
Proof Methods and Pragmatics for

Parallel Programming

Chris Tofts

Doctor of Philosophy

University of Edinburgh

1990

/

Abstract

We define a parallel extension of a standard imperative programming language,

which we call CIMP. This language has a semantics in the process calculus CCS. In

order to demonstrate that a sub-language of CIMP is deterministic the notion of a

semi-confluent process is defined. This process structure is shown to be preserved

by the appropriate equivalences of CCS, and to have a set of operators which

conserve it. We show that a simple syntactic condition on the parallel components

of a program is sufficient to ensure its determinacy. Furthermore we demonstrate

that the deterministic sub-language of CIMP has a simple functional semantics.

We also show that there is a set of simple transformation rules that can manipulate

parallelism whilst maintaining determinism.

Two proof systems for the language CIMP are studied, they are based respec-

tively on the approaches of Owicki-Gries and Jones. These systems are shown to

be sound with respect to an interpretation of the proof rules in Hennessey—Milner

logic. We demonstrate that a knowledge of determinism can greatly ease the proof

burden in both of these methods.

We define a calculus, based on CCS, which permits reasoning about the tem-

poral properties of concurrent systems. This calculus is shown to have natural

notions of equality and order. Some example systems are included, in particular a

temporal analysis of an alternating bit protocol. We use this calculus to provide a

timed semantics for the language CIMP, and examine a timed proof system based

on the system for sequential programs presented by Nielson.

I

Acknowledgements.

Firstly I would like to thank Robin Milner for his tolerance and effort, without

which this thesis would both not have been completed and also been a much poorer

document. Many useful remarks and suggestions were made on this work by Cohn

Stirling, David Walker and the other members of the Concurrency Club.

I should like to thank my friends for providing support and a willingness to

discuss even the most outrageous ideas; especially my family, Carolyn, Douglas,

Nikki, James, David, Neil, Shaun, Nicci and Simon.

Lastly I would like to thank Faroun 'mad' Mullah for his joyous attitude and

misspelling my name.

This work was funded by a SERC PhD research grant.

2

Declaration.

I hereby declare that the work of this thesis has been composed by myself, and

that the work reported has not been presented for any university degree before;

with the exception of chapters one and two, which are reproductions of some

material by other authors, and chapters six and seven, which are joint work with

Robin Milner, except where the work is stated to be by Robin Milner.

Chris Tofts.

Table of Contents

Introduction. 	 M.

	

1.1 	Overview . 	. 	8

1.1.1 	The language CIMP9

1.1.2 	This Thesis9

	

1.2 	CCS 11

1.2.1 	The Language 11

1.2.2 	Operational Semantics . 	12

1.2.3 	Strong Bisimulation . 	12

1.2.4 	Observation . 	. 	14

1.2.5 	Equational Theory . 	16

1.2.6 	Value Passing . 	. 	18

	

1.3 	Semantics of CIMP . 	. 	20

1.3.1 	Expression Translation . 	20

1.3.2 	Command Translation .. 	20

1.3.3 	Process Logic . 	. 	22

Process Structure 	 25

	

2.1 	Introduction . 	. 	25

	

2.2 	Determinacy . 	. 	26

3

Table of Contents
	 4

	

2.3 	Confluence . 	28

	

2.4 	Adding Values . 	31

Semi-Confluence 34

3.1 	Introduction 	 34

3.2 	Partial Confluence 	 35

3.3 	Semi-Confluence 	 36

3.3.1 	Recursion 	 51

3.4 	Value Passing 	 54

3.5 	Conclusion 58

Determinism in CIMP 	 59

	

4.1 	Introduction . 	. 	59

4.1.1 	Read and Write sets . 	61

	

4.2 	DCIMP is Deterministic . 	62

	

4.3 	Conclusions .. 	67

Denotational Semantics of DCIMP 69

5.1 Introduction 	 69

5.2 Denotational Semantics 	 70

5.2.1 	Expression Evaluation 	 70

5.2.2 	Command Evaluation 	 70

5.3 Closure 	 72

5.4 Intermediate Process Semantics 	 73

5.4.1 	Expression Evaluation 	 73

5.4.2 	Command Evaluation 	 74

Table of Contents
	

5

5.5 	<C><C>'............................. 78

5.6 	Final Equivalence . 	. 	81

5.6.1 	Evaluation Equivalence . 	81

5.6.2 	Command Equivalence . 	81

5.7 Determinism Preserving Transformations 	83

5.8 	Conclusions . 	87

Axiomatic Methods I.

6.1 	Introduction . 	. 	88

6.1.1 	Hoare's Logic 	 89

6.2 	Owicki-Gries 90

6.2.1 	Adding Parallel Commands 90

6.2.2 	Example Proof 	 92

6.3 	DCIMP 	 93

6.3.1 	Translating Hoare Triples 	 95

6.3.2 	Soundness Proof 97

6.3.3 Non-Interference Implies Interference Freedom 101

6.3.4 	Adding Logical Variables . 103

	

6.4 	Conclusions . 	104

Axiomatic Methods II. 	 105

	

7.1 	Introduction . 	. 	105

7.1.1 	Stirling's Inference System 105

	

7.2 	Interpreting Quintuples . 108

	

7.3 	Soundness . 	. 	110

Table of Contents 	 6

7.4 Relation to Non-Interfering Methods 118

7.5 Rewriting the Definitions in FL.................... 118

7.6 	Conclusions . 	119

8. Timing Concurrent Processes 120

8.1 Introduction 	 120

8.2 Language Definition 	 121

8.2.1 	Derivation Laws 	 122

8.2.2 	An Example 	 122

8.2.3 	Temporal Deadlock 	 125

8.2.4 	Deadlock 	 126

8.3 Strong Time Sensitive Pre-order 	 127

8.4 An Equality for sTCCS 	 131

8.5 Temporal Structure independence 134

8.6 Equational Characterisation of sTCCS 	 137

8.7 Observational Evolutions 	 140

8.8 Process Logic For Timed CCS 	 140

8.9 Examples 	 142

8.9.1 	A Simple Timer 	 142

8.9.2 	Action Available For a Period 	 143

8.10 Value Passing 	 144

8.11 The Alternating Bit Protocol 	 144

8.12 Conclusions 	 150

Table of Contents 	 7

9. Timing Concurrent While Programs. 	 151

9.1 	Introduction . 	. 	151

9.2 Timed Semantics for CIMP . 151

9.2.1 	Expression Translation.....................152

9.2.2 	Command Translation .. 153

9.3 Timed Hare's Logic for TIMP . 158

9.4 	Conclusions................................165

10.Conclusions and Further Work. 	 166

10.1 Conclusions . 	166

10.2 Further Work .. 	168

10.2.1 Expressive Confluent Operators 168

10.2.2 Extending the Language CIMP 169

10.2.3 An Order for sTCCS . 169

10.2.4 Adding Probabilities to sTCCS 170

10.2.5 Automatic Transformation Tools 170

10.2.6 General Transformation to Parallelism 171

10.2.7 Expression Evaluation . 172

10.2.8 Functional Programming . 172

11. Bibliography. 	 173

Chapter 1

Introduction.

1.1 Overview.

Programming languages which contain some form of parallelism have proliferated

recently. Examples include Occam [0cc], Ada [Ada], concurrent Pascal [Hart],

parallel Fortran [For], concurrent C [Son] and many more. All of these languages

are based upon one or more of the following data handling methodologies;

• vector processing,

• channels,

• shared variables.

Vector processing is not an interesting form of parallelism, and tends to be used in

large numerical applications only. There is a great similarity between concurrent

programs written in languages with shared variables or channels. Shared variables

are, however, more transparent to the programmer. Working with shared vari-

ables requires no explicit control of the communication between the components

of a program. Although this extra transparency can leave the programmer with

difficulty in achieving some complex control tasks, most of the time it reduces the

programming burden. The languages Occam and Ada are channel based, whilst

versions of concurrent Pascal have been based both on vector processing and on

shared variables.

Throughout this thesis we shall be concentrating upon a simple concurrent

imperative programming language with shared variables.

Chapter 1. Introduction.

1.1.1 The language CIMP

The simple imperative language consisting of assignment, sequential composition,

alternation and iteration, sometimes referred to as IMP, has been much studied.

In [Mi16] a version of this language extended to parallelism is given. The language

we shall be studying, which we call CIMP, is a reduced version of the language of

[Mi16]. We assume that there are a fixed number of program variables. In other

words, that there is some fixed index set I and that we have a finite collection of

variables X2 for all i € I; we refer to the set {X1 I i e I} as X. The syntax of the

language CIMP is as follows;

Expressions: E ::= Xi I F(E1 ,.. . En),

Commands: C ::= X2 := E I C;C I IF E THEN C 1 ELSE C 2

C1 PAR C 2 I SKIP I WHILE E IX) C I
LET X:=E IN C.

Expressions include any arbitrary function that can be written in the required

form. Any program in the original imperative concurrent language can be written

in CIMP, simply by taking a sufficiently large set of variables. Variables will be

denoted by X, Y, ... when the index is irrelevant. We assume that the domain of

values over which variables range has the name V.

1.1.2 This Thesis

Most of the results obtained on CIMP have been formulated using the calculus

CCS [Mill, Mil6]. The remainder of this chapter is an introduction to CCS and

contains those concepts from [Mil6J which we shall be using throughout this thesis.

Chapter 2 is an introduction to the structure of processes containing work on

ideas that lead to the definition of semi-confluence. In chapter 3 we introduce and

study the concept of semi-confluence, which will be used to demonstrate deter-

minism properties of CIMP.

Chapter 1. Introduction. 	 10

In chapter 4 we identify a sublanguage of CIMP which is deterministic; this

language is characterised by a simple syntactic condition on programs. The suffi-

ciency of this condition is demonstrated using the notion of semi-confluence defined

in chapter 3.

The semantical consequences of restricting to deterministic programs are con-

sidered in chapter 5. We shall demonstrate that the denotational semantics of a

deterministic concurrent programming language are little more complicated than

that of a sequential programming language, and moreover that it is effectively

equivalent to the process based semantics. We also present a simple transfor-

mation system on programs that preserves determinism whilst manipulating the

amount of concurrency in that program, and demonstrate that the transformations

are correct using the denotational semantics defined in this chapter.

In chapter 6 we present a proof method for concurrent programs based on

the approach of Owicki-Cries[Owi]. We show that the proof rules are sound with

respect to an interpretation given in Hennessey-Milner logic [Mi15], and that non-

interference proofs are unnecessary if the program is deterministic.

The concept of parallel programs that co-operate, in the sense that they are

mutually compatible, is expressed in terms of rely and guarantee conditions, and

forms the basis of a proof method due to Jones [Jon]. In chapter 7 we study this

approach to program proof in the presentation given by Stirling [Stil]. We shall

show that this is sound with respect to a Hennessey-Milner logic interpretation,

and demonstrate that determinism is a strong restriction on the proof technique.

An extended version of CCS that admits time is defined in chapter 8. We

define timed bisimulations and a natural order which expresses the property of one

processes being faster than another, whilst computationally equivalent. A study

of the properties of an implementation of the alternating bit protocol is presented

as an extended example. A modal logic is defined which characterises the notion

of timed bisimulation in the same way that Hennessey-Milner logic characterises

strong bisimulation.

In chapter 9, the calculus defined in chapter 8 is used to give a timed semantics

Chapter]. Introduction. 	 11

for CIMP. A proof system which can express both correctness and timing proper-

ties of concurrent programs is defined in the style of Nielson [Nie], and is shown

to be sound with respect to the timed semantics.

1.2 CCS

The calculus CCS [Mill, Mi16] is one of a number of formal approaches to the

study of concurrency which include CSP [Hoal], ACP [Ber], Unity [Cha] and

Petri nets [Rei]. The calculus consists of the notion of agents (or processes),

which have the ability to evolve by performing actions, and to communicate with

other agents using these actions. Synchronisation between agents is achieved by

the simultaneous performance of a complementary action pair, resulting in the

combination performing a silent (r) action. This hiding of communication (we can

only see the r action) permits a notion of observation which is used extensively in

the study of systems defined using CCS. The calculus CCS consists of operators

for defining processes, and derivation laws in the style of [Plol], for inferring the

evolution of processes.

1.2.1 The Language

The syntax of CCS is defined as follows. We assume a set of action names A with

e and r not in A, and let Act = A U {r}. There is a bijection, complementation,

written from A to A which is its own inverse. The letter) ranges over A and

ji ranges over Act. We let S range over the set of renaming functions, i.e. those

functions S : Act -* Act such that S\) = 5) and 5(A) T for ,\ E A. The

language CCS consists of: an infinite set Var of variables ranged over by X, Y; a

constant symbol nil; the unary action prefix functions j. for p E Act; restriction

\L for L ç A; relabelling [S] for a renaming function S; recursion Fix; the binary

non-deterministic sum function +; and the binary parallel composition function

The set E of CCS expressions is the following:

Chapter 1. Introduction. 	 12

E::= X I nil I ji.E I E + E' I E I E' I E\L I E[S] I Fix (.k = E).

The set of CCS process, written 2, is the set of closed CCS expressions; i.e.

those expressions where all the variables are bound. When we write processes, we

will often exclude trailing nil's, thus writing for instance a.nil as a.

Definition 1.2.1 The sort of a CCS expression E, written £(E), is the set of

action names in a process, and is defined recursively over the syntax of CCS ex-

pressions as follows;

• L(nil) = 0,

• L(X) = 0,

• £(1i.E) = { 1} UL(E) - {r},

• £(E+F)=L(E)uL(F),

• L(EIF)=r(E)ur(F),

• £(E\L) = £(E) - (LuE),

• £(E[S]) = S(r(E)),

• £(Fix(X = E)) = 12(E).

1.2.2 Operational Semantics.

An operational semantics is given for CCS by means of a family of transition

relations { -- I IL E Act}. The relation we require is the least one satisfying the

derivation laws presented in figure 1-1.

1.2.3 Strong Bisimulation.

The notion of equivalence between processes is that of bisimulation.

Definition 1.2.2 A binary relation B C P x P is a strong bisimulation if (P, Q) E

B implies that for all it E Act,

Chapter 1. Introduction. 	 13

ACT: 	IL

SUMO:

IL

COMO:
EIFE'IF

T 	IL 	
r
i-il

SUM1: r —
, + r

IL -* r

IL 	I

COM1:
EIF--*EIF'

A 	 A
C0M2 E — E , F—*F

EIF.TE'IF'

E IL ,-I

REL:
E[S] 	E'[S]

RES: 	 L)

REC: 	
E,{E/X} --* E

Fix3 {X 1 =E2 ; iEI} --- —*E'

Figure 1-1: Operational rules for CCS

whenever P -- F' then, for some Q', Q ---* Q' and (P', Q') E B,

whenever Q
IL

-+Q
I then, for some P ', P —P I and (P' , Q') E B.

Proposition 1.2.3 If B (i = 1,2,...) are strong bisimulations, then so are the

following:

Id,

B2-- 1)

B1 B2 ,

. UiB1.

Definition 1.2.4 P and Q are strongly congruent, written P Q, whenever there

is some strong bisimulation B with (P, Q) G B. In other words,

= U{B I B is a strong bisimulation }.

Chapter 1. Introduction. 	 14

Proposition 1.2.5

is the largest strong bisimulation,

- is an equivalence relation.

Proposition 1.2.6 Strong Congruence is substitutive for the finite CCS opera-

tors. In other words, whenever F '-' Qt (i = 1, 2),

I. P•Pi " [L.Qi,

 P1 +P2 —Q 1 +Q21

 P1 1 P2
"-i Q1 I Q2,

. P1[S] --Q1[S],

5. P1 \LQ 1 \L.

Definition 1.2.7 Let E and P contain variables .9 at most. Then F F if, for

all sets of processes P, E[PI] -

Proposition 1.2.8 Let E and F contain variables X at most. Let A df E[A/5]

and E df P[./] and P r'. F. Then A B. In other words, strong congruence

is substitutive in recursive expressions.

1.2.4 Observation.

One of the fundamental notions of CCS is that of observational equivalence. We

assume that we cannot observe silent actions r and derive an equivalence. We

shall be working with sequences of actions names; sequences will be denoted by

letters s, t and we will denote concatenation by juxtaposition

Definition 1.2.9 If t E Act*, then E is the sequence obtained by deleting all the

occurrences of r from t.

Definition 1.2.10 If I = 	
An . I ji 141 .. . , E Act*, then E -- E' if E -i ... — E.

Chapter 1. Introduction. 	 15

Definition 1.2.11 If t =IL,.. . ji, E Act* then E 	E' if

E(*)* 	(T)* 	
(i*)* 	(r)*El

Definition 1.2.12 A binary relation, B C P x 2, is a (weak) bisimulation, if

(F, Q) e B implies that for all jt e Act,

$ whenever P
IL

—P then, for some Q, Q==, Q and (P', Q') c B,

whenever Q --* Q' then, for some P', P =4 F' and (F', Q') e B.

Definition 1.2.13 P and Q are observation equivalent or bisimular, written

P Q, if (P, Q) E B for some (weak) bisimulation B. In other words,

= U1 I B is a bisimulation }.

Proposition 1.2.14

is the largest bisimulation,

is an equivalence relation.

Definition 1.2.15 Let expression E and fr have at most variables X. Then

E F if for all sets of process F, E[P/X] F[P/X].

Proposition 1.2.16 Bisimularity is substitutive with respect to the following op-

erators. Let P 	Q. (i = 1, 2), E 	P, A
d1 E[A/J(] and E

df

Then,

L.P1

P1 I P2 	Q1 I

P1 [S]Q1 [S],

P1\LQ1\L,

Chapter 1. Introduction. 	 16

5. AE.

Bisimilarity is not substitutive for non-deterministic sum, since

a

but it is not the case that,

a + b r.a + b.

Definition 1.2.17 P and Q are equal or (observation-)congruent, written

P=Q, if for all pEAct:

1. whenever P
/L

-* PI then, for some Q I
, Q =

.L

Q
I and P

. whenever Q
L

- Q
I then, for some P / , P =l ; P

I and P' -- Q'.

Proposition 1.2.18 Equality is substitutive for all the CCS operators.

Definition 1.2.19 X is guarded in E if every free occurence of X lies within a

subexpression AS of E

1.2.5 Equational Theory.

The following laws are all valid for observational congruence.

1. Monoid laws;

P+Q=Q+P,

P+(Q+R)=(P+Q)-i-R,

P+P=P,

P+ nil =P.

2. r laws;

Chapter 1. Introduction. 	 17

.r.P =

P + T.P = r.P,

p.(P + r.Q) + i.Q = jt.(P + 'r.Q).

3. Parallel composition laws;

(a)PIQ=QIP,

(PIQ)lR=PI(QR),

P I Nil = P.

4. Restriction laws;

P\L = P if £(P) fl (L U 7) = 0,

P\K\L = P\K U L,

P[SJ\L = P\S 1 (L)[S],

(P I Q)\L = (P\L) I (Q\L) if £(P) n£(Q) n (L U L) = 0.

5. Relabelling laws,

P[Id] = P,

P[S] = P[S'] if SIL(P) = S'IC(P),

P[S]IS'] = P[S1 0S),

(d) (P I Q) (S) = P[S] I Q[S] if S1(LU) is injective, where L = £(P I

6. Recursion laws,

Fix (X = E) = E[(Fix (X = E))/XI,

If F = E[FIX] then F = Fix (X = E), provided that X is guarded in

E,

Fix (X=X+E)=Fix (X=E),

Fix (X= T.X + E) = Fix (X

Fix (X=r.(X+E) -(-F)=Fix (X=r.X+E+F).

Chapter 1. Introduction.

The final law is the Expansion theorem; let P (P1 [S1] I ... I P[S])\L, with

n > 1. Then

P = E{S 2 (A). (P1 [S1] I •.. I 	I 	I P[S])\L;

P,
A

 -f P,,S1 (A) L}

+E{r.(P1 [S1] I • . I P'[S1] I 	I P[S3] I 	I
Pi --- P11 , P 	F, S(A 1) = S(X 2), i

The above laws form a complete equational reasoning system over finite state

CCS processes.

1.2.6 Value Passing.

The CCS calculus with value passing is derived from the basic calculus. We use

the variables x, y, ... to range over the values V. Also we assume value expressions

e and boolean expressions b built from variables. We define the set S of agents

with values, as the smallest set containing all the variables; and given E and E2

are in S then so are;

X(x).E, J(e).E, r.E, action prefixes () E A),

E2 , a summation, (I an indexing set),
iEI

El I E2 a composition,

E\L a restriction, (L ç A),

E[S] a renaming, (S a renaming function),

if b then E 1 else E2 , a conditional.

Furthermore we have constants, for each constant A of arity n we have defining

equation,

del
E,

Chapter 1. Introduction. 	 19

E E

xEV

71e.E 7'e

r.E 'r.E

iEI iEI

E11E2 El 1 f2

E\L E\{,2I,zEL,xEV}

E[S] E['] where 	i) = S(/2)

if b then E 1 else E2 >E1 + >E2 where x is not in E

A(e 1 ,. . . ,e,) Ae i

Figure 1-2: Translation of Value Passing Calculus into the Basic Calculus.

where the right hand side E may contain no process variables, and no free variables

except x 1 ,...,x.

Given an expression E in S there is an expression E which is the translation

of that expression into the basic calculus. The translation works by taking (x)

and matching it to the set of actions Itt. I x E V}.

The translation, defined recursively, is presented in figure 1-2.

Furthermore, the single defining equation A(x 1 ,... , x)
df

 E is translated into

the indexed set,

{A 1 	x 1 ,. . . , x e V}

of defining equations.

Chapter 1. Introduction. 	 20

X}j = axx.Fx.nil

• . 	= (l[Ei]1[ri/rJ I ... I E][r/r] I r1 x 1 rx.FF(1).nzl)

\ {r 1 ,.. . , r}

Figure 1-3: Expression evaluation in CIMP.

1.3 Semantics of CIMP.

We translate variables as instances of the following process:

Loex = gx x.Vx (x)

Vx(x) =xx.Vx(x) +g x y.Vx (y)

it should be noted that attempting to read variables before they are intialised leads

to deadlock in this description. Moreover the underlying grain of our description

is that of memory access not that of expression evaluation.

Definition 1.3.1 The set L 1 = { ax,x.}.

1.3.1 Expression Translation.

The translation of expressions is given in figure 1-3.

1.3.2 Command Translation.

Definition 1.3.2 We need the following derived operators of CCS.

• done= d.nil,

• B 1 result B2 = (B 1 I B2)\{r},

• B 1 before B 2 = (B1[b/d] I b.B2)\{b} with b new,

Chapter 1. Introduction. 	 21

:= Eli = Eli result (rx.xx.done)

C1 ; C21 = C1 JJ before JCJ

IF E THEN C1 ELSE C21 = Eli result rx.(if x thenC i I else C2li)

WHILE E DO Cli =

W 'I JEli result rx.(if x then[C] before W else done) with W new.

C1 PAR C2li = C1]J par JC2 1

l[SKIPII = done

LET X := E IN C] = Eli result ((rx.xx.done I Locx) before Cli)\Lx

Figure 1-4: Command translation for CIMP.

• B 1 par B2 = (B1 [d1 /d] I B[d2/dJ I d1.d22done)\{d1,d21.

The processes which represent commands are given in figure 1-4. Since we

have no input or output commands in this semantics it seems it could be empty.

However as we have global variables whose state we can examine this does not

occur. In CCS the process representing a program is not observationally equivalent

to nil, as it would be if the semantics were empty.

Definition 1.3.3 The translation of a program P over a set of variables X is the

following process,

(Pli I Locx 1 I ... I Loex)\ L 1 U ... U L Xn

with the set JX j 11 < i < n} = X.

Proposition 1.3.4 If E is an expression, then

l{Ell 	nil

for some sequence s of T,ax and If actions.

Chapter 1. Introduction. 	 22

Corollary 1.3.5 The evaluation of an expression does not affect the state of the

variable process.

Proposition 1.3.6 If C is a terminating CIMP command then,

C] =L nil,

for some sequence s of r, ax and 	actions.

Proposition 1.3.7 Let C 1 , C2 and C3 be CIMP commands. Then the following

are true;

1. ft(Cl; C2); C31 = ([C1 ; (C2 ;

. ([C1 PAR C21 = [[C2 PAR C 1 ,

([(C1 PAR C 2) PAR C 3][= [[C1 PAR (C 2 PAR C 3),

[[WHILE E LO C] = ([IF E THEN C; WHILE E LO C ELSE SKIfl.

1.3.3 Process Logic.

We define a simple process logic PL [Mi16, Sti2J over CCS, whose formulae express

conditions on the behaviour of these processes.

Definition 1.3.8 2L is the smallest class of formulae containing the following,

where F, F2 are already in 2L:

< a> F, a progression (a E Act),

-F, a negation,

Ai F2 , a conjunction (I some indexing set).

Chapter 1. Introduction. 	 23

Note that the first formula in PL is the empty conjunction AEO F,, which we

write as TRUE. Thereafter we obtain formulae such as < a > TRUE,

< a> (</9> TRUE A - <'y> TRUE) etc. We use infixed "A" for binary

conjunction.

Informally <a> G, pronounced "diamond G" asserts of a process P that:

"it is possible for P to do a and thereby reach a state Q for which G

holds."

Definition 1.3.9 We define a satisfaction relation = between processes and for-

mulae as follows; by induction on the structure of formulae,

1. P =< a > F if, for some P', P -.-* F' and F' = F,

?. P = -'F if it is not the case that 	j= F,

3. P/\ j F if for all iEl, P=F.

We pronounce P H F as "P satisfies F"

The language 'PLI is extremely basic, and we would find it hard to express

useful specifications or descriptions in it. Let us introduce some derived forms for

PL. Firstly some propositional operators:

FALSE -'TRUE

F0 A F1 	AIE{o,1) 1'z

V .EIFi 	-IA1EIFi

F0 V F1 	VE{o,1} Fi

FjF' 	- 'FvF'

Second, a variety of modal operators:

(n>O)

[i]F 	- <t > -'F 	 (t e Act*)

Thus [t]F pronounced "box t" asserts of a process P that:

Chapter 1. Introduction. 	 24

"it is necessary for P, if it can do the action sequence t, thereby to

reach a state Q where F holds,"

and in particular [t]FALSE asserts that P cannot do t.

Third, some uses of quantifiers:

Vi((i) j i) 	AiE{i;(i)} F

4(i) A F) 	ViE{i;(i)} F

Vi(F 	 Vi(-'(i) D -'F)

Notice we are exploiting our ability to choose whatever index set I we wish for

a conjunction; moreover, we are free to express that set however we wish, so we

imagine that (i) here is some arbitrary logical formula containing the variable i

free. This allows us to mix logical conditions freely with the use of the <> and []

modalities.

As a final pair of derived forms, we may find it convenient to have weak versions

of <> and [] which ignore r actions:

t E Act*.(s = iA < t > F)

[[s]]F 	Vt E A ct* . (s = i D [t]F)

Note, in particular, the case s = c; <s> F and [s]F are both equivalent to F

itself, but <<>>F means

"it is possible to satisfy F after a sequence of r actions".

Chapter 2

Process Structure

2.1 Introduction.

In his books [Mill,Mi16] Milner discusses the properties required of a process for

it to be either confluent or deterministic. Our notion of confluence is motivated

by similar requirements on the reductions of the lambda calculus [Chu] and term

rewriting systems [Hue]. Determinacy is based upon observation; we require that

whenever we observe a particular sequence of actions from a process, all states

reachable by that sequence of actions should be identical, i.e. we cannot reach a

different place by the same route. This does not amount to saying that there is no

non-determinism in the original process, it simply demands that we can know the

current state simply by observing the computation the process has gone through.

In his thesis [San], Sanderson demonstrates that a knowledge of the structure

of a process can greatly simplify proofs of the properties of that process. Moreover

determinism in programs makes computation predictable. Despite its usefullness

in specification, most non-determinism in programs is added accidentally by the

programmer and can subsequently take a great time to remove. This particular

problem is greatly increased when the programming language being used has the

capability of computing concurrently. We would like to obtain some simple con-

dition on programs which would allow us to find a deterministic sub-language of

CIMP. Semantically we expect that such a condition would force the processes

which represent CIMP programs to be deterministic in the sense of [Mil6].

In this chapter the definitions given are in the style of [Mi16] which differs

slightly from that of [Mill]

25

Chapter 2. Process Structure
	 26

2.2 Determinacy.

Definition 2.2.1 A subclass Q of processes P is observation closed if whenever

P E Q and P --+ P' then P' E Q.

Definition 2.2.2 A process P is strongly determinate if for every derivative Q

of and for all t E Act whenever Q --- Q' and Q --- Q" then Q' ' Q".

Proposition 2.2.3 Strong determinacy is observation closed.

Proposition 2.2.4 Whenever P is strongly determinate and P - Q, then Q is

strongly determinate.

This notion of determinacy unfortunately does not prevent preemption by r,

since this is treated just as any other action. However the notion above has a

natural extension to a weak (or observational) form.

Definition 2.2.5 P is weakly determinate if for every derivative Q of P and for

all .s E A* , whenever Q 	Q' and Q =& Q" then Q

Proposition 2.2.6 Weak determinacy is observation closed.

Proposition 2.2.7 Whenever P is weakly determinate and P 	Q, then Q is

weakly determinate.

Note that unlike the relationship between the equivalences, a process being

strongly determinate does not imply that it need be weakly determinate, nor

conversely. For example the process

a + T

is strongly determinate but not weakly determinate, whereas the process

Chapter 2. Process Structure
	 27

a + a.r

is weakly determinate but not strongly determinate.

Proposition 2.2.8 The following constructions of CCS preserve strong determi-

nacy. If the processes P and P1 are determinate then so are the following:

nil, a.P, P\L,

>.t,P1 where the p i 's are distinct,
iE I

P1 I P2 where 12(P1) fl 12(P2) = 0 and L(P1) fl 12(P2) = 0,

. P[f] where f 112(P) is injective.

The above side conditions on the construction of parallel composition are im-

portant and we shall find that similar restrictions will be needed when we introduce

constructions which preserve other notions of process structure. The above restric-

tion severely limits the processes we can show determinate by force of construction

alone. For instance

is determinate but cannot be shown to be by construction. Thus unless any class

of processes can be constructed using the above, we can only prove it determinate

by showing directly that every instance is determinate.

Chapter 2. Process Structure

2.3 Confluence.

Definition 2.3.1 P is strongly confluent if it is strongly determinate and for all

derivatives Q of P whenever Q -- Q1 and Q --* Q2, with , p, then we

can find Q'1 and Q such that the following diagram can be completed.

L1

Q1 Q—

A2 I A2

Q2

Proposition 2.3.2 Strong confluence is observation closed and preserved by strong

bisimulation.

Definition 2.3.3 P is weakly confluent if for every derivative Q of P the follow-

ing diagrams can be completed, in the sense that if the top and left-hand derivations

exist, then the bottom and right-hand derivations can be inferred.

•1 	 A, 	 A
Q—Q1 	Q-4Q1 	Q—* Q1 Q—, Q1

J 	AJJ. 	A 	A4 	A24A4 	JJ

Q2 ::=::. 	Q2 :=:, 	Q2 =:i:;. 	Q2

.A 1

In the books [Mill, Mi16] there are more elegant versions of the above definition,

which are expressed via the notion of excess. Unfortunately, for the later styles

of confluence which we will introduce this method cannot be used so it is not

included here.

Proposition 2.3.4 Weak confluence is observation closed.

Proposition 2.3.5 If P Q and P is weakly confluent then so is Q.

Proposition 2.3.6 If P == Q and P is weakly confluent then P Q.

Chapter 2. Process Structure
	 29

This last proposition shows that r actions do not affect the state of a weakly

confluent agent.

Proposition 2.3.7 If is weakly confluent then it is weakly determinate.

Definition 2.3.8 For yj E Act, 1 < i < n (n ~! 0), we define the confluent action

prefix of a process F, written (j 	
... I p)P, as follows;

Op P,

(1i I ... I p)P 	,i.(ii I 	I 	I 	I ...

1<i<n

Note that given (/L1 I ... ii)P and any permutation function a of 11,. . . , n}

then,

(Ita(l) I ... I 	(z1 I ... I

Definition 2.3.9 Given processes P1 and P2 we write P1 11 P2 to mean (P1 I P2)\L

where L = £(P1) fl £(P2).

Proposition 2.3.10 The following constructions of CCS preserve weak conflu-

ence. Whenever P, P1 and P2 are weakly confluent then so are;

nil and P\L,

P[f] where fFL(P) is injective,

(IL 1 I ... I YJP I

P1 11 P2 where £(P1) fl £(P2) = 0,

where E is built from the above constructions then P
del

 Fix(X = B)

is weakly confluent.

To see why we cannot compose arbitrary processes in parallel consider the

process

P = a.b I a.

Chapter 2. Process Structure 	 30

Both the processes a.b and a are weakly confluent, but unfortunately P is not

since

P--a.b and P — -- aIb

and the above derivatives are not weakly equivalent. Hence the above P is not

weakly determinate and therefore cannot be weakly confluent. Whilst the restric-

tion in the parallel composition is sufficient to ensure that the composed process

will be weakly confluent, it once again leaves us unable to prove that certain pro-

cesses which are weakly confluent are so, simply as a result of the manner of their

construction. For example,

is weakly confluent but violates the sort independence required, for it to be de-

duced as weakly confluent from its construction. The parallel composition used

in proposition 2.3.10 is not the usual one; we have 'forced' communication on all

complementary actions. If we did not then the construction would not preserve

weak confluence, for consider

Q=aj?i.

This can perform

Q -- and Q-1-*nil

but as the process cannot evolve trivially to nil these evolutions violate the

determinism requirement upon silent actions. This seems less restrictive than the

earlier requirement, as there appear to be no natural examples where permitting

complementary actions to be observed does not lead immediately to a violation of

the requirements for a process to be weakly confluent.

Chapter 2. Process Structure
	 31

2.4 Adding Values.

As Sanderson shows in his thesis [San] these notions of determinacy and confluence

do not apply in the value passing calculus, owing to an asymmetry between the

input and output actions in that calculus which is not present in the underlying

calculus. The following example should clarify the point:

del
A 	ax.by .(x+y).

The process A can perform the following actions (where the domain of values is

the integers):

a5 	- A - by.g(5 + y),

a7 	-
A -* by.g(7+y).

Under the definitions presented earlier we would be forced to deduce that this

process is not confluent since it can perform the actions a5 or a7 and it is subse-

quently incapable of performing the requisite matching a7 or a5 actions. However

we would expect that such a process should be both confluent and determinate.

Thus the notions of confluence and determinism are extended to take account of

substitution on input actions.

Definition 2.4.1 (Sanderson) A process P is strongly value confluent if for all

derivatives Q of whenever Q --* Q1 and Q -L Q2 then one of the following

hold:

a = b and Q1 "-. Q2 or,

a =A b and either

Q1 -L Q'1 and Q2 -- Q'2 with Q' Q or

a = An and b = Am for some positive A and values rn,n, and there exists

some U with variable x such that Q1 "- U[n/x] and Q2 "-' U[rn/x].

Chapter 2. Process Structure
	 32

Note that this definition is asymmetric in its treatment of positive and negative

actions.

There is a similar extended definition of determinacy but that is not included

as we shall use a slightly different technique.

This process structure has the usual properties of being derivative closed and

preserved by strong bisimulation, and it has a definable sub-calculus of the value

passing calculus. In [Mil4] Milner suggested a different approach to handling values

which is more elegant.

Definition 2.4.2 The set {A 2 I i e I} is a partition of Act if A, fl A3 = 0 when-

ever i j and UA j = Act.
iEI

Definition 2.4.3 Let = jAj I i E I} be a partition of Act. We write A 15)t 2 to

mean that the actions A l and A 2 are not in the same partition set of S, i.e. given

.\ E Ai then A 2 e A 3 with i j.

When it is clear from the context by which partition the actions are separated,

we will drop the subscript in the inequality statement.

Definition 2.4.4 Given a partition S then P is S-partition confluent if for any

derivative Q of P the following diagrams can be completed.

1 	 1• Q—*Q 1 	Q-_-*Q 1 	Q—+ Q1 Q—Q

'lvi. 	 2 4 	441.
Q2 ==:. 	Q2 ==. 	Q2 	 Q2 ==,.

Proposition 2.4.5 S-partition confluence is observation closed.

Proposition 2.4.6 Given P 	Q and P is S-partition confluent then Q is S

partition confluent.

Chapter 2. Process Structure 	 33

Proposition 2.4.7 If is S-partition confluent and P == F' then P' P.

The above definition has no constraints on actions from the same partition

other than determinacy. Now let S be the partition which contains the following

sets (for values taken from a domain V):

for each positive A E A, the set {An I n E V},

for each negative A E A, and each n E V, the singleton set {An}.

Then the resulting S-confluence is equivalent to the value passing confluence as

defined by Sanderson.

Definition 2.4.8 An action map f preserves a partition S if for each A 1 e S

there is a fixed A E S such that for all a E A, f(a) E A.

Proposition 2.4.9 Given P, P1 are S-partition confluent then the following are

also S-partition confluent:

1. (ii I ... POP, nil , P\L,

. >A1.P2 where for some A 3 E S, A 1 E A, for all A,
IEI

P[f] where f preserves 5,

F1 11 P2 where £(P1) fl L(P2) = 0,

where E is formed using the above constructions then P '(Fix(X

E) is S-partition confluent.

Definition 2.4.10 Given two partitions S and S' we shall say S refines S', writ-

ten 5' E S if for all A' E 5' there exists A C S such that A' c A.

Proposition 2.4.11 Given P is S-partition confluent and S 	5' then P is 5'

partition confluent.

Chapter 3

Semi-Confluence.

3.1 Introduction.

In the last chapter we introduced some notions of determinacy and confluence

and some constructions that preserved those properties of processes. Unfortu-

nately there are many processes which have those properties which can not be

constructed using the derived operators provided. In this chapter we will provide

an extended confluence structure that will permit us to demonstrate constructively

the confluence of a larger class of processes. Throughout this chapter we will only

be interested in weak forms of confluence and shall therefore be using the phrase

'confluent' rather than 'weakly confluent'. For instance it has already been stated

that the process

RAWO

cannot be shown confluent by its construction, since it is not constructed using the

operators provided in the previous chapter. There are two methods, in CCS, for

removing unwanted actions; the first is restriction, and the second is internalisation

(providing a communicating complementary action and then restricting). If we use

the first method to make a process confluent then we lose all the behaviour guarded

by the restricted actions. The second approach allows us to hide actions and given

that the silent actions produced obey the requirements the later behaviour is still

available. We should like to include these effects in our account of confluence

and thus provide a more expressive set of constructors for confluent processes.

Consider the following processes:

34

Chapter 3. Semi-Confluence. 	 35

dcl
P 	a.b a,

dcl
- W.

Q

The process P is not confluent, yet the process P 11 Q is confluent, since it is

observationally equivalent to the process b. We should like the above activity to

be expressible in a system of constructions for confluent processes.

3.2 Partial Confluence.

In order to express the ability of a process to become non-confluent, Milner in

[Mi14] suggested the notion of partial confluence. We will divide actions into two

sets, actions in the first set are 'well-behaved' and are fully confluent, while actions

in the second have no requirement on them. Informally this means that we have

a set of actions on which our process has ceased to behave as we should wish, but

there are still areas where it behaves in a consistent manner. The following is a

formal definition of the above.

Definition 3.2.1 A process P is K-partially confluent (for some set K ç A) if

for all derivatives Q of P the following diagrams can be completed: (letting ic range

over K and). range over A).

Q-:-Q1 Q_LQ1 Q--+Q1 Q--+Q1

J 4 	4 4 	4 4
Q2 	=== Q2 == Q2 	:= Q2 =

In the above definition we have demanded that for all actions ic E K we have

precisely the requirements for a process to be confluent, but have specified no

conditions on actions not in K other than r. The actions not in the set K are

'bad', in that they are the actions preventing the process from being fully confluent.

We cannot guarantee the confluence of the actions not in the set K. An example

of a process which is partially confluent but not confluent is the following;

Chapter 3. Semi-Confluence. 	 36

def
FE a+a.b,

which is {b}-partially confluent. Whilst this concept of confluence is useful (since

it can be shown to have the usual properties of a confluence and a set of con-

structions that preserve it) once an action has 'gone bad' it can only be removed

by restriction. This has the effect of removing all future behaviours guarded by

a 'bad' action and thus we are no nearer being able to manipulate the amount

of 'non-confluence' in our process. There is no way of restoring a process to full

confluence which keeps its internal behaviour intact, i.e. removing unwanted ac-

tions by internalising them. In the above example if we tried to make the process

confluent by internalising the a action then we would obtain a process that is non-

deterministic on the T action and therefore could not be confluent. More precisely

we derive the following process

QE(PI?i)\{a}.

Unfortunately this is the process;

r + r.b,

and is not even deterministic. We should like a notion that allows actions to

become non-confluent but does not permit so much freedom that subsequently we

can only remove them by direct restriction.

3.3 Semi-Confluence.

From the above it is clear that we need to find a requirement on processes that

lies between full confluence and partial confluence. It cannot be so strong as

to forbid all non-confluent behaviour, but it must contain some restriction on the

kind of non-confluent behaviour allowed, which will permit us to restore confluence

without losing potentialities guarded by non-confluent actions. In the following

definition the set of actions identified is that set upon which confluence cannot

Chapter 3. Semi-Confluence. 	 37

be guaranteed. This is a change in style from that of partial confluence. We will

be trying to show that processes are confluent, so we shall be demonstrating that

eventually there are no actions upon which they are not fully confluent. In this

case it is easier to keep track of those actions which are not yet well behaved,

than the actions upon which the process can be guaranteed to be behaving as we

require. The set of non-confluent actions contains those 'bad' actions which we

wish to see removed from a process for it to be confluent.

Definition 3.3.1 A process P is semi-confluent with respect to a set of actions

F C A (F-confluent) if for all derivatives Q of P the following diagrams can be

completed, given transistions from Q to Q1 and Q2;

T 	 K

Q-+Q1 	Q-_-*Q 1 	Q-* Q1 Q-Q1

ivi. 	Jj. 	AJJ. 	AJJ. 	24 	A2J4 	JJ.

Q2 = 	Q2 = 	Q2 	 Q2

A I :A A2 	icE A — F

Q -- Q1 	 then either Q1 	or there exists 	and

if 	4 	qeF 	such that 	 and

Q2 	 with QQ.

In the above definition we have only required that 'good' actions are determin-

istic. The 'bad' actions (those in F) are permitted to 'delay' determinism in the

sense that it may require a further 'bad' action to reach the identified state. The

motivation for this definition comes from the process we exhibited earlier;

a I a.b.

This process is not confluent, but when we internalise the a actions by composing

with a suitable process it becomes confluent. This process is {a}-confluent. The

earlier example,

a + a.b

Chapter 3. Semi-Confluence.

is not semi-confluent to any set of actions, so partial confluence does not imply

semi-confluence.

Proposition 3.3.2 Semi-confluence to any set is observation closed.

Proof: Immediate from the definition.

Proposition 3.3.3 If P is F-confluent and P -- F' then P P'

Proof: Let B = {(P,P') such that P 	P', and P is F-confluent }.

We shall show that this is an observational bisimulation up to . For

all) E Act we must show that if P ==4 P1 then there exists P2 such

that F' =4 P2 with (F1 , F2) EB and conversely.

There are two cases:

.A = r. In this case either P1 F' or from

1
	

P

.U.
P1 = P3 P4

we can deduce that (F1 , P4) E B and P3 P4 hence

(P1 , P3)

,\ = u. Then from

T
	

F

4 	4
P1

we can deduce P' = P4 P3 and therefore (P4 ,P1) eB as

required.

The converse follows by an identical argument. 	 0

Proposition 3.3.4 If is F-confluent and F C F' then P is F'-confluent.

Proof: Immediate from the definition.

Chapter 3. Semi-Confluence. 	 39

Proposition 3.3.5 Let P be F-confluent and consider € F such that for any

derivative Q of P the following can be completed;

Q-Q1

4

then P is (F - {q})-confluent.

Proof: Immediate from the definition of semi-confluence.

w

Proposition 3.3.6 If P is F-confluent and P Q then Q is F-confluent.

Proof: We have to show, that for any derivative R of Q, that the

diagrams can be completed. Consider the second diagram in particular.

Since P Q there exists a derivative S of P such that S R but as

S is a derivative of P the following can be completed

Si

4 	4 	for any S1 and 52

Now consider the second requirement upon the process R;

R— T--R 1

if 4
R2

then we choose S1 	R 1 and S2 	R2 . Thus there exist derivatives

R3 S3 and R4 S4 with R1 =R3 and R2 =R4 with R 3 R4

so the diagram can be completed as required. The proof proceeds by

a similar argument in the other cases. 	 El

Proposition 3.3.7 If is 0-confluent then it is confluent.

Chapter 3. Semi-Confluence. 	 40

Proof: Immediate, observe that if P is 0-confluent then, as A - 0 = A

the definition of semi-confluence is precisely that of confluence, when

the set is empty.

It is the above proposition which permits us to demonstrate that a semi-

confluent process has been converted to a confluent process. In our usual example,

a I a.b

which is {a}-confluent we can construct the following process.

(a I a.b

which is the process

T.T.b + r. b.7-

which is 0-confluent or confluent. In this example we have removed the 'bad' action

by providing a process which communicates on its complement sufficiently often

and then restricting the action away. We shall find that this technique can be

used in general to remove 'bad' actions from semi-confluent processes and restore

our process to being fully confluent. The provision of sufficient complementary

actions is very important. The following process

(a I a.b I

is not confluent. If we use the expansion theorem we discover that the above is in

fact

r + r.b,

which once again is not deterministic. Thus in attempting to remove 'bad' actions

we must be careful to supply sufficient complementary actions to remove all the

instances of the failing actions, or else we may produce a process which is not

deterministic. It is this requirement which leads to the side conditions on the

semi-confluence preserving parallel composition which will be defined later.

Chapter 3. Semi- Confluence. 	 41

Definition 3.3.8 A process P is a-stable if for every derivative Q of if Q :44. Q'

then Q Q'.

This definition states that a process can perform those actions upon which it

is stable infinitely often without any observable change. To remove an action from

a process which is in the set of 'bad' actions we shall require that its complement

be stable in the process with which it is composed in parallel. This requirement

is very strong. Thus returning a process from being semi-confluent to being fully

confluent requires the presence of a highly constrained process which can in some

sense 'hide' the undesired properties of a semi-confluent process.

Definition 3.3.9 A process P is S-stable (for any action set S) if Va E 8, P is

a-stable.

Note: if P is S-stable then for any a £(P), P is S U {a}-stable.

Proposition 3.3.10 If P is F1 -confluent and Q is F2 -confluent, then the follow-

ing hold:

nil is 0-confluent,

(pi I ... I 1z)P is F1 -confluent,

P\L is (F1 - L)-confluent,

. P[f] is f(F1)-confluent given fIL(P) is injective.

5. P 11 Q is F-confluent given:

Q is P-st able,

P is F2 -stable,

F D (F1 U F2 - (L uE)) U(r(P) fl £(Q)) where L = £(P) n £(Q).

Chapter 3. Semi-Confluence. 	 42

The last clause requires that an F-confluent process can only communicate with

processes which are P-stable in order that it can even remain semi-confluent. This

condition ensures that there will be sufficient complementary actions to hide all

the instances of semi-confluent actions and moreover each of these communicating

actions do not change the state of the communicating process.

In order to prove the above proposition we need the following property of

semi-confluent processes.

Lemma 3.3.11 Let P be an F-confluent process, and let Q be a derivative of P.

Then for s e A*, r. e A - F, and 0 E F, one of the following holds:

Q--Q1

1. 	if sJJ.

Q2

then either

3JJ. when Ksor

Q=

there exists S1, S2
€ A* with s = s1 ics 2 and

Q1

S1824J.

Q2=
	r.s

Q—Q1

. if 4J. 	then either

Q2

Q1

qs and 	 4J. or,

Q2=

q E s and either

i. there exists 	A* such that s = s 1 s 2 and

Q1

or

Q2

Chapter 3. Semi-Confluence. 	 43

Q1

ii. 	 s.U..

Q2=

Proof: We proceed by induction on the length of s.

Consider case 1.a, then we have

4
Q2

and for tc V s we wish to show that

Q--Q1

4 4

When s = c, this follows immediately from the definition of semi-confluence

(second diagram). Otherwise, let s = Its'; then using the third diagram and

assuming the completion for the shorter action sequence .s', (if r. V s then

r, 0 .s') we can construct

Q--* Q1

4 4
Q3 z4 Q 3

3
4

But if Q3 	Q, then there exists R, R' such that Q3 = R --~ R' = Q'3

with Q3 	R and Q'3 R' (by proposition 3.3.3). Hence as required the

following can be constructed:

Chapter 3. Semi-Confluence. 	 44

Q-- Q1

4 4
R-- ~ R'

3 1 	3'.J.

Q2 =:

The proofs of the other parts follows by a similar construction using the

	

other properties of a semi-confluent process. 	 U

Proof: (of cases 1 to 4 of proposition 3.3.10)

nil is 0-confluent follows directly.

Given P is F1 -confluent then (i I ... p)P is F1 -confluent, since the

confluent actions prefix is well behaved; we simply retain those actions

in P which were not confluent.

That P\L is (F1 - L)-confluent whenever P is F1 -confluent follows

immediately from the fact that we are only removing actions; since

previously the diagrams could be completed they certainly can be

now.

Given P is F1 -confluent and f[C(P) is injective, then it follows directly

that P[f] is f(F1)-confluent.

Proof: (of case 5 of proposition 3.3.10)

If P is F1 -confluent and Q is F2-confluent, then to prove that there is an

F such that P 11 Q is F-confluent we shall proceed in two stages: we shall

show

that if PIIQ=R then RPIIQ;and

that the visible actions behave as required.

Chapter 3. Semi-Confluence. 	 45

1. We shall prove that B = {(P II Q, R) I P 11 Q == P' 11 Q' R} with

P and Q, F1 and F2 confluent respectively, is a bisimulation.

Let P = 	F' and Q = 	Q' with s E Act* and all visible actions

a E s restricted in the composition P 11 	Q, so we have one of the

following cases.

Case 1: P 11 Q 	P1 11 Q1; we require R = R' with

(P1 11 Q1) R') E B. We could have inferred P 11 Q _.L P1 11 Q1 in

a number of ways:

Subcase 1.1: P -- P1 with Q Q1; then
P

34 	84 	 (lemma 3.3.11)

P2 	', P4P3

we require Q = Q2 and since from proposition 3.3.10 P2 P3 ,

then P1 11 Qi == P2 11 Q2 Pi II Q2 R'. Thus (P1 II Q 1 , R') is

in the relation, and we can prove likewise for Q 	Q1.

Subcase 1.2: P --* P1 and Q --* Q1, (Note: if ,\ E F1 then

Q from the stability requirement on Q, similarly if E F2 .)

We have two cases dependent on whether .X is fully confluent or

not:

Subcase 1.2.1: if .\ F1 U F2 then given

P-4P1

4'.
P2

this divides into two subcases:

Subcase 1.2.1.1: if) e s; then

P—* P1

8 JJ
P2 P3 P4

with .s = s 1 As 2 , and we can find
A Q__*

Q2 ==. Q3Q4

Chapter 3. Semi-Confluence. 	 46

SO PI IIQ1 ==P4 IIQ4P3IIQ3and P2IIQ2==P3IIQ3hence

R=.R" P3 11 Q3 and R" R 4 11 Q4 thus R P2 11 Q2 as

required,

Subcase 1.2.1.2: if A 0 s then from lemma 3.3.11we can find
A A

P -+ P2 -+ Q2

sJvi 34 SJJ. 84

P1 =4 P3 P4 Q1 =4 Q3Q4

SO P1 1 1 Qi 	P3 IIQ34 lIQ4and P211 Q2P4 IlQ4hence

R 	R" 	P3 11 Q3 and R" P4 11 Q4 thus R P2 11 Q2 as

required;

Subcase 1.2.2: if A E F1 U F2 (assume wiog A E F1) once again

P -- F' and Q -- Q' but we require Q to be -stable, so from

the definition of stability Q' Q; (Letting s/A denote the string

S E A* with a single instance of A deleted from it.) Once again we

have two sub-cases:

Subcase 1.2.2.1: if A 0 s
A P—* 	P1

S4 	S4
A

P2 = P4 ' 3

now Q Qi from stability, I

(transitivity and stability),

A
Q 	 Q1

-

Q2 = Q4Q3

tence Q3 Q2 and Q4

SO PiIIQi==P3IIQ3P4IIQ4P4IQ2also

R ==> R" P3 11 Q3 thus (P1 II Q1 , R) E B,

Subcase 1.2.2.2: if A E s
A 	 A

P— 	P1 	Q—* 	Q1

34 	s/AJJ. 	JJ. 	 /.XJJ.

P2 == P4 P3 	Q2 == Q4Q3

(The completion of both squares is given by lemma 3.3.11.) so

P1 I I Qi =p3lIQ3 thus

R ==> R" P4 11Q4 and hence (P1 11 Q1 , R) e B.

Chapter 3. Semi-Confluence. 	 47

Note: if A E F1 fl F2 then its complement must be stable in one

of P or Q, for it to take part in a communication; and having

been restricted the other action can take no further part. So we

need only consider actions in each of F1 and F2 separately. A

symmetric argument will prove the case for A e F2 .

Case 2: Consider P 11 Q -- P1 11 Q1 for instance P -- P1 with

Q we require R =4 R 1 with (P1 11 QI ,R 1) E B. From

lemma 3.3.11 we have for A s:

P A
-4 	 P1

4 	4 	with QQ1

P2 = P4 P3

so P2IIQ2=P4IIQ2P3IIQ2PiIIQthus R=,R1 P4

Q4 and hence R 1 	P1 11 Q1 as required. The other case fol-

lows by an almost identical argument, as does the requirement for
A

Q_—)Q , .

• The symmetric case R ---* R', can be proved as follows; we re-

quire Fl Q = P1 11 Q1 with (P1 11 Q 1 , k) E B but

PIIQ==P2IIQ2 	R by definition so PIIQ=1IlQ1

R 1 directly. So our construction does not introduce any non-

determinism on the silent actions.

2. Visible actions.

(a) Determinism requirement, there are two cases:

Case 1: A 0 F; given the following:

PIIQ --* S1

	

S2 	S4

We must prove that it can be completed. Assume the A action

comes from P then we have:

PIIQ -a-' P, II

	

2IIQ1 	P3 1 Q 2

Chapter 3. Semi-Confluence. 	 48

(Since if .\ 0 F then if) E 12(P) then ,\ 0 12(Q).) so for some

s (We only consider the case A 0 s.):

A P1

41. 	41.
A 	P4 P3 with Q=Q2,

4 	.tI.
-'5 =
	

6'7

now P5 P6 and P7 P4 (proposition 3.3.10) hence

Pi II Q 	P3 11 Q2 so P1 11 Q 	P5 11 Q2 and therefore we

can form:

	

PIIQ -- 	S

	

82 = 	S3 S4

The other case is identical up to erasure of one occurrence of

) and therefore omitted.

Case 2) E F there are two subdivisions of this case:

Subcase 2.1: \ 0 12(Q) (In other words, .A e F1 and in a sense

is not a new 'bad' action, it has not been made non-confluent

by the parallel composition, it already was non-confluent.) So

we need to be able to complete the following:

11 -- S

82 	S4

and since we are working with the fifth requirement we need

either that S 	84 or the existence of 83 and 85 such that

A
82 = 83 and S4 =4 85 with 83 	85 ; so once again we

have two cases:

Subcase 2.1.1: in the former situation:
A P1

41. 	4
P2 =4 P4P3

Chapter 3. Semi- Confluence. 	 49

(From lemma 3.3.11) and we can complete with Q = Q2 as

usual,

Subcase 2.1.2: and in the latter where we have:
A P— 	P1

34 	 s/AJJ.

P2 == P4 P3

s/A
and we can complete using Q == Q2.

The case for A £(P) follows by symmetry.

Subcase 2.2: A e £(P) fl £(Q) so we require that when

PIIQ 	s

S2

then either (as before) S 1 S4 or there exists S5 and 83 such

that S =' S3 and S4 =4 55 with 53 85 ; once again we

have two sub-cases:

Subcase 2.2.1: A 0 F1 U F2 so if P -- F' and P 4 P"

then P" F' and similarly if Q -L Q and Q =. Q" then

Q'. So the following diagrams can be completed

(lemma 3.3.11)
A 	 A

	

P1 	Q—+ 	Q1

4 	4 4 	4

	

P2 =P4 P3 	Q2=QQ4

and combining them we have:

	

PIIQ -- 	 P111Q1

4 	 4
2IIQ2 = 	P4IIQ3P3IIQ4

Subcase 2.2.2: A E F1 U F2 then from earlier we can always

complete the diagram as appropriate just using the visible

evolution of one of the processes and since our processes are

semi-confluent up to the appropriate sets that is always pos-

sible.

Chapter 3. Semi-Confluence. 	 50

(b) Confluence Requirement. Given) 	A 2 we must show that the

following diagram can be completed:

	

PIIQ 	 S1

	

)2.JJ_ 	 A2 4

82 == S4 S3

The proof that follows is precisely that of [Mill]. There are three

cases (but owing to symmetry we only need consider two of them).

Case 1:) 1 ,A 2 E £(P) (or equally both in £(Q)). then we

have the following completion:

P,

X2 s4 	 A2s4

P2 ==. p4 p3

using lemma 3.3.11 and Q = Q2 we can form:

	

IIQ 	- 	 1IIQ

	

A24 	 A2

	

P211Q2 	4IIQ2 	3IIQ2
Case 2:)i £(P) and A2 E £(Q), consider

IIQ - 	 1IIQ

P211Q1 P2 11 Q2
now applying lemma 3.3.11 twice we have:

Al P1 Q—* 	Q1

S4 	S4 S4 	 '94
P2 =P4 P3 Q2 	Q4 	Q3

so combining we have:

PIIQ 	--* P1IIQ

A2 4 A2
2IIQ4 	==4 P411Q4 	3IIQ3

as required.

We claimed that P 11 Q is semi-confluent to F where

F D (F1 1jF2 —(LflU))U(C(P)flLI(Q))andL = L(P)flr(Q); this isob-

tained from the cases in the proof above. This is true due to the following

Chapter 3. Semi-Confluence. 	 51

reasoning. Firstly since any communicating pair of actions is restricted all

such pairs can be removed from the semi-confluent action set. Secondly we

must add all those actions which appear both in P and in Q. Thirdly all

'bad' actions which were not removed by communication must still be 'bad'

actions. D

3.3.1 Recursion.

So far our semi-confluent constructors have only permitted us to construct finite

processes. Unfortunately in order to build stable processes and other interesting

processes, we have to use recursive definitions.

Proposition 3.3.12 Given a closed term, where the only constructions used in

its defintion are the semi-confluent operators (given in Proposition 3.3.10), then

the process given by that term is semi-confluent, and moreover it is semi-confluent

up to the set defined by the constructions used and given in Proposition 3.3.10.

Proof: Consider the set of recursive equations:

Pi 1 E1

We will show that if the E• are built only from semi-confluent operators,

then for some F the processes P are F-confluent. We proceed by induction

over the depth of inference required to infer the derivation of P I
-+ PI

and the number of confluent action prefixes used. Thus we shall assume

that there is some F' such that F' is F'-confluent whenever the depth of

inference on F' is less than that for F, or there are fewer action prefixes

in the defintion of F'. Now we simply proceed by case analysis over the

structure of P. For simplicity we only consider one recursive equation.

1. P A; then since A E we have by a shorter inference the action

P -- F' thus F is semi-confluent up to some set F.

1211
ent

11

Chapter 3. Semi-Confluence. 	 52

2. P 	(IL 1 I ... I 1u)Q; the process Q has fewer confluent action prefixes

than the process P. So there is a set F up to which Q is semi-confluent.

We wish to show the above process is semi-confluent up to the same

set F (i.e. the requisite diagrams can be completed.)

(a) If we can infer:

pZp 1

P2

then there is a yj = r (wiog let it be fi). Then P1 	(it2 I ... I
and either directly P1 P2 , otherwise there is a yj = r for i > 1

and a (possibly empty) set of actions i4,.. . which are not r,

then:

P2 =(i4 I... Iit)Q,

as required.

(b) If we can infer:

P—i-*P1

then there exists yj = r (say) and we can assume wiog (since

the above held) that no other IL i = r. (Moreover if P (T)Q

then closure follows immediately from semi-confluence of Q.) So

let it2 = A. Then

	

P1 = 	GL 3 I... Iit)Q,

P2 ==. (it3 I...

completing the diagram as required.

(c) Given that we can infer:

	

P 	Al? 	,-

	

X2JJ. 	 with

P2

Chapter 3. Semi-Confluence. 	 53

(We can assume wiog there are no r actions in it, . . . 	since we

can remove them using the two sub-proofs above.) and choose

= 1L, and A2 = /2 then the following can be inferred:

P, 	(a3 I... Ia)Q,

as required to close the diagram.

(d) Given the following:
A P—*P1

4
P2

once again we can assume that none of the yj is r. Thus there is

either a unique pi = .A in which case P1 P2 follows immediately,

or if more than one of the y j are A; then whichever we choose the

remaining confluent action prefixes are simply permutations of

each other and as was noted earlier they are therefore equivalent.

So P1 P2 as required.

The derivation closure properties follow from the semi-confluence of Q

and any derivative of P which is not a derivative of Q can be shown

confluent by the above argument as it will be a shorter confluent action

prefix of Q.

P nil; is 0-confluent immediately.

P Q\L; is (F - L) confluent if Q is F-confluent.

$ 	 IL1

P = Q R; since we infer Q -+ Q
I and R - R I by a shorter infer-

ence we can assume that Q and R are F1 and F2-confluent respectively,

and that the appropriate stability requirements are met, then P is F-

confluent where F is (as before)

F D (F1 U F2 - (Lu E)) U (L (Q) fl £(R)) with L = 12(P) fl 12(Q). The

proof is identical to the one given earlier excepting that the induction

is over the depth of inference, and is therefore omitted. 0

Chapter 3. Semi-Confluence. 	 54

3.4 Value Passing.

In order to be able to express semi-confluence in the value passing calculus, we

need a partition extension in the same form as the extension to confluence given

in the last chapter.

Definition 3.4.1 The pair [S1 , S2 1 is a double partition' of the action set A,

where S = { 1 1 E I} and S 2 = { W I j E J} if the following hold:

for all El, O i g A and for all E J, T j C A,

'I'flk=Oforik,

PflW1=øforjl,

. 'fl1T!,=0foralli,j.

Definition 3.4.2 Let [S 1 , 82] be a double partition; then we write A l [s1 ,s2]\2 if

10S,2 and 1S 2 A2.

As before we will drop the suffix when the double partition used is clear from

the context.

Definition 3.4.3 A process P is partition semi-confluent to [Si, 82] (written [S1 , S21

confluent) if for any derivative Q of P the following diagrams can be completed:

Q_i-*Q1

JJ

QL4 Q1

41. 	41.

A1 Q—* Q1

A2JJ.

Q2

Q -- Ql

41.
Q2==

K E O i E Si

'This is a non-standard use of the word parition, as we do not require coverage of the

whole base set, strictly it is a double sub-partition

Chapter 3. Semi-Confluence. 	 55

Q -- Q1 	 then either Q1 	or there exists Q3 and

if 4 	cbEWjES 2 	Q4 such that Q1 	Q3 and Q2 	Q4

Q2 	 with Q3Q4.

The interpretation of the above is that in the double-partition [Si, 521 the

actions in the sets of S1 are well-behaved, being both deterministic and confluent,

and the actions in the sets of 82 have the ability to be non-deterministic for one

step. If we use the double partition:

[{{A 1 } I)EA—F},{{.A .i } PEF}},

then we have F-confluence, and using the following double partition:

I Aj e A},ø]

we recover the original definition of weak confluence.

Proposition 3.4.4 Partition semi-confluence is observation closed.

Proposition 3.4.5 If P 	F' and P partition semi-confluent then P' P.

Proposition 3.4.6 If P is [S1 ,52]-confluent and Q 	P then Q is [81 ,82]-

confluent.

The proofs of the above proposition are identical to those given for semi-

confluence (propositions 2.4.5, 2.4.7 and 2.4.6) and are therefore omitted.

Definition 3.4.7 Two partitions S and 5' are compatible if given 1, E S and

A, e ,, if A, E W for some 	E 5' then 'I', =

We will use the abbreviation "S i ,. . . 8,, are compatible" to mean that the par-

titions are pairwise compatible.

Chapter 3. Semi-Confluence. 	 56

Definition 3.4.8 Let L be a set of action names, and let 1, be a set in some

partition. Then b, is L-closed if given A E 0j, if A E L then for all A' E 0j,

A' E L. In other words, - ,D i fl L j 0 implies 0 i 9 L.

Proposition 3.4.9 (Weakening) If P is [S 1 , S2]-confluent and S 1 S and

S2 E-: 	with S fl 5' = 0 and S, 8', Si , S2 compatible, then P is [5, S']-confluent.

Proof: Immediate from the definition of partition semi-confluence.

Proposition 3.4.10 (Strengthening) If is [S1 , S2]-confluent and for all deriva-

tives Q of P and for all A E '1 3 e S2 the following holds:

A Q_—*Q 1

AJJ.

Q2==

then P is [S1 U 'Pj, 82 - W] _confluent.

Proof: Immediate from the definition of partition semi-confluence.

Proposition 3.4.11 The following constructions preserve partition semi-confluence.

Given P [S1 , S2 1-confluent and Q [S3 , S41-confluent, then:

nil is [S,0]-confluent (for any 5);

(a1 I ... I a,)P is [S1, S2 1-confluent;

>a2 .P1 is [S1 ,S2] -confluent whenever for all a 1 E A n E Si US2 , all the sets in

S1 U 52;

P\L is [S,S] -confluent, where S = { - L 1 e S, I and

S={W—LIWeS2 };

P[f] is 	S]-confluent, where fIL(Fi) is injective with S 	 1' = {f() I 	E

S1 }

and S ={f()I' E S2};

Chapter 3. Semi-Confluence. 	 57

6. P1 11 Q is [S,S']-confluent, where:

P1 is IQj-stable for all 'I's E 84 ,

Q is Yj -stable for all 'I's e S2 ,

S 1 ,S2 ,S3 ,S4 are compatible,

for all 4D i E S U 83 , 	 is £(P) U£(Q) closed,

for all W € 82 1 W is £(Q) closed,

for all 'J! e S4 , 'T, is £(P) closed;

let L= £(P)Ur(Q) with

8= S1 u 83

{ e (S 1 U 83) I A E 4D i and either 	E £(P)UL(Q) or A E (L uE))}
and

S'=S2 US4 — {WE(82 US4)IAEW 1 and AE(LUL)}

u{, E (S1 U 83) I A 1, and A € (C(P) fl £(Q))} ;

7. any closed term formed using the above is [8, S']-confluent with 8, 8' given by

the above constructions.

The extensive conditions on the parallel composition are in fact just those we

had before with some additions to ensure that partitions are maintained through-

out the construction. We omit a proof of the above as it replicates that for propo-

sition 3.3.10 and is identical in every detail up to the conditions required for the

partition to be maintained, which is a technical nicety and not at all informative.

Chapter 3. Semi-Confluence.

3.5 Conclusion

We have presented in the last two chapters a family of confluence definitions related

in the following fashion:

confluence 	c 	semi-confluence 	C partial confluence

U 	 U
partition-confluence C partition semi-confluence.

Semi-confluence is (up to partitioning) the largest confluence we have discov-

ered where it is possible to allow processes to become temporarily non-confluent

and to restore the confluence without just removing all future behaviours guarded

by the actions that lead to non-confluence. There may be many notions of conflu-

ence lying between semi-confluence and partial confluence which have this desirable

property, but it is not clear how we should weaken our definition to find them.

Unfortunately we are still not able to provide a complete set of confluence-

preserving operators for confluent processes. We cannot yet show that the process

ala

is confluent by force of construction, other than by demonstrating that we can

construct an equivalent process:

(a I a)nil

which is confluent.

Chapter 4

Determinism in CIMP.

4.1 Introduction.

Within the language CIMP there is the capability to introduce non-deterministic

behaviour. There are valid programs whose output is not uniquely determined

by the initial values of the program variables and the program text. In order

to ascertain variable values during execution, we have to refer to the particular

computation path chosen by any CIMP interpreter/ compiler. For example the

following program fragment:

X:=1 PAR X:=2

can result in the variable X having value 1 or 2. The potential presence of such

non-determinism makes programming in CIMP a difficult task. The lack of de-

terminism removes the predictability from the programming language, which is

essential to straight forward programming. We wish to identify a sub-language of

CIMP within which the results of computation are independent of the computation

path chosen. Such a sub-language can be considered effectively deterministic. De-

manding this property returns us to conventional sequential programming, where

a variable's value is uniquely determined by the initial values and the program

text. This statement has to be slightly modified; in the case of CIMP at the ter-

mination of the execution of any sequential fragment the variable values will be

determined by the initial state and the commands executed up to this point. For

example we can predict the variable values at the points 1, 2,3 in the following, if

it is deterministic

59

Chapter 4. Determinism in CIMP. 	 60

(Ca PAR Cb);1C C ;2(Cd PAR C e);3 .

The only construct in our language which can introduce non-determinism is

PAR . In the absence of that construct we certainly have a language which is

deterministic in the manner required, but unfortunately we can no longer compute

concurrently. Thus in order to have a concurrent deterministic language we must

identify those parallel statements which introduce non-determinism. It is certainly

not the case that all parallel statements introduce non-determinism. Consider for

example;

X:=1 PAR Y:=4

which is deterministic in the above sense.

In the first example the non-determinism resulted from attempting to make two

simultaneous changes to a variables value. Do we obtain determinism by forbidding

simultaneous changing of variable's value? Consider the program fragment:

X:=4;

X:=6 PAR X:=X

this obeys the above restriction but unfortunately is not deterministic. At termi-

nation the variable X will have a value of either 4 or 6. The non-determinism

results not from simultaneous changes, but from simultaneous writing to a partic-

ular variable. Can determinism be enforced by forbidding simultaneous writing to

a variable?

X:=4;

X:=6 PAR Y:=X

In the above fragment the variable X's behaviour is deterministic, and we do not

attempt to perform any simultaneous writing to any variable; but the variable Y

can have a value of either 4 or 6 at the execution's completion. Thus we see that

accessing a variable written to in another fragment of a PAR command can lead

Chapter 4. Determinism in CIMP. 	 61

to the introduction of non-determinism. The condition this leads us to impose is

that in a PAR command no fragment may access a variable written by another

either for reading or for writing.

4.1.1 Read and Write sets.

In order to formalise the above restriction we will define a read set of a program

fragment, written 7?.(C), and the write set, written W(C).

Definition 4.1.1 The sets 1Z(C) and W(C) are defined inductively over the struc-

ture of program fragments as follows:

Phrase W(Phrase) R(Phrase)

Xi 0 {Xi}

F(E1 ,...E) 0 7?(E1)u... uR.(E)

Xi:=E {Xi} R(E)

C1 ; C2 W(C 1)UW(C 2) R(C 1)U1?(C2)

C1 PARC 2 W(C 1)uW(C 2
)

7Z(C1)u 7Z(C2)

IF E THEN C1 ELSE C 2 W(C 1) U W(C 2) 7Z(E) U R(C 1) U R(C)

LET Xi =EIN C W(C)—{Xi} R(E)U7?(C)—{Xi}

WHILE EEX3C W(C) 7(E)uRC)

Definition 4.1.2 Two commands C 1 and C2 are non-interfering if

• (74C1) U W(CO) n)V(C2) = 0,

• (1(C2) U W(C 2)) n W(C) = 0.

Definition 4.1.3 (The derived deterministic parallel construct PARd)

We can write C 1 PAR d C2 precisely when C 1 and C2 are non-interfering.

We call the sub-language of CIMP produced when only this restricted form

of parallel composition is allowed DCIMP. In order to prove that this restriction

Chapter 4. Determinism in CIMP. 	 62

of language constructs enforces determinism we shall show that a corresponding

effect has taken place within our semantics. In other words, we show that the

processes representing programs in DCIMP are confluent.

4.2 DCIMP is Deterministic.

It is not possible to prove that for any program fragment C, the process

representing it is deterministic, since for instance

I[Y:=X 'd Z:= X1

is the following process (as defined in chapter 1)

P 	((axx.x I rx.yx.1)\{r} I (ax3x I rx.zx.2)\{r} I d1.d2.)\{d1,d21

and we have composed two agents which are not sort disjoint in parallel. This does

not directly imply that the process is not confluent but in this case it is sufficient

to ensure non-confluence, since (ignoring values) we can infer

ax x

ax x4

R

with Q R, violating the determinism requirement. However when we combine

this process with the processes representing the variables we then have a process

which is deterministic. All the 'local' non-determinism has been hidden as silent

actions. We shall proceed by demonstrating that for any command C the process

IEC is [S1 , S2]-confluent for suitable S 1 and 82, and that any complete program P

which is produced by forming

QPJ I Loex, I ... I Locx)\{L, U... U L}

Chapter 4. Determinism in CIMP. 	 63

is deterministic. In other words it is [S, O]-confluent for some S and therefore S

partition confluent.

As a simple outline of the proof which follows, consider the language DCIMP

without values. For any program fragment C we can show that E[C] is semi-

confluent up to {aX1 , . . . , a} and that the process Locx, is stable on the action

x, and confluent; thus the representation of any complete program will be 0-

confluent, i.e. confluent. In order to prove determinism in the presence of values

we have to use double-partitions, which adds greatly to the bookkeeping involved

but does not change the underlying approach of the proof.

Proposition 4.2.1 Given any program fragment CJC]J is [S1 ,S2] -confluent where

• S1{{xj}IXEX,jEV}U{i}

• S2={{axjljEV}IXEX}

Lemma 4.2.2 For any expression E, the process EI is [Sl U R, S 2 1-confluent for

S1 , S2 as above and R as defined as follows:

R = {{Fi} I iE V}.

Proof: We first define the following auxilary sets:

• R'= {{ri I iE V}},

Rk={{ki} IiEV},

• R'k={{rkiliEV}}.

We proceed by induction over the structure of expressions.

• 	= axx.rx which is [S1 U R, S21-confluent immediately.

• for F(E1 ,.. . , Ej}J we prove by induction on k, that

E1[r1/r] I ... I IEk [rk /r] is [Si U R U.. . U Rk, S 2 1-confluent. This is

clearly true for k = 1. So assuming it to be true for k we shall show

that it is true for k + 1.

	

Chapter 4. Determinism in CIMP. 	 64

- r 1 x 1 is clearly [S1 U RU R'1 U ... U R', S2]-

confluent,

	

- if Eil[r1/r] I ... 	Ek1fl[rk/r] is [SI U R 1 U ... U Rk, S 2 1-confluent,

and since Ek+l]I[rk+l/r] is [S1 u Rk+l, S2]-confluent then

	

j[Ei}I[ri/r] I ... 	Ek+l][rk+l/r] is [S1 UR 1 u. . . URk+l ,S2 }-confluent.

(The composition is valid since the partition sets are compatible,

there are no complementary action pairs, and if the sorts intersect

they must intersect with actions already in S 2 and those sets are

closed.)

Hence we can deduce that

(I[EiJI[ri/r] I •• I Ej[r/r] I r1 x 1 rx)\{r 1 ,. . . ,r}

is [S1 uR, S 2]-confluent. The composition is valid as we have restricted

all complementary labels and the closedness requirements were met.

There is no stability requirement as we only permitted communication

with actions in the first partition.

Proof. (proposition 4.2.1) We proceed by induction over the structure of

program fragments.

• Assignment, X := E;

	

IX 	El 	(EE] I rx.xx.)\{r}

now L(l[E]) fl £(rx.xx.d) = r so the above is a parallel composition

of the required form. rx.x2 is [SI U R', S 2]-confluent and hEll is

[S1 U R, S 2]-confluent, and hence EX := El is [S1 , 52]-confluent.

• Sequence, given hC1 1 and hC2 1 are [S1 , S2]-confluent we wish to show

that FIX 21 is [Si , S2]-confluent. Now

	

[CI; C21 	(hC11[b/d] I b.hC21)\{b} 	(b new)

so if we proceeded by a direct construction we could only deduce

hGi ; C2 1 is [Si , S2]-confluent whenever C1 and C2 do not write to the

Chapter 4. Determinism in CIMP. 	 65

same variable. (A slightly strong restriction.) As in that case for any

A E LI(Cj) fl £(C2) , A E 'I' E S2 as by the above restriction it can

only be a read action. Let Z = {{ yX}X e V}. We will consider (for

simplicity) that there is only one write variable in common between

C1 and C2 and that it is called Y. So we can show by construction

that ICI; C211 is [S - Z, 82 U Z]-confluent. Consider a derivative Q of

C1 ; C2 1 now try to find a Q such that we can derive, for A E T j E Z;

A
Q —Q

with Q1 Q2.

Q2

This cannot happen whilst we are within C 1]J or in the process C2 1
alone (In other words the other process has been exhausted in the

parallel CCS composition) since these processes are [Si , S2]-confluent.

So the only possible candidate is when C 1 JJ - - - T and IC2] --+ T'

but the construction forces C 1 JJ to become nil before any action can

be observed form IC2], i.e. there is no Q, derivative of C1 ; C2 , for

which the diagram;

A
Q—+Q1

for

Q2=

cannot be completed. Thus by strengthening C1 ; C21 is

[(Si - Z) U Z,(S 2 U Z) - Z]-confluent, i.e. it is [S1 , S2]-confluent as

required. We can extend this to an arbitary number of coincident

write variables by varying the choice of Z as appropriate.

• Alternation,

IF E THEN C1 ELSE Cj

EEJ result rx.(if x then ECJ else C2)

ftE is [S I U R, S 2 1 confluent, and C1] and C`2 1 are both [S1 ,S2]-

confluent. We need firstly to show that rx.(if x then C 1]j else C2)

is [SI U R', S2]-confluent, but this process is precisely,

Chapter 4. Determinism in CIMP.

>Jrx.l[Ci]1 + 	rx.I[C2I;
XOO 	 x=O

and given that JC1 1 and C21 are [Si U R', S2]-confluent by weakening,

thus the above process is [S i U R', S21-confluent by construction. The

complete process [IF E THEN C1 ELSE C211 is

(JEJ I rx.(if x then Cj else IC2]))\{r}

but this is the required form for our construction and hence is [S i , S2]-
confluent.

• Iteration,

[[WHILE E JX) C

W = [[E' result rx.(if x then(JC`j before W) else) 	(W new)

is [Si, S2 1 confluent, from the earlier parts of this proof all the

sub-expressions are [Si, S2]-confluent thus as it is a recursion with

all the sub-parts [Si, S2]-confluent, hence the process is itself [S 1 , S21

confluent.

• Deterministic Parallel composition,

l[C1 PARd C 2][([[C1][[d1 1d] I [[C2][[d2/d] I d1.d22)\{d1,d2}

in the above construction d1 .d2 . is [S1 u{{d 1 }}u{{d 2 }}, S 2]-confluent,

[[C1 J[[d1 /d] is [S1 U { IT, }} - {{}}, S2]-confluent, [[C2 1 [d2M is

[S1U{{1 1 - 1111, S2]-confluent, thus by construction [[C1 PAR d C2 1
is [Si , S2]-confluent. Since the only common actions are read actions

and those are already in the partition S 2 .

• Null, [[SKIPJ 	is is therefore [Si , 52]-confluent.

• Local variable,

[[LET X:=E IN CJJ

([[E' result ((rx.?ixx.done I Loc,y) before I [[C)\L)
we must show that Locx is stable on Ziy actions. From its definition:

Chapter 4. Determinism in CIMP. 	 67

Locx =gx y.Varx (y)

Varx(y) = xy.Varx(y) + gz.Var(z)

this is stable on the required actions by inspection. This process is

[{{gxy I y e V} U {iy I y E V}1,01-confluent. Thus by construction

LET X := E IN Cl is [S1 , S2]-confluent. (We have to weaken to

re-introduce the read and write actions for the variable X.) El

Proposition 4.2.3 If P is a program in DUMP then the process representing

that program is confluent.

Proof: The translation of P is

P 	(I[Pl I Locx 1 I ... I Locx) \L, U... U L

from proposition 4.2.1 PI is [Si , S2]-confluent and each of the Locx. are

[{ {gx, y I y E V} U
{ 1

 y I y E V } }, ø]-confluent. and stable on {. y I y (E V).

Thus the construction of P is [{{2}},ø]-confluent, and since U is the only

observable action of P it is confluent. 	 0

4.3 Conclusions.

We have exhibited a deterministic sub-language, DCIMP, of CIMP. The condition

required to obtain DCIMP is natural and simple to check. Therefore it is not

unreasonable to enforce as a programming discipline. There does not appear to

be a weaker syntactic condition which is sufficient to ensure determinism, but a

proof that we have the weakest possible syntactic condition does not seem at all

evident. In fact, it is even hard to formulate this proposition precisely.

This sub-fragment of CIMP is possibly that part of the language which is 'use-

ful', in the sense that the introduction of non-determinism is usually something

Chapter 4. Determinism in CIMP.

that a programmer copes with post-hoc rather than seeks as a useful language fea-

ture. In fact the only direct use of such constructions in shared variable languages

seems to be as a short cut to a random number generator.

In subsequent chapters we shall show that if we write concurrent programs

subject to the determinism constraint then many traditionally hard problems of

concurrent programs are greatly simplified. Moreover we shall show that such

programs can be manipulated with ease.

Chapter 5

Denotational Semantics of DCIMP.

5.1 Introduction.

The denotational approach to semantics [Sto, Sch] is very successful at explaining

properties of programs. However in order to denote concurrent programs, tech-

niques such as powerdomains [P1o2] or metric spaces [Bak] have been necessary.

The reason such methods were required is the non-determinism possible in gen-

eral concurrent programming languages. DCIMP is deterministic and we therefore

expect that it should be possible to provide a reasonably simple denotational se-

mantics for it (for example of a simplicity similar to that for IMP).

We should like a functional semantics for DCIMP as our current semantics is

non-modular. Until we have translated the complete program we can only see ac-

tions requesting and sending values, not the behaviour of a program fragment. We

are thus unable to reason about properties of program fragments since their defini-

tion is incomplete in the current semantics. The production of a natural functional

semantics which can be shown equivalent to our process based semantics, in some

sense, will also lead to a greater credence of that more general semantics.

Chapter 5. Denotational Semantics of DCIMP. 	 70

Xiñi = ffi j

= F(El[EI]Ini,. .. ,e{E,jn)

Figure 5-1: Expression evaluation in DCIMP.

5.2 Denotational Semantics.

The state space of the language is defined by the values in the shared variables.

Since there are a fixed finite number of these variables the state space is simply

a vector of fixed length. We will call this vector a memory and denote it as

the elements of which we refer to by indices, i.e. ñi1 will be the value of the i th

element of ñi. Thus we define the following partial semantical functions.

C: Commands - valN - valN

Expressions -* val N -p val.

Here, val is the domain of values that the variables can take.

5.2.1 Expression Evaluation.

Expression evaluation is defined as figure 5-1 in the usual style.

5.2.2 Command Evaluation.

The semantics of commands is as given in figure 5-2 and is for deterministic pro-

grams only.

Note, if W(C 1) fl W(C 2) is non-empty for any C1 PAR C 2 , then the function

defining its denotation would not be well defined.

Chapter 5. Denotational Semantics of DCIMP. 	 71

CJE~ ffi

y for 54 i
(CXi := Eth)

= 	otherwise

C[SKIPJIni =

CC1 ;C2 1ñz = (CIC11;CC2}Dñi

(CCjth) for i e W(C 1)

(CC1 ''d C21i) 1 = (C[C2 th) 1 for i E W(C2)

fri 1 otherwise

CIF E THEN C 1 ELSE C2Vn = if EI[E11ñ2 then CC1 }jn2 else CC2]th

n-li i=j
(CLET Xi := E IN Cni)

= I (CjCjm1) for j i

frtforji
with rn' =

[(E JEJ ffi) j for i = i

CWHILE E 1XT CJJn-t=

if EE[E]fin then QC; WHILE E IX) CJJfri else C[[SKIPJ]fri

Figure 5-2: Semantics of DCIMP commands.

Chapter 5. Denotational Semantics of DCIMP. 	 72

5.3 Closure.

Since the process semantics bears little resemblance to a functional form we will

need to add to its structure. We will form the closure of a command process

by adding variable processes for each variable which the command C could access.

This extended process will then read in all the values for the complete variable set,

and after its execution has been completed it will then write out all the computed

values of the variables.

Definition 5.3.1 The closure of a command C is the following process.

<C >= ((get()).x1,.. . , 7XJSJ. b.nil

b.RCI 	I Loc 1 	I ... I LocSjr)\b I 	... aXNyfl.pwt(y).nzl)

\d,L 1 ,... ,LN

and 'R(C)UW(C)C {xl,...,xN}.

Lemma 5.3.2 For any deterministic terminating phrase C,

<C > get().().nil

where y 2 = fc,1() for some fC,j dependent on the structure of C.

Proof: directly from the structure of the closure, the appropriate fc,

coming from the denotation of C.

Note: if C were to be non-terminating then < C > get(), which is not a

particularly interesting command and hence we do not take account of such pro-

cesses. This equality results from observational equivalence not preserving diver-

gence [Wal].

We now need to be able to construct programs in the closure form so we will

define an intermediate process semantics, which will be of closure processes.

Chapter 5. Denotational Semantics of DCIMP. 	 73

5.4 Intermediate Process Semantics.

We will denote translations in the intermediate form by < C >'. We will also need

two new processes defined as follows:

Split

Unify s 	c1 ().c2().ifl().nil

~ yj

; for i E 8,
where z1

=otherwise.

5.4.1 Expression Evaluation.

We will use the same denotation of expression evaluation as in the original process

based semantics.

Definition 5.4.1 Expression closure; this is only needed for expressions occurring

within IF THEN ELSE and WHILE 1X).

<E >'= ((get().x 1 . gjx,.b.nil I

Loc 1 	LocN)\b I 	 \{r,d,Lx l ,...,LX N }

and {xl......xN}C.

Note: all memory values are preserved by this process i.e. = i.

Lemma 5.4.2 If E is an expression then

<E >' get(5).z.iTh().nil

where z is the value of E given the variables have the value i .

Proof: a simple induction over the structure of expression evaluating pro-

cesses.

Chapter 5. Denotational Semantics of DCIMP. 	 74

<Xi := E >'=< Xi := E>

<SKIP >1= < SKIP>

< Cl; C2 >'= (< C1 >' [c/put] 1< C2 >' [c/get])\c

< C1 PAR d C2 >

(Split [c/put] 1< C1 >' [c/get, c1 /put] 1< C2 >' [c/get, c2/put] I Un1 fyw(c 1))\c, ci , c2

<IF E THEN C1 ELSE C 2 >'=

(< E >' [c/put] I tx.(if x then < C 1 >' [c/get] else < C2 >' [c/get])\c,t

<LLIT Xi := E IN C >'= (<E>' [c/put] I tx.c().(). ?.nil

< 	C 	>' 	[c1/get][c2/put]y.c2(z).7J(tii).nil)

\ c, c1 , C2, t, (

With =
 Cjforj 	

and 	
= 53 forj i

 otherwise, 	 l.y otherwise.

<WHILE E JX) C>'= W-<--

(< E >' [c/put] I (tx.if x then ((< C >' [c/put] I W[c/get])\c)

else < SKIP >')[c/get])\c,t (W new)

Figure 5-3: Intermediate Semantics for Commands in DCIMP.

5.4.2 Command Evaluation.

The intermediate process semantics is given in figure 5-3 and is only for programs

in DCIMP.

In figure 5-3 the Unify s process will be well defined, as we only have instances

of C1 ''d C2.

Lemma 5.4.3 If C is a deterministic terminating command then,

< C >' get().iiQ).nil.

Chapter 5. Denotational Semantics of DCIMP. 	 75

Where y j 9c2 (x 1 , ...,XN) for some gc,, dependent on the structure of C.

Proof: We will proceed by structural induction over commands.

C = SKIP or C = X := E;

since these are both translated directly to closures, by lemma 5.3.2

they both have the required form.

C=C1 ;C2 ;

from the inductive assumption:

<C1 >' get().(y).nil and <C2 >' gct(yi).1(z).nil.

With yj = g1,(5) and zi =

< CI; C2 >'= (< C1 >' [c/put] 1< C2 >1 [c/get])\c

(get(x, ...xN).Q).nil I c(5i).ji().nil)\c

get().r.Th().nil

get().().nil

The w i are bound in the communication to the y, and the overall

evaluation is that of the composition of gc,,i and gC2,i for each i.

C=C PARd C2 ;

from the inductive assumption,

<C1 >' gei().().nil,

<C2 >' get()-().nil.

With yj = gc1 ,() and z =

We will split the process into two parts:

Chapter 5. Denotational Semantics of DCIMP. 	 76

P1= (Split [c/put] 1< C1 >' [c/get, c1 /put] 1< C2 >' [c/get, c2 /put])\c

(get().().?().nil I c().().nil j c().().nil)

get().(QI).().nil + 	().nil)

C 	(P1 I Unif!/ w(ci))\cl ,c2

(P1 I c1(ü).c2(i3).E(?ii).nil)\c1,c2

get().r.r.l(zi).nil

get().Th(th).nil

with wi
= Yi for Xi E W(C 1), I zi otherwise.

i E W(C),

We can see that g 1 PAR,, c2,(x) = gc2 ,() i E W(C 2),

identity otherwise.

4. C = IF E THEN C1 ELSE C 2 ;

Just consider the case E true,

<C1 >' get()jil().nil,

<E >' get()ly.iii(i).nil.

From assumption the value bound in Ty will be true.

< C >1= (< E>' [c/put] J (tx.if x thert(< C1 >' [c/get]) else (< C2 >'

[c/get])))\c, t

get ().r.r.7(7).nil

get().7(i).nil

With y1 = gc1 2(),
since the condition evaluation leaves values un-

changed. Also yj = g 2 1()
if the condition was false.

5. C=LET Xi:=E IN C';

< C >'= (< E >' [c/put] I 	 1< C' >' [c1 /get][c2 /put]

(y.c2 ().ii(?ii).nil)\c, c1 , c2 , t, (

	

Chapter 5. Denotational Semantics of DCIMP. 	 77

with j=1'
for j 	

and 	
for jyi

1.. x otherwise, 	 ly otherwise.

Since < E >' get ().7.iTh().nil and writing in the variable bindings

explicitly where possible.

<C >' 	(get()lx.c() I
(y.c2().i(üi).nil)\c, e 1 , c2 , t, C

get().r.r.r.r.r.i(iui).nil

get().ii(zui).nil

(n, for j = i
where w

= gc',() otherwise.

I 	c1().().nil 	I

6. C=WHILE E W C';

we define: W, = IF E THEN C'; W 1 ELSE SKIP

W0 = SKIP

From the inductive assumption:

<C' >1= get().().nil

We will now proceed by induction on n to show that W has the

required form.

For n = 0, W0 = SKIP thus < W0 >' get().i().nil as required.

For n=k assuming < Wk_ l >' has the required form,

<Wk >'< IF E THEN C'; Wk1 ELSE SKIP >'.

From part 2 of this proof < C'; Wk_ l >' get().iri(y).nil.

With = 	Wk-

Thus from part 4 above; if E is true then < Wk >' get().Th(yI).nil.

With = (;;g; .,)

Otherwise, if E is false then <Wk >' i get().7(5).nil.

Chapter 5. Denotational Semantics of DCIMP. 	 M-1
For any terminating WHILE 1X there exists a finite m such Wm

will evaluate to the same value. Thus WHILE E DO C' is of the

required form given that it terminates.

5.5 <C><C>'.

Lemma 5.5.1 For any deterministic command C, <C >< C >1.

Proof: Since for all terminating commands both < C> and < C >' have

the same observational structure, i.e. get().i(7).nil, we simply have to

prove that for the same input i we get the same output # in every case. Note

that if the command in non-terminating then both processes are get().nil

and are therefore observationally equivalent. This problem of observational

bisimulation ignoring divergence is discussed in [Wal]. We will proceed by

induction over the structure of commands.

C=Xi :=Eor SKIP;

since by definition of atomic commands < C >=< C >' the result

follows directly.

C=C1 ;C2 ;

from the inductive assumption,

if < C1 > get().Zi().nil then < C1 >' get().i(z).rtil,

and if < C2 > get(z).iTh(yi).nil then < C2 >' get(z).(i).nil.

Thus < C > get ().(zii).nil, and from the definition of < C>,

wi = y2 . Since the state of the variables will be the result of any

Chapter 5. Denotational Semantics of DCIMP. 	 79

writing done by C1 followed by that of C2 ; lemma 5.4.2 implies that

<C >'c get().(y).nil as required.

C=Cl P4'?d C2 ;

from the inductive assumption,

if < C1 > get().ii7).nil then <C1 >' get().l(y).riil,

and if < C1 > get().().nil then < C2 >' get().().nil.

Since C is deterministic any variables modified by C1 are not written

or read by C2 , and vice-versa. Thus the value of the variables after

the execution of C1 PAR d C2 is either that due to the variable being

written by C1 or C2 or the same as its initial value. Since the variables

read by C1 are not written by C2 , the values written are the same as

those written in isolation of C2 and vice-versa. So forl, defined as:

y1 if Xi E W(C 1)

w= zifXiW(C 2)

xi otherwise.

<C > ge).(th).nil

From lemma 5.4.2, we have < C >' get().i(i).nil, with

if Xi E W(C 1) Vi
=

f yi

z1 otherwise.

But for Xi 0 W(C 2), z i = ;, thus the definitions of wi and vi are

equivalent, as required.

C = IF E THEN C 1 ELSE C 2 ;

By the same argument as given above for sequence (part 2), but with

two cases for E true or false.

	

Chapter 5. Denotational Semantics of DCIMP. 	 11

C=LET Xi:— E IN C';

<C' > get().(y).nil as does <C' >1.

<C > get().i().nil

<C >' get().iZ(th).nil

l x3 for j = i

yjwhere =otherwise.

(The value in the process reprsenting Xi will remain constant over the

execution of < C >, since all writes to it are restricted. Similarly in

< C >' we simply mantian the value of Xi accross the execution of

the command.)

x
and w 	

3fo

l yj

rj=z
•=

	otherwise.

(From lemma 5.4.2.) Thus the two processes are bisimular.

C=WHILE E 1X9 C 1 ;

as in the proof of lemma 5.4.2, (using sections 4 and 2 of this proof,)

since the fragment terminates we can replace it by a sequence of finite

approximations, and prove the required result by induction on the

depth of the approximation.

AMI

Chapter 5. Denotational Semantics of DCIMP. 	 81

5.6 Final Equivalence.

5.6.1 Evaluation Equivalence.

We show that the representation of an expression in both semantics evaluates to

the same value when the variables have the same values.

Definition 5.6.1 The value of an expression E in a memory ñi is written V(E)fn,

and takes the value x when ((m1, ..., rnj,).nil 1< E >')\get,put 	tx.

Lemma 5.6.2 For any expression E,

E1jni= V(E)nn.

Proof:

We proceed by induction over the structure of expressions.

E=Xi;

then flE]Jñi = mi and V(E)in- = m• since the value read will be placed

directly into ty.

E=F(E1 , ... , E);

since (by inductive assumption) E[Eni = V(E1)th and hence the final

value in both cases is the same.

5.6.2 Command Equivalence.

Lemma 5.6.3 If C is a deterministic terminating command then

CCih = gc2(m1) ..., MN) for gc,2 defined as in lemma 5.4.2. We will call this

vector function 	.

	

Chapter 5. Denotational Semantics of DCIMP. 	 82

Proof:

We will proceed by induction over the structure of commands.

C=SKIP;

then CICI is the identity map, as is

C= (Xi :=E);

in this case QCJ is the identity on the variable vector excepting the

i th. element, which becomes the value EEñi, for an initial value

vector ñi. The closure < C >' is the identity on all the variable values

except for the i th. element, which gets the value VI[E]fn. Since these

evaluate to the same value from the same state (lemma 5.6.1) the

functions are identical.

C=C1 ;C;

Given (from the inductive assumption)

CCJ 1] = 	, for j = 1,2.

Now g 	= 	and C jCj ; C2 1 = CE[CiI;C[C211;

thus CE[Ci; C2 1 = gTc2.

C=C1 PAR d C2 ;

from lemma 5.4.2, we have

f () for i E W(C 1),
(g 1 	C2)i =

	 -(j)1 otherwise.

But except on W(C 2), 	 is the identity map. So we can rewrite this

as

for i E W(C 1)

(g 1 	C2)i = (jC2)i for i E W(C 2)

lidi otherwise.

Chapter 5. Den otational Semantics of DCIMP. 	 11
Since W(C 1) fl W(C 2) = 0.

Now from the inductive assumption, CC1 1 = 	and CC2] =

Thus CI[C] = as required.

C = IF E THEN C1 ELSE C 2 ;

Proved directly from part 3 of this proof , by considering the cases

when E is true, or false.

C=LET Xi:=E IN C'.

From the inductive assumption CC =

f identity on element
c =

gc' otherwise.

(From lemma 5.6.1.) However this is precisely the definition of QC],

as required.

C = WHIL1J E W C'.

Proved by taking a sequence of finite approximations and inducing

upon the depth. (Using sections 5 and 3).

101

5.7 Determinism Preserving Transformations.

Program transformation [Dar] is a well established technique for improving the

efficiency of existing programs without performing extensive rewriting. In con-

current applications it is frequently one of the simplest methods for generating

correct implementations [Ros2J. In particular we would like to be able to start

with sequential programs and produce concurrent versions without affecting the

program execution and without additional programming effort.

Chapter 5. Denotational Semantics of DCIMP. 	 84

Definition 5.7.1 we will say that two program fragments C 1 and C2 are inter-

changeable, written C1 <=> C2 iffCCi]I = CIC2.

Proposition 5.7.2 (Transformation system T)

the following are valid interchanges

Ti: CI ; (C2 ;C3) <=> (Cl; C2); C31

C1 ''1d C2 <=> C2 PAR d C1 ,

C1 PAR d (C2 1'41d C3) <=> (Cl PARd C2) '1d C3

T: Cl; C2 <=> C1 PAR d C2 given C 1 and C2 are non-interfering.

Proof:

Ti follows directly from the associativity of function composition.

To prove the validity of T2 consider; (CC1 PAR d C2 ñl),

(CC1 JIn-), i e W(C),

= (CC2 JJni), i E W(C2),

ffi j otherwise,

which is precisely (CC2 PAR d C1]Jñi)1 as required.

To prove T3 valid consider; (Cft(C 1 PAR d C2) PAR d C3 ñi) 1

(CC1 ''d C2 ni) i e W(CI ''d C2),

= (CJJC31ffi), i e W(C3),

fri 1 otherwise,

but W(C 1 PAR d C2) = W(C1) U W(C 2). So

(CC1 ñi) 1 i E W(C 1),

- (CftC2]77-i) 1 i E W(C 2),

- (CC3 fn) 1 i E W(C 3),

fri1 otherwise

Chapter 5. Denotational Semantics of DCIMP. 	 85

from the definition of CC1 PAR d C21 which is

(Cl[C1]lni)1 i E W(C 1),

= (CI[C2 ' 1 d C3Vn), i E W(C 2 PAR d C3),

ffi j otherwise,

= (CI[C1 PAR d (C2 '' 1 d C3)ñilJ)i

as required.

4. To prove T4 valid consider; QC,; C21 = CICi]I;CC2I

given that C1 and C2 are non-interfering; and since CIEC only affects

those variables in W(C) for any C, we can deduce that

(Cl[Cjni) 1 i E W(C 1),

(CC1 ; C2 n't) = (C[C2]Jni)2 i

I ffi j otherwise,

= (CC1 PAR d C2 ñi) 2 .
U

The translation rules we have given are very simple and yet they can extract

all purely syntactically detectable parallelism in a program, without affecting its

determinacy.

Definition 5.7.3 A DCIMP program P is in shortest sequential form if whenever

a sequence C'; C; C" occurs in P, where

CEC1 PAR d C2 ... PAR d Cfl

then there is no j such that 1 < j <n, and such that both the pairs

C' and C1 PARd ... PAR d C3 ,

C +1 '"d 	PAR d C and C"

are non-interefering.

Chapter 5. Denotational Semantics of DCIMP. 	 11,
The above definition captures the notion that there is no application of T4

which will leave us with a shorter program (in terms of sequential components)

once it is in shortest sequential form. In some senses this is the 'fastest' de-

terministic rewriting of the original program, when we use the measure that all

sequential components cost the same amount of time. The only speed improve-

ments which can be made upon this program involve the possible introduction of

non-determinism.

Proposition 5.7.4 The transformation system T can reduce any DCIMP pro-

gram to shortest sequential form.

Proof: We provide an algorithm that, given any program, computes its

shortest sequential form. Assume the program is of the form;

C1 ;C2 ...;C.

For each C, 1 <i < n in turn check to see if a split (using T2 and T3)

can be found which allows it to be absorbed into the two surrounding

components, or preceding component if considering C;

If such a split exists then apply T4 to produce the two separate com-

ponents; and then apply T4 twice to combine them to the appropriate

commands.

Continue until C, is reached.

Note: interference is preserved by addition of parallel constructs. Once a pair

of commands C1 and C2 are interfering there is no addition of parallel program

fragments to either command which will make them non-interfering. Hence we

need no back tracking in the above algorithm, and the algorithm above will ter-

minate. When it terminates the program will be in shortest sequential form.

Unfortunately a program can have many shortest sequential forms and there

will be many transformation paths leading to programs with different arrange-

ments of the original program components. However starting from any given

Chapter 5. Denotational Semantics of DCIMP. 	 87

program the length (in terms of sequential components) of the shortest sequential

form is unique and reflects the causal dependencies on variables. This means that

in order to get more parallelism we must know more about the causality on variable

values; so that any introduced non-determinism does not affect the correctness of

the computation.

5.8 Conclusions.

The deterministic language DCIMP has a simple denotational semantics from

which it is possible to deduce properties of programs with reasonable ease. The set

of transformations we exhibited was not extensive; but starting from a sequential

program can produce a concurrent program containing all the available parallelism

without affecting determinacy. Moreover the transformation system relies solely

on the imposition of a simple syntactic condition and so should therefore be readily

implementable.

In the algorithm presented for converting programs to parallel forms no account

was taken of 'balancing' the parallelism. We made no attempt to distribute the

task evenly over the sequential execution path. In practice we would wish to

minimise the maximum number of processing sites required whilst maintaining

the execution length of our program.

It is not clear what definition to use to specify the condition of a program being

balanced. However it is clear that we can use the system Y to derive programs

where each sequential component has at most a fixed arbitrary number of parallel

subcomponents, and that given a fixed number of processing sites we can convert

any. DCIMP program to one which uses at most that number of sites.

Chapter 6

Axiomatic Methods I.

6.1 Introduction.

The axiomatic methods of program proof for sequential while languages introduced

by Hoare [Hoa2] in 1969 have proved extremely successful. There have been many

extensions [Owi, Jon, Stil, Zwi] of this approach to enable the production of proofs

of properties of concurrent programs. In his original paper Hoare states that the

assignment axiom holds only;

'in the absence of side-effects'.

Whilst it is possible to guarantee the absence of side-effects in a well designed

sequential programming language, this guarantee cannot in general be given for

a concurrent programming language. There are some evident methods that may

enable us to perform proofs on concurrent systems:

• restrict proof forms,

• restrict language constructs,

• extend the information in the proof system.

The first and last methods are demonstrated in [Owi] and [Jon, Sti] respectively.

The second appears as a semantical restriction in [Zwi].

In this chapter we will examine methods based on the first two solution ap-

proaches and show that they are closely related. In the following chapter we will

examine techniques based upon the third method.

Chapter 6. Axiomatic Methods I. 	 11
6.1.1 Hoare's Logic.

Hoare's method of proof is based on statements of partial correctness. We use

the following notation; given assertions P and Q about program variables and a

statement C in our language then

{P}C{Q}

informally means that; if P is true of the program variables before the execution

of C then, whenever C terminates Q will hold of the program variables after the

execution of C. Note, no account is taken of the actual termination of C; if C

fails to terminate then we can say nothing about the variable state from the above

triple.

A logic of such triples is usually presented in a natural deduction style. For

brevity we only present a single example rule as we will be presenting a full infer-

ence system in the next section.

Sequential Composition:
{P}C1{Q} {Q}C2{R}

{P}C 1 ; C2 {R}

This rule captures our natural understanding of the sequential composition of

commands. After a terminating execution of C1 , if P held initially then Q will

hold, and if Q holds at the start of C2 then R will hold when it terminates. Thus

if P holds initially then a terminating computation of Cl; C2 will leave R holding.

It is the naturality of such rules that is the appeal of this treatment of program

proof. There is a full presentation of Hoare's logics for sequential programming

languages in the survey paper [Apt].

Chapter 6. Axiomatic Methods I.

Null: {P}
SKIP {P}

Assignment: {[E/X]}X := E{P}

{PAb}C1 {Q} {PA-b}C 2 {Q}
Alternation: {P}IF b THEN C 1 ELSE C 2 {Q}

Iteration: 	
{PAb}C{P}

{P} WHILE b .xj GIP A -ib}

{P1 }C 1 {P2
} ... {

P}C{P 1 }

Composition: {P1 }BEGIN C 1 ;...; C, END{P +1 }

Fl-P1 {P1 }C{Q}Q 1 l- Q
Consequence: 	{P}C{Q

Figure 6-1: The Owicki-Gries inference system.

6.2 Owicki-Gries

The proof method of Owicki and Cries [Owi] is given over the following language:

C ::= SKIP I X := E I IF b THEN C 1 ELSE C 2

WHILE b JX) C I BEGIN C 1 ;. . . ; C END

AWAIT b THEN C I COBEGIN C 1 II... II C WEND.

In figure 6-1 we present the inference rules for the sequential fragment of the

language above.

The notation P F- Q means it is possible to prove Q with P as an assumption

in the language of propositions. This system is sound and complete in the sense

of Cook [Coo] for the sequential fragment.

6.2.1 Adding Parallel Commands.

There is a requirement in the Owicki-Gries system that each assignment statement

and each expression evaluation is atomic, i.e. the presence of other processes

cannot disturb the value produced. They provide a syntactic restriction on parallel

Chapter 6. Axiomatic Methods I. 	 91

{P A b}C{Q}
Await: {P}AWAJT b THEN C{Q}

{P1 }C 1 {Q 1 } ... { P}C{Q} are interference free
Cobegin. JP, A ... AP}COBEGIN 	 COEND{Q 1 A ... AQ}

Figure 6-2: Parallel Inference for the Owicki-Gries proof system.

composition which they state merely requires that memory access be indivisible

for the machine state to be well defined. That condition is as follows:

each expression E may refer to at most one variable y which can be changed

by another process while E is being evaluated and E may refer to y at most

once. A similar restriction holds for assignment statements.

The rules in figure 6-2 complete the deduction system.

The inference rule Cobegin requires that the proofs for program fragments do

not interfere with each other. This demand means that certain assertions, used in

the proof of {PJC2 {Q 1 } for each process, are left invariantly true under parallel

execution of the other processes. If these assertions are not falsified then the proof

of {P1 }C{Q} will still hold, in the context of a parallel execution, and therefore

Q j will hold for each i on termination. For example the assertion X > Y remains

true under the execution of X := X + 1, while the assertion X = Y does not.

Definition 6.2.1 We will write pre(C) and post(C) to mean the predicates P and

Q respectively, in the triple {P}C{Q}.

Definition 6.2.2 (Owicki-Cries) given a proof {P}C{Q} and a statement C' with

precondition pre(C') and postcondition posi(C') say that C' does not interfere with

C if the following conditions hold:

• {QApre(C')}C'{Q};

• if D is any statement within C but not within an AWAIT THEN , then

{pre(D) A pre(C')}C'{pre(D)}.

Chapter 6. Axiomatic Methods I.
	 92

Definition 6.2.3 {P1 }C 1 {Q 1 } ... { P}C{Q} are interference-free if the follow-

ing holds. Let C' be an AWAIT THEN or assignment statement (which does

not appear within an AWAIT THEN) of process C. Then for all j with i =Aj

C' does not interfere with {P,}C,{Q,}.

Showing non-interference is quite mechanical; make a list of the C 1 's precon-

ditions, a second list of C, 's assignments and AWAIT THEN statements and

show that each element of the second list does not disturb the truth of the first.

In the paper [Owi] this system is shown to be both sound and complete for the

class of programs described.

6.2.2 Example Proof.

To prove the following.

AWAIT true THEN X:= X + 1

{X = O}COBEGIN 	 11 	 COEND{X = 31

AWAIT true THEN X := X + 2

We must firstly verify the following formulae:

Let C1 AWAIT true THEN X:= X + 1 and

C2 AWAIT true THEN X:=X+2then

{pre(C 1) A pre(C2)}C 2 {X = 0 V X =2)

{(X=OvX =2)A(X =OvX= 1)}

{X =O}

AWAIT true THEN {X=0}

X:=X-j-2

{X=2}
{X=2}

{X=OvX=2}

{(X = 1 V = 3)Apre(C 2)}C 2 {(X = 1 V = 3)}

Chapter 6. Axiomatic Methods I. 	 93

{(pre(C 2) A pre(C 1))}C 1 {pre(C2)}

{(X=2VX=3)Apre(C 1)}C1 {(X= 1VX3)}

As we have established the non-interference of C1 and C2 . We can now obtain

the following proof:

{X=O}

COBEGIN {X=O}

{X= OvX=2}

AWAIT true THEN X:=X+1

{X=lvX=3}

11
{X=O}

{X = OvX= 11

AWAIT true THEN X := X + 2

{X = 2VX =3)
COEND

{(X=lvX=3)A(X=2VX=3)}

{X=3}.

Note, in the above proof most of the detail is required to establish the non-

interference of the commands.

6.3 DCIMP.

In his paper [Mi15] Milner produced a Hoare like proof system for a language which

is essentially DCIMP. We will reproduce that system and extend it (adding rules

for LET, IF and WHILE) to cover the whole of the language DCIMP. Firstly bare

triples are extended to the following form,

{P}C{Q}

where X and Y are disjoint sets of variable names; such that X contains all the

variables in 7(C) - W(C) and Y contains all the variables in W(C). Furthermore

	

Chapter 6. Axiomatic Methods I.
	 94

Assignment:
{P[E/X]}X := EjPj yY

Null:
{ P } SKIP { P } "

{P}C1 {Q} 1 {Q}C 2{R}'
Sequential: 	 1-V)u(X2-Yi)

{P}C 1 ; C2{R}

{PAb}C1{Q}' {PA,b}C2{Q}2 -
Alternation:

{P}IF b THEN C1 pjj C2 {Q}(1 _ Y2) U (X2_Y1)
Y1 u}

{PAb}C{P}
Iteration:

{P}WHILE b W C{PA-'b}

pHP1 X1 cXYcYYnX=O{P1 }C{Q 1 }Q1FQ
Weakening:

1P1C1Q1 Xk

Let:
{PA Z = E}C{Q} ' 	

tsome

Z not in P or Q and

{PA(Z = F)}L Z:= E IN C{QA(Z = F)} 	value F.

Parallel:(on condition that X 1 fl Y = X2 fl Y, =Y, fl = 0)

{P1}C1{Q1} 	{P2}C2{Q2}2

	

X2 	 Y2

.91 uX 2
{P1 AP2 }C1 PAR d C2{QiAQ2} ,12

Figure 6-3: Inference Rules for DCIMP.

all program variables occurring in P or Q must be in X U Y. This extension

allows us to check that parallel compositions obey our non-interference condition.

A bare logic for the language DCIMP would contain the rules given in figure 6-3.

Once again the side condition on the parallel is purely syntactic and therefore

very easy to check. It ensures that the commands C1 and C2 are non-interfering

since the only non-empty intersection of the variable sets permitted is in the read

sets. In his book [Mil6] Milner provides the following example proof of

{X=1AY=3}Y:=Y+X PAR d Z:=X+11Y=4AZ=2}}

Chapter 6. Axiomatic Methods I. 	 95

{Y+X =4}Y:= Y-fX{Y- -
41{x} (assignment), J{Y}

X = 1 A Y = 3 H Y + X =4 (arithmetic),

{X = 1 A Y = 3)Y := Y + X{Y = 4} 	(weakening 1,2),

{X + 1 = 2}Z := X + 1{Z = 2}? (assignment),

X = 1 H X + 1 = 2 (arithmetic),

{X = 1}Z :=X+1{Z=2}? (weakening 4,5),

{X=1AY=3AX=1}Y:=Y+X PARd 	 IYIZ)

(parallel 3,6),

{X=1AY=3}Y:=Y-fX PAR d Z:=X+1

{Y = 4 A Z = 2} } (weakening).

In order to show that this inference system is sound with respect to our process

based semantics for our programming language Milner translates extended Hoare

triples into the logic PL.

6.3.1 Translating Hoare Triples.

For any program fragment C we take as its representation the proces4C. The

process CJ is incomplete in the sense that it does not include the processes which

represent program variables. However, the traces of such a process inform us of

precisely the effect it would have on the program variables, e.g. given the command

C X := X +X

the process 	can perform the following; JCJ =4 nil, where = ax (5)ax (6) x (11).

In this sequence we have read X twice and received the values 5 and 6, (clearly

the variable X has been interfered with whilst we were reading it) and then the

value 11 is written back to the variable X. To represent this information about

Chapter 6. Axiomatic Methods I. 	 96

the internal history of processes Milner introduced the notion of memory maps: a

function from some set of program variable names to values. The letters rn, rn' will

denote memory maps and the functional Dom(m) will represent the set of variable

names upon which m is defined. We define the effect of an action sequence s E A*

in relation to memory maps. This is written mils fm', and means informally

that in the absence of interference, starting from memory m and executing the

sequence of actions s we will arrive in the memory in' .

Definition 6.3.1 The triples m{Ism' are defined inductively on the length of s;

m{Iern'iffin'=rn,

rn{I sr ftrn' if m{I s

m{IsxzI}rn' if in{IsI}rn" for some rn" such that m'(X) = z and for all

Y X m'(Y) = m"(Y),

. m{sa xyftm' if m{IsIJm' and m'(X) = y.

It is now possible to write a formula F c 2L which is dependent solely upon

P,Q,X,Y, such that 	= F precisely when {P}C{Q} 	holds. The formula

F asserts that when P holds of a memory in then if terminates producing a

memory m' after a sequence of actions s then given that in{I s }m' then Q must

hold of in' . We can restrict our attention to memory maps such that Dom(m) =

Dom(m') = XUY since no other variables can occur in F, Q or C. For convenience

we let . = U k and the expression P[in(2)/2] denote the substitution of the

memory values for each of the program variables in P.

Definition 6.3.2 (Milner) a Hoare triple {P}C{Q}1 is valid if

JCJ 1= F(P, Q, X U Y) where F(P, Q, X U 	is the following PL formula:

Vm,m',s.((Dom(rn) = Dom(rn') = 2) A m{Isarn' A P[rn(2)/2] D [[s]]Q[m'(2)/2]).

Chapter 6. Axiomatic Methods I.

In his book [Mi16] and the paper [Mi15] Milner presents an outline proof that a

reduced version (the parallel, sequence, weakening and assignment inference rules)

of the inference system is sound with respect to the above notion of validity. We

will present a proof of the full inference system for DCIMP firstly for a pure

proposition language and then in the presence of logical variables.

6.3.2 Soundness Proof

Proposition 6.3.3 the proof system is figure 6-3 is sound with respect to the

validity defined in 6.3.2 over the process interpretation of DCIMP.

Proof:

Null:

{ P } SKIP { P }

The process IESKIP] can only perform the action d. Thus given any

initial memory rn the memory after the execution of SKIP will be

identical to it and hence:

I[SKIP] 1= F(P,P,X U

follows immediately.

Assignment:

{P[E/X]}X := E{P}

For the process IX := Ej all the evolution sequences are of the form

S = ax3yi . . . axkykgxEd (see proposition 1.3.4). Hence for any initial

i-n and m{I s R m' then i-n ' is identical to m excepting for the variable

X, where it has value E (from the definition of rn{l .s 9in'). So for any

m where P[E/X][rn(Z/Z)} holds, then for any s evolution of JX := Ej

and m{Is9in', P[m'(Z)/Z] holds. Thus we have

IX := Eli 1= F(P[E/X],P,XU)

Chapter 6. Axiomatic Methods I. 	 I:1

Sequential:

{P}C 1 {Q}'{Q}C2{R} 1

{P}C1; C2{R}1_u()c2_l'1)
fl Uf2

The observed sequences of ([C1 ; C2]J are just those formed by arbitrary

concatenation of action sequences from ([C1](to those from ([C2]]. Any

terminating sequence of][C1 ; C2]] is of the form S = S1TS2, where s 1 d

is a terminating sequence of ([C1] and s2 d is a terminating sequence

Of ([C2]]. Let 2 = ki U U) 2 U . For any memory maps in, in '

such that 2 = Dom(m) = Dom(in') and rn{I s m' there exists rn",

such that m{(s am" and m"{(S2 am'. From the left hand premise;

if P holds of m then Q holds of in" (possibly with some extension of

the variable range), and from the right hand premise if Q holds of m"

then R holds of m' (once again the variable range may need extending)

since the sequences s 1 and s 2 where terminating. In other words if

([C1]] 1= F(P,Q,Z) and

][C2]= F(Q,R,Z) then

I[C1;C21 1= F(P,R,2).

Alternation:

{P A b}C 1 {Q} 1 {P A ,b}C2{Q}2

{P}IF b THEN C 1 ELSE C21Q}Y(1_'22_}'1)
}' u1'

We can assume that;

([C1 F(PAb,Q,X 1 UY1),and([C2 IF(PA'b,Q,X2UY2).

Let Z 1 = X1 U 1', Z2 = X2 U Y2 and Z= 2 U Z2 . Since Z1 c 2 and

Z 2 C Z then we have:

([C1]] (= F(P A b,Q,Z) and ([C2]] 1= F(P A -ib,Q,Z).

We require to prove that:

([IF b THEN C1 ELSE C 2]] (= F(P, Q, 2).

The computation sequences of the process ([IF b THEN C1 ELSE C 2]]

are simply those produced by performing the evaluation of the condi-

tion b followed by the appropriate choice of a terminating evaluation

Chapter 6. Axiomatic Methods I. 	 11
sequence from [C1] or JC21. In evaluating b we leave any memory un-

changed, since there are no write actions in a pure evaluation. Thus

if P holds before the evaluation of b it will hold after it. So P will

be true of the memory when we start executing either C1]J or IC2].

There are two cases.

b is true; we will now execute C1]I with an initial memory where

P A b holds, thus from the left hand premise if l[C1]J terminates it

will terminate in a memory where Q holds.

b is false; we execute EC21 from an initial memory where P A -b

holds and can similarly deduce that on any termination Q will

hold of the final memory state.

Thus for all sequences of [IF b THEN C1 ELSE C21 we can see

that

l[IF b THEN C1 ELSE C21 1= F(P,Q,Z).

5. Iteration:

{PAb}C{P}

{P}WHILE b 1X' C{PA-'b}

If the process [WHILE b Lk9 Cu terminates then the terminating

action sequence will be an arbitrary number of copies of evaluation

sequences of b followed by a terminating action sequences of [C]. Pro-

ceeding inductively along the evaluation sequence; if P holds of the

initial memory then it will hold after the evaluation of b. If b is true we

then perform a terminating sequence of IICu with P A b holding of the

initial memory, and hence P holds of the final memory. So proceeding

we can see that P holds throughout the execution of any terminating

action sequence of [WHILE b 113 Cu. Finally for termination to

occur we must reach a state where P A -ib holds of a memory after

the execution of an instance of [Cu; and thus it will hold of any final

memory, i.e. given;

C]l I= (P A b, P, X U Y) then

WHILE b D3 Cfl=(P,PA-b,)'uY).

Chapter 6. Axiomatic Methods I. 	 100

Weakening:

PFP1 xi xX i nW(C) = øY 1 cYYflX=0{Pi }C{Ql } 1 Ql HQ

{P}C{Q}

This follows immediately from logical considerations; and that the

variable set extensions preserve the appropriate restrictions with re-

spect to the read and write sets.

Let:

{P A Z = E}C{Q}u_') 	

Eme

not in P or Q and

{P A (Z F)}L Z:= EIN C{Q A (Z = F)} value F.

If IILET Z := E IN C has a terminating action sequence then

that sequence is formed from an assignment to the variable Z followed

by a terminating sequence for JCJ. The evaluation of Z := E does

not affect the memory since the variable Z is local. There is no azy

action visible in the action sequence of ILET Z := E IN C as

a result of its construction. From the view of the process C it is

executing using the initial memory excepting that the variable Z now

has the value of E evaluated in that memory. But then P A (Z = E)

will hold of that memory and hence we can deduce that Q will hold

of any final memory. Since Z is not in P or Q we will not have a

contradiction. Thus Q A (Z = F) will hold of the final memory of

LET Z := E IN Cj given P A (Z = F) held of its initial memory.

In other words,

LTZ:=E IN C] F(PA(Z=F),QA(Z=F),XUY)

Parallel:(on condition that X 1 U Y = X 2 U = U 1 	0)

2 {P1 }C 1 {Q 1 } 	{ P2 }C2 1 (2 }
X 1uX2 {P1AP2}C1 ''d C21QlA

,-
21V U)

Any terminating sequence EEC1 PAR d C2 1 is an arbitrary interleaving

of terminating sequences of EEC1JI and EEC2. Since P1 A P2 holds of the

Chapter 6. Axiomatic Methods I. 	 101

initial memory; both P1 and P2 hold separately of that memory. So we

have the required initial conditions to apply the premises. However we

must be careful that the presence of the actions from the other process

do not disturb the resulting final memory of either computation.

Now Q1 can only refer to variables written to or read by C1 and since

C2 is not premitted to write to any of these variables its presence will

leave them unaffected. Thus the truth or falsehood of Q1 will be un-

affected by the presence of [C2]I whilst [Cl] is executing. A symmetric

argument shows the condition Q2 is unaffected by the execution of C1 .

Wiog we assume that the final action of][C111 occurs in our terminating

sequence before that of J C21. Any variable used by J Cj j is unaffected

by the presence of [C21, and since P1 held initially Q 1 will hold now;

and it will continue to hold until 1[C2]I terminates. At which point Q2

will also hold of the memory and hence Q1 A Q2 will hold of the final

memory. We can see that

[C1 PARd C2]] =F(P1 AP2 ,Q 1 AQ2 ,X1 UYUX2 U).

6.3.3 Non-Interference Implies Interference Freedom.

Definition 6.3.4 given a program in DUMP without the LET IN construct,

there is an equivalent program in the language of Owicki-Gries defined by direct

translation as follows.

DCIMP

C

X:=E

C1 ; C2

C1 PAR d C2

IF E THEN C1 ELSE C 2

WHILE E W C

Owicki- Gries

C

X:=E

BIN C 1 ; 02 END

COBEGIN O1 I I 2 WEND

IF E THEN C1 ELSE C2

WHILE E]X) C

Chapter 6. Axiomatic Methods I. 	 102

Proposition 6.3.5 If we can prove {P}C{Q} then we can prove {P}C{Q} in

the inference system of Owicki-Gries.

Proof: We proceed by induction over the depth of proof. We distinguish

proof systems by their different triples and drop the signifying translation

between the two languages. The only point of interest is the parallel rules.

We must demonstrate the interference freedom of the proofs of C1 and C2 ;

given that we can prove {P1 A P2 1 C, PAR d C2 1Q1 A Q21 . From the

inductive assumption, if the above was deduced from

{P1 }C 1 {Q 1 } 	{P2}C2{Q2}4

{P1 AP2 }C 1 lMld C2{QiAQ2}
X1uJk2

U2

then we can prove

{P1 }C 1 {Q 1 } and {P2 }C 2 {Q 2 }.

So if we can establish non-interference of the above then we are finished.

For non-interference the following conditions must hold hold for both C1

and C2 :

IQ, AP2 }C2 {Q 1 };

if D is any statement within C1 then {pre(D) A P2 }C2 {pre(D)}.

The first clause is an immediate consequence of the fact that the presence

of C2 cannot affect the truth of Q1. (See proof of soundness of parallel

inference rule.) The second requirement follows from the fact that in part

of the sub-proof of {P1 }C 1 {Q 1 } no reference can be mades to variables

outside of k, and ; and therefore its truth is unaffected by the presence

of C2]. Moreover we can find a matching proof in Owicki-Gries; which

uses no more variables. Any extra variables would be redundant, they

cannot appear in C1 ; and hence can be removed from our predicates by

weakening. Thus the condition of non-interference guarantees that proofs

are interference free.

0

Chapter 6. Axiomatic Methods I. 	 103

6.3.4 Adding Logical Variables.

Definition 6.3.6 let the propositions P and Q contain the logical variables v 1 . . . v,

(which we will call .) we interpret the extended triple:

{P}C{Q}

as

V(JC]J 1= F(P, Q, X U fl),

in other words that the interpretation holds for all possible variable values. In that

if we can find a substitution that makes F true, then the same substitution will

make Q true if the command C terminates.

Proposition 6.3.7 the rules of inference in figure 6-8 are sound with the inter-

pretation of logical variables given above.

Proof: We present the outline proof for the parallel rule, the others follow

from similar arguments. On condition that X 1 flY2 = X 2 flY 1 = Y1 flY 2 = 0;

{P1 }C 1 {Q 1 }' {P 2 }C2 {Q 2 }
X'2 	 yj

X1uX2
{P1AP2}C1 '"d C2{Q1AQ2}, 2

We wish to show that (given 2 =) U Y1 UX2 U

V(iC1 PAR d C2fl=F(P1 AF2 ,Q1 AQ 2 ,Z))

whenever

VC1 1I = F(P1 ,Q 1 ,X 1 UY))

and

V.(JC2]J 1= F(P2,Q2,X2u}')).

Chapter 6. Axiomatic Methods I. 	 104

We know that if for an initial memory VP1 AP2 holds then we can apply the

premises; as V2P1 and VvP2 hold of that memory. We demonstrated earlier

the the processes do not disturb the evolution of each others memories.

Thus if the composition terminates, then it terminates in a memory where

VQ1 and VvQ 2 hold. So VQ1 A Q2 holds of that memory as required.

6.4 Conclusions.

We have provided a simple syntactic restriction which permits formal Hoare style

proofs over parallel while programs. Unfortunately this condition is strictly stronger

than the non-interference condition of Owicki-Gries. This is not surprising as

the comparison did not take into account the atomicity assumptions used in the

Owicki-Gries system. The languages are comparable but the underlying seman-

tics are not. Whilst there is a condition given by Owicki and Gries for non-atomic

assignments it is not clear how to interpret it.

So far we have been unable to prove that the proof system of DCIMP is com-

plete, in the usual sense. The absence of an AWAIT THEN command makes

the proof considerably harder and prevents us from easily detecting weakest pre-

conditions of parallel constructs.

Chapter 7

Axiomatic Methods II.

7.1 Introduction.

In the paper [Jon] Jones presents a methodology for the development of programs

that have the potential for interference. In order to achieve this, the specification

of program fragments is extended via conditions; on how much a program frag-

ment is willing to guarantee to the environment and how much it relies on that

environment. These are natural notions in the development of a program, as a

programmer will know how much any program interferes with its environment,

and what it requires from that environment to function correctly. Only compat-

ible program fragments, i.e. those that guarantee at least as much as the other

fragments rely on, can be executed in parallel. In this chapter we will be using

the unrestricted version of the parallel language CIMP.

7.1.1 Stirling's Inference System.

This idea of rely and guarantee conditions is used by Stirling [Stil] to present an

extended Hoare like logic over a shared variable while language.

Definition 7.1.1 Let P and Q be predicates on variables (from some language of

predicates £), and let F and A be sets of such predicates. Then the extended Hoare

triple:

{I', P}C{Q, t}

105

Chapter 7. Axiomatic Methods II. 	 106

is interpreted as follows. If P holds before the execution of C and no predicate

within F is falsified during the execution of C, then

any predicate within L will not be falsified during the execution of C and;

if C terminates, it will terminate with Q holding of the variables.

In the above, F is the predicate set that the execution of C relies on being

invariant, and L the predicate set it guarantees invariant. It should be noted that

the preservation of A is independent of the termination of C. A deduction system

(figure 7-1) is presented over the following language:

C::=SKIP I X := E 11 C1 ; C2 I C\X I
IF b THEN C 1 ELSE C 2 I WHILE b 1X C

I C1 PAR C 2 I AWAIT b THEN C

Definition 7.1.2 In figure 7-1 the interpretation of the statement F = P or

F F' is that all execution paths that leave the antecedent invariant, leave the

consequent invariant.

Definition 7.1.3 The ordinary triple {P}C{Q} is an abbreviation for IL, P}C{Q,0}

where £ is the language from which the propositions are taken.

Definition 7.1.4 the notation P = Q means that Q is deducible from P in the

language of propositions L.

Definition 7.1.5 C\X is the program obtained by replacing all occurrences of

assignment to X in C with SKIP and transforming any AWAIT true THEN C

to C when C is SKIP or Y:= E.

In [Still the inference system of figure 7-1 is shown to be both sound and

complete. These proofs rely on a semantics of potential computation sequences,

an extension of the semantical presentation of [Henl].

We will show that for the fragment of the inference system that refers to the

following language:

Chapter 7. Axiomatic Methods H. 	 107

Null: {F,P}SKIP{P,L}

F=: P P = R[t/X] VQ e , P A Q = Q[t/X]
Assignment: 	 {F,P}X :=t{R,L}

{F,P}C 1 {Q,L} {F,Q}C 2 {R,L}
Sequence: 	jr, P}C1 ; C2 1R, Al

F 	P {F,PA b}C1 {Q,z} {F,P A -ib}C2{Q,z}
Alternation: 	{F,P}IF b THEN C1 ELSE C2 {Q,z}

F=P {F,PAb}C{P,A}
Iteration: , P}WHILE b w C{.P A -'b, Al

Await.
F = P {PAb}C{Q} VR€ L\{PAbAR}C{R}

jr,PJAWAIT b THEN C{Q,z}

F=R{F,P}c1 {R,EUL} {E,Q}c2 {S,Fu.} E=R
Parallel: 	

jruE,P A Q}C1 PAR C 2 1R A S, }

Auxiliary Variable:
{P}C{Q}

{P}C\X{Q} (P and Q do not contain free occurrences of X.)

F=F' P I=P1 {F',P1 }C{Q 1 ,z'} Q1 I=Q '= Weakening: 	 {F, P}C{Q, Al

Figure 7-1: Inference System for Rely-Guarantee

Chapter 7. Axiomatic Methods II. 	 108

C : : = SKIP IX := El IF b THEN C1 ELSE C 2 I Cl; C2 .

WHILE b JX) C I C1 PAR C 2

we can give an interpretation of the quintuples in the same manner as Milner gave

for the extended Hoare triples, of the last chapter. We shall prove that in this

interpretation a reduced set of deduction rules is sound with respect to the process

based semantics.

7.2 Interpreting Quintuples.

The notion of memory that we used in the last chapter we will use again but with

the following extension:

rn{Isftm' if m{sm'

this simply states that actions signaling termination do not affect the memory.

Definition 7.2.1 Given a proposition P and a memory m the notation m H P

means that P[m(X)/X] holds. Where X is the set of all the program variables.

Definition 7.2.2 We will say that

{F, P}C{Q, L}

is valid precisely when for all a1 ,.. . an such that ECI --- ... --
D then

for all memory maps m om ' . . .

ifm o =P

and for all 0<in for all REF,m j I=R D m ' R

and for all 1 <i < n m' 1 {IaJJrn

then for all 1 <i < n for all S E /., 	= 5 D m 2 = S

and moreover if an = d then m' = Q and D '-' nil.

Chapter 7. Axiomatic Methods II. 	 109

Informally we think of the transitions between m 2 and m as external actions,

and we require that external actions do not falsify anything in the rely condition.

The transitions between m'-1 and rn1 are internal transitions; so we require that

they are consistent with internal actions. So given an initial memory m 0 at which

P holds, then over all internal actions the guarantee conditions will not be falsified

provided that the rely conditions are maintained. Finally if the command termi-

nates then Q will hold of the final memory. We could have chosen the following

slightly different definition.

Definition 7.2.3 The quintuple

{F, P}C{Q, z}

 In
is valid precisely when for all a 1 ,. . . an such that C] -.-* ... - 	D then

0k, 	0 f kn or all memory maps m 0 .. . m ,... , rn . . . m
n 	n

ifrnI=P

and for allO<i<nfor allO<j:5 k2 -1 for allREF,

m=R j mR

and for all 1 < i <n m'' {I a• Rm o

then for all <i < n for all S e A l
0 in. 1 =SjrnS

and moreover if an = i then m1' = Q and D ' nil.

This definition differs from the earlier one in that we have allowed multiple

external actions, instead of assuming that they can all be represented by one step

in the memory chain.

Proposition 7.2.4 The above two definitions of validity are equivalent.

Proof:

1. Definition 7.2.3 implies 7.2.2, choose k1 = 1 for all i and then let

0/ rn2 	 2. in and rn. = m i the definitions are now identical.

Chapter 7. Axiomatic Methods H. 	 110

2. In the other direction, let

and let 	... m,. . . m ° ,. . . m be such that they obey the antecedent

0 	 ' rn of definition 7.2.3. So we pick m2 m and m 8 = .

- 	 for all z. Then

we can deduce the antecedent of definition 7.2.2, namely
in0 P

fora11O<i<nfora11REF,1nR D m=R

for all 1 i < n m_ 1 {Ia1 Dm1

thus from definition 7.2.2 we can deduce that
fora1l1<inforal1 SEA 1n_ 1 S mj=S

and if an = d then m' = Q and D nil

but this is precisely the consequent of Definition 7.2.3 (up to rela-

belling).

Before we can attempt a soundness proof of the reduced inference system we

need an interpretation of invariant containment, for predicate sets, with respect

to CCS processes. We also need a definition of satisfaction for predicates with

respect to the process model.

Definition 7.2.5 We interpret F = A to mean that, for all in and m', whenever

mRDm'RforallREF, then alsomADm'IA.

Definition 7.2.6 A B if for all memories in, m = A implies in = B.

7.3 Soundness.

Proposition 7.3.1 The rules null, assignment, sequence, iteration, alternation,

weakening and parallel of figure 7-1 are sound with respect to the process based

interpretation.

Proof:

Chapter 7. Axiomatic Methods H. 	 111

Null:

{F, P}SKIP{P, z}

this holds vacuously; since the only action SKIP1 can perform is d

and this leaves memories unchanged by definition.

Assignment:

F=.P P=R[t/X1 VQeL,PAQj=Q[t/X]
{F,P}X := ttR, Al

Given X := i] --- ... -- D and we have memories m 0m'0 ... mrn'

such that

mot=P

and for all O<i<n for all SEF,rnS D m=S

and for all 1 < i < n rn 1 {IaJJm.
For all R E , if m1_1 = R then either

• m_ 1 = A in which case from P A R = R[t/X], rn, = R or,

• rn2 K P in which case the action which performs the assignment

has been made and since l[X := t] has only one write action

subsequent actions do not affect the memory, hence m = R.

hence for all l < i<n for all REL,m_1 =R Dm1 I-- R.

If X := tj terminates then as there is only one write action and

all subsequent actions do not affect the memory. From F = P and

P 1= Q[t/X] we can deduce I' = Q[i/X], thus if rn = Q then rn = Q

and since after the ak which is the write action there exists m'k such

rn = Q. All subsequent actions (either environmental or local) do

not affect the validity of Q and hence m' = Q as required.

Alternation:

F = P {F,PAb}C1 IQ, } {F,PA -b}C 2 {Q,t}
{F,P}IF b THEN C 1 ELSE C2 {Q,}

 an Let IF b THEN C1
ELSE C 2 ,

--* ... -- D then there are two

direct sub-cases;

Chapter 7. Axiomatic Methods II. 	 112

an occurs before the execution of either C 1 or C2 starts. Then this

process so far leaves memories unchanged since it is performing

an evaluation. Hence trivially the guarantee conditions are met.

Otherwise there is some ak which is the first action from whence

the execution of C1 or C2 then continues. Since F P and condi-

tional evaluation leaves memory unchanged; we know that rn 1

P and Mk 1= P. For the memory sequence rnkm'k ... MnM1 assume

wlog that m'k_l = P A b. From the left hand premise we have that

b1 	bn_k
D', given C1J -* ... -f D, with D =

for all memory maps lo 1 . . . lfl....klfl _k

if l0 =P

and for all O<i<n—k for all REF,lR D l=R

and for all 1 < i < n - k l' 11 ai hF l
then for all 1 <i < n—k for all S € L, l_ = S D 1, = S

and moreover if a n = d then m = Q and D - nil.

By identifying m 	with 1, and m+k with l+k for all 1 < j n - k,

we have for all 1 <j <n - k and for all S E L, that

= S D m 	= S. Combining this with the earlier proof

for the first k - 1 internal actions we have for all 1 <i <n for all

SE 	S D rn = S.

If JCJ (for instance) terminates then from the left hand premise (given

b is true) we have that 1k = Q and D' nil thus m' = Q and

D nil as required. A symmetric argument proves the case when b

is false.

4. Sequence:

{F,P}C 1 {Q,L} {F,Q}C 2 {R,L}
jr, P}C1 ; CAR, Al

There are three cases.

(a) C1 JJ does not terminate. In which case we map memories

mon4... rn m ' to the memories in the definition of the left hand

premise and obtain the required guarantee property directly.

	

Chapter 7. Axiomatic Methods II. 	 113

JCJ terminates but CA does not. Then in l[Ci; C2 --3 ... -- D

either we have not started executing C2 ; in which case the imme-

diately preceding proof would still apply; or there is an a j, which

is the r corresponding to the termination signal of C1JI. So for

a memory sequence m0m'0.. . 	we have from the left hand

premise that for all 1 < i < k and for all S E L, fl2 ' 	= S D

m = S and Mk 1= Q. Thus choosing the memories in the right

hand premise as mk+lm+l .. . then these memories have

all the requisite properties (silent actions do not change memory

values) and we can deduce that for all k+2 <i <n for all S E L,

m = S D m = S (from the right hand premise). Hence for all

1i<n for all SE A then m_ 1 SD 	S.

Both JCI J and [C2 1 terminate, then from (b) we have that the

guarantee requirement is already met and since if C21 terminates

then matching memories as for part (b), we have that m' = R

and D nil as required.

5. Iteration:

F=P {F,PAb}C{F,L}
{F,P}WHILE b 1X C{PA-'b,z}

	

7! a 	In

given WHILE b IX) -* ... -- D

for all memory maps mom' 0 . . . m,m'

ifm 0 =P

and for all O<i<n for all QEF,mQ D m=Q

and for all 1 < i < n m_1 {la1ftm2

Now as in the proof for IF THEN ELSE we know that there are

(say) k actions which are required to evaluate the condition b and that

these do no affect the memory. Thus for all 1 < i < k for all R e L,

rn' 1 =R j rn =R. Since F= Pwecan deduce that if m 0 P

then rnk+1 1= P (*). So we can use the memories m k+lm' +l .. . m1m

up to some 1 in the premise (1', P A b}C{P, z} . (Assuming the loop

does not terminate trivially.)

Chapter 7. Axiomatic Methods II. 	 114

Thus for all 1 < i < 1 for all R E 	, rn' 1 H R D rn1 = R; and

moreover if WHILE b 	LO 	Cj terminates; after one particular

execution of C then there will be a m+k = P A -b, as memory is

invariant under condition evaluation.

Proceeding inductively along the execution path of [WHILE b LO C;

we can see that for all l< i < n for all RE Lx., m_ 1 RD rn R.

Moreover if the process EWHILE b 1X C] terminates then it termi-

nates after an evaluation which gives b false; and at which point as in

(*) we know that m' =P and m' = -'b hence m' = P A -'b.

6. Parallel:

F = Q1 {F,P1 }C1 {Q 1 ,E U i} {E,P 2 }C2 {Q 2 ,F U L} E
{Fu>,P1 AP2 }C 1 PAR C 2 {Q 1 AQ2 ,L}

We must show that if [C1 PAR C21 --+ ... --* D,

then for all memory maps MOMIO . . MnMin

if m0 = P1 A P2

and for all < i < n for all RE F U

rnJ=R D m'=R

and for all 1 < i < n m' 1 {Ia2ftm1

then for all l < in for all SEL,m_ 1 F=S Drn, =S

and moreover if an = '2 then m' = Q and D --' nil.

We can assume that

lIC1II--*
W21 Cl) -

with E I F = D and that the actions a 1 are some arbitrary interleaving

of the actions b1 . . . b, and the actions c1 . . . cs ,,. Let the associated

memory sequences of CJ and C2 1 evolve through be POP0 •• . PnTl

and q0q. . . q0iiq,, respectively. These sequences of memories are sub-

sequences of the sequence MOMOI . . mrn' which can be defined as

follows.

There is a partition of the indexes {1,... ,n} into I = 	, i1} and

J = {j1,. ,j ,, }, such that a11 . . . a 2 , = b1 . . . b1 and

	

Chapter 7. Axiomatic Methods H. 	 115

a31 . . . a3 ,, = c1 . . . c,,,. Also 	= T if JCJ terminates, and c11u = r if

C2 1 terminates.

Then we set Po = q0 = m o , and p' = q ' ,,, = m and otherwise, for

k = 1,...,n';

I 	- I
m. and pk=m2k ;

	

—1 — 	 k1

and for k = 1,. .. ,

/k-1 	1

qk_1 = 2k-i and q = mJk.

A diagram will make the construction clear. We have taken n = 6,

= 4, n" = 2, with a 1 a2 a3 a4a5 a6 = b1 c1 b2 b3 c2 b4 .

a 1 	a 2 	a3 	a4 	a 5 	a6

I 	 I
M O m 0 m 1 m 1 m 2 m 2 m 3 m 3 m 4 1114 1115 1115 m6 m 6

bi 	 b2 	b3 	 b4

Po 	Po Pi 	 P1 P2 	p2 P3 	 P3 P4 	p4

C1 	 C2

I 	 I 	 I
q0 	 q0 q1 	 q1 q2 	 q2

The memory sequences PoP'0 . .. 	and q0q. . . 	will now be

shown to obey the antecedents for the quintuples,

{F,P1 }C1 {Q 1 ,Euz}

{ , P2 } C2 { Q2, I' U L}

to hold. Since m0 = P1 A F2 , we have that Po 	P1 and q0 = P2 .

Consider the first action of C2 either

• this is preceded by no evolutions of JC I J in which case q = rr4

and by assumption for all R e E U F, 1110 = R D m = R thus for

all SeE,q0 SqS.

• Or there are one or more evolutions of[Cl] (say k) before the

first action of IC21. In this case we have PoP0.. . Pk identical to

momn o ... m k and, as above, for all < i < k — i for all E FU E,

mJ=RJm'I=R.

Chapter 7. Axiomatic Methods H. 	 116

In other words for all 0 < i < Ic - 1 for all S E F,

p1 SpS

for all 1 < i < k, P'kl {I b• RPi

and Po

thus for all 1< i< k for all RE EUL,

pj=R3p1 1=R
or for alll<i< Ic for aliS 	, p_ 1 S Dpi = S and

A =Sp =S.
moreover from for all E FUE, Mk 1= R D m'A = R, by definition

q = m and from the above it is clear that for all S E E,

q0 SDq=S.

By an identical argument for all R e F, Po R D p'0 1= R.

We now proceed inductively over the following statements:

for all 0<i<k for all REF,pRDph:R,

foral10j < kq for allSEE,q3 I=Sq 1=5 ;

with k 	n' and ICq < n" . To prove the second clause we assume that

for all 0 < j < kq for all S E E, q3 = S D q = S given this we can use

q0q. in the definition for {E, P2 }C 2 {Q 21 F U z} and deduce

that for all 1 < i < k for all R E F, q_1 = R D q, = R. There

will be a maximal (possibly zero) bk such that bk occurs before Ckq+1•

For all memory pairs p ip', 0 < i < k the transitions come either from

the environment which guarantees F U E or from an interleaving of

environment or C2 moves. Environment moves guarantee F U E, C2

moves as far as action k q guarantee F; so when they are interleaved F

is maintained. But when F is maintained over environment moves of

C1 it will maintain E U A, so at least up to action bk, E U / will he

maintained.

For the memory transition qkq+1 . 1 the move is either purely envi-

ronmental in which case F U E is ensured, or it is an interleaving of

environment moves and moves from C1 which ensure E U L (at least

up to this point). Therefore for all S E E = S 1= S.

Chapter 7. Axiomatic Methods II. 	 117

The proof of the other case is symmetrical.

Thus the memory sequences POP 'O . . . 	and q0q. . . nil

are of the form admitted by

{F,P1 }C 1 {Q 1 ,>UL}

{>,P2 }C 2 {Q 2 ,FuL}

so for all 1 < i < n and m_ 1 m there is a matching P_1Pk or q_1q for

some k or j and from the above for all R E F U z, p_ 1 = R D Pk = R

or for all SE FUL, q_ 1 1=S D q, = S. Thus for all 1 < i < ii for all

Finally if both I[CJJ and JC2 1 terminate then p = Q1 and qn1l = Q2.

We can assume wiog that Cj terminates first; in which case the only

subsequent actions of[Cl PAR C 2 are those of C2]j, r and d, of

which the latter two do not affect memory values. From F =:>. Q1 we

know that all the actions of I[C21 will leave Q1 invariant; and since the

environment guarantees I' U E, that will also leave the validity of Q1

invariant.

So once Q1 holds of a memory in the evolution path of IC, PAR C21

it will continue to hold until the process terminates. When [C21 ter-

minates Q2 will also hold. From the definition of C1 PAR C 2 , an

will be and D nil upon termination. So we have in 	Q1 A Q2,

by assumption for all R E F U E, m = R 	= R and F Q1

with E = Q2, thus F U E Q1 A Q2 hence m' = Q1 A Q2.

7. Weakening:

F = F' P1= Pi {F',P1 }C{Q 1 ,L'} Q1 1= Q
{F, P}C{Q, }

This follows immediately from the definitions of = and the logic of

propositions. 	 0

Chapter 7. Axiomatic Methods II. 	 118

7.4 Relation to Non-Interfering Methods.

We can obtain a system of proof identical to that for our non-interfering language,

if the following rely and guarantee conditions are used;

Rely: {X = v I X EW(C)U7Z(C) and v E V},

Guarantee: {X = v I X 0 W(C) and v E V}.

Informally we rely on the environment not changing the value of any variable

we read or write. Similarly we can guarantee that the value of variables we do

not write to will remain unchanged. The above rely and guarantee conditions are

exceedingly strong which reflects just how restrictive the determinism condition

is.

7.5 Rewriting the Definitions in PL.

We originally stated that we were going to express validity in terms of the sat-

isfaction of a 2L formula but have so far only provided and used a long hand

definition. For completeness, the following is a re-expression of definition 7.2.2.

Definition 7.5.1 let s E As be an action sequence and s• its ith member; then

the quintuple

{F, P}C{Q, L}

is valid precisely when

JCJ = Vrn0m. . 	(P[m(..k/X)] AVi.

AViVR E F,R[m1 (X)/X]

R[m'(K)/(] A [[sJ] (ViVS E L., S[m_ 1 (k)/k] j S[m(X)/X]A

((sn = 	Q[m(X)/X])))

Chapter 7. Axiomatic Methods II.
	 119

7.6 Conclusions.

We have presented two different proof systems over concurrent while languages.

Their validity has been shown to be expressible as formulae of 'PL and hence

we have been able to prove the soundness of such systems relative to a process

based semantics. The correspondence between our condition ensuring determinacy

and the restrictions/ extensions to proof systems needed to manage concurrency

has been demonstrated. Restricting ourselves to programs that are deterministic

greatly eases the proof burden when trying to establish the properties of such

programs. Thus as we would expect the sub-class of CIMP programs which are

deterministic is of some value, when we need to show program correctness.

Chapter 8

Timing Concurrent Processes.

8.1 Introduction.

The temporal properties of concurrent processes give an insight into some inter-

esting aspects of concurrent programming. There have been some attempts to

provide a formalism within which these concepts can be expressed [Rosi, Koyl,

Jef]. Most of these assume synchrony which results in some of the more inter-

esting temporal properties of processes being inexpressible. In a previous paper

[Tof] we provided an extension to CCS which admitted a notion of timing. That

approach was unsatisfactory in that the account it gave of time was somewhat

eccentric. Processes could only evolve simultaneously by communication, time

and action were interleaved otherwise. In order to give a fuller account of time

for asynchronous processes we need to just let time pass, and observe what the

processes produce and when they produce it.

In order to give this fuller account the state transitions have been split into two

orthogonal parts; one part is our normal notion of action (which can be regarded

as computation) and the other part is the passage of time. There are sound reasons

for making this separation. Computation involves energy change and there is a

result of quantum mechanics which states that energy changes and time cannot

be measured simultaneously [Dir, Sch]. Thus it seems reasonable when producing

models of time and computation not to permit the simultaneous observance of the

two activities.

We therefore assume that actions have no duration; although if we wish to

construct actions with duration we can in the manner of [Cas].

120

Chapter 8. Timing Concurrent Processes. 	 121

8.2 Language Definition.

We define a timed extension of the language CCS [Mill] as follows.

Let A be a set of (atomic action) symbols not containing r or e, and let Act =

A U {r}. We also have times t taken from one of the following: positive integers,

positive rationals or positive reals, representing the divisions of time. We assume

a complementation bijection ' : Act - Act which is its own inverse. The letter .'\

ranges over A, the letter it over Act, and S over relabelling functions, i.e. those

S : Act -f Act such that 8(71) = S(p) and S(p) T, unless i = T. The

languages wTCCS (weakly timed CCS) and sTCCS (strongly timed CCS) consist

of an infinite set Var of variables ranged over by X and Y, a constant symbol

Nil, unary function symbols it., \A, [8], and FIXx (X e Var), and the binary

function symbols + and 1 . With for each action /1 a unary function IL. taking a

process and prefixing the process by that given action. In wTCCS the function

symbol []' denotes a function which takes a process and a time and yields a process

prefixed by that amount of time. The function () takes a process and a time (not

zero), and returns the process prefixed by that time, along with the unary function

which returns a delayed process in the calculus sTCCS.

The set P of wTCCS-expressions ranged over by P is the set given by the

following definition:

P ::= Nil I p .P I [t]P I P I P I P + P I FIXxP I X I P\L I P[S].

The set P of sTCCS-expressions ranged over by P is the set given by the

following definition, with i 0:

P ::= Nil I p.P (t)PI SF I P I P I P + P I FIXxP I XI P\L I P[8].

(It will be clear from the context which version of the timing system is being

used.) The intention of the time action prefix is as follows. In wTCCS, [t]P means

Chapter 8. Timing Concurrent Processes. 	 122

that after a period of time t' where t' > t the process P is reached; this is very

similar to the wait introduced into CSP by Roscoe and Reed [Rosi]. On the other

hand, the system sTCCS represents separation of delay from the initial timing so

(t)P represents a process that will becomes P in precisely a period of time t. The

operator providing a way of introducing delays to allow for synchronisation.

8.2.1 Derivation Laws.

The action-evolution of a. process can be derived from the operational rules pre-

sented in Figure 8-1. The temporal evolutions of wTCCS are derived using the

operational rules presented in Figure 8-2. The alternative set of rules presented

in Figure 8-3, give the temporal evolutions for sTCCS. The transition relations

between processes is the least set of transitions satisfying the set of action laws

plus the appropriate set of temporal laws.

Definition 8.2.1 We define the operator - on times as follows;

It 	
I

—t
,

wnent <t
tLt 	

O otherwise,

where - is the usual subtraction operator.

8.2.2 An Example.

In wTCCS the following process deadlocks,

(a.b.Nil I .[5]1Nil)\a, b.

The process has the following derivation,

(a.b.rtil I Id. [5]&nil)\a, b - (b.nil I [5]iinil)\a, b.

123 Chapter 8. Timing Concurrent Processes.

ACT:
Y.P -4 1-'

p

SUMO: 	___*pP' , 	 SUM1: 	-+
P+Q—*P 	 P+Q--+Q'

P-±–,P 	 _________
COMO: 	

-- P' Q 	
COM1:

PIQ-PIQ'

A

COM2: 	
A ,

PIQ - P IQ
L 	-1

REL
P[S]lP'[S]

RES: 	P--P' 	z,7iL
P\L—*P\L

REC:
FIX{X=P;iEI}P

Figure 8-1: Operational rules for wTCCS and sTCCS

TIME: [t]P 	[tt']P

COM-TIME: P F' Q Q'
PIQ . !+P'IQ'

SUM-TIME: P+P' Q -+Q'
P+QP'+Q'

ACT-TIME: P 	P
[O]P -) P,

REL-TIME: P P
P[S]-!+P'[S]

RES-TIME: 	P P'
P\L P'\L

TRANS: ' 	
P,s+tP' P P -'-*P

INV:
PP

P P,{PIX} 	2
-'-4 	.

REC-TIME:
FIX3 {X=P1 ; iEI}-'+P'

Figure 8-2: Temporal rules for wTCCS

Chapter 8. Timing Concurrent Processes. 	 124

TIME:
	

for t >
(t)P 	(t—t')

TIME1: (1)P -It,* P

DELAY:
5P+ 6P

T1 1

UN-DELAY:
T)

t 	 S
TPAJc..

PP I PI +PII

L) 	
s+t 	,l P - .-+P

COM-TIME: P P' Q

PlQP'IQ'

SUM-TIME: P P Q
P+Q+P'+Q'

P t rI

REL-TIME: 	r .+ j
P[S]P'[S]

RES-TIME: P P
P\LP'\L

P.
REC-TIME: 	P{ I} 	.7

FIX{X=P; iEI}P'

Figure 8-3: Temporal rules for sTCCS

Chapter 8. Timing Concurrent Processes. 	 125

LI 	 ii

EXT-DELAY-1: 	 EXT-DELAY-2: Q-...+Q
1-

11 PIQFIQ'

Figure 8-4: Delay Rules (DR).

In the parallel composition above, the right hand process now requires a period

of time of length at least 5 to pass before it will undergo any further activity; the

left hand process requires a matching b action to proceed but will not delay. No

further action is therefore possible.

So actions not separated by delays must be performed sequentially and imme-

diately in time; failure to do so leads to a deadlock.

This would seem to imply that it would be useful to add temporal evolution

laws as in figure 8-4.

Proposition 8.2.2 Let P be a process in wTCCS in which all actions are guarded

by time actions, and all Nil processes are guarded by [0]. Then P has exactly the

same evolutions in wTCCS + DR.

Proof: Since all actions are guarded by time prefixes, we never reach a

state where we must infer (by ACT alone) that P -+ P'. In other words for

all processes P we can always infer P P' for t' larger than some arbitrary

t, thus we can never reach a state where in a parallel composition P I Q,

either P or Q can only evolve through an action, therefore we can infer any

evolution that we could infer with the addition of the rules DR.

Notation: we will use the abbreviation Pt to represent the t evolution of the

process P i.e P P', whenever it is inconvenient to introduce a new process name

for all the timed intermediates of a process.

8.2.3 Temporal Deadlock.

The Nil or deadlocked process is one which is capable of no action. There is an

equivalent temporal process which can always permit the passage of time, but

Chapter 8. Timing Concurrent Processes. 	 126

never produces an action. The following are the simplest definitions for both

wTCCS and sTCCS respectively:

[O]Nil,

6Nil.

There are, however, an infinite variety of processes which are equivalent to this

temporal nil. For any P in wTCCS and Q in sTCCS, the following processes are

equivalent to the temporal nil:

[O][1]P,

since in neither case can we infer a direct action, and so we cannot remove the

leading [0] or the 6 operators.

8.2.4 Deadlock.

In sTCCS the Nil process acts like a deadlock [Ber] with respect to the continuing

temporal evolution of the system. If we examine the derivation laws COM -

TIME and SUM - TIME, we observe that the following are true for any non-

zero t.

Nil + (t)P has the same derivatives as Nil

Nil I (t)P has the same derivatives as Nil

Thus once we have an unguarded Nil process in any leading binary term all

further temporal evolution is blocked. Any composite process is stopped imme-

diately, the process cannot evolve further in time. We can use this property to

compare the initial time behaviour of any processes.

Definition 8.2.3 Given any equivalence [order] we can construct the time pre-fix

equivalence [order] simply by composing in parallel both processes we wish to show

equivalent[related] with the process (2) Nil.

Chapter 8. Timing Concurrent Processes. 	 127

This is motivated from the proceeding observation. After a period of time i

has passed the processes (t)Nil I P and (t)Nil I Q become equivalent to Nil; until

t has passed they exhibit all the possible behaviour of the respective processes

within that period.

8.3 Strong Time Sensitive Pre-order.

It is possible, much as for CCS, to produce two different basic notions of equiv-

alence (strong and weak), which are based on orders with respect to time. The

first requires that the time taken after any action be matched directly by the time

taken after a similar action in the other process, not that the total time taken to

go from one state to another via an action is greater.

Definition 8.3.1 (Strong pre-order) We will say that P is faster than Q if there

exists a relation R with (P, Q) € R if for all /1 E Act and for all times t;

if P - F' then there exists Q' such that Q - Q' and (P', Q') E R,

if P - F' then there exists Q', t' such that Q -* Q' and (F', Q') E R and t' > t,

if Q -* Q' then there exists F' such that F - F' and (F', Q') E R,

j. if Q --* Q' then there exists P', t' such that P-* F' and (P',Q') E R and t' < t.

The relation R is called s strong pre-order.

Proposition 8.3.2 If R, R' and R 2 for i E I are all strong pre-orders then so

are;

Ide ,

RR',

U2€ 1 R1.

Chapter 8. Timing Concurrent Processes. 	 128

Proof:

Parts 1 and 3 are obvious so we will prove part 2.

Given P RR' Q then there exists S such that P R S and S R' Q. Since R

and R' are both strong pre-orders from the definition.

/.L 	I 	 U 	I 	 I 	I

	

If P —")I P ' then there exists S such that S -+ S' 	P R S. Similarly

	

_ 	 -

from the second equivalence there is a Q
I such that Q

-1t
p Q

I
and S

I R/ Q/.

Thus for P
-2

PI then there exists Q
I such that Q -

1.6 Q/ and PI RR I
 Q

I
.

t 	I 	 I 	 I 	 i i 	/ 	 / 	I

If P -s-p p then there exists S and t such that S -'-+ S with P R S and

t' > t. Similarly from the second equivalence there is a Q' and t" such that

I 	 I 	I 	I 	 II 	F

Q -QwithSRQandt >t.

Thus for P -* P' then there exists Q' and t 11 such that Q -+ Q' with

P' RR' Q' and t"4' > t.

	

The symmetric cases can be proved similarly. 	 0

Definition 8.3.3 A functional T on binary relations R C P x P such that

(P, Q) E T(R) if for all p E Act and for all time I:

1. if P -1.+ P I then there exists Q
I such that Q __'+

M* Q I and (PI ,Q) eR,

?. if P 	P' then there exists Q', t' such that Q -'-+ Q' and (P', Q') E R and t' > t,

if Q p Q
I then there exists P I such that P -iip PI and (P', Q' --'

)
ER,

if Q-+ Q' then there exists P', t' such that P--* P' and (P',Q') ER and t' < t.

Proposition 8.3.4

. T is monotonic,

. R is a strong pre-order if R ç 1(R).

Proof: both parts directly from the definition of .1.

Chapter 8. Timing Concurrent Processes. 	 129

Definition 8.3.5 Call > 	{ UR I R is a strong pre -order }

Proposition 8.3.6 > is the largest strong pre-order.

Proposition 8.3.7 > is the maximal fixed point of F.

Proof: > is a strong pre-order hence > F(~:),

F is monotonic thus .F(~!) C

(In other words F(~!) is a pre-fixed point of F.)

but > contains all pre-fixed points of F hence F(~:) 	 El

Proposition 8.3.8 Strong Pre - Order is substitutive with respect to the finite op-

erators of wTCCS. Thus for P > Q the following hold;

[t]P > [t]Q,

/1.P > .Q,

P+E>Q+E,

• PIE>QIE,

P\L > Q\L,

P[S] ~! Q[S].

Proof. (following [Mi16], Proposition 5.17)

Most of the cases are self-evident so we shall provide a proof of one as an

example. We shall show that given P > Q then P I E > Q I E. We will

show that the relation T = {(P I E, Q I E) I P > Q} is a strong pre-order.

Consider firstly the action evolutions of P I E so if P I E - R then there

are three cases;

Chapter 8. Timing Concurrent Processes. 	 130

p
R PI 	 p E then P -p PI and from the definition Q - Q with

P'>Q'so QlE---*Q'IE with (P'IE,Q'jE)ET.

RPIE' then QIE — _*QIE'with(PIE',QIE')ET.

P) 3. R 	P/ E I 	 i and p = r; then there s a p such that P -* PI

and E -- E' so Q -- Q' with P' > Q' therefore we can infer

Q I E 	Q" I E' and (P' J E',Q' I E') E T.

The time evolutions are much simpler since we know that if P I E -+ R

then R F' I E' where P + F' and E E' thus there exists Q' and j ' > j

such that Q I E 	Q' I E" with P' I E' > Q' I E", since from E --* E' we

can infer E -"+ 	with E' E" from the time evolution rule plus the rule

INV.

Unfortunately this pre-order is not substitutive in sTCCS, for consider the

following processes;

P = (5)a Q = (7)a E = (6)b,

R = P I E and S = Q I E.

Clearly P > Q but there does not exists a t > 5 such that S -t-'+ 5' with

a 1 (1) b > 5', since we can never reach an 8' which can perform an a action

without performing a b action first. A similar lack of congruence can be observed

with respect to the non-determinism operator.

Strong pre-order is not substitutive with respect to sTCCS, owing to the intro-

duction of causality via timing information. In the system sTCCS the following

two processes are equivalent,

(5)a I (7)b and (5)a.(2)b.

The process on the left has the causality introduced implicitly by timing, while

the other process has the causality explicitly introduced by action-prefix. Any

Chapter 8. Timing Concurrent Processes.
	 131

interleaving 'faster than' relation will not preserve timing causality, but will pre-

serve structural causality. Thus to obtain a notion of 'faster than' that will be an

order for sTCCS, we shall need to distinguish between the explicit introduction of

causality through structure and the implicit causality introduced by timing.

We will not proceed with further study of the strong pre-order. Since we regard

the system sTCCS as the more fundamental we will instead attempt to find an

equivalence relation which is substitutive for that system.

8.4 An Equality for sTCCS.

Definition 8.4.1 Processes P and Q are time-equivalent if there exists a rela-

tionship R between P and Q such that for all u E Act and for all times t;

if P -* P' then there exists Q' such that Q - Q' and (P', Q') eR,

if P -'!* P' then there exists Q' such that Q - Q' and (P', Q') E R,

if Q - Q' then there exists P' such that P --'+ P' and (P', Q') e R,

j. if Q -L Q' then there exists F' such that P -'-* F' and (P', Q') E R,

the relation R is called a time-equivalence.

Proposition 8.4.2 If 5, 8' and Si for all i E I, are time-equivalences; then the

following are also time-equivalences;

Ide ,

SS',

1

. UIEISI.

Chapter 8. Timing Concurrent Processes.
	 132

Proof: A trivial extension to the proof of proposition 8.3.2

Definition 8.4.3 	U{S I S is a time-equivalence}

Proposition 8.4.4

T is a time-equivalence,

is the largest time-equivalence.

Proof:

directly from the above proposition.

immediately from the definition of —T-

Definition 8.4.5 T is a time-equivalence up to 	whenever T T ''T is a time-

equivalence.

Proposition 8.4.6 If T is a time-equivalence up to 	then T cT.

Proof: for (P, Q) e T we have P .'T PTQ ''T Q and thus P 	T dT Q.

The usual functional defintion in the style of [Par] can be used to demonstrate

time equivalence correct; as the details are precisely those of the earlier definition

and proof we omit them.

Proposition 8.4.7 Time-equivalence is substitutive for the finite operators of

sTCCS. In other words, given P 'sT Q then;

i.P 'T

(t)P T (t)Q,

3 	T SQ,

Chapter 8. Timing Concurrent Processes. 	 133

. P+E-.T Q+E,

PIETQIE,

P\L "IT Q\L,

P[S] 'T Q[S}.

In order to prove the above we need to demonstrate that appropriate bisimula-

tions can be found. The detail has been presented earlier and is therefore omitted.

Definition 8.4.8 Let E and F be two expressions, with free variables X. Then

we will say that E T F if for all vectors of processes P

E[P/X] T F[P/XI

Proposition 8.4.9 given E 'T F then FixE '.T FixF.

Proof: consider only a single pair of equations:

A E[A/X] and B F[B/X]

with E 'T F. We will show that the relation

{(G[A/X], G[B/X]) I C contains at most X free } is a time-equivalence up

to T• We proceed by induction over the depth of inference by which ei-

ther ther G[A/X] -* P I or C[A/X] -'--* P I, is inferred. Then we continue by

case analysis over the structure of C. The resulting proof mirrors that of

[Mill,Mi16]; but we have to perform each case both for action and tempo-

ral evolutions. For example consider the case for the parallel composition

operator. Suppose G G 1 I G2 then

• if C1 [A/X] -±- G'1 [A/X] then G[A/X] --* G'1 [A/X] I G2 [A/X] but

from the inductive assumption C1 [AIX] ''T C1 [B/X] as there actions

are derived by a shorter inference; as we can then immediately obtain

the desired result.

Chapter 8. Timing Concurrent Processes. 	 134

• Similarly for G2[A/X} ±-* G'2 [A/X].

• if G1 [A/Xj I G2 [A/X} --* G'JA/XJ I G'2 [A/XJ then there is a .\ such

that

G 1 [A/X] --- A-+ P and G2 [A/X] --- P2 -

So from the inductive assumption we can find:

G1 [B/X] :L Q 1
1 and G2 [B/X} 	Q

with P1 'T TT Q and ' TT T

Take F' =P1' P and Q' Q'1 Q'2 then F2 = H[A/X] for some

H and similarly Q. = H2 [B/X]. But (F, Q1) ET T 'T so letting

H = H1 I H2 we have (P', Q') (H[A/X], H[B/X]) e T and hence

G[A/X] -- P' and G[B/X] —1- p Q'
with (F', Q') E T.

• G1 [A/X] I G2 [B/X] -+ P' I Q' this is the same as the above case but

with time actions replacing the normal actions.

The other structural cases follow the same pattern.

8.5 Temporal Structure independence

We wish to equate processes where performing the same action costs the same

amount of time. Whilst the strong equivalence appears to do this, it is only natural

if we assume that all of the time cost of an event is located either immediately

before it or immediately after it, not if it has a cost distributed either side of it.

Consider the following two processes;

P 	(1)a.(5)R,

Q 	(3)a.(3)R,

where R is an arbitary process. If we take the time actions above as the cost of

performing the a action in both cases, then these processes should be considered

equivalent in that sense, but they are certainly not equivalent in the strong sense.

Chapter 8. Timing Concurrent Processes. 	 135

Essentially we wish to identify processes where we can find time slices between

which they are always capable of the same computation, but not necessarily at

precisely the same time. We would like to base this notion of equivalence on an

order. We start by abstracting actions to remove the precise location with respect

to time and replace it with a notion of associated cost in time.

Proposition 8.5.1 Let P be a process in wTCCS, or sTCCS over a dense time

(ze, the reals or the rationals). If --'+
L
~ PI then there exists P I, such that P

tl
P

II

and P" -t,2* F', with t1 + t2 = t.

Proof: Immediate from the nature of the TIME rule in both the case of

sTCCS and wTCCS.

Definition 8.5.2 For any process P, P—iL Q if one of the following holds

1. there exists F' and F" such that

P -.i* P',

P' 114 P",

P"Q,

t = t 1 + t2 .

2. There exists P' such that:

(a) P - P',

(b)P'-4Q.

3. There exists F' such that:

(a) P -; P',

(b)P'Q-

4. Failing the above.

Chapter 8. Timing Concurrent Processes. 	 136

P --*Q,

t = 0.

Now we can define a temporal simulation. The evolution defined above is an

abstraction from the underlying timed system; a similar method is used in [Smo].

Definition 8.5.3 We will say P is faster than Q if there exists a relation T,

called a Temporal Simulation, such that for all tt E Act and for all times t;

if P—L P' then there exists Q',t' such that Q-4 Q' and (F', Q') T with

if Q-L Q' then there exists F', t' such that P—r P' and (F', Q') T with

t'<t.

Unfortunately, owing to the different nature of TCCS[Tof] and both sTCCS

and wTCCS this is not the same as the form of temporal simulation as defined

in [Tof]. However it does have the property of equating the processes P and Q

defined earlier.

Proposition 8.5.4 If T, T' and I, for all i E I, are temporal simulations then

the following are all temporal simulations;

Ide ,

TT',

U EITI .

Definition 8.5.5 >T = U{T I T is a temporal simulation}.

Proposition 8.5.6

Chapter 8. Timing Concurrent Processes. 	 137

> T is a temporal simulation,

• > T is the largest temporal simulation.

Once again the above can be demonstrated correct by a functional definition

in the style of [Par].

Proposition 8.5.7 If P >-T Q then for finite wTCCS processes P and Q then;

• [t]P >-T [t']Q with t' > t,

• P+E>TQ+E,

• PIE>—TQIE,

• P[S] ~!T Q[S],

• P\L>TQ\L.

Unfortunately the problems with implicit causality prevent this order being

substitutive for sTCCS. We do not include a proof of the above proposition since

it is in essence identical to that given earlier.

8.6 Equational Characterisation of sTCCS.

Consider the following equations.

Given P 'T Q and t 	then the following equations are true of T:

1. Action Prefix;

1a.P =

(t)P = (t)Q,

(t 1)(t2)P = (t 1 + t2)P,

Chapter 8. Timing Concurrent Processes. 	 138

(d) 5P = 5Q,

2. Non-determinism;

P+P=P,

P + 5Nil = F,

(t)P + Nil = Nil,

P+R=R+P,

(t 1)P + (t2)Q = (t 1)(P + (t2 - t 1)Q),

(t)P + (t)Q = (t)(P + Q),

P+(R+S)=(P+R)+S,

(t 1)5P + (t2)bp = (t1)6P,

5a.P + a.P = a.P,

5P+6R=8(P+R),

(t 1)a.P + (t2)R = (t1)a.P,

(1) a.P + 5R + (t)S = a.P + 5R,

3. Composition;

P I SNil = F,

(t)P I Nil = Nil,

PIR=RIF,

PI(RIS)=(PIR)IS,

(t1)P I (t2)Q = (1)(P I (t2 -

(t)P I (t)Q = (t)(P I

4. Restriction;

a.P\L = Nil if a, Id E L,

a.(P\L) = (a.P)\L if a,

Chapter 8. Timing Concurrent Processes. 	 139

(t)(P\L) = ((t)P)\L,

6(P\L) = (5P)\L,

P = P\L if for all aE £(P) a 0 L,

P\L 1 \L 2 = P\L1 U L 2 ,

P\L + Q\L = (P + Q)\L,

(P\L) I Q = (P1 Q)\L, if for all aEL(Q) a, 	L,

We have not given rules for wTCCS since we cannot obtain the same structural

identities. But there is no manipulation possible of the temporal operators owing

to the property that processes of the form

[2][4]P

deadlock. In other words, in

R [2]a.P I [3]Q

if we tried to replace this process by the obvious,

S[2](a.PI[1]Q);

then this would temporally deadlock in the context S\a whereas R\a does not.

Since further passage of time will permit the process Q to evolve. In the strong

system however both the processes;

= (2)a.P I (3)Q and S' = (2)(a.P I (1)Q)

deadlock in the context \a. Thus it is possible to manipulate the time action

prefixes in the strong system. A similar property ensures that we cannot distribute

weak time over a non-deterministic pair of processes.

Most of the above equations come directly from CCS and from the natural

properties of time. The non-determinism equations come from the unwillingness

Chapter 8. Timing Concurrent Processes. 	 140

of a sTCCS process to delay when it can perform a normal action. As in, for

instance, equation 2.k where we are stating that the process will immediately

evolve either through the action prefix or by performing the delayed alternative

at once.

There is no general equation analogous to the expansion theorem, so this equa-

tional system is probably not complete. This results from the problems of intro-

ducing unintentional causality. We cannot yet give a simple normal form.

8.7 Observational Evolutions.

We can define the usual observational notions of evolution.

Definition 8.7.1 For s =yj . . . j.i, E Act* we say that, P- 2—P' if

P—- ... 	P' with t=t1 +...+t.

Definition 8.7.2 P=fe>-P' iffP—f- F' for some 	s

Time pressure means that we have not looked at the equivalence induced on

processes by this evolution, but we suspect that we will obtain results on wTCCS

which mirror those for CCS. However since we cannot yet provide a substitu-

tive order for sTCCS, we do not suspect that an order induced by observational

evolutions will be substitutive.

8.8 Process Logic For Timed CCS.

We introduce a simple extension of the process logic P, with a timed modal

operator. Since our space of times may be dense, it is not sufficient to add a

next operator which is interpreted as at the next instant the proposition holds.

A similar logic is presented in [Koy2J. The formulae of our logic are defined as

follows:

Chapter 8. Timing Concurrent Processes. 	 141

F::= AEI 	-IF j< a > F I {t}F.

Definition 8.8.1 The satisfaction relation between processes and formulae is de-

fined as follows; P =T F if:

• P=Tf\IEJF, iff for all iEI,P=TF,

• P HT -iF if P T F is false,

• P I=T< a> F if there exits P such that P -* P and F' =T F,

• P I=T {t}F if either

- there exists a, P' such that P - P' and P =T F,

- or there exists F', I' such that P -!.* F' with t' < t and F' I=T F.

The idea behind the time modality is that we can reach a place that can satisfy

the remainder of the formula in no more time than that given. So we are either

able to satisfy the remiander of the formula now, or can reach some future point

sufficiently rapidly were the remiander can be satisified. This avoids prolems with

0 time actions.

Proposition 8.8.2 If P I=T {t}F then for all t' > t, P l=r {t'}F.

Proof: Immediate from the definition of the operator {t}.

We believe it is possible to show that if two processes of sTCCS satisfy all the

same temporal formula to the same depth, then they are temporally equivalent up

to the same depth, by a proof essentially identical to that in [Mill]. Note: since

zero times are not permitted in sTCCS the first clause of the temporal modality

only applies to delays and these are matched over the equivalence.

To handle observational congruences we define an extended operator, for s E A*

and t E Times, [[s, t}], in the following way;

Chapter 8. Timing Concurrent Processes. 	 142

Definition 8.8.3 P = [[s,t]]F if there exists {t0 }[s 1]{t 1 }...[sJ{t} such that

P = {t0}[s1]{t1} ... [sJ{t}F and t 0 + t 1 + ... + t,,, < t.

Definition 8.8.4 The observational version of the modal operators, by using the

hat operator,

P HT [[,t]]TF if P 1T [[s,t]],F.

Note: we can add quantifiers and implications in the same manner as for PL.

8.9 Examples.

8.9.1 A Simple Timer.

Consider the example of the timed and the timer controlled actions presented in

[Tof]. We wish to produce a sequence of actions seperated by fixed times. In one

case we use internal timing, in the other we sperate the functions into a clock and

a producer.

Ea a.[t]Ea

Timer alarm.[t']Timer

E I alarrn.[t1]a.[O].E

Ra (Timer I E')\alarm

We consider the evolutions of the two systems with t 1 <t' and t2 = t' - t:

Ea
at _** Ea,

thus Ea $Ea ,
i t1 a t2

Ra -+-'-+-4-'--* Ra ,

thus RafrRa.

Chapter 8. Timing Concurrent Processes. 	 143

Note, these are minimum time paths.

It seems that the time of the process Ra is independent of the value of t j

provided it remains less than t'. Possibly we could achieve an analogous result to

that of weakness replacement [Tof]. The following example shows that in these

systems weakness replacement will hold only when processes behaviours are much

more constrained than the requirements of the original result.

Consider the following processes;

P =
Q =.[1O]Q,

E = b.[20]Nil,

R 1 =E

R 2 =EIIQ.

Even if P1 and Q1 are identical then R 1 will not be the same as R 2 . The

former can evolve to a state equivalent to F1 , twice as fast as the latter. Thus the

condition for the processes to be made identical by communicating with a slower

process must include repeated communication.

8.9.2 Action Available For a Period.

In the following process:

(5)öa.P + (7)a.P

the action a can be inferred at any time between 5 and 7, but it must have been

used by at latest 7 or the process will deadlock. This can be used to represent a

process that requires a certain time to start and is then only available for a limited

period.

Chapter 8. Timing Concurrent Processes. 	 144

8.10 Value Passing.

If we use the operators of CCS with values and either set of temporal operators

then we can derive a value passing calculus from our basic calculus in an identical

manner to that used for CCS. The translation was presented in chapter 1.

8.11 The Alternating Bit Protocol.

In his book [Mi16] Milner presents an implementation of the alternating bit protocol

in CCS, and demonstrates that the protocol is correct. Perforce this implementa-

tion ignores the exact temporal properties of the system and its components. We

extend the implementation in CCS to one in sTCCS, where we can take advantage

of the temporal properties of the system components. In this version some of the

system complexity can be reduced by exploiting the temporal information. An

alternating bit protocol realisation can be viewed as follows. (We let b stand for

the negation of the boolean value b.)

Chapter 8. Timing Concurrent Processes. 	 145

The process Ac will work in the following manner. After accepting a message,

it sends it with bit b along the channel Tns and waits, subsequently there are

three possibilities:

• it times out, and re-Transmits the message;

• it gets an acknowledgement b from the Ack line (correct transmission), so it

can now accept another message;

• it gets an acknowledgement (superfluous extra acknowledgement of earlier

message) which is ignored.

The replier Tm works in a dual manner. After a message is delivered it sends an

acknowledgement with bit b along the Ack line. There are then three possibilities:

• it times out, and re-transmits the acknowledgement;

• it gets a new message with bit b from the Tns line, which it delivers and

acknowledges with bit b;

• it gets a repetition of the old message with bit b which is ignored.

The channels in the implementation are identical and have the ability to du-

plicate or lose an arbitrary message, arbitrarily many times. For convenience we

ignore actual messages and concentrate on the value of the control bits.

We now give the definition of a timed version of the alternating bit protocol in

the following fashion. There are 4 fundamental times involved, the transmission

times on both channels and the re-try times in both senders.

Ac(b) = öack(b).Ac(b) + 5ack(b).Ac(b) +öacccpt.Sd(b)

Sd(b) send(b).Sd 1 (b) + 5ack(b).Sd(b) +5ack(b).Ac(b)

Sd 1 (b) = (trt)send(b).Sd i (b) +Sack(b).(t a)Sdi (b) +6ack(b).Ac(b)

Tm(b) = transrnit (b) .Tm(b) -i-öiransmit(b) .Tm(b) +deliver.Rp(b)

Chapter 8. Timing Concurrent Processes. 	 146

Rp(b) = reply(b).Rp 1 (b) +5transrnii(b).Rp(b) +6iransmit(b).Trn(b)

Rp 1 (b) = (t j).reply(b).Rp j (b) +Stransrnit(b)(t).Rpi (b) +6transmit(b).Tm(b)

Let s = s1 b2 s 2

Tns(b 1 s 1 b2 s2) = Ssend(b).Tns(bb1 s) +(t3)Transmit(bi).Tns(s) +5r.Tns(bi 1S2)

+6r.Tns(s)

Ack(b 1 s i b2 s 2) = Sreply(b).Ack(bb 1 s) +(t3)J(b).Ack(s) +Sr.Ack(b i s i s 2)

+6r.Ack(s)

With initial state (for some t < tfl),

Ab Ac(0) 11 Ack(0) 11 Tns(0) II Rpt(1)

A static flow diagram for the above is

We firstly impose the restriction that ta and t are less than i; this is sufficient

to ensure that the ack and transmit ports are always available to the transmission

channels. We impose the condition on the re-try rate that trt > 2t3 . This seems

reasonable as we cannot be sure that a transmission has failed until this period

of time has elapsed. The external environment is forced to take delivery as soon

as possible. This enables us to calculate the period of time between the reception

Chapter 8. Timing Concurrent Processes. 	 147

of an accept action, and the return of the process to a position where the next

transmission may be attempted.

From the constraint on re-tries we can observe that there is no path with a

time short enough to require that the transmission channel should contain more

than one data item at once. We redefine our channels as follows.

Ack = öreply(b).Ack(b)

Ack(b) = (t 3)J.Ack + 157- .Ack

Tns = 6send(b).Tns(b)

Tns(b) = (t3)transmit.Tns + 57-.Tns

With initial state,

Ab = Ac(0) I I Ack J I Tns I I Rp(1).

It should be noted that we have arranged that at no time is an immediate ack

or transmit action of either type impossible, apart for a period immediately after

the reception of such an action, and then the evolution is possible before any more

actions of that type can be produced by the channels. Thus we can use actions

with no delay guarding in the channels to force the evolution to proceed at certain

intervals.

Let us examine the evolution of the process Ab. (Note that we will not divide

time actions below the minimum to permit another physical evolution. We will

include a path only if two immediate evolutions lead eventually to the same state.

For clarity we will subscript the r actions with the initial letter of the original

action from which they where inferred. We will mark points at which genuine

divergence can take place with a number and the evolution will be reconsidered

from there later.)

Chapter 8. Timing Concurrent Processes.
	 1101

Ac(0) 11 Ack 11 Tns 11 Rpt (1)
accept

Sd(1) 11 Ack 11 Tns 11 Rp(1)

3 Sd(1) 11 Ack 11 Tns(1) II Rp(1)

-* Sd(1) Ack transrnitl.Tns Rp t (1) 	(1)

!* Sd(1) Ack Tns 11 Tm(0)
deliver

—* 	d(1) 11 Ack 11 Tns 11 Rp(0)

14 Sd(1) Ack(0) 11 Tns 11 Rp 1 (0)

-Sdt(1) II ackO.Ack 11 Tns 11 Rp(0) 	 (2)

14 Ac(1) 11 Ack 11 Tns 11 Rp(0)

This is the inversion of the initial state so their has been a correct transmission

in time 2t 3 ,
if there are no errors, as we would expect. We now consider the

evolution if there is an error on the first transmission (which we labelled (1) above)

some period of time 1, after the transmission was started. Note that i must be less

than or equal to our transmission time t.

Sd 1 (1) 11 Ack 11 Tns(1) II Rp(1)

-'+ Sd(1) 11 Ack 11 Tns Rp t (1)

irtf_t Sd" t (1) 11 Ack II Tns 11 Rp(1) 	 (*)

. Sdt'_t (1) Ack(1) 11 Tns 11 Rp1 (1)

- Sdj ackl.Ack 11 Tns 11 Rp(1)

There are now two possible evolution paths, one leading to the re-try as de-

sired the other requiring a further complete cycle before the re-try can even be

attempted. If the following alternative is chosen,

14 Sd1 (1) 11 Ack 11 Tns 11 Rj4(1)

irt, Sdi8 Ac/c Tns Rp(1)

This is the same as state (*) and thus has the same behaviour. Thus we have

an implementation of the protocol which has a non-linear response to error: after

Chapter 8. Timing Concurrent Processes.
	 149

one error we have a potential computation which will never correctly transmit.

This can be corrected by separating the activities of re-trying, and responding to

enquiries. The next version of the alternating-bit protocol is produced along these

lines, and has a linear response to errors.

Tmc(b) = c5ack(b).Trnc(b) + Sack(b).Tmc(b) +accept.7tart3 (b).Tms(b)

Tms(b) = i5ack(b).Trns(b) + Sack(b).stop,. Tmc(b)

Sends = Sstari3 (b) .send(b) .Send(b) + Sst op 3 . Sends

Send(b) = (t)send(b).Send(b) + Ssiop3 .Sends

Recc(b) = Stransrnit(b) .Recc(b) + Stransmit(b) Recc(b)

+deliver.start(b) .Recs(b)

Recs (b) = Stransmit(b) .Recs(b) + Stransrnit(b). stOp,.. Recc(b)

Reply = Sstart,.(b).reply(b).Replys(b) +Sstop,..Rcply

Replys = (t r)1'6ply(b) + Sstopr .Reply

With the restriction that t, t > 2t3 we can re-use our earlier channels and the

complete protocol's initial state is;

Tmc(0) II Sends 11 Tns 11 Ac/c 11 Recs(1) Ii Replyt(1).

A static flow diagram for the above is.

Sends" I 	(Tns 	 (Recs) 1cLetzver

Tm U 	 (Ack) 	 I(Reply

Chapter 8. Timing Concurrent Processes.
	 150

It is relatively easy to check that the time performance of this process is linearly

affected by the number of errors in transmission.

8.12 Conclusions.

We have presented a temporal model which is an extension of CCS. This system has

most of the properties we desire, excepting that we have so far not demonstrated

an order over processes. We believe that such an order may be obtained using the

techniques of [Cas]. The temporal behaviour of the systems sTCCS and wTCCS

has little effect on the operational behaviour derived from CCS, and we believe

that the methodology of separating action and temporal evolutions can successfully

extend any underlying operational reasoning system for computation actions.

Chapter 9

Timing Concurrent While Programs.

9.1 Introduction.

Often the reason for introducing parallelism into programs is that their sequential

version does not execute with sufficient speed. Since we are not interested in

fast programs that will not work, we should like to obtain a methodology within

which we can produce both time information and correctness proofs. In her thesis

[Niel Nielson presented methods for deducing the run time of sequential programs

using an extension of Hoare's logic. We will extend these methods to concurrent

programs, and demonstrate that the reasoning system we produce is sound with

respect to an interpretation over a timed semantics, which we will construct in

the timed calculus sTCCS presented in the last chapter. Throughout we will be

working with statements of total correctness and therefore some constructions will

not work for non-terminating program fragments.

9.2 Timed Semantics for CIMP.

We will put all the time/cost of a computation into the variable access. This is both

for simplicity, and from the expectation that most of the cost of a computation

is incurred in moving values to and from memory. Assuming that all variable

read/writes take the same unit amount of time, we translate variables as instances

of the following process:

151

Chapter 9. Timing Concurrent While Programs. 	 152

[iXc'] = Sax x.Sx.SNil

[iF(E1 ,. . . E,)r = ((E1 t.] result Spx.x..5Nil) I
(Sb 1 .[.iE2] result Spx.x.b 2 .8Nil)

(5b_ 1 .fiEc][r1r]) I
6r1 x 1 . . . Srx.5Nil

\{r1 ,. ..,r0 ,b1 ,. . ., b_1 }

Figure 9-1: Timed Expression evaluation for CIMP.

Loex = 8gx x.(1)Vx (x)

V(x) = 8x.(1)Vx (x) +6gx y.(1)Vx (y)

We will work with only a finite number of variables to allow the formation of

closures. We will say that a variable, X contains the value y when the process

representing it is in the state Vx(y).

Definition 9.2.1 The set L 1 = { ax,x.}.

9.2.1 Expression Translation.

The translation of expressions is given in figure 9-1. Unlike the earlier process

based semantics we have not assumed that we have an arbitrary number of pro-

cessing sites available to perform an expression evaluation. Thus the semantics

have been altered to limit ourselves to effectively one processing site for any eval-

uation. This will keep a more accurate account of how much computing resources

we are consuming.

Definition 9.2.2 The following derived operator of sTCCS is required for the

definition of expression evaluation,

B1 result B2 = (B1 I B2)\{r}.

Chapter 9. Timing Concurrent While Programs.
	 153

Er'] = [iEr] result (6rx.5xx.done)

[iC1 ;C2 c] = PC,d before [C2 t

[iIF E THEN C1 ELSE C 2r, = [Er'] result Srx.(if x thenEiCi else [C2])

[iWHILE E W C} =

W = [IED result örx.(if x then[iCc] before W else done) with W new.

[<iC1 PAR CA = [iC1 r>] par PC2 r

[iSKIPr'] = done

[iLET X := E IN C] = [Ei'] result ((6rx.S x x.done I Locx) before FiCt])\Lx

Figure 9-2: Command translation for CIMP.

9.2.2 Command Translation.

Definition 9.2.3 We need the following derived operators of sTCCS.

• done= d.SNil,

• B1 before 132 = (131 [b/d] I Sb.B 2)\{b} with b new,

• B 1 par 132 = (B1 [d1 1d] I B2[d2/d] I 8d1.5d2.5d.done)\{d1,d2}

The processes which represent commands are given in figure 9-2.

Proposition 9.2.4 If C is a terminating command, then [iC]>-Nil, with

composed only of r, read and write actions.

Proof: By structural induction over commands and induction over the

length of the action string s.

From the above for any terminating command C then [iCr =T [[sd, t]lTtrue

where t is any time and s is composed solely of read or write actions. This means

Chapter 9. Timing Concurrent While Programs. 	 154

that we have no time actions in our processes EiCr; so we shall work with closures

of commands.

Definition 9.2.5 The temporal closure of a command C written < C >T is the

following process;

<C >T= (get().x1xi ... ixx.done I PC] I Locx 1 I

I Locj I 8d.a 1 y i 5aj y,. ii().done)\ {d} U L 1 U . .. U L

Unfortunately we have added an overhead of 1 into the time taken for a com-

mand to execute. In the sense that if we examined how long the process [iCr'l took

to execute to completion in the presence of variables we would discover that it can

complete in 1 unit of time less than <C >T can.

Definition 9.2.6 Two commands C 1 and C2 are totally independent if

(7?(C1) U W(C 1)) n (R(C2) U W(C 2))) = 0

Definition 9.2.7 A program is totally independent if the only PAR commands

used in its construction are totally independent. We call this sub-language of

DCIMP, TIMP.

Definition 9.2.8 The time an expression or a terminating command C of TIMP

takes to execute, written dur(C), is defined recursively as follows, for any termi-

nating C.

• dur(X) = 1,

• dur(F(Ei ,. . . En)) = dur(E1) +... + dur(E),

• dur(SKIP) = 0,

• dur(X := E) = 1 + dur(E),

Chapter 9. Timing Concurrent While Programs. 	 155

• dur(Ci ; C2) = dur(C1) + dur(C2),

• dur(C1 PAR C 2) = max(dur(C1),dur(C2)) given C 1 and C2 are totally inde-

pendent,

• dur(IF E THEN C1 ELSE C 2)=dur(E)+ifE then dur(C1) else dur(C2),

• dur(WHILE E JX) C) =for some integer n 1 , n*(dttr(E)+dur(C))+dur(E),

• dur(LFJT X := E IN C) = dur(E) + dur(C) + 1.

We need that commands in a parallel composition are totally independent, to

guarantee the time taken when they execute in parallel. If they are not totally

independent, then they may attempt to simultaneously access the same variable,

at which point one of the components will have to wait for a period of time 1

to elapse. Then we shall be unsure of the performance of the composition. For

example consider

Y:=X PAR W:=X

this will take 2 time periods to execute, not the 1 which we would hope. Even

more unfortunately,

Z:=X+Y PAR W:=X+T

will take time 3 to execute, whilst

Z:=X+Y PAR W:=T+X

will only take time 2 to execute. In order to avoid this indeterminacy in the

execution time, we do not allow such programs. Furthermore we may conclude,

'since we are only dealing with terminating loops we must execute the body C an

integer number of times, and evaluate the expression one more time than that

Chapter 9. Timing Concurrent While Programs. 	 156

that if the programs are not totally independent, then they may not truly execute

in parallel with respect to time. We are only interested in performance we can

guarantee; in these cases we may or may not be able to execute in parallel and

hence we can make little accurate prediction of execution time.

Proposition 9.2.9 If C is a command in TIMP then

<C >TT [[get()i(),t]]Ttrue

with t = dur(C) + 1.

Proof: We proceed by induction over the structure of commands, relying

on the fact that there is a direct correspondence between the time that

[i C] takes to execute (in the presence of variables), and the time < C >T

takes to execute; as we have not provided a recursive definition of < C >T.

The analysis is straightforward and follows almost immediately from the

definition of the semantics of commands. We will prove three of the cases.

• Assignment, X := E;

<X:=E>=(get().x1 x 1 ... 	x.done I PX := Ei'] I
Locx 1 	I •.. I Locx 	I 8d.a 1 y 1

put(y).done)\{L x,,. .. , L}.

After the action get() has been performed, and all the assignments

made, there is a period of time of length 1 when no further activity

can take place, as each variable process is in a time guarded state.

The expression E is then evaluated. This takes a time dur(E), proved

by a trivial induction on the structure of E. After the assignment is

made there is a period of time 1 when all the variable values can not

be read, in order to construct the value vector as the variable X is

in a time guarded state. The action can only take place, after

at least period of time of length dur(E) + 1 has expired. Moreover

all the actions involved in the computation of E were silent actions.

Thus

Chapter 9. Timing Concurrent While Programs. 	 157

:= E >T[--T [[get()(),dur(X 	E) + 1]]Ttrue.

• Sequential composition; <C1 ; C2 >T is not expressed directly in terms

Of < C1 >T and < C2 >T so our result will not follow immediately

from the semantical construction. Let us assume that;

<C1 >TT [[get(i1)7(i1),dur(C1) + 1]]Ttrue and

<C2 >T=T [[get(i2)(g2), dur(C2) + 1]]Ttrue.

Both of these expressions were formed using [iC1 t'] and ciC2], as is

< C1 ; C2 >, and from their respective constructions we know that

C1 takes dur(C1) to execute in the presence of variables and that C2

takes dur(C2) to execute in similar circumstances. The construction

[iC1 ; C2 forces them to execute one after the other; and thus in the

presence of variables must take at least a period dur(C1) + dur(C2) to

execute. So we can deduce that

< C1 ; C2 >TT [[get() 	(y),dur(C1 ; C2) + 1]]TtTUC.

• Totally Independent Parallel composition; the argument is similar to

that for sequence. From the independence of the two commands we can

see that their mutual presence does not affect the time that each will

take to execute (as that is solely determined by variable access). Thus

if totally independent C1 and C2 take times t1 and t 2 respectively to

execute, with variables present, then (from construction) C1 PAR C 2

will take at least max(t 1 , 12) to execute. Hence

<C1 PAR C2 >ThT [[gei()(),dur(C1 PAR C 2) + 11JTtrue.

Chapter 9. Timing Concurrent While Programs. 	 158

9.3 Timed Hoare's Logic for TIMP.

We extend the triples of Hoare's logic with a predicate which records the time

taken to execute a command and the variables present in that command.

Definition 9.3.1 Given a predicate P then FV(P) is the set of variables occur-

ring free in P.

Definition 9.3.2 Given predicates P, Q over program variables and R over pro-

gram variables and time, we write

[P] C R [Qlfc

to mean that if the command C starts from a state where P holds then it termi-

nates, and for the state in which it terminates Q will hold. Moreover it will reach

that state in at most time given in R. This expression is well formed if;

• FV(P) c k,

• FV(Q)cX,

• FV(R)çXU{tirne},

• R(C)uW(C)cX.

Note, in the logical system of predicates we require one property of time for-

mulae which is that for t' > t,

R[t/tirne] = R[t'/time].

The following abbreviations are useful in presenting the proof system.

Definition 9.3.3 Given two time formulae R and R', the formula R ED B' is an

abbreviation for

Chapter 9. Timing Concurrent While Programs. 	 159

time 1 .3tirne2 .time= time1 + time2 A R[time 1 /time] AR'[tirne 1 /time]

Definition 9.3.4 Given a formula R and a pure formula Q. The formula QR is

an abbreviation for:

].Q[1X] A R[1X]

where X is the set of program variables in R and Q.

Definition 9.3.5 For any expression E, dur(E) is the predicate time = dur(E).

Definition 9.3.6 The predicate If(is the identity predicate on all the variables in

the set X.

We extend Nielson's proof system 7?. to 7?. given in figure 9-3 over the language

TIMP.

Definition 9.3.7 The expression [F] C: R [Qlfc is valid if

< C >24= P[/X]A [[get()(),t + 1]]Ttrue 	A R[./5(,t/time].

One of the effects of using closures is to greatly simplify the formula we need

to express validity over processes.

Proposition 9.3.8 The proof system R 11 is sound with respect to the notion of

validity given above.

Proof:

1. Assignment:

[P[E/X]] X := E : time = dur(X := E) [P],

Given P[E/X][i/k] holds, and from Proposition 9.2.9

<X := E >T [[get(),i(),t + lilT and

Chapter 9. Timing Concurrent While Programs. 	 160

Assignment: [P[E/X]] X:= E: time = dur(X := E)- [P]

Null: [P] SKIP: time = 0 [P]

[P] C1 : R 1 [SI,? [S] C2 : R 2 [Q],?
Sequence: 	[F] C1 ; C`2 : R 1 (SR 2)

[Q]

Alternation:
[P A E] C1 : R [Q],? [P A -'E] C2 : R [Q]g
[P] IF E THEN C1 ELS'E C 2 : R [Q],

Parallel:
[P1 } C 1 : R 1 A time = t 1 [Q1]g [P2] C2 : R2 A time = t 2 [Q2] X fl Y = 0

[P1 A F2] C1 PAR C 2 : R1 AR 2 A time = max(t 1 ,t 2) [Q1 A Q21u

[P A X = E] C: R [Q]1-, 	X FV(P) U FV(Q)
Let:

[P A (X = F)] LET X:= E IN C: R dur(E) [Q A (X = F)]

[P(z + 1) A E] C: R' [P(z) A Q']g{} 	P(0)

P(z) A -E A I = Q Q' . Q = Q

Iteration:
P(z)A-'EAdur(E) = R dur(E)EDREJ(Q'R') = R with z X.

[z.P(z)] WHILE E D9 C: R [Q]g

PI=P'[P']C:R'[Q']c. RR'Q'QYçX Consequence: 	 [P] C: R [Q]fc

Invariance: 	
[P] C: R [Q],?

[P] C: RAP[Q]

Figure 9-3: Timed proof system 7? for TIMP.

Chapter 9. Timing Concurrent While Programs. 	 161

ii i = S
I E otherwise.

and hence P[/k] holds. Furthermore t = dur(X := E) and thus

time = t = dur(X := E) holds.

Null:

[P] SKIP: time = 0 [P]fc

follows immediately.

Sequence:

[F] C1 : R 1 [S] k [S] C2 : R2 [Q]
[F] CI; C2 : 	(SR 2) [Q]fC

we wish to show that this preserves validity. So let us assume:

<C1 >TT P[1j1 1X]A [[get(1j1),7(i1),t1 + lllTtrue D S[i1 /T]A

R1[111/X,t1/time] and

<C2 >TT P[g2 /X]A [[9et(j2),(i2),t2 + 1]]Ttrue 	S[2 1]A

R1[172/X, t2 /time].

Unfortunately < C1 ; C2 >T is not expressed in terms of < C1 >T

and < C2 >T but in terms of [C1 ; C2r. However, as < C1 >T and

< C2 >T are expressed in terms of [iC1 i'] and PC2 d respectively we

can still proceed, by observing that:

Chapter 9. Timing Concurrent While Programs. 	 162

<C1 ,C2 >T=(get(x).gx1x1 ... x,x n .done

I [c:iC1 ;C2 r,} IL xi I .•• I Locx I
6d.a 1 y 1

(j).done)\{Lx1,. .. , L,,}

=(get().,x1 ... h.d0ne

I [iCc before [iC1

I LocK I ... I Locx I
5d.ax,yi. . . .

ii().done)\{Lx1,. .. ,L}

=(get().,x1 ...

([iC1 [b/d] I b.EiC2r])\{b}

Locx 1 I •.. I Locx I
8d.a 1 y 1 Say.

T).done)\{Lx1,. .. , Lx}
Now for a process to perform 	the variables Xi, . ,X N must

have values z 1 ,.. . ,z at the termination of that process. If we start

C1 with P holding of its input value vector, then it will output (i1)

with S holding of that vector of values. Thus at the point {iC 2 ']

performs b in the combined process; the processes Var1 ,. . . , Var, must

contain the values z 11 ,. . . , z.

Similarly after a process closure has performed the action get(), the

variable processes must have the values y,.... y, respectively. In the

composite process we start with P holding of the input values. We

know that, from the left hand premise, S holds of the values when

[iC1 r'] finishes (i.e performs the hidden action b). From the right hand

premise, if S holds of the input values of C2 , then Q will hold for the

values output upon termination of C1 ; C2 .

From Proposition 9.2.9

< C1 ; C2 >TI=T [[get()jii7(),dur(C1 ;C2) + 1 1ITtrue.

We have already identified a state where (SR 2) holds; and we know

(SR 2) holds, since the time taken by C 1 ; C2 is precisely the sum

Chapter 9. Timing Concurrent While Programs. 	 163

of the times for C1 and C2 separately; and that in the closure we get

a overhead of 1. So we can deduce that

< C; C2 >TI=T P[/]A [[gei(),(),t + lIlTtrue D S[/X]A

(R;S)[/X,t/time]

as required.

Alternation: by an argument essentially identical to sequence.

Parallel:

[P1] C1 : R 1 A time = t 1 [Q1] 	[P2 1 C2 : R2 A time = t2 [Q2] 	uy=ø

[P1 A P2] C1 PAR C 2 : R1 A 112 A time = max(i 1 , t 2) [Q1 A Q21u?

The proof that this inference rule preserves validity starts from similar

observations to those made in the proof of sequence (part 3 above).

<C1 PAR C 2 >T=(get(x).g1xl ... xx n one

I ECi PAR C 2 r']

I Locj. 1 I
... I LOC Xn

6d.ax ,y i

done)\{Lx1,.. . ,L X n I
=(get().1x1 ... ~!XnXll done

I [iC1 r par [iC2]

I Locx 1 I ... I Locx I

5d.ax1yi... .

Th(y).done)\{L x
Since the commands C1 and C2 are totally independent, we can observe

that given memory values which satisfy P1 A P2 the execution of [iC1 ']

(in the composition) will leave Q1 holding of the variables it accesses;

and the execution of [iC2 c'] will leave Q2 holding of the variables it

accesses. Thus when we come to perform the output ii() in the

above, Q1 A Q2 must hold of those values.

With respect to time; R 1 and R2 hold whenever P1 A P2 holds; because

they have no common variables and time = max(t 1 ,t2) holds since

(from Proposition 9.2.9),

<C1 PAR C2 >T=T [[get(y),Th(z),t + 1I1Ttrue

Chapter 9. Timing Concurrent While Programs. 	 164

with t = dur(Ci PAR C 2) = max(dur(C1),dur(C2)) as required.

Let: a simple extension of the proof of sequence suffices.

Iteration:

[P(z + 1) A El C : R' [P(z) A Q']gU{} P(0) = -SE

P(z)A-iEAI,=Q Q' .Q=Q

P(z)A-'EAdur(E) =R dur(E)REB(Q'R') =R
1z.P(z1 WHILE E LX) G: R ii 	

with z X.

We proceed by induction and shall show that; if P(z){k/z] holds for

some k with some set s of variable values then Q and R will hold of

the output values.

. n = 0 then P(0) holds and hence -E so we want to show that

<WHILE E 1X) C >T hT P(0)[/k1A

[[get(j1),l(),t + 1 11Ttrue D

S[/]A R[/X, t/tirnel
but in this case is precisely dur(E) and from P(0)A-iEAI 	Q

we have that Q[/X) holds; furthermore P(0) A -iE A dur(E) = R

implies that R[/X, t/tirne] holds.

• Assume that the rule is sound for P(z)[k/z] we shall prove it

sound for k + 1. Given P(k + 1) holds of the current values in

the variables. If -E holds we proceed as before and get soundness

trivially. So we assume that is not the case. From

[P(z+1)Ab]C: R'[P(z)AQj

we have at some point a collection of variable values where

P(z) A Q will hold. We know that state can be reached from the

initial state, in a time satisfying dur(E) R', but the inductive

hypothesis states

[P(k)] WHILE E LX) C: R [Q]fc

and the process [iWHILE E LO C] in this case is precisely

IF E THEN C; WHILE E LX) C ELSE SKIP.

From the proof of alternation this costs

dur(E) 	(RQ')

Chapter 9. Timing Concurrent While Programs. 	 165

but dur(E) @ 1?' (R' Q') = R from the assumptions thus

[P(k+1)] WHILE E JX) C:R[Q]g.

Consequence: follows immediately from logical considerations.

Invariance: as consequence.

9.4 Conclusions.

The process based semantics has been extended to include a notion of time and

thereby permit reasoning about exact complexity. We have demonstrated a proof

system for reasoning over this extended semantics. Unfortunately we do not yet

have a completeness proof for this system. If we were to add an AWAIT THEN

command and work with atomic assignments in the style of Owicki-Gries this

could probably be achieved.

The time in this semantics was defined by putting duration into the variable

access. We can choose many different notions of duration by placing the time

dependencies in other structures within the semantics. This requires that the

definition of function dur(C) must be changed but the rest of the proofs/ reasoning

system should remain unchanged.

Chapter 10

Conclusions and Further Work.

10.1 Conclusions.

Whilst we can define language syntax that admits general parallelism, we may not

obtain programs that are comprehensible, or genuinely execute in parallel. Our

study of the language CIMP has shown that an unconstrained parallel construct

allows the introduction of non-determinism. Although this is a useful technique

for modelling concurrency or giving specifications, it is a very unpleasant property

for a program to have. In programming terms we gain little from the presence of

non-determinism, and pay a considerable price in clarity.

The temporal properties of the execution of a program are harder to reason

about. But if we assume that physical limitations prevent us from accessing the

same memory location more than once within some arbitrary period of time, then

we can demonstrate that in general programs will not execute in parallel: they

become sequentialised by the exclusions caused by variable accesses. These ef-

fects jointly lead us to conclude that, to program effectively in a shared variable

language like CIMP, we must work with some restricted form of parallel compo-

sition which avoids the problems of non-determinism and sequentialisation. This

restricted language we called TIMP.

The restriction applied to the parallel construction is syntactic, therefore it

can be implemented simply within any compiler/interpreter as an extra syntacti-

cal requirement on the language for parallel commands to be well formed. To the

programmer these restrictions may seem to complicate the task of program con-

struction, (We have a constructor that does not admit all well formed commands

166

Chapter 10. Conclusions and Further Work. 	 167

as arguments, and this generally leads to an increase in syntactical mistakes by

programmers), but the resulting determinism will greatly simplify program cor-

rection.

The use of the independence condition as a programming discipline is not par-

ticularly onerous, and is in fact a property that programmers are aware of as they

are producing concurrent programs. The author knows of no programming appli-

cation of internal non-determinism, i.e. the undirected choice of a computation

path that will change the outcome of the program execution. So restricting to

a deterministic concurrent programming language retains all the properties we

desire.

Deterministic programs are easy to understand. It is hard for a programmer to

detect all the possible execution paths of a concurrent program when it is written.

Moreover since the execution of a program is implementation dependent, a non-

deterministic program may execute correctly under one implementation, whilst

executing incorrectly under another. The respective implementations may always

choose different execution paths for the same concurrent commands. However, a

deterministic program will retain correctness when moved between correct imple-

mentations of the underlying programming language. Determinism in concurrent

programming is very similar to side effect freedom in sequential programming.

The semantics of deterministic programs are straightforward. The complexity

of the semantics of general concurrent programs is a direct result of the presence

of non-determinism it is not a result of the attempt to compute concurrently. In

the absence of non-determinism programs have a simple functional nature and are

therefore much easier to comprehend.

The knowledge that a program is deterministic greatly simplifies the task of

proving that it has certain behaviours. The determinism condition has also been

shown to be closely related to a very simple discipline for the construction of

correct concurrent programs.

We can translate sequential programs into deterministic concurrent programs

without affecting program behaviour. As almost all programs have been and are

Chapter 10. Conclusions and Further Work. 	 168

still written for sequential execution, without some automatic methods for the

transformation of sequential programs into concurrent programs the availability

of concurrent, and hence fast, programs will be limited.

The calculus sTCCS, could prove the basis for the exploration of the effects

of temporal knowledge on the derivable behaviours of concurrent processes. For

a sequential process the order of events is all that is important; in a concurrent

system the order relative to time is important. Consider for example the following;

((4)a.P I (6)b.Q I 6.8.6)\{a, b}

which can evolve to (P I Q)\{a, b} whilst,

((4)a.P I (2)b.Q I 655)\{a,b}

cannot evolve at all after a time 2 has passed. Yet all that was altered between

the two processes was the relative time at which the actions a and b can occur;

we introduced no other dependency between them. The study of such properties

of timed processes should prove rich.

10.2 Further Work.

10.2.1 Expressive Confluent Operators.

We have a collection of confluence preserving operators, but we cannot yet show

that every confluent process can be constructed from either the confluent operators

or the semi-confluent operators. The notion of primality [Mol] can be used to

produce a structure preserving normal form for CCS processes. We can show

that the primes forming the decomposition for any finite CCS process from a

derivation closed class of processes are also in that class. To show that a set of

operators is expressive for that class, we have to demonstrate that all the primes

of that class are constructible using the operators, and that there is a parallel

composition equivalent to general parallel composition for that class of processes.

Chapter 10. Conclusions and Further Work. 	 169

In the case of confluence, the confluent operators can build any confluent prime,

but the confluent parallel composition has not been demonstrated general enough.

10.2.2 Extending the Language CIMP.

For practical programming purposes the language CIMP is far too restrictive. We

should like to extend it towards a more practical programming language, and

obtain results similar to those of this thesis in the presence of the extensions. The

natural extensions are.

Input and Output: these additions should not prove too difficult and will

probably admit a simple syntactic determinism condition.

Arrays and Loops: as loops are a restricted class of WHILE 	D9 com-

mands their addition should not prove problematic. We can define processes

to represent arrays in the same manner as variables, but a syntactic condition

to ensure determinacy on arrays will prove far too restrictive. Many programs

(especially on vector processing systems) can be organised to only access dis-

joint parts of an array in each of the separate parallel components. To take

account of such methods either we must require that the program should be

re-written, or we must use a semantical definition of determinism.

Procedures and Functions: Milner [Mill ,Mi16] has produced process represen-

tations of such constructs, but we have not yet studied the effect of their

presence on determinism and other properties of programs.

It may also be possible to duplicate the work on CIMP simply, for a simple channel

based language. Unfortunately similar work [Zwi] on such languages suggests that

any determinism condition which is effective will be semantical in nature.

10.2.3 An Order for sTCCS.

In [Cas] a non-interleaving approach to CCS is presented. This is achieved by

recording in the evolution of a process not only the new state and the action

Chapter 10. Conclusions and Further Work. 	 170

leading to it, but also what part of a process evolved to produce the new state.

Derivations of the following style are used;

P --*<P',P">

PIQ_ -*< P',P"IQ>

and a (distributed) bisimulation defined over such evolutions. The application

of the above technique may enable us to obtain a substitutive order for sTCCS

processes. The need for such an order is clear; where timing is concerned we

usually wish to show that a solution can execute with greater rapidity than a

specification requires.

The production of such an order will permit the study of a much greater range

of examples, and in particular, should enable a reasonable notion of observational

timed order to be defined. There are many time critical systems in existence. The

study and evaluation of such systems may lead to greater ease of construction and,

perhaps, a greater degree of reliability and predictability.

10.2.4 Adding Probabilities to sTCCS.

In [Smo] a probabilistic extension to the calculus SCCS is presented. A similar

extension to sTCCS may enable us to consider temporal, probabilistic and com-

putational behaviour simultaneously. Such a calculus should have the expressive

power to represent any quantum mechanical system with a finite number of eigen-

states. The notion of communication which underlies CCS is very similar to the

notion of measurement which underlies quantum mechanics, since communication

fixes a state much in the same manner as measurement. This implies that a suf-

ficiently expressive version of CCS may prove a useful calculus for the study of

quantum systems.

10.2.5 Automatic Transformation Tools.

The conditions we required to be able to transform a sequential command into a

parallel command within CIMP, are simple enough to admit automatic execution.

Chapter 10. Conclusions and Further Work. 	 171

It is not yet clear whether this will remain so when the language CIMP is extended

to a more useful programming language. It should however be, possible to auto-

mate some of the task of identifying which components can execute in parallel,

without affecting program behaviour, and hopefully checking the correctness of

such constructions should always be possible. Such a tool could greatly simplify

the production of concurrent programs.

10.2.6 General Transformation to Parallelism.

We should like to obtain conditions that a transformation of a pair of sequential

commands to a parallel command is correct, within any fully abstract semantics

over a concurrent programming language. In other words, (since the semantics is

fully abstract) if = C']1 then we can replace C by C' in any context so, what

condition do we require on C1 and C2 such that,

IC1 ; C21 = C1 PAR C 2 .

Given that within the semantics assignment is atomic then the condition that;

C1 ;C2I = M; C1

is sufficient to ensure that the replacement of the sequential commands by a parallel

command is valid. Unfortunately for a fully interleaving model this condition does

not suffice; consider,

X:=X+1 ;X:=X+1

this is order independent, when executed sequentially, but is non-deterministic

when executed in parallel. It may be the case that the conditions

• ftC 1 ;C2]J = 11C2 ; C1 1 and

• W(C 1) n W(C 2) = 0,

Chapter 10. Conclusions and Further Work. 	 172

suffice, but this has not yet been proved.

The production of a general semantical condition is challenging, but it is the

condition we would ultimately hope to have.

10.2.7 Expression Evaluation.

Most of the execution time of an imperative program is taken in evaluating ex-

pressions. Perhaps a fruitful approach to increasing the efficiency of concurrent

programs is to attempt to distribute expression evaluation efficiently. In the se-

mantics of CIMP presented in this thesis, we assumed in one case an arbitrary

number of processing sites, and in the other we used 2. A study of efficient ex-

pression evaluation on an arbitrary fixed number of processing sites may lead to a

simple method of automating some concurrency in imperative programs.

10.2.8 Functional Programming.

A natural extension of the work done so far, and an attempt to solve the problem

stated above, is to examine the execution of functional programs in a concurrent

manner. Simple functional programming languages are deterministic, even when

executed in parallel; languages like ML [Har] will not be. A study of determinism

and efficiency for concurrent functional programming languages with references

and higher order types should be, in many respects, more useful than similar re-

sults on imperative languages. The abstraction of functional programming, allows

the implementor to hide all the complexity of concurrency, whilst allowing the

programmer to concentrate on obtaining a correct programming solution.

Chapter 11

Bibliography.

[Ada] The programming language Ada reference manual, LNCS 106, 1981.

[Apt] K. Apt, Ten Years of Hare's Logic: A Survey, ACM Transactions on Pro-

gramming Languages and Systems, Vol. 3, No. 4, October 1981, pp 431-483.

[Bak] J. de Bakker and J. Zucker, Processes and the Denotatiotal Semantics of Con-

currency, Infomation and Control, 54 pp 70-120, 1982.

[Ber] J. A. Bergestra, J. W. Kiop, Algebra of Communicating Processes with Ab-

straction, Theoretical Computer Science, Volume 37, No 1, 1985.

[Car] L. Cardelli, Real Time Agents, Proc. 9th ICALP LNCS 140.

[Cas] I. Castellani and M. Hennessey, Distributed Bisimulation, Report Sussex Uni-

versity 5/87, July 1987.

[Cha] K. M. Chandy and J. Misra, Parallel Program Design, Mcgraw Hill, 1988.

[Chu] A. Church A. and J. B. Rosser, Some properties of conversion, Trans AMS 39

1936 pp 472-482.

[Coo] S. A. Cook, Soundness and completeness of an axiom system for program

verification, SIAM J. Computing 7, pp 70-90, 1978.

173

Chapter 11. Bibliography. 	 174

[Dar] J. Darlington, Program Transformation: an Introduction and Survey, Com-

puter Bulletin, 22-24, 1979.

[Dir] P.A.M. Dirac, Principles of Quantum Mechanics, 4 th. Edition Oxford 1958.

[For] Vs FORTRAN version 2, programming guide release 2, order no SC26-4222-2,

1987

[Hal] B. Hailpern, Temporal Logic, Springer LNCS 129.

[Har] R. Harper, Introduction to Standard ML, LFCS-86-14, University of Edin-

burgh.

[Hart] A. C. Hartman, A Concurrent Pascal Compiler for Minicomputers, Springer-

Verlag, 1977.

[Heni] M. Hennessey and G. D. Plotkin, Full Abstraction for Simple Parallel Pro-

gramming Language, LNCS 74, 1979, pp 108-120.

[Hen2] M. Hennessey, Algebraic theory of Processes, M.I.T. press 1988.

[Hoal] A. Hoare, Communicating Sequential Processes, Prentice Hall '85.

[Hoa2] A. Hoare, An axiomatic basis for computer programming, Comm. Acm 12

1969 pp 576-580, 583.

[Hue] C.Huet, Confluent reductions; abstract properties and applications to term

rewriting systems. JACM 27 80 pp 797-821.

[Jon] C.B. Jones, Specification and Design of (Parallel) Programs, Proc. IFIP 9th

World Computer Congress, North Holland, Pages 321-332, 1983.

[Jef] A. Jeffrey, Synchronous CSP, Oxford University, to appear.

[Koyl] R. Koymans, J. Vytopil, W.P. de Roever, Real-Time and Asynchronous Mes-

sage Passing, Technical Report, RUU-CS-83-9, University of Eindhoven,1983.

Chapter 11. Bibliography. 	 175

[Koy2] R. Koymans, Specifying Message Passing and Real-Time Systems with Real-

Time Temporal Logic, Technical report, University of Eindhoven, 1987.

[Mill] R. Milner, A Calculus of Communicating Systems, Springer LNCS vol 92.

R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Sci-

ence 25(3), pp 267-310, 1983.

R. Milner, A Calculus For Concurrency, To appear in the Handbook of Theo-

retical Computer Science.

R. Milner, Personal communication.

R. Milner, Interpreting One Concurrent Calculus in Another,

[M116] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[Mol] F. Moller, Axioms for Concurrency, PhD. Thesis 1989, University of Edinburgh.

[Niel H. Nielson, Hoare Logic's for Run Time Analysis of Programs, Thesis Edin-

burgh University '84.

[0cc] The Occam language reference manual Prentice Hall, 1984.

[Owi] S. Owicki and D. Gries, An Axiomatic Proof Technique for Parallel programs

I, Acta Informatica 6:1, Pages 319-340, 1976.

[Par] D. Park, Concurrency and Automata on infinite sequences, Springer LNCS

104.

[Plol] C. D. Plotkin, A structured approach to operational semantics. Technical

report Daimi Fn-19, Computer Science Department, Aarhus University. 1981

[P1o2] G. D. Plotkin, A powerdomain for Countable Nondeterminism, Proc 9th ICALP,

LNCS 140, 1982.

[Rei] W. Reisig, Pertri Nets, an Introduction, Springer-Verlag 1985.

Chapter 11. Bibliography. 	 176

[Rem] M. Rem, Concurrent computations and VLSI circuits pp 399-438 in Control

flow and Data flow. Ed. M. Broy Springer-Verlag 1986.

[Rosi] G. M. Reed and A. W. Roscoe, A Timed Model for CSP, LNCS 226: ICALP

[Ros2] Roscoe A.W.& Hoare C.A.R., The laws of OCCAM programming.

[San] M.T. Sanderson, Proof techniques for CCS. PhD. Thesis Edinburgh 1982.

[Sch] D. Schmidt, Denotational Semantics. Allyn and Bacon, 1986

[Shi] L. I. Schiff, Quantum Mechanics, 3 rd. edition, Mcgraw Hill 1982.

[Smo] S. Smolka, B. Steffen and C. Tofts, Full Abstraction in a Calculus of Relatively

Frequent Processes, to appear.

[Son] M. Sonnenselien, An extension to the language C for concurrent programming.

Parallel Programming, vol 2. 1986,

[Stil] C.S. Stirling, A Generalisation of Owicki-Cries' Hoare's Logic for a Concurrent

While Language, Journal of Theoretical Computer Science, 1988.

[St12] C. S. Stirling, Modal Logics for Communicating Systems, CSR-193-85, Univer-

sity of Edinburgh.

[Sto] J. Stoy, Denotational Semantics, M. I. T. Press, 1977

[Tof] C. Tofts, Temporal Ordering for Concurrency, LFCS-49-88, University of Ed-

inburgh.

[Wal] D. Walker, Bisimulation equivalence and divergence in CCS, proceedings LICS

1988.

[Zwi] J. Zwiers, Compositionality, Concurrency and Partial Correctness, PhD. Thesis

University of Eindhoven, 1988.

