

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Computation Offloading for Algorithms

in Absence of the Cloud

Saurav Sthapit

Thesis submitted in fulfilment of

the requirements for the degree of

Doctor of Philosophy

to the

University of Edinburgh — 2017

ii

Declaration

I declare that this thesis has been composed solely by myself and that it has not been

submitted, either in whole or in part, in any previous application for a degree. Except

where otherwise acknowledged, the work presented is entirely my own.

Saurav Sthapit

December 2017

iii

Abstract

Mobile cloud computing is a way of delegating complex algorithms from a mobile

device to the cloud to complete the tasks quickly and save energy on the mobile device.

However, the cloud may not be available or suitable for helping all the time. For

example, in a battlefield scenario, the cloud may not be reachable. This work considers

neighbouring devices as alternatives to the cloud for offloading computation and presents

three key contributions, namely a comprehensive investigation of the trade-off between

computation and communication, Multi-Objective Optimisation based approach to

offloading, and Queuing Theory based algorithms that present the benefits of offloading

to neighbours.

Initially, the states of neighbouring devices are considered to be known and the decision

of computation offloading is proposed as a multi-objective optimisation problem. Novel

Pareto optimal solutions are proposed. The results on a simulated dataset show up to

30% increment in performance even when cloud computing is not available. However,

information about the environment is seldom known completely. In Chapter 5, a realistic

environment is considered such as delayed node state information and partially connected

sensors. The network of sensors is modelled as a network of queues (Open Jackson

network). The offloading problem is posed as minimum cost problem and solved using

Linear solvers. In addition to the simulated dataset, the proposed solution is tested on a

real computer vision dataset. The experiments on the random waypoint dataset showed

up to 33% boost on performance whereas in the real dataset, exploiting the temporal

iv

and spatial distribution of the targets, a significantly higher increment in performance

is achieved.

v

Acknowledgements

First and foremost, I would like to thank my supervisors Dr James Hopgood and Prof.

John Thompson for their excellent supervision throughout this project. I would like

to say a big thank you for all the supervision and guidance. The meetings I had with

you always had a calming effect during the years, when I am lost and panicking. To

say I couldn’t have completed this work without your exemplary supervision would be

an understatement. Equally, special thanks go to Prof. Neil Robertson for lending his

expertise in computer vision which is a substantial part of this thesis.

Next, I would like to thank my friends and colleagues in both Digital Communication

lab at the University of Edinburgh and the Vision lab in the Heriot-Watt University.

Even though most of us work in different domains, I always enjoyed the company and

all the fun we had during these years.

I gratefully acknowledge the funding received towards my PhD studies from the School

of Engineering and University Defence Research Consortium (UDRC).

I would like to thank my family: my parents, and my brother and sister in law for

supporting me spiritually throughout this project and my life in general. I feel fortunate

to have such wonderful parents. Last but not least, I am very grateful to my wife Anita,

for encouraging me to do a PhD in the first place and then continuously supporting me

for the entire length of the PhD. I am genuinely thankful for having you by my side

every day.

vi

Contents

Declaration iii

Abstract iv

Acknowledgements vi

List of Tables xi

List of Figures xiii

Acronyms xviii

Definitions xxii

1 Introduction 1
1.1 A Short Overview . 1
1.2 Computation Offloading . 3
1.3 Motivating Scenario – Battlespace . 3
1.4 Research Objectives . 4
1.5 Thesis Structure and Research Contributions 6

2 Background 8
2.1 Surveillance Systems . 9

2.1.1 Evolution of Surveillance Systems 10
2.2 Computer Vision Algorithms . 13

2.2.1 Feature Extraction . 13
2.2.2 Histogram of Gradients . 14

2.3 Person Re-identification . 16
2.3.1 Applications . 18
2.3.2 Implementation Challenges . 20
2.3.3 Distributed Scenario . 22

2.4 Existing Algorithms . 24
2.4.1 KISS MEtric Learning . 25
2.4.2 Symmetry-Driven Accumulation of Local Features 27
2.4.3 Unsupervised Saliency . 28
2.4.4 Deep Learning Approaches . 30
2.4.5 Datasets . 34

2.5 Mobile Ad-hoc Network (MANET) . 35

vii

2.5.1 Digital Communication System 36
2.5.2 Routing Protocols . 39
2.5.3 Mobility Modelling . 41

2.6 Queuing Theory . 44
2.6.1 Elementary Queue . 44
2.6.2 Network of Queues . 47

2.7 Graphs and Network Flows . 49
2.7.1 Graphs . 49
2.7.2 Network Flow Problems . 50

2.8 Summary . 52

3 Motivation for Offloading 53
3.1 Introduction . 53
3.2 Relative Complexity of Person Re-identification (PRID) Algorithms . . 54

3.2.1 Algorithmic Performance . 54
3.2.2 Keep It Simple and Straightforward MEtric (KISSME) 56
3.2.3 SDALF . 57
3.2.4 Unsupervised Saliency . 57
3.2.5 Summary . 58

3.3 Running Deep Neural Network (DNN) on a Smartphone 59
3.3.1 Trepn Profiler . 60

3.4 Communication Cost . 61
3.4.1 Energy Consumption . 65
3.4.2 Initial Radio States . 67
3.4.3 Summary . 68

3.5 Discussion and Conclusion . 69

4 Offloading Based on Multi-Objective Optimisation 72
4.1 Introduction . 72

4.1.1 Problem Formulation . 72
4.1.2 Computing Platform Types . 74
4.1.3 Summary . 76

4.2 Computation Offloading . 77
4.2.1 Non Offloading . 78
4.2.2 Offloading . 79
4.2.3 Impact on Onloader . 83
4.2.4 Motivation for a Neighbour to be Onloader 83

4.3 System Design . 85
4.3.1 Application Partitioning . 86
4.3.2 Multi-Objective Optimisation . 87

4.4 Algorithms . 88
4.4.1 Minimal Energy Cost (MEC) . 88
4.4.2 Minimal Battery Impact (MBI) 89
4.4.3 Offload Only if Busy (OOB) . 90

4.5 Simulator . 92
4.5.1 Component Based Sensors . 92
4.5.2 Energy Saving Methods . 97

viii

4.5.3 Targets . 99
4.5.4 Metric – Efficiency Score (ES) 99

4.6 Simulation and Results . 101
4.6.1 Unselfish and Homogeneous Sensors 103
4.6.2 Unselfish and Heterogeneous Sensors 103
4.6.3 Selfish and Heterogeneous Sensors 106

4.7 Conclusion . 108

5 Computation Offloading based on Queueing Theory 110
5.1 Introduction . 110
5.2 Related Works . 112
5.3 System Model . 114

5.3.1 Node . 114
5.3.2 Arcs . 116

5.4 Case Study: Three Nodes . 118
5.5 Problem Formulation . 120

5.5.1 Centralised Problem Formulation 120
5.5.2 Distributed Problem Formulation 122
5.5.3 Cost function . 123
5.5.4 Computational Complexity . 124

5.6 Algorithms . 126
5.6.1 Oracle . 126
5.6.2 Proactive Centralised . 127
5.6.3 Proactive Distributed . 129
5.6.4 Reactive Distributed . 130

5.7 Simulator . 130
5.7.1 Random Waypoint Model . 132
5.7.2 SAIVT . 133

5.8 Experimental Results . 133
5.8.1 Results for the Standard Configuration 135
5.8.2 Effect of Bandwidth and NSI Frequency 139
5.8.3 Effect of Communication Range 140
5.8.4 Average Central Processing Unit (CPU) Utilisation 140
5.8.5 Mean Execution time . 143

5.9 Conclusion . 144

6 Conclusion and Future Work 146
6.1 Future Works . 148

Appendices 150

A Parameters for Simulation in Chapter 4 and Chapter 5 151

B Simulator Implementation 154
B.1 Sensor . 154
B.2 Target . 154
B.3 Algorithm . 156
B.4 Platform . 156

ix

C Original Publications 158
C.1 Journal Paper . 158
C.2 Conference Papers . 158

Bibliography 188

x

List of Tables

2.1 Comparison of existing hand-crafted PRID algorithms. Deep learning
methods are exempted from this as they are all supervised. Key Ref.=
Reference, Sup= Supervised . 25

2.2 Rank 1 results of Deep learning approaches on Viewpoint Invariant
Pedestrian Recognition (VIPeR) and CUHK01 dataset. For the CUHK01,
the number of test subjects are 486 . 31

2.3 Operations and memory count for core deep neural layers based on [61].
Filters are assumed to be square shaped (i.e. F × F) and memory
calculation is based one symbol takes four bytes 33

2.4 Popular Person Re-identification Datasets and their features 35

3.1 Average feature length, runtime and Rank 1 results for the compared
algorithms in 10 Monte Carlo runs. 56

3.2 Detail Execution times for Symmetry-Driven Accumulation of Local
Features (SDALF) along with the inference time 57

3.3 Android Devices used for the experiments 62
3.4 Various radio states for mobile data and WiFi in an Android device . . 68

4.1 Relative comparison between offloading to cloud or fog and offloading to
neighbouring nodes. Superior choice is highlighted in bold. 76

4.2 Execution times for CPU running @ 998.4 MHz 87
4.3 Different Frequency governors found in modern Operating System (OS) 98
4.4 Frequency governor selection based on remaining battery level percentage 99
4.5 Three Algorithm “A”, “B” and “C” to choose from, to do same work.

Which one is better? . 100
4.6 Result Summary for all the cases. Keys: S=Selfish, C=Cloud Available,

APM = Active Power Management Det.=Targets Detected, O=Targets
offloaded, Dro.= Targets Dropped, SI = Successful Identifications, E =
Energy Used, ES= Efficiency Score per 100 Joules 102

5.1 Different loads possible for three nodes scenario. Green font colour
represents stable job rate whereas red font colour represents unstable job
rate. When Σλ > Σµ, a solution satisfying all nodes is not available . . 121

5.2 Algorithms proposed in this work. 126
5.3 Simulation Parameters . 134

xi

5.4 Simulation Results (Averaged over 100 runs) for Bandwidth 11 mbps
Node State Information (NSI) exchange frequency of 5 seconds and range
of communication limited to 60 meters. 138

5.5 Mean Execution times (Seconds) . 144

A.1 Parameters used in the Chapter 4 and Chapter 5 simulation 152

xii

List of Figures

1.1 A newly developed robot to probe the hazardous underwater nuclear site.
Figure from [5] . 2

1.2 Future uniform of soldiers containing various intelligent sensors including
a head mounted camera to help them in the battle. Figure from [6] . . . 5

1.3 Image of Closed Circuit Television (CCTV) cameras used for detection
and tracking of humans. The bounding boxes is the person’s detection
in the frame and path is the track of particular target along the frames.
Image from [8] . 5

2.1 Three components of Mobile Cloud Computing (MCC) 8
2.2 General visual surveillance framework as described by [12]. 9
2.3 Surveillance systems evolution as described by [17]. Image from [17] . . 10
2.4 PRISMATICA: an example of third generation surveillance system (3GSS)

showing various components such as Modular Integrated Passenger
Surveillance Architecture (MIPSA), network, database, and camera and
other sensors. [15]. 12

2.5 Flowchart for pedestrian detection based on Histogram of Gradients
(HOG) features [23] . 14

2.6 Bottom left of the sample image in Figure 2.7d showing size of pixel, “cell”
and “block” for HOG feature extraction. Smallest square in green grid
represents the pixels. A “Cell” is a patch of 8×8 pixels and are separated
by the dashed yellow lines. A “Block” is 2 × 2 cells and separated by
solid blue lines. For clarity, overlapping of “blocks” is not shown here. . 16

2.7 HOG processing pipeline. (a) Average gradient over the training samples
(b) Maximum positive Support Vector Machine (SVM) weights in each
block (c) Maximum negative SVM weights in each block (d) Test Image
(e) HOG descriptor for the test image. (f) Positive weights for the test
image. (g) Negative weights for the test image. 17

2.8 Seven pairs of pedestrian images from the VIPeR dataset [28]. Each
column shows images of an individual. Images of same person from
Camera 1 (first row) may appear significantly different in Camera 2
(second row) . 18

2.9 Decentralised Person Re-identification workflow. The centralised system
would be exactly alike except for the absence of communication channel
in the centralised system. 19

xiii

2.10 Application of multi-camera person re-identification in an outdoor scenario.
Shaded cameras are fixed, white cameras are moving and grey area
represent their Field Of View (FOV) . 20

2.11 Multi-camera surveillance footage from PETS2014 dataset showing a fight
incident [35]. Each column shows footage from individual camera and
each row shows footage at a different time. (a) (c) (d) (g) (h) Camera
views without any foreground activity. (b) Actual fight incident. (e)
Perpetrators running away. (f) Driver falling on the ground. 21

2.12 Different network topologies (a)Centralised (b)Decentralised (c)Distributed 22
2.13 Illustration of adjacency constrained search. Green region represents the

adjacency constrained search set of the patch in yellow box. The patch in
the red box is the target match. In the first example, match is actually
found on different shoulder. [51] . 29

2.14 General Architecture of a deep Siamese PRID algorithm [54] 32
2.15 An example of a MANET. The circular nodes may be mobile devices

such as smartphones, vehicles with connection capabilities. Similarly, the
lines between the nodes represent valid connections formed by Wi-Fi,
Bluetooth, Zigbee or other device to device communications (a) Initial
configuration (b) New configuration after some time. Node 1 has left,
while nodes 7 & 8 have joined the scene, also the wireless links are modified
based on the new configuration. 36

2.16 Block diagram of a generic digital communications system [70] 37
2.17 Track of a target based on Random Waypoint Model (RWP) for nine

steps. The target starts at location 1 continues along the path with
different speed until it stops at 9. During the movement, the target can
pause at any step. 43

2.18 Stationary probability distribution of the target posion in a rectangular
scene [95] . 43

2.19 An elementary queue. (a)A M/M/1 queue with arrival rate of λ and
service rate of µ. (b) Markov chain representation of the M/M/1 queue.
The states represent the number of items in the queue. 45

2.20 A network of two Queues. Total incoming target rate at Q1 (λ1) is the
sum of external target rate (γ1) and targets rates emanating from the
queues heading to Q1. Under stable condition, outgoing rate is equal to
the incoming rate. 48

2.21 MANET as a graph; the sensors are the elements of set V and paths are
elements of set E . 49

3.1 Performance of the algorithms in VIPeR dataset 55
3.2 Performance of SDALF with and without Recurrent High-Structured

Patches (RHSP) . 58
3.3 Resource Utilisation for executing Classification Algorithm based on

Googlenet on Sony Z5. (a) Time Usage (b) Energy Usage (c) CPU Usage 60
3.4 Estimating time and energy cost of communication 61

xiv

3.5 An experiment to estimate communication costs. (a) Android application
for calculating time and energy cost of transmitting data. (b) Original
test image with resolution 5184 × 3456 and size 13.2 MegaBytes. The
image is compressed at several JPEG compression ratio to get test files
of different sizes . 62

3.6 Average time cost of uploading files of different sizes. 63
3.7 Time required to upload files of different sizes under different communi-

cation modalities and signal strengths. (a) 3G (b) 4G (c) WiFi 64
3.8 Average energy cost of uploading files of different sizes. 65
3.9 Energy required to upload files of different sizes under different com-

munication modalities and signal strengths. (a) 3G (b) 4G (c) WiFi
. 66

3.10 Time required to upload files of different sizes under different communi-
cation modalities and signal strengths. (a) 3G (b) 4G (c) WiFi 69

3.11 Energy required to upload files of different sizes under different com-
munication modalities and signal strengths. (a) 3G (b) 4G (c) WiFi
. 70

4.1 Pedestrian identification scenario: device X inundated with targets while
device Y is idle . 73

4.2 Simplistic view of resource usage during an algorithm execution. The
algorithm takes τm seconds to execute which depends on the number of
instructions required to execute for an algorithm (C) and the number
of instructions that a sensor can execute every second (Im) – see
Equations (4.1) and (4.3). The gray rectangular area signifies total
CPU utilisation for one algorithm execution – see Equation (4.2). 77

4.3 Resource usage for offloader(a) and onloader(b) during Computation
Offloading . The gray rectangular area represents CPU utilisation whereas
the light gray area represents radio usage for data communication. The
times are not correctly scaled in the picture. 79

4.4 Low complexity jobs with high communication overhead should not be
offloaded, high complexity jobs with low communication overhead should
be offloaded and anything else depends on the bandwidth. [36]. Based on
the assumption that the cloud is available at all times. 82

4.5 Typical pedestrian identification flowchart showing non-offloadable and
offloadable sections. Gray section represents the portion of algorithm
that are characterised as non-offloadable whereas the yellow section is
offloadable. 85

4.6 Multi-Objective optimisation problem reduced to two objectives. Dark
dots represent nodes satisfying the constraint in Equation (4.16b). The
solid line represents the Pareto Optimal curve 89

4.7 Power consumption of an image sensor in a smart phone during sequential
capture mode [142]. Image from [142] 94

4.8 (a) Probability distribution of g based on Gaussian distribution with
mean of 0.4 and variance 0.1 (b) CPU power relationship with CPU
frequency and utilisation. 95

xv

4.9 Cellular radio states, α1 and α2 are inactivity timers whereas δ1 and δ2

are delay to get to Dedicated Channel (DCH) 96
4.10 Snapshot of simulation showing targets as dots and sensors. (Yellow FOV

signifies target in FOV whereas orange signifies no target in FOV). . . . 101
4.11 Algorithm performance improvement and energy usage for unselfish and

homogeneous sensors. (a) Performance Increment and when cloud is not
available. (b) Extra energy usage compared to Non Offloading (NO)
when cloud is not available. (c) Performance Increment when cloud is
available. (d) Extra energy usage when cloud is available. (e) Process
Score vs Energy usage. 104

4.12 Algorithm performance for unselfish and Heterogeneous sensors (a)
Performance Increment and when cloud is not available. (b) Extra energy
usage compared to NO when cloud is not available. (c) Performance
Increment when cloud is available. (d) Extra energy usage when cloud is
available. (e) Process Score vs Energy usage. 105

4.13 Algorithm performance for selfish and Heterogeneous sensors (a) Perfor-
mance Increment and when cloud is not available. (b) Extra energy usage
compared to NO when cloud is not available. (c) Performance Increment
when cloud is available. (d) Extra energy usage when cloud is available.
(e) Process Score vs Energy usage. 107

5.1 Pedestrian identification scenario . 111
5.2 Network of sensors highlighting partial connectivity. Each node is

modelled as shown in Figure 5.3. 115
5.3 A sensor node modelled as network of queues. CPU, WR, WS represent

CPU, WiFi Receiver and WiFi Sender queues respectively 115
5.4 Packet Delivery Rate (PDR) in presence of noise and interference. . . . 117
5.5 Probability distribution of number of retransmission required for PDR =

0.4. The green stem at 1.5 is the mean of the distribution. 118
5.6 Average no. of retransmissions required due to imperfect channel. . . . 119
5.7 Time complexity of various linear solvers 125
5.8 The number of tasks dropped increases as the duration is too short.

Similarly when the duration is long, number of task dropped are increases
as well. The best results are achieved at 3 seconds 127

5.9 Queue utilisation of server in proactive setting under various network
conditions (Lower is better). Data size set at 1 Mb. 129

5.10 Simulation setup for one monte-carlo simulation. 132
5.11 Camera placement of SAIVT dataset [162] 133
5.12 Heterogeneous loading of cameras in multi-camera scenario. Camera 1, 7

and 15 see majority of targets. (Best viewed in colour) 134
5.13 Simulation results for RWP target data with Bandwidth 11 Mbps NSI

exchange frequency of 5 seconds and range of communication limited to
60 meters. (a) Normalised Target arrival rate per nodes over simulation
time (b) Targets dropped over Arrival Rate. NO dropped the most
(30% of all targets). Centralised algorithms performed best with at least
80% reduction in dropped targets and distributed algorithms perform in
between. 136

xvi

5.14 Simulation results for SAIVT target data with Bandwidth 11 mbps NSI
exchange frequency of 5 seconds and range of communication limited to
60 meters. (a) Normalised Target arrival rate per nodes over simulation
time. (b) Cumulative targets dropped over time. Proposed algorithms
perform significantly better than the NO case. Distributed algorithms
dropped less than half of the baseline and the Oracle dropped only about
sixth. 137

5.15 Efficiency Scores (a) RWP (b) SAIVT 139
5.16 Effect of communication bandwidth (1, 11), and NSI frequency (5, 10, and

30 seconds) (a) RWP: Performance increased as NSI update frequency
increased, however, no significant difference as bandwidth increased. (b)
SAIVT: Performance increased as the result of increased bandwidth and
NSI update frequency. 141

5.17 Effect of communication range (30, 60 metres) and NSI frequency (5, 10,
and 30 seconds). Slight improvement in performance as the range was
extended except for Proactive Distributed (PD) in RWP case. (a) RWP.
(b) SAIVT . 142

5.18 Average CPU utilisation across the nodes and NSI frequency (5, 10, and
30 seconds) (a) RWP (b) SAIVT . 143

B.1 Class diagram of Sensor showing important attributes. In the figure, it is
split into three different classes for space 155

B.2 Class diagram of Target Class . 156
B.3 Class diagram of Algorithm . 156
B.4 Class diagram of Platform . 157

xvii

Acronyms

1GSS first generation surveillance system. 34

2GSS second generation surveillance system. 34, 35

3GSS third generation surveillance system. xviii, 34, 35, 41

ADK Android Development Kit. 61

AODV Ad-hoc On-demand Distance Vector. 15, 29, 109, 124

AP Application Processor. 90

APM Active Power Management. 94, 98, 99, 152

BER Bit Error Rate. xxiii, 66, 110, 111

BiCov Bio-inspired Covariance based features. 44, 45

BW Network Bandwidth. 13, 74, 78–81, 97, 110, 113, 137, 140

CCTV Closed Circuit Television. xvii, 5, 34

CMC Cumulative Matching Characteristics. 55, 58

CNN Convolutional Neural Network. 52

COTS commercial off-the-shelf. 42, 89, 93, 105

CPU Central Processing Unit. xiii, xix–xxi, xxiv, 36, 60, 72, 76–80, 84, 89–91, 94, 97,
98, 106, 109, 110, 116, 118, 119, 121, 124, 133–136, 145, 149, 153

CSMA Carrier Sense Multiple Access. 13

CV Computer Vision. 34, 36, 50

DCH Dedicated Channel. xix, 91–93

DNN Deep Neural Network. xii, 19, 50–53, 56, 59, 60, 68

DSDV Destination-Sequenced Distance-Vector. 14, 15, 29, 109

DSR Dynamic Source Routing. 15, 124

xviii

DSTL Defence Science and Technology Laboratory. 3

DUT Device Under Test. 89, 93, 94

dv decision vector . 125

DVFS Dynamic Voltage and Frequency Scaling. 94

ES Efficiency Score. xii, 96, 99, 103, 131, 152

FACH Forward Access Channel. 91, 92

FCFS First Come First Service. 23, 26

FOB forward operating base. 39

FOV Field Of View. xviii, xix, 36, 39, 42, 71, 72, 82, 83, 96, 98, 126

FPGA Field Programmable Gate Array. 79, 107

FPS Frames Per Second. 60, 73, 89–91, 93, 94, 126

FSM Finite State Machine. 66

GAN Generative Adversarial Networks. 50

GPU Graphical Processing Unit. 36, 73, 79, 107, 145

HOG Histogram of Gradients. xi, xvii, 19–22, 37, 38

HSUPA High-Speed Uplink Packet Access. 63

HSV Hue Saturation Value. 45, 57

IC Integrated Circuit. 1

IOT Internet Of Thing. 106, 139, 141

ITML Information Theoretic Metric Learning. 44–46

JVM Java Virtual Machine. 56

KISSME Keep It Simple and Straightforward MEtric. 44–46, 55, 57, 59, 139

k-NN k-Nearest Neighbour. 21

LAFT Locally Aligned Feature Transform. 44–46

LBP Local Binary Pattern. 20, 38, 45, 57

LDML Logistic Discriminant Metric Learning. 46

xix

MANET Mobile Ad-hoc Network. xi, xvii, xviii, 6, 9–16, 27, 28, 109

MARS Motion Analysis and Re-identification Set. 54, 55

MBI Minimal Battery Impact. xii, 86, 87, 99, 101, 103, 105, 137, 152

MC Markov Chain. 23

MCC Mobile Cloud Computing. xvii, 9, 10, 73, 75, 79, 84, 107, 117

MDP Markov Decision Process. 108

MEC Minimal Energy Cost. xii, 85–87, 99, 101, 103, 105, 137, 140, 152

MIPSA Modular Integrated Passenger Surveillance Architecture. xviii, 35, 41

MOG Mixture of Gaussians. 77

MSCR Maximally Stable Color Region. 21, 45, 47, 57, 58

NN Neural Network. 21, 49

NO Non Offloading. xx, xxi, 96, 99, 101–103, 105, 120, 129–131, 133–137, 152

NSI Node State Information. xv, xx, xxi, 107, 110, 112, 116, 117, 120–125, 128–130,
132–138, 140, 141

O Oracle. xiii, 120, 121, 129, 131, 133, 136

OLSR Optimised Link State Routing. 14

OOB Offload Only if Busy. xii, 88, 99, 101, 103, 105, 140, 152

OS Operating System. xv, 64, 89, 91, 95

PC Proactive Centralised. xiii, 120, 121, 123, 124, 129–131, 133, 136, 137, 140, 141

PCA Principal Component Analysis. 45, 57, 59

PD Proactive Distributed. xiii, xxi, 120, 123, 129–133, 135, 140, 141

pdf probability distribution function. 46

PDR Packet Delivery Rate. xx, 66, 110–112, 122, 124, 128

PPP Poisson Point Process. 17, 96

PRID Person Re-identification. xii, xv, xviii, 6, 30–32, 36–45, 50–55, 60, 67, 69, 71, 72,
74, 80, 82–84, 96, 105, 139

RAM Random Access Memory. 56, 61

RD Reactive Distributed. xiii, 120, 124, 129–131, 133, 137, 138, 140

xx

ReLU Rectified Linear Unit. 52

RFH Request For Help. 124, 125, 138

RGB Red Green Blue. 34

RHSP Recurrent High-Structured Patches. xviii, 45, 47, 57, 58

RNC Radio Network Controller. 92

RRC Radio Resource Control. 92

RSSI Received Signal Strength Indication. 63, 66

RTT Round Trip Time. 74, 75, 107

RWP Random Waypoint Model. xiii, xvii, xx, xxi, 15–18, 124, 126, 128, 129, 131–137

SDALF Symmetry-Driven Accumulation of Local Features. xii, xv, xviii, 44, 47, 57–59

SDC Saliency guided Dense Correspondence. 49

SIFT Scale Invariant Feature Transform. xxiv, 20, 38, 45, 48

SNR Signal to Noise Ratio. 110, 111

SVM Support Vector Machine. xvii, 20–22

TORA Temporarily Ordered Routing Algorithm. 15

UE User Equipment. 66, 91, 92, 124

VANET Vehicle Ad-hoc Network. 140

VIPeR Viewpoint Invariant Pedestrian Recognition. xv, 51, 53, 55–58

W-CDMA Wideband-Code Division Multiple Access. 63

WHSV Weighted Color Histograms. 47

XML Extensible Markup Language. 126

xxi

Definitions

app is an application program, generally developed for deployment in a Smartphone.
56, 59, 61, 145

Computation Offloading is a process of offloading computationally intensive algo-
rithm from one computing facility to another aiming to save time, energy or both.
xix, 6, 30–32, 43, 69, 71, 72, 74–76, 78, 79, 82, 83, 99, 102, 103, 105, 139, 141, 142

M/M/1 A simple queue with one server, Poisson arrival, exponential service times, and
infinite queue length. xi, xviii, 23–25, 108–110

offloader The device that sends their job to cloud or neighbour for it to be executed
and result sent back. xix, 75, 77–83, 87

onloader The device that takes on other’s job for execution and sends result back after
execution. xii, xix, xxiii, 75, 77–83, 87, 101, 108

xxii

Chapter 1

Introduction

This project explores neighbouring devices as an alternative to the cloud for computation

in Computation Offloading problems. This chapter briefly introduces Computation

Offloading , why it could be useful and when the traditional offloading to cloud isn’t

feasible. Lastly, the chapter also presents the layout of the thesis.

1.1 A Short Overview

Until recently, a common characteristics of the computers was that all of them were

fixed in one location. Lately however, these desktops have been partially substituted

with mobile technologies such as laptops and smartphones with comparable computing

capabilities. Crucially, they also have wireless communication capabilities added which

allows them to connect to one another and the main grid such as the Internet, from

anywhere within the wireless range. Likewise, in the software domain, simple computer

programs have been replaced with intelligent and complex algorithms. For example,

instead of the user having to enter the commands manually, artificially intelligent

assistants such as Ok Google [1], Apple’s Siri [2], and Amazon’s Alexa [3] exist, that can

decipher human commands and can carry out instructions.

1

CHAPTER 1. Introduction 2

Figure 1.1: A newly developed robot to probe the hazardous underwater nuclear site.

Figure from [5]

In lieu of the hardware and software development, computing platforms are more

distributed, dynamic, and intelligent. They can be deployed in the field for specialised

and complicated tasks. For example, robots can be deployed to collect sensor data

and work in hazardous conditions where it is dangerous for humans to go. In 2011

Fukushima, Japan, after a tsunami, nuclear plants were too hostile an environment for

humans to go and assess. Robots that can be controlled from outside the contaminated

area were built to assess the situation and also clean up underwater [4, 5]. Figure 1.1

shows a robot used to probe the environment underwater.

Even though there has been rapid progress in both hardware and software, mobile or

embedded devices are still resource limited. They may lack the computational power of

a desktop computer, storage media, and most importantly energy resources. As they are

often battery powered, the lifetime of these devices may be limited. Once the energy

resource is emptied, they are switched off and cannot function until the batteries are

replenished. Also, it is often required for more than one device to collaborate with

each other to complete a task. Those devices may be specially designed and deployed

to work together or the sensors may be in vicinity by chance. In theory, similar to

how the animals achieve synergy by working together, these robots and drones should

be able to communicate and help each other to achieve the main objective. However,

there are many obstacles in practice. The deployment devices are resource limited so

CHAPTER 1. Introduction 3

have limited computational capability and limited energy. While many tasks can be

delay tolerant in nature, others are not. For example, sending an email or backing

up data can be considered delay tolerant and can be done in a time window of say

an 10 minutes, whereas identifying a person in the image frame has to be completed

in a certain time-frame, e.g. 30 seconds. One way of achieving this time target is

by upgrading the hardware or sacrificing accuracy to make the algorithm run faster.

Another approach would be to offload the algorithm for execution on another device. In

this thesis, the offloading approach is explored.

1.2 Computation Offloading

Instead of executing a computationally intensive algorithm on its own, sometimes it may

make sense concerning time or energy savings, to send the data to another computing

facility for computation. This process is called Computation Offloading . Generally,

the computationally intensive algorithms are offloaded to the cloud with substantial

computing resources. However, there are cases when the cloud may not be available

such as underwater or underground scenarios. One such case is the battlespace which is

described next.

1.3 Motivating Scenario – Battlespace

According to Defence Science and Technology Laboratory (DSTL), the ground soldier’s

uniform in future would be covered with number of sensors that can help them in

the battlefield [6,7]. Figure 1.2 shows the design of DSTL and the number of sensors

embedded to soldier’s uniform to materialise by 2025. The design includes [6]:

• “Smart glasses concept which include a heads-up display, integrated camera and

bone conducting headphones to increase situational awareness without compromising

hearing.”

CHAPTER 1. Introduction 4

• “A robust personal role computer concept enabling better information sharing and

communications between personnel.”

Let the mission of the be to detect all the people in the scene and try to identify them.

For that purpose, a group of soldiers and drones are deployed. The visual footage can

come from the camera on the soldiers head or the drones that are deployed. If a criminal

or an enemy is identified in the scene then one of the soldier can go and interrogate

them. Each camera only reports to the soldier if a known criminal or enemy is identified.

In this example, say one of the drone’s camera has a higher number of humans detected

–see Figure 1.3. In this image frame there are six people detected. Identifying all six of

them in real-time is challenging. However, because the drone’s processing capability is

limited, it struggles to process all the targets detected in real time. Traditionally, the

drone could ask the cloud for help in processing the targets. However, the cloud may

not be available or the latency may be too high to ask for help. However, the personal

role computer belonging to each soldier has in comparison higher processing power and

higher battery capacity (backpack). Would it be possible for the drone to transfer the

targets to one or more soldiers in order to

1. complete identifying people on allocated time,

2. extend the lifetime of the drone.

This could be particularly useful, if some sensors are busier than others or have less

resources than others and access to cloud computing is not available. The work presented

in this thesis can be applied in non battlespace scenarios as well such as underwater or

underground where the cloud is not reachable.

1.4 Research Objectives

This thesis explores the communication capability of embedded devices to complete

the computationally intensive jobs on time. It attempts to share the jobs among the

CHAPTER 1. Introduction 5

Camera

backpack

with battery

personal

mini computer

Figure 1.2: Future uniform of soldiers containing various intelligent sensors including a

head mounted camera to help them in the battle. Figure from [6]

Figure 1.3: Image of Closed Circuit Television (CCTV) cameras used for detection and

tracking of humans. The bounding boxes is the person’s detection in the

frame and path is the track of particular target along the frames. Image

from [8]

CHAPTER 1. Introduction 6

deployed sensors in an energy efficient fashion to achieve better efficiency and better

work completion rate. Based on the motivating example in the last section, the broad

research objective of this thesis can be formulated as below. However, it is important to

note that, it is not limited to computer vision algorithms nor specific hardware such as

drones.

1. How can signal processing be leveraged in multiple devices with communication

capabilities?

2. Would it be feasible for computationally intensive algorithms to be executed on

embedded devices? If yes, what are the different costs of executing them on the

resource limited devices?

3. Mobile devices utilise the cloud services for executing computationally intensive

algorithms. Is this the best option even if the communication bandwidth is limited?

4. Could the network of embedded devices work in tandem in an energy efficient

manner to improve the productivity of the overall group?

1.5 Thesis Structure and Research Contributions

The rest of thesis is structured in the following way.

Chapter 2 is the background chapter comprised of three different sections. The first

section introduces the basic concepts on Mobile Ad-hoc Networks (MANETs), their

communication and mobility models. Second section is on surveillance and computer

vision algorithms. Finally, the last section is on queuing theory and network of queues.

This chapter helps the reader to understand rest of the chapters.

Chapter 3 assesses factors affecting algorithm implementation on resource limited devices

and various cost involved. Experiments are conducted out to cost of executing algorithms

on the embedded devices such as an Android smartphone compared to communicating

CHAPTER 1. Introduction 7

data for offloading. The experiments carried out in this chapter were presented in the

Sensor Signal Processing in Defence conference in 2015 [9].

In Chapter 4, presents a simple algorithm for Computation Offloading . It is a proof of

concept that Computation Offloading can be useful even when the cloud is not available.

In order to simulate the time and energy consumption on the mobile devices while

performing computation and communication, a simulator was developed and described

here. The simulator and the experiments carried out in this chapter were presented in

European Signal Processing Conference in 2016 [10]

Chapter 5 presents a model of network of sensors as network of queues and a realistic

environment is considered including the cost of optimisation, partially connected sensors

etc. The results of this chapters were presented in European Signal Processing Conference

in 2017 [11]. Also, a journal is under review in IEEE transactions in Mobile Computing.

Chapter 6 is the last chapter of the thesis. It discusses the main conclusions of the

overall research carried out during the course of the PhD. It also proposes the future

works that should be carried out in order to progress the work further is discussed.

Chapter 2

Background

The primary aim of this project is to offload computationally intensive algorithms

to increase the performance of a network of embedded devices. This is referred as

Mobile Cloud Computing (MCC) and contains three vital components; device platforms,

algorithms and communications as shown in Figure 2.1. MCC is discussed in more

detail in Chapter 4 however, this chapter covers the basics of these components. In the

first part, computer vision theory and techniques will be explained. Computer vision

algorithms in this context are considered to be computationally intensive algorithms

that benefit from offloading or sharing. In the second part, a Mobile Ad-hoc Network

(MANET) will be studied. Devices in MANETs by its nature are resource limited. So,

they would benefit the most from MCC. In the last part, queueing theory and network

flows will be discussed which is used in Chapter 5 to formulate the model of a sensor

network and solve them.

MCC

Platform AlgorithmsCommunication

Figure 2.1: Three components of MCC

8

CHAPTER 2. Background 9

Fusion of Information from multiple cameras

Environmental Modeling

Motion Segmentation

Object Classi�cation

Tracking

Behaviour understanding

and description
Personal

re-identi�cation

Environmental Modeling

Motion Segmentation

Object Classi�cation

Tracking

Behaviour understanding

and description
Personal

re-identi�cation

Figure 2.2: General visual surveillance framework as described by [12].

2.1 Surveillance Systems

Surveillance systems refer to monitoring target activities such as human or vehicle

activities at certain times and locations, to improve safety and security in the area.

Visual camera systems are one of the most commonly used modalities in surveillance

systems owing to its rich information content. Generally speaking, the visual modality is

omnipresent and sometimes complemented with other modalities such as audio, infra-red

or olfactory signals. So in this section, visual surveillance systems will be briefly discussed,

focussing on their evolution over time. This work is presented to help in understanding

the direction that the research in surveillance systems is heading towards, and explain

the significance of Person Re-identification (PRID) and Computation Offloading , in the

context of the security and surveillance systems.

A standard framework for a visual surveillance system starts with capturing images using

cameras, which are then fed to various computer vision algorithms. These algorithms

may include environment modelling, motion segmentation, object classification, tracking,

identification and activity recognition [12–16]. For example, each block in the software

CHAPTER 2. Background 10

Figure 2.3: Surveillance systems evolution as described by [17]. Image

from [17]

framework [12] shown in the Figure 2.2 represents one of these algorithms and directly

or indirectly helps the system extract some vital information about the target activity.

2.1.1 Evolution of Surveillance Systems

Discussing the generations and history of surveillance systems helps one to understand

how it has matured over the years and in which direction the research is heading.

Marcenaro et al. [13] first started the notion of generations in the surveillance systems.

Even though there are no clear boundaries, researchers such as [13, 15, 17] have a

consensus on the salient features of each generation. Today, the technology has matured

to the fourth generation – see Figure 2.3 [17]. All the generations will be briefly discussed

here with more focus on the later generations.

The first generation was characterised by the use of analogue and wire-based technologies.

Analog Closed Circuit Television (CCTV) cameras were used to capture images, which

were then sent into a control room and recorded on analogue technologies such as

videotapes. One or more operators in the control room need to monitor the video-feeds

continuously, to find anomalies or a breach of security. As the system was based entirely

CHAPTER 2. Background 11

on analogue technologies, the signals were not encrypted at all, resulting in reduced

security. Being analogue was one of the reasons why the first generation surveillance

system (1GSS) could not be wireless as anyone could intercept and interfere with it.

Computer Vision (CV) algorithms were not used at all.

In the second generation surveillance system (2GSS), the analogue feeds were digitised

and stored on devices such as hard disk drives. More importantly, it allowed the

application of basic CV algorithms for detection and tracking of targets. This increased

the overall efficiency of the system. However, there were two noticeable problems with

the 2GSS. First, the detection and tracking algorithms were not robust enough and,

second, scaling the system to a large number of sensors was difficult due to centralised

processing. With the advancement in electronics and computer vision, some of the issues

were dealt with in the third generation surveillance system (3GSS), which allowed for

smart and wide area surveillance systems. In addition to the Red Green Blue (RGB)

sensor data, different modalities such as audio inputs were added which resulted in the

more robust detection and tracking. Similarly, some of the work was also delegated to

the camera or individual dedicated devices which allowed more freedom to the central

processor. In turn, it allowed for broader area surveillance systems.

PRISMATICA is an excellent example of 3GSS that was implemented for smart

surveillance in public transport [15]. The system was deployed in various stations

in Paris, Milan and London. It comprised of visual camera inputs, audio inputs and

inputs from contactless smart card devices as shown in Figure 2.4. In this system, the

CCTV inputs were fed into a video matrix whereby operators could view it, in addition

to it being digitised. Each video input was processed by individual video devices to

detect targets and track them. The processed data was then stored in the database

via the device network. Figure 2.4 also shows other technologies such as contactless

smart cards and audio surveillance devices that were connected to the system via the

device network. The overall system was controlled by the central entity called Modular

Integrated Passenger Surveillance Architecture (MIPSA). In addition to gathering and

processing the data from the sensors, the operators could control the cameras based on

the data. For example, the system could detect any suspicious noise was picked up by a

CHAPTER 2. Background 12

Contactless Smart

Card Device

Audio Surveillance

Device

D
e
v
ic

e
 N

e
t
w

o
r
k

Database

Video input 1

Video input 2

Video input N

Video input

 Matrix

MIPSA

MIPSA Network

Even

Oper ace

Existing CCTV system

Figure 2.4: PRISMATICA: an example of 3GSS showing various components such as

Modular Integrated Passenger Surveillance Architecture (MIPSA), network,

database, and camera and other sensors. [15].

microphone using the audio activity detector, such as people shouting. Then the system

could display the camera feed from the relevant localised area in the station.

The PRISMATICA system shows that the 3GSS was relatively smarter than 2GSS and

could handle a large number of cameras. However, there are many limitations of this

system. For example, all the cameras are connected using wires between the device

network and the MIPSA which is the central entity. Failure of the MIPSA would be

catastrophic and the whole system would fail as a result. Also, while there is a provision

to extend the system to other stations by connecting via the MIPSA network, more

extensive deployment would be expensive.

In the fourth generation, the focus started shifting towards distributed embedded devices

with the wireless communication capabilities, which can be easily deployed and scalable

yet smart enough to execute robust CV algorithms [17]. Such a system should be

robust and highly fault tolerant. Apparently, the growth in hardware technologies has

in some ways helped in achieving this. For example, over the last two decades, the

interest in smart-phones has fuelled tremendous development in mobile processors that

CHAPTER 2. Background 13

are powerful, efficient and inexpensive. Similarly, pocket sized embedded devices such

as the Raspberry Pi [18] and the NVidia Jetson Tk1 [19] have come to market that

boasts multi-core Central Processing Unit (CPU) and multi-core Graphical Processing

Unit (GPU), while maintaining their small form-factor and low cost. However, there are

still many open problems associated with distributed sensor networks for surveillance

systems. Obviously, there are implementation challenges, that will be discussed in

Section 2.3.2. Apart from that, there are issues related to synchronisation in an ad-hoc

network, having consensus between the sensors and network coverage etc.

In the next section, an essential CV algorithm is described in detail with examples

to highlight the complexity and challenges concerning implementation for real-time

surveillance systems.

2.2 Computer Vision Algorithms

Computer vision is an interdisciplinary field that seeks to automate tasks that a human

visual system can perform [20,21]. The tasks may include acquiring, processing, analysing,

and understanding visual images. They have wide range of applications. For example,

they can be used in biomedical imaging to find tumour in the body; in security for

detecting and monitoring anomalies; autonomous control etc. To understand the high

dimensional data in the image data produced by the image sensor, features are used.

2.2.1 Feature Extraction

According to Gonzalez and Woods, there is no formal definition of what constitutes an

image feature [22]. However, a feature is generally thought of as a distinctive attribute

or description of “something” that is desired to be labelled or differentiated. Feature

extraction constitutes of two principal aspects: feature detection and feature description.

Features detection refers to finding the features in an image, region, or boundary. Feature

description assigns quantitative attributes to the detected features. There are many

CHAPTER 2. Background 14

Input image

Normalise

gamma &

colour

Compute

Gradient

Weighted vote

into spatial &

orientation cells

Contrast nor-

malise over over-

lapping spatial

blocks

Collect His-

togram of

Gradients

(HOG)’s

over detec-

tion win-

dow

Linear

SVM

Person/ non-

person Classifi-

cation

Figure 2.5: Flowchart for pedestrian detection based on HOG features [23]

types of features that are used in computer vision. For example, it could range from a

histogram of the whole image to a computationally intensive feature learned via Deep

Neural Network (DNN). The purpose of this section is not review all the features that

are present in the literature but show how visual features are extracted and what kind

of processing it entails. As an example, a person detection algorithm is described next.

2.2.2 Histogram of Gradients

The HOG features were used by Dalal and Triggs for person detection [23]. Person

detection algorithms are used for exemplars in Chapters 3 to 5. The HOG based person

detection has two distinct parts. The first part consists of extracting the features from

an image that is fed to the second part that consists of Support Vector Machine (SVM)

classifier. The process of extracting HOG features is depicted in Figure 2.5 and are

described below

1. Gradient Computation

The first major step is to calculate the gradients in the x and y directions. This is

accomplished by convolving the kernels
[

1 0 −1
]

and
[

1 0 −1
]T

across

the whole image. The gradients are used to find edges in the image.

CHAPTER 2. Background 15

2. Orientation Binning

An image or a detection window is divided into small spatial regions called “cell”

which is 8 × 8 pixels each. The pixel gradients calculated in step 1 is used for

histogram creation for each of these cells. For detecting humans, Dalal used nine

equally spaced bins in the range 0◦ − 180◦. So the histogram feature of each cell

is nine dimensions.

3. Contrast Normalisation

Four neighbouring “cells” (2 × 2) are called a “block”. A block feature is the

concatenation of features from four constituent “cells”. See Figure 2.6 to compare

“pixel”, “cell” and “block”. The block features are normalised over the block using

L2Hys [23] which is known as contrast normalisation. For each image or detection

window, the histogram features of overlapping blocks extracted. The overlapping

is 50% (ie. 8 pixels). A test image and its HOG descriptor is shown in Figures 2.7d

and 2.7e respectively.

To determine if there is a human in the image or not, a classifier such as SVM is used.

The HOG features of human and non human images and their labels are used to train

the SVM classifier. Figures 2.7b, 2.7c, 2.7f and 2.7g show various positive and negative

weights for the training and the test images.

The HOG algorithm is described here to gently illustrate how local features of an image

is extracted and used for something useful (in this case person detection). There are

many other different types of features; Local Binary Pattern (LBP) [24], Scale Invariant

Feature Transform (SIFT) [25], and Maximally Stable Color Region (MSCR) [26] to name

a few. Similarly, there are numerous ways to compare or match them in a supervised

and unsupervised manner. It could be as simple as finding Euclidean distance between

them to more complex supervised methods like k-Nearest Neighbour (k-NN), SVM and

Neural Network (NN) [27].

CHAPTER 2. Background 16

Figure 2.6: Bottom left of the sample image in Figure 2.7d showing size of pixel, “cell” and

“block” for HOG feature extraction. Smallest square in green grid represents

the pixels. A “Cell” is a patch of 8× 8 pixels and are separated by the dashed

yellow lines. A “Block” is 2× 2 cells and separated by solid blue lines. For

clarity, overlapping of “blocks” is not shown here.

2.3 Person Re-identification

Person Re-identification (PRID) refers to associating people across camera views at

different locations and times [29]. It can have a considerable impact on surveillance

and security applications like PRISMATICA because manual identification is not only

tedious and costly, but the latency may be unacceptable. As the Field Of View (FOV)

of the cameras can be non-overlapping, the background and pose can change, and the

target can be occluded which makes PRID challenging. A particular individual can look

dissimilar in different views, while different individuals can look similar from different

angles. Figure 2.8 shows some sample pedestrian images from the VIPeR dataset [28]

taken by two cameras. The posture of the pedestrians in the images of the two cameras

are different even though they are walking in both cases. Additionally, in the first pair

Figures 2.8a and 2.8h the trousers appear to be of different colour. This difference in

colour of the same object in different images is called colour constancy problem [30].

In second pair Figures 2.8b and 2.8i, the camera 2 view shows an artefact (handbag)

which is barely visible in the camera 1 image. Similarly, camera 1 images Figures 2.8d

and 2.8g show front view of the pedestrians while the images of same individuals in

CHAPTER 2. Background 17

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.7: HOG processing pipeline. (a) Average gradient over the training samples (b)

Maximum positive SVM weights in each block (c) Maximum negative SVM

weights in each block (d) Test Image (e) HOG descriptor for the test image.

(f) Positive weights for the test image. (g) Negative weights for the test

image.

camera 2 show side views Figures 2.8k and 2.8n along with blurring further complicating

the problem.

PRID algorithms follow the basic workflow depicted in Figure 2.9. First, images are taken

from each camera and preprocessed. The pre-processing step may include background

subtraction and a HOG based person detection algorithm described in Section 2.2.

Features are then extracted from a person’s image to form a unique signature. Popular

features include a combination of low level features such as colour histograms, LBP [24],

SIFT [25] and the HOG features [31]. For verification, a metric distance between

CHAPTER 2. Background 18

Camera:1

(a) (b) (c) (d) (e) (f) (g)

Camera:2

(h) (i) (j) (k) (l) (m) (n)

Figure 2.8: Seven pairs of pedestrian images from the VIPeR dataset [28]. Each column

shows images of an individual. Images of same person from Camera 1 (first

row) may appear significantly different in Camera 2 (second row)

signatures is calculated and compared to a threshold, to verify if the images belong

to the same individual or not. Similarly, for identification, the probe signature is

compared with the gallery set containing signatures of a seen individuals to find the

closest match. Some researchers have also defined the person identification problem as a

ranking problem such that the closes match appears at the top of the list and the least

likely match appears at the bottom of the list [32].

2.3.1 Applications

The computational complexity of PRID algorithms will be analysed in detail later,

but for now, let’s look at two simple examples to understand the application and the

implementation challenges in practical systems.

CHAPTER 2. Background 19

Image Person Detection Feature Extraction Signature Generation

Image Person Detection Feature Extraction Signature Generation
Signature

Matched?

Camera 2

Camera 1

Yes

No

Communication

Channel

Different person

Same

person

Figure 2.9: Decentralised Person Re-identification workflow. The centralised system

would be exactly alike except for the absence of communication channel in

the centralised system.

Case 1: Camera Handover

Consider a vision based pedestrian tracking system like the one described for PRISMAT-

ICA, which comprises of multiple smart cameras. The cameras may be fixed or moving,

represented by dark and light camera icons respectively –Figure 2.10. The system could

be implemented in a transportation area such as a train station, or more sensitive area

such as a forward operating base (FOB) or an embassy of a country. The problem is

that the FOV may be non-overlapping; however, the cameras are connected to each

other via wireless links such as WiFi, Bluetooth or cellular. Targets 1 and 2 are moving

along the path shown by the arrows. Inside a camera’s FOV, targets can be tracked

using various filters such as the Kalman filter [33] and Particle filter [34]. However, the

targets often move from one camera’s FOV to another. For the system to seamlessly

track a person across cameras, the system must verify if the images from both cameras

are of the same person or not. One way to assert that is using a PRID algorithm.

Case 2: Anomaly Detection and Active Surveillance

Let us consider the pedestrian tracking algorithms further using the PETS2014 dataset

[35]. The dataset consists of four non-overlapping cameras mounted on each side of

CHAPTER 2. Background 20

1 1

1

1

2

2
2

2

2

2

Building Building

Building

Figure 2.10: Application of multi-camera person re-identification in an outdoor scenario.

Shaded cameras are fixed, white cameras are moving and grey area represent

their FOV

a truck. In this dataset, some of the footage contains criminal activities such as a

person stealing from the truck or people fighting with with each other. For example,

Figure 2.11 shows a fighting incident with four people involved. First, the driver of the

truck gets involved in a fight with one person; then two more people join the fight –

Figure 2.11b. As the driver falls on the ground (Figure 2.11f), the three men run away –

Figure 2.11e. The whole incident takes place in less than a minute. This incident could

also be compared to someone planting a bomb in a busy area and walking away. It

is highly desirable to detect such anomalous incidents, alert the security system and

quickly identify the perpetrators to prevent further damage or injury. Robust PRID

algorithms are required for these cases.

2.3.2 Implementation Challenges

Let us assume the PRID algorithm is robust and can perform with 100% reliability.

There are three ways to implement them in real life – see Figure 2.12. In a centralised

system like 3GSS, all the sensor nodes would be connected to a single server such as

CHAPTER 2. Background 21

Space −→
←
−

T
im

e

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.11: Multi-camera surveillance footage from PETS2014 dataset showing a fight

incident [35]. Each column shows footage from individual camera and each

row shows footage at a different time. (a) (c) (d) (g) (h) Camera views

without any foreground activity. (b) Actual fight incident. (e) Perpetrators

running away. (f) Driver falling on the ground.

MIPSA in PRISMATICA, which collects image data from all the sensor nodes, verifies

the images and sends the results (“yes” or “no”) back to the cameras. There are several

downsides of this approach:

• The server has to collect and process all the data itself, which may be challenging,

particularly in real-time applications.

• Scalability: as the number of cameras increases, it becomes more and more

challenging for the server to cope.

• Reliability: if the server is busy or connection to the server fails, the overall system

fails to work.

• Security and Privacy: As raw images are transferred to the server, it may be

CHAPTER 2. Background 22

(a) (b) (c)

Figure 2.12: Different network topologies (a)Centralised (b)Decentralised (c)Distributed

hacked in during transmission which means the data is no longer reliable. From

user’s point of view, the central server has access to sensitive information.

2.3.3 Distributed Scenario

The decentralised implementation partially alleviates the shortcomings. The system

would be more reliable as there are many mini-servers and the delay would be significantly

less. However, the best way would be to implement it as distributed as shown in

Figure 2.12. State-of-the-art smart cameras have a significant processing capability as

standard. Each sensor can generate a unique encrypted signature for the people in

its FOV and maybe also identify them. Since each camera does processing of its own

images, they could be powerful just enough to process its own targets only. This could

mean less or no communication is required to the central server. Thus, even if some of

the connections fail, they could still work fully or partially. If the data is not sent to

the server, there is less chance to be hacked in between, so the system is more secure

and privacy aware. Furthermore, if commercial off-the-shelf (COTS) devices such as

smart-phones are used, the system development cost and time can be minimised. The

cameras could be deployed, scaled as well as replaced easily if necessary.

In a military context, distributed implementation means the camera may be embedded

CHAPTER 2. Background 23

within a soldier’s uniform to monitor targets without raising suspicion in conflict zones

like the scenario described in Section 1.3. For example, the white mobile cameras in

Figure 2.10 could be soldiers observing a suspicious target “2”. Whenever required,

sensors can communicate a person’s unique signature feature to other cameras to establish

who “2” is the right target. Such a distributed and decentralised approach would be

ideal.

Current Issues

Even though there are numerous benefits, there are problems associated with such

a distributed approach. First, the images are captured in two different cameras so

transferring images or features of the person will incur a communication cost. The

unique person features commonly referred to as “signature” also have to be communicated

from one camera to another as shown in Figure 2.9 so that the two signatures can be

matched. These are often battery powered devices, such as a smart-phone, so maximising

the battery life is desired. As these cameras are connected with wireless networks such

as a Wi-Fi or cellular system, the time taken and energy required to send the data across

the network is directly proportional to the length of the data [36]. As the signature

length increases, the time and energy cost of the signature exchange increases, so the

device should keep the signature size as small as possible.

Second, wireless communication still be not secure, making it prone to attack. Even

though encryptions are used in the design phase, it cannot be guaranteed during

implementation. For example, if the operator or the user at runtime doesn’t use any

encryption or a weak password, the communication is susceptible to hacking.

Third, there is a computational cost associated with generating the signature used by

the PRID system. Distributed systems are equipped with less powerful processors and

have fewer resources. As such, the signature generation may be slower compared to a

centralised server, and there may be a limitation to the number of persons each camera

can identify at a time due to resource limitation on the camera. To overcome these

CHAPTER 2. Background 24

limitations and execute algorithms with a high time complexity on the resource limited

devices, there may be two basic approaches.

• Simplify the algorithm for faster runtime which may sacrifice accuracy.

• Seek alternatives to local execution or perform Computation Offloading .

However, for the Computation Offloading to be fruitful, the following three essential

assessments must be carried out.

1. Choose a suitable PRID algorithm

2. Consider the cost of executing the algorithm on board (local execution).

3. Consider the cost of executing the algorithm on neighbours or the cloud.

2.4 Existing Algorithms

Person re-identification algorithms can broadly be classified into supervised and

unsupervised algorithms. Supervised methods include algorithms like the Mid-level

features [37], Keep It Simple and Straightforward MEtric (KISSME) [38], Locally

Aligned Feature Transform (LAFT) [39], and the Information Theoretic Metric Learning

(ITML) [40]. They focus on metric learning [41], whereas unsupervised algorithms

focus on feature design. Some popular unsupervised methods include Symmetry-

Driven Accumulation of Local Features (SDALF) [42], Bio-inspired Covariance based

features (BiCov) [43] and spatio-temporal features [44]. A summary of these algorithms

is listed in Table 2.1, for more detailed review of recent approaches, refer to these

papers [29, 41, 45–47]. Also there are two general aspects of PRID; identification and

verification. Identification means finding the closest match of a probe sample within the

given gallery set whereas verification means asserting whether or not two samples are of

the same subject (person).

CHAPTER 2. Background 25

Table 2.1: Comparison of existing hand-crafted PRID algorithms. Deep learning methods

are exempted from this as they are all supervised. Key Ref.= Reference, Sup=

Supervised

Ref. Algorithm Sup Remarks

[40] ITML X Mahalanobis Metric Learning

[39] LAFT X Mahalanobis Metric Learning

[38] KISSME X Generic feature using Colour and LBP, Maha-

lanobis Metric Learning

[43] BiCov Biologically inspired filters (Gabor filters)

[48] SDALF Feature design with Recurrent High-Structured

Patches (RHSP) and MSCR.

[44] Spatio-temporal Spatial and temporal features made up of Colour

histograms and edge information.

[49] U. Saliency Features using Colour and SIFT, patch making

weighted by saliency of the patch

Among many algorithms, three key ones are selected based on their significance in person

re-identification and availability of their source code. To understand their suitability

for implementation on an embedded system, these algorithms are discussed here with

a focus on their operational steps, complexity and the length of a person’s signature

feature.

2.4.1 KISS MEtric Learning

KISSME [38] is a supervised method that focusses on learning the metric rather than

a complicated descriptor design. The descriptor consists of colour histograms and

LBPs [24]. First, the images are divided into overlapping blocks and histograms are

extracted in Hue Saturation Value (HSV) and LAB colour-space. Then LBPs are

extracted to capture the texture information. For the VIPeR dataset, based on the

CHAPTER 2. Background 26

code and data1 provided by the authors [38], each image has 21315 dimension features.

Principal Component Analysis (PCA) is used by the authors to shorten the length of the

descriptor to 34 experimentally chosen dimensions. For the metric learning, the authors

have chosen widely known Mahalanobis Metric learning technique. The Mahalanobis

metric, d2
M(xi,xj) between two data points xi and xj is defined as

d2
M(xi,xj) = (xi − xTj)M(xi − xj) (2.1)

where M � 0 is a positive semi-definite matrix and xi,xj ∈ Rd is a pair of samples (i, j).

The main approach of Mahalanobis based algorithms is to define and learn the matrix

M such that distance between images of same class (i.e. intra-class) is minimised and

distance between images of different classes (i.e. inter-class) are maximised. KISSME [38],

ITML [40], Logistic Discriminant Metric Learning (LDML) [50] and LAFT [39] are

based on these methods. A detailed review of Mahalanobis based methods can be found

in Roth et al.’s paper [41]. KISSME tries to address the metric learning approach from a

statistical inference point of view. They test the hypothesis H0 that the pair is dissimilar

versus the alternative hypothesis H1 that the pair is similar. This is found by defining

the log-likelihood ratio:

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
(2.2)

where xij = xi − xj is the pairwise difference with zero mean, f(xij |θ0) and f(xij |θ1)

are a probability distribution function (pdf) with parameters θ0 and θ1 for hypothesis

H0 and H1 that a pair (i, j) is dissimilar and similar respectively. A high value of δ(xij)

means the pair are dissimilar and vice-versa. Assuming a Gaussian structure of the

difference space, the authors relax the problem in Equation (2.2) and write the log

likelihood ratio as

δ(xij) = log

1√
2π|Σyij=0|

exp(−1/2 xTijΣ
−1
yij=0 xij)

1√
2π|Σyij=1|

exp(−1/2 xTijΣ
−1
yij=1xij)

 (2.3)

1accessible from https://lrs.icg.tugraz.at/research/kissme/

CHAPTER 2. Background 27

where,

Σyij=0,1 =
∑

yij=0,1

(xi − xj)(xi − xj)
T (2.4)

Expanding Equation (2.3), it is straightforward to show

δ(xij) = xTijΣ
−1
yij=1 xij + log(|Σyij=1|)− xTijΣ

−1
yij=0 xij − log(|Σyij=0|) (2.5)

Removing the constant log terms, Equation (2.5) further simplifies to

δ(xij) = xTij(Σ
−1
yij=1 − Σ−1

yij=0)xij (2.6)

They arrive at the Mahalanobis distance metric in Equation (2.1) that reflects the

properties of the log-likelihood ratio test by re-projecting M̂ =
(

Σ−1
yij=1 − Σ−1

yij=0

)
. If

M̂ is not positive semi definite, Eigen-analysis is performed and any Eigen-value that

is negative or zero is changed to a very small positive number, so that M is a positive

semi-definite matrix.

2.4.2 Symmetry-Driven Accumulation of Local Features

Symmetry-Driven Accumulation of Local Features (SDALF) [42] is an unsupervised

method suitable for both single-shot and multi-shot images. In multi-shot images, the

algorithm may benefit from seeing multiple images. A pedestrian image is divided

into the head, torso and leg region and three types of features namely Weighted Color

Histograms (WHSV), Maximally Stable Color Region (MSCR) and Recurrent High-

Structured Patches (RHSP) are extracted. Each of these features is extracted from the

torso and leg region, and optionally from the head region. The histogram feature is

built with 12 bins per channel per region, totalling to 12× 3× 3 = 108 dimensions2. The

MSCR feature of a blob regions [26] is represented by 9 dimensional feature, but the

number of blobs per image is variable. Similarly, the feature-length of RHSP features is

variable as well. The similarity between two images is calculated as the weighted sum of

2reduced to 72 if the head region is not used

CHAPTER 2. Background 28

Euclidean distances between their features. As the algorithm is unsupervised, it does

not require any training and is also applicable to video sequences.

2.4.3 Unsupervised Saliency

Zhao et al. defines Saliency as “distinct features that 1) are discriminative in making

a person standing out from their companions, and 2) are reliable in finding the same

person across different views” [51]. Zhao et al. developed a few variants of supervised

and unsupervised methods using saliency [37,49,51] but in this work, only Unsupervised

Salience Matching [49] is examined.

The key idea here is to use patch matching between the patches of a probe image and

the set of images (gallery). However, instead of all matches having same weights, patches

that are salient or distinct are weighted more. The algorithm is described in detail here.

First, each image is densely divided into overlapping patches and for each patch, 32 bin

histograms are computed in LAB colour-space in three scales. Similarly for SIFT features,

each patch is further divided into 4×4 cells to obtain 4×4×8 = 128 dimensional feature

per channel. The combined feature for each patch x is 32× 3× 3 + 4× 4× 8× 3 = 672

dimensions and called “dColorSIFT” . For the mth row of pth image in camera A, the

dColorSIFT features is represented as

TA,p(m) = {xA,pm,n|n = 1, 2, . . . , N} (2.7)

where (m,n) denotes the patch centred at the mth row and the nth column of the image.

Once the features are extracted for each patch, they need to be matched with the

corresponding patch feature of image in a different camera to check whether they belong

to the same personnel or not. This is done using a Gaussian based similarity function

defined below.

g(x,y) = exp(−‖x− y‖22
2σ2

) (2.8)

where x,y are the features of two patches and σ is the standard deviation of the Gaussian.

CHAPTER 2. Background 29

Figure 2.13: Illustration of adjacency constrained search. Green region represents the

adjacency constrained search set of the patch in yellow box. The patch in

the red box is the target match. In the first example, match is actually found

on different shoulder. [51]

However, due to misalignments, patches may appear above or below in the other image.

So, a search set called the “Adjacency constrained set”(Ŝ) is created containing patches

at ±l rows. The authors selected l = 2 in their paper. In Figure 2.13 Ŝ of the patch in

the yellow box is the green region. Mathematically, Ŝ for xA,um,n in image q of Camera B

is defined as:

Ŝ(xA,um,n,X
B,q) = {xB,qm,n|i = max(0,m− l), . . . ,min(M,m+ l), n = 1, . . . , N} (2.9)

To calculate the saliency of the patch, the authors used the Nearest Neighbour (NN)

distances. For each patch, a NN set is created in the reference set (Camera A) using the

equation below.

XNN (xA,pm,n) = {x| argmax
x̂∈Ŝp,q

g(xA,pm,n, x̂), q = 1, 2, . . . , Nr} (2.10)

where, Nr is the number of images in the reference set. A saliency score is assigned for

each patch as

sknn(xA,um,n) = Dk(XNN (xA,um,n)) (2.11)

where Dk denotes the Euclidean distance to the kth nearest neighbour. A high value of

sknn means the patch is different than other patches. A patch which is visually different

CHAPTER 2. Background 30

than half of the patches in the set were considered to be a salient patch. So, k is set

to Nr/2. The saliency score in Equation (2.10) is used in unsupervised bi-directional

weighted matching to find similarity between two images. This is denoted as Saliency

guided Dense Correspondence (SDC) and defined as

u(xA,u,xB,v) =

∑

m,n

sknn(xA,um,n)g(xA,um,n,x
B,v
i,j)sknn(xB,vi,j)

α+ |sknn(xA,um,n)− sknn(xB,vi,j)|

(2.12)

where g(xA,um,n,x
B,v
i,j) = exp(−‖x

A,u
m,n−xB,v

i,j ‖22
2σ2) is the visual similarity between patches

defined in Equation (2.8) and α is the penalty of salience difference.

2.4.4 Deep Learning Approaches

This section briefly explores the current state-of-the-art algorithms in PRID. Like most

sectors of CV, the latest algorithms are dominated by DNNs. Deep PRID algorithms

generally use a bi-forked architecture which uses a pair of images as input similar

to the structure shown in Figure 2.9. However, the signature generation is done

using convolution neural networks, and there is no communication channel in between

matching signatures. This structure is referred to as the Siamese architecture. The

earlier approaches such as [52–54] focussed on extracting features from each image from

the pair of images using a number of convolution layers and subtracting the resulting

features. The difference is then passed to a series of fully-connected layers which then

decides whether the pair of the images is of the same person or different. Recently, there

have been slight variations in the network architecture, such as the use of triplet loss

in [55] and use of an Adversarial network in [56]. The triplet loss network improves the

result by regularizing the network using the third image, so that the distance metric

learned is not too biased, especially due to limited positive pairs compared to the

negative pairs of images in the dataset [55]. This has since been extended to quadruple

loss [57]. The problem of limited samples has been addressed by various approaches.

The easiest and most effective is the creation of larger dataset. A second approach is

CHAPTER 2. Background 31

Table 2.2: Rank 1 results of Deep learning approaches on Viewpoint Invariant Pedestrian

Recognition (VIPeR) and CUHK01 dataset. For the CUHK01, the number of

test subjects are 486

Algorithm VIPeR CUHK01

Deep Metric Learning [52] 28.23 -

Deep ReID [53] - 27.9

Improved Deep Learning [54] 34.81 47.5

Triplet Loss [55] 47.8 53.7

Quadruplet Loss [57] 48.42 62.55

Deep Transfer Learning [59] 56.3 77

to use a Generative Adversarial Networks (GAN) [58]. The GAN has two networks

called Generator and the Adversarial network that compete against each other during

the training phase in a zero-sum game [58]. A third approach which is currently the

state-of-the-art in PRID uses the transfer learning [59]. Geng et al. argue that the

datasets in PRID are tiny compared to others used for training deep neural nets such

as Imagenet. So, in their paper, they train their network on Imagenet and transfer

the learned weights for the PRID problem. The performance of these approaches far

outweighs the three methods described above – see Table 2.2 although the training for

these methods use other larger datasets mentioned in Section 2.4.5. For detail reviews

on current approaches, interested readers should refer to [60].

Fundamental Blocks of DNN

The fundamental layers of deep PRID algorithms are similar to those used in object

classification and face identification. The core layers are the Convolution Layer, the

Fully Connected, Pooling and the Loss Layer [61].

CHAPTER 2. Background 32

Figure 2.14: General Architecture of a deep Siamese PRID algorithm [54]

• Fully Connected: A one layer fully connected network can be expressed as:

yi(x,w) = f(
U∑

j=1

wji × xj + bi), ∀i ∈ V (2.13)

where, U, V are the number of inputs and outputs respectively; wji ∈ RU×V

and bi ∈ RV are the weights and biases respectively; and f(·) is an activation

function that introduces non-linearity [27]. Common activation functions include

the Sigmoid, the Rectified Linear Unit (ReLU) and the leaky ReLU [61]. Generally,

the fully connected layer is implemented as a combination of a linear layer followed

by an activation layer.

• Convolution Layer: A Convolution layer convolves a number of filters called

receptor fields around the image. Initial layers of a Convolutional Neural Network

(CNN) are good at extracting low level features such as edges and corners whereas

higher level layers are generally better at extracting more complex features

comprising of many low level features. Compared to a fully connected layer,

a convolution layer uses a smaller number of weights, however, the number of

computations is significantly higher.

CHAPTER 2. Background 33

Table 2.3: Operations and memory count for core deep neural layers based on [61]. Filters

are assumed to be square shaped (i.e. F ×F) and memory calculation is based

one symbol takes four bytes

La-

yer

Input Size Parameters Output Size Opera-

tion#

Weig-

hts#

Memo-

ory(B)

C
on

vo
lu

ti
on

I = W1 ×H1 ×D1 K = No. of Filters U = W2 ×H2 ×D2, where

(2× F 2×

D1 − 1)× U

F 2 ×D1

×K

F 2 ×K

× 4

W1 = Width F =Filter Size W2 = (W1 − F + 2P)/S + 1

H1 = Height S = Stride H2 = (H1 − F + 2P)/S + 1

D1 = Depth P = Padding D2 = K

P
o
ol

in
g

I = W1 ×H1 ×D1 U = W2 ×H2 ×D2, where

F 2 × U 0
F 2 ×D1

× 4

W1 = Width F = Filter Size W2 = (W1 − F)/S + 1

H1 = Height S = Stride H2 = (H1 − F)/S + 1

D1 = Depth D2 = D1

L
in

ea
r

I U I × U + U I × U U × 4

• Pooling Layer: A pooling layer subsamples the spatial resolution of the input

feature map using average or maximum response. It retains the input depths and

does not have any weights attached to it for learning.

Table 2.3 shows the most commonly used layers in DNN and their computational

complexity, memory footprint and the number of weight parameters in each layer for

a forward pass. The backward pass is about twice as complicated compared to the

forward pass. However, an assumption can be made that the DNN is implemented

on the embedded device only for inference and not for the training phase. The most

computationally expensive part is the convolution layers whereas the fully connected

layer contains the most number of weights. The number of operations shown in Table 2.3

is based on a naive implementation. There are many algorithms to calculate convolutions

and other related operations more efficiently [62]. For example, Convolution can be

performed by multiplication in the frequency domain. However, it is less efficient if the

filter sizes are small.

CHAPTER 2. Background 34

2.4.5 Datasets

Popular publicly available datasets for PRID are listed in Table 2.4 and briefly described

below.

VIPeR

VIPeR is the most widely used dataset, one of the reason being the limited number of

samples per subject, which makes it one of the toughest dataset in the literature. The

VIPeR dataset was used in this work because many published algorithm comparisons

are available. This dataset contains 1264 images of 632 people from two cameras. The

resolution of the images is just 128×48 pixels and has changing background and variation

in pose, which makes it one of the most challenging datasets. Also, the number of images

per person per camera is just one, so only single-shot algorithms can run on it.

CAVIAR4REID

The CAVIAR4REID dataset [63] contains snapshots of pedestrians from the CAVIAR

video dataset. The challenging aspect of this dataset is that the resolution of the images

are varying and often have very poor resolution. The image size varies from 39× 19 to

144× 72 pixels.

CUHK01

CUHK01 [64] is taken in a campus scenario. It contains images of 971 people from two

disjoint camera views and each individual has two samples per camera view. So the

total number of images in the dataset is 3884. The image resolution is fixed at 160× 60

pixels. They have also released updated datasets CUHK02 [65] and CUHK03 [66].

CHAPTER 2. Background 35

Table 2.4: Popular Person Re-identification Datasets and their features

Dataset
Unique

people

Total

Images

Features

Pose Background Single shot

VIPeR 632 1264 X X X

CAVIAR4REID 72 1220 X X

CUHK01 971 3884 X X

Market1501 1501 32000 X X

MARS 1261 1, 191, 003 X X

Others

There are several new additions to the PRID datasets. These were necessary as the

existing dataset were limited in size and the direction of research has tilted towards

deep learning approaches which benefits from large amount of data. For example,

Market1501 [67] and Motion Analysis and Re-identification Set (MARS) [68] contains

32, 000 and 1, 191, 003 images of 1501 and 1261 individuals respectively.

2.5 MANET

MANET stands for Mobile Ad-hoc Network and is used to define a type of wireless

network that is infrastructure-less and continuously self-configuring [69]. Figure 2.15

shows an example of MANET with two sensor configurations. Each node may be a

mobile device such as a smartphones or vehicles with wireless capability, and the edges

may be wireless links such as Wi-Fi, Bluetooth, Zigbee. The nodes in the a MANET

are mobile and can move in and out of the network randomly. Because of this mobility

and the absence of a central scheduler, they may be harder to route to. In an initial

arbitrary configuration Figure 2.15a node 2 can connect to node 1 and 5 directly, in the

new configuration shown in Figure 2.15b node 2 cannot connect to 1 and connect to 5

via 3 and 7 only.

CHAPTER 2. Background 36

1

2

3 4

5

6

(a)

2

3
4

5

6

7

8

(b)

Figure 2.15: An example of a MANET. The circular nodes may be mobile devices such

as smartphones, vehicles with connection capabilities. Similarly, the lines

between the nodes represent valid connections formed by Wi-Fi, Bluetooth,

Zigbee or other device to device communications (a) Initial configuration

(b) New configuration after some time. Node 1 has left, while nodes 7 & 8

have joined the scene, also the wireless links are modified based on the new

configuration.

2.5.1 Digital Communication System

A digital communication system comprises of a series of complicated processes between

the source and the sink – see Figure 2.16. Each line in Figure 2.15 has to go through

this process while communicating with each other. An important component in this

process is the channel, which refers to the medium of data transfer between the source

and the sink.

A MANET uses the same wireless channel as the traditional infrastructure based network

and it is shared amongst the nodes, so they are subject to similar fading, noise, and

interference [71–73]. They have a significant importance in communication systems as

they can limit the rate of data transmission [74,75] as well as impact the lifetime of a

battery powered device [76]. The three main types of propagation effects that can affect

wireless transmission are as follows [72]

1. Deterministic Path Loss

CHAPTER 2. Background 37

Figure 2.16: Block diagram of a generic digital communications system [70]

This loss is the signal attenuation from the transmitter to the receiver due to the

channel medium itself and is proportional to the distance between them. According

to [77], it can be characterised as

P r
P t
∝ d−η (2.14)

where, P r and P t represent the received and transmit power levels respectively,

d is the distance between transmitter between transmitter and receiver and η is

the path loss exponent. For example, in free space the received power can be

estimated as:

P r =
P tGtGrΛ

2

(4π)2d2l
(2.15)

where, Gt, Gr are the gains of the transmitter and the receiver respectively, Λ

is the wavelength of the signal, and l is the system loss factor not related to

propagation [78].

2. Large Scale Fading This fading is due to the large objects between the source

CHAPTER 2. Background 38

and receiver. As the result of large scale fading, the average signal strength at the

receiver can be higher or lower.

3. Small Scale Fading

Wireless transmission occurs by multiple paths between transmitter and receivers.

These paths can combine the wireless signals in constructive and destructive manner

changing the received signal strength at the receiver. There are many models

used to model these effects such as Rayleigh, Nakagami-m, Ricean distributions

etc. [73].

In addition to fading, the signal strength may be deteriorated due to various sources

of noise and interference. Interference occurs when two or more nodes in the same

area simultaneously try to transmit their data in random access protocols such as

Carrier Sense Multiple Access (CSMA). For example, in traditional centralised systems,

each node would communicate via the central router or base station. If two devices

simultaneously tried to communicate to the server, they would interfere with each other’s

signal. Random back-off strategies and game theoretic strategies can be used to minimise

the interference [78]. The effect of this interference means that the overall data rate is

reduced. The data rate of the transmission from a node to the central router can be

estimated as [72]

Ri = BW log2

{
1 +

P iH i,s

ω +
∑

k∈S,k 6=i P kHk,s

}
(2.16)

where, Network Bandwidth (BW) is the channel bandwidth, H i,s is the channel gain

between mobile device and the base-station, S is the set of sensors, ωn = ω0
i +ω1

i denotes

the background interference power including the noise power ω0
i and the interference

power ω1
i from other nodes. This equation suggests that the rate of transmission can be

increased by increasing the power P i, given that everything else is constant. However,

when node i increases its transmission power, the rate for other nodes decreases due to

the denominator expression in Equation (2.16). This leads to a game-theoretic scenario

whereby nodes compete with each other for the common resources such as channel. Also,

there may be difference in MANET interference due to the neighbouring devices. But

CHAPTER 2. Background 39

in MANET, this may not be the case. For instance, in Figure 2.15b, if nodes 8 and

6 transmits simultaneously to nodes 4 and 7 respectively, and if they are out of their

interference zone, they will not interfere with each other’s signal.

2.5.2 Routing Protocols

As discussed earlier, routing is challenging task in a MANET [79]. There are numerous

variations and types of routing [80]. Two fundamental types “proactive” and “reactive”

are presented here. In Chapter 5, when realistic network environments are considered,

nodes exchange information in both reactive and proactive arrangements. More details

on routing protocols can be found in these surveys [80–82,82–85].

Proactive (Table-driven)

Proactive routing protocols always maintain a routing table that contains up to date

information of routes from each node to every other node in the network. This is

accomplished by propagating any changes in the network throughout the network. The

advantage of this type of routing is that looking for the best route to a node in the

network can be carried out instantaneously. However, on the downside, a significant

amount of energy can be spent while maintaining the routing tables especially if the

nodes are highly dynamic. There are several examples of proactive protocols such as

Destination-Sequenced Distance-Vector (DSDV) [86] and Optimised Link State Routing

(OLSR) [87]. DSDV is briefly explained here.

In DSDV, each node maintains a routing table containing every possible destination

in the network along with the number of hops required to reach the destination. The

distance is calculated using shortest path algorithms such as Bellman-Ford algorithm [88]

and Dijkstra’s algorithm [89]. To maintain the routing table, two types of updates are

propagated in the network. The first is the full dump that contains all the table

information and can be several packets long. The second is the incremental updates

which only contain the information about the nodes that have changed. If the network

CHAPTER 2. Background 40

is stable (ie. nodes only moves infrequently) only incremental updates may be necessary

and the full dump updates are only issued infrequently. However, on the other hand,

if the network is dynamic, frequent full dump updates, can waste energy as well as

bandwidth.

Reactive (On-demand)

Reactive routing works by only communicating and discovering the nodes in the network

when required. So it is also known as an “On-demand” or “Source-initiated” algorithm.

There are several On-demand routing protocols in the literature, some of the popular

ones include Dynamic Source Routing (DSR) [90], Ad-hoc On-demand Distance Vector

(AODV) [91] and Temporarily Ordered Routing Algorithm (TORA) [80]. To understand

how they work, the DSR algorithm is briefly explained here.

DSR has two phases called route discovery and route maintenance. When a node wants

to send a message, it broadcasts a route request packet to its neighbours with the source

and the destination id. The neighbours then re-broadcast the packet after adding their

own id to it. This process is carried on until it reaches the destination or a node that

has a route to the destination their route cache. If the (intermediate) node has a valid

route to the destination, it adds the route to the messages and sends it back along the

path to the sender. When the sender receives the reply packet it has a complete route

to the destination. The route is maintained by the nodes in their route cache based on

the acknowledgements and route error. When there is a problem in transmission, the

acknowledgement is not received and the node generates a route error packet which is

sent back to the sender. The sender on receiving the route error message removes the

route from its route cache and enters the route discovery phase. Likewise, AODV is

similar to the proactive algorithm DSDV described above except that instead of keeping

up to date route information, it creates the routes on-demand.

CHAPTER 2. Background 41

2.5.3 Mobility Modelling

Capturing the dynamics of how entities move in the physical environment is an integral

part of many research areas including MANETs. Collecting real data is not always

feasible; also real data may not cover all possible scenarios in the network. So, it is

highly desirable to model and simulate real-life movements of users or targets. In this

section, Random Walk and the Random Waypoint Model (RWP) is detailed here which

is used in Chapters 4 and 5 for modelling target movements in the scene. More details

can be found in these surveys and a book [92–94].

Random Walk

The random walk is true to its name; the targets move around in the scene randomly

in each step from one point to another. This is similar to the RWP model discussed

next but a key difference is that in the random walk, the targets do not pause at any

point of the simulation. This is different to how people behave in real-life. For example,

pedestrians walking on the road may pause on traffic signals or shop window before

continuing their journey again.

Random Waypoint Model

The Random Waypoint Model was introduced by [90] and is similar to the random walk

model except for pausing. The birth of the targets follows a Poisson Point Process (PPP).

In a PPP, the birth of a target is independent of targets born earlier, and only depends

on the mean average rate (λ). The scene is defined as a two dimensional rectangular area

with the vertices {(x0, y0), (x0, y1), (x1, y0), (x1, y1)}. The target can be born anywhere

in the scene. Once the target is born, it selects its next destination on the scene and

the speed of its movement based on two independent uniform random distributions,

and move towards it. However, another random variable is used to determine if the

target would pause or move. The steps are depicted in Algorithm 1 and an example

CHAPTER 2. Background 42

of a target moving using RWP is shown in Figure 2.17. The target spawns at location

1 and gradually moves along the path with random speed up to location 9. While

the target is in the locations 1 to 9, it may briefly pause before continuing along the

path. Stationary Distribution The stationary distribution of the target location

Algorithm 1: Pseudocode for RWP

Input: Total simulation time (tmax),

Parameter : Boundaries [xmin,xmax], Velocity Range: [vmin,vmax], stopping

probability Pstop, ∆time time step

Function : random(ll,ul) generates a uniformly random number in the range

[ll,ul]

Output: x

1 Generate xprevious = random(xmin,xmax)

2 xcurrent = xprevious, xnext = xprevious

3 while time < tmax do

4 if random(0, 1) > Pstop and xcurrent = xnext then

5 xnext = random(xmin,xmax)

6 v = random(vmin,vmax)

7 end

8 Find current position xcurrent by interpolation using xprevious,xnext,v and

time

9 time = time+ ∆time

10 end

in RWP should be uniform across all the area of the scene [95,96]. However, it has been

shown that in a long run, the targets concentrate more in the middle of the rectangular

scene than towards the edges. So, the stationary probability distribution of the target

position is more like a Gaussian than a flat uniform distribution – see Figure 2.18. This

is actually beneficial for the simulation in this work. The non-uniform distribution

of targets in the scene means sensors at different spatial locations see different target

density. Sensors situated on the centre of the scene would detect more targets than the

sensors that are situated on the edges.

CHAPTER 2. Background 43

1

2

3

4

5

6

7
8

9

Figure 2.17: Track of a target based on RWP for nine steps. The target starts at location

1 continues along the path with different speed until it stops at 9. During

the movement, the target can pause at any step.

Figure 2.18: Stationary probability distribution of the target posion in a rectangular

scene [95]

CHAPTER 2. Background 44

Other Models

In addition to the Random walk and the RWP models, there are several other mobility

models that are used in the literature such as Gauss-Markov model, Pathway Mobility

model and Reference Point Group model. [92].

2.6 Queuing Theory

A service provider may not be able to serve all those waiting to be served at once, as it

is busy serving others, this gives rise to queueing. For example, in day to day life, people

have to line up in front of shopping checkout to be serviced or wait outside the cinema

to go inside. Queueing theory studies these type of situations in order to maximise the

use of limited resources as well as minimise the delay faced by the customer. It is an

important topic useful in many areas including Operational research, Telecommunication,

and Computer Science [97, 98]. Queuing theory offers various performance measures

that are vital to analyse how well the system is performing and what could be done to

make it better. For example, imagine a computer servicing customers. As the rate of

arrival of the customers goes up, the average time each customer has to wait becomes

longer and eventually it will exceed the acceptable time limit. The question is, should

the existing computer be replaced with a faster computer that can service the customers

faster or should the number of service stations be increased. Queuing theory can help

answer these types of question. In the following section, one of the most fundamental

queue type is introduced which will be used in Chapter 5.

2.6.1 Elementary Queue

A queue is generally described using Kendall’s notation [97] in the following way

A/B/m− queueing discipline (2.17)

CHAPTER 2. Background 45

µ
λ

(a)

0 1 · · · n · · ·
λ

µ

λ

µ

λ

µ

λ

µ

(b)

Figure 2.19: An elementary queue. (a)A M/M/1 queue with arrival rate of λ and service

rate of µ. (b) Markov chain representation of the M/M/1 queue. The states

represent the number of items in the queue.

where A indicates the distribution of the interarrival times, B denotes the distribution

of the service times, and m is the number of servers (m ≥ 1). Among many possible

alternatives, the most common distribution used for A and B is M for Exponential (M

stands for Memoryless or Markovian). Similarly m = 1 means there is only one server and

the queueing discipline is First Come First Service (FCFS). A M/M/1 queue, depicted

in Figure 2.19a has Poisson Arrival and its service time is exponentially distributed and

comprised of one server operating in FCFS basis. An important assumption of M/M/1

is that there is infinite buffer so the queue can grow to infinity. While this is not true

for physical systems, it can make the modelling easier than the finite buffer systems

such as M/M/1/K which has a finite buffer of K spaces. The mean arrival rate of the

Poisson arrival is denoted by λ and the service rate is denoted by µ.

A M/M/1 queue can be represented by Markov Chain (MC) as shown in Figure 2.19b.

The states of the MC is denotes the number of items in the queue. It can be used to find

the transient and the steady state solution of a queue. Also, the performance measures

that are of interest are many such as:

• Number of items in the queue.

• Utilisation of the server.

• Average waiting time for each item.

CHAPTER 2. Background 46

Utilisation

Utilisation is defined as the fraction of time in which the server is busy or occupied.

In M/M/1 queue, there is no limit on the number of jobs in the queue and the server

utilisation is given by

ρ =
arrival rate

service rate
=
λ

µ
. (2.18)

A queue is defined as rate stable if ρ < 1.

Number of Jobs

Let pk be the probability that there are k jobs in the queue. Then, average number of

jobs in the queue can be estimated as

L =
∞∑

k=0

kpk. (2.19)

Little’s Law [97] states that the number of jobs in the queue is equal to the arriving

rate times the response time which is the time spent in the queue and the server. So,

the average number of jobs can be calculated as

L = λW (2.20)

where, W is the response time.

Throughput

Throughput is the average number of jobs completed by the server in a single unit of

time. When, the utilisation of the queue (ρ) is less than one, the throughput is equal to

the arriving rate (λ)

CHAPTER 2. Background 47

2.6.2 Network of Queues

More often in a system, there are multiple service stations or resources that the customers

can queue in front of, and they can move to another queue after being serviced by

one queue. For example, in real life, during a hospital visit, a patient first of all waits

for their turn to see the doctor. The doctor may ask the patient for a blood test or

“X-ray” image depending on the case. The patient then waits for the blood test facility

or the imaging facility for their turn. Upon completion of these task they have to queue

again to see the doctor with the report and so on. These system can be modelled using

network of queues. There are two fundamental types of networks of queues; open and

closed. In a closed system, all the arrivals in all the queues are from within the system

and not from outside the system. Whereas, in the open system, at least one of the queue

should accept arrivals from outside the system. In this section, the open network of

queues is briefly discussed.

Open Network

The Open network is the one in which the system is open to new customer, so at least

one of the queues accepts new jobs. For example, the system in Figure 2.20 is a open

network because there are external arrivals γ1, γ2 coming into the system. Jackson’s

work builds on the Burke’s theorem [97] and states that the queues even in the presence

of feedback loops behave as if they were fed by Poisson arrivals, when in fact they are

not. A Jackson network is an open network of queues with following assumptions [97]

• All the jobs belong to the same class and service times are exponentially distributed.

• The queue length is not finite.

• The service discipline is FCFS.

• Each queue can have external arrivals that are Poisson and a job can leave the

network from any node.

CHAPTER 2. Background 48

Q1 µ1

Q2 µ2

λ1

λ2

γ1

γ2

p21λ2

p11λ1

Figure 2.20: A network of two Queues. Total incoming target rate at Q1 (λ1) is the sum

of external target rate (γ1) and targets rates emanating from the queues

heading to Q1. Under stable condition, outgoing rate is equal to the incoming

rate.

• After completing service at node i, a job will proceed to node j with probability

pij which is independent of the previous history or will depart from the system

never to return again with probability 1 −∑j∈Q pij where Q is the number of

queues in the system.

Following these assumptions, the arrival rates of all queues can be calculated as:

λi = γi +
∑

j∈Q
pjiλj (2.21)

where, γi is the rate of arrival of external targets at queue i, λj is the arrival rate at

queue j, pji is the probability a job moves from queue j to i. The arrival rates of the

two queues Q1, Q2 in Figure 2.20 is calculated as

λ1 = γ1 + p11λ1 + p21λ2

λ2 = γ2 + p12λ1 + p22λ2.
(2.22)

The Jackson network will be used in Chapter 5 to model sensor behaviour.

CHAPTER 2. Background 49

1

2

3 4

5

6

Figure 2.21: MANET as a graph; the sensors are the elements of set V and paths are

elements of set E

2.7 Graphs and Network Flows

The MANET described in the chapter can also be represented as graphs and the

subsequent model of network of queues can be formulated as a network flow problem.

This idea is used in Chapter 5, hence it is described very briefly here.

2.7.1 Graphs

According to Diestel, “A graph is a pair G = (V ,E) of sets such that E ⊆ |V |2;

thus the elements of E are two element subsets of V ” [99]. The elements of the set

V are called ‘vertices’ or ‘nodes’ and the elements of E are called ‘edges’ or ‘arcs’.

The MANET examples shown in Figure 2.15 is repeated in Figure 2.21; the nodes

belong to the set of vertices ie. V = {1, 2, . . . , 6} and the paths belong to edges set

ie. E = {{1, 2}, {1, 4}, {1, 5}, {1, 6}, {4, 2}, {4, 6}, {3, 4}, {3, 6}, {5, 2}}. The nodes that

share an edge are called adjacent nodes. In this example, 3, 6 are adjacent nodes whereas

1,3 are not. The connectivity of the graph G can be described using an adjacency matrix

(A). Aij is set to 1 if vertex i can communicate with vertex j, and vice versa. The

CHAPTER 2. Background 50

adjacency matrix for the network in Figure 2.21 can be written as

A =

1 1 0 1 1 1

1 1 0 1 1 0

0 0 1 1 0 1

1 1 1 1 0 1

1 1 0 0 1 0

1 0 1 1 0 1

. (2.23)

It can be noticed that A in Equation (2.23) is symmetric along the main diagonal

(ie. A is equal to its transpose AT). This is because, the graph in consideration is an

undirected graph. In the case of directed graph, Aij may not be equal to Aji. The

adjacency matrix is used in Chapters 4 and 5 for conducting searches for neighbours of

sensors and maintaining active neighbours.

2.7.2 Network Flow Problems

Graphs and networks can be used to model and solve many real life problems. For

example, finding the best path between two nodes can be related to navigation problem

for an autonomous robot or drone; similarly, maximizing the traffic and utilizing the

resources in the best possible manner can be accomplished using network flows. Ahuja

et al. defines three basic network flow problems [89]

Shortest Path Problem

The shortest path problem is to find the cheapest way to get from one point to another.

The routing protocols defined in Section 2.5.2 such as DSDV and AODV use these

algorithm to calculate the cheapest path from one node to another. In Chapter 5, partial

connectivity between nodes is explored and the cost is calculated based on shortest path

algorithm.

CHAPTER 2. Background 51

Maximum Flow Problem

The maximum flow problem is related to maximising the use of resources. The edges

or the communication links do not entail cost but rather has capacity limits. So the

problem is to find the best path to route from the source node to the destination node

with maximum capacity.

Minimum Cost Flow Problem

The minimum cost flow problem is more general network flow problem. The flows in the

arcs of the network has cost per unit flow and the problem is to route from source node

to destination node with the minimum cost and subject to constraints such as capacity

on each arc. In Chapter 5, the network of queues model is solved using minimum cost

flow approach. The problem is

minimise
∑

(i,j)∈E
cijxij (2.24a)

subject to (2.24b)

∑

{j:(i,j)∈E}
xij −

∑

{j:(j,i)∈E}
xji = b(i) ∀i ∈ V (2.24c)

lij ≤ xij ≤ uij ∀(i, j) ∈ E, (2.24d)

where, cij , xij are the cost per unit flow and the flow in the arc (i, j), b(i) is the demand

in node i, lij and uij are the lower limit and the upper limit of the flow in arc (i, j)

respectively. In other words, the problem is to full fill the demand b(i) in all nodes of the

network at the minimum cost and subject to lower and upper limit of all arcs. In this

particular example, the optimisation problem is linear and can be solved using linear

solvers such as simplex and interior point algorithms [89].

CHAPTER 2. Background 52

2.8 Summary

This chapter covered the fundamental concepts and terminologies that are used

throughout the thesis. A comprehensive literature on existing PRID is also presented.

The next chapter explores the possibility of Computation Offloading and the factors

that are involved.

Chapter 3

Motivation for Offloading

3.1 Introduction

The primary objective of this chapter is to evaluate if Computation Offloading may be

beneficial in application requiring computationally intensive algorithms and the factors

that need to be considered. In order to evaluate, three main experiments are performed.

The first experiment is to assess which existing algorithms would be the most suitable

based on time complexity and the amount of data communication required. The second

experiment is to measure the time and energy of executing complex algorithm on a

resource limited device such as a smartphone. The third experiment is to quantify the

cost of communication based on channel condition as well as device settings. These

experiments play an important role in designing Computation Offloading algorithms in

Chapter 4 and Chapter 5

53

CHAPTER 3. Motivation for Offloading 54

3.2 Relative Complexity of Person Re-identification

(PRID) Algorithms

The first experiment compares existing PRID algorithms. The three algorithms that

are compared are Keep It Simple and Straightforward MEtric (KISSME), SDALF and

Unsupervised Saliency which were described in Section 2.3. These algorithms were

chosen for their importance in the history of PRID and the availability of their source

codes.

3.2.1 Algorithmic Performance

The algorithmic performance of the algorithms using Cumulative Matching Charac-

teristics (CMC) [100], which is widely used in person re-identification performance

evaluation. It treats PRID as a ranking problem. Rank-1 implies that the correct match

has been found whereas Rank-k implies there are k − 1 wrong classes ahead of the

correct class. Cumulative Matching Characteristics (CMC)(k) measures the probability

that the correct match has a rank equal or higher than k [45].

The performance of the three algorithms are shown using a CMC graph in Figure 3.1.

Unsupervised Saliency [49] has the best Rank 1 results among three at 27%. So on average

27% of the identities are correctly identified in the trials. This is comfortably better than

the other two by approximately 7%. SDALF is the worst based on performance alone,

which can be visualised in Figure 3.1 by the lowest slope among three. KISSME on the

other hand is in between. Actually, at around 6th rank it overtakes the Unsupervised

Saliency as well. Based on the performance only, it is easy to choose Unsupervised

Saliency as the best algorithm, so Next section looks at the complexity. In an ideal

scenario, the algorithms would be implemented on a real distributed system such as

an Android smart phone and the results could be measured. However, as the existing

algorithms are written in MATLAB, the simulations are carried out on MATLAB

running on a desktop PC. Instead, an application (commonly referred to as app) is

CHAPTER 3. Motivation for Offloading 55

Rank
1 2 3 4 5 6 7 8 9 10 12 16 20

P
e
r
ce
n
ta
g
e

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Cumulative Matching Characteristic (CMC)

KISSME

SDALF

UnsupervisedSaliency

Figure 3.1: Performance of the algorithms in VIPeR dataset

developed to run a Deep Neural Network (DNN) on an Android phone (–see Section 3.3).

Experiments are carried out on a desktop PC with an Intel Xeon processor (X5650)

with 12 cores and 24 gigabytes of Random Access Memory (RAM) running Scientific

Linux 6.5 unless specified. Each algorithm is run for ten times in a Monte Carlo setting.

Some of the algorithms have parallel implementation as well but it has been turned it

off for these experiments for the following two reasons.

1. Each parallel MATLAB instances run within their own Java Virtual Machine

(JVM) environments accounting for increased memory allocations. This caused

some algorithms to fill the RAM to the maximum and slowing down the execution.

2. To make the comparisons fair as other algorithms may benefit from parallel

implementations as well.

The experiments are conducted for ten Monte Carlo runs. For each run, the Viewpoint

Invariant Pedestrian Recognition (VIPeR) dataset is randomly split into two sets of 316

CHAPTER 3. Motivation for Offloading 56

Table 3.1: Average feature length, runtime and Rank 1 results for the compared algorithms

in 10 Monte Carlo runs.

Algorithm Feature

Length

Feature Length

after Principal

Component Analy-

sis (PCA)

Time

(sec)

Rank 1

KISSME 21315 34 260.4 18.03

SDALF 5359 - 11981.17 19.80

Unsupervised

Saliency

201600 - 3453.1 27.22

image pairs each. One set is used for training (for the supervised KISSME) and other

for testing. This is similar to the test conventions in these papers [38,42,49].

3.2.2 KISSME

Among all the methods, KISSME is the fastest to run. The code available from their

website had the features already extracted. However, to calculate the time taken

for feature extraction, the code is written as described in their paper [38]. First the

image is divided into overlapping blocks of size 8 × 16 and with stride of 8 × 8 to

obtain 105 patches. Histograms of 24 bins per channel and a uniform Local Binary

Pattern (LBP) of 59 bins are computed for each patch. So in total, the feature size

is 105× 3× 2× 24 + 105× 59 = 21315 dimensions. The histogram extraction of Hue

Saturation Value (HSV) and LAB and LBP features took approximately 260 seconds.

They used PCA to reduce the feature dimensions. The training is orders of magnitude

faster and of around 0.05 seconds. Nonetheless, feature extraction per image would take

about 260/1264 ≈ 0.2 seconds. After dimensionality reduction, the feature dimension is

reduced to 34, which is very lower compared to others.

CHAPTER 3. Motivation for Offloading 57

Table 3.2: Detail Execution times for SDALF along with the inference time

Step Total time(sec) Inference time (sec)

Division into 3 parts 162.15 0.13

MSCR Extraction 138.21 0.11

WHSV Extraction 123.17 0.10

RHSP Extraction 4824.6 3.81

MSCR Matching 6095.3 9.64

WHSV Matching 214.74 0.34

RHSP Matching 423.00 0.67

Total 11981.17 14.81

3.2.3 SDALF

As discussed in Section 2.4.2, the feature length of Symmetry-Driven Accumulation

of Local Features (SDALF) is not fixed but dependent on the number of Recurrent

High-Structured Patches (RHSP) patches and Maximally Stable Color Region (MSCR)

regions found in the image. Table 3.2 shows the breakdown of average time spent per

step for the VIPeR dataset. Based on the number of images in the dataset, inference

time on the device is estimated. As seen in Table 3.2, most of the time is spent on

MSCR matching and RHSP feature extraction. Experiments are carried out without

using RHSP features. Figure 3.2 shows the performance of SDALF on a CMC graph

with and without RHSP features. The result showed there is only marginal degradation

of performance. The test is conducted in VIPeR dataset.

3.2.4 Unsupervised Saliency

Saliency learning has the highest feature size per image of 201600 dimensions which

is almost ten times the length of KISSME features before PCA and 40 times that of

SDALF. If it is of MATLAB double precision, it’s size is approximately 1.5 Megabytes.

Each probe patch has it own adjacency search area for each image in the gallery set.

CHAPTER 3. Motivation for Offloading 58

Rank
1 2 3 4 5 6 7 8 9 10 12 16 20

P
e
r
ce
n
ta
g
e

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Cumulative Matching Characteristic (CMC)

OriginalSDALF

SDALFwithoutRHSP

Figure 3.2: Performance of SDALF with and without RHSP

If there are 10 patches per row and constrained search area to be ±2 rows, and there

are 100 images in the gallery then. For each patch, the distance between itself and

100× 10× 5 = 5000 patches needs to be calculated1. If there are 300 patches per image,

it amounts to 5000 × 300 = 1, 500, 000 distances per image, which is more than 11

Megabytes in MATLAB double precision. In terms of running on embedded devices,

memory is often a limited resource. Similarly, the time complexity of the algorithm is

high. The algorithm to calculate the saliency of a patch is at least O(N5) in the worst

case and the patch matching is also in the order of O(N3). This is reflected in the time

taken to run the algorithm – see Table 3.1.

3.2.5 Summary

Saliency has better performance although it is computationally expensive and high data

size. SDALF has the lowest feature size before dimension reduction but took the most

1except for two top and two bottom rows

CHAPTER 3. Motivation for Offloading 59

time to execute. KISSME on the other hand, is the best compromise to implement on

the distributed systems as it is shown to be fastest to compute and has lowest feature

size after PCA.

3.3 Running DNN on a Smartphone

The previous experiment compared three existing algorithms in terms of their algorithmic

performance as well as their algorithmic complexity and data footprint. However, they

were conducted on a desktop machine with significant amount of computing and memory

resources. In order to establish the consequences of executing computational algorithms

on embedded devices in terms of resource utilisation, this experiment ran DNN on

smartphone device. A smartphone is chosen as the hardware and software of commercial

off-the-shelf (COTS) smartphone is relatively powerful as well as inexpensive. However,

a COTS smartphone can have many background processes running on them which can

make them unpredictable in terms of service guarantee. Instead of trying to eliminate

these background processes, this work includes them as part of the model. To run

algorithms on a smartphone, a mobile app is created and in order to profile the app in

terms of time and energy, Trepn is used. Trepn and how it is used to profile the app is

briefly described in Section 3.3.1

A DNN based classification application based on Googlenet [101] and implemented on

Tensorflow [102] is tested. The resource usage of each classification operation can be seen

in Figure 3.3. It shows significant amount of Central Processing Unit (CPU) usage along

with time and energy Figures 3.3a and 3.3b. Based on this experiment, the average

energy cost of processing one frame is about 1.2 Joule. If the frame rate of the camera

is a nominal 5 Frames Per Second (FPS), the processing cost is 6 Watt. Even if the

energy cost of the image sensor is ignored and thermal effects due to continuous running

of the CPU are neglected, a fully charged battery of 12Wh will run out completely in

merely two hours.

An interesting observation is that, for each frame processing it utilised around 50% the

CHAPTER 3. Motivation for Offloading 60

(a) (b) (c)

Figure 3.3: Resource Utilisation for executing Classification Algorithm based on Googlenet

on Sony Z5. (a) Time Usage (b) Energy Usage (c) CPU Usage

CPU on average – see Figure 3.3c. Even though the application that is executed is a

DNN classification, it is of very similar architecture to deep PRID algorithms consisting

of convolution layers and fully connected layers. PRID algorithms scale with number

of person in the scene. If there are more than two people in the scene on average, the

system would be overrun and struggle to cope with the computation demand.

3.3.1 Trepn Profiler

Trepn Profiler is developed by Qualcomm to collect vital information from the Android

devices such as CPU usage, CPU frequency and battery level. For the Snapdragon

processors, they have access to hardware counters in the processor which are not publicly

available. It isolates the energy used by an application, by collecting baseline energy

consumption before starting the test app. At the start and the end of the communication

event, the app creates an Android Intent recognised by Trepn and broadcasts it. Trepn

listens for those Intents and can attribute the energy usage to each event, which is

written to a file after the experiment. The timeline is shown in Figure 3.4. It can log

several device information such as multi-core CPU load, CPU frequencies, Graphical

Processing Unit (GPU) load and Radio States. In some cases, the data reported is

not plausible. For example in the tests performed, cellular radio states and GPU load

were always reported as zero on the Sony Z5 phone and energy usage was zero at all

times for the Samsung Galaxy S4 phone, even though both models uses the Qualcomm’s

CHAPTER 3. Motivation for Offloading 61

Trepn Pro ler

Collect Baseline data

Start App Pro ling

App Developed

Intent (event

started)

Intent (event

nished)

Upload Files of

di erent sizes

Collect Environment

 Information such

as radio strength

Stop App Pro ling

Pro le Event

Timeline

Figure 3.4: Estimating time and energy cost of communication

Snapdragon processors. However, as it always report zero when the information is faulty,

it is easy to understand that the information is not correct.

3.4 Communication Cost

In the distributed case, the signature of a person extracted in one camera has to be

transmitted to another via a communication channel as shown in Figure 2.9. Similarly,

if the Smartphone decides to offload the computation to the cloud rather than executing

itself it has to send the data to the cloud. The implication of transferring data to a

neighbour node or the cloud has a cost in terms of energy and time, particularly in the

case of wireless transmission. The upload and download link speed are asymmetrical

for both cellular and WiFi, with the download speed generally being faster. In order

to find the worst case, a simple Monte-Carlo experiment is setup to upload data using

various available communication modalities. An application (commonly known as an

app) is developed for the Android platform to conduct the experiments and send files of

various but known sizes to the server using WiFi or the mobile data (see Figure 3.5a).

CHAPTER 3. Motivation for Offloading 62

Table 3.3: Android Devices used for the experiments

Model Modality Description

Sony Z5 Cellular and

WiFi

Features Qualcomm MSM8994 Snapdragon 810

chipset with Octa-core Processor and 3 GB RAM

Amazon Fire 8 WiFi Features Mediatek MT8163 chipset with Quad-core

processor and 1.5 GB RAM

(a) (b)

Figure 3.5: An experiment to estimate communication costs. (a) Android application

for calculating time and energy cost of transmitting data. (b) Original test

image with resolution 5184× 3456 and size 13.2 MegaBytes. The image is

compressed at several JPEG compression ratio to get test files of different

sizes

The application is built using Google’s Android Development Kit (ADK) and tested on

the two devices shown in Table 3.3. A JPEG image shown in Figure 3.5b is selected as

the data to be sent. Various file sizes are generated. The experiments are carried out

under various environments such as at different times of the day, indoor and outdoor

scenarios.

CHAPTER 3. Motivation for Offloading 63

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

T
im

e
 (

S
e
c
o

n
d

)

3G

4G

WiFi

Figure 3.6: Average time cost of uploading files of different sizes.

Time Taken

Time taken is measured using the system clock by subtracting the initial time from the

final time, after an acknowledgement is received from the server. The time measurement

is accurate to milli-seconds. Figure 3.6 shows average time taken to upload the files. As

expected, the time required to upload a file is directly proportional to the file size. It

took slightly more than second to transmit 1 MB over 4G, about 2 seconds by WiFi

and upto 4 seconds by 3G. 4G is consistently the fastest amongst the three modalities

and 3G could be approximately two times slower than the WiFi and three times slower

than the 4G. However, the results had significant variances. The standard deviations

for the results were about 3.5, 0.5 and 4 seconds for 3G, 4G and WiFi respectively.

The wireless channel and the environment can play a big role on its performance, so

the results are further analysed based on the Wireless signal strength. Figure 3.7 shows

the actual datapoints along with a polynomial fit on the datapoints. The linear fits

shows that file size is bigger factor for time cost than the signal strength although

at larger data sizes, the effect of signal strength becomes more visible. As the signal

strength is weakened, the time taken to send data grows. Also, the 3G results has more

uncertainty than the 4G, there could be two reasons behind this. First, 3G takes longer,

CHAPTER 3. Motivation for Offloading 64

0

-60

10

20

3

T
im

e
 (

S
e

c
o

n
d

s
)

30

-80 2.5

Signal Strength (dBm)

40

2

File size (MB)

50

1.5-100 1
0.5

(a)

0

-86

2

4

-88
3

T
im

e
 (

S
e

c
o

n
d

s
)

6

-90 2.5

Signal Strength (dBm)

8

2

File size (MB)

-92

10

1.5
-94 1

0.5-96

(b)

0

-40

10

-60

20

3

T
im

e
 (

S
e

c
o

n
d

s
)

2.5

30

-80

Signal Strength (dBm)

2

File size (MB)

40

-100 1.5
1

-120 0.5

(c)

Figure 3.7: Time required to upload files of different sizes under different communication

modalities and signal strengths. (a) 3G (b) 4G (c) WiFi

so the variation is more visible. Second, there are numerous wireless technologies termed

as 3G with large variations in speed. For example, High-Speed Uplink Packet Access

(HSUPA) has maximum theoretical uplink speed of 11.52 Mbps (16QAM) [103] and

Wideband-Code Division Multiple Access (W-CDMA) had initial maximum uplink speed

of 0.3 Mbps [104], even though both are termed as 3G. It is not possible to experiment

with the full range of Received Signal Strength Indication (RSSI) for the cellular because

as the signal strength is weakened, the device automatically switched back to previous

generation technology for example, from 4G to 3G.

CHAPTER 3. Motivation for Offloading 65

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

E
n

er
g

y
 (

Jo
u

le
)

WiFi

4G

3G

Figure 3.8: Average energy cost of uploading files of different sizes.

3.4.1 Energy Consumption

Measuring energy consumed is more complicated than measuring time, because by

default the Android Operating System (OS) reports battery level in percentage only.

So the resolution of reported energy is too high. Also as many processes are running

simultaneously in the background, it is hard to calculate the exact energy consumed for

the communication purpose. On top of that, the energy consumed by the profiler itself

has to be accounted for. So a third party application called the Trepn profiler [105] is

used to profile the energy consumption. More detail on Trepn Profiler and how it is

used in described in Section 3.3.1. Figure 3.8 shows the average energy consumption

per transmission. WiFi and 4G are the most energy efficient modality to transmit files

and only consumed about 1 Joules to upload a file of 1 MB. In the experiments, 3G

consumed the most energy for transmission. To transmit 1 MB, it used about twice as

much energy than 4G and the WiFi. The energy gap is more pronounced as the file size

increases.

Figure 3.9 shows energy consumption of every transmission for all three modalities based

on file size and the radio signal strength during the transmission and their linear fits.

CHAPTER 3. Motivation for Offloading 66

-10

-60

0

10

3

E
n

e
rg

y
 (

J
o

u
le

s
)

20

-80 2.5

Signal Strength (dBm)

30

2

File size (MB)

40

1.5-100 1
0.5

(a)

0

-86

2

4

-88
3

E
n
e
rg

y
 (

J
o
u
le

s
)

6

-90 2.5

Signal Strength (dBm)

8

2

File size (MB)

-92

10

1.5
-94 1

0.5-96

(b)

0

-40

5

-60

10

3

E
n

e
rg

y
 (

J
o

u
le

s
)

2.5

15

-80

Signal Strength (dBm)

2

File size (MB)

20

-100 1.5
1

-120 0.5

(c)

Figure 3.9: Energy required to upload files of different sizes under different communication

modalities and signal strengths. (a) 3G (b) 4G (c) WiFi

CHAPTER 3. Motivation for Offloading 67

The linear fits shows the energy consumption is clearly dependant on the file size and

also to some extent the radio signal strength. When the signal strength is low, the Bit

Error Rate (BER) would be higher, so the Packet Delivery Rate (PDR) would be lower.

This means each packet has to be transmitted more than once in average which results

in the higher energy consumption. The WiFi energy cost in Figure 3.9c is the most

clear example of this relationship. It is slightly evident in Figure 3.9a for 3 MB file

size. However, for 4G results in Figure 3.9b it seemed negligible. This is due to the fact

that during the experiments, the RSSI level did not change significantly to have any

pronounced effect.

3.4.2 Initial Radio States

There may be several other factors affecting the transmission times and energy

consumption. One of the important factor is the radio state. The User Equipment

(UE) of radio communication can be modelled using a Finite State Machine (FSM),

and depending on which state the radio is in, the required time and energy used for

transmission can be different. For example, if the cellular radio is in idle state, it can

take up to 2 seconds to be in the fully connected state whereby transmission can take

place. This will be be described in the next chapter when the smartphone device is

modelled. In this experiment, random delays is introduced in between transmissions

so that the communication time and energy can be calculated for starting at different

states. Table 3.4 shows various radio states the UE may be in before the transmission

started. During the experiments, however, it cannot be guaranteed that the device

would be in certain state by introducing a delay as the device could be communicating

in background for various other tasks.

Figure 3.10 shows the time taken for each transmission based on the initial states and

their linear fits. For 3G and 4G in Figures 3.10a and 3.10b, the radio is already in one

of the connected state (i.e. radio states 2− 6). So the time taken is indifferent although,

state 6 which is “the connected and sending and receiving state” is slightly faster. In

CHAPTER 3. Motivation for Offloading 68

Table 3.4: Various radio states for mobile data and WiFi in an Android device

State Cellular(3G and 4G) WiFi

0 Disconnected Currently being disabled

1 Connecting Disabled

2 Connected, dormant Currently being enabled

3 Connected, no traffic Enabled

4 Connected, sending traffic –

5 Connected, receiving traffic –

6 Connected, sending and receiving traffic –

case of the WiFi –see Figure 3.10c, there is no significant difference noted. Obviously,

the case would be different if there isn’t any known WiFi hosts in the range.

The energy consumption is slightly different as seen in Figure 3.11. There is an opposite

trend seen in the cellular and WiFi. For WiFi, when the radio state is connected, the

energy consumption is lower when compared to the radio state is disabled at the start.

However, for the cellular, the energy consumption is very slightly higher when the radio

state is already receiving and transmitting as shown in the Figures 3.11a and 3.11b.

3.4.3 Summary

In this experiment, the focus is to learn about the time and the energy cost for

transmitting data from the mobile device. The tests are conducted with different

communication modalities such as 3G, 4G and WiFi under various channel conditions

and device settings. The results show that 4G can offer the fastest transmission times

whereas 3G is the slowest. However, WiFi can offer significant speed while also being

the most energy efficient solution. In addition, the experiments also help to understand

the effects of various channel conditions and radio states.

CHAPTER 3. Motivation for Offloading 69

0

6

10

20

5
3

T
im

e

30

4 2.5

Radio State

40

2

File size (MB)

3

50

1.5
2 1

0.51

(a)

0

6

2

4

5
3

T
im

e

6

4 2.5

Radio State

8

2

File size (MB)

3

10

1.5
2 1

0.51

(b)

0

3

10

20

3

T
im

e

2.5

30

Radio State

2 2

File size (MB)

40

1.5
1

0.51

(c)

Figure 3.10: Time required to upload files of different sizes under different communication

modalities and signal strengths. (a) 3G (b) 4G (c) WiFi

3.5 Discussion and Conclusion

This chapter conducted three experiments that forms a strong argument on the need

and suitability of computation offloading. The first experiment in section 3.2 compared

accuracy and relative time complexity of the three existing algorithms namely KISSME,

SDALF, and Unsupervised Saliency. The experiments showed that the KISSME

algorithm would be most suitable for distributed implementation based on its simplistic

descriptor and fast training and execution times. However, many new approaches based

on deep learning based approach has been proposed in the literature achieving superior

CHAPTER 3. Motivation for Offloading 70

0

6

10

5

20

3

E
n
e
rg

y
 (

J
o
u
le

s
)

4 2.5

30

Radio State

2

File size (MB)

3

40

1.5
2 1

0.51

(a)

0

6

2

4

5
3

E
n
e
rg

y
 (

J
o
u
le

s
)

6

4 2.5

Radio State

8

2

File size (MB)

3

10

1.5
2 1

0.51

(b)

0

3

5

10

3

E
n

e
rg

y
 (

J
o

u
le

s
)

2.5

15

Radio State

2 2

File size (MB)

20

1.5
1

0.51

(c)

Figure 3.11: Energy required to upload files of different sizes under different communica-

tion modalities and signal strengths. (a) 3G (b) 4G (c) WiFi

results (– see Table 2.2). The second experiment showed an example of running such

a deep learning algorithm on an embedded device. It demonstrates that even for the

inference purpose, the DNN based approach can have significant resource usage when

tasked with execution of algorithms on real-time (–see Figure 3.3). This result further

reinforces the need for offloading.

The third experiment quantifies the time and energy cost while transmitting data using

various modality, under different environmental conditions. Results show WiFi is an

excellent communication modality that offers good communication bandwidth at a

significantly low energy cost.

CHAPTER 3. Motivation for Offloading 71

The three experiments show that PRID algorithms can be a good candidate for

Computation Offloading application, especially, if the device is too busy to do it itself

and bandwidth is high enough. The computation time on the device can be comparable

to communicate and wait for result. In addition, the results of these experiments

form a good base for the next chapter especially for designing the objective in multi-

objective optimisation and detailed component based simulator design. These will be

used Chapter 4 to present a framework, that can offload algorithms from embedded

devices such as smartphones to other neighbouring devices as well as the cloud.

Chapter 4

Offloading Based on

Multi-Objective Optimisation

4.1 Introduction

The last chapter focused on the study of existing Person Re-identification (PRID)

algorithms and different challenges in its implementation on embedded devices. These

approaches may be computationally expensive and take considerably long time to process

on the implementation device. However, many applications require result in the real-time.

One of the solutions introduced in the last chapter to achieve real-time results was

Computation Offloading . In this chapter, Computation Offloading will be looked at in

more detail for solving some of those issues.

4.1.1 Problem Formulation

Consider a two sensor scenario shown in Figure 4.1. Let X and Y be two similar smart

cameras deployed in the field to identify people arriving in their Field Of View (FOV).

Let zmax be the number of targets each sensor can process simultaneously in the allocated

72

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 73

High speed Wi-Fi

In
te

rm
it
te

n
t
lo

w

sp
e
e
d
 C

e
ll
u
la

r

Field of View

Figure 4.1: Pedestrian identification scenario: device X inundated with targets while device

Y is idle

time. If each sensor is working on its own, when there are z > zmax targets to process in

sensor X, it fails to process z− zmax targets in the allocated time-frame. Not identifying

targets or dropping targets may be costly in security applications. For example, the

dropped target may be a terrorist or an enemy soldier and could be life-threatening to

the soldiers on the battlefield. If a connection to the cloud is available and the bandwidth

is sufficiently high, the cloud can help X to process the targets in a timely fashion.

Frameworks such as MAUI [106], Cuckoo [107,108] exist that allows computation to be

offloaded to the cloud. So, X can offload (z − zmax) targets to the cloud, which may

save both time and energy. More on when offloading may or may not save resources

is discussed in Section 4.2 If the cloud is unavailable, current systems would simply

drop the targets. In this example, device Y may not have any target in its FOV at this

moment and willing to help by processing some of X’s targets. This chapter shows that

neighbour devices like Y can be a good alternative to the cloud and may be used for

Computation Offloading . The following assumptions are made for the PRID problem:

1. In a network of cameras, targets are spatially and temporally distributed. That

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 74

means, more targets may appear in some camera FOV’s than others and at different

times.

2. While targets do not appear in a camera FOV, its resources (Central Processing

Unit (CPU), Graphical Processing Unit (GPU)) are not fully utilised. In theory,

it should be able to help its busy neighbours to cope with the demand.

3. As long as the total job rates (across all nodes) is less than the total computing

capability of the network of nodes, it should be possible to trade energy with

performance and productivity.

In the next section, different platforms available for computation are defined.

4.1.2 Computing Platform Types

Onboard Computation

The onboard computation refers to the computation available on the sensor itself. When

compared to a desktop computer, it may be limited however, if there is no network

connectivity to the cloud, it is the only available option. Some onboard processing

may reduce the amount of data that needs to be communicated while offloading. For

instance, imagine X in Figure 4.1 is capturing images at 1 Frames Per Second (FPS)

and sending image data frame by frame to the cloud for finding targets in the images. If

there is a target, the cloud identifies the target and sends the identity of the target back

to the sensor. If on average, one target appears in the image per minute, rest of the

image data (59 images per minute) that is sent to the cloud is wasted. A background

subtraction algorithm running on the sensor can decide if there is any foreground activity

in the scene and the sensor can only send images with foreground activity. This saves

communication cost for the sensor, and the cloud has fewer jobs to perform.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 75

Cloud

In this context, the cloud may be defined as a computing platform with very high

computational capability and mains powered. Researchers have successfully used the

cloud to offload from the mobile devices. For example, Cuervo et al. [106] proposed

energy aware algorithm to offload to the cloud for video game and chess application

using WiFi and cellular connection that resulted in 27 and 45 percent energy savings.

Similarly, Fernando [109] used Bluetooth to offload to a central entity. More examples

of Mobile Cloud Computing (MCC) include [110–112] and further details on MCC can

be found in [113–116] Also, similar to the cloud but significantly less powerful entities

have been introduced lately called Fog or cloudlets [117–119]. Magurawalage et al.

have considered offloading to an intermediate cloud-like entity called cloudlets [120].

Cloudlets lie between the mobile device and the cloud physically. As such the Round

Trip Time (RTT) can be significantly lower compared to the cloud. However, they may

be unavailable just like the cloud.

Neighbouring Nodes

Neighbouring devices lack the computational power and energy of the cloud but may be

readily available with high Network Bandwidth (BW) connections. Neighbouring nodes

are an important alternative to the cloud for two reasons: first is that communicating with

neighbours can help in the co-ordination and control of the node network. Neighbours

can provide an alert signal of an incoming target, or give complementary and valuable

information (a priori) about the targets. More details about co-ordination and control

can be found in [121]. The second reason is that when the cloud is unavailable, they

can help in sharing the computational load. So far in the literature, neighbouring

devices have not been considered for Computation Offloading purpose. However, as

the neighbouring devices may be battery powered as well the energy impact on the

neighbours cannot be ignored. This is because when in the field, charging may not be

readily available.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 76

Table 4.1: Relative comparison between offloading to cloud or fog and offloading to

neighbouring nodes. Superior choice is highlighted in bold.

Cloud, Fog Neighbouring

nodes

Computational capability Almost Unlimited Limited

Energy Limited No Yes

Configuration Static Dynamic

Round Trip Time (RTT) Long (100ms) Short (10ms)

Bandwidth Lower (1 Mbps) Higher (54Mbps)

Count Low (Single) Multiple

4.1.3 Summary

The main pros and cons of offloading to cloud vs offloading to neighbouring nodes are

summarised in Table 4.1. The highlighted items show where each one may be superior

to the other in a typical case. In case of higher bandwidth between neighbouring

nodes is based on the availability of Wi-Fi among neighbouring devices whereas only

low-speed cellular is available to the cloud. Only in some cases, neighbouring nodes

have benefits over the cloud. However, as it was stated earlier in the thesis, the cloud

may be unavailable due to several reasons such as natural disasters, terrorist attack etc.

This chapter is structured in the following way. Section 4.2 formally defines Computation

Offloading and the motivation for sensors to use it. In Section 4.3, a PRID system is

presented that poses Computation Offloading as a multi-objective optimisation problem.

Section 4.4 proposes novel algorithms to solve them. The effectiveness of the algorithms

were tested by building and testing on a simulator. In Section 4.5 the simulator is

explained in detail. Then, in Section 4.6 the experimental settings and the simulations

are detailed. Finally, in Section 4.7 the results are discussed and the conclusions drawn.

mobile nodes which can significantly increase the performance without substantially

depleting battery resource compared to the non-offloading case.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 77

Time (Seconds)

Resource Utilisation(%)

t1 t2

τm
50

100

Figure 4.2: Simplistic view of resource usage during an algorithm execution. The algorithm

takes τm seconds to execute which depends on the number of instructions

required to execute for an algorithm (C) and the number of instructions that

a sensor can execute every second (Im) – see Equations (4.1) and (4.3). The

gray rectangular area signifies total CPU utilisation for one algorithm execution

– see Equation (4.2).

4.2 Computation Offloading

Computation Offloading can be defined as a process of executing a computationally

intensive task on an alternative device rather than on its own computing platform, to

save resources such as time and energy. The device that sends the task can be termed as

offloader whereas the device that executes the task can be termed as onloader . Usually,

onloaders are the devices with very high or unlimited computational capabilities and

commonly known as the cloud. When the offloader is a mobile device and onloader is

the cloud, the process is known as Mobile Cloud Computing (MCC). Kumar et al. [36]

discussed that offloading may not always be beneficial and calculates an analytical

expression for the minimum bandwidth required for the whole process to break-even in

terms of energy. Even though it is fundamental and ignores real-world factors such as

parallel-processing, the effect of other CPU activities and CPU speed., it is an important

expression for Computation Offloading so, it is described below with an example.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 78

4.2.1 Non Offloading

In order to compare the cost of offloading and its benefits, a non-offloading baseline

case is considered first. Let a mobile device capable of executing Im instructions per

second run an algorithm A, that requires C instructions to execute. Figure 4.2 shows the

typical resource usage during the execution of A. The time taken to run the algorithm

τm can be calculated as:

τm =
C

Im
(4.1)

The energy used to execute the job would be proportional to the grey area in Figure 4.2.

If Pm is the power consumed by the mobile device while executing the algorithm on-board,

the total energy consumption for the algorithm execution is

Em = Pm × τm (4.2)

The number of instructions required for an algorithm can change. For instance, in the

Mixture of Gaussians (MOG) algorithm for background subtraction, each pixel value is

compared to a number of existing Gaussian distributions to assess which distribution

best represents the pixel. The number of instructions (C) depends on how quickly a

matching Gaussian distribution is detected for the particular pixel [122]. In the worst

case, the pixel does not match any of the existing distribution, and a new distribution

has to be created. However, to make calculations easier for the simulation, the number

of instructions is assumed to be constant. Similarly, the processing capability (Im) of

the processor devoted to an algorithm can be dynamic. It can depend on the current

frequency of the CPU and other jobs that are running on the processor.

Im ∝
f

u
(4.3)

where f is the current clock frequency, and u is the utilisation of the CPU. On the

same CPU, if the clock frequency is higher, the time taken to execute will be lower and

vice-versa. Similarly, if the average CPU utilisation is higher which means there may be

many jobs running on the system, then the time taken will be higher. So, Equation (4.1)

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 79

Offloader

Time (Seconds)

Resource Utilisation(%)

t1 t2 t3 t4 t5 t6

τp τs τw τr τu
50

100

(a)

Onloader

Time (Seconds)

Resource Utilisation(%)

t2 t3 t4 t5

τs τw τr
50

100

(b)

Figure 4.3: Resource usage for offloader(a) and onloader(b) during Computation Offload-

ing . The gray rectangular area represents CPU utilisation whereas the light

gray area represents radio usage for data communication. The times are not

correctly scaled in the picture.

becomes

τm =
C

E[Im]
(4.4)

where E[Im] is the average instructions per second available for the algorithm based on

average clock frequency and utilisation of the CPU.

4.2.2 Offloading

Now, consider the offloading scenario when the task is offloaded to another device. For

that, the input data to the algorithm has to be packeted and sent to the onloader .

Then the onloader then processes the data and sends the result back to the offloader .

Figure 4.3a shows the CPU and the radio usage for the offloader . The offloader can

save time by offloading if the total time, referred to as makespan [123] is less than the

on-board computation time:

τtotal = τp + τs + τw + τr + τu < τm (4.5)

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 80

where τp, τs, τw, τr, τu represent the times taken by the offloader to packet, send, wait,

receive, and un-packet the data, respectively. If Din and Dout are the data size to be

transferred and received respectively, the communication time is given by:

τs + τr =
Din +Dout

BW
(4.6)

where BW is the available bandwidth. Also, if Cp be the number of instructions required

for packeting one packet of data. The packeting operation can be estimated as

τp =
Cp ×

⌈
Din
Dp

⌉

Im
(4.7)

where, Dp is the packet size and dxe represents the least integer that is greater than or

equal to x. The waiting time (τw) can be estimated similar to Equation (4.1) as:

τw =
τm
F

(4.8)

where F is the factor by which the onloader is faster than the offloader . The speed up

factor may depend on various things. For example, if the A has many parallelisable

sub-routines it may benefit from executing on a multi-core CPU, GPU or an Field

Programmable Gate Array (FPGA), rather than a single core CPU. The Amdahl’s

law [124] provides a simple yet effective theoretical upper limit for speed up by parallel

execution and stated as:

max(F) =
1

rs +
rp
n

(4.9a)

rs + rp = 1 (4.9b)

where rs and rp are percentage of serial and parallel code in an algorithm and n is the

number of parallel executions. Similarly, if the clock frequency of the onloader is faster

than that of the offloader then F can be higher than one. To keep things simple, it is

only assumed that the onloader is F times faster.

If Pc and Pw be the average power consumption for communication and waiting times,

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 81

the total energy consumed by the offloader for the offloading process can be estimated

as

Eoff = Pc × (τs + τr) + Pw × τw

= Pc ×
D

BW
+ Pw ×

τm
F

(4.10)

For offloading energy cost to break even with the computation cost, Equation (4.2) and

Equation (4.10) should be equal, which gives rise to following equation.

Pm × τm − Pc ×
D

BW
− Pw ×

τm
F
≥ 0

C

Im

(
Pm −

Pw
F

)
− Pc ×

D

BW
≥ 0

(4.11)

For the Computation Offloading to save time and energy, Equation (4.5) and Equa-

tion (4.11) has to be satisfied respectively. They depend on multiple factors such as

speed up factor (F), BW and the data to be communicated (D). An intuitive way of

deciding whether to offload to the cloud (MCC) can be portrayed in Figure 4.4. Say the

cloud is significantly powerful than the sensor device (F = 100) and is always available.

Based on this figure, it is advisable to always offload high computation jobs requiring

low data transfer (green area in the figure). For example, PRID requires image of a

person (typically < 1 MegaByte) as input. Based on the experiment conducted in the

last chapter (see Figure 3.6), it could typically take one second to upload it using 4G

and less than two seconds using WiFi. If it takes tens of second to run the algorithm

on the mobile device, it is worth offloading to the cloud. Whereas, if an algorithm

required several MegaBytes of data and it would only take couple of seconds to execute

on mobile device, it is not worth offloading. Sometimes however, it may not be clear

what is the best platform to execute the algorithm because the data to be transferred

is not exactly low and the computation required is not very high. In those cases, the

decision can be taken based on bandwidth. If the bandwidth to the cloud is high such

that the communication can take place relatively quickly then it is worth offloading

otherwise it’s not.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 82

Communication

C
om

p
u
ta
ti
on

Computationally

intensive algo-

rithms like PRID

Low Complexity

Background

SubstractionDo not offload

Offload

Figure 4.4: Low complexity jobs with high communication overhead should not be

offloaded, high complexity jobs with low communication overhead should

be offloaded and anything else depends on the bandwidth. [36]. Based on the

assumption that the cloud is available at all times.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 83

4.2.3 Impact on Onloader

In Section 4.2, the time and energy cost for the offloader was discussed. However,

there is also an impact on the onloader as shown in Figure 4.3b. When the onloader

is the cloud with comparably infinite computing resources and mains powered, it may

be ignored. But if the neighbour is considered as an onloader , the impact cannot be

ignored. Due to finite resources, the impact on the onloader is that its resources such as

CPU may not be available for its own usage while it is helping the offloader and cost

energy as well. The energy cost is similar to the offloader cost and can be quantised as

following:

Eon = Pc ×
D

BW
+ Po ×

τm
F

(4.12)

where Po is the instantaneous power of the onloader while executing the algorithm. If

the onloader is considered to be identical to offloader running at same frequency and

same utilisation, Equation (4.12) can be written as:

Eon = Pc ×
D

BW
+ Em (4.13)

Comparing with Equation (4.2), the first term in Equation (4.13) is the overhead due to

offloading.

4.2.4 Motivation for a Neighbour to be Onloader

In the previous section, general conditions were derived for offloading to be fruitful in

terms of time and energy. The majority of work reported in the literature considers

cloud and fog as the only offloading candidate with the assumption that the cloud has

unlimited computational resources. Also, the cloud is mains powered, so not limited by

energy consumption. As such, the decision is mainly limited to “given current channel

availability should you offload or not?” However, offloading to computationally similar

devices needs to answer additional questions such as “which neighbour is best suited?”

and “is someone going to offload to me as well?”

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 84

However, there are many environments where the cloud may not be available, or it may

only be available intermittently. For example, underground train stations may not have

cellular or WiFi coverage. Similarly, in the battlefield scenarios, the cloud may only be

available at random times and lower bandwidths. Even if the cloud is normally available,

natural disasters such as earthquake, flood and tsunami can disrupt the coverage of a

large area or city making cloud inaccessible. Until now, there was not much alternative

than “to try your best and hope for the best”. This work purposes that even if there is

limited or no access to the cloud, neighbouring devices may be able to help each other.

In Section 2.3.1, an application for anomaly detection was discussed and Figure 2.11

showed camera footage from multiple cameras. Out of four cameras, only two had

foreground activity during the fighting incident. The case motivates the belief that

not all the cameras in the network may be busy at the same time and may be able to

help the other cameras. To formalise the problem, let’s start by defining the platforms

available for computation in different scenarios and their advantages and disadvantages.

The sensors can be thought of like agents in a multi-agent scenarios, that have their

own beliefs, desires, and intentions [125]. It is natural to ask why would the neighbours

act as an onloader to help others. Even though Computation Offloading can benefit

the offloader , why would the onloader go the extra mile to help the offloader . However,

there are several reasons why neighbours may want to help others, as discussed below,

1. The network of sensors may be cooperative sensors with a common goal, and all

of them are working towards achieving the common objective. For example, in

the case studies discussed in the last chapter, the common objective is to identify

as many people (or targets) as possible within the whole system irrespective of

how many each sensor can identify.

2. Even if the sensors are selfish and non-cooperative agents, they may still be rational,

and it may still be in their interest to help others. For example, there may be an

agreement between sensors before helping, that the favour would be returned in

the future if needed.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 85

Image
Background

subtraction
Result

Person

Detection

Person

Identification

Figure 4.5: Typical pedestrian identification flowchart showing non-offloadable and

offloadable sections. Gray section represents the portion of algorithm that are

characterised as non-offloadable whereas the yellow section is offloadable.

3. One by-product of Computation Offloading is that the information can get spread

out. However, it may be desirable to disseminate this information, as it may

be valuable to the onloader as well. Consider the PRID case again, by helping

neighbours in identifying the targets; the onloader can compile a list of targets

likely to appear in their own FOV. So when any person is detected, it can search

through this shorter list of targets before searching through the entire list of

known targets. This may feel like added security risk especially if the application

is security-sensitive operation. However, the process of Computation Offloading

would require extra software installation, and even if other devices have access

to this software, measures can be taken to only offload to the known friendly

neighbours to mitigate the risks.

4.3 System Design

Given the knowledge of the cost of onboard processing and the cost of Computation

Offloading for both the offloader and the onloader , this section aims to design a system

to reap the benefits of Computation Offloading . As an exemplar, the pedestrian re-

identification system outlined in Figure 4.1 is considered, but instead of two sensors, it

is extended for S sensors. A typical workflow of a PRID system is shown in Figure 4.5

repeated from Chapter 3. It starts with image acquisition from the image sensor. A

background subtraction and a person detection algorithm is applied on the image to

detect the number of people in the view. When a pedestrian is detected, one of the

person re-identification algorithm discussed in Section 2.4 is applied to each detection.

Our goal is to identify as many detections as possible.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 86

This chapter makes some important assumptions. The first assumption is that the

targets may arrive in the FOV of the sensors at random times. In a real situation, there

may be patterns of target flow which may be exploited. However, this work doesn’t

rely on that as the primary objective of the chapter is to show that offloading can be

beneficial in the absence of cloud without any prejudice. The second assumption is that,

in the set of S sensors, all the sensors have communication capabilities with every other

sensor and that each sensor knows the resource information of other neighbours. This

can easily be changed to communication links only between the sensors in the vicinity.

This is considered in the next chapter.

As discussed in Section 4.2, to offload an algorithm, the data to be communicated and

the computation required plays a vital role. For a PRID system with the processing

chain shown in Figure 4.5, an assessment needs to be carried out to determine which

part can benefit from offloading.

4.3.1 Application Partitioning

Generally, MCC implementations use static and dynamic application partitioning of

algorithms based on profiling [126]. For the current work, the jobs are classified as

offloadable or non-offloadable by design. Algorithmic details of the PRID algorithms

were discussed in the last chapter, where it is seen the algorithmic complexity of the

person re-identification algorithm outweighs that of other algorithms in the chain (see

Table 4.2). So, only the PRID algorithm is considered to be offloadable as for the other

stages in the processing chain, the communication costs and the time delay outweighs

the benefits of offloading. Due to that, the overall complexity of the system can be

estimated as O(N) where N is the number of people detected. Hence in the thesis,

Offloadable algorithms and targets are used interchangeably.

Offloading an algorithm entails sending input data, waiting for the onloader to execute,

and receiving output data. Before transmitting however, the data has to be formatted

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 87

Table 4.2: Execution times for CPU running @ 998.4 MHz

Algorithm Time Input Data Output Data

Background Subtraction 0.1 800× 600× 3 800× 600

Person Detector 0.2 800× 600× 3 T × 4a

Person Re-identification 5.1 52× 120× 3b

aT is number of targets & 4 is for position of bounding box
bVariable size depends on resolution of target

in packets and some overhead will be added to the processor. These operations can be a

few hundred instructions per packet which needs to be added to the CPU workload [127].

4.3.2 Multi-Objective Optimisation

After partitioning the application into offloadable or non-offloadable parts, the decision

problem of offloading can be posed as a multi-objective optimisation problem. A general

multi objective problem can be defined as

min[f1(x), f2(x), ..., fn(x),] (4.14a)

x ∈ Co (4.14b)

Co = {x ∈ Rm : h(x) = 0, g(x) ≥ 0} (4.14c)

where n > 1 [128]. The objective of such a multi-objective optimisation problem is to

find x that simultaneously minimises the functions fi(x),∀i = 1, ..., n. This may not

always be possible when the objectives are conflicting. So in multi-objective optimisation

problems, a Pareto optimal solution is generally considered. A solution x∗ ∈ Co is called

a Pareto Optimal solution for a multi-objective problem if all other vectors x ∈ Co have

a higher value for at least one of the objective function fi(x), with i = 1, ..., n.

The cost of an algorithm execution can be expressed as multi-objective function that can

be scalarized as a weighted sum of time cost and energy costs. Let s, t be two sensors

in set S containing |S| sensors. The cost of executing an algorithm originating at s on

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 88

sensor t can be calculated as follows:

Costst = wt × τ + wst × Es + wts × Et (4.15a)

where,

τ = τm, Es = Em, Et = 0, if s = t

τ = τtotal, Es = Eoff , Et = Eon, if s 6= t

(4.15b)

and wt, woff and won are the weights for each objective; τm, τtotal, Em, Eoff , Eon are

the time and energy costs from Equations (4.2), (4.4), (4.5), (4.10) and (4.13). When

the cloud is available, it is also considered as one of the nodes with no energy constraint.

So wts = 0 if t is the cloud.

4.4 Algorithms

4.4.1 Minimal Energy Cost (MEC)

The cost function involves adding time and energy variables (i.e. different units),

which requires careful selection of the weights. One way to avoid this situation is by

limiting one of the objectives to a threshold (ε) and optimising rest of the objectives.

This method is called ε constraint method and was first introduced by Chankong and

Haimes [128]. This method can be thought of as opposite of Lagrange relaxation [89,129]

whereby a constraint is moved to the objective function using a Lagrange multiplier.

Regarding the real-time nature of the problem, a constraint is set to the time cost and

so that the objective function in Equation (4.15a) only contains the energy variables.

Equation (4.15a) then becomes

Costst = wst × Est + wts × Ets (4.16a)

subject to, τ ≤ ε (4.16b)

For this problem, the ε is set to 25 seconds and the nodes that do not satisfy this constraint

are left out. This is highlighted in Figure 4.6) by light dots. A set F is created that

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 89

Energy(Offloader)

E
n
e
r
g
y
(O

n
lo
a
d
e
r
)

Node satisfies time constraint

Node does not satisfy time constraint

Figure 4.6: Multi-Objective optimisation problem reduced to two objectives. Dark dots

represent nodes satisfying the constraint in Equation (4.16b). The solid line

represents the Pareto Optimal curve

contains only the nodes that satisfy the constraint (dark nodes in Figure 4.6). Without

losing generality, the set is then ordered such that Costs1 ≤ Costs2 ≤, ... ≤ Costs|F |.

The first node on the list is picked for execution of the algorithm. The algorithm is

detailed in Algorithm 2. Running the optimisation algorithm every time there is a

target may not be feasible. In that case, the ordering can be created once and instead

of creating a new list everytime, incremental changes can be used to shuffle and modify

the sensor list.

4.4.2 Minimal Battery Impact (MBI)

In a battery-powered device, using the least energy cost per job alone may not be

sufficient to increase device lifetime. For example, say an algorithm costs 10 and 8 Joules

on devices X and Y, respectively. But X and Y have 500 and 50 Joules left in their

battery respectively. Considering energy cost alone, Y is the best choice but when the

amount of energy left in the device clearly X is a better choice. So, in this method, the

Equation (4.16a) in MEC is slightly changed to such that instead of finding the node

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 90

Algorithm 2: Minimal Energy Cost (MEC) and Minimal Battery Impact (MBI)

Input: Set of sensors(S), Set of offloadable algorithms(Λ), Cost

Parameter : Threshold time ε

Output: s1

1 for s ∈ S do

2 for a ∈ Λs do

3 Estimate the Costst of execution in each sensor in the F based on

Equation (4.16a) or Equation (4.17a).

4 Create a set F ⊆ S such that τf ≤ ε, ∀s ∈ F

5 Order F in the ascending order of execution cost such that

Costs1 < Costs2 <, ... < Costs|F|

6 Select the first sensor in the list for execution.

7 end

8 end

with the lowest energy cost, a node with least impact is chosen.

Costst = wst ×
Est
Esrem

+ wts ×
Ets
Etrem

(4.17a)

subject to, τ ≤ ε (4.17b)

where Esrem and Etrem are the energy left in the offloader and the onloader nodes. The

algorithm is detailed in algorithm 2 as well.

4.4.3 Offload Only if Busy (OOB)

The previous methods try to find a global solution, but offloading has overhead costs.

So, this method tries to offload only if on-board processing is estimated to be infeasible.

Based on how many algorithms are ahead in the queue and using Equation (4.4) the

processing time is estimated. If this time is greater than the threshold (ε), then offload

the algorithm minimising the time and energy objectives defined Equation (4.15a). The

algorithm is detailed in Algorithm 3.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 91

Algorithm 3: Offload Only if Busy (OOB)

Input: Set of sensors(S), Set of offloadable algorithms(Λ), Cost

Parameter : Threshold time ε

Output: s1

1 for s ∈ S do

2 for a ∈ Λs do

3 Estimate τm for self execution.

4 if τm ≤ ε then

5 Execute locally on s

6 else

7 Remove s from set S to create F

8 Estimate the cost of execution in each sensor in the F based on

Equation (4.15a).

9 Order F in the ascending order of execution cost.

10 Costs1 < Costs2 <, ... < Costs|F|

11 Select the first sensor in the list for execution.

12 end

13 end

14 end

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 92

4.5 Simulator

There are two ways to test the algorithms in Section 4.4. Either it can be implemented on

a number of smart-phones and tested on the real test scenarios or, use a simulator. While

there are many network simulators such as NS-2 [130], NS3 [131] and OPNET [132], there

is a scarcity of a holistic simulator simulating both computation and communication.

In a recent article [133], the authors talk about the importance of a holistic simulator

for smart-camera network and present their discrete event-based simulator. Another

simulator Castalia [134] is a simulator for wireless sensor network. They specialise

on communication between devices. The existing simulators are good when designing

network protocols and application. However, as they are discrete event simulator, it is

difficult to attribute time and energy calculation by each component of devices. The

power model used in the existing simulators are rudimentary and not sufficiently fine

grained.

Commercial off-the-shelf (COTS) smart-phones are sophisticated devices, and their

performance is subject to hundreds of parameters and constraints. Some of these

parameters may be tuned whereas others can only be observed. For instance, the FPS

of the image sensor may be changed as required whereas the clock frequency of the

CPU and its utilisation may not be available for selection and depend on the Operating

System (OS) Kernel. A robust simulator is required that can emulate the execution of

algorithms and communication between devices. The major elements of the proposed

simulator relate to the algorithmic tasks, the sensor architecture, communication links

and the targets. Implementation of the simulator is explained using class diagram in

Appendix B Each one is described in detail below.

4.5.1 Component Based Sensors

In order to realistically emulate its behaviour, a sensor is divided into its components

such as the CPU and cellular radio. The energy consumption of the display is ignored

as it can be assumed to be turned off by the application. In the literature, there are

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 93

many power models that can be used to estimate the power consumption of individual

component of the smart-phone [135–140]. A comprehensive list of power models can be

found in the thesis [141]. For this simulator, the utilisation based model by Jung et al.

is used because of the simplistic model [140] and the parameters are based on a Google

Nexus I phone which is one of their Device Under Tests (DUTs). However if desired,

the simulator can be calibrated for a different DUT in a straightforward manner.

Image Sensor

The image sensor consumes significant energy in a mobile device when used continuously.

According to Likamwa et al., the energy consumption per frame of the image sensor can

be modelled as follows [142].

Ecamera = Pidle × (Tframe − Tactive) + Pactive × Tactive (4.18)

where Tactive = Number of Pixels
Camera Clock Frequency . The Camera clock is separate from the CPU clock

and generally operate at around 32 MHz. Figure 4.7 shows the power consumption during

sequential capture mode. The power may depend on several factors such as the FPS

determines the length of Tframe. Also, based on Equation (4.18), the image resolution

and the frequency can also change Tactive thereby affecting the energy consumption.

Application Processor (AP)

The CPU power is made up of two parts, idle power and the running power, as follows:

pcpu = βcpu
freq × u+ βcpu

idle , (4.19)

where u is the utilisation and βcpu
freq and βcpu

idle are the CPU parameters. All the parameter

values are listed in Appendix A. The relationship between CPU power, utilisation and

CPU frequency is visualised in Figure 4.8b. The utilisation is estimated as the ratio

of the CPU time used to the time available per frame. However, the CPU is also used

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 94

ID
LE
%

(B
LA
N
K
)%

A
C
T
IV
E
%

Figure 4.7: Power consumption of an image sensor in a smart phone during sequential

capture mode [142]. Image from [142]

.

by the OS and other running applications. Dargie used a Normal and exponential

distributions to simulate workload in [143]. In this work, a Gaussian process is used to

simulate these other activities – See Figure 4.8a. By adjusting the mean of g a busy

sensor and an idle sensor can be simulated. The total utilisation is calculated as shown

below.

u =

∑z
i=1 Texeci

TFrame
+ g (4.20)

where z is the number of algorithms to be processed, Texeci is the execution time for ith

algorithm (see Table 4.2 for execution times for all algorithms) and TFrame = 1
FPS is the

time available for each frame. In the situation where Texeci > TFrame which is very likely

in the case of algorithms for person re-identification, the CPU is run up to 100% load

and run the remainder of the algorithm in the next frame and so on.

Cellular (3G)

Cellular radio is modelled as a three state system: IDLE, Forward Access Channel

(FACH) and Dedicated Channel (DCH). The IDLE mode is the non communicating

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 95

(a)

0

1000

100

900

200

100800

300

90

P
o
w

er
 (

m
W

)

700 80

400

Frequency (MHz)

70

500

600 60

Utilisation (%)

50

600

500 40
30400

20
300 10

0

(b)

Figure 4.8: (a) Probability distribution of g based on Gaussian distribution with mean of

0.4 and variance 0.1 (b) CPU power relationship with CPU frequency and

utilisation.

mode and has the lowest power consumption. In this mode, the User Equipment (UE) is

turned on but has not established Radio Resource Control (RRC) connection with the

Radio Network Controller (RNC). In the DCH state the UE has a dedicated transport

channel for data transmission in both directions, but this is 50 to 100% more expensive

than FACH, where FACH is the intermediate state with reduced power consumption

and low data rate. There is no dedicated channel allocated in this mode and it can

only transmit user data through shared low speed channel that is typically less than

15kbps [144]. The power is only dependent on state but not on utilisation. i

p3g =

βIDLE if RRC state is IDLE

βFACH if RRC state is FACH

βDCH if RRC state is DCH

(4.21)

where RRC is the current state of UE and βIDLE, βFACH and βDCH are based on [140].

Figure 4.9 shows the state diagram with the inactivity timers which along with data

buffer size controls the state promotions and demotions. When the buffer is greater

than an arbitrary size, the state is promoted from IDLE to FACH and FACH to DCH.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 96

IDLE FACH

DCH

α1

α2

1

2

Figure 4.9: Cellular radio states, α1 and α2 are inactivity timers whereas δ1 and δ2 are

delay to get to DCH

These state promotions take δ1 and δ2 seconds. Similarly, when the buffer size is empty

ie. radio is inactive, states are demoted from DCH to FACH and FACH to IDLE. In

some designs, manufacturer chose to demote from DCH to IDLE rather than visiting the

intermediate state FACH [144]. These demotions, are delayed using inactivity timers α1

and α2 as shown in Figure 4.9 so that if any data needs to be transmitted, it doesn’t

need to wait for the promotion times δ1 and δ2.

Choosing the value of inactivity timers (α1 and α2) can also affect the battery life; larger

value incurs less promotion delays if new data needs to be transmitted but uses more

power as the UE is in higher power state for longer times whereas, smaller value means

if new data needs to be transmitted, it has to wait for the promotion times incurring

larger delays in transmission.

Wi-Fi

The Wi-Fi model calculates the time and energy of the Wi-Fi component in the connected

mode. There are two modes depending upon the packet rate.

pwifi =

βLT × p+ βLT base if p ≤ Threshold

βHT × p+ βHT base if p > Threshold

(4.22)

where p is the packet rate, βLT, βHT, βLT base and βHT base are the parameters of the

DUT based on [140]. If the number of packets per second exceeds the threshold of 20

then Wi-Fi is in the high power state, else in the low power state. Unlike the cellular

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 97

system, the power consumption is directly proportional to the data rate. Although

Wi-Fi consumes significant energy in the scanning mode where it scans the environment

to establish the network connection, it is ignored as a connection between the sensors is

considered as the basis of this research.

4.5.2 Energy Saving Methods

A COTS mobile device implements many energy saving methods as their battery is

limited. Some of them plays a vital role in the sensor lifetime and is implemented in the

simulator to make the simulation realistic as much as possible.

Dynamic Frame per Second

Energy can be saved by decreasing the number of FPS of the system (see Equation (4.20)).

However, very low FPS may mean some of the detections may be missed. A simple

algorithm to vary the FPS of each individual sensor between 1 and 16 in the following

way.

FPS (new) =

FPS (old)× 2 if t < τ

FPS (old)÷ 2 if t > τ

(4.23)

where t is the time between target activities and τ is 5 seconds.

Dynamic Voltage and Frequency Scaling (DVFS)

The CPU voltage and the clock frequency can be changed dynamically in order to save

energy. Lower Voltage and frequency correspond to lower energy and lower performance

and vice versa. According to Guérout et al. DVFS has been present in the Linux

kernel since 2001 [145]. They are presented in Table 4.3. In this work, only the clock

frequency can be changed. Also even though the frequency can range from hundreds

of MHz to GHz, in practice, there are only tens of discrete values that are available.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 98

Table 4.3: Different Frequency governors found in modern OS

Name Description Fixed Frequency

Performance Frequency is set to

maximum.

X fmax

PowerSave Frequency is set to the

minimum.

X fmin

Userspace Frequency is set to

the user-specified fre-

quency.

X fuser

Conservative Controlled using two

thresholds, frequency

is changed one step at

a time.

fcurrent + 1, if µ > upth

fcurrent − 1, if µ < downth

OnDemand Aggressive governor,

goes to maximum fre-

quency in one step but

cools one step at a

time

fmax, if µ > th

fcurrent − 1, if µ < th

For the DUT for this work, the available frequency values are given in Appendix A.

There are five different types of CPU frequency governors based on how they react to

CPU loads. Three of them are static, Performance, PowerSave and Userspace sets the

CPU clock frequencies to the highest available, lowest available and user specified value

respectively. The conservative mode has two thresholds, upth and downth. Whenever

the CPU utilisation reaches one of those thresholds, the frequency is changed one step

at a time. Lastly the OnDemand works with only one threshold (th). Whenever that

threshold is exceeded, the OnDemand sets the CPU frequency to the maximum straight

away. However, lowering the frequency is similar to the conservative mode i.e. one step

at a time.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 99

Table 4.4: Frequency governor selection based on remaining battery level percentage

Battery Percentage Frequency Governor

0 – 20 PowerSave

20 – 50 Conservative

50 – 80 OnDemand

80 – 100 Performance

Active Power Management (APM)

By default, the Performance governor is selected in all the sensors in the network. So,

all the sensors are running their CPU at the highest available frequencies. When APM

is enabled, the APM selects the frequency governor based on the remaining battery in

the sensor device – see Table 4.4.

4.5.3 Targets

In this work, the targets are generated using Poisson Point Process (PPP) and follow

the random waypoint model in [92] and described in Section 2.5.3. In this model, targets

move from one point to another with random speed and can also pause for a random

amount of time. This is described in Section 2.5.3. When they enter into the FOV of the

sensors (shown as orange and yellow areas in Figure 4.10), they are tagged as detected

targets. The detected targets are then identified. Once the target has been detected

and identified, it does not have to be re-identified again in the same camera. This is

done to simulate tracking the target in each camera and using the best representation

for identification purposes.

4.5.4 Metric – Efficiency Score (ES)

In order to assess the performance of the proposed algorithms, two approaches are

used. First, each algorithm’s performance is compared against the Non Offloading (NO)

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 100

Table 4.5: Three Algorithm “A”, “B” and “C” to choose from, to do same work. Which

one is better?

Sensor Total Jobs Jobs Completed Energy Used

A B C A B C

I 8 4 5 7 20 22 30

II 8 4 7 7 30 26 40

Total 16 8 12 14 50 58 70

case. The process score is defined as the percentage of jobs successfully executed in the

allocated times. Secondly, a new simple metric called ES is introduced as the ratio of

Successful Identification to the energy consumed. Similar metric (mAP/Energy) has also

been used by Mao et.al [146] for measuring the performance of their object detection

algorithm on embedded platform where mAP is the mean Average Precision. In simple

terms, ES is a measure of work accomplished per joule and shows if the extra energy

cost is justified (especially for a battery powered device). The ES of an algorithm can

be defined as:

ES =
Nodes∑

i=1

No. of jobs completedi
Energy Usedi

(4.24)

ES should not be confused with the accuracy and energy consumption of the PRID

algorithm. Lets take an example to see how it could be used. A system has two sensors,

each presented with eight jobs – see Table 4.5. There are three algorithms available “A”,

“B” and “C”. “A” processes the least number of jobs but consumes the least energy. “C”

processes the most number of jobs but also consumes the most amount of energy. “B”

is in the middle of the spectrum between “A” and “C”. Given a choice between “A”,

“B” and “C” which is one is the best or the most rational choice? The answer to that

may depend on number of things.

For instance, if there is no limitation to the energy consumption, algorithm “C” is the

best choice as it can accomplish the most number of jobs. Similarly, if the sensor life is

to be extended as much as possible, “A” should be selected as it uses the least amount

of energy. However, if the energy is limited, the answer may not be straightforward. So,

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 101

Moving target

Sensor with a target

Sensor without any target

Figure 4.10: Snapshot of simulation showing targets as dots and sensors. (Yellow FOV

signifies target in FOV whereas orange signifies no target in FOV).

a new metric is introduced that can help to make this decision easier. Based on this

metric, algorithms “A”, “B” and “C” have scores of 0.01, 0.0129 and 0.0125 respectively.

So, “B” gives the best balance of performance vs energy consumption. In the next

sections, various scenarios are explored to see if the algorithms presented in Section 4.4

work and if they is any better choice depending on the scenario.

4.6 Simulation and Results

The simulator contains a number of sensors connected to each other by Wi-Fi and to the

server (when available) by a cellular link. Figure 4.10 shows a snapshot of the simulation,

where the blue squares and red dots represent the sensors and targets respectively. For

simplicity, it is assumed that the resource information about all the nodes such as

remaining energy and current CPU load., is available and all the sensors have same

computational capability but the server is 10 times more powerful. Also there is no

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 102

Table 4.6: Result Summary for all the cases. Keys: S=Selfish, C=Cloud Available, APM

= Active Power Management Det.=Targets Detected, O=Targets offloaded,

Dro.= Targets Dropped, SI = Successful Identifications, E = Energy Used,

ES= Efficiency Score per 100 Joules

Algo. S APM C Det. O Dro. SI E ES

NO 18.89 0.00 4.46 14.43 557.82 2.59
MEC 18.89 18.89 1.18 17.71 563.96 3.14
MBI 18.89 18.89 1.18 17.71 563.96 3.14
OOB 18.89 8.05 1.72 17.17 561.93 3.06

NO X 18.90 0.00 6.81 12.10 510.08 2.37
MEC X 18.90 18.90 4.03 14.87 516.72 2.88
MBI X 18.90 18.90 4.03 14.87 516.72 2.88
OOB X 18.90 9.41 4.50 14.41 514.00 2.80

NO X X 18.90 0.00 6.81 12.10 510.08 2.37
MEC X X 18.90 9.57 3.53 15.37 517.88 2.97
MBI X X 18.90 17.63 11.09 7.81 489.73 1.60
OOB X X 18.90 9.41 4.50 14.41 514.00 2.80

NO X 18.89 0.00 4.46 14.43 557.82 2.59
MEC X 18.89 18.89 0.00 18.88 584.14 3.23
MBI X 18.89 18.89 0.00 18.88 584.14 3.23
OOB X 18.89 6.82 0.26 18.63 572.67 3.25

NO X X 18.90 0.00 6.81 12.10 510.08 2.37
MEC X X 18.90 18.90 0.09 18.81 535.16 3.51
MBI X X 18.90 18.90 0.09 18.81 535.16 3.51
OOB X X 18.90 7.70 1.49 17.41 528.23 3.30

NO X X X 18.90 0.00 6.81 12.10 510.08 2.37
MEC X X X 18.90 18.47 0.06 18.84 535.21 3.52
MBI X X X 18.90 18.89 0.27 18.62 534.13 3.49
OOB X X X 18.90 7.70 1.49 17.41 528.23 3.30

energy limitation for the cloud so the weight wts : t = cloud for the cloud is set to zero.

Wi-Fi is set to 10 Mbps (high BW) whereas cellular is slower and set to 1 Mbps.

At the start of the simulation, the battery level is uniformly distributed between 0− 10

Watt-hour. The mean of g in equation (4.19) is uniformly distributed from 0− 1 (full

load) and the standard deviation is fixed to 0.1 and these parameters do not change

during the simulation. Full simulation data and parameters are available in Appendix A

and all the results are listed in Table 4.6

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 103

4.6.1 Unselfish and Homogeneous Sensors

There are many cases when all the sensors in the group are equal in terms of computing

power and cooperative with each other. For instance, in a swarm of similar drones flying

to gather visual data, the drones may not have any APM and their CPU clock frequency

may be constant. Their flight time is fixed at 30 minutes and mostly dependant on the

energy used by the motors for keeping it airborne rather than the energy for computing.

No one has any motivation to be selfish and save their battery.

In the simulator, non selfishness is ensured by selecting wst > 0 in Equations (4.15a),

(4.16a) and (4.17b). Likewise, homogeneity is maitained by turning the APM module off.

The sensors operate at the highest frequency available irrespective of any other settings.

Results are compared with the non offloading case and presented in the Figure 4.11.

The NO case processes slightly less than 80% of the targets. When the cloud is not

available, Figure 4.11a shows all three algorithms gain about 18− 23% in performance

in comparison to the NO case. However, there is also some extra energy consumption

due to Computation Offloading but this is very limited compared to the performance

gain – see Figure 4.11b. When the cloud is available, most of the targets are identified,

however, it comes at slightly more energy – see Figure 4.11d. Comparing between the

three proposed algorithms, MEC and MBI performs slightly better than OOB. This is

also confirmed by a higher ES score of 0.0314 compared to 0.0306 of OOB and 0.0259 of

NO case.

4.6.2 Unselfish and Heterogeneous Sensors

This is the type of battlefield scenario described in the Section 1.3; there are many

heterogeneous devices deployed but all belonging to same individual or company. To

simulate the heterogeneity in the simulator, the APM is switched on. As the battery level

is uniformly distributed at the start, some sensors will be running at performance mode

whereas some sensors will be running in the power save mode (Section 4.5.2). Sensors

running in power save mode can execute fewer instructions per second compared to the

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 104

(a) (b)

(c) (d)

555 560 565 570 575 580 585

0

0.2

0.4

0.6

0.8

1

(e)

Figure 4.11: Algorithm performance improvement and energy usage for unselfish and

homogeneous sensors. (a) Performance Increment and when cloud is not

available. (b) Extra energy usage compared to NO when cloud is not available.

(c) Performance Increment when cloud is available. (d) Extra energy usage

when cloud is available. (e) Process Score vs Energy usage.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 105

(a) (b)

(c) (d)

510 515 520 525 530 535 540

0

0.2

0.4

0.6

0.8

1

(e)

Figure 4.12: Algorithm performance for unselfish and Heterogeneous sensors (a) Perfor-

mance Increment and when cloud is not available. (b) Extra energy usage

compared to NO when cloud is not available. (c) Performance Increment

when cloud is available. (d) Extra energy usage when cloud is available. (e)

Process Score vs Energy usage.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 106

sensors running at performance mode. This creates the heterogeneity in the sensors

deployed. This is evident by the lower performance in the NO case. Only about 60% of

the targets are identified by the naive NO case. The results are shown in Figure 4.12.

When the cloud is not available, Figure 4.12a shows that all three proposed algorithms

around 21% compared to the NO case. The OOB is slightly worse but the energy cost

is slightly less in that case. When the cloud is available, Figure 4.12c shows that MEC

and MBI are can gain more that 50% performance, whereas OOB only gains around

40%. This is due to the strategy of OOB that it will only offload if it cannot perform

the job by itself within the allocated time. The ES of MEC and MBI is higher than

that of OOB and NO at 0.0288 and 0.0351 when the cloud is not available and when

the cloud is available – see Table 4.6.

4.6.3 Selfish and Heterogeneous Sensors

This is the last scenario and the most general of all scenarios. In this scenario, the

sensors are selfish and the APM is enabled as well. This type of scenarios can be

experienced in day to day life. For example, in a busy city centre or train station, there

are thousands of people, each carrying a mobile phone. The phones can be different

make, model and correspondingly can have higher or lower computational capabilities.

As they belong to different individuals, they do not share any common objectives. They

are only behaving to utilise the neighbours for their own benefit. The results are shown

in Figure 4.13. When the cloud is available, it is the favourable option and the three

proposed algorithms behave similar to the non-selfish scenarios described above. When

the cloud is not available, MEC and OOB still have positive effect and gain about

20− 25% than the NO case. However, interestingly the MBI was worse than the NO

case, even though it used slightly less energy. This is a result of combination of several

factors, for example the bandwidth among the nodes is high so the communication cost

is low, and when combined with the battery impact on its own device, the proposition of

offloading is more favourable than computing itself. Also, as the onloader has no part in

making the decision, some of the sensors were even more overloaded than in the case of

NO case. This highlights the importance of the weight selection for the decision making.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 107

(a) (b)

(c) (d)

480 500 520 540

0

0.2

0.4

0.6

0.8

1

(e)

Figure 4.13: Algorithm performance for selfish and Heterogeneous sensors (a) Performance

Increment and when cloud is not available. (b) Extra energy usage compared

to NO when cloud is not available. (c) Performance Increment when cloud

is available. (d) Extra energy usage when cloud is available. (e) Process

Score vs Energy usage.

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 108

4.7 Conclusion

This chapter presented a real usage of Computation Offloading for computationally

intensive algorithms to offload to neighbouring devices when the cloud is not available.

For that, a simple multi-objective problem is formulated and novel methods are used

to find the Pareto-Optimal solution of the problem including the ε constraint method.

Based on this, three different algorithms are proposed namely MEC, MBI, OOB.

A holistic simulator is developed to simulate the system and the environment and evaluate

the performance of the proposed algorithms. The simulator is simplistic, flexible, and

easy to use. Using the simulator, the proposed algorithms are tested extensively in several

environments including selfish/unselfish, homogeneous/heterogeneous, and cloud/non-

cloud scenarios. The results showed that among the three, MEC consistently achieved

the best trade-off between power and performance. It improved the performance by

20− 40% while costing less than 5% more energy in the non-cloud scenario. When cloud

is available, the dropping of targets were reduced by 30 − 55%, while the additional

energy usage is only about 5% more than that of NO case.

A new metric called ES is formulated that is used to compare the efficiency of the

algorithms. In case of OOB, the algorithm is performed slightly lower than the MEC

due to the fact that it only offloaded when the nodes could not do the job itself. If the

bandwidth is constrained, this could be an advantage over other algorithms. The results

also highlighted the importance of weights for the objective function. When the weight

for neighbouring devices were set to 0 (selfish case), the overall performance for MBI

was far worse than that of NO case.

The results confirmed the hypothesis that Computation Offloading could be useful even

when the cloud is not available. Even with the availability of the cloud, neighbours can

be of significant alternative depending on the network bandwidth. In this chapter, an

ideal environment is chosen such that all the nodes can communicate with each other

and every node has accurate sensor information about other nodes at all times. This

CHAPTER 4. Offloading Based on Multi-Objective Optimisation 109

may not be true in the real world. Some of these shortcomings are explored in the next

chapter.

Chapter 5

Computation Offloading based on

Queueing Theory

5.1 Introduction

In the last chapter, a novel framework was presented whereby computationally intensive

algorithms could be offloaded to neighbouring devices. This offloading was termed as

Computation Offloading and three algorithms namely Minimal Energy Cost (MEC),

Minimal Battery Impact (MBI) and Offload Only if Busy (OOB) were proposed. The

proposed algorithms showed considerable performance enhancement compared to the

Non Offloading (NO) case with reasonable energy overhead. However, in the simulation,

there were many environmental settings, which were deemed to be ideal. For example,

all the information about the neighbours were assumed to be known, and it was assumed

that each sensor could communicate with any other sensors in the network. Similarly,

there were other shortcomings as well, such as, the decision had to be made for every

new job and the impact of the proposed algorithm itself were ignored. So, although they

were helpful in establishing that Computation Offloading can be helpful in spite of the

cloud not being available, there were a lot of things to consider for it to be applied in

practice.

110

CHAPTER 5. Computation Offloading based on Queueing Theory 111

High speed Wi-Fi

In
te

rm
it
te

n
t
lo

w

sp
e
e
d
 C

e
llu

la
r

Field of View

Figure 5.1: Pedestrian identification scenario

In this chapter, the issues mentioned above are addressed. Similar to the last chapter, a

network of commercial off-the-shelf (COTS) sensors running Person Re-identification

(PRID) algorithms (Figure 4.5) is considered as the exemplary problem – see Figure 5.1.

The only difference being, the cases with the cloud are not considered in this chapter.

There are many environments in real-life where the cloud is not available at all. As

explained earlier, the last chapter proved that offloading to neighbours may be beneficial.

The argument about helping neighbours may be valid even if the devices are battery

powered. For example, solar powered devices would be recharged every day, or a drone

swarm would be recharged after 20− 30 minute of flight time. It does not benefit to

have energy left when the recharge time commences. In case of uneven load, by helping

neighbours, the network lifetime (the time when the first node in the network runs out

of battery) [147] can be extended.

Even if the cloud is available, it may not be desirable, owing to high cost as well as

security issues. For example, the recent rise of Internet Of Thing (IOT) [148,149] mean

many low powered devices have communication capabilities with each other and to the

cloud. These devices can range from user’s smartphones to household appliances like

smart televisions, fridges and security cameras and intelligent locks. Uploading the

CHAPTER 5. Computation Offloading based on Queueing Theory 112

data produced by these devices to the cloud for processing may be not only expensive

regarding time and money but also prone to security breaches.

This chapter uses Queueing Theory described in Section 2.6 to model the nodes especially

the network of queues . It abstracts the scheduling algorithms of the underlying

hardware so the system may consist of Central Processing Unit (CPU) nodes or dedicated

accelerators such as Graphical Processing Unit (GPU) and Field Programmable Gate

Array (FPGA). Working with job rate rather than individual jobs, the need to decide

for every task is eliminated. As highlighted earlier, the significant difference to the last

chapter is that not all nodes in the system can communicate with all other nodes in the

network and information about the nodes are not known at all times. In fact, one of

the objectives of this chapter is to determine how frequently the information has to be

communicated between the sensor nodes.

The next section presents related works on computation offloading when cloud is not

available. Section 5.3 models the node network using a network of queues and formulate

the problem along with the Node State Information (NSI). In Section 5.6, the algorithms

are proposed. Then Section 5.7 discusses some minor changes to the simulator compared

to the last chapter and the target data for testing the proposed algorithm. In Section 5.8,

the experiments and the results are presented. Finally, Section 5.9 discusses the results

and concludes the chapter.

5.2 Related Works

In this section, closely related works to offloading to neighbouring nodes are discussed.

Even though there are a plethora of papers in Mobile Cloud Computing (MCC) to the

cloud, not many consider neighbouring nodes as candidates for offloading.

The availability and quality of a communication channel have a huge impact on successful

offloading. Cuervo [106] points out significant energy usage when the Round Trip

Time (RTT) increases between the offloader and onloader. In that sense, offloading

CHAPTER 5. Computation Offloading based on Queueing Theory 113

to the neighbouring nodes is better than the cloud as the RTT can be expected to

be in the range of 10 ms in a typical case. Wu et al. [150] also used a queuing

theory approach for MCC, however, their focus was on offloading to the cloud and

availability of communication channels. Zhang et al [151] used Markov Decision Process

(MDP) to tackle the intermittent channel availability. Similarly, many game theoretic

approaches also exist whereby nodes compete against each other while using the shared

communication channel to avoid interference [152,153]. In this approach, communication

is between neighbouring nodes connected by either WiFi or Bluetooth. As the WiFi

and Bluetooth coverage is limited compared to cellular network coverage, interference

may be limited as well.

As the development of embedded devices continues, researchers are keen to exploit it.

For example, Lin et al. [154] considered offloading to coprocessors and Magurawalage et

al. [120] considered offloading to cloudlets along with the cloud. Their model is selfish

as each user only try to optimise their own performance. Whereas in this work, cost

of helping on the onloader is also considered. Also, in this work, if the node has a

coprocessor, then it can be considered as a separate node but with no communication

cost.

Recently, Truong-Huu et al. [155] also considered smartphones as offloading candidates.

Their main objective is to divide a computationally expensive work into pieces and offload

to neighbours. Similar to this work, the cost function comprises computing cost and

communication cost and uses an optimisation algorithm to solve the problem. However,

the differences are significant, for example, their main aim is to reduce the higher cost

incurred due to neighbours moving away from the offloader (uncertainty of connection

time), whereas, for this work, the main objective is to balance the computational load

among the nodes (uncertainty of target distribution). Their approach is based on

the point of view of a single user, do not mention how or when resource discovery is

accomplished. This work considers various centralised and distributed approaches with

various data exchange policies which show how they can affect the performance.

Similarly, Vilaplana et al. [156] used the Open Jackson network to model the cloud

CHAPTER 5. Computation Offloading based on Queueing Theory 114

architecture and estimate their performances such as response times and utilisation of

the the system. They considered individual queues for resources such as load balancer

(M/M/1), processing server (M/M/m) and database (M/M/1).

5.3 System Model

In this work, sensors and their communication links are modelled as nodes and arcs

respectively. Let G = (S,E) be a directed network defined by a set S of |S| nodes and

a set E of |E| directed arcs. Each arc (i, j) ∈ E represents a communication link (for

example WiFi) from node i to j, and has an associated cost (cij) that denotes cost

per unit flow on that arc. The link between two nodes is dependent on the proximity

of the nodes and can also be multi-hop. For example, Figure 5.2 shows seven nodes

with communication links between some of them. For node ‘5’ to communicate with

‘3’ and ‘6’, it has to communicate via node ‘7’. Based on this network, the cost of

communicating to each node to every other node can be calculated using shortest path

algorithms defined in Chapter 2. This is similar to route discovery phase in Mobile

Ad-hoc Network (MANET) routing protocols Destination-Sequenced Distance-Vector

(DSDV) and Ad-hoc On-demand Distance Vector (AODV).

5.3.1 Node

Each node i is a smart camera with with a CPU and communication capabilities.

M/M/1 queues described in Section 2.6 are used to model the behaviour of each of

these components. Figure 5.3 shows a node being modelled using queues. A CPU

is represented by a M/M/1 queue. Similarly, for the communication part, WiFi is

modelled using two M/M/1 queues (sending and receiving side). Without any loss

of generalisation, common WiFi send and receive rate (i.e µiWS = µiWR = µiWF) is

assumed. Each node i may be defined as a tuple {γi, γ0i, µi, µiWF } where γi is the rate

of offloadable jobs, γ0i is the rate of non-offloadable jobs, µiCPU is the service rate of

CHAPTER 5. Computation Offloading based on Queueing Theory 115

2

3
4

5

6

7

8

Figure 5.2: Network of sensors highlighting partial connectivity. Each node is modelled as

shown in Figure 5.3.

(WiFi Receive)

(WiFi Send)

CPU µiCPUWR µiWR

WS µiWS

λiWR

γ0i

(Unoffloadable Jobs)

γi
(Offloadable Jobs)

xii

λiWS

Jobs completed

xi1

xij, j 6= i

xin

Figure 5.3: A sensor node modelled as network of queues. CPU, WR, WS represent CPU,

WiFi Receiver and WiFi Sender queues respectively

CHAPTER 5. Computation Offloading based on Queueing Theory 116

CPU and µiWF is the WiFi transmission rate. This node information is defined as the

Node State Information (NSI).

5.3.2 Arcs

The communication cost (time as well as energy) depends upon the Network Bandwidth

(BW) between the nodes and data size. However, the communication channel is

not perfect due to various noises and interference. The network data rate may be

adjusted based on these factors using metrics such as Signal to Noise Ratio (SNR) and

acknowledgement. for optimal performance which is to offer high bandwidth at high

Packet Delivery Rate (PDR) [74, 157]. Results from [157] show that depending on SNR,

the PDR can be different for different data rates. So in order to model their behaviour

correctly, this work accounts for them using a retransmission factor r. To understand

how and why it is used, say the current channel contains noise and interference. The

transmission process is a well defined Bernoulli trial with Bit Error Rate (BER)(β)

being the probability of failure for each trial. BER is independent between trials. Let a

packet of data contain D bits of data. Due to the data redundancy, interleaving, in the

communication protocols, let the system be able to correct up to e bits of error. That

means, while transmitting a packet of data containing D bits, if number of bits that are

corrupted during the transmission of data is less than or equal to e then the packet has

been delivered successfully and vice versa. The probability of the packet transmission

resulting in success of PDR can be calculated using a Binomial distribution [158].

PDR =
e∑

k=0

(
D

k

)
βk(1− β)D−k (5.1)

Depending on the number of bits in the packet, number of errors correctable and BER

the PDR will vary. Figure 5.4 shows their relationship for a few selected cases. It shows

that a longer packet length is more susceptible to error than a shorter packet length;

even a small margin for error (ie. e > 0) can increase the PDR significantly. In the

experiments, instead of sampling the SNR, calculating the BER and in turn estimating

the equivalent PDR, PDR between two nodes is directly sampled from a uniform

CHAPTER 5. Computation Offloading based on Queueing Theory 117

10 -6 10 -5 10 -4 10 -3 10 -2 10 -1

Bit Error Rate (BER)

0

0.2

0.4

0.6

0.8

1

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
te

 (
P

D
R

)

D = 500bits, e=0 bits

D = 500bits, e=10 bits

D = 500bits, e=50 bits

D = 1000bits, e=0 bits

D = 1000bits, e=10 bits

D = 1000bits, e=50 bits

Figure 5.4: PDR in presence of noise and interference.

distribution. A lost or damaged packet of data has to be transmitted again resulting in

time and energy loss until it has been successfully received by the receiver. For example,

let the PDR of the channel be 0.4. This means the packet will be successfully received

by the receiver 40% of the time in the first trial. For the 60% of the time, the sender

has to transmit the packet again and the second trial is independent to the first trial.

The second trial will also fail 60% of the time and so on. This phenomenon can be

modelled using a negative Binomial distribution or a geometric distribution as shown in

Figure 5.5. In this case, the mean of the distribution can used to calculate the average

number of transmissions to send the data from one node to another:

r(PDR) = E[g(x;PDR)], where (5.2a)

g(x;PDR) = PDR(1− PDR)x−1,∀x ∈ {0, ..,∞} (5.2b)

The relationship (see Figure 5.6) shows us that as the PDR degrades, the average number

of retransmission rises exponentially. For example, if the PDR is 1, 0.5 and 0.1, average

number of times the data has to be transmitted is 1, 2 and 9 times, respectively. In

Section 5.6.2, further analysis is performed to see effect of bandwidth, PDR, and the

CHAPTER 5. Computation Offloading based on Queueing Theory 118

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.5: Probability distribution of number of retransmission required for PDR = 0.4.

The green stem at 1.5 is the mean of the distribution.

frequency of NSI exchanges. For the simulations, 0.5 is considered as the minimum

PDR for any valid communication link. Once the retransmission factor is known, the

communication cost between i and j, αij is defined as:

αij = LiWSTiWS + D× r + 1

BW ij
+ LjWRTjWR (5.3)

where, BW ij is the bandwidth between node i and j; D is the data size; r is the average

retransmission times (see Equation (5.2a)); αij is the communication cost; Bj is the

remaining energy in node j (Joules), LiWS , LjWR are the number of jobs already in the

WiFi send and receive queues of node i and j; TiWS , TjWR are expected WiFi sending

and receiving time in i and j. Note that αij can be interpreted as the suitability of node

j based on existing communication queues and the channel available.

5.4 Case Study: Three Nodes

In order to illustrate how the information about the neighbouring nodes can be

used in making offloading decision, consider a simple example ignoring effects of the

CHAPTER 5. Computation Offloading based on Queueing Theory 119

Packet Delivery Rate (PDR)
0.1 0.5 0.7 1A

ve
ra
g
e
R
et
ra
n
sm

is
si
o
n
s

0

2

4

6

8

Figure 5.6: Average no. of retransmissions required due to imperfect channel.

communication links. Consider three nodes s1, s2 and s3 each defined by a tuple

{γ, γ0, µ, µWF }. Each node is faced with a decision problem to either do it themselves

or offload to other nodes. Based on Open Jackson network (Section 2.6.2), the total

incoming job rate of the sensor nodes can be expressed as:

λ1

λ2

λ3

 =

x11 x12 x13

x21 x22 x23

x31 x32 x33

γ1

γ2

γ3

+

γ01

γ02

γ03

 (5.4)

Let the serving rates for all nodes be equal to one (i.e. µ1 = µ2 = µ3 = 1 jobs per

second), and all jobs be offloadable (i.e.γ01 = γ02 = γ03 = 0 jobs per second). Let the

matrix in Equation (5.4) X̂ be referred to as the policy matrix . It can be shown that

using this matrix, the load can be balanced between the nodes. Consider three cases,

in the first case, let the external incoming rate γ of all nodes be individually less than

their serving rate. The nodes are already rate stable, X̂ can be as chosen to continue

without offloading as shown in the first row of Table 5.1.

In the second case, one sensor s1 is overloaded. In default configuration, s2 and s3 are

stable and would continue to perform as expected. However, s1 is unstable, and would

continuously miss targets and run out of battery life faster than the rest of the nodes.

There are multiple policies that can be used in this case to offload the extra load from

s1. For example, first policy could be to offload jobs that it cannot handle (λ−µ = 0.4)

to either s2 or s3. Another solution would be, as shown in the second row of Table 5.1,

CHAPTER 5. Computation Offloading based on Queueing Theory 120

to offload to both s2 and s3. Also, instead of offloading only the jobs it cannot process

(i.e. λ− µ), it offloads so that the load of all three nodes can be as equal as possible.

This could offer better response or the sojourn time.

In the third case, two of the nodes are overloaded, but the total rate of external incoming

jobs is still less than the total capacity of the system. As shown in the third row of

Table 5.1, the solution is to manipulate X̂ such that the overloaded jobs are sent to

s3. An important thing to note here is that the resulting incoming rates for all the

nodes is close to the serving rate of the nodes. This would lead to unstable nodes with

infinitely growing queue. This is referred as heavy traffic approximation [159,160]. In

the case, when the sum of the incoming job rates is greater than the sum of service

rates, a solution that guarantees rate stability of all the queues does not exist. In such

scenarios, a solution would be to drop the targets when the queue length is too long.

5.5 Problem Formulation

The above case study illustrates different kinds of problems faced when trying to find the

appropriate decision policy. As the number of nodes is generalised to |S|, the number of

elements in the policy matrix is |S|2. In addition, the cost of communication, the effect

of NO jobs, and the heterogeneity of the sensors needs to be accounted for. In Chapter 4,

each sensor took its own decision after accessing the status of all the neighbouring nodes.

In this work, the problem is formulated as a minimum cost network flow problem. There

are centralised and distributed approaches which are described next.

5.5.1 Centralised Problem Formulation

The scheduling decision problem is defined as a minimum cost flow problem to find the

optimal policy X̂ such that all the jobs get scheduled among the available nodes with

minimum energy and time costs and with constraints that all the jobs get scheduled,

CHAPTER 5. Computation Offloading based on Queueing Theory 121

Table 5.1: Different loads possible for three nodes scenario. Green font colour represents

stable job rate whereas red font colour represents unstable job rate. When

Σλ > Σµ, a solution satisfying all nodes is not available

Case
Default Optimised

Remarks
γ λ, ρ X̂ λ, ρ

i

λ1 ≤ µ1

λ2 ≤ µ2

λ3 ≤ µ3

Σλ ≤ Σµ

0.3

0.4

0.2

0.3

0.4

0.2

0.3 0 0

0 0.4 0

0 0 0.2

0.3

0.4

0.2

Each incoming rate is less

than the service rate.

ii

λ1 ≤ µ1

λ2 ≤ µ2

λ3 ≤ µ3

Σλ ≤ Σµ

1.4

0.4

0.2

1.4

0.4

0.2

0.7 0.3 0.4

0 0.4 0

0 0 0.2

0.7

0.7

0.6

Sensor s1 is overloaded.

Multiple solutions exist

such as offload to mini-

mum nodes or offload to

equalise load amongst all

nodes (presented here).

iii

λ1 > µ1

λ2 > µ2

λ3 ≤ µ3

Σλ ≤ Σµ

1.3

1.4

0.2

1.3

1.4

0.2

1 0 0.3

0 1 0.4

0 0 0.2

1

1

0.9

Sensors s1 & s2 are over-

loaded, solution is to of-

fload to the s3.

without compromising the stability of the queues.

X̂ = arg min
x

|S|∑

i=1

|S|∑

j=1

cijxij (5.5a)

subject to

|S|∑

j=1

xij = γi, ∀i ∈ S (5.5b)

|S|∑

j=1

xji + γi � µiCPU , ∀i ∈ S (5.5c)

xij ≥ 0 (5.5d)

CHAPTER 5. Computation Offloading based on Queueing Theory 122

The decision variable xij ∈ R(|S|×|E|) represents the job flow on an communication link

(i, j) ∈ E and xii is the job rate that is executed locally. cij represents the general cost

of scheduling a job from node i to j which is described in detail later in Section 5.5.3.

The rate stability of a queue can be guaranteed by ensuring the average arrival rate is

less than the average service rate. Hence, if the average incoming job rate for the CPU

queue in a node is greater than its service rate, an alternative node has to sought. The

equality constraint in Equation (5.5b) makes sure that all the jobs are assigned to a

processing node whereas the inequality constraint in Equation (5.5c) makes sure that the

jobs can be processed by the corresponding nodes they are assigned to. This formulation

uses NSI from all the nodes (S) and makes decision for all the nodes simultaneously.

Equation (5.5) can be solved using efficient linear programming techniques [129]. The

solution of Equation (5.5) can be written as a decision matrix shown below:

X̂ =

x11 x12 . . .
...

. . .

x|S|1 x|S||S|

 (5.6)

Each row of X̂ represents the policy for each node and defined as the policy vector x̂. x̂i

tells node i how it should process the incoming targets. Also, ith column of the matrix

indicates the policy of other nodes towards the ith node.

5.5.2 Distributed Problem Formulation

In a large network, collecting NSI from all the nodes may not be advised for several

reasons. For example, collecting NSI information and sending the policy vector (x̂) may

have significant impact as the bandwidth decreases and the frequency of information

exchange increases. Also, nodes that cannot be reached due to lack of communication

links can neither offer help nor ask for help. So, the centralised problem is simplified

by primal decomposition [129] whereby each node calculates its own policy vector (x̂).

The distributed formulation can then be defined for each node i ∈ N as shown in

CHAPTER 5. Computation Offloading based on Queueing Theory 123

Equation (5.7).

x̂i = arg min
x

|S|∑

j=1

cijxij (5.7a)

subject to

|S|∑

j=1

xij = γi (5.7b)

|S|∑

i=1

xji + γ0i � µiCPU (5.7c)

xij ≥ 0 (5.7d)

This is similar to the Gauss-Siedel like method used by Meskar [161] for MCC. The

algorithm basically communicates with its immediate neighbours to see what they can

offer and makes the decision. The approach is not selfish as it still considers neighbours’

resources rather than offloading everything. It is different from the centralised problem

in Equation (5.5) where each node i only tries to minimise the cost of its own objective

function on the basis of information available on its neighbours. Similar to centralised

problem, Equation (5.7) can also be solved using linear programming techniques [129].

5.5.3 Cost function

Once all the arriving jobs can be scheduled such that the queues are all rate stable, it

should be accomplished with the minimum cost. Here, the cost function cij used in both

central and distributed formulation described by Equations (5.5) and (5.7) is defined. It

is composed of energy costs in the communication links, availability of the CPU and the

remaining energy. More precisely, the cost of scheduling from node i to j is defined as:

cij =

ω1LiTi, if i = j

ω1LjTj + ω2αij + ω3
1
Bj
, if i 6= j, (i, j) ∈ E

∞, if i 6= j, (i, j) /∈ E

(5.8)

CHAPTER 5. Computation Offloading based on Queueing Theory 124

where, Li is the number of CPU jobs already in node i, Ti is the average processing time

of each CPU Jobs, αij is the communication cost defined in Section 5.3.2 and {ωk}31
are weight factors. The significance of various components in Equation (5.8) can be

changed using the weighting factor {ωk}31. The algorithms can put more emphasis on

one component than the other. For example, if the nodes are mains powered, ω3 can be

set to zero.

CPU Availability

The number of existing jobs in the CPU queues (Li) is used as the measure of CPU

availability in the node. A higher number indicates lower availabity for further external

jobs and vice versa. This is also applicable for self-processing in the scheduling decision

making.

Energy Available

The last element of the cost function is the battery level of the onloader. When the

battery level at node j is close to full, it does not affect the decision making significantly

due to the large value of Bj in Equation (5.8) as the corresponding term is small.

However, when the battery is nearly empty, its significance is considerably higher. It

makes our decisions “energy aware” i.e. the nodes do not completely drain while trying

to help the neighbouring nodes. The detailed models of power drain for the CPU, Image

sensor and WiFi communications and various energy saving modes were described in

the last chapter.

5.5.4 Computational Complexity

The main objective of this work is to balance the workload of the nodes in energy limited

scenario by offloading computationally intensive algorithms. It will be inefficient if the

proposed algorithms use a significant amount of CPU and communication resources to

CHAPTER 5. Computation Offloading based on Queueing Theory 125

0 5 10 15 20 25 30 35

10
-2

10
0

10
2

interior-point

active-set

simplex

dual-simplex

Figure 5.7: Time complexity of various linear solvers

balance the computational load. The optimisation problem stated in Equations (5.5)

and (5.7) can be solved using efficient linear programming techniques. One advantage of

using data rate in the problem formulation is that there is no integer constraint. Dual

Simplex and Interior Point algorithms are popular methods of solving linear problems.

Interior point algorithms are considered to be efficient and also require less memory

than others. Experiments were carried out to gauge their time complexity for a different

number of nodes and found the interior point to be the most efficient – see Figure 5.7.

These experiments were performed on a desktop computer with an Intel Xeon processor

and running MATLAB 2015a under Linux environment. The runtime of these algorithms

on an embedded device may be significantly higher but should follow the similar pattern.

However, solving this optimisation problem in one of the nodes periodically would have

a negative impact on its battery life. Also considering an ad-hoc nature, cluster-heads

which are in charge of the scheduler are not defined. Instead, two simple approaches

are used. First is to run the scheduler in a round-robin fashion among the nodes (see

Section 5.6.2). Second is to run them in a distributed fashion so that each node has an

optimisation problem to solve, in order to find the optimal policy (see Sections 5.6.3

and 5.6.4). In both approaches, the NSI data has to be circulated amongst the neighbours

so that the problem can be solved. This would be discussed in detail later.

CHAPTER 5. Computation Offloading based on Queueing Theory 126

Table 5.2: Algorithms proposed in this work.

Algorithm Centralised Pro-active

Oracle (O) X X

Proactive Centralised (PC) X X

Proactive Distributed (PD) X

Reactive Distributed (RD)

5.6 Algorithms

In Sections 5.5.1 and 5.5.2, the problem of scheduling jobs was formulated as a centralised

and distributed problem. This section describes how those solutions are implemented.

Two data sharing mechanisms; proactive and reactive are also considered. Depending on

which solution is used, and how the data is shared amongst the nodes, four algorithms are

proposed –see Table 5.2. All four algorithms are then compared to the Non Offloading

case when offloading is not allowed whatsoever. For this work a co-operative environment

is assumed, such that every node wants to achieve global objectives (i.e. process the most

jobs in an allocated time). Also, by “co-operative”, it implicates that: if a node sends

a job to another node, the other node must execute it (see Equations (5.5) and (5.7)).

However, an assumption is made that the nodes are not selfish and only offloads if

required.

5.6.1 Oracle

The target detection rate varies with time so the job rates (γ) in Equations (5.5)

and (5.7) are non-stationary. The lowest sampling time of the simulator is 10ms, hence

the problems in Equations (5.5) and (5.7) must be solved periodically. For the Oracle, it

is assumed that it has access to every sensor Node State Information (NSI) at all times.

Since it has no energy limitation, the Oracle solves the cost minimization problem in

Equation (5.5) every second which is every hundredth sampling step. Once solved, it

sends the related policy x̂i to all nodes simultaneously without using the communication

CHAPTER 5. Computation Offloading based on Queueing Theory 127

1 2 3 4 5 6 7
1

1.2

1.4

1.6

1.8

2

2.2

E
rr

o
r

%

Figure 5.8: The number of tasks dropped increases as the duration is too short. Similarly

when the duration is long, number of task dropped are increases as well. The

best results are achieved at 3 seconds

channel. While this continued update of NSI, is not feasible in practice, it provides a

benchmark for comparison. Also, NSI contains the average values of CPU load, incoming

rates and service rates. In order to find the best duration to calculate the averages, a

simple experiment is conducted. In this experiment, Oracle is run multiple time in the

same setting except for the duration of NSI calculation which is variable. When the

average is based on the last second of activity, the around two percent of targets were

dropped. As this duration increased, the performance is best at three seconds. After

that further increment in the duration worsen the performance – see Figure 5.8.

5.6.2 Proactive Centralised

This is a more realistic version of the Oracle. In this method, a node from among

the nodes, is nominated as the server and all other (|S| − 1) nodes send their NSI

to it periodically. Similar to Oracle, the server solves Equation (5.5) and sends the

corresponding policy x̂ back to each nodes. All other nodes are obliged to follow the

decision made by the server and computes and offloads based on the policy x̂i until a

CHAPTER 5. Computation Offloading based on Queueing Theory 128

new one is broadcast. However, different to Oracle, the cost of communication, as well

as cost of executing the solver are taken into account.

An important distinction with the Oracle is that, due to the partial connectivity among

the nodes, some of the sensors are not able to communicate to the server and vice-versa.

Hence they are excluded from the offloading process altogether. In order to minimise

this effect and minimize extra drain of the server ’s energy, a new server is selected on a

round-robin basis. A different server is chosen which acts as the server based on time

trigger.

There arises a question, how often the nodes need to broadcast their NSI and how often

can they broadcast it without flooding the communication links. Obviously, the answer

depends on many factors such as the communication bandwidth, size of NSI, PDR and

number of nodes in the set. If there are |S| nodes in total, and |S| − 1 nodes sending

their NSI to the server every t seconds, the node with the highest probability of being

busy is the nominated server. The arrival rate, worst service rate and the utilisation of

the server ’s receiving queue can be calculated as follows:

Arriving rate , λ =
|S| − 1

t
(5.9)

Worst Service rate , µ =
Data Rate× worst PDR

NSI size
(5.10)

Utilization , ρ =
λ

µ
=

(|S| − 1)× NSI size

t×Data Rate× PDR (5.11)

p[0] = 1− ρ

where, p[0] is the probability there is no jobs in the queue

Based on the arriving rate and service rate, the utilisation of the WiFi receiver queue of

the server can be estimated. Low utilisation is desired as it means lower delay and more

room for transmission of other data. For example, say there are 11 sensors connected

with a data rate of 54 Mbps, PDR of 0.7 and NSI of 1 Mbits, send NSI every 10 seconds.

Then Equation (5.2a) estimates the queue utilisation is ≈ 0.03 and no waiting times for

≈ 97% of the time. Similarly the average delay is around ≈ 0.03 seconds. Figure 5.9

shows waiting times at the receiving node at various intervals and for different speeds.

CHAPTER 5. Computation Offloading based on Queueing Theory 129

Time period between successive broadcast
0 2 4 6 8 10

U
ti

li
sa

ti
o

n
(%

)

0

20

40

60

80

100

11 Mbps (PDR=0.5)

11 Mbps (PDR=0.7)

11 Mbps (PDR=0.9)

33 Mbps (PDR=0.5)

33 Mbps (PDR=0.7)

33 Mbps (PDR=0.9)

54 Mbps (PDR=0.5)

54 Mbps (PDR=0.7)

54 Mbps (PDR=0.9)

Figure 5.9: Queue utilisation of server in proactive setting under various network conditions

(Lower is better). Data size set at 1 Mb.

For the data rate of 11 Mbps (red lines in Figure 5.9) any PDR and NSI frequency leads

to significant usage of communication resources which is not desirable. However, for

33 and 54 Mbps, NSI exchanges can be frequent upto once every five seconds, without

significantly using the communication resources.

5.6.3 Proactive Distributed

Proactive Distributed (PD) is similar to Proactive Centralised (PC) except for three

main differences.

1. It is purely distributed. There is no server and each node has to solve its own

optimisation problem.

2. Instead of solving central problem in Equation (5.5), each node only solves

distributed problem in Equation (5.7).

3. Set S contains immediate rather than neighbours than all the nodes. Even if

CHAPTER 5. Computation Offloading based on Queueing Theory 130

total nodes is large (> 100), S may be limited to tens of nodes. For example, see

Figure 5.10b, node 1 and 5 are only connected to one another.

This method and the PC could be aligned with the proactive network routing protocols

defined in Section 2.5.2 and the NSI can be incorporated in the network update packets.

5.6.4 Reactive Distributed

If a few nodes become overloaded infrequently, transmitting NSI regularly can be a waste

of energy. Also, the tail-end behaviour of the User Equipment (UE) (see Section 4.5.1)

may mean regular transmission forces UE to stay in the high powered state instead of the

low powered idle state [140]. In this method (see Algorithm 4), nodes only communicate

when they need to offload. This could fit with the reactive network routing protocols

such as AODV and Dynamic Source Routing (DSR) described in Section 2.5.2. In this

method, the node seeking offloading help broadcasts Request For Help (RFH) and waits

until the neighbours respond by sending their NSI. Neighbouring nodes must respond if

their average CPU usage is less than a threshold. Once the node seeking help receives

NSI from other nodes, it formulates and solves Equation (5.7). To avoid using old

information and update neighbour’s current situation, a timer Tth is set after which

the NSI expires and the node has to start again by broadcasting the Request For Help

(RFH).

5.7 Simulator

This chapter uses the simulator described in Section 4.5. One difference, however, is

that in the communication channel, the noise and interference are taken into account

which were ignored for simplicity in the last chapter. This was explained in detail in

Section 5.3.2. In the simulator, this is accounted for increasing the data size based on

the channel condition. In simple words, if the channel has the PDR of 0.5 then, the

CHAPTER 5. Computation Offloading based on Queueing Theory 131

Algorithm 4: Reactive Distributed

Input: Offloadable job rate (γ), Non offloadable job rate (γ0), Node State

Information (NSI)Service rate (µ)

Output: decision vector(dv)i

Parameter : Threshold Time ε

1 if γi + γ0i ≤ µi then

2 Set dvi to not offload.

3 else

4 if RFH broadcasted & decision time< εth then

5 Follow previous dvi

6 else

7 Broadcast RFH to all nodes.

8 Wait Twait seconds for NSI

9 if No of NSI received ≥ 2 then

10 Solve Eqn.(5.7) for new dvi and follow it.

11 else

12 Broadcast RFH again, follow previous dvi.

13 end

14 end

15 end

CHAPTER 5. Computation Offloading based on Queueing Theory 132

m

m

(a) (b)

Figure 5.10: Simulation setup for one monte-carlo simulation.

simulator assumes that it will take the time and energy of sending two packets, to send

a packet to the receiver.

The algorithms are tested on two different datasets. The first uses the Random Waypoint

Model (RWP) similar to the last chapter, and the second uses real data from a computer

vision dataset. They are briefly described below.

5.7.1 Random Waypoint Model

The RWP model used here is similar to the last chapter except for the consideration

of the three dimensional platform. In the last chapter, the platform was considered to

be two dimensional for simplicity, and the targets only moved on a plane. However, in

real life, things move in three dimension, especially the airborne targets can have six

degrees of freedom and move in all three directions. In this chapter, targets move in

three dimensions for the RWP (Section 2.5.3) so in order to capture the dynamics, the

Field Of View (FOV) of the camera sensors are three dimensional as well as shown in

Figure 5.10a.

CHAPTER 5. Computation Offloading based on Queueing Theory 133

Figure 5.11: Camera placement of SAIVT dataset [162]

5.7.2 SAIVT

A multi-camera scenario described in SAIVT Multi-Camera Surveillance Database [162]

is chosen to test the algorithms on a real dataset. This dataset consists of eight cameras

and contains movements of more than 150 people in a cafeteria. The system consists of

eight cameras placed as depicted in Fig. (5.11). The target tracks for the simulator were

extracted from the Extensible Markup Language (XML) files provided with the dataset

instead of processing the images. According to the dataset [162], the acquisition rate

was 25 Frames Per Second (FPS). A brief study of their target distribution revealed

there were far too many targets in the short span of time and majority of the targets

appeared in the first half of the dataset. So, the FPS was relaxed to 10 and the data

was split along the timescale to 16 sensors. The resulting target distribution looked like

shown in Fig.(5.12). The majority of targets are detected by Cameras 1, 7 and 15.

5.8 Experimental Results

In this work, 100 Monte-Carlo simulations were executed for 720, 000 simulation steps

which is equivalent to 12 minutes of simulated time, on two sets of target data described

in Section 5.7. The total energy consumption for each sensor was estimated by summing

power consumption of each component based on energy values from Equations (4.18),

CHAPTER 5. Computation Offloading based on Queueing Theory 134

Time (Minutes)
1 2 3 4 5 6 7 8 9 10 11

N
u
m
b
er

of
T
ar
ge
ts

0

500

1000

1500

2000

2500

3000

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 5.12: Heterogeneous loading of cameras in multi-camera scenario. Camera 1, 7

and 15 see majority of targets. (Best viewed in colour)

Table 5.3: Simulation Parameters

Dataset Bandwidth

(Mbps)

NSI

Frequency

(sec)

Network

Size

Range

(Metre)

RWP 1, 11, 54 5, 10, 20 10 30, 60, 90

SAIVT 1, 11, 54 5, 10, 20 16 30, 60, 90

(4.19) and (4.22) in Section 4.5. For each run, the simulator was initialised as per

Algorithm 5. Each simulation was repeated for the various parameters to see if there is

any effect on algorithm performance – see Table 5.3.

CHAPTER 5. Computation Offloading based on Queueing Theory 135

Algorithm 5: Simulator initialisation

Input: Sensor set (S)

Parameter : Communication range

Output: Location of sensors, Cost of communication between sensors

1 for i ∈ S do

2 Generate location of ith sensor randomly on the platform.

3 end

4 for i ∈ S do

5 for j ∈ S do

6 if Distance (i,j) within communication range then

7 Add communication links (i,j) to E

8 For each link, randomly generate PDR described in Section 5.3.2

9 Use shortest path algorithm to calculate cost per bit between nodes.

/* The cost can range between 0 (ie same node) to ∞ (i.e.

no communication link). */

10 end

11 end

12 end

5.8.1 Results for the Standard Configuration

Figure 5.13a shows the average target detected across all the nodes and across all the

trials, normalised by the total capacity of the system for the RWP dataset. It remains

same for all the different simulator parameters specified in Table 5.3. Targets that cannot

be processed within the allocated time (30 and 20 for RWP and SAIVT respectively)

is considered as dropped targets. At around 10 minutes, the target rate exceeds the

computational capacity of the system so even in an ideal case, targets would be dropped.

Figure 5.13b shows the results for the standard configuration of 11 Mbps, communication

range of 60m and NSI exchange every five seconds. In the baseline NO case, about

30% of all targets are dropped. The Reactive Distributed (RD) does slightly better

than the NO and drops only about 25%. The PD however, performs quite well and

CHAPTER 5. Computation Offloading based on Queueing Theory 136

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0 2 4 6 8 10 12

0

5

10

15

20

25

30

NO

RD

PC

PD

O

(b)

Figure 5.13: Simulation results for RWP target data with Bandwidth 11 Mbps NSI

exchange frequency of 5 seconds and range of communication limited to 60

meters. (a) Normalised Target arrival rate per nodes over simulation time

(b) Targets dropped over Arrival Rate. NO dropped the most (30% of all

targets). Centralised algorithms performed best with at least 80% reduction

in dropped targets and distributed algorithms perform in between.

drops approximately 40% fewer targets. The performance of centralised algorithms is

significantly better. The PC and the Oracle (O) drops only about 5% and 3% of the

targets. Another noticeable fact is that the centralised algorithms dropped only a few

targets up to 8 minutes, this is when more targets arrive than the system can process.

The results will be further analysed in a later section.

Fig. 5.14a shows the target arrival rate during the simulation time for SAIVT. Similar

to RWP case, it remains constant for different simulation parameters. Unlike RWP, the

SAIVT has two peaks during the simulation when the target rate is higher than the

maximum processing capability of the system. In this case, the NO algorithm dropped

almost 60% of all targets which is very poor. All the proposed algorithms performed

significantly better than that. Both distributed algorithms (RD and PD) produced very

similar results and in both case the targets dropped were recorded to be around 22%

which is less than half of the baseline case. The Oracle performed best followed by the

CHAPTER 5. Computation Offloading based on Queueing Theory 137

0 2 4 6 8 10 12

0.4

0.6

0.8

1

1.2

1.4

(a)

0 2 4 6 8 10 12

0

10

20

30

40

50

60

NO

RD

PC

PD

O

(b)

Figure 5.14: Simulation results for SAIVT target data with Bandwidth 11 mbps NSI

exchange frequency of 5 seconds and range of communication limited to 60

meters. (a) Normalised Target arrival rate per nodes over simulation time.

(b) Cumulative targets dropped over time. Proposed algorithms perform

significantly better than the NO case. Distributed algorithms dropped less

than half of the baseline and the Oracle dropped only about sixth.

PC solution. They dropped approximately 10 and 20% of the targets respectively. Also,

the Oracle method did not drop any significant targets after approximately three minutes

which is the first peak in load shown in Figure 5.14a. In the remaining sub-sections,

the performance is analysed with respect to the energy consumed as well as effect of

environment and parameter selections.

The overall result is summarised in Table 5.4 and Figure 5.15 for the standard

configuration. For Figure 5.15, the objective of the proposed algorithm is to be at the

top left corner which means the system uses less energy but provides better performance.

This is not always possible and some extra energy has to be used to gain performance.

The Efficiency Score (ES) metric gives an insight if the extra energy consumed is justified

and can help in selecting the right algorithm. This can be explained using an example,

in Figure 5.15a, PD performs slightly better than RD but also uses slightly more energy.

Between those two, which one should be preferred? Those two algorithms have ES of

CHAPTER 5. Computation Offloading based on Queueing Theory 138

Table 5.4: Simulation Results (Averaged over 100 runs) for Bandwidth 11 mbps NSI

exchange frequency of 5 seconds and range of communication limited to 60

meters.

Data Algo-
rithm

Arrival
Rate

(/min)

Service
Rate

(/min)

Process
Score

Energy
Used

(Joules)

Efficiency
Score

(Ident/J)

R
W

P

NO 8.6 6.16 0.71 613 1.0047
RD 8.6 6.69 0.78 628 1.0653
PD 8.6 7.29 0.85 649 1.1232
PC 8.6 8.22 0.95 585 1.4061
O 8.6 8.42 0.98 569 1.4786

S
A

IV
T

NO 9.37 4.10 0.43 529 0.7696
RD 9.37 7.11 0.76 680 1.0448
PD 9.37 7.08 0.76 692 1.0237
PC 9.37 7.56 0.81 647 1.1683
O 9.37 8.44 0.90 703 1.2012

1.07 and 1.12 respectively which suggest that the system achieves better performance

per joule using the PD than RD. So PD should be chosen over RD. However, in case

of PC and PD, PC is superior as it has a higher ES score. This can be observed in

Figure 5.15 as well.

In both datasets, Oracle performs better than the PC, which can be explained by two

reasons. First, the Oracle takes decisions every second as opposed to every five seconds

in PC. Second, when choosing the nominated server in PC on a round-robin basis, due

to the partial connectivity, not all the nodes can communicate with the server which

results in slightly degraded performance (see Section 5.8.3). However, PC is still superior

than the distributed algorithms. Regarding energy consumption, in the RWP case, the

centralised algorithms actually consumed less energy than the NO case. It is because

when not offloading some of the sensors were utilised heavily and consumed a lot of

energy whereas others were idle which still consumed some energy. By offloading, the

load was more balanced and overall the system consumed less energy.

CHAPTER 5. Computation Offloading based on Queueing Theory 139

560 580 600 620 640 660

0

0.2

0.4

0.6

0.8

1

NO

RD

PC

PD

O

(a)

500 550 600 650 700 750

0

0.2

0.4

0.6

0.8

1

NO

RD

PC

PD

O

(b)

Figure 5.15: Efficiency Scores (a) RWP (b) SAIVT

5.8.2 Effect of Bandwidth and NSI Frequency

In the RWP simulation, the bandwidth had minimal effect on the performance (i.e. no

change in targets dropped overall due to change in bandwidth) – see Figure 5.16a. This

may be due to the lower amount of data exchanges rather than the bandwidth having

no effect at all. This is evident in the real SAIVT dataset case, where the number of

targets were significantly higher (see Figure 5.16b). All three algorithms, RD, PC

and PD benefited from higher bandwidth but the significance was higher in the case

of distributed algorithms. Also, increasing the bandwidth from 11 Mbps to 54 Mbps

had minimal effect on the performance but slightly increased energy usage. This can

be explained using Equation (4.22), the higher bandwidth led to higher packet rate

increasing the radio power slightly. As the data was transmitted periodically, the WiFi

radio could not go into the sleep state. Hence the slight increase in energy usage.

The performance of the proposed algorithms increased when the NSI exchanges were

frequent (from once every 20 seconds to once every 5 seconds). This signifies the

importance of having recent NSI about neighbouring nodes. Particularly, PD was highly

dependant on the frequency of NSI exchange. When the frequency was low (once every 20

CHAPTER 5. Computation Offloading based on Queueing Theory 140

seconds), it performed worse than the NO case, but when it was higher, the performance

was better. The trend was consistent in both target datasets. For RD the NSI frequency

rate should have no effect because it is asynchronous and nodes communicates with

its neighbours when they seek help only. However, as seen in Figure 5.16, there is

some variation in performance, this is due to different sampling duration of NSI. For

NSI 5, 10, 20 second frequency, the moving average was calculated from the last 4, 9

and 19 seconds respectively. The opposite energy trends for the RWP dataset between

PC and PD for various NSI frequencies also draw attention – see Fig. Figure 5.16a.

However, upon further study, the energy usage was based more on CPU usage than on

NSI exchanges.

5.8.3 Effect of Communication Range

As the communication range of a node is increased, the number of neighbours the node

can talk to increases (and vice-versa) – see Algorithm 5. The range was changed to see

how the algorithms behave in varying conditions. Heuristically, more neighbours mean

more options so the proposed algorithms should perform better when the communication

range increases and vice-versa. The experiments generally follow this belief and the

results are shown in Figure 5.17. However, some interesting results were noted in the

case of PD for the RWP case. The performance slightly reduced in this case when the

communication range was extended for the lower frequency of NSI exchange (10 and

20). This is because as the NSI frequency was low and there were many neighbours,

the uncertainty of their state was higher and led to decisions that were not optimal.

However, the trend was not evident in the SAIVT case.

5.8.4 Average CPU Utilisation

The main idea behind the proposed algorithms is the distribution of the computational

load among the nodes so as to minimise overloading as much as possible. Fig. 5.18

shows the average spread of CPU utilisation among the nodes. For RWP, the median

CHAPTER 5. Computation Offloading based on Queueing Theory 141

615 620 625 630
0

0.2

0.4

0.6

0.8

1
RD

550 600 650
0

0.2

0.4

0.6

0.8

1
PC

1mbps, NSI:5

1mbps, NSI:10

1mbps, NSI:20

11mbps, NSI:5

11mbps, NSI:10

11mbps, NSI:20

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(a)

600 650 700
0

0.2

0.4

0.6

0.8

1
RD

600 620 640 660
0

0.2

0.4

0.6

0.8

1
PC

1mbps, NSI:5

1mbps, NSI:10

1mbps, NSI:20

11mbps, NSI:5

11mbps, NSI:10

11mbps, NSI:20

550 600 650 700
0

0.2

0.4

0.6

0.8

1
PD

(b)

Figure 5.16: Effect of communication bandwidth (1, 11), and NSI frequency (5, 10, and

30 seconds) (a) RWP: Performance increased as NSI update frequency

increased, however, no significant difference as bandwidth increased. (b)

SAIVT: Performance increased as the result of increased bandwidth and

NSI update frequency.

CPU utilisation for PC and O across the nodes reduced by approximately 12 and 15%

compared to the NO case, leading to reduced energy usage. In case of PD the median

usage increased slightly be appoximately 6% while the RD the change was negligible.

CHAPTER 5. Computation Offloading based on Queueing Theory 142

615 620 625
0

0.2

0.4

0.6

0.8

1
RD

Range:30m, NSI:5

Range:60m, NSI:5

Range:30m, NSI:10

Range:60m, NSI:10

Range:30m, NSI:20

Range:60m, NSI:20
550 600 650
0

0.2

0.4

0.6

0.8

1
PC

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(a)

550 600 650
0

0.2

0.4

0.6

0.8

1
RD

Range:30m, NSI:5

Range:60m, NSI:5

Range:30m, NSI:10

Range:60m, NSI:10

Range:30m, NSI:20

Range:60m, NSI:20

550 600 650
0

0.2

0.4

0.6

0.8

1
PC

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(b)

Figure 5.17: Effect of communication range (30, 60 metres) and NSI frequency (5, 10, and

30 seconds). Slight improvement in performance as the range was extended

except for PD in RWP case. (a) RWP. (b) SAIVT

Due to the fact that the targets distribution were uniformly random and the resources

usage is evenly distributed already, the performance gains were not large.

However, in the real dataset case, the overall CPU usage was higher and spread more

evenly for the proposed algorithms than the NO case, which is signified by shorter boxes

(see Figure 5.18b). This led to significant performance gains meaning less targets were

dropped. This may also lead to longer network lifetimes. The CPU usage in the NO

case shows some sensor using three time more than the median and about nine time

CHAPTER 5. Computation Offloading based on Queueing Theory 143

NO RD PC PD O

Algorithms

0

0.2

0.4

0.6

0.8

1
A

v
e
ra

g
e
 C

P
U

 u
ti
lis

a
ti
o
n

(a)

NO RD PC PD O

Algorithms

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 C

P
U

 u
ti
lis

a
ti
o
n

(b)

Figure 5.18: Average CPU utilisation across the nodes and NSI frequency (5, 10, and 30

seconds) (a) RWP (b) SAIVT

more than the sensor using lowest CPU. This would mean very short network lifetime,

as the one using the most CPU would run out of battery sooner than the rest. In all

the proposed algorithms, the median of average CPU usage is raised (signifying more

performance) but bar some of the outliers, some of the sensors have reduced CPU usage

which suggests network lifetimes may be extended.

5.8.5 Mean Execution time

The simulation considered in this work is a soft real-time system. So a threshold was

set for each every algorithm to be completed. The threshold was set to 30 and 20

seconds for RWP and SAIVT respectively. The Algorithm drop statistics corresponds

to the algorithms that were not completed within the threshold period. Among those

processed successfully, the mean execution times are compared. The results are shown

in Table 5.5. The results show that even though offloading requires data to be offloaded,

processed remotely and the results sent back to the offloader, the average execution

time is comparable to the baseline NO case and often better. The O had the shortest

execution time of all the algorithms tested including the baseline for the RWP dataset,

CHAPTER 5. Computation Offloading based on Queueing Theory 144

Table 5.5: Mean Execution times (Seconds)

Dataset NO RD PD PC O

RWP 12.70 11.37 9.96 11.92 8.84

SAIVT 7.72 7.46 8.14 7.19 8.39

whereas PC had the shortest time for the SAIVT case. The centralised algorithms

performed better in this metric which may be due to the fact that it is able to consider

all the neighbouring states and less likely to make wrong assumptions about neighbours.

5.9 Conclusion

In this chapter, the sensor network is modelled as a network of queues using an

Open Jackson network model. In comparison to the last chapter, there are significant

improvements and enhancements to the algorithms and simulation. First of all, the

network is dynamic and includes noise and interference. Even though the underlying

objective function in Chapter 4 is simple, the decision is taken in ad-hoc manner for each

job as they arrive and each decision making involves exhaustive search of all the nodes.

So, it still is resource intensive and requires significant communication bandwidth. The

MEC and MBI algorithms proposed in Section 4.4 are similar to the RD solution in this

chapter except for the cost function and the partial connectivity of the network.

In this chapter, various novel reactive and proactive algorithms are proposed. These

algorithms are comprehensively tested in different environmental settings for two

different target dataset namely, Random Waypoint Model and a real SAIVT person re-

identification dataset. The results show that they significantly enhanced the performance

of the system compared to the Non Offloading scenario. Even though, a target

identification problem was chosen, the result can be generalised to other problem

with computationally intensive algorithms. Also, the results reinforce the assertion that

most of the jobs can be processed if (a) the total job rate is less than total computing

capability, and (b) if other nodes NSI are available. Especially in the real dataset, the

CHAPTER 5. Computation Offloading based on Queueing Theory 145

performance improvements are significant. The performance boost also comes at similar

energy cost and may well increase the network lifetime.

From the experimental results, PC is the best among the three proposed as it has better

work completion rate even in the lower communication BW and fewer updates of NSI.

Similarly, RD is better if the nodes in the network keeps changing its position such that

the existing communication links are broken and new links are formed rapidly. The

proactive and reactive algorithms can also be selected based on the target and sensor

activity. For example, if the target activity is high, proactive can be selected and if the

target activity is low, reactive approach can be selected. This can also be selected based

on the network routing protocol that is being used in the system. For example, if the

network is using reactive network routing protocol, selecting RD could be beneficial as

the NSI broadcasting and RFH messages can be added unto network update messages

and route discovery messages. Likewise, if the proactive network routing protocols are

selected, NSI can be circulated along with the network update messages.

Chapter 6

Conclusion and Future Work

This work addressed the feasibility of Computation Offloading for real time execution

of computationally intensive algorithms on network of embedded devices and proposed

novel algorithms that can profoundly enhance the work completion rate of the system

even when the cloud is not available. The research carried out in this project is a

step towards how systems can be made more efficient in deployment scenarios. The

algorithms proposed in this work are not limited to computer vision algorithms but any

computationally intensive algorithm that can benefit from offloading. The proposed

algorithms are useful in making edge devices self sufficient and autonomous. As such,

it can find its usage in the various scenarios where the cloud is not available at all

or in commercial Internet of Things (IOT) applications where the focus is more on

lowering the demand on the cloud. In addition, there are security concerns while using

the cloud as the use is not in control where their data resides and who the data is shared

amongst. While taking help from neighbours, some of these concerns can be mitigated.

For example, the data shared amongst the neighbours are in the same geographical

vicinity and could belong to the same individual or organisation.

The first contribution of this thesis is the comprehensive study of Person Re-identification

(PRID) algorithms. The experiment conducted in the chapter quantify the time and

energy requirements of recent PRID algorithms when executed on a resource limited

146

CHAPTER 6. Conclusion and Future Work 147

device and the cost of sending data on the network for computation offloading. Based

on time taken and data size requirement, Keep It Simple and Straightforward MEtric

(KISSME) is the best amongst three compared algorithms to be implemented on an

embedded device. These results are taken into account while designing the holistic

simulator presented in Chapter 4 and cost functions used in Chapters 4 and 5.

The second contribution of this work is the multi-objective optimisation framework for

offloading computations in the network which formulates of the computational offloading

problem as a multi-objective problem for with Pareto optimal solutions can be obtained.

Also a holistic simulator for evaluating the performance of computation offloading

algorithms is presented. Extensive results showing how the algorithms can perform

in various scenarios. Based on these experiments and results, Minimal Energy Cost

(MEC) is the best algorithm. However, Offload Only if Busy (OOB) is not far behind

in terms of performance while not offloading as many as in the case of MEC. If the

bandwidth between the sensors are further constrained, the OOB is a better alternative.

A novel metric is proposed that is simple to use and intuitive to evaluate the efficiency

of algorithms. The simulator and the metric can be used beyond the scope of this work

as well.

The major contribution of this project is the modelling of the network in a more realistic

fashion using Queueing Theory . The model considers noise and interference on wireless

links as well as the partial connectivity between sensors. New centralised and distributed

algorithms are proposed, that can significantly improve the work completion rate of the

system when the cloud is not available. When the network is dynamic such that the

nodes are arriving and leaving at the same time, it is efficient to choose the reactive

Reactive Distributed (RD) algorithm. It doesn’t require Node State Information (NSI)

to be circulated periodically and works pretty well given the Network Bandwidth (BW)

conditions are adequate. One such case could be the network of vehicles or Vehicle

Ad-hoc Network (VANET). However, if the network is fairly stable, Proactive Centralised

(PC) should be chosen whenever possible as it can perform well even when the BW is

lower. Proactive Distributed (PD) does not have any significant benefit in terms of

performance with respect to the PC but it doesn’t require any central scheduler. So in

CHAPTER 6. Conclusion and Future Work 148

cases where a central scheduler is hard to assign, PD may be chosen. The results were

also evaluated for real computer vision dataset. This evaluation showed considerable

improvement in the performance of the system.

6.1 Future Works

Computation Offloading is an interesting subject, particularly in the context of IOT

devices and 5G networks. There are many interesting ideas and experiments and works

that have been left for the future as it wasn’t possible to complete due to the time

limitation. Below are the key ideas that should be explored.

In the current state, all the neighbours whose average Central Processing Unit (CPU)

load is lower than the threshold should respond to the Request For Help (RFH) message

as soon as possible. This could result in higher time and energy cost for the decision maker

as well as high probability of collision, particularly if there are too many neighbours.

An alternative approach could be to use the response time as the quality of service

that the neighbour can offer. In this approach, a neighbour can vary the response time

based on how busy they are; meaning they send a quick response when they are idle and

have plenty of resources to offer and send a delayed response if they are busy or have

limited resources left. The node asking for help can then choose the node which responds

quickest or select from the nodes that respond quick enough for their application.

The benefits of the offloading directly depends on quality of NSI. This was discussed in

Section 5.8.2. The state of the neighbours can change from when it sends the NSI to

when that information is used. However, it is not always possible to increase the NSI

frequency to obtain the most up to date NSI. Instead, more robust algorithms could be

developed. For example, the system can be modelled using Partially Observed Markov

Decision Processes (POMDP) in which the neighbours can be the part of environment.

In POMDP, the model is aware that the state of the neighbours can be different than

the observed value and act accordingly. The computational complexity of using POMDP

can be high for training purposes. However, the policies could be learnt offline.

CHAPTER 6. Conclusion and Future Work 149

The simulator has the capability to simulate the movement of sensors, however, this

was not explored in this work. In future, this could be explored to see how the effect of

movement will effect the performance. If there is significant movement, the nodes in

the network would be changing continuously which could mean the proactive algorithm

PC has to increase the frequency of NSI updates. This as discussed earlier may not be

feasible.

This project explored Computation Offloading in the context where all the devices share

a common objective. In this work, identifying as many people in the field as possible

is the goal of the system. The evaluation of system is accomplished with this in mind.

However, in the commercial domain where each sensor accounts for themselves, the

evaluation criteria may be changed. The selfishness of the sensors which was briefly

explored in Chapter 4 can be explored further. Game Theoretic approach could be

applied to analyse and optimise these selfish network of sensors.

Finally, in the current state, the Computation Offloading is only based on the cost

function relating to the execution of the algorithm and communication between the

sensor. However, there may be other factors which could be considered. This was briefly

discussed in Section 4.2.4. For example, if in the pedestrian tracking application, if a

person is moving from camera ‘1’ to ‘2’, it may be better to offload the Computation

Offloading job to ‘2’ rather than others, as camera ‘2’ may want to know about the

target coming towards it. It would be interesting to see how this could be taken into

consideration and possibly exploited.

Appendices

150

Appendix A

Parameters for Simulation in

Chapter 4 and Chapter 5

151

CHAPTER A. Parameters for Simulation in Chapter 4 and Chapter 5 152

Table A.1: Parameters used in the Chapter 4 and Chapter 5 simulation

Parameter Value (Unitless
unless

specified)

Equ-
ation

Remarks

Image Sensor Model 4.18

Pidle 225.4 Joules
Pactive 338.8 Joules

Number of Pixels 800× 600 pixels
Camera Clock Frequency 32 MHz

Tframe
1

Frames per second

Tactive
Number of Pixels

Camera Clock Frequency

Tidle Tframe − Tactive

Cellular Model 4.21

βIDLE 63.9
βFACH 267.9
βDCH 519.3

Wi-Fi Model 4.22

βLT 1.2
βHT 0.8

βLT base 238.7
βHT base 247.0

Threshold 20 packets per second

Time costs 9

Packeting Operations 400 per packet

Tpacket
Packeting Operations

Device Clock Frequency

Tsend
Send Data Size

BW BW is different for cellular
and Wi-Fi

Treceive
Recieve Data Size

BW BW is different for cellular
and Wi-Fi

Cost Function (MEC,MBI, OOB) 4.4

woff 1
won 1 If onloader is a smart-

phone.
won 0 If onloader is the Cloud.
wtime 1

CHAPTER A. Parameters for Simulation in Chapter 4 and Chapter 5 153

Parameter Value (Unitless
unless

specified)

Equ-
ation

Remarks

Random Waypoint Model 2.5.3 For target simulation

Vmax 0.6 metre per second
Vmin 0.3 metre per second

Walk Interval 30− 400 seconds
Pause Interval 0− 100 seconds

Direction ±60 deg

CPU 4.5.1

Frequency βfreq βidle
245.0 201.0 35.1
384.0 257.2 39.5
460.8 286.0 35.2
499.2 303.7 36.5
576.0 332.7 39.5
614.4 356.3 38.5
652.8 378.4 36.7
691.2 400.3 39.6
768.0 443.4 40.2
806.4 470.7 38.4
844.8 493.1 43.5
998.4 559.5 45.6

Miscellaneous

τ 5 seconds 7

Appendix B

Simulator Implementation

In this chapter, a brief explanation of how the simulator is implemented. The simulator

is made up of four classes described below.

B.1 Sensor

The Sensor class defines the attributes and behaviour of sensor node in the simulator.

Its class diagram is depicted in Figure B.1 with its main attributes. It has modules such

as CPU, 3G, WiFi, and Camera as described in Section 4.5. Each sensor has a unique

identification number (id). A method called “step()” is executed after every sample

time, that simulates the running of the sensor for the sample time.

B.2 Target

The target class define the attributes and behaviour of a target. In the simulator, there

are many targets at a time moving around in the platform. Its class diagram is shown

in Figure B.2

154

CHAPTER B. Simulator Implementation 155

Sensor

id: double
position: [double, double, double]
offloadoption : double
alive:boolean
total power:double
battery level: double
battery level max: double
life time : double life time fine:double
time last detection : double
FPS:int
FPS enum:enum
FPS requested:int
FPS threshold: int
DVFS enabled:boolean
DVFS governor:int
DVFS time to down:double
DVFS last update:double
DVFS up threshold:double
DVFS down threshold:double
DVFS user space:double
TAR detected:double
TAR offloaded:double
TAR onloaded:double
TAR dropped:double
TAR detected list:double[0..*]
TAR identified list:double[0..*]
FOV min distance:double
FOV max distance:double
FOV phi deg:double
FOV phi width deg: double
FOV theta deg: double
FOV theta width deg: double
FOV points
FOV tri
FOV tess
CAM resolution:double
CAM t active=0:double
CAM switched on:double
CAM clk:double
CAM power

step()

Sensor (CPU)

CPU util:double
CPU frequency idx:int
CPU scalar:double
CPU max freq idx:int
CPU switched on:boolean
CPU power:double
CPU queue interrupt:double[0..*]
CPU queue uninterrupt:double[0..*]

Sensor (3G)

TG rrc:double
TG timer:double
TG power:double
TG bandwidth:double
TG tx queue:double[0..*]
TG rx queue:double[0..*]
TG tx queue bytes:double
TG rx queue bytes:double
TG inactive:boolean
TG R DCH:double
TG R FACH:double
TG mtu:double
TG packet size:double
TG switched on: double
TG node table:table

Sensor(WiFi)

WF pps : double
WF tx queue: double
WF rx queue: double
WF tx queue bytes: double
WF rx queue bytes: double
WF bandwidth: double
WF MTU: double
WF packet size: double
WF switched on: boolean
WF power: double
WF node table:table
WF PDR table:table
WF MUL table:table

Figure B.1: Class diagram of Sensor showing important attributes. In the figure, it is split
into three different classes for space

CHAPTER B. Simulator Implementation 156

Target

id : int
motion model : enum
position : [double, double, double]
track: position [0..*]
alive : boolean
remove : boolean

Figure B.2: Class diagram of Target Class

Algorithm

name: String
no of computations : double
data: [double, double]
data to send: double
can be offloaded: boolean
start time: double
end time: double
sender: int
destination: int
packetsize: double
no of packets: int
operations per packet:double
packeting computations: double
broadcast: boolean
modality: enum

Figure B.3: Class diagram of Algorithm

B.3 Algorithm

Figure B.3 shows the properties of the Algorithm class that tells the simulator if the

algorithm is offloadable or not, where it is originated from, and how much computation

it requires, etc.

B.4 Platform

The platform class is an important entity of the simulator as it takes care of scheduling

all the targets and sensors. In addition it also handles the communication between

CHAPTER B. Simulator Implementation 157

Platform

sensors:Sensor
targets:Target
nw matrix: Table
dimensions: [double, double]
timeSinceLastDecision: double

step()

Figure B.4: Class diagram of Platform

sensors for various modalities. The class diagram of the platform is shown in Figure B.4.

There are multiple instances of “Sensor” and “Target” class inside a platform.

Appendix C

Original Publications

C.1 Journal Paper

• S. Sthapit, J. Thompson, N. M. Robertson and J. R. Hopgood, ”Computational

Load Balancing on the Edge in Absence of Cloud and Fog,” under review in IEEE

Transactions of Mobile Computing

C.2 Conference Papers

• S. Sthapit, J. R. Hopgood and J. Thompson, ”Distributed computational

load balancing for real-time applications,” 2017 25th European Signal Process-

ing Conference (EUSIPCO), Kos, 2017, pp. 1385-1189. doi: 10.23919/EU-

SIPCO.2017.8081436

• S. Sthapit, J. R. Hopgood, N. M. Robertson and J. Thompson, ”Offloading

to neighbouring nodes in smart camera network,” 2016 24th European Signal

Processing Conference (EUSIPCO), Budapest, 2016, pp. 1823-1827. doi:

10.1109/EUSIPCO.2016.7760563

• S. Sthapit, J. Thompson, J. R. Hopgood and N. M. Robertson, ”Distributed

158

CHAPTER C. Original Publications 159

Implementation for Person Re-Identification,” 2015 Sensor Signal Processing for

Defence (SSPD), Edinburgh, 2015, pp. 1-5. doi: 10.1109/SSPD.2015.7288501

Distributed Implementation for Person
Re-identification

Saurav Sthapit∗, John Thompson∗, James R. Hopgood∗ and Neil M. Robertson†
∗Institute of Digital Communications, School of Engineering, University of Edinburgh

Emails:{s.sthapit, john.thompson, james.hopgood}@ed.ac.uk
†Vision Lab, School of Engineering and Physical Sciences, Heriot-Watt University

Email: n.m.robertson@hw.ac.uk

Abstract—Person re-identification is to associate people across
different camera views at different locations and time. Current
computer vision algorithms on person re-identification mainly fo-
cus on performance, making it unsuitable for distributed systems.
For a distributed system, computational complexity, network
usage, energy consumption and memory requirement are as im-
portant as the performance. In this paper, we compare the merits
of current algorithms. We consider three key algorithms, Keep
It Simple and Straightforward MEtric (KISSME), Symmetry-
Driven Accumulation of Local Features (SDALF) and Unsu-
pervised Saliency Matching (USM). The advantage of SDALF,
and USM is that they are unsupervised methods so training
is not required but computationally many time expensive than
KISSME. The Saliency based method is superior in performance
but also has the largest feature size. As the features needs to be
transmitted from one camera to other in distributed system, this
mean higher energy consumption and longer time delay. Among
these three, KISSME offers a balance between performance,
complexity and feature lengths and hence more suitable for
distributed systems.

I. INTRODUCTION

Person re-identification refers to associating people across
camera views at different locations and times [1]. It can have
huge impact on surveillance and security because manual
identification is not only tedious and costly but the results
may also be received too late. The main challenges it faces is
that the Field Of View (FOV) of the cameras can be non-
overlapping, background and pose can change, as well as
the occurrence of occlusion. A particular individual can look
dissimilar in different views, while different individuals can
look similar from different angles. Figure1 shows some sample
pedestrian images from the VIPeR dataset [2] taken by two
cameras illustrating these difficulties.

Camera:1

Camera:2

Fig. 1. Samples of pedestrian images from VIPeR dataset [2]

Person re-identification algorithms can broadly be classi-
fied into supervised and unsupervised algorithms. Supervised
methods include algorithms like Mid-level features [3], Keep
It Simple and Straightforward MEtric (KISSME) [4], Locally
Aligned Featrue Transform (LAFT) [5], Information Theoretic
Metric Learning (ITML) [6]. They mostly focus on metric
learning, whereas unsupervised algorithms focus on feature

design. Some of the unsupervised methods include Symmetry-
Driven Accumulation of Local Features (SDALF) [7], Bio-
inspired Covariance based features (BiCov) [8] and spatio-
temporal [9]. For a more detailed review of recent approaches,
refer to these papers [1], [10], [11], [12].

Current research in this area, however, focusses on im-
plementing their algorithm on a single system [7], [4], [13],
[3]. Implementing person re-identification on a distributed
system has numerous benefits which will be illustrated with
the example shown in Fig. 2. The system comprises of multiple
smart cameras which may be static or moving. They are shown
in the Fig. 2 by black and white camera icons respectively.
The cameras are connected to each other and their field of
view may be non-overlapping. The targets 1 and 2 are moving
along the path shown by the arrows.

In a centralised system, all the sensor nodes would have
been connected to a single computer with immediate access
to data from all the sensor nodes. But on the downside,
it has to process the data itself, which may be challenging
particularly in real-time applications. In the distributed case,
each sensor node has access to its own data only but offers
more flexibility for signal processing. Running it on wireless
embedded platform such as smartphone could be possible,
which means the cameras could be deployed and scaled easily.
In a military context, this means the camera may be embedded
within a soldier’s uniform to monitor targets without raising
suspicion in conflict zones. We can think of light cameras in
Fig.2 as these soldiers monitoring target 2. however, along with
the algorithm’s accuracy, there are several other factors to think
about such as feature data length, computational complexity
etc.

In this paper, we discuss the advantages and the disad-
vantages of current person re-identification algorithms when
implemented on a distributed platform. The paper is structured
as follows. Section II describes the basic workflow in person
re-identification. Then we analyse various algorithms in section
III. Section IV describes the experiments carried out and their
results. Finally section V discusses the results and concludes
the paper.

1 1

1

1

2

2
2

2

2

2

Fig. 2. Scenario of multi-camera person re-identification. Shaded cameras
are fixed, white cameras are moving and grayed area represent Field of View
(FOV)

978-1-4799-7444-3/15/$31.00 ©2015 IEEE

II. SYSTEM DESCRIPTION

Person re-identification algorithms generally follow the
basic workflow depicted in Fig. 3. Images are taken from each
camera and preprocessed. The pre-processing step may include
background subtraction and a person detection algorithm. To
create a unique signature of each person, features are extracted.
Popular features include combination of low level features
such as colour histograms, Local Binary Patterns (LBP) [14],
Scale Invariant Feature Transform (SIFT) [15] and Histogram
of Gradient(HOG) [16]. Metric distance between signatures is
calculated to verify if the images belong to the same individual
or not. Alternatively, the test signature may be compared with
the gallery set containing signatures of a seen individual to find
the correct match. Some researchers have defined the person
identification problem as a ranking problem [17].

In the distributed case, the signature has to be communi-
cated from one camera to another as shown in the Fig. 3. Very
often, these camera are connected with wireless networks such
as Wi-Fi or cellular system. We know that the time taken and
energy required to send the data across the network is directly
proportional to the length of the data [18]. We conduct an
experiment to quantize the energy and time required for such
system in section IV-A.

Image Person Detection Feature Extraction Signature Generation

Image Person Detection Feature Extraction Signature Generation Signature
Matched?

Camera 2

Camera 1

Yes

No

Communication
Channel

Different person

Same
person

Fig. 3. Person Re-identification workflow.

Depending upon the number of images used, algorithms
can be classified into single-shot and multi-shot algorithms.
Single-shot algorithms take into account only one image per
person (class) whereas multiple-shot algorithms uses multiple
images. Multi-shot algorithms tries to keep the signature data
size low and keep the matching considerably fast by throwing
away redundant information.

A. Distributed Scenario

For implementing the re-identification system on a dis-
tributed system, let us assume each camera in Fig.3 has its
own processing capability. So each sensor node can generate
signature for the people in its FOV. For signature matching,
one device has to send their signature to its neighbour so that it
can be matched with its camera views. These are often battery
powered devices, such as a smartphone, so longevity of the
battery is desired. As it is desirable to keep the signature size
as small as possible, we analyse the size of descriptors of the
algorithms in consideration. Distributed systems are equipped
with less powerful processors and have less memory resources,
so the complexity of the algorithm is desired to be as low as
possible. In order to measure complexity, we measure the time
taken to run. For this paper, we have run our experiments on
a desktop computer.

B. Datasets

Popular publicly available datasets for person re-
identification are listed in Table.I. VIPeR is the most widely
used and challenging dataset, one of the reason being limited
samples per subject. We have used the VIPeR dataset in our

experiments because many published algorithm comparisons
are available.

III. PERSON RE-IDENTIFICATION ALGORITHMS

Among many algorithms, we have selected three key ones
owing to their significance in person re-identification and
availability of their source code. We go through them very
briefly here.

A. KISS MEtric Learning

Keep It Simple and Straightforward Metric (KISSME)
[4] focusses on learning the metric rather than complicated
descriptor design. For the descriptor, images are divided into
overlapping blocks and histograms are extracted in HSV and
LAB colour-space. Local Binary Patterns (LBP) [14] are
extracted to capture the texture information. For the VIPeR
dataset, based on the code and data1 provided by authors [4],
each image has 22154 dimension features. Principal Com-
ponent Analysis (PCA) is used by the authors to shorten
the length of the descriptor to 34 experimentally chosen
dimensions.

The Mahalanobis Metric learning is a widely used method
in classification and in computer vision. It is defined as the
squared distance between two points xi and xj as

d2
M (xi, xj) = (xi − xT

j)M(xi − xj) (1)

where M � 0 is a positive semi-definite matrix.The main
approach of Mahalanobis based algorithms is to define and
learn the matrix M such that distance between images of
same class is minimised and distance between images of
different classes are maximised. KISSME [4], ITML, [6],
LDML [21] and LAFT [5] are based on these methods. A
detailed review of Mahalanobis based methods can be found
in Roth et al’s paper [22]. KISSME tries to address the metric
learning approach from a statistical inference point of view.
They test the hypothesis H0 that the pair is dissimilar versus
the alternative hypothesis H1 that the pair is similar.

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
(2)

where xij = xi−xj is the pairwise difference with zero mean.
A high value of δ(xij) means the pair are dissimilar and vice-
versa. Assuming a Gaussian structure of the difference space,
Eq. 2 can be written as

δ(xij) = log

⎛
⎝

1√
2π|Σyij

=0| exp(−1/2xT
ijΣ

−1
yij=0 xij)

1√
2π|Σyij=1|

exp(−1/2xT
ijΣ

−1
yij=1xij)

⎞
⎠ (3)

where,

Σyij=0,1
=

∑

yij=0,1

(xi − xj)(xi − xj)
T (4)

They arrive at the Mahalanobis distance metric in Eqn.1 that
reflects the properties of the log-likelihood ratio test by re-
projecting M̂ =

(
Σ−1

yij=1 − Σ−1
yij=0

)
onto the cone of positive

semi-definite matrices.

1accessible from https://lrs.icg.tugraz.at/research/kissme/

TABLE I. POPULAR PERSON RE-IDENTIFICATION DATASETS

Dataset No. of Person No. of Images Features
VIPeR [2] 632 1264 pose, background, only 1 image per subject per camera

CAVIAR4REID [19] 72 1220 pose, background, varying resolution, multiple images per subject per camera
CUHK01 [20] 971 3884 pose, background, multiple images per subject per camera

B. Symmetry-Driven Accumulation of Local Features(SDALF)

SDALF [7] is suitable for single-shot and multi-shot im-
ages. The pedestrian image is divided into the head, torso
and leg region and three types of features Weighted Color
Histograms(WHSV), Maximally Stable Color Region(MSCR)
and Recurrent High-Structured Patches (RHSP) are extracted.
Each of these features are extracted from the torso and leg
region and optionally from the head region. The histograms
feature is built with 12 bins channel per region, totalling to
12 × 3 × 3 = 108 dimensions2. The MSCR feature of a
blob is represented by 9 dimensional feature but these blobs
per image is variable. Similarly, the feature length of RHSP
features is variable as well. Similarity between two images is
calculated as weighted sum of euclidean distance between their
features. As the algorithm is unsupervised, it doesn’t require
any training and is also scalable to videos.

C. Unsupervised Saliency

Saliency is defined as “distinct features that 1) are discrimi-
native in making a person standing out from their companions,
and 2) are reliable in finding the same person across different
views” [23]. Zhao et al. have developed a few variants of
supervised and unsupervised methods using saliency [13],
[23], [3] but we will mostly focus on Unsupervised Salience
Matching [13]. Each image is densely divided into overlapping
patches. For each patch, 32 bin LAB colour histograms are
computed in three scales for three channels. So the colour
feature is of length 32 × 3 × 3 = 288. Similarly for SIFT
features, each patch is further divided into 4×4 cells to obtain
4 × 4 × 8 = 128 dimensional feature per channel. So total
feature length for each patch is 288 + 128 × 3 = 672 dimen-
sions. For an image, these DenseFeats features is represented
as XA,u = {xA,u

m,n|m = 1...,M, n = 1..., N} where (A, u)
denotes the uth image in camera A, (m,n) denotes the patch
centred at the mth row and the nth column of the image. Total
size of feature for an image is M × N × 672.

Once, the features are extracted for each patch, the key
steps of the algorithm is briefly listed in Table II. Fig.4
illustrates the adjacency constrained search set of the patch in
yellow box which is used in computing the Nearest Neighbour
set. One of the two approaches is based nearest neighbour
distances. A score is assigned for each patch using Eq. 5.

scoreknn(xA,u
m,n) = Dk(XNN (xA,u

m,n)) (5)

where Dk denotes the distance of the k-th nearest neighbour.
Similarity between two images is calculated using Eq.6

Sim(xA,u,xB,v) =

∑

m,n

scoreknn(xA,u
m,n).s(xA,u

m,n, xB,v
i,j).scoreknn(xB,v

i,j)

αsdc + |scoreknn(xA,u
m,n) − scoreknn(xB,v

i,j)|
(6)

IV. SIMULATION RESULTS

In the ideal scenario, the algorithms would be implemented
on a real distributed system such as Android smartphone

2reduced to 72 if head region is not used

Fig. 4. Illustration of adjacency constrained search. Green region represents
the adjacency constrained search set of the patch in yellow box. The patch in
red box is the target match [23]

TABLE II. ALGORITHM FOR UNSUPERVISED HUMAN SALIENCY

LEARNING

Algorithm for learning Unsupervised Human saliency
Input: image XA,u and a reference image set
R = {XB,v, v = 1, ...Nr}
Output: saliency probability map P (lA,u

m,n = 1|xA,u
m,n)

for each patch xA,u
m,n do

compute Nearest Neighbour (NN) set XNN (xA,u
m,n)

compute scoreknn(xA,u
m,n) based on NN distances,

end for

and results could be measured. However, the algorithms are
initially written in MATLAB to simulate a distributed system
scenario and the simulations were carried out on MATLAB
running on a desktop PC. In future, we can experiment with
implementing the algorithms on embedded device to check
their performance.

Experiments were carried out on a desktop PC with an
Intel Xeon processor (X5650) with 12 cores and 24 gigabytes
of RAM running Scientific Linux 6.5 unless specified. Some
of the algorithms have parallel implementation as well but we
have turned it off for these experiments for two reasons. 1) To
make the comparisons fair, 2) Parallel MATLAB instances run
within their own Java Virtual Machine (JVM) environments
accounting for increased memory allocations. This caused
some algorithms to fill the RAM to fill quickly and slowing
down the execution.

For the experiments, the VIPeR dataset was randomly split
into two sets of 316 image pairs each. One set was used for
training and other for testing. We do this following the testing
conventions in these papers [7], [4], [13].

A. Cost of sending data in wireless network

In the distributed case, the signature of a person extracted
in one camera has to be transmitted to another via a commu-
nication channel as shown in Fig. 3. The implication of trans-
ferring data to a neighbour node has a cost in terms of energy
and time, particularly in the case of wireless transmission. We
conducted simple experiment to analyse how much energy and
time is required in order to data to other nodes. We developed a
simple application(app) for the Android platform which sends
files of various sizes to the server using WiFi or mobile
data (see Fig.5). The application was built using Google’s
Android Development Kit (ADK) and Android Studio. The
experiments were conducted in a LG G2 smartphone. Time is
measured using the system clock. Initial time is noted when
data sending commences. The final time is noted after an ac-
knowledgement is received from the server and the time taken

Fig. 5. Android application for calculating time and energy cost of
transmitting data

is the difference of these two. Measuring energy consumed is
however complicated than measuring time, because by default
Android reports battery level in percentage only.It is too crude
for our purpose and also as many processes are running
simultaneously in background, it’s hard to calculate the exact
energy consumed for the communication. We used a third
party application called Trepn profiler [24]. It is developed
by Qualcomm for their Snapdragon processors and has access
to hardware counters in the processor which are not available
for public use. It isolates the energy used by an application,
by collecting baseline energy consumption before starting the
test application. Similar to the counter for measuring time, we
flag the start and the end of the communication event to the
Trepn application using Android Intent. Trepn then logs the
energy consumption for each event.

As expected, the evaluations show in Fig.6 that the cost
rises as the size of data goes up. WiFi has generally lower
energy consumption than the phone networks. The difference
becomes notable as the size of data goes up. Surprisingly, the
speed of 4G was even faster than the WiFi albeit at higher
energy cost. The test were done in Edinburgh with the WiFi
provided by router connected to the Virgin Network and 4G
by Everything Everywhere (EE) Network. But we didn’t take
into account many factors such as the load on the network,
Signal strength etc.

Data Size (MegaBytes)
0 1 2 3 4 5 6 7 8 9 10

T
im

e
(S

ec
on

ds
)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Time taken to transmit data

WiF i

4G

3G

Data Size (MegaBytes)
0 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

(M
ill

i J
ou

le
s)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
Energy cost of transmitting data

WiF i

4G

3G

Fig. 6. Time and energy required to send data across the network

B. Runtime and Feature Length

1) KISSME: Among all the methods, KISSME was the
fastest to train and learn the metric and it performed well
too. The length of the feature before and after dimensionality
reduction was determined from the source code and feature
dataset provided. However, to calculate the time taken for
feature extraction, we wrote the code as per their paper [4].
We divide the image into overlapping blocks of size 8×16 and
stride of 8 × 8 to get 105 patches. We took histograms of 24
bins per channel and uniform LBP of 59 bins. So in total, the
feature size is 105×3×2×24+105×59 = 21315 dimensions.
The histogram extraction of HSV and LAB and LBP features

TABLE III. SDALF EXECUTION TIME

Step Time(sec)
Division into 3 parts 162.15
MSCR Extraction 138.21
WHSV Extraction 123.17
RHSP Extraction 4824.6
MSCR Matching 6095.3
WHSV Matching 214.74
RHSP Matching 423.00
Total 11981.17

TABLE IV. FEATURE LENGTH, RUNTIME AND RANK 1 RESULTS.

Algorithm Feature Length(PCA) Time(sec) Rank 1
KISSME 22154(34) 260.05 18.03
SDALF 5359 11981.00 19.80

Unsupervised Saliency 201600 11737.90 27.22

took approximately 260 seconds, which is very high compared
to its training time of around 0.05 seconds. But still, feature
extraction per image would take about 260/1264 ≈ 0.2
seconds.After dimensionality reduction, the feature dimension
is reduced to just 34 which is highly desirable.

2) SDALF: As discussed in section III, the feature length
of SDALF is not fixed but dependent on the number of RHSP
patches and MSCR regions found in the image. Table III shows
the breakdown of average time spent per step for the VIPeR
dataset. RHSP features took the longest to compute so we
experimented with removing it. The result showed there was
only marginal degradation of performance. It can be seen in
Fig. 7. But as the test has been done only in one dataset, it
may not be true for all.

Rank
1 2 3 4 5 6 7 8 9 10 12 16 20

P
er
ce
n
ta
g
e

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Cumulative Matching Characteristic (CMC)

OriginalSDALF

SDALFwithoutRHSP

Fig. 7. Performance of SDALF with and without RHSP

3) Saliency: Saliency learning has the highest feature size
per image. Each feature is of 201600 dimensions, if we
suppose it is of MATLAB double precision, it’s size is approxi-
mately 1.5 Megabytes which is not huge. However, each probe
patch has it own adjacency search area for each image in the
gallery set. If we assume 10 patches per row and constrained
search area to be ±2 rows, and there are 100 images in the
gallery then. For each patch, we need to calculate the distance
between itself and 10 × 5 = 5000 patches3. If there are 300
patches per image, it amounts to 5000 × 300 = 1, 500, 000
distances per image, which is more than 11 Megabytes in
MATLAB double precision. In terms of running on embedded
devices, memory is often a limited resource.

C. Cumulative Matching Characteristics (CMC) curves

Cumulative Matching Characteristics(CMC) [25] is widely
used in person re-identification performance evaluation. It
treats person re-identification as a ranking problem. Rank-1

3except for two top and two bottom rows

implies that the correct match has been found whereas Rank-
k implies there were k − 1 wrong classes ahead of the correct
class. CMC(k) measures the probability that the correct match
has a rank equal or higher than k [10]. TableIV shows Rank-
1 score of various algorithms. It shows Saliency has better
performance although it is computationally expensive and high
data size. KISSME on the other hand looks the best to be
implemented on distributed system as it is shown to be fast
and computationally inexpensive as well.

Rank
1 2 3 4 5 6 7 8 9 10 12 16 20

P
er
ce
n
ta
g
e

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Cumulative Matching Characteristic (CMC)

KISSME

SDALF

UnsupervisedSaliency

Fig. 8. Performance of the algorithms in VIPeR dataset

V. CONCLUSION

In this paper, we explored the possibilities of implementing
person re-identification algorithms on distributed systems. We
studied KISSME, SDALF and Unsupervised Saliency match-
ing in terms of their runtime, size of descriptor, along with
their person re-identification performance. We also looked at
time and energy cost of communicating with neighbouring
systems using various wireless technologies. Unsupervised
Saliency has better Rank-1 result but it is computationally
the most expensive and the memory requirement is also the
highest. Even though we did not mention the energy cost
for computing on the distributed platform, this would also
consume high amount of energy. SDALF on the other hand
has smallest signature before dimensionality reduction and
potentially could be made even smaller by removing RHSP
features. In theory at least, SDALF and Saliency features may
be reduced using dimensionality reduction as well. But based
on our experiments, without any modifications, KISSME is
the best algorithm for a distributed system owing to its low
complexity and shortest signature length. The only drawback
is that it has to be trained and the large covariance matrices
has to be computed and communicated to the neighbours.

This paper explored only the consequences of using dis-
tributed systems for person re-identification systems where
communication between the sensor nodes is a requirement.
But in some cases there might be a question between commu-
nicating or processing on its own. Even with communicating
between nodes, there is a question of which node to commu-
nicate to when multiple nodes are available. In future, we are
interested in answering these questions.

VI. ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) [EP/K014277/1] and the
MOD University Defence Research Centre (UDRC) on Signal
Processing

REFERENCES

[1] S. Gong, M. Cristani, S. Yan, and C. C. Loy, Person Re-Identification,
Advance in Computer Vision and Pattern Recognition. 2014.

[2] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for
recognition, reacquisition, and tracking,” Perform. Eval. Track. Surveill.
(PETS), 10th Int. Work., vol. 3, pp. 41–47, 2007.

[3] R. Zhao, W. Ouyang, and X. Wang, “Learning Mid-level Filters
for Person Re-identification,” 2014 IEEE Conf. Comput. Vis. Pattern
Recognit., pp. 144–151, June 2014.

[4] M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof,
“Large scale metric learning from equivalence constraints,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., no. Ldml, pp. 2288–
2295, 2012.

[5] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith, “Learn-
ing Locally-Adaptive Decision Functions for Person Verification,” 2013
IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3610–3617, June 2013.

[6] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” Icml, pp. 209–216, 2007.

[7] M. Farenzena, L. Bazzani, a. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of local fea-
tures,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
pp. 2360–2367, 2010.

[8] H. Ma, C. Zeng, and C. X. Ling, “A Reliable People Counting System
via Multiple Cameras,” ACM Trans. Intell. Syst. Technol., vol. 3, pp. 1–
22, Feb. 2012.

[9] T. B. T. Sebastian, P. H. Tu, J. Rittscher, R. Hartley, and N. Gheissari,
“Person Reidentification Using Spatiotemporal Appearance,” in 2006
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. - Vol. 2, vol. 2,
pp. 1528–1535, IEEE, 2006.

[10] X. Wang and R. Zhao, “Person Re-Identification: System Design and
Evaluation Overview,” in Pers. Re-Identification (S. Gong, M. Cristani,
S. Yan, and C. C. Loy, eds.), London: Springer London, 2014.

[11] M. H. M. Saad, H. B. Zaman, M. A. Saghafi, and A. Hussain, “Review
of person re-identification techniques,” IET Comput. Vis., pp. 1–20, Feb.
2014.

[12] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and trends
in person re-identification,” Image Vis. Comput., vol. 32, pp. 270–286,
2014.

[13] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised Salience Learning
for Person Re-identification,” 2013 IEEE Conf. Comput. Vis. Pattern
Recognit., pp. 3586–3593, June 2013.

[14] T. Ojala, M. Pietikäinen, T. Maenpaa, T. Mäenpää, and T. Maenpaa,
“Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns,” Pattern Anal. Mach. Intell. IEEE Trans.,
vol. 24, no. 7, pp. 971–987, 2002.

[15] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[16] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
vol. 1, pp. 886–893, 2005.

[17] B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “Person Re-
Identification by Support Vector Ranking,” Procedings Br. Mach. Vis.
Conf. 2010, vol. 1, pp. 21.1–21.11, 2010.

[18] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Of-
floading Computation Save Energy?,” Computer (Long. Beach. Calif).,
vol. 43, no. 4, pp. 51–56, 2010.

[19] L. B. Dong Seon Cheng, Marco Cristani, Michele Stoppa and
V. Murino, “Custom Pictorial Structures for Re-identification,” Proc.
Br. Mach. Vis. Conf., pp. 68.1—-68.11, 2011.

[20] W. Li and X. Wang, “Locally aligned feature transforms across
views,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
pp. 3594–3601, 2013.

[21] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? Metric learning
approaches for face identification,” 2009 IEEE 12th Int. Conf. Comput.
Vis., pp. 498–505, 2009.

[22] P. M. Roth, M. Hirzer, M. Köstinger, C. Beleznai, and H. Bischof,
“Mahalanobis Distance Learning for Person Re-identification,” in Pers.
Re-Identification, pp. 247–267, Springer London, 2014.

[23] R. Zhao, W. Ouyang, and X. Wang, “Person Re-identification by
Salience Matching,” 2013 IEEE Int. Conf. Comput. Vis., pp. 2528–2535,
2013.

[24] Q. Technologies, “Trepn Profiler Starter Edition User Guide.” 2014.

[25] J. R. Beveridge, D. S. Bolme, B. A. Draper, and M. L. Teixeira, “The
CSU face identification evaluation system - Its purpose, features, and
structure,” Mach. Vis. Appl., vol. 16, no. April 2003, pp. 128–138, 2005.

Offloading to Neighbouring Nodes in Smart Camera
Network

Saurav Sthapit∗, James R. Hopgood∗, Neil M. Robertson† and John Thompson∗
∗Institute of Digital Communications, School of Engineering, University of Edinburgh

Emails:{s.sthapit, james.hopgood, john.thompson}@ed.ac.uk
†Vision Lab, School of Engineering and Physical Sciences, Heriot-Watt University

Email: n.m.robertson@hw.ac.uk

Abstract—Mobile Cloud Computing refers to offloading com-
putationally intensive algorithms from a mobile device to a cloud
in order to save resources (time and energy) in the mobile device.
But when the connection to the cloud is non-existent or limited, as
in battle-space scenarios, exploiting neighbouring devices could
be an alternative. In this paper we have developed a framework
to offload computationally intensive algorithms to neighbours in
order to minimise the algorithm completion time. We propose
resource allocation algorithms to maximize the performance of
these systems in real-time computer vision applications (drop less
targets). Results show significant performance improvement at
the cost of using some extra energy resource. Finally we define
a new performance metric which also incorporates the energy
consumed and is used to compare the offloading algorithms.

Index Terms—Offloading, Mobile Cloud Computing, Energy

I. INTRODUCTION

Off-the-shelf smartphones are becoming ubiquitous and
powerful, making them an interesting prospect to form a smart
networked camera. However, they are not powerful enough
for many applications, especially if the results are required
in real-time. We have previously considered their pros and
cons for distributed person re-identification [1]. If smartphones
are deployed to carry out computationally intensive computer
vision tasks, such as person tracking and re-identification
between multiple cameras, they may not always be able to
process everything within a user specified time. As such we
can define performance of a system as the ratio of number of
jobs processed to the number of jobs available.

Conventionally, computationally intensive algorithms have
been offloaded to the “cloud” and it has been shown in some
cases to save time and energy [2] [3]. In this paper however,
we present a novel framework to offload these tasks to neigh-
bouring mobile nodes which can significantly increase the
performance without substantially depleting battery resource
compared to the non-offloading case. We also present a single
metric called Efficiency Score (ES) which also incorporates
the energy consumption along with the performance.

A. Computing platform types

If there is no network connectivity, the only option is to do
on-board processing. However, if there is some connectivity,
we have the option to offload. We use the term “onloader”
for the system which the “offloader” offloads its workload to.
Some on-board processing can reduce the amount of data to
be communicated while freeing up the onloader’s resources.
For example, a background subtraction algorithm can limit the
sensor from sending images with little or no activity. This
saves communication cost for the sensor and the onloader
has fewer jobs to perform. However, when the algorithms are

High speed Wi-Fi

In
te

rm
it
te

n
t
lo

w

sp
e
e
d
 C

e
ll
u
la

r

Field of View
25

50

75

100

125

T1 T2,T3 T4

Time (Seconds)

C
P

U
 u

t
il
is

a
t
io

n
 %

X

Y

Fig. 1. Pedestrian identification scenario: device X inundated with targets
while device Y is idle (left), shows computational load on X and Y. T1–T4
indicates arrival of targets (right).

fairly complex, the cloud is the preferred option. High round-
trip latency can be compensated by its shorter runtime owing
to high performance computing resources in the cloud. More
details on mobile cloud offloading can be found in [4].

Neighbouring nodes are important alternative to the cloud
for two reasons, the first reason is communicating with neigh-
bours can help in the co-ordination and control of the node
network. Neighbours can provide a cue of an incoming target,
or give complementary and valuable information about the
targets. More details about co-ordination and control can be
found in [5]. The second reason is that when the cloud is
unavailable, they can help in sharing the computational load.
For example, in an underground transportation network, battle-
space scenario, or a search and rescue mission after natural
disaster, the internet may be unreachable. Even if there is a
connection, the Network Bandwidth (BW) may be too low
or intermittent. Neighbouring devices lack the computational
power and energy of the cloud but may be readily available
with high BW connections. However, we need to consider their
available energy resources before offloading a job as when
in the field, charging may not be readily available. In this
paper, we discuss its feasibility in terms of time and energy.
Magurawalage et al. have considered offloading to intermediate
cloud like entity called cloudlets [6] but to the best of our
knowledge, battery powered neighbours have not been used
by anyone as an offloading candidate.

B. Problem formulation

Let us assume there are two similar smartphones (X and
Y) deployed in the field to identify people arriving in their
Field Of View (FOV). Each can only process N targets at a
time. When there are P > N potential targets to process, as
shown in the Fig. 1 where N = 3, X has no other option than
to offload or drop some of the targets. If the cloud is available
and the bandwidth is sufficiently high, the cloud can be the

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1823

onloader. Then, X can offload (P −N) targets to the cloud and
as Kumar et. al explains, it can save time and energy [2]. If
the cloud is not available, conventional system would simply
drop the targets. However, device Y has no target in its FOV
at this moment. We show that neighbour devices like Y can
be good alternative and may be used for offloading.

We now describe the simulator we developed to study
smartphones with cellular and Wi-Fi communication capabili-
ties. Then in section III, we describe how we use the simulator
for a person re-identification system. Then we describe exper-
iments in section IV and show results. Finally in section V,
we present conclusions to the paper.

II. MODELLING NETWORK OF SMART CAMERAS

The simulator allows us to use a simplified model of the
algorithm flow for the target platform and update components
easily as required. Wu et al. used queuing model theory to
simulate workload on distributed nodes [3]. However, their
assumption that when there is no workload the nodes do
not consume any energy is not valid in real life. The major
elements of our simulator relate to the algorithmic tasks, the
sensor architecture, communication links and the targets. We
go through each one in detail below.

A. Algorithmic tasks

The simulator’s model for the algorithmic task is charac-
terised by its number of Operations (OP), input and output
data size. For example, a person detection algorithm takes an
image of size M × N as the input, requires approximately
C OP per image and outputs the number of persons in the
image. Assuming one OP per clock cycle, we can estimate the
execution time on the device using the clock frequency.

Texec ∝ C

Clock Frequency
(1)

We are aware that in different processors some OP take
more than one cycle and multiple OP can be possible in one
cycle, however this approximation (Eqn. (1)) gives an estimate
of time required without detailed execution information. If
desired, algorithms could be executed on the Device Under
Test (DUT) to measure the execution time more precisely.

The number of OP required for an algorithm can change.
For instance, in the Mixture of Gradients (MOG) algorithm for
background subtraction, it depends on how quickly a matching
Gaussian distribution is detected for the particular pixel [7]. To
make calculations easier for the simulation, we take the worst
case scenario where the matching Gaussian is not found.

B. Component Based Sensors

In order to realistically emulate its behaviour, a sensor is
divided into its components such as the Central Processing
Unit (CPU) and cellular radio. We do not consider the energy
consumption by the display as it can be turned off by the
application. We use the utilisation based model by Jung et al.
to calculate the energy consumption [8] and our parameters
are based on a Google Nexus I phone which was one of their
DUTs. However if desired, the simulator can be calibrated for
a different DUT in a straightforward manner.

TABLE I. CPU PARAMETERS

Frequency 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4
β

cpu
freq 201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5

βcpu
idle 35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6

1) Image Sensor: The image sensor consumes significant
energy in a mobile device when used continuously. According
to Likamwa et al., the energy consumption per frame of the
image sensor can be modelled as follows [9].

Ecamera = Pidle × (Tframe − Tactive) + Pactive × Tactive (2)

where Tactive = Number of Pixels
Camera Clock Frequency . Based on Eqn. 2 , we can

either reduce the image resolution, thereby reducing Tactive or
reduce the acquisition rate to save the energy consumption.

2) Application Processor (AP): The CPU power is made
up of two parts, idle power and the running power, as follows:

pcpu = βcpu
freq × u + βcpu

idle, (3)

where u is the utilisation and βcpu
freq and βcpu

idle are the CPU
parameters listed in Table I. We calculate the utilisation as
the ratio of the CPU time used vs the time available per
frame. However, the CPU is also used by the Operating System
(OS) and other running applications. Dargie used normal and
exponential distributions to simulate workload in [10]. We
also used a random variable (r) sampled from a Gaussian
distribution to simulate these other activities. By adjusting the
mean of r we can a simulate busy sensor and idle sensor. The
total utilisation is calculated as shown below.

u =

∑N
i=1 Texeci

TFrame
+ r (4)

where N is the number of algorithms to be processed,
Texeci is the execution time for ith algorithm (see Table II for
execution times for all algorithms) and TFrame = 1

FPS is the time
available for each frame. In the situation where Texeci > TFrame
which is very likely in the case of algorithms for person re-
identification; we only run the CPU to 100% load and run the
remainder of the algorithm in the next frame and so on.

3) Cellular (3G): Cellular radio is modelled as a three
state system: IDLE, Forward Access Channel (FACH) and
Dedicated Channel (DCH). The IDLE mode is the non com-
municating mode and has the lowest power consumption. In
this mode, the User Equipment (UE) is turned on but has not
established Radio Resource Control (RRC) connection with
the Radio Network Controller (RNC). In DCH state the UE
has a dedicated transport channel for data transmission in
both directions, but this is 50 to 100% more expensive than
FACH, where FACH is the intermediate state with reduced
power consumption and low data rate. There is no dedicated
channel allocated in this mode and it can only transmit user
data through shared low speed channel that is typically less
than 15kbps [11]. As we can see from Eqn. (5), power is only
dependent on state but not on utilisation. Fig. 2 shows the
state diagram with the inactivity timers which along with data
buffer size controls the state promotions and demotions.

p3g =

βIDLE if RRC state is IDLE
βFACH if RRC state is FACH
βDCH if RRC state is DCH

(5)

where RRC is the current state of UE and βIDLE, βFACH and
βDCH are based on [8].

2016 24th European Signal Processing Conference (EUSIPCO)

1824

IDLE FACH

DCH

α1

α2

1

2

Fig. 2. Cellular radio states, α1 and α2 are inactivity timers whereas δ1 and
δ2 are delay to get to DCH

Image Background subtraction Person Detection

Person IdentificationResult

Fig. 3. Person Re-identification work-flow.

4) Wi-Fi: The Wi-Fi model calculates the time and energy
of the Wi-Fi component in the connected mode. There are two
modes depending upon the packet rate.

pwifi =

{
βLT × p + βLT base if p ≤ Threshold
βHT × p + βHT base if p > Threshold

(6)

where p is the packet rate, βLT, βHT, βLT base and βHT base are
the parameters of the DUT based on [8]. If the number of
packets per second exceeds the threshold of 20 then Wi-Fi is
in the high power state, else in the low power state. Unlike the
cellular system, the power consumption is directly proportional
to the data rate. Although Wi-Fi consumes energy in scanning
mode, we ignore it as we assume a connection between the
sensors as the basis of this research.

III. SYSTEM DESIGN

In this section, we show how offloading may be used to
increase the performance of a system. We consider a pedestrian
re-identification system outlined in Fig. 3. It starts with image
acquisition from the image sensor. A background subtraction
and a person detection algorithm is applied on the image
to detect the number of people in the view. When there a
pedestrian is detected, we apply a person re-identification
algorithm to each detection such as [12]. Our goal is to identify
as many detections as possible.

A. Application Partitioning

The algorithmic complexity of the person re-identification
algorithm outweighs that of other algorithms in the chain (see
Table II). So, the overall complexity of the system can be
estimated as O(N) where N is the number of people detected.
To be realistic, we limit the number of people in an image
(800 × 600) in the simulator to be fewer than 10.

B. Energy Saving Methods

We replicate following energy saving techniques to make
the simulation realistic as much as possible.

1) Dynamic Frame per Second: We can save energy by
decreasing the number of FPS of the system (see Eqn. (4)).
However, very low FPS may mean some of the detections may
be missed. We implemented an algorithm to vary the FPS of
each individual sensor between 1 and 16 in the following way.

FPS (new) =

{
FPS (old) × 2 if t < τ

FPS (old) ÷ 2 if t > τ
(7)

where t is the time between target activities and τ is 5 seconds.

TABLE II. EXECUTION TIMES FOR CPU RUNNING @ 998.4 MHZ

Algorithm Execution Time
Background Subtraction 0.1
Person Detector 0.2
Person Re-identification 5.1
Total Time 5.3

2) Dynamic Voltage and Frequency Scaling (DVFS): A
simple algorithm controls the clock frequency of the sensor.
When the CPU utilisation is below 0.4, the clock frequency
is lowered according to Table I and it is scaled to maximum
frequency as soon as the utilisation is above 0.9.

C. Offloading

We classify only the re-identification algorithm as offload-
able as for others, the communication costs and the time delay
outweighs the benefits of offloading. Offloading an algorithm
entails sending input data, waiting for the onloader to execute,
and receiving output data. Before transmitting however, the
data has to be formatted in packets and some overhead will be
added to the processor. These operations can be a few hundred
per packet which needs to be added to the CPU workload.

1) Time Cost: The communication times are proportional
to the data size to be communicated and inversely proportional
to the network BW. We assumed the BW to be static. Waiting
times can be estimated using Eqn. (1) for the onloader’s clock
frequency. But, it does not take into account the CPU load.
If our onloader’s AP is already busy, our estimation can be
very far from reality. So we re-write the time calculation using
onloader’s average CPU utilisation.

Twait =
Texec

1 − E[u]
(8)

where E[u] is the average of u from Eqn. (4). The total time
cost which is also known as makespan, is shown below [13].

Ttotal = Tpacket + Tsend + Twait + Treceive (9)

where Tpacket is the time to format the data in a packet.

2) Energy Cost: There are two energy costs involved. The
first is for the offloader (Eoff) and includes data packeting and
the radio communication cost.

Eoff = (Tsend + Treceive) × Pradio + Pcpu × Tpacket (10)

where radio ∈ {3G,WiFi}. Second is for the onloader which
includes radio cost, execution cost and the packeting costs. So
far, in literature, cost for the onloader is ignored as energy is
not of major concern for the cloud. But while offloading to
the neighbours, we need to consider it.

Eon = (Treceive +Tsend)×Pradio +Pcpu ×(Texecute +Tpacket) (11)

D. Multi-Objective Optimisation

The time and energy costs from Eqn. (9, 10 and 11) can be
inferred as variables of a multi-objective optimisation problem.

Cost = wtime × Ttotal + woff × Eoff + won × Eon (12)

where wtime, woff and won are the weights for each objective.
The cost function involves adding time and energy variables
(i.e. different units), which requires careful selection of the

2016 24th European Signal Processing Conference (EUSIPCO)

1825

Energy(Offloader)

E
n
e
r
g
y
(O

n
lo
a
d
e
r
)

Node satisfies time constraint

Node does not satisfy time constraint

Fig. 4. Multi-Objective optimisation problem reduced to two objectives.

weights. We avoid this situation by limiting one of the objec-
tives to a threshold (ε) and optimising rest of the objectives
[14]. Regarding the real-time nature of our problem, we limit
the time and optimise the energy variables. We set ε = 25
seconds and leave out the nodes that do not satisfy this
constraint (denoted by the light dots in Fig. 4). It is still a
multi-objective problem but only with two variables of the
same unit (Joules). We now study three methods to optimize
offloading performance.

1) Minimize Energy Cost (MEC): In this method, we
choose the node that satisfies the time constraint described
above and incurs the minimum offloader and the onloader
energy cost. The solution is pareto-optimal and denoted by
nodes on the line in Fig. 4 [14].

CostMEC = woff × Eoff + won × Eon (13)

2) Minimize Battery Impact (MBI): In a battery-powered
device, using the least energy cost per job alone may not in-
crease device lifetime. For example, say an algorithm requires
10 and 8 Joules on devices X and Y respectively. But X and
Y have 500 and 50 Joules left in their battery respectively.
Considering energy cost alone, Y is the best choice but when
we consider the amount of energy left in the device clearly X
is a better choice. We re-write Eqn. (13) as follows.

CostMBI = woff × Eoff

Erem. off
+ won × Eon

Erem. on
(14)

where Erem. off and Erem. on are the energy left in the offloader
and the onloader nodes.

3) Offload Only if Busy (OOB): The previous methods try
to find the global solution, but offloading has overhead costs.
So, this method tries to offload only if on-board processing is
estimated to be infeasible. To do so, we add all the operations
in the execution queue and use Eqn. (1) to estimate the
minimum remaining processing time. If this time is greater
than the threshold (ε), offload the algorithm minimising the
time and energy objectives defined in Eqn. (12).

IV. SIMULATION AND RESULTS

We simulated a number of sensors connected to each other
by Wi-Fi and to the server (when available) by cellular link.
For simplicity, we assume that resource information about all
the nodes (remaining energy, current CPU load etc.) is avail-
able and all the sensors have same computational capability but
the server is 10 times more powerful. Also there is no energy
limitation for the cloud so the weight won for the cloud is set
to zero. Wi-Fi is set to 10 Mbps (high BW) whereas cellular
is slower and set to 1 Mbps. At the start of the simulation,

Fig. 5. Snapshot of simulation showing targets as dots and sensors. (Green
FOV signifies target in FOV whereas red means no target in FOV).

TABLE III. SIMULATION RESULTS (AVERAGED OVER 100 RUNS)

Algo-
rithm

Targets
Detected

Targets
Offloaded

Targets
Dropped

SI Energy Used
(Joules)

ES
(per 100J)

Cloud not available
NO 13.29 0 2.91 10.38 499.61 2.08

MEC 13.28 5.19 0.61 12.67 546.05 2.32
MBI 13.29 12.5 4.42 8.87 572.31 1.55
OOB 13.28 5.18 0.24 13.04 546.88 2.38

Cloud available
NO 13.28 0 2.90 10.38 506.31 2.05

MEC 13.25 13.13 0.001 13.25 651.28 2.03
MBI 13.25 13.23 0.002 13.25 652.23 2.03
OOB 13.26 4.95 0.18 13.08 601.58 2.17

the battery level is uniformly distributed between 0−10 Watt-
hour. The mean of r in Eqn. (3) is uniformly distributed from
0 − 1 (full load) and the standard deviation is fixed to 0.1.
These parameters do not change during the simulation. Full
simulation data and parameters are available here 1. Fig. 5
shows a snapshot of the simulation, where the blue squares
and red dots represent the sensors and targets respectively . The
targets are generated using a Poisson distribution and follow
the random waypoint model [15]. In this model,targets move
from one point to another with random speed and can also
pause for random amount of time. When they enter into the
FOV of the sensors (shown as green areas in Fig. 5), they
are tagged as detected targets. The detected targets are then
identified. Once the target has been detected and identified, it
does not have to be re-identified again in the same camera.
This is done to simulate tracking the target in each camera
and using the best representation for identification purposes.

We tested the algorithms with various parameters using 100
Monte-Carlo runs each representing a 10 minute period. The
results are listed in Table III. When the cloud is not available,
Successful Identifications (SI) (which is targets detected minus
targets dropped) improved from 10.4 in the Non Offloading
(NO) case to 12.7 for the MEC case and 13 for OOB case
but degraded to 8.87 for MBI. MEC and OOB boosted the
performance by more than 20% while only incurring around
extra 10% energy consumption. MBI did not perform well
because of the communication overhead. However, if the runs
were longer, may be we would see some improvement in the
device lifetime. All the algorithms did better than the NO case
when the cloud was available, dropping almost no targets but
the energy consumption was significantly higher. This shows
that offloading to cloud blindly may increase the performance
short term but may shorten device lifetime.

1http://sauravsthapit.com.np/EUSIPCO2016/

2016 24th European Signal Processing Conference (EUSIPCO)

1826

MEC MBI OOB

P
er
ce
n
ta
g
e

-40

-20

0

20

40

Cloud not available

Performance increment
Energy Saving

MEC MBI OOB

P
er
ce
n
ta
g
e

-40

-20

0

20

40

Cloud available

Fig. 6. Performance increment and energy saving in comparison to the NO.

Energy (Joules)
500 550 600 650 700

S
u
cc
es
sf
u
l
Id
en
ti
fi
ca
ti
o
n
s

9

10

11

12

13

14

OOB
MBI
MEC
NO

Fig. 7. Efficiency score. (red = no cloud available, green = cloud available)

A. Metrics

In order to access the performance of the offloading deci-
sion algorithms, we used two approaches. First we compared
the algorithm’s performance to the NO case. We calculate the
performance of proposed algorithms in terms of performance
improvement and energy savings. Fig.6 shows that both MEC
algorithm and OOB algorithm has superior performance in all
the scenarios. The MBI algorithm however did not fare very
well when cloud was not available. Second, we define and
calculate Efficiency Score (ES) of the algorithms as follows:

ES =
Nodes∑

i=1

SIi
Energy Usedi

(15)

This can be interpreted as SI per Joule and means how
productively the energy resources have been used. However,
this should not be confused with the accuracy and energy
consumption of the person re-identification algorithm. Table
III shows OOB has the best ES score with 2.38 and MBI has
the worst with 1.55. This is consistent with our intuition that
the algorithm performing the best and with relatively lower
energy consumption is better. In the cloud available case, ES
score for NO is greater than for MEC and MBI which suggests
that even though performance has improved, the energy is not
used efficiently. The metric can be visualised in Fig. 7. It is
desired to develop an algorithm with ES at the top left corner
of the graph, which indicates low energy usage and high SI,
whereas being in bottom right corner indicates high energy
usage without fruitful performance.

V. CONCLUSION

This paper presented a simulation model for offloading
computationally intensive algorithms to neighbouring devices
when the cloud is not available. The results show that among
the three, OOB consistently achieved the best trade-off be-
tween power and performance. It improved the performance
by approx. 25% while costing about 10 − 20% more energy.
The ES metrics suggests that energy is used more productively.
Contrary to the general belief, the results show that given the
constraints in bandwidth offloading to the cloud may not be

the best option in terms of performance and energy cost. In
future work, we plan to evaluate more dynamic scenarios.

VI. ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) [EP/K014277/1] and the
MOD University Defence Research Centre (UDRC) on Signal
Processing. Simulation information available at 2

REFERENCES

[1] S. Sthapit, J. Thompson, J. Hopgood, and N. Robertson, “Distributed
implementation for person re-identification,” in Sensor Signal Process-
ing for Defence, 2015, pp. 1–5, Sept 2015.

[2] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Of-
floading Computation Save Energy?,” Computer (Long. Beach. Calif).,
vol. 43, no. 4, pp. 51–56, 2010.

[3] H. Wu, W. Knottenbelt, and K. Wolter, “Analysis of the Energy-
Response Time Tradeoff for Delayed Mobile Cloud Offloading,” in
Teletraffic Congr. (ITC 27), 2015 27th Int., pp. 134–142, 2015.

[4] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Futur. Gener. Comput. Syst., vol. 29, pp. 84–106, jan 2013.

[5] P. Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-Camera Coordi-
nation and Control in Surveillance Systems : A Survey,” ACM Trans.
Multimed. Comput. Commun. Appl., vol. 11, no. 4, 2015.

[6] C. M. Sarathchandra Magurawalage, K. Yang, L. Hu, and J. Zhang,
“Energy-efficient and network-aware offloading algorithm for mobile
cloud computing,” Comput. Networks, vol. 74, pp. 22–33, 2014.

[7] Z. Zivkovic, “Improved adaptive Gaussian mixture model for back-
ground subtraction,” Proc. 17th Int. Conf. Pattern Recognition, 2004.
ICPR 2004., no. 2, pp. 28–31 Vol.2, 2004.

[8] W. Jung, C. Kang, C. Yoon, D. D. Kim, and H. Cha, “DevScope:
A Nonintrusive and Online Power Analysis Tool for Smartphone
Hardware Components,” Proc. Eighth IEEE/ACM/IFIP Int. Conf. Hard-
ware/Software Codesign Syst. Synth., pp. 353–362, 2012.

[9] R. Likamwa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl, “Energy
characterization and optimization of image sensing toward continuous
mobile vision,” in Proceeding 11th Annu. Int. Conf. Mob. Syst. Appl.
Serv., (New York, NY, USA), pp. 69—-82, ACM, 2013.

[10] W. Dargie, “A Stochastic Model for Estimating the Power Consumption
of a Processor,” IEEE Trans. Comput., vol. 64, no. 5, pp. 1311–1322,
2015.

[11] C. W. Johnson, Radio Access Networks for UMTS: Principles and
Practice. John Wiley and Sons, 2011.

[12] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of local fea-
tures,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
pp. 2360–2367, 2010.

[13] Y. Jiang and S. Member, “A Survey of Task Allocation and Load
Balancing in Distributed Systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 2, pp. 585–599, 2016.

[14] M. Caramia and P. DellOlmo, “Multi-objective Optimization,” in Multi-
objective Manag. Freight Logist. Increasing Capacit. Serv. Lev. Saf. with
Optim. Algorithms, pp. 11–37, Springer London, 2008.

[15] F. Bai and A. Helmy, “A Survey of Mobility Models in Wireless Adhoc
Networks,” Wirel. Ad Hoc Sens. Networks, pp. 1–30, 2004.

2http://sauravsthapit.com.np/EUSIPCO2016/

2016 24th European Signal Processing Conference (EUSIPCO)

1827

Distributed Computational Load Balancing for
Real-Time Applications

Saurav Sthapit, James R. Hopgood, and John Thompson
Institute of Digital Communications, School of Engineering, University of Edinburgh

Emails:{s.sthapit, james.hopgood, john.thompson}@ed.ac.uk

Abstract—Mobile Cloud Computing or Fog computing refer
to offloading computationally intensive algorithms from a
mobile device to a cloud or a intermediate cloud in order
to save resources (time and energy) in the mobile device.
In this paper, we look at alternative solution when the
cloud or fog is not available. We modelled sensors using
network of queues and use linear programming to make
scheduling decisions. We then propose novel algorithms which
can improve efficiency of the overall system. Results show
significant performance improvement at the cost of using some
extra energy. Particularly, when incoming job rate is higher,
we found our Proactive Centralised gives the best compromise
between performance and energy whereas Reactive Distributed
is more effective when job rate is lower.

Index Terms—Offloading, Mobile Cloud Computing, En-
ergy, IOT, Fog Computing, Edge Computing

I. INTRODUCTION

Usage of commercial off-the-shelf (COTS) smart devices
in defence and surveillance applications is an interesting
prospect. As an example application, imagine a swarm of
COTS drones flying and gathering visual intelligence on a
missing person or an armed terrorist (See Fig. 1). Reporting
raw data back to a base station is prohibitive in terms of
both time and energy. Even worse, if it is a covert defence
operation, it may open up the base to external attacks. So
some pre-processing must be done on the drone itself; for
example only report to the base once the individual is recog-
nised. For that, the drones must be able to run person re-
identification (PRID) algorithms for the targets appearing in
its Field Of View (FOV). The time complexity of the PRID
algorithms is substantially higher than other algorithms
running in the algorithm chain [1]. The drones may have
different computing and energy resources and depending
on the state of the device, it may not be able to complete
these processing in an allocated time. Traditional Mobile
Cloud Computing (MCC) in which jobs is outsourced to
the cloud may not be available or feasible depending on
the communication channel to the cloud [2]. Recently,
Fog/Edge computing has been introduced whereby mobile
devices offload nearby servers (preferably at base stations)
instead of cloud (see [3]). However, Fog computing could be
unavailable just like the cloud. (For example in underground
or battlefield far from the base station).

In this paper, we propose algorithms to balance the
computational load among the smart cameras for soft real-
time applications. For rest of this paper, we consider a
network of smartphones trying to run PRID algorithms
as our exemplar problem and make the assumption listed
below. However, the algorithms can be generalised to other
problems such as multistatic radar or sonar, distributed
audio processing etc.

Fig. 1: Nine Camera sensors and their FOV. Blue
square represents camera in a drone or a smart

phone

1) In a network of cameras, targets are spatially and
temporally distributed. That means, more targets may
appear in some cameras than others and at different
times. So, nodes may be able to help each other.

2) The jobs arriving at the node can be offloadable or
non-offloadable depending whether the offloader can
save time or energy by offloading the job to others
[4].

3) As long as the total job rates (across all nodes) is
less than the total computing capability of the network
of nodes, it should be possible to trade energy with
performance and productivity.

The problem we are trying to tackle is two fold. First,
we want to make a scheduling decision for offloadable jobs
among the nodes. Second, we need to determine the Node
State Information (NSI) that needs to be shared, and the fre-
quency, in order to make the scheduling decision. Queuing
theory abstracts our scheduling algorithms of the underlying
hardware. It means the system may consist of Central
Processing Unit (CPU) nodes or dedicated accelerators such
as Graphical Processing Unit and Field Programmable Gate
Array and also, we avoid the need to take the decision for
each and every tasks. This work extends our previous work
[2], where sensors take decision using simple cost functions
and on task by task basis. Also the scenario is changed
as in this work we do not consider cloud at all. Wu et.
al [5] have used queuing theory approach for MCC but
their focus is on offloading to the cloud and availability
of communication channels. In this paper, we use linear
programming to make the scheduling decision. Then we
propose a purely distributed solution where nodes only need
to communicate to neighbouring nodes directly connected to
them. Based on where the solver is executed and how data is
shared, we propose four novel algorithms and compare their
performance with the non-offloading case. In summary, the

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1385

CPU µiCPUWR µiWR

WS µiWS

λiWR

(Onloaded Jobs)

γi0
(Non-offloadable Jobs)

γi
(Offloadable Jobs)

xii

λiWS

Jobs completed

xi1

xij , j 6= i

xin

Fig. 2: A sensor node modelled as network
of queues. CPU, WR, WS represent CPU,

WiFi Receiver and WiFi Sender queues
respectively

main contributions of this paper are as follows:

• Propose novel algorithms for on-line workload balanc-
ing for real-time applications in distributed systems.

• Propose Offloading Cost function that incorporates NSI
such as battery level, bandwidth and CPU availability.

• Show the proposed algorithms improve the perfor-
mance of the overall network of battery powered sensor
system compared to Non Offloading (NO) system.

In the next section, we model the node network using
a network of queues and formally define the problem.
Section III details the proposed algorithms. In section IV,
we describe the experimental settings and the results of the
simulations. Finally we discuss and conclude our findings
in section V.

II. SYSTEM MODEL

Let us model a network of sensors depicted in Fig.
1. Following the notation in [6], let G = (N,A) be a
directed network defined by a set N of n nodes and a
set A of m directed arcs. Each arc (i, j) ∈ A represents
a communication link (for example WiFi) from node i to
j, and has an associated cost cij that denotes cost per unit
flow on that arc.

A. Node

Each node i is a smartphone or a similar device with a
CPU, WiFi, cellular link and a camera. We use M/M/1
queues to model behaviour of each of these components.
Specifically, the M/M/1 has First Come First Service
(FCFS) scheduling discipline, an arrival process that is
Poisson and service time that is exponentially distributed
[7]. Similarly, for the communication part, we model WiFi
using two M/M/1 queues (sender and receiver side).
We assume a common WiFi send and receive rate (i.e
µiWS = µiWR = µiWF). The resulting model of the
node is depicted in Fig. 2. Each node i can be defined as a
tuple {γi, γi0, µi, µiWF } where γi is the rate of offloadable
jobs, γi0 is the rate of non-offloadable jobs, µiCPU is the
service rate of CPU, µiWF is the WiFi transmission rate.
We define this node information as Node State Information
(NSI). Each individual target that passes through a camera’s
FOV generates an offloadable job. Jobs that are integral to
the node itself such as operating system load and algorithms

which do not benefit from offloading are termed as non-
offloadable jobs. They may be spatially and temporarily
distributed as well like the offloadable jobs.

B. Network of Queues

A network of queues is defined as an open network
if there are external jobs coming into the system. Such
networks can be modelled using the Open Jackson network
[7]. Vilaplana [8] used it for modelling cloud computing
paradigm. The Open Jackson network states that the arrival
rate for a queue a ∈ {1, ..., k} is given by Eqn.(1). Based
on this formulation, we can calculate the incoming and
outgoing job rates of all the queues in our system.

λa = γa +
k∑

b=1

pbaλb (1)

where,
γa is the rate of arrival of external targets
λb is the arrival rate at queue b,
pba is the prob. a job but moves from queue b to queue a

C. Problem Formulation

We formulate the scheduling decision problem as a
minimum cost flow problem (Eqn. (2)) with constraints that
all the jobs get scheduled and without compromising the
stability of the queues. The decision variable xij ∈ R(n×m)

represent the job flow on an communication link (i, j) ∈ A.
xii is the job rate that is executed locally. We can guarantee
the rate stability of a queue by ensuring the average arrival
rate is less than the average service rate. Hence, if the
average incoming job rate for the CPU queue in a node is
greater than its service rate, we should look for alternatives.
The equality constraint in (2b) makes sure that all the jobs
are assigned whereas the inequality constraint in (2c) makes
sure that the jobs can be processed by corresponding nodes
they are assigned. This formulation uses NSI from all the
nodes (n) and makes decision for all the nodes simultane-
ously. The cost function for the problem is described in the
section II-E.

X = argmin
x

n∑

i=1

n∑

j=1

cijxij (2a)

subject to (s.t.)
n∑

j=1

xij = γi, ∀i ∈ N (2b)

n∑

j=1

xji + γi0 � µiCPU , ∀i ∈ N (2c)

xij ≥ 0 (2d)

The solution of Eqn. (2) can be rewritten as a decision
matrix shown below:

X =

x11 . x1i . x1n
.
xi1 . xii . .xin
.
xn1 . xni . xnn

(3)

decision vector: We define each row of X as a
decision vector(dv). The dvi tells node i how it should

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1386

process the incoming targets. Also, it is seen easily that
ith column of the matrix indicates how other nodes are
offloading to ith node.

D. Distributed solution

Given the time varying nature of the job arrival rate, we
need to solve the problem in Eqn. (2) frequently. Each node
only cares about its own column and row of the decision
matrix X . We later see in section II-F that the complexity
of the problem depends on n and m which is the total
number of nodes and arcs respectively. So we simplify
the problem by primal decomposition whereby each node
calculates its own dv. This is similar to the Gauss-Siedel
like method used by Meskar [9] for MCC. The algorithm
basically communicates with its immediate neighbours to
see what they can offer and takes the decision. The approach
is not selfish as it considers neighbours’ resources rather
than offloading everything. The problem is defined below
for each node i ∈ N . It is different from the central problem
in Eqn.(2) as that each node i only tries to minimise the
cost of its own objective function on the basis of information
available on its immediate neighbours.

dvi =argmin
x

n∑

j=1

cijxij (4a)

s.t.
n∑

j=1

xij =γi;
n∑

i=1

xji + γi0 � µiCPU ;xij ≥ 0 (4b)

E. Cost function

Once we are certain that all the arriving jobs can be
scheduled such that the queues are all rate stable, we would
like to achieve it with the minimum cost. We define the cost
function cij as the cost of scheduling a unit job from node
i to node j as shown below.

cij=

ω3Li, if i = j
ω1D(f+1)

BWij
+ ω2Bi

Bj
+ ω3Lj , if i 6= j, (i, j) ∈ A

∞, if i 6= j, (i, j) /∈ A
(5)

where, D is the data size
f is the average retransmission times (see Eqn. 6a)
BWij is the expected bandwidth between node i and j
Bi, Bj are the remaining battery in node i, j
Li, Lj is the number of jobs already in node i, j
ω1, ω2, ω3 are weight factors

The cost comprises of three distinct components; the com-
munication cost and the remaining battery level and the
availability of CPU. Their significance can be changed using
the weighting factor ω1, ω2 and ω3.

1) Communication cost: The communication cost de-
pends on the expected bandwidth between two nodes, data
size and a retransmission factor f . As the communication
channel is not perfect thanks to various noise and interfer-
ence, we account them using the retransmission factor f .
In the experiments, we randomly sample Packet Delivery
Rate (PDR) between two nodes and use mean of the
geometric distribution to calculate the average number of

Packet Delivery Rate (PDR)
0.1 0.5 0.7 1A

ve
ra
ge

R
et
ra
n
sm

is
si
o
n
s

0

2

4

6

8

(a)

Number of Nodes (N)
0 5 10 15 20

T
im

e
(S
ec
o
n
d
s)

0

0.2

0.4

0.6

0.8

interior-point

active-set

simplex

dual-simplex

(b)

Fig. 3: (a) Average no. of retransmissions required due to
imperfect channel. (b) Time complexity of various linear
problem solvers

transmissions to send the data from one node to another
(see Eqn. 6a). The relationship (see Fig. 3a) shows us that as
the PDR degrades, average number of retransmission rises
exponentially. For the simulations, we consider 0.5 as the
minimum PDR for any valid communication link.

f(PDR) = E[g(x;PDR)], where (6a)

g(x;PDR) = PDR(1− PDR)x−1,∀x ∈ {0, ..,∞} (6b)

2) Energy available: The second element of our cost
function is the ratio of battery level of the nodes.

3) CPU availability: We use number of existing jobs in
the CPU queues as the measure of CPU availability. Higher
number suggest low availabity and vice versa. This is also
applicable for self-processing in the scheduling decision
making.

F. Computational Complexity

The optimisation problem stated in Eqn. (2, 4) can be
solved using efficient linear programming techniques. Dual
Simplex and Interior Point algorithms are popular methods
of solving linear problems. Interior point algorithms are
considered to be efficient and also require less memory
than others. We performed experiments to gauge their
time complexity for different number of nodes and found
interior point to be the most efficient (see Fig. 3b). These
experiments were performed on a desktop computer with an
Intel Xeon processor and running MATLAB 2015a under
linux environment. The runtime of these algorithms on a
embedded device may be significantly higher but should
follow the similar pattern.

III. ALGORITHMS

In the previous section, we formulated the problem of
scheduling jobs as central and distributed problems. We
have selected a co-operative environment in which all the
nodes tries to achieve global objectives (i.e. process most
jobs in an allocated time). By co-operative, we mean if
a node sends a job to another node, the other node must
execute it. However, we consider the nodes are not selfish
and only offloads if required. We consider two data sharing
mechanism; proactive and reactive. As we will see in
Section IV, proactive is suitable when incoming job rate
is high and decisions have to be made often whereas the
reactive is more suited to quite environments. So depending
on how this data is shared amongst the nodes and where

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1387

the algorithms is run we propose following four algorithms.
We compare all four algorithms against the NO case when
we do not allow offloading at all.

A. Oracle (O)

The Oracle has access to all the sensor node’s NSI at all
times. The Oracle solves the cost minimization problem in
Eqn. (2) every second and sends dv to all nodes simultane-
ously. It is not feasible in practice but gives the best result
for comparison. Experiments show that even ignoring the
cost of communication of NSI and cost of executing the
solver, it consumes the most energy.

B. Proactive Centralised (PC)

This is a more realistic version of the Oracle. In this
method all the n nodes send NSI to a nominated server
which then solves Eqn.(2) and sends corresponding dv back
to each nodes. In simulation, the server has connection to
all the nodes but this isn’t necessary as NSI and dv can
be conveyed using multiple hops. We consider the cost of
communication of NSI as well as cost of executing the
solver. All other nodes are obliged to follow the decision
made by the server and computes and offloads based on the
dv until a new one is broadcast. We want to investigate this
case to find out how often we can broadcast the NSI without
using too much communication resources Obviously, there
isn’t a single answer but it depends on many factors such
as the communication bandwidth, size of NSI, PDR and
number of nodes in the set. If there are n−1 nodes sending
their NSI to the server every t seconds, the queue with the
highest probability of being busy is the server’s receiving
queue. We analyse its performance below.

Arriving rate (λ) =
n− 1

t
(7)

Worst Service rate (µ) =
Data Rate× worst PDR

NSI size
(8)

Utilization (ρ) =
λ

µ
=

(n− 1)× NSI size
t× Data Rate× PDR

(9)
P [0] = 1− ρ

where, P [0] is the probability there is no jobs in the queue

Based on the arriving rate and service rate we can estimate
the peformance of server’s receive queue. For example, say
there are 11 sensors connected with a data rate of 54 Mbps,
PDR of 0.7 and NSI of 1 Mbits, send NSI every 10 seconds.
Then Eqn. (6a) estimates the queue utilisation is ≈ 0.03
and no waiting times for ≈ 97% of the time. Similarly
the average delay is around ≈ 0.03 seconds. Fig. 4 shows
waiting times at the receiving node at various intervals and
for different speeds.
C. Proactive Distributed (PD)

PD is similar to PC except for three main differences.
1) It is purely distributed. There is no server and each

node has to solve its own optimisation problem.
2) Instead of solving central problem in Eqn.(2), each

node only solves distributed problem in Eqn.(4).
3) Set N contains immediate rather than neighbours than

all the nodes. Even if total nodes is large (> 100), we
N may be limited to tens of nodes.

Time period between successive broadcast
0 2 4 6 8 10

U
ti

li
sa

ti
o

n
(%

)

0

20

40

60

80

100

11 Mbps (PDR=0.5)

11 Mbps (PDR=0.7)

11 Mbps (PDR=0.9)

33 Mbps (PDR=0.5)

33 Mbps (PDR=0.7)

33 Mbps (PDR=0.9)

54 Mbps (PDR=0.5)

54 Mbps (PDR=0.7)

54 Mbps (PDR=0.9)

Fig. 4: Queue utilisation of the server in proactive
under various network conditions and NSI update

frequency. NSI size set to 1 Mb.

D. Reactive Distributed (RD)

If only a few nodes get overloaded and infrequently,
transmitting NSI regularly can be a waste of energy. Also,
tail-end behaviour User Equipment (UE) may mean regular
transmission forces UE to stay in the high powered state
instead of the low powered idle state [10]. In this method
(see Alg. (1)), nodes only communicate when they need
help. The node seeking help broadcasts Request For Help
(RFH) and waits until the neighbours respond by sending
their NSI. Neighbouring nodes must respond if their average
CPU usage is less than a threshold. Once the node seeking
help receives NSI from other nodes, it formulates and
solves Eqn. (4). To avoid using old information and update
neighbour’s current situation, we also set a timer Tth after
which the node has to start again by broadcasting the RFH.

Algorithm 1 Reactive Distributed

if γi + γi0 ≤ µi then
Set dvi to not offload.

else
if RFH broadcasted & decision time < Tth then

Follow previous dvi
else

Broadcast RFH to all nodes.
Wait Twait seconds for NSI
if No of NSI received ≥ 2 then

Solve Eqn.(4) for new dvi and follow it.
else

Broadcast RFH again, follow previous dvi.
end if

end if
end if

IV. SIMULATOR AND EXPERIMENTAL RESULTS

We use the simulator [2] which uses a utilisation based
model by Jung et. al [10] and their parameters for Google
Nexus I phone to estimate the energy consumption of the
nodes. The simulator has evolved to accommodate targets
moving in three dimensions (such as drones). The simulator
is set up to simulate nine smartphones placed on a 3×3 grid
as shown in Fig. 1. For this paper, the exact number and
the configuration is chosen empirically. In future, different
setting will be explored. Each blue square representing
a smartphone can detect targets passing through its FOV
represented by blue/yellow cone shape in the figure. For

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1388

0 5 10 15 20
0

2

4

6

8

10

12

T
ar

g
et

s
A

rr
iv

al
 p

er
 m

in
u
te

s

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

T
ar

g
et

s
D

ro
p
p
ed

 (
%

)

NO

RD

PD

PC

O

(b)

0 0.2 0.4 0.6 0.8 1
600

700

800

900

1000

1100

A
v

er
ag

e
P

o
w

er
 (

m
il

li
w

at
t)

NO

RD

PD

PC

O

(c)

980 1000 1020 1040 1060 1080

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 P
ro

c
e
s
s
 S

c
o
re

NO

RD

PC

PD

O

(d)

Fig. 5: (a) Target arrival rate per nodes over simulation time.
(b) Targets dropped over Arrival Rate. (c) Power Consumed
over Arrival Rate (d) Efficiency Score of proposed algo-
rithms

target simulation, we used Random Waypoint Model (RWP)
[11]. In RWP, targets spawn at random locations in a
three-dimensional space. The targets either pause for certain
time or select its next destination. When it selects its next
destination it moves towards it with a random but constant
velocity; the process repeats until it moves out of the
platform. A non-uniform spatial phenomenon of the RWP
means that targets are concentrated in the middle of the
platform [11]. We use this phenomenon and irregular FOV
to simulate irregular loads among the nine sensors. Sensor
5, which is in the middle of the platform detects the highest
number of targets.

We ran 100 Monte-Carlo simulations for 20 minutes of
simulated time. The target spawning rate is higher than
dying rate, so target rate generally increases over time
across all nodes (see Fig. 5a). Every minute we take a
snapshot of targets dropped and energy consumed and plot
it as a function of target arrival rate (γ)(see Fig.5b, 5c).
As expected, Oracle gives the best results whereas NO
is the worst performer. PC gives the next best results,
however also consumes more energy. Upto 60% of the
total normalised arrival rate, RD and PD performs better
than PC and significantly better than the non-offloading
case. Yet the power consumption of RD is just marginally
higher than PC and PD is even lower than PC around that
point. However, the performance of distributed algorithms
significantly degrades as the target arrival rate goes up. Also,
Fig. 5c also shows lower power consumption at higher target
arrival rate for RD which also coincides with its fall in
performance. This is due to more neighbours being busier.
It shows that distributed algorithms may be best suited to
lower arrival rates whereas the centralised approach is suited
to the higher job arrival rates.

Next we define process score as the percentage of jobs

TABLE I: Simulation Results (Averaged over 100 runs)

Algo-
rithm

Arrival
Rate

(/min)

Service
Rate

(/min)

Process
Score

Energy
Used

(Joules)
NO 6.91 4.35 0.63 994
RD 6.91 5.34 0.78 1043
PD 6.91 4.84 0.70 1009
PC 6.91 5.84 0.85 1055
O 6.91 6.09 0.88 1062

successfully executed in the allocated times and efficiency
score as the ratio of Successful Executions to the energy
consumed [2]. We summarise the overall results in Table I
and Fig. 5d. There is almost a linear relationship between
performance and energy consumption in Fig.5d meaning
performance can be enhanced by spending extra energy.

V. CONCLUSION

In this paper, we modelled sensor network as network
of queues using Open Jackson network. We proposed var-
ious reactive and proactive algorithms which significantly
enhanced the performance of the system compared to the
NO scenario. The results reinforces our belief that we can
process all the jobs if, the total job rate is less than total
computing capability, and if other node’s NSI is available.
Also depending on normalised job arrival rate, reactive
distributed or proactive centralised may be more suited. It
is possible to formulate a hybrid strategy, which can switch
between them based on the job arrival rate. In future work,
we plan to run our algorithms on real dataset and dynamic
scenarios.

VI. ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) [EP/K014277/1] and
the MOD University Defence Research Centre (UDRC) on
Signal Processing.

REFERENCES

[1] S. Sthapit, J. Thompson, J. Hopgood, and N. Robertson, “Distributed
Implementation for Person,” in Sens. Signal Process. Def., 2015.

[2] S. Sthapit, J. R. Hopgood, N. M. Robertson, and J. Thompson,
“Offloading to Neighbouring Nodes in Smart Camera Network,” in
EUSIPCO, 2016.

[3] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Ap-
plications and Issues,” Proc. 2015 Work. Mob. Big Data - Mobidata
’15, pp. 37–42, 2015.

[4] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users:
Can Offloading Computation Save Energy?,” Comput. (Long. Beach.
Calif)., vol. 43, no. 4, pp. 51–56, 2010.

[5] H. Wu, W. Knottenbelt, and K. Wolter, “Analysis of the Energy-
Response Time Tradeoff for Delayed Mobile Cloud Offloading,” in
SIGMETRICS Perform. Eval. Rev., vol. 43, pp. 33–35, 2015.

[6] T. L. M. Ravindra K. Ahuja, Network Flows: Theory, Algorithms,
and Applications, vol. 1. 1993.

[7] W. J. Stewart, Probability, Markov chains, queues, and simulation :
the mathematical basis of performance modeling. Princeton (N.J.),
Oxford: Princeton University Press, 2009.

[8] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” J. Supercomput.,
vol. 69, pp. 492–507, 2014.

[9] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy
Aware Offloading for Competing Users on a Shared Communication
Channel,” IEEE Trans. Mob. Comput., vol. 16, no. 1, 2017.

[10] W. Jung, C. Kang, C. Yoon, D. D. Kim, and H. Cha, “DevScope:
A Nonintrusive and Online Power Analysis Tool for Smartphone
Hardware Components,” Proc. Eighth IEEE/ACM/IFIP Int. Conf.
Hardware/Software Codesign Syst. Synth., pp. 353–362, 2012.

[11] F. Bai and A. Helmy, “A Survey of Mobility Models in Wireless
Adhoc Networks,” Wirel. Ad Hoc Sens. Networks, pp. 1–30, 2004.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1389

1

Computational Load Balancing on the Edge in
Absence of Cloud and Fog

Saurav Sthapit ∗ , John Thompson ∗ , Neil M. Robertson† , and James R. Hopgood ∗
∗ Institute of Digital Communications, School of Engineering, University of Edinburgh

Emails:{s.sthapit, james.hopgood, john.thompson}@ed.ac.uk
†ECIT, Queen’s University of Belfast

Email: n.robertson@qub.ac.uk

Abstract —Mobile Cloud Computing or Fog computing refers to offloading computationally intensive algorithms from a mobile device to
the cloud or an intermediate cloud in order to save resources e.g. time and energy in the mobile device. This paper proposes new
solutions for situations when the cloud or fog is not available. First, the sensor network is modelled using a network of queues, then a
linear programming technique is used to make scheduling decisions. Various centralised and distributed algorithms are then proposed,
which improves overall system performance. Simulations show slightly higher energy usage in comparision to the baseline
non-offloading case, however, the efficiency score metric shows workdone per joule is at least as good as the baseline. The algorithms
have been simulated in various environments including high and low bandwidth, partial connectivity, and different rate of information
exchanges to study the pros and cons of the proposed algorithms.
Index Terms—Offloading, Mobile Cloud Computing, Energy, IOT, Fog Computin g, Edge Computing

✦

1 INTRODUCTION

The use of commercial off-the-shelf (COTS) smart devices
in defence and surveillance applications is an interesting
prospect. Imagine a swarm of COTS devices gathering vi-
sual intelligence on a missing person or an armed terrorist
(See Fig. 1) using person re-identification (PRID) [1] and face
identifications [2] algorithms. Reporting raw data back to a
base station can be prohibitive in terms of both time and
energy. Even worse, in a covert defence operation, it may
open up the base to external attacks. So some pre-processing
must be undertaken on the device itself; for example only
reporting to the base once the individual is recognised. For
that, in this application, the devices must be able to run
PRID algorithms for the targets appearing in its Field Of
View (FOV). The time complexity of the PRID algorithms
is substantially higher than other algorithms running in
the algorithm chain (Fig.2) such as background subtraction
and person detection [3]. The devices may have different
computing and energy resources. Depending on the state of
the device, it may not be able to complete these processing
in an allocated time. Traditional Mobile Cloud Computing
(MCC), in which jobs are outsourced to the cloud, may not
be feasible depending on the communication channel to the
cloud [4], [5]. Recently, Fog or Edge computing has been
introduced whereby mobile devices offload to the nearby
servers (preferably at base stations) instead of the cloud [6].
However, Fog computing could be unavailable just like the
cloud, for example in underground scenarios or battlefields
far from the base station.

In this paper, new algorithms are proposed to balance the
computational load among the network of smart cameras
for soft real-time applications. For rest of this paper, a
network of smartphones running PRID algorithms is consid-

High speed Wi-Fi

In
te

rm
it
te

n
t
lo

w

sp
e
e
d
 C

e
llu

la
r

Field of View

Fig. 1: Pedestrian identification scenario: device X
inundated with targets while device Y is idle

ered as the exemplar problem. However, the algorithms can
be generalised to other problems such as multistatic radar
or sonar, distributed audio processing etc. The following
assumptions are made in this paper:

1) In a network of cameras, targets are spatially and
temporally distributed. That means, more targets
may appear in some camera FOV’s than others and
at different times.

2) While targets do not appear in a camera’s FOV, its
resources (Central Processing Unit (CPU), Graphi-
cal Processing Units (GPU)) are not fully utilised.
Therefore, in theory, it should be able to help its
busy neighbours to cope with the demand.

3) As long as the total job rates (across all nodes) is less

2

than the total computing capability of the network
of nodes, it should be possible to trade energy with
performance and productivity.

The argument about helping neighbours may be valid even
if the devices are battery powered. For example, solar
powered devices would be recharged every day or a drone
swarm would be recharged after 20 − 30 minute of flight
time. It does not benefit to have energy left when the
recharge time commences. In case of uneven load, by help-
ing neighbours, the network life-time (time when the first
node in the network runs out of battery) can be extended.

The problem tackled in this paper is twofold. First, a
scheduling decision algorithm for offloadable jobs (see section
2) among the nodes is created. Second, a determination of
the required Node State Information (NSI)(see section 3) that
needs to be shared and its frequency, in order to make the
scheduling decision. Queuing theory is used to model the
nodes processing. It abstracts the scheduling algorithms of
the underlying hardware so the system may consist of CPU
nodes or dedicated accelerators such as Graphical Process-
ing Units and Field Programmable Gate Arrays. Also, by
working with job rate rather than individual jobs, the need
to take the decision for each and every task is eliminated.

Given the model, the scheduling decision is posed as a
minimum cost problem. Then a purely distributed solution
is proposed where nodes only need to communicate to
neighbouring nodes directly connected to them. Based on
where the solver is executed and how data is shared, four
novel algorithms are presented and their performance are
compared with the non-offloading case. These algorithms
were first presented in [7]; this work substantially extends
these ideas with further experimentation with real data as
well as experiments with more dynamic scenarios such as
partial connectivity, and the effect of communication band-
width. In summary, the main contributions of this paper are:

• Propose novel algorithms for on-line workload bal-
ancing for real-time applications in distributed sys-
tems.

• Propose an Offloading Cost function that incorpo-
rates NSI such as battery level, bandwidth and CPU
availability.

• Show the proposed algorithms improve the perfor-
mance of the overall network of battery powered
sensor system compared to Non Offloading (NO)
system on simulated data as well as a real dataset.

The next section presents the background and related works
in MCC. In Section 3, the node network is modelled using
network of queues and the problem is formulated along
with the Node State Information. In Section 4, the algo-
rithms are proposed. Then Section 5 introduces the simu-
lator developed for testing the algorithms. In Section 6, the
experiments and results are presented. Finally, discussions
and conclusions of the results and findings are presented in
Section 7.

2 MOBILE CLOUD COMPUTING

In this section, a brief introduction to Mobile Cloud
Computing (MCC) and related works is provided. The
main objective is to present the existing works in relation

Image
Background

subtraction

Person

Detection

Person

Identification Result

Fig. 2: Typical pedestrian identification flowchart

to offloading to neighbouring nodes and the additional
challenges. Traditional MCC refers to the offloading of
computationally intensive algorithms from a mobile device
to the cloud in order to save processing time and energy
on the mobile device. Recent literature reports significant
time and energy resources saving by offloading to the
cloud [8], [9]. For a comprehensive list of MCC algorithms,
interested readers should refer to the recent surveys [10],
[11]. However, for offloading to cloud to have a positive
impact, the environment has to be suitable as well. It was
discussed in the paper [4] that it may be better to offload
to neighbours depending on the bandwidth. These factors
apply to computation offloading to neighbouring devices
also and is described below.

2.1 Characterising Offloadable Algorithms

The benefit of offloading a particular algorithm depends on
the speedup that can be achieved as well as the bandwidth
available to the cloud [11]. The jobs arriving at the node
can be offloadable or non-offloadable depending on whether
the offloader can save time or energy by offloading the job
to others. Also, some algorithms are non-offloadable because
they are inseparable from the device. For example Operating
System (OS) related algorithms and hardware related jobs
cannot be offloaded.

Generally, MCC implementations use static and dynamic
application partitioning of algorithms based on profiling
[12]. For the current work the jobs are classified as offloadable
or non-offloadable by design. For example, a typical person re-
identification software chain is shown in Fig. 2. In this chain,
only person re-identification is considered as the offloadable
algorithm as its time complexity far outweighs other in the
chain [3].

2.2 Communication Channel

The availability and quality of a communication channel has
a huge impact on successful offloading. Cuervo [8] points
out significant energy usage when the Round Trip Time
(RTT) increases between the offloader and onloader. In that
sense, offloading to the neighbouring nodes is better than
the cloud as the RTT can be expected to be in the range of
10 ms in a typical case. Wu et. al [13] also used a queuing
theory approach for MCC, however, their focus was on
offloading to the cloud and availability of communication
channels. Zhang et al [14] used Markov Decision Process
(MDP) to tackle the intermittent channel availability. Sim-
ilarly, many game theoretic approaches also exist whereby
nodes compete against each other while using the shared
communication channel to avoid interference [15], [16].
In this approach, communication is between neighbouring
nodes connected by WiFi or bluetooth etc. As the WiFi and
bluetooth coverage is limited compared to cellular network
coverage, interference may be limited as well.

3

2.3 Offloading Candidates

The majority of work reported in the literature considers
cloud and fog as the only offloading candidate with the
assumption that the cloud has unlimited computational re-
sources. Also the cloud is mains powered, so not limited
by energy consumption. As such, the decision is mainly
limited to “given current channel availability should you offload
or not?” However, offloading to computationally similar
devices needs to answer additional questions such as “which
neighbour is best suited?” and “is someone going to offload to
me as well?” Still, as the development of embedded devices
continues, researchers are keen to exploit it. For example,
Lin et al. [17] considered offloading to coprocessors and
Magurawalage et al. [18] considered offloading to cloudlets
along with the cloud. Recently, Truong-Huu et al. [19] also
considered smartphones as offloading candidates. Their
main objective is to divide a computationally expensive
work into pieces and offload to neighbours. Similar to
this work, the cost function comprises computing cost and
communication cost and uses an optimisation algorithm
to solve the problem. However, the differences are signif-
icant, for example, their main aim is to reduce the higher
cost incurred due to neighbours moving away from the
offloader (uncertainty of connection time), whereas for this
work, the main objective is to balance the computational
load among the nodes (uncertainty of target distribution).
Their approach is based on the point of view of a single
user, do not mention how or when resource discovery is
accomplished. This work considers various centralised and
distributed approaches with various data exchange policies
which show how they can affect the performance.

2.4 Summary

The main pros and cons of offloading to cloud vs offloading
to neighbouring nodes are summarised in Table 1. The
highlighted items show where each one may be superior
to the other in a typical case. In case of higher bandwidth
between neighbouring nodes is based on availability of
WiFi among neighbouring devices whereas only low speed
cellular is available to the cloud. Clearly, only in some cases,
neighbouring nodes have benefits over the cloud. However,
as it was stated earlier in this paper, the cloud may be
unavailable due to several reasons such as natural disasters,
terrorist attack etc. In the next section, the sensor nodes are
modelled and problem is formulated so that the neighbour-
ing nodes can be considered as offloading candidates and
various solutions are proposed.

3 SYSTEM MODEL

Let G = (N,A) be a directed network defined by a set N of
n nodes and a set A of m directed arcs. Each arc (i, j) ∈ A
represents a communication link (for example WiFi) from
node i to j, and has an associated cost that denotes cost per
unit flow on that arc. A link can be single hop or multi-hop.
Before going into the detail modelling of sensor nodes, a
brief description of Queue network is presented in the next
section. It would be useful in modelling of the sensor nodes.

TABLE 1: Relative comparison between offloading to cloud
or fog and offloading to neighbouring nodes. Superior
choice is highlighted in bold.

Cloud, Fog Neighbouring
nodes

Computational capability Almost
Unlimited

Limited

Energy Limited No Yes
Configuration Static Dynamic
Round Trip Time (RTT) Long (100ms) Short (10ms)
Bandwidth Lower (1 Mbps) Higher

(54Mbps)
Count Low (Single) Multiple

Q1 µ1

Q2 µ2

λ1

λ2

γ1

γ2

p21λ2

p11λ1

Fig. 3: A network of two Queues. Total incoming target rate
at Q1 (λ1) is the sum of external target rate (γ1) and targets
rates emanating from the queues heading to Q1. Under
stable condition, outgoing rate is equal to the incoming rate.

3.1 Network of Queues

Sometimes it is easier to model a system with multiple
nodes, with each node having a room for queuing and
each having a service centre [20]. Such network of queues is
defined as an open network if there are external jobs coming
into the system and can be modelled using the Open Jackson
network [20]. For example, Fig. 3 shows an open network
with two M/M/1 queues Q1 and Q2 with external target
rates γ1 and γ2 respectively. The arrival rate for a queue
i ∈ {1, ..., n} in such network is given by Eqn.(1).

λi = γi +

n∑

j=1

pjiλj (1)

where,

γi is the rate of arrival of external targets at queue i,

λj is the arrival rate at queue j,

pji is the probability a job moves from queue j to i

Vilaplana et al. [21] used the Open Jackson to model the
cloud architecture and estimate their performance. Based on
this formulation, the incoming and outgoing job rates of all
the sensors in the system are modelled in the next section.

3.2 Node

Each node i is a smart camera with limited computational
capability. As an exemplar, this work considers each node to
be a COTS smartphone with a CPU, WiFi, cellular link and
a camera. M/M/1 queues are used to model the behaviour
of each of these components. Specifically, the M/M/1 has
First Come First Service (FCFS) scheduling discipline, an

4

(WiFi Receive)

(WiFi Send)

CPU µiCPUWR µiWR

WS µiWS

λiWR

γi0
(Unoffloadable Jobs)

γi
(Offloadable Jobs)

xii

λiWS

Jobs completed

xi1

xij, j 6= i

xin

Fig. 4: A sensor node modelled as network of
queues. CPU, WR, WS represent CPU, WiFi

Receiver and WiFi Sender queues respectively

TABLE 2: List of Notation
Notation Definition
N Set of sensor nodes {1,...,n}
A Set of directed arcs between nodes.
γi Incoming external Offloadable jobs rate of ith node
γi0 Incoming external Unoffloadable jobs rate of ith node
λiCPU Total incoming job rate for ith CPU
µiCPU Job service rate of CPU of ith node
λiWS Total incoming job rate of WiFi send queue for ith node
µiWS WiFi transmission rate of ith node
λiWR Total incoming job rate of WiFi receive queue for ith node
µiWR WiFi receive rate of ith node
µiWF Common WiFi rate of ith node
f average retransmission times
BWij Expected bandwidth between node i and j
Bi Remaining battery in node i
Li Number of CPU Jobs in Node i
Ti Average processing time for each CPU Jobs
LiWS Jobs in WiFi send queue of node i
LiWR Jobs in WiFi receive queue of node i
TiWS Expected time to process one WiFi job i, j
ω1, ω2, ω3 Weighting factor

arrival process that is Poisson distributed, and a service
time that is exponentially distributed [20]. Similarly, for the
communication part, WiFi is modelled using two M/M/1
queues (sender and receiver side). Without any loss of
generalisation, common WiFi send and receive rate (i.e
µiWS = µiWR = µiWF) is assumed. The resulting model of
the node is depicted in Fig. 4. Each node i may be defined as
a tuple {γi, γi0, µi, µiWF } where γi is the rate of offloadable
jobs, γi0 is the rate of non-offloadable jobs, µiCPU is the service
rate of CPU and µiWF is the WiFi transmission rate. This
node information is defined as the Node State Information
(NSI). Each individual target that passes through a camera
FOV generates an offloadable job. Jobs that are integral to the
node itself, such as operating system load and algorithms
which do not benefit from offloading are termed as non-
offloadable jobs. The non-offloadable jobs may be spatially and
temporarily distributed as well like the offloadable jobs. The
notations and their definitions are listed in Table 2.

3.3 Centralised problem formulation

The scheduling decision problem is defined as a minimum
cost flow problem to find the optimal policy X such that all
the jobs get scheduled among the available nodes with min-
imum energy and time costs and with constraints that all

the jobs get scheduled, without compromising the stability
of the queues.

X = argmin
x

n∑

i=1

n∑

j=1

cijxij (2a)

subject to
n∑

j=1

xij = γi, ∀i ∈ N (2b)

n∑

j=1

xji + γi0 ¹ µiCPU , ∀i ∈ N (2c)

xij ≥ 0 (2d)

The decision variable xij ∈ R(n×m) represent the probabil-
ity of job flow on an communication link (i, j) ∈ A and
xii is the job rate that is executed locally. cij represents the
general cost of scheduling a job from node i to j which
is described in detail later in Section 3.5. The rate stability
of a queue can be guaranteed by ensuring the average
arrival rate is less than the average service rate. Hence,
if the average incoming job rate for the CPU queue in a
node is greater than its service rate, an alternative node has
to sought. The equality constraint in (2b) makes sure that
all the jobs are assigned to a processing node whereas the
inequality constraint in (2c) makes sure that the jobs can be
processed by the corresponding nodes they are assigned to.
This formulation uses NSI from all the nodes (N) and makes
decision for all the nodes simultaneously. Eqn. (2) can be
solved using efficient linear programming techniques [22].
The solution of Eqn. (2) can be written as a decision matrix
shown below:

X =

x11 . x1i . x1n

.
xi1 . xii . .xin

.
xn1 . xni . xnn

 (3)

Each row of X represents the policy for each node and
defined as a decision vector(dv)i. The dvi tells node i how
it should process the incoming targets. Also, ith column of
the matrix indicates the policy of other nodes towards the
ith node.

3.4 Distributed problem formulation

In a large network, collecting NSI from all the nodes may not
be advised for several reasons. For example, collecting NSI
information and sending dvi may have significant impact as
the bandwidth decreases and the frequency of information
exchange increases. Also, nodes that cannot be reached due
to lack of communication links can neither offer help nor ask
for help. So, the centralised problem is simplified by primal
decomposition [22] whereby each node calculates its own dv.
The distributed formulation can then be defined for each

5

node i ∈ N as shown in Eqn.(4).

dvi = argmin
x

n∑

j=1

cijxij (4a)

subject to
n∑

j=1

xij = γi (4b)

n∑

i=1

xji + γi0 ¹ µiCPU (4c)

xij ≥ 0 (4d)

This is similar to the Gauss-Siedel like method used by
Meskar [23] for MCC. The algorithm basically communi-
cates with its immediate neighbours to see what they can
offer and makes the decision. The approach is not selfish as
it still considers neighbours’ resources rather than offload-
ing everything. It is different from the centralised problem
in Eqn.(2) where each node i only tries to minimise the cost
of its own objective function on the basis of information
available on its neighbours. Similar to centralised problem,
Eqn. (4) can be solved using linear programming techniques
[22].

3.5 Cost function

Once all the arriving jobs can be scheduled such that the
queues are all rate stable, it should be accomplished with
the minimum cost. Here, the cost function cij used in both
central and distributed formulation described by Eqn. (2)
and (4) is defined. It is composed of energy costs in the com-
munication links, availability of the CPU and the remaining
energy. More precisely, the cost of scheduling from node i to
j is defined as:

cij =

ω1LiTi, if i = j

ω1LjTj + ω2αij + ω3
1

Bj
, if i 6= j, (i, j) ∈ A

∞, if i 6= j, (i, j) /∈ A

(5)

where, Li is the number of CPU jobs already in node i, Ti

is the average processing time of each CPU Jobs and {ωk}3
1

are weight factors. The significance of various components
in Eqn.(5) can be changed using the weighting factor {ωk}3

1.
The algorithms can put more emphasis on one component
than the other. For example, if the nodes are mains powered,
ω3 can be set to zero.

3.5.1 CPU availability

The number of existing jobs in the CPU queues (Li) is used
as the measure of CPU availability in the node. A higher
number indicates lower availabity for further external jobs
and vice versa. This is also applicable for self-processing in
the scheduling decision making.

3.5.2 Communication cost

The WiFi communication cost (time as well as energy)
depends upon the bandwidth between the nodes and data
size. However, the communication channel is not perfect
due to various noises and interference. Bandwidth is ad-
justed depending on these factors using metrics such as

Signal to Noise Ratio (SNR), acknowledgement etc. for
optimal performance which is to offer high bandwidth at
high Packet Delivery Rate (PDR) [24], [25]. Results from [25]
show that depending on SNR, the PDR can be different for
different data rates. So in order to model their behaviour
correctly, this paper accounts for them using a retransmis-
sion factor f . In the experiments, PDR is randomly sampled
between two nodes and uses the mean of the geometric dis-
tribution to calculate the average number of transmissions
to send the data from one node to another (see Eqn. (6a)):

f(PDR) = E[g(x;PDR)], where (6a)

g(x;PDR) = PDR(1 − PDR)x−1,∀x ∈ {0, ..,∞} (6b)

The relationship (see Fig. 5) shows us that as the PDR
degrades, the average number of retransmission rises expo-
nentially. For example, if the PDR is 1, 0.5 and 0.1, average
number of times the data has to be transmitted is 1, 2
and 9 times, respectively. In section 4.2, further analysis is
performed to see effect of bandwidth, PDR and frequency
of data exchange on the communication resources. For the
simulations, 0.5 is considered as the minimum PDR for any
valid communication link. Once the retransmission factor
is known, the communication cost between i and j, αij is
defined as:

αij = LiWSTiWS + D × f + 1

BWij
+ LjWRTjWR (7)

where, BWij is the bandwidth between node i and j; D is
the data size; f is the average retransmission times (see Eqn.
6a); αij is the communication cost; Bj is the remaining en-
ergy in node j (Joules),LiWS , LjWR are the number of jobs
already in the WiFi send and receive queues of node i and j;
TiWS , TjWR are expected WiFi sending and receiving time
in i and j. Note that αij can be interpreted as the suitability
of node j based on existing communication queues and the
channel available.

3.5.3 Energy available
The last element of the cost function is the battery level of
the onloader. When the battery level at node j is close to full,
it does not affect the decision making significantly due to
the large value of Bj in Eqn. (5) as the corresponding term is
small. However, when the battery is nearly empty, its signifi-
cance is considerably higher. It makes our decisions “energy
aware” i.e. the nodes do not completely drain while trying
to help the neighbouring nodes. Detailed models of power
drain for the CPU, Image sensor and WiFi communications
are described in section 5.2.

4 ALGORITHMS

In section 3.3 and 3.4, the problem of scheduling jobs was
formulated as a centralised and distributed problem. This
section describes how those solutions are implemented. Two
data sharing mechanisms; proactive and reactive are also
considered. Depending on which solution is used, and how
the data is shared amongst the nodes, four algorithms are
proposed. All four algorithms are then compared to the Non
Offloading case when offloading is not allowed whatsoever.
For this work a co-operative environment is assumed, such
that every node wants to achieve global objectives (i.e.

6

Packet Delivery Rate (PDR)
0.1 0.5 0.7 1A

v
er
a
g
e
R
et
ra
n
sm

is
si
o
n
s

0

2

4

6

8

Fig. 5: Average no. of retransmissions required due to
imperfect channel.

process the most jobs in an allocated time). Also, by “co-
operative”, it implicates that: if a node sends a job to another
node, the other node must execute it (see Eqn. (2) and (4)).
However, an assumption is made that the nodes are not
selfish and only offloads if required.

4.1 Oracle (O)

The target detection rate varies with time so the job rates
(γ) in Eqn.(2) and (4) are non-stationary. The lowest sam-
pling time of the simulator is 10ms, hence the problems
in Eqn.(2) and (4) must be solved periodically. For the
Oracle, it is assumed that it has access to every sensor
Node State Information (NSI) at all times. Since it has no
energy limitation, the Oracle solves the cost minimization
problem in Eqn. (2) every second which is every hundredth
sampling step. Once solved, it sends the related policy dvi to
all nodes simultaneously without using the communication
channel. While this continued update of NSI, is not feasible
in practice, it provides a benchmark for comparison.

4.2 Proactive Centralised (PC)

This is a more realistic version of the Oracle. In this method,
a node from among the nodes, is nominated as the server and
all other (n−1) nodes send their NSI to it. Similar to Oracle,
the server then solves Eqn.(2) and sends the corresponding
policy dv back to each nodes. All other nodes are obliged
to follow the decision made by the server and computes and
offloads based on the policy dvi until a new one is broadcast.
However, different to Oracle, the cost of communication, as
well as cost of executing the solver are taken into account.

Also, an important distinction with the Oracle is that,
due to the partial connectivity among the nodes, some of the
sensors are not able to communicate to the server and vice-
versa. Hence they are excluded from the offloading process
altogether. In order to minimise this effect and minimize
extra drain of the server’s energy, a new server is selected
in round-robin basis. Every minute a different server chosen
which acts as the server and so on.

Also, there arises a question, how often the nodes need
to broadcast their NSI and how often can they broadcast it

Time period between successive broadcast
0 2 4 6 8 10

U
ti

li
sa

ti
o

n
(%

)

0

20

40

60

80

100

11 Mbps (PDR=0.5)

11 Mbps (PDR=0.7)

11 Mbps (PDR=0.9)

33 Mbps (PDR=0.5)

33 Mbps (PDR=0.7)

33 Mbps (PDR=0.9)

54 Mbps (PDR=0.5)

54 Mbps (PDR=0.7)

54 Mbps (PDR=0.9)

Fig. 6: Queue utilisation of server in proactive setting
under various network conditions (Lower is better).

Data size set at 1 Mb.

without flooding the communication links. Obviously, the
answer depends on many factors such as the communica-
tion bandwidth, size of NSI, PDR and number of nodes in
the set. If there are n nodes in total, and n−1 nodes sending
their NSI to the server every t seconds, the node with the
highest probability of being busy is the server. The arrival
rate, worst service rate and the utilisation of the server’s
receiving queue can be calculated as follows:

Arriving rate , λ =
n − 1

t
(8)

Worst Service rate , µ =
Data Rate × worst PDR

NSI size
(9)

Utilization , ρ =
λ

µ
=

(n − 1) × NSI size

t × Data Rate × PDR
(10)

p[0] = 1 − ρ

where, p[0] is the probability there is no jobs in the queue

Based on the arriving rate and service rate, the utilisation
of the WiFi receiver queue of the server can be estimated.
Low utilisation is desired as it means lower delay and more
room for transmission of other data. For example, say there
are 11 sensors connected with a data rate of 54 Mbps, PDR
of 0.7 and NSI of 1 Mbits, send NSI every 10 seconds. Then
Eqn. (6a) estimates the queue utilisation is ≈ 0.03 and no
waiting times for ≈ 97% of the time. Similarly the average
delay is around ≈ 0.03 seconds. Fig. 6 shows waiting times
at the receiving node at various intervals and for different
speeds. For the data rate of 11 Mbps (red lines in Fig. 6)
any PDR and NSI frequency leads to significant usage of
communication resources which is not desirable. However,
for 33 and 54 Mbps, NSI exchanges can be frequent upto
once every five seconds, without significantly using the
communication resources.

4.3 Proactive Distributed (PD)

PD is similar to PC except for three main differences.

7

1) It is purely distributed. There is no server and each
node has to solve its own optimisation problem.

2) Instead of solving central problem in Eqn.(2), each
node only solves distributed problem in Eqn.(4).

3) Set N contains immediate rather than neighbours
than all the nodes. Even if total nodes is large
(> 100), N may be limited to tens of nodes. For ex-
ample, see Fig. 7b, node 1 and 5 are only connected
to one another.

4.4 Reactive Distributed (RD)

Algorithm 1 Reactive Distributed

if γi + γi0 ≤ µi then
Set dvi to not offload.

else
if Request For Help (RFH) broadcasted &
decision time < Tth then

Follow previous dvi

else
Broadcast RFH to all nodes.
Wait Twait seconds for NSI
if No of NSI received ≥ 2 then

Solve Eqn.(4) for new dvi and follow it.
else

Broadcast RFH again, follow previous dvi.
end if

end if
end if

If a few nodes become overloaded infrequently, trans-
mitting NSI regularly can be a waste of energy. Also, tail-
end behaviour User Equipment (UE) may mean regular
transmission forces UE to stay in the high powered state
instead of the low powered idle state [26]. In this method
(see Alg. (1)), nodes only communicate when they need
to offload. The node seeking offloading help broadcasts
Request For Help (RFH) and waits until the neighbours
respond by sending their NSI. Neighbouring nodes must
respond if their average CPU usage is less than a threshold.
Once the node seeking help receives NSI from other nodes,
it formulates and solves Eqn. (4). To avoid using old infor-
mation and update neighbour’s current situation, a timer
Tth is set after which the NSI expires and the node has to
start again by broadcasting the RFH.

5 SIMULATOR SETUP

In the previous work, a simulator was developed to run
offloading algorithms [4]. It is defined here again briefly for
completeness. The simulator consists of a three dimensional
space called platform. Sensors are stationary and placed on
the platform base (z = 0) randomly during initialisation.
One instance of the resulting simulator setup is shown in
Fig. 7. Fig. 7a shows sensor placement and Fig. 7b shows
how they are connected to each other. The connection links
are created based on the sensor positions. Targets spawn in
the platform and move around (more on this later). When
it comes into the FOV of a sensor, it gets detected and once
detected, the sensor has to identify the target. The major
elements of our simulator relate to the algorithmic tasks, the
sensor architecture, communication links and the targets.

m

m

(a) (b)

Fig. 7: Simulation setup for one monte-carlo simulation.
(a) Ten sensors (blue squares) with uneven FOV placed
randomly on the simulation platform of 100m × 100m
size . (b) Visualising sensor connectivity based on spatial
positioning.

TABLE 3: Execution details for a bodytrack example in
PARSEC [27] consisting 4 frames and 4000 particles

Instructions(Billions) Synchronization Primitives
Total Reads Writes Locks Barriers Conditions
14.03 3.63 0.95 114,621 619 2042

5.1 Algorithmic tasks

Execution of an algorithm on a modern CPU is a complex
process. Apart from the number of Operation (OP)s required
to execute the algorithm, an execution on a CPU depends
upon several factors such as multi-stage pipeline, cache-
miss rate and parallelism etc. The Princeton Application
Repository for Shared-Memory Computers (PARSEC) [27]
benchmark suggests typical applications have billions of
instructions to execute with an equally large number of
read and write operations. For example, Table 3 details the
execution details including synchronization primitives for
a body tracking application from the PARSEC benchmark
[27]. However, to keep the simulator simple, an algorithmic
task is characterised just by its number of OPs, input and
output data size. For example, a person detection algorithm
takes an image of size M × N as the input, requires ap-
proximately C OPs per image and outputs the number of
persons in the image. Assuming one OP per clock cycle,
the execution time on the device can be estimated using the
clock frequency.

Texec ∝ C

Clock Frequency
(11)

5.2 Component Based Sensors

In order to realistically emulate its behaviour, a sensor is
divided into its components such as the CPU and cellular
radio. The utilisation based model by Jung et al. is imple-
mented to calculate the energy consumption [26] and our
parameters are based on a Google Nexus I phone which was
a Device Under Test (DUT) in [26]. If desired, the simulator
can be calibrated for a different DUTs in a straightforward
manner.

8

TABLE 4: CPU Parameters for the DUT (Google Nexus I)
based on Jung et al. [26]
Freq. 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4

β
cpu

freq
201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5

β
cpu

idle
35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6

5.2.1 Application Processor (AP)
The CPU power consumption is made up of two parts, idle
power and the running power, as follows:

P cpu = β
cpu
freq × u + β

cpu
idle , (12)

where u is the utilisation and β
cpu
freq and β

cpu
idle are the CPU

parameters, listed in Table 4 for the DUT [26]. The utilisation
is calculated as the ratio of the CPU time used vs. the time
available per frame. However, the CPU is also used by the
OS and other running applications. Dargie [28] used normal
and exponential distributions to simulate workload. Also a
random variable, r sampled from a Gaussian distribution
is used to simulate these other activities. By adjusting the
mean of r, busy and idle sensors can be simulated. The total
utilisation is calculated as:

u =

∑N
i=1 Texeci

TFrame
+ r (13)

where N is the number of algorithms to be processed, Texeci

is the execution time for ith algorithm for execution times
for all algorithms) and TFrame = 1

FPS
is the time available

for each frame. In the situation where Texeci
> TFrame

which is very likely in the case of algorithms for person
re-identification; the CPU is run up to 100% load and run
the remainder of the algorithm in the next frame and so on.

5.2.2 Image Sensor
The image sensor consumes significant energy in a mobile
device when used continuously. According to Likamwa et
al. [29], when using the image sensor continuously, the
energy consumption per frame of the image sensor can be
modelled as:

Ecamera = Pidle × (Tframe − Tactive) + Pactive × Tactive (14)

where, Tframe = 1/FPS is time allocated for each frame,
Tactive = Number of Pixels/Camera Clock Frequency is the
time taken by the sensor to gather the pixel data, and
Pidle, Pactive are the idle and the active power consumption
of the image sensor respectively. Based on Eqn. (14), power
consumption of the image sensor depends on image reso-
lution and the acquisition rate. The parameters used for the
simulation are listed in Table 5.

5.2.3 Wi-Fi
The Wi-Fi model calculates the time and energy of the Wi-
Fi component in the connected mode. There are two modes
depending upon the packet rate.

pwifi =

{
βLT × p + βLT base if p ≤ PTh

βHT × p + βHT base if p > PTh
(15)

where p is the packet rate, βLT, βHT, βLT base, βHT base and PTh

are the parameters of the DUT based on [26] (see Table 5).

TABLE 5: Image Sensor and WiFi Parameters
Image Sensor WiFi

Parameter Value Parameter Value
Pidle 225.4 Joules βLT base 238.7
Pactive 338.8 Joules βHT base 247.0

Image Resolution 800 × 600 βLT 1.2
Camera Clk Frequency 32 MHz βHT 0.8

PTh 20 pkts/sec

As per [26], if the number of packets per second exceeds
the threshold of 20 then Wi-Fi is in the high power state,
else in the low power state. Unlike the cellular system, the
power consumption is directly proportional to the data rate.
Although Wi-Fi consumes energy in scanning mode, it is
ignored as connection between the sensors is the basis of
this research.

5.3 Target Data

The proposed centralised and distributed algorithms de-
fined in section 4 along with the Non Offloading (NO)
case, are tested on two different datasets. The first is a
simulated dataset and uses a widely used mobility model
called RandomWaypoint Model (RWP), and the second uses
real data from a computer vision dataset. They are briefly
described below.

5.3.1 Random Waypoint Model
In the Random Waypoint Model [30], targets spawn at
random locations in the platform. It then moves around
the platform just like a drone being flown first time by an
amateur. The targets either pause for certain time or select
its next destination. When it selects its next destination it
moves towards it with a random but a constant velocity;
the process repeats until it dies (i.e. target moves out of
the platform). In order to have different job-rate among the
nodes, the size of FOV is also randomly selected (see Fig.7a).
The target spawning rate is higher than dying rate, so target
rate generally increases over time across all nodes (see Fig.
9a).

5.3.2 SAIVT
A multi-camera scenario described in SAIVT Multi-Camera
Surveillance Database [31] is chosen to test the algorithms
on a real dataset. This dataset consists of eight cameras and
contains movements of more than 150 people in a cafeteria.
The target tracks for the simulator were extracted from the
Extensible Markup Language (XML) files provided with the
dataset instead of processing the images. According to the
dataset [31], the acquisition rate was 25 FPS. A brief study
of their target distribution revealed there were far too many
targets in the short span of time and majority of the targets
appeared in the first half of the dataset. So, the FPS was
relaxed to 10 and the data was split along the timescale to 16
sensors. The resulting target distribution looked like shown
in Fig.8. The majority of targets are detected by Cameras 1,
7 and 15.

6 EXPERIMENTAL RESULTS

In this work, 100 Monte-Carlo simulations were executed
for 720, 000 simulation steps which is equivalent to 12

9

Time (Minutes)
1 2 3 4 5 6 7 8 9 10 11

N
u
m
b
er

of
T
ar
ge
ts

0

500

1000

1500

2000

2500

3000

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Fig. 8: Heterogeneous loading of cameras in multi-camera
scenario. Each colour band represents target load on each
camera. For example, the bottom and the top bands repre-
sents target arrivals in camera index 1 and 16 respectively.
Majority of targets appear in camera indexed 1, 7 and 15.
(Best viewed in colour)

TABLE 6: Simulation Parameters
Dataset Bandwidth

(Mbps)
NSI Frequency

(sec)
Network

Size
Range
(Metre)

RWP 1, 11, 54 5, 10, 20 10 30, 60, 90
SAIVT 1, 11, 54 5, 10, 20 16 30, 60, 90

minutes of simulated time, on two sets of target data de-
scribed in section (5.3). The total energy consumption for
each sensor was estimated by summing power consumption
of each component based on energy values from Eqn. (12),
(14) and (15) in section (5.2). For each run, the simulator
was initialised as per Algorithm (2). Each simulation was
repeated for the various parameters to see if there is any
effect on algorithm performance (see Table 6).

Algorithm 2 Simulator initialisation

Generate n sensors randomly on the platform.
Create communication links between sensors that are
within the communication range.
For each link, randomly generate Packet Delivery Rate
Use shortest path algorithm to calculate cost per bit be-
tween nodes. The cost can range between 0 (ie same node)
to ∞ (i.e. no communication link).

6.1 Results for the standard configuration

Fig. 9a shows the average target detected across all the
nodes and across all the trials, normalised by the total

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0 2 4 6 8 10 12

0

5

10

15

20

25

30

NO

RD

PC

PD

O

(b)

Fig. 9: Simulation results for RWP target data with Band-
width 11 Mbps NSI exchange frequency of 5 seconds and
range of communication limited to 60 meters. (a) Nor-
malised Target arrival rate per nodes over simulation time
(b) Targets dropped over Arrival Rate. NO dropped the
most (30% of all targets). Centralised algorithms performed
best with at least 80% reduction in dropped targets and
distributed algorithms perform in between.

capacity of the system for the RWP dataset. It remains
same for all the different simulator parameters specified
in Table 4. Targets that cannot be processed within the
allocated time (30 and 20 for RWP and SAIVT respectively)
is considered as dropped targets. At around 10 minutes, the
target rate exceeds the computational capacity of the system
so even in an ideal case, targets would be dropped. Fig. 9b
shows the results for the standard configuration of 11 Mbps,
communication range of 60m and NSI exchange every 5
seconds. In the baseline NO case, about 30% of all targets
are dropped. The RD does slightly better than the NO and
drops only about 25%. The PD however, performs quite well
and drops approximately 40% less targets. The performance
of centralised algorithms though is at a different level. The
PC and the O drops only about 5% and 3% of the targets.
Another noticeable fact is that the centralised algorithms
dropped only a few targets up to 8 minutes, this is when
more targets arrive than the system can process. The results
will be further analysed in a later section.

Fig. 10a shows the target arrival rate during the simula-
tion time for SAIVT. Similar to RWP case, it remains constant
for different simulation parameters. Unlike RWP, the SAIVT
has two peaks during the simulation when the target rate
is higher than the maximum processing capability of the
system. In this case, the NO algorithm dropped almost 60%
of all targets which is very poor. All the proposed algorithms
performed significantly better than that. Both distributed
algorithms (RD and PD) produced very similar results and
in both case the targets dropped were recorded to be around
22% which is less than half of the baseline case. The Oracle
performed best followed by the PC solution. They dropped
approximately 10 and 20% of the targets respectively. Also,
the Oracle method did not drop any significant targets
after approximately three minutes which is the first peak
in load shown in Fig. 10a. In the remaining sub-sections,
the performance is analysed with respect to the energy
consumed as well as effect of environment and parameter
selections.

10

0 2 4 6 8 10 12

0.4

0.6

0.8

1

1.2

1.4

(a)

0 2 4 6 8 10 12

0

10

20

30

40

50

60

NO

RD

PC

PD

O

(b)

Fig. 10: Simulation results for SAIVT target data with
Bandwidth 11 mbps NSI exchange frequency of 5 seconds
and range of communication limited to 60 meters. (a)
Normalised Target arrival rate per nodes over simulation
time. (b) Cumulative targets dropped over time. Proposed
algorithms perform significantly better than the NO case.
Distributed algorithms dropped less than half of the base-
line and the Oracle dropped only about sixth.

6.2 Process Score and Efficiency Score

The process score is defined as the percentage of jobs suc-
cessfully executed in the allocated times. The efficiency score
(ES) as the ratio of Successful Identification to the energy
consumed [4]. Similar metric (mAP/Energy) has also been
used by Mao et.al [32] for measuring the performance
of their object detection algorithm on embedded platform
where mAP is the mean Average Precision. In simple terms,
ES is a measure of work accomplished per joule and shows
if the extra energy cost is justified (especially for a battery
powered device). The overall result is summarised in Table
7 and Fig. 11 for the standard configuration. For Fig. 11,
the objective of the proposed algorithm is to be at the top
left corner which means the system uses less energy but
provides better performance. This is not always possible
and some extra energy has to be used to gain performance.
The ES metric gives an insight if the extra energy consumed
is justified and can help in selecting the right algorithm.
This can be explained using an example, in Fig. 11a, PD
performs slightly better than RD but also uses slightly more
energy. Between those two, which one should be preferred?
Those two algorithms have ES of 1.07 and 1.12 respectively
which suggest that the system achieves better performance
per joule using the PD than RD. So PD should be chosen
over RD. However, in case of PC and PD, PC is superior as
it has a higher ES score. This can be seen from Fig. 11 as
well.

In both datasets, Oracle performs better than the PC,
which can be explained by two reasons. First, the Oracle
takes decisions every second as opposed to every five sec-
onds in PC. Second, when choosing the nominated server in
PC on a round-robin basis, due to the partial connectivity,
not all the nodes can communicate with the server which
results in slightly degraded performance (see Section 6.4).
However, PC is still superior than the distributed algo-
rithms. Regarding energy consumption, in the RWP case,
the centralised algorithms actually consumed less energy
than the NO case. It is because when not offloading some

TABLE 7: Simulation Results (Averaged over
100 runs) for Bandwidth 11 mbps NSI

exchange frequency of 5 seconds and range of
communication limited to 60 meters.

Data Algo-
rithm

Arrival
Rate
(/min)

Service
Rate
(/min)

Process
Score

Energy
Used

(Joules)

Efficiency
Score

(Ident/100J)

R
W

P

NO 8.6 6.16 0.71 613 1.0047
RD 8.6 6.69 0.78 628 1.0653
PD 8.6 7.29 0.85 649 1.1232
PC 8.6 8.22 0.95 585 1.4061
O 8.6 8.42 0.98 569 1.4786

S
A
IV

T

NO 9.37 4.10 0.43 529 0.7696
RD 9.37 7.11 0.76 680 1.0448
PD 9.37 7.08 0.76 692 1.0237
PC 9.37 7.56 0.81 647 1.1683
O 9.37 8.44 0.90 703 1.2012

560 580 600 620 640 660

0

0.2

0.4

0.6

0.8

1

NO

RD

PC

PD

O

(a)

500 550 600 650 700 750

0

0.2

0.4

0.6

0.8

1

NO

RD

PC

PD

O

(b)

Fig. 11: Efficiency Scores (a) RWP (b) SAIVT

of the sensors were utilised heavily and consumed a lot
of energy whereas others were idle which still consumed
some energy. By offloading, the load was more balanced
and overall the system consumed less energy.

6.3 Effect of Bandwidth and NSI frequency

In the RWP simulation, the bandwidth had minimal effect
on the performance (i.e. no change in targets dropped over-
all due to change in bandwidth) – see Fig. 12a. This may
be due to the lower amount of data exchanges rather than
the bandwidth having no effect at all. This is evident in the
real SAIVT dataset case, where the number of targets were
significantly higher (see Fig. 12b). All three algorithms, RD,
PC and PD benefited from higher bandwidth but the signifi-
cance was higher in the case of distributed algorithms. Also,
increasing the bandwidth from 11 Mbps to 54 Mbps had
minimal effect on the performance but slightly increased
energy usage. This can be explained using Eqn. (15), the
higher bandwidth led to higher packet rate increasing the
radio power slightly. As the data was transmitted periodi-
cally, the WiFi radio could not go into the sleep state. Hence
the slight increase in energy usage.

The performance of the proposed algorithms increased
when the NSI exchanges were frequent (from once every
20 seconds to once every 5 seconds). This signifies the
importance of having recent NSI about neighbouring nodes.
Particularly, PD was highly dependant on the frequency of
NSI exchange. When the frequency was low (once every 20

11

615 620 625 630
0

0.2

0.4

0.6

0.8

1
RD

550 600 650
0

0.2

0.4

0.6

0.8

1
PC

1mbps, NSI:5

1mbps, NSI:10

1mbps, NSI:20

11mbps, NSI:5

11mbps, NSI:10

11mbps, NSI:20

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(a)

600 650 700
0

0.2

0.4

0.6

0.8

1
RD

600 620 640 660
0

0.2

0.4

0.6

0.8

1
PC

1mbps, NSI:5

1mbps, NSI:10

1mbps, NSI:20

11mbps, NSI:5

11mbps, NSI:10

11mbps, NSI:20

550 600 650 700
0

0.2

0.4

0.6

0.8

1
PD

(b)

Fig. 12: Effect of communication bandwidth (1, 11), and
NSI frequency (5, 10, and 30 seconds) (a) RWP: Performance
increased as NSI update frequency increased, however, no
significant difference as bandwidth increased. (b) SAIVT:
Performance increased as the result of increased bandwidth
and NSI update frequency.

seconds), it performed worse than the NO case, but when it
was higher, the performance was better. The trend was con-
sistent in both target datasets. For RD the NSI frequency rate
should have no effect because it is asynchronous and nodes
communicates with its neighbours when they seek help
only. However, as seen in Fig. 12, there is some variation
in performance, this is due to different sampling duration of
NSI. For NSI 5, 10, 20 second frequency, the moving average
was calculated from the last 4, 9 and 19 seconds respectively.
The opposite energy trends for the RWP dataset between
PC and PD for various NSI frequencies also draw attention
(Fig. 12a). However, upon further study, the energy usage
was based more on CPU usage than on NSI exchanges.

6.4 Effect of Communication range

As the communication range of a node is increased, the
number of neighbours the node can talk to increases (and
vice-versa) – see Alg.2. The range was changed to see how
the algorithms behave in varying conditions. Heuristically,
more neighbours mean more options so the proposed al-
gorithms should perform better when the communication
range increases and vice-versa. The experiments generally
follow this belief and the results are shown in Fig. 13.
However, some interesting results were noted in the case
of PD for the RWP case. The performance slightly reduced
in this case when the communication range was extended
for the lower frequency of NSI exchange (10 and 20). This is
because as the NSI frequency was low and there were many
neighbours, the uncertainty of their state was higher and

615 620 625
0

0.2

0.4

0.6

0.8

1
RD

Range:30m, NSI:5

Range:60m, NSI:5

Range:30m, NSI:10

Range:60m, NSI:10

Range:30m, NSI:20

Range:60m, NSI:20
550 600 650
0

0.2

0.4

0.6

0.8

1
PC

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(a)

550 600 650
0

0.2

0.4

0.6

0.8

1
RD

Range:30m, NSI:5

Range:60m, NSI:5

Range:30m, NSI:10

Range:60m, NSI:10

Range:30m, NSI:20

Range:60m, NSI:20

550 600 650
0

0.2

0.4

0.6

0.8

1
PC

550 600 650
0

0.2

0.4

0.6

0.8

1
PD

(b)

Fig. 13: Effect of communication range (30, 60 metres) and
NSI frequency (5, 10, and 30 seconds). Slight improvement
in performance as the range was extended except for PD in
RWP case. (a) RWP. (b) SAIVT

led to decisions that were not optimal. However, the trend
was not evident in the SAIVT case. In future works, more
simulations will be carried out with different degrees of
communication links to further investigate this behaviour.

6.5 Average CPU utilisation

The main idea behind the proposed algorithms is the dis-
tribution of the computational load among the nodes so as
to minimise overloading as much as possible. Fig. 14 shows
the average spread of CPU utilisation among the nodes. For
RWP, the median CPU utilisation for PC and O across the
nodes reduced by approximately 12 and 15% compared to
the NO case, leading to reduced energy usage. In case of
PD the median usage increased slightly be appoximately
6% while the RD the change was negligible. Due to the
fact that the targets distribution were uniformly random
and the resources usage is evenly distributed already, the
performance gains were not large.

However, in the real dataset case, the overall CPU usage
was higher and spread more evenly for the proposed al-
gorithms than the NO case, which is signified by shorter
boxes (see Fig. 14b). This led to significant performance
gains meaning less targets were dropped. This may also lead
to longer network lifetimes. The CPU usage in the NO case
shows some sensor using three time more than the median
and about nine time more than the sensor using lowest
CPU. This would mean very short network lifetime, as the
one using the most CPU would run out of battery sooner
than the rest. In all the proposed algorithms, the median of
average CPU usage is raised (signifying more performance)
but bar some of the outliers, some of the sensors have

12

NO RD PC PD O

Algorithms

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 C

P
U

 u
ti
lis

a
ti
o
n

(a)

NO RD PC PD O

Algorithms

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 C

P
U

 u
ti
lis

a
ti
o
n

(b)

Fig. 14: Average CPU utilisation across the nodes and NSI
frequency (5, 10, and 30 seconds) (a) RWP (b) SAIVT

TABLE 8: Mean Execution times (Seconds)
Dataset NO RD PD PC O
RWP 12.70 11.37 9.96 11.92 8.84
SAIVT 7.72 7.46 8.14 7.19 8.39

reduced CPU usage which suggests network lifetimes may
be extended.

6.6 Mean Execution time

The simulation considered in this work is a soft real-time
system. So a threshold was set for each every algorithm
to be completed. The threshold was set to 30 and 20 sec-
onds for RWP and SAIVT respectively. The Algorithm drop
statistics corresponds to the algorithms that were not com-
pleted within the threshold period. Among those processed
successfully, the mean execution times are compared. The
results are shown in Table 8. The results show that even
though offloading requires data to be offloaded, processed
remotely and the results sent back to the offloader, the
average execution time is comparable to the baseline NO
case and often better. The O had the shortest execution
time of all the algorithms tested including the baseline for
the RWP dataset, whereas PC had the shortest time for the
SAIVT case. The centralised algorithms performed better in
this metric which may be due to the fact that it is able to
consider all the neighbouring states and less likely to make
wrong assumptions about neighbours.

7 CONCLUSION

In this paper, a sensor network was modelled as a network
of queues using an Open Jackson network model, in the
interest of computational load balancing on the edge in
absence of cloud and fog. Various novel reactive and proactive
algorithms were proposed, which significantly enhanced the
performance of the system compared to the Non Offloading
scenario. The algorithms were tested on Random Waypoint
Model and a real SAIVT person re-identification dataset for
different scenarios such as higher and lower bandwidth,
higher and lower update rates etc. The results reinforces
the assertion that most of the jobs can be processed if (a) the
total job rate is less than total computing capability, and
(b) if other node NSI is available. Especially in the real
dataset, the performance improvements were significant.
The performance boost also comes at similar energy cost

and may well increase the network lifetime. This area of
work has not been studied and explored before.

8 ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) [EP/K014277/1] and
the MOD University Defence Research Centre (UDRC) on
Signal Processing. Simulation data will be made available

REFERENCES

[1] X. Wang and R. Zhao, “Person Re-Identification: System Design
and Evaluation Overview,” in Pers. Re-Identification (S. Gong,
M. Cristani, S. Yan, and C. C. Loy, eds.), London: Springer London,
2014.

[2] X. Wang, “Face Identification,” Comput. Vis. A Ref. Guid., pp. 279–
285, 2014.

[3] S. Sthapit, J. Thompson, J. R. Hopgood, and N. M. Robertson, “Dis-
tributed Implementation for Person Re-Identification,” in 2015
Sens. Signal Process. Def., pp. 1–5, IEEE, sep 2015.

[4] S. Sthapit, J. R. Hopgood, N. M. Robertson, and J. Thompson,
“Offloading to neighbouring nodes in smart camera network,”
2016 24th Eur. Signal Process. Conf., pp. 1823–1827, aug 2016.

[5] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?,” Computer (Long. Beach.
Calif)., vol. 43, no. 4, pp. 51–56, 2010.

[6] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts,
Applications and Issues,” Proc. 2015 Work. Mob. Big Data - Mobidata
’15, pp. 37–42, 2015.

[7] S. Sthapit, J. R. Hopgood, and J. Thompson, “Distributed Compu-
tational Load Balancing for Real-Time Applications,” in 2017 25th
Eur. Signal Process. Conf., 2017.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last
Longer with Code Offload,” in Proc. 8th Int. Conf. Mob. Syst. Appl.
Serv., MobiSys ’10, (New York, NY, USA), pp. 49–62, ACM, 2010.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic Execution Between Mobile Device and
Cloud,” in Proc. Sixth Conf. Comput. Syst., EuroSys ’11, (New York,
NY, USA), pp. 301–314, ACM, 2011.

[10] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A
survey of mobile cloud computing application models,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 1, pp. 393–413, 2014.

[11] K. Kumar, J. Liu, Y. H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mob. Networks Appl.,
vol. 18, no. 1, pp. 129–140, 2013.

[12] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi,
“Application partitioning algorithms in mobile cloud computing:
Taxonomy, review and future directions,” J. Netw. Comput. Appl.,
vol. 48, pp. 99–117, 2015.

[13] H. Wu, W. Knottenbelt, and K. Wolter, “Analysis of the Energy-
Response Time Tradeoff for Delayed Mobile Cloud Offloading,”
in SIGMETRICS Perform. Eval. Rev., vol. 43, pp. 33–35, 2015.

[14] Y. Zhang, D. Niyato, and P. Wang, “Offloading in Mobile Cloudlet
Systems with Intermittent Connectivity,” IEEE Trans. Mob. Com-
put., vol. 14, no. 12, pp. 2516–2529, 2015.

[15] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, 2015.

[16] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei,
V. Grassi, F. Lo Presti, and V. Piccialli, “A game-theoretic approach
to computation offloading in mobile cloud computing,” Math.
Program., vol. 157, no. 2, pp. 421–449, 2016.

[17] Y. D. Lin, E. T. H. Chu, Y. C. Lai, and T. J. Huang, “Time-and-
Energy-Aware Computation Offloading in Handheld Devices to
Coprocessors and Clouds,” IEEE Syst. J., vol. 9, no. 2, pp. 393–405,
2015.

[18] C. M. Sarathchandra Magurawalage, K. Yang, L. Hu, and J. Zhang,
“Energy-efficient and network-aware offloading algorithm for mo-
bile cloud computing,” Comput. Networks, vol. 74, pp. 22–33, 2014.

[19] T. Truong-Huu, C.-K. Tham, and D. Niyato, “A Stochastic Work-
load Distribution Approach for an Ad Hoc Mobile Cloud,” 2014
IEEE 6th Int. Conf. Cloud Comput. Technol. Sci., pp. 174–181, 2014.

13

[20] W. J. Stewart, Probability, Markov chains, queues, and simulation : the
mathematical basis of performance modeling. Princeton (N.J.), Oxford:
Princeton University Press, 2009.

[21] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” J. Supercomput.,
vol. 69, pp. 492–507, 2014.

[22] S. Boyd and L. Vandenberghe, “Convex Set,” Convex Optim.,
pp. 21–60, 2004.

[23] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy Aware
Offloading for Competing Users on a Shared Communication
Channel,” IEEE Trans. Mob. Comput., vol. 16, no. 1, 2017.

[24] S. Biaz and S. Wu, “Rate Adaptation Algorithms for IEEE 802.11
Networks: A Survey and Comparison,” Proc. IEEE Symp. Comput.
Commun., pp. 130–136, 2008.

[25] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang, “A practical
SNR-guided rate adaptation,” Proc. - IEEE INFOCOM, pp. 146–
150, 2008.

[26] W. Jung, C. Kang, C. Yoon, D. D. Kim, and H. Cha, “DevScope:
a nonintrusive and online power analysis tool for smartphone
hardware components,” . . . Hardware/software . . . , pp. 353–362,
2012.

[27] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” Tech.
Rep. January, 2008.

[28] W. Dargie, “A Stochastic Model for Estimating the Power Con-
sumption of a Processor,” IEEE Trans. Comput., vol. 64, no. 5,
pp. 1311–1322, 2015.

[29] R. Likamwa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl,
“Energy characterization and optimization of image sensing to-
ward continuous mobile vision,” in Proceeding 11th Annu. Int. Conf.
Mob. Syst. Appl. Serv., (New York, NY, USA), pp. 69–82, ACM, 2013.

[30] F. Bai and A. Helmy, “A Survey of Mobility Models in Wireless
Adhoc Networks,” Wirel. Ad Hoc Sens. Networks, pp. 1–30, 2004.

[31] A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey,
“A Database for Person Re-Identification in Multi-Camera Surveil-
lance Networks,” 2012 Int. Conf. Digit. Image Comput. Tech. Appl.,
pp. 1–8, dec 2012.

[32] H. Mao, S. Member, S. Yao, S. Member, T. Tang, and S. Member,
“Towards Real-Time Object Detection on Embedded Systems,”
vol. 6750, no. 61373026, pp. 1–13, 2016.

Saurav Sthapit is currently a Ph.D. stu-
dent in the Institute for Digital Com-
munications, within the School of Engi-
neering, at the University of Edinburgh,
Scotland. He received his B.E. in Elec-
tronics and Communication Engineer-
ing from Tribhuvan University, Nepal
and M.Sc. degree in Embedded Systems
from the University of Kent, England.
His research interests include computer

vision, mobile computing and reinforcement learning etc.

John Thompson is currently a Professor at
the School of Engineering in the University of

Edinburgh. He specializes in antenna
array processing, cooperative commu-
nications systems and energy efficient
wireless communications. He has pub-
lished in excess of three hundred papers
on these topics. He is a work pack-
age leader for the EPSRC/DSTL Signal
Processing for the Network Battlespace
project. He is an editor for the Green
Communications and Computing Series

that appears regularly in IEEE Communications Magazine.
In January 2016, he was elevated to Fellow of the IEEE for

contributions to antenna arrays and multi-hop communica-
tions.

Neil M. Robertson (SM’10) received
the M.Sci. degree from Glasgow Uni-
versity, Glasgow, U.K., in 2000, and the
D.Phil. degree from Oxford University,
Oxford, U.K., in 2006. He is Professor of
Research for Image and Vision Systems
at Queen’s University of Belfast and co-
leads the EPSRC Edinburgh Centre for
Robotics and the EPSRC/DSTL Univer-

sity Defence Research Centre. His work centres on human
behavior recognition, computer vision and multi-modal
sensor fusion with his research team. From 2000 to 2007,
he worked in the U.K. Scientific Civil Service with DERA
and held the 1851 Royal Commission Fellowship at Oxford
University.

James R. Hopgood (M’02) is a Se-
nior Lecturer in the Institute for Digital
Communications, within the School of
Engineering, at the University of Edin-
burgh, Scotland. He received the M.A.,
M.Eng. degree from the University of
Cambridge in Electrical and Information
Sciences in 1997, and a Ph.D. in July 2001
in Statistical Signal Processing, part of
Information Engineering, also from the

University of Cambridge.
He was then a Post-Doctoral Research Associate for one

year in the Signal Processing Laboratory in the Cambridge
University Engineering Department, and then a Research
Fellow at Queens’ College, Cambridge until March 2004.
James joined the University of Edinburgh as a Lecturer in
April 2004, and then Senior Lecturer in 2012. Since Septem-
ber 2011, he is Editor-in-Chief for the IET Journal of Signal
Processing.

His research expertise include model-based Bayesian
signal processing, speech and audio signal processing in
adverse acoustic environments, including blind derever-
beration and multi-target acoustic source localisation and
tracking, single channel signal separation, distant speech
recognition, audio-visual fusion, medical imaging, blind im-
age deconvolution, and general statistical signal and image
processing.

Bibliography

[1] C. Kelly, “Ok, google, take a deep breath,” New York Times, 2012. 1.1

[2] J. Aron, “How innovative is apple’s new voice assistant, siri?,” New scientist,
vol. 212, no. 2836, 2011. 1.1

[3] D. Etherington, “Amazon echo is a $199 connected speaker packing an always-on
siri-style assistant,” November 2014. Accessed: 08/12/2017. 1.1

[4] A. Saini and T. Koyama, “Cleanup technologies following fukushima,” MRS
Bulletin, vol. 41, no. 12, p. 952954, 2016. 1.1

[5] M. Yamaguchi, “Swimming robot to probe damage at japan nuclear plant,” June
2017. (document), 1.1, 1.1

[6] D. Science and T. Laboratory, “Ministry of defence unveils futuristic uniform
design,” September 2015. URL: https://www.gov.uk/government/news/mod-
unveils-futuristic-uniform-design. (document), 1.3, 1.2

[7] I. Drury, “Soldier of the future: Maps beamed to his glasses, helmet camera sending
images to comrades and sensors to monitor his health,” September 2015. URL:
http://www.dailymail.co.uk/news/article-3237525/Soldier-future-Maps-beamed-
glasses-helmet-camera-sending-images-comrades-sensors-monitor-health.html.
1.3

[8] S. Martelli, D. Tosato, M. Cristani, and V. Murino, “Fpga-based pedestrian detec-
tion using array of covariance features,” in 2011 Fifth ACM/IEEE International
Conference on Distributed Smart Cameras, pp. 1–6, Aug 2011. (document), 1.3

[9] S. Sthapit, J. Thompson, J. R. Hopgood, and N. M. Robertson, “Distributed
Implementation for Person Re-Identification,” in 2015 Sensor Signal Processing
for Defence (SSPD), pp. 1–5, sep 2015. 1.5

[10] S. Sthapit, J. R. Hopgood, N. M. Robertson, and J. Thompson, “Offloading to
neighbouring nodes in smart camera network,” in 2016 24th European Signal
Processing Conference (EUSIPCO), pp. 1823–1827, aug 2016. 1.5

[11] S. Sthapit, J. R. Hopgood, and J. Thompson, “Distributed computational load
balancing for real-time applications,” in 2017 25th European Signal Processing
Conference (EUSIPCO), pp. 1189–1385, aug 2017. 1.5

188

BIBLIOGRAPHY 189

[12] W. Hu, T. Tan, L. Wang, and S. Maybank, “A Survey on Visual Surveillance of
Object Motion and Behaviors,” Trans. Sys. Man Cyber Part C, vol. 34, pp. 334–352,
aug 2004. (document), 2.2, 2.1

[13] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S. Regazzoni, “Distributed
architectures and logical-task decomposition in multimedia surveillance systems,”
Proceedings of the IEEE, vol. 89, pp. 1419–1440, oct 2001. 2.1, 2.1.1

[14] M. Valera and S. A. Velastin, “Intelligent distributed surveillance systems: a
review,” IEE Proceedings - Vision, Image and Signal Processing, vol. 152, pp. 192–
204, apr 2005. 2.1

[15] S. A. Velastin, B. A. Boghossian, B. P. L. Lo, J. Sun, and M. A. Vicencio-Silva,
“PRISMATICA: toward ambient intelligence in public transport environments,”
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 35, pp. 164–182, jan 2005. (document), 2.1, 2.1.1, 2.1.1, 2.4

[16] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pattern
Recognition Letters, vol. 34, no. 1, pp. 3–19, 2013. 2.1

[17] M. Al Najjar, M. Ghantous, and M. Bayoumi, Video Surveillance for Sensor
Platforms, vol. 114. 2014. (document), 2.3, 2.1.1, 2.1.1

[18] M. Richardson and S. Wallace, Getting started with raspberry PI. ” O’Reilly Media,
Inc.”, 2012. 2.1.1

[19] NVIDIA Corporation, “NVIDIA Tegra K1: A new era in mobile computing,” tech.
rep., NVIDIA, 2014. 2.1.1

[20] D. H. Ballard and C. M. Brown, Computer Vision. Prentice Hall Professional
Technical Reference, 1st ed., 1982. 2.2

[21] D. Marr, Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. New York, NY, USA: Henry Holt and Co.,
Inc., 1982. 2.2

[22] R. Gonzalez and R. Woods, Digital Image Processing. Pearson Education, 2009.
2.2.1

[23] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,”
in Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,
(Washington, DC, USA), pp. 886–893, IEEE Computer Society, 2005. (document),
2.5, 2.2.2, 3

[24] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, pp. 971–987, jul 2002. 2.2.2,
2.3, 2.4.1

BIBLIOGRAPHY 190

[25] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, nov 2004. 2.2.2,
2.3

[26] P. E. Forssen, “Maximally stable colour regions for recognition and matching,”
in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8,
June 2007. 2.2.2, 2.4.2

[27] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 4. 2006. 2.2.2,
2.4.4

[28] D. Gray, S. Brennan, and H. Tao, “Evaluating Appearance Models for Recog-
nition, Reacquisition, and Tracking,” in 10th IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance (PETS), 2007. (document),
2.3, 2.8

[29] S. Gong, M. Cristani, S. Yan, and C. C. Loy, Person Re-Identification, Advance
in Computer Vision and Pattern Recognition. 2014. 2.3, 2.4

[30] A. Colombo, J. Orwell, and S. Velastin, “Colour constancy techniques for re-
recognition of pedestrians from multiple surveillance cameras,” in Workshop
on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-
M2SFA2 2008, 2008. 2.3

[31] N. Dalal, Finding people in images and videos. PhD thesis, 2006. 2.3

[32] B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “Person Re-Identification by
Support Vector Ranking,” in Proceedings of the British Machine Vision Conference,
pp. 21.1—-21.11, BMVA Press, 2010. 2.3

[33] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D,
pp. 35–45, 1960. 2.3.1

[34] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings F - Radar
and Signal Processing, vol. 140, pp. 107–113, April 1993. 2.3.1

[35] L. Patino and J. Ferryman, “PETS 2014: Dataset and challenge,” in 2014 11th
IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS), pp. 355–360, aug 2014. (document), 2.3.1, 2.11

[36] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?,” Computer (Long. Beach. Calif)., vol. 43, no. 4,
pp. 51–56, 2010. (document), 2.3.3, 4.2, 4.4

[37] R. Zhao, W. Ouyang, and X. Wang, “Learning Mid-level Filters for Person
Re-identification,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 144–151, jun 2014. 2.4, 2.4.3

BIBLIOGRAPHY 191

[38] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large
scale metric learning from equivalence constraints,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2288–2295, jun 2012. 2.4, 2.1, 2.4.1,
2.4.1, 3.2.1, 3.2.2

[39] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith, “Learning Locally-
Adaptive Decision Functions for Person Verification,” in 2013 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3610–3617, jun 2013. 2.4, 2.1,
2.4.1

[40] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic
Metric Learning,” in Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, (New York, NY, USA), pp. 209–216, ACM, 2007. 2.4, 2.1,
2.4.1

[41] P. M. Roth, M. Hirzer, M. Köstinger, C. Beleznai, and H. Bischof, “Mahalanobis
Distance Learning for Person Re-identification,” in Person Re-Identification,
pp. 247–267, Springer London, 2014. 2.4, 2.4.1

[42] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, “Person
re-identification by symmetry-driven accumulation of local features,” in 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 2360–2367, jun 2010. 2.4, 2.4.2, 3.2.1

[43] H. Ma, C. Zeng, and C. X. Ling, “A Reliable People Counting System via Multiple
Cameras,” ACM Trans. Intell. Syst. Technol., vol. 3, pp. 31:1—-31:22, feb 2012.
2.4, 2.1

[44] N. Gheissari, T. B. Sebastian, and R. Hartley, “Person Reidentification Using
Spatiotemporal Appearance,” in 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 1528–1535, 2006.
2.4, 2.1

[45] X. Wang and R. Zhao, Person Re-identification: System Design and Evaluation
Overview, pp. 351–370. London: Springer London, 2014. 2.4, 3.2.1

[46] M. A. Saghafi, A. Hussain, H. B. Zaman, and M. H. M. Saad, “Review of Person
Re-identification Techniques,” CoRR, vol. abs/1511.02319, 2015. 2.4

[47] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and trends in person
re-identification,” Image and Vision Computing, vol. 32, no. 4, pp. 270–286, 2014.
2.4

[48] L. Bazzani, M. Cristani, and V. Murino, “Symmetry-driven accumulation of local
features for human characterization and re-identification,” Computer Vision and
Image Understanding, vol. 117, no. 2, pp. 130–144, 2013. 2.1

[49] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised Salience Learning for Person
Re-identification,” in 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3586–3593, jun 2013. 2.1, 2.4.3, 3.2.1, 3.2.1

BIBLIOGRAPHY 192

[50] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? Metric learning
approaches for face identification,” in 2009 IEEE 12th International Conference
on Computer Vision, pp. 498–505, sep 2009. 2.4.1

[51] R. Zhao, W. Ouyang, and X. Wang, “Person Re-identification by Salience
Matching,” in 2013 IEEE International Conference on Computer Vision, pp. 2528–
2535, dec 2013. (document), 2.4.3, 2.13

[52] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep Metric Learning for Person Re-
identification,” in Proceedings of the 2014 22Nd International Conference on
Pattern Recognition, ICPR ’14, (Washington, DC, USA), pp. 34–39, IEEE
Computer Society, 2014. 2.4.4, 2.2

[53] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep Filter Pairing Neural
Network for Person Re-identification,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 152–159, jun 2014. 2.4.4, 2.2

[54] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning architecture
for person re-identification,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3908–3916, jun 2015. (document), 2.4.4, 2.2,
2.14

[55] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person Re-Identification
by Multi-Channel Parts-Based CNN With Improved Triplet Loss Function,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), jun
2016. 2.4.4, 2.2

[56] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled Samples Generated by {GAN}
Improve the Person Re-identification Baseline in vitro,” CoRR, vol. abs/1701.07717,
2017. 2.4.4

[57] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet loss: a deep
quadruplet network for person re-identification,” CoRR, vol. abs/1704.01719, 2017.
2.4.4, 2.2

[58] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” ArXiv e-prints,
June 2014. 2.4.4

[59] M. Geng, Y. Wang, T. Xiang, and Y. Tian, “Deep Transfer Learning for Person
Re-identification,” CoRR, vol. abs/1611.05244, 2016. 2.2, 2.4.4

[60] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable Person
Re-identification: A Benchmark,” in 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1116–1124, dec 2015. 2.4.4

[61] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. (document), 2.4.4, 2.4.4, 2.3

[62] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: {A} Tutorial and Survey,” CoRR, vol. abs/1703.09039, 2017.
2.4.4

http://www.deeplearningbook.org

BIBLIOGRAPHY 193

[63] M. S. L. B. Dong Seon Cheng, Marco Cristani and V. Murino, “Custom pictorial
structures for re-identification,” in Proceedings of the British Machine Vision
Conference, pp. 68.1–68.11, BMVA Press, 2011. http://dx.doi.org/10.5244/C.25.68.
2.4.5

[64] W. Li, R. Zhao, and X. Wang, Human Reidentification with Transferred Metric
Learning, pp. 31–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 2.4.5

[65] W. Li and X. Wang, “Locally aligned feature transforms across views,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3594–3601, 2013. 2.4.5

[66] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep Filter Pairing Neural
Network for Person Re-identification,” 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 152–159, jun 2014. 2.4.5

[67] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-
identification: A benchmark,” in Computer Vision, IEEE International Conference
on, 2015. 2.4.5

[68] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, MARS: A Video
Benchmark for Large-Scale Person Re-Identification, pp. 868–884. Cham: Springer
International Publishing, 2016. 2.4.5

[69] C.-K. Toh, Wireless ATM and Ad-Hoc Networks: Protocols and Architectures.
Norwell, MA, USA: Kluwer Academic Publishers, 1996. 2.5

[70] B. Sklar, Digital Communications: Fundamentals and Applications. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988. (document), 2.16

[71] I. Glover and P. M. Grant, Digital communications. Pearson Education, 2010.
2.5.1

[72] T. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2nd ed., 2001. 2.5.1, 2.5.1

[73] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems: Modeling, Methodology and Techniques. Norwell, MA, USA: Kluwer
Academic Publishers, 2nd ed., 2000. 2.5.1, 3

[74] S. Biaz and S. Wu, “Rate adaptation algorithms for IEEE 802.11 networks:
A survey and comparison,” in 2008 IEEE Symposium on Computers and
Communications, pp. 130–136, jul 2008. 2.5.1, 5.3.2

[75] K. Harika, D. P. Harini, K. V. N. Kumar, and K. Kondaiah, “A Distributed CSMA
Algorithm for Maximizing Throughput in Wireless Networks,” 2012. 2.5.1

[76] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice, “Characterizing
and Modeling the Impact of Wireless Signal Strength on Smartphone Battery
Drain,” SIGMETRICS Perform. Eval. Rev., vol. 41, pp. 29–40, jun 2013. 2.5.1

BIBLIOGRAPHY 194

[77] P. Cardieri, “Modeling interference in wireless ad hoc networks,” IEEE Communi-
cations Surveys Tutorials, vol. 12, pp. 551–572, Fourth 2010. 1

[78] Z. Han, D. Niyato, W. Saad, T. Baar, and A. Hjrungnes, Game Theory in Wireless
and Communication Networks: Theory, Models, and Applications. New York, NY,
USA: Cambridge University Press, 1st ed., 2012. 1, 2.5.1

[79] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks.
2006. 2.5.2

[80] A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Bölöni, and D. Turgut,
“Survey Paper: Routing Protocols in Ad Hoc Networks: A Survey,” Comput. Netw.,
vol. 55, pp. 3032–3080, sep 2011. 2.5.2, 2.5.2

[81] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen, “A Survey of Energy
Efficient Network Protocols for Wireless Networks,” Wireless Networks, vol. 7,
pp. 343–358, jul 2001. 2.5.2

[82] E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad hoc
mobile wireless networks,” IEEE Personal Communications, vol. 6, pp. 46–55, apr
1999. 2.5.2

[83] E. Alotaibi and B. Mukherjee, “Survey Paper: A Survey on Routing Algorithms
for Wireless Ad-Hoc and Mesh Networks,” Comput. Netw., vol. 56, pp. 940–965,
feb 2012. 2.5.2

[84] S. Mao, “Fundamentals of communication networks,” in Cogn. Radio Commun.
Networks, pp. 229–250, Woodhead Publishing Limited, 2010. 2.5.2

[85] E. Yanmaz, M. Quaritsch, S. Yahyanejad, B. Rinner, H. Hellwagner, and
C. Bettstetter, Communication and Coordination for Drone Networks, pp. 79–91.
Cham: Springer International Publishing, 2017. 2.5.2

[86] G. He, “Destination-sequenced distance vector (dsdv) protocol,” Networking
Laboratory, Helsinki University of Technology, pp. 1–9, 2002. 2.5.2

[87] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized link state routing protocol for ad hoc networks,” in Proceedings. IEEE
International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for
the 21st Century., pp. 62–68, 2001. 2.5.2

[88] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16,
no. 1, pp. 87–90, 1958. 2.5.2

[89] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993. 2.5.2,
2.7.2, 2.7.2, 4.4.1

[90] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance
comparison of multi-hop wireless ad hoc network routing protocols,” in Proceedings
of the 4th Annual ACM/IEEE International Conference on Mobile Computing

BIBLIOGRAPHY 195

and Networking, MobiCom ’98, (New York, NY, USA), pp. 85–97, ACM, 1998.
2.5.2, 2.5.3

[91] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in
Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99.
Second IEEE Workshop on, pp. 90–100, Feb 1999. 2.5.2

[92] F. Bai and A. Helmy, “A Survey of Mobility Models in Wireless Adhoc Networks,”
Wireless Ad Hoc and Sensor Networks, pp. 1–30, 2004. 2.5.3, 10, 4.5.3

[93] N. Aschenbruck and E. Gerhards-Padilla, “A survey on mobility models for
performance analysis in tactical mobile networks,” Journal of Telecommunications
and Information Technology, vol. 2, pp. 54—-61, 2008. 2.5.3

[94] R. R. Roy, Handbook of Mobile Ad Hoc Networks for Mobility Models. New York,
NY, USA: Springer-Verlag New York, Inc., 1st ed., 2010. 2.5.3

[95] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa, “Stochastic Properties of the
Random Waypoint Mobility Model,” Wireless Networks, vol. 10, pp. 555–567, sep
2004. (document), 10, 2.18

[96] W. Navidi and T. Camp, “Stationary distributions for the random waypoint
mobility model,” IEEE Transactions on Mobile Computing, vol. 3, pp. 99–108, jan
2004. 10

[97] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006. 2.6, 2.6.1, 2.6.1, 2.6.2

[98] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation: The
Mathematical Basis of Performance Modeling. Princeton, NJ, USA: Princeton
University Press, 2009. 2.6

[99] R. Diestel, Graph theory {graduate texts in mathematics; 173}. Springer-Verlag
Berlin and Heidelberg GmbH & amp, 2000. 2.7.1

[100] J. R. Beveridge, D. Bolme, B. A. Draper, and M. Teixeira, “The CSU Face
Identification Evaluation System,” Machine Vision and Applications, vol. 16,
pp. 128–138, feb 2005. 3.2.1

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015. 3.3

[102] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A System for Large-scale Machine Learning,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, (Berkeley, CA, USA), pp. 265–283, USENIX Association, 2016. 3.3

BIBLIOGRAPHY 196

[103] C. Johnson, Radio Access Networks for UMTS: Principles and Practice. Wiley
Publishing, 2008. 3.4

[104] H. Holma and A. Toskala, WCDMA for UMTS : HSPA evolution and LTE.
Chichester, West Sussex: Wiley, 5th edition. ed., 2010. 3.4

[105] Qualcomm Technologies, “Trepn Profiler Starter Edition User Guide,” tech. rep.,
Qualcomm Technologies, 2014. 3.4.1

[106] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “MAUI: Making Smartphones Last Longer with Code Offload,” in
Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’10, (New York, NY, USA), pp. 49–62, ACM, 2010. 4.1.1,
4.1.2, 5.2

[107] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A Computation Offloading
Framework for Smartphones, pp. 59–79. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012. 4.1.1

[108] R. Kemp, “Programming Frameworks for Distributed Smartphone Computing,”
2014. 4.1.1

[109] N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic mobile cloud computing: Ad
hoc and opportunistic job sharing,” in 2011 Fourth IEEE International Conference
on Utility and Cloud Computing, pp. 281–286, Dec 2011. 4.1.2

[110] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic
Execution Between Mobile Device and Cloud,” in Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, (New York, NY, USA), pp. 301–314,
ACM, 2011. 4.1.2

[111] M. Whaiduzzaman, A. Naveed, and A. Gani, “MobiCoRE: Mobile Device based
Cloudlet Resource Enhancement for Optimal Task Response,” IEEE Transactions
on Services Computing, vol. X, no. X, pp. 1–1, 2016. 4.1.2

[112] T. Truong-Huu, C.-K. Tham, and D. Niyato, “To Offload or to Wait: An
Opportunistic Offloading Algorithm for Parallel Tasks in a Mobile Cloud,” 2014
IEEE 6th International Conference on Cloud Computing Technology and Science,
pp. 182–189, 2014. 4.1.2

[113] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013. 4.1.2

[114] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation
Offloading for Mobile Systems,” Mobile Networks and Applications, vol. 18, pp. 129–
140, feb 2013. 4.1.2

[115] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A Survey of Mobile
Cloud Computing Application Models,” IEEE Communications Surveys Tutorials,
vol. 16, no. 1, pp. 393–413, 2014. 4.1.2

BIBLIOGRAPHY 197

[116] R. Roman, J. Lopez, and M. Mambo, “Mobile Edge Computing, Fog et al.: A
Survey and Analysis of Security Threats and Challenges,” Future Generation
Computer Systems, p. 28, 2016. 4.1.2

[117] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications and
Issues,” in Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata ’15,
(New York, NY, USA), pp. 37–42, ACM, 2015. 4.1.2

[118] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Communications Surveys Tutorials, vol. 19,
pp. 1628–1656, thirdquarter 2017. 4.1.2

[119] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge computing:
Survey and research outlook,” CoRR, vol. abs/1701.01090, 2017. 4.1.2

[120] C. M. S. Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-efficient and
network-aware offloading algorithm for mobile cloud computing,” Computer
Networks, vol. 74, no. Part B, pp. 22–33, 2014. 4.1.2, 5.2

[121] P. Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-Camera Coordination and
Control in Surveillance Systems: A Survey,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 11, pp. 57:1—-57:30, jun 2015. 4.1.2

[122] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background subtrac-
tion,” in Proceedings of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., vol. 2, pp. 28–31 Vol.2, aug 2004. 4.2.1

[123] Y. Jiang, “A Survey of Task Allocation and Load Balancing in Distributed Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, pp. 585–599, feb
2016. 4.2.2

[124] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint
computer conference, pp. 483–485, ACM, 1967. 4.2.2

[125] M. Woolridge, Introduction to Multiagent Systems. New York, NY, USA: John
Wiley & Sons, Inc., 2001. 4.2.4

[126] J.-y. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions,” J. Network and Computer Applications, vol. 48, pp. 99–117, 2015.
4.3.1

[127] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of TCP
processing overhead,” IEEE Communications Magazine, vol. 27, pp. 23–29, jun
1989. 4.3.1

[128] M. Caramia and P. DellOlmo, “Multi-objective Optimization,” in Multi-objective
Management in Freight Logistics: Increasing Capacity, Service Level and Safety
with Optimization Algorithms, pp. 11–37, Springer London, 2008. 4.3.2, 4.4.1

BIBLIOGRAPHY 198

[129] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004. 4.4.1, 5.5.1, 5.5.2, 5.5.2

[130] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Springer
Publishing Company, Incorporated, 2nd ed., 2011. 4.5

[131] G. Carneiro, “Ns-3: Network simulator 3,” in UTM Lab Meeting April, vol. 20,
2010. 4.5

[132] X. Chang, “Network simulations with OPNET,” Simulation Conference Proceed-
ings, 1999 Winter, vol. 1, pp. 307–314 vol.1, 1999. 4.5

[133] J. C. SanMiguel and A. Cavallaro, “Networked Computer Vision: The Importance
of a Holistic Simulator,” Computer, vol. 50, no. 7, pp. 35–43, 2017. 4.5

[134] A. Boulis, “Castalia: Revealing pitfalls in designing distributed algorithms in wsn,”
in Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, SenSys ’07, (New York, NY, USA), pp. 407–408, ACM, 2007. 4.5

[135] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta, “Evaluating the Effectiveness of Model-based Power
Characterization,” in Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’11, (Berkeley, CA, USA), p. 12,
USENIX Association, 2011. 4.5.1

[136] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang,
“Accurate online power estimation and automatic battery behavior based power
model generation for smartphones,” in Proceedings of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
CODES/ISSS ’10, (New York, NY, USA), pp. 105–114, ACM, 2010. 4.5.1

[137] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside My App?:
Fine Grained Energy Accounting on Smartphones with Eprof,” in Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys ’12, (New
York, NY, USA), pp. 29–42, ACM, 2012. 4.5.1

[138] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application
Energy Metering Framework for Android Smartphone Using Kernel Activity
Monitoring,” in Presented as part of the 2012 {USENIX} Annual Technical
Conference ({USENIX} {ATC} 12), (Boston, MA), pp. 387–400, USENIX, 2012.
4.5.1

[139] K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang, “FEPMA: Fine-
grained event-driven power meter for android smartphones based on device driver
layer event monitoring,” in 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1–6, mar 2014. 4.5.1

[140] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “DevScope: A Nonintrusive
and Online Power Analysis Tool for Smartphone Hardware Components,” in

BIBLIOGRAPHY 199

Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS ’12, (New York,
NY, USA), pp. 353–362, ACM, 2012. 4.5.1, 4.5.1, 4.5.1, 5.6.4

[141] M. Lauridsen, Studies on Mobile Terminal Energy Consumption for LTE and
Future 5G. PhD thesis, Aalborg University, 2014. 4.5.1

[142] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl, “Energy
Characterization and Optimization of Image Sensing Toward Continuous Mobile
Vision,” in Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’13, (New York, NY, USA), pp. 69–
82, ACM, 2013. (document), 4.5.1, 4.7

[143] W. Dargie, “A Stochastic Model for Estimating the Power Consumption of a
Processor,” IEEE Transactions on Computers, vol. 64, pp. 1311–1322, may 2015.
4.5.1

[144] C. W. Johnson, Radio Access Networks for UMTS: Principles and Practice. John
Wiley and Sons, 2011. 4.5.1, 4.5.1

[145] T. Guérout, T. Monteil, G. Da Costa, R. Neves Calheiros, R. Buyya, and
M. Alexandru, “Energy-aware simulation with DVFS,” Simulation Modelling
Practice and Theory, vol. 39, pp. 76–91, 2013. 4.5.2

[146] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, and Y. Wang, “Towards Real-Time Object
Detection on Embedded Systems,” IEEE Transactions on Emerging Topics in
Computing, vol. PP, no. 99, p. 1, 2017. 4.5.4

[147] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-Efficient Routing
Protocols in Wireless Sensor Networks: A Survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 2, pp. 551–591, 2013. 5.1

[148] K. Ashton, “That ’internet of things’ thing,” RFID Journal, 2009. 5.1

[149] C. R. Schoenberger and B. Upbin, “The internet of things,” Forbes Magazine,
vol. 169, no. 6, pp. 155–160, 2002. 5.1

[150] H. Wu, Y. Sun, and K. Wolter, “Analysis of the Energy-Response Time Tradeoff
for Delayed Mobile Cloud Offloading,” SIGMETRICS Perform. Eval. Rev., vol. 43,
pp. 33–35, sep 2015. 5.2

[151] Y. Zhang, D. Niyato, and P. Wang, “Offloading in Mobile Cloudlet Systems with
Intermittent Connectivity,” IEEE Transactions on Mobile Computing, vol. 14,
pp. 2516–2529, dec 2015. 5.2

[152] X. Chen, “Decentralized Computation Offloading Game for Mobile Cloud
Computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
pp. 974–983, apr 2015. 5.2

[153] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi, F. Lo
Presti, and V. Piccialli, “A Game-theoretic Approach to Computation Offloading

BIBLIOGRAPHY 200

in Mobile Cloud Computing,” Math. Program., vol. 157, pp. 421–449, jun 2016.
5.2

[154] Y. D. Lin, E. T. H. Chu, Y. C. Lai, and T. J. Huang, “Time-and-Energy-Aware
Computation Offloading in Handheld Devices to Coprocessors and Clouds,” IEEE
Systems Journal, vol. 9, pp. 393–405, jun 2015. 5.2

[155] T. Truong-Huu, C. K. Tham, and D. Niyato, “A Stochastic Workload Distribution
Approach for an Ad Hoc Mobile Cloud,” in 2014 IEEE 6th International Conference
on Cloud Computing Technology and Science, pp. 174–181, dec 2014. 5.2

[156] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius, “A queuing
theory model for cloud computing,” The Journal of Supercomputing, vol. 69,
pp. 492–507, jul 2014. 5.2

[157] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang, “A Practical SNR-Guided
Rate Adaptation,” in IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications, apr 2008. 5.3.2

[158] J. E. Freund, Mathematical Statistics. Prentice-Hall, 5th edition ed., 1992. 5.3.2

[159] J. F. C. Kingman, “On queues in heavy traffic,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 24, no. 2, pp. 383–392, 1962. 5.4

[160] R. Williams, “On the approximation of queueing networks in heavy traffic,”
Stochastic Networks: Theory and Applications, no. 4, pp. 35–56, 1996. 5.4

[161] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy Aware Offloading
for Competing Users on a Shared Communication Channel,” IEEE Transactions
on Mobile Computing, vol. 16, pp. 87–96, jan 2017. 5.5.2

[162] A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey, “A Database
for Person Re-Identification in Multi-Camera Surveillance Networks,” in 2012
International Conference on Digital Image Computing Techniques and Applications
(DICTA), pp. 1–8, dec 2012. (document), 5.11, 5.7.2

	cover sheet
	ed_thesis
	Declaration
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Acronyms
	Definitions
	Introduction
	A Short Overview
	Computation Offloading
	Motivating Scenario – Battlespace
	Research Objectives
	Thesis Structure and Research Contributions

	Background
	Surveillance Systems
	Evolution of Surveillance Systems

	Computer Vision Algorithms
	Feature Extraction
	hog

	PRID
	Applications
	Implementation Challenges
	Distributed Scenario

	Existing Algorithms
	KISS MEtric Learning
	SDALF
	Unsupervised Saliency
	Deep Learning Approaches
	Datasets

	manet
	Digital Communication System
	Routing Protocols
	Mobility Modelling

	Queuing Theory
	Elementary Queue
	Network of Queues

	Graphs and Network Flows
	Graphs
	Network Flow Problems

	Summary

	Motivation for Offloading
	Introduction
	Relative Complexity of PRID Algorithms
	Algorithmic Performance
	KISSME
	SDALF
	Unsupervised Saliency
	Summary

	Running DNN on a Smartphone
	Trepn Profiler

	Communication Cost
	Energy Consumption
	Initial Radio States
	Summary

	Discussion and Conclusion

	Offloading Based on Multi-Objective Optimisation
	Introduction
	Problem Formulation
	Computing Platform Types
	Summary

	Computation Offloading
	Non Offloading
	Offloading
	Impact on on
	Motivation for a Neighbour to be on

	System Design
	Application Partitioning
	Multi-Objective Optimisation

	Algorithms
	MEC
	MBI
	OOB

	Simulator
	Component Based Sensors
	Energy Saving Methods
	Targets
	Metric – ES

	Simulation and Results
	Unselfish and Homogeneous Sensors
	Unselfish and Heterogeneous Sensors
	Selfish and Heterogeneous Sensors

	Conclusion

	Computation Offloading based on Queueing Theory
	Introduction
	Related Works
	System Model
	Node
	Arcs

	Case Study: Three Nodes
	Problem Formulation
	Centralised Problem Formulation
	Distributed Problem Formulation
	Cost function
	Computational Complexity

	Algorithms
	O
	PC
	PD
	RD

	Simulator
	RWP
	SAIVT

	Experimental Results
	Results for the Standard Configuration
	Effect of Bandwidth and NSI Frequency
	Effect of Communication Range
	Average CPU Utilisation
	Mean Execution time

	Conclusion

	Conclusion and Future Work
	Future Works

	Appendices
	Parameters for Simulation in ch:OffMoo and ch:OffQT
	Simulator Implementation
	Sensor
	Target
	Algorithm
	Platform

	Original Publications
	Journal Paper
	Conference Papers

	Bibliography

