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Abstract

This thesis considers the effects of crossing seas and linearly sheared current on the dispersion
and stability of surface gravity waves. Experimental data are compared against predictions by
three different nonlinear Schrödinger equations (NLSE): the constant-vorticity (vor-NLSE), used
to simulate wave evolution on a linearly sheared current; the coupled (CNLSE), which predicts
the interaction between two crossing wave systems; and the two-dimensional (2D+1 NLSE),
which allows an angle between the carrier wave and the packet of a single wave system.

In chapter 2, the linearly sheared currents examined are one-dimensional, in accordance with
wave propagation and consist of a velocity profile varying linearly with depth. Such currents
have constant-vorticity and, although rotational, admit potential flow solutions. Both the linear
evolution and the weakly nonlinear behaviour of waves on five constant vorticity sheared currents
in the shear rate, Ω range, 0 s−1 ≤ Ω ≤ −0.87 s−1 are measured and compared to predictions by
the vor-NLSE and vor-dispersion relation. It is found that the constant-vorticity equations agree
extremely well with the experimental measurements in all cases. Significant differences between
the vor-equations and uniform velocity equations are found at the strongest shear cases for both
stability and linear dispersion experiments (−0.48 s−1 ≤ Ω ≤ −0.87 s−1).

In chapter 3, the coupled nonlinear Schrödinger equation (CNLSE) is used to quantify the ef-
fect of a crossing angle between two weakly nonlinear coupled wave systems. Individually (when
unidirectional) both systems show modulational instability. This is augmented by the addition of
a crossing angle between the two wave systems. Linear stability analysis of the CNLSE indicates
that wavetrains become increasingly stable as the crossing angle is increased, reaching stability
at a critical angle of 35.26◦. The experiments presented in this thesis measured the stability
of crossing angles up to 88◦ for a coupled system showing clear instability when the wavetrains
are unidirectional. Initially strong instabilities for the interacting unidirectional case are quickly
stabilised as the crossing angle is increased. The system becomes entirely stabilised when the
crossing angle is increased beyond the critical angle.

In chapter 4, the two-dimensional nonlinear Schrödinger equation is used to impose a cross-
ing angle between the carrier wave and continuous sidebands of a narrow-banded wave group.
Measurements of a low-steepness wave group envelope showed normal dispersive behaviour when
unidirectional. However, as the two-dimensional nonlinear Schrödinger equation predicts, at
the critical angle of 35.26◦ it was found that the Gaussian wave group propagated with en-
tirely unchanging form, displaying nondispersive behaviour. Similarly, when a medium-steepness
Gaussian group was propagated at the critical angle, not only was the group nondispersive, the
focusing present in its unidirectional propagation (due to nonlinear focusing) became negligi-
ble. Nonlinear effects were seen as the development of a double peaked wave envelope as larger
waves travelled to the front of the group. These results show that wave groups are capable of
travelling for extended periods of time with extreme waves at their centre. Two nondispersive
crossed groups with crossing angles of ±35.26◦ were superimposed to create the first observations
of a hydrodynamic X-wave. Such waves have previously been observed in optics, Bose-Einstein
condensates, and plasmas. The X-wave has a large central amplitude where the two groups cross.
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Chapter 1

Introduction

1.1 Background

1.1.1 Research context
At a liquid’s free surface, vertical perturbations are restored by gravity and buoyancy forces
causing periodic oscillations which form surface gravity waves. Surface gravity waves can be
comprised of one frequency (regular waves) or can be the result of a number of frequencies and
amplitudes being superimposed. Waves in the ocean appear irregular: overlapping, breaking,
crossing, and interacting seemingly without much rhyme or reason. However, on a much larger
scale, irregular waves often form part of a wave group, having been generated by a single storm
event and travelling large distances. Wave groups such as these are generated with some di-
rectionality and may meet and interact with other groups, formed by other events, at different
times, or may go on to interact with strong currents (formed by tides or generated by the wind).
This thesis will investigate the effect of crossing waves and currents on wave behaviour, and
seeks to determine the applicability of their leading-order governing equations, the constant vor-
ticity nonlinear Schrödinger equation, the coupled nonlinear Schrödinger equation, and the 2D
nonlinear Schrödinger equation. The three nonlinear Schrödinger equations are all capable of
describing the formation of very large, possibly rogue, waves. Anecdotally, rogue waves have
long been known as a danger to offshore structures and shipping. However, their existence and
behaviour was not formally investigated until the second half of the 20th century. With the rising
worldwide demand for renewable energy, offshore structures are becoming increasingly utilized
in the extraction of offshore wind energy (including floating), wave energy, and tidal energy.

The specialised topics of wave crossing and wave interactions with currents are examined in
this thesis because of their applicability to offshore technologies for marine renewable energy ex-
traction. Interaction with currents is inherent to the operation of tidal-stream turbines, whereas
the power output of wave energy devices is dependent on their placement in wave energy-dense
environments. Traditional wind turbines are increasingly operated in far-shore, deep-water con-
ditions putting the support structures at risk of experiencing crossing seas. Due to the relative
immaturity of these offshore renewable energy structures, understanding their environment for
design, operation and maintenance is a major concern. Immaturity also means that reports
of rogue waves and extreme sea states from shipping and oil platforms are far more numerous
[101, 16, 98].

Currents travelling against the direction of wave propagation (adverse currents) are known
to increase their amplitude and decrease their wavelength, steepening waves [102]. Although
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well-studied theoretically, experimental studies on the effect of velocity variations (shear) within
currents on wave behaviour are less prevalent. This thesis assumes a linearly sheared current and
measures the propagation of weakly nonlinear waves on these currents. Crossing seas often occur
when wave systems in the ocean meet after being radiated from different sources, such as wind
and swell. The interaction between systems is thought to provide a mechanism for the formation
of extreme events and to increase the elevation of already very large crests. Although the field
of hydrodynamics is the primary focus of this thesis, because the equations governing surface
waves are applicable to all dispersive media, there are analogies in other dispersive media, such
as optics, Bose-Einstein condensates, and plasma [26, 94, 72, 47].

Of the media in which rogue waves are predicted or have already been observed, hydrody-
namics is by far the most widely studied, optics being a close second. Rogue waves in optical
fibres were first observed as large high-frequency tails in optical intensity spectra [114], a well-
established measure of the likelihood of rogue waves [91]. Since the pioneering work of Solli et
al., (2007) rogue waves have been studied extensively in many fields within optics [7]. As in
hydrodynamics, the sudden emergence of optical rogue waves can have unexpected consequences
in the multitude of electrical systems in which they exist giving rise to attempts at their control
[113]. For further context on the formation of rogue waves in the field of optics, [41, 7] provide
excellent reviews. The fields of optics and hydrodynamics are then bridged together in the review
by Dudley et al., 2019 [43].

1.1.2 Surface gravity waves - an overview
In this background section, an overview is given of the equations governing surface gravity waves
along with their underlying assumptions and applicability. For details of the derivation of the
classical wave equations, the reader is directed to the excellent, in-depth review by Craik, 2004
[33].

In deriving the water-wave equations governing surface gravity waves, the water is first as-
sumed to be incompressible and, with the exception of Chapter 2, irrotational. The governing
equation is the Laplace equation, ∇2φ = 0, which should be satisfied for the entire domain.
The flow domain of the water has a solid, uniform bed at its lower boundary and a free surface
at its upper boundary. The following boundary conditions apply. Firstly, the lower boundary
condition ensures no water passes vertically through the solid bed,

φz = 0, at z = −d, (1.1)

where φ is the velocity potential, z the vertical coordinate, d the depth, and subscripts denote
partial derivatives. The dynamic free surface boundary condition balances pressures at the
surface,

Φt +
1

2
Φ2
x +

1

2
Φ2
y +

1

2
Φ2
z + gη = 0, for, z = η(x, y, t), (1.2)

where Φ is the potential at the surface (η), g is the gravitational constant and x, y and t are
the horizontal, vertical, and time coordinates. The kinematic free surface boundary condition
defines the free surface,

ηt + Φxηx + Φyηy − Φz = 0, on z = η(x, y, t). (1.3)

Incompressibility, irrotationality, and inviscidity make these governing equations appropriate for
potential theory.
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1.1.2.1 Linear wave theory

For unidirectional waves, a linear potential solution and free surface elevation applicable to low
amplitude waves is readily obtained from the governing equations. As a function of depth, z,
horizontal distance, x, and time, t these are,

φ(x, z, t) =
ω

k

cosh[k(z + d)]

sinh kd

[
−1

2

[
iaei(kx−ωt) + c.c.

]]
(1.4)

η(x, t) =
1

2
{a exp[i(kx− ωt)] + c.c.} , (1.5)

where a is the complex wave amplitude (having magnitude and angle), ω its frequency, k its
wavenumber, and c.c. denotes the complex conjugate. In order to satisfy the linearized dy-
namic free surface boundary condition, the linear dispersion relation for arbitrary depth must
be satisfied,

ω2 = gk tanh kd. (1.6)

By definition, the phase velocity of a wave is the ratio between frequency and wavenumber and
so linear wave evolution is defined by this dispersion relation. If the wavelength, λ = 2π/k, is
much smaller than the depth, the water can be assumed deep (kd >> 1) and the linear dispersion
relation becomes ω2 = gk.

Having linear properties, solutions can be superimposed to create a wave system comprised
of multiple components each with their own frequency, amplitude, and phase. Directionality can
be added to the system with wavenumbers along both an x-axis, (kx) and y-axis, (kx). These
component wavenumbers must satisfy the dispersion relation,

ω2 = gκ tanhκd, where, κ =
√
k2
x + k2

y, (1.7)

to give the three-dimensional free surface elevation,

η(x, y, t) =
1

2
{a exp[i(kxx+ kyy − ωt)] + c.c.} . (1.8)

Throughout this thesis, the linear dispersion relation will be modified to make it applicable to
the cases of crossing waves and waves on sheared current. By definition, the linear case that
has been described does not allow temporal changes in the frequency spectrum and consequently
wave stability may not be investigated.

1.1.2.2 Nonlinear wave theory: the nonlinear Schrödinger equation

In order for spectral changes to occur, nonlinear interactions between components must be con-
sidered. Nonlinear solutions to the governing equations can, for example, be obtained using the
combination of a Stokes expansion and a multiple-scales analysis in which a series of individual
solutions at increasing orders of a small parameter, ε are sought [38]. For surface gravity waves,
the wave steepness, ε = ka is the most suitable small parameter. The form of these equations is,

φ =

+∞∑
j=0

εjφj and η =

+∞∑
j=0

εjηj , (1.9)
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where the functions, φj and ηj depend on a hierarchy of scales,

~x0 = ~x, ~x1 = ε~x, ~x2 = ε2~x (1.10)

~xj = εj~x (1.11)

t0 = t, t1 = εt, t2 = ε2t (1.12)

tj = εjt (1.13)

At each order, new information and further accuracy in the wave evolution equations are ob-
tained. However, this is offset by increasing difficulty in finding solutions. At O(ε1) the linear
dispersion relation is revealed, while at O(ε3) the nonlinear Schrödinger equation arises. The
1D+1 NLSE often takes different forms depending on its useage as discussed in [22] (the “+1”
terminology herein refers to the always present temporal dimension). The most common form of
the NLSE (the space-NLSE) derived by Zakharov in 1968 for water waves (see [137]) gives the
evolution of the wave envelope, As,

i

(
∂As
∂t

+ cg
∂As
∂x

)
+ L

∂2As
∂x2

+N |As|2As = 0, (1.14)

where the group velocity, cg, linear coefficient, L, and nonlinear coefficient, N , are functions of
the dispersion relation evaluated at the carrier frequency (carrier properties denoted by a zero
subscript),

cg =
∂ω

∂k

∣∣∣
k0
, L =

1

2

∂2ω

∂k2

∣∣∣
k0

and N = −ω0k
2
0

2
. (1.15)

However, for the purposes of comparing numerical solutions to experimental measurements in
which the wavemaker plays the role of a boundary condition at a fixed location, it is most
convenient to use the time-NLSE,

i

(
∂At
∂x

+
1

cg

∂At
∂t

)
+
L

c3g

∂2At
∂t2

+
N

cg
|At|2At = 0, (1.16)

where the transformation between the space and time NLSEs is given in [22] and assumes
As,0(x) ∼ At,0(−x/cg) and At,0(t) ∼ As,0(−cgt), where subscripts s and t denote solutions
to the space and time NLSEs respectively. The linear free surface elevation is reconstructed from
the wave envelope by reintroducing the carrier component,

η =
1

2

{
Ate

i(k0x−ω0t) + c.c
}
. (1.17)

In Chapter 2, the coefficients of the constant vorticity NLSE will additionally be a function of
current shear. In Chapter 3 two NLSEs will be solved simultaneously to model coupled, crossing
wave systems (CNLSE) and in Chapter 4 a 2D+1 version of the NLSE will be used.

The 1D+1 NLSE has well-known analytic solutions [103] including the family of breather
solutions, known to increase in envelope amplitude, creating waves of 3 and 5 times their initial
height [24]. These solutions are specific examples of modulational instability described by the
NLSE and first discovered and described by Benjamin and Feir, in 1967 [14]. Modulational
instability had since been observed by experimentalists who found that steep regular wavetrains
tended to disintegrate and become irregular [136]. Benjamin and Feir investigated instability of
the Stokes plane wave solution, adding infinitesimal amplitude and phase perturbations at the
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“perturbation wavenumber”, a small wavenumber increment from the carrier wave wavenumber.
Modulational instability has been linked to increases in kurtosis, the fourth spectral moment [42].
Large values of kurtosis are known to increase the likelihood of rogue waves and this measure
has been used by a number of authors investigating rogue waves in irregular seas [128, 91, 97].
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1.2 Aim and objectives
This thesis aims to study experimentally the effects of crossing seas and linearly sheared currents
on the dispersion and stability of surface gravity waves. In this experimental study, three different
forms of the NLSE are used to design, give insight into and compare against experimental results
through numerical solutions.

1.3 Synopsis
In Chapter 2, the dispersion and stability of wavetrains travelling on a vertical, linearly sheared
current is investigated experimentally and compared to predictions by the constant vorticity dis-
persion (vor-dispersion) relation and NLSE (vor-NLSE). This is the first time results of weakly
nonlinear (and nominally unstable) modulated wavetrains propagating on a linearly sheared cur-
rent have been presented. In Chapters 3 and 4, the effect of directionality on dispersion and
stability is investigated in two ways. In Chapter 3, the stability of two coupled, weakly non-
linear, wave systems crossing with some angle is investigated experimentally and the results
compared to predictions by the coupled NLSE (CNLSE). This is the first time that experiments
using the classical, modulated wave approach to stability have been performed on coupled wave
systems beyond the 35.26◦ stability limit. In Chapter 4, wave groups with an angle between
the carrier and sidebands are generated in order to observe the effect of their crossing angle on
group dispersion. At 35.26◦ the group ceases to disperse and propagates with unchanging form
as predicted by the two-dimensional NLSE (2D+1 NLSE).

In each of the three main chapters, linear stability analysis of the appropriate wavetrain
(available in the literature but rederived and included for completeness) for the different NLSEs
is used to determine the stability regions in the input parameter space specific to each facility
being used. In addition to linear stability analysis, which gives a simplified, nonconservative
estimation of spectral changes, a numerical solver specific to each NLSE was created. Prior to
experimentation, the numerical solver was used to simulate results (free surface elevation and
spectral data) for each test and determine whether shear and crossing were likely to have a
measurable effect on stability. Following experimentation, free surface elevation data obtained
from the first measurement position were used as initial conditions to the numerical solvers. The
numerical solution was then obtained for the same evolution distance as experiments allowing for
direct comparisons between the two. Linear stability predictions were also compared alongside
experimental and numerical results. Each chapter concludes with a discussion on whether the
expected stability characteristics were observed experimentally. Emphasis is given to the com-
parison with numerical predictions and the applicability of the relevant NLSE to the predictions
of stability and extreme wave events.

Chapter 2: Modulational Stability on Linearly Sheared Currents
This chapter examines experimentally the dispersion and stability of weakly nonlinear waves on
opposing current profiles that are linearly vertically sheared and thus have constant vorticity.
Measurements are compared against predictions from the 1D+1 nonlinear Schrödinger equa-
tion for waves propagating on a linearly vertically sheared current (the vor-NLSE) derived by
Thomas, Kharif & Manna (Physics of Fluids, 24, 127102 (2012)). The shear rate is negative
in opposing currents when the magnitude of the current in the laboratory reference frame is
negative (i.e. opposing the direction of wave propagation) and reduces with depth, as is most
commonly encountered in nature. Compared to a uniform current with the same surface velocity,
negative shear has the effect of increasing wavelength and enhancing stability. In experiments
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with a single low-steepness monochromatic wave unseeded by sidebands, the dispersion relation-
ship between wavelength and frequency is examined on five opposing current profiles with shear
rates from 0 s−1 to −0.87 s−1. For all current profiles, the linear constant vorticity dispersion
relation predicts the wavenumber to within the 95% confidence bounds associated with estimates
of shear rate and surface current velocity. The effect of shear on modulational stability was de-
termined by measuring the spectral evolution of a carrier wave seeded with spectral sidebands
on opposing current profiles with shear rates between 0 s−1 and −0.48 s−1. numerical solu-
tions of the vor-NLSE are consistently found to predict sideband growth to within two standard
deviations across repeated experiments for all current profiles and all sideband frequencies exam-
ined. The vor-NLSE predicted experimental observations better than its uniform-current NLSE
counterpart. Similarly, the amplification of experimental wave envelopes along their evolution
distance is predicted well by numerical solutions of the vor-NLSE, and consistently significantly
over-predicted by the uniform-current NLSE.

Chapter 3: Modulational Stability in Crossing Seas
The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution equation
applicable to two crossing, narrow-banded wave systems. Modulational instability, a feature
of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential
growth of sideband components and the formation of distinct wave pulses, often containing
extreme waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, θ, on
MI, and reveals instabilities between 0◦ < θ < 35◦, 46◦ < θ < 143◦, and 145◦ < θ < 180◦.
Herein, the modulational stability of crossing wavetrains seeded with symmetrical sidebands is
determined experimentally from tests in a circular wave basin. Experiments were carried out at 12
crossing angles between 0◦ ≤ θ ≤ 88◦, and strong unidirectional sideband growth was observed.
This growth reduced significantly at angles beyond θ ≈ 20◦, reaching complete stability at θ =
30–40◦. We find satisfactory agreement between numerical predictions (using a time-marching
CNLSE solver) and experimental measurements for all crossing angles.

Chapter 4: Nondispersive Crossing Waves
Stationary wave groups exist in a wide range of nonlinear dispersive media, most notably in
optics, Bose-Einstein condensates, plasma, and hydrodynamics. They are often referred to as
solitons because the steady shape of the waves is maintained as a result of a balance between
dispersion and nonlinearity. Hydrodynamic solitons have been widely investigated, particularly
when assuming unidirectionality of the wave field. In two-dimensional propagation, the observa-
tion of stationary wave groups becomes more difficult because of the presence of dispersion and
diffraction. This chapter reports experimental observations of nonlinear gravity-driven X-waves,
i.e., X-shaped wave envelopes that propagate with constant form on the water surface in deep
water. These can be constructed and described within the framework of higher-dimensional non-
linear Schrödinger equations (NLSEs) in a regime of vanishing dispersion. In fact, the 2D+1
NLSE predicts a balance between dispersion and diffraction when the envelope consisting of the
arms of the X travel at an angle of ±atan(1/

√
2) ≈ ±35.26° to the direction of travel of the

carrier wave. Moreover, this chapter analyses in detail the single crossed-wave component and
finds that the frequency dispersion decreases to a minimum at the nondispersive crossing angle of
approximately ±35.26°. Our results may motivate similar investigations in other physical media,
governed by weakly nonlinear evolution equations and improve understanding of the lifetime of
extreme events in directional seas.
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Chapter 5: Conclusions
In the final chapter, results from each experimental campaign are put into context with a focus
on offshore renewable energy. Recommendations for future work are made.

Publications arising from this thesis
• Steer, J. N., McAllister, M. L., Borthwick, A. G. L., & van den Bremer, T. S., (2019) Ex-

perimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
MDPI Fluids, 4(2):105

• Steer, J. N., Borthwick, A. G. L., Stagonas, D., Buldakov, E., & van den Bremer, T. S.
(under review), Experimental Study of Dispersion and Modulational Instability of Surface
Gravity Waves on Constant Vorticity Currents Journal of Fluid Mechanics.

• Steer, J. N., Borthwick, A. G. L., Chabchoub, A., Onorato, M., & van den Bremer, T. S.
(forthcoming), Hydrodynamic X-Waves Physical Review Letters.

Other relevant publications
• Chabchoub, A., Mozumi, K., Hoffmann, N., Babanin, A. V., Toffoli, A., Steer, J. N., van

den Bremer, T. S., Akhmediev, N., Onorato, M., & Waseda, T., Directional Soliton and
Breather Beams, Proceedings of the National Academy of Sciences of the United States of
America, (2019)
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Chapter 2

Modulational Stability on Linearly
Sheared Currents∗

2.1 Introduction
Interactions between opposing waves and currents have long been known as potentially hazardous
to shipping. In 2015 the Cemfjord cement carrier was found capsised in the Pentland Firth of
Scotland; the concluding report stated that “Cemfjord capsised suddenly and rapidly at 13.16
on 2nd January 2015 when it encountered extraordinarily violent, breaking seas (...) created by
gale force winds opposing a strong ebb tidal stream” [86]. While these effects of opposing waves
and currents on shipping have been understood qualitatively by seafarers for centuries, only in
the latter half of the 20th century, did these interactions become the subject of research (as
reviewed in the seminal papers, [102] and [104]). Waves meeting an opposing current are known
to increase in amplitude, a, and wavenumber, k, a combination which causes an overall increase
in steepness, ε ∝ ka. The relationship between wavenumber and frequency (dispersion relation)
is fundamental to the evolution of dispersive waves through all media, and thus wave-current
interactions are important, as they affect the dispersion relationship. Additionally, the increase
in steepness not only makes waves more prone to violent breaking but can also bring otherwise
linear waves into a parameter space subject to amplitude-dependent nonlinear effects such as
modulational instability.

Modulational instability affects medium- and high- steepness, narrow-banded waves propa-
gating on water deeper than k0d = 1.36 (with k0 being the carrier wavenumber and d the water
depth). At first-order, wavetrains subject to modulational instability experience exponential am-
plitude growth of their sideband components, seen as a pulsing or modulation in the time domain
with extreme wave crests often forming in the centre of the formed groups [14, 60]. The nonlinear
Schrödinger equation (NLSE) provides the simplest framework for investigating this phenomenon
and admits a number of solutions exhibiting modulational instability. One such family of analytic
solutions is the ‘breather wave’ family named for the manner in which their envelope amplitudes
(periodically) increase to 3 or 5 times that of their initial amplitude [25, 24]. Whereas breather
waves require precise initial conditions to complete their prescribed evolution, unstable Stokes
plane waves provide a more general context for investigating modulational instability. Stokes

∗An abridged version of this chapter is under review for publication in a paper entitled—“Experimental Study
of Dispersion and Modulational Instability of Surface Gravity Waves on Constant Vorticity Currents”, co-authored
by A. G. L. Borthwick, D. Stagonas, E. Buldakov, and T. S. van den Bremer, (Journal of Fluid Mechanics)
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plane waves exhibit modulational instability when sideband frequency perturbations are intro-
duced to a carrier wave within a range of unstable perturbation wavenumbers (found through
linear stability analysis) [136]. Many experiments have been carried out on the break-down of
unstable wavetrains following the pioneering studies of [14, 136, 90]; and [78].

In their simplest form, sub-surface currents exist as one-dimensional and uniform with depth.
Waves initially propagating on still water that begin to interact with such a uniform current,
experience alterations in amplitude and wavelength in accordance with the conservation of wave
action, first derived for low-steepness linear waves in [18] and [133] then subsequently extended to
nonlinear waves [8]. In essence, opposing currents tend to increase amplitude and shorten wave-
length, whereas for following currents the reverse is true, as captured by the uniform-current
linear dispersion relationship and the conservation of wave action. In real flows that often expe-
rience bed friction and surface winds, variations in inline current velocity with depth introduce
vertical shear to the flow.

The most complex forms of sheared current exist as arbitrary variations in all 3-component
velocities, (U, V,W ) within a fluid. Nonlinear numerical models for two-dimensional waves and
arbitrary distributions of vorticity in [122] and [36] have been shown to agree very well with
laboratory experiments [119]. However, their complexity generates a need for analytic approx-
imations to the dispersion relationship. These have been derived for moderate shear [112, 75],
weak shear [120] and high depth-averaged shear rates [49]. In addition to direct changes to the
free surface, shear affects sea bed pressure measurements and the transfer functions used to de-
termine free surface elevation from bottom pressure [30]. While the effect of arbitrary vorticity
on determining surface elevation from pressure measurements is known [63], only recently have
the pressure transfer functions and amplification factors been derived for the most general case
[64]. Often, investigations into the effects of sheared current on wave behaviour constrain current
velocity variation to one dimension.

Horizontally sheared currents can take the form of inline velocities that vary either along the
axis of wave propagation or perpendicular to it. Propagation of waves across an inline horizon-
tally sheared current (dU/ dx 6= 0) and onto an opposing current has the effect of steepening
waves by the conservation of wave action. Experiments have shown this process to trigger rogue
waves in random unidirectional Gaussian wave spectra [129] as well as to destabilise regular
wavetrains [97]. Jet-type horizontally sheared currents (dU/ d y 6= 0) are known to exist in the
Agulhas current around the South African east coast [85]. These jet currents are of interest as a
possible mechanism of rogue wave formation through wave trapping [111].

Assuming a steady, one-dimensional, linearly-varying current velocity with depth (constant
vorticity) allows the addition of irrotational perturbations (in the form of waves) and therefore
the assumption of a potential fluid and the simplified governing equations this implies [48]. For
a rotational flow of constant vorticity, the dispersion equation for linear waves was first derived
independently by both [124] and [15]. The evolution of steep waves on constant shear has been
investigated numerically (using the Euler equations) [35, 130, 34], and its effect on modulational
stability found to be destabilised by positive shear and vice versa [28]. It should be noted that
linear waves initially on still water approaching an opposing constant vorticity current are steep-
ened in a similar manner to the uniform-current case, by wave action conservation altered for
constant vorticity [106].

The same effects of constant vorticity on wave stability found through numerical analysis have
been found through constant vorticity NLSEs (so-called vor-NLSEs) as derived analytically for
infinite depth and studied numerically for arbitrary depth in [13]. Thomas, Kharif, and Manna
in [123] (henceforth TKM12) derived a constant vorticity NLSE with coefficients expressed as
explicit functions of the carrier wave properties, vorticity, and depth, which is the starting point
of the present chapter. Linear stability analysis of the vor-NLSE has also shown that when the
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ratio of shear, Ω, to carrier wave frequency, ω̃0 (in the surface current reference frame, denoted
with tilde) is less than −2/3 rad−1 (i.e. Ω/ω̃0 < −2/3 rad−1) wavetrains become entirely sta-
bilised regardless of perturbation wavenumber or depth.

Further to the aforementioned Doppler shift of waves propagating on a current, a two-way
exchange of energy and momentum between waves and currents may create a velocity field more
complex than the simple superposition of individual periodic and mean flow solutions (see [70, 32]
for the literature discussing such interaction). Coupled nonlinear interaction equations for plane
waves on uniform currents have been derived by [10, 9] and predict reductions in current velocity
during adverse wave-current interaction and vice versa. The change in shear rate of constant vor-
ticity currents and colinear waves has been measured in experiments by [76] using laser Doppler
velocimetry. [58] compare these experiments to numerical solutions of the equation they derive
based on the generalised Lagrangian mean, finding good agreement and showing an increase
in vertical shear near the surface in adverse currents and vice versa. In this study, we do not
consider the effect of the waves on the current’s magnitude and shear rate and acknowledge that
full velocity field measurements in the presence of waves could improve the robustness of our
conclusions.

This chapter investigates experimentally the propagation of medium-steepness weakly nonlin-
ear waves on a current profile that is steady, one-dimensional, has constant vorticity and opposes
the wave direction. The steepening behaviour that takes place as the waves come into contact
with the current is not examined. Instead, the focus is placed on the evolution of the waves once
they are on the current. In doing so, the effect of a vertical shear is investigated and not the mag-
nitude of the current itself. In particular, the effects of vertical shear on the (linear) dispersion
relationship and on the occurrence of modulational instability are investigated experimentally
in parts I and II of this chapter respectively. It is found that in all experiments, the constant
vorticity equations predicted linear wave evolution and stability very well, out-performing the
zero vorticity equations.

This chapter is laid out as follows. Section 2.2 reviews the derivation of the constant vorticity
nonlinear Schrödinger equation (vor-NLSE) and the constant vorticity dispersion (vor-dispersion)
relationship. Section 2.3 discusses the method used to create a linearly sheared currrent profile,
collect wavelength and frequency measurements from low-steepness regular waves, and measure
the stability of weakly nonlinear modulated waves. Section 2.4 discusses the linear and weakly
nonlinear wave evolution measurements and how both compare to predictions by constant vor-
ticity and zero vorticity equations. Finally, conclusions are drawn in Section 2.5.

2.2 Theoretical model

2.2.1 Coordinate system and reference frames
Figure 2.1 presents the coordinate system used in both the laboratory and the surface current
reference frames. The system is assumed two-dimensional, such that it is invariant along the
transverse y-axis. The location of the still water level is at z = 0, the free surface elevation at
z = η(x, t), and the bed at z = −d. The constant vorticity wave equations (vor- equations)
are typically derived in the surface current reference frame. In the laboratory reference frame,
the steady, inline current profile, U(z) with constant shear, Ω = dU/ d z, is prescribed in the
x-direction. This constant surface current velocity, U0 and shear rate, Ω define the current field
as,

U = U0 + Ωz. (2.1)
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Figure 2.1: Schematic of laboratory (panel a) and surface current (panel b) reference frames used
herein. Both reference frames show a negatively sheared current on the left (U0 < 0, Ω < 0)
and negative uniform current on the right (U0 < 0, Ω = 0) with respect to the x-direction, the
direction of the wave phase velocity, cp. The tilde denotes properties measured within the surface
current reference frame.

All experiments presented herein consider waves propagating in the positive x-direction, while
current profiles are opposing, and associated velocities are therefore negative. Wave frequencies
measured in the laboratory reference frame, ω can be related to wave frequencies in the surface
current reference frame, ω̃ using a simple Doppler shift,

ω = ω̃ + U0k, (2.2)

where k is wavenumber, and the tilde denotes properties measured in the surface current reference
frame.

2.2.2 Governing equations and boundary conditions
In general, potential flow theory cannot be used in the presence of vorticity. The one exception
is a strictly two-dimensional flow with waves travelling either exactly opposing or inline with the
current and with the current’s vorticity being constant in time and space, as considered here.
The total velocity field u can be written as the sum of a rotational current and irrotational water
waves: u = U(z)̂i +∇φ, where î is the unit vector in the x-direction and φ is the potential of
the waves. The potential, φ of the system must satisfy the Laplace equation, ∇2φ = 0 in the
range −d < z < η(x, t) and is related to the streamfunction of the waves, ψ through the Cauchy-
Riemann equations. Kelvin’s circulation theorem shows that an irrotational streamfunction can
be assumed when vorticity within the flow is constant in space and time [34]. The standard
bottom boundary condition, φz = 0 at z = −d prevents flow through the bed. At the surface,
the kinematic and dynamic boundary conditions are respectively,

ηt + (Φx + Ωη)ηx − Φz = 0 and Φt +
1

2
Φ2
x +

1

2
Φ2
z + ΩηΦx + gη − ΩΨ = 0 for z = η(x, t),

(2.3a,b)
where Ψ ≡ ψ(z = η(x, t)) and Φ ≡ φ(z = η(x, t)) denote their respective lower case variables
evaluated at the free surface, and g is the gravitational constant.
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2.2.3 Solutions using perturbation methods
2.2.3.1 Linear solutions: frequency dispersion

Assuming a carrier wave with amplitude a0, wavenumber k0, and frequency ω̃0, a Stokes ex-
pansion in steepness, ε = a0k0 gives at first-order the linear, constant vorticity, arbitrary-depth
vor-dispersion relation (first derived by [15] and [124]),

ω̃2
0 + (ω̃0Ω− gk0) tanh k0d = 0. (2.4)

By relating wave frequency to wavenumber, the implicit vor-dispersion relation describes the
evolution of linear waves (ε � 1), where nonlinear changes to the dispersion relationship and
instability do not play a role. Throughout the present work, frequencies and wavenumbers are
computed from (2.2) and (2.4).

2.2.3.2 The vor-NLSE

Performing a combined Stokes and multiple-scales expansion, [13] (for deep water) and subse-
quently TKM12 (for arbitrary depth) derived a NLSE with coefficients reflecting the presence of
vorticity: the vor-NLSE. In their derivations, a carrier wave varying on the fast scales x, and t
is modulated by a wavepacket evolving on the slow spatial and temporal scales,

ξ = ε(x̃− c̃gt) and τ = ε2t, (2.5a,b)

where the group velocity, c̃g, and the slow scales are defined in the reference frame of the surface
current, as denoted by the tilde. At third-order in the small parameter ε, the nonlinear evolution
of a narrow-banded wavepacket of amplitude, A is described by the constant vorticity NLSE
(vor-NLSE) with linear coefficient, L, and nonlinear coefficient, M , (TKM12),

iAτ + LAξξ −M |A|2A = 0. (2.6)

For brevity, only coefficients for deep water are presented here,

L = − ω̃0(1 + Ω̄)2

k2
0(2 + Ω̄)3

and M =
ω̃0k

2
0

8(1 + Ω̄)

(
4 + 10Ω̄ + 8Ω̄2 + 3Ω̄3

)
, (2.7a,b)

where Ω̄ = Ω/ω̃0. The arbitrary-depth coefficients (used for all calculations herein) can be
found in TKM12 (their (48)-(58)) and Appendix A of this thesis. The first-order free surface is
reconstructed using,

η(1) = Re
[
εA(ξ, τ)ei(k0x̃−ω̃0t)

]
. (2.8)

2.2.3.3 Linear stability analysis of the vor-NLSE

To investigate the effect of shear on the stability of the vor-NLSE, a linear stability analysis of
the Stokes wave solution, A = a0exp

(
−iMa2

0τ
)
, is performed by perturbing the wavetrain by a

sideband wave of infinitesimal amplitude and phase shift,

A = [a0 + δ(τ, ξ)]e−iMa20τ . (2.9)

The perturbation solution, δ, is assumed to take the periodic form, exp (i(Kξ − γ̃τ)), and from
this, the relationship between perturbation wavenumber, K and perturbation frequency, γ̃ is
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found (first presented in TKM12),

γ̃ = ±
√
K2L(K2L+ 2Ma2

0). (2.10)

When γ̃ is imaginary and negative, sideband amplitudes grow exponentially in time, τ . At depth
parameter, k0d, the sideband growth rates in the (K,Ω) domain can be defined. Figure 2.2
presents both the growth rates for k0d = 3 (the depth parameter used herein) and experi-
mental parameters used in part II experiments. For each shear rate, the maximum instability,
γmax = Ma0, is achieved at the perturbation wavenumber, K = a0

√
−M/L. In deep water and

with zero shear, this reduces to the well-known result of γmax = ω0k
2
0a

2
0/2 at K = 2k2

0a0 [136].
Figure 2.2 shows the generally destabilizing effect of positive shear whereby the growth rate of
previously unstable regions increases and the region of instability expands to include previously
stable perturbation wavenumbers; on negatively sheared current the reverse is true. Additionally,
complete stability is reached at a vorticity of Ω/ω̃0 = −2/3 rad−1, and this stability boundary
is insensitive to the perturbation wavenumber.

Although a useful tool in determining first-order stability characteristics, linear stability anal-
ysis is non-conservative and does not provide information on the long-term behaviour of the
system. A long-term recurrence phenomenon known as Fermi-Pasta-Ulam (FPU) recurrence [52]
is revealed by a nonlinear stability analysis on the NLSE [69]. In FPU recurrence, energy is
periodically transferred from sideband waves back to the carrier wave over the evolution of many
wavelengths [53]. For the limited evolution distances in all experiments presented herein, we do
not expect to observe FPU recurrence. Numerical time-marching solutions to the NLSE also
show the emergence of secondary sidebands at multiples of the primary sideband frequency, if
run for a longer duration than considered herein. Spectral asymmetry in sideband evolution
has also been observed experimentally in the absence of shear [79, 90], however cannot be mod-
elled by the NLSEs due to their narrow-banded spectrum assumptions. The Dysthe equation (or
modified NLSE) derived by [45] lifts these restrictions and asymmetric sideband growth has been
observed numerically using the Dysthe equation [81]. Such asymmetric sideband growth has been
observed in this study but was not significant and the absence of a constant vorticity Dysthe
equation meant that it could not be comprehensively studied (see Appendix D for measurements
of sideband asymmetry).

2.3 Experimental methodology
The experiments aim to determine the effect of vertical, linearly sheared current on the frequency
dispersion of low-steepness linear waves and the stability of weakly nonlinear wavetrains. To
achieve this, three stages are defined: current creation, in which a suitable current profile is
sought; linear dispersion (part I), in which the dispersive behaviour of linear (low-steepness)
waves is measured; and, ultimately, modulational stability (part II), in which the behaviour of
weakly nonlinear waves is examined.

2.3.1 Wave-current facility
The wave-current flume in the Department of Mechanical Engineering at University College
London (UCL) is used for all experiments considered in this chapter. The flume consists of
a recirculating current system and two force-feedback wavemakers capable of both generation
and absorption as laid out in the facility schematic (figure 2.3). Current is recirculated under-
neath the flume by three parallel 0.3 m diameter pipes and three impeller pumps, before passing
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Figure 2.2: Sideband growth rate, γ̃ normalised by the maximum growth rate at zero shear,
γ̃∗max = M∗a2

0, as a function of normalised perturbation wavenumber, K̂ = K/
(
a0

√
−M∗/L∗

)
and shear rate, Ω/ω̃0, where M∗ and L∗ are the linear and nonlinear vor-NLSE coefficients
evaluated at depth, k0d = 3 and Ω = 0 s−1. The normalised maximum growth rate for zero
shear is 1 at K̂ = 1 and Ω/ω̃0 = 0. Panel (a) provides an overview of the experimental parameter
range used in part II, as indicated by the coloured horizontal lines corresponding to the three
current profiles used (defined in table 2.1). The solid dots in panel (b), which zooms in on the
rectangular box in panel (a), indicate individual experiments (see §2.4.2).

through turning vanes and upwelling into the bottom of current conditioning units. The flume
has width, w = 1.2 m, a working depth, d = 0.5 m, and wavemaker-to-wavemaker length of
16 m. It should be noted that the current conditioning units limit the working length of the
flume to approximately 9 m. The first wave gauge defines the x-axis origin, and all horizontal
distance measurements along the flume are given with reference to this point. Steel rails allow
wave gauges to be fixed 0.3 m from the flume side.

Having a width of 1.2 m, wave energy dissipation in the facility arising from side-wall friction
(the dominant source of dissipation [66]) was considered. Linear waves are known to undergo
exponential amplitude attenuation due to side-wall friction; high-frequency waves being attenu-
ated more than low-frequency waves [66]. Additionally, [59] suggest that modulational instability
may be entirely stabilised by any form of dissipation. [74] show theoretically and experimentally
that a perturbation from precise initial conditions causes a phase shift to FPU recurrence and,
in the case of the spatially localised Akhmediev breather, induces FPU-type recurrence, where it
would otherwise not occur. However, the evolution distance of our experiments did not allow for
long-term recurrence effects to be observed. Using the equations presented in [66], we estimate
frictional attenuation to be no more than 3% along the working length of the flume. Additionally,
the propagation of regular waves at k = 6.0 rad m−1 (the carrier wavenumber in all experiments
in part II) was recorded on each current profile, and attenuation was found to be smaller than
the variation between the four repeated experiments and thus undetectable.

2.3.2 Current
2.3.2.1 Current conditioning

Figure 2.4 shows a current conditioner positioned above the outlet turning vanes. The system of
current conditioning described herein has been employed in previous experiments at the facility
and is described in detail by [115] and [109]. Each conditioning unit spans the width of the flume
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Figure 2.3: Schematic diagram illustrating the wave-current flume at UCL configured for a typical
case of currents (with inline velocity, U(z)) opposing wave phase velocity, cp. Individual wave
gauges are denoted by solid vertical lines. Gauges are arranged in pairs separated by 0.15 m to
allow estimates of the incident and reflected free surface elevation at the mid-point of each gauge
pair (denoted by the dotted vertical lines).

Figure 2.4: Current conditioning unit located above the outlet of the wave-current flume at the
UCL Mechanical Engineering Department. Porous mesh cylinders make up the bulk conditioner
(left) and triangular current shaping portion (right). The locations of the units are shown in the
facility schematic of figure 2.3.

and consists of a rectangular bulk conditioner whose primary purpose is to reduce turbulence
and distribute current evenly as it enters the flume. The rectangular unit abuts onto a triangular
current-shaping unit. The bulk conditioner is constructed from porous wire mesh cylinders of
diameter ≈ 0.1 m. During construction, pairs of horizontal cylinders are laid transversely across
the flume and additional cylinders stacked on top, the stack reaching an elevation well above
the still water level. Along the flume, the stacks are separated by 0.1 m gaps in which vertical
porous mesh cylinders are placed. The current shaping unit consists of porous mesh cylinders
placed horizontally across the flume and stacked to form a right-angled triangle. The current
conditioners were optimised to generate current profiles which do not change considerably along
the flume and have a significant linear portion.
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Figure 2.5: Measured current velocity profiles used in experiments presented herein. Open circles
represent mean measurements taken at x = 0 m and crosses at x = 9 m. Error bars span one
standard deviation calculated across the 60 s velocity record. (a): All non-zero velocity profiles.
Solid black lines represent the linear regression used to estimate the shear rate. All measurements
were taken midway across the flume (at y = 0 m). (b-d): The Ω = −0.48 s−1 current profile
measured at one quarter, midway and three-quarters across the width of the flume, w, namely
at y/w = −1/4, 0 and 1/4. The (identical) solid lines correspond to the mean current profile
measurement across all 6 locations.

2.3.3 Current profile approximation
Experiments were conducted with opposing currents (with negative surface current velocity),
because the effective length of evolution in the following-current case was considered too short
to observe any nonlinear effects. Five current profiles were created and will be referred to herein
by their shear rates, Ω: 0 (zero current), −0.21, −0.48, −0.68, and −0.87 s−1. These values
can be found, along with their associated surface current velocities, in table 2.1 where the 95%
confidence bounds of both parameters are also given.

Acoustic Doppler velocimetry (ADV) was used to measure the depth-varying, three-component
velocity profiles at two positions defined by the coordinates, (x, y, z) along the flume centreline:
at (0, 0, z) m and at (9, 0, z) m (with y = 0 corresponding to midway across the flume). As the
fastest current profile used in the stability experiments, the −0.48 s−1 shear current profile was
also measured at three positions across the flume to assess three-dimensional effects. Velocity
measurements through the flume depth were taken from the bed in consecutive 0.04 m vertical
increments to the free surface. At each position, all three velocity components, (U, V,W ), were
measured at 200 Hz for one minute. Prior to each current profile change, the flume was allowed
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Ω (s−1) U0 (m s−1)

0 0
−0.21 ± 0.01 −0.11 ± 0.01
−0.48 ± 0.01 −0.22 ± 0.01
−0.68 ± 0.02 −0.33 ± 0.01
−0.87 ± 0.04 −0.44 ± 0.01

Table 2.1: Mean and associated 95% confidence bound values of surface current velocity, U0 and
linear shear rate, Ω for the 5 current profiles used in experiments.

to settle for one hour to reach a steady state, at which time seeding material was added.
Figure 2.5 presents the mean and standard deviation values of the inline velocity, U , as cal-

culated from the full time-series data. The shear rate, Ω, and surface current, U0, fully define
the linearly varying approximation of each current profile and are presented in table 2.1 along
with their 95% upper and lower confidence bounds. The shear rate was estimated using a linear
regression fit through the current’s upper, linear portion. The deeper in the fluid, the smaller
the effect of the current’s velocity and shear rate on wave phase velocity [117]. Excluding current
data below z = −0.35 m from the linear regression fit allows an accurate estimation of shear
rate (see Appendix B for a detailed estimation of the small resulting error based on the Rayleigh
equation [112]). Surface current was estimated using a smoothing spline fitted through the en-
tirety of the depth-varying current data.

2.3.4 Part I. Linear dispersion relation
By observing the relationship between frequency and wavenumber for low-steepness regular
waves, experimental estimates of the vor-dispersion relation (2.4) are obtained. For all five
current profiles, regular waves with input frequencies between the wavemaker’s low-frequency
mechanical limit and the high-frequency wave-blocking limit (3.6 < ω < 9.4 rad s−1) were se-
lected. Wave blocking occurs when opposing current velocities exceed the wave group velocity
and wave energy is not capable of propagating forward. Free surface elevation data were both
recorded and displayed in real-time at two gauges spaced at the estimated wavelength of the
generated wave. The wave gauge pair spacing was then adjusted to bring both free surface mea-
surements into phase, and this distance (now at precisely one wavelength) was recorded. Waves
at each frequency were generated at a sufficiently low amplitude (ka � 0.1) to keep behaviour
primarily linear. The precise frequency in the laboratory frame was extracted from the mea-
sured free surface elevation data. To remove the effect of surface current and determine the
effect of shear, this measured frequency, ω was converted to the surface current frame through
(2.2). Measured dispersion relation data were compared against vor-dispersion predictions and
the zero-shear dispersion relation (see §2.4.1 for discussion and figure 2.6 for results).

2.3.5 Part II. Modulational instability
In order to examine modulational instability, a 3-component wave was created consisting of a
carrier wave seeded with two sideband components, akin to the classical experiments on modu-
lational instability without shear undertaken by [136]. In particular, a medium-steepness carrier
wave seeded with two symmetric sidebands was selected. The target free surface elevation given
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as input to the generating wavemaker was,

η(0, t) = Re
[
a0e
−iω0t + aδ

(
e−i(ω0+ωδ)t + e−i(ω0−ωδ)t

)]
, (2.11)

where aδ and ωδ are the real sideband amplitude and sideband frequencies respectively. To
maintain a periodic signal over the repeat period, R, all frequencies were defined in terms of an
integer multiple N such that fδ = N/R Hz and ωδ = 2πfδ rad s−1. For each current profile,
the sideband frequency was altered across experiments to explore a range of stability regimes.
Sideband frequencies are given in table 2.3 as values of N and are also shown, along with
estimations of growth rate in figure 2.2. Although breather-type solutions to the NLSE would
produce the most extreme amplitude growth and have been used successfully to study properties
of the NLSE in the absence of shear, they require precise control of the full input signal. Such
control is impeded in the present case because the waves created by the wavemaker first have
to propagate onto the current (and travel through the current conditioning unit), which has a
different effect on the phase and amplitude of components of different frequencies. Experimental
measurements of sideband amplitude were compared with numerical solutions of the vor-NLSE
and NLSE through a numerical, space-marching scheme and with predictions by linear stability
analysis. The error associated with removing shear from predictions could then be quantified
experimentally.

2.3.5.1 Data collection

To capture the evolution of the 3-component system, the free surface elevation was recorded
across a total length of 8.9 m by 14 wave gauges arranged in 7 pairs. Wave gauges collected
data for a total of 160 s at 250 Hz. A repeat period of 128 s was used to ensure high frequency
resolution and thus allow a high number of sideband frequencies to be tested. To facilitate
the application of simple reflection analysis (based on [56]) of the free surface elevation time
series, each pair of wave gauges had a spacing of 0.15 m, and produced one incident and one
reflected spectrum at a virtual gauge located at each pair’s centre. Figure 2.3 presents the flume
configuration for stability experiments where individual wave gauges are represented by solid,
free surface penetrating lines and dotted lines represent virtual gauges.

2.3.5.2 Experimental procedure

Throughout the stability investigation, the same experimental procedure was followed across
multiple days. Firstly, current was generated for one hour to homogenise the flume contents (for
zero-current experiments, the flume was allowed to settle for a further hour thereafter). All wave
gauges were wiped with a damp cloth to remove contaminants. To calibrate the wave gauges,
the voltage of each wave gauge was recorded for 30 s at five known free surface positions.

At each current profile, 15 to 17 sideband frequencies spanning nominally stable and unstable
regimes were propagated with a carrier wave. Each sideband frequency experiment was carried
out 4 times on different days. Confidence bands calculated from these 4 repeats are thus indicative
only. The data processing technique described below was performed on each repeat individually
before a mean and standard deviation result was calculated. Between each experiment, the flume
was allowed to settle for 5 min while reflections and low frequency error waves attenuated; current
conditioners helped with this process.
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Ω (s−1) ω (rad s−1) ka0

0 7.62 0.15
−0.21 7.17 0.12
−0.48 6.63 0.10

Table 2.2: Carrier wave parameters for stability experiments (part II). All experiments were
carried out at k0 = 6.0 rad m−1 and k0d = 3.0. The average measured steepness at each shear
profile is also presented.

fδ, (N/128 Hz)
Ω (s−1) aδ/a0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 30 32

0 0.1
−0.21 0.1
−0.48 0.1

Table 2.3: Sideband frequency parameters of stability experiments (part II), with completed
experiments indicated by coloured cells. Frequencies are expressed as the integer multiple, N , of
the inverse of the repeat period, R, giving fδ = N/R Hz and ωδ = 2πfδ rad s−1 (corresponding
values of the perturbation wavenumber, K̂, are shown in Figure 2.2b). Repeat period, R, was
fixed at 128 s across all experiments.

2.3.5.3 Experimental parameters

Table 2.2 details the carrier wave input parameters while table 2.3 details the sideband parame-
ters. The primary objective when selecting the input spectra and current profiles for the stability
experiments was to produce high-quality waves of medium steepness. Due to the frequency range
of the wavemakers, following currents could not be considered because of the reduction in wave
steepness through their interaction with waves and their small effective length of evolution, lim-
iting experiments to negative (stabilizing) shear rates. Additionally, the wave blocking criterion,
∂ω̃/∂k+U0 ≥ 0 excluded the highest frequencies and current strengths. Unpredictable attenua-
tion of waves through the current conditioning units and wave steepening by opposing currents
meant that input amplitude selection was based on preliminary measurements of a range of input
amplitudes.

Results from linear stability analysis of the vor-NLSE were used to inform stability experi-
ment parameters and target the stable and unstable regions of the sideband frequency domain.
To allow experimental parameters to be plotted on a single surface of linear stability (cf. fig-
ure 2.2), the depth parameter was kept constant at k0d = 3 across all current profiles. Constant
flume depth was maintained, and input carrier frequency altered across the three current profiles
to maintain k0 = 6.0 ± 0.1 rad m−1. The generated wavelength was checked using the method
detailed in §2.3.4, and the input carrier frequency adjusted if required.

2.3.5.4 Reflection analysis

Following the collection and calibration of wave gauge time series, the 160 s free surface elevation
series was cut to the final 128 s to give a periodic signal of frequency resolution 1/128 Hz
containing both incident and reflected waves. Amplitude spectra were estimated from each
gauge and a (linear) reflection analysis based on [56] applied to each gauge pair. The reflection
analysis assumes that, at two closely spaced gauges (∆x � λ), complex amplitude spectra, A1
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and A2, are comprised of incident, AI , and reflected, AR, components,

A1 = AIe
−ikI∆x/2 +ARe

ikR∆x/2 and A2 = AIe
ikI∆x/2 +ARe

−ikR∆x/2, (2.12a,b)

where the incident and reflected wavenumbers, kI and kR, are calculated using the relevant
dispersion equation (i.e. including current and shear). The method assumes linear evolution
between gauges within a pair, and linear stability analysis estimations of sideband growth across
the short, 0.15m distance confirmed this assumption to be satisfactory. The use of this technique
deviates from the classical method described by [56] only in that the vor-dispersion equation is
used (validated in §2.4.1) to compute incident and reflected wavenumbers. Reflections were found
to be largest in the zero current experiments where they comprised 5 − 10% of the measured
energy. This value reduced for adverse current experiments but reflection analysis was applied
to all experiments regardless. All results presented include only incident waves. Following the
reflection analysis, upper and lower sidebands were identified in the incident wave spectrum at
the first gauge and their amplitude tracked across all seven gauge pairs.

2.4 Results

2.4.1 Part I. Linear dispersion relation
Figure 2.6 presents the measured results from part I in the form of measured wavenumbers
as a function of frequency in the surface current reference frame. The measured wavenumbers
are compared to the predictions by both the vor-dispersion equation and the classical uniform-
current dispersion equation (using the measured surface current throughout the water column).
Mean wavenumber values are represented by solid dots and error bars indicate the effect of using
upper and lower surface current confidence bounds when calculating ω̃ from (2.2). The vor-
dispersion prediction is delineated by solid lines surrounded by shaded areas which define the
error associated with use of the upper and lower shear rate confidence bounds when calculating
wavenumber from (2.4). The dot-dashed lines denote the wavenumber prediction by the uniform-
current dispersion relation. Normalisation by the wavenumber for zero current is performed on
all wavenumbers. This normalisation allows the fractional error associated with discounting both
surface current and shear rate to be clearly appreciated.

The dispersion measurements in the absence of currents exhibit almost zero deviation from the
prediction of the standard arbitrary-depth dispersion relation. The greatest error in this data set
is 2.6% above the predicted wavenumber. At the −0.21 s−1 shear rate, the zero-shear prediction
begins to deviate from the vor-dispersion prediction. In general, the experimental measurements
follow the trend of the vor-dispersion relation. Experimental error bars at larger frequency values
(ω̃ > 8.0 rad s−1) show that measurements lie within the error associated with the measurement
of shear. The −0.48 s−1 shear current profile presents a much larger deviation in the zero-shear
prediction with respect to experimental measurements that fall almost entirely within the shaded
region associated with the vor-dispersion relation. This good agreement between experimental
measurements and the vor-dispersion predictions also occurs for the −0.68 s−1 and −0.87 s−1

shear rate current profiles.

2.4.2 Part II. Modulational instability
Figures 2.7 to 2.11 present the measured and predicted evolution of the weakly nonlinear wave-
trains investigated in part II. Subplots within figures are titled according to the normalised
perturbation wavenumber, K̂ = K/K(γ̃∗max), where γ∗max is the maximum growth rate evaluated
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Figure 2.6: Comparison of the measured dispersion relationship (solid dots with error bars)
with wavenumber predictions from the calculated vor-dispersion relationship (solid lines) and
uniform-current dispersion relationship (dashed-dot lines). The wavenumbers on the y-axis have
been normalised by k∗, the wavenumber predicted at zero current. The horizontal error bars rep-
resent the error associated with the surface current velocity estimation (95% confidence bounds).
Similarly, the shaded areas represent the error associated with the shear rate estimation (95%
confidence bound).

at k0d = 3 and zero shear (i.e. K̂ = 1 at the zero shear maximum growth rate). Normalised
perturbation wavenumbers allow results to be directly related to the growth rate surface in fig-
ure 2.2. Following reflection analysis, spectral information was extracted from incident wave
spectra and is compared with the predictions of a linear stability analysis of the vor-NLSE
(overview in §2.2.3.3) and a space-marching numerical split-step (or pseudospectral) scheme (de-
tails in Appendix C) that solves the same equation. Both theoretical methods allow the removal
of shear from their predictions in order to quantify the error associated with ignoring vertical
shear. The complex amplitudes and frequencies of sidebands and carrier waves were extracted
from the incident amplitude spectrum at x = 0.0 m; these were then used as initial conditions
for both theoretical methods. The numerical scheme was executed for all experiment repetitions,
and the average and standard deviation of sideband amplitude calculated across these.

Figures 2.7 to 2.9 present the evolution of seeded sideband amplitudes in both the absence
of currents and in the presence of opposing currents. Averages of the upper and lower sidebands
are given normalised by the initial carrier amplitude. Due to the spectral symmetry of NLSEs,
individual upper and lower sidebands are predicted less well than their averages by the vor-
NLSE, but are included for completeness in Appendix D. Numerical solutions of the vor-NLSE
and NLSE are presented alongside experimental results. Mean amplitudes across four repeats
are represented by dots (experimental) and lines (theoretical), while error bars and shaded areas
represent two standard deviations from the mean for experimental and theoretical results respec-
tively. Shaded areas are not always visible due to strong repeatability.

Figure 2.10 presents a sample of the evolution of incident envelopes (linearised by filtering
bound waves and averaged over repeats) as measured experimentally and predicted through the
NLSE and vor-NLSE numerical solutions by showing these envelopes at the first and final gauge.
The ratio between maximum envelope amplitude at the final and first gauge gives an amplifi-
cation factor associated with the perturbation wavenumber and shear rate; this amplification
factor is presented for all experiments in figure 2.11. In both figures 2.10 and 2.11 the effect of
shear on the formation of extreme wave crests becomes clear. Incident free surface elevation time
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Figure 2.7: Ω = 0 s−1 : Averaged upper and lower primary sideband Fourier amplitudes, Âδ
normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations from
the mean as averaged across four repeats (part II). All sideband wavenumbers are represented
as the normalised sideband wavenumber parameter K̂ = K/

(
a0

√
−M∗/L∗

)
. Solid lines denote

numerical predictions, while dotted line predictions are based on growth rates obtained from
linear stability analysis.

series and associated amplitude spectra are presented in figures 2.12 and 2.13, respectively.

2.4.2.1 Zero current

Figure 2.7 presents sideband evolution in the absence of current (and shear). Growth is clearly
visible through the 0.52 ≤ K̂ ≤ 1.29 sideband wavenumber range, as predicted by linear sta-
bility analysis. Here, sideband amplitudes all increase by more than 60% with a maximum
amplification by 87% occurring at K̂ = 0.90. Breaking was not observed in any experiments,
and significant decay in sideband amplitude was never recorded, thus indicating the lack of (the
beginnings of) FPU recurrence in the short flume. Between 1.29 ≤ K̂ ≤ 1.67, sideband amplifica-
tion reduces significantly, having crossed the theoretical stability boundary at K̂ = 1.42 (beyond
which sideband amplitude behaviour is expected to become oscillatory). Such oscillations are
observed in both experimental measurements and the numerical solution throughout the stable
region. Across all still water experiments, small error band intervals indicate that experiments
were very repeatable. Numerical solutions of the NLSE exhibit very satisfactory agreement with
experimental measurements over the range of still water experiments, with predictions usually
falling within two standard deviations of experimental measurements.

Figure 2.11 shows the ratio of the maximum values of the final and first gauge envelopes
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Figure 2.8: Ω = −0.21 s−1 : Averaged upper and lower primary sideband Fourier amplitudes, Âδ,
normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations from
the mean as averaged across four repeats (part II). All sideband wavenumbers are represented
as the normalised sideband wavenumber parameter K̂ = K/

(
a0

√
−M∗/L∗

)
. Solid lines denote

numerical predictions, while dotted line predictions are based on growth rates obtained from
linear stability analysis.

presented in figure 2.10. In figure 2.11a, the experimental amplification factors show a clear
downward trend following a maximal amplification factor of approximately 1.9 at K̂ = 1, the
perturbation wavenumber predicted by linear stability analysis to have maximum growth at zero
shear. The numerical solution to the vor-NLSE follows this trend very closely, remaining within
two standard deviations throughout the unstable region (K̂ < 1.4). Similarly, the envelopes pre-
sented in figure 2.10a-d show increases in amplitude for both unstable perturbation wavenumbers
(a-b); there is good agreement between experimental and numerical results. In the stable per-
turbation wavenumber region (figure 2.10c-d), agreement between numerical and experimental
envelopes is also observed.

2.4.2.2 Opposing currents

In figure 2.8, which illustrates the sideband evolution in −0.21 s−1 shear rate experiments, the
experimental measurements show obvious growth for perturbation wavenumbers within the range
0.45 ≤ K̂ ≤ 0.98. Similarly, in the −0.48 s−1 shear rate experiments of figure 2.9, clear sideband
growth is observed within the perturbation wavenumber range 0.59 ≤ K̂ ≤ 1.03. Maximum
amplifications by 21% were observed at K̂ = 0.71 and K̂ = 0.59 for the −0.21 s−1 and −0.48 s−1

shear rates respectively. Growths observed in the −0.48 s−1 shear experiments are predominantly
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Figure 2.9: Ω = −0.48 s−1 : Averaged upper and lower primary sideband Fourier amplitudes, Âδ
normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations from
the mean as averaged across four repeats (part II). All sideband wavenumbers are represented
as the normalised sideband wavenumber parameter K̂ = K/

(
a0

√
−M∗/L∗

)
. Solid lines denote

numerical predictions, while dotted line predictions are based on growth rates obtained from
linear stability analysis.

lower than in the −0.21 s−1 shear case due to the carrier wave having lower steepness. As the
perturbation wavenumber is increased beyond the theoretical stability threshold, both current
profiles exhibit stabilisation of sideband amplitudes, with zero or negative amplification beyond
K̂ ≈ 1.4.

The numerical solutions of the vor-NLSE closely match the experimental data for both current
profiles. In the −0.21 s−1 shear case, although removing shear from theoretical predictions leads
to over-prediction of sideband growth for all unstable cases, this does not become significant until
the edge of the stability region (K̂ = 1.42) is reached. However, significant changes in sideband
evolution are apparent in the −0.48 s−1 shear rate case where the NLSE consistently over-
predicts the amplification of sideband amplitudes at all unstable perturbation wavenumbers. This
maximum error occurs predominantly at lower perturbation wavenumbers (0.59 ≤ K̂ ≤ 1.33).
At K̂ = 0.59, the over-prediction exceeds 100% of the measured value. Predictions from the
vor-NLSE numerical scheme closely follow the sideband evolution trend well into the stable
perturbation wavenumber region. In the −0.48 s−1 shear rate case, above K̂ = 1.62 the vor-
NLSE predictions are still in good agreement with experimental measurements, however the
vor-NLSE and NLSE results are almost indistinguishable.

The effect of discounting shear on wave height is illustrated by the linearised envelope time
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Figure 2.10: Envelopes of the linearised experimental incident wavetrains, A, at x = 0 m (grey
line, used as wavemaker boundary condition to numerical solution) and x = 8.9 m (black line)
normalised by the carrier component amplitude and compared with predictions by the vor-NLSE
(continuous brown lines) and zero-shear NLSE (dot-dashed brown lines) as a fraction of its carrier
amplitude (part II).

series data presented in figure 2.10 where the over-prediction of the envelope amplitude of 29%
in panel (i) (K̂ = 0.59) by the NLSE is in stark contrast to the corresponding vor-NLSE result
which follows the experimental measurement to an error within two standard deviations (seen
as an overlap in vor-NLSE and experimental boundaries). The incorrect prediction in envelope
amplitude by the NLSE in figure 2.10 occurs at all unstable perturbation wavenumbers of the
−0.48 s−1 shear current case, displaying an over-prediction of 16% in the K̂ = 1.03 (panel (j));
again the vor-NLSE results compare favourably, with an under-prediction of only 7%.

Figure 2.11 shows this significant difference in predictions between the vor-NLSE and uniform
velocity NLSE occurs in all of the unstable perturbation wavenumbers at the Ω = −0.48 s−1 shear
rates. As with the zero current cases, the majority of vor-NLSE amplification factor predictions
fall within two standard deviations across repeats.

Across all perturbation wavenumbers, repeatability appears to be very good with minimal
changes in sideband amplitude across repeats. However, in the −0.48 s−1 shear case, when
perturbation wavenumber approaches the stability boundary, a larger standard deviation is seen.
The perturbation wavenumbers at which larger deviations exist emphasises the sensitivity of the
system to initial conditions. At the very sharp perturbation wavenumber stability boundary,
this nonlinear system becomes very sensitive to initial conditions where slight changes in carrier
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Figure 2.11: Maximum amplification factors, denoting the ratio between the maximum envelope
amplitudes at the first and final gauges, as a function of the normalised sideband wavenumber
parameter K̂ = K/

(
a0

√
−M∗/L∗

)
and for the three shear rates.

amplitude may push the system into a region of stability or instability (see Appendix D).

2.5 Conclusion
Measurements of physical experiments have been compared with the linear and weakly nonlinear
constant vorticity, arbitrary depth, linear shear wave evolution equations derived by Thomas,
Kharif, and Manna [123] (TKM12). It has been shown that in cases of shear Ω < −0.21 s−1 (i.e.
for shear rates sufficiently large in magnitude), the constant vorticity equations consistently per-
form significantly better than the standard, uniform-current equations. The linear vor-dispersion
equation gave results that remained within experimental error (part I). Sideband evolution pre-
dictions of the vor-NLSE consistently remained within two standard deviations across experiment
repeats (part II).

In part I, the wavelengths and frequencies of low-steepness, regular waves were measured for
five opposing current profiles (down to Ω = −0.87 s−1), and measured dispersion relations ob-
tained. The experimental measurements were compared with predictions from arbitrary depth,
constant vorticity and standard, uniform-current dispersion relations. For all current profiles,
results from the constant vorticity dispersion relation agreed with physical measurements, where
the experimental data points fell within 95% confidence bounds associated with the estimation
of current shear and surface current. For Ω ≤ −0.48 s−1, the predictions by the uniform-current
dispersion relation deviated significantly from both the vor-dispersion equation and experimental
measurements.

In part II, in nonlinear experiments, the sidebands of modulated wavetrains were observed to
grow, creating large amplitude wave pulses and indicating modulational instability in all current
profiles within the unstable perturbation wavenumber region (as predicted by linear stability
analysis of the vor-NLSE). Experimental measurements of sideband amplitude were compared
with numerical predictions of space-marching solvers of the vor-NLSE and the standard uniform-
current NLSE. The vor-NLSE results provided a very good match to experimental measurements
over the range of current profiles considered, unlike the uniform velocity NLSE whose sideband
amplification predictions were consistently 10% to 30% higher than measured.

Future work should include an investigation into the destabilizing effects of positive shear.
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Figure 2.12: Evolution of experimental incident free surface elevation for nominally unstable
(left) and marginally unstable (right) sideband frequencies (part II) for the three shear rates. A
scaled free surface elevation, 25η is presented to make plots clear.

This likely requires the use of a high-velocity wave-following surface current which is known to
reduce amplitudes and thus their associated nonlinear effects. As such, wavemakers capable of
high frequencies (ω0 > 12 rad s−1) and a long evolution distance would be required. Additionally,
the propagation of breather-type NLSE solutions (having known and previously verified ampli-
fication factors on still water) on negatively sheared currents would likely quantify the effect of
sheared current on amplification factor more precisely, although their experimental generation
will most likely rely on an iterative experimental procedure. Additionally, following laboratory
verification, a natural extension would investigate the vor-NLSE applicability to real-world envi-
ronments such as the Columbia River estuary bordering Washington and Oregon in the United
States of America. The Columbia river is known for its high current and shear rates [73] and
has previously been the subject of shear and its effects on shipping [80].
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Figure 2.13: Evolution of experimental incident amplitude spectra for unstable (left) and
marginally unstable (right) sideband frequencies. Black dashed lines mark the carrier and pri-
mary sideband amplitudes through their spatial evolution (part II).
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Chapter 3

Modulational Stability in Crossing
Seas∗

3.1 Introduction
Crossing seas, in which waves travel in multiple directions, have been identified as an important
challenge to offshore operations, linked to an increased probability of extreme waves [16, 20]. In
addition to specific environmental forcing such as wind or (sudden) changes in bathymetry, two
important mechanisms play a role in the formation of so-called rogue waves in the ocean, namely
random dispersive focusing enhanced by weak bound-wave nonlinearity and modulational insta-
bility [71, 44, 98, 5]. Herein, a contribution to the understanding of extreme waves in crossing
seas is made by reporting on an experimental study of modulational instability in waves crossing
at angles between 0◦ ≤ θ ≤ 88◦.

For long-crested or unidirectional seas, it is well established that weakly nonlinear regular
wavetrains in sufficiently deep water rapidly evolve into pulses of wave groups through modula-
tional instability [136, 14]. Extreme waves can form within such groups, making modulational
instability a topic of considerable interest in the context of rogue wave events. The nonlinear
Schrödinger equation (NLSE) provides the simplest mathematical framework for studying mod-
ulational instability, and permits unstable solutions including breathers and plane Stokes waves
[84, 103]. Breather waves are characterized by a sudden increase in amplitude of initially regular
waves to either three or five times their initial value [6, 24], and provide close approximations
to rogue waves in long-crested seas. However, experimentally, breather waves are particularly
sensitive to initial conditions, which must be specified precisely for the waves to attain maximum
amplitude [25]. Particularly, in the case of the Peregrine breather, which is localized in both
time and space, precise initial conditions lead to an extreme wave only once during its evolution.
Although precise reproduction of specific breather solutions in the laboratory requires special
input conditions at the wavemaker, such initial conditions do not exist in the ocean. Never-
theless, clear evidence of breather trains has been observed in measured ocean wave data sets
through the nonlinear Fourier method [100]. Moreover, in the laboratory, breather trains have
been observed to be stable to disturbances such as from wind [23].

The unstable regular Stokes wave seeded with sideband components to the carrier has pe-

∗An abridged version of this chapter has been published in a paper entitled—“Experimental Observation of
Modulational Instability in Crossing Surface Gravity Wavetrains”, co-authored by M. L. McAllister, A. G. L.
Borthwick, and T. S. van den Bremer, MDPI Fluids, 4(2):103, [116]
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riodic modulations that grow, facilitating straightforward measurement of wavetrain stability,
such as in the seminal paper by Lake et al. [79]. In this idealized problem, energy is returned
from the sidebands to the carrier wave at later times, leading to periodic modulation and de-
modulation on very long time scales known as Fermi–Pasta–Ulam (FPU) recurrence [52, 53, 69].
Strictly, FPU recurrence only exists in conservative systems and is prevented by the occurrence
of breaking. In the case of breaking, the principle of time-reversibility also does not apply [21].
However, even in the presence of breaking waves, energy from sidebands returns to a central
carrier wave after some time, giving rise to FPU-type modulation-demodulation cycles [79, 90].
This chapter avoids these complications in all experiments by considering only the initial stages
of modulational instability, before breaking takes place.

Although extensively studied both theoretically and experimentally in one dimension, the ap-
plicability of the 1D+1 NLSE to the open ocean is limited by the equation’s unidirectionality.
In the open ocean, waves may be created from multiple sources, interact, and cross at an angle.
Additionally, in fetch-limited seas it has been observed that spectral components above and be-
low the peak frequency become bimodal with energy naturally spreading symmetrically to angles
above and below that of the peak frequency direction [135, 50]. As derived for deep-water by
Onorato et al. [95] from the 2D+1 Zakharov equation [137], the coupled nonlinear Schrödinger
equation (CNLSE) is a system of nonlinear wave equations describing the interaction of two
narrow-banded weakly nonlinear wave systems propagating at an angle (see also [59]). This
deep-water CNLSE has since been extended to finite depth by Kundu et al. [77]. However, for
practical purposes, the experiments presented herein were performed in deep water. The CNLSE
enables both modulational instability and crossing effects to be explored simultaneously. By in-
voking the assumptions of symmetrical propagation about the x-axis at angle ±θ and shared
group velocity along the x-axis, the CNLSE simplifies and readily lends itself to linear stabil-
ity analysis. The results define both low angle and high angle instability regions separated at
θ = 35.26◦ and θ = 144.74◦ (see also [107]). Discussions concerning linear stability of CNLSE
and the effect of the changing values of CNLSE coefficients with crossing angle have highlighted
increased amplification factors but decreased growth rates of breather and soliton solutions in
crossing seas for angles approaching 35.26◦ [96, 2]. Within this chapter, crossing angle, θ is the
angle at which waves propagate to the x-axis, i.e., when two waves cross at ±θ the angle of bisec-
tion is 2θ. Along with the general investigation into plane wave stability, rogue wave solutions to
the CNLSE are known to exist and have been classified and, through numerical computations,
compared to their 1D+1 analogue, the Peregrine breather [39].

Laboratory experiments by Toffoli et al. [125] have measured the long-term statistical be-
haviour of deep-water weakly nonlinear crossing waves up to crossing angles of 20◦ (see Fig-
ure 3.1b for these experimental angles). Numerical solutions using a higher-order spectral method
were used to confirm these findings and additionally, to study crossing angles up to 90◦ and found
increases in kurtosis for crossing angles in the range 20◦ < θ < 30◦ [126]. Additionally, the effect
of oblique sideband perturbations (of up to 37◦) to plane waves propagating over finite depth
were investigated experimentally and sideband growth was reported [126]. The existence of
short-crested crossing breather waves (slanted breather solutions to the 2D+1 NLSE) has also
been confirmed experimentally [27].

In addition to possible modulational instability, changes to the second-order bound waves
occur when waves cross. The wave-averaged free surface, represented spectrally by second-order
difference waves, is the local mean surface elevation formed by temporal averaging over the
rapidly varying waves that make up the slowly varying group. Whereas a set-down of the wave-
averaged free surface is expected in the absence of crossing, packets are accompanied by a set-up
for sufficiently large crossing angles. This can be theoretically predicted [93, 65, 128, 29] based
on second-order interaction kernels [61, 110, 37, 54]. Set-up has been observed in field data
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[131, 127, 109] and recently in detailed laboratory experiments [87]. For the Draupner wave,
recorded in the North Sea on the 1st of January 1995 [62], the observation of set-up can be seen
as evidence for crossing [131, 4, 89]. In fact, linear dispersive focusing enhanced by bound-wave
nonlinearity but without modulational instability may be sufficient to explain observations such
as the Draupner wave [51, 17].

Recently, a number of additional numerical studies have examined extreme waves and mod-
ulational instability in crossing seas. Støle-Hentschel et al. [118] have shown, using numerical
simulations and laboratory experiments, that a small amount of energy travelling in exactly the
opposing direction can significantly reduce the kurtosis of the surface elevation. Gramstad et al.
[57], using random simulations of the Zakharov equation, found that, for unimodal spectra, kur-
tosis increased at crossing angles close to 50◦ and at very small crossing angles when compared
to the unidirectional case. Kurtosis was found to be at a minimum at 90◦.

In this chapter, regular wave experiments with seeded sidebands for two crossing wavetrains
in a circular wave basin are reported on. These experiments are the crossing-wave counterpart
of the classical experiments by Lake et al. [79] and cover both stable and unstable regions of the
(K, θ) space, through the range 0◦ ≤ θ ≤ 88◦, where K is the perturbation wavenumber. The
growth of sideband amplitude is measured and compared to results from linear stability analysis
of the CNLSE, as well as numerical solutions of this equation.

This chapter is laid out as follows. First, Section 3.2 reviews the theoretical background,
followed by an exposition of the experimental methodology in Section 3.3. Experimental results
are presented and compared to solutions of the CNLSE in Section 3.4. Finally, conclusions are
drawn in Section 3.5.

3.2 Theoretical background

3.2.1 Coupled nonlinear Schrödinger equation (CNLSE)
The coupled nonlinear Schrödinger equation (CNLSE), derived by [95] from the 2D+1 Zakharov
equation [137], is a narrow-banded wave equation describing the evolution of coupled, complex
wave envelopes A and B. Both wave envelopes propagate on an associated carrier wave whose
properties define the CNLSE coefficients and thus (along with the initial conditions) the envelope
evolution. Scaled for water waves, and under the assumption of identical but symmetrical carrier
waves (about the x-axis) with distinct amplitude envelopes, the CNLSE is given, in a Cartesian
coordinate system (x, y, t), by [95],

∂A
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− iα∂
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where carrier properties: frequency, ω0; x-axis wavenumber, k; y-axis wavenumber, l; and abso-
lute wavenumber, k0 =

√
k2 + l2, define the group velocities Cx and Cy along their respective

axes,
Cx =

ω0

2k2
0

k and Cy =
ω0

2k2
0

l, (3.3)

the linear coefficients α, β, and γ are given by,
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8k4
0

(2l2 − k2), β =
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0
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and the nonlinear coefficients ξ and ζ by,

ξ =
ω0

2k0

k5 − k3l2 − 3kl4 − 2k4k0 + 2k2l2k0 + 2l4k0

(k − 2k0)k0
and ζ =

2ξ

ω0k2
0

. (3.5)

The carrier frequency ω0 and absolute wavenumber k0 are related through the deep-water dis-
persion relation, ω0 =

√
k0g, with g denoting the gravitational constant.

In the special case of envelopes propagating along the x-axis, a Galilean transformation into
the group reference frame reduces the CNLSE to [95],

∂A

∂t
− iα ∂

2A

∂X2
+ i(ξ|A|2 + 2ζ|B|2)A =0, (3.6)

∂B

∂t
− iα ∂

2B

∂X2
+ i(ξ|B|2 + 2ζ|A|2)B =0, (3.7)

where X = x − Cxt. From the wave packet amplitudes, the (linear) free surface elevation is
reconstructed by reintroducing the carrier waves through,

η = Re
[
Aei(kx+ly−ω0t) +Bei(kx−ly−ω0t)

]
. (3.8)

The associated amplitude spectrum (given as input to the wavemakers) is shown in figure 3.4.

3.2.2 Linear stability analysis
Linear stability analysis of the CNLSE reveals many properties of the equation and, using a
seeded carrier solution, allows prediction of the initial sideband growth rate. Identical plane
waves are admitted as solutions to (3.6) and (3.7) and perturbations of infinitesimal amplitude
and phase are added to obtain (see also [95]),

A = a0(1 + δa)e−i(ω0t+δφa) and B = b0(1 + δb)e
−i(ω0t+δφb), (3.9)

where a0 and b0 are carrier amplitudes, and δa, δb, δφa, and δφb are small perturbations in
amplitude and phase. In this linear stability analysis, the assumed form of the sideband solutions
aδ and bδ is,

aδ = aδ,0e
i(Ωt±Kx) ≡ a0δa and bδ = bδ,0e

i(Ωt±Kx) ≡ b0δb, (3.10)

where aδ,0 and bδ,0 are the initial sideband amplitudes, K is the perturbation wavenumber, and
Ω is the perturbation frequency. The relationship between K and Ω is found through linear
stability analysis as [95],

Ω = ±
√
αK2[(ξ(a2

0 + b20 + αK2)±
√
ξ2(a2

0 − b20)2 + 16ζ2a2
0b

2
0], (3.11)

where it is apparent that Ω may take either real or imaginary values. Following substitution
of this relationship into (3.10), either oscillatory (when Ω ∈ Re) or exponential (when Ω ∈ Im)
behaviour can be expected from the sidebands.

Figure 3.1 presents the instability regions in (K, θ)-space with stability boundaries denoted
by the critical perturbation wavenumber function, Kc(θ). Three regions of instability exist: at
low angle, 0◦ < θ < 35◦; medium angle, 46◦ < θ < 143◦; and high angle, 145◦ < θ < 180◦, in
which θ is related to the carrier wavenumbers through θ = arctan(l/k). It should be noted that
the asymmetry around 90◦ (i.e., comparing the region from 0◦ towards an increasing angle θ
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and the region from 180◦ towards decreasing θ) arises because the perturbation always travels in
the positive x-direction. Figure 3.1a also shows where in (K, θ) space the experiments reported
on herein lie, with Figure 3.1b displaying the locations of experiments previously reported by
Toffoli et al. [125]. These experiments were restricted to angles 0◦ < θ < 20◦ and were carried
out with a continuous spectrum instead of discrete sidebands, as illustrated by the horizontal
lines in Figure 3.1b, with 85% of their energy bounded by the y-axis and the black crosses.

Figure 3.1: Surfaces showing the growth rate obtained from linear stability analysis of the coupled
nonlinear Schrödinger equation (from (3.11)). Panel (a) presents experimental parameters where
experiments 2a-h are indicated by dots (results presented in main text) and experiments 2i-l by
open circles (results presented in Appendix E). The crossing angles of experiments performed by
Toffoli et al. The continuous spectrum used in the experiments of [125] are shown as solid lines
in panel (b) with the crosses and y-axis marking the boundary containing 85% of the spectral
energy (note that the crossing angle, β, in Toffoli et al. [125] is equivalent to 2θ). The dashed lines
indicate boundaries of stability regions, while the dot-dashed lines show the boundary between
complex (0 < K ≤ Kc/2) and simple (Kc/2 < K < Kc) evolution.

For unidirectional waves, modulational instability behaves as described by the standard NLSE
but with increased instability due to the presence of two carrier waves, with a consequent doubling
of steepness. As the crossing angle is progressively increased, the region of instability extends
further along the wavenumber axis, whereas the magnitude of the instability decreases gradually.
At θ ≈ 35.26◦ (exactly, θ = arctan(1/

√
2)), the low angle instability region ends, having encom-

passed all wavenumbers. At approximately 46◦, the medium-angle instability region begins to
take shape, starting close to zero wavenumber and expanding along the wavenumber axis until
the crossing angle reaches approximately 143◦. Finally, the high-angle region commences as a
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sharp boundary at approximately 145◦ and ends as a mirrored version, similar to the low-angle
region (with both waves travelling at 180◦ from the x-axis).

3.2.3 Characteristics of modulational instability: complex vs. simple
evolution

Figure 3.2 presents the spectral and temporal evolution of two modulated wavetrains with dif-
ferent perturbation wavenumbers propagating from the initial conditions (3.9) with θ = 20◦ and
aδ,0 = 0.1a0, obtained using a numerical solver of the CNLSEs (see Appendix F). The effect of
modulational instability is instantly recognizable from the increase in amplitude of the sidebands
closest to the carrier wave (primary sidebands). As the primary sideband amplitudes increase,
the carrier amplitude begins to decrease. Further in the evolution process, secondary sidebands
appear at integer multiples of the primary sideband wavenumber. The effect of this initial stage
of instability is seen in the packet amplitude in Figure 3.2b as a rapid increase in the group am-
plitude. Following the exponential sideband amplitude growth, Fermi–Pasta–Ulam recurrence
is observed. During idealized FPU recurrence, energy is exchanged periodically between modes,
and the system returns to its original state [52, 53, 69]. However, in water waves, energy may be
lost to wave breaking resulting in a nonconservative system but FPU recurrence is a long-term
behaviour, and strong modulational instability is required to observe it in the space available in
most experimental facilities.

Figure 3.2: Spectral and temporal evolution obtained from the time-marching of the CNLSE
for two unstable modulated wavetrains crossing at θ = 20◦. Panels (a) and (b) show complex
(0 < K ≤ Kc/2) evolution, whilst panels (c) and (d) display simple (Kc/2 < K < Kc) evolution.
Temporal axes have been normalized by the carrier wave period, T0.
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Figure 3.2a,b show the wavetrain propagating with complex recurrence, whereas Figure 3.2c,d
show simple recurrence. Complex recurrence is expected when K lies less than (or at) half-way
through the instability region (0 < K ≤ Kc/2), and primary sidebands themselves act as unstable
carriers, continually spawning new sidebands. When K lies more than half way to the stability
boundary (Kc/2 < K < Kc) new sidebands will lie in the stable region, and simple recurrence
is observed.

3.3 Experimental methodology
3.3.1 Facility
The aim of experiments was to measure sideband growth at extreme crossing angles up to 90◦.
In order to achieve this, physical tests were performed in the FloWave Ocean Energy Research
Facility at the University of Edinburgh, which is capable of omnidirectional wave creation and
absorption. The basin (depicted in Figure 3.3a,b) has a diameter of 25 m, a working depth
of 2 m, and is encircled by 168 actively absorbing force-feedback wavemakers. A Cartesian
coordinate system was defined with its origin at the centre of the basin. The primary direction
of propagation of the waves was in the positive x direction. In crossing wave experiments, the
carrier waves travelled at an angle, θ, from the x-axis, as defined in Figure 3.3a. Wave generation
in the facility was controlled using software based on linear wave theory. Ten resistance type
wave gauges at a spacing of 1.5 m were mounted on a gantry spanning the basin x-axis (see
Figure 3.3b for coordinates). Wave gauges were calibrated each day before tests commenced. A
20 min settling period was imposed between each test, allowing residual basin motion to settle
to an acceptable level.
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Figure 3.3: (a) FloWave Ocean Energy Research Facility at The University of Edinburgh, showing
wave gauge locations relative to the centre of the basin (0, 0) (units in m) and direction of wave
system components (figure adapted from [92]). (b) Sectional view of the FloWave basin with
key dimensions. (c) Amplitude profiles of unseeded carrier waves (f0 = 1.5 Hz) travelling at an
angle, θ, and measured along the basin x-axis (Part I). Amplitude profiles have been normalised
by the target amplitude.
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Figure 3.4: Examples of the input spectra given to the wavemaker software for all experiments
in Chapter 3. a: Example input spectrum for modulated wave systems crossing at the critical
angle. b: Example input spectrum for a modulated unidirectional wave system.

3.3.2 Matrix of experiments
The experimental campaign was split into two parts. Part I aimed to measure the length of crests
in the facility. A manifestation of a finite number of wavemakers encircling a finite-size circular
basin is the inability to create perfectly long-crested waves spanning the entire basin diameter.
The drop in amplitude at the basin fringes (as shown in figure 3.3c) is dubbed the ”finite-crest
effect“. This finite-crest effect needed to be quantified in order to estimate the length over which
components travelling with different directions would interact. Part II aimed to measure the
growth of frequency sidebands about carrier waves travelling at crossing angles ±θ. Crossing
carrier and sideband waves only interact fully in regions of total crest overlap, and so the extent
that these regions cover the chosen wave gauge locations is defined by the carrier crest length and
angle. Experiments 1a–d (Part I) were therefore designed to determine the effective sideband
evolution region in the basin at each angle. In these experiments, a single unseeded carrier wave
was propagated at the angles given in Table 3.1 (Part I).

Table 3.1: Experiment labels and their corresponding crossing angles for both Part I (single,
unseeded regular wave) and Part II (seeded waves). All experiments used carrier parameters
of f0 = 1.5 Hz, k0a0 = 0.16, and k0d = 18. Experiments 2a–l used sideband parameters of
K = 3.02 m−1, and aδ,0 = 0.003 m.

Part I Part II

Expt. 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l

θ (◦) 0 30 60 90 0 5 10 20 25 32 41 47 60 68 83 88

For Part I, the amplitude profiles of experiments 1a–d are presented in Figure 3.3c and allow
estimation of the carrier crest length in the FloWave facility. Experiment 1d (θ = 90◦) shows
that, for high angle experiments, a reasonable region in which to expect full sideband-carrier
interactions occupies approximately 10 wavelengths centred about the basin origin. However,
the effective length is extended significantly to more than 20 wavelengths for crossing angles
up to 30◦, the region of greatest interest in Part II. As expected, for waves in the x-direction
(θ = 0◦), the region covers all wave gauge locations. The results from the Part I tests were
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interpolated in order to estimate the finite-crest effect at all crossing angles.
All experiments in Part II were performed with constant values of carrier frequency, f0 =

1.5 Hz, carrier amplitudes a0 = b0 = 0.018 m, and initial sideband amplitude aδ,0 = 0.003 m,
giving a depth parameter k0d = 18, and steepness of a single carrier, k0a0 = 0.16. Figure 3.1a
shows the expected growth rates, crossing angles, and sideband wavenumbers for the Part II
tests. A simple system of four plane waves, consisting of two carrier waves propagating at ±θ
to the x-axis, and two sidebands propagating along the x-axis was used as input to the wave
generation software. Explicitly, we thus have,

η(x0, y, t) = Re
[
a0e
−i(ω0t−yk0 sin θ) + b0e

−i(ω0t+yk0 sin θ) + aδ,0

(
e−i(ω0+ωδ)t + e−i(ω0−ωδ)t

)]
,

(3.12)
where x0 is the x-position of the wavemaker along y = 0 (the axis of propagation of the side-
bands). The relatively high carrier frequency was chosen to slow group velocity, increasing the
effective evolution distance. The carrier amplitude was subsequently calculated to give a mod-
erate steepness of k0a0 = 0.16, required for prominent instability but to avoid breaking. Each
experiment was repeated 3 times.

3.3.3 Data processing
The calibrated wave gauge outputs (free surface time histories) from each experiment were band-
pass filtered to eliminate higher-order and low-frequency bound waves. The recorded free surface
elevation time series length was limited to eliminate reflected waves. A Tukey window with a
tapering parameter of 0.2 was used to create a transient signal and limit the lobe effect associated
with windowing. The length of the Tukey window was determined using the estimated linear
group velocity of the wavetrain. The amplitude spectrum was determined at each location
(see Figure 3.5), and the evolution of the primary sidebands (frequency components located
closest to the carrier wave) used to identify modulational instability. The true frequency of these
components was determined at the first gauge location. These component amplitudes were then
tracked across all the remaining wave gauges. Sideband and carrier amplitudes at the first wave
gauge location were used as initial conditions for a CNLSE solver (using the Fourier, split-step
method, see Appendix F) and as inputs to the prediction by the linear stability analysis (3.11).
The experimental evolution of the sidebands is compared to these numerical solutions, as well as
the linear stability analysis (3.11) below.

3.4 Results
Figure 3.5 shows the evolution of the amplitude spectra along the tank’s x-axis (the direction
of propagation of the perturbation) for the different crossing angles considered in experiments
in Part II. This figure shows both the finite-crest effect studied in Part I and the effect of
modulational instability. Figure 3.6 presents the evolution of the primary sideband amplitudes
of experiments 2a–l. The unseeded wave amplitudes presented in figure 3.3c (Part I) may be
used to estimate the number of wavelengths over which the two systems fully interact.

Also shown in Figure 3.6 are the numerical results from the CNLSE time-marching scheme and
the linear stability analysis. For brevity, only experiments 2a–h are presented (see Appendix E for
experiments 2i–l, which show stability, as predicted). Each experimental repeat was solved across
the spatial domain using the CNLSE solver. The results of the solver were then averaged and
the standard deviation across repeats was calculated. Error bars for experimental measurements
and dashed lines for the numerical scheme are used to indicate one standard deviation from the
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mean across repeats.

Figure 3.5: Amplitude spectra for experiments 2(a–h) (Part II) obtained using the measured
free surface time series along the primary wave propagation direction (see Figure 3.3a for gauge
locations) for different crossing angles, θ. Dashed lines follow the amplitudes of the carrier (light
blue), lower sideband (red), and upper sideband (dark blue).

3.4.1 Unidirectional waves: θ = 0◦

The unidirectional experiment 2a, presented in Figure 3.6a, shows the most significant growth
in sideband amplitude, with the lower sideband increasing by more than a factor of three. An
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increase in amplitude can also be observed in the upper sideband and the beginnings of FPU
recurrence appear. The numerical solution in Figure 3.6a also shows significant growth and
follows the average of the upper and lower sideband amplitudes well, displaying many of the
same characteristics (such as FPU recurrence). However, the lower sideband grows much more
quickly than the upper sideband, which is subject to initial growth followed by considerable
attenuation, a feature not predicted by the NLSE but predicted in the modified NLSE [46] and
commonly observed in unidirectional experiments [90].
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Figure 3.6: Sideband amplitude evolution along the basin centreline for experiments 2(a–h)
(Part II) from measurements (crosses), numerical solutions of the CNLSE (thin blue and red
lines) and linear stability analysis (thin black lines). Lower and upper sidebands are indicated
in red and blue, respectively. Error bars and dashed lines represent one standard deviation from
the mean across repeats for the measured data and the CNLSE solution, respectively.

The effect of sideband growth and modulational instability on free surface elevation is shown
by the formation of pulses in Figure 3.7. Extreme waves occur in these pulses when carrier crests

41



come in phase with the group centre, as demonstrated in Figure 3.7a at x/λ0 ≈ 3, where a cluster
of three waves has more than doubled in amplitude within 13λ0. Figure 3.5a presents the am-
plitude spectra for experiment 2a. Substantial growth in secondary sidebands is evident. These
secondary sideband frequency components, located at multiples of the perturbation frequency,
contribute to the growth of wave group amplitudes and further enhance the strong decline of the
carrier amplitude.

Figure 3.7: Measured free surface elevation time series for experiments 2(a–h) (Part II) shifted
by the linear group velocity cg =

√
C2
x + C2

y and normalized by the carrier period, T0, with the
positive vertical axis also representing increasing distance along the basin.

3.4.2 Crossing waves: 0◦ < θ ≤ 47◦

Figure 3.6b–d show that the growth observed in the unidirectional case continues but slows
as the crossing angle is increased to 20◦. In these experiments, the maximum amplification
factor of the lower sideband generally reduces compared to the unidirectional case, whereas the
upper sideband appears relatively unaffected, with no strong growth in either case. The pulse
formations seen in experiment 2a persist in Figure 3.7b–d along with the sideband growth in
Figure 3.5b–d, though with reduced magnitude. The unseeded carrier wave amplitude profiles
of Figure 3.6b–d (measured in Part I) remain largely unchanged along the length of the basin,
indicating that the effective length, over which crests reach their full amplitudes, is sufficiently
long. Between θ = 25◦ and θ = 41◦ (Figure 3.6e–g), the transition to stability takes places.
Throughout the transition to stability, the amplitude of unseeded regular waves show some drop
in amplitude at their fringes. These drops in amplitude indicate the edges of the interaction
region caused by the finite-crest effect of the tank. However, up to θ = 47◦, 15 wavelengths of
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interaction distance remain, a distance seen in the unidirectional case to be sufficient for sideband
growth to occur. Experiments at angles of 41◦ and higher (Figure 3.6g,h, and Appendix E for
the measurements from experiments 2i–l) are stable.

3.5 Conclusions
The effects of crossing angle on the modulational stability of two crossing nonlinear surface
gravity wavetrains seeded with sideband perturbations has been experimentally investigated
and measurements compared to numerical predictions by the the coupled nonlinear Schrödinger
equation (CNLSE). The results demonstrate that sideband growth, as predicted by linear stability
analysis of the CNLSE, can be reproduced in physical experiments undertaken in a circular wave
basin. Strong modulation occurred in the unidirectional case, where the beginnings of recurrence
were observed. The growth rate reduced as the crossing angle was increased; negligible growth
was measured at and beyond a crossing angle of approximately 30◦. Due to the reduced growth
rate and the finite length of the basin, we have not been able to observe the increased growth
rates associated with angles approaching the medium and high angle instability regions. An
unseeded, regular wave was used to estimate the finite-crest effect (an experimental limitation
for a finite-size circular basin), which started to become significant at 42◦, well beyond the
theoretical stability boundary of 35.26◦. Taking into account the reduction in evolution length
imposed by the finite-crest effect, no growth in sidebands was found to occur at these high
angles. Future work should seek to extend experimental measurements into the second (high-
angle) unstable region. To complete this successfully, the finite-crest effect must be considered
allowing sidebands enough interaction evolution distance to grow.
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Chapter 4

Nondispersive Crossing Waves∗

4.1 Introduction
Stationary or nondispersive wave groups can occur in a range of nonlinear dispersive media,
including in optics, Bose-Einstein condensates, plasma and hydrodynamics. The dynamics
of higher-dimensional and steady wave packets is widely discussed in optics where the free-
space scalar wave equation has traditionally been used to investigate linear, localised waves
(LWs). Through various methods, a number of families of linear LW solutions have been found
[19, 138, 139]. One such family is the so-called “X-wave” characterised by an X-shaped packet
structure with a sharp, high amplitude centroid. Linear X-waves have been observed in optical
fibres and confirmed to be truly nondispersive over finite distances, which is a common exper-
imental limitation when investigating wave propagation features, in this particular case due to
finite aperture radiators [83]. Optical localised waves have become useful in a number of relevant
applications, including free space communications [134], optical lithography [68], and universal
extreme events [114]. When the scales of group velocity dispersion (GVD) and nonlinear ampli-
tude effects are comparable, linear wave equations become inaccurate and nonlinearity must be
considered. Whereas GVD can be described using a dispersion relationship between frequency
and wavenumber, amplitude-dependent nonlinear effects are modelled in a variety of ways, includ-
ing through the universal nonlinear Schrödinger equation (NLSE) [1]. The NLSE is a nonlinear
wave evolution equation that applies in nonlinear dispersive media [98, 41], and can be extended
to two spatial dimensions to allow multi-dimensional, nonlinear LW group solutions. Indeed,
in optics, “light bullet” nonlinear X-waves have been predicted and created experimentally and
spontaneously through conical emission [31] and second-harmonic generation [40]. Extreme LW
events or ‘rogue waves’ have also been detected in optical telecommunications fibre systems [11].
Due to the dispersive and nonlinear character of water waves, an analogy to optics, Bose-Einstein
condensates and plasma can be naturally drawn [26, 94, 72, 47]. This also applies for directional
weakly nonlinear shallow-water waves [12].

Both the coupled NLSE (CNLSE) (whereby two nonlinear wave systems interact) and the
2D+1 NLSE (whereby one wave system exists with a crossing angle θ between the carrier and
envelope components) describe the evolution of crossing, weakly nonlinear wave systems, albeit
in different ways. Using the 2D+1 NLSE, a critical crossing angle of θc = ± arctan 1/

√
2 can

be derived, beyond which linear focusing becomes defocusing, and the system achieves stability

∗An abridged version of this chapter is forthcoming for publication in a paper entitled—“Hydrodynamic X
Waves”, co-authored by A. G. L. Borthwick, M. Onorato, A. Chabchoub, and T. S. van den Bremer, (Physical
Review Letters)
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to sideband perturbations [67]. In the CNLSE, a similar stabilization of the coupled system
is observed at the same critical angle [95]. For hydrodynamics and at low interaction angles,
numerical simulations of coupled wave systems have used the potential-flow Euler equations and
experimentation to confirm these predictions of the CNLSE. An increase in the kurtosis of cross-
ing seas up to approximately ±25◦ was observed, with this reducing rapidly as the angle was
increased towards θc [125].

In hydrodynamics, wave groups propagating at the critical crossing angle predicted by the
2D+1 NLSE can be observed naturally at the fringes of the Kelvin ship wake [103]. Furthermore,
it has been shown that an isolated spectral energy peak tends to spread outwards at this angle
[82]. Additionally, this nonlinear energy transfer has been suggested as the cause of so called
‘wing-waves’, which exist at the fringes of extreme wave events. Their symmetry (at ±θc) may
cause constructive interference enhancing already extreme events [3]. Extreme wave heights in
crossing seas can also be enhanced by second-order bound waves causing wave-averaged set-up, as
has been shown experimentally [88]. Through the elimination of dispersion at the critical cross-
ing angle, it may be possible to extend dramatically the lifetime of groups containing extreme
events in this particular configuration, playing a significant role in the probability of exceedance,
coherence stability, as well as impact, of ocean rogue waves.

In this experimental study, a hydrodynamic X-wave is created in a directional and circular
water-wave facility using the critical crossing angle. Using an array of wave probes to reconstruct
the directional structure of the X-wave, spatio-temporal free surface elevation is measured and
compared against a numerical solution of the 2D+1 NLSE. Comments are made on the effect
of GVD, nonlinear focusing and spectral energy spread on the evolution of the X-wave. The
crossing angle of a single arm of the X-shaped wave envelope was altered in order to quantify
its effect on focusing. The experimental data includes waves of medium to high steepness allow-
ing the characterisation of crossing angle effect on the amplitude-dependent wave nonlinearity
(stability). Again, experiments are compared to numerical solutions of the 2D+1 NLSE.

4.2 Theoretical background
The following two-dimensional nonlinear Schrödinger equation (2D+1 NLSE) for deep-water
surface gravity waves is considered [137],

i

(
∂A

∂t
+ cg

∂A

∂x

)
− α∂

2A

∂x2
+ 2α

∂2A

∂y2
− β|A|2A = 0, (4.1)

where x and y are the horizontal coordinates, t is time, and A(x, y, t) the envelope of a carrier wave
of frequency ω0 and wavenumber k0 = (k0, 0) propagating in the x-direction. The coefficients of
the 2D-NLSE are given by
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2
, (4.2a,b,c)

where (4.2a-b) are obtained from the deep-water linear dispersion relationship ω2 = gk with
k = |k|. While the second derivative in the x-coordinate is responsible for the dispersion of the
envelope, the second derivative in the y-coordinate implies diffraction. The free surface elevation,
η(x, y, t), can be recovered, to leading order, as follows:

η(x, y, t) =
1

2

(
A(x, y, t)ei(k0x−ω0t) + c.c.

)
. (4.3)
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To allow for wave packet propagation in space, the leading-order identity ∂A/∂t ' −cg∂A/∂x
can be used to transform the 2D+1 NLSE in a form that is a more suitable framework for the
comparison with laboratory experiments [99, 22],

i

(
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∂x
+

1

cg

∂A

∂t

)
− α

c3g

∂2A

∂t2
+

2α

cg

∂2A

∂y2
− β

cg
|A|2A = 0. (4.4)

Solutions to the above equation are sought that correspond to envelopes traveling at an angle, θ,
with respect to the carrier wave. Mathematically, this implies imposing a relation between the
variable t and y,

T ≡ t cos θ +
y

cg
sin θ. (4.5)

After the above transformation, the complex envelope A(x, y, t) becomes a function of only x
and T , and the 2D+1 NLSE in (4.4) reduces to:

i
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cos θ

cg

∂A
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)
− α

c3g
(1− 3 sin2 θ)

∂2A

∂T 2
− β

cg
|A|2A = 0, (4.6)

i.e., the integrable 1D+1 NLSE. From the (linear) dispersive coefficient,

α′ ≡ α

c3g
(1− 3 sin2 θ), (4.7)

it can be seen that at θ = ±θc = ±atan(1/
√

2) ≈ ±35.26°, the dispersive term becomes zero,
then switches sign becoming defocusing [108, 82]. This is the critical crossing angle examined
experimentally in this paper.

For small-amplitude waves, the nonlinear term in (4.6) can be neglected, and the dispersive
linear Schrödinger equation with new coefficients remains,
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− α′ ∂
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∂T 2
= 0. (4.8)

If θ = ±θc, the system becomes nondispersive (α′ = 0). In the linear Schrödinger equation,
the solution can be written as the superposition of two solutions, A+ = A(x, T ; θ+

c ) and A− =
A(x, T ; θ−c ) with θ+

c = +θc and θ−c = −θc,

A(x, y, t) = A0e
−
(
t cos θ+c + y

cg
sin θ+c −

x cos θ+c
cg

)2

/(2σ2)

+A0e
−
(
t cos θ−c + y

cg
sin θ−c −

x cos θ−c
cg

)2

/(2σ2)
,

(4.9)

where A0 is the theoretical linear focused amplitude of each arm and σ∗ ≡ σ/ cos(θc) is the
width of the group in the time domain. A Gaussian wave envelope was chosen. Equation (4.9)
forms the characteristic X-shape pattern illustrated in figure 4.1. In the wavenumber spectrum
of (4.9), all non-zero components are confined to the lines ky = ±(kx−k0) tan θc (see appendix G
for further details).

Given that the linear stability analysis of the uniform wave train solution to the 2D+1 NLSE
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Figure 4.1: Theoretical X-wave envelope solution formed by two Gaussian envelopes, as param-
eterised in (4.9).

perturbed by aδ = aδ,0 exp(iΩt± [ikx (x− cgt) + ikyy]) gives for Ω [136, 108]
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)(
k2
x − 2k2
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)
. (4.10)

When Ω is imaginary and negative, the uniform wavetrain is unstable and grows (at rate −iΩ/cg
in space). As is readily evident from (4.10) and illustrated in figure 4.2, the critical angle also
corresponds to the stability boundary. Single crossed-wave groups travelling at the critical angle
can therefore be expected to travel without changing shape, as they are both unaffected by GVD
and spectral sideband instabilities. However, due to energy transfer from their highly centralised
energy peak, double-crossed wave groups may experience some non-stationary behaviour.

Figure 4.2: Linear stability growth rate of the 2D+1 NLSE (from (4.10)). The white dashed
lines lie at the critical angles ±θc and marks the angular boundary of stability. The black dashed
line marks the maximum growth rate contour.
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4.3 Experimental methodology

4.3.1 Facility
In order to examine the effects of waves crossing at large angles, all experiments were carried
out in the circular FloWave Ocean Energy Research Facility at the University of Edinburgh (see
figure 4.4 for a schematic description). This multi-directional wave basin has a 25 m diameter,
is 2 m deep and is encircled by 168 actively absorbing force-feedback wavemakers, enabling
creation of waves in all directions. A Cartesian coordinate system with origin at the centre of
the tank is adopted. In all experiments, the x-axis is in the direction of the phase velocity of the
carrier waves. The generation of waves by the wavemakers is based on linear theory. Practically,
constrained by the limited number of wave gauges available and their robust positioning, a total
of 16 resistance-type wave probes were placed along a low gantry that spanned the tank in the
x-direction. In certain experiments, the gantry was moved in the transverse direction to alter
the measurement y-coordinate, giving the effective probe layout shown in figure 4.4. The wave
gauges were calibrated at the start of each day of testing. All experiments were sufficiently short
that reflections did not interfere with incident measurements. A settling time of 20 min between
each experiment was employed to allow for the absorption of reflected waves.

Figure 4.3: Amplitude spectrum of a crossed (red) and unidirectional (blue) wave group with
wavenumber k, crossing angle θ and component angle ϕ.

4.3.2 Matrix of experiments and input parameters
To define a single crossed-wave group, a narrow-banded Gaussian amplitude spectrum in fre-
quency space is chosen,

Â(ω) =
A0σ

∗
√

2π
exp

(
− (ω − ω0)2σ∗

2

2

)
, (4.11)

where σ∗ is now more generally the length of the group in the time domain, and (4.11) corresponds
to the Fourier transform of a single arm in (4.9) at x = y = 0. An example of the spectrum
given as input to the wavemakers is seen in figure 4.3.

In practice, the frequency vector was discretised such that each frequency was an integer
multiple of 1/R, where R is the repeat period of the test. All experiments were recorded for at
least one repeat period with a sampling frequency of 128 Hz. The spectral bandwidth (1/σ∗)
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Figure 4.4: Schematic of the FloWave Ocean Energy Research Facility: the filled black circles
indicate wave gauge positions during the single-crossed experiments and the open circles the
effective wave probe positions achieved with repeated experiments. Principle wave direction is
denoted with a single large arrow (schematic adapted from [92]).

was set as large as possible to encourage dispersion at non-critical angles while keeping the group
narrow-banded and avoiding distortion of the signal due to the minimum frequency cut-off ωmin
(corresponding to kmin) (see appendix G).

Table 4.1 summarises all the experiments conducted, distinguishing two main types: single
crossed-wave groups (experiments 1a-d and 2a-d), consisting of only a positive arm and X-
wave groups, consisting of both arms (experiment 3). Both lower-steepness (experiments 1a-d)
and higher-steepness (experiments 2a-d) single crossed-groups were tested while X-wave group
experiments were always of a higher-steepness. For the single crossed-group experiments, the
crossing angle θ was varied while keeping the length of the group in time σ∗ constant.

The evolution of the X-wave was measured by recording the free surface elevation using 16
wave gauges spaced in 1.23 m increments along the x-axis from −9.5 m to 9.5 m (filled black
circles in figure 4.4), whereas the single crossed-wave experiments used 7 gauges spaced in roughly
2.5 m increments from −8.23 m to 4.42 m. All single crossed-wave experiments were repeated 4
times. For the X-wave, experiments were repeated 19 times, moving the y-position of the gauges
in 0.75 m increments in order to obtain the effective spatial array in Figure 4.4. Repeatability was
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found to be extremely good in all single crossed-wave experiments (as shown by small values of
standard deviation in all §4.4.1 results figures). However, limited time meant that exact repeats
of the X-wave measurements were not possible and rely on inferring repeatability from the single
crossed-wave experiments and the measurements taken at effective gauge locations.

Expt. θ (°) ω0 (rad s−1) k0d σ∗ (s) εmin εmax
1a 0

7.07 10.2 2.29

0.08 0.09
1b θ+

c /2 0.08 0.09
1c θ+

c 0.08 0.09
1d 40 0.08 0.08
2a 0

7.07 10.2 2.29

0.17 0.25
2b θ+

c /2 0.17 0.24
2c θ+

c 0.17 0.19
2d 40 0.17 0.16
3 θ+

c and θ−c 7.07 10.2 2.29 0.18 0.26

Table 4.1: Experimental parameters. Both the minimum and the maximum steepness observed
during the experiments are reported, with ε ≡ k0|A|.

4.3.3 Data processing
In order to remove reflections, a 0.2-tapered Tukey window (25 s and 20 s for lower-steepness
and higher-steepness tests, respectively) was applied across the incident wave group free surface
elevation time histories. For all experiments, amplitude spectra were estimated and treated using
a band-pass frequency filter with lower bound 0.7ω0 and upper bound 1.6ω0 to remove noise,
higher-order bound waves, and low-frequency bound waves.

4.4 Results
For both single crossed-wave groups and X-waves, experimental results are compared with numer-
ical solutions of the 2D+1 NLSE obtained using a split-step (pseudospectral) numerical scheme.
The complex wavepacket amplitude at the first gauge (smallest x) is used as the boundary con-
dition to the numerical solution which can be obtained from the recorded free surface as follows
(see e.g. [99]),

A = (η + iη̃)e−i(k0x−ω0t), (4.12)

where η̃ is the Hilbert-transform of the free surface elevation record (see appendix H for free
surface time series).

4.4.1 Single crossed-wave groups
Figure 4.5 presents time series of the absolute of the experimental (coloured) and numerical
(black) complex envelope, where dark and light lines represent the mean amplitude and associ-
ated confidence bands (across four repeated experiments), respectively. The blue lines denote the
first gauge, and the red lines the final gauge along the evolution direction of waves (x-direction).
Using the same notation, figure 4.6 presents the packet spectra of the experiments and numer-
ical simulations, again showing the mean and confidence bands. In many cases, the confidence
band is not clearly visible due to its proximity to the mean, indicating very good repeatability
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Figure 4.5: Envelope amplitude time series for the single crossed-wave lower-steepness experi-
ments 1a-d (first row, panels a-d) and the higher-steepness experiments 2a-d (second row, panels
e-h). Blue and red lines were extracted from the measured free surface time series at the initial
(x/λ0 = −6.67) and final (x/λ0 = 3.60) gauges, respectively. The black line represents the nu-
merical 2D+1 NLSE solution at the final gauge. The temporal signal is centred about the time
at which the group passes x = 0 (tf,0) and normalise by the carrier period (T0) and the intended
linear focused amplitude at x = y = 0 (A0). The dark lines show the mean, and the light lines
the confidence bands corresponding to one standard deviation either side of the mean.

of experiments. In both figures 4.5 and 4.6, sub-figures a-d (first row) correspond to the lower-
steepness experiments (1a-d), whilst sub-figures e-h (second row) correspond to higher-steepness
experiments (2a-d).

Two quantitative measures of dispersion are introduced: maximum group amplitude and
group width. The maximum amplitude can be determined directly from the wave packet ampli-
tude time series. Group width is defined through the central group time, tf =

∑N
i=1 tiAi/

∑N
i=1 Ai,

in the form of a standard deviation, as,

tσ =

√√√√∑N
i=1 (ti − tf )

2
Ai∑N

i=1 Ai

, (4.13)

where the indicator i simply corresponds to the discrete sampling points in time. Figure 4.7
shows the mean of the maximum amplitude across repeats for different crossing angles. Using
the same notation, figure 4.8 presents the average width as calculated from (4.13). The numerical
solutions appear as dashed lines in both figures 4.7 and 4.8.
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Figure 4.6: Spectra of amplitude envelope time series in figure 4.5, showing the lower-steepness
experiments 1a-d (first row, panels a-d) and the higher-steepness experiments 2a-d (second row,
panels e-h). The blue and red lines estimated from experimental time histories at the initial
(x/λ0 = −6.67) and final (x/λ0 = 3.60) gauges respectively, whilst the black line represents the
numerical 2D+1 NLSE solution at the final gauge. The dark lines show the mean, and the light
lines the confidence bands corresponding to one standard deviation either side of the mean.

4.4.1.1 Lower-steepness experiments (1a-d)

In the lower-steepness case, both experimental and numerical packet time series in the unidi-
rectional direction (figure 4.5a) show clear focusing, with the experimental packet amplitude
increasing from 0.78A0 to 0.90A0 across ≈ 10λ0 of evolution (a small amount of underproduc-
tion by the wavemakers limited the focus amplitude slightly). Additionally, figure 4.8a shows a
decrease in group width as the group undergoes dispersive focusing. The wave group travelling
with θ+

c /2 in figure 4.5b shows very similar behaviour, as expected, based on the linear dispersion
relationship (see figure G.1 in appendix G, noting the similar behaviour of the lines correspond-
ing to θ = 0◦ and θ = θ+

c /2). At the critical crossing angle, the wave group amplitude only
increases from 0.83A0 to 0.86A0, and the width stays constant across the evolution distance. At
the 40◦ crossing angle, the mean packet amplitude changes by less than 0.01A0, which is within
one standard deviation across repeats. Again, the width of the 40◦ case stays constant across
the evolution distance. This similar behaviour between θ+

c and 40◦ is predicted in the linear
analysis presented in figure G.1. All spectra of the low-steepness experiments in figure 4.6a-d
show minimal changes across their evolution indicating that the focusing seen in figure 4.5a-d is
predominantly a result of linear wave behaviour.

Summarizing, it is clear from Figures 4.7a and 4.8a and that the behaviour of the 35.26◦ and
the 40◦ cases are least dispersive, as predicted well by the 2D+1 NLSE (dashed lines), which is
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Figure 4.7: Relative change of the maximum packet amplitude ∆|A|max = |A|max − |A|max in
space for different crossing angles, where |A|max denotes the average across the gauges. Panel a
shows experiments 1a-d (lower-steepness), and panel b experiments 2a-d (higher-steepness). The
continuous lines denote the mean across repeat experiments with the errors bars corresponding
to one standard deviation, and the dashed lines denote the numerical solutions.

behaving mostly linearly in these lower-steepness experiments.

4.4.1.2 Higher-steepness experiments (2a-d)

In the higher-steepness cases, the unidirectional (figure 4.5e) and θ = θ+
c /2 (figure 4.5f) ex-

periments show much more substantial focusing than their lower-steepness counterparts. The
maximum amplitude of the wave in experiment 2a increases from 0.74A0 to 1.10A0 and in experi-
ment 2b from 0.77A0 to 1.04A0, in both cases to beyond the theoretical linear focused amplitudes.
Nonlinear changes are very likely to have occurred, as is evident from the significant spectral
changes observed in figure 4.6e and f, including a drop in peak spectral amplitude and signifi-
cant spectral widening as a classical signature of modulational instability. It is further evident
that the 2D+1 NLSE (black lines) with its restrictions on steepness and bandwidth captures the
main features but certainly not all aspects of the observed behaviour for these high-steepness,
close-to-unidirectional cases.

The time domain behaviour of the higher-steepness critical angle experiment 2c (figure 4.5g)
appears to show some changes in the packet shape, with larger waves moving to the front of the
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Figure 4.8: Relative change of the the group width parameter ∆tσ = tσ− tσ in space for different
crossing angles, where tσ denotes the average across the gauges and tσ is defined by (4.13).
Panel a shows experiments 1a-d (lower-steepness), panel b shows experiments 2a-d (higher-
steepness). The continuous lines denote the mean across repeat experiments with the errors bars
corresponding to one standard deviation, and the dashed lines denote the numerical solutions.

group creating a double-peak; however, the maximum amplitude of the group remains largely
unchanged. The nullification of the dispersive term in the 2D+1 NLSE at the critical angle has
removed linear focusing and stabilised the wave group as predicted by linear stability analysis
(cf. (4.10) and figure 4.2). The numerical evaluation of the 2D+1 NLSE (black lines) shows
these effects perfectly with a completely stationary wave group in its group velocity reference
frame and figure 4.6g displaying an unchanging packet spectrum. Experiment 2d (θ = 40◦) in
figure 4.5h shows very similar behaviour to the critical angle experiment. It is evident from fig-
ure 4.6e-h that for the high-steepness case spectral changes occur that are greater than predicted
by the 2D+1 NLSE (figure 4.6e-f) or non-zero where zero changes are predicted by the 2D+1
NLSE (figure 4.6g-h).

Summarizing, it is clear from Figures 4.7b and 4.8b that, as with the low-steepness experi-
ments, the behaviour of the 35.26◦ and the 40◦ cases is least dispersive, as predicted well by the
2D+1 NLSE (dashed lines) and that most of the strong nonlinearity observed for small and zero
angles is quelled for these larger crossing angles.
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4.4.2 X-wave
Turning from the single-crossed to the double-crossed or X-wave (experiment 3), surfaces of mea-
sured wave group amplitude A(y, t) are reconstructed at different gauge locations suitable for
comparison with the output of the numerical method as shown in figure 4.9 (left and middle
columns, respectively). The corresponding spectra Â(ω, ky) of the numerical result are also pre-
sented (right column). At the beginning of its evolution (top rows), the experimental X-wave
structure is clearly visible with distinct arms lying on the expected ±θc lines and a centroid of
amplitude 2A0. The X-structure maintains its global shape as it propagates across the tank,
although the finite number of straight wave paddles makes perfect generation by constructive
super-positioning away from the centre and near the boundaries of the tank challenging. This is
most evident from the long spatial behaviour in figure 4.9.

It is further evident that for this high-steepness experiment, the peak at the crossing points of
the two arms undergoes considerable narrowing in the x-direction (its direction of travel, shown
here as time t) and broadening in the y-direction, a phenomenon previously observed by Gibbs
& Taylor for directionally spread groups that are not crossing and described therein as ‘walls
of water’ [55]. This behaviour is observed in both experiments and numerical simulations of
the 2D+1 NLSE and it is noted that its likely origin is from resonant third-order nonlinearity
identified by Phillips arising from the interaction between four wave components [105]. Accord-
ingly, the 2D+1 NLSE predicts a preferential energy transfer to higher wavenumbers, as shown
in the right column of figure 4.9. Unlike the single crossed-wave groups, where all the non-zero
spectral components are confined to a single line (cf. figure 4.3), the double-crossed or X-wave
has sufficient components to take part in four-wave interaction (cf. Phillips’s figure of 8). Indeed,
Longuet-Higgins showed that for a narrow-banded three-dimensional wave packet the preferential
direction of energy transfer to higher-wavenumbers is 35.26◦ [82].

4.5 Conclusion
This chapter has experimentally demonstrated the existence of stationary water wave groups
when a carrier wave is modulated by a wavegroup crossing it at an angle of ±35.26◦, as pre-
dicted by the 2D+1 NLSE. The lower-steepness, single crossed-wave group experiments showed
significant reductions in linear focusing at the critical angle, with both amplitude and group
width remaining constant across the evolution distance. The higher-steepness single crossed-
group experiments confirmed these structures are also stable at angles equal or greater to the
critical angle. Numerical solutions based on 2D+1 NLSE exhibited very similar behaviour, with
perfectly stationary wave groups occurring at the critical angle, as expected. Although the uni-
directional groups focused to more extreme amplitudes, the experimental observation of crossed
groups propagating unchanged over many wavelengths confirms the lifetime extension of wave
groups containing the potential for extreme events.

When the two arms travelling at ±35.26◦ are superimposed, a nondispersive hydrodynamic
X-wave is constructed, which has been observed in the laboratory. Although nondispersive, such
a structure, when observed for relatively high steepness, readily becomes subject to third-order
resonant four-wave interaction, which are known to transfer energy to higher wavenumbers with
a preferred direction of ±35.26◦ [82]. In the real ocean, this preferred growth direction may
lead to the natural generation of X-waves, which in turn will be longed-lived due to their lack of
dispersion confirmed experimentally herein.
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Figure 4.9: Spatio-temporal comparison of the experimental (left) and numerical (centre) X-
wave packet A(t, y) (experiment 3) as the packet evolves in space (rows). The black dashed lines
corresponds to the 35.26◦ angle. The amplitude spectra Â(ω, ky) of the numerical results are
also presented (right): grey lines are grid lines, red crosses indicate the position of the contour
at Â/Â0 = 0.33 with the black dash-dotted lines aligned with the crosses in the top panel. The
spatio-temporal signals in the group reference frame (as predicted by linear theory) are plotted.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions
This thesis has investigated the dispersion and stability of surface gravity waves of non-negligible
steepness, on deep water with vertical shear, coupled crossing wavetrains, and when a wavetrain
and group are at an oblique angle.

5.1.1 Modulational stability on linearly sheared currents
For one-dimensional surface gravity waves travelling on a negatively sheared current, the relevant
third-order wave evolution equation, the constant-vorticity nonlinear Schrödinger equation (vor-
NLSE), predicts a stabilising of the wavetrain. In stabilising the wavetrain, slower growth and
smaller waves at the end of the evolution are expected. It was found that at all shear rates tested,
the vor-NLSE numerical solution predicted sideband growth well. It was also found that at all
but the weakest shear rate, (Ω = −0.21 s−1) the vor-NLSE numerical solution significantly out-
performed the standard, uniform current NLSE which showed errors in its amplification factor of
up to 100%. Similarly, when the linear properties (wavelength and frequency) of low-steepness
waves were measured, the constant-vorticity equations outperformed the uniform-current dis-
persion relation between shear rates of −0.87 s−1 ≤ Ω ≤ −0.48 s−1. These results show the
arbitrary depth, constant-vorticity equations derived by Thomas, Kharif, and Manna in 2012
[123] to be appropriate for medium-steepness, narrow-banded waves, capable of describing their
weakly nonlinear properties.

5.1.2 Modulational stability in crossing seas
The interaction of two weakly nonlinear wavetrains crossing at an angle was investigated ex-
perimentally. These experiments were compared with the coupled NLSE nonlinear Schrödinger
eqaution (CNLSE). Experiments showed good agreement with numerical solutions of the CNLSE
at all angles. At the lowest crossing angles, (θ < 20◦) significant sideband growth was observed
but reduced significantly through all angles up to θ = 32◦, where complete stability of the system
was observed. This result was expected from linear stability analysis of the CNLSE, where at
θ ≈ 35.26◦ medium-steepness wavetrains become stable regardless of carrier or sideband proper-
ties.
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5.1.3 Nondispersive crossing waves
The two-dimensional nonlinear Schrödinger equation was used to impose an angle between the
carrier and sideband components of a single narrow-banded Gaussian wave group. The resulting
crossed wave group was expected to become linearly nondispersive and stable at θ ≈ 35.26◦. The
combination of these effects is a group travelling with entirely unchanged form along its primary
axis (direction of the carrier wave). Relatively low-steepness Gaussian groups were seen to have
normal dispersive properties up to θ = 17◦. At the critical, 35.26◦ angle and at 40◦, the group
became nondispersive, changing in group amplitude by no more than a single standard deviation.
The medium-steepness crossed groups showed strong focusing throughout their evolution when
unidirectional. However, as the crossing angle was increased, this dropped significantly up to the
critical crossing angle. At the critical crossing angle, the overall group envelope had remained
very close to its original form with minimal focusing of the group. Some nonlinear effects were
observed through the medium-steepness group’s evolution as a double peak had formed where
higher amplitude waves had travelled faster and moved to the front of the group. Largely both
the low and medium-steepness groups remained unchanged across their evolution. This result
indicates that groups containing extreme waves are capable of remaining as such for much longer
distances when crossed.

In Chapter 4, it has also been found that an X-wave structure created by the superposition of
two crossed groups is capable of travelling large distances unchanged. Its strong central frequency
peak will eventually move energy to components at ±35.26◦ due to four-wave resonances, as
predicted by Longuet-Higgins [82] and Phillips, [105].

5.2 Recommendations for future work
After investigating the applicability of the crossing and constant-vorticity NLSEs to a controlled
experimental setting, a natural extension to this thesis would be an investigation into their ap-
plication to real-world environments. However, prior to this investigation, further experimental
investigation into each of the three conditions would provide useful additional information.

In future, experimental studies of nonlinear waves propagating on positively sheared (desta-
bilising) currents should be carried out as these shear rates may push otherwise stable wavetrains
into an unstable parameter space. Positive shear would only realistically be possible in a follow-
ing current. This causes inherent difficulties in creating steep waves due to a reduction in both
wavenumber and amplitude as waves move onto the following current. Using a long flume and
high-frequency wavemakers, this investigation could be possible. With refinements, the method
of producing a sheared current presented in this thesis could give current stability over the
required extended distance. In either shear cases, observations of the evolution of the breather
solution family on shear would be insightful. With precisely recreated initial conditions, breather
solutions have a known amplification factor (of either 3 or 5 depending on the order of the so-
lution [24]) and this fact would aid in refining and more precisely quantifying the effect of shear
on amplification factor. Ultimately, laboratory experiments should be followed by investigations
focusing on the applicability of the vor-NLSE to real-world environments. These may include the
Scottish Pentland Firth, and the estuary of the Columbia River in the United States of America
[73]. Both locations experience high rates of shipping traffic and strong current flows. The shear
present in the Columbia river estuary has previously been studied with a focus on the linearity
of its shear [80]. The conditions in the Pentland Firth are presently subject to intense scrutiny
due to the newly present tidal-stream turbines installed in 2016 and further marine energy de-
velopments in the future.

An extension to the nondispersive, nonlinear crossed groups investigation should seek to in-
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crease the variation of parameters tested in order to explore the boundaries of the parameter
space. Increasing the steepness of single crossed groups would determine whether waves with
steepnesses close to that of a breaking wave are able to travel within a nondispersive group.
Additionally, the effect of a breaking wave within the group and whether the group as a whole
survives this event would provide more confidence to their existence in the real world. It should
be noted that increasing waves to breaking within a nondispersive group would require a wave
steepening method other than linear dispersion or nonlinear focusing (for example, changes in
depth). An investigation into the effect of steepness on the spread of energy to the critical angle
components of the X-wave would give further insight into the behaviour of these nondispersive
structures.

The coupled wave systems investigated in this thesis fell into either the low-angle unsta-
ble region or the stable high-angle region. Changing the carrier properties and increasing the
nonlinearity of the group, would allow the high angle unstable region to be investigated. If
experimental results followed the predictions of the CNLSE, a mechanism for the generation of
extreme waves higher and evolving quicker than those predicted in a unidirectional environment
would be found. This would have a significant impact on the discussion between crossing and
instability generation mechanisms. The group lengths of such wavetrains would be extremely
large and the potential facility would need to allow for a long enough evolution distance. The
facility would also be required to produce omnidirectional waves.

Ultimately, the three scenarios considered within this thesis should continue to be investi-
gated in the context of their role in creating dangerous conditions for shipping and offshore
structures by enhancing the effects of modulational instability. Throughout this thesis, other
factors that exist in crossing and current-driven seas (directional induced set-up, current steep-
ening etc.) have been discussed and should be included as compounding factors in any future
studies. Lastly, it is my belief that the role of this thesis should be to provide an incremental
step towards formalisation of dangerous sea conditions including modulational instability.
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Appendix A

Chapter 2: Arbitrary Depth
vor-NLSE Coefficients

The arbitrary-depth coefficients of the constant vorticity nonlinear Schrödinger equation (vor-
NLSE) were first derived by [123] (TKM12). For completeness, the same coefficients as in TKM12
are presented here. Firstly, as in TKM12, some recurring terms are defined,

µ = k0d, σ = tanhµ, X = σΩ̄, and Ω̄ = Ω/ω̃0, (A.1a,b,c,d)

where k0 and ω̃0 are the carrier wavenumber and carrier frequency, d is the depth, and Ω is the
shear rate. Tilde notation specifies a property measured in the surface current reference frame
(see figure 2.1 for details of reference frames used). The vor-NLSE takes the form,

iAτ + LAξξ −M |A|2A = 0, (A.2)

with slow-scale coordinates,
ξ = ε(x̃− c̃gt) and τ = ε2t, (A.3a,b)

and fast-scale coordinate, x and t, where ε = k0a0 is the steepness of the carrier wave, and phase
and group velocities are (respectively),

c̃p =
ω̃0

k0
, c̃g =

c̃p
σ

(1− σ2)k0d+ σ(1 +X)

2 +X
, with ρ =

c̃g
c̃p
. (A.4a,b,c)

The arbitrary-depth linear vor-NLSE coefficient is,

L =
ω̃0

k2
0σ(2 +X)

{
µ(1− σ2)[1− µσ + (1− ρ)X]− σρ2

}
, (A.5)

where the outside parentheses accidentally omitted in TKM12 (their (48)) have been included.
The nonlinear coefficient is,

M =
ω̃0k

2
0(U + VW )

8(1 +X)(2 +X)σ4
, (A.6)
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where,

U = 9− 12σ2 + 13σ4 − 2σ6 + (27− 18σ2 + 15σ4)X + (33− 3σ2 + 4σ4)X2

+ (21 + 5σ2)X3 + (7 + 2σ2)X4 +X5, (A.7)

V = (1 +X)2(1 + ρ+ µΩ̄) + 1 +X − ρσ2 − µσX, and (A.8)

W = 2σ3 (1 +X)(2 +X) + ρ(1− σ2)

σρ(ρ+ µΩ̄)− µ(1 +X)
. (A.9)
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Appendix B

Chapter 2: Current Profile
Approximation

Although a perfectly linear profile could not be obtained, the current profiles used throughout
experiments were designed to contain a strongly sheared, linearly varying velocity profile in
their upper portion. The final current profiles were then investigated for their linearity using a
comparison of the linear wave phase velocity predicted by a linearly sheared current, cp,Ω and the
linear wave phase velocity predicted by an arbitrarily sheared current, cp,A. A perfectly linearly
varying current would produce no error between these two phase velocities. Wave phase velocity,
cp = ω/k, is calculated using the depth-averaged velocity, Ū in the Doppler shift equation,

ω = ω̃(k) + kŪ , (B.1)

where the depth averaged velocity Ū is calculated from the Rayleigh equation (inviscid Orr-
Sommerfeld equation) in finite depth [112] (see [117] for deep water),

Ū =
2k

1− e−4kd

[∫ 0

−d
U(z)e2kz dz + e−4kd

∫ 0

−d
U(z)e−2kz dz

]
. (B.2)

Equations (B.1) and (B.2) are used to calculate the percentage difference between the two phase
velocities given in figure B.1. At the carrier wavenumber used for all experiments in Part II
(6 rad s−1), the error in linear wave phase velocity associated with assuming a linear current is
expected to be no more than 1% for the strongest current profile.

[117] also present the error, E, in phase velocity associated with limiting the depth-averaged
integral to a depth, D. For deep water, the depth-averaged velocity is evaluated through the
depths −∞ < z < −D m and −D < z < 0 m, and the ratio of these integrals calculated. Using
the finite-depth depth-averaged velocity (B.2), we calculate this error for k = 6 rad m−1 and
present it in figure B.2. In this figure, we only show the strongest shear, as the other shear rates
gave indistinguishable results. At D ≥ 0.2 m, the error in phase velocity is less than 5%, with
this reducing further to less than 1% at our chosen cut-off depth of 0.35 m.
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Figure B.1: Percentage difference between the linear phase velocity calculated when assuming a
linearly sheared current profile, cp,Ω, and when assuming an arbitrarily sheared current profile,
cp,A, for the four current profiles in table 2.1. The continuous lines show the effect of the
linear current approximation. The dashed lines show the effect of ignoring the current’s shear
altogether.

Figure B.2: Percentage error in phase velocity associated with estimating current down to a
depth, D for a wave of wavenumber, k = 6 rad s−1 and the strongest shear rate (Ω = −0.87 s−1).
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Appendix C

Chapter 2: vor-NLSE Numerical
Method

Solving the arbitrary depth, constant vorticity nonlinear Schrödinger equation (vor-NLSE) and
comparing the results to experimental measurements first requires a translation into the labora-
tory frame and then a change of form from the space-NLSE presented in [123] (describes change
in time) to the time-NLSE (describes change in space). [22] details the relationship between time-
and space- NLSEs. For comparison with experiments, it is most convenient for a time signal to
be defined at the wavemaker and propagated spatially, as is the case with the time-NLSE. To
obtain the time-NLSE from the space-NLSE in the group reference frame,

iAτ + LAξξ −M |A|2A = 0, (C.1)

which is translated out of the group reference frame and into laboratory frame coordinates, (x, t)
using the chain rule,

i(At + cgAx) + LAxx −M |A|2A = 0, (C.2)

where cg = c̃g +U0, the sum of the surface current velocity and the group velocity in the surface
current frame. This form is then transformed to the time-NLSE by changing linear and nonlinear
coefficients and giving the time vor-NLSE to be solved numerically,

i(Ax +
1

cg
At) +

L

c3g
Att −

M

cg
|A|2A = 0. (C.3)

Given a periodic initial condition, the linear component of the vor-NLSE can be solved in Fourier
space and allowing the use of the split-step numerical scheme. The split step method solves the
linear and nonlinear components independently and exactly at each time step and then combines
them (at which point a small error is introduced) [132]. The linear component is solved in Fourier
space, whereas the nonlinear is solved in the time or space domain (depending on the form of
the equation). A known error in carrier steepness of O(ε3) is associated with the independence
assumption. The split-step method is second-order accurate in ∆t and to all orders in ∆x, it is
unconditionally stable [121].

Within chapter 2, the following algorithm was implemented. First, the vor-NLSE in its
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time-form is rearranged and split into its linear, L and nonlinear, N components,

L : Ax = −i L
c3g
Att +

1

cg
At, (C.4)

N : Ax = i
M

cg
|A|2A. (C.5)

The nonlinear component is integrated forwards in the space domain,

Ai+1 = Aie
i∆xMcg |Ai|

2

, (C.6)

where subscript i represents the current time-step. Meanwhile the linear component is Fourier-
transformed,

Âx = −iÂ L

c3g
(ω̃i)2 + Â

1

cg
ω̃i, (C.7)

= iÂ(
L

c3g
ω̃2 +

1

cg
ω̃), (C.8)

and then discretised and integrated in time to give,

Âi+1 = Âie
i∆x( L

c3g
ω̃2+ 1

cg
ω̃)
. (C.9)

Combining the linear and nonlinear components at each time step the following explicit expression
is obtained,

Ai+1 = F−1

(
Âie

i∆x( L
c3g
ω̃2+ 1

cg
ω̃)

+ F
(
Aie

i∆xMcg |Ai|
2
))

. (C.10)
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Appendix D

Chapter 2: Extended Results

The evolution of the average sideband amplitudes are examined in the main text of Chapter 2.
However, here, the evolution of the the separated upper and lower sidebands are shown in figures
D.1-D.3.
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Figure D.1: Ω = 0 s−1 : Separated upper (U) and lower (L) primary sideband Fourier amplitudes,
Âδ normalized by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations
from the mean as averaged across four repeats. All sidebands are represented as the normalized
sideband wavenumber parameter K̂ = K/K(γ̃max). Solid lines indicate predictions made with the
constant vorticity equations while dashed lines include only surface current in their predictions.
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Figure D.2: Ω = −0.21 s−1 : Separated upper (U) and lower (L) primary sideband Fourier
amplitudes, Âδ normalized by the carrier Fourier amplitude, Â0. Error bars denote two standard
deviations from the mean as averaged across four repeats. All sidebands are represented as the
normalized sideband wavenumber parameter K̂ = K/K(γ̃max). Solid lines indicate predictions
made with the constant vorticity equations while dashed lines include only surface current in
their predictions.
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Figure D.3: Ω = −0.48 s−1 : Separated upper (U) and lower (L) primary sideband Fourier
amplitudes, Âδ normalized by the carrier Fourier amplitude, Â0. Error bars denote two standard
deviations from the mean as averaged across four repeats. All sidebands are represented as the
normalized sideband wavenumber parameter K̂ = K/K(γ̃max). Solid lines indicate predictions
made with the constant vorticity equations while dashed lines include only surface current in
their predictions.
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Appendix E

Chapter 3: Extended Results

E.1 Experiments 2i–l: 60◦ ≤ θ ≤ 88◦

Experimental measurements of crossing waves at and above θ = 60◦ are included here in the
appendix for completeness. The finite-crest effect and exceedingly fast group velocity along the
x-axis mean that growth rates close to θ = 90◦ could not be measured if present.

Figure E.1: Measured free surface elevation time series for experiments 2i–l (Part II) shifted by
the linear group velocity cg =

√
C2
x + C2

y and normalized by the carrier period, T0, with the
positive vertical representing increasing distance along the basin.
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Figure E.2: Amplitude spectra for experiments 2i–l (Part II) obtained using the measured free
surface time series along the primary wave propagation direction (see figure 3.3a for gauge lo-
cations) for different crossing angles, θ. Dashed lines follow the amplitudes of the carrier (light
blue), lower sideband (red), and upper sideband (dark blue).

Figure E.3: Comparison of the evolution of sideband amplitude along the centreline of the
basin for experiments 2i–l (Part II) from measurements, numerical solutions (crosses) of the
CNLSE (thin blue and red lines) and linear stability analysis (thin black lines). Lower and upper
sidebands are indicated in red and blue, respectively. Error bars and dashed lines represent one
standard deviation from the mean across repeats for the measured data and the CNLSE solution,
respectively. Thick lines represent carrier wave amplitudes from the seeded (Part II, dark grey)
and unseeded (Part I, light grey) experiments.
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Appendix F

Chapter 3: CNLSE Numerical
Method

F.1 Split-step time marching technique
The split-step method (also known as the Fourier method) takes advantage of the fact that the
linear and nonlinear components can be separated and then solved exactly [132]. The linear
component is solved in Fourier space, whereas the nonlinear is solved in the time or space
domain (depending on the form of the equation). In the split-step method, the linear and
nonlinear components of the CNLSEs are treated independently and the predictions combined
immediately after each time step as the full solution advances forward. A known error of O(ε3)
(where ε = k0a0, the carrier wave steepness) is associated with the independence assumption.
The split-step method is second-order accurate in ∆t and to all orders in ∆x, it is unconditionally
stable [121].

First, the CNLSE is rearranged and split into its linear and nonlinear components (here only
the A solution is considered for brevity),

L :
∂A

∂t
= iα

∂2A

∂x2
, N :

∂A

∂t
= −i(ξ|A|2 + 2ζ|B|2)A. (F.1)

The nonlinear component is integrated forwards in the time domain as follows,

Ai+1 = Aie
−i∆t(ξ|Ai|2+2ζ|Bi|2), (F.2)

whereas the linear component is Fourier-transformed,

∂Â

∂t
= iÂα(ik)2, (F.3)

= −iαÂk2, (F.4)

and then integrated in time to give,

Âi+1 = Âie
−i∆tαk2 . (F.5)
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Combining the linear and nonlinear components, at each time step the explicit expression is,

Ai+1 = F−1
(
Âie
−i∆tαk2 + F

(
Aie
−i∆t(ξ|Ai|2+2ζ|Bi|2)

))
. (F.6)

The same process is applied to the B solution. The results of advancing A and B individually
are combined in the current time step to give the full system state to be passed to the next step.
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Appendix G

Chapter 4: Critical Angle Linear
Derivation

G.1 Narrow-band dispersive properties
In our wavenumber spectrum, all non-zero components are confined to the lines ky = ±(kx −
k0) tan θ, of which Figure 4.3 illustrates a positive arm at crossing angle θ. It is evident that
the smallest value the frequency and wavenumber vector magnitude can take is given by kmin =
k0 sin(θ). Substituting ky = ±(kx − k0) tan θ into the deep-water dispersion relation yields a
result that is dependent on kx only,

ω =
√
g
(
k2
x + (k0 − kx)2 tan θ2

) 1
4 . (G.1)

Figure G.1 illustrates the group velocity dω/d kx obtained from (G.1) for different crossing
angles. It is evident that the optimum group velocity, which corresponds to no dispersion at
leading order, occurs at the carrier wavenumber (kx/k0 = 1) for θ = θc. The group velocity
starts to deviate at larger and smaller wavenumbers, which would become significant in a more
broad-banded spectrum, as discussed below.

G.2 Broad-band dispersive properties
The nondispersive crossing angle resulting from the 2D+1 NLSE assumes a narrow-banded spec-
trum and only requires that d2 ω/d k2

x is zero at the carrier wavelength kx = k0. The requirement
that all components have identical group velocities extends this definition to broadbanded spec-
tra. A function, ky = f(kx) is sought such that d2 ω/d k2

x = 0 for all spectral components. The
intersection between the dispersion surface ω = g1/2

(
k2
x + k2

y

)1/4 and a plane tangent to this
surface at the carrier, namely ω = cg(kx − k0), defines this function implicitly. Explicitly in
terms of ky,

ky = ± (k0 − kx)
√
k2

0 + 6k0kx + k2
x

4k0
, (G.2)

which is illustrated in Figure G.2.

74



Figure G.1: Variation of group velocity for a range of crossing angles θ where. For the critical
crossing angle θc, the slope of the group velocity with kx is zero at the carrier wavenumber
indicating nondispersive behaviour in the narrow-banded limit (from (G.1)).

Figure G.2: Two-dimensional dispersion surface (colour) with the tangential grey transparent
plane representing the group velocity at the carrier. The intersection of the two surfaces (red line)
defines the broadbanded nondispersive solution; the narrow-banded approximation is represented
by the blue line.
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Appendix H

Chapter 4: Extended Results

Figure H.1 shows examples of the band-pass filtered free surface elevation time histories recorded
for experiments 1a and 2a (unidirectional) and 1c and 2c (θ+

c ) single crossed-wave groups at initial
(−5.7 m) and final (4.4 m) wave gauges. For the lower-steepness experiments, comparison
between Figure H.1a and b reveals distinct focusing over a distance of roughly 10 wavelengths in
the unidirectional case (panel a), whereas the group at the critical angle (panel b) remains largely
unchanged. This difference is more obvious for the higher-steepness experiments in Figure H.1c
and d where dispersion and nonlinear amplitude growth are both suppressed at the critical angle.
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Figure H.1: Band-pass filtered free surface elevation time series for the lower-steepness single
crossed-wave experiments 1a and 1c (first row, panels a and b) and the higher-steepness single
crossed-wave experiments 2a and 2c (second row, panels c and d). Blue and red lines present
results from initial (x/λ0 = −6.67) and final (x/λ0 = 3.60) gauges, respectively. We centre the
temporal signal about the time the group passes x = 0 (tf,0) and normalize by the carrier period
(T0) and the linear focused amplitude at x = y = 0 (A0).
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