one of these is positive, then Lemma 6.10 implies that the

parallel edges (ui,vi+δ) and (ui+δ,vi) exist and bisect C.
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If this is not the case, then consider the next pair of edges (ui,vi+1) and

(ui+δ,vi+δ+1) and examine the signs of ui− ui+δ and vi+1− vi+δ+1. Only one of the

signs (that of vi− vi+δ) can have changed, if any. The next pair of edges is (ui+1,vi+1)

and (ui+δ+1,vi+δ+1). Again, only one of the signs (this time, that of ui − ui+δ) can

have changed.

Now, beginning with (u0,v0) and (uδ,vδ), we follow a pair of edges around the

cycle. At some point, we reach the edges (uα,vα) and (uα+δ,vα+δ). Since u0 is the

smallest vertex of V1 ∩V (C) and uα is the largest, the sign of ui − ui+δ must have

changed at some point during this process, and since only one sign can change at any

step, there must be a point at which exactly one sign is positive.

Therefore there is some pair of edges (ui,v j) and (ui+δ,v j+δ) in C such that the

parallel edges (ui,v j+δ) and (ui+δ,v j) are present in G and bisect C.

The following properties of matchings and cycles will also be useful in proving

Theorem 6.9:

Lemma 6.12. In any graph G = (V,E), let C ⊆ E be a set of disjoint cycles.

1. If C′ is another set of disjoint cycles in G, and for any vertex v ∈V

degC(v) = degC′(v) = 2 ⇒∃u | (u,v) ∈C∩C′ (6.5)

then C⊕C′ is a set of disjoint cycles.

2. If M is a perfect matching of G, and for any v ∈V

degC(v) = 2 ⇒∃u | (u,v) ∈C∩M (6.6)

then C⊕M is a perfect matching.

Proof. First, note that for every vertex v in V , degC(v) ∈ {0,2}, and degM(v) = 1.

1. For each vertex v ∈ V , consider degC(v) and degC′(v). If both are zero, then

degC⊕C′(v) = 0. If exactly one is 2, then the two incident edges are present in

C⊕C′, and so degC⊕C′(v) = 2. If both are 2, then there are two possibilities:

there is a single common edge, in which case that edge is not present in C⊕C′

and degC⊕C′(v) = 2; or there are two common edges, in which case both cancel

out, and degC⊕C′(v) = 0. Note that Condition (6.5) guarantees there is at least

one common edge.

Since the degree of every vertex of C⊕C′ is even and at most 2, each connected

component is Eulerian and has a simple Eulerian cycle. Therefore, C⊕C′ is a

set of simple disjoint cycles.
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2. For any vertex v ∈V , assume degC(v) = 0. There is exactly one edge (u,v) ∈ M

incident to v, so degC⊕M = 1. Now assume degC(v) = 2. By Condition (6.6),

the unique incident edge (u,v) is also in C, so it is not in C⊕M. There is a

second edge (u′,v) ∈ C that is incident to v. This edge is in C⊕M, and so

degC⊕M(v) = 1.

Since the degree of every vertex in C⊕M is 1, C⊕M is a perfect matching.

We now complete the proof of Theorem 6.9.

Proof of Theorem 6.9. For any pair of perfect matchings I and F , we define a canonical

path from I to F . To do this, process each cycle in I⊕F in turn, in order of smallest

vertex in V1. To process each cycle C, we perform the following procedure:

1. Find a pair of parallel edges (a,b) and (c,d) bisecting C. Let P = {(a,b), (c,d),

(a,d), (b,c)} be the 4-cycle formed by these edges. If C is of length 4 then let

P = C.

2. If (a,d) and (b,c) are present in I, then transpose the quadrilateral formed by P.

This forms up to two smaller cycles C1 and C2, each including one of the parallel

edges. Recursively process cycles C1 and C2, beginning with whichever contains

the smallest vertex in V1.

3. If (a,d) and (b,c) are present in F , then process C1 and C2 beginning with

whichever does not have the smallest vertex in V1, and transpose the quadri-

lateral P after processing C1 and C2.

Observe that the order in which a given cycle C is processed in the path from I to

F is exactly the reverse of the order in which C is processed in the path from F to I.

This will be important for recovering I and F from the encoding ηt later.

At any point in processing C, we will have a “stack” of 4-cycles that have been

transposed. Let P∗ be the symmetric difference of these for the cycle (and sub-cycles)

currently being processed, but not the one corresponding to the current transition. If

the cycle is of length `, then there are at most blg`c−1 such sets, one for each level of

recursion.

We now need to bound the number of paths using each transition t = M →M′. For

each pair of states I and F , we can construct a function

ηt(I,F,P∗) = I⊕F ⊕P∗⊕ ((M∩M′)∪{(a,d),(b,c)}).
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At each level, P is a 4-cycle that has two edges in common with I⊕F . Therefore,

we can apply the first part of Lemma 6.12, and so I⊕F⊕P∗ is a set of disjoint cycles.

Every vertex of M∩M′ has degree 1, except for the four vertices a, b, c, and d, which

have degree 0. Thus, ((M ∩M′)∪ {(a,d),(b,c)}) is a perfect matching. Also note

that (a,d) and (b,c) are edges in I⊕F ⊕P∗. Therefore, ((M∩M′)∪{(a,d),(b,c)})
satisfies Condition (6.6), and so by the second part of Lemma 6.12, ηt is a perfect

matching.

Now, given ηt , P∗, and the edges (a,d) and (b,c), it is easy to reconstruct I⊕F ,

and therefore the order in which cycles are processed. We can find out which cycle C

is currently being processed by looking at the vertices of the edges that t changes (we

introduce extra edges while processing C, but never extra vertices). ηt agrees with I

for those cycles that have been fully processed, and with F for those that have not yet

been processed. Any edges in ηt that do not share any vertices with the cycles in I⊕F

are present in both I and F .

The preceding observation about ηt allows us to reconstruct I and F for all edges

except those of the current cycle C. In order to reconstruct I and F for these edges,

we need to consider the transition t. There are two possible perfect matchings of the

cycle C - call these α and β. One of α and β is a subset of I, and the other is a subset

of F . To determine which is a subset of I, and therefore recover I and F , assume

α ⊆ I, and decompose the cycle as before. This gives a sequence of transitions, and if

t belongs to this sequence then α ⊆ I and β ⊆ F . Otherwise, the reverse of t - that is,

t ′ = M′→ M - belongs to the sequence of moves, so β ⊆ I and α ⊆ F . While it is not

strictly necessary, the fact that the path from α to β is exactly the reverse of that from

β to α makes it easier to see that the two paths do not share any transitions.

Thus, we can recover I and F from t, ηt , P∗, and the two edges (a,d) and (b,c).

Each 4-cycle in P∗ can be uniquely identified by two of its edges (since G is bipartite),

so there are at most |Ω|m2lgn paths using each transition. The length of each path is at

most n transitions.

This allows us to bound the congestion of MPM:

ρ(Γ) = max
t=(u,v)

{
1

π(u)P(u,v) ∑
x,y : γxy uses t

π(x)π(y)|γxy|

}

≤ 1
2

n3m2lgn.
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Therefore, by Lemma 2.24, the mixing time satisfies

τx(ε)≤ 2ρ(2logε
−1 + logπ(x)−1)

≤ n3m2lgn(2logε
−1 +n logn)

as required.

It is important that we can find a pair of parallel edges. If we can find only a single

edge bisecting C, then it is possible to process the cycle in a similar way, but not to

find the encoding required for the canonical paths argument. Indeed, it is possible

to find such an edge even in the case with contiguous rows only. However, we have

already seen that MPM has exponential mixing time for graphs whose matrices have

only contiguous rows.

6.6 Left-aligned matrices

Finally, we consider the case where the 1-entries of each row of the adjacency ma-

trix are aligned to the left. This corresponds to the problem of sampling permutations

where every sample yi lies in the range [1,bi] - that is, where the data are singly trun-

cated. We can use coupling to show that MPM is rapidly mixing for these graphs.

Note that there are already known algorithms for sampling permutations of singly

truncated data exactly, and that there is also an exact formula for computing the per-

manent of such matrices [9]. We carry out the analysis of MPM here to show that there

is a sufficiently restricted class of graphs for which it is rapidly mixing.

Lemma 6.13. The mixing time of MPM on graphs with left-aligned adjacency matrices

satisfies

τ(ε)≤ n2(n−1)
2

dlg(ε−1)e.

Proof. We will prove Lemma 6.13 by coupling. Consider two copies of MPM, Xt and

Yt . Define the distance between Xt and Yt :

d(Xt ,Yt) = {max i |6 ∃ j s.t. (u j,vi) ∈ Xt ,(u j,vi) ∈ Yt}.

Informally, d is the index of the rightmost column in the adjacency matrix where Xt

and Yt disagree.

For one step of the coupling, we select the edges (u1,v1) and (u2,v2) of Xt as usual.

Assume without loss of generality that v2 ≥ v1. Find u3 and v3 such that (u1,v3) and
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(u3,v2) are edges in Yt . Attempt to transpose (u1,v1) and (u2,v2) in Xt , and (u1,v3)

and (u3,v2) in Yt . Note that u3 and v3 are unique, and that it is possible to recover v1

and u2 given (u1,v3) and (u3,v2). Therefore there is a bijection between the transitions

in Xt and Yt . Since all transitions in Xt have the same probability, it follows that Yt is a

faithful copy of MPM.

In analysing this coupling, we wish to show that there is no move that can result

in an increase in distance, and that there is always at least one move that can result

in a decrease in distance. v2 corresponds to a column in the adjacency matrix of G.

We will refer to the index of this column as c(v2). The aim of this coupling is to

encourage column c(v2) to agree between Xt and Yt . Suppose first that c(v2) > d(Xt ,Yt).

Then either c(v1) ≤ d(Xt ,Yt) and c(v3) ≤ d(Xt ,Yt), or c(v1) > d(Xt ,Yt) and c(v3) >

d(Xt ,Yt). In either case, either both moves succeed or both moves fail, and column

c(v2) continues to agree. In the former case, columns c(v1) and c(v3) both lie to the

left of column d(Xt ,Yt) and so the distance does not increase (one may lie on column

d(Xt ,Yt), which leads to a possible decrease in distance); in the latter case, v1 = v3, and

so the distance does not change.

Now suppose c(v2) ≤ d(Xt ,Yt) and c(v3) > d(Xt ,Yt). This would mean that col-

umn c(v3) agreed between Xt and Yt , and therefore that v1 = v3. This contradicts our

assumption that v2 ≥ v1. We have covered all possible situations in which any of c(v1),

c(v2) and c(v3) lie to the right of column d(Xt ,Yt), and hence shown that it is impossi-

ble for the distance to increase.

We now need to show that it is possible for the distance to decrease. This can occur

if c(v2) = d(Xt ,Yt). We know from the previous paragraph that c(v1) ≤ c(v2) and

c(v3) ≤ c(v2). If (u1,v2) is an edge in G, then both moves will succeed and column

c(v2) will agree. If (u1,v2) is not an edge, then both moves will fail and the distance

will be unchanged. If d(Xt ,Yt) ≥ 2, there is always at least one possible choice of

(u1,v1) that will cause these moves to succeed, and therefore that there is at least one

possible case for which the distance decreases.

Thus, if d(Xt ,Yt) ≥ 1, then at time t, with probability at least 2
n2 , d(Xt+1,Yt+1) ≤

d(Xt ,Yt)−1, and with the remaining probability, d(Xt+1,Yt+1) = d(Xt ,Yt).

At any given time, there is at least one move, chosen with probability 2
n2 , that can

cause the distance d(Xt ,Yt) to decrease. Assume that there is only ever one such move,

and that the distance never decreases by more than 1 (except when d(Xt ,Yt) = 2, where

the distance must decrease by 2) - if either of these assumptions does not hold, then the

chains will converge more rapidly, so the mixing time will be lower. Since the distance
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can never increase, the chains must have converged by the time n−1 such events have

occurred.

Let X be a binomially distributed random variable with t trials and p = 2
n2 . The

number of times the distance has contracted by time t is given by max{X ,d(X0,Y0)−
1}. Since the maximum possible value for d(X0,Y0) is n, by time n2(n−1)

2 , the chains

have converged with probability at least 1
2 . If we run dlg(ε−1)e independent trials, then

the probability that the chains have not coupled by time n2(n−1)
2 dlg(ε−1)e is at most ε.

Therefore, by Lemma 2.13,

τ(ε)≤ n2(n−1)
2

dlg(ε−1)e,

as required.

In fact, in this situation it is straightforward to sample exactly from the uniform

distribution without the requirement of a Markov chain algorithm. Diaconis, Graham

and Holmes give an algorithm for sampling from the set of permutations in this case,

and also a formula for the number of permutations [9, Lemma 3.1]. Scanning the

columns of the adjacency matrix from right to left, we select a valid edge (that is, one

that shares no endpoints with the edges already selected) uniformly at random from

each column in turn. No matter which edge is selected, there are exactly the same

number of configurations of the remainder of the graph. Continuing until one edge has

been selected from each column yields a random sample from perfect matchings.

1. Let the initial matching M = /0.

2. For each i from n to 1, in reverse order: select an edge adjacent to vi uniformly

at random that does not share an endpoint with any existing edge in M, and add

it to M.

This method is sufficient to allow sampling of permutations of singly truncated data,

but this approach does not appear to extend to the more general cases.
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Concluding remarks

In the preceding chapters, we have considered a number of Markov chains for sampling

matchings, independent sets, and proper graph colourings.

The Markov chain MIDS we defined for sampling matchings can be shown to

be rapidly mixing for larger values of λ than we can achieve by applying the Dyer-

Greenhill chain for independent sets directly to the line graph L(G). However, the

bound we obtain on the the mixing time of our chain is O(n3). The Jerrum-Sinclair

chain for sampling matchings mixes in time O(nm logn). Our bound is better than that

for the Jerrum-Sinclair chain only if m = Ω(n2/ logn). Since our chain requires that

∆ is bounded, however, we have m = O(n). As it stands, our chain performs no better

than the Jerrum-Sinclair chain.

It may be possible to give a linear bound on the probability of change for MIDS.

Such a bound would allow us to use Theorem 3.3 to show that MIDS mixes in time

O(n2). We may also be able to use a more complex analysis of MIDS, considering

longer paths than we did in Chapter 4. In practice, attempts to do this required further

restrictions on the graph, and became too complicated for what would be only a small

improvement in the value of λ for which the chain mixes. A more plausible way to

approach this chain would be variable-length path coupling [21], which we have not

generally considered.

We have adapted the Jerrum-Sinclair chain for sampling matchings to sample in-

dependent sets in claw-free graphs. We have shown that our chain MCF mixes in time

O(∆n2 logn). We could easily drop the requirement that ∆ is bounded, in which case

the mixing time is O(n3 logn), given the trivial observation that ∆≤ n (assuming there

are no self-loops in G). This is comparable to the mixing time of the Jerrum-Sinclair

chain for dense graphs where m = Θ(n2). Also, as we noted in Chapter 5, we can

114
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eliminate the factor of ∆ from the bound on the mixing time of MCF if G contains no

4-cycles.

We have shown that the Jerrum-Sinclair chain for sampling matchings and our

chain MCF for sampling independent sets in claw-free graphs are rapidly mixing on

lattice graphs, in time O(nm) and O(n2) respectively. This is an improvement of

logn over the bounds achieved for general graphs (and general claw-free graphs) using

canonical paths. The crucial fact that we use is that the volume of the ball of radius

` around any vertex grows faster than the size of its boundary, by a factor of `. In

principle, our results apply to any graph for which this is true. When we considered

the Jerrum-Sinclair chain, we considered only the two-dimensional square lattice. Our

proof of rapid mixing of MCF is more general, and can be applied to any claw-free

graph where we have appropriate bounds on the volume and boundary of the ball.

Diaconis, Graham and Holmes claimed that the Diaconis chain MPM mixes in time

O(n2 logn) for graphs corresponding to doubly truncated data [9]. However, we have

shown that there are counterexamples for which the mixing time is exponential. We

have managed to show that the mixing time is sub-exponential in certain cases, which

do encompass many instances of doubly truncated data. It is unusual, although not

unknown, for a natural problem to have a complexity of Θ(nlogn). It is therefore quite

possible that MPM has polynomial mixing time for these cases, although we have been

unable to find a proof. On the other hand, if our class of graphs is genuinely a case

with super-polynomial mixing time, there may be another class between ours and the

trivial singly-truncated case, for which the mixing time is polynomial.

Diaconis, Graham and Holmes also showed that a variation of MPM which allows

only transitions between adjacent rows and columns of the adjacency matrix is con-

nected on the class of graphs with monotonic adjacency matrices [9, Lemma 3.4].

This may offer a starting point for an alternative proof of mixing. They observed that

in some cases, such as the quasar data presented by Efron and Petrosian [16], the num-

ber of transitions required is equal to Kendall’s tau distance. However, this is not the

case in general, and those cases where the number of transitions is larger may present

difficulties. We considered this subset of transitions on more general graphs, but were

unable to show connectedness.

The method we use to recursively decompose cycles in the proof of Theorem 6.9

is unusual. We can actually find parallel edges that divide a cycle into two parts of

any length we choose (provided both parts are even length). Our general strategy

therefore seems to cover most plausible ways of processing cycles. In order to recover
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the start and end states from our encoding, we need to know the set of edges P∗. Any

canonical paths argument that shows polynomial mixing time will either have to show

that the number of extra edges in P∗ is bounded above by a constant, or use a different

encoding. In the singly truncated case, for example, we could show that there are

canonical paths such that successive sets of parallel edges always share an edge in

common, and so P∗ only ever contains a single edge that is not in either I or F .

In order to show rapid mixing of MIDS, we required a slightly more general version

of Theorem 2.15. Our more general version is Theorem 3.1, which we proved in

Chapter 3. We also showed that when we have a coupling for which we can find a

linear bound on the probability of a change in distance, we can obtain a bound on the

mixing time of O(n2). We were unable to apply this to MIDS, but we can apply it to

Dyer and Greenhill’s original chain for sampling independent sets. As such, we have

a quadratic bound on the mixing time of MDG for λ = 2
∆−2 . Dyer and Greenhill’s own

argument in the boundary case gave a mixing time of O(n2 logn).

We also applied Lemma 3.3 to the problem of sampling 2∆-colourings of graphs

using a simple single-site heat-bath chain, and obtained a bound of O(n2) on the mixing

time of this chain. There are other chains for sampling 2∆-colourings for which the

mixing time is O(n logn) or O(n2). However, these chains are more complicated to

implement. While it is possible to use comparison methods to bound the mixing time

of the single-site chain from these more complex chains, the corresponding worsening

of the bound means that comparison tends to give a mixing time worse than n2.
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