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Abstract 

Work in mouse models has highlighted a role for classical monocytes in 

promoting cancer. Furthermore, recent human studies show that blood 

monocytes in a variety of cancers exhibit transcriptional shifts from steady-

state. However, it remains unclear exactly how cancer affects monocyte 

homeostasis and function.  

 

To study monocyte regulation in cancer, blood was analysed over the course 

of tumour progression in mice that develop spontaneous mammary cancers 

(MMTV-PyMT). Monocyte production, release and turnover were investigated 

by colony forming unit assays and BrdU tracing. RNA extracted from blood and 

bone marrow (BM) monocytes was sequenced. Next, gene expression was 

compared with monocytes in human breast cancer patients. Finally, 

Accessibility of Transposase Assay (ATAC) sequencing was used to 

investigate chromatin conformation of monocytes in human breast cancer.  

 

In mice, blood monocyte numbers were significantly increased in late cancer 

compared with controls. This increase was equivalent in both classical and 

non-classical monocytic populations. The proliferation of classical monocytes 

in the BM was increased in cancer, whereas monocyte release and half-life in 

the circulation were unaltered. Classical monocytes in mice with late stage 

cancer featured down-regulation of genes involved in interferon response, 

cytokine stimulus, and antigen-cross-presentation. These changes were 

conserved across cells in the BM and blood and across two mice strains. There 
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were no orthologous genes or functional pathways with humans whom had 

early stage cancer. In patients with early breast cancer, there was an up-

regulation of NFKB pathway signalling in circulating monocytes. Findings by 

ATACseq were inconclusive but established the use of this technique in this 

context.  

 

This study suggests that the cancer manipulates the transcriptional landscape 

of monocytes. The effects in mice may be secondary to haematopoietic stress. 

This contrasts with humans, where it seems that conditioning of circulating 

monocytes results in a pro-tumoural phenotype. Due to the lack of orthologous 

changes in mice, further work needs to be undertaken in humans. To this end, 

the use of ATAC sequencing of human circulating monocytes has been 

optimised. These findings lay the foundation from which to understand the 

transcriptional regulation of monocytes in breast cancer.   
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Lay Summary 

Breast cancer is the most common cancer affecting females. 1 in 5 women 

with breast cancer that has spread will not survive longer than 5 years. Cancer 

cannot grow and spread on its own. Instead, it requires cells of the immune 

system to help it. One of the cells in our blood is a white blood cell called the 

monocyte. Monocytes can travel to the tumour where they can then be turned 

into cells that help cancer. The behaviour of these cells is determined, in part, 

by the genetic code that they have in their DNA. Studies have shown that the 

DNA of blood monocytes is changed in cancer patients. We do not know when 

or how this occurs. The DNA can be tightly folded or unfolded and this also 

changes the way the cell behaves. We do not know if this may be a way that 

monocytes are changed in cancer. If we understand this, we can try to develop 

treatments to change monocytes so that they fight rather than help the cancer.  

 

The purpose of this study was to understand how monocytes change during 

the growth of breast cancer. We also wanted to understand if the changes are 

the same in mice as they are in humans. This is because it would allow us to 

do experiments that are not possible in humans that would help us to 

understand the changes that occur to the DNA. We also wanted to check if the 

folding or unfolding of the DNA of monocytes is changed in patients with 

cancer.  

 

Blood cells were studied during the growth of breast cancer in mice.  The 

production of monocytes in the bone and their movement from the bone into 
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the blood was also studied. We then compared the DNA in monocytes from 

mice with cancer with the DNA in monocytes from human breast cancer 

patients. Finally, we checked the folding or unfolding of the DNA in monocytes 

from patients with breast cancer.  

 

We found that there are more monocytes in the bone and the blood of mice 

with cancer.  To our surprise, the DNA changes in mice were not very obvious. 

There were no similarities found between mice and humans. This means that 

the mice that we used are not useful to study the DNA changes that we see in 

humans. It may be that a different mouse may be useful, but this will need to 

be checked. We confirmed that there are changes to the DNA of monocytes in 

patients with breast cancer. We were able to assess the folding of DNA in 

patient monocytes. In the future, we can use this to understand changes to 

monocyte DNA in cancer.  
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Chapter 1 Introduction 
 

1.1 Breast cancer 

 

1.1.1 Breast cancer background 

 

Breast cancer is the most common cancer in women worldwide (25%) and the 

second most common cancer overall (Antoni et al. 2016). In the UK, breast 

cancer accounted for 15% of all new cases of cancer in 2014 and this is 

predicted to rise to 20% by 2035. In the UK a national screening programme 

has led to a dramatic increase in cases detected early and has contributed to 

increased survival. The lifetime risk for females in the UK is 1 in 8, with survival 

being lowest in the younger non-screening population (<50 years old) 

(C.R.U.K. n.d.). While survival has greatly improved, this has been amongst 

patients diagnosed with primary disease where survival has increased to 

nearly 90% (Hayat et al. 2007). Conversely, just 1 of every 5 patients 

diagnosed with metastases will survive (Hayat et al. 2007). Thus, metastatic 

disease still poses a great challenge. Overcoming this involves developing 

better detection techniques to diagnose disease earlier and more effective 

personalised therapies where diagnosis is made late or disease is of an 

aggressive subtype.    
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1.1.2 Breast cancer histological subtypes 

 

Breast cancer, like most solid cancers, develops via a number of stages which 

were first introduced by Foulds in 1954 (Foulds 1954) and observed in breast 

lesions by  Wellings and Jenson in 1973 (Wellings & Jensen 1973).  The first 

step is considered pre-invasive as proliferating cells are contained by the 

myoepithelial layer which acts as a gate keeper. The second stage occurs 

when tumour cells break through this layer and at this point are considered as 

invasive but are still confined to the primary site. Within the breast, while this 

may cause morbidity, it is not until the cancer cells are able to disseminate to 

other organs, to form metastases, that the cancer can be fatal.  

 

Invasive breast cancer is traditionally divided into histological subtypes as 

standardised by the World Health Organisation (Sinn et al. 2013). The most 

common subtype, accounting for up to 80% of all cancers is invasive ductal 

cancer of no special type (NST) (Hayat et al. 2007), termed NST as they 

cannot be ascribed to any particular growth pattern but used synonymously 

with the term ductal. The next most common are lobular cancers, termed so 

as they develop in the lobular aspect of the breast. Other subtypes include 

mucinous, cribriform, apocrine and medullary. While some subtypes have 

particularly distinct prognostic outcomes, more important aspects of breast 

cancer subtypes are the stage, grade and receptor status.  

  



 Monocyte dynamics in breast cancer 

 

Introduction  14 

1.1.3 Breast cancer staging, grade and receptor status 

 

The Tumour Node Metastasis (TNM) classification system based on tumour 

size (T), nodal status (N) and presence of any metastasis (M) (Singletary et al. 

2003), is used for many cancers to stage disease and guide treatment. The 

grading system by Bloom and Richardson and later refined by Elston and Ellis 

gives a grade from 1 to 3 based on the proportion of tubule formation, the 

mitotic count, and the degree of nuclear pleomorphism of cancer cells (Elston 

& Ellis 1991). The grade of breast cancer is in itself a predictor of outcome both 

for Disease Free Survival (DFS) and breast cancer specific survival (BCSS) 

(Rakha et al. 2008). The receptor status is defined primarily by oestrogen, 

progesterone and Herceptin receptor positivity. The worst prognosis is in 

breast cancers that lack any of these receptors, termed triple negative (TN). 

Roles of additional receptors such as androgen receptors are also considered 

important (Hon et al. 2016). 

  

1.1.4 Prognostic indicators of breast cancer  

 

Traditionally, the Nottingham Prognostic Indicator (NPI) was used to calculate 

the 5-year DFS (Todd et al. 1987). This takes into account the size, grade and 

nodal status of the cancer. Updates to this model have included the widely 

used neoadjuvant online tool which additionally includes patient age, hormone 

receptor status and co-morbidity level (Ravdin et al. 2001). However, these 

tools fail to recognise the importance of molecular subtypes of breast cancer 
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which are now recognised to be highly relevant in predicting response to 

treatment regimens and outcome, essential when planning treatment.  

  

1.1.5 Molecular subtypes of breast cancer 

 

Molecular subtyping of breast cancer can distinguish cancers that are highly 

aggressive from those that are more indolent. This is due to intrinsic genetic 

differences in the cells that are overlooked when looking at histological subtype 

alone. This paradigm shift in breast cancer classification was initiated by a 

seminal study undertaken by Perou et al in 2000 in which 42 breast cancers 

were genetically profiled using cDNA microarray to identify 8,103 genes. Using 

hierarchical clustering methods on defined gene lists, they were able to identify 

distinct molecular subtypes of breast cancer (Perou et al. 2000). This was later 

extended to larger cohorts and further validated to produce a classification that 

is now widely used (Sørlie et al. 2001; Hu et al. 2006; Dai et al. 2015). The 

principal 4 molecular subtypes of breast cancer are luminal type A, luminal 

type B, Her2-enriched and basal, with a 5th subtype termed normal-like (Dai 

et al. 2015). A summary of these subtypes is presented in Table 1. Over time, 

additional molecular subtypes have been identified, with as many as 10 now 

being considered (Curtis et al. 2012; Ali et al. 2014). These subtypes correlate 

with DFS and chemo-sensitivity and therefore can be used to guide treatment 

decisions (Curtis et al. 2012; Ali et al. 2014).  
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Table 1 Molecular subtypes of breast cancer and correlation with 
immunohistochemistry (IHC) status, grade, outcome and prevalence. 
Adapted from Dai et al. 2015. 

 

1.2 A shift away from a cancer centric view  

  

In addition to the histological and molecular subtype of breast cancer 

discussed, other cancer-intrinsic factors are emerging that explain the 

extensive heterogeneity that exists in individual patient responses to 

treatment. These include factors such as the mutational burden and the clonal 

evolution of cancer cells (Greaves & Maley 2012; Shah et al. 2012; Cowell et 

al. 2013). While there is no debate that all these intrinsic features of the cancer 

cells themselves are important in determining the progression of disease, they 

do not alone account for the full spectrum of disease severity that is observed.  

Subtype IHC status Grade Prog. Prev.

Luminal A [ER+|PR+] HER2-KI67- 1|2 Good 23.7%

Luminal B [ER+|PR+] HER2-KI67+
2|3

Int 38.8%

Luminal B [ER+|PR+] HER2+KI67+ Poor 14%

HER2 over-expression [ER-PR-] HER2+ 2|3 Poor 11.2%

Basal [ER-PR-] HER2-, basal+ 3 Poor 12.3%

Normal-like [ER+|PR+] HER2-KI67- 1|2|3 Int 7.8%
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In a seminal review on cancer in 2000, Hanahan and Weinberg defined the 

common hallmarks of all cancers as their: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory signals, evasion of programmed cell death, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis (Hanahan & Weinberg 2000). Eleven years later they moved away 

from a reductionist view, and highlighted the role of the tumour 

microenvironment (TME) and cellular interactions in cancer (Hanahan & 

Weinberg 2011). It is now well recognised that it is not only factors intrinsic to 

the cancer itself, but also the microenvironment in which the cancer resides 

and the other cells within that environment that determine cancer fate. This 

holistic view of cancer biology has paved the way for many new approaches 

both in terms of developing prognostic tools and new treatment strategies. 

 

1.2.1 The tumour microenvironment in breast cancer 

 

Any solid tissue is made up of a scaffold in which the cells exist. The 

components that make up the scaffolding, such as laminins and collagens, and 

the components that form a mesh-like structure over the scaffolding in which 

the cells are held is termed the extracellular matrix (ECM). The ECM of any 

tissue is altered by the components laid down by the cells within the matrix. 

This is very relevant in cancer whereby the ECM needs to be remodelled to 

allow tumour cell survival, proliferation and dissemination. In the breast, as 

with many other tissues, ECM scaffolding is usually held tightly together by 
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adhering factors such as E-cadherin and integrins (Nelson & Bissell 2006). In 

breast cancer, loss of these adhesion factors along with proteolytic enzymes 

leads to the breakdown of the ECM. As the ECM is remodelled and the cell 

composition changes, growth factors are released resulting in the growth and 

proliferation of cancer cells. The remodelling of the ECM also permits an 

environment in which cancer cells can invade beyond the basement 

membrane and disseminate (Nelson et al. 2018; Nelson & Bissell 2006). It is 

estimated that only around 0.02% of circulating tumour cells (CTCs) actually 

go on to form metastases (Micalizzi et al. 2017). This is not just because they 

are exposed to numerous stresses and immunosurveillance, but also because 

CTCs lack the means by themselves to intravasate the tissue and establish 

the necessary microenvironment to survive. Hence, at the site of metastasis 

the ECM is again modified to form the pre-metastatic niche required for the 

establishment of metastasis (Joyce & Pollard 2008). The ECM, and ultimately 

the TME, is determined by the milieu of cells that exists held within the tissue, 

all of which have important roles in breast cancer evolution and progression 

(Joyce & Pollard 2008; Tlsty & Coussens 2006; Nelson & Bissell 2006). 
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Figure 1 Tumour microenvironment. Many cells contribute to the 

microenvironment, including fibroblasts, endothelial cells, bone marrow 

derived cells (BMDC), mesenchymal stem cells (MSC), Myeloid derived 

suppressor cells (MDSCs), Tie2 expressing monocytes (TEM) and 

Macrophages. Adapted from Joyce & Pollard 2008. 

 

Some of these cells are pre-existing within the tissue, for example fibroblasts, 

myoepithelial cells and endothelial cells. However, many cells, in particular 

immune cells, are recruited to the tissue to fulfil a multitude of roles. It is 

generally accepted that both CD8+ T cells and NK cells kill cancer cells 

through perforin and granzyme-mediated apoptotic pathways, and thus are 

anti-tumoural (Ostrand-Rosenberg 2008). The role CD4+ T cells in cancer is 

more complex, but to briefly summarise: Type I CD4+ T helper cells (Th1) aid 

CD8+ T cell tumoricidal action and thus are anti-tumoural. Whereas, by 

potentiating antibody production by B cells, Type II CD4+ T helper cells (Th2) 

indirectly inhibit anti-tumour immunity (Ostrand-Rosenberg 2008). The CD4+ 
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T regulatory cells (Tregs) both inhibit CD8+ T cells and NK cells and are 

therefore pro-tumoural (Ostrand-Rosenberg 2008). Another type of T helper 

cell, which derives its name from the production of IL-17 (Th17) was defined 

as distinct from the Th2 and Th1 cell lineages in 2005 (Harrington et al. 2005; 

Park et al. 2005). While initially thought to be pro-tumoural, the roles of the 

Th17 cell (and IL-17) in cancer are diverse and can be anti-tumoural (Ostrand-

Rosenberg 2008; Asadzadeh et al. 2017). Adding further complexity to the role 

of T cells in cancer is the distinct family of gdT cells, which can be considered 

to have both innate and adaptive immune functions. This group of T cells can 

have both pro or anti-tumoural actions (Morita et al. 1995; Morrow et al. 2019; 

Lafont 2014). Of note, IL-17 production by gdT cells can recruit pro-tumoural 

cells of the adaptive immune system (Coffelt et al. 2015; Kersten et al. 2017).  

 

The innate immune response can be modulated by cells of the adaptive 

immune system and, in the case of Myeloid Derived Suppressor Cells 

(MDSCs), is used to define them. The complexity of MDSCs is discussed 

latterly but in brief and as their name suggests, these are cells of myeloid 

lineage that are defined by their ability to suppress T cell cytotoxicity and thus 

promote cancer cell survival. While MDSCs cells are uniform in their definition, 

cells such as macrophages are less so: macrophages can reject cancer cells 

via a type I interferon (IFN) response. However, they may be polarised to a 

pro-cancerous phenotype known as the Tumour Associated Macrophages 

(TAMs) and Metastatic Associated Macrophage (MAMs) at the primary the 
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metastatic site respectively. At the primary site, TAMs are essential in many 

aspects of tumour progression, including invasion and intravasation (Wyckoff 

et al. 2007),  angiogenesis (Lin et al. 2006),  and extravasation to allow 

metastatic spread (Qian et al. 2009). Furthermore, TAMs at the primary site 

release pro-survival factors supporting cell establishment and survival at the 

metastatic site (Qian et al. 2009). Within metastasis, MAMs promote tumour 

cell survival, growth and angiogenesis (Qian et al. 2009; Kitamura et al. 2017; 

Valls et al. 2019). In humans the correlation of high TAM infiltrate with poor 

prognosis in a variety of cancers is a demonstration of the importance of these 

cells (Zhao et al. 2017).  

 

The cross-talk between recruited immune cells is highly complex and it is the 

balance between all of these cells that needs to be considered. A study by 

Azizi et al, using scRNAseq, confirms the complexity of the immune infiltrate 

in breast cancer. They showed increased phenotypic heterogeneity and 

expansion of cell populations in tumours, with a two-fold increase in cell total 

clusters in both T cells and myeloid cells in cancer when compared with benign 

breast tissue (Azizi et al. 2018). This complex immune environment has 

created a multitude of cancer immune therapeutic targets, aiming at enhancing 

tumoricidal cells such as NK and CD8+ T cells or inhibiting tumour promoting 

cells such as TAMs. A paradigm shift has been in the realisation that a holistic 

approach in treatments is needed; concurrently using reagents that target 
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cancer cells directly for example with chemotherapy, enhance cancer killing 

cells and block or diminish cancer supporting cells. For example, T cell 

therapies, such as chimeric antigen receptor (CAR) T cells, are effective in 

some cases (Martinez & Moon 2019). But efficacy is limited by the presence 

of other immune infiltrates that are able to suppress their action; both MDSCs 

and TAMs protect cancer cells supress T-cell-tumour interactions (Martinez & 

Moon 2019). Studies have confirmed that TAMs express high levels of immune 

checkpoint receptors such as programmed death-ligand 1 (PD-L1), which act 

to restrict CD8+ T cell function (Noy & Pollard 2014; Mantovani et al. 2017). It 

is thought that this enables TAMs to intercept the cancer-T cell cross talk and 

therefore protect cancer cells.  This mechanism is supported by studies in 

mouse models of pancreatic cancer in mice showing the enhanced efficacy of 

checkpoint inhibitors with CSF1-R targeting of TAMs (Zhu et al. 2014).  

 

In the context of breast cancer, in a mouse model, CSF1-R antagonists 

improved chemotherapy induced T cell killing of cancer cells (DeNardo et al. 

2011). So, while cancer killing therapies using T cells, DC cells and NK cells 

evolve there is a need to target the immunosuppressive cells. Of key 

importance for the studies reported in this thesis is to consider that monocytes 

(Mo) are the source of immature Mo immune-suppressive cells, TAMs and 

MAMs (Kitamura et al. 2018; Kitamura, Qian & Pollard 2015; Qian et al. 2011).  
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1.2.2 Nomenclature in tumour immunology 

 

The nomenclature of immune cells within both the TME and the circulation is 

both confusing and heavily debated. Therefore, this will very briefly be 

discussed. Hierarchical classification of the immune infiltrate could start with 

the division of cells into pro or anti-tumoural categories. For the focus of the 

work in this thesis, the general term myeloid can then be used. Myeloid cells 

include DCs, Mo, neutrophils (Neut), NK cells, MDSCs and the Mo or Neut 

derivatives such as TAMs and Tumour Associated Neutrophils (TANs).  

 

A particularly confusing area is with regards to MDSCs. MDSCs are subdivided 

into polymorphonuclear (PMN-MDSCs), otherwise known as G-MDSCs and 

mononuclear (M-MDSCs) (Bronte et al. 2016; Brandau et al. 2016). The use 

of these terms can only be assigned by proving immune-suppressive action. 

While the G-MDSC is fairly well established, the presence of a distinct M-

MDSC and whether it originates from a Mo or from progenitors directly in the 

bone marrow (BM) is heavily debated (Marvel & Gabrilovich 2015; Veglia et al. 

2018; De Vlaeminck et al. 2016; Brandau et al. 2016). Unfortunately, in many 

papers no distinction is made between the two types of MDSCs as the general 

marker Gr1, which binds both Ly6c and Ly6g and is expressed upon both Mo 

and Neuts, is used and no morphological assessment is made (Richards et al. 

2012). Even when both Ly6c and Ly6g markers are used, it is not always clear 

that MDSCs are distinct from Neuts and Mo by common methods such as flow 

cytometry, where the distinction is simply just that they are in tumour bearing 
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rather than healthy mice and no immune-suppressive function is proven 

(Bronte et al. 2016). Here, the distinction will be made between M-MDSCs and 

PMN-MDCSs and additionally the terms will be avoided in the discussion of 

cell phenotype where immune-suppressive ability is not proven.  

 

Within Mo nomenclature, another term has arisen due to the presence of Mo 

expressing the receptor for Tie-2, Tie-2 Mo (TEM) (Murdoch et al. 2007; De 

Palma et al. 2007; Venneri et al. 2007). The abbreviation TEM should not be 

confused with that for the tumour microenvironment (TME), nor abbreviations 

for Mo such as tumour-educated Mo (TeMo). To distinguish between 

circulating and tissue residing cells the term Tie-2 Mo (Tie-2 Mo) will be 

adopted when referring to circulating and TEM when referring to Tie-2 

expressing Mo in the tissue.  

 

Lastly, the status of macrophages is often described as classically or 

alternatively activated, and M1 or M2 polarised. The activation of macrophages 

was first described in 1962 when Mackaness demonstrated phenotypes 

acquired in response to Listeria monocytogenes infection (Mackaness et al. 

1962). This evolved over time, and the terms classical activation referred to 

the response of macrophages to IFNg, whereas responses to IL-4 and IL-13 

were termed alternative activation (Stein et al. 1992; Doyle et al. 1994). In 

2000, Mills and colleagues used the difference in Th1 (IFNg) and Th2 (IL-4) 

responses in different mouse strains to show that macrophages, independent 
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of T cells, could influence different immune responses (Mills et al. 2000). While 

acknowledging that it may be an oversimplification, Mills introduced the terms 

M-1 and M-2 in relation to a Th1 or Th2 like response (Mills et al. 2000). As 

understanding of macrophage plasticity broadened, Mantovani and colleagues 

further classified macrophages according to the stimuli which induced a given 

phenotype; M1 (IFNg + LPS/TNF), M2a (IL-4 and IL-13), M2b (Immune 

complexes and TLR or IL-1R) and M2c (IL-10) (Mantovani et al. 2004). These 

subtypes were assigned names according to activation; M1 (Classical), M2a 

(Alternative), M2b (Type II), and M2c (Deactivated) (Mantovani et al. 2004). 

This dismissed a paper published in the same year that had confusingly 

assigned M1 as pro-inflammatory and M2 as anti-inflammatory (Verreck et al. 

2004). Inflammatory or anti-inflammatory macrophages were produced when 

blood Mo were differentiated using G-CSF or GM-CSF respectively (Verreck 

et al. 2004). Thus, the definition of all of these macrophage types varies 

throughout the literature and there is still no real consensus or shared 

understanding when using these terms (Murray et al. 2014). Furthermore, 

TAMs are sometimes referred to a M2 or as “M1 like TAMs” and “M2 like TAMs” 

(Clappaert et al. 2018; Murray et al. 2014). The former of these is anti-tumoural 

and the latter is pro-tumoural.  

 

For the purposes here, the terms M1 and M2 will be avoided. Macrophages 

may more accurately be described by their specific action for example 

immune-suppressive or angiogenic. However, for simplicity the term TAM will 



 Monocyte dynamics in breast cancer 

 

Introduction  26 

herein refer broadly to a pro-tumoural macrophage that can act in 

immunosuppression (e.g. T cell via PD-L1), angiogenesis (e.g. secrete 

VEGFa), matrix remodeling (e.g. secrete MMPs), and secretion of factors that 

promote pro-tumoural inflammation but additionally recruitment of other cells 

(Movahedi et al. 2010; Joyce & Pollard 2008; Qian et al. 2009; Noy & Pollard 

2014; Bonapace et al. 2014). The term TAM and MAM will be used to 

distinguish the site as the primary or metastatic site respectively (Kitamura et 

al. 2018).  

 

1.3 Monocytes and cancer 

 

1.3.1 Monocyte subset and functions 

 

Mo are key cells in the innate immune system, they are phagocytotic, are 

recruited in inflammation to form macrophages or DCs and undertake 

surveillance of the vasculature in steady state (Geissmann et al. 2003). 

Seminal work by Paslick in the 1980s revealed that there were two populations 

of Mo (Passlick et al. 1989). The presence of two populations with distinct 

functions was later confirmed in mice (Geissmann et al. 2003) and microarray 

demonstrated orthologs with the human classical CD14highCD16low and non- 

classical CD14intCD16high, corresponding to mice Ly6chigh and Ly6clow 

expression respectively (Ingersoll et al. 2010). Further profiling by microarray 

(Ancuta et al. 2009), RNAseq (Zawada et al. 2011), CAGEseq (Schmidl et al. 
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2014) and scRNAseq (Villani et al. 2017) has highlighted the differences in the 

transcriptional profile of these Mo subsets. The distribution of these Mo 

populations is approximately equal in mice, but in healthy humans only 5-10% 

of Mo are CD14intCD16high (Passlick et al. 1989). The frequency and 

distribution of Mo populations has been linked to many diseases including 

autoimmunity, chronic inflammation, cardiovascular disease, and cancer 

(Stansfield & Ingram 2015; Joyce & Pollard 2008). The main characteristics 

and functions of these two distinct Mo population are summarised in Table 2.  

  

It is the classical or inflammatory Mo that are thought to be the source of Mo-

derived macrophages and DCs. In mice, it has been shown that Ly6chigh Mo 

infiltrate tissues within hours and differentiate into macrophages in response 

to inflammation (Geissmann et al. 2003). They are released from the BM into 

the circulation via the chemokine-receptors action of CCL2-CCR2 

(Serbina & Pamer 2006). CCR2 is also highly expressed on human classical 

Mo (Wong et al. 2011; Ingersoll et al. 2010). Classical Mo are highly phagocytic 

and secrete a variety of  cytokines including IL-6 and IL-8 (Schmidl et al. 2014; 

Boyette et al. 2017; Cros et al. 2010). Their distinct phagocytic properties are 

reflected by their increased glucose and nucleotide metabolic pathways 

demonstrated by transcriptomic and proteomic datasets (Schmidl et al. 2014; 

Vogel et al. 2018). While the predominant fate of classical Mo is homing to 

tissues and differentiation into macrophages and DCs, a number of studies 
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have suggested that they may also remain in a marginated BM pool via the 

use of CX3CR1 anchoring  and may also remain as Mo in lymph nodes rather 

than differentiating into macrophages (Hamon et al. 2017). 

 

As their name suggests, Ly6clow patrolling Mo crawl along the endothelium, 

tending not to extravasate (C. Shi & Pamer 2011; Carlin et al. 2013; Biburger 

et al. 2011; Sumagin et al. 2010; Auffray et al. 2007). Their expression of 

CX3CR1 enables adherence to the vasculature and characteristic “crawling” 

along the endothelium can be observed. This characteristic is reflected by the 

strong expression of migratory and cytoskeleton at both a transcriptional and 

protein level in these cells (Schmidl et al. 2014; Vogel et al. 2018; Villani et al. 

2017). While initially demonstrated in mice, human non-classical Mo were 

subsequently shown to adhere to the endothelium (Cros et al. 2010). In 

contrast to the classical Mo, non-classical Mo have minimal phagocytic activity 

(Cros et al. 2010). However, they produce much higher quantities of TNFa and 

IL-1 via toll-like receptor (TLR) signalling (Boyette et al. 2017; Cros et al. 2010; 

Belge et al. 2002). Their production of the anti-inflammatory cytokine IL-10 is 

debated to be either equal  (Cros et al. 2010) or higher (Skrzeczyńska-

Moncznik et al. 2008) than in classical Mo. On a metabolic level, non-classical 

Mo have been described as using oxidative phosphorylation (Schmidl et al. 

2014). 
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While the two Mo populations are distinct, there are Mo that express 

intermediate levels of either Ly6c in mice or CD16 in humans. Some consider 

these to be a distinct population, however scRNAseq  studies in humans would 

suggest that this is a heterogeneous population, with genes in common with 

both distinct Mo populations (Villani et al. 2017). While some of this may have 

been due to DC contamination, the heterogeneity supports the concept that 

the intermediate population represent cells in transition from classical to non-

classical Mo. A view supported by recent tracking experiments demonstrating 

this transition in human Mo (Patel et al. 2017).  

 

As technologies advance it is likely that the understanding of Mo populations 

will alter. For example, using mass cytometry, it was recently suggested that 

in patients with Coronary Artery Disease there may be up to 8 subpopulations 

of Mo (Hamers et al. 2018).    
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Table 2 Characteristics of Mo subsets in human and mouse. 

 

1.3.2 The role of monocytes in cancer 

 

In recent years, Mo have emerged as having an important role in a number of 

pro-cancer and anti-cancer mechanisms. The initial interest into blood Mo 

came from the perceived origin of TAMs, and more recently MAMs from blood 

Mo. The majority of functional studies have been undertaken in mouse models 

of breast cancer. In this context, circulating Ly6chigh Mo have been shown to 

travel to the primary tumour and differentiate into TAMs (Arwert et al. 2018; 

Movahedi et al 2010; Bonapace et al. 2014). Ly6chigh Mo also infiltrate the pre-

 Classical  
Inflammatory 

Non-Classical 
Patrolling 

Morphology Large, low granularity Smaller, more granular 

Human 
antigen 

CD14high, CD16low 

CCR2high, Cd11bhigh, 
CD163high, CD62L+ 

CD14int, CD16high 
CX3CR1high, CCR2lo, 

Cd11b+, CD163- 
Mouse 
antigen Ly6chigh Treml4- Ly6clow Treml4high 

Recruitment 
and function 

Recruited from bone by 
CCL2 release  

Highly phagocytic 

Migrate in response to 
CX3CL1 

T cell stimulation, patrolling 
Genes  

up-regulated 
VCAM, CD163, CD63 

S100A12, S100A8 
FCGR3A, IFITM1-3, 
CDKN1C, MTSS1 

Pathways  
up-regulated 

Immune response, Defense 
response, inflammatory 

response, chemotaxis, TLR, 
Lysosome 

Immune system process, 
leucocyte migration, 

cytoskeleton rearrangement 

Metabolic 
profile 

Carbohydrate 
Nucleotide production 

ROS production 
Oxidative phosphorylation 

Cytokines IL-6, IL-8, TNFa, IL-10  
 

TNFa, Il-1b, IL-10  
(higher than classical)  
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metastatic niche prior to other peripheral immune cells (Qian et al. 2011; 

Movahedi et al. 2010) and form MAMs (Kitamura et al. 2015; Qian et al. 2011). 

At the metastatic site, elevated levels of Ly6chigh Mo correlate with increased 

metastatic burden (Qian et al. 2011). More recently, it has been shown that 

this formation of MAMs from circulating Mo occurs via an immunosuppressive 

precursor which was also able to promote metastasis (Kitamura et al. 2018). 

The use of nude (immunodeficient) mice into which human Mo can be 

administered and tracked, enabled confirmation that the corresponding human 

Mo also travel to the pre-metastatic niche (Qian et al. 2011).  

 

The recruitment and retention of Ly6chigh Mo at the metastatic site is under the 

regulation of CCR2-CCL2 axis (Kitamura et al. 2015; Qian et al. 2011). The 

role of CCL2 is exemplified in mouse models, whereby anti-CCL2 treatment 

suppresses metastasis but on termination of anti-CCL2 treatment, Mo are 

rapidly recruited from BM and metastatic overshoot occurs (Bonapace et al. 

2014).  Thus, the recruitment and retention of Mo is of great importance in 

tumour immunology. 

 

Tie-2 Mo are of particular interest because they preferentially home to the 

tumour (Murdoch et al. 2007; De Palma et al. 2007; Venneri et al. 2007). They 

are present in both human and mice (Venneri et al 2007). TEMs promote 

angiogenesis and so are considered to be pro-tumoural (Turrini et al. 2017; 

Venneri et al. 2007; De Palma et al. 2007). It is not clear which Mo Ly6c subset 



 Monocyte dynamics in breast cancer 

 

Introduction  32 

the Tie-2 Mo reside within. In humans, Tie-2 is expressed on cells expressing 

CD14, with or without CD16 expression, though the expression of Tie-2 seems 

to be highest in CD14high, CD16low cells (Venneri et al 2007). TEMs have been 

shown to be very similar to but distinct from TAMs (Pucci et al. 2009). It is 

postulated that while TAMs originate from the Ly6chigh Mo, TEMs originate from 

what is termed by the authors as “resident circulating Mo” and reflect Ly6clow 

Mo (Pucci et al. 2009). But this is based on association and yet to be proven 

by tracking. This hypothesis is supported by a recent report stating that Ly6clow 

Mo confer resistance to anti-VEGFR therapy (Jung et al. 2017). The role of 

Ly6clow Mo is not simple however, and some reports show that they are 

protective at the metastatic site by activating NK cell killing (Hanna et al. 2015). 

 

It is difficult to discuss the role of Mo in cancer without discussing MDSCs. 

MDSCs are a key component of immunosuppressive cells contributing to 

immune evasion by cancer cells (Joyce & Pollard 2008). As discussed, the 

origin of MDSCs is not clear (Marvel & Gabrilovich 2015; Richards et al. 2012; 

Kim & Bae 2016). The aforementioned immunosuppressive MAM precursor 

has been suggested to be equivalent to the M-MDSC population (Kitamura et 

al. 2018). In this study, they were shown to originate form Ly6chigh Mo from the 

circulation that differentiate in the tissue. However, much of the literature on 

MDSCs suggests that their phenotype is acquired in the BM due to a 

combination of stress haematopoiesis, driven by growth factors, and 

conditioning by cytokines (Marvel & Gabrilovich 2015). In conclusion, while 
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there is still a lot to be clarified with regards to M-MDSCs, they may have an 

important role in cancer and may be derived from the Ly6chigh Mo.  

 

Thus far, Mo have largely been discussed as a conduit to other cells that have 

key roles in cancer and in terms of tumour biology. But Mo have also been 

used as a diagnostic target. In colon cancer, renal cell carcinoma (RCC), 

breast and endometrial cancer alterations to the transcriptional profile of Mo 

has been demonstrated (Chittezhath et al. 2014; Hamm et al. 2016; Cassetta 

et al. 2019). This has subsequently been used to develop diagnostic and 

prognostic transcriptional signatures. The functional implications of the 

transcriptional alterations have been investigated to some extent, with Mo from 

cancer patients producing pro-tumoural factors such as IL-8 (Chittezhath et al. 

2014). This suggests that rather than just being a conduit, conditioned on 

arrival to the TME, that circulating Mo are conditioned within the blood. The 

susceptibility of Mo to this conditioning relates to their plasticity and complex 

transcriptional regulation that is necessary in their homeostatic roles but taken 

advantage of by cancer. To better understand these changes that are 

observed in circulating Mo in cancer, the general concepts of transcriptional 

regulation and how these relate to Mo in both steady state and in disease must 

be understood. 

 

  



 Monocyte dynamics in breast cancer 

 

Introduction  34 

1.4 Transcriptional regulation of monocytes 

 

1.4.1 Promoters, enhancers and histones 

 

Transcriptional regulation is extremely complex and multifaceted but 

understanding can be gained by looking at how specific regions in the genome 

and the factors that bind in these regions regulate transcription (Heinz et al. 

2013). Two of many of the regulatory regions described are termed promoters 

and enhancers. Promoters are regions of the genome that occur at the 

transcriptional start sites of a gene (Heinz et al. 2013). The binding of 

transcriptional machinery at promoter regions is obligatory for transcription to 

commence. However, transcriptional activity is greatly influenced by 

interaction with distal regulatory regions called enhancers. Enhancers confer 

numerous binding sites for key regulatory transcription factors (TFs) and co-

factors which once bound are able to modify transcription by interaction with 

the promoter (The FANTOM Consortium et al. 2014). While these regions are 

not defined in absolute terms, regions can be assigned as enhancers and their 

activity inferred by the status of adjacent histones (Ernst et al. 2011). The 

enhancer motif accessibility, binding strength and interaction are modulated in 

part by the status of adjacent histones. By identifying these marks by using 

Chromatin Immunoprecipitation and sequencing (ChIPseq), enhancers can be 

putatively classified as inactive, poised or active. While the promoter regions 

may differ considerably, the enhancer landscape seems to be largely 
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conserved across species (Donnard et al. 2018). Enhancers are also more 

cell-type specific than promoters (Lavin et al. 2014) especially in areas where 

many factors are bound, termed super enhancers (SE) (Hnisz et al. 2013). 

Identifying both enhancers (or SE) and their surrounding histone status has 

been shown to identify enhancer-gene interactions that are highly specific to 

cell-type and likely driving cell identity and function (Chen et al. 2016; Hnisz et 

al. 2013).  

 

1.4.2 Ontogeny and lineage determining transcription factors 

 

Mo are formed from the differentiation of Haematopoietic Stem Cells (HSCs) 

via Common Myeloid Progenitor (CMP) and Granulocytic Myeloid Progenitor 

(GMP) cells into the oligopotent Macrophage Dendritic Cell Progenitor (MDP) 

(Figure 2) (Gabrilovich et al. 2012; Hettinger et al. 2013; Fogg 2006; Akashi et 

al. 2000). Mo are subsequently formed from the unipotent Common Monocyte 

Progenitor (cMoP), which is thought to originate from the MDP (Hettinger et al. 

2013; Fogg 2006). Though originally identified in mice, these cells are also 

found in humans and are transcriptionally similar between both species 

(Breton et al. 2015; Kawamura et al. 2017).  

 

The development of Mo in the BM via their progenitors requires de novo gain 

of Lineage Determining Transcription Factors (LDTFs), likely at the CMP 

stage, that commit to a myeloid potential and subsequently determine cell fate 
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(Naik et al. 2013; Notta et al. 2016). Binding of LDTFs along with Collaborating 

Transcription Factors (CTFs) at enhancer regions greatly influences the 

transcriptional activity and identity of cells (Hnisz et al. 2013). This is because 

LDTFs are distinct in their ability to bind to inaccessible motifs, selecting 

enhancers and therefore re-modelling chromatin (Heinz et al. 2015). Despite 

the presence of hundreds of TFs, the combinatorial binding of a very small 

number of LDTFs leads to the specific selection of a cell’s transcriptionally 

regulatory elements (Heinz et al. 2010).   

 

Figure 2 The haematopoetic tree and Mo ontogeny. Image used with 

permission from Gabrilovich et al. 2012. 
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The key LDTF in Mo is PU.1 whose levels increase during transition from the 

CMP to the GMP (Notta et al. 2016). This is accompanied by a large decrease 

in GATA2, which is inhibited by PU.1 at the GMP stage (Notta et al. 2016; 

Walsh et al. 2002). The accessibility of binding motifs are also switched 

(Corces et al. 2016; Buenrostro et al. 2018) and repressive histone marks at 

GATA2 motifs, coupled with up-regulation of PU.1 is observed when HSPCs 

differentiate into Mo (Wiśnik et al. 2017). As discussed, LTDFs require 

collaborative LDTFs and the collaborative binding of PU.1 with the LDTF 

C/EBPα is essential for HSC commitment to the CMP (Lara-Astiaso et al. 

2014). Yet, subsequently much higher levels of the PU.1 potentiates IRF8 and 

collaborative binding of these two TFs temporarily blocks the binding of 

C/EBPα ensuring Mo/DC rather than Neut lineage in the MDP  (Schönheit et 

al. 2013; Kurotaki et al. 2014). This is exemplified by the finding that there is a 

significant reduction in enhancer binding in MDPs from IRF8-/- mice coupled 

with the finding that MDPs isolated from IRF8-/- mice differentiate into Neuts 

rather than Mo despite similar mRNA expression profiles to WT mice (Kurotaki 

et al. 2018). The roles are then restored whereby IRF8 levels are reduced and 

the collaborative binding of PU.1 and C/EPBa are essential for Mo to 

macrophage differentiation in tissues (Heinz et al. 2013). This system is 

hierarchical, for example PU.1 expression is obligatory for IRF8 expression 

whereas the reverse is not true, and both IRF8 and PU.1 seem to be necessary 



 Monocyte dynamics in breast cancer 

 

Introduction  38 

for the expression of KLF4 which is also essential in Mo formation (Kurotaki et 

al. 2013).  

 

1.4.3 The collaborative action of transcription factors  

 

Eloquent tracking of blood Mo has confirmed that the non-classical population 

derive from the classical Mo via a transitional intermediate population (Patel et 

al. 2017). As expected, Mo share common LDTFS; PU.1 motif and TF 

expression is enriched across all Mo subpopulations. But the motifs for AP-1  

and KLF are enriched in classical and  non-classical Mo respectively (Thomas 

et al. 2016). Their corresponding TFs correlate, with mRNA levels of Fos and 

Klf2 being highly expressed in classical and non-classical Mo respectively 

(Thomas et al. 2016).  

 

A more striking difference is seen in the expression of the orphan nuclear 

receptor NR4A1 which is highly expressed in both human and mouse non-

classical Mo (Carlin et al. 2013; Thomas et al. 2016). The specificity of this to 

non-classical Mo is exemplified by both the preservation of classical Mo and 

macrophage function but the loss of non-classical Mo in mouse lacking Nrf4a1 

(Thomas et al. 2016). However the control of this is far more complex as can 

be seen in the role of external drivers to cell transition such as stimulation of 

the NOD2 receptor. Using three different NOD2 agonists it has been 

demonstrated that NOD2 prompts the transition of Mo from classical to non-
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classical Mo (Lessard et al. 2017). Exposure to a NOD2 agonist resulted in 

increased expression of Nrfa1 in classical Mo. A study using Nrfa1 deficient 

mice however, reported that a NOD2 agonist was able to drive differentiation 

of Mo from classical to non-classical. This suggests that Nr4a1 is not obligatory 

and its regulatory effects can be bypassed (Lessard et al. 2017).  

 

1.4.4 The hierarchical model of transcription factors 

 

Thus far LDTFs have been discussed as pioneering factors determining cell 

type.  The selection of many enhancers, by LDTFs, confers greater cell 

plasticity which is essential to Mo given their varied functions (Lavin et al. 

2014). Indeed, Mo have a 4-fold higher number of cell-specific enhancer 

regions than Neuts (Rico et al. 2017). Additionally, the enrichment of motifs 

such as MYC in Mo enhances transcriptional activity, which is essential when 

mounting an inflammatory response  (Rico et al. 2017). Thus, Mo are “primed” 

to respond to external and internal cues. Mounting of this actual response, 

however, requires further modifications and these occur via the binding of so-

called Signal Dependent Transcription Factors (SDTFs). The binding of SDTFs 

may occur in those regions that have already been primed by LDTFs and CTFs 

or by de novo collaborative binding with LDTFs in response to any given signal 

(Heinz et al. 2013). An important example of this in Mo are the Signal 

Transducer and Activator of Transcription (STAT) factors, involved in both IFN 

and NFkB pathways. 
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The STATs are a collection 7 TFs that interact as dimers or trimers in cell 

signalling and transcriptional regulation. A key mechanism in Mo is the 

activation of the IFNγ–JAK–STAT1 pathway (Stark & Darnell 2012; Villarino 

et al. 2017). The binding of IFNg to transmembrane receptors on Mo activates 

Janus kinase (JAK) and phosphorylation of STAT1 leading to STAT1 

translocation to the nucleus. STAT1 can act directly by binding GAS motifs or 

indirectly via collaborative binding (Villarino et al. 2017).  Binding of STAT1 to 

the GAS motif leads to increased transcription of Interferon Stimulated Genes 

(ISGs), inducing an inflammatory response. As discussed, the binding of this 

SDTF is reliant on the LDTF PU.1 and also other SDTFs such as IRF8 

(Villarino et al. 2017) thus meaning that the response to IFNg can be varied 

dependent on the LDTF-SDTF landscape of the cell. This is an 

oversimplification however as STATs do not only act as TFs but can also 

recruit molecules capable of chromatin re-modelling and as this re-modelling 

occurs, the binding activity of STAT1 can shift, leading to altered activity. An 

example of this is the immediate induction of ISGs and the delayed induction 

of IRF genes. As mentioned, IRFs such as IRF8 can further act to alter the 

binding activity of STAT1 and so continues the highly dynamic yet co-ordinated 

response of Mo to IFNg.  Importantly, both the STAT1-JAK and NFkB pathways 

lead to STAT3 signalling which in turn acts to regulate inflammatory response 

and prevent excessive inflammatory response. It is not clear exactly how 

STAT3 reduces inflammatory response in this context. Two proposed 
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mechanisms are competition for binding motifs and the formation of STAT1-

STAT3 heterodimers (Roca Suarez et al. 2018).  

 

As alluded to, the signal that the cell receives is key in determining response 

and this is not only in the particular SDTF that is prompted but can also differ 

in how that SDTF responds. This is particularly true for STAT3. The above role 

of STAT3 would suggest that this is an anti-inflammatory TF. However, the 

action of STAT3 can also be pro-inflammatory. IL-6, produced in response for 

example to SDTF activity of NFkB, acts through binding to the gp130 subunit 

of its receptor, activating downstream JAK-STAT3 (and SHP-2-Ras-ERK1/2) 

signalling (Hirano et al. 2000).  It is thought that STAT3 then initiates an 

inflammatory response by inducing gene expression; altering cell survival, 

proliferation and the differentiation of Mo into macrophages (Hirano et al. 

2000). This feedback loop is further enhanced by STAT3-induced expression 

of NOTCH receptor antagonists, NOTCH receptor activation and enhanced 

NFkB production, increased IL-6 production and hence the cycle continues 

(Hildebrand et al. 2018). Conversely, IL-10 also induces STAT3 but results in 

a longer-lived anti-inflammatory response. The mystery of why the same SDTF 

leads to such different responses is explained by the importance of the 

combinatorial binding of SDTFs in response to each signal. In both the STAT1- 

IFNg and the IL-6 responses, SOCS3, which is part of the suppressor of 

cytokine signalling (SOC) family, is able to repress STAT action through 

binding to the JAK (Villarino et al. 2017; Roca Suarez et al. 2018). The SOCs 
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proteins are both induced and have different effector STATs depending on the 

cell type and the signal received (reviewed in Duncan et al. 2017). The SOC3 

is able to block the action of IL-6 but not IL-10, thus dampening the 

inflammatory response and enabling a longer-term anti-inflammatory effect.  

 

1.4.5 Refined responses by histone modifications 

 

The histone status modifies promoter and enhancer activity (Chen & Dent 

2013). Post-transcriptional modification of histone status is a key mechanism 

by which TFs initiate feedback. Recruitment of transcription co-regulators 

modifies the histone environment, enhancing, activating or repressing 

transcription. For example, IFNg primes Mo, resulting in an enhanced 

inflammatory response on exposure to inflammatory stimuli such as LPS. It 

has been shown that IFNg increases the density of H3K27ac at enhancers for 

key genes in this response. Via this process, active enhancers are increased 

and therefore subsequent SDTF binding and effects are enhanced. However, 

IFNg also recruits the methyltransfersase (MT) enzyme, EHZ, at promoters for 

MERTK, PPARg and RANK (TNFSF11) resulting in methyl deposition at 

H3K27 and silencing, thus stabilising gene expression and regulating the 

intensity of inflammation (Qiao et al. 2016). This is in part explained by the 

ability of STATs to alter histones via recruitment of co-regulators such as the 

Histone Acetyltransferases (HATs), p300 and MTs, such as EZH2. In addition, 

the regulation of STAT1/3 in IFNg response is partly co-ordinated by the 
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HDAC1/2 complex SIN3a which ensures the initial repression of STAT3, 

allowing a dominant STAT1 response which is later altered (though this is not 

well understood) (Roca Suarez et al. 2018).  

 
1.4.6 Transcriptional regulation of monocytes in disease 

 
To date, there is very little detailed evidence with regards to the transcriptional 

regulation of Mo in cancer. It has been suggested that the NFkB pathway is 

up-regulated in circulating cancer Mo, but it is unclear as to what factors drive 

this process (Chittezhath et al. 2014). 

 

The role of some chemokines in this respect have been explored. For example, 

the chemokine CCL5 is released from T cells and acts on the myeloid 

population. In the context of metastatic colorectal cancer, blocking CCR5 leads 

to STAT3 activation and tumour killing due to re-polarization of the Mo-derived 

TAM (Halama et al. 2016). The CCR5 promoter usually features a high density 

of the H3K27me3 (Wierda et al. 2012). Using T cell cultures, it has been shown 

that drugs targeting co-regulatory factors such as DNA MTs or HDACs 

modulate CCR5 expression (Wierda et al. 2012). This is yet to be explored 

specifically in the context of cancer.  

 

The role of HDACs in the regulation of Mo also points to possible mechanisms. 

The use of HDAC inhibitors results in altered production of pro-inflammatory 

cytokines by Mo and thus can be used as an anti-inflammatory therapy (Leoni 



 Monocyte dynamics in breast cancer 

 

Introduction  44 

& Fossati 2005; Anon 2002; Leoni et al. 2002). In the context of breast cancer, 

Guerriero and colleagues demonstrated that use of a HDACII inhibitor resulted 

in altered macrophage signatures and phenotype within the tumour (Guerriero 

et al. 2017). There was increased tumoricidal activity of macrophages and 

concurrent reduction in solid tumour primary burden and pulmonary metastasis 

(Guerriero et al. 2017).  The data suggests that this occurs via recruitment of 

Mo that subsequently differentiate into anti-tumoural rather than pro-tumoural 

TAMs (Guerriero et al. 2017). Therapeutically, this enhanced the efficacy of 

chemotherapy and receptor blockade in this mouse model of breast cancer 

(Guerriero et al. 2017).  

 

Another area of interest is in the role of tumour exosomes. Exposing Mo to 

tumour-derived exosomes in pancreatic cancer altered the expression profile 

of CD14 HLADR and also led to altered STAT signalling and an 

immunosuppressive phenotype (Javeed et al. 2017). Tumour exosomes also 

seem to enhance survival of Mo (Song et al. 2016). A very interesting study by 

Plebanek and colleagues on the pre-metastatic environment and the role of 

exosomes demonstrated that when exosomes from highly metastatic cells 

were injected in a mouse model, pro-tumoural Mo were recruited to the pre-

metastatic niche (Plebanek et al. 2017). Conversely, injecting exosomes 

isolated from less invasive non-metastatic cancers led to anti-tumoural Mo 

being recruited (Plebanek et al. 2017).  This held true using human exosomes 

(Plebanek et al. 2017). On a transcriptional level, in the context of exosomes 
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isolated from less invasive cancer, Nr4a1 levels were increased and more 

ly6clow Mo were detected in the BM and lungs where they had a protective 

effect (Plebanek et al. 2017). This is consistent with the previously discussed 

protective role of  ly6clow Mo (Hanna et al. 2015) in the metastatic setting but 

for the first time demonstrates the role of exosomes in altering key TFs in Mo. 

 

Given the lack of evidence in the context of cancer, understanding 

transcriptional regulation in other diseases may be useful when trying to better 

understand the process underlying transcriptional and functional perturbations 

to Mo in cancer. There are some parallels with sepsis, circulating immune-

suppressive Mo in severe sepsis and Mo in breast cancer share common 

trasncriptional profiles  when compared with age-matched controls (Bergenfelz 

et al. 2015). In severe sepsis Mo fail to phagocytose and present material to T 

cells because HLA-DR is down-regulated at both a gene and surface marker 

level (Bergenfelz et al. 2015). Silencing of genes involved in MHCII, antigen 

presentation and immune response occurs, in part, via a simultaneous loss of 

active and gain of inactive histone marks at these genes (Bergenfelz et al. 

2015). Another aspect is the silencing of NFkB signalling and thus reduction in 

cytokine production. Recruitment of the CTF RelB in the initial NFkB response 

initiates silencing via interaction with the co-regulator G9a (MT) (Weiterer et 

al. 2015). This  ultimately leads to chromatin inaccessibility and gene silencing, 

for example at the Il-1b promoter region (Weiterer et al. 2015).  
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Transcriptional alterations are observed in a number of autoimmune and 

inflammatory disorders: In Amyotrophic Lateral Sclerosis (AML), a severe 

neurodegenerative disease, a pro-inflammatory shift in the transcriptional 

profile of Mo occurs  (Yang et al. 2010). The same shift can be seen in chronic 

inflammation such as in chronic periodontitis (Liu et al. 2016). In sarcoidosis 

patients, Mo show an enrichment for genes associated with phagocytosis and 

lysosomal processes and a down-regulation of proteasome degradation and 

ribosome pathways (Liu et al. 2016). Metabolic pathways and oxidative 

phosphorylation are also significantly altered (Talreja et al. 2017).  

 
Autoimmune disease is characterised by a loss of homeostasis and tolerance 

resulting in inappropriate immunogenic responses and ultimately tissue 

damage. In the intestines, Mo and macrophages are constantly exposed to 

microbiota. Both in terms of mRNA and cell surface expression, CD16 and 

CD14 are down-regulated on intestinal Mo, leading to a downregulation in 

immune response and allowing for microbiota to exist without causing 

inadvertent inflammation (Cole et al. 2016). It has been found that microbial 

metabolites, produced in the gut, may modulate co-regulatory activity by 

HDACs and the levels of active PU.1 leading to the dampening of immune 

responses (Lasitschka et al. 2017). In the inflammatory bowel disorder 

Chrohn’s disease,  PU.1 levels are overexpressed in Mo and an inflammatory 

phenotype observed (Lasitschka et al. 2017).  
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Systemic Lupus Erythematosus (SLE) is an autoimmune disease 

characterised by abnormal Type I IFN responses. Microarray of blood Mo 

could not only distinguish SLE patients from immunised or healthy controls,  

but could also be used as a biosensor to monitor Type I IFN response and 

predict prognosis (Lasitschka et al. 2017). Another study on SLE showed that 

Mo isolated from patients had an altered histone landscape with K3K4me3 

increased at promoter regions and K3K27ac at the enhancer regions of Mo. 

Increased levels of the demethylase enzyme, JMD3 in combination with 

reduced EHZ2 were found and point to the role of these enzymes in this 

disease process and potential for therapeutic targets (Shi et al. 2015).  

 

In chronic inflammation associated with cardiovascular disease and diabetes, 

Mo are clearly implicated. Pro-inflammatory and atherosclerotic factors in 

diabetic Mo are driven in part by the sustained activation of the co-

transcriptional regulators SETD7/9 (a MT enzyme) and EHZ (Li et al. 2008). 

Enhanced TNFa responses occur as excessive SETD7/9 both stabilises the 

binding of NFkB while simultaneously methylating adjacent H3K4 (Li et al. 

2008). The simultaneous recruitment of JMD3 further potentiates this response 

via removing repressive marks at other relevant promoters (Li et al. 2008). The 

attenuation of this effect when knocking out SETD7/9 clearly demonstrates a 

relevance to potential therapies (Li et al. 2008). Though not linked to 

cardiovascular diseases, SETD7/9 is also known to act on STAT3 binding 
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sites, impairing its action and therefore potentiating inflammation (Li et al. 

2008).   

 

In summary, the transcriptional regulation of Mo is dependent on complex 

interactions between LDTFs, CTFs, SDTFs and co-transcriptional regulators. 

The multiple combinations possible among these factors allow for the plasticity 

essential to Mo function but also the susceptibility to alterations in the context 

of cancer. Understanding of this regulation would confer potential benefits to 

manipulating Mo in cancer.   
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1.5 Mouse models of breast cancer 

 

Mouse models of breast cancer provide a means to deconvolute mechanisms 

of disease and develop potential therapies in what is hoped to be a clinically 

relevant context. The simplest, cheapest and quickest strategies are 

intravenous injection of metastatic cell lines or orthotopic injection of cancer 

cell lines subcutaneously or directly into the mammary fat pad. However, these 

models lack the establishment of cancer from pre-invasive to invasive stages 

and therefore do not fully recapitulate the tumour-host interactions. This can 

lead to misleading findings (Ciampricotti et al. 2012).  Additionally, if the focus 

of the research of the immune environment, then the use of immunocompetent 

mice is essential. This precludes the use of mouse models using patient 

derived xenografts (PDX), though this is not to say that these cannot be very 

useful in other contexts. To overcome this aspect, humanised mouse models 

have been developed whereby human haematopoietic stem and precursor 

cells can be engrafted into sublethal irradiated immunodeficient mice (Shultz 

et al. 2005). The use of PDX models in these mice presents the potential to 

explore the human immune system response to a human tumour within the 

benefits of a mouse model. However, these mice lack both T and B cells and 

thus their utility is limited. Thus while it may be that with further development 

humanised mouse models become the gold standard  (de Ruiter et al. 2018), 

currently the most well-established system to study the tumour-immune 
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environment remains the use of genetically engineered mouse models 

(GEMMs).  

 

As GEMMs are a well-established way of studying immuno-oncology, many 

different options exist (de Ruiter et al. 2018). The first breast cancer GEMM to 

be developed made use of a naturally occurring virus termed mouse mammary 

tumour virus (MMTV, also known as Bittner virus), which was discovered by 

Bittner in 1936 (Bittner 1936). This viral RNA oncogene encodes for super-

antigens which stimulate T cell and B cell proliferation (Reuss & Coffin 1995). 

In natural conditions, it is during puberty that the virus enters the mammary 

glands with migrating lymphocytes and infects proliferating mammary gland 

epithelial cells (Golovkina et al. 1998). As the RNA is reverse transcribed, the 

virus incorporates into the DNA. Inevitably, when this viral DNA is inserted in 

proximity to any gene, it will drive expression within the mammary epithelium. 

The long terminal repeat of the MMTV contains a glucocorticoid hormone 

response element that acts as a promoter to drive the adjacent gene. This is 

potentiated by oestrogen and other steroid hormones. To this end, the MMTV 

alone can lead to mammary cancer through insertional mutagenesis. However, 

when the MMTV LTR is coupled with the highly oncogenic Middle T antigen 

protein of the polyoma virus, this is very effective in inducing mammary cancer. 

This model, developed by Muller and colleagues in the late 1980s (Muller et 

al. 1988) and termed the MMTV-PyMT, is the one of the most well established 

GEMMs of breast cancer. It is a favoured model for studying ductal cancer as 
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tumours develop spontaneously in the mammary and salivary glands and 

evolve in a manner that reflects stages of human ductal cancer (Figure 3) (Lin 

et al. 2003, Muller et al. 1988). Tumour dissemination is haematogenous rather 

than lymphatic and mice develop lung metastasis (Lin et al. 2003).  

 

The MMTV promoter can also be coupled with other oncogenes, such as in 

the MMTV-Wnt1 model, or other combinations of localised promoter-oncogene 

can be used, such as the whey acid protein promoter (WAP) and Myc 

oncogene in the WAP-Myc model. The exact promoter used is important, as 

models have been replicated and modified. For example, the original MMTV-

PyMT developed by Muller was also developed by Hennighausen and 

colleagues (Wagner et al. 1997). While the promoter used in both models are 

very similar, they are not the same and the latter is more promiscuous. Thus, 

despite having the same name, the phenotype of the models differ.  

 

A more complex approach can be to use the cre-lox system in which target 

genes are flanked by loxP which is recognisable by cre recombinase. Cre 

expression is restricted to the mammary gland. Using this, oncogenes can be 

activated by removing genetically engineered stop codons or tumour repressor 

genes can be deleted by targeting their functional exons. This can be used to 

manipulate the model to reflect molecular or genetic mutational types of breast 

cancer. An example of this is the MMTV-Cre/PTENflox/flox mouse model which 

deletes the tumour suppressor gene Pten within the mammary gland (Schade 
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et al. 2009). This can additionally become more complex by, for example, 

adding in an allele for a chosen gene of interest to investigate how this gene 

is involved in any given mechanism. A limitation that should be noted with all 

the GEMMs discussed is that every cell in the mammary gland has the same 

mutation. Thus, while GEMMs partly recapitulate the natural evolution of 

cancer and the accompanying changed to the TME, they lack the accumulation 

of mutational burden within a single cell that occurs in naturally evolving cancer 

(de Ruiter et al. 2018).     

 

An important consideration when using GEMMs is the strain and background 

of the mouse used. For example, the well-established MMTV-PyMT model is 

available in many different strains. In each strain the time to onset of tumour, 

tumour burden and metastatic burden varies (Lifsted et al. 1998). Two 

commonly used strains are the FVB and C57BL/6 mice. The former is 

advantageous as tumours develop by 8 weeks and tumour development is 

relatively homogeneous. However, if more complex questions are to be 

explored, requiring further crosses, many targeted alleles are not available on 

an FVB strain. For this reason, the C57BL/6 strain can be more useful. An 

explanation for the variation in tumour development is in part due to the 

differences in immune responses between strains, an important consideration 

when studying tumour-immune interactions (Lifsted et al. 1998, Davie et al. 

2007; Mills et al. 2000).  
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Traditional GEMMs have many benefits. However, the spontaneous and 

sporadic nature of tumour development causes heterogeneity and can hinder 

the planning of experiments. Adding in an “on-off” system, such as the 

doxycycline inducible tetracycline system or tamoxifen inducible system can 

improve this. However, the breeding time and time for tumours to develop can 

still lead to heavy financial burdens and extensive time-delays. To counteract 

this, mammary tumours at the same stage can be frozen down, segmented 

and then re-implanted into a group of mice (Casbon et al. 2015). To further 

this, tumours can be grafted into mice of a genetically modified background of 

any gene of interest to preclude the use of more complex cre-lox breeding. 

This model system can be referred to as an allograft. When studying metastatic 

progression, the presence of large primary tumours can be a limiting factor. 

Therefore, another approach can be to resect the primary allograft tumour 

once metastasis are established, and monitor metastatic disease thereafter 

(Doornebal et al. 2013).  

 

The complexity of which exact model to choose was highlighted by a recent 

paper which assessed 16 different GEMMs (Wellenstein et al. 2019). The 

immune response (assessed in terms of neutrophilia) varied across all 16 

GEMMs, dependent of the loss of p53 (Wellenstein et al. 2019). The 

combinations of specific promoter(s), oncogene(s) and mutation(s), the strain 

and background, and the exact system to use means that many options are 

available to study Mo in breast cancer.   
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Figure 3 Summary of tumour progression and biomarker expression in 
PyMT mouse model of breast cancer. Top: Gross, displays the overall 

development of lesions in mammary glands of PyMT mice. Tumour lesions are 

indicated by blue dots. The H&E panel displays the corresponding histology of 

primary lesions at different stages of tumour progression. The cellular 

morphology panel schematically illustrates changes in the cytology of the cells 

as well as the integrity of the basement membrane and the presence or 

absence of myoepithelial and focal inflammation. Moreover, the changes in 

biomarkers during tumour progression is summarised in the panel of 

biomarkers. T/D, the ratio of Neu expression between lesions and normal 

ducts in age-matched mammary glands.  Figure and caption used with 

permission from Lin et al. 2003. 

understanding the nature of the tumor progression and
developing effective therapeutic strategies against can-
cer. For this purpose, we have developed a four-step
classification of tumor progression and observed several
similarities with human breast cancer progression. Magli-
one and colleagues44 described a two-stage classifica-
tion of PyMT tumors consisting of MIN and invasive car-
cinoma in the PyMT model. However, this does not easily
allow focus on the early changes in proliferative lesions in
PyMT model that may lead to the malignant switch. As
summarized in Figure 10, this study has identified several
such changes that are not only associated with altered
cellular morphology in the tumor, but also with tumor
growth, alteration of tumoral stroma, and host response to
the tumor during the tumor progression to malignancy.
Indeed, a number of these markers have been shown to
be predictive of human breast cancer prognosis and
perhaps to be causal in the disease process. Loss of
estrogen and progesterone receptor gene expression
has been found in 30% of human breast cancers, and this
condition are associated with less differentiated tumors
and poor clinical outcome.13 Similarly, overexpression of
ErbB2/Neu and cyclin D1 has been found in !20% of

cases and this also correlates with poor prognosis.12,14

Remarkably, these phenomena seem to be recapitulated
in the PyMT model with loss of ER and PR and overex-
pression of ErbB2/Neu and cyclin D1. This suggests a
common pathway to malignancy between mammary can-
cers in mice and human. One difference in ER and PR
expression between PyMT-induced tumor and human
breast cancer is that a higher percentage of mice lost
these receptors when the primary tumors developed to
malignant stage (" 80% of mice versus !30% human
cases). This difference may reflect the relatively purer
genetic background in mice compared to humans and
this phenomenon can be useful in studying the mecha-
nism of hormone resistance in human tumors.

By this detailed analysis of these early stages in tumor
progression we have demonstrated a marked expansion
of ER-negative cell population occurs in the tumor at the
initial stage of the malignant transition. At this same early
carcinoma stage, an increased expression of cyclin D1
and Neu as well as a redistribution of cyclin D1-positive
cells in tumors, are also initiated. Together with the ap-
pearance of nuclear pleomorphism in the lesion, these
data have demonstrated that a deregulation of cell pro-

Figure 10. Summary of tumor progression and biomarker expression in PyMT mouse model of breast cancer. Top: Gross, displays the overall development of
lesions in mammary glands of PyMT mice. Tumor lesions are indicated by blue dots. The H&E panel displays the corresponding histology of primary lesions at
different stages of tumor progression. The cellular morphology panel schematically illustrates changes in the cytology of the cells as well as the integrity of the
basement membrane and the presence or absence of myoepithelial and focal inflammation. Moreover, the changes in biomarkers during tumor progression is
summarized in the panel of biomarkers. T/D, the ratio of Neu expression between lesions and normal ducts in age-matched mammary glands.

2124 Lin et al
AJP November 2003, Vol. 163, No. 5
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Chapter 2 Hypothesis and Aims 
 

2.1 Hypothesis  

 

It is proposed that in breast cancer, epigenetic and transcriptional 

modifications occur in Mo. If this occurs, it may involve alterations at the 

progenitor stage in the BM, within the blood, within the tumour or a combination 

of these. There are aspects common to human and mouse, both in the 

alterations to Mo and the mechanisms by which this occurs. 

 

2.2 Aims 

 

1. Establish if changes in Mo populations occur in MMTV-PyMT mouse 

models of breast cancer and if so, what the role of Mo progenitors are 

in this process.  

2. Transcriptionally profile Mo in MMTV-PyMT mouse models of breast 

cancer and determine, if changes occur, where conditioning occurs and 

if orthologous differentially expressed genes exist when compared with 

a human breast cancer Mo dataset.  

3. Establish potential mechanisms by which Mo transcriptional regulation 

is altered in cancer by assessing the epigenetic landscape of Mo and 

investigating targets common to both the human and mouse datasets.  

 



 Monocyte dynamics in breast cancer 

 

Hypothesis and Aims  57 

  



 Monocyte dynamics in breast cancer 

 

Methods  58 

Chapter 3 Methods  
 

3.1 Mouse models 

 

Male Tg(MMTV-PyMT)634Mul/Lellj were bred with female WT or PyMT-/- female 

mice from within the existing GEM colony. The MMTV-PyMT GEM lines were 

on two different background strains; C57BL/6 PyMT GEM lines were on 

C57BL/6JCrl and FVB PyMT lines were on FVB/NHanHsd. 8-week old 

C57BL/6JCrl mice were purchased from Charles River Laboratories. 8-week 

old FVB/NHanHsd mice were purchased from Harlan Olac, now Envigo. 

PyMT+ve mice were PYMT+/- and controls were PyMT-/- littermates. For 

allograft models, tumours were harvested from PYMT+/- tumour bearing 

females and recipients were 10-16 week old female C57Bl/6JCrl mice. 

 

All 10 mammary glands were palpated weekly from 8 weeks of age (see Figure 

4 for mouse mammary anatomy). Once tumours were first detected, they were 

monitored and measured bi-weekly. Tumours in the spontaneous model were 

permitted to a maximum size of 20mm. Tumours for the allograft model were 

permitted to a maximum size of 12mm. Consistency of tumours was monitored 

for the formation of cysts by palpating tumours and the skin was monitored for 

any signs of ulceration.  The general health of mice, including weekly weighing 

of mice, was also monitored to comply with animal use protocols.   
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For allografts, tumours were harvested immediately after culling by using a 

rising concentration of CO2. Tumour segments were cut into standard sizes, 

4x2mm and placed in a petri dish with PBS on ice. Under general anaesthetic, 

a right sided 1cm medio-lateral incision was made and the skin flap raised to 

allow direct visualisation of the right inguinal mammary gland. The tumour 

segment was then inserted using a coring needle and the site of entry sealed 

with tissue glue. Once homeostasis was confirmed, the skin was closed with 2 

skin clips. Skin clips were removed at 10-14 days and mice were monitored for 

tumour development. For sham procedures, the same procedure was carried 

out, but the coring needle contained no tissue.  

 

 

Figure 4 Anatomical location of the mouse mammary glands. Left: 

ventral view of the mouse mammary system at the late gestation stage. Right: 

localization and aspect of the mammary gland at the late gestation stage in 

the mouse. Open access article Honvo-Houeto & Truchet 2015.  
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3.2 Tissue collection  

 

For blood kinetic experiments, 50µl of blood was obtained every 14 days by 

tail vein bleed. Blood was taken up using a P100 containing 10µl 0.5MM EDTA. 

A cumulative record of blood collection was maintained to ensure that total did 

not exceed recommended allowances (10.8 x weight, over 30 days). The 

endpoint for this kinetic was once the tumours reached 20mm.  

For terminal experiments, mice were culled using a rising concentration of 

CO2. A thoracotomy was then performed, and cardiac puncture performed 

using a 23G needle and 1ml syringe primed with 100µl EDTA. BM, spleen and 

tumours were harvested and placed in PBS on ice if being processed for flow 

cytometry or into 4% paraformaldehyde. Tissues placed in 4% 

paraformaldehyde were washed at 48 hrs and stored in 70% ethanol. 

 

3.3 Flow cytometry analysis for mouse  

 

For all antibodies see Appendix section 9.1.1 Flow cytometry antibodies. 

Detailed sample preparation methods for all methods in this section can be 

found in the Appendix section 9.2 Detailed protocols. For all flow cytometry 

experiments initial panels were optimised, and FMOs were used to define 

gates, with use of isotype controls where necessary. For compensation 

OneComp eBeads™ Compensation Beads (ThermoFisherScientifc, Cat No 

01-1111-42) were used.  
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All gating strategies initially selected cells (SSC-A against FSC-A), excluded 

doublets (SSC-A against SSC-H), and live cells using live/dead as specified.  

 
3.3.1 Flow cytometry of mouse blood cells 

 

Blood Mo were defined as dump- (CD3, CD19, NK1.1), CD11b+, CD115high 

and then assessed using both Ly6c and Treml4 to separate out Ly6chigh 

(Ly6chigh/Treml4-), Ly6clow (Ly6clow/Treml4high), and Ly6cint populations.  The 

gating strategy is as for BrdU analysis in Figure 10 with the exception of the 

appearance of cells on SSC-A versus FSC-A being different given the fixing 

process used for BrdU staining.  The use of Treml4 in addition to Ly6c helped 

to separate out the populations as it acts as a positive marker for the Ly6clow 

population (Briseño et al. 2016). This was validated with scRNAseq data. As 

shown in Figure 6, F the Ly6cint population appear as a waterfall between the 

two more distinct populations.  

 

Neuts were defined as dump-, Cd11b+ and CD115low, Ly6g+.  

 

For accurate quantification of cell numbers in the blood, 123count eBeads™ 

Counting Beads (ThermoFisherScientifc, Cat No 01-1234-42) were used: Cells 

were suspended in 300µl for flow cytometry. Immediately prior to analysis, 50µl 

of counting beads were added and the sample vortexed and then acquired.  

The following calculation was applied: 
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Absolute cel l  count (cel ls/µl)  = (cel l  count x eBead Volume) x eBead Concentrat ion 

            (eBead Count x Cell Volume) 
 

3.3.2 Flow cytometry of mouse bone marrow cells 

 

BM Mo were defined as dump- (CD3, CD19, NK1.1, Ter119), CD11b+, 

CD115high and then assessed as Ly6chigh, or Ly6clow based on Ly6c expression 

alone. The gating strategy is the same as for BrdU of BM Mo shown in Figure 

11. While Treml4 is expressed on Ly6clow Mo, the BM contains only 5-10% of 

Ly6clow Mo and even less, if any, intermediates (Hamon et al. 2017). As 

discussed in the introduction, Ly6chigh Mo exit the BM and, in the blood, 

differentiate into the Ly6clow Mo via an intermediate cell. Ly6clow Mo may then 

re-circulate back to the BM, but they account for very low frequencies in the 

total BM myeloid pool (Hamon et al. 2017). Given this, it was reasoned that 

the intermediate population were not relevant within the BM and they were 

neither gated nor analysed. The use of Treml4 was not necessary for accurate 

gating of the BM Ly6clow populations. Furthermore, as a direct flow cytometry 

fluorophore, Treml4 is only available on PE. The panel was initially developed 

for the analysis and sorting of Mo and progenitors so was a 10-colour panel. 

Many of the markers used took multiple trials with different fluorophores to get 

optimal staining of populations. This precluded the use of Treml4 on PE. 
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For alternative BM data, provided by a colleague in the lab (Dr. Agnieszka 

Swierckzak) the panel and gating strategy were different (Figure 5). The 

inclusion of CD45 in the panel did not alter findings and was therfore 

comparable with other strategies where CD45 had not been used (Fig 5, D). 

 

 

 

 

Figure 5 Gating of BM cells using an alternative strategy. Cells have 

already been gated for exclusion of debris, doublets and dead cells (A) 

Selection of CD45+ cells (B) Selection of cells based of expression of dump 

(Cd3, B220, CD49b) and CD11b (C) Selection of Neuts as Ly6g+ and Mo as 

Ly6g- (D) Expression of dump and CD11b in the CD45- compartment.  
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3.3.3 Flow cytometry of BM progenitors 

 

For analysis and sorting of Macrophage Dendritic Progenitor cells (MDPs) and 

Common Myeloid Progenitors (cMoPs) a sorting strategy was designed based 

on the literature (Hettinger et al. 2013). The full gating strategy is shown in 

Figure 6. Live, CD115high cells were selected as dump- (CD3, Cd19, NK1.1, 

Ter119) and Ly6g-. Sca1-, CD127- (IL7ra-) cells were gated into three 

populations based on CD117 (cKit) and CD135 (Flt3) expression and each of 

these populations assessed for Ly6c and CD11b expression: CD117low, 

CD135-,Ly6chigh, CD11b+ Mo; CD117high, CD135-, Ly6chigh, CD11b- cMoPs; 

CD117high, CD135+, Ly6c-, CD11b- MDPs. To validate this, sorted MDPs and 

cMoPs were cultured in, picked and Giemsa stained (Figure 7).  

 

For sorting of Lin- Sca- c-Kit+ (LK) cells the gating strategy was altered (Figure 

8): Live cells were selected as dump- (CD3, Cd19, NK1.1, Ter119) and Ly6g-

. LK cells were gated as Ly6c-, CD11b-. The observation of all types of colonies 

in CFU assays from these cells confirmed their multipotency, particularly the 

red tinged BFU-E colonies. 
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Figure 6 Gating strategy for sorting of MDPs and cMoPs. Following 

selection of live and CD115high cells (A) dump- (CD3, CD19, NK1.1, Ter119), 

Ly6g- cells selected (B) Selection of Sca1-, CD127- cells (C) Selection of 

CD117low, CD135- cells (C1); CD117high, CD135- cells (C2); CD117high, 

CD135+ cells (C3). For (A-C) Top; full stain, bottom; FMO for antibody on each 

x-axis. (C1-C3) Further selection of respective gates using Ly6c and CD11b 

expression for (C1) Ly6chigh, CD11b+ Mo (C2) Ly6chigh, CD11b- cMoPs (C3) 

Ly6c-, CD11b- MDPs.  
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Figure 7 Validation of MDP sorts. Two examples of colonies with picked, 

cytospun, Giemsa staining demonstrating macrophage phenotype. For each 

example the colony is shown on the left and the morphological giemsa staining 

on the right.  

 

 

 

 

 

Figure 8 Altered gating to select for LK cells (A) Live cells gated as dump- 

(CD3, CD19, NK1.1, Ter119) and Ly6g- (B) Selection of the Lin- population 

using Ly6c and CD11b (C) Selection of LK as CD117high Sca1-. 
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The gating strategy for Primitive BM progenitors is shown in Figure 9. Myeloid 

progenitors were defined as Lineage- (CD3, Cd19, NK1.1, Cd11b, Ly6g, Ly6c, 

Ter119) and CD127- and then divided into LK and LSK as CD117high, and 

Sca1- and Sca1+ respectively. The LSK population was divided into CD135+ 

Multipotent progenitors (Flt3+ MPPs) and CD135- Haematopoietic Stem 

Progenitor Cells (HSPCs). All CD135- cells were then divided into CD48+ cells, 

representative of the CD135- MPPs (Flt3- MPPs), and CD48-, CD150+ 

Haematopoietic Stem Cells (HSCs). The LK population was divided into 

Megakaryocyte-Erythrocyte Progenitors (MEPs) (CD34-, CD16/32), CMPs 

(CD34+, CD16/32-) and GMPs (CD34+, CD16/32). This gating was designed 

to be consistent and therefore comparable with that in the literature (Casbon 

et al. 2015).  
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Figure 9 Analysis of BM progenitors (A) Selection of CD127-, Lineage- 

(CD3, Cd19, NK1.1, Cd11b, Ly6g, Ly6c, Ter119) cells (B) Selection of LK as 

CD117high Sca1- and LSK as CD117high Sca1+ (C1) LSK population gated as 

CD135+ MPPs (termed Flt3+ LMPPs); and CD135- HSPC cells (C2) HSPC 

gated in C1 further gated as Flt3- MPPs (CD48+, Cd150-) and HSCs (CD48-, 

Cd150+) (D) LK population divided into MEP (CD34-, CD16/32-), CMP 

(CD34+, CD16/32-) and GMP (CD34+, CD16/32+). (E) FMO for CD16/32 

staining (F) FMO for CD34 staining. 
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3.3.4 BrdU 

 

Mice were injected intraperitoneally with 100ul BrdU-stock (10mg/ml in D-PBS 

of BrdU, Sigma Aldrich, cat.no. B9285. 100µl is equivalent to 1mg per mouse). 

For tracking, a 40µl tail vein bleed was taken at the specified time point. For 

the BM, blood and spleen, mice were culled by rising CO2 at 1hr after injection 

of BrdU and tissue harvested. Differing from previous experiments, a fixable 

live/dead stain was used and after the primary staining, cells were fixed for 1hr 

at RT and then permeabilised and incubated with DNase at 37˚C for 30 mins. 

Cells were then washed with permeabilisation/fixation wash and stained with 

Anti-BrdU-antibody (Alexa Fluor® 488 anti-BrdU Antibody, EBioScience, Cat 

No 364106) for 30 mins at RT. For each group and in all experiments, 

background BrdU levels were set using a control in which cells were processed 

identically but instead of DNase, PBS was applied. The control was used to 

determine the BrdU+ gate and the percentage of BrdU+ cells per cell type was 

calculated. Examples of gating for the blood and BM at 24 hrs can be seen in 

Figure 10 and 11 respectively.   

 

For the spleen, following selection of live single cell populations, Dump- (CD3, 

CD19, NK1.1, Ter119, Ly6g) and CD115high cells were gated and then divided 

according to expression of CD135 and CD117 with the Mo defined as double 

negative and MDPs as double positive. Mo were gated as CD11b+, Ly6chigh 

and MDPs as CD11b-, Ly6c-. The gating strategy is shown in Figure 12.   
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Figure 10 Gating of blood Mo for BrdU levels at 24 hrs (A) Exclusion of 

debris (B) Exclusion of doublets (C) Exclusion of dead cells (D) Selection of 

dump- (CD3, CD19, NK1.1, siglecF, Ly6g) cells (E) Selection of  CD115high 

and CD11b+ cells (F) Gating of Mo into F1:Ly6chigh (Ly6chigh, Treml4high), 

F2:Ly6cint (Ly6cint, Treml4int), F3:Ly6clow (Ly6clow, Treml4high) (F1-3) Gating of 

BrdU+ cells in respective Mo populations.  
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Figure 11 Gating of BM Mo for BrdU levels at 1hr (A) Exclusion of debris 

(B) Exclusion of doublets (C) Exclusion of dead cells (D) Selection of Dump- 

(CD3, CD19, NK1.1, Ter119, Ly6g) and CD11b+ cells (E) CD115high cells (F) 

Top quadrants Ly6chigh Mo, top right Ly6chigh BrdU+ cells.  
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Figure 12 Gating of Mo and MDP populations in the spleen (A) Exclusion 

of debris (B) Exclusion of doublets (C) Exclusion of dead cells (D) Selection of 

Dump- (CD3, CD19, NK1.1, Ter119, Ly6g) and CD115high cells (E1-2) Full 

stained sample and FMO for CD135 to show the positive staining of CD135. 

Gates shown for myeloid cells (CD117low, CD135-) and MDP1 (CD117high, 

CD135+) (F) selection of Mo as CD11b+ and Ly6chigh (G) Ly6chigh BrdU+ cells 

(H) Stringent gating of MDPs as CD11b- and Ly6clow. 

C
D

11
7 

(c
K

it)

C
D

11
7 

(c
K

it)

B

E1 E2

C

F
LI

V
E

/D
E

A
D

Ly
6c

Ly
6c

Ly
6c

SSC-H

CD11b CD11b 

SSC-H

CD135 (Flt3) CD135 (Flt3)

A

D

G H

FSC-A

CD115

BrdU

S
S

C
-A

S
S

C
-A

D
U

M
P

Mo

MDP1

MDP2



 Monocyte dynamics in breast cancer 

 

Methods  73 

3.3.5 Phosphorylated Stat1 Flow cytometry 

 

Sorted BM Ly6chigh Mo were centrifuged at 400g for 5 mins and re-suspended 

in medium (Dulbecco's Modified Eagle Medium + L/Glutamax + 10% FCS) 

prewarmed to 37˚C. Pre-warmed 50µl aliquots of either medium or medium 

supplemented with INFg (at a concentration of 10 or 20ng/ml) was added to 

each well and samples were incubated at 37 ˚C for 15 mins. Samples were 

transferred to a V bottom 96 well plate and centrifuged at 400g for 5 mins. 

Samples were washed twice with wash buffer (centrifuged at 400g for 5 mins). 

Pre-chilled True-Phos™ Perm Buffer (Biolgened, Cat No 425401) (100µl) was 

added to each sample and pipetted up and down to ensure all cells were in 

suspension. Cells were left overnight in the fridge at 4˚C.  

 

The following morning, plates were centrifuged at 1000g for 5 mins, washed 

with specialised cell staining buffer (Biolegend, Cat No 420201) and 

centrifuged at 1000g for 5 mins. Cells were re-suspended in 19µl of staining 

buffer + 1µl of Alexa Fluor® 488 anti-STAT1 Phospho (Ser727) Antibody 

(Biolegend, Cat No 686409), covered with foil and left at RT for 30 mins. Cells 

were washed twice with staining buffer (centrifuged at 1000g for 5 mins) and 

re-suspended in staining buffer for sample acquisition. 
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3.4 CFU assays 

 

Detailed sample preparation methods for all methods can be found in the 

Appendix section 9.2 Detailed protocols. Progenitor cells were sorted into 

1.5ml Eppendorph tubes containing Iscove's Modified Dulbecco's Medium 

(IMDM) medium and centrifuged at 400g and re-suspended in IMDM medium 

to ensure a concentration of 600cells/300µl for MDPs or 800cells/300µl for LK 

cells. 300µl of cell suspension was added to 3ml aliquots of MethocultTM 

M3534 (STEMCELL Technologies, Cat No #03534) in Falcon™ Round-

Bottom Polystyrene Tubes (Falcon 352058, product code 10100151) and 

vortexed. Once samples were settled and free of air bubbles, 1.1ml of medium 

was plated and carefully spread across a 35mm petri dish. A duplicate was 

done for each sample. Plates were stored in a 15cm dish with an additional 

35mmm petri in the centre of the 15cm dish containing DPBS.  

 

Plates were incubated at 37˚C 5% CO2 >= 95% humidity and colonies were 

counted at 7-14 days. An average count was taken for each sample from the 

duplicate plates. Plates were counted additionally by Dr. Mathew Burgess, 

Centre for Inflammation Research, University of Edinburgh who was blinded 

from the cancer status of the mouse. 

 

For assessment of morphology by cytospin, colonies were lifted from the plate 

using a P200 and placed into a 1.5ml Eppendorph, washed with PBS and 
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centrifuged at 500g for 5 mins and re-suspended in 100µl of FACS buffer. 

Slides were labelled, filter papers placed and cyto-funnels secured. Slides 

were primed with 50ul of PBS and centrifuged for 1min at 500rpm (50x10) 

using the Shandon Cytospin II. Cells were loaded (100ul volumes only) and 

centrifuged for 5mins at 500rpm. The Rapid Romanowsky Stain Solutions A, 

B, C, (TCS Biosciences Ltd; Cat#HS705) were used: slides were immersed for 

30 secs, 15 secs and 2 mins into solutions A, B and C respectively and left to 

dry overnight.  

 

3.5 Flow cytometry sorting of human cells 

 

Detailed sample preparation methods for all methods can be found in the 

Appendix section 9.2 Detailed protocols. Cancer patients were consented, and 

samples obtained by a trained research nurse (Jane Keys) on the morning 

prior to surgery. Samples were transported to the Queen's Medical Research 

Institute (QMRI) on ice. Samples were immediately processed as detailed 

below. All data was anonymised; a unique patient identifier was generated. 

Ethical permission was granted prior to commencing the project (code SR390).  

Control samples were obtained from volunteers enlisted in the Centre for 

Inflammation Research Blood Resource (AMREC Reference number 15-HV-

013). Controls were all female and age-matched to cancer patients. All donors 

had no history of cancer or auto-immune disease and were not on any 

medication, such as steroids or antibiotics.  Donors were fasted and samples 
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collected at 08:30-09:00 to reflect the cancer samples and the metabolic and 

circadian context to which Mo are extremely sensitive. All data were 

anonymised.  

 

Blood was lysed using RBC lysis buffer (Biolegend, cat no 420301) at 4˚C for 

5-10 mins. Cells were incubated with FcR block for 20 mins (FcR blocking 

reagent Human, Miltenyi Biotec Cat No 130-059-901) and stained with 

antibodies for 30 mins in the dark on ice. All staining was undertaken in FACS 

buffer (0.5% w/vBSA in PBS). Cells were sorted on the BD 

FACSAria™ Fusion flow cytometer at the QMRI flow cytometry facility. A total 

of 25x103, 50x103 and >400x103 cells were sorted into Eppendorph tubes for 

RNAseq, ATACseq and ChIPseq respectively. 

 

All antibodies are listed in the Appendix section 9.1.1 Flow cytometry 

antibodies. Single live cells were selected as dump- (CD3, CD19, CD56) and 

CD45+. HLA-DRhigh cells were selected to leave Mo and dendritic cells from 

which Mo were selected as classical (CD14high CD16low) or non-classical 

(CD14low, CD16high) as described in the literature (Mukherjee et al. 2015). 

Neuts were principally excluded by size via the SSC-A versus FSC-A initial 

gating. Any contaminant Neuts could be seen as a population just above the 

non-classical population of Mo as they express high levels of CD16. An 

example of the gating strategy is shown in Figure 13.  
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Figure 13 Sorting strategy for human Mo populations (A) Selection of Mo 

based on size (FSC) and granularity (SSC) (B) Exclusion of doublets (C) 

Exclusion of dead cells D) Selection of dump- (CD3, CD19, CD56) cells (E) 

Selection of HLA-DR+ cells (F) Selection of classical CD14highCD16low and 

non-classical CD14lowCD16high Mo subsets. 
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3.6 Bead isolation of monocytes  

 

For optimisation of ATACseq, blood was taken via venepuncture directly into 

BD Vacutainer® CPT™ Mononuclear Cell Preparation Tubes with Sodium 

Heparin (16x125 mm / 8ml, cat. no. 362753) which were centrifuged at 1800g 

for 20 mins at RT (5 brake/acceleration). Using a 5ml pipette, the first half of 

the plasma was pipetted off and discarded and the remainder gently pipetted 

up and down against the gel plug to dislodge cells stuck to the top of the gel. 

Vigorous pipetting was avoided as this would disintegrate the gel plug itself. 

The sample was transferred to a 50ml conical polypropylene tube and a 10µl 

aliquot of cell suspension was used for counting while the sample was 

centrifuged at 400g for 5 mins at 4˚C. Cells were re-suspended to ensure 1x107 

cells in 40µl of buffer (PBS, 0.5% w/vBSA) and the Miltenyi Biotec Pan 

Monocyte Isolation Kit, human (cat. no. 130-096-537) used: FcR receptors on 

cells were blocked with 10µl of FcR Blocking Reagent (Miltenyi Biotec Cat No 

130-059-901), 10µl of Biotin-Antibody Cocktail added and samples incubated 

in the refrigerator (2−8 °C). After 5 mins, 30µl of buffer was added and the 

sample mixed prior to adding 20µl of Anti-Biotin MicroBeads, mixing well and 

incubating for 10 mins in the refrigerator (2−8 °C). Miltenyi MS Columns (cat. 

no.  130-042-201) were prepared by rinsing with 500µl of buffer and the cell 

suspension was added to the column with the flow-through of enriched Mo 

collected below the column. Columns were washed twice with buffer to ensure 

full yield.  



 Monocyte dynamics in breast cancer 

 

Methods  79 

3.7 RNA 

 

For scRNAseq, cells were sorted as per protocol for blood sorts. To establish 

efficiency of single cell deposit into plates, Hoescht stained cells were sorted 

initially and quantified (See Appendix 9.2.9 Hoescht staining of monocytes) 

For scRNAseq, total Mo rather than subpopulations were sorted into low 

binding, conical 96 well non-skirted plates (Sigma, Cat No CLS3474-24EA) 

containing 2µl of lysis buffer (1.9ul of 0.2% Triton-X l00 vol/vol + 0.1ul of 

RNasin Plus RNase inhibitor (10,000 U, Promega) per well). Stocks of lysis 

buffer were made up on the morning of sorting and plates were pre-chilled at 

4˚C and sorted at 4˚C. Immediately after sorting, plates were sealed with 

MicroAmp clear adhesive film and centrifuged at 300g at 4˚C. Plates were 

immediately transferred on dry ice to the lab of Dr. N Batada, (MRC Institute 

of Genetics and Molecular Medicine, Edinburgh, UK) for library preparation 

and sequencing.   

 

For bulk RNAseq, cells were sorted into 1.5ml Eppendorph tubes and 

pelleted for 10 mins at 500g at 4˚C and re-suspended into 475µl TRIzol™ LS 

Reagent (Illumina,10296028) and immediately frozen in a dry ice and 

methanol bath and stored at -80˚C. Detailed methods for RNAseq libraries 

can be found in the Appendix section 9.2.10 Preparing dUTP RNA-seq 

libraries. Samples were sequenced on Next Seq 500 to a desired read depth 

of 10x106 initially and 60x106 for deeper sequencing. 
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3.8 RT-qPCR 

 

Samples were sorted as per blood sorting protocol and gating strategy. Cells 

were pelleted at 500g and re-suspended in 350µl RNA Later (RLT) plus 

(Qiagen, Cat No 74004). For blood Mo, RNA was extracted using the RNeasy 

Micro Kit (Qiagen, Cat No 74004) and quantified on the NanoDrop™ 

One/OneC Microvolume UV-Vis Spectrophotometer. To make cDNA the 

Superscript VILO cDNA Synthesis Kit (Invitrogen, Cat No11754-050) was 

used. A list of primers is provided in the Appendix section 9.1.3.  Primers for 

qPCR. qPCR was undertaken using a non-skirted 96 well plate 

(ThermoFisherScientifc, Cat No AB0600) on the ThermoFisherScientifc 

QuantStudio5 PCR machine. Detailed sample preparation methods for all 

methods can be found in the Appendix section 9.2 Detailed protocols.  

 

For all primers, Bone Marrow Derived Macrophages (BMDMs) were used to 

assess the melting curve. At first triplicates were used for all experiments in 

case of pipetting error but CTs were either identical or differed by no more than 

0.05CTs between all triplicates and so it was decided that duplicates were 

adequate. Duplicate H2O controls were added to every experiment for each 

gene to ensure no contamination was present.  BMDMs for these methods 

were provided by Demi Brownlie of the Pollard Laboratory. Cultured BMDMs 

were washed and placed in RLT and RNA was extracted using the RNeasy 

Mini Kit (Qiagen, Cat No74104).  
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Initially, GAPDH was used as the reference gene. However, on further 

investigation and reviewing the literature, this was found not to be the best 

reference for Mo as it was reported that the levels are not stable in Mo (Piehler 

et al. 2010). This was confirmed on reviewing the RNAseq data and observing 

that levels of GAPDH were not uniform across the cancer nor control samples. 

Therefore, SDHA was used as the reference gene for all quantifications 

shown. The delta-delta CT method was used to calculate relative expression 

of genes. 

 

3.9 ATACseq 

 

A total of 50x103 Mo were sorted. Samples were washed with PBS and 

centrifuged at 500g at 4˚C for 5 mins. All supernatant was removed, and 

samples were re-suspended in 47.5µl of lysis buffer and 2.5µl of Tn5 enzyme 

(in NEXTERA DNA Sample Prep Kit, Illumina, Cat No FC-121-1030) was 

added. Samples were incubated at 37˚C and agitated at 600 rpm for 30 mins. 

To stop the reaction and purify the DNA, the ChIP DNA Clean and 

Concentrator capped Zymo-Spin kt was used (Cambridge Scientific, Cat No 

D5205). DNA was amplified using the Nextera Primer Ad1 and a unique 

Ad2.n barcoding primers using NEBNext High-Fidelity 2X PCR MM for 8-12 

cycles. PCR reactions were purified using 1.5 volumes of SpeedBeads in 

2.5M NaCl, 20% PEG8000, size selected using TBE gels for 160 – 280bp 

and DNA eluted. Detailed methods for ATAC libraries can be found in the 
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Appendix section 9.3.1. Preparation of ATACseq samples and libraries. 

Samples were sequenced on Next Seq 500 to a desired read depth of 

20x106. 

 

3.10 Statistics 

 

All analysis was performed on Graph Pad Prism software. The unpaired t-test 

was used to compare control and cancer groups. For comparison of multiple 

time points from kinetic data for one animal, a multi paired t-test was applied. 

To assess for outliers both Grubbs and the modified ROUT algorithm were 

used (Motulsky & Brown 2006). 

 

3.11 Bioinformatics 

 

3.11.1 Mapping 

 

Mapping was undertaken by colleagues Dr. Zhengyu Ouyang and Dylan Skola 

at University of California San Diego (UCSD). The reference genomes from 

the UCSC genome browser were used: For C57BL/6J the mm10 and for 

human samples the hg38 reference genome. Data was mapped to custom 

genomes using STAR (Dobin et al. 2013) with default parameters. ATAC-seq 

data was mapped to custom genomes using bowtie2 (Langmead & Salzberg 

2012) with default parameters. Data analysis was undertaken on the Epiglass 
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server, with thanks to Professor Chris Glass at UCSD for continued access. 

Further analysis was undertaken by Miss Amy Robinson using HOMER (Heinz 

et al. 2010) available at http://homer.ucsd.edu/homer. Throughout analysis the 

reference genome for commands was set at mm10 or hg38 for mouse and 

human samples respectively.  

 

3.11.2 RNAseq 

 

All samples were assessed for quality using the FastQC (Babraham 

Bioinformatics, 2010) package with MutliQC (Ewels et al. 2016). Unique 

mapping rates and read depths were checked with a cut-off of 90% minimum 

uniquely mapped reads and >20x106 total read depths unless otherwise 

specified. Additionally, correlation between samples and clonality were 

checked across all samples and all samples were visually inspected on the 

UCSC genome browser (Krämer et al. 2013).  

 

Adapter trimming was undertaken using homerTools trim. To generate both 

raw and normalised count files, HOMER command “analyzeRepeats” with the 

following parameters was used: -rna, -condenseGenes (only reports one locus 

per isoform), -count exons  -normMatrix (normalises the total of number of 

reads found in the gene expression matrix i.e. normalise total reads in mRNAs 

rather than all RNAs) -rpkm (report normalized values as reads per kilobase 

per million mapped reads). Differential gene expression (DGE) was assessed 
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with DESeq2 package with False discovery rate <- 0.05 and betaPrior = TRUE. 

Data visualization was undertaken in R studio. For average expression and log 

fold change (LFC) visualisation, LFC shrinkage using alpegm method was 

used. Pathway analysis was undertaken using Metascape (Barter & Bin Yu 

2018; Zhou et al. 2019) available at http://metascape.org/gp/index.html. To 

convert mouse genes to human orthologues the R package g:Orth (Reimand 

et al. 2007) was used with the following command line:  

orth=gorth(rownames(mousedf), source_organism = "mmusculus", target_organism = 

"hsapiens", region_query = F, numeric_ns = "", mthreshold = 1, filter_na = T, df = T) 
 

As there are multiple orthologue matches, the genes with the highest variance 

were selected.  

 

3.11.3 ATAC-seq  

 

All ATACseq samples were trimmed to 35bp. All samples were assessed for 

quality as for RNAseq with additional steps to quantify the percentage of tags 

that occurred within peaks as a measure of noise within the sample.  

 

For the optimisation of the lysis buffers analysis carried out using HOMER: To 

identify open chromatin or peaks the HOMER command “findPeaks” was used 

with the style set to factor and a size of 200bp. To identify the number of open 

chromatin peaks, peak files were merged using HOMER command 

“mergePeaks” with a set distance of 200bp and peaks were then annotated 
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using the HOMER command “annotatePeaks.pl”. To identify motifs the 

HOMER command “findMotifsGenome.pl” was used on the peak files. 

Samples were compared for tag density within peaks and motif enrichment. 

 

For analysis of samples from the cohort of controls and cancer patients, the 

irreproducible discovery rate (IDR) and DEseq2 methods were used. In brief: 

samples were grouped into 4 as: CD14 CANCER, CD14 CONTROL, CD16 

CANCER, CD16 CONTROL. Within each group all samples were processed 

as above to find peaks, merge peaks and annotate peaks. The correlation of 

tags in peaks between all samples in each group was analysed and the two 

best replicates for each group selected. Replicates were subjected to IDR to 

define peaks (Li et al. 2011). Each sample in each group was quantified 

against the respective IDR peaks and differential peaks discovered using 

DEseq2 (Love et al. 2014). For each group enriched peaks were checked for 

motifs using HOMER “findMotifsGenome.pl” and comparing against both a 

genome wide background and the background peaks generated for all the 

samples included in the DEseq2 analysis.   
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Chapter 4 Results: Monopoiesis in MMTV-
PyMT mouse models of breast 
cancer 

 

4.1 Introduction  

 

In humans, an increase in non-classical Mo in cancer has been observed 

(Cassetta et al. 2019). However, the kinetics of this change has not been 

characterised. Nor is the function of different Mo populations in human cancer 

clear. It is not feasible to follow Mo dynamics during the natural evolution of 

breast cancer in patients.  In lieu of being able to observe this in humans, 

mouse models provide an alternative.  

 

An increase in the myeloid populations and the potentiation of BM progenitors 

in FVB PyMT late tumour bearing mice has been reported (Casbon et al. 

2015). It is also known that Mo are mobilised from the BM and recruited to 

tumours (Qian et al. 2011; Arwert et al. 2018; Franklin et al. 2014).  Recruited 

Mo are a contributor to cancer progression (Qian et al. 2011). It is known that 

myeloid cells expand in the FVB PyMT mouse model (Casbon et al. 2015). In 

this model, the expansion of Neuts has been explained by alterations in BM 

progenitor populations (Casbon et al). But, the release and half-life of Mo was 

not assessed, and the contribution of this towards Mo kinetics in cancer is not 

known.  
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With regards to other myeloid compartments in cancer, following myocardial 

infarction Mo are rapidly mobilised from the spleen (Swirski et al. 2009; 

Leuschner et al. 2012). Additionally, Mo progenitors have been reported in the 

spleen (Leuschner et al. 2012). Yet, the dynamics of splenic Mo in cancer are 

not known.  

 

An objective of the PhD was to ascertain if, in mice, Mo populations were 

perturbed during cancer development and if so, when and how this occurs.  

The timing of any perturbance would then inform when to undertake RNAseq 

of Mo in mice. Given the advantages of using a spontaneous model which best 

reflects human cancer evolution and the advantages of the allograft system, 

both the spontaneous and allograft MMTV-PyMT models were considered. 

 

4.2 Allograft model of breast cancer 

 

To establish the allograft technique and to assess tumour engraftment and 

growth, late stage tumours were transplanted to 4 recipient mice and 1 sham 

operation was performed. Tumours were palpable by 14 days and at 21 days 

were growing but regressed by 28 days (Figure 14, A). On palpation of the 

tumours, a cystic nature was evident. This was confirmed at termination. There 

was no difference in Mo between cancer and sham mice (Figure 14, B).   
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Though it was not conclusive why cysts had developed, the advanced nature 

of the donor tumour was identified as a possible factor, as well as the area of 

the tumour harvested. To avoid the central necrotic tumour zone, the periphery 

of the tumour was selected. But this area has a high density of collagen and is 

relatively fibrous. It was reasoned that by using early stage tumours, 

engraftment may be better. Thus, to try and achieve better grafting of tumours, 

the experiment was repeated but tumours were harvested from mice with 

newly palpated tumours.  

 

A total of 6 mice were allografted with early tumour fragments and 6 mice 

underwent a sham procedure. Tumours were first palpable by 28 days after 

the operation and progressed without evidence of any cysts or regression 

(Figure 14, A). Tumours reached the maximum permitted size of 12mm by day 

42 in 5 of the mice and day 35 in 1 mouse. Tumour histology confirmed the 

presence of invasive disease reflective of the PyMT model.  

 

Quantification of total Mo over the course of tumour development revealed no 

significant increase in blood Mo over the time course of the experiment (Figure 

14, C). On day 28, there was a significant increase in Mo (p = 0.0275, unpaired 

t-test) but this was not sustained once tumours developed further and was not 

significant when multiple t-test adjustments were made. There was no increase 

in Neuts (Figure 14, D). There was no alteration to the distribution of Mo 
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populations at any time point (Figure 14, E). Thus, no perturbations to Mo could 

be shown in the allograft MMTV-PyMT model on a C57BL/6 background.  

 

An additional model was trialled concurrently using orthotopic injection of the 

MET1 cell line into the mammary fate pad. Unfortunately, while the injections 

and tumour development were non-problematic, the data acquired by flow 

cytometry was of very poor quality and therefore is not presented. 

 

Both the allograft and MET1 models were suspended and it was decided to 

characterise Mo dynamics during tumour development in the spontaneous 

MMTV-PyMT model in C57BL/6 mice.  

 

4.3 Spontaneous MMTV-PyMT model  

 

There was a gradual increase in Mo numbers as mice aged, but this was more 

pronounced in PyMT+ve mice (Figure 15, A). As mice developed tumours at 

variable ages (mean 18, range 16-24 weeks) it is more useful to stratify mice 

according to tumour stage; early tumour (time at which tumours were first 

palpable) or late tumour (~20mm). This demonstrated that there was a 

doubling in Mo numbers by late tumour stage (mean number of Mo in 50µl 

blood was 18x103 and 38x103 in control and mice with late stage tumours 

respectively) (Figure 15, B). There was no difference in the ratio of Mo 

subpopulations (Figure 15, C).  
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There was a significant increase in blood Neuts (Figure 15, D). This preceded 

the rise in Mo and was more profound, with a doubling at early stages and a 

3.5-fold increase by late stage disease (in control and cancer mice respectively 

the mean number of Neuts in 50µl blood for early stage tumours was 10x103 

and 22x103 and for late stage 24x103 and 84x103). By late stage there was an 

overall increase in the total number of cells in the blood of tumour bearing mice 

(Figure 15, E). The increase was restricted to the CD11b+ populations (Figure 

15, F). 

 

Both Mo and Neuts increased with age in both the PyMT-ve and PyMT+ve 

mice. For simplicity the comparison is not shown on Figure 15, but this was 

significant. For both the Mo and Neuts, the difference between cancer-cancer 

at each stage was more significant than the difference between control-control 

at each stage (multiple t-test results: early-to-late for cancer Mo 

q.value=0.00017, early-to-late for control Mo q.value=0.00193, early-to-late for 

cancer Neuts q.value=0.00001, early-to-late for control Neuts 

q.value=0.001005).  

 

While there was a greater change in Neuts, the understanding of Mo in 

particular was related to the principal aims of the PhD. Additionally, Neut 

dynamics had been relatively well characterised (Casbon et al. 2015) and 

therefore was less novel. Hence, the Mo expansion in the spontaneous 

C57BL/6 PyMT model remained the focus of subsequent work undertaken.   
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Figure 14 Tumour growth and myeloid populations during tumour 
development in the allograft PyMT model on C57BL/6 background (A) 

Tumour growth in mice transplanted with late stage tumours (n=4, shown in 

blue) and early stage tumours (n=6, shown in plum) (B) Total blood Mo in mice 

transplanted with late stage tumours (n=4) or sham (n=1) (C-E) Mice 

transplanted with early stage tumours or sham (C) Mo in 50µl of blood (D) 

Neuts in 50µl of blood (E) Ly6chigh Mo as % all blood Mo. As detailed in the 

key, samples in blue were from the first cohort and samples in plum are from 

the second cohort. All shams are in black. No statistically significant difference 

between cancer or sham by multiple t-test.  Experiments were conducted in 

co-housed groups of n=5 (4 late tumour fragments, 1 sham) in cancer cohort 

1 and n=12 (6 early tumour fragments, 6 sham) in cancer cohort 2. For (C-D) 

there is no data for one sample at day 42 as the tumour reached the maximal 

permitted size (12mm) by day 38. 
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Figure 15 Blood composition in PyMT+ve versus PyMT-ve C57BL/6 mice 
(A) Total blood Mo according to age (weeks) during spontaneous PyMT 

tumour model. Not significant (multiple t-test) (B) Total circulating Mo prior to 

tumour development (healthy), at onset of tumours (early) and at late stage 

~20mm tumour (late) (C) % of Mo subpopulations comparing at late stage (D) 

Total Neuts prior to tumour development (healthy), at onset of tumours (early) 

and at late stage ~20mm tumour (late) (E) Total blood cells in 50µl at late stage 

(F) Total number of CD11b+ and CD11b- cells at late stage. Cancer samples 

are shown in red and age-matched controls in black. * p value <0.05, ** p value 

<0.01, *** p value <0.001, **** p value <0.0001, multiple t-test. Experiments 

were conducted in duplicates with littermate and co-housed groups of n=6 (3 

PyMT+ve) and n=8 (4 PyMT+ve) in each replicate.  
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4.4 Establishing the role of bone marrow progenitors 

 

To firstly assess if Mo progenitors were altered by cancer, data from sorts for 

CFU assays was analysed. Mice with late stage tumours were compared with 

littermate controls. Total BM cell counts were not accurate for all samples and 

therefore estimated cell numbers are not provided. Results are expressed as 

the proportion of live cells. CD11b+ cells were increased and there was a 

reciprocal decrease CD11b- cells in the BM of mice with cancer (Figure 16, A). 

The ratio of Mo and Neuts remained the same (Figure 16, B), implying an 

overall increase in BM myeloid populations. There was no difference in cMoPs, 

MDPs or LK cells (Figure 16, C).    

 
On isolation and culturing of cMoPs, MDPs and LK cells, there was no 

difference in the total number of colonies formed in cancer (Figure 16, D). The 

proportion of different types of colonies formed from LK cells was unaltered in 

cancer (Figure 16, E). To assess this further CMP, GMP and MEP populations 

were analysed by flow cytometry. There was no evidence of shifts in the 

distributions of the CMPs, GMPs or MEPs (Figure 16, F).  

 

To explore the most-primitive BM progenitors, the LSK compartment was 

analysed. For these experiments, total BM cells were quantified and were not 

increase in cancer (Figure 17, A). There was a 2-fold increase in the LSK 

fraction of the BM from 2.1% (± 0.4) in control mice to 5.0% (± 0.6) in cancer 

bearing mice (Figure 17, B). Calculating the actual number of LK and LSK cells 
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demonstrated that the LK cells were not increased (Figure 17, C). In the LSK 

fraction there was a trend towards increased actual numbers in cancer, with a 

mean of 9000 (± 2033) and 15236 (± 3172) in controls and cancer respectively. 

But this was not statistically significant. Within the LSK fraction of BM the 

distribution of progenitor subsets was significantly altered (Figure 17, D). 

Estimating the actual number of cells, both HSPCs and Flt3- LMPP cells were 

significantly increased in cancer (Figure 17, E).  

 

To be able to estimate the total BM Mo and Neuts, data provided by Dr. 

Agnieszka Swierckzak (Prof. J Pollard lab, Edinburgh) was analysed. BM 

samples were compared in C57BL/6 PyMT mice with late stage tumours and 

age-matched controls. There was no increase in the total number of cells within 

the BM of late tumour bearing mice (Figure 18, A). Within the CD45+ 

compartment, as assessed by the proportion of live cells, there was an 

increase in Mo and Neuts and a reciprocal decrease CD11b- cells in cancer 

(Figure 18, B-C). But the estimated frequency of Mo or Neuts did not reach 

statistical significance (Figure 18, D). Applying Grubbs method, 1 control 

sample was identified as an outlier (Figure 20, E). Using the ROUT algorithm 

3 outliers were identified (Figure 18, E). Using either of these methods resulted 

in significant increases in the estimated number of both Neuts and Mo in the 

BM in cancer. For transparency all results are reported.  
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Figure 16 Analysis of BM sorts and CFU assays in C57BL/6 mice with 
late cancer or age-matched controls (A) Proportion of CD11b- and CD11b+ 

cells within the BM shown as a % of live cells (B) Ratio of Mo and Neuts within 

the BM  (C) Proportion of LK, cMoP and MDP cells within the BM shown as a 

% of live cells (D) Total colonies in CFU assays from LK cells, MDPs, cMoPs 

(E) Distribution of colony types within the LK CFU assays. (F) Analysis of LK 

cell progenitors; CMP, GMP and MEP as a % of LK cells. Late cancer samples 

are shown in red and age-matched controls in black. Isolated progenitors were 

cultured in methocellulose medium for 12-14 days and the number of colonies 

present were quantified. *** p value <0.001, unpaired t-test. For LK cells sorts 

conducted on 3 days in triplicates of co-housed littermate groups of n=4 (2 

cancer), n=11 (4 cancer) and n=5 (2 cancer). For MDPs sorts conducted on 3 

days with co-housed littermate groups of n=6 (3 cancer), n=4 (2 cancer) and 

n=10 (5 cancer). For cMoPs sorts were conducted on 1 day with n=10 (5 

cancer). For (F) experiments were conducted in triplicates of co-housed 

littermate groups of n=6 (3 cancer), n=4 (2 cancer) and n=6 (3 cancer). 
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Figure 17 Perturbations to BM progenitors in C57BL/6 mice with late 
cancer or age-matched controls (A) Total cells per two femurs (B-C) LK and 

LSK cells (B) as % of parent (C) estimated total cells (D-E) HSCs,  HSPCs, 

Flt- MPP and Flt3+ MPP (D) as % of parent (E) estimated total cells. Late 

cancer samples are shown in red and age-matched controls in black. * p value 

<0.05, ** p value <0.01, unpaired t-test. For (D-F) Experiments were 

conducted in triplicates of co-housed littermate groups of n=6 (3 cancer), n=4 

(2 cancer) and n=6 (3 cancer).  
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Figure 18 Quantification of BM populations in C57BL/6 mice with late 
cancer or age-matched controls using alternative data. Data courtesy of 

Dr. Agnieszka Swierckzak (A) Total cells flushed from 1 femur (B-C) Neuts, 

Mo and CD11b- cells as (B) % of CD45+ cells (C) % of live cells (D-F) 

Estimated total Neuts, Mo and CD11b- cells (D) All data point (E) Outliers 

removed by Grubb’s (F) Outliers removed by ROUT. Late cancer samples are 

shown in red and age-matched controls in black. * p value <0.05, ** p value 

<0.01 multiple t-test. Outliers removed using Grubb’s and ROUT method in 

Prism. Experiments were conducted in duplicates of co-housed littermate 

groups of n=4 (4 cancer). 
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4.5 Effects of cancer on monocyte egress, half-life and 
proliferation 

 

Because the changes observed in BM progenitors were not considered 

sufficient to explain the increase in blood Mo, it was hypothesised that Mo were 

being released more rapidly from the BM or that half-life within the blood was 

increased in the context of cancer.  

 

To test this hypothesis, mice with late stage tumours or age-matched controls 

were injected with BrdU and blood Mo were tracked by BrdU levels in each 

population at 1hr, 24hrs, 72hrs, 96hrs, 7 days and 10 days (Figure 19). At 1 hr 

there were no BrdU+ cells in the blood confirming that proliferation of Mo does 

not occur in the blood in cancer (or steady-state). There was no difference in 

the level of BrdU+ Mo between control and caner at any time-point.  

 

Because the altered release and half-life of Mo was not a mechanism whereby 

Mo were perturbed in this cancer model, it was hypothesised that proliferation 

of BM Mo may be a contributing factor. To test this, mice with late stage 

tumours and control mice were injected with BrdU and culled at 1hr to assess 

BrdU levels in BM Mo.  

 

There was no difference in the incorporation of BrdU between cancer and 

control in the LSK or LK cells as a whole, the GMPs, MDPs or the cMoPs 
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(Figure 20, A). However, in cancer there was a significant increase in the 

frequency of BrdU+ ly6chigh Mo in the BM (Figure 20, B). 

 

4.6 Contribution of the spleen to monopoesis 

 

It was hypothesised that monopoiesis in the spleen may be contributing 

towards the increased circulating Mo observed. The observation of 

splenomegaly in mice with late stage cancer further supported this. There were 

two principal questions, firstly is the spleen a reservoir for Mo and secondly 

are there any MDPs as evidence to support a hypothesis that extramedullary 

splenic monopoiesis contributes to the monopoiesis in late stage cancer.  

 

To address these questions, spleens were harvested 1hr post BrdU injection. 

Because gradient separation was used to isolate the mononuclear cells (T 

cells, B cells and Mo), these are termed collectively as splenic Mononuclear 

Cells (MCs). There was a 1.66-fold increase in the weight of spleens from late 

tumour bearing mice compared with age-matched controls (Figure 21, A). 

There was a 2-fold increase in total splenic MCs in cancer with a mean of 

52x106 (± 7) and 100x106 (±11) in control and cancer respectively (Figure 21, 

B). Adjusting for weight, there was no difference between cancer and controls 

(Figure 21, C). Ly6chigh Mo formed a greater proportion of live cells in cancer 

versus control (Figure 21, D). Estimating the actual number of Ly6chigh Mo 

indicated that there was a significant increase in splenic Ly6chigh Mo in cancer 

(Figure 21, E).  
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To assess the splenic MDPs, the criterion previously described by Fogg et al 

(Fogg 2006) was used. No splenic MDPs were detected in any control mice 

nor in tumour bearing mice. Returning to the paper by Leuschner et al that had 

demonstrated splenic MDPs post MI, the gating strategy was more lenient, 

having CD117 but not CD135, which is crucial to distinguishing cMoPs from 

MDPs (Fogg 2006). Re-analysing with this less stringent gating, there was a 

population of CD117high cells present (approximately 0.02% of all live splenic 

MCs) but they were not significantly altered in cancer.  

 

Finally, to assess if Mo were proliferating in the spleen, BrdU levels were 

assessed. There was no proliferation of the Ly6clow Mo/macrophage 

population. There were BrdU+ cells in the spleen, but these were non-myeloid 

cells (Figure 21, F).  There was no difference in the splenic Ly6chigh Mo BrdU 

levels in cancer versus controls, with very low levels overall (1-2% BrdU+).    
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Figure 19 BrdU tracing of blood Mo and level of proliferation in the BM of 
C57BL/6 mice with late cancer or age-matched controls. Level of BrdU+ 

circulating Mo within each population over time (A) Lyc6high (B) Ly6cint (C) 

Ly6clow. Late cancer samples are shown with a red dashed line and age-

matched controls with a solid black line. No significant difference by multiple t-

test or by unpaired t-test at each time point. Experiments were conducted in 

duplicates of co-housed littermate groups of n=6 (3 cancer).  

 

Figure 20 BrdU levels in the BM 1hr post injection in C57BL/6 mice with 
late cancer  or age-matched controls (A) LK, LSK, GMP (LSK, CD115low), 

MDPs and cMoPs (B) Mo, Neuts and CD11b- cells. For each value the % of 

BrdU+ve cells of the stated cell type is given. Late cancer samples are shown 

in red and age-matched controls in black. ** p value <0.01, unpaired t-test. 

Experiments were conducted in triplicates of co-housed littermate groups of 

n=6 (3 cancer), n=6 (3 cancer) and n=4 (2 cancer). In one sample staining for 

BrdU was not fully saturated and has been excluded.   
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Figure 21 Characterisation of the spleen in C57BL/6 mice with late cancer 
or age-matched controls (A) Splenic weight (B) Total splenic MCs (C) Total 

splenic MCs normalised to splenic weight (D) Ly6chigh Mo as % of live cells (E) 

Total Ly6chigh Mo in spleen (F) Histogram of splenic BrdU levels in: all Splenic 

MCs in spleen (purple), PBS with no DNase control (green), Ly6chigh Mo from 

controls (n=3, black) and Ly6chigh Mo from late cancer mice (n=3, red).  ** p 

value <0.01, **** p value <0.0001, unpaired t-test. Experiments were 

conducted in duplicates of co-housed littermate groups of n=6 (3 cancer) and 

n=4 (2 cancer). The term Splenic MCs refers to the splenic mononuclear cells 

(T cells, B cells, Mo) from gradient separation.   
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4.7 Discussion 

 

The aim of this work was to characterise the Mo kinetics in the context of breast 

cancer in both the allograft and spontaneous C57BL/6 PyMT-MMTV models. 

While it was possible to demonstrate a significant monopoiesis in C57BL/6 

PyMT mice with late stage tumours, this was not shown in the allograft model. 

Thus, it was not possible to repeat the findings of Casbon et al, where the 

allograft model was undertaken using FVB mice (Casbon et al. 2015). While 

this could be due to strain differences as C57BL/6 are known to be more 

tumour resistant than FVBs (Lifsted et al. 1998), it could also be due to 

discrepancies in the methods used.  

 

Casbon et al used an epithelial reporter mouse to enable harvesting of pre-

invasive in-situ disease (Casbon et al. 2015). While the late stage tumours in 

the spontaneous model resulted in monopoesis, this progressed as tumours 

developed. It may be that the early signals are required to potentiate the 

myeloid system. The early expansion of Neuts in cancer both here and in the 

literature would indicate that pro-inflammatory cascades commence early in 

the evolution of tumours in the MMTV-PyMT model (Casbon et al. 2015). 

 

Because there were no epithelial reporter mice lines available in the breeding 

stocks and it was estimated that Importing this line would take ~6 months this 

model was abandoned. With hindsight, the decision to not invest further in the 



 Monocyte dynamics in breast cancer 

 

Results: Monopoiesis in MMTV-PyMT mouse models of breast cancer

  105 

allograft model was perhaps premature as the project thereafter would have 

benefited from using this system.  

 

Given that work undertaken in the spontaneous transgenic PyMT FVB mouse 

model (Casbon et al. 2015), reported an increase in BM progenitors in cancer, 

it was hypothesised that this might explain the myelopoeisis in the C57BL/6 

tumour bearing mice. Casbon et al found increases in the earliest stem cell 

progenitors, HSCs were less significant than in the downstream Flt3- LMPPs. 

The latter of which were the most significantly increased BM progenitor 

population in tumour bearing mice (Casbon et al. 2015). This agrees with the 

data here in the C57BL/6 mice. However, further downstream, there was no 

differential increase in the myeloid progenitors in the C57BL/6 mice. Whereas, 

in the FVB it was shown that the frequency of GMPs was increased, with no 

change to the frequencies of CMPs or MEPs (Casbon et al. 2015). In the 

experiments conducted in this PhD, the lack of altered proportions of CMP, 

GMP and MEPs, when LK cells were cultured using CFU assays, supports the 

flow cytometric analysis. Therefore, it is likely that the contrasting findings are 

due to differences between the FVB and C57BL/6 strains. Furthermore, there 

was no difference in the downstream progenitors of Mo, data not assessed by 

Casbon et al. It would be useful to repeat this experiment in the FVB strain, to 

ascertain whether the findings of Casbon et al can be repeated. This would 

enable conclusions to be drawn as to whether the contrasting findings here are 

indeed due to differences in the strains.  
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With regards to the release and survival of Mo, the peak of the Ly6chigh Mo in 

the blood by 48 hrs is consistent with data in steady state and in the context of 

PyMT tumours (Yona et al. 2013; Arwert et al. 2018). The loss of BrdU+ 

Ly6chigh Mo from the blood by 96 hrs is again consistent with previous 

published data using either BrdU or EdU tracing (Yona et al. 2013; Arwert et 

al. 2018). Previously, in steady state it was shown, both in mice and in humans, 

that Ly6chigh Mo differentiate into Ly6clow Mo via an intermediary Mo (classical 

to non-classical respectively in humans) (Yona et al. 2013; Patel et al. 2017). 

From the BrdU tracing undertaken here, this transition seems to be unaffected 

by cancer. It is of note that while there was an increase in BrdU+ Ly6chigh Mo 

in the BM, this was not then reflected in higher levels of BrdU+ Ly6chigh Mo in 

the blood. Discrepancies in this may reflect marginated pools of monocytes 

that are unaccounted for within the data presented here. One consideration 

with regards to this conclusion is that Ly6chigh Mo recruited to the tumour are 

not accounted for. Using EdU tracing in PyMT allograft model Arwert et al 

found that from 72 hrs, EdU+ CD68+ TAMs were increasing and by 10 days 

~80% of perivascular TAMs were EdU+ (Arwert et al. 2018). This coincided 

with the decline of EdU+ Ly6chigh blood Mo from their peak at 48 hrs to their 

disappearance at 96hrs. If the ratio of populations remains the same, then the 

same proportion of Ly6high must convert to Lyc6low Mo. If concurrently, Ly6high 

Mo are intravasating from the blood stream into the tumour in the cancer mice 

only then there must be an excess of Ly6chigh Mo to fulfil both these conditions. 

Without knowing the exact proportions of Ly6chigh Mo that are recruited to the 
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tumour, that differentiate into Lyc6low Mo or that undergo apoptosis, it is not 

possible to fully assess the effects of recruitment on the ratio of Mo. 

Furthermore, the marginated pool of Ly6clow Mo that may be attached to the 

endothelium are not assessed. Adding to the complexity of this, some argue 

that Lyc6low Mo may be re-absorbed into the BM pool (Hamon et al. 2017). 

Tracing of Mo to the tumour and also of Ly6clow Mo to the bone is hindered by 

the very low levels of these cells present in tissues. Without undertaking these 

tracing experiments, it is impossible to fully deduce the origin and fate of the 

Ly6chigh Mo and it should be noted that this may mask differences in the ratio 

of subpopulations of Mo presented here. Additionally, the spleen was shown 

to act as a reservoir for Mo but not to be a site of monopoiesis. The release of 

Mo from the spleen was not explored and thus how this contributes to 

circulating Mo populations is not known.  

 

The combined findings of increased BrdU+ Ly6chigh Mo in the BM of tumour 

bearing mice and very little alteration to BM progenitor niches, nor BrdU tracing 

in the blood, would imply that increased Mo frequency is due to proliferation of 

Mo themselves rather than increased haematopoiesis or altered release and 

half-life. While this may be true, there are limitations to this interpretation. In 

agreement with findings in FVB mice (Casbon et al. 2015), Neuts were 

increased to a greater extent than the Mo in C57BL/6 mice with cancer. The 

BrdU results at 1hr for Neuts agree with findings in the FVB mice that show 

that the Neuts (unlike Mo) do not proliferate at high levels in the BM (Casbon 
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et al. 2015). However, an explanation for increased Neuts in FVB tumour 

bearing mice was provided by a corresponding increase in GMPs (Casbon et 

al. 2015). This was not a finding that was repeated in the work undertaken here 

in C57BL/6 mice. Nor was it found that there was an increase in total BM cells, 

again disagreeing with findings in FVB mice (Casbon et al. 2015). The use of 

outlier algorithms is contentious and thus it may be that the Neut BM 

frequencies are not actually increased in C57BL/6 mice with late stage 

tumours. Nonetheless, the blood Neuts are increased and there is currently no 

explanation for this within the data of this thesis.  

 

Despite the caveats in the data, overall it would seem that there are systemic 

effects of cancer on Mo production in the BM. Hence, it is likely that the release 

of systemic growth factors in the context of cancer may explain the 

monopoiesis observed. The growth factor CSF1, is the main factor responsible 

for the expansion and survival of Mo (Stanley & Chitu 2014). Breast cancer 

cells are known to produce CSF1 and this in turn interacts with the CSF1-R on 

TAMs promoting survival and manipulating macrophage polarisation (Joyce & 

Pollard 2008). Levels of CSF1 in solid tumours also correlate with survival 

across a range of cancers, including breast cancer (Lin et al. 2002; Richardsen 

et al. 2015; Scholl et al. 1994). This has led to many new cancer trials exploring 

the use of anti CSF1 therapy (Cannarile et al. 2017).  

 

In the MMTV-PyMT model specifically, it is known that CSF1 has a key role in 

the recruitment of TAMs to mammary tumours. Crossing the MMTV-PyMT with 
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the CSF1 null mutant (CSF1op/ CSF1op) mice, it has been shown that the loss 

of CSF1 does not alter the development of mammary hyperplasia or adenoma 

(Lin et al. 2001). But it greatly reduces the formation of advanced primary 

tumours and metastasis (Lin et al. 2001). While the levels of Mo were not 

measured in the blood of mice in these studies, the macrophage frequency 

within mammary tumours was greatly reduced (Lin et al. 2001). Additionally, 

overexpression of CSF1 via a transgene limited to the mammary epithelium, 

restored the progression of cancer in CSF1 null mutant  mice (Lin et al. 2001). 

Relating this back to findings here, it is interesting that the role of CSF1 seems 

most relevant in the late stages of cancer as this is when significant 

perturbations to Mo were observed here.  

 

However, recent research has placed the role of CSF1 directly on the Mo into 

question. Using both a doxycycline inducible CSF1-R system and a CSF1-R 

antagonist in a metastatic mouse model it was shown that while MAMs were 

reduced, circulating Mo and the Mo derived metastatic precursor cell for MAMs 

were unaffected (Kitamura et al. 2018). However, the treatments were limited 

to 1-week duration which could underestimate the effects of CSF1. 

Additionally, in FVB PyMT mice, CSF1 was elevated in mice with late stage 

tumours (Casbon et al. 2015). Thus, overall, there is a strong body of evidence 

to highlight CSF1 as a potential growth factor that may be causing the 

monopoiesis observed.   
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Expansion was not limited to Mo, but additionally observed in Neuts. GM-CSF, 

which potentiates generalised myeloid expansion, is known to be secreted by 

a range of tumours (Dougan et al. 2019). Both GM-CSF and CSF1 have been 

shown to increase the production of M-MDSCs in the BM of tumour bearing 

mice. Contradicting this, in the FVB PyMT model, no alteration to the levels of 

GM-CSF was detected, even in advanced disease (Casbon et al. 2015). 

Rather, G-CSF was elevated and shown to be responsible for Neut expansion 

in both the FVB PyMT (Casbon et al. 2015) and alternative models, such as 

the K14Cre;Cdh1F/F;Trp53F/F (KEP) model (Coffelt et al. 2015). Thus, perhaps 

CSF1 and G-CSF are active in the expansion of the Mo and Neuts 

respectively. In FVB PyMT mice, G-CSF increases from the early stages of 

tumour development, but CSF1 is only elevated in late disease (Casbon et al. 

2015). This agrees with observations here and in the literature that Neut 

expansion precedes Mo expansion (Casbon et al. 2015; Coffelt et al. 2015).  

 

As it is known that chemokines regulate both the release of Mo from the BM 

and their recruitment to tissues it may be that chemokines also play an active 

role in the monopoiesis observed. Mo are recruited from the BM via the CCR2 

(Serbina & Pamer 2006). The levels of expression of the CCR2-ligand, CCL2 

within tumours is known to correlate with poor survival (Ueno et al. 2000). 

Previous work undertaken has demonstrated that the release of Ly6chigh Mo 

from the BM, into the blood and subsequent retention in the tumour is CCL2 

dependent; TAMs are formed by CCR2+ Ly6chigh Mo recruited from the blood 
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(Qian et al. 2011; Arwert et al. 2018; Franklin et al. 2014). In these mouse 

models, either blocking CCL2 or using CCR2-/- mice impaired Mo recruitment 

and reduced TAM frequency, and ultimately stunted tumour progression (Qian 

et al. 2011; Arwert et al. 2018; Franklin et al. 2014). However, the effects of 

CCL2 on cancer is complex and while it is largely pro-metastatic, 

administration of neo-adjuvant anti-CCL2 can potentiate metastasis due to 

rebound effects on cessation of treatment (Bonapace et al. 2014; Kersten et 

al. 2017). Thus, it is important to consider that the effect of CCL2 is dependent 

on the primary and metastatic disease stage. Elevated levels of serum CCL2 

have been found in late but not early tumour bearing FVB PyMT mice (Casbon 

et al. 2015). Recent evidence in non-metastatic breast cancer patients found 

that CCL2 is locally elevated in the tumour but is not systemically elevated in 

the blood (Cassetta et al. 2019). Interestingly, elevation in blood levels of CCL2 

in mice seems to precede the elevation of CSF1 (Casbon et al. 2015). This 

may suggest a feedback loop is at play.  

 

CCR2 can bind a number of other ligands, including CCL7, CCL8, and CCL12. 

These ligand can also form heterodimers, such as CCL2:CCL8 (Crown et al. 

2006). There is evidence for CCL8 being important in tumour biology as it is 

known to be increased at the periphery of tumours and increases tumour cell 

intravasation (Farmaki et al. 2016). Again, the levels seem to be acting locally 

at the tumour site and seem not to be systemically elevated (Cassetta et al. 

2019). It has recently been suggested that in breast cancer, TAMs secrete 
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CCL8 and that this subsequently leads to the recruitment of Mo (Cassetta et 

al. 2019) (Figure 22).  

 

Figure 22 Schematic Representation of the Crosstalk between Br-TAM 
and Cancer Cells. Tumor cells upregulate SIGLEC1, TNF-α, and CCL8 

expression in Br-TAM. In turn, cancer cells respond to CCL8 stimulation by 

producing CSF1, IL-1β, and TNF-α, which further contribute to the positive 

feedback loop. Figure and legend used with permission from Cassetta, L. et 

al. 2019. 

Another candidate is the CCR1 and related ligands. In liver cancer mouse 

models using CCR1-/- mice, CCR1 expression on tumour cells was shown to 

drive Mo recruitment and angiogenesis, promoting metastasis (Rodero et al. 

2013). The CCR1 ligands include CCL3, CCL5, CCL7, and CCL23. In relation 
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to cancer, there is a substantial body of evidence for CCL5 being an important 

chemokine.  

 

In metastatic colorectal cancer, release of CCL5 from endothelial cells within 

the tumour, leads to the recruitment of Mo and TAMs (Läubli et al. 2009). 

Additionally, blocking CCR5 in colon cancer models leads to STAT3 activation 

and tumour killing via polarization of TAMs (Halama et al. 2016). In triple 

negative breast cancer models, CCL5 has been shown to modulate the 

immune-suppressive abilities of Ly6chigh derived MDSCs (Zhang et al. 2012). 

Further studies in mouse models, including the use of patient derived 

xenografts have demonstrated efficacy of agents blocking the CCL5-CCR5 

axis in breast cancer (Ban et al. 2017; Nie et al. 2019). A study using both 4T1 

(a triple negative breast cancer cell line) and the spontaneous MMTV-Wnt1 

model demonstrated that the expansion of Ly6chigh Mo in the BM was 

attenuated when CCL5 was knocked out (Zhang et al. 2012). These findings 

were repeated, with the proliferation of Ly6chigh Mo in the BM of tumour bearing 

mice again being attenuated in CCL5-/- mice and furthered by using adoptive 

transfer to show that locally acting CCL5 in the BM was a key factor in Mo 

expansion (Ban et al. 2017). Interestingly, it has been shown that the action of 

CCL5 on the BM was reliant on the growth factors CSF1 and GM-CSF (Zhang 

et al. 2012).  
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Hypotheses regarding what may be driving the monopoiesis could be tested 

by a number of methods. The levels of growth factors and chemokines in either 

the blood and, or the bone could be assessed. A useful addition to interpreting 

this data may have been measuring biochemical markers of systemic 

inflammation which were not measured during the kinetic. More interestingly, 

perhaps, would be to attempt to show mechanism by manipulating likely 

candidates. An experiment that has been considered is testing if a CCL2 small 

molecule inhibitor impedes the increase in BrdU+ Ly6chigh BM Mo in late 

tumour bearing mice. This mechanistic work was not undertaking as it was not 

a primary focus of the PhD. Rather, the reason to assess Mo kinetics in these 

models was to justify the use of a given model in investigating transcriptional 

changes that might be occurring. Having established that Mo kinetics were 

perturbed in mice with late stage spontaneous MMTV-PyMT tumours the next 

step was to assess if Mo were transcriptionally altered in this context and 

compare this with findings in humans. This will therefore be the focus of the 

next section. 
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Chapter 5 Transcriptional alterations to mouse 
monocytes in PyMT mice 

 

5.1 Introduction 

 

As discussed, studies in humans have shown that circulating Mo are 

transcriptionally altered in a number of epithelial cancers (Cassetta et al. 2019; 

Chittezhath et al. 2014; Hamm et al. 2016). How conditioning of Mo occurs has 

yet to be investigated and little is known about Mo transcriptional regulation in 

the context of cancer.  

 

Having now established Mo kinetics in late stage tumour bearing PyMT mice, 

transcriptional profiling of mouse Mo would screen for any differential gene 

expression suggesting altered transcriptional regulation. If present, it may then 

be possible to decipher whether conditioning occurs in the BM, in the blood or 

on multiple levels. It would also permit comparison with human data to identify 

any orthologous genes or pathways.  

 

To this end, this chapter aimed to build a profile of the transcriptional profile of 

Mo in the C57BL/6 MMTV-PyMT spontaneous mouse model. The ultimate aim 

was to identify gene, or pathway targets common to both human and mouse. 

This would confer the benefit of using the mouse to better understand the 

transcriptional regulation of human Mo in cancer.  

 



 Monocyte dynamics in breast cancer 

 

Transcriptional alterations to mouse monocytes in PyMT mice

  117 

5.2 RNAseq of blood monocytes in C57BL/6 PyMT 
mice 

 

Before proceeding to sorting cells on established gating strategies, it was 

necessary to ascertain if any novel Mo populations existed in tumour bearing 

mice. Given this, a collaboration was established with Dr. N Batada (MRC 

Institute of Genetics and Molecular Medicine, Edinburgh) whom is experienced 

in data analysis of the scRNAseq method, smartSEQ.  

 

To confirm high efficiency of sorting single cells into a 96 well plate, Hoescht 

stained Mo were sorted. Imaging of the 96 well plate confirmed that all 96 wells 

contained a single cell. SmartSEQ of blood Mo in three late stage tumour 

bearing PyMT+ve C57BL/6 mice and three littermate PyMT-ve control mice 

was undertaken. By t-distributed stochastic neighbour embedded (t-sne) 

analysis no distinct novel populations were identified (Figure 23, A). The use 

of Ly6c and Treml4 to segregate blood Mo was validated on a mRNA level 

(Figure 23, B-C). Gene coverage was limited to approximately 2000 and 

analysis of this data is ongoing, thus only the preliminary analysis is shown. 

 

Having established that the two populations of Mo were maintained in both 

control and tumour bearing mice, blood Ly6chigh and Ly6clow Mo were sorted 

from C57BL/6 mice with late stage PyMT tumours and littermate controls and 

processed for RNAseq.  To screen samples to identify potentially interesting 

alterations but minimise batch effect, initially all samples were sequenced on 
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the same lane. Analysing all samples together, Lychigh or Ly6clow cell type 

accounted for the greatest variance (Figure 24, A). For Ly6clow blood Mo, there 

was no clear effect of cancer on clustering by principle component analysis 

(PCA) (Figure 24, B). However, the Euclidean distance between cancer and 

control Ly6chigh blood Mo did suggest that there may be some effects of cancer 

present in these cells (Figure 24, C).  

 

Further analysis revealed very few DEGs in cancer versus control samples for 

Ly6clow Mo.  This analysis was repeated, modelling for sort date and also by 

biasing and testing multiple permutations of selected samples. Despite this, for 

the Ly6clow blood Mo there were just 7 DEGs (q.value<0.05). However, in 

Ly6chigh blood Mo a simple analysis revealed 177 DEGs (q.value<0.05). Initial 

analysis of these samples indicated DEGs and pathways related to IFN 

signalling and immune response. Deeper sequencing was undertaken to gain 

full coverage of genes and detect the maximal number of DEGs for comparison 

with human data. Given that transcriptional changes were only apparent in the 

Ly6chigh blood Mo, Ly6clow blood Mo samples were not re-sequenced.  

 

A total of six Ly6chigh blood Mo were re-sequenced on one lane (60-80x106 

reads). The six samples were chosen as they had been sorted on the same 

days, thus minimising batch effects. The clustering of the chosen 6 samples is 

featured in Figure 24, C. There was a total of 611 DEGs (q.value<0.05) 

between cancer and control samples (Figure 24, D). There was an almost 2-
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fold difference in number of genes down versus up-regulated (393 down, 218 

up). Of note, the LFC sizes were minimal and larger LFC tended to occur in 

some genes that were of lower mean expression (Figure 25).   

 

 

 

 

Figure 23 Single cell RNA-seq of Mo in C57BL/6 mice with late cancer 
and littermate controls (A) t-sne plot for cells from control (pink) and cancer 

(turquoise) mouse (B-C) Violin plot taken from n=1, showing expression (z 

transformed normalised counts) in cluster 1 and 2 of (B) Ly6c (C) Treml4. 

Experiments were conducted in duplicates of co-housed littermate groups of 

n=6 (3 cancer) and n=2 (1 cancer).    
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Figure 24 Analysis of RNAseq of blood Mo in C57BL/6 mice with late 
cancer versus littermate controls (A) PCA of all samples (B) PCA of Ly6clow 

Mo. (C) PCA of Ly6chigh Mo (D) Gene expression heatmap of Ly6chigh blood 

Mo DEGs between control and cancer samples with a q.value<0.05. Samples 

are arranged horizontally, and sample characteristics are provided in 

horizontal bars for each column denoting cancer in red and control in black 

and the date samples were sorted in purple and blue. Genes are arranged 

vertically; Red colour within the heatmap indicates up-regulation, and blue 

colour indicates down regulation based on the tpm z-score (range [-2, 2]). 

Samples are clustered using complete linkage and Pearson correlation. 
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Figure 25 DEGs from Ly6chigh blood Mo in C57BL/6 mice with late cancer 
versus littermate controls. (A) Mean normalised counts (x axis) and LFC (y-

axis) for DEGs. DEGs with absolute LFC>0.5 are in red. DEGs with absolute 

LFC>1. 5 are labelled. Mean normalised counts are the calculated mean of 

normalised counts across all samples. (B) Gene expression heatmap of DEGs 

with highest LFC (Top 20). Samples are arranged horizontally, left 3 columns 

denoted as control in black and right 3 columns deonoted as cancer in red. 

Genes are arranged vertically; Red colour within the heatmap indicates up-

regulation, and blue colour indicates down regulation based on the tpm z-score 

(range [-1.5, 1.5]). Samples are clustered using complete linkage and Pearson 

correlation. 
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To explore whether the DEGs may be functionally related, genes were 

analysed for pathway enrichment. The top 3 pathways enriched in the set of 

218 up-regulated genes in Ly6chigh cancer Mo were "neutrophil degranulation", 

"leukocyte migration" and "cytokine response". In the down-regulated list of 

393 genes, highly enriched pathways (log q.value>10) were observed in 

relation to IFN signalling and antigen presentation. While some pathways were 

shared, there was a predominance of enrichment in the down-regulated 

pathways (Figure 26).  

 

In order to identify potentially important genes, the chemokines and 

transmembrane receptors relevant to Mo biology were explored (Figure 27). 

Furthermore, as the main aim was to identify how the transcriptional regulation 

was being modulated, ISG genes and relevant TF genes were annotated.  

 

Consistent with the pathway analysis, key genes modulated by IFNs were 

altered. This included the type II IFN induced chemokine gene, Cxcl10 and 

genes for MHCI and MHCII proteins. The mannose receptor gene (Mrc1) was 

also down-regulated. Members of the CD2 Ig superfamily (Cd2, Ly9 and Cd84) 

(de la Fuente et al. 1997) were also altered, but in opposing directions. The 

gene for the b subunit of the CSF2-R, Csf2rb, was up-regulated. The LDTFs, 

Fosb and Jun, were down-regulated. SDTFs involved in IFN response, Stat1 

and Stat2 were down-regulated along with the regulatory TFs Socs1, Socs3, 

Socs6, Jak2 and Jak3. 
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Figure 26 Heatmap of pathway analysis for DEGs between cancer and 
control samples of Ly6chigh blood Mo in C57BL/6 mice with late cancer 
versus littermate controls. Each column represents the group of down or up-

regulated genes. Each row represents the Gene Ontology or KEGG terms for 

pathways that are enriched. Pathways are annotated to the right of the 

heatmap. Log q.values are plotted, and each bar coloured according to the log  

q.value on a scale of 0 to 20, represented with graduating intensity from cream 

to dark brown.  
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Figure 27 Histogram of LFC in DEGs for blood Mo in C57BL/6 mice with 
late cancer versus littermate controls. Genes have been selected and 

grouped functionally as cytokines (blue), transmembrane receptors related to 

MHC expression (red) and IFN response (orange), Interferon Stimulated 

Genes (green), and transcription factors (purple).   

CytokineMHC expression
Transmembrane rec. Interferon Stimulated genes 

Transcription 
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5.3 RNAseq of bone marrow monocytes in C57BL/6 
PyMT mice 

 

To determine at what level Mo may be conditioned, six Ly6high BM Mo were 

sequenced. Contrasting cancer and control samples, there were 158 DEGs 

(50 up and 108 down-regulated in cancer with a q.value<0.05). Genes 

associated with proliferation were up-regulated (Figure 28). Just under half of 

the down-regulated genes in the BM were also down-regulated in Ly6high blood 

Mo (Figure 29, B). These 47 common genes were highly enriched for type I 

IFN pathways (Figure 29, C). 

 

Figure 28 Gene expression heatmap of genes involved in proliferation in 
Lychigh BM Mo in C57BL/6 mice with late cancer versus littermate 
controls. Samples are arranged horizontally. Genes are arranged vertically; 

Red colour within the heatmap indicates up-regulation, and blue colour 

indicates down regulation based on the tpm z-score. Samples are clustered 

using complete linkage and Pearson correlation. The highest two clusters are 

labelled and cluster on cancer status.  
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Figure 29 Comparison of DEGs between late cancer and littermate 
control samples of Ly6chigh blood and Ly6chighBM Mo in C57BL/6 mice 
(A-B) Venn diagram for DEGs in BM (cream) and blood (red) (A) Genes up-

regulated in cancer (B) Genes down-regulated in cancer (C) Pathways for 47 

shared down-regulated genes. Log q.values are plotted, and each bar 

coloured according to the log q.value on a scale of 0 to 30, represented with 

graduating intensity from cream to dark brown. Gene Ontology or KEGG terms 

are annotated.  
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5.4 Validation of C57BL/6 RNAseq results 

 

For validation by qPCR, it was noted that LFCs were very modest and the 

material available for qPCR was limited. Therefore, just two genes were 

chosen initially. Gcnt2 was a gene that was amongst the highest up-regulated 

genes. There was evidence of it playing a role in cancer cell detachment, 

adhesion and migration, as well as epithelial to mesenchymal transition (Zhang 

et al. 2011). Expression of Gcnt2 by breast cancer cells was driven by TGF-

b1 (Zhang et al. 2011).  However, there was no evidence for this gene playing 

a role in Mo function. Hence it was identified as a novel candidate gene. Having 

chosen a gene that was up-regulated, it was decided to validate a down-

regulated gene. A number of genes that had the highest LFC were lowly 

expressed and so Lpl was chosen as having a high LFC while still having 

adequate expression levels (Figure 25). Using qPCR, it was possible to 

validate that Gcnt2 was up-regulated and Lpl down-regulated in mice bearing 

late stage tumours compared with littermate controls (Figure 30).  

 

It was then thought that validating more functionally relevant genes would be 

useful. For this Ifit3, Stat1 and Cxcl10 were all chosen. Unfortunately, the 

efficiency for the primers designed was less than 90% (for primer details see 

Appendix 9.1.2.). An additional 2 primers for Stat1 were trialled but with little 

success. Recognising that low LFC and low levels of expression may hinder 

validation of these genes by qPCR, this approach was abandoned. A 
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preference to both validating using protein levels of other markers and to 

conduct functional assays also contributed to this decision. 

 

 

Figure 30 qPCR mRNA levels of Gcnt2 and Lpl in Ly6chigh blood Mo from 
C57BL/6 mice with late cancer versus littermate controls (A) Gcnt2 (B) 

Lpl. The relative mRNA expression has been calculated using delta-delta CT 

method. SDHA was used as the control gene. *p value <0.05, unpaired t-test 

on the CT values. Experiment was conducted in n=6 (3 cancer). 

 

The decision was taken to try and assess MHCII by flow cytometry. Levels of 

MHCII expression in controls were comparable with previous assessment of 

MHCII expression undertaken in the Jenkins lab (data from Pieter Loewe) on 

C57BL/6 mice. There was a significant reduction in the frequency of MHCII 

expressing Mo in the both the BM and the blood (Figure 31). 

 

Finally, to demonstrate functional relevance, the levels of pSTAT1 in response 

to stimulation with IFN were assessed in cancer and control mice. Sorted 
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Lyc6high BM Mo were exposed to 10ng or 20ng of IFNg or PBS. Levels of 

pSTAT1 were detectable (Figure 32, A). There was an increase in pSTAT 

when cells were stimulated with 10ng of IFNg (Figure 32, B). From the initial 

experiment of just 4 mice, it was not clear if the cancer samples were less 

responsive at higher levels of IFNg. Given this, the experiment was repeated. 

In the second experiment pSTAT1 levels in unstimulated cells were similar to 

that of stimulated cells from the first experiment. There was a very minimal 

increase in pSTAT1 levels at 10ng and at 20ng levels were actually lower 

(Figure 32, C). The staining had worked (Figure 32, D). During both 

experiments, there had been enough cells to do an FMO for just 2 of 3 

exposures in each group. It was decided that unstimulated and 20ng were the 

priority and therefore these were available for a more accurate comparison. 

Using these FMOs to subtract the background, it was clear that samples in the 

second experimental group that had been denoted as unstimulated appeared 

to have pSTAT1 levels equivalent to stimulated cells from the first group of 

experiment samples. It may have been that IFNg was inadvertently added or 

that the mice were unwell. Nonetheless, at 20ng there was no clear difference 

in pSTAT1 levels (Figure 32, E). Hence, there was no difference in the pSTAT1 

levels in cancer versus control mice proven by stimulating with 10ng or 20ng 

of IFNg.  
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Figure 31 Comparison of MHCII expression on Ly6chigh Mo in C57BL/6 
mice with late cancer versus littermate controls (A-B) MHCII+ Ly6chigh Mo 

as a percentage of all Ly6chigh in (A) Blood (B) BM (C) Flow cytometry of BM 

Ly6chigh Mo with MHCII (x-axis) against FSC-A (y-axis), gating and frequency 

of MHCII+ (as a % Ly6chigh Mo ) cells is shown. * p value <0.05, ** p value 

<0.01, unpaired t-test. Experiments were conducted in n=8 (4 cancer) and 

n=10 (5 cancer) for blood and BM respectively.  
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Figure 32 Assessment of pSTAT1 levels by flow cytometry in Ly6chigh BM 
Mo sorted from C57BL/6 mice with late cancer versus controls (A-C) 

pSTAT1 levels for each sample in the first experiment (group 1) or second 

experiment (group 2) exposed to either PBS (unstimulated), 10ng or 20ng of 

IFNg. (A) Histograms for group 1. Cancer (red), controls (green). FMO is from 

a pooled sample for each condition exposed to 20ng IFNg (B-C) MFI for 

pSTAT1 (D) Histogram for group 2 exposed to PBS (filled) and FMOs (unfilled). 

Cancer (red), controls (grey). (E) Overall results showing the MFI of pSTAT1 

calculated against FMO for each sample and each condition either 

unstimulated or exposed to 20ng IFN.  
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5.5 RNAseq of monocytes in FVB PyMT mice 

 

Throughout the project thus far, all experiments had been undertaken in PyMT 

mice on a C57BL/6 background. However, as reported in the literature, it was 

noted that FVB mice had a more aggressive cancer phenotype than C57BL/6 

mice (Figure 33). Therefore, this model was characterised for perturbations to 

Mo to check if they were affected similarly to the C57BL/6 PyMT mice. There 

was a significant increase in the frequency of blood Mo and Neuts in late 

tumour bearing FVB mice when compared to controls (Figure 34, A and B 

respectively). This increase was restricted to the CD11b+ cells (Figure 34, C). 

There was no increase in the proportion of Ly6chigh Mo of the total Mo pool. 

The fold changes in Mo numbers between control and late stage tumour 

bearing mice was greater in the FVB than the C57BL/6 mice (Figure 34, D). 

 

 

 

Figure 33 Comparison of tumour development in PyMT+ve mice on a 
C57BL/6 or FVB background (A) Age in weeks when tumours first palpable 

(B) Time in weeks from tumours first palpable to ~20mm size. * p value <0.05, 

**** p value <0.0001, unpaired t-test. n=14 (7 C57BL/6, 7 FVB). 

C5
7B
l6

FV
B

0

5

10

15

20

25

C5
7B
L6 FV

B
0

2

4

6

8

Strain Strain

A
ge

 p
al

pa
bl

e 
tu

m
ou

r (
w

ee
ks

)

  w
ee

ks
 fr

om
 o

ns
et

-la
te

 s
ta

ge

A B
**** *

C57BL6 C57BL6FVB FVB



 Monocyte dynamics in breast cancer 

 

Transcriptional alterations to mouse monocytes in PyMT mice

  133 

 
Figure 34 Blood composition in FVB PyMT mice with late cancer or age-
matched controls (A-C) Total cells in 50µl of blood (A) Mo (B) Neuts (C) 

CD11b+ and CD11b- (D) FC in total Mo in cancer to controls in C57BL/6 or 

FVB mice. For C, control samples are in black and cancer samples are in red. 

* p value <0.05, ** p value <0.01, *** p value <0.001, **** p value <0.0001, 

unpaired t-test. Experiments were conducted in duplicates with littermate and 

co-housed groups of n=6 (3 PyMT+ve) in each replicate. 

 

It was hypothesised that transcriptional changes may be stronger in Mo in the 

FVB mice than had been detected in the C57BL/6 mice. The same protocol 

was undertaken to sort and undertake RNAseq of Ly6chigh blood Mo from FVB 

late tumour bearing and littermate control mice as had been used for the 

C57BL/6. On PCA, the cancer and control samples separated out in PC1 

(42.86%) but the controls were not tightly clustered (Figure 35, A) By un-

supervised hierarchical clustering, 2 cancer and  2 control samples clustered 

separately, but 1 cancer and 1 control clustered together (Figure 35, B).  
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There were a total of 466 DEGs when comparing control with cancer, with 267 

genes up-regulated in cancer (q.value<0.05). Comparing these 267 genes with 

the 218 genes of the same criterion in the C57BL/6 dataset, there were 67 

DEGs common to both strains (Figure 36, A). A total of 199 genes were down-

regulated in cancer (q.value<0.05). Comparing these 199 genes with the 393 

genes of the same criterion in the C57BL/6 dataset, there were 51 DEGs 

commonly down-regulated (Figure 36, B). There were more DEGs in C57BL/6 

but sequencing depth was 2-fold to that in FVB samples (Table 3). LFCs were 

higher in FVB compared to C57BL/6 (Figure 36, C). 

 

Up-regulated genes common to both FVB and C57BL/6 were not strongly 

enriched for in any relevant pathways (pathways with a log q.value>5 were 

GO:1900027 and GO:0097178 both relating to ruffle assembly). But for the 51 

commonly down-regulated genes, IFN responses were again enriched, with a 

log q.value of 8.5 (GO:0051607 defence response to virus, GO:0098542 

defence response to other organism, GO:0009615 response to virus).  To 

assess the relationship of genes and pathways between strains and also the 

two tissue types, joint pathways analysis was undertaken for all down-

Table 3  Mean sequencing depth and total DEGs for Ly6chigh blood Mo 
in C57BL/6 and FVB mice. Mean seq depth calculated across all 6 samples 

for each group. Total DEGs with q.value<0.05. 

FVB BL6

Mean Seq Depth 30x106 67x106

Total DEGs 466 611
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regulated genes (Figure 37). There was a greater enrichment of the pathways 

in the C57BL/6. This was irrespective to the number of genes having been 

entered as just 108 genes were entered for the PyMT BM Mo versus 199 for 

the FVB blood Mo, yet the enrichment was still greater for the BM Mo. The 

down-regulation of IL-1b was limited to the C57BL/6 mice.  

 

 

 

Figure 35 Analysis of RNAseq of Ly6chigh blood Mo in FVB mice with late 
cancer versus littermate controls (A) PCA of all samples (B) Gene 

expression heatmap of all genes using non-supervised hierarchical clustering. 

Samples are arranged horizontally, and sample characteristics are provided in 

horizontal bars for each column denoting cancer (red) and control (black and 

the date samples were sorted in purple, blue and green to show the influence 

of batch effects. Genes are arranged vertically; Red colour within the heatmap 

indicates up-regulation, and blue colour indicates down regulation based on 

the tpm z-score (range [-2, 2]). Samples are clustered using complete linkage 

and Pearson correlation.   
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Figure 36 Comparison of DEGs between late cancer and control samples 
of Ly6chigh blood Mo in C57BL/6 and FVB mice (A-B) Venn diagram for 

DEGs in C57BL/6 (dark grey) and FVB (dark purple) (A) Genes up-regulated 

in cancer (B) Genes down-regulated in cancer (C) LFC in FVB (x-axis) and 

C57BL/6 (BL6) (y-axis) for all DEGs with a q. value<0.05. Each dot represents 

a gene.  
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Figure 37 Metascape joint analysis of DEGs down-regulated in the BM 
and blood of C57BL/6 and the blood of FVB mice. For each of these 

analyses, the DEGs produced when contrasting cancer with control have been 

input for each of the three groups (BL6 blood, BL6 BM, FVB blood). Commonly 

shared genes and commonly shared pathways are then represented. (A) 

Circos plot showing commonly enriched genes.  The outer arcs represent 

which DEG gene list is featured. BL6 blood represented by red, BL6 BM 
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represented by blue and FVB blood represented by green. The inner arcs 

reflect whether the genes are common to all 3 (coloured in dark orange) or 

genes are common to just 2 groups (coloured in light orange). Each occasion 

that a gene is in common between a group a purple line occurs between where 

the gene occurs on the respective arcs. Each occasion a gene that belongs to 

the same enriched ontology term as another gene in another group a blue line 

occurs between where the gene occurs on the respective arcs. (B) Pathways 

for down-regulated genes. Each column represents the group of down-

regulated genes. Each row represents the Gene Ontology or KEGG terms 

which are annotated to the right on the heatmap. Log Q.values are plotted, 

and each bar coloured according to log q.value on a scale of 0 to 20, 

represented with graduating intensity from cream to dark brown. Gene 

Ontology or KEGG terms are annotated.  

 
5.6 Orthologous human and mouse genes 

 

Having now identified the DEGs in cancer and control mice and the relevant 

pathways that were altered it was now intended to compare this with the 

human data set already undertaken by members of the Pollard Lab (Cassetta 

et al. 2019). As can be seen from the unsupervised clustering in Figure 38, the 

human cancer samples were quite distinct from the human control samples in 

this cohort. Pathways that were highly enriched for did not obviously overlap 

with the pathways observed in any of the mouse analyse (Figure 38, B).  

 

To undertake the comparison a list of 865 DEGs between the breast cancer 

patient samples and control samples was used (selected using a criterion of 

absolute LFC>1.5).  
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There were a total of 7222 and 7653 human orthologues genes in the DEGs 

for C57BL/6 and FVB respectively. Selecting unique gene names reduced this 

to 7137 and 7570 for C57BL/6 and FVB respectively. These DEGs were then 

filtered using a criterion of absolute value of LFC>0.5 as the changes in mouse 

were more discrete.   

  

Comparing these datasets revealed very few DEGs were common to both 

mouse and human (Figure 39). The LDTF for Mo, Jun was the only gene that 

was commonly down-regulated in all DEG datasets (Figure 39, B).   

 

To check if there may be common pathways affected, despite a lack in shared 

genes, joint pathways analysis was undertaken (Figure 40). This revealed 

some commonly enriched down-regulated pathways, particularly with respect 

to metabolism, cell differentiation, survival and migration. However, the main 

pathway that had been highlighted in mice, IFN signalling, was actually up-

regulated in human cancer Mo.  
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Figure 38 Heatmap and pathways for DEGs of blood Mo between cancer 
samples and healthy samples in humans. Both Breast Cancer and 

Endometrial Cancer samples are included (A) Hierarchical clustering of all 

differentially expressed genes (DEGs) between Monocytes in Breast cancer 

(TEMo BrCa) and Endometrial Cancer (TEMo EnCa) and healthy controls 

(Mo). Expression values are Z score transformed. Samples were clustered 

using complete linkage and Euclidean distance. B) Gene ontology (GO 

Hierarchical clustering of all DEGs between Mo and TEMo. Image adapted 

with permission from Cassetta, L. et al. 2018. Of note, in this paper breast 

cancer included all subtypes and monocytes were sorted as whole monocytes 

and not divided into subpopulations.   

 

 
 

A B
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Figure 39 Comparison of DEGs of blood Mo between cancer and controls 
samples in mouse strains (FVB and C57BL/6) and human (A) Venn 

diagram of up-regulated DEGs with list of gene names and LFC values for any 

in common with human and mouse (B) Venn diagram of down-regulated DEGs 

with list of gene names and LFC values for any in common with human and 

mouse. 
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Figure 40 Metascape joint analysis of DEGs blood Mo between cancer 
and controls samples in mouse strains (FVB and C57BL/6) and human 

(A) Circos plot (B) Heatmap of pathways enriched. Up and downregulated 

genes are annotated for each respective group. All other parameters are as 

for figure 37 page 137.   
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5.7 Discussion 

 

Having established that there is a significant pan-Mo expansion as PyMT mice 

develop mammary gland tumours, it was anticipated that there would be 

alterations to the transcriptional profiles of Mo. While changes were subtle in 

terms of the effect size (LFC small and few DEGs), there were a number of 

interesting findings to discuss, both in terms of individual genes and enriched 

pathways. Firstly however, it is somewhat unexpected that the effect seemed 

to be limited to the Ly6chigh Mo population, despite the expansion of Mo being 

across all populations.   

 

An explanation for this could be that only certain Lyc6high Mo are 

transcriptionally altered. While the majority of Ly6chigh cells will go on to die 

and only a small subset will form Ly6clow Mo, it may be that the Ly6chigh Mo 

that are transcriptionally altered go on to be recruited to tumours. While the 

recruitment Ly6chigh Mo to form TAMs and MAMs is well supported by 

evidence, it is not known what proportion of  Ly6chigh Mo fulfil this fate (Arwert 

et al. 2008; Qian et al. 2011; Kitamura et al. 2015; Movahedi et al. 2010; 

Bonapace et al. 2014). Alternatively, it may be that the frequency of Lyc6low 

cells that are transcriptionally altered are not great enough to be detected by 

bulk RNAseq.  
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Even in the Ly6chigh Mo, both the number of DEGs and the LFCs were modest. 

While this could be because changes are minimal, it could also be that by bulk 

RNAseq signatures of subpopulations are diluted. This would be the case for 

example with regards MHC expression. When validating the alteration to 

MHCII, MHCII expressing cells accounted for less than 10% of all Ly6chigh cells 

in controls. If this is then a reduction of even 10% to 5%, the remainder of cells 

that are unaltered would greatly dilute the overall changes observed. To 

assess this further, scRNAseq can be used. While this was undertaken, no 

subpopulations were observed. However, just 96 cells were sequenced. A 

more appropriate method could be a droplet based approach, allowing for 

many more cells to be assessed (Hwang et al. 2018).  However, the biological 

relevance of such small sub-populations is questionable and potentially 

negates the need for this.  

 

With regards to individual genes, of those that were altered, Mrc1 was down-

regulated in Ly6chigh blood Mo in both strains and in Ly6chigh BM Mo in the 

C57BL/6 mice. While Mrc1 is up-regulated on so-called alternatively activated 

macrophages (Jablonski et al. 2015), by flow cytometry levels of Mrc1 are 

greatly down-regulated on TAMs compared with resident macrophages in the 

primary tumour (Franklin et al. 2014). However, Mrc1 expression on TAMs has 

been shown to vary according to TAM subpopulations. Co-expression of Mrc1, 

Vegfa and Tie-2 corresponds with pro-tumoural, angiogenic TAM populations 

recruited in response to chemotherapy (Hughes et al. 2015). Mrc1 was also 
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recently found to be differentially expressed in the metastatic site on pre-MAM 

and MAM cells, wherein expression was higher than that of resident 

macrophages but lowest in circulating Mo (Kitamura et al. 2018). Surprisingly, 

the expression of Mrc1 was independent of CSF1 action (Kitamura et al. 2018). 

Overall, it seems that levels of Mrc1 are highly dependent on context but may 

reflect a distinct Mo population.  

 

One of the highest genes up-regulated in FVB mice was Cxcr2. While this is 

an established receptor responsible for Neut recruitment to tumours (Chao et 

al. 2016), it has recently been proposed that it is required for recruitment of a 

population of Mo to tissues. In the context of peritoneal inflammation, there 

was a loss of Ly6chigh derived non-resident macrophages in CXCR2-/- mice 

(Dyer et al. 2017). Macrophages formed from Mo expressing CXCR2 were 

shown to be involved in the resolution of peritoneal inflammation (Dyer et al. 

2017). Thus, it CXCR2 may represent a distinct population of Ly6chigh Mo that 

have anti-inflammatory properties.  

 

It can be more useful to consider genes in functional groups rather than 

individually. Pathway analysis implied a reduction in immune activation. This 

may initially seem contradictory to the prior hypothesis that myelopoiesis is 

being driven by so called pro-inflammatory factors. However, in high stress 

haematopoiesis, in response to inflammatory signals, immature myeloid cells 

are produced and released. This is a known phenomenon in cancer and 
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thought to be a source of both M-MDSCs and PMN-MDSCs (Marvel & 

Gabrilovich 2015).  

 

The up-regulation of genes associated with proliferation in the Lyc6high BM Mo 

agrees with the BM BrdU findings in the previous chapter. Down-regulation of 

immune responses was not only seen on a gene level but also demonstrated 

by reduced MHCII levels both in the BM and the blood. Collectively this 

supports the hypothesis that systemic signals acting on the BM lead to stress 

hematopoiesis and release of Ly6chigh Mo that lack a mature functions, such 

as antigen presentation. While this would need to be functionally verified, if this 

is the case, Ly6chigh Mo in are conditioned in the BM to be pro-tumoural or at 

least less anti-tumoural. 

 

Aside from the potential reduced antigen presentation capability of Ly6chigh Mo 

in cancer, the production of Mo that are less immune-responsive, in terms of 

reduced type I and type II IFN signalling would be very fitting with what is 

already known about IFNs in cancer.  The anti-cancer nature of IFN has been 

known as early as 1969, when Gresser et al showed that the survival of 

syngeneic cancer cell inoculated mice was improved with the administration of 

IFN (mixed preparation) (Gresser et al. 1969). Since this time, the role of IFN 

signalling in cancer has been extensively studied (reviewed in (Parker et al. 

2016)). As detailed in Figure 41, IFNs act both directly on the cancer cells, and 

on the milieu of immune cells present in the microenvironment. Type I IFN 
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concurrently reverses the immune evasion of cancer cells, promotes T-cell 

tumour killing and reduces the recruitment of immunosuppressive cells (Parker 

et al. 2016). Type II IFN has also been shown to induce Mo differentiation into 

anti-tumoural macrophages rather than TAMs (Duluc et al. 2009; Parker et al. 

2016). By modulating the immune cells and also the endothelial cells, the 

microenvironment is additionally normalised by IFNs (Kammertoens et al. 

2017; Glasner et al. 2018; Ivashkiv 2018).  

 

In light of the known actions of IFNs but the limited use due to side-effect and 

lack of specificity, De Palma and colleagues investigated if IFN therapy could 

be targeted using Mo. Having previously established that a subset of Tie-2 

expressing Mo found both in mice and humans, home to the TME (De Palma 

et al. 2005; De Palma et al. 2007; Venneri et al. 2007), they used this as a 

means to achieve targeted therapy. Using a lentivirus expressing mouse Ifn1a 

cDNA from the promoter/enhancer sequences of the Tie-2 gene and 

combining this with GFP expression they generated a mouse with inducible 

Ifn1a transgene restricted to Tie-2 expressing cells (De Palma et al. 2008). In 

the spontaneous PyMT model (FVB background) the results were very 

promising both with early and late-intervention. There was an increase in T-

cell infiltrates and a suggestion of increased cytolytic activity of myeloid cells. 

In relation particularly to myelopoiesis, the increase in circulating CD11b+ cells 

observed in the spontaneous PyMT-MMTV FVB tumour bearing mice, was 

partially attenuated in mice with IFN1a Tie-2 cells. It is not clear the mechanism 



 Monocyte dynamics in breast cancer 

 

Transcriptional alterations to mouse monocytes in PyMT mice

  149 

of this, however.  In relation to the findings here, the study by De Palma and 

colleagues suggests that transcriptional levels of Ifn1a in Mo may affect both 

the kinetics and the subsequent phenotype when Mo differentiate into TAMs. 

 

   

Figure 41 The role of Interferons in cancer. Both endogenous and 

exogenous (as a result of IFN therapy) type I and type II IFNs play major roles 

in activating anticancer immunity (such as promoting the activity of α/β T cells, 

γ/δ T cells, natural killer (NK) cells and dendritic cells (DCs)), as well as 

inhibiting the activity of immune-suppressive cells (such as regulatory T (Treg) 

cells and myeloid-derived suppressor cells (MDSCs)) and the conversion of 

tumour-associated macrophages (TAMs)). Type I and type II IFNs may also 

act directly on the tumour cell to improve antigen expression and to upregulate 

numerous immune-interacting molecules (such as major histocompatibility 

complex class I (MHC I) and stress ligands recognized by germline-encoded 

immunoreceptors). Note that although many of these pathways and 

mechanisms overlap and synergize, the role of B cells in antitumour immunity 
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is contentious. In addition to B cells being positively correlated with ovarian 

cancer outcomes, others suggest that this cell type promotes tumour 

progression in various mouse models. cAMP, cyclic AMP; IL, interleukin. 

Image and caption adapted from Parker et al. 2016. 

 

As IFNs are well documented in the literature and the most enriched pathways 

in cancer featured altered IFN signalling, it was reasonable to assess if IFN 

signalling in Mo differed in cancer. Unfortunately, the findings were 

inconclusive. This may be because IFNg was used. The pathway analysis 

featured predominantly type I IFN signalling, which acts via IFNa or IFNb rather 

than IFNg (Stark & Darnell 2012; Villarino et al. 2017).  IFNg signals via a type 

II pathways and, despite having similar nomenclature due to historical context, 

is distinct from type I IFN responses (Stark & Darnell 2012; Villarino et al. 2017; 

Parker et al. 2016).  

 

Undertaking further functional work has been considered as well as further 

profiling of Mo, for example exploring population heterogeneity in the spleen 

by RNAseq. But this would need to take into account that no orthologous 

changes have been observed, questioning the clinical relevance of such work. 

The lack of translation to humans was the main reason that this body of work 

was not expanded further. In considering the comparisons between mouse 

and human however, it is worthwhile to highlight the limitations of the 

evaluation assumed here.  
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The mice that were sequenced had advanced cancer, whereas human 

participants had early stage, non-metastatic disease. While the timepoint at 

which to sequence was chosen when changes were expected to be greatest, 

it may be that the timepoint was too advanced to compare with the human 

dataset. Unfortunately, there are no available RNAseq datasets in human Mo 

with advanced cancer. It is also likely that, if there were, it would be difficult to 

obtain data that was “off-treatment”. An obvious solution is to re-sequence the 

mice at a much earlier stage. This is something that is being undertaken and 

that will permit a more like for like comparison. Another possibility as to why 

there are no orthologous changes may be because the datasets are not 

comparable in the way in which they were acquired. The human dataset is 

taken from whole Mo, whereas the mouse dataset is broken down into two 

subpopulations.     

 

Nonetheless, undertaking this work in the mouse, conferred a number of 

benefits. Firstly, it is possible to deduce where cells are being conditioned. 

Both the RNAseq and the subsequent validation of MHCII expression suggests 

that the predominant shift in antigen presentation at least occurs within the BM. 

But that further changes may occur within the blood, as demonstrated by a 

greater number of DEGs in the blood versus the BM. This is reinforced by the 

greater enrichment of downstream pathways, such as TNFa production, in the 

blood but not the BM. Two stage conditioning of immune cells in cancer is 

described in the field of MDSCs (Marvel & Gabrilovich 2015).  
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Secondly, the comparison of mouse strains reveals transcriptional profiles of 

Mo in a setting of resistance in the C57BL/6 versus susceptibility in the FVB. 

Unfortunately, because the sequencing depth was not matched in the two 

strains, it is ill informed to draw definite conclusions.  

 

Two arguments could be made. The enrichment of pathways was stronger and 

more extensive in the C57BL/6 strain. This could be used to argue that in the 

more resistant C57BL/6 strain, a more coordinated manipulation of the 

immune system is required. The down-regulation specifically of type I IFN and 

additionally of IL-1b was restricted to the C57BL/6 mice.  This is especially 

interesting as a recent paper demonstrated that while high levels of IL-1b are 

required for primary tumour progression, sustained high levels inhibit the 

formation of secondaries and blocking IL-1b signalling actually potentiates 

metastases (Castaño et al. 2018). The production of IL-1b by TAMs in the KEP 

mouse model has been shown to be driven by CCL2 (Kersten et al. 2017). 

Though in this particular model, blocking CCL2 has no effect on circulating Mo 

(Kersten et al. 2017). It may be that the differences in pathways found here 

reflects that different mechanisms are required for tumour progression in the 

two strains. This would be in keeping with the known difference in both Th and 

macrophage responses in the two strains (Mills et al, 2000). Contrary to this 

proposition, the LFCs in FVBs were greater and thus it could be argued that 

the transcriptional shifts in FVBs are greater. It is reasonable to hypothesise 

that the FC in genes, including those that were commonly DE in both strains, 
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are representative of the greater hametopoetic stress in FVB mice. This agrees 

with the hypothesise that it is the inflammatory context of advanced cancer that 

drives the transcriptional profiles of Mo observed here.   

 

To conclude this chapter, there are a number of interesting findings in relation 

to the transcriptional changes that occurred to mouse Mo in late tumour-

bearing mice. While the data at current does not conclusively prove that there 

are no orthologous changes with humans, and it may be worthwhile to 

undertake further work in mice, there was a lack of evidence to support 

continued efforts to delineate the transcriptional regulation of Mo using mice. 

For this reason, it was decided to shift the focus to human samples. This will 

form the focus of the final results chapter.   
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Chapter 6 Transcriptional regulation of human 

monocytes in breast cancer 
 

6.1 Introduction 

 

Initial studies focused on identifying transcriptional signatures in circulating 

human Mo that could be used for diagnosis and prognosis of cancer (Cassetta 

et al. 2019; Chittezhath et al. 2014; Hamm et al. 2016). These studies 

confirmed that circulating Mo were transcriptional distinct in cancer patients, 

suggesting that transcriptional regulation was altered perhaps systemically 

within the blood, rather than just on arrival to the TME.  

 

From a therapeutic perspective the importance of understanding 

transcriptional regulation of Mo was recently highlighted by successful use of 

HDAC inhibitors targeting myeloid populations in breast cancer mouse models 

(Guerriero et al. 2017). While the focus of this paper was on reprogramming of 

TAMs, it was hypothesised that this effect was possibly through 

reprogramming of the TAM precursors, Ly6chigh Mo (Guerriero et al. 2017).   

 

There are many methods used to assess transcriptional regulation. The use of 

RNAseq can provide some indicators. For example, there may be alterations 

to genes for TFs and related genes that are known to be regulated by 

respective TFs. Post-transcriptional focused analysis can also yield further 
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information (Schmid et al. 2018; Gaidatzis et al. 2015). However, RNAseq 

cannot reveal epigenetic regulation such as changes to chromatin structure, 

methylation or acetylation directly of the DNA or indirectly of histones, and the 

activity of the many regulatory and co-regulatory factors. 

 

An important aspect of transcriptional regulation relates to the binding of TFs, 

which depends on the availability of binding sites.  The accessibility of gene 

elements can be investigated using both DNA I hypersensitivity assays and 

the ATACseq method (Elgin 1981; Pipkin 2006; Buenrostro et al. 2013). The 

latter of which uses a naturally occurring phenomena, the transposase 5 

enzyme, which cuts into open areas of DNA. By exaggerating the efficiency of 

this, and attaching sequencing primers to the enzyme, accessible areas of 

DNA can be isolated and sequenced (Buenrostro et al. 2013). By using size 

selection techniques, such as via a simple agarose gel, areas that are closely 

associated to a nucleosome can be selected for sequencing to reveal which 

sites are readily (and perhaps differentially) available.   

 

As discussed in the introduction, TF binding alone is not sufficient to regulate 

transcription. An important factor is the status of histones, which can be 

assessed using immunoprecipitation techniques with an antibody binding to 

the protein of interest. By combing this with NGS (ChIPseq), whole genome 

coverage of binding sites can be elucidated. ChIPseq can also be used to 

assess binding of transcriptional machinery such as RNA polymerase II. While 

RNA polymerase II and H3K4me have been used to identify enhancers, both 
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of these can also be bound to transcriptional elements wherein transcription is 

either paused or poised (Rada-Iglesias 2017; Chen et al. 2018). Therefore, 

these methods lack specificity in identifying actively transcribed regions.  In 

contrast, the histone H3K27 is acetylated only post-transcriptionally and has 

been shown to have greater specificity in identifying active transcription 

(Creyghton et al. 2010).  

 

Thus, the aim of this final body of work was to use RNAseq, ATACseq and 

ChIPseq to deduce aspects of transcriptional regulation that are altered in 

blood Mo in patients with breast cancer.  

 

6.2 Strategy for epigenetic profiling of human blood 
monocytes in breast cancer 

  

For the first cohort of patients, samples were acquired in January and February 

2018. Cancer sample demographics are shown in Table 4. The majority of 

patients had NST, non-metastatic, grade 2, ER+ cancer. The mean age for 

cancer and control samples was 64 (range 51-70) and 55 (range 44-72) 

respectively. Sufficient cells were obtained to process 8 cancer samples and 

8 control samples for both RNAseq and ATACseq. Only half the samples had 

sufficient cells for ChIPseq. The ATACseq data from this cohort was not of 

good enough quality to allow for analysis and a need for further optimisation 

was identified.  Nonetheless, the RNAseq data was analysed and used to 
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guide further decision making. For the RNAseq data, an initial exploratory 

analysis was undertaken using PCA and DE analysis.     

 

On PCA, 4 of the cancer samples clustered separately from the remaining 

samples (Figure 42, A). To assess why this may be, patient demographics 

were consulted. However, none of the samples were common in terms of age, 

histological subtype, grade, lymph node status or receptor status. The details 

for processing of samples and the analysis files for sorts were inspected. It 

was noted that there was a significant increase in the proportion of CD14low 

CD16high Mo (referred to as CD16 Mo hereafter) in some cancer samples. 

Samples that segregated on PCA, were those which contained a much greater 

proportion of CD16 Mo (Figure 42, B).   

 

To investigate how much the proportion of CD16 Mo may be contributing, a 

FANTOM consortium dataset was identified, which compared immune cells 

from healthy volunteers and included sequencing of CD14high CD16low (here 

on in referred to as CD14) and CD16 Mo (Schmidl et al. 2014). This enabled 

comparison of DEGs from comparing cancer versus healthy control Mo with 

DEGs between the two Mo subsets in healthy human samples.  
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Table 4 Demographics of human Mo samples from breast cancer patients 
acquired in January to February 2018. NST = Non-special type, Lob = 

Lobular, DCIS = Ductal Carcinoma in Situ, Tub = Tubular, LN = Lymph node 

status, ER = Oestrogen receptor score; PR = Progesterone score; HER = 

Herceptin receptor status. The use of n/a signifies not applicable.  

 

Figure 42 Primary analysis of human blood Mo RNAseq samples 
acquired in January to February 2018 (A) PCA of all samples processed for 

RNAseq (B) Percentage of CD16 Mo as a total of all Mo according to control 

or cancer sample status. Control samples are indicted in black and cancer in 

red. Labelled are cancer samples 2,3,6 and 7 which clustered separately to 

other samples. * p value <0.05 by unpaired t-test. 

ID Age Type Grade LN ER PR HER 
CA1 68 NST 2 - 8 5 - 
CA2 66 Lob 3 + 8 2 + 
CA3 64 NST 2 - 8 8 - 
CA4 57 DCIS 2 - n/a n/a n/a 
CA5 70 NST 2 - 8 7 - 
CA6 70 NST 1 - 8 7 - 
CA7 60 Tub 1 - 8 8 - 
CA8 51 NST 2 + 8 0 - 
CA9 67 Muc 2 - 8 3 - 
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Figure 43 Contribution of ratios of CD16 and CD14 Mo populations in 
each sample to the DEGs detected (A) Comparison of LFC in DEGs from 

two datasets: On the X-axis the data-set comparing cancer and control whole 

LFC Cancer to healthy samples

LF
C

 C
D

16
 to

 C
D

14
 M

o

A

B

3.20

1.93

1.49

1.36

1.26

1.22

1.05

1.04

-1.04

-1.06

-1.17

-1.22

-1.22

-1.31

-1.38

-1.47

-1.48

-1.52

-1.54

-2 -1 0 1 2 3 4

EGR1
PER1
VMO1
FOS
VNN1

RNF144B
PROK2
DUSP1

CHST13
SIGLEC1

CCL5
GZMB
CST7
HLA-J
ANPEP
HLA-L
PRF1

SPON2
IL2RB

LFC Cancer to healthy samples (CD16% modelled in DEseq)



 Monocyte dynamics in breast cancer 

 

Transcriptional regulation of human monocytes in breast cancer

  160 

Mo and on the Y-axis a data-set generated by comparing CD14 and CD16 

from health samples (FANTOM). Genes highlighted are known markers of 

CD16 and CD14 Mo. Genes in black are those featured in plot (B). Correlation 

of genes with an absolute LFC>1 was rho 0.78 (Spearman’s, p <2.2x10-16) (B) 

LFC Changes in DEGs when DE modelled for CD16% in each individual 

sample. Up-regulated genes are shown in red and down-regulated in blue. 

LFC values are labelled adjacent to corresponding bars.  

 

There were 370 DEGs (q.value<0.05) between the cancer versus healthy 

control Mo. Plotting the LFC in DEGs in both this and the FANTOM dataset 

(Figure 43, A) revealed that while there were a number of DEGs unique to 

each dataset, there was a strong correlation of genes that were DE in both 

datasets (Spearman’s test; rho 0.78, p <2.2x10-16). This suggested that the 

prominence of CD16 Mo in the cancer samples may be distorting the results. 

Given this, the percentages of CD16 Mo were built into the analysis. This 

revealed a number of genes that, without adjustment, were either not shown 

to be DE or for which the LFC value was lower (Figure 43, B).  

 

The aim of the RNAseq was to be able to correlate findings with Mo epigenetic 

profiles. As discussed in the introduction, CD14 and CD16 Mo are 

characterised by common TFs but also have a number of known TFs that are 

distinct. Little is documented on the ATACseq profiles between the two Mo 

populations, but it was not unreasonable to suspect that the chromatin 

conformation may differ. Taking this into account, along with the findings of 

this preliminary RNAseq analysis, the decision was made that any further 
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profiling on Mo should be done on the distinct CD14 Mo and CD16 Mo 

populations, rather than as whole Mo. As this resulted in lower cell yield, the 

use of ChIPseq was forsaken in the following cohort.  

 
6.3 Transcriptional alterations to human blood 

monocytes in cancer 

 

Following the decision to profile Mo subsets and the optimisation of techniques 

(detailed in the Appendix section 9.3.1 Optimising Accessibility of Transposase 

Assay (ATAC)), the aim was to accrue a small cohort of patients. Samples 

were accrued from October 2018 to February 2019 on 8 cancer patients and 

5 healthy controls. The demographics of all samples collected are detailed in 

Table 5. Cancer patients were generally older; with a mean age of 58 (range 

52-69) and 47 (range 40-60) in cancer and healthy groups respectively. 

Because sufficient cells for both RNAseq (25x103 cells) and ATACseq (50x103 

cells) in both Mo populations were not always achieved, there was not a full 

complement of profiling for each patient (Table 5). Among the samples initially 

classified as having invasive cancer, there was 1 patient with pure DCIS on 

finally histology (Table 6). The majority of patients had NST cancer (Table 6). 

Just 1 patient had grade 3 triple negative breast cancer, representing a high 

risk for recurrence (Table 6). All patients had confirmed non-metastatic 

disease (note that for patient CA8 micro-metastasis were detected but that this 

does not reflect lymph node metastasis by current clinical grading) (Table 6). 
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In terms of FastQC assessment, all samples were of excellent quality. One 

RNAseq sample (CA5 CD14) showed a lower correlation with all other 

samples (<0.9) and clustered separately on PCA (Figure 44, A). This sample 

was under-sequenced with just 14.5x106 initial reads, a unique mapping rate 

of 88% and 12.8x106 unique reads. When using normalised transcripts per 

million (TPM) and checking clustering of samples, this sample again was an 

outlier (Figure 44, D). It was therefore excluded from further analysis.  

 

Samples clustered predominantly on Mo subtype (Figure 44, A). Visualising 

CD16 and CD14 Mo samples separately demonstrated that in both 

subpopulations, healthy controls clustered together (Figure 44, B-C). In the 

analysis of both Mo subpopulations, CA2, CA7 and CA8 samples clustered 

with healthy control samples (In PC1 for CD16 Mo and PC2 for CD14 Mo, see 

Figure 44, B-C). Consulting the clinical information, it was noted that sample 

CA2 was from a patient with in-situ disease and CA8 from a patient with lobular 

cancer. There was no clinical explanation for CA7 clustering with the healthy 

controls. Given this, DE analysis was undertaken including all samples, 

excluding CA2 or CA8 or both. However, this did not greatly change the DEGs 

and results are presented inclusive of all samples (a full list of DEGs can be 

found in the supplementary files). 

 

There was a 7-fold increase in the number of genes up-regulated versus down-

regulated in cancer versus healthy control CD16 Mo; 185 genes were up-
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regulated while only 27 genes were down-regulated (q.value<0.05) (Figure 45, 

A). This pattern was true also for CD14 Mo but there were approximately half 

the number of DEGs in this population; 93 up-regulated and 14 down-regulated 

genes (q.value<0.05) (Figure 45, B). 

 

There were a number of genes in common to both Mo populations (Figure 46). 

There were a number of genes commonly up-regulated that indicated towards 

an activated status of Mo in cancer patients, in particular with regards TNFa 

and NFkB signalling (Table 7). Despite a gene list of just 28 genes, myeloid 

activation involved in immune response (GO:0002275) was enriched with a 

significant Log q.value of 5.66. The gene for the TF, EGR1 was the most up-

regulated in both CD14 and CD16 cancer Mo.  
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Table 5 Demographics and human Mo samples obtained for all sorted 

samples from October 2018 to February 2019. 
✔

 = sample, ✘ = no sample 

obtained. 

Sample 
ID 

Hist. 
Type Grade ER PR HER2 LN Status 

CA1 NST 2 8 7 Negative Negative 
CA2 DCIS 2 8 0 Negative Negative 
CA3 NST 3 0 0 Positive Negative 
CA4 Tubular 1 8 7 Negative Negative 
CA5 NST 3 0 0 Negative Negative 
CA6 NST 2 8 8 Negative Negative 
CA7 NST 2 8 6 Negative Negative 
CA8 Lobular 2 8 7 Negative Negative 

Table 6 The histological subtypes, grade, receptor status and lymph 
node status for all cancer patients obtained from October 2018 to 
February 2019. Abbreviations are as for Table 4 on page 152.   

Sample 
ID 

Age 
(years) Status CD14 

RNA 
CD14 
ATAC 

CD16 
RNA 

CD16 
ATAC 

CA1 55 Cancer ✔ ✔ ✔ ✔ 
CA2 52 Cancer ✔ ✔ ✔ ✔ 
CA3 53 Cancer ✔ ✔ ✔ ✔ 
CA4 69 Cancer ✘ ✘ ✔ ✔ 
CA5 55 Cancer ✔ ✘ ✔ ✔ 
CA6 55 Cancer ✘ ✘ ✔ ✔ 
CA7 62 Cancer ✔ ✔ ✔ ✔ 
CA8 66 Cancer ✔ ✘ ✔ ✘ 

 Mean 59      
Cn1 44 Healthy ✔ ✔ ✔ ✔ 
Cn2 60 Healthy ✔ ✔ ✔ ✔ 
Cn3 40 Healthy ✔ ✔ ✔ ✔ 
Cn4 44 Healthy ✔ ✔ ✔ ✔ 
Cn5 46 Healthy ✔ ✘ ✔ ✘ 

 Mean 47      



 Monocyte dynamics in breast cancer 

 

Transcriptional regulation of human monocytes in breast cancer

  165 

 

Figure 44 Primary analysis of RNAseq from human Mo samples collected 
from October 2018 to December 2019 (A) PCA of all samples, with outlier 

sample CA5 labelled and clustering by Mo sub-type shown (B) PCA of CD16 

Mo samples, with cancer samples labelled (C) PCA of CD14 Mo samples, with 

cancer samples labelled (D) Gene expression heatmap of all Mo RNAseq 

samples with unsupervised hierarchical clustering applied to all genes. 

Samples are arranged horizontally, and sample characteristics are provided in 

horizontal bars for each column denoting cancer (red) and control (black). 

Genes are arranged vertically; Red colour within the heatmap indicates up-

regulation, and blue colour indicates down regulation based on the tpm z-score 

(range [-4, 4]). Samples are clustered using complete linkage and Pearson 

correlation. For (A-C) Control samples are indicted in black and cancer in red. 
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Figure 45 Volcano plots for RNAseq of human samples collected from 
October 2018 to December 2019 (A) CD16 Mo samples. A total of 185 up-

regulated and 27 down-regulated genes with a q.value<0.05 (B) CD14 Mo 

samples. A total of 93 up-regulated and 14 down-regulated genes with a 

q.value<0.05. Genes with a q.value<0.05 are indicted in red. 

 

 

Figure 46 Venn diagram of DEGs in CD16 Mo and CD14 Mo (A) Up-

regulated genes (B) Down-regulated genes. Only genes with a q.value<0.05 

included. 

●

●

●

●

●●
●

●
●

●

●●
●
●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●
●
●●●

●

●
●

●
●
●

●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●
●

●●

●●
●

●●
●
●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●●

●

●
●●●

●

●

●
●
●
●
●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●

●

●

●
●●

●
●

●

●

●

●●

●

●
●

●●

●

●

●
●

●
●●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●●
●●

●

●
●

●●
●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●
●
●●●
●

●

●

●

●
●
●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●
● ●
●

●

●●

●●
●●
●

●

●●
●●●
●

●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

● ●

●●
●●

●
●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●●
●●

●

●

●
●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●● ●
●

●

●

●

●●

●

●

●

●●
●●
●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●●

●

●

●

●
●●●●
●

●

●

●

●

●●●●

●●

●

●●●
●

●
●

●●
●
●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●●

●

●●

● ●

●

●●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●
●●●

●

●

●●

●

●
●

●
●
●●

●
●

●●●●●

●

●

●

●

●●

●

●
●●●

●

●

●
●

●●
●●

●

●

●

●

●
●
●●

●

●●

●
●

●●
●

●

●

●●●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●
●

●

●●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●●

●

●

●●

●

●●
●

●

● ●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●
●●

●
● ●●●●● ●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●
● ●

●

●

●

●●●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●

●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●●
●

●
●

●●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●
●

●●
●●
●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●●

●
●

●●

●

●
● ●

●

●

●
●●
●●●
●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●

●

●●

●●

●

●

●
●
●
●

●

●
●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●

●

● ●
●

●

●

● ●

●●

●
●

●

●

●●

●●

●
●

●

●●

●

●●
●●

●

●

●

●

●

●●
● ●

●
●●
●
●●●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●
●

●
●

●●

●●
●

●
●
●●

●

●

●
●

●
●●●

●
●

●●

●
●●
●
●●
●

●

●●
●

●

●
●

●

●

●●●
● ●

●

●
●●●

●

●

●

●

●

●

●

●●
●
●●●

●

●

●

●●●
●

●

●●

●

●●

●
●

●

●

●
●

●

●

●●●●●

●

●

●

●●

●

●

●
●●
●
●●

●

●
●

●●●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●●
●

●●●●

●

●

●
●
●

●●

●●
●

●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●●
●●●●

●

●●●●
●

●●

●

● ●

●

●
●
●
●
●

●

●
●

●

●
●

●

●
● ●

●●
●

●

●
●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●●
●

●

●

●

●●●●

●

●●

●

●

●

●
● ●

●●

●

●

●

●●
●●●

●●
●

●

●

●●

●●

●

●

●
●●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●●
● ●
●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●
●●

●

●
●

●
●

●
●●
●

●

●●
●
●

●

●

●

●
●●

●

●

●●

●

●

●●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●● ●

●

●

●

●
●

●
●

●●

●
●● ●

●●●
●

●

●

●

●

●

●

● ●

●

●
●●●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●
●

●
●●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●●
●
●●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●●●

●

●

●

●

●
●●●●

●

●

●

●
●
●
●
●●

●
●

●
●●

●

●
●
● ●

●

●

●●

●
●●●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●
●

●

●
●

●●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●●●

●

●
●

●
●

●

●●●
●

●

●●●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●●

●

●

●●
● ●●
●

●

●

●

●●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●●●●

●●●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●●●

●

●●
●

●

●

●●●
●
●

●

●●
●
●
●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●●●
●

●

●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●●

●●●
●

●●

●

●
●

●

●

●●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●●
●

●

●● ●●

●●
●

●●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●●
●●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●

●●
●
●

●

●

●
●
● ●
●●

●

●●

●
●

●●

●
●

●

●

●
●
●●

●●

●

●

●
●
●
●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●
●●

●

●●

●

●●
●
●●

●

●●
●

● ●

●

●

●
●

●●●●
●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●

●●●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●●

●

●

●

●
●
●●
●●●

●

●

●

●

●

●

●

● ●
●● ●

●
●

●

●
●
●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●
●
●●

●

●●

●

●
●

●

●

●●
●

●

● ●

●●

●

●

●
●

●

●●

●
●
●
●● ●

●

●●●● ●

●

● ●

●

●

●

●
●●

●

●●

●

●

● ●

●

●
●
●

●
●

●●

●●

●●

●

●

●●●
●●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●●

●

●

●

●

●
●

●

●●●
●
●

●
●

●
●●

●

●●
●●
●●●

●

●●
●

●●

●
●
●

●
●

●
●●●
●

●

●●
●

●●

●

●
●
●

●
●
●

●

●

●

●

●● ●

●
●

●●

●

●
●

●

● ●

●

●

●●
●
●●

●●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●●
●
●

●

●●

●

●

●

●
●●

●

●●●●

●

●●
●●●

●

●

●

●

●
●

●●

●
●

●

●
●●
●●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●●●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●●●

●

●●●●●

● ●●

●

●●
● ●

●

●
●

●

●

●

●●●●
● ●●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●●
●

●

●
●

●●

●
●●●

●

●●

●

●●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●●

●
●

●
●●

●
●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●
● ●●

●

●
●
●

●

●

●

●
●●

●

●

●●

●

●●
●
●

●

●
●

●

●●●

●

●
●

●
●

●●

●
●

●

●●
●

●

●

●●●

●

●●

●

●

●

●
●
●
●●

●
●

●

●

●●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●●●

● ●

●

●

●

●

●
●

●

●
●
●●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●●●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●●

●
●
●

●●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●●

●●
●●

●

●●

●
●

●

●

●●

●
●
●●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●●●
●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

● ●
●●

●

●

●●●

●

●
●●
●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●●●

●

●
●●

●●

●

●●●

●

●

●●
●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●
●

●●

●

●

●

●●

●

●●●

●

●●
●

●

●
●

●●●
●

●

●
●

●

●

●

●●●●●

●

●●●
●

●● ●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●●

●

●●

●

●

●

●
●
●

●

●●●●

●
●
●●

●

●

●●●

●
●

●
●
●

●

●

●

●

●

● ●

●
●
●
●

●

●

●

●
●●
●●
●●

●

●

●

●●

●

●●●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

● ●
●

●

●●●●

●●
●
●
●
●

●

●●

●

●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●

●
●

●●
● ●
●

●
●●

●

●

●

●
●
●

●

●

●●
●●●

●●●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●
● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●

●
●

●
●●
●

● ●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

● ●●●●

●

●

●
●

●

●
●

●
●

●

●

●● ●●

●

●

●

●
●
●
●

●

●
●

●
●

●●

●

●

●

●
●●

●●
●

●

●
●

●

●
●●

●

●

●

●●

●
●

●●
●●

●
●

●

●
●
●
●

●
●

●
●
●

●

●

●

●●●●
●

●
●●

●
●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●●●

●

●
●

●

●●●●●

●
●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●
●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

● ●
●

●●

●
●●

●

●

●

●●●●●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●●
●

●

●

●●

●●●●●●

●

●
●

●

●

●

●

●●
●

●●

●
●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●●

●
●
●

●

●

●
●
●●

●

●

●

●●
●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●●
●
●

●
●●

●

●

●

●

●

●●
●
●

●
●
●

●
●

●

●●

●

●

●●
●

●

●

●●
●●

●

●

●● ●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●●●

●●

●

●●●
●●
●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●

● ●●

●

●

●

●

●●
●
●

●
●●
●●●●●

●

●●●

●

●
●

● ●
●

●

●●●●

●

●●●
●

●●

●

●

●
●

●

●●●●
●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●
● ●●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●●●●●

●

●

●

●

●

●●

●●
●

●

●

●

●
●
●●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●● ●

●●●●
●
●
●
●

●

●
●●

●

●

●
●

●

●

●●

●

●●●
●
●

●

●
●● ●

●
●

●
●●
●

●

●

●
●
●

●

●
●

● ●
●

●
●●

●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●

●

●
●

● ●

●●
●

●

●
●
●●

●
●
●●
●●

●

●

●
●
●

●
●

●
●

●

●

●
●●

●

●
●●

●
●

●●
●
●

●

●

●

● ●
●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●●

●

●

●
●●●

●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

● ●
●● ●●
●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●
●

●●
●

●●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●●
●
●

●

●

●

●
●
●●

● ●

●

●

●●●

●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●●●●
●●●●●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●
●

●

●

●

●

●
●
●●●

●

●
●

●

●●
●

●

●
●
●
●
●

●

●

●

●
●●●●●
●

●●
●

●

●

●
●●

●

●

●

●●
●

●

●●●

●

●
●
●
●
●
●

●

●

●

●

●
●
●

●●

●●
●
●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●
●

●●

●
●

●
● ●
● ● ●
●

●●
●●

●

●

●

●

●

●●●●
●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●●●●

●

●●

●

●

●

●

●

●

●
●
●●

●●●
●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

● ●●

●
●●

●

●

●

●

●

●

●●

●●
●●

●

●

●●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●
●

●●●●
●●

●

●
●●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●
●

●●●●●
●

●●

●

●
●

●●
●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

● ●
●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

● ●
●

●●

●

●
●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●
●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●
●
●

●
●

●
●

●
●●

●

●

●

●
●
●

●

●

●

●●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●●

●

●
●

●
● ●

●
●●●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

● ●●

●

●
●

●

●
●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●
●
●
●

●●
●

●

●

●

●
●

●

●
● ●●
●●
●●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●
●
●

●

●

●●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●●

●

●

●

●

●
● ●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●●

●

●●
●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●●

●●

●

●

●

●

●●
●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●●
●

●●

●
●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

● ●

●
●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

● ●

●

●
●
●●

●

●●
●

●

●

●

●

●
●●

●●●●

● ●

●
●

●

●●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●●

●

●
●●●
●●

●

●
●●

●

●

●

●

●
●
●

●
●
●
●

●
●

●

●

●

●

●

●

●
●

●

●●●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●
●●
●

●

●●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●●

●● ●

●
●

●

●
●

●

●

●●

●

●●●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●

●

●

●
●

●●
●●
●

●

● ●

●●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●●

●
●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●●

● ●

●●●
●

●

●

●

●

●
●

●

●

●
●●●●●●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

● ●
●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●●

●

●

●●

●

●
●

●
● ●
●
●
●

●

●

●

●
●

●
●
●

●

●
●●

●

●●

●

●●

●

●●

●
●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●●

●

●
●

●

●

●

●
●

●
●
●

●

●

●
● ●
●

●●

●

●
●

●

●

●

●

●●
●●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●●● ●

●

●

●

●
●●●
●
●●●

●

●

●

●●

● ●

●
●●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●
●

●
●●

●●

●

●●●●

●

●●
●
●

●
●

●●

●●
●

●

●

●●

●

●

●

●●●●
●

●
●
●
●
●●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●●●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●●

●
●

●

●
●

●●

●
●

●

●

●

●

●●●
●

●

●●

●
●

●
●

●

●
●

● ●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●
●

●

●

●●●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●
●

●●

●

●

●

●

●
●
●

●●

●

●●

●

●
●

●●
●

●

●
●●

●

●

●●●

●
●
●

●
●●

●

●

●

●
●

●

●●●●

●

●

●

●●

●
● ●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●●

●●

●

●

●

●
●

●
●

● ●

●

●

●
●
●●

●
●

●
● ●
●●●

● ●

●

●

●

●
●

●

●
●

●

●●
●●

●

●
●
●

●

●
●●
●●
●

●●

●●

●

●

●

●
●
●●

●

●

●● ●
●

●
●

●
●

●

●
●●

●

●

●

●●
●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

● ●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●
●

●
●●

●

●

●

●

●●●●●

●

●

●

●

●●●

●
●

●●

●
●

●

●

●

●●●

●

●●

●

●●

●

●
●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●
●

●

●

●

●
●
●●●
●●●

●
●

●●

●●
● ●

●

●
●

●

●

●●
●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

● ●

●
●
●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●
●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●
● ●

●

●●
●

● ●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●
●
●

●●
●

●

●●●

●
●

●

●

●

●●

●
●

●
●●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●●

●

●
●
●●

●

●
●●

●

●

●

●

●●
●●

●

●

●
●

●
●●

●

●
●

●

●

●

●
●● ●

●●

●●●

●

●

●
●●
●●

●

●●

● ●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●
●●

●

●

●

●●

●●

●
●

●
●●● ●●●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●●
●●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●●
●
●●

●

●

●
●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●●●●

●

●

●
●

●
●

●

●
●
●●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●
●

●● ●

●

●
●●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
●●

●
●
●●●
●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●●●●
●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●
●

●

●

●

●
●

●
●●
●

●
●

●

●

●●

●

●

●

●
●●

●

●
●● ●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●
●●
●

●●
●
●●
●

● ●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●
●
● ●

●

●

●●

●

●●

●

●●

●

●

●●●

●
●

●●

●

●

●
●

●●
●●
●●●●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●●●●
●

●

●

●

●
●●●

●

●

●●

●

●
●

●
●●●●

●

●●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●●

●●
● ●

●

●
●

●

●

●
●

●●
●
●

●
●
●

●

●
●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●
●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

● ●
●●

●●

●

●●
●

●●

●

●
●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●
●

●

●
●

●
●●
●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●●●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●

●
●
●

●
●●●

●

●
●

●

●

●●

●●●

●

●

●
●●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●● ●
●

●

●

●
●●

●

●

●

●●●

●

●●

●●
●

●

● ●

●

●●
●

●
●●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

● ●●

●●

●

●

●●

●●

●
●●●
●●

●

●

●

●

●

● ●

●

●
●
●●

●

●●

●
●
●●
●●

●

●●
●

●

●
●

●

●

●

● ●

●

●
●●●●
●●

●

●●●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●●

●●
●●●

●

●

●

●
●

●

●●
●●

●
●
●

●
●

●

●
●

●

●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●
●
●●

●

●●●
●

●●

●
●

●
●
●●●

●●

●

●

●

●

●●●●
●

−6 −4 −2 0 2 4 6

0
5

10
15

Log2 FC
−l

og
10

(B
H

 A
dj

us
te

d 
P−

va
lu

e)

A
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●● ●●
● ●● ●

●●
●● ●●

●● ●●● ●● ●● ●● ●

● ● ●●
●●

●● ● ● ● ●● ●●●●● ●● ● ●● ●●●● ●●●● ●●● ●● ●●● ●● ● ● ●● ● ● ●● ●● ●● ●● ● ● ●●●● ●● ●●● ●●● ●● ●● ● ●● ●●●● ●●● ● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ● ●●● ● ●●●●●● ●● ●●● ●● ●● ●● ●● ● ●● ● ●●●●● ●● ● ●● ●●● ●● ●● ● ● ● ●● ● ●● ●● ●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ● ●●● ●● ● ●●● ●● ●●●● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ●●●● ● ●● ●● ● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ● ● ●●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ● ● ●● ● ●● ●●● ●● ●● ● ● ●● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ●●●●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●●● ●●● ●● ●●● ●●●● ● ●● ●●●● ● ●●● ●● ● ● ●●● ● ●●● ●● ●● ●● ●● ● ● ●●●●●● ● ● ●●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●●● ●● ●● ●●● ● ●●●●● ●● ● ●●● ●● ● ●● ●● ●●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●●● ● ●●● ●● ●● ●● ●●●● ●● ● ●●●● ●● ● ●●● ●●●● ●●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ●●● ● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●● ●●●● ●● ● ●●●● ●●●●●● ●●● ● ●●●●● ●● ●● ● ●●●●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●●● ●●● ● ●● ●●● ● ● ●●● ●●● ●●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●●●● ●●● ●●● ●● ● ●●●● ●● ●●● ●● ● ●●●● ●●●● ●● ●●● ●● ● ●● ●●●● ● ●●●●● ●● ●●● ●●● ●●●●●● ●● ●●● ● ●● ● ●● ● ● ●● ●● ●●●● ● ●● ●●● ● ●● ●● ● ● ●●● ●●● ●●●● ●●●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ● ● ●●●● ●● ●●● ●●●● ●●●●● ● ●●●●● ● ●●●● ●● ●● ● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ● ●●●●● ● ●● ●● ●●● ●●● ●● ● ●●● ●●● ● ●● ●●● ● ●● ●● ●●●● ● ●●● ● ●●● ● ●●● ● ●●●● ●●● ●● ●● ●●●● ● ●●● ●● ●●●●●●● ● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ●●●●● ●●● ●●●●● ●●● ●●● ●●● ●●● ●●● ●●●●● ● ● ●●●●● ●●●● ●●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●●●●● ● ●● ●● ●●● ● ●● ●● ●● ● ●● ● ●●● ● ●●●● ●●● ● ●● ●● ● ●● ●● ● ●● ● ●●● ● ●●●●● ● ●● ●● ●● ●●● ●●● ● ●● ●●●●● ●● ●●●● ●● ●● ●● ●●●●●● ● ●● ●● ●●●●● ●● ●●●●● ●● ●●● ● ●● ●● ● ●● ●● ●●● ●● ● ●●● ●●● ● ● ●● ● ●●●● ●● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●●● ● ●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●●●●●● ●●● ●● ● ●●●● ●●● ●● ●● ●●● ●●●●● ●● ● ●●● ●● ●● ●●●●● ●●●●●● ●●●●● ●● ●●●●● ●● ● ●●● ●●●● ● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●● ● ●●● ● ●● ●●● ● ●●● ●● ●●● ●● ●●●● ●●●●● ● ● ●●●●●●●● ●●●● ●●●● ● ●● ●● ● ●●● ● ●●●● ●●● ● ●● ●●● ●●●● ●● ●● ●● ●●● ●●● ● ●●●● ●●●● ●● ●●● ● ●● ●●●●●● ●● ●●●●● ●● ●● ●● ●●●●● ● ●● ●●● ●●●●●●● ●●● ●●●●● ●●● ●●● ● ●● ● ●●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●●● ●●●● ●●● ●● ●● ● ●● ●●●● ●●●● ●● ●● ●●●● ●●● ●● ●●● ●● ●●●● ●● ● ●●● ● ●● ●● ●● ●●● ● ●● ●●●● ●●● ●●● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ●●●●●●● ●● ●●● ● ●● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●●●●● ●●●● ●● ●●● ● ●●●● ●● ●●●● ●● ●●●● ●●●● ●● ●●● ●● ●●● ● ● ●●●● ●●● ●● ● ●●● ● ●●● ●● ●●●●●● ●●● ●● ● ●●● ● ●● ● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ●●●● ●●● ● ● ●●● ● ●● ●●● ● ●●●● ●● ●●●● ●●● ●●● ●●● ●●● ●● ●●●● ●● ●● ●●● ●●●●●● ●●● ● ●● ●●●●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●● ●● ● ●●●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ● ●●● ●●●● ●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●● ● ●● ●●●● ●● ●●●● ●●● ●●● ●●● ●●●●●●● ● ●● ●● ●● ●● ●● ●● ● ●●●●●● ●●● ● ●●● ●● ●●● ●●●● ●● ● ●●● ●●●●●● ●● ●●● ●● ●●●● ●●●● ●● ●●●● ● ●●● ● ●●● ●● ●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●●● ●●●●● ●● ● ●● ● ●●● ●●● ●●● ● ●●●●● ●●● ●● ●●● ●● ●●● ● ● ●●●● ● ●●●● ●● ●●●● ●● ●●●● ●●● ●● ●●● ● ●●● ● ●●● ● ●●●●●● ●●● ●●● ●● ●●●● ●●●● ● ●●●●● ●● ●●●●● ●● ●● ●● ●● ●●●● ●● ● ●●●●● ● ●●● ●●●● ● ●●● ●●●● ●● ●●●● ●● ●●●●●● ●● ● ●●●●●●●● ● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●● ●●●● ●●● ●●●●● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●●●●●●●● ●●●● ● ● ● ●●● ● ●●●●● ●● ●●●● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●●●● ● ●● ●●● ●●● ●●● ●● ●●● ● ●●●●● ● ●●●●●●●● ●●● ● ●●● ●●●●● ●●● ●●●● ● ●●● ●● ●● ● ●●●● ●● ● ●●● ●● ●● ● ●●●●●●●● ●●● ● ●●●●● ●● ●● ●●●● ● ●● ●●● ●●●● ● ● ●● ●●●● ●●● ●●●●● ●● ● ●●●● ●● ●●●● ●● ● ●● ● ●●● ●● ● ●●● ●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●●●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●●●● ● ●●● ●●● ●●●● ●●●●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ● ●●●●● ●●●●●●●● ●● ●● ●●●●● ●● ●●●●●●●● ●● ●● ●●● ●● ●●●●● ●● ●● ● ●●●●● ●●● ●● ● ●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●●●●● ● ●● ●●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ● ●●● ●● ●●● ● ●● ●●●●● ●●●●● ●●●● ●●●●● ● ●●●●●● ●●●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●● ●●● ● ●● ●●● ●●● ●●●●●● ●●●● ●● ●● ●●● ●● ●●●● ●●●●● ●●● ●●● ●●● ●●●●●●● ●●●●●●● ●● ● ●●● ●●● ●● ●●● ●●●● ●● ●●● ●●●●● ● ●●●● ●●●● ●● ● ●● ● ●● ●● ●●●●● ●●●●●● ●●● ●● ●● ●●● ●●●●● ●●● ● ●● ● ●●●●●●●● ●● ● ●●● ● ●●●● ●●● ●● ●●●● ●●● ●●●●● ● ● ●●●● ●● ●● ●●●● ●●●●● ●● ●●● ●●●● ●●●● ●●●●●● ●●●● ●●●● ●● ●●●● ●●●● ●●●●●● ●●●● ●●● ●●● ● ●●● ●●●●●●● ● ●●● ●●●● ●●●●●● ● ●●●●● ●●●●● ●● ● ●● ● ●●● ●●●● ●●●●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●● ● ●● ● ●●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ●●●●● ●●●●●●● ● ●●●●●● ●● ●●● ● ●●● ● ● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●●● ●● ●● ●●●● ●●● ●● ●● ●●●●●●●●●●●● ●●● ●● ● ●●●● ● ●● ●●● ●●● ● ●● ●●●● ●●●●● ● ●●● ● ●●●● ● ●●● ●● ●●●● ●● ●●●● ● ●● ● ●●●●● ● ●●●●●● ● ●●●● ● ●● ●●●● ●●●● ●●● ●● ●●● ●●●●●● ●● ●●●● ●● ●● ● ●●● ●●● ●● ●●●●●●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●●● ●● ●●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●●●●● ● ●● ●●●●●●● ●●●●● ●● ●●● ●●●●● ●●●●●●● ● ●●●● ● ●●● ●●●●●●●●● ●● ●● ●● ●● ●●●●●●●●● ●●●● ● ● ●●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●● ●●●● ● ●●● ●●●●● ●●● ●● ● ●●● ●●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●●● ●●●●●●●● ●●●● ●●●●● ●●● ●●●●● ● ●●●● ●● ●● ●● ●●● ● ●●● ●●● ● ●●●●● ● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●● ●●● ●●●●●● ● ●●● ● ● ●●●●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●●●● ●●● ●●● ●● ●●●● ●●●●●● ●● ●● ●●● ●● ●●●● ●●●● ●● ●●●●●●●● ● ●●●● ●●●●●● ●● ●● ●● ●● ● ●●●● ●●●● ●●●● ●●●● ● ●● ●●●● ●●● ●● ●● ●●●● ●● ●●● ●●● ●●● ●● ●● ●●●●● ●●● ●●●● ●● ●● ●● ●● ●● ● ●●●●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ●●●●● ●●●●●●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●●●●● ● ●●● ●●●●● ●●●●●●● ●●●●●●●●● ●● ●●● ●●● ●●●●● ●● ●●●● ●●●●●●● ● ●●●●● ●●●● ●●● ●●● ●●●●● ●●●● ●● ● ●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ●●●●● ●●●● ●●● ● ●● ●●●● ●●●●●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●●●●● ●●●●● ●●● ●●● ●●●●●●●●● ●●● ●●●● ●● ●●●● ●●●●●●● ●●●● ●●● ●● ●●●●●● ●●●● ●● ●●●● ●●●●● ● ●●●● ●●● ●●● ●●●● ● ●● ●● ●● ●●●●●●● ●● ● ●● ●●●● ●●● ●●●●● ●● ●●●● ●●●● ●●●●●● ●●●● ●●● ●●●● ●● ●●● ●●● ●●●● ● ●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●● ●●●● ●●●●●● ● ●●●● ●● ●●● ●● ●●●●●●●● ●●● ●●● ●● ●● ●●●●●●● ● ●●●● ●●●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●●●●● ●●● ●●● ●●●● ●●● ●●●●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ●●●●●● ●●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●●●● ● ●●●● ●● ●●●● ● ●●●● ●●●● ●●●●● ●●●●● ●●●●● ●● ●●●●●● ●●●●●● ●●● ●●●● ● ●●● ●●●● ●●●●● ●●● ●●● ●● ●●● ● ●●● ●● ●●●●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●●● ●● ●● ●●●●● ●●● ●● ●● ●● ●●●●● ●●●● ●●● ●●●●●●●● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ● ●●● ●●●●● ●●●●●●●●●● ●●● ●●● ● ●●●●● ●●●● ● ●● ●● ●● ●●●●●● ●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●● ●●●●●● ●●● ●● ●● ●● ● ●●●●● ●●● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●●●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ●●●●●● ●●●●●● ●● ●●●●●● ●● ●●●● ● ●●● ●●●● ●●●● ●● ●●● ●●● ●● ●●●● ●●●●● ●●● ●●●●● ● ●● ●●● ●● ●● ●●●●● ●●● ●●● ●●● ●●●●● ●●●●● ●●●● ●● ● ●●● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●● ●●●● ●●●●●● ●●●● ●●●● ●● ●● ●●●●●●●●● ●●●●●● ●● ●●● ●● ●● ●●●●●● ●● ● ●●●●● ●●●●●● ●● ●● ●●●●● ●●● ●●●● ●●●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ● ●●●●● ●●● ●● ●● ●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ● ●●●● ● ●●●● ●●● ●● ●●● ●●●●● ●●●● ●● ● ●●●●●● ●● ●●● ●●●● ●●● ●●●● ●●●●●●●●● ●●● ●● ●● ●●●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●● ●● ●●●● ●●●● ●●●●●● ●●●● ●●●● ●●●●● ●● ●●● ●●●●● ●● ● ●●● ●●● ●●●●● ●● ●● ●●●●● ● ●●● ●● ●●●●● ●● ●●●● ●●● ●●●● ● ●●● ●● ● ●● ●● ●●●●● ● ●●●●● ●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●●● ●● ●●● ●●●● ●●●●●● ●●●●●●● ●● ●● ●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●●●●●● ●●●● ● ● ●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●●●●● ●● ●●●● ●●● ●●●●● ●● ●●● ●●● ●●● ●● ●●●●●● ●●●●●●●● ●●●● ●●● ●●● ●●●●● ●● ●● ●●● ●●●● ●●●●●●●● ●●●●● ●● ●● ●● ● ●● ●●●●●●●● ●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●●●●● ●● ●● ●●●●●●●● ●● ●●●●● ●●●● ●●● ●●●●●● ●●●●● ●● ●●● ●●●● ●● ●●●●● ●●● ●●●●●● ●●● ●●●●● ●● ●● ●●●● ●●● ●● ●●●●● ●●● ●● ●●● ●●●●●● ●●●●●●●● ●● ●● ●●● ●●●●●●●●● ●●● ●● ●● ●●●● ●● ●● ●●●●●● ● ●●●● ●●●● ●● ● ●●● ●●●● ●●●●●● ●●● ●●●● ●● ●●● ●●● ● ●●●● ●●● ●●●●●●● ●●● ●● ●● ●●●●● ●●● ●●●● ●●●●●●● ●●●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●●●●●●● ●●● ●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●●●●●● ●● ●● ●● ●●●●● ● ●● ● ●● ●●● ●●●●●● ●●● ●●●● ●● ●●●●●●●●●●● ●●●● ●● ●●●●● ●●●● ●●● ● ●●●●● ●● ●●● ●● ●●●●● ●●● ●● ●●●● ●●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●●●●● ●● ●●●●●●● ●● ●●● ●●●● ●●● ●● ●● ●●●● ●●●● ● ●● ●●●● ●●● ●●●●● ●●●● ●●●● ●●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●●●● ●●●●●●● ●●● ●●● ●●● ●● ●●●● ● ●●● ●● ●●● ●●● ●●●● ●●●● ●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●●● ●●●● ●●●● ●●● ●● ● ●●●●●●● ●●●●● ●●●● ●●● ●●●●●● ●●● ●●● ● ●●●●● ●● ●●● ●●● ●●●●● ●●●● ●●● ●●● ● ●●● ●●● ●●●●● ●●●●●● ●●●●● ●● ●●●● ●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●● ● ●●● ●●●● ●●●● ●●● ●●●● ●●●●●● ●●●●●●● ●●● ●● ●● ●● ●●●●● ●●●●● ●●● ● ●●●● ●●● ●●●●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●●●●● ●●● ●●●●● ●●●● ●● ●●●●●● ●● ●●●●●● ●●●●●●●● ●● ●●●●● ●●●● ●●●●● ● ●● ●●●●● ●●●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●●●● ●●●●●● ●●●● ●●● ●● ●●●● ●●●● ●●●● ●●● ●●● ●●●● ●● ●●●●●●●●●●● ● ●● ●●●●●●●● ●●●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●● ●●● ●●● ●●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●●●●●●●●● ●●●●● ●● ● ●●●● ●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●● ●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●●●●● ●●●●● ●●●● ●●●● ●●●●●●● ●● ●●●● ●●● ●●●● ●●●●●●● ●●●●● ●●● ●●●● ●● ●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●● ●●●●● ●●● ●● ●●●● ●●●●●●●●●●●● ●●● ●●● ●●● ●●●●● ●●●●●● ●● ●● ●●●●●● ●● ●●●●● ●●●●● ●● ●●● ●●● ●●●●●● ●●●● ●●● ●●● ● ●● ●●●●●● ●●● ●●●● ●●● ●●●●●●● ●●● ●●●●●●●●● ●●●● ●●● ●●● ●● ●●●● ●●●●●●● ●●●● ●● ●●●● ●● ●●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●● ●●● ●●●● ●●● ●●●●● ●● ●●●● ●●● ●●●●● ●●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●● ●● ●●●●●● ● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−6 −4 −2 0 2 4 6

0
2

4
6

8
10

12
14

Log2 FC

−l
og

10
(B

H
 A

dj
us

te
d 

P−
va

lu
e)

B



 Monocyte dynamics in breast cancer 

 

Transcriptional regulation of human monocytes in breast cancer

  167 

 

 

Table 7 Selected DEGs common to both CD14 Mo and CD16 Mo in breast 
cancer versus healthy samples. For each gene the LFC in each population 

is given, the category of the protein that the gene codes for and the functional 

pathways that the protein is involved in.   

 

Gene CD16 
LFC 

CD14 
LFC Category Pathway(s) 

EGR1 4.8 5.6 Transcription Factor Diverse, including NFkB 

NFKBIA 0.8 1.1 Transcription Factor NFkB 

KLF6 0.7 1.2 Transcription Factor NFkB 

SLC2A3 2.1 1.0 Transporter NFkB 

IRS2 1.6 1.2 Soluble molecule NFkB 

TRIB1 1.1 2.3 Kinase NFkB 

MCL1 0.8 0.9 Anti-apoptotic protein NFkB 

CXCL1 5.2 3.4 Chemokine NFkB IL2-STAT5 

IGF2R 1.5 1.3 Receptor for IGF2 IL2-STAT5 

PIM1 0.9 0.8 Enzyme IL6-JAK-STAT3               
IL2-STAT5 

ADAM8 1.4 1.1 Transmembrane 
protein KRAS signalling 

F5 2.6 0.8 Coagulation factor Complement cascade 
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Amongst the CD14 Mo there were only 14 genes down-regulated and none 

were related to each other by a common regulome (STRING analysis and 

Metascape analysis). A number of down-regulated DEGs were involved in 

modules or components of transcriptional regulation. This included the gene 

SLFN11, a schlafen family member thought to play a role in dendritic versus 

macrophage fate in Mo (Liu et al. 2017) and the zinc finger ZNF644 which has 

been shown to be a high affinity EGR1 binding site (Kubosaki et al. 2009). The 

most strongly down-regulated gene was the metabolic or proliferative gene 

BCAT1 (LFC -1.18), which is also known to effect Mo to macrophage 

differentiation (Papathanassiu et al. 2017).   

 

The amplitude of LFC in the down-regulated genes was modest and far-

outweighed by the up-regulation of inflammatory genes. This was reflected in 

the pathway analysis for up-regulated genes (Figure 47, A).  In order to identify 

potentially important genes, soluble factors, chemokines, transmembrane 

receptors and TFs relevant to Mo biology were explored. As expected, the 

majority of changes to ligands and receptors suggested pro-inflammatory 

phenotypes as did the TFs (Figure 47, B). Genes that were not features in the 

pathway enrichment included EGR2 and FOXO-1 and a number of DEGs are 

related to increased survival (MCL-1, ERG1) and proliferation (CDKN2D, 

BTG2, RARA).   
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Figure 47 Analysis of DEGs in cancer versus healthy samples in CD14 
Mo (A) Metascape analysis of up-regulated genes. Log Q.values are plotted, 

and each bar coloured according to value on a scale of 0 to 30, represented 

with graduating intensity. Gene Ontology or KEGG terms for enriched 

pathways are annotated. Only pathways with a log q.values>5 are shown (B) 

Histogram of LFC in DEGs. Genes have been selected and grouped 

functionally as soluble factors and cytokines (green), transmembrane 

receptors (purple), and transcription factors (orange). 
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With regards to the CD16 Mo, there were a number of relevant pathways 

significantly up-regulated, including pathways involved in cytokine production 

and release; migration; IL-10 and 1L-12 signalling; TNF and IFNg responses 

(Figure 48, A). The effects of IL-10 are predominantly anti-inflammatory 

whereas the majority of pathways suggested a pro-inflammatory shift. To 

further assess if this was a genuine finding, the list of genes that had 

contributed towards the IL-10 pathway were assessed. The genes listed as 

hits were CXCL1, CXCL8, PTGS2, IL1R2, CCL3L3 and CCR2. Additionally, 

none of the 39 genes for GO term “positive regulation of interleukin-10 

production” (GO:0032733), featured in the CD16 Mo DEGs. Hence the finding 

of an up-regulation and enrichment in IL-10 was rejected. 

 

In order to further identify potentially important genes, again genes relevant to 

Mo biology were explored (Figure 48, B). Genes for CXCL8 and CXCL1, and 

their related receptors CXCR1, CXCR2, and IL1R2 were up-regulated. The 

angiogenic factor VEGFA was up-regulated. Both CXCR3 and CD83 were 

down-regulated. Three receptors that are more commonly expressed on CD14 

Mo; CLEC4D, CCR2, CD163 (Wong et al. 2011) were up-regulated but so was 

FCGR3B. Both IL7R and IGF2R were up-regulated. Not featured in Figure 48, 

the extracellular matrix remodelling enzyme, MMP9 was up-regulated (LFC 

2.92), as was MMP25 (LFC 3.46).  Additional to the TFs commonly up-

regulated in both Mo populations, TFs such as ETS2 and DUSP1 were up-

regulated in CD16 Mo.  
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Figure 48 Analysis of DEGs in cancer versus healthy samples in CD16 
Mo (A) Metascape analysis of up-regulated genes. Q.values are plotted, 

and each bar coloured according to value on a scale of 0 to 30, 

represented with graduating intensity. Gene Ontology or KEGG terms for 

enriched pathways are annotated. Only pathways with a q.value>5 are 

shown (B) Histogram of LFC in DEGs. Genes have been selected and 

grouped functionally as soluble factors and cytokines (green), 

transmembrane receptors (purple), and transcription factors (orange). 
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6.4 Chromatin conformation of human monocytes in 
healthy controls and breast cancer patients 

 

ATACseq in this second cohort was of good quality with minimal noise. 

However, some samples were under sequenced and therefore had poor signal 

(Figure 49).  As a further measure, motif enrichment throughout the samples 

demonstrated the expected motifs for Mo (PU.1, ELF4, SpiB, ETS1). 

 

While deeper sequencing of some samples is required for a comprehensive 

analysis, a preliminary analysis was undertaken.  On PCA, samples clustered 

by CD14 or CD16 status (Figure 50). It was not clear from PCA if there was a 

distinct separation of cancer from healthy samples in either the CD14 or CD16 

Mo. Further analysis using IDR and DE was undertaken. As predicted by PCA, 

the most prominent difference was due to Mo subpopulation (Figure 51, A-B). 

While some cancer samples did cluster, there was no robust DE of tags 

between cancer and control in either the CD14 or CD16 Mo (Figure 51, C).   
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Figure 49 Example browser tracks for samples at the gene for FCGRA.  
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Figure 50 PCA of ATAC samples in healthy and breast cancer samples. 
Samples from healthy volunteers are in black and samples from breast cancer 

patients are in red. CD14 samples squares and CD16 are circles.  
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Figure 51 DE of ATAC peaks in cancer versus healthy CD14 and CD16 
Mo (A) Heatmap of normalised tag counts for peaks using non-supervised 

hierarchical clustering. Each column represents a sample with sample 

characteristics denoted by coloured bars indicating CD14 healthy (pink), CD14 

cancer (green), CD16 healthy (purple) and CD16 cancer (red). Peaks are 

arranged vertically; Red colour within the heatmap indicates up-regulation, 

and blue colour indicates down regulation based on the z-score. Samples are 

clustered using complete linkage and Pearson correlation (B) Pairwise 

CD16 HealthyA
CD16 Cancer

CD14 Healthy
CD14 Cancer

B

C
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comparisons of peaks in CD14 versus CD16 samples for healthy samples (top, 

labelled control) and cancer samples (bottom) (C) Pairwise comparisons of 

peaks in cancer versus healthy samples for CD14 samples (left) and CD16 

samples (right). Each dot represents the mean normalized tag counts for all 

samples in each group. Dots that are shaded as per the colours for bars in (A) 

indicate that the peak is DE between comparator on the x and y-axis 

(FDR<0.05 and LFC>1).  

 

 

Returning to the RNAseq data, it was noted that samples CD16 CA1, CD16 

CA3, CD16 CA5 and CD16 CA6 clustered away from healthy CD16 Mo (Figure 

44, B). Therefore, a supervised approach was used to compare the ATACseq 

of just these samples with the controls. The IDR reference sets were altered 

appropriately, and the DE analysis was repeated. The DE of peaks led to clear 

clustering of cancer and control samples, with the exception of one cancer 

sample (Figure 52, A). There were over 5000 DE peaks in the cancer and in 

the control CD16 samples (Figure 52, B). Undertaking motif enrichment of 

known motifs, the ranking of motifs in cancer and controls were quite different 

(Figure 52, C). Differential enrichment of motifs of enhancers was evident 

(Figure 52, D). Further interpretation of these results was not undertaken as 

this was a bias and very limited analysis. However, given that there were 

potentially interesting findings, the decision was taken to acquire more 

samples, re-sequence and then re-analyse. This work is underway and so 

results are currently unavailable.  
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Figure 52 DE and motif enrichment of CD16 ATAC peaks in cancer versus 
healthy and CD16 Mo using just CA 1, 3, 5, 6. (A) Heatmap of normalised 

tag counts for peaks using non-supervised hierarchical clustering. Each 

column represents a sample with sample characteristics denoted by coloured 
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bars indicating CD16 healthy (purple) and CD16 cancer (red). Peaks are 

arranged vertically; Red colour within the heatmap indicates up-regulation, 

and blue colour indicates down regulation based on the z-score. Samples are 

clustered using complete linkage and Pearson correlation (B) Pairwise 

comparisons of peaks in cancer (green) versus healthy (red). Each dot 

represents the mean normalized tag counts for all samples in each group in 

the comparison plotted on the x and y axis. Dots that are shaded as per the 

colours for bars in (A) indicate that the peak is DE between comparator on the 

x and y-axis (FDR<0.05 and LFC>1) (C) Heatmap of 415 known motifs 

indicating the rank value (1 to 415) of each motif in healthy and control 

samples. Red colour within the heatmap indicates low rank, and blue colour 

indicates high rank based on a rank of 1 to 415 (D) Heatmap of motifs enriched 

in healthy and control samples. Each column represents a sample group. Each 

row represents a motif. Colour ranges from cream to dark brown based on the 

log q.value of enrichment. The abbreviated motif name is detailed to the right 

of each row and the Motif is to the right of that. For each group, 6 motifs within 

the top 15 motifs were selected for the heatmap. 

 

6.5 Comparison of monocyte subsets with mouse  

 

As a new gene set had been identified, the mouse data was again assessed 

for orthologous genes. There were very few genes common to both species 

(Figure 53). As predicted by the pathways results from both CD14 and CD16 

Mo, several of the key TFs were indeed opposite in mouse compared with 

human. The two S100 calcium binding protein genes S100A8 and S100A9 

were found to be commonly up-regulated. But, overall, orthologues change 

robustly linked to functional relevance could not be identified.   
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Figure 53 Histogram of LFC in DEGs between cancer and controls in 
CD14 and CD16 human samples and mouse samples (A)LFC for 

human CD14 and CD16 Mo and C57BL/6 (BL6) mouse Mo (B) LFC for 

human CD14 and CD16 Mo and FVB mouse samples. For each gene the 

bar represents the LFC in CD14 (ochre) and CD16 (green) human Mo and 

mouse Mo (black). For mouse, DEGs are from Ly6chigh Mo analyses. 
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6.6 Discussion  

 

The aim of this body of work was to correlate changes on RNAseq with 

epigenetic changes, to better understand the transcriptional regulation of Mo 

in cancer. It was proposed that this could be achieved by combining the 

methods of ATACseq and ChIPseq.  

 

One notable limitation with the data presented here is in obtaining samples 

from appropriate healthy controls. The prior approach in the lab had been to 

order blood to be delivered from a blood donor company based in the South of 

the UK. This was collected in the afternoon and delivered by the following 

morning. It was not possible to receive the blood on the same day in time to 

also sort that day.  It was felt that this was not appropriate to match the cancer 

patients and so instead the local blood resource was used. However, as can 

be observed, the age of women in the healthy control group was generally 

younger and it was very difficult to identify older healthy controls as volunteers 

were employees within the QMRI, Edinburgh. Tis has particular implications 

when studying females with breast cancer as the menopausal status may have 

differed. This data was not collected and could have implications to the findings 

here.   

 

Another issue encountered with this body of work was in trying to collect 

sufficient cells for the desired experiments. Initially, even when collecting 
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whole Mo, there were insufficient cell numbers for all three techniques. In 

response to this, ethics were altered to allow the collection of larger blood 

samples. The initial run of whole Mo was proven by both RNAseq and 

ATACseq to be a poor approach in understanding the transcriptional changes 

as there were large differences between the two Mo subpopulations. This 

meant however that cell numbers for each sample were further reduced. To 

achieve high quality samples, the aim was to be sorting cells within 2hrs of 

receiving them and have them sorted and ready for processing within 1hr. This 

was achieved for all samples but was not going to be possible when sorting 

much greater numbers, for example as required for ChIPseq. A number of 

strategies were considered, including bead enrichment or secondary sorting 

following an initial enrichment step. But overall there was a concern that it 

would not save enough time and may cause inadvertent stress to the cells. 

Another consideration was whether to use an inhibitor such as Flavoperidol. 

However, on further reading, there was evidence that while inhibitors may 

preserve the mRNA, they may alter the chromatin configuration (Chao & Price 

2001). 

 

There are some important observations with regards to the cell sorts. Firstly, 

while CD16 Mo expanded in cancer, the ratio of CD16 Mo to CD14 Mo was 

also higher than expected in healthy controls. It was observed that as sorts 

progressed, the CD14 population diminished. This is perhaps because CD14 

Mo are denser than CD16 Mo (Cros et al. 2010). On presenting this work, a 
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scientist (Dr. Michael Connal Dennedy, NUI Galway) stated that they had 

encountered the same issue. After a great deal of trial and error, they had 

opted to use Xantham gum in the FACS buffer. This ensured a higher density 

buffer and thus kept the CD14 Mo in suspension. The data from these 

experiments has been requested. It may be that this strategy could be used. 

However, the effects of Xantham, which may activate Mo, would have to be 

tested.  

 

With regards to the altered distribution within the Mo population, it is clear that 

regardless of the density issue, there is an expansion of CD16 Mo in cancer 

patients. This is in agreement with data from other studies in both colorectal 

cancer (Saleh et al. 1995) and breast cancer (Feng et al. 2011; Cassetta et al. 

2019). To the best of knowledge, the work here is the first time that the two 

populations have been separately profiled in the context of cancer.  

 

Focusing on the Mo subpopulations individually, there were a number of 

relevant genes that were up-regulated only in the CD14 Mo population. These 

included CCL4 and CCL5. CCL5 is predominantly known as both a 

chemoattractant and modulator in the NFkB pathway. In addition, it is thought 

to direct Mo differentiation into anti-inflammatory macrophages (Aswad et al. 

2017) but has also been shown to stimulate the production of enzymes such 

as  MMP9 (Long et al. 2012). As discussed in detail, there is a great deal of 

evidence with regards the role of CCL5 in epithelial cancers. Of note, it was 
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one of the genes identified as up-regulated in Mo from RCC patients 

(Chittezhath et al. 2014).  

 

CCL4 is known to be produced by Mo and its production can increase in 

inflammatory conditions such as systemic sclerosis (Carvalheiro et al. 2018). 

It is generally expressed only at high levels, once cells are activated and is an 

important chemokine in the recruitment of Mo and other immune cells (Maurer 

& Stebut 2004). Increased levels of CCL4 have been detected in solid tumours, 

where it correlates with TAM infiltrates, supporting a role in Mo recruitment in 

cancer (De la Fuente López et al. 2018). Expression of CCL4 is principally 

induced via TLR4-MyD88 signalling and depends on the downstream 

activation of the AP-1-NFkB axis (Kochumon et al. 2018). Thus, its 

upregulation points to an upregulation in TLR4 and NFkB pathways. This is 

supported by the finding that IL-32, a potentiator of the NFkB pathway (Kim et 

al. 2005), was also up-regulated in CD14 Mo.  

 

Amongst the genes up-regulated on CD16 Mo, the NFkB induced chemokine 

gene CXCL8 had the highest LFC and the NFkB pathway was enriched. As 

featured in Figure 54, NFkB stimulates the production of a number of factors 

that prompt angiogenesis (CXCL8), matrix remodeling (MMP9) and 

chemotaxis (CXCL8 via CXCR1/2) (Gales et al. 2013). In addition, NFkB has 

anti-apoptotic effects by driving the production of the BCL-2 family of genes 

(Gales et al. 2013). Additional to those featured in Figure 54, NFkB promotes 



 Monocyte dynamics in breast cancer 

 

Transcriptional regulation of human monocytes in breast cancer

  184 

angiogenesis through driving VEGFa pathways, the latter of which can further 

drive NFkB signalling (Xie et al. 2010; DeNiro et al. 2013). The polarisation of 

macrophages to a TAM phenotype has also been directly linked to NFkB 

signalling (Hagemann et al. 2008).  

 

NFkB driven production of factors, such as CXCL8 and VEGFa by circulating 

Mo in cancer is supported by prior studies. A study of Mo in patients with RCC 

found up-regulation of CXCL8 and VEGFA in cancer (Chittezhath et al. 2014). 

This was validated by qPCR and also by increased levels in supernatants from 

RCC Mo cultures (Chittezhath et al. 2014). Phosphorylated IkBa in RCC Mo 

was also increased. Up-regulation of CXCL8 and VEGFA was attenuated by 

both an IKKg and MyD88 inhibitor, validating that the MyD88-NFkB pathway is 

essential in the transcriptional changes observed in RCC Mo. Furthermore, 

Chittezhath et al showed that this was via IL-1R activation. Thus, the up-

regulation of receptors for IL-1 in the CD16 Mo here, may suggest that these 

cells are primed and that there is positive feedback of the NFkB pathway. 

Signaling may be via IL-1, or via TNF as TRAIL (TNFSF10) was also up-

regulated. Evidence elsewhere supports the roles of TNFa and IL-1 in NFkB 

signalling in cancer (Hoesel & J. A. Schmid 2013). TNFa was recently shown 

to be produced at high levels by both breast cancer cells and TAMs (Cassetta 

et al. 2019).  
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Figure 54 Principal mechanisms of CXCL8 regulation and signalling. NF-

𝜅B activation is initiated primarily by TNF𝛼 released by stressed fibroblasts, in 

response to chronic infection, or by activated leukocytes (monocytes, Neuts, 

and mast cells). NF-𝜅B is the primary regulator of the chemokines CXCL8 and 

IL-6, which are potent chemoattractant for leukocytes, especially Neuts. Other 

major transcriptional targets of NF-𝜅B include the anti-apoptosis proteins, 

cIAP2, cFLIP, and Bcl-xL. CXCL8 signals through CXCL1 or CXCL2, whereas 

IL-6 signals through the IL-6 receptor (IL-6R). Leukocytes attracted to the 

initiated tumour secrete cytokines that drive the tumorigenic process by 

promoting angiogenesis through endothelial cell proliferation and modulation 

of lymphocyte responses. CXCL8 directly activates endothelial cells through 

their CXCR1 or CXCR2 receptors. CXCL8 binds to CXCR1 and CXCR2, and, 

in cooperation with EGFR signalling, may promote cancer cell survival, 

proliferation, motility, and invasiveness through the PI3K, MAPK, FAK/Src, 

STAT3, or MMP pathways. Since tumour cells may also express CXCR1 or 

CXCR2, CXCL8, in the tumour microenvironment, may signal through both 
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paracrine and autocrine mechanisms. Figure and legend used with permission 

from Gales et al. 2013. 

 
As for the causative factors in cancer that may be driving these changes to 

Mo, the relevance of CSF1 and other chemokines has been discussed. But, in 

relation specifically to the human findings and CSF1, CSF1 is known to drive 

NFkB pathways (Y. Wang et al. 2011; Stanley & Chitu 2014). CSF1 also 

modulates the survival of Mo and their differentiation to macrophages. Both 

CD163 and CD14 are recognised CSF1 induced genes and were up-regulated 

on CD16 Mo (Pyonteck et al. 2013).  

 

A key aim was to understand the transcriptional regulation of Mo in breast 

cancer. On a simplistic level, useful information was obtained with regards 

alterations to TFs. The most obvious was the upregulation in NFKB1A in both 

Mo subsets. Additionally, both KLF6 and ETS2 (ETS2 in the CD16 Mo only) 

were up-regulated. These two TFs are both reported to synergistically enhance 

NFkB signalling (Date et al. 2014; Sweet et al. 1998) . ETS2 is also known to 

promote the survival of Mo (Sevilla et al. 1999) and also plays a key role in the 

angiogenic phenotype of TAMs (Zabuawala et al. 2010). Additionally, KLF6 

has been shown to polarise macrophages to a TAM phenotype (Bi et al. 2016). 

The most up-regulated TF gene was ERG1. The diverse roles of which include 

potentiating NFkB signalling (Ma et al. 2009) and driving progenitors towards 

a Mo/macrophage lineage (Nguyen et al. 1993; Krishnaraju et al. 2001). EGR1 

has also been shown to interact with CSF1R gene (Bencheikh et al. 2019), an 
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interaction which dissipates as Mo differentiate into macrophages (Liu et al. 

2008). Thus, EGR1-CSF1R interactions may be a driving factor in the apparent 

increased ratio of CD16 Mo to CD14 Mo in cancer patients. This hypothesis is 

supported by the up-regulation of NOTCH1 in CD14 Mo as Notch1 has been 

shown to drive the differentiation of Lyc6high to Ly6clow Mo and therefore may 

well have the same action in human Mo (Gamrekelashvili et al. 2017).  

 

Genes for TFs indicative of transcriptional regulation via negative feedback 

were also up-regulated. As described in the introduction, SOCS3 is one of the 

transcription factors involved in dampening immune responses. As is DUSP1, 

which acts to regulate MAPK signalling (Lang et al. 2006). It may be relevant 

that it is not until the CD16 Mo stage, where the transcriptional changes seem 

to be more profound, that these regulatory elements are up-regulated.   

 

Crucial in further elucidating the transcriptional changes that were observed, 

will be investigating the epigenetic alterations to Mo in the context of cancer. 

While this was an aim of the project, it was only partially completed. There 

were some clues from very preliminary ATAC analysis undertaken that 

alterations to the chromatin structure alone may reveal important regulatory 

elements. It is however well recognised that the use of ATACseq alone is 

limited. Therefore, a key aim in progressing this body of work will be in 

optimising and undertaking other methods such as ChIPseq. This may be 

possible by using refined protocols, enabling the use of much lower inputs 

(Lorzadeh et al. 2017).  
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To conclude, the predominant evidence is in favour of NFkB activation 

throughout the human Mo populations. The CD14 Mo are the precursor to the 

CD16 Mo (Patel et al. 2017). It would seem that in the context of cancer, NFkB 

is up-regulated firstly within CD14 Mo. There are a number of indicators that 

the differentiation of CD14 Mo into CD16 Mo is increased in cancer. This is 

both in terms of alterations to Mo ratios and with respect to gene expression. 

It is hypothesised that within the CD16 Mo, the upregulation in NFkB is 

potentiated further, ultimately resulting in Mo primed to differentiate into pro-

tumoural macrophages (Gales et al. 2013; Turner et al. 2014; Joyce & Pollard 

2008).  
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Chapter 7 Summary and future directions 
 

Breast cancer is the most common cancer in women worldwide (25%) and the 

second most common cancer overall (Antoni et al. 2016). Multiple factors 

determine the establishment, progression and dissemination of breast cancer 

cells. The TME is composed of many different cell types, including diverse 

immune infiltrates (Azizi et al. 2018). The balance of cell types present, and 

the cross-talk that occurs is crucial in tilting the balance in the favour of cancer.  

 

Because Mo are the source of TAMs and MAMs (Arwert et al. 2018; Joyce & 

Pollard 2008; Kitamura et al. 2018), they are often portrayed as simply conduits 

to obtain end cells. Therapies that modulate Mo in cancer, for the most part, 

focus on reducing Mo recruitment. Re-polarising cell phenotypes tends to 

focus on cells within the TME (Cassetta & Pollard, 2017). This is based partly 

on an assumption that cells are polarised once they arrive at the tumour. 

Conversely, in the field of MDSCs it is well recognised that MDSCs are derived 

via systemic signals and that conditioning occurs prior to arrival to the solid 

tumour or metastases (Marvel & Gabrilovich 2015).  

 

The finding that circulating Mo are transcriptionally altered in cancer patients 

(Chittezhath et al. 2014; Hamm et al. 2016; Cassetta et al. 2019) suggests that 

Mo are manipulated systemically, perhaps prior to arrival in the TME. By 

isolating circulating Mo from patients with RCC, a pro-tumoural phenotype has 
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been demonstrated in vitro (Chittezhath et al. 2014). Interestingly, this is not 

limited to metastatic patients but also patients with early disease (Chittezhath 

et al. 2014). The studies across colorectal, RCC, breast and endometrial 

cancer were conducted mainly to develop diagnostic and prognostic tools. Yet, 

the identification of transcriptional alterations to Mo in cancer raises the 

question as to whether targeting of Mo transcriptional regulation may be of 

benefit in therapeutics. In attempting to shift the balance in cancer immune 

infiltrates, re-polarising cells from pro- to anti-tumoural phenotypes is clearly 

more beneficial than simply depleting them (Figure 55). 

 

Figure 55 Tipping the balance toward myeloid cells with an antitumor 
phenotype. Several approaches have been studied to increase the ratio of 

anti- over protumour TIMs. These include, depleting or repolarizing tumour-

promoting TIMs, and attracting and activating antitumor TIMs. Figure and 

legend used with permission from Awad, R. M. et al. 2018. 
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To begin to work towards the possibility of reprogramming Mo in cancer, 

having a workable animal model would be advantageous. Additionally, to 

unpick the transcriptional regulation of Mo in cancer, and having already 

collected transcriptional data, it would be of benefit to build a profile of 

epigenetic modifications. To this end, the aim of this thesis work was to define 

epigenetic regulation in and identify mechanisms of alterations of Mo dynamics 

and their transcription in the context of breast cancer in mice and humans.  

 

A significant expansion in circulating Mo was evident in mice with late stage 

PyMT spontaneous tumours. While it was not possible to show alterations to 

BM progenitors, there is good evidence that cancer can modulate the BM niche 

(Giles 2016 et al). Thus, the findings here of a monopoesis, driven by the 

proliferation of Ly6chigh Mo in the BM provides an alternative mechanism to the 

previously described mechanisms of myeloid expansion in breast cancer 

(Casbon et al. 2015; Castaño et al. 2018). It will be interesting to discover if 

the BM niche in patients with breast cancer is altered and if so in what way. 

Obtaining BM samples from patients with breast cancer is problematic as 

routine biopsy of metastatic lesions is not practiced and even if it were this 

would not reflect a normal BM niche (Criscitiello et al. 2014).  

 

On a transcriptional level, alterations to mice and human circulating Mo 

differed greatly. It is the intention to ratify this by repeating RNAseq of mouse 

Mo at early stage disease. It may be that alternative mouse models are 

required, as it is known that the immune response to breast cancer varies 
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greatly (Wellenstein et al. 2019). Nonetheless, in the case that the repeat 

sequencing fails to reveal useful orthologous, the focus in the immediate future 

will be on human samples. This is also in line with the advantage that human 

samples are readily available after progression from PhD to clinical academic 

training. The background that has been obtained in mouse work is however 

useful and will expand horizons for post-doctoral research.   

 

Despite the lack of common transcriptional alterations between humans and 

mice, mechanisms driving the kinetics and transcriptional profile of Mo in 

cancer may be similar in both species. This is because in both species there 

was evidence of potentiation of the immune system by pro-inflammatory 

mediators. In mice, it is hypothesised that the pro-inflammatory systemic 

signals in cancer lead to altered transcriptional profiles due to the release of 

immature cells. This is ascribed to the indirect effect of hematopoietic stress, 

secondary to cancer associated inflammation. In humans, it is hypothesised 

that pro-inflammatory mediators activate the NFkB pathways, leading to a 

transcriptional profile that could be described as pro-tumoural (Chittezhath et 

al. 2014).   

 

The effect in the mouse was greater in the Ly6chigh. A limitation of this is that 

the method of sampling blood does not collect Mo attached to the endothelium. 

It is therefore too hasty to conclude that in mice the Ly6clow Mo are not 

important as their main effector function may be amongst those cells that are 
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actually attached to the endothelium. To correct for this, these cells may need 

to be studied in vivo, however this is outwith the scope of future planned work. 

This is a consideration when undertaking work in humans and it will be of 

interest to follow work into the role of these Mo that have a truly "patrolling" 

phenotype. 

 

The changes observed in the monocytes does raise the question as to what is 

more important with respect to TAM function; is the phenotype of the circulating 

Mo or the signals within the TME more or less important than each other? It is 

likely that both are important. The work conducted here adds to a growing body 

of evidence that Mo are altered prior to the TME specific signals. Nonetheless, 

Mo and macrophage phenotype and effector function are extremely plastic and 

modelled by the tissue environment (Lavin et al, 2014). To investigate how 

much the circulating Mo phenotype over the TME signals determines ultimate 

TAM function adoptive transfer could be used. This is limited by the current 

lack of an appropriate mouse model. In lieu of this, 3D breast cancer models 

could be used in a more limited capacity. However, this is inferior given that 

both monocytes and macrophages rapidly lose their tissue specific signatures 

when in vitro (Gosselin et al. 2014).  

 

In looking forward, there are a number of options to further enhance this body 

of work. A limitation of the cohort of breast cancer patients that are being 

collected is that most patients recruited to the trial have low risk disease. 
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Efforts in the past by colleagues in the Pollard lab had been made to obtain 

samples from patients with triple negative breast cancer. In response to this, a 

collaboration has been established with the oncologist and researcher, Dr. 

Olga Oikonomidou (MRC Institute of Genetics and Molecular Medicine, 

Edinburgh).  This will facilitate the collection of samples from patients with triple 

negative breast cancer prior to, during and at completion of, neo-adjuvant 

chemotherapy.  This has the benefit of being able to correlate findings with the 

pathological response rate, thus being able to correlate with response, 

perhaps revealing potential epigenetic targets for Mo therapy.   

 

To compliment the transcriptomics data, an ambition is to demonstrate 

differences in cancer Mo on a protein level. A fellow clinical PhD student, Dr 

Andy Bretherick has worked closely with colleagues at the MRC Institute of 

Genetics and Molecular Medicine in Edinburgh in optimising pipelines for the 

processing and analysis of snap frozen peripheral blood monocytes (PBMCs). 

Discussion is underway to undertake the same methods on Mo from breast 

cancer patients.   

 

It is postulated that re-programming of Mo occurs due to epigenetic 

manipulation. Work has begun here to build a cohort of Mo ATACseq samples 

in cancer patients. The continuation of these efforts will provide a means to 

answer the question as to whether the chromatin configuration is altered in 

cancer Mo. To further this, the use of ChIPseq would be extremely beneficial. 

Collaborators in the lab of Chris Glass, UCSD are working to optimise the input 
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for this method. In looking forward, and with the aspiration to further expertise, 

a more ambitious plan in considering the application of proteomics to 

complement the epigenetics work in Mo. The method of SILAC Nucleosome 

Affinity Purification (SNAP) provides the protein equivalent to ChIPseq for 

histones (Bartke et al. 2010). The pursuit of this will be dependent on the 

results obtained using current strategies.      

 

To conclude, it is proposed that Mo are not simply a conduit in the cancer-

immune process. Harnessing the plasticity of Mo by understanding the 

transcriptional changes in cancer Mo, might be a prelude to developing of 

novel cancer therapies. Plans for future both in expanding the work 

commenced in this thesis and taking new approaches, will contribute towards 

realising this objective.  
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Chapter 9 Appendix 

9.1 Reagents  

9.1.1 Flow cytometry antibodies (mouse) 

BLOCK and LIVE/DEAD STAINS     
  Antibody Clone Company CatNo 
N/A CD16/32 93 Biolegend 101320 
          
Blood PyMT Kinetic       
  Antibody Clone Company CatNo 
FITC 45.2 104 Biolegend 109806 
PE Treml4 16 e 5 Biolegend 143303 
PeCy7 Cd11b M1/70 Biolegend 101216 
APC CD115 Afs98 Biolegend 135510 
Pac blue Cd3 17A2 Biolegend 100214 
Pac blue CD19 6d5 Biolegend 115523 
BV421 Siglec F E50-2440 BD Horizon 562681 
AF700 Ly6c hk1.4 Biolegend 128024 
BV510 Ly6g 1a8 Biolegend 127633 
DAPI for live/dead       
          
BM (Analysis and sorts)       
  Antibody Clone Company CatNo 
PE CF594 CD135 A2F10.1 BD Horizon 562537 
PE Sca1 D7 Biolegend 108107 
PeCy7 CD117 2b8 Biolegend 105814 
APC CD115 Afs98 Biolegend 135510 
AF700 Ly6c hk1.4 Biolegend 128024 
BV510 Ly6g 1a8 Biolegend 127633 
BV650 CD11b M1/70 Biolegend 101259 
BV711 CD127 A7R34 Biolegend 135035 
Pac blue Cd3 17A2 Biolegend 100214 
Pac blue CD19 6d5 Biolegend 115523 
Pac blue NK1.1 PK136 Biolegend 108722 
Pac blue Ly6g 1A8 Biolegend 127612 
Pac blue Ter119 ter-119 Biolegend 116232 
BV421 Siglec F E50-2440 BD Horizon 562681 
APCCy7 CD11c N418 Biolegend 117324 
DAPI for live/dead       

 

  



 Monocyte dynamics in breast cancer 

 

Appendix  223 

BrdU panel 
(blood) 

        

  Antibody Clone Company CatNo 

PE Treml4 16 e 5 Biolegend 143303 
PeCy7 Cd11b M1/70 Biolegend 101216 
APC CD115 Afs98 Biolegend 135510 
PB Ly6c HK1.4 Biolegend 128014 
Biotin CD3 17A2 Biolegend 100244 
Biotin CD19 6d5 Biolegend 115504 
Biotin Ly6g 1a8 Biolegend 127604 
Biotin SiglecF   macs 130-101-861 
BV650 streptavadin   Biolegend 405232 
EF780 for 
live/dead 

        

          
BrdU (BM)         
  Antibody Clone Company CatNo 
PE Sca1 D7 Biolegend 108107 
PeCy7 CD117 2b8 Biolegend 105814 
APC CD115 Afs98 Biolegend 135510 
AF700 Ly6c hk1.4 Biolegend 128024 
BV650 CD11b M1/70 Biolegend 101259 
BV711 CD127 A7R34 Biolegend 135035 
Pac blue Cd3 17A2 Biolegend 100214 
Pac blue CD19 6d5 Biolegend 115523 
Pac blue NK1.1 PK136 Biolegend 108722 
Pac blue Ly6g 1A8 Biolegend 127612 
Pac blue Ter119 ter-119 Biolegend 116232 
BV421 Siglec F E50-2440 BD Horizon 562681 
Zombie Aqua for live/dead   Biolegend 423102 
          
Blood sort 
mouse 

        

  Antibody Clone Company CatNo 
FITC 45.2 104 Biolegend 109806 
PE Treml4 16 e 5 Biolegend 143303 
PeCy7 Cd11b M1/70 Biolegend 101216 
APC CD115 Afs98 Biolegend 135510 
Pac blue Cd3 17A2 Biolegend 100214 
Pac blue CD19 6d5 Biolegend 115523 
BV421 Siglec F E50-2440 BD Horizon 562681 
BV711 Ly6c hk1.4 Biolegend 128037 
AF700 Ly6g 1A8 Biolegend 127622 
DAPI for live/dead       
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Extended BM progenitors panel     
  Antibody Clone Company CatNo 
FITC CD34 RAM BD Pharmingen 553733 
APC Cy7 CD48 HM48-1 Biolgened 103432 
PE CF594 CD135 A2F10.1 BD Horizon 562537 
Perp Cp5.5 CD16/32 93 Biolegend 101324 
BV711 CD127 A7R34 Biolegend 135035 
BV650 CD150 TC15-12F12.2 Biolegend 115932 
PE Sca1 D7 Biolegend 108107 
PeCy7 CD117 2b8 Biolegend 105814 
APC CD115 Afs98 Biolegend 135510 
Pac blue Cd11b M1/70 Biolegend 101224 
Pac blue Ly6c hk1.4 Biolegend 128014 
Pac blue Cd3 17A2 Biolegend 100214 
Pac blue CD19 6d5 Biolegend 115523 
Pac blue NK1.1 PK136 Biolegend 108722 
Pac blue Ly6g 1A8 Biolegend 127612 
Pac blue Ter119 ter-119 Biolegend 116232 
DAPI for live/dead       
          
pSTAT1          
  Antibody Clone Company CatNo 
AF488 anti-STAT1 

Phospho 
A15158B Biolegend 686410 

PE Treml4 16 e 5 Biolegend 143303 
PeCy7 Cd11b M1/70 Biolegend 101216 
APC CD115 Afs98 Biolegend 135510 
PB Ly6c HK1.4 Biolegend 128014 
Biotin CD3 17A2 Biolegend 100244 
Biotin CD19 6d5 Biolegend 115504 
Biotin Ly6g 1a8 Biolegend 127604 
Biotin SiglecF   macs 130-101-861 
BV650 streptavadin   Biolegend 405232 
EF780 for 
live/dead 

    eBioscience 65-0865-14 

          
 MHCII Blood         
  Antibody Clone Company CatNo 
AF700  MHCII  M5/114.15.2  Biolgened  107622 
Antibodies as used for BrdU(blood)  
          
 MHCII BM         
  Antibody Clone Company CatNo 
APCCy7 MHCII M5/114.15.2  Biolgened 107628 
Antibodies as used for BM sorts excluding CD11c on APCCy7 
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9.1.2 Flow cytometry antibodies (human) 

 Antigen Clone Company CatNo 
PE Texas Red CD45 HI30 ThermoFisher MHCD4517 
BV 711 CD3 OKT3 Biolegend 317328 

BV 711 CD56 HCD56 Biolegend 318336 

BV 711 CD19 HIB19 Biolegend 302246 

BV 605 CD11b ICRF44 Biolegend 301332 

BV 510 CD14 M5E2 Biolegend 301842 

BV650 HLA-DR L243 Biolegend 307650 

EF450 CD16 eBIOCB16 eBioscience 48-0168-42 

 

9.1.3 Primers for qPCR 

Table 8 Primers used for qPCR. Tm = melting temperature, Eff. = 
efficiency, R2= correlation coefficient.  

9.1.4 General reagents 

o Flow cytometry staining buffer (0.5% w/vBSA in DPBS) 
o BSA (Sigma, Cat No A1470) 
o DPBS- (Life Technologies, Cat No 14190169) 

 
o Red blood cell lysis buffer for blood (Biolegend, Cat No 420301) 
o Red blood cell lysis buffer for BM (MERCK, Cat No 11814389001) 

 
o 0.5M EDTA (Fisher Scientific, Cat No 11836714) 

Gene Forward Reverse Tm Eff. (R2) 

LPL GAAAGGGCTCTGCCTGAGTT TAGGGCATCTGAGAGCGAGT 78 92 0.987 

IFIT2 TTTGAGAAGGAATGCACCAGAA GCAGCACAGAGTTGAGAGGTT 78 79 0.988 

CXCL10 ATGACGGGCCAGTGAGAATG TCGTGGCAATGATCTCAACAC 78 89 0.992 

STAT1 GAACGCGCTCTGCTCAA TGCGAATAATATCTGGGAAAGTA
A 

- - - 

STAT1 GGAAGCGAAGGCAGCAGAG CTGCAACAATGGTGAACCACG - - - 

STAT1 CTCGTGGAGTGGAAGCGAAG TGCAACAATGGTGAACCACG 82 88 1 

SDHA TGTTCCGTGTGGGGAGTGTA TCCAAACCATTCCCCTGTCG 75 97 1 

GCNT2 CTACGCGGGAAAGTTTTCGC GTAGAGGTTGGGCAGGCTTA 78 100 0.991 
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9.2 Detailed protocols  
 
9.2.1 Quantification of blood cells 
 

Blood collection 
1. 10µl EDTA to pipette then adjust to 50µl 
2. Make a superficial oblique cut in the end of the lateral vein 
3. Collect 50µl total (40µl blood) by pipetting droplets from the tail 
4. Place sample in eppendorph and onto ice 
5. Apply pressure with a gauze to the tail and ensure bleeding has stopped 
6. Record procedure as per guidelines in animal unit 

Return to laboratory to process samples 
 
Sample preparation for flow cytometry 
7. Make up RBC lysis buffer 1:10 (dilute with H2O) 
8. Transfer exactly 40µl to a 15ml falcon tube ensuring you maintain correct labelling 
9. Add 400µl of RBC to each sample and briefly vortex to ensure fully mixed 
10. After 5 mins add 5mls FACS buffer and centrifuge at 300g for 5 mins 
11. Discard supernatant and resuspend in 400µl RBC lysis buffer 
12. After 5 mins add 5mls FACS buffer and centrifuge at 300g for 5 mins 
13. Discard supernatant and re-suspend pellet. NOTE: 96 well plates can only take 200µl of 

volume so discard and leave tube inverted on paper towel to absorb supernatant around 
the top of the tube then invert and re-suspend 

14. Plate re-suspended pellets onto 96 well FACS plate. NOTE: leave an empty cell between 
each sample to ensure no cross-contamination 

15. Add FACS buffer ~100ul/well (depending on volume of re-suspended pellet) centrifuge at 
300g for 5 mins 

16. Re-suspend in 20µl block (1 in 200 of CD16/32 block in FACS buffer). Leave for 15 mins in 
the dark on ice 

17. Make-up master mix (See Table 1) 
18. Add the 30L antibody master mix to each sample 
19. Incubate on ice for 30mins protected from the light 
20. While incubating antibody, make up compensation beads  
21. Add 100µl of FACS buffer and centrifuge at 300g for 5 mins 
22. Discard supernatant, resuspend and add 100µl of FACS buffer and centrifuge at 300g for 

5 mins (completing two washes) 
23. Re-suspend pellet and Add 1:1000 of BV650 stain to each sample well and leave 20 mins 

in the dark on ice  
24. Add 100µl of FACS buffer and centrifuge at 300g for 5 mins 
25. Discard supernatant, resuspend in 150µl FACS buffer and filter through blue top filter into 

FACS tube 
26. Use an additional 150µl FACS buffer to wash cell and filter to make to a total volume of 

300µl 
27. At the flow cytometer, add 7AA D 10µl per sample 2-5 mins before acquiring sample and 

prior to acquiring sample, add 50µl of counting beads to sample and vortex. NOTE: the 
beads need vortexing well prior to use for each sample  
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9.2.2 Processing BM for quantification and sorting by flow 
cytometry 

 
Obtain BM  
1. Sacrifice mice by cervical dislocation (or CO2 if also collecting blood) 
2. Spray with 70% ethanol to sterilise outer coat 
3. Sterilise surgical tools – forceps, scalpel and scissors with 70% ethanol 
4. Pinch skin on back, snip and then pull it off to expose the flesh underneath 
5. Strip away muscle to expose the leg bone 
6. Separate the rest of the lower leg (tibia/femur bones) from the femur but make sure to 

keep it attached to the body 
7. Cut away the muscles and ligaments, then dislocate the femur from the pubis bone  
8. Cut at the base of the femur to separate it from the body and place in bijoux containing 

medium then onto ice  
Return to laboratory to process samples in a sterile hood 
 

Sample preparation for flow cytometry 
9. Place sample in the lid of petri dish and keep on ice 
10. Take the femur and cut the femoral head and very distal aspect of femur  
11. Flush BM into the base of the petri dish (on ice) with RPMI medium 10ml until all marrow 

is flushed (none should look translucent) 
12. Repeat for all bones using the same 10mls 
13. Remove the needle and agitate sample in syringe/against petri to break up clumps of 

marrow  
14. Filter sample using yellow filter into 15ml falcon 
15. Centrifuge at 400g 5mins 4˚C  
16. Re-suspend in 3ml RBC lysis for 3 mins  
17. Add 8mls FACS buffer 
18. Centrifuge at 400g 5mins 4˚C.  
19. Discard the supernatant and tip upside down in rack with a paper lining to absorb  
20. Re-suspend by flicking the bottom of the falcon and make up to 1ml 
21. Count cells and aliquot out desired amount for each sample 

1. For quantification recommend 10x106 cells  
2. CFU assays and RNAseq recommend 25x106 and proceed with volumes 

below 
22. Centrifuge at 400g 5mins 4˚C 
23. While spinning, make up block 1:00 in FACS buffer  
24. Re-suspend (total volume will be 100µl) 
25. Add the 100µl of block master mix to each sample and transfer to FACS tube via blue top 

filter  
26. Leave for 15 mins on ice in the dark 
27. While blocking, make up master mix for staining 
28. After 15 mins, add 300µl of master mix to each sample 
29. Incubate on ice for 30mins protected from the light  
30. While incubating antibody, make up compensation beads  
31. After 30 mins, add 3ml FACS buffer to each sample  
32. Centrifuge at 400g for 5 mins 
33. Re-suspend in 0.5ml of FACS buffer (300µl for quantification) 
34. Filter through blue top FACS tube 
35. Prior to running, run a small amount of each sample to check gating and homogenous 

staining 
36. Prior to flow cytometry analysis add 10µl of 7AAD as live/dead OR for sorting, add 1:200 

DAPI as live/dead stain 
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§ For quantification Immediately prior to acquiring sample, add 50µl of counting beads to 

sample and vortex. NOTE: the beads need vortexing well prior to use for each sample  
§ For CFU assay Sort progenitors into the polypropolene tubes (ref352063) coated with 

50% HI FCS in PBS 
§ For RNA seq sort 100x106 cells into LowBind DNA/RNA free 1.5ml eppendrophs 
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9.2.3 BrdU BM by flow cytometry 
 
Additional reagents 
 

o Live/dead stain Zombie AquaTM Fixable Viability Kit (Biolgened, Cat No 423102 
o Ebioscience FoxP3-staining-buffer-set (eBioscience, Cat No 00-5523) 
o DNase –I (Stock at 1mg/ml in D-PBS in 300ul Aliquots, Sigma Aldrich,  Cat No D5025) 
o Dulbecco’s PBS (Sigma Aldrich Cat No D8537) 
o 0.42M MgCl2 
o Anti-BrDU-antibody (Alexa Fluor® 488 anti-BrdU Antibody, EBioScience, Cat No 

364106) 
o Aluminium-foil 
o DNase-solution (30ul DNase-stock [in -80] + 960ul D-PBS + 10ul MgCl2) 

 
 
Sample preparation for flow cytometry 
1. Harvest bone marrow, lyse and count as per protocol 2 steps 1-21 
2. Aliquot out 10 million cells for each sample 
3. Centrifuge at 400g 5mins at 4˚C 
4. Discard the supernatant  
5. Re-suspend in 100µl of live/dead aqua stain (1:100) 
6. Leave at RT for 10 mins in the dark 
7. Add 100µl of block (1:100 in FACS buffer) 
8. Leave for 15 mins on ice in the dark 
9. Make up Antibody MM and add 300µl to each sample 
10. Incubate on ice for 30mins protected from the light  
11. Add FACS buffer 5mls  
12. Centrifuge at 400g 5mins at 4˚C 
13. Re-suspend in 125ul/sample Fixation-Permeabilisation buffer (1part Fix – 3 parts Fix 

Diluent) 
14. At this point take a pooled sample from the benign and the control that will be used for the 

BrdU control   
15. Incubate for 1 hr at RT in the dark 
16. Add perm wash buffer (made up 1:10 with H20)  
17. Centrifuge at 400g 5mins at 4˚C 
18. Add the DNase 100µl or PBS 100µl to the BrdU control samples, mix and incubate for 30 

mins at 37˚C wrapped in foil 
19. Add perm wash  
20. Centrifuge at 400g 5mins at 4˚C 
21. Re-suspend in perm wash/BrdU 80µl (MM of 755 Perm wash + 50µl BrdU for both blood 

and BM made-up) and incubate at RT for 30 mins in the dark 
22. Wash once with Perm wash buffer and re-suspend cells in FACS-buffer TV 500µl 
23. When acquiring on flow cytometer, ensure that cells are on scale – fixation of cells will 

alter cell morphology and voltages will need to be adjusted accordingly 
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9.2.4 BrdU blood 
 

Additional reagents 
 

o Fixable Viability Dye eFluor™ 780 (eBioscience, Cat No 65-0865-18) 
o Ebioscience FoxP3-staining-buffer-set (eBioscience, Cat No 00-5523) 
o DNase –I (Stock at 1mg/ml in D-PBS in 300ul Aliquots, Sigma Aldrich, Cat No D5025) 
o Dulbecco’s PBS (Sigma Aldrich, Cat No D8537) 
o 0.42M MgCl2 
o Anti-BrDU-antibody (Alexa Fluor 488 anti-BrdU Antibody, EBioScience, Cat No 

364106) 
o Aluminium-foil 
o DNase-solution (30ul DNase-stock + 960ul D-PBS + 10ul MgCl2) 
 

Sample preparation for flow cytometry 
1. Process 40µl of tail vein blood as per protocol 1 from steps 1-15 
2. Re-suspend in Fix viability dye MM  10µl /sample (1:1000 in PBS NOT FACS BUFFER) 
3. Incubate for 10 mins at RT in the dark  
4. Add in 10µl block (1:100 in FACS buffer) and incubate on ice for 15 mins   
5. Add 80µl of surface staining MM (stain in 100µl total volume) 
6. Incubate for 30mins on ice in the dark 
7. Add 100µl FACS buffer to wash 
8. Centrifuge at 400g at 4˚C for 5 mins 
9. Discard supernatant 
10. Re-suspend in 100µl of BV650 streptavadin (1:1000 in FACS buffer) for 20mins on ice  in 

the dark  
11. Add 100µl FACS buffer  
12. Centrifuge at 400g at 4˚C for 5 mins 
13. Discard supernatant 
14. Re-suspend in 100ul/well Fixation-Permeabilisation buffer (1part Fix – 3 parts Fix Diluent) 
15. Incubate at RT in the dark 1 hr   
16. Add 100µl perm wash to each well  
17. At this point take a pooled sample from the benign and the control that will be used for the 

BrdU control   
18. Centrifuge at 400g for 5 mins 
19. Discard and resuspend in 100µl DNase or 100µl of PBS for BrdU controls 
20. Incubate for 30min at 37ºC wrapped in aluminium foil 
21. Add 100µl perm wash to each well  
22. Centrifuge at 400g for 5 mins 
23. Add 2.5ul* of anti-BrDU (FITC) antibody to all the samples and make up to a total of 

40ul/well with perm wash and incubate at RT for 30min. 
24. Add 100µl perm wash to each well  
25. Centrifuge at 400g for 5 mins 
26. Add 100µl perm wash to each well  
27. Centrifuge at 400g for 5 mins 
28. Re-suspend cells in FACS-buffer 300µl and analyse of flow cytometer 
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9.2.5 Bone marrow colony forming unit assays  
 
You will need an incubator set at 37oC 5% and CO2 >= 95% humidity. All procedures should 
be carried out in a sterile hood.  
 
Additional reagents 
 

o Methocult media (MethoCult™ GF M3534, StemCellTM Technologies) 
o Iscove's Modified Dulbecco's Medium (IMDM) (ThermoFisherScientifc, Cat No 

12440053) 
 
Equipment 
 

o Falcon™ Round-Bottom Polystyrene Tubes (Falcon 352058, product code 
10100151)  

o 35mm petri dish (2 per mouse as will want to do duplicates of each sample) 
o 15cm dish (1 per 6 plated samples)    
o 5ml syringe 
o 18G blunt ended needle 

 
Assay setup 
 
1. Using a 5 ml syringe with a 18G blunt ended needle, dispense 3 ml of Methocult into sterile 

5ml FACS tubes (Falcon, 352058) for each pair of duplicates. Do not fully void syringe e.g. 
measure from 4 ml to 1 ml.  This is best done on the morning of the experiment or while 
the sort is being done as you will want to work quickly once cells are ready. The Methocult 
can be aliquoted out into tubes with 3ml each and then stored at -20˚C.  

2. Take the sorted cells and spin down at 500g for 5 mins at 4˚C 
3. Remove supernatant and resuspend to ensure desired cell number in 300µl of Iscove's 

Modified Dulbecco's Medium (IMDM).  
4. Add the 300µl of cells at desired concentration 
5. Seal tube and vortex vigorously to mix 
6. Leave for bubbles to rise whilst preparing plates. ~ 5 mins 
7. Prepare plates (35mm) and carefully label on the side not the top of the lid as this will 

obscure view when counting if on the top. For each sample, it is best to do a duplicate. 
You also must include a 35mm plate containing just PBS in the centre of the 15cm plate. 
You can fit up to six plates per dish. 

8. Draw up 1ml of the cell mix, then expel back in the tube to remove air Repeat if needed. 
Leave in top of tube and perform for next tube 
1. Return to first, any new bubbles should have risen, and draw up 2.4ml or more 
2. Lift lid to 35 mm dish, still covering from above, and dispense 1.1 ml to the two 

dishes, not fully voiding syringe as before. 
3. Gently tilt dish to spread Methocult mix evenly across. 
4. Repeat for each sample. 
5. Incubate the plates at 37oC 5% CO2 >= 95% humidity. For GF M3434 incubate for 

10-14 days.  
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9.2.6 Cytospin and staining of colonies for morphological 
assessment 

 
Additional equipment 
 

o Shandon Cytospin II 
o Thermo Scientific™ Double Cytology Funnel with White Filter Cards (Product 

Code.15211886) 
o Slides and coverslips 

 
Additional Reagents 
 

o Rapid Romanowsky Stain Solution A, B, C, (TCS Biosceinces Ltd; Cat#HS705) 
 
Cytospins 
 
1. Label the frosted end of the glass slide with pencil 
2. Insert the slide into a cytoclip 
3. Align filter paper to the glass slide with the absorbent surface touching the slide 
4. Slide a cytofunnel into the clip (on top of the slide with filter paper) 
5. Ensure the circle is aligned with the cytofunnel 
6. Gently fasten the clip 
7. Prime the slide with 50ul of PBS 
8. Spin down for 1min at 500rpm (50x10) using the Shandon Cytospin II 
9. Load cells (20-100ul volumes only) and centrifuge for 5min at 500rpm 
10. Carefully unload the cytoclips 
11. Let the slides dry for 1h or O/N 
12. Prepare 4x 50ml falcon tubes with respectively Rapid Romanowsky Stain Solution A, B, 

C, (TCS Biosceinces Ltd; Cat#HS705) and water 
13. Transfer the slide with cells (one by one) to the solutions as indicated 
14. Remove excess water 
15. Let the slides dry for 1h or O/N 
16. Mount the slides with coverslips using a drop of Entellan mounting medium 
 
 

# Reagent Time 

1 Solution A 30 sec 

2 Solution B 15 sec 

3 Solution C 2 mins 

4 Water Until clean 
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9.2.7 Sorting of mouse blood monocytes for RNAseq 
  

Harvesting blood 
  
1. Take up just over 100µl of EDTA into 1ml syringe, prime the needle and ensure have just 

100µl of EDTA in the syringe 
2. Place mice in CO2 chamber for 5 mins 
3. Spray mouse with 70% ethanol 
4. Lift the chest with forceps and cut open by cutting the sternum (careful not to disrupt the 

vasculature) and the left hemi-diaphragm. By holding the sternum up with the forceps in 
you left had you should be able to visualise the left ventricle into which you insert the 
needle  

5. Gently aspirate (you should achieve 800-1000µl per mouse) 
6. Place into falcon and place sample straight onto ice. 
 
Sample preparation for flow cytometry 
 
7. Split samples into two 500µl of blood as lyses more effectively 
8. Per sample, Add RBC lysis buffer (x10 of total volume of blood) to sample and immediately 

vortex to ensure all is mixed and homogenous 
9. Leave on ice for 5 mins 
10. Add FACS buffer to top up falcon to 15ml   
Note: If any clot seen at this stage you must remove it using 1ml stripette 
11. Centrifuge at 400g for 5 mins at  4˚C 
12. Discard supernatant and re-suspend  
13. Add RBC lysis again, mix well and leave on ice for 5 mins 
14. Top up to 15mls with FACS buffer 
15. Centrifuge at 400g for 5 mins at 4˚C 
16. Discard supernatant  
17. Pool back together again in FACS tube  
18. Centrifuge at 400g for 5 mins at 4˚C 
19. While centrifuging, make up the block 1:100 
20. Discard supernatant and invert to discard fully. 
21. Re-suspend so will all be in same volume (100µl) 
22. Add 100µl block solution per sample (block now 1:200) 
23. Leave for 15 mins on ice in the dark 
24. While blocking, make up FACS antibody master mix 
25. Add 300µl of antibody master mix to each sample tube  
26. Incubate on ice for 30mins protected from the light 
27. Top up with 3mls FACS buffer  
28. Centrifuge at 400g for 5 mins 4˚C 
29. While centrifuging, prime each filter tube with 100µl FACS buffer to wet the filter 
30. Discard supernatant 
31. Re-suspend and filter through blue top tube  
32. Take to FACS on ice 
33. Proceed to sort using blood panel with DAPI (1:200) for live/dead 
34. Sort 25x103 cells into a BSA coated low-retention 2ml Eppendorf if proceeding to RNAseq  
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9.2.8 Sorting of human blood monocytes for seq 
  

1. Collect blood (10ml) in EDTA tubes and keep on ice  
2. Transfer blood up to 20mls in a 50ml Flacon tube  
3. Add 1X RBC Lysis Buffer to make up to 50mls, mix well and incubate on ice for 5-10 

mins. You must keep checking and inverting the sample to check - it should go a clearer 
slightly browner/darker colour. 

4. Centrifuge for 5 mins at 500g and 4˚c. Discard the supernatant by gently pouring off and 
re-suspend the pellet. 

5. Transfer to 15ml falcon tube and top up to 5mls with FACS buffer 
6. Centrifuge for 5 mins at 500g and 4˚c  
7. Discard supernatant* and re-suspend in block so have total volume 1ml 

*here you should have a nice white pellet - if you don’t then you must repeat RBC lysis. 
8. Count the cells and record total number of cells, you will adjust the master mix to fully 

saturate staining 
11. Once the block has been on for 30 mins, add the master mix of stain* 
12. Incubate for 30min on ice in the dark 
13. Top up with 4ml of staining buffer and centrifuge for 5 mins at 500 rcf and 4˚C 
14. Re-suspend the pellet in 0.5ml staining buffer 
15. Sort cells into LoBind DNA/RNA free 1.5ml eppendorphs coated in 2% w/vBSA in DPBS 

and proceed to process for RNAseq.  
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9.2.9 Hoescht staining of monocytes 
 
Additional reagents 

o Loading medium  
§ DMEM, high glucose 10% FBS 
§ HEPES buffer, 10mM  

o Reserpine (Sigma, Cat No R0875-1G FW=608.69) 
Stock concentration = 5mM = 1000X  
Working concentration = 5μM Preparation of 5mM Reserepine:  
Dissolve 30 mg in 10 ml DMSO à filter sterilize à aliquot à store in freezer 
 

o Hoechst 3334 (Invitrogen/Moleculr Probes, Cat No H3570)  
Stock conc = 10 mg/ml in water = 667X  
Working conc = 15 μg/ml  
 

o Propidium Iodide (PI)  
Stock = 1 mg/ml = 200X  
Working conc = 5 μg/ml  
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Hoechst loading of cells  

1. Proceed through steps 1-21 of protocol 5.  
2. Adjust the concentration to 2 million total cells/ml with loading medium. Lower cell 

densities are OK.  
3. Add Hoechst (final concentration = 15 ug/ml) and Reserpine (final concentration = 5 μM). 

Hoechst is actively pumped out of cells by the ABC transporter, ABCG2. Reserpine 
selectively inhibits ABCG2, thereby preventing the cells from pumping Hoechst out.  

4. Incubate cells in the dark for 30 mins at 37°. This step “loads” Hoechst into the cells.  
5. Optional antibody stain. Procced with steps 22-28 of protocol 5. 
6. Add PI (final concentration = 5 ng/ml).  
7. Keep cells on ice and in the dark until sorting/analysis.  
8. For sorting on the fusion, use the 100 μm nozzle.  

• Hoechst is excited with the UV laser.  
• Can use the gating strategy for monocytes and sort into a 96 well imaging plate 

with PFA 
• Expect approximately 25-50% of the cells to be dead. 

9. Image plate using and DAPI capable filter set. I used the Carl Zeiss Axio200 inverted 
microscope equipped with 20x objective lens.  Light was filtered using a Zeiss standard 
DAPI filter set. Check each well for the presence of a cell or more than one cell.  
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9.2.10 Preparing dUTP RNA-seq libraries  

NOTE Samples were transported on dry ice to UCSD where RNAseq libraries were 

prepared by A Robinson or Claudia Han. The following protocol includes recommended 

stop points and it is recommended that the total protocol is undertaken in 2-3 days.  

 

Buffers  

DTBB (2x)  

20mM Tris-HCl (pH 7.5) 
1M LiCl 
2mM EDTA 
1% lithium dodecyl sulfate 
0.1% Triton X-100 
*add final 10mM DTT if polyA directly from cells 
 

Washing buffer 1  

10mM Tris-HCl (pH 7.5) 
0.15M LiCl 
1mM EDTA 
0.1% lithium dodecyl sulfate 
 0.1% Triton X-100 
 

Washing buffer 2  

10mM Tris-HCl (pH 7.5) 
0.15M NaCl 
1mM EDTA 
 

Note 

5X SSIII first-strand buffer [250mM Tris-HCl (pH 8.3), 375mM KCl, 15mM MgCl2] contains 

Mg2+ which is utilized for RNA fragmentation (at 2x concentration = 30mM). 
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DAY 1 

*  use 0.05-1µg starting material (total RNA) 

** heat PCR machine lid 5°C above inc. temp. Do NOT use 100°C (but for final PCR) 

*** increasing PEG particularly at step 2.3 allows recovery of fragments <75nt 

 

1 RNA extraction and precipitation 

1.1 Dissolve cells in 375µl Trizol LS (3x total vol), vortex well (10 mins+); freeze or 

continue  

1.2 Add 150 μL dH2O+0.05%Tween (dH2OT) and the required volume of CHCl3 (trizol/5), 

really shake and vortex (should look milky pink) 

1.3 Centrifuge for 10min at 15,000 at 4˚C 

1.4 While centrifuging prepare transfer tubes  

1.5 Transfer supernatant to fresh tube. If disrupt at all then centrifuge again. 

1.6 Check the amount of supernatant  

1.7        Calculate 1/10 vol 3M NaOAc of supernatant  

1.8        Add GlycoBlue (15mg/ml) for each sample 

1.9        Add 1/10 of total supernatant vol NaOAc + glycol blue to each sample  

1.10 Ensure that this is well mixed so RNA is salted 

1.11 Add 1 volume Isopropanol to each sample 

1.12 ENSURE THAT THIS IS WELL MIXED AND CHECK VISUALLY THEN QUICK SPIN 

1.13 Precipitate 20 mins or O/N at -20˚C  

1.14 Centrifuge >25mins @max speed at 4˚C  

1.15 ONCE SPIN FINISHED RETURN TO PRECIP RNA – Check all the pellets are good. 

1.16 Suction off the Isopropanol and then remove the last bit with the P1000filter + gel load 

tip 

1.17 Add 500µl ETOH 75% to each sample 

1.18 Bang so pellet loosens to release any phenol 

1.19 Quick centrifuge 
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1.20 Using p1000 take off the ETOH 

1.21 Centrifuge (table-top) then ALL the ETHO away with the P1000/gel tip combo 

1.22 Open and leave to dry for 3 mins. Dry pellet can be stored at -80. 

1.23 Add 50µl TET to each sample, re-suspend, centrifuge (table-top) and transfer to 

PCR tubes using low retention tip OR can freeze at -80˚C (not -20 or will oxidise)
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DAY 2 

START HERE IF ALREADY HAVE FROZEN PELLET (re-suspend in 50µl TET) 

2. Poly A tail selection 

Prepare oligo(dT)25 Dynabeads (NEB S1419S) as follows: 

2.1. Allow beads to equilibrate to room temp for ~15 mins, mix well, then wash with DBTT. 

2.2. Use an appropriate amount of oligo(dT)25 Dynabeads (10 μL per 1ug total RNA) 

*we added 10µl even though didn’t know exact amount.  

 

____ μL beads *  ______ samples = ________ μL 

 

Vol 1x DBTT = same volume as beads            (just dilute 2x DBTT using H20 

 

Vol 2x DBTT = 50µl x number samples =  

 

2.3. Collect the beads on a magnet, remove supernatant and wash 2x with ~1 vol 1xDTBB  

2.4. Re-suspend in 50μL 2x DTBB per sample. They are now ready to use.  

2.5. Add to the PCR lids ready to put into the samples 

2.6. Add the correct amount of beads to each sample (1:1 so 50µl) which is in 50µl TET 

already 
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PolyAA selection: 

2.7.  Heat to 65°C for 2 mins [Lid: 70°C]. 

2.8.  Incubate for 5-10 mins at RT on rotator set at 2. *(could also use shaker) 

2.9.   Spin down so all sample off lid. 

2.10. Collect on magnet 2 mins, remove supernatant 

2.11. 1x wash with 200 μL of RNA washing buffer 1. 

2.12. 1X wash with RNA washing buffer 2.  

2.13. Spin and ensure you have removed ALL  

2.14. IF ROUND 2 STOP AND GO TO STEP 4. DON’T ELUTE. 

 

3. Elution and detachment round 1 

3.1. Elute the mRNA by adding 50 μL of TET (beads still in the mix) 

3.2. Shake tray hard up and down to mix then centrifuge (table-top) to get off lid 

3.3. Incubation at 80°C for 2 mins [Lid 85°C], quick vortex then place on ice IMEDIATELY 

[detaches at 80˚C and will reattach at 48˚C so minimize time in binding conditions] 

2.1. Once cooled, transfer supernatant to new chilled PCR strip (low reten tips) 

USE MAGNET SO DON’T TAKE THE BEADS WITH YOU BUT KEEP BEADS 

2.2. Wash beads 1x 200 μL TET 

2.3. Wash beads 1x 200 μL 2x DTBB  

2.4. Re-suspend in 50 μL 2x DTBB 

2.5. Transfer washed beads back to the respective RNA supernatant.  

2.6. Repeat steps 2.7 to 2.14 and after washing buffer 2 has been added and washed and 

removed 
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4. Fragmentation 

4.1. Calculate amount of fragmentation mix needed: 

FRAGMENTATION MM 1x(µl) Total sample   

5x First strand buffer* 10  

100mM DTT 2.5  

dH20 + 0.05%Tween 12.5  

TOTAL VOLUME 25µl  

*MUST HAVE Mg2+ 

 

You will need 15µl for the wash (with 15µl water to make 2x into 1x) 

So 15µl x number samples =             µl 

TAKE AMOUNT TO NEW TUBE, Add this to the same volume of H20 and mix well  

 

4.2. To each lid add 30 μL of prechilled 1x SuperScript III first-strand buffer you have just 

made with H2O  

ONCE ADDED THROW AWAY TO PREVENT ACCIDENT 

4.3. Mix well and centrifuge (table-top). Remove using magnet.  

4.4. To new lids add 10 μL of Fragmentation MM x2 NOT DILUTED! 

4.5. Re-suspend and centrifuge (table-top).  

4.6. Incubate at 94°C for 10 mins* to fragment the mRNA and immediately place on ice 

(zfrag programme) 

4.7. Once cooled, remove the beads and transfer the samples to new PCR tubes using 

low retention tips 

While incubating you can make up your MM but don’t add enzymes until ready  
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5. First-Strand cDNA Synthesis – work on ice with lids etc so enzymes stay at -4˚C.  

Primer MM 1x (µl) Total samples 

Random primer (3µg/µl) 0.5  

Oligo dT (50µM) 0.5  

Superase-IN (round cooler) 0.5  

 1.5  

 

5.1. Quick centrifuge (table-top) to samples and onto ice 

5.2. Add Primer MM 1.5 μL to 10 μL fragmented mRNA in 2x RT buffer 

5.3. Incubate at 50˚C 1 min. Quick centrifuge (table-top) and place on ice 

5.4. RT MM to each lid and add to each sample then start RT reaction 

 

Reverse transcriptase MM 1x (µl) Total samples 

dH20 6  

Actinomycin D 0.1  

100mM DTT 1  

dNTPs (10mM) 1  

Superscript III Enzyme 0.5  

 8.6µl  

 

RT reaction  

i. 25˚C 10 mins          

ii. 50˚C 50 mins 

5.5. Add 36 μL of RNAClean XP to each reaction (13% final) and mix well and centrifuge 

(table-top). 

5.6. Add 36 μL 100% isopropanol and mix thoroughly 

5.7. Incubate mixture 10-15 mins at room temp 
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5.8. Pipette off mix using magnet so beads remain 

5.9. Wash 2x with 200 μL of 80% ethanol made with dH2O+T  

5.10. Spin down, remove residual EtOH 

5.11. AIR DRY UNTIL YOU GET THE RING 

5.12. Elute with 10µl warm TET into lids (1xstrip then back onto hot block) 

5.13. Transfer supernatant to new PCR tube to remove beads
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Second-Strand Synthesis with dUTP 

5.14. Make up MM: 

2nd Strand MM 1x (µl) Total samples 

dH20 1.2  

10x Blue buffer 1.5  

dUTP 0.1  

dUTP mix 1  

RNase H 0.2  

DNA Pol I (10U/µl) 1  

 5  

 

5.15. Add 5 μL of the 2nd Strand master mix to each 10 μL of RNA/cDNA. Incubate 

at 16°C for 2+h or O/N. 

 

6. DsDNA End Repair  

 

 

 

 

 

 

 

 

 

 

 

6.1. Add 5 μL of the Repair MM to 15 μL of the dsDNA.  

6.2. Incubate at 20°C for 30 mins, then place on ice. 

dsDNA Repair MM 1x Total Samples 

dH2O+T 2.64  

10x T4 DNA Ligase Buffer 0.5  

10mM dNTP mix 1.0  

T4 PNK 0.3  

10mM ATP 0.5  

Klenow Fragments 0.06  

 5 µl  
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6.3. Add beads in 30µl MNaCL/PEG. Mix well and centrifuge (table-top). 

6.4. Add 30 μL 100% Isopropanol. 

6.5. Incubate at RT for 10–15 mins and then repeat usually pipette off and then wash with 

ETOHx2 and centrifuge to get rid of all the ETOH. Air dry beads. 

6.6. Elute with 16.1 μL warm TET. Keep Speedbeads in solution with DNA.  

 

7. dA-Tailing 

 

dA Tailing MM 1x Total samples 

dH2O+T 10 µl  

NEB 2 3 µl  

10mM dATP mix 0.6 µl  

Klenow Exo- 0.3 µl  

 13.9 µl  

 

7.1. Add 13.9 μL of dA Tailing master mix to each sample    

7.2. Incubate at 37°C for 30 mins, place on ice. 

7.3. Make up mix of 45 μL 20% PEG8000/2.5M NaCl per sample.  

7.4. Add and Vortex well. Spin.  

7.5. Add 45uL 100% Isopropanol. Mix well and centrifuge (table-top). 

7.6. Incubate at RT for 10–15 mins. 

7.7. Collect 2-3 mins on magnet and pipette off PEG supernatant. 

7.8. Wash x 2 with ETOH, centrifuge (table-top), remove all ETOH and air dry. 

7.9. Elute with 13.7μL warm TET. Keep Speedbeads in solution with DNA. 

8. Y-Shape Adapter Ligation  

NOTE – IMPORTANT THAT THIS IS DONE AT 21˚C as this is optimal for Ligase 

action in this buffer 
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Ligation MM 1x Total samples 

2x Rabid Ligase Buffer  15 µl  

1% Tween 0.3 µl  

Rapid Ligase 0.5 µl  

 15.8 µl  

 

8.1. Add 15.8 μL of Ligation MM for each sample into the PCR strip lid on ice. 

8.2. Add 0.5 μL unique barcode ds-adapter per “lid well”. **** BE VERY VERY 

CAREFUL YOU GET THE RIGHT WAY AROUND – USE THE WHOLE TO GET 

THE LID RIGHT!!!! Use 1:50 

8.3. PlacePCR strip lid on tube w. respective sample DNA 

8.4. Incubate at RT for 15 mins+, then place on ice. 

8.5. Add7μL 20% PEG8000/2.5M NaCl. 

8.6. Mix well by vortexing, centrifuge (table-top) briefly. 

8.7. Incubte at RT for 10–15 mins. 

8.8. Collet 2-3 mins on magnet and pipette off PEG supernatant. and then repeat usually 

pipette off and then wash with ETOH. Air dry beads- they get a ring when ready so 

check! 

 

9. UDG Second Strand Digest  

9.1. Make master mix TET and UDG:  

 (µl) total 

TET 14  

UDG  1  

 15  
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9.2. Elute beads with 15µl MM and proceed with UDG digest 

9.3. Incubate at 37°C for 30 mins 

 

10.  Amplification & Library Prep. 

PCR MM 1x Total  

5M Betaine 3 µl  

5x Q Buffer 5 µl  

10mM dNTP mix 1 µl  

100mM Primer 1GA 0.25 µl  

100mM Primer 1GB 0.25 µl  

Q5 Polymerase 0.5 µl  

 10 µl  

 

10.1. add 10 μL PCR MM  

 
10.2. Cycle: 

   1) 98°C for 3 mins 
   2) 98°C for 45 sec 
   3) 60°C for 30 sec 
   4) 72°C for 30 sec 
   Repeat 2-4 4x  

(5 total) 
   5) 72°C for 3 mins 
Place PCR reactions on ice. 

12. qPCR 

12.1. Prepare qPCR plate with qPCR MM  

12.2. Add 1.5μL pre-amplified PCR product 

12.3. Run qPCR 

12.4. Add calculated number of cycles and 

 amplify  

qPCR 1x Total  

2xKappa 5µl  

Primer 1GA  0.25µl  

Primer 1GB 0.25µl  

dH20 3µl  

 8.5µl  
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To determine additional required cycles:  

number of cycles on curve minus 4  

(usually around 11-12, try to stay <15) 

 

Note: If sample was frozen, add some new polymerase (2μL 2xQ5 MM and 2μL dH2O) 

13. Purification of amplified cDNA and gel size selection 

13.1. Aliquot desired amount of beads 

2µl x no samples =               µl total volume beads 

13.2. Take away TET 

13.3. Add 25µlxNo.samples NaCL 5M to beads and thoroughly salt/mix/. Spin. 

13.4. Add same volume PEG 40% (a bit extra as very viscous) 

13.5. Clean up reaction by adding 1.5x total volume of reaction μL Speedbeads in 

20%    

PEG8000/2.5M NaCl eg if no qPCR you should have 25µl so need 37.5µl 

beads per 

sample or if did qPCR you have 23.5 so add 35µl. 

13.6. Mix well by vortexing, centrifuge (table-top) briefly. Incubate at  

          RT for 10–15 mins. 

13.7. Collect 2-3 mins on magnet and pipette off PEG supernatant.  

13.8. Wash 2x with 200μL of 80% ethanol made with dH2O+T.  

13.9. Spin down, remove residual EtOH. 

13.10. Air-dry the beads 5 mins 

13.11. Elute with 14µl Gel loading dye. Keep Speedbeads in solution     

with DNA. 

13.12. Collect beads w. magnet and load on a 10% Acrylamide 1x  

TBE gel. 

13.13. Run @80V till all dye in gel, then ~140V (180V if in a rush).  

13.14. Stop when Cyanol [~120 bp] ~1cm before running off. 
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13.15. Prepare a shredder tubes (0.22G needle 0.5ml tube) into 1.5ml  

tube. 

13.16. Stain gel 3µl CyberGold into TBE in tray prior to placing gel in.  

13.17. Cut out 200-375 bp and place in 0.5ml tube. (23bp + adapter  

 125 = 150) 

13.18. Shredder gel fragments- centrifuge max 3 mins turn 180˚ if not  

All through 

13.19. 150µ gel EB (1M LiCl, 0.1% LDS, 1mM EDTA, 5mM TrisHCl pH  

~8.0) and vortex, centrifuge (table-top)  and onto shaker >4hr max 48hrs. 

13.20. Repeat zymo kit purification BUT 

a. Add 700µl DNA binding buffer (5x ay 750 would overflow!)  

b. Centrifuge 900g 4mins (varies – check all elute through and then can increase 

up to 10k) 

c. Discard or will fill up too much 

d. Wash with 200µl wash buffer* 10k 1 min  

*check has ETOH added and don’t use ETOH 

e. After wash and centrifuge (table-top),  flick to discard the dry bit left in 

the filter tube 

f. Wash with 200µl wash buffer 10k 1 min 

g. Discard, centrifuge at 18k 1 min to dry out 

h. Leave with cap open to dry 2-5 mins  

i. ELUTE WITH seqTET* (pH 8 denatures the DNA prior to sequencing) – 

ensure that the seqTET is warm.  

j. Spin at 15-18k for 2 mins (make sure is at RT) 

*You can elute 1x 20µl but 15% higher yield if do 2z10µl elutions. 

 
14. Quantify using qBIT. 

Buffer = 198 x No samples (+2)µl 
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Dye = (No samples =2) µl 

 

Add 190 to standards 1 and 2 

Add 198 to all others 

Add 10µl standards and add 2µl sample so total volume 200µl   

 

Vortex and flick out any bubble and proceed to measure. (NB record 1/10th a unit 

is /ml) 
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9.2.11 RT-qPCR validation of genes 

Reagents 

o SuperScriptTM VILOTM (ThermoFisherScientifc, Cat No11754050) 
• 5X VILOTM Reaction Mix 
• 10X VILOTM Reaction Mix 

o SYBR GreenTM (ThermoFisherScientifc, Cat No 4385610) 
 

Making cDNA 

To make cDNA from RNA (RNA should already have been extracted and quantified as detailed 
in methods) 

1. Make up master mix: 

 X1 total 

5X VILOTM Reaction Mix 4µl  

10X VILOTM Reaction Mix 2µl  

   

 

2. To PCR tubes add 6µl of the MM above and up to 14µl of RNA (max 2.5ng), if less than 

14µl of RNA then make up to 20µl with DEPC-water. 

3. Run RT-PCR cycles: 

• 25˚C for 25mins 
• 42 ˚C for 60 mins 
• 85 ˚C for 5 mins 
• Plate can be held at 4 ˚C until ready to proceed 
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Plate MM and DNA 

1. Make up master mix for primers and controls: 

 X1 total 

SYBR GreenTM 10  

Forward primer (10µM) 0.4  

Reverse primer (10µM) 0.4  

DPEC-water 4.2  

2. Aliquot out 15µl to each well and then add 5µl of cDNA  

For each gene you need triplicate wells for each sample and 2 samples with no DNA but 

5µl H20 to check for any contamination 

3. Cover plate  

4. Vortex  

5. Centrifuge using pulse for ~1min to 500g 

6. Take plate to the qPCR machine ready for running qPCR  
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9.2.12 Preparation of ATACseq samples and libraries 

Cell Preparation 

1. Collect 50x103 cells by FACS 

2. Spin down cells at 500g for 5 mins at 4oC. 

3. Take off nearly all of supernatant -50µl can be left 

4. Gently pipette to resuspend the cell pellet in 50µl of ice-cold Lysis Buffer. 

5. Spin down immediately at 500g for 10 min a 4oC. 

6. Discard the supernatant, and immediately continue to transposition reaction. 

 

Transposition Reaction and Purification 

1. Leave cell pellet on ice and make the transposition reaction MM: 

MM 1X 5X 10X 15X 20X 

Tagment DNA Buffer 25µl 125µl 250µl 375µl 500µl 

Tagment DNA enzyme I 2.5µl 12.5µl 25µl 37.5µl 50µl 

Nuclease Free H2O 22.5µl 112.5µl 225µl 337.5µl 450µl 

      

2. Gently pipette to re-suspend nuclei in the transposition reaction mix. 

3. Incubate the transposition reaction at 37oC for 30 min.           

4. Immediately purify using a Zymo Research ChIP DNA Clean and Concentrator Kit.  
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Zymo ChIP DNA Clean & Concentrator  

CHECK CENTRIFUGE AS NEED IT AT ROOM TEMP FOR ELUTION 

1. Add x5 volume of DNA binding buffer (250µl) to each sample, mix, vortex and 

quickly centrifuge (table-top). 

2. Transfer to column and centrifuge at 10k 1min room temp 

3. Wash x 2 with 200µl wash buffer* 10k 30” min  

*Check has ETOH. Do not wash with ETOH like beads! 

4. Discard, centrifuge at 18k 1 min to dry out  

5. Open and leave to dry fully and transfer to elution tubes 

5. Elute transposed DNA 8µl Elution Buffer (preheat to 70˚C)  

6. Spin at 15-18k for ~2 minutes –ROOM TEMP 

7. Repeat elution (final total volume of 16µl) 

 

STOP FREEZE SAMPLE AT -20˚C ready for shipping 
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PCR Amplification 

1. To amplify transposed DNA fragments, create MM: 

PCR MM 1X    X 

10 µM Nextera Primer 1* [no Barcode] 6.25µl  

10x SYBER Green 3µl  

NEBNext High-Fidelity 2x PCR MM 25µl  

 34.25µl  

 

2. Transfer 10µl of DNA into PCR tube 

3. Add 34.25µl of PCR MM to each sample 

4.  Add 6.25µl of 10µM Nextera Primer 2 [with Barcode] to each sample 

(DIFFERENT BARCODED PRIMER PER SAMPLE!) 

5. Set program as follows: 

(1) 72˚C 5 min 

(2) 98˚C 30 sec 

(3) 98˚C 10 sec 

(4) 63˚C 30 sec 

(5) 72˚C 1 min 

(6) Repeat steps 3 – 5, for 3 cycles total 

(7) Hold at 4˚C 

 

6. In order to reduce GC and size bias in PCR amplification, the PCR reaction is 

monitored using qPCR to stop amplification prior to saturation. To run a qPCR side 

reaction, combine the following MM: 
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qPCR MM 1X       X 

Nuclease Free H2O 3.15µl  

10µM Nextera Primer 1* [no 

barcode] 

0.625µl  

10x SYBR Green I 0.6µl  

NEBNext High-Fidelity 2x 

PCR MM 

5µl  

 9.375µl  

   

7. Transfer 5µl of PCR amplified DNA (3-cycles) into PCR tube. 

8. Add 9.375µl of qPCR MM. 

9. Add 0.625µl of 10µM Nextera Primer 2 [barcode] to each sample. 

10. Run on qPCR program as follows: 

(1) 98˚C 30 sec 

(2) 98˚C 10 sec 

(3) 63˚C 30 sec 

(4) 72˚C 1 min 

(5) Repeat steps 2 – 4, for 19 cycles 

11. To determine the number of additional cycles needed for the remaining 45µl PCR 

reaction: plot Rn vs Cycle in linear, set RF threshold to 5000 and calculate the cycle 

# that corresponds to ¼ of max fluorescent intensity. 

12. Run the remaining 45µl PCR reaction for the correct # of cycles. Program as follows: 

(1) 98˚C 30 sec 

(2) 98˚C 10 sec 

(3) 63˚C 30 sec 

(4) 72˚C 1 min 

(5) Repeat steps 2 -4, for x cycles (x is ~6 additional cycles) 
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(6) Hold at 4˚C 

  

13. Purify amplified library using Zymo ChIP & DNA Clean up.  

14. Elute the purified library in 20µl Elution Buffer. 

15. Add 5µl 5xTBE loading buffer and load on 12-well 10% TBE gel. Use 0.25-0.5µl 

ladder (25bp) diluted in 5µl 5xTBE loading buffer. 

16. Run at 70V until DNA enters gel then increase to 140V for ~1 hr. 

17. Stain gel in 10ml 1x TBE with SYBRGold diluted 1:10,000 (1µl).  

18. Cut gel between 175 – 225 bp markers (or ~150 – 250 bp) into a 0.5ml LowBind 

tube perforated 3 times with a 22G needle.  

19. Shred gel by centrifuging at max speed for 2 min at RT into 1.5 ml LowBind tube. 

20. Add 150µl Diffusion Buffer to gel in 1.5 ml tube and shake at RT for 45 min. 

21. Transfer to filter columns using wide-bore tips and centrifuge at max speed for 2 

min. 

22. Purify DNA (~140µl) with Zymo DNA Clean and Concentrator columns. 

23. Elute in 15µl Elution Buffer into 1.5 ml LoBind tubes. 

24. Quantitate with QuBit and store at -20oC prior to sequencing (yield ~ 0.25 ng/ µl). 
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9.3 Optimisation of protocols 

9.3.1 Optimising Accessibility of Transposase Assay (ATAC)  

When this project was initially established, the proposal was that ATAC could be undertaken 

on nuclei isolated from sorted Mo and then frozen down. This was a protocol that had been 

optimised by Sascha Duttke at the Glass lab in University of California San Diego (UCSD) but 

was optimised for much greater cell numbers than we could achieve (10-fold). The following 

reagents and buffers were used: 

 

1. Swelling Buffer  

• 500ml Ultrapure water  

• 5ml of 1M Tris/HCl pH 7.5 (10mM final) 

• 1ml of 1M MgCl2 (final 2mM) 

• 1.5ml of 1M CaCl2 (final 3mM) 

• 10% Glycerol 
2. Freezing buffer (50ml) 

• 27.5ml Ultrapure water 

• 20ml of glycerol (final 40 %) 

• 250µl 1M MgCl2 (final 5mM) 

• 10µl of 0.5M EDTA (final 0.1mM) 

• 1.25ml Tris/HCl pH 7.5 

• 1.25ml Tris/HCl pH 8 
3. Lysis buffer 

• Swelling buffer + 0.2% IPEGAL CA630 detergent 

4. Wash buffer 

• Lysis buffer + 0.1% IPEGAL CA630 detergent 
 

FACS isolated Mo were centrifuge at 700g 4°C for 5 mins the supernatant was removed, and 

ice-cold Swelling Buffer was added to the cells for 5 mins on ice. Cells were then centrifuged 

at 400g at 4°C for 10 mins. Supernatant was then removed, and cells were re-suspended in 

the swelling buffer. Lysis buffer (1:1 with swelling Buffer) was then added and finally the wash 
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buffer was added, and cells left on ice for 5 mins. Cells were then centrifuged at 600g 4°C for 

7 mins. Supernatant was removed and cells were then re-suspended in 500µl of freezing buffer 

and then centrifuged at 900g 4°C for 6 mins. Supernatant was then removed, and nuclei were 

re-suspended in 20µl freezing buffer and snap-frozen in liquid nitrogen for shipping.  

 

There was some trial and error with optimising the volumes to suit the cell numbers that were 

being used. Additionally, on checking samples under the microscope, nuclei were not intact. 

The purpose of the swelling buffer is to swell the cellular membrane, the detergent then inserts 

and the cellular membrane bursts isolating the nuclei which are accessible but intact. 

Therefore, we used four human control samples to test different conditions: Lysis buffer with 

0.1% or 0.2% IPEGAL detergent and wash buffer with 0.05% or 0.1% IPEGAL detergent. 

These samples were sent to be processed at UCSD. The quality of the samples was 

inadequate and there was a concern that the ATAC reaction needed to be undertaken on 

freshly isolated cells. 

 

Subsequently, time was spent isolating Mo and testing differing lysis buffers to obtain good 

quality nuclei (Figure 56). These experiments were undertaken at UCSD while RNAseq, 

ChIPseq and relevant bioinformatics techniques were also being acquired. From these 

experiments it was agreed that 0.06% IPEGAL 630 was to be used for subsequent samples.  

 

The protocol was also refined to reduce centrifugation steps and cell loss. A total of 150x103 

Mo were isolated and centrifuged at 300g at 4˚C for 10 mins. All the supernatant was removed, 

and cells were re-suspended in 500µl swelling buffer and left on ice for 5 mins. A total of 500µl 

of 0.12% IPEGAL 630 was added dropwise while vortexing the sample to obtain a final 

concentration of 0.06% IPEGAL 630. The sample was then centrifuged at 600g at 4˚C for 5 

mins. Samples were then immediately processed with the tagmentation enzyme as detailed in 

the methods. Four samples were processed using this concentration, were amplified and run 

onto gels to check the process. From this, it was decided to proceed with this protocol.  
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Figure 56 Optimisation of IPEGAL 630 detergent concentrations (A) Microscope images 

of samples to demonstrate intact cells, smooth nuclei and debris obtained at increasing 

concentrations of IPEGAL 630.  An unprocessed, 0% processed and 6% IPEGAL 630 

samples were used as controls. (B) Plot of the percentage of viable cells, smooth nuclei and 

debris obtained at differing concentrations of IPEGAL 630 detergent.  
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In this first cohort of patients, a total of 16 samples (8 cancer, 8 healthy controls) of whole Mo 

were collected alongside RNAseq and ChIPseq samples. Unfortunately, ATAC samples were 

of poor quality and it was felt that further optimisation was required. At this stage, work was 

undertaken with Nathaneal Spann at UCSD whom is a expert in ATACseq methods is. A 

refined ATAC protocol had been published (Corces et al. 2017) and so the decision was made 

to try a variation of this with the following buffer conditions:  

 

1. 10mM Tris-HCl (pH 7.5), 10mM NaCl, 10mM MgCl2, 0.1% Tween20 

2. Solution 1 with 0.01% digitonin 

3. 10mM Tris-HCl (pH 7.5), 10mM NaCl, 10mM MgCl2, 0.1% Tween20 0.1% Igepal CA-

630 with 0.025% digitonin 

 

During the acquisition of the initial 16 samples, it was also realised that the cell input that could 

be obtained was limited and so it was also desirable to assess what the lowest possible input. 

Samples were obtained by using red cell lysis, FACS and then the immediate tagmentation 

reaction was undertaken as detailed in the methods. These samples were then sent to UCSD 

to be amplified and sequenced. The samples were then quality checked and browser tracks 

inspected for peaks and the level of noise. [Tracks can be inspected directly at the UCSC 

browser with the following URL:  

http://homer.ucsd.edu/hubs//LysisBufferOptomisation_ATAC/hub.txt] 

 

From this trial, it was decided that the minimum input was 50x103 cells and that samples were 

optimal (high ratio of tags within peaks indicating both peaks and minimal noise)  was 

1achieved with the  10mM Tris-HCl (pH 7.5), 10mM NaCl, 10mM MgCl2, 0.1% Tween20 

Solution 1 with 0.01% digitonin (Figure 57). These conditions were therefore chosen to 

proceed with in the final cohort of patients. 
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Figure 57 UCSC Browser tracks for optimising lysis buffer for ATAC of human Mo (A) 

25x103cell input, Lysis buffer 2. (B) 25x103cell input, Lysis buffer 3 (C-E) 50x103cell input, 

Lysis buffer 1,2, and 3. For each track the percentage of tags that occur within peaks are 

given. Lysis buffers 1. 10mM Tris-HCl (pH 7.5), 10mM NaCl, 10mM MgCl2, 0.1% Tween20 2. 

As for 1 but with 0.01% Digitonin 3. 10mM Tris-HCl (pH 7.5), 10mM NaCl, 10mM MgCl2, 0.1% 

Tween20 0.1% Igepal CA-630 with 0.025% digitonin.  
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Chapter 10 Supplementary files 

10.1.1 S1_MOUSE_ C57BL/6_BLOOD_DEGs.xls 

10.1.2 S2_MOUSE_ C57BL/6_BM.xls 

10.1.3 S3_MOUSE(FVB)_BLOOD_DEGs.xls 

10.1.4 S4_HUMAN(ALL_SAMPLES)_BLOOD_DEGs.xls 

10.1.5 S5_HUMAN(CA_1_3_5_6)_DEGs_Motif.xls 
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