Reactions of Pyranosyl Nitrile Oxides: 1,3-Nucleophilic Addition Reactions in the Synthesis of Novel *C*-Glycosides

Iain Archie Sneddon Smellie

Thesis Submitted for the Degree of Doctor of Philosophy

The University of Edinburgh

2005

For My Grandparents

Archie and Elizabeth Smellie Richard and Mary Lindsay

Declaration

I declare that this thesis was composed by myself and that it describes my own work, except where specifically stated in the text. The work was carried out between October 2002 and September 2005 in the School of Chemistry at the University of Edinburgh under the supervision of Dr R. M. Paton.

Acknowledgements

I would firstly like to thank Dr R. Michael Paton for his invaluable guidance and inspiration over the last four years.

Thanks must also go to the Rollin group; Prof. Patrick Rollin, Dr Arnaud Tatibouet, Aurelie Bourderioux and I am especially indebted to Dr Vincent Aucagne.

I have had the great pleasure of the company, and, have received valuable advice from my colleagues in the Paton group; Dr Kenneth Baker, Dr James Murphy, Dr Keith M^cMillan, Tom Young, Katherine Horner, Andreas Fromm, Robert Sharp and Euan Fordyce. I would especially like to thank Katherine and Andreas for their hard work and contributions to the amidoxime and perimidine work. Thanks also must go to the members of the Hulme, Greaney and M^cNab groups for making my time in the department so enjoyable.

This work would not have been possible without the hard work and expertise of the following people:

NMR Spectroscopy- Dr I. H. Sadler, Mr J. Millar and Dr S. Wharton

Mass Spectrometry- Mr A. Taylor and Mr R. Smith

X-ray Crystallography- Dr S. Parsons, Dr I. Oswald, Dr S. Moggach, Dr F. Fabbiani, Mr F. White.

High Pressure Hydrogenation (and anything remotely technical)- Dr D. Benstead

Glassblowing- Mr Stuart Johnstone

Mrs Anne Pagan for all her much needed help over the years

EPSRC for funding

Finally, I would like to extend special thanks to my family for their unfailing support.

Lecture Courses and Conferences

The following lecture courses and conferences were attended

Organic research seminars and colloquia, various speakers, School of Chemistry,

University of Edinburgh (3 years attendance).

Natural product synthesis-5 lectures, Dr M. F. Greaney, School of Chemistry, University of Edinburgh.

Postgraduate Course in NMR: NMR Spectroscopy in Drug Discovery and Development, Easter 2003, various speakers.

RSC Perkin Divisional Meeting 2002-Dundee University.

RSC Perkin Divisional Meeting 2003-Edinburgh University-Poster presented.

RSC Perkin Divisional Meeting 2004-St Andrews University- Poster presented.

14th SCI Graduate Symposium on Novel Organic Chemistry-University of Aberdeen,2002.

15th SCI Graduate Symposium on Novel Organic Chemistry-University of Edinburgh, 2003.

Safety Awareness Course, School of Chemistry, University of Edinburgh.

1st Organon Symposium on Synthetic Chemistry-University of Glasgow, 2003.

2nd Organon Symposium on Synthetic Chemistry-University of Glasgow, 2004-Poster presented.

3rd Organon Symposium on Synthetic Chemistry-University of Glasgow/WestChem, 2005- Poster presented.

Firbush Postgraduate Talks, Easter, 2005, 3rd year seminars-Oral Presentation. International Conference on Reactive Intermediates and Unusual Molecules (ISRIUM)-University of Edinburgh, August 2005-Poster presented.

13th European Carbohydrate Symposium, Bratislava, August 21-26, 2005-Poster presented.

Glossary of Terms, Symbols and Abbreviations

А	Angstrom
[α]	Optical rotation
Ac	Acetate
AIBN	2,2 ⁻ Azobisisobutyronitrile
AMP	Adenosine monophospate
Ar	Aryl
Bn	Benzyl
Boc	Butoxycarbonyl
BOM	Benzloxymethyl
Bt	Benzotriazole
Bu	Butyl
Bz	Benzoyl
CAN	Ceric ammonium nitrate
CDI	1,1 ⁻ -carbonyldiimdazole
cm	centimetre
COSY	COrrelation SpectroscopY
d	Doublet
δ	Chemical shift
DAN	1,8-diaminonapthalene
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-Dicyclohexylcarbodiimide
DCM	Dichloromethane
DMAP	4-Dimethylaminopyridine
DMF	N,N-Dimethylformamide
DMSO	Dimethylsulfoxide
DMTMM	4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholonium chloride
EDCI	1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide
Et	Ethyl
Ether	Diethyl ether
FAB	Fast Atom Bombardment
g	gram

hr	hour
HRMS	High Resolution Mass Spectrometry
Hz	Hertz
IR	Infra-red
J	Coupling Constant
Lit	Literature
Μ	Moles per litre
Μ	Multiplet
M ⁺	Molecular Ion
Me	Methyl
mg	milligram
MHz	Megahertz
min	minute
mmole	millimole
mp	melting point
m/z	mass to charge ratio
nd	not determined
NMR	Nuclear Magnetic Resonance
ppm	Parts per million
Pr	Propyl
q	Quartet
S	Singlet
t	Triplet
TDI	Tolylene-2,4-diisocyanate
Tf	Trifluoromethyl
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	Trimethylsilyl
TOCSY	Total Correlation SpectroscopY
Ts	<i>p</i> -Toluenesulfonyl
ν	wavelength

Abstract

1,3-Nucleophilic addition reactions of thiols and amines with pyranosylnitrile oxides have been employed in the synthesis of *C*-glycosides. The nitrile oxides were generated by base-induced dehydrochlorination of the corresponding hydroximoyl chlorides **106** and **107**.

D-Glucose derived hydroximoyl chloride **107** was prepared in four steps from D-glucose and employed in collaborative work toward the synthesis of glucosinolate analogues. Reactions of alkyl and aryl thiols with D-xylose nitrile oxide **151** afforded a series of desulfoisoglucosinolates in 55-76% yields.

Reactions of alkyl and aryl amines with the D-xylose and D-glucose derived nitrile oxides **151** and **115** under basic conditions afforded the corresponding Z-amidoximes. For example, (Z)-N-benzyl-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)formamide oxime (**137**) was prepared from **107** and benzylamine in 88% yield.

The addition of amino acid derived nucleophiles was also investigated. Reaction of the D-xylose and D-glucose nitrile oxides **151** and **115** with L-cysteine derivative **147** under basic conditions afforded thiohydroximates **148** and **150** in high yield. Reaction of the D-xylose nitrile oxide **151** with glycine, L-leucine and L-phenylalanine esters initially afforded amidoximes **152**, **155** and **161**. Cyclisation of **152**, **155** and **161** to form 1,2,4-oxadiazin-6-ones occurred on exposure to silica or prolonged standing. Employing L-proline benzyl ester as the nucleophile led to the formation of predominantly oxadiazinone **163**. Attempts to synthesise pyranosyl-1,2,4-oxathiazin-6-ones were not successful.

6-Amino-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose hydrochloride was prepared from D-galactose in 4 steps, and reaction with D-xylose and D-glucose derived nitrile oxides 151 and 115 afforded (1 \rightarrow 6) amidoxime linked pseudodisaccharides 178 (81%) and 181 (75%). D-Xylose and D-glucose amines 182 and 183 were prepared from the parent aldoses in 5 steps. Reaction of these amines with

vi

D-xylose and D-glucose nitrile oxides 151 and 115 yielded a series of $(1 \rightarrow 1)$ amidoxime linked pseudo-disaccharides (31-49% yields). Deprotection of 184 was achieved under basic conditions.

Reaction of *o*-phenylenediamine, *o*-aminothiophenol, *o*-aminophenol with D-glucose nitrile oxide **115** gave access to the corresponding benzimidazole **218**, benzothiazole **215** and benzoxazole **221** in high yields (71-85%). Similarly, reaction with D-xylose nitrile oxide **151** afforded the corresponding xylose benzazoles (68-90%). Deprotection of the pyranosyl benzazoles was achieved under basic conditions. 2-(2,3,5-Tri-*O*-benzoyl- β -D-ribopyranosyl)benzoxazole (**241**) and 2-(2,3,5-tri-*O*benzoyl- β -D-ribopyranosyl) benzimidazole (**242**) were prepared similarly in 92 and 90% yields respectively. Deprotection of **241** under Zemplen conditions led to an anomeric mixture (β : α , 62:38) of products. Deprotection of **242** on the other hand, gave exclusively 2- β -D-Ribofuranosylbenzimidazole in 91% yield.

Reaction of 1,8-diaminonapthalene with D-xylose derived nitrile oxide **151** at room temperature (16 hours) afforded perimidine **259** in 60% yield. Perimidines derived from D-glucose, D-mannose and D-galactose were prepared similarly (55-65%). Attempts to repeat the reaction at elevated temperature lead to the formation of glycal products **258** and **261**. Glyceraldehyde derived hydroximoyl chloride **265** was prepared in 4 steps from D-mannitol and afforded perimidine **264** under the conditions described above in 61% yield.

Table of Contents

1	Introduction	1
1.1	Forward	1
1.2	Nitrile oxide chemistry overview	1
1.2.1	Nitrile oxides: Background	1
1.2.2	Nitrile oxides: Generation	2
1.2.3	Nitrile oxides: Reactions	4
1.2.4	1,3-Addition reactions	5
1.2.5	Mechanism of 1,3-addition reactions	6
1.3	Glucosinolates: A natural class of thiohydroximates	10
1.3.1	Glucosinolates: Background	10
1.3.2	Glucosinolate hydrolysis	11
1.3.3	Myrosinase: Mechanism of action	12
1.3.4	Synthesis of glucosinolates	15
1.3.4.1	Biosynthesis	15
1.3.4.2	Chemical synthesis of glucosinolates	16
1.4	Amidoximes	19
1.4.1	Amidoximes: Bioactivity	20
1.4.2	Amidoximes: Metal ligation	21
1.4.3	Amidoximes: Synthesis of Heterocycles	22
1.5	1,3-Nucleophilic addition reactions to nitrile oxides in	
	heterocylic synthesis	25
1.5.1	Addition-Cyclisation A: Nucleophilic attack by the oxime	25
· · ·	hydroxyl	
1.5.2	Addition-Cyclisation B: Nucleophilic attack by the oxime	26
	nitrogen atom	
1.5.3	Addition-Cyclisation C: Post 1,3-addition nucleophilic	27
,	attack on the oxime group	
1.5.4	Addition-Cyclisation D: 1,3 Additions with functionalised	28
	nitrile oxides	
2	Results and Discussion	30

2.1	Synthetic strategy	30
2.2	Synthesis of pyranosylnitrile oxide precursors	32
2.2.1	Synthesis of pyranosylnitromethanes	32
2.2.1.1	3,4,5-Tri-O-acetyl-β-D-xylopyranosylnitromethane	32
2.2.1.2	3,4,5,7-Tetra-O-acetyl-β-D-glucopyranosylnitromethane	34
2.2.2	Synthesis of pyranosylaldoximes	35
2.2.3	Synthesis of pyranosyl hydroximoyl chlorides	37
2.2.4	Generation of pyranosyl nitrile oxides	39
2.2.5	Synthesis of dipyranosyl-(2,3,4-tri-O-acetyl-β-D-	40
	xylopyranosyl)-1,2,5-oxadiazole-2-oxide	
2.3	1,3-Addition reactions: Thiol nucleophiles	42
2.3.1	Myrosinase inhibition	42
2.3.2	Synthesis of S-phenyl 2,3,4-tri-O-acetyl-β-D-	44
	xylopyranosylformothiohydroximate	
2.3.3	Synthesis of S-(2-propyl) 2,3,4-tri-O-acetyl-β-D-	45
	xylopyranosylformothiohydroximate	
2.3.4	Reaction of 3,4,5-tri- O -acetyl- β -D-xylopyranosylnitrile	46
	oxide with 1,2-ethanedithiol	
2.3.5	Biological testing/Postscript	47
2.3.6	Conclusions	49
2.4	Carbohydrate derived amidoximes: Introduction	50
2.4.1	Addition of primary and secondary alkyl amines	51
2.4.2	Addition of morpholine to $(3,4,5,tri-O-acetyl-\beta-D-xylo$	54
	pyranosyl) nitrile oxide	
2.4.3	Additions of amino acid derived nucleophiles: Introduction	55
2.4.4	Additions of N-(tert-Butoxycarbonyl)cysteine methyl ester	
	(147) to pyranosylnitrile oxides	56
2.4.5	Additions of amino acid esters	57
2.4.6	Cyclisation reactions	62
2.4.7	Pyranosyl-1,4,2-oxathiazin-6-ones	65
2.4.8	Attempted synthesis of 3-(2,3,4-Tri-O-acetyl-β-xylopyranosyl)	

	-1,4,2-oxathiazin-6-one	66
2.4.9	Conclusions / Further work	67
2.5	Additions of carbohydrate derived nucleophiles: Introduction	68
2.5.1	Synthesis of $(1 \rightarrow 6)$ amidoxime-linked pseudodisaccharides	70
2.5.1.1	Synthesis of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene	
	-α-D-galactopyranose Hydrochloride (177)	70
2.5.1.2	Additions of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene	71
	- α -D-galactopyranose (177) to pyranosylnitrile oxides	
2.5.2	Synthesis of $(1 \rightarrow 1)$ amidoxime-linked pseudodisaccharides	74
2.5.2.1	Synthesis of D-xylose and D-glucose derived amines	74
2.5.2.2	Alternative synthesis of pyranosylmethylamines	76
2.5.2.3	Additions of xylose and glucose derived amines	
	182 and 183 pyranosylnitrile oxides	77
2.5.2.4	By-product formation	79
2.5.2.5	Synthesis of deprotected $(1 \rightarrow 1)$	
	amidoxime-linked pseudodisaccharides	80
2.5.2.6	Conclusions / Further work	80
2.6	Ambident nucleophile additions 2-pyranosylbenzazole	
	synthesis	82
2.6.1	Synthesis of 2-pyranosylbenzothiazoles	82
2.6.2	Synthesis of 2-pyranosylbenzimidazoles	84
2.6.3	Synthesis of 2-pyranosylbenzoxazoles	86
2.6.4	Nitrile oxide route to pyranosylbenzazoles	86
2.6.4.1	2-Pyranosylbenzothiazoles	86
2.6.4.2	Synthesis of 2-pyranosylbenzimidazoles	88
2.6.4.3	Synthesis of 2-pyranosylbenzoxazoles	91
2.6.5	Deprotection studies	92
2.6.6	Glycogen phosphorylase function	94
2.6.7	Conclusions/Further work	97
2.6.7.1	Potential glycosidase inhibition	97

2.6 Ambident nucleophile additions 2-furanosylbenzazole

	synthesis	99
2.7.1	Synthesis of 2-furanosylbenzazoles	99
2.7.2	Nitrile oxide based strategy	101
2.7.2.1	Ribose Nitrile Oxide Precursors	103
2.7.2.2	Synthesis of 3,4,5-tri- O -benzoyl- β -D-ribofuranosyl cyanide (238)	103
2.7.2.3	Synthesis of 2,5-anhydro-3,4,6-tri- O -benzoyl- β -D-allose oxime (243)	103
2.7.2.4	Attempted synthesis of ribose derived hydroximoyl chloride (247)	105
2.7.2.5	Synthesis of 2-(2,3,5-Tri- O -benzoyl- β -D-ribopyranosyl) benzoxazole (241)	106
2.7.2.6	Synthesis of 2-(2,3,5-Tri- <i>O</i> -benzoyl- β -D-ribopyranosyl) benzimidazole (242)	107
2.7.2.7	Deprotection of 2-(2,3,5-Tri- O -benzoyl- β -D-ribopyranosyl) benzoxazole (241)	108
2.7.2.8	Deprotection of 2-(2,3,5-Tri-O-benzoyl-β-D-	109
	ribopyranosyl)benzimidazole (242)	
2.7.3	Conclusions / Further work	110
2.8	Perimidine chemistry	111
2.8.1	Introduction	111
2.8.2	Pilot studies	112
2.8.3	Synthesis of 2-pyranosylperimidines	113
2.8.4	Preparation of D-glyceraldehyde derived perimidine	119
2.8.5	Conclusions / Further work	120
3	Experimental	121
3.1	General	121
3.1.1	Instrumentation	121
3.1.2	Chromatography	121
3.1.3	Solvents and Reagents	122
3.2	Synthesis of pyranosyl nitrile oxide precursors	123
3.1.4	Synthesis of pyranosylnitromethanes	123

3.1.4.1	3,4,5-Tri- O -acetyl- β -D-xylopyranosylnitromethane (95)	123
3.1.4.2	3,4,5,7-Tetra- O -acetyl- β -D-glucopyranosylnitromethane	
	(99)	124
3.2.3	Synthesis of pyranosyloximes	125
3.2.3.1	Pyranosyloximes- General Procedure	125
3.2.3.2	3,4,5-Tri-O-acetyl-β-D-xylopyranosylformaldoxime (100)	125
3.2.3.3	3,4,5,7-Tetra- O -acetyl- β -D-glucopyranosylformaldoxime	
	(101)	126
3.2.3.4	3,4,5,7-Tetra-O-acetyl-β-D-mannopyranosylformaldoxime	
	(102)	127
3.2.4	Synthesis of pyranosylhydroximoyl chlorides	127
3.2.4.1	Hydroximoyl chlorides-General procedure	127
3.2.4.2	3,4,5, -Tri-O-acetyl-2,6-anhydro-1-deoxy-1-chloro	
	-1-hydroxyimino-D-xylo-D-gulo-hexitol (106)	128
3.2.4.3	3,4,5,7 -Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-chloro-1-	
	hydroxyimino-D-glycero-D-gulo-heptitol (107)	128
3.2.4.4	3,4,5,7 -Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-chloro-1-	
	hydroxyimino-D-glycero-D-galacto-heptitol (108)	129
3.2.4.5	Dipyranosyl-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-	
	1,2,5-oxadiazole-2-oxide (109)	129
3.3	Synthesis of the pyranosylthiohydroximates	131
3.3.1	Thiohydroximates- General procedures	131
3.3.1.1	S-Phenyl 2,3,4-tri-O-acetyl-β-D-xylopyranosyl	131
	formothiohydroximate (119)	
3.3.1.2	S-(2-Propyl) 2,3,4-tri-O-acetyl-β-D-xylopyranosyl	132
	formothiohydroximate (120)	
3.3.1.3	S-Mercaptoethyl 2,3,4-tri-O-acetyl-β-D-xylopyranosyl	133
	formothiohydroximate (121)	
3.3.1.4	2:1 adduct (122)	133
3.3.1.5	N-(tert-Butoxycarbonyl)cysteine methyl ester (147)	134
3.3.1.6	S-2-Methoxycarbonyl-2- ^t butoxycarbonylamino-2,3,4-tri-O-	

	acetyl- β -D-xylopyranosylformothiohydroximate (148)	134
3.3.1.7	N, N-bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (149)	135
3.3.1.8	S-2-Methoxycarbonyl-2- ^t butoxycarbonylamino-2,3,4,6-tetra	
	-O-acetyl- β -D-glucopyranosylformothiohydroximate (150)	136
3.3.1.9	S-Carbmethoxymethyl-2,3,4-tri-O-acetyl-β-D-	
	xylopyranosylformothiohydroximate (166)	137
3.3.1.10	S-2-Aminophenyl 2,3,4-tri-O-acetyl-β-D-	
	xylopyranosylformothiohydroximate (216)	137
3.4	Synthesis of the Pyranosylamidoximes	139
3.4.1	Alkyl/Aryl Amidoximes- General procedure	139
3.4.1.1	(Z)-N-Benzyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)	
	formamide oxime (137)	139
3.4.1.2	(Z)-N-Benzyl-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)formamide	
	oxime (138)	140
3.4.1.3	(Z)-N-Butyl-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)formamide	
	oxime (139)	140
3.4.1.4	(Z)-N-Propenyl-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)	
	formamide oxime (140)	141
3.4.1.5	(Z)-N-Phenyl-(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)formamide	
	oxime (141)	142
3.4.1.6	(Z)-N-Phenyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)	
	formamide oxime (142)	143
3.4.1.7	(E)-N-Morpholino-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)	
	formamide oxime (143)	144
3.4.2	General procedure – Amidoxime linked glycopeptide	144
	analogues	
3.4.2.1	(Z)-N-Carbethoxymethyl-(2,3,4-tri- O -acetyl- β -D-	
	xylopyranosyl)formamide oxime (152)	145
3.4.2.2	2:1 Adduct (154)	145
3.4.2.3	(Z)-N-Carbmethoxymethyl-2- ⁱ butyl-(2,3,4-tri-O-acetyl- β -D-	
	xylopyranosyl)formamide oxime (155)	147

3.4.2.4	(Z)-N-Carbethoxymethyl-2-benzyl-(2,3,4-tri-O-acetyl-β-D-	
	xylopyranosyl)formamide oxime (161)	147
3.4.2.5	(Z)-N-Carbethoxyethyl-(2,3,4-tri-O-acetyl- β -D-	
	xylopyranosyl)formamide oxime beta alanine (164)	148
3.4.2.6	(Z)-N-Carb ^t butoxymethyl-(2,3,4-tri-O-acetyl-β-D-	
	xylopyranosyl)formamide oxime (165)	149
3.4.3	Cyclisation Reactions	150
3.4.3.1	3-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-1,2,4-oxadiazin-6-one	150
	(153)	
3.4.3.2	3-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-5-(isopropyl)-1,2,4-	
	oxadiazin-6-one (156)	150
3.4.3.3	3-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-5-(benzyl)-1,2,4-	
	oxadiazin-6-one (162)	151
3.4.3.4	6-S-2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-4-oxa-1,3-	
	diazabicyclo[4.3.0]non-2-en-5-one (163)	152
3.5	Synthesis of Pyranosylamines	153
3.5.1	1,2:3,4-Di-O-isopropylidene-α-D-galactopyranose (174)	153
3.5.2	6-O-(p-Tolylsulfonyl)-1,2:3,4-di-O-isopropylidene-α-D-	
	galactopyranose (175)	154
3.5.3	6-Azido-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galacto	
	pyranose (176)	155
3.5.4	6-Amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galacto	
	pyranose Hydrochloride (177)	155
3.5.5	2,6-Anhydro-3,4,5-tri-O-acetyl-β-D-xylopyranosylnitrile (167)	. 156 _
3.5.6	2,3,4,6-Tetra-O-acetyl-1-deoxy-1-β-D-glucopyranosylnitrile	157
	(189)	
3.5.7	$(3,4,5-Tri-O-acetyl-\beta-D-xylopyranosyl)$ methylamine	158
	hydrochloride (182)	
3.5.8	$(3,4,5,7-\text{Tetra-}O-\text{acetyl-}\beta-\text{D-glucopyranosyl})$ methylamine	
	hydrochloride (183)	158
3.5.9	$(3,4,5-Tri-O-acetyl-\beta-D-xylopyranosyl)$ methylhydroxylamine	

. ...

	hydrochloride (188)	159
3.6	Synthesis of amidoxime-linked pseudodisaccharides	161
3.6.1	Amidoxime linked pseudo-disaccharides- General procedure	161
3.6.1.1	(Z)-N-(6-Deoxy-1,2:3,4-di-O-isopropylidene-α-D-galacto	
	pyranosyl)-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)formamide	
	oxime (178)	161
3.6.1.2	(Z)-N-(6-Deoxy-1,2:3,4-di-O-isopropylidene-α-D-galacto	
	pyranosyl)-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)	
	formamide oxime (181)	162
3.6.1.3	(Z)-N-(3,4,5-Tri-O-acetyl- β -D-xylopyranosyl methyl)-	
	(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)formamide oxime (184)	163
3.6.1.4	(Z)-N-(3,4,5-Tri-O-acetyl-β-D-xylopyranosyl methyl)-(2,3,4,6	
	-tetra-O-acetyl-β-D-glucopyranosyl)formamide oxime (185)	164
3.6.1.5	(Z)-N-(3,4,5,7-Tetra-O-acetyl- β -D-glucopyranosyl methyl)-	
	$(2,3,4$ -tri- O -acetyl- β -D-xylopyranosyl)formamide oxime (186)	165
3.6.1.6	(Z)-N-(3,4,5,7-Tetra-O-acetyl-β-D-glucopyranosyl methyl)-	
·	$(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)$ formamide oxime	
	(187)	166
3.6.2	N-Acetyl(4,5-di-O-acetyl-β-D-xylopyranosyl) methylamine	166
	(191)	
3.6.3	(Z)- N -(β -D-xylopyranosylmethyl)-(β -D-xylopyranosyl)	
	formamide oxime (192)	167
3.7	Synthesis of pyranosylbenzazoles	168
3.7.1	Benzothiazoles - General procedure	- 168
3.7.1.1	2-(2,3,4-Tri- O -acetyl- β -D-xylopyranosyl)benzothiazole (214)	168
3.7.1.2	$2-(2,3,4,6-Tetra-O-acetyl-\beta-D-glucopyranosyl)$ benzothiazole	169
	(215)	
3.7.2	Benzimidazoles - General procedures	170
3.7.2.1	2-(2,3,4-Tri- O -acetyl- β -D-xylopyranosyl)benzimidazole (217)	170
3.7.2.2	$2-(2,3,4,6-Tetra-O-acetyl-\beta-D-glucopyranosyl)$ benzimidazole	171
	(218)	

3.7.3.3	$2-(2,3,4-Tri-O-acetyl-\beta-D-xylopyranosyl)-5-nitro-benzimidazole$	172
3.7.3.3	Benzoxazoles - General procedures	172
3.7.3.1	2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)benzoxazole (220)	173
3.7.3.2	$2-(2,3,4,6-Tetra-O-acetyl-\beta-D-glucopyranosyl)$ benzoxazole (221)	174
3.7.4	Deprotections	174
3.7.4.1	2-β-D-Xylopyranosylbenzoxazole (222)	175
3.7.4.2	2-β-D-Xylopyranosylbenzimidazole (223)	175
3.7.4.3	3.7.4.3 2-β-D-Glucopyranosylbenzimidazole (224)	176
3.8	Synthesis of furanosylbenzazoles	177
3.8.1	3,4,5-Tri- O -benzoyl- β -D-ribofuranosyl cyanide (238)	177
3.8.2	1,3-Diphenyl-2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)	
	imidazoline (244)	177
3.8.3	2,5-Anhydro-3,4,6-tri-O-benzoyl-β-D-allose semicarbazone	178
	(246)	
3.8.4	2,5-Anhydro-3,4,6-tri-O-benzoyl-β-D-allose oxime (243)	179
3.8.5	Difuranosyl-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1,2,5	
	-oxadiazole-2-oxide (248)	181
3.8.6	2-(2,3,5-Tri-O-benzoyl-β-D-ribopyranosyl)benzoxazole (241)	182
3.8.7	2-(2,3,5-Tri-O-benzoyl-β-D-ribopyranosyl) benzimidazole	182
	(242)	
3.8.8	2-β-D-Ribofuranosylbenzoxazole/2-α-D-Ribofuranosyl	
	benzoxazole (249b/249a)	183
3.8.9	2-β-D-Ribofuranosylbenzimidazole (250)	184
3.9	Synthesis of Pyranosylperimidines	186
3.9.1	Synthesis of perimidine precursors	186
3.9.1.1	Benzohydroximoyl chloride (255)	186
3.9.1.2	2,2-Dimethyl-4-formyl-1,3-dioxolane oxime (268)	186
3.9.1.3	2,2-Dimethyl-4-formyl-1,3-dioxolane Chloro-oxime (265)	187

3.9.2	Synthesis of perimidines	188
3.9.2.1	2-(Phenyl)perimidine (256)	188
3.9.2.2	2-(2,3,4-Tri- O -acetyl- β -D-xylopyranosyl)perimidine (259)	189
3.9.2.3	2-(3,4-Di-O-acetyl-2-deoxy-1,2-didehydro-D-threo-pento-	
	pyranosyl)perimidine (258)	190
3.9.2.4	2-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)perimidine	190
	(260)	
3.9.2.5	2-(3,4,6-Tri-O-acetyl-2-deoxy-1,2-didehydro-D-arabino-hexo-	
	pyranosyl)perimidine (261) (via Glucose derived hydroximoyl	
	chloride)	191
3.9.2.6	2-(3,4,6-Tri-O-acetyl-2-deoxy-1,2-didehydro-D-arabino-hexo-	
	pyranosyl)perimidine (261) (via mannose derived hydroximoyl	
	chloride)	192
3.9.2.7	2-(2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl)perimidine	192
	(262)	
3.9.2.8	2-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)perimidine	193
	(263)	
3.9.2.9	2-(2,2-Dimethyl-1,3-dioxolan-4-yl)perimidine (264)	194
4	References	195
	Appendix 1: X-ray data for amidoxime 141	
	Appendix 2: X-ray data for oxadiazinone 153	
	Appendix 3: X-ray data for oxadiazinone 156	
	Appendix 4: X-ray data for amidoxime 178	
	Appendix 5: X-ray data for thiohydroximate 216	
	Appendix 6: X-ray data for benzimidazole 217	
	Appendix 7: X-ray data for benzimidazole 224	
	Appendix 8: X-ray data for perimidine 260	
	Appendix 9: Publication	

1. Introduction

1.1 Foreword

The work presented in this thesis investigates the application of nitrile oxide chemistry as part of a route to novel *C*-glycosides. The synthesis of *C*-glycosides is of great interest due to their importance in biological systems.^{1,2} The strategy exploits the ability of nitrile oxides to undergo 1,3-addition reactions with a range of nucleophiles. This introductory section briefly reviews general aspects of nitrile oxide chemistry, the remaining sections cover applications of 1,3-nucleophilic reactions of nitrile oxides in the synthesis of thiohydramates (specifically glucosinolates and their analogues), amidoximes and 5- and 6-membered heterocycles.

1.2 Nitrile oxide chemistry overview

1.2.1 Nitrile Oxides: Background

Nitrile oxides are a member of the nitrilium betaine class of 1,3-dipoles. The existence of nitrile oxides has been known for over 200 years. Mercury and silver fulminate salts (formonitrile oxide salts) were described by Howard *ca* 1800³ and benzonitrile oxide has been known since 1894.⁴ The general nitrile oxide structure was first proposed by Ley in 1899,⁵ but not finally elucidated until IR experiments were conducted in the mid 1960s.⁶

1,3-Dipoles are three-atom, $4-\pi$ electron systems, which have an overall neutral charge. They are divided into two classes.⁷ The allyl class have three sp²-hybridised atoms, which allow a single π -bond and have a bent structure. The propargyl-allenyl class possess an additional orthogonal π -bond between two sp-hybridised atoms and are therefore linear. Both structural classes are further subdivided according to the nature of the X, Y and Z atoms.

x≡y−7

x[≠]Y_z⁻

Propargyl-Allenyl Dipole

Allyl Dipole

1,3-Dipolar species such as nitrile oxides are normally represented as having a zwitterionic structure. They are more accurately represented by a resonance hybrid of octet, sextet, diradical and carbene forms (Scheme 1).^{8,9} A great deal of work has been conducted in the field of nitrile oxide chemistry over the last 40 years; a number of texts that provide detailed discussions of nitrile oxide structure and reactivity are available.⁸⁻¹²

Scheme 1

1.2.2 Nitrile Oxides: Generation

Like many 1,3-dipoles, nitrile oxides 1 are very reactive and are consequently rarely isolated; generation normally takes place *in situ* in the presence of the co-reactant. The key problem in the isolation of nitrile oxides is their ability to dimerise to form 1,2,5-oxadiazole-2-oxides $2^{13,14}$ (furoxans) (Scheme 2). It should be noted, however, that those with bulky substituents do not readily dimerise and are therefore isolable. Over the years a number of generation strategies have been devised,^{12,15} the precursors are most frequently aldoxime derivatives **5-8**^{8,9,15} or nitro compounds **3**^{8,9,16} (Scheme 2).

The thermal cycloreversion of furoxans 2 also results in the formation of two nitrile oxide molecules.¹³ This reaction is not frequently employed in synthetic strategies since high temperatures are usually required (200°C). Furoxans with bulky substituents¹⁸ and ring strained furoxans¹⁹ are observed to undergo cycloreversion at slightly lower temperatures.

2

Scheme 2

One of the most widely employed strategies is the Mukaiyama dehydration¹⁶ of primary nitro compounds **3**. The reaction is base catalysed and usually employs an isocyanate as a dehydrating agent to generate the nitrile oxide. A variety of dehydrating agents have been employed; these include *t*-Boc anhydride,¹⁷ acid chlorides,²⁰ phosphorous oxychloride,²¹ *p*-toluenesulfonic acid²² and DAST.²³ A recent publication has reported that Mukaiyama type dehydration takes place under microwave irradiation in the presence of 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholonium chloride (DMTMM).²⁴ Nitro substituted alkenes **4** are also known to afford nitrile oxides on treatment with organolithium compounds, Grignard reagents or titanium tetrachloride.^{25,26}

A number of nitrile oxide generation strategies involve aldoximes 5 or their derivatives as precursors. The most widely used route proceeds *via* base²⁷⁻³⁰ or thermally³¹ induced dehydrohalogenation of hydroximoyl halides 6. The hydroximoyl halide precurors are produced from the oxime by direct halogenation³² or treatment with *N*-chlorosuccinimide³³ or *N*-bromosuccinimide.³⁴ Hydroximoyl chlorides have also been reported to yield the corresponding nitrile oxide on treatment with silver(I) acetate.³⁵ Routes based on other aldoxime derivatives have

3

والمراجع والمراجع والمروح والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

been reported, these include nitrolic acids 7 36,37 and $\alpha\text{-hydroxyimino}$ carboxylic acids 8. 38

Oxidation of aldoximes themselves can also yield the corresponding nitrile oxide. Employing alkaline sodium hypochlorite³⁹ or ^tBuOCl⁴⁰ as the oxidising agent affords the respective hydroximoyl halide *in situ*, which may then spontaneously dehydrohalogenate under the basic conditions. A number of other agents are known to afford nitrile oxides from aldoximes; these include chloramine- T^{41} manganese dioxide,⁴² lead tetraacetate⁴³ and iodosylbenzene.⁴⁴

A completely novel strategy, that employs O-silylated hydroxamic acid precursors **9** has recently been reported by Carreira *et al.*⁴⁵ Treatment of the O-silylated hydroxamic acid with triflic anhydride leads to an activated intermediate **10** which may undergo de-silylation and C-O bond scission to afford the nitrile oxide **1** (Scheme 3).

1.2.3 Nitrile Oxides: Reactions

The reactive character of nitrile oxides allows them to undergo a number of varied reactions (Scheme 4). Generation of nitrile oxides in the absence of any dipolarophile leads to the coupling of two molecules of nitrile oxide. The products of such reactions may be furoxans 2,^{13,14} 1,2,4-oxadiazole-4-oxides 11 or 1,4,2,5-dioxazidines 12.¹⁴ The furoxan products are well known and are potential synthetic targets.⁴⁶ Furoxan formation is also found as a side reaction in cycloadditions of nitrile oxides with less reactive dipolarophiles.¹³ Nitrile oxide dimerisation is 2nd order in [RCNO] whereas cycloaddition with dipolarophiles is 1st order.⁴⁷ Dimerisation may therefore be limited by *in situ* generation of nitrile oxides, since the concentration of dipole relative to dipolarophile remains low.

The most frequently exploited reaction of nitrile oxides is the 1,3-dipolar cycloaddition with alkenes and alkynes (where X=Y=C).^{8,9} The products of such reactions are isoxazolines **13** and isoxazoles **14** respectively; the former are frequently employed in natural product synthesis^{48,49} and the latter are currently important subjects in the emerging field of "click" chemistry.^{50,51} 1,3-Dipolar cycloadditions with C=N, C=O, C=S and C=N dipolarophiles are also well known.^{8,9} Nitrile oxides also rearrange to isocyanates **15** at temperatures in excess of 110°C.^{8,9}

1.2.4 1,3-Addition reactions

The 1,3-addition of nucleophiles to nitrile oxides to afford substituted oximes **16** is a less well-known, yet valuable reaction.^{8,9} A large variety of nucleophiles undergo 1,3-additions to nitrile oxides (Scheme 5). Hydroximoyl chlorides are the most convenient nitrile oxide precursors in 1,3-additions since Mukaiyama type conditions do not tolerate nucleophiles⁵² and the nitrile oxide concentration may be more readily

5

controlled to limit furoxan formation. Arguably the most studied adducts to date have been the thiohydroxamates 17^{53} and amidoximes 18.^{54,55}

Scheme 5

1.2.5 Mechanism of 1,3-addition reactions

The reactivity of nitrile oxides with nucleophiles stems from the electrophilicity of the nitrilic carbon atom, indeed nitrile oxides may be considered as analogous to nitrilium cations.⁵⁶ An interesting facet of the 1,3-addition reactions is that they are stereospecific for the Z-oxime **19** (kinetic) product in all cases, despite the fact that many of the *E*-products **20** are thermodynamically favoured.^{54,56-66} The formation of the Z-oxime is thought to be stereoelectronically favoured; the entering nucleophile and the nitrogen lone pair of electrons adopt a favourable antiperiplanar arrangement, which forces the OH group and nucleophile to be *cis* to each other.

The specificity of the reaction explains a number of observations that could previously not be fully rationalised. For example addition of carboxylates to nitrile oxides (Scheme 5) does not form the expected oxime derivative **22**, instead as soon as the initial adduct is formed it undergoes a 1,4-acyl migration to form a hydroxamate ester **23**.⁵⁷ A second key observation is that addition of azide ion to a nitrile oxide affords exclusively Z-azidoxime **24**;⁵⁷ if any *E*-isomer was formed it would be expected to cyclise to the corresponding *N*-hydroxytetrazole, and a mixture of products should therefore be observed.

Although the stereochemical outcome of nucleophilic additions is not in doubt there has been some debate as to the mechanistic origins of this specificity. The debate has centred on whether the reaction proceeds in a concerted or a stepwise manner. Work conducted in the mid-1980s by Sharma and Aggarwal^{64,65} concluded that the reactions of formonitrile oxide and acetonitrile oxide with methanol proceeded *via* a stepwise addition through two discrete transition states (TS1, TS2, Scheme 6). The findings of this study were based on semi-empirical MNDO calculations.

7

Hegarty and co-workers⁵⁴ have proposed that the 1,3-addition reactions proceed *via* an asynchronous concerted process (Scheme 7). As the nucleophile approaches the nitrile oxide, the dipolar species undergoes heavy-atom rearrangement in a trans fashion, thus establishing the Z configuration. Proton transfer is then believed to occur without having to overcome any energy barrier. Hegarty's conclusions are based on *ab initio* calculations concerning the additions of water, ammonia and methanol to formonitrile oxide. At present, Hegarty's work appears to have been that accepted, and no subsequent report has so far challenged his findings.

It was stated above that additions of nucleophiles to nitrile oxides proceeded under kinetic control to afford exclusively Z-configured products. It is known, however, that amidoximes produced by such reactions can be obtained only as *E*-configured products.⁵⁹⁻⁶³ Z versus *E* specificity has been found to be dependent on the nature of the amine nucleophile. These observations appear to contrast with the theory described previously, and it is therefore necessary to account for this apparent exception. Addition of ammonia or primary amines leads to only Z-adducts as isomerisation of such adducts is difficult due to hydrogen bond stabilisation by the "amido" type N-H bond and the oxime oxygen.⁶² X-Ray crystallographic studies clearly demonstrate such bonding in non and mono-*N*-substituted amidoximes due to the adoption of a Z-antiperiplanar (Z_{ap}) or "S-trans" configuration, where the amidic N-H bond faces the oxime OH.^{62,66,67} In contrast, Z configured *N*,*N*-di-substituted amidoximes cannot be stabilised as above, and over time isomerise to the thermodynamically favoured *E*-antiperiplanar (E_{ap}) oxime.

Z to E isomerisation is promoted by acid and indeed is $>10^5$ times faster⁶¹ than in neutral conditions, the proposed isomerisation mechanisms are illustrated in Scheme 8.

1.3 Glucosinolates: A natural class of thiohydroximates

1.3.1 Glucosinolates: Background

Glucosinolates are a naturally occurring class of thiosaccharides that are isolated from all members of the botanical family *Cruciferae*.⁶⁸⁻⁷¹ A number of familiar brassica crops such as oilseed rape, cabbage, Brussels sprouts and numerous mustards derive their characteristic flavours from the breakdown products of glucosinolates. Glucosinolates are broken down by the enzyme myrosinase (EC 3.2.3.1) to produce a range of degradation products (refer to Scheme 9),⁶⁸⁻⁷¹ The most important of these are isothiocyanates (mustard oils). Glucosinolate-derived isothiocyanates possess a range of biological activities; these include toxic, anti-nutritional, goitrogenic, anti-carcinogenic, anti-fungal and anti-bacterial effects in a wide range of mammals (including humans).⁶⁸⁻⁷¹ Some glucosinolates are also of interest themselves due to the role they play in host-plant recognition and as egg-laying stimulants for brassica-adapted insects.^{72,73}

All glucosinolates conform to the general structure 27. The structure consists of three fragments: a β -D-glucopyranose unit, an *O*-sulfated thiohydroximate bridge and an aglycon side-chain (R) that varies according to biological origin (Table 1).⁶⁸⁻⁷¹

Glucosinolate	Occurrence	Side chain (R)	Biosynthesis from
Sinigrin	Black mustard seeds (<i>Brassica</i> nigra)	2-Propenyl-	Homomethionine
Sinalbin	White mustard seeds (<i>Sinapis</i> <i>alba</i>)	<i>p</i> -Hydroxybenzyl-	Tyrosine
Gluconapin	Rapeseed (Brassica napus)	3-Butenyl-	
Glucobrassicanapin	Rapeseed	4-Pentenyl	
Glucotropaeolin	Garden cress (Lepidium sativum)	Benzyl-	Phenylalanine
Gluconasturtiin	Watercress (Nasturtium officinale)	Phenylethyl-	Homophenylalanine

Table 1: Selected examples of naturally occurring glucosinolates

1.3.2 Glucosinolate Hydrolysis

Myrosinase is a naturally occurring β -thioglucosidase enzyme that is found in all known *Cruciferae*.⁷⁵⁻⁸¹ It is the only known enzyme that is capable of catalysing the hydrolysis and degradation of glucosinolates. Following hydrolysis, glucosinolates undergo spontaneous Lossen rearrangement to afford a number of degradation products (Scheme 9).⁶⁸⁻⁷⁰ The major products are isothiocyanates (**28**), nitriles (**29**), thiocyanates (**30**) (Path A) and oxazolidine-2-thiones (**31**) (where the aglycon contains a hydroxy group [Path B]).^{68,70}

Path A

Path B

In Nature the myrosinase and the glucosinolate substrate only come together if plant cells are physically broken by chewing, cutting or grating *etc.*⁷¹ This response is believed to be a plant defence mechanism against herbivores. The breakdown products can be toxic and therefore pose problems to commercial farming.^{73,74} Humans do not normally show toxic effects on eating glucosinolate-rich vegetables since cooking destroys myrosinase.

1.3.3 Myrosinase: Mechanism of Action

The mechanism of myrosinase catalysed glucosinolate hydrolysis has been subject to extensive study in recent years.⁷⁵⁻⁸¹ The hydrolysis process is believed to resemble the well-established mechanism of (retaining) family 1 *O*-glycosidases (Scheme 10),⁷⁶ however there are significant differences. A study by Botting *et al* ⁷⁵ established that myrosinase is incapable of facilitating transglycosylation. This phenomenon was unexpected since analogous *O*-glycosidases have long been known to mediate transglycosylation.

12

The catalytic site in myrosinase differs from family 1 *O*-glycosidases by not having two glutamic acid residues, in myrosinase the upper residue is not present.⁷⁷ Work with 2-deoxyglucotropaeolin as a myrosinase inhibitor led to a 2-step/double-pocket active site hypothesis being initially put forward for the hydrolysis mechanism (Scheme 11).⁷⁸ The first step was believed to be cleavage of the *S*-glycosidic bond to form a covalent intermediate; a histidyl cation was supposed to play the role of the absent glutamic acid residue. The cleavage step was thought to precede an enzyme-independent Lossen rearrangement of the newly formed thiohydroximate-*O*-sulfonate to afford degradation products. The covalent intermediate was then believed to undergo histidine-catalysed hydrolysis.

Subsequent studies with 2-deoxy-2-fluoroglucotropaeolin allowed the resulting glucosyl-enzyme intermediate to be studied by X-ray crystallography.⁷⁹ The results of this work have led to a revised mechanism (Scheme 12).⁷⁹ The crystal structure showed that the myrosinase active site contains a glutamine residue in place of the glutamic acid found in family 1 O-glycosidases, this finding confirmed results obtained by Henrissat et al.⁷⁷ The glutamine residue assists substrate binding by forming a hydrogen bond to the sulfate group. Its most crucial role, however, is to position an incoming water molecule via hydrogen bonding for hydrolysis of the enzyme-substrate intermediate.⁷⁹ The water molecule requires a base to initiate hydrolysis, a task normally performed by a glutamate residue.⁷⁶ In this case Lascorbate is found to enter the active site on loss of the aglycon and performs the glutamate role by abstracting a proton from the positioned water molecule, thus initiating the final hydrolysis step.⁷⁹ The presence of ascorbate as a co-factor leads to a significantly different hydrolysis process to those outlined in Schemes 10 and 11. The involvement of ascorbate is not entirely surprising since it has previously been reported that myrosinase activity is increased in the presence of ascorbic acid.^{75,79}

Scheme 12

The function of the sulfate group is still a matter of debate. The previous studies concluded that the role of the anionic group was to facilitate enzyme-substrate binding. Withers *et al*⁸⁰ have proposed that the sulfate acts as a substrate bound acid catalyst, thus removing the need for enzymatic acid catalysis (Scheme 13). According to their proposal, the pendant sulfate would be protonated on entry to the active site, which would then enable spontaneous formation of the enzyme/substrate intermediate and subsequent hydrolysis. Withers *et al* also suggest that the anionic sulfate would lead to poor glucosinolate binding to an *O*-glycosidase type active site, and Nature therefore has removed one of the glutamic acid residues in myrosinase to allow improved substrate binding.⁸⁰

1.3.4 Synthesis of Glucosinolates

1.3.4.1 Biosynthesis

The biosynthesis of glucosinolates from amino acids has been studied since the early 1970s, and the currently accepted sequence is outlined in Scheme 14.⁶⁸⁻⁷⁰ The initial step involves P-450 mediated amine hydroxylation of an amino acid and subsequent decarboxylation to afford an aldoxime intermediate. The aldoxime then undergoes a poorly understood conversion to a transient thiohydroximic acid which is glycosylated with UDP-glucose; the resultant desulfoglucosinolate is finally sulfated by 3'-phospho-adenosine-5'-phosphosulfate (PAPS).

1.3.4.2 Chemical Synthesis of Glucosinolates

Over a hundred glucosinolates have been isolated from Nature and many are of interest on account of their biological activity.^{68,69} To date, extraction procedures have been proven to be problematic and tedious in many cases; therefore synthetic approaches to natural⁸²⁻⁸⁹ and unnatural⁹⁰⁻⁹⁷ glucosinolates have been pursued.

Pioneering work in the field was conducted by Ettlinger and Lundeen⁸² in the late 1950s. They first prepared glucotropaeolin (32) (benzyl glucosinolate) by coupling phenylacetothiohydroxamic acid (33) with acetylated bromoglucose (34) and sulfating the resultant adduct (35) (Scheme 15). The sulfated adduct was deacetylated in methanolic ammonia to yield glucotropaeolate 32. This initial work accomplishes the key glucose-sulfur bond in a similar manner to the natural synthesis.

Scheme 15: (a) NH₂OH.HCI, H₂O (b) KOH, MeOH (c) SO₃-Pyridine, (d) NH₃/MeOH

A nitrile oxide based strategy for glucotropaeolin synthesis was first accomplished by Benn^{83,84} in the early 1960s (Scheme 16). The key step in the strategy is a 1,3addition of 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylthiol (**36**) to phenylacetonitrile oxide (**37**) to afford thiohydroximate product **35**. *O*-Sulfation of the adduct with sulfur trioxide/pyridine and subsequent deacetylation afforded the desired glucosinolate **32**.

Scheme 16:(a) NEt₃, Et₂O (b) SO₃-Pyridine, KHCO₃ (c) NH₃/MeOH

The nitrile oxide based strategy has proved versatile and has been the most widely exploited, indeed Benn,^{83,84} Rollin,⁸⁵⁻⁸⁹ Botting^{72,73} and others⁵³ have employed and extended the nitrile oxide route in the synthesis of a large number of natural and unnatural glucosinolates. The reasons for this are 3-fold; the 1,3-addition of thiols to nitrile oxides is stereospecific for the naturally occurring Z-isomer,⁶⁸⁻⁷⁰ the nitrile oxide precursors can be made by a number of methods, and the products may obtained up to a gram scale if required.⁵³

Benn⁹⁸ has also proposed a route to glucosinolates that does not require the generation of a nitrile oxide intermediate. A modified version of the Copenhaver reaction is employed (Scheme 17) to couple 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylthiol (**31**) with trialkylsilyl nitronate **38** to yield the thiohydroximate product as a 2:1 mixture of Z (**39**) and E isomers (**40**). The E-isomer readily rearranges to the Z-isomer under thermal and photochemical conditions (*eg* exposure to visible light at room temperature). *O*-sulfation and deacetylation is achieved by using standard conditions. The reported advantage of this route is the ability to access unnatural E-glucosinolates.

Scheme 17: (a) SO $_3$ -Pyridine, KHCO $_3$ (b) NH $_3$ /MeOH

1.4 Amidoximes

Amidoximes constitute a large class of oxime derivatives⁵⁵ that adopt the general structure **41** (Scheme 18). Lossen and Schifferdecker first reported the synthesis of an amidoxime in 1873^{99} by addition of hydroxylamine to hydrogen cyanide. There are three common modern synthetic routes to amidoximes (Scheme 18);⁵⁵ they involve nucleophilic attack by hydroxylamines on nitriles (**43**) and thioamides (**42**), and 1,3-addition of amines to nitrile oxides (**1**). The nitrile oxide based route is particularly amenable to the synthesis of *N*-mono and *N*,*N*-disubstituted amidoximes. Interest in amidoximes stems from a number of areas; work has primarily focused on medicinal applications, use as ligands for metals and heterocyclic synthesis.

Scheme 18: (a) NH₂OH (b) NHR²₂ (c) NR²₂OH

The most recent development in amidoxime synthesis is ready access to α -hydroxy variants (Scheme 19).¹⁰⁰ Addition of hydroxylamines and 1,1`-carbonyl-diimidazole (CDI) to cyanohydrins (44) results in the formation of 3-hydrox-4-imino-oxazolidin-2-one (45) intermediates, which afford the target amidoximes (46) on treatment with sodium methoxide.

Scheme 19: (a) H₂NOR` (b) CDI (c) NaOMe

1.4.1 Amidoximes: Bioactivity

Compounds containing the amidine functional group possess a range of biological activity including inhibition of serine protease and nitric oxide synthase.¹⁰¹⁻¹⁰³ Amidine based drugs such as Lamifiban (47)¹⁰⁴ serve as anti-thrombotic agents in the treatment of coronary heart disease.

The amidine group is strongly basic and is therefore protonated under physiological conditions.¹⁰⁵ The protonated species is not readily absorbed from the gastrointestinal tract and as a result the bioactivity of amidine therapeutics may be greatly reduced. Fortunately amidoximes are reduced to amidines *in vivo*,¹⁰⁵ and amidoxime analogues of amidine containing agents have therefore been examined as pro-drugs.¹⁰⁴ The mechanism of *in vivo* amidoxime reduction is the subject of continuing research, the currently proposed mechanism of reduction by b₅, b₅ reductase and a P450 isoenzyme is presented in Scheme 20.¹⁰⁵

Scheme 20

Amidoximes are known to undergo nitric oxide synthase and P-450 dependent oxidative cleavage of the C=N(OH) bond¹⁰⁶⁻¹¹¹ (Scheme 21). The resultant product is nitric oxide, therefore interest in amidoximes as potential nitric oxide donors has recently arisen. This research is driven by the major role that NO plays in the cardiovascular, immune and central and peripheral nervous systems.

Scheme 21

1.4.2 Amidoximes: Metal ligation

Amidoximes exhibit similar behaviour to oximes in terms of their ability to bind to a number of metal species. Metal binding normally takes place via the oxime nitrogen as is typical of most oximes, although in certain cases binding may take place through the oxime oxygen.^{112,113} In general the amido nitrogen is not involved in metal binding, especially if there are other co-ordinating sites available on the ligand (**48**). A recent publication by Barybin *et al*,¹¹² however, has demonstrated a chelating oximato ligand (**49**) that binds to Cr(III) and Al(III) through the oxime oxygen and the amido nitrogen.

Amidoximes are known to form complexes with Fe(III), Cr(III), Hg(II), Pd(II), Os(II), Cu(II)¹¹³ and polyoxometalate ions^{114,115} (such as { $Mo_4O_{10}(OMe)2$ }²⁺), and they are primarily employed in the chelation of heavy metal ions for analytical purposes.^{55,113} Amidoximes have found wide application in the extraction of uranium (and other heavy metal ions) from seawater, indeed complexes with dioxouranium (UO₂) are well known.¹¹³ The ability of amidoximes to chelate metal ions has recently been exploited in the design of class II fructose-1,6-bisphospate aldolase inhibitors (Scheme 22),¹¹⁶ such inhibitors are of interest in the design of antibiotics. Amidoxime **50** was prepared in an attempt to mimic of enolate transition state **51**.

1.4.3 Amidoximes: Synthesis of Heterocycles

Amidoximes have found applications in heterocycle synthesis for a number of years.¹¹⁷⁻¹²⁴ Much of this work has been devoted to the preparation of 1,2,4-oxadiazoles¹¹⁷⁻¹²⁰ (**55**); these are particularly useful compounds since they function as bioisosteres for esters and amides. Oxadiazoles are more stable than esters and amides and are therefore ideal for use in pharmaceuticals.¹¹⁷⁻¹¹⁹

There are two routes to oxadiazoles from amidoximes (Scheme 23). The first involves the condensation of an activated carboxylic acid derivatives (52) with an amidoxime (53), followed by cyclisation.¹¹⁷⁻¹¹⁹ The second route involves 1,3-dipolar cycloaddition of a nitrile oxide (1) onto the C=N bond of an amidoxime to afford a 1,2,4-oxadiazole-4-oxide (54).¹²⁰ Deoxygenation of the product with trimethyl

phosphite yields the desired 1,2,4-oxadiazole (55). The second route is not regularly employed since the product(s) are obtained in only moderate yields as a result of extensive by-product formation.

Scheme 23: X = CI, Br, OR, OAc, OH

Treatment of unsubstituted and mono-substituted amidoximes with thionyl chloride allows construction of 1,2,3,5-oxathiadiazoles (**56**),¹²¹ similarly reaction with phosgene derivatives affords 1,2,4-oxadiazol-5-ones (**57**) (Scheme 24).¹²² 1,2,3,5-Oxathiadiazoles have been examined as antihyperglycemic agents for the treatment of type 2 diabetes.¹²³ 1,2,3,5-Oxathiadiazoles and 1,2,4-oxadiazol-5-ones have been shown to behave as tetrazole isosteres and are therefore of potential interest in pharmacetical design.¹²⁴

Scheme 24

The products covered so far retain the R`N-C=N-OR unit from the parent amidoxime. Recent work has been directed toward amidoximes as sources of amidine (R`NH-C=NR) containing heterocycles. Zard *et al*¹²⁵ have recently reported a conversion amidoximes to imidazolines and/or imidazoles (Scheme 25). The

method involves radical cyclisation of *N*-allyl-*O*-benzoylamidoximes (**58**). The key intermediate is believed to be an amidinyl species (**59**) and the cyclic product is an imidazoline (**60**) that can be converted to the corresponding imidazole (**61**) following an oxidation step.

Scheme 25: (a) Bu_3SnH , AIBN, Δ (b) Pd/C, Δ

A similar conversion has been achieved by Abell and co-workers¹²⁶ via a palladium mediated amino Heck reaction (Scheme 26). *N*-Allyl-*O*-perfluorobenzoylamidoximes (62) undergo oxidative addition to Pd(0) to form an alkylideneaminopalladium intermediate (63). β -Hydride elimination initially leads to dihydroimidazole species (64) which then isomerises to the desired imidazole (65).

Scheme 26

1.5 1,3-Nucleophilic Addition Reactions to Nitrile Oxides in Heterocyclic Synthesis

As was seen in Section 1.2.3, nitrile oxides are frequently and effectively employed in the synthesis of heterocycles *via* 1,3-dipolar cycloaddition reactions. Nucleophilc addition reactions with nitrile oxides may also result in heterocyclic products *via* a variety of addition-cyclisation processes.¹²⁷ A brief overview of the general approaches is presented here (Scheme 27).

1.5.1 Addition-Cyclisation A: Nucleophilic attack by the oxime hydroxyl In pathway A (Scheme 27) group X represents an electrophilic carbon centre. Addition of a nucleophile bearing an alkyl halide, followed by cyclisation step affords an 1,2,4-oxadiazine (**66**) [as does addition of an aziridine, Scheme 28 (i)].¹²⁸ Similarly, addition of amine and thiol nucleophiles possessing a pendant ester group afford an adduct which may undergo cyclisation to form 1,2,4-oxadiazine-6-ones (**67**)¹²⁹ and 1,4,2-oxathiazin-6-one products (**68**)^{130,131} respectively [Scheme 28 (ii) and (iii)]. Hussein and co-workers¹³² have reported that addition of isocyanate and thiocyanate¹³³ ions led to formation of 1,2,4-oxadiazol-5-ones (**69**) and 5-imino-1,4,2-oxathiazolines (**70**) [Scheme 28 (iv) and (v)]. There is dispute as to whether isocyanate addition proceeds *via* a 1,3-nucleophilic addition or 1,3-dipolar cycloaddition.¹²⁷

25

Scheme 28

1.5.2 Addition-Cyclisation B: Nucleophilic attack by the oxime nitrogen atom

In pathway B (Scheme 27) group X still represents an electrophilic centre, but the cyclisation occurs via the oxime nitrogen atom; two representative examples are illustrated here. Addition of aryl *N*-methylhydrazones to nitrile oxides¹³⁴ initially forms the expected Z-oxime **71**, however subsequent reactions are possible, including reversible cyclisation to **72**, isomerisation to *E*-adduct **73** or nitroso compound **74** (Scheme 29). In the presence of silica, cyclisation to triazole (**75**) products occurs.

Scheme 29

Mono-substituted amidoximes have been found to add to nitrile oxides to afford adduct **76**, which on heating may lead to the formation of 1,2,4-oxadiazole-4-oxides (**77**) (Scheme 30).¹³⁵

1.5.3 Addition-Cyclisation C: post 1,3-addition nucleophilic attack on the oxime group

Pathway C (Scheme 27) differs from those above since X in this case is nucleophilic, and addition of ambident nucleophiles leads to the formation of oxime adducts (78) which undero attack by the remaining nucleophilic centre with the extrusion of hydroxylamine.¹²⁷ o-Substituted anilines are known to afford the corresponding

benzazole products (79) via the described nucleophilic attack/extrusion process (Scheme 31).¹³⁶

Scheme 31: Y = NH, S, O

A related example has been reported in the ring expansion of isoxazol-5-ones (80) to 1,3-oxazin-6-ones (81),¹³⁷ however the extruded species in this case is not hydroxylamine (Scheme 32). Nucleophilic attack on benzonitrile oxide leads to adduct 82, which may itself react with a further equivalent of nitrile oxide to form intermediate 83. The isoxazolo oxygen atom is belived to add to the C=N bond of 83 to form shortlived 84, collapse of which leads to formation of the product (81), benzonitrile and nitrous acid.

Scheme 32

1.5.4 Addition-Cyclisation D: 1,3 additions with functionalised nitrile oxides

Examples have been reported of nucleophilic addition of ambident nucleophiles to nitrile oxide precursors containing good leaving groups.¹²⁷ Cyclisation may occur on generation of nitrile oxide and subsequent intra-molecular addition. The example

illustrated in Scheme 33 involves addition of thioureas to chloro-substituted hydroximoyl chloride **85**, and cyclisation to the 5-membered product **86**.⁶³

2. Results and Discussion

The main objective of the present work has been to explore the synthetic potential of the 1,3-nucleophilic addition reactions of pyranosyl nitrile oxides. Additions of thiols have been employed in the synthesis and evaluation of new myrosinase inhibitors. Addition of amines has been applied in the synthesis of novel carbohydrate derived amidoximes, benzazoles and perimidines.

2.1 Synthetic Strategy

The 1,3-dipolar cycloaddition reactions of pyranosyl nitrile oxides have previously been employed in the synthesis of heterocyclic *C*-glycosides,^{138,139} including pyranosyl isoxazolines (Scheme 34, path A). It was anticipated that pyranosyl nitrile oxides would also be able to undergo 1,3-nucleophilic addition reactions, and hence provide routes to novel glycosyl oximes (path B) and glycosyl benzazoles (path C).

Scheme 34

Several synthetically useful routes are available for the generation of nitrile oxides (Section 1.2.2). Reliable and efficient routes to pyranosyl nitrile oxides have been developed within the group in recent years (Scheme 35).^{52,140} Pyranosylnitromethanes (**87**) are convenient sources of the corresponding aldoximes

(88),⁵² these in turn may be efficiently transformed into hydroximoyl chlorides $(89)^{140}$ and the hydroximoyl chloride may be dehydrohalogenated in the presence of base to generate the required nitrile oxide (90). The final stage is addition of the chosen nucleophile to the freshly generated nitrile oxide.⁶⁶

Scheme 35

It was hoped to demonstrate the utility of the methodology by extending it to other carbohydrate scaffolds, many other sugar derived nitrile oxides are known.¹³⁸ It was decided that D-glyceraldehyde derived nitrile oxide **91** and D-ribose derived nitrile oxide **92** would be suitable for such studies, since preparations for both had already been described.^{141,142} It was also necessary to employ an easily synthesised nitrile oxide for pilot reactions. Benzonitrile oxide **93** was chosen on account of its ease of access from commercially available starting materials.¹⁴³

2.2 Synthesis of Pyranosylnitrile Oxide Precursors

2.2.1 Synthesis of Pyranosylnitromethanes 2.2.1.1 3,4,5-Tri-O-acetyl-β-D-xylopyranosylnitromethane (95)

Scheme 36: (a) H₃CNO₂, NaOMe/MeOH (b) Ac₂O, TfOH

3,4,5-Tri-O-acetyl- β -D-xylopyranosylnitromethane (**95**) was prepared *via* a modified version of the general procedure reported by Koll¹⁴⁴ for the synthesis of pyranosylnitromethanes (Scheme 37). The first stage is a nitroaldol (Henry) reaction between nitromethane and the open chain form of D-xylose (**94**). Dissolving metallic sodium in anhydrous methanol generated sodium methoxide, which was used to deprotonate nitromethane to form its nitronate anion. The aldehyde group of the xylose underwent nucleophilic attack by the nitronate anion to generate a nitroalditol (**96**) intermediate. Sodium ions were removed from the product liquor in an ion-exchange column and residual methanol was removed *in vacuo*. Reflux of the resultant aqueous solution resulted in dehydration of the nitroalditol to form the α , β -unsaturated nitro compound (**97**). Nitroalkene **97** acts as an acceptor in the final step, which is an intramolecular Michael addition.¹⁴⁵

Scheme 37

The unprotected product (98) was acetylated in order to prevent free hydroxyl groups interfering with any of the later reaction steps and to make handling easier. Protection was achieved by dissolving a concentrate of the unprotected sugar in distilled acetic anhydride, adding a catalytic amount of triflic acid before heating the mixture under reflux. Triflic acid is employed as a catalyst in this procedure rather than the traditional basic conditions in order to avoid deprotonation α to the nitro group, and thus any potential side reactions.

Excess acetic anhydride and acetic acid by-product were removed *in vacuo* and the product obtained on crystallisation of the concentrate from ethanol. The product was isolated as white needle-like crystalline solid in moderate yield (40%). ¹H NMR spectroscopy indicated that the product (**95**) was obtained as the β -anomer and in the ⁵C₂ conformation. The vicinal coupling constants involving ring protons H²-H⁵ all fall in the range 9-11 Hz and are consistent with the β ⁵C₂ conformation (Table 2). The β -anomer is favoured over the α -anomer since the nitro methyl group is bulky and therefore adopts the more favourable equatorial position on cyclisation. ¹⁴⁴ ¹H and ¹³C NMR spectroscopy did not indicate that any of the α -anomer, starting material or nitroalditol were present.

Coupling	J / Hz
H^2-H^3	10.6
H^3-H^4	9.2
$\mathrm{H}^{4}\text{-}\mathrm{H}^{5}$	9.4

Table 2: Vicinal coupling constants for nitromethyl sugar 95

2.2.1.2 3,4,5,7-Tetra-*O*-acetyl-β-D-glucopyranosylnitromethane (99)

3,4,5,7-Tetra-*O*-acetyl- β -D-glucopyranosylnitromethane (**99**) was prepared from D-glucose in 20% overall yield by the approach described above (Section 2.2.1). Previous work¹⁴⁶ has demonstrated that the intermediate nitro sugar cannot be efficiently acetylated *in situ*; the free sugar was therefore isolated by liquid/liquid extraction before the protection stage.

During the course of this work, an alternative route to unprotected D-glucose and L-fucose derived pyranosylnitromethanes was reported by Gross *et al.*¹⁴⁷ This method differs from that above by employing DBU as base and pyridine as solvent. The reported reaction time is slightly shorter than Koll's procedure and the yields obtained are higher (50-60%). It is unclear, however, whether the reaction may be applied to as wide a range of aldoses as Koll's method.

2.2.2 Synthesis of pyranosylaldoximes

Several routes to pyranosylaldoximes have been reported in the last 40 years, many of which require a number of steps and were considered unattractive. The procedure chosen was developed by the group⁵² and is based on a study by Bartra *et al.*¹⁴⁸ Bartra's work demonstrated that primary and secondary nitro compounds may be reduced in the presence of a tin (II) complex to their corresponding oximes.

Scheme 38

The reducing species in this instance is believed to be the stannate complex $[Sn(SPh)_3][Et_3NH]$ that is readily generated *in situ* by mixing a solution of tin(II) chloride, thiophenol and triethylamine. The reducing species is believed to be in a rapid equilibrium with the starting reagents since attempts to isolate the complex have been unsuccessful.¹⁴⁸

 $SnCl_2 + 3PhSH + NEt_3$ [$Sn(SPh)_3$][$NHEt_3$] + 2HCl Scheme 39

The proposed mechanism¹⁴⁸ for nitro group reduction is illustrated in Scheme 40. Primary and secondary nitroso intermediates are found to rapidly adopt the oxime tautomer, while tertiary nitroso species undergo further reduction to the corresponding hydroxylamine product.

Scheme 40

The above procedure was employed in the synthesis of the pyranosyl oximes (100), (101) and (102) from D-xylose, D-glucose and D-mannose.

The respective pyranosylnitromethanes were treated with tin(II) chloride, thiophenol and triethylamine to afford the aldoxime products as white solids after separation from tin-based by-products by dry-flash chromatography. The reaction was found to proceed in good yields (69-86%) and the products were obtained as a mixture of Eand Z isomers (Table 3).

Aldoxime	% Yield	E: Z isomer ratio
100	86	4:1
101	69	4:1
102	77	2:1

Table 3: Pyranosylaldoxime E:Z ratios

The ¹H NMR spectra of the aldoxime products showed characteristic signals for the *E* and *Z* isomers and therefore allowed the *E*:*Z* ratio to be determined; 3,4,5 -tri-*O*-acetyl- β -D-xylopyranosylformaldoxime (**100**) serves as convenient example. The ¹H NMR spectrum contains doublets at 6.63 ppm and 7.22 ppm that correspond to the 1-H protons of the *Z*-isomer and *E*-isomer respectively. Broad singlets are observed at 8.62 ppm and 8.88 ppm for the OH proton of the *E*-isomer and *Z*-isomer respectively. The assignment of geometry was based on literature values⁵² and NMR studies by Phillips¹⁴⁹ and Lustig.¹⁵⁰ Phillips has proposed that the cis arrangement of

the 1-H proton to the oxime oxygen atom induces a paramagnetic (downfield) shift of the 1-H (E-isomer) signal relative to the 1-H (Z-isomer) signal.

During the course of this work there have been two significant developments in the field. Somsak and Toth reported a route to pyranosylaldoximes from the corresponding nitriles;¹⁵¹ this process is outlined in detail in section 2.7.2.3. In a more general case, Carreira *et al* ¹⁵² have very recently reported a route to alkyl aldoximes from primary nitro compounds. This method is based on the Kornblum type oxidation of benzyl bromides to aldehydes by reaction with nitronate anions. In the future, application of this latter reaction might be advantageous in the synthesis of pyranosyl aldoximes since it does not lead to the formation of potentially toxic tin by-products.

2.2.3 Synthesis of pyranosyl hydroximoyl chlorides

There are two main routes to hydroximoyl chlorides from aldoximes, direct chlorination³² or a treatment with a "Cl⁺" source such as N-chlorosuccinimide (NCS).³³ Direct chlorination is a fairly harsh method, but usually allows straightforward purification. Chlorination of aldoximes is achieved by bubbling chlorine gas through a cooled (-78°C) solution of the substrate in ether or chloroform.

The mechanism of the reaction is understood to be a S_E2 process⁷ and involves transient nitroso (103) and dimeric (104) intermediates (Scheme 41).

Scheme 41

The nitroso intermediate **103** is believed to be responsible for the characteristic green and blue solutions that are observed over the course of the reaction.⁵³ The blue colour is due to a strong absorbance at 320 nm that arises from an N=O, π - π * electron transition.⁵³ On warming to room temperature the colour disappears indicating that the chloro-oxime (**105**) tautomer has been formed. The products were isolated as white solids on removal of the solvent *in vacuo* and did not require further purification. The D-xylose (**106**), D-glucose (**107**) and D-mannose (**108**) derived products were obtained in 96, 98, and 99% yields respectively.

Although it is theoretically possible to obtain E and Z isomers from this reaction only a single OH signal in the ¹H NMR spectra was observed for each product. Work by Hegarty⁵⁶ predicts that the Z-isomer is stereoelectronically favoured due to the antiperiplanar relationship between the chlorine atom and the lone pair of electrons (compare with section 1.2.5). It is important to note that the Z-isomer is reported to undergo base induced dehydrohalogenation $ca.10^7$ times faster than the *E*-isomer.⁵⁶ This phenomenon is also attributed to the trans relationship between the leaving group and the lone pair of electrons on the oximic nitrogen. The presence of single C=NOH derived signals in the ¹H and ¹³C NMR spectra in addition to the reactivity of the obtained hydroximoyl chlorides implies that the Z-isomer was obtained exclusively in all cases.¹⁴⁰

2.2.4 Generation of pyranosyl nitrile oxides

In principle the pyranosyl nitromethanes, aldoximes and hydroximoyl chlorides could all be used to generate the required nitrile oxides, however the hydroximoyl chlorides were ultimately chosen for two reasons. The nitromethyl compound to nitrile oxide transformation is achieved by employing Mukaiyama's method;¹⁶ this is unsuitable in the presence of nucleophiles since the isocyanate dehydrating agent reacts with thiols, amines and alcohols/phenols.⁵² Generation directly from the aldoxime was ruled out due past experience of this method suffering lack of control over the rate of 1,3-dipole formation.¹⁴⁰ Large concentrations of nitrile oxide result in the formation of furoxan dimer. The only remaining option was the well-known Huigsen²⁷ method (Scheme 42), which involves the base mediated dehydrohalogenation of hydroximoyl chlorides. Huigsen's method allows control of nitrile oxide concentration by slow addition of base to the hydroximoyl chloride precursor thus minimising the formation of unwanted furoxan. Recent work by Taddei et al has described further minimisation of furoxan formation by conducting 1,3-dipolar cycloaddition reactions in ionic liquids.^{153,154}

Scheme 42

2.2.5 Synthesis of dipyranosyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)-1,2,5-oxadiazole-2-oxide (109)

Dixylopyranosyl furoxan (109) was identified as a likely side-product in the proposed programme of 1,3-addition reactions, especially if poorer nucleophiles were employed.¹⁴⁶ An authentic sample of the furoxan was therefore prepared. The target compound was synthesised from the nitromethyl sugar by using a modified version of the Mukaiyama dehydration procedure. The approach employs an isocyanate to achieve dehydration of the primary nitro precursor to form the corresponding nitrile oxide (Scheme 44). The modified procedure of Baker *et al* ¹⁴⁰ was employed in this work. This is a modification of the Mukaiyama procedure utilising tolylene diisocyanate (TDI), since a polymeric urea is formed as a co-product and is easily removed by filtration.

The product was obtained as a white solid in 61 % yield. The ¹H NMR spectrum was complex due to the overlap of the signals from the two xylose rings. The anomeric signals, however, were discernable as an overlapped pair of doublets centred at 4.53 ppm. The anomeric protons showed axial-axial couplings ($J_{1,2} = 9.5$ Hz) to the 2-H protons that are indicative of each ring retaining the β -configuration. The ¹³C NMR spectrum contained distinctive diagnostic peaks at 153 and 112 ppm that correspond to the C-4 and C-3 respectively on the 1,2,5-oxadiazole-2-oxide ring. The FAB mass spectrum was also distinctive since a characteristic fragment peak at M-60 was observed; this peak corresponds to loss of N_2O_2 from the 1,2,5-oxadiazole-2-oxide unit.¹⁴⁰

2.3 1,3-Addition reactions: Thiol nucleophiles

2.3.1 Myrosinase inhibition

One of the current challenges in carbohydrate chemistry is a full understanding of the mechanism of glucosinolate hydrolysis catalysed by myrosinase (see section 1.3.3). To date, a considerable amount is known about the mode of action of myrosinase, however some significant gaps still remain. An important goal is to obtain X-ray crystallographic data to establish the nature of the myrosinase-substrate interaction and, in order to achieve this aim a suitable myrosinase inhibitor is required. Several myrosinase inhibitors have been synthesised with varying success.⁹⁰⁻⁹⁷ There are two main classes. The first function by stabilising the glycosyl-enzyme intermediate. 2-Deoxy-2-fluoroglucotropaeolin (110)⁹³ and 2-deoxyglucotropaeolin (111)⁹⁶ have both proved to be successful competitive inhibitors of the hydrolysis of glucotropaeolin (32) (K_m=1mM). The second class are non-hydrolysable analogues of glucotropaeolin. The *C*-glucoside analogue of glucotropaeolin^{91,92} [C-GTL(112)] was not recognised by myrosinase and thus ineffective, however the carbaglucotropaeolin (113)⁹⁰ has been found to exhibit inhibitory behaviour.

One of the best candidates to date is 2-fluoro-2-deoxy-glucotropaeolin (110). X-ray studies with this inhibitor have proved valuable (section 1.3.3); however rapid Lossen rearrangement of the aglycon component prevents a full understanding of the nature of the binding between the aglycon part and myrosinase.⁷⁹ A non-hydrolysable substrate should enable a fuller analysis of the myrosinase-

glucosinolate interactions. The potential to introduce the thiohydroximate functionality at the anomeric position is of particular interest since the product (114) would be a non-hydrolysable *C*-linked glucosinolate analogue. A collaborative project was initiated with Professor Rollin's group at the University of Orléans to investigate the synthesis and biological activity of such "isoglucosinolates". The key steps of the proposed synthesis are outlined in Scheme 45. 1,3-addition of thiols to 115 would deliver desulfoisoglucosinolates (116) which, following sulfation steps and deprotection, would afford the target isoglucosinolates (118).

Scheme 45: (a) NEt₃ (b) RSH (c) SO₃-Pyridine, (d) MeOK/MeOH

The D-glucose based precursor **107** was to be prepared in Edinburgh and sent to Orleans for the latter stages. Work in Edinburgh was also to include synthesis of D-xylose analogues of the "isoglucosinolates". It was anticipated that the lack of a C-6 hydroxyl group would alter the ability to bind to myrosinase. In previous studies by Rollin *et al* deoxy-glucosinolates were shown to have varying binding affinities with myrosinase.⁷⁸ The results indicated that the presence of the C-2 glycosyl hydroxyl is crucial to allow hydrolysis and that the remaining glycosyl hydroxyls play a secondary binding role. The importance of the C-2 hydroxyl stems from the polarisation it confers to the *S*-glucose bond and in orientation of the glycosyl moiety in the enzyme pocket.⁷⁸ The previous observations are based on the fact that 2-

deoxy-glucosinolates function as competitive inhibitors of the hydrolysis of natural glucosinolates.

Preliminary work on 1,3-additions of thiols to pyranosyl nitrile oxides had been conducted within the group by Baker.¹⁴⁶ Pilot reactions with D-glucopyranosyl nitrile oxide **115** and thiophenol were encouraging and thus the reaction was investigated in more detail.

2.3.2 Synthesis of S-Phenyl 2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (119)

Scheme 46

The nitrile oxide was generated by slowly adding an ethereal solution of triethylamine over 24 hours via a syringe to a vigorously stirred solution of 106 in dry ether. The slow addition of base controlled the nitrile oxide concentration thus minimising dimerisation to furoxan 109. Furthermore, furoxan formation was limited by adding the nucleophile in 3-fold excess. The product (119) was isolated as a white solid (75 %) after an aqueous work up and dry-flash chromatography. The product was characterised by ¹H and ¹³C NMR spectroscopy. The ¹H NMR spectrum displayed characteristic signals for the pyranose ring protons and aromatic ring derived signals were observed between 7.35 and 7.55 ppm. A doublet was observed at 3.56 ppm due to H-2; this signal is shifted to lower frequency relative to that for the nitrile oxide precursor. The coupling between H-2 and H-3 was found to be 9.94 Hz, thus confirming that the product was obtained as the β -anomer. A broad singlet at 8.81 ppm indicated the presence of the C=NOH group; no significant shift was noted relative to the C=NOH signal of the hydroximoyl chloride. The ¹³C NMR spectrum displayed the expected aromatic and pyranose ring carbon signals and an oxime (C-1) derived quaternary peak at 148.8 ppm. The C=NOH signal appears at

higher frequency relative to that of the hydroximoyl chloride (136.5 ppm). The appearance of a single oxime signal was consistent with the exclusive formation of a Z-configured product (refer to Section 1.2.5).

2.3.3 Synthesis of S-(2-Propyl) 2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (120)

Scheme 47

Following the success of the previous reaction the addition of an alkyl thiol as a nucleophile was attempted. The Rollin group had employed primary thiols with success, therefore a secondary thiol was considered. 2-Propanethiol was easily available and the resultant adduct would constitute a xylose analogue of glucoputranjivin (isopropyl glucosinolate).⁶⁸ Using the conditions outlined in Section 2.3.2, 2-propanethiol was reacted with 3,4,5-tri-*O*-acetyl-β-D-xylopyranosyl nitrile oxide to afford the desired adduct (**120**) in 55% yield. Furoxan **109** was also isolated from the reaction mixture in 45% yield. The reaction yield in this case is comparable to earlier work with aromatic nitrile oxides.⁸ The bulky isopropyl group is presumably responsible for the observed lower reactivity and thus the formation of by-product. ¹H and ¹³C NMR spectroscopy displayed the characteristic C=NOH derived signals at 8.88 ppm and 147.7 ppm. Signals characteristic of the isopropyl group were also observed in the ¹H NMR spectrum. A closely spaced pair of "roofed" doublets at 1.23 and 1.25 ppm is consistent with inequivalence between the two methyl groups. A septet for the isopropyl CH was also present at 3.83 ppm.

2.3.4 Reaction of 3,4,5-tri-*O*-acetyl-β-D-xylopyranosylnitrile oxide with 1,2-ethanedithiol

As the previous studies had focused on monofunctional thiols, it was decided to examine addition of a difunctional thiol. Initially a similar procedure to that outlined in section 2.3.2 was adopted. The nitrile oxide was present in excess in an attempt to encourage formation of the bridged 2:1 adduct 122. Both adducts 121 and 122 (Scheme 48) were formed along with a significant amount of furoxan 90 (~65%). The reaction was considered only to be a moderate success, therefore a new addition strategy was attempted.

It was envisaged that adding hydroximoyl chloride **106** dropwise to a solution of nucleophile and triethylamine would allow the concentration of nitrile oxide to be minimised. Adding the nitrile oxide precursor to the nucleophile/base solution afforded **121** and **122** in 40% and 20% yield respectively, with minimal furoxan formation. Following dry-flash chromatography, **121** was isolated as a white solid and the **122** as a semi-solid. ¹H and ¹³C NMR spectroscopy showed that both compounds possessed characteristic C=NOH signals and that the side chain CH₂s were inequivalent. The CH₂ signals appear as a pair of complex multiplets, however the signals are shifted to higher frequency and the separation decreases slightly in the 2:1 adduct **122** (Table 4). The key difference between both adducts is the appearance of an SH resonance at 1.65 ppm in the ¹H NMR spectrum. The SH signal appears as a triplet due coupling to the 2 adjacent protons. The identity of the signal was confirmed by a COSY NMR experiment, which showed a cross-peak to the CH₂SH protons.

	1:1	2:1
	(121)	(122)
CH_2^a (δ_H /ppm)	3.10	3.15
$CH_2^{b}(\delta_H/ppm)$	2.63	2.82
CH_2^a (δ_C /ppm)	34.7	31.7
CH_2^{b} (δ_C /ppm)	24.9	31.7
OH (δ _H /ppm)	8.91	9.23
C-1 (δ _C /ppm)	147.6	147.9

Table 4: Compariso	n of $\delta_{\rm H}$	and $\delta_{\rm C}$	values for	adducts	121	and	122
--------------------	-----------------------	----------------------	------------	---------	-----	-----	-----

2.3.5 Biological Testing/Postscript

On receipt of several batches of hydroximoyl chloride **107**, the Rollin group was successful in completing the synthesis of a number of "isoglucosinolates". They selected isoglucotropaeolin (**115**) and isoglucolepidiin (**123**) for testing versus the natural substrate, glucotropaeolin. Unfortunately both analogues were not recognised by myrosinase and therefore did not function as planned.

This result is not unprecedented, similar results were obtained in studies with the *C*-analogue of glucotropaeolin (112).^{90,91} The failure of *C*-glucosinolates and isoglucosinolates to inhibit myrosinase indicates that the sulfated thiohydroximate linkage must be intact and linked to the glucose unit through an anomeric sulfur atom, in order to be recognised. These conclusions appear to be partially reinforced by subsequent work conducted independently by Professor Rollin's group.⁸¹ In an effort to further establish the requirement for the thiohydroximate bridge, compounds such as **124** and **125** were prepared; these retain the anomeric sulfur atom and anionic sulfate group, yet delete the nitrogen atom.

Compounds of the type **124** and **125** are found to generally display poor inhibitory properties. Carba-glucotropaeolin (**113**) retains a substrate-like sulfated thiohydroximate bridge and had been found to inhibit myrosinase before the collaboration began.⁹⁰ The recent study finally achieved the objective of obtaining an X-crystal structure of a non-hydrolysable glucosinolate analogue bound to myrosinase.⁸¹ The story is certainly not over, however, as recent work⁸¹ has shown that analogues which do not resemble carbohydrates at all (!) such as **126** are actually superior inhibitors than Carba-glucotropaeolin. Clearly, there is more to learn about the glucosinolate/myrosinase couple.

2.3.6 Conclusions

It has been shown that thiol nucleophiles successfully undergo 1,3-nucleophilic addition reactions with pyranosyl nitrile oxides to afford the corresponding thiohydroximates. Additions of alkyl and aryl thiols to 3,4,5-tri-*O*-acetyl- β -D-xylopyranosylnitrile oxide were found to give products in satisfactory yields (55 to 75%). Collaborative work with the Rollin group was found to be successful with respect to synthetic aspects, however the targets that were ultimately prepared were found to be biologically inactive. The test results have, however, contributed toward the design of future myrosinase inhibitors.

2.4 Carbohydrate Derived Amidoximes - Introduction

Amidoxime derivatives of monosaccharides have attracted interest as inhibitors of glycosyl hydrolases¹⁵⁵ and transferases.^{156,157} Such compounds are known to have similar conformational and electrostatic features to oxocarbonium like species **127** associated with the mechanism of glycosidase action.¹⁵⁵ Amidoximes like **128** have the advantage over their amidrazone and amidine analogues by virtue of increased stability.¹⁵⁵ Glucosyl (**128**), mannosyl and galactosyl amidoximes, in which the oximic unit is part of the carbohydrate ring have been shown to be effective inhibitors of metabolically important glycosidases.¹⁵⁵ *N*-acetylxylosamidoxime **129** has been synthesised as part of a study toward potential inhibitors of N-acetylglucosamine specific glycosyltransferases.^{156, 157}

To the authors knowledge, there have been few attempts to install an amidoxime exo to a carbohydrate ring. Zhang *et al*¹⁵⁸ have prepared amidoxime **131** *via* addition of hydroxylamine to nitrile **130** (Scheme 49). This compound was the key intermediate in the synthesis of 3- β -D-xylopyranosyl-1,2,4-oxadiazoles (general structure **132**) that are of interest as potential antibacterial and antitumor agents.¹⁵⁸

Scheme 49: (a) NH₂OH, MeOH (b) RC(O)CI

1,3-Nucleophilic addition of ammonia to 3,4,6-tri-*O*-benzoyl- β -D-ribofuranosyl nitrile oxide (133) has been reported to afford amidoxime 134, which was transformed (in a similar manner to above) to 1,2,4-oxadiazole 135.¹⁵⁹

Scheme 50: (a) NH₃/MeOH (b) Acetic anhydride, Δ

It was envisaged that pyranosyl nitrile oxides would undergo 1,3-additions with amines in a similar manner to the furanosyl analogues (Scheme 50). The resultant amidoximes would be novel C-glycosides that could potentially function as NO donors or as ligands for metals (Section 1.4.1).

136

2.4.1 Addition of Primary and Secondary Alkyl Amines

The amidoximes were prepared by a modified version of the procedure employed in the synthesis of the pyranosyl thiohydroximates 121 and 122 (Section 2.3.4). In a typical experiment a solution of the glucopyranosyl-hydroximoyl chloride **107** in dry chloroform was added dropwise over 3 hours to a cooled (0 °C) vigorously stirred solution of benzylamine (3-4 equivalents) and excess triethylamine in chloroform. Removal of the solvent and chromatography of the residue afforded the N-benzyl amidoxime 137 ($R^1 = Bn$, $R^2 = H$; 80% yield),⁶⁶ the furoxan dimer 109 was not detected. Xylopyranosyl-hydroximoyl chloride 106 reacted similarly to yield amidoxime 138 ($R^1 = Bn$, $R^2 = H$; 67% yield). The structures of the products were assigned on the basis of their spectroscopic properties. Eg for D-xylose-derived amidoxime 138 in the NMR spectra there were, in addition to the expected signals for the carbons and protons of the pyranosyl and benzene rings, distinctive peaks for the oxime unit [$\delta_{\rm C}$ 148.9 ppm (C=N)] and the attached NHCH₂ group [$\delta_{\rm H}$ 4.38 ppm, dd, (CHa), 4.39 ppm, dd, (CHb), 5.22 ppm, t, (NH); J_{NH-CHa} 5.5, J_{NH-CHb} 6.8, J_{CHa-CHb} 14.6 Hz; $\delta_{\rm C}$ 46.4 ppm (CH₂)]. Shaking the *N*-benzylamine adducts with D₂O resulted in loss of the NH signal and simplification of the benzyl signals to doublets. Both doublets displayed large geminal coupling constants (14.6 Hz).⁶⁶

Amidoxime	R ¹	\mathbb{R}^2	%Yield
137	Bn	CH ₂ OAc	80
138	Bn	Н	67
139	Bu	Н	63
140	CH ₂ CH=CH ₂	Н	41
141	Ph	Н	90
142	Ph	CH ₂ OAc	80

Table 5: Mono-substituted pyranosyl amidoximes⁶⁶

Hydroximoyl chloride **106** also reacted readily with 1-aminobutane and allylamine to afford corresponding adducts (**139** R¹ = Bu, R² = H; 63% yield), and (**140** R¹ = CH₂CH=CH₂, R² = H; 41% yield).⁶⁶ It is noteworthy that in the latter case the isolated product results from addition of the nitrile oxide to the amine moiety in allylamine rather than cycloaddition to the alkene. Earlier work has shown that 1,3-addition of propargylamine to benzonitrile oxide has been reported to produce the amidoxime product;¹⁰ in this study it was concluded that the nucleophilic reactivity of the amine was higher than the dipolarophilic activity of the alkyne. It has also been postulated that alkenes are superior to alkynes as dipolarophiles and thus should not lead to significant quantities of amidoxime product.¹⁰ Work by Abell *et al*¹²⁶ and Zard *et al*¹²⁵ (Section 1.4.3) with alkyl and aryl nitrile oxides, in addition to our own,⁶⁶ has clearly shown that the above theory is not necessarily correct.

Having successfully reacted primary alkyl amines with pyranosyl nitrile oxides it was decided to examine the additions of aromatic amines. Hydroximoyl chloride **106** was reacted with aniline according to the procedure employed in the alkyl amine study. Amidoxime **141** was isolated as a white solid in 28 % yield following aqueous work up and dry-flash chromatography. Furoxan by-product **109** was also isolated in

16 % yield. The pilot reaction was disappointing, therefore an improved procedure was attempted based on that of Barbyrin *et* al.¹¹² Heating a 2:1 mixture of aniline and hydroximoyl chloride **106** in ethanol at reflux for five hours afforded amidoxime **141** ($R^1 = Ph$, $R^2 = H$; 90% yield). And the corresponding reaction with Dglucopyranosyl nitrile oxide gave amidoxime **142** ($R^1 = Ph$, $R^2 = CH_2OAc$; 80%). Conducting the above reactions at room temperature afforded the same products after 16 hours. In neither case was there any evidence for the formation of the furoxan dimers. The products were characterised by ¹H and ¹³C NMR spectroscopy. The ¹H and ¹³C NMR spectra displayed characteristic C=NOH derived signals 7.91 ppm and 146.8 ppm respectively for the D-xylose derived amidoxime. The structure of (*Z*)-*N*phenyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime was established by X-ray crystallography (Figure 1).⁶⁶

Figure 1- Crystal structure of (Z)-*N*-phenyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime (141)

The structure confirms the Z-configuration of the oxime moiety and demonstrates an *s-trans* (Z_{ap}) conformation about the amidic nitrogen with the H of the NHR facing the oxime OH. These results are in accord with previous studies indicating that such additions occur in a concerted, but non-synchronous manner.⁵⁴ The near planarity of the NH-C=N-O unit [torsion angle 2.6(3)°] and the short non-bonded distance
between the amidic N and the oxime O [N to O = 2.508(3)Å] are consistent with the existence of an intramolecular H-bond between these atoms.^{66, 67}

2.4.2 Addition of morpholine to (3,4,5-tri-O-acetyl- β -D-xylopyranosyl) nitrile oxide

Having successfully reacted primary amines with pyranosyl nitrile oxides, addition of a secondary amine was considered next for study. The procedure outlined for primary amines was employed. Addition of hydroximoyl chloride 106 to a solution of morpholine (4-fold excess) afforded a white solid in 67 % yield. The ¹H and ^{13}C NMR spectra displayed characteristic oxime signals [$\delta_{\rm H}$ 8.38 ppm, bs, (OH) and $\delta_{\rm C}$ 154.7 ppm (C=N)]. The OH resonance in CDCl₃ was very broad, however using $CD_3S(O)CD_3$ led to a much sharper singlet [δ_H 10.08 ppm]. The data indicated that only one oximic product was present. Signals corresponding to the heterocyclic ring were also apparent in the ¹H and ¹³C NMR spectra. The morpholine protons were observed as three sets of multiplets [3.77-3.81, ppm, m, CH₂; 3.24-3.26 ppm, m, CH₂ and 3.09-3.16 ppm, m, CH₂]. The signal at highest frequency corresponds to the protons adjacent to the ring oxygen atom, and those at lower frequency to the protons adjacent to the morpholine nitrogen. Previous studies⁶² on additions of morpholine to p-nitrobenzonitrile oxide demonstrated that the Z-configured product was obtained initially, which could then undergo acid assisted isomerisation to the E-amidoxime. It was found that exposure to silica during chromatography was an acidic enough environment to allow isomerisation. The ¹H NMR data quoted above were compared to literature values⁶² Hegarty et al found the ring CH₂ signals adjacent to nitrogen in the E-adduct to appear ca 2.91 ppm (i.e similar to morpholine itself) while those of the Z-adduct were observed ca 3.27 ppm. The signal for the morpholine CH₂s adjacent to the nitrogen in this example is more complex due to the nearby chiral (anomeric) centre, therefore direct comparison is not really possible. The product was purified by dry-flash chromatography and was therefore assumed to adopt an Econfiguration (143), based on previous observations.⁶²

2.4.3 Additions of amino acid derived nucleophiles: Introduction

The success of the reactions of alkyl thiols and amines with pyranosyl nitrile oxides prompted work on addition of amino acid thiol and amine nucleophiles. The resultant adducts of such reactions would each constitute a novel class of *C*-linked glycopeptide analogues.

In general *C*-linked analogues of naturally occuring *N*- and *O*-glycosyl amino acids and peptides are of interest since they are resistant to enzymatic cleavage and are therefore useful, eg as probes for various biological processes.¹⁶⁰ The field is large and has been extensively reviewed, ¹⁶¹ a few representative are illustrated overleaf. Isoxazole **144** has been prepared by Dondoni *et al* by 1,3-dipolar cycloaddition of a pyranosyl nitrile oxide with an amino acid derived alkyne.¹⁶⁰ Glycopeptide analogue **145** was made during an investigation into the synthesis of *C*-linked glycosyl asparagines.¹⁶² Glycopeptide analogue **146** has been synthesised and examined as a potential glycoamidase inhibitor.¹⁶³ Glycoamidase cleaves the amide linkage between the oligosaccharide and peptide units and is therefore important in the modification of proteins.

2.4.4 Additions of *N*-(tert-butoxycarbonyl)cysteine methyl ester (147) to pyranosylnitrile oxides

L-Cysteine was chosen for study since it is a common constituent in many proteins. A cysteine derivative that possessed carboxyl and amine protection was required in order to prevent side reactions and *N*-Boc protected L-cysteine methyl ester **147** was selected for this purpose. The synthesis was accomplished by following the procedure of Gledhill *et al.*¹⁶⁴ L-Cysteine methyl ester hydrochloride, Boc anhydride and triethylamine were stirred at room temperature for 16 hours. The desired product was obtained as a colourless oil (95% yield). It was feared that on prolonged storage thiol **147** would oxidatively couple to form a disulfide, however it was found that storage in a freezer for more than one year avoided disulfide formation.

The procedure used was based on that described earlier for addition of amines (section 2.4.1). A solution of D-xylose derived hydroximoyl chloride **106** was added slowly added dropwise to a chloroform solution of cysteine derivative **147** (3 equivalents) and triethylamine (6 equivalents). The target thiohydroximate **148** was obtained as a white solid in 88% yield after purification by dry-flash chromatography (Scheme 52). The ¹H and ¹³C NMR spectra clearly demonstrated that addition had taken place. Signals corresponding to the thiohydroximate linkage and the amino acid unit were observed [$\delta_{\rm H}$ 9.44 ppm (bs, OH), 4.59 ppm (1H, m, cysteine CH), 3.78 ppm (3H, s, methyl ester), 3.35-3.58 ppm (2H, m, cysteine CH₂), 1.47 ppm (9H, s, Boc CH₃) $\delta_{\rm C}$ 147 ppm (C=N), 53.7 ppm (CH), 52.7 ppm (methyl ester), 32.5 ppm

(CH₂), 28.1 ppm (Boc CH₃)] in addition to the pyranosyl ring signals. A second product was obtained as a white crystalline solid after chromatography, the NMR and mass spectrometry data indicated that it was disulfide 149.¹⁶⁵ Presumably the basic reaction conditions and exposure to air favoured oxidation of the excess thiol to afford 149.

Cysteine derivative 147 was reacted with glucose derived hydroximoyl chloride 107 in a similar fashion to above and the expected adduct 150 was obtained in a comparable yield (85%).

148 R = H, **150** R = CH_2OAc

Scheme 52

2.4.5 Additions of amino acid esters

A larger range of amino acid *N*-nucleophiles were available for the preparation of amidoxime linked glycopeptide analogues; glycine was chosen for initial work since its simple structure would aid analysis of any products. A chloroform solution of D-xylose derived hydroximoyl chloride **106** was added slowly to a stirred and cooled (0 °C) mixture of glycine ethyl ester hydrochloride (3 equivalents) and triethylamine

(18-fold excess) in chloroform.⁶⁶ On completion of the addition, the reaction mixture was washed with 0.1 M HCl to remove excess amine. Analysis of the ¹H and ¹³C NMR spectra of the crude product indicated that the expected amidoxime **152** was the major product (Scheme 53). Signals corresponding to the amidoxime linkage and the amino acid unit were evident [δ_{H} 5.48 ppm (t, NH, J_{NH-CH} 5.8 Hz), 4.16 ppm (q, Et ester CH₂), 4.07 ppm (d, glycine CH₂), 1.23 ppm (t, Et ester CH₃) δ_{C} 170. 7 ppm (C=O, Et ester), 148.1 ppm (C=N), 61.7 ppm (Et ester CH₂), 44.7 ppm (glycine CH₂), 14.5 ppm (Et ester CH₃)]. Purification by dry-flash chromatography was attempted, however two major and one minor product were obtained (Scheme 53). The amidoxime **152** was isolated in addition to a second compound which was later identified as oxadiazinone **153**.⁶⁶ The NMR spectra indicated that cyclisation had taken place, the ester peaks had been lost and the glycine-derived signals had simplified; [δ_{H} 5.61 ppm (C=N), 40.2 ppm (oxadiazinone CH₂)].

Formation of the cyclised product is not entirely surprising since the Z-amidoxime geometry puts the nucleophilic OH group in a favourable position to attack the ester carbonyl in a 6-exo-trig process. Similar reactions have been observed for amidoximes in previous studies.^{129,166,167} A minor product was also obtained that possessed similar spectroscopic properties to those of amidoxime 152. Two NH signals were clearly visible in the ¹H NMR spectrum in addition to the ethyl ester quartet and triplet [$\delta_{\rm H}$ 7.45 ppm (t, NH, $J_{\rm NH-CH}$ 7.5 Hz), 5.61 ppm (t, NH, $J_{\rm NH-CH}$ 6.1 Hz), 4.14 ppm, (q, Et ester CH₂), 1.21 (t, CH₃ Et ester)]. The ¹³C NMR spectrum showed the diagnostic amidoxime imine signal and side chain attributed to a side chain δ_{C} 170.9 ppm (Et ester C=O), 147.8 ppm (C=N), 61.0 ppm (Et ester CH₂), 46.2 ppm (CH₂), 40.9 ppm (CH₂), 13.9 ppm (Et ester CH₃)]. The minor product was therefore assigned structure 154, which results from attack on the oxadiazinone ring by a second equivalent of amino acid.⁶⁶ All three products could also be seen in the electrospray mass spectrum of the crude reaction mixture [ES 404 (MH⁺, 152), 358 (MH⁺, 153), 461 (MH⁺, 154)]. Similar results were obtained when the reaction was repeated with L-leucine methyl ester hydrochloride (Scheme 53). It was noted in this case that cyclisation took place to a greater extent before chromatography than in the previous experiment. Studies with L-leucine also found that formation of ringopened product could be minimised by reducing the amount of amino acid from 3 equivalents to 1.5.

The structures of oxadiazinones **153** and **156** were eventually confirmed by X-ray crystallography. To the author's knowledge these are the first such crystal structures to contain the 1,2,4-oxadiazin-6-one moiety. The crystals of oxadiazinone **153** were found too weakly diffracting and consequently gave poorer quality data than hoped. In contrast, the data obtained for oxadiazinone **156** were suitable for further analysis. Selected bond lengths, bond angles and torsion angles for the oxadiazinone ring system are shown in Table 6.

Figure 2- 3-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-1,2,4-oxadiazin-6-one (153)

Figure 3-3-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)-5-(isopropyl)-1,2,4-oxadiazin-6-one (156)

Bond Lengths/ Å	Bond Angles/ °	Torsion Angles/ °
O(1)-N(2) 1.463(2)	O(1)-N(2)-C(3) 113.96(18)	O(1)-N(2)-C(3)-N(4) -6.10
N(2)-C(3) 1.290(3)	N(2)-C(3)-N(4) 126.71(2)	N(2)-C(3)-N(4)-C(5) -17.80
C(3)-N(4) 1.331(3)	C(3)-N(4)-C(5) 120.12(19)	C(3)-N(4)-C(5)-C(6) 35.65
N(4)-C(5) 1.452(2)	N(4)-C(5)-C(6) 108.28(17)	N(4)-C(5)-C(6)-O(1) -32.68
C(5)-C(6) 1.512(3)	C(5)-C(6)-O(1) 117.82(19)	C(5)-C(6)-O(1)-N(2) 13.14
C(6)-O(1)1.352(3)	C(6)-O(1)-N(2) 122.82(17)	C(6)-O(1)-N(2)-C(3) 7.84

Table 6: Selected bond lengths, bond angles and torsion angles for 156

A survey of the literature revealed that 1,2,4-oxadiazin-6-ones are relatively rare heterocycles. The first report of such an oxadiazinone synthesis was made by Takacs and Ajzert,¹⁶⁶ who reported that **157** was formed on reacting glycine carboxymethyl amidoxime **158** with 1,3-dicyclohexylcarbodiimide (DCC) (Scheme 54).

Scheme 54

Suave *et al* have reported the formation of oxadiazinone **159** as a by-product under basic conditions whilst attempting to prepare amidoxime analogues of oligopeptides (Scheme 55).¹⁶⁷ they also reported that oxadiazinone formation was avoided by replacing the methyl ester with a ^tbutyl ester.

Scheme 55

The most detailed study to date has been conducted by Hussein and co-workers, ¹²⁹ who found that the amidoximes from addition of L-valine, L-isoleucine and L-phenylglycine to aryl nitrile oxides spontaneously cyclised in the presence of NEt₃ to the corresponding oxadiazinones. Amino acids with less bulky side chains (such as glycine) afforded only amidoxime products. Hussein *et al* also obtained small amounts of ring-opened products analogous to amidoximes **154** and **160** (Scheme 53). Further ring-opening reactions with sodium borohydride were found to yield amino alcohols via an aldehyde intermediate (Scheme 56).

Scheme 56

Reactions were therefore attempted to verify some of the observations made in the initial experiments, and by Hussein *et al.*¹²⁹ Addition of glycylglycine ethyl ester to D-xylose derived hydroximoyl chloride **106** under the same conditions as in the synthesis of amidoxime **152** afforded the expected amidoxime adduct **154** (43% yield). The analytical and spectroscopic data were identical to those obtained previously. The next stage of the amino acid addition study was to conduct further investigations into the cyclisation reaction.

2.4.6 Cyclisation Reactions

The glycine and L-leucine amidoximes **152** and **155** were found to cyclise (60% and 70% yields respectively) when refluxed in chloroform in the presence of silica for 6-16 hours or over 2-3 days at room temperature (Scheme 53). Hussein had indicated that addition of amino acids with bulkier substituents spontaneously cyclised. The results obtained in this study with L-leucine, however, did not fully support this observation, since amidoxime **155** was the predominant product immediately after amine addition. L-Phenylalanine ethyl ester was selected to examine further the effect of larger substituents. Addition of L-phenylalanine ethyl ester hydrochloride to hydroximoyl chloride **106** afforded exclusively the corresponding amidoxime (**161**)

immediately after addition and dry-flash chromatography. Cyclisation of **161** to oxadiazinone **162** took place when a solution of **161** in chloroform was left to stand in an NMR tube for over a month (Scheme 53), the cyclisation process was slower for pyranosyl amidoximes compared with aryl amidoximes, even when bulky side-chains were present. The NMR data for oxadiazinine **162** were similar to those observed for the previously obtained oxadiazinones.

The fact that the amino group in L-proline is N,N-disubstituted made it an interesting experimental candidate for two reasons. Hussein *et al*¹²⁹ had claimed that the cyclisation step was faster than potential Z to E isomerism under basic conditions. The increased tendency of disubstituted amidoximes such as morpholine derived amidoxime **143** to isomerise would challenge the above postulate. The product of L-proline addition and cyclisation would also produce the interesting fused bicyclic product **163** (Scheme 57).

Scheme 57

Addition of L-proline benzyl ester hydrochloride to hydroximoyl chloride **106** was conducted according to the procedure employed in the earlier amino acid additions.¹³C NMR analysis of the crude reaction mixture indicated that the major products were oxadiazinone **163** [diagnostic signals δ_C 168.7 ppm (C=O, 151.8 ppm (C=N)], benzyl alcohol and possibly small amounts of amidoxime adduct. The crude mixture was stirred in refluxing chloroform for 2 hours in the presence of silica to ensure cyclisation went to completion, and on work up, the oxadiazinone product was obtained as a white solid in 57%. The rigid ring system is believed to assist cyclisation in this case due to the Thorpe-Ingold effect.¹⁶⁸

Addition of β -alanine ethyl ester hydrochloride to hydroximoyl chloride **106** was attempted in order to ascertain whether cyclisation to form a 7-membered 1,2,4-

oxadiazepin-7-one would take place under the conditions previously established. The amidoxime **164** was obtained (after chromatographic purification) as a gummy solid in 50% yield (Scheme 58).

Scheme 58

The ¹H and ¹³C NMR spectra contained diagnostic signals for the amidoxime group and showed that the ethyl ester protecting group was still present [δ_{H} 5.36 ppm (t, NH), 4.13 ppm (q, Et ester CH₂), 1.22 ppm (t, Et ester CH₃) δ_{C} 149.0 ppm (C=N), 61.1 ppm (Et ester CH₂), 14.5 ppm (Et ester CH₃)]. Amidoxime **164** was stirred with silica in refluxing chloroform for >48 hours without any cyclisation being observed on analysis by TLC, ¹H NMR or electrospray mass spectrometry. Cyclisation to form a 7-membered ring was found to be unfavourable under the conditions that had allowed access to the 6-membered products.

An attempt was also made to favour exclusive amidoxime formation. It was reasoned that replacing the ethyl or methyl ester protecting groups with a more sterically demanding group would suppress oxadiazinone formation.¹⁶⁷ ^tButyl protection is frequently employed in peptide synthesis, therefore deprotection and subsequent peptide coupling would potentially allow access to chain extended amidoxime linked glycopeptide analogues.

Amidoxime **165** was obtained (88% yield) in a similar fashion to the original glycine addition procedure (Scheme 59).⁶⁶ The ¹H and ¹³C NMR spectra were comparable to

those obtained for addition of glycine ethyl ester. Amidoxime **165** was stirred with silica in refluxing chloroform for >48 hours and the reaction monitored by NMR and electrospray mass spectrometry. No evidence was found for cyclisation having taken place, since the amidoxime imine and 'butyl signals were observed in the ¹³C NMR spectrum [δ_C 83.2 ppm (Cq) 148.9 ppm (C=N), 30.7 ppm (CH₃)].

2.4.7 Pyranosyl-1,4,2-oxathiazin-6-ones

Sulfur analogues of 1,4,2-oxadiazin-6-ones are very rare, indeed, there has only been one publication related to 1,4,2-oxathiazin-6-ones.¹³⁰ Johnson and co-workers have accomplished the synthesis of such heterocycles by a two stage process; initial addition of a mercapto carboxylic acids to aromatic nitrile oxides was followed by a DCC mediated 6-exo-trig cyclisation (Scheme 60). The same researchers have also reported the synthesis of 5,6-dihydro-7-1,4,2-oxathiazepin-7-ones by a similar procedure.¹³¹

Scheme 60: (a) mercatoacetic acid (b) DCC, THF

2.4.8 Attempted synthesis of 3-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)-1,4,2-oxathiazin-6-one

An attempt was made to synthesise pyranosyl-1,4,2-oxathiazin-6-ones from thiohydroximate **166** by the cyclisation procedure employed for pyranosyl-1,2,4-oxadiazin-6-ones.

Thiohydroximate **166** was prepared by reacting methyl thioglycolate with xylose derived hydroximoyl chloride **106** under the conditions described in section 2.4.5. Analysis of the ¹H and ¹³C NMR spectra of the purified product showed diagnostic signals for the thiohydroximate unit and side-chain in addition to the carbohydrate peaks [δ_H 9.39 ppm (bs, OH), 3.82 (1H, d, CH₂b), 3.77 (1H, d, CH₂a) δ_C 148.1 ppm (C=N), 33.3 ppm (CH₂)]. The purified thiohydroximate was stirred with silica in refluxing chloroform for more than 2 days without any cyclisation taking place, so the reaction was repeated in refluxing toluene. A white solid was obtained after dry-flash purification, however the electrospray mass spectrum indicated the mass of the product to be 285 a.m.u rather than the expected 375 a.m.u. The ¹³C NMR showed a characteristic signal for a nitrile group [δ_C 114.2 ppm (CN)] and the compound was therefore assigned structure **167**. Formation of nitriles is known to arise from oxathiazinone rings in the presence of hydroxide ion (Path A, Scheme 62).¹³⁰ In this case, it was thought that cyclisation to the nitrile (Path B, Scheme 62).¹³⁰

66

Scheme 62

An attempt was also made to repeat the procedure reported by Johnson et al,¹³⁰ Mercapto acetic acid was added to xylose derived nitrile oxide and the resultant thiohydroximate treated with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI). The reaction did not afford any identifiable products, extensive decomposition appeared to have taken place. The reasons for the failure of the reaction remain unclear, although it has been suggested that the stability of oxime acids such as **166** is R dependent.¹³⁰ It could be suggested that if **166** was unstable, it may decompose before cyclisation takes place.

2.4.9 Conclusions/Further Work

Addition of L-cysteine derived thiol 147 to D-xylose and D-glucose nitrile oxides was found to afford novel thiohydroximate linked glycopeptides 148 and 150 in good yield (88% and 85% respectively). Reactions of glycine, L-leucine and L-phenylalanine ester hydrochlorides with hydroximoyl chloride 106 under basic conditions, were found to afford crude amidoximes 152, 155 and 161. Attempts to purify 152 and 155 by column chromatography led to the formation of 1,2,4-oxadiazin-6-ones 153 and 156 (60% and 70% yield respectively). Compound 161 was not found to cyclise during purification although, oxadiazinone 162 was obtained after allowing a chloroform solution of 161 to stand for 1 month. In contrast, L-proline benzyl ester hydrochloride afforded predominantly oxadiazinone

163 before column chromatography. Reaction of β -alanine and glycine 'butyl ester with hydroximoyl chloride 106 in basic conditions afforded amidoximes which did not cyclise. Small amounts of by-products such as 154 were observed, these were the result of ring-opening of the oxadiazinone by residual amino acid. Further work could investigate the ring-opening reaction as a means of making chain extended amidoximes. An alternative chain extension strategy could involve deprotection of adduct 165 and employing classical peptide coupling conditions.

2.5 Additions of carbohydrate derived nucleophiles: Introduction

It was envisaged that sugar amines could be employed in 1,3-addition nucleophilic nucleophiles to pyranosyl nitrile oxides to afford a novel class of amidoxime-linked C-pseudodisaccharides (Scheme 63). There are few reports of such compounds in the literature; the closest relative known (168) was published by Gallos *et al*¹⁶⁹ as part of a study on nucleotide analogues. Oligonucleotides with a backbone that does not contain phosphorous are desirable, since they are resistant to nuclease induced cleavage and are more readily taken up by cells. Vasella *et al*¹⁷⁰ have prepared pyranose examples (eg 169), which have the amidoxime unit within the carbohydrate ring, as potential glycosidase inhibitors. The Rollin group have reported the synthesis of a series of thiohydroximate-bridged disaccharides (eg 170), as part of their work on glucosinolate analogues.⁹⁵

Scheme 63

Although a number of sugar amines are known in the literature, it was decided to limit the initial study to amines that would result in the $(1\rightarrow 6)$ and $(1\rightarrow 1)$ linked compounds 171 and 172.

The proposed structures resemble amide-linked disaccharides. For example, **173** has been studied as a glycosyl mimic.¹⁷¹ The rationale behind the use of peptide linkages is that they should be resistant to cleavage by glycosidase enzymes. Amidoximes share the same property and as a result have been exploited as amide substitutes.^{169, 167, 108}

2.5.1 Synthesis of $(1 \rightarrow 6)$ amidoxime-linked pseudodisaccharides

2.5.1.1 Synthesis of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose Hydrochloride (177)

Galactose derived amine 177 was selected as a suitable nucleophile for addition to pyranosylnitrile oxides. Reitz *et al*¹⁷² had reported a straightforward 3-step synthesis (Scheme 64) from 1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose (174), which itself is a well-known precursor in various carbohydrate syntheses.¹⁷³

Scheme 64: (a) TsCl, pyridine, MeCN (b) NaN₃, DMSO (c) H₂, 10% Pd/C, 50:1 EtOH/CHCl₃ (20 atm)

Treatment of D-galactose with acetone in the presence of acid and anhydrous $CuSO_4$ gave an oil, which on purification by Kugelrohr distillation afforded the product as a colourless glass in 61% yield. The ¹H and ¹³C NMR spectra, mass spectra and analytical data were all in agreement with literature values.¹⁷⁴

Protected galactose compound 174 was then stirred with *p*-toluenesulfonyl chloride in a 2:1 mixture of pyridine/acetonitrile at room temperature for 6 hours, and the tosylated product 175 isolated as a white solid (67% yield) following washing and trituration. The signals due to the tosyl group were clearly visible in the ¹H NMR spectrum [$\delta_{\rm H}$ 2.37 (1H, s, ArCH₃), 7.73 ppm (2H, d, ArH), 7.26 ppm (2H, d, ArH)].

In the next step, the tosylated galactose derivative **175** and sodium azide were then dissolved in DMSO and heated to 115°C for 24 hours. On cooling, the reaction mixture was washed with water, before isolating the azido sugar **176** as a colourless oil (96% yield). A characteristic absorption for an azide group was observed in the IR spectrum $[v_{max} 2105 \text{ cm}^{-1}]$.¹⁷⁵

The final stage of the synthesis required hydrogenation of azido compound **176** to form the required amine **177**. The original procedure of Reitz and co-workers achieved this transformation by high-pressure (~50 psi) hydrogenation in the presence of 10% palladium on charcoal catalyst, followed by treatment with ethereal HCl to afford the amine as a hydrochloride salt.¹⁷² A paper by Secrist and co-workers¹⁷⁶ had shown that addition of chloroform (~2%) to the reaction mixture allowed the amine hydrochloride salt to be formed *in situ* rather than having to add ether/HCl afterwards. This latter procedure¹⁷⁶ was successfully applied in this case to afford the title compound **177** as a white solid. A very broad signal was observed in the IR spectrum [v_{max} 3377 cm⁻¹] of the product that is characteristic for amine hydrochloride salts.¹⁷⁵ The ¹H and ¹³C NMR spectra were found to be in agreement with those obtained in the original work.¹⁷²

2.5.1.2 Additions of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (177) to pyranosylnitrile oxides

With galactose derived amine 177 in hand, it was possible to proceed with additions to pyranosylnitrile oxides. A solution of xylose derived hydroximoyl chloride 106 was added to a vigorously stirred mixture of amine 177 and triethylamine in chloroform over one hour. The reaction mixture was washed with 0.1 M HCl (to remove residual amine) before being subjected to dry-flash chromatography. The expected amidoxime 178 was obtained as a white solid (81% yield).

Diagnostic peaks for the amidoxime bridge were observed in the ¹H and ¹³C NMR spectra [δ_H 7.76 ppm (bs, OH) 5.24 ppm (m, NH), δ_C 149 ppm (C=N)]. The ¹H NMR spectrum proved to be valuable for characterisation an account of conformation differences for the two carbohydrate rings giving well dispersed and characteristic

signals. The D-xylose ring adopts a ${}^{4}C_{1}$ chair conformation (179), whereas the D-galactose ring adopts a skew (twist-boat) conformation 180, due to the presence of the isopropylidene protecting groups.¹⁷⁴

The peaks attributed to the xylose ring were similar to those observed in the amidoxime examples described previously (section 2.4.1). The anomeric proton [$\delta_{\rm H}$ 4.00 ppm (d, 1-H, J_{H1-H2} 10.1 Hz)] showed a large axial-axial coupling, thus confirming the β -configuration of the xylose component. The remaining xylose ring protons showed the expected large vicinal axial-axial couplings to each other (ca 9-10 Hz), with the exception of the axial-equatorial coupling of H-4 to H-5e (equatorial) [$\delta_{\rm H}$ 4.15 ppm (dd, H-5e, $J_{\rm H5e-H4}$ 5.4 Hz)]. The peaks attributed to the galactose ring were found to have significantly different coupling patterns, since in the skew conformation the protons do not adopt formal axial and equatorial positions. The chemical shifts and coupling constants were found to compare favourably with those of literature compounds.¹⁷⁴ COSY and HSQC NMR experiments were conducted to confirm the identities of each of the carbohydrate ring protons. The ¹³C NMR spectrum showed the expected 12 carbohydrate skeletal carbon peaks and signals due to the xylose and galactose protecting groups [$\delta_{\rm C}$ (OAc) 170.2, 169.7, 169.3 ppm (3xC=O), (acetal) 109.3, 108.6 ppm (Cq), 25.9, 25.8 , 24.8, 24.3 (CH₃)]. The structure of amidoxime 178 was confirmed by X-ray crystallography.

Figure 4 (Z)-*N*-(6-deoxy-1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranosyl)-(2,3,4-tri-*O*acetyl-β-D-xylopyranosyl)formamide oxime (**178**)

Each unit cell contained 2 molecules of **178**, one of which is illustrated in Figure 4. The structure shows that the amidoxime unit in pseudo-disaccharide **178** moiety has similar features to those of amidoxime **141**, which was discussed in section 2.4.1. The *Z*-configuration of the oxime and *s*-*trans* (Z_{ap}) conformation about the amidic nitrogen are again apparent. The existence of an intramolecular H-bond is again observed and is attributed to the near planarity of the NH-C=N-O unit [torsion angle 2.14°] and the short non-bonded distance between the amidic N and the oxime O [N to O = 2.531 Å]. The Cremer and Pople¹⁷⁷ puckering parameters for the two pyranoid rings are given in Table 7. The D-xylose ring has 95% of the puckering of an ideal cyclohexane chair conformation, with Q = 0.600 Å and θ = 5.75° compared with Q = 0.630 Å and θ = 0° for an ideal ⁴C₁ chair. The corresponding values for the D-galactose ring are Q = 0.657 Å and θ = 83.77°, and are consistent with a skew (twistboat) conformation.

Ring	Atoms	Q/Å	θ/°	φ/°
D-Xylose	O(7)-C(2)-C(3)-C(4)-C(5)-C(6)	0.600	5.75	36.42
D-Galactose	O(6`)-C(1`)-C(2`)-C(3`)-C(4`)-C(5`)	0.657	83.77	326.53

 Table 7. Cremer and Pople¹⁷⁷ puckering parameters for the pyranoid rings of amidoxime **178**

The above reaction was repeated with glucose derived nitrile oxide **115** and the expected amidoxime **181** was obtained as a white solid in 75% yield. The ¹H and ¹³C NMR spectra were found to be very similar to those obtained for the xylose example **178**.

2.5.2 Synthesis of $(1 \rightarrow 1)$ amidoxime-linked pseudodisaccharides

2.5.2.1 Synthesis of D-xylose and D-glucose derived amines

The strategy for the synthesis of $(1\rightarrow 1)$ amidoxime-linked pseudodisaccharides involved a dual role for pyranosylnitromethanes **182** and **183** (Scheme 65). The nitromethyl sugars **95** and **99** were employed as sources of the corresponding amines (for previous examples^{178,179}) and nitrile oxides (section 2.2). Secrist *et al*¹⁷⁶ reported that nitro compounds, nitriles and oximes could afford amine hydrochlorides in a similar fashion to azides.

Scheme 65: (a) SnCl₂, NEt₃, PhSH (b) Cl₂ (c) H₂, PtO₂, CHCl₃/EtOH (d) NEt₃

Nitro sugar **95** was therefore stirred with a catalytic amount of PtO_2 in ethanol/chloroform (50:1) and heated (70°C) under hydrogen (40 atmospheres) in a high-pressure hydrogenation apparatus. The amino sugar **182** was obtained as a white solid after removal of the solvent. The product was water-soluble and again a very broad amine peak was observed in the IR spectrum [v_{max} 3367 cm⁻¹].¹⁷⁵ The ¹³C NMR spectrum showed a significant chemical shift change to lower frequency of the exocyclic methylene group relative to that observed in the parent nitro compound [δ_c 40.5 ppm (RCH₂NH₂), δ_c 75.8 ppm (RCH₂NO₂)]. The reaction was found to be capricious; yields and product quality varied from batch to batch. An alternative procedure that involved stirring **95** in a mixture containing Zn/HCl was therefore attempted.¹⁸⁰ A white solid product was obtained, however the ¹H and ¹³C NMR spectra were not the same as those for the product obtained by high-pressure

hydrogenation. The new compound was identified as hydroxylamine **188**, the product of partial reduction. The electrospray mass spectrum clearly showed formation of **188** (Scheme 66) since the molecular ion peak was 16 mass units heavier than the expected amine. Hydroxylamines of this kind are rare, although recent example was reported by Gross et al.¹⁶²

Scheme 66

The troublesome reactions with nitro sugar **95** led to pyranosylnitriles being examined as amine precursors instead. It should be noted that pyranosylaldoximes were not considered (despite their availability) due to the possibility of residual thiol deactivating the catalyst.

2.5.2.2 Alternative synthesis of pyranosylmethylamines

Pyranosyl nitriles are well known and may be prepared by addition of sodium cyanide to glycosyl halides^{181,182} or trimethylsilyl cyanide to glycosyl acetates.¹⁸³⁻¹⁸⁵ Previous work within the group has used the procedure of Köll *et al*¹⁸⁶ to convert pyranosylnitromethanes to the corresponding nitrile; the latter procedure was chosen for this study (Scheme 67).

Scheme 67

PCl₃ was added to a cooled (0°C) mixture of pyridine and 3,4,5-tri-*O*-acetyl- β -D-xylopyranosylnitromethane (**95**) and the mixture stirred for 3 days at room temperature. On work-up, the target nitrile **167** was obtained as a white solid (75% yield) after dry-flash chromatography. A diagnostic signal was observed in the ¹³C NMR [δ_C 114.2 ppm (CN)] and analytical data were in agreement with literature.¹⁸⁶ The glucose derived nitrile **189** was obtained by the same procedure in 82% yield.

The procedure described above has been known for over 25 years. The mechanism was believed to proceed by the addition/elimination sequence illustrated in Scheme 68.¹⁸⁶

Scheme 68

This mechanism has been challenged very recently in a study by Yao and coworkers.¹⁸⁷ The new proposal is of particular interest since the key step involves deoxygenation of a nitrile oxide intermediate (Scheme 69).

Scheme 69

Nitriles 167 and 189 were hydrogenated under similar conditions to those employed in Section 2.5.1.1 (although lower temperatures and pressures were required) and the desired amine salts 182 and 183 were obtained in 99% and 90% yields respectively. In-situ generation of the amine as a hydrochloride salt was particularly important when nitriles were employed for two reasons; $O \rightarrow N$ -acetyl migration could possibly occur¹⁸³ and/or formation of aldimines such as 190,¹⁸⁸ if free amine was formed.

2.5.2.3 Additions of xylose and glucose derived amines 182 and 183 pyranosylnitrile oxides

Amines 182 and 183 were reacted with the D-xylose and D-glucose nitrile oxides 115 and 151 in the presence of triethylamine as outlined in section 2.5.1.2. All of the

four possible products were purified by dry-flash chromatography and the expected amidoximes were obtained as white solids (Table 8).

К	R	Yield (%)
Н	Н	44
CH ₂ OAc	Н	40
Н	CH ₂ OAc	31
CH ₂ OAc	CH ₂ OAc	49
	H CH ₂ OAc H CH ₂ OAc	HHHHCH2OAcHHCH2OAcCH2OAcCH2OAc

Table 8: $(1 \rightarrow 1)$ linked pseudodisaccharides

The ¹H and ¹³C NMR spectra of the products showed characteristic signals for the amidoxime linkage; (Z)-*N*-(3,4,5-tri-*O*-acetyl- β -D-xylopyranosylmethyl)-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (**184**) serves as a typical example. The ¹H NMR spectra were expected to be more complicated than those obtained for the (1 \rightarrow 6)-linked amidoximes since both carbohydrate rings adopted ⁴C₁ chair conformations and would probably lead to overlap of both sets of signals. A 600 MHz ¹H NMR experiment was required to obtain the required peak dispersion to achieve a full structural analysis, and D₆-DMSO was needed to get the sample to fully dissolve. Diagnostic amidoxime OH and NH signals were clearly observed [δ_{H} 9.97 ppm (bs, OH), 5.26-5.29 ppm (m, NH)] in the ¹H NMR. The anomeric protons [δ_{H} 4.27 ppm (d, 1-H, J_{H1-H2} 10.1 Hz), 3.62 ppm (ddd, 2'-H, $J_{H2'-H3'}$ 9.6 Hz)] both exhibited large axial-axial coupling with the adjacent ring protons, thus confirming the β -configuration had been retained in each of the xylose components. The identities of the remaining carbohydrate ring protons were established by COSY and 2D-TOCSY ¹H NMR experiments.

The ¹³C NMR spectrum displayed peaks associated with the acetyl protecting groups, in addition to the 12 peaks that corresponded to the carbohydrate framework. The

most diagnostic signals were those from the amidoxime unit and exo-methylene group [δ_C 147.3 ppm (C=N), 42.4 ppm (C-1`)]. Of the remaining ten signals, two corresponded, as expected, to the xylose ring methylene carbons [δ_C 65.2 ppm (C-6`), 65.1 ppm (C-5)].

2.5.2.4 By-product formation

A polar by-product was identified on analysis by TLC (R_f <0.1 EtOAc), the formation of which was belived to responsible for the lower yields (31-49%) of the $(1 \rightarrow 1)$ linked pseudodisaccharides. Attempts to isolate and analyse the by-product were unsuccessful, however it was thought to be compound 191 resulting from $O \rightarrow N$ acetyl migration.¹⁸³ An authentic sample of the migration product was therefore prepared by hydrogenation of nitro sugar 95 under a balloon of hydrogen in the presence of Raney nickel.¹⁶² A colourless oil was obtained from the reaction mixture. following filtration and solvent removal. The ¹H and ¹³C NMR spectra indicated the acetate group had migrated from the 2-hydroxyl to the amino group since signals corresponding to a hydroxyl group [δ_H 4.60 ppm (bs, OH)] and amide group were observed [δ_C 174.7 ppm (C=O)]. The IR spectrum was particularly convincing since OH and amide C=O stretching frequencies were clearly visible, in addition to a signal attributed to N-H bending. $[v_{max} 3364 \text{ cm}^{-1} \text{ (OH)}, 1742 \text{ cm}^{-1} \text{ (C=O ester)},$ 1651 cm⁻¹ (C=O amide), 1550 cm⁻¹ (NH bend)].¹⁷⁵ Unfortunately the migration product 191 was never isolated from any of the addition reactions, although TLC analysis of reaction mixture versus the authentic migrated product indicated that migration could have occurred. Amide 191 is believed to be formed by intramolecular nucleophilic acyl substitution reaction between the amine group and the adjacent acetyl ester at C-2.

Scheme 70

2.5.2.5 Synthesis of deprotected $(1 \rightarrow 1)$ amidoxime-linked pseudodisaccharide

An attempt was made to deprotect amidoxime **184** by stirring the disaccharide in a triethylamine/methanol mixture at room temperature.¹⁸⁹ Analysis of the reaction mixture after two days by electrospray mass spectrometry showed that the reaction was taking place rather slowly. Peaks were observed for successive acetate loss [ES 591 (MH⁺, 6Ac), 549 (MH⁺, 5Ac), 507 (MH⁺, 4Ac), 465 (MH⁺, 3Ac), 423 (MH⁺, 2Ac), 382 (MH₂⁺, Ac), 340 (MH₂⁺, 0Ac)] from the fully protected form, right through to the desired fully deprotected compound **192**.

The reaction was driven to completion within 6 hours by heating the reaction mixture to afford the product as a viscous oil (95% yield). A full analysis of **192** by ¹H NMR spectroscopy proved difficult since at 360 MHz all 12 ring proton signals overlapped and appeared as a large multiplet. A 600 MHz ¹H NMR experiment was attempted to disperse the ring proton signals, however the resultant spectrum was too broad to be of any use. The ¹H NMR spectra did show, however, that the acetyl groups had been removed. The ¹³C NMR spectrum showed that the 12 expected carbons were present, the most diagnostic being those due to the amidoxime unit and the exo-methylene group [δ_{C} 153.7 ppm (C=N), 44.2 ppm (C-1`)].

2.5.2.6 Conclusions/Further Work

Reaction of galactose amine 177 with nitrile oxides 115 and 151 under basic conditions afforded $(1\rightarrow 6)$ linked pseudo-disaccharides 178 and 181 in good yield (81% and 75% respectively). Reactions of xylose and glucose amines (182 and 183) under similar conditions afforded $(1\rightarrow 1)$ linked pseudo-disaccharides 184, 185, 186 and 187 (31-49% yield). The lower yields of the $(1\rightarrow 1)$ linked products were attributed to the formation of 191. Future work would be directed toward preventing formation of 191. This could be achieved by employing benzoyl protected amines.

Deprotection of the pseudo-disaccharides would allow biological testing to be conducted, their potential function as nitric oxide donors would be of particular interest (Section 1.4.1).

ł

2.6 Ambident nucleophile additions 2-pyranosylbenzazole synthesis

A logical extension of the work with amines was to examine the reactivity of a variety of ambident nucleophiles. A survey of the literature revealed work in this field by Sasaki *et al*,¹³⁶ and latterly by Parkanyi¹⁹⁰ and Risitano.¹⁹¹ They reported that addition of *o*-phenylenediamine, *o*-aminophenol and *o*-aminothiophenol to aryl nitrile oxides offered a mild and high yielding method of synthesising 2-arylbenzimidazoles, benzoxazoles and benzothiazoles (Scheme 71).

Scheme 71: Y= S, O, NH

This procedure has not received great attention since there are more accessible precursors for the synthesis of 2-arylbenzazoles; typically aromatic carboxylic acids or aldehydes are employed in the synthesis of such compounds.¹⁹²⁻¹⁹⁴

It was envisaged that the Sasaki procedure might provide a convenient route to 2pyranosylbenzothiazoles, benzimidazoles and benzoxazoles. The traditional routes are not as amenable to the synthesis of such compounds since the corresponding carboxylic acids and aldehydes are not easily accessed and/or the reaction conditions can be harsh. A brief survey of the current routes to pyranosylbenzazoles is presented below.

2.6.1 Synthesis of 2-pyranosylbenzothiazoles

.1

2-Pyranosylbenzothiazoles have been known for over 25 years,¹⁹⁵ and have received attention as β -D-galactosidase¹⁹⁶ and glycogen phosphorylase inhibitors.¹⁹⁷ There are currently two major routes to 2-pyranosylbenzothiazoles: the first procedure involves addition of *o*-aminothiophenol to 2,6-anhydro-aldononitriles and subsequent cyclisation. Farkas¹⁹⁵ and Somsak¹⁹⁸ have employed this route in the synthesis of 2- β -D- xylo, galacto, gluco, arabino and ribopyranosylbenzothiazoles. The Farkas procedure is relatively straightforward; the relevant acetylated glycosyl nitrile and 2-

aminothiophenol are heated at reflux in ethanol under a nitrogen atmosphere for 4 hours, (Scheme 72) and the products obtained by crystallisation in 57-77 % yield.¹⁹⁵

The second route, which was reported recently by Dondoni *et al*,¹⁹⁹ begins with addition of 2-lithiobenzothiazole to tetra-*O*-benzyl-D-gluconolactone (**193**) to afford a hemiacetal product **194** as a single isomer in 78% yield. Subsequent acetylation and deoxygenation leads to a 6:4 mixture of benzothiazole products (**197** and **198**); the α compound is transformed into the more stable β anomer **198** on treatment with NaOMe (80% combined yield on crystallisation).

Scheme 73: (a) 2-lithiobenzothiazole, THF, -65°C (b) Ac_2O , NEt_3 (c) Et_3SiH , TMSOTf, (d) NaOMe, MeOH.

To date this procedure has not been extended to other monosaccharides. The benzothiazole may function as a masked aldehyde, on further manipulation hydrolysis of the heterocycle may be effected to afford the formyl *C*-glucoside **199** (Scheme 73).

2.6.2 Synthesis of 2-pyranosylbenzimidazoles

Establishing a route to 2-pyranosylbenzimidazoles has proven to be more challenging, however a recent synthesis of 2- β -D-glucopyranosylbenzimidazole has been accomplished by Somsak *et al* (Scheme 74).¹⁹⁷ Somsak's route requires addition of ethanethiol to nitrile **200** to afford a thioimidate intermediate **201**, which was transformed into the target **202** in a modest yield (34%) on treatment with *o*-phenylenediamine.

Scheme 74: (a) EtSH, Et₂O/HCI, 0°C, (b) 1,2-diaminobenzene, pyridine.

The only other route known was reported by Chapleur and Castro 25 years ago (Scheme 75).²⁰⁰ Coupling of ulosonic acid derivative **203** with *o*-phenylenediamine was achieved by employing Castro's reagent. The resultant amide **204** was found to cyclise in refluxing diglyme ($160 \,^{\circ}$ C) in the presence of Na₂CO₃ to give benzimidazole **205** in 75% yield. Acid-induced hydrolysis then afforded a mixture of furanose and pyranosebenzimidazole products **206-208**, the relative proportions of which were found to be solvent dependent.

Scheme 75: (a) 1,2-aminobenzene, $BtOP^+(NMe)_3 PF_6^-$, NEt_3 (b) Na_2CO_3 , Diglyme, (c) TFA, H_2O .

2-Pyranosyimidazoles are also rare. $2-\alpha$ -D-Glucopyranosylimidazole and $2-\beta$ -D-glucopyranosylimidazole have been synthesised by Vasella and Granier (Scheme 76)²⁰¹ but, to the author's knowledge, no group has attempted to employ this methodology to prepare the analogous benzimidazoles. Vasella's route is similar to that of Dondoni (scheme 73); addition of 2-lithio-1-(dimethylamino)methyl-1*H*-imidazole to tetra-*O*-benzyl-D-gluconolactone affords hemiacetal **209** (68%). Reduction of **209** formed a 12:88 mixture of diols **210** which, after chromatographic separation and dehydration, cyclised to the desired heterocyclic products **212** and **213** (80% yield).

Scheme 76: (a) BuLi, $1-(Me_2NCH_2)Im$, THF (b) NaBH₄, dioxane, H₂O, AcOH (c) 3,5dinitrobenzoyl chloride, pyridine (d) NaH, DMF.

2.6.3 Synthesis of 2-pyranosylbenzoxazoles

At the outset of this work, 2-pyranosylbenzoxazoles were believed to be unknown, however rare examples of furanosyl analogues had been prepared.²⁰² The synthesis of these compounds is outlined later, in section 2.7.1.

2.6.4 Nitrile oxide route to pyranosylbenzazoles

2.6.4.1 2-Pyranosylbenzothiazoles

Pilot work was conducted with D-xylose derived nitrile oxide **151**, following a procedure based on that of Sasaki *et al.*¹³⁶ Stirring the hydroximoyl chloride **106** with 2.5 equivalents of *o*-aminothiophenol in refluxing ethanol afforded 2-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)benzothiazole (**214**, 90% yield) on cooling, or after dry-flash chromatography. Distinctive NMR signals corresponding to the pyranosyl ring protons were observed. The coupling between H-1` and H-2` was found to be 9.5 Hz, which demonstrated that the expected β -anomer was obtained. Signals characteristic

for the heterocyclic ring were also observed in the ¹H and ¹³C NMR spectra [δ_{H} 7.36-7.44 (2H, m, Ar), 7.81-7.96 (2H, m, Ar), δ_{C} 166.6 ppm (C-2), 152.5 ppm (C-3a), 134.7 ppm (C-7a)]. D-Glucose derived benzothiazole **215** was synthesised in a similar fashion (81% yield). The products of both reactions were found to have similar analytical and spectroscopic properties to those in the literature.¹⁹⁸

The proposed reaction mechanism is outlined in Scheme 77.¹³⁶ One equivalent of amine is believed to dehydrochlorinate the hydroximoyl chloride to form a nitrile oxide, attack by a second equivalent of amine leads to amidoxime formation, and finally this intermediate can expel hydroxylamine and cyclise to the benzazole. In the case of benzothiazole formation, the possibility of initial attack by the thiol was considered unlikely on account of previous observations by the Sasaki group,¹³⁶ presumably the neutral conditions do not allow formation of the more nucleophilic thiolate anion. Risitano *et al*¹⁹¹ have isolated the postulated amidoxime intermediates when studying additions of *o*-phenylenediamine to aryl nitrile oxides.

S-2-aminophenyl-2,3,4-tri-O-acetyl- β -D-xylopyranosylformothiohydroximate (216) was prepared by stirring *o*-aminothiophenol with hydroximoyl chloride 106 in the presence of triethylamine (78% yield).

The ¹H and ¹³C NMR spectra were reminiscent of the thiophenol adduct, except for the presence of a broad singlet at 4.35 ppm due to the primary amino group. The structure of **216** was confirmed by X-ray crystallography (see Figure 5). The crystal

structure clearly displayed that the thiohydroximate moiety exclusively adopted the expected Z-configuration. Stirring the thiohydroximate in refluxing ethanol over 5 hours did not lead to any benzothiazole formation; this observation therefore also appeared to favour a mechanism involving initial attack on the nitrile oxide by the amino group.

Figure 5- Crystal structure of S-2-aminophenyl-2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (**216**)

The work by Sasaki¹³⁶ and Parkanyi¹⁹⁰ indicated that the reaction proceeded under milder conditions. For example, stirring benzohydroximoyl chloride with 2 equivalents of *o*-aminothiophenol at room temperature for 3 hours afforded the corresponding benzothiazole in 95% yield. Attempts to employ such conditions with D-xylose and D-glucose derived hydroximoyl chlorides **106** and **107** proved to be unsuccessful.

2.6.4.2 Synthesis of 2-pyranosylbenzimidazoles

Reaction of hydroximoyl chloride **106** with *o*-phenylenediamine in refluxing ethanol in a similar manner to above (section 2.6.4.1) afforded the expected benzimidazole **217** (83% yield). Unlike the previous cases, the reaction was also found to proceed

cleanly and efficiently when the starting materials were stirred at room temperature for 12-16 hours. In pilot studies the product was separated from excess starting material by dry-flash chromatography. The original work-up was found to be tedious, but was greatly improved by diluting the reaction mixture with DCM and washing with 4% CuSO₄ solution. The washing step led to the formation of an insoluble lilac precipitate, which was attributed to the copper (II) ions chelating out the residual *o*phenylenediamine. Purified material was obtained after filtration through a silica pad and crystallisation from ethylacetate/hexane. The ¹H and ¹³C NMR data provided useful structural information for identification of the product, since both were simpler than those obtained for the benzothiazoles. This phenomenon was attributed to certain positions becoming magnetically equivalent due to rapid proton exchange between N-1 and N-3, Such prototropic tautomerism is well known to occur in CDCl₃ solutions of imidazoles and benzimidazoles (Scheme 78).¹⁹³

Scheme 78

The ¹H NMR spectrum for D-xylose derived benzimidazole **217** showed a distinctive broad signal corresponding to H-4 and H-7 [$\delta_{\rm H}$ 7.50 ppm (2H, vbs)], while the ¹³C NMR spectrum showed only two major (heterocyclic) peaks (C-2 148.8 ppm, C-5,6 123.4 ppm). The remaining quaternary carbons, C-4 and C-7 gave very broad signals *c.f* 2-methylbenzimidazole. The D-glucose analogue **218** was prepared similarly (89% yield).

The structure of **217** was confirmed by X-ray crystallography (Figure 6, ethyl acetate solvent has co-crystallised).

Figure 6- Crystal structure of 2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)benzimidazole (217)

Selected bond lengths are compared with benzimidazole itself in Table 9.²⁰³ All bond distances are not significantly different (within 3σ), with the exception of N1A-C9A, which is somewhat shorter than expected. This may be a direct result of the poor quality of the diffraction data. The distances quoted above were freely refined, whereas the benzene ring was constrained to be a perfect hexagon. No comparison was made with 2-methylbenzimidazole since the proton in this crystal structure is disordered over the two N atoms and this results in bond distances being averaged.

	Bond Length/ Å (217)	Bond Length/ Å Benzimidazole ²⁰³		
N3A-C2A	1.313(9)	1.311(5)		
N3A-C4A	1.380(9)	1.395(3)		
N1A-C2A	1.331(10)	1.346(4)		
N1A-C9A	1.346(8)	1.372(4)		

Table 9: Comparison of bond lengths in 217 and Benzimidazole

A number of substituted 1,2-diaminobenzenes are commercially available, therefore it was decided to investigate the possibility of subjecting such nucleophiles to the reaction conditions established in section 2.6.4.1. 4-Nitro-1,2-diaminobenzene was selected as a candidate due to the reduced nucleophilicity of the amino groups. It was believed that if this reaction was successful, other less electron poor nucleophiles (such as halogenated 1,2-diaminobenzenes) could be employed. Stirring hydroximoyl chloride **106** with 4-nitro-1,2-diaminobenzene in refluxing ethanol afforded crude benzimidazole **219** (Scheme 80). In this case washing the reaction mixture with 4% CuSO₄ solution did not efficiently chelate out the residual amine. Attempted purification by dry-flash and wet-flash chromatography was not completely successful, a red material was obtained which was estimated to be \sim 90% benzimidazole by ¹H NMR.

The pyranosyl ring region of the ¹H NMR spectrum resembled those of the unsubstituted benzimidazoles although all of the ring proton signals were shifted to higher frequency. The aromatic region contained distinctive signals for each of the 3 protons on the benzo-fused component [$\delta_{\rm H}$ 8.64 ppm (d, 4-H, $J_{\rm H4-H6}$ 1.8 Hz), 8.28, (dd, 6-H, $J_{\rm H6-H7}$ 8.8 Hz), 7.89, (d, 7-H, $J_{\rm H4-H6}$ 1.8 Hz), 6.60 ppm (dd, H-4, $J_{\rm H4-H5}$ 7.3 Hz, $J_{\rm H4-H6}$ 0.6 Hz), 6.58 ppm (dd, H-9, $J_{\rm H9-H8}$ 7.3 Hz, $J_{\rm H9-H7}$ 0.6 Hz)]. Although the product was not fully purified, the experiment demonstrated that an electron poor 1,2-diaminobenzene would indeed react under the established conditions.

2.6.4.3 Synthesis of 2-pyranosylbenzoxazoles

The success of the previous reactions encouraged attempts to prepare the hitherto unknown 2-pyranosylbenzoxazoles. Reaction of D-xylose nitrile oxide 151 with oaminophenol in refluxing ethanol, in a similar manner to that outlined in section 2.6.4.1, afforded the expected benzoxazole **220** in 68% yield. The reaction was also found to proceed with no reduction of yield at room temperature after stirring for 16 hours. Dry-flash chromatography was avoided by diluting the reaction mixture with DCM, as the phenol was found to be insoluble in chlorinated solvents. The solid was filtered off before removing any residual *o*-aminophenol with a 0.1 M HCl wash. Purified material was obtained after filtration through a silica pad and crystallisation from ethyl acetate/hexane. Again, the D-glucose analogue **221** was prepared similarly (71% yield). Distinctive NMR signals corresponding to the pyranosyl ring protons were observed in each case. Signals characteristic for the heterocyclic ring were also observed in the ¹H and ¹³C NMR spectra [δ_{H} 7.64-7.68 (1H, m, Ar), 7.49-7.52 (1H, m, Ar) 7.27-7.32 (2H, m, Ar), δ_{C} 159.9 ppm (C-2), 150.6 ppm (C-7a), 140.2 ppm (C-3a)]. The NMR data for both products were found to correlate with those found for 2-alkylbenzoxazoles.¹⁹⁴

2.6.5 Deprotection studies

On completion of the peracetylated series of pyranosyl heterocycles, it was decided to investigate deprotection of **217**, **218** and **220**. Many conditions are available for deprotection: The classic Zemplen method (NaOMe/MeOH) was considered too harsh²⁰⁴ and methanolic ammonia was regarded as being inconvenient.²⁰⁴ Milder conditions were ultimately employed. Treatment of the acetylated substrates with triethylamine in methanol,¹⁸⁹ or (as recently reported by Field *et al*²⁰⁵) 4Å molecular sieves in methanol, allowed efficient deprotection in all cases (refer to Table 11, section 2.6.7). The latter conditions were found to achieve deprotection more rapidly.

NMR spectra were obtained in D₂O and D₃COD, however d₆-DMSO was found to give superior resolution. The ¹H and ¹³C spectra of deprotected benzoxazole **222** were not significantly different from the acetylated precursors, although coupling was observed between the pyranosyl ring protons and the ring OHs ($J_{\text{H-OH}}$ 5.0-5.9

Hz) and hence more complex coupling patterns than expected were observed for the ring protons. The ¹H and ¹³C spectra of the deprotected benzimidazoles **223** and **224**, however, were markedly different from their acetylated derivatives, The D-glucose derived product **224** serves as a convenient example. The ¹H NMR spectrum no longer showed H-4 and H-7 as broad signals and the ¹³C NMR contained individual signals for the aromatic CHs and quaternary carbons. The NMR data indicated that proton exchange between N-1 and N-3 had been limited in DMSO and hence any previously magnetically/chemically atoms were no longer so. The structure of **224** was confirmed by X-ray crystallography (Figure 7).

Figure 7- Crystal structure of 2-β-D-glucopyranosylbenzimidazole (224)

Selected bond lengths for compound **224** are compared with benzimidazole in Table 10. The bond lengths were found to be in good agreement with those of benzimidazole (within 3σ).

· · · · · · · · · · · · · · · · · · ·	Bond Length/ Å (224)	Bond Length/ Å	
		Benzimidazole	
N3A-C2A	1.314(2)	1.311(5)	
N3A-C4A	1.395(2)	1.395(3)	
N1A-C2A	1.360(2)	1.346(4)	
N1A-C9A	1.384(2)	1.372(4)	

Table 10: Comparison of bond lengths in 224 and benzimidazole

As in the benzoxazoles case, coupling was observed between the pyranosyl ring protons and the OHs ($J_{\text{H-OH}}$ 5-5.9 Hz) and again the ring protons gave rise to more complex splitting patterns. A COSY ¹H NMR experiment allowed a full assignment of the spectrum.

2.6.6 Biological activity

During the course of the project, 2- β -D-glucopyranosylbenzimidazole was reported to inhibit glycogen phosphorylase (K_i 8.6 μ M).¹⁹⁷ This enzyme is currently a target for hypoglycemic drugs to treat impaired insulin production (type 2 diabetes). The function of glycogen phosphorylase is outlined below.

2.6.6 Glycogen phosphorylase function

Glycogen phosphorylase (GP) catalyses the breakdown of glycogen to glucose-1phosphate (Glc-1-P) (glycogenolysis), the process is illustrated in scheme 80.²⁰⁶

Scheme 80

The mechanism of phospholytic cleavage of glycogen has been established by Helmreich and co-workers (Scheme 81).²⁰⁷ Pyridoxal phosphate is believed to function as an acid/base catalyst for orthophosphate, orthophosphate donates a proton to the departing "OR" group and then attacks the glucosyl cation to form α -glucose-1-phosphate.

As indicated in Schemes 80 and 81, the process is reversible, as the glycogen 4-OH can displace the Glc-1-P phosphate group to reform chain extended glycogen.

Glycogen phosphorylase exists in two forms, Phosphorylase *b* is usually inactive and Phosphorylase *a* is active. Phosphorylase *b* is transformed into the *a* form by phosphorylation of the serine 14-residue on each subunit (Scheme 82).^{206,208}

Both Phosphorylase a and b are structurally different, a exists in an R-state (relaxed) while b exists in a T-state (tense). The glycogen binding site is 30 Å from the catalytic site, they are connected by a tunnel, which is blocked in the T state.²⁰⁶ Molecules that would stabilise the inactive T-form of GPb, and thus inhibit glycogenolysis, have become drug targets for controlling blood glucose levels.

The presence of glucose and caffeine (**225**) are known to favour the inactive form, with glucose binding to the active site and caffeine to a site nearby.²⁰⁹ Analogues of glucose and caffeine have therefore been investigated as GP inhibitors.²⁰⁹ Adenosine mono phosphate (AMP) is a known allosteric activator of GP, and as a result inhibitors of AMP have also received attention.^{209,210} In the last five years new allosteric sites have been identified through X-ray studies with novel inhibitors, and these sites offer potentially new drug targets.^{209,210}

An X-ray crystal structure of a $2-\beta$ -D-glucopyranosylbenzimidazole/enzyme complex has demonstrated that this inhibitor primarily binds to the catalytic site.²¹¹

Binding was also found to take place at the indole/caffeine site and a previously unknown binding site, but it is unclear whether this new site will be of interest as a future drug target.

2.6.7 Conclusions/Further Work

2- β -D-Pyranosyl benzoxazoles, benzimidazoles and benzothiazoles have been synthesised in good yields (Table 11). The key addition/cyclisation reaction proceeds under mild and neutral conditions, which do not necessitate resilient protecting groups and chromatographic purification is largely avoided. Pilot experiments have indicated that substituted benzazoles could also be accessible by this methodology. Addition of halogenated *o*-hydroxy, thio or amino anilines could afford benzazoles which could be manipulated further using Pd(II) chemistry.

Hydroximoyl	X	R	Y	Yield %
Chloride				
214	Н	Ac	, S	90
215	CH ₂ OAc	Ac	S	81
217	Н	Ac	NH	88
218	CH ₂ OAc	Ac	NH	85
220	Н	Ac	0	68
221	CH ₂ OAc	Ac	0	71
222	Н	Н	0	92
223	Н	Н	NH	93
224	CH ₂ OH	Н	NH	95

Table 11: Summary of Benzazole Results

2.6.7.1 Potential glycosidase inhibition

The Vasella group have synthesised 2- β -D-glucopyranosylimidazole (**213**) (see section 2.6.2),²⁰¹ and found that this compound inhibits sweet almond glucosidase (K_i 640 μ M). Glycosidase inhibitors have many therapeutic applications, including: antiviral activity,²¹² anticancer activity,²¹³ treatment of diabetes,²¹⁴ treatment of

obesity,²¹⁵ amongst others. The mode of action of retaining- β -O-glycosidases was outlined in section 2.6.1. Imidazoles such as **213** are believed to inhibit glycosidases by shuttling a proton between the glutamate residues in the glycosidase catalytic site (Scheme 83), thus preventing entry and binding of the substrate.¹⁷⁰ In principle, there is no reason why 2- β -D-glucopyranosylbenzimidazole or derivatives could not be employed in a similar capacity.

2.7 Ambident nucleophile additions 2-furanosylbenzazole synthesis

Whilst investigating 2-pyranosylbenzazole chemistry, it was realised that the same methodology could be applied to the synthesis of furanosyl analogues. Such *C*-nucleoside analogues are of great interest, particularly in the design of antiviral compounds.^{216,217} 2-Furanosylbenzimidazoles, benzoxazoles, and benzothiazoles have been the subject of a recent patent, held by Celltech,²¹⁸ who report them to be potential therapeutic agents for cystic fibrosis. A brief overview of the available methods for making 2- β -furanosylbenzazoles is provided below.

2.7.1 Synthesis of 2-furanosylbenzazoles

Early research in this area examined additions of *o*-substituted anilines to aldonic acids,²¹⁹ such procedures required harsh conditions (reflux in the presence of mineral acids), which could result in anomeric mixtures of products. Addition of lithiated heterocycles to sugar lactones featured in section 2.6.1 in syntheses of 2-pyranosylbenzazoles, and the most successful approaches to furanosyl analogues also employ this method. Early work by Ogura and Takahashi²²⁰ examined addition of lithiobenzothiazole and 1-benzylbenzimidazole to lactones such as the D-gulose derived compound **226** (Scheme 84). The heterocyclic unit in resultant hemiacetals **227** was found to occupy the β -position (40-70%). Disappointingly, however, attempts to remove the anomeric OH group with trimethylammonium formate proved to be unsuccessful.

Scheme 84

Ogura's methodology has been revisited in recent years by Benhida et al (Scheme 85).^{221, 222} The initial stage in the updated method still features addition of a lithiated heterocycle to a furanosyl lactone, however the anomeric OH is removed by a successive reduction / Mitsunobu cyclisation strategy. Addition of benzyloxymethyl

(BOM) protected 2-lithiobenzimidazole to ribose derived-lactone **228** afforded hemiacetal **229** in 75% yield as a mixture of anomers (45:55). Subsequent hydrogenation and borohydride reduction afforded a diastereomeric mixture (~1/1 ratio) of diols **230**, which was converted to 2- β -D-ribofuranosyl derivative **231**, in 90% yield, by a stereocontrolled Mitsunobu type cyclisation.

Scheme 85: (a) NBOM benzimidazole, LDA, THF, -50° C (b) H₂ (60 psi), Pd/C, MeOH, THF (c) NaBH₄, MeOH (d) DEAD, PPh₃, MeOH.

2- α -D-Ribofuranosylbenzimidazoles have also been made by this method. Performing a Felkin-Ahn controlled borohydride reduction before heterocycle deprotection afforded a diastereomeric mixture of diols, where the *S* diol (C*) was the major product (95:5, *S*:*R*). Ring-closure was achieved in a similar fashion. There have been no reports to date that employ Benhida's procedure to prepare benzothiazole or benzoxazole derivatives.

100

Scheme 86: (a) NaOMe (b) o-aminophenol, MeOH (c) EtSH, HCl (d) H₂S, pyridine (e) oaminophenol, EtOH.

It was stated in section 2.6.3 that furanosylbenzazoles were rare. The only synthesis reported until recently, was achieved by Kawai and El Khadem (Scheme 86).²⁰² β -D-Ribofuranosyl cyanide 232 was converted to acetimidate 233, which was found to be highly hygroscopic and therefore required handling in a glove box. Refluxing 233 and *o*-aminophenol in methanol for 2 hours afforded benzoxazole 234 in 20% yield. A second approach was attempted based on dithioate intermediate 237. Refluxing dithioate 237 with *o*-aminophenol in ethanol for 36 hours afforded benzoxazole 234 in 24% yield. The low yields, careful handling and toxic reagents associated with the above procedures probably account for the limited use of this process.

2.7.2 Nitrile oxide based strategy

The first route examined the preparation of 2- β -D-ribofuranosylbenzazoles (Scheme 87). The key difference between the strategy to be employed for the ribose-derived benzazoles and that for pyranose derivatives, was the use of a nitrile precursor, rather than a nitromethyl sugar. This decision was made since previous work within the group,²²³ and by others,²²⁴ had found the preparation of nitromethylribose in large quantities to be arduous and low yielding. In contrast, the ribose derived nitrile **238**

was well known^{184,185,225-230} and readily accessible from commercially available **239** (Scheme 87).

Scheme 87: (a) *o*-aminothiophenol, EtOH (b) TMSCN, BF₃.Et₂O,MeCN (c) PhNHCH₂CH₂NHPh, Raney Ni, NaH₂PO₂, pyridine/AcOH/H₂O (d) TsOH (e) NH₂OH. HCl, pyridine (f) Cl₂ (f) Y=NH, *o*-phenylenediamine; EtOH, Y=O, *o*-aminophenol.

The proposed strategy was also believed to be particularly advantageous over previous strategies because all three possible β -D-ribofuranosylbenzazoles could be

made from the same starting material. The benzothiazole **240** could be accessed from nitrile **238** directly *via* the previously mentioned procedure of Farkas and co-workers.¹⁹⁵ The focus of the current work was to prepare the benzoxazole **241** and benzimidazole **242** by the nitrile oxide methodology (section 87).

2.7.2.1 Ribose Nitrile Oxide Precursors

2.7.2.2 Synthesis of 3,4,5-tri-O-benzoyl- β -D-ribofuranosyl cyanide (238)

A survey of the literature revealed many methods for the preparation of the title compound,^{184,185,225-230} The method of Morelli *et al*²²⁵ is representative and was ultimately chosen. β -D-Ribofuranosyl acetate **239** was reacted with trimethylsilyl cyanide (TMSCN) in the presence of catalytic boron trifluoride etherate to afford an amber solution after 5 minutes. The reaction mixture was quenched with aqueous NaHCO₃ and the target nitrile isolated in 86% yield after wet-flash chromatography. The reaction was found to proceed without reduction of yield when attempted on a gram scale. The ¹H NMR spectrum was in agreement with the literature²²⁵ and the target nitrile isolated is stereospecific for the required β -configured product, an effect attributed to neighbouring group participation of the benzoyl ester at C-2 (scheme 88).¹⁸⁵

2.7.2.3 Synthesis of 2,5-anhydro-3,4,6-tri-*O*-benzoyl- β -D-allose oxime (243)

Some years ago Moffat and co-workers reported a three-step synthesis of the title compound 243 from nitrile 238.²³¹ The first step involved conversion of the nitrile to imidazoline 244, which on treatment with *p*-toluenesulfonic acid afforded formyl-*C*-furanoside 245. Crude 245 was reacted with hydroxylamine hydrochloride to obtain the required oxime. A modified version of Moffat's procedure was employed in the current synthesis. 3,4,5-Tri-*O*-benzoyl- β -D-ribofuranosyl cyanide was stirred with

Raney nickel, N.N-diphenylethylenediamine (Wanzlick's reagent) and sodium hypophosphite in aqueous acetic acid and pyridine. Imidazoline 244 was isolated in 59% yield after wet-flash chromatography. The separation between the product and diamine proved to be very small by TLC ($\Delta R_f = -0.025$, 30% EtOAc in hexane), which made purification more difficult than expected. In addition to the expected signals for the carbohydrate ring and its benzoyl protecting groups and the imidazoline N-phenyls, peaks corresponding to the imidazoline moiety itself were observed [δ_C 48.0 ppm (NCH₂), 48.4 ppm (NCH₂), 84.2 ppm (C-2), δ_H 3.62-3.77 ppm (2H, m, NCH₂), 3.81-3.96 ppm (2H, m, NCH₂), 5.97 ppm (1H, s, 2-H)]. The signal for H-2 appears as a singlet, an observation consistent with the product being obtained as the β -anomer. Treatment of imidazoline 244 with *p*-toluenesulfonic acid afforded crude aldehyde 245, which was immediately reacted with hydroxylamine hydrochloride and pyridine. The title compound (45% yield) was finally obtained as a 4:1 mixture of isomers (E:Z) after purification by dry-flash chromatography. Diagnostic peaks for the oxime unit were seen in the NMR spectra [δ_{C} 148.3 ppm (C=N), $\delta_{\rm H}$), 8.88 ppm, bs (OH) (E)),], and the analytical data were consistent with literature values.¹⁴²

Although the required oxime **243** was obtained, the procedure was not considered satisfactory if larger scale syntheses were to be accomplished. Particular concerns included: the final yields of oxime and imidazoline were lower than expected, extensive chromatographic purification was required, and it was thought desirable to avoid the aldehyde intermediate if possible. The previously mentioned Somsak/Toth procedure¹⁵¹ (section 2.2.2) for pyranosylaldoxime synthesis offered a viable alternative to that described above.

Scheme 89: (a) semicarbazide.HCl, KOH, Raney Ni, NaH₂PO₂, pyridine/AcOH/H₂O (b) NH₂OH. HCl, pyridine

The alternative procedure is essentially a modified version of that reported by Moffat et al.²³¹ Somsak demonstrated¹⁵¹ that sugar nitriles could be converted under reducing conditions into semicarbazones by reaction with semicarbazide and that these semicarbazones were found to efficiently undergo transimination with hydroxylamine to afford the corresponding aldoximes. Crucially, the aldehyde formation step is avoided and it was hoped that crude semicarbazone 246 could be employed in the final step and hence eliminate tedious purification steps. A mixture of 3.4.5-tri-O-benzoyl-β-D-ribofuranosyl cyanide (238) Raney nickel, semicarbazide hydrochloride, KOH, sodium hypophosphite in aqueous acetic acid and pyridine was heated to 40 °C for 4 hours. The reaction mixture was washed successively with 1 M HCl, saturated NaHCO₃ and water before isolating the crude semicarbazone as a light brown solid. Diagnostic peaks for the semicarbazone unit were seen in the NMR spectra [δ_C 157.4 ppm (C=O), 138.6 ppm (C=N) δ_H), 9.85 ppm, bs, (OH), 7.13 ppm, d, (CH=N), J_{H1-H2} 5.2 Hz]. The crude material was taken on to the next step immediately. Hydroxylamine hydrochloride was added to a solution of crude semicarbazone in acetonitrile / pyridine and the reaction stirred at room temperature under argon for 16 hours. Purification by wet-flash chromatography afforded the title compound as a colourless oil (81% yield). The NMR data and physical properties were identical to those obtained previously by the original route. The second procedure was judged to be the more suitable of the two and allowed attempts to prepare ribose-derived hydroximoyl chloride 247.

2.7.2.4 Attempted synthesis of ribose derived hydroximoyl chloride (247)

It was envisaged that the procedures outlined in section 2.2.3 for the synthesis of pyranosylhydroximoyl chlorides would also be suitable for the required ribofuranose analogue. It was known that Moffat *et al*¹⁴² had used a similar procedure in the preparation of **247** toward the synthesis of β -D-ribofuranosylisoxazoles. Repeated chlorinations were conducted in the manner described previously, but were disappointingly only partly successful. The ¹H and ¹³C NMR spectra of the product were more complex than expected, indicating that more than one species was present after chlorination. Peaks corresponding to hydroximoyl chloride **247** could be

identified [δ_C 137.2 ppm (C=N), δ_H 9.81 ppm, bs, (OH)], however they appeared to make up the minor component of the mixture. The identity of the other substance remains unclear.

A milder chlorination procedure employing *N*-chlorosuccinimide ³³ was attempted in order to avoid by-product formation. A pilot reaction with the aim of making the furoxan dimer **248** was employed to establish the usefulness of the new conditions. A mixture of oxime **243**, *N*-chlorosuccinimide and pyridine in chloroform was heated to 40° C for *ca* 45 minutes. On cooling, triethylamine was added and the mixture stirred for 1 hour. Dry-flash chromatography afforded furoxan **248** as a colourless gum (107 mg, 72%). The formation of furoxan in high yield was a good indication that the NCS method was the better way of obtaining the desired nitrile oxide precursor **247**. The newer method also had the advantage of being a one-pot procedure.

2.7.2.5 Synthesis of 2-(2,3,5-Tri-O-benzoyl- β -D-ribopyranosyl)benzoxazole (241)

Scheme 90: (a) NCS, pyridine (b) o-aminophenol, EtOH

A mixture of oxime 243, N-chlorosuccinimide and pyridine in chloroform was heated to 40° C for *ca* 45 minutes and, after cooling, the solvent was removed *in vacuo*. A solution of the resulting hydroximoyl chloride and *o*-aminophenol in ethanol was heated at reflux for 5 hours. The reaction mixture was washed with 1 M

HCl before dry-flash chromatography afforded **241** as a colourless gum (92% yield). Diagnostic peaks corresponding to the benzoxazole moiety were observed in the ¹³C NMR spectra [δ_{C} 162.5 ppm (C-2), 152.0 ppm (C-7a), 141.7 ppm (C-3a)].

2.7.2.6 Synthesis of 2-(2,3,5-Tri-O-benzoyl- β -D-ribopyranosyl)benzimidazole (242)

Scheme 91: (a) NCS, pyridine (b) o-phenylenediamine, EtOH

A mixture of oxime 243, *N*-chlorosuccinimide and pyridine in chloroform was heated to 40°C for *ca* 45 minutes. On cooling, the solvent was removed *in vacuo*. The residue and *o*-phenylenediamine were refluxed in ethanol for 5 hours. The reaction mixture was washed with 4% CuSO₄ solution before dry-flash chromatography afforded 242 as a colourless gum (90% yield). The ¹H and ¹³C NMR spectra showed a distinctive benzimidazole signals that were reminiscent of the pyranosyl analogues [$\delta_{\rm H}$ 7.90-7.94 ppm (2H, m), 7.23-7.27 ppm (2H, m)], while the ¹³C NMR showed only two major peaks [$\delta_{\rm C}$ 151.3 ppm (C-2), 123.2 ppm C-5, C-6)]. Tautomerism of the benzimidazole ring led the C-4 and C-7 signals being broadened out in an analogous fashion to the pyranosylbenzimidazoles in section 2.6.4.2.

2.7.2.7 Deprotection ribopyranosyl)benzoxazole (241)

of

Scheme 92

Studies were conducted to establish efficient deprotection conditions. Benzoate esters are known to be more resilient than their acetyl counterparts,²⁰⁴ therefore Zemplen deprotection of 2-(2,3,5-tri-O-benzoyl-B-D-ribopyranosyl)benzoxazole (241) with methanolic sodium methoxide was attempted.²⁰⁴ The benzoxazole was stirred in freshly prepared sodium methoxide/methanol solution for 16 hours. The reaction was guenched with Amberlite $120(H^{+})$ resin before purification by wet-flash chromatography. The product was obtained as a mixture of anomers. A COSY ¹H NMR experiment allowed the carbohydrate ring protons for both isomers to be identified. The most distinctive signals for each were the anomeric [$\delta_{\rm H}$ 4.47 ppm, d, (1-H β), 5.08 ppm, d, (1-H α)] protons, which were assigned α (249a) and β (249b) by comparison with analogous compounds in the literature.²²¹ The anomeric integrals were measured and hence the isomer ratio calculated (β : α , 62:38). The aromatic protons were observed as a large set of multiplets between 6.92 and 7.67 ppm. The conditions used were evidently too harsh, therefore milder conditions were sought. Time precluded any further work with the benzoxazoles, consequently the remaining stock of benzimidazole 242 was used for further deprotection reactions.

108

2-(2,3,5-Tri-O-benzoyl-β-D-

2.7.2.8 Deprotection of 2-(2,3,5-Tri-O-benzoyl- β -D-

ribopyranosyl)benzimidazole (242)

Stocks of benzimidazole **242** were limited and it was therefore impossible to investigate the effect on anomeric ratio by diluting the NaOMe solution or shortening the reaction time. It was therefore decided to employ the milder method of Bazin *et al.*¹⁸⁹ Benzimidazole **242** was dissolved in triethylamine and methanol, and heated to 50°C for 4 days. After removal of the solvent and wet-flash chromatography, 2- β -D-ribofuranosylbenzimidazole (**250**) was obtained as a white foam (91% yield). The ¹H NMR spectrum showed diagnostic peaks for the benimidazole ring [δ_{H} 7.07-7.10 ppm (2H, m), 7.35-7.41 ppm (2H, m)] in addition to the expected carbohydrate ring signals. A comparison with literature ¹H NMR values²³¹ was made in order to confirm that the β -anomer had indeed been prepared (Table 12). None of the α -isomer was detected in the crude reaction mixture.

	δ _H (ppm)	$J_{1^{\prime}-2^{\prime}}(Hz)$
Literature α^{231}	5.21	8.0
Literature β^{231}	5.06	5.0
250	4.92	5.3

Table 12 Comparison of literature δ_H / J values with benzimidazole 250

The benzimidazole ring signals in the ¹³C NMR spectrum [δ_C 152.9 ppm (C-2), 123.2 ppm C-5, C-6)] were reminiscent of the protected compound **242**; a very broad signal *ca* 115 ppm was attributed to C-4 and C-7.

2.7.3 Conclusions/Further Work

A revised route to D-ribose derived hydroximoyl chloride 247 has been established. Reaction of nitrile 238 with semicarbazide afforded crude semicarbazone 246 in ~85% yield and was transformed to oxime 243 by treatment with hydroxylamine hydrochloride. Hydroximoyl chloride 247 was initially prepared by chlorination, however the reaction was unsatisfactory due to formation of an unidentified byproduct. Treatment of 243 with NCS was found to afford crude hydroximoyl chloride in almost quantitative yield. Reaction of D-ribose derived nitrile oxide 92 with *o*phenylenediamine and *o*-aminophenol afforded benzimidazole 242 and benzoxazole 241 in 90% and 92% yield respectively. An attempt to deprotect 241 under Zemplen conditions led to a 62:38 mixture of 2- β -D-ribofuranosylbenzoxazole (249b) and 2- α -D-ribofuranosylbenzoxazole (249a). 2- β -D-Ribofuranosylbenzimidazole (250) was prepared in 91% yield by reacting 242 under mild conditions. The products obtained in this section are *C*-nucleoside analogues and may therefore be of interest as anti-viral agents, The established route offers a mild and stereocontrolled approach to future candidates for the treatment of cystic fibrosis.

2.8 Perimidine chemistry

2.8.1 Introduction

Perimidines (251) are *peri*-naptho-fused derivatives of pyrimidine. The chemistry of perimidines has been already been reviewed²³²⁻²³⁴ and therefore only a brief overview of their synthesis and applications is presented here.

Perimidines and their derivatives have found a variety of applications; they have been used in dyestuffs²³²⁻²³⁴ for many years and more recently in the manufacture of polyester fibres²³²⁻²³⁴ and antistatics.²³⁵ The biological activity of perimidines and their derivatives have also been examined; they are believed to intercalate DNA, and have therefore been tested as antitumor agents.^{236,237} They have also been found to possess antiulcer, antimicrobial and antifungal activity.²³²⁻²³⁴

A range of substituents have been installed at the 2-position of perimidines; these include alkyl, aryl and heterocyclic groups. In contrast, no report of a pyranosyl substituted perimidine has been made to date. The majority of the methods of 2-perimidine (**251**) synthesis use 1,8-diaminonaphthalene (DAN) as the starting material, the most common routes are outlined in (Scheme 94).²³²⁻²³⁴ Addition of DAN to carboxylic acid derivatives leads to amide intermediates (**252**), which cyclise in refluxing acid (4 M HCl or formic acid for example). The corresponding reaction with aldehydes affords 2,3-dihydroperimidine products (**253**), oxidation of which yield the desired 2-perimidine. Milder conditions²³² have been developed which involve cyclisation of amidine intermediates (**254**).

Scheme 94: (a) [X = halide, OR, COR, OH] 1,8-diaminonapthalene (b) H^+ reflux (c) 1,8-DAN (d) Pd/C or DDQ (e) [Y = CN, HN=COR, HN=CNH₂] DAN (f) H^+ .

The rigid nature of 1,8-diaminonapthalene confers a reactivity similar to that of *o*-phenylenediamine,²³² and it was therefore proposed that addition of DAN to nitrile oxides would provide a new and mild method of constructing 2-perimidines (Scheme 95).

Scheme 95

2.8.2 Pilot studies

As 2-phenylperimidine had previously been synthesised and fully characterised,²³⁸ it was chosen as a target for pilot work. Benzohydroximoyl chloride (255), the precursor for benzonitrile oxide (93), was prepared by passing chlorine gas through a chloroform solution of syn-benzaldoxime.¹⁴³ The product was obtained as a white solid in 74% yield. The procedure that had been successfully applied to benzazoles

was employed in the attempted perimidine synthesis. A mixture of benzohydroximoyl chloride (255) and DAN was stirred in refluxing ethanol for 5 hours, before washing the reaction mixture with 4% CuSO₄ solution. The washing procedure was found to work well, although the resultant mixture required more extensive purification by comparison with the benzimidazole syntheses. 2-Phenylperimidine (256) was obtained in 68% yield as an orange crystalline solid.

Scheme 96

The ¹H NMR spectrum and analytical data agreed with those in the literature.²³⁸ The coloured nature of the product is also consistent with the perimidine ring being present, and the electronic structure of the heterocycle. Perimidines have 14π -electrons delocalised over 13 atoms,²³²⁻²³⁴ the electron density is not uniform and this results in an electron deficient heterocyclic ring and an electron rich napthalene component (**257**).²³²⁻²³⁴ The observed colour is attributed to a π - π charge transfer absorption, which is derived from electron transition from the naphthalene ring to the heterocyclic ring.²³³

2.8.3 Synthesis of 2-pyranosylperimidines

The results of the pilot reaction were encouraging enough to attempt to transfer the procedure to carbohydrate scaffolds. D-Xylose derived hydroximoyl chloride **106** was stirred with DAN in refluxing ethanol for 5 hours. Two compounds were isolated from the reaction mixture by chromatography. The least polar fraction (R_f [Et₂O] = 0.35) was found to contain glycal perimidine **258**, the remaining fraction (R_f [Et₂O] = 0.27) afforded the expected pyranosyl perimidine **259**.

The glycal derivative **258** was found to be the major product of the reaction (**258** 43%, **259** 16%, **258**:**259** = 2.68:1, Table 16). The ¹H NMR spectra of both compounds in CDCl₃ had broad signals in the aromatic region due to annular tautomerism in a similar fashion to that observed in benzimidazoles (Scheme 97).²³⁹

Scheme 97

Repeating the NMR experiments in D₆-DMSO appeared to suppress or sufficiently slow the interconversion to obtain well-resolved signals in the aromatic region; the same effect was observed on cooling below -40 °C by Yavari *et al.*²³⁹ In both cases in D₆-DMSO, the heteroatomic ring CH protons were observed at lower frequency than those of the naphthyl unit. Values from glycal perimidine **258** are representative [$\delta_{\rm H}$ 7.47-7.51 ppm (4H, m, H-5, H-6, H-7, H-9), 6.60 ppm (dd, H-4, $J_{\rm H4-H5}$ 7.3 Hz, $J_{\rm H4-H6}$ 0.6 Hz), 6.58 ppm (dd, H-9, $J_{\rm H9-H8}$ 7.3 Hz, $J_{\rm H9-H7}$ 0.6 Hz)]. The NH was clearly defined [$\delta_{\rm H}$ 10.49 ppm (bs, OH)]. In both **258** and **259** the perimidine derived signals in the ¹³C NMR could be assigned by comparison with data from a detailed study by Claramunt et al;²⁴⁰ representative data sets from glycal perimidine **258** and pyranosyl perimidine **259** are presented in Table 13.

C-X	2	. 3a	4	5	6	ба	7	8	9	9a	9b
259	154.0	145.8	115.0	130.3	121.1	136.6	119.2	129.5	104.1	139.4	123.6
δ _C /ppm											
258	150.1	145.9	115.2	130.4	121.0	136.6	119.5	129.5	104.7	139.2	123.8
δ _C /ppm											

Table 13: Comparison of ¹³C chemical shifts of glycal perimidine **258** and pyranosyl perimidine **259**

Several key features in the ¹H and ¹³C NMR spectra indicated that glycal **258** had been formed. Only two peaks corresponding to the acetyl protecting groups were observed [δ_{H} 2.12, 2.10 ppm (2x CH₃); δ_{C} 171.0, 170.9 ppm (2x C=O); 22.3, 22.2 ppm (2x CH₃)] and no signal appeared in anomeric proton region. In contrast, in the case of pyranosyl perimidine **259**, three acetyl signals were observed [δ_{H} 2.05, 2.03, 1.93 ppm (3x CH₃); δ_{C} 171.2, 171.1 170.7 ppm (3x C=O); δ_{C} 22.0, 21.9, 21.8 ppm (3x CH₃)] and the anomeric peak appeared as a doublet [δ_{H} 4.24 ppm (d, H-1[°], $J_{H1^{\circ}}$ H^{2°} 9.7 Hz)]. Glycals are known to adopt a half-chair conformation,¹⁴⁶ therefore the carbohydrate ring signals differ from those observed for a chair conformer. The coupling constant between the 2[°]-H and 3[°]-H protons [$J_{2,3}$ 5.1 Hz] was smaller than that observed in pyranosyl perimidine **259** [$J_{2,3}$ 9.6 Hz]. The remaining signals are observed as complex multiplets rather than discrete doublets of doublets with large coupling constants. The alkene signals in the ¹³C NMR spectrum were particularly apparent, the chemical shift of the anomeric carbon atom being significantly higher than that in perimidine **259** [**258** δ_{C} C-1[°] 149.2 ppm, **259** δ_{C} C-1[°] 78.8 ppm].

The expected pyranosyl perimidine was a green/yellow colour, which is consistent with literature data for similar compounds.²³²⁻²³⁴ The glycal was orange in colour, this shift to lower frequency is probably due to conjugation of the heterocycle with the double bond in the carbohydrate ring. On repeating the above reaction at room temperature for 16 hours, the major product was found to be **259** (60%) together with traces of **258** (TLC).

When D-glucose hydroximoyl chloride 107 was reacted in ethanol at room temperature, similar results were obtained to the xylose case (pyranosyl perimidine 260 65% yield, traces of glycal perimidine 261). Perimidine 260 was found to be the major product (260 34%, 261 16%, 260:261 = 2.13:1, Table 16) when the reaction was attempted in refluxing ethanol.

Both products **260** and **261** had similar ¹H and ¹³C NMR spectra to the xylose analogues. The structure of pyranosyl perimidine **260** was confirmed by X-ray crystallography. Selected bond lengths and bond angles are compared with 2-(anthr-9-yl)perimidine²⁴⁰ and were found to be in good agreement (Tables 14 and 15).

Figure 8- Crystal structure of 2-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)perimidine (260)

The mechanism of glycal formation was proposed to occur *via* an E1cB elimination process due to charge delocalisation onto the heterocycle. Deprotonation would have to occur by the basic DAN nucleophile or a molecule of the newly formed perimidine. The pK_a of DAN is known to be *ca* 5, whereas the pK_a of 2-perimidines is *ca* 6^{232} Clearly, the perimidine would be more basic than DAN and might be expected to be more able to deprotonate the anomeric position, however the pK_a values of the anomeric proton of **259** or **260** are currently unknown.

	Bond length/Å	Bond length/Å
	260	2-(Anthr-9-yl)perimidine ²⁴⁰
N(1)-C(2)	1.351(3)	1.352(2)
N(1)-C(9a)	1.396(3)	1.398(2)
N(3)-C(2)	1.300(2)	1.301(2)
N(3)-C(3a)	1.410(3)	1.408(2)
C(3a)-C(4)	1.377(3)	1.378(3)
C(4)-C(5)	1.409(4)	1.404(3)
C(5)-C(6)	1.359(4)	1.358(4)
C(6)-C(6a)	1.420(4)	1.416(3)
C(6a)-C(7)	1.413(4)	1.412(3)
C(7)-C(8)	1.367(4)	1.355(3)
C(8)-C(9)	1.412(3)	1.408(3)
C(9)-C(9a)	1.378(3)	1.374(3)
C(9a)-C(9b)	1.414(3)	1.412(2)
C(9b)-C(6a)	1.426(3)	1.420(2)
C(3a)-C(9b)	1.425(3)	1.416(2)

Table 14: Comparison of bond lengths in 260 and 2-(anthr-9-yl)perimidine

	Bond Angle/°	Bond Angle/°
	260	2-(Anthr-9-yl)perimidine ²⁴⁰
N(1)-C(2)-N(3)	125.57(18)	124.4(2)
C(2)-N(3)-C(3a)	116.94(18)	117.5(1)
N(3)-C(3a)-C(9b)	120.96(18)	120.8(1)
C(3a)-C(9b)-C(9a)	119.57(18)	119.4(2)
C(9b)-C(9a)-N(1)	116.08(18)	116.0(2)
C(9a)-C(N1)-C(2)	121.21(17)	121.9(1)

Table 15: Comparison of bond angles in 260 and 2-(anthryl)perimidine

In order to provide further evidence for the reaction pathway, an attempt was made to prepare mannopyranosyl perimidine **262**. In the mannose case, the OAc group would be anti-periplanar to the anomeric anion and thus ideally placed to undergo E2 elimination in addition to E1cB and thus likely to favour formation of glycal **261**. The glucopyranosyl perimidine **260** also afforded glycal **261**, but the elimination was sluggish since only E1cb elimination is possible (Scheme 98).

Scheme 98

Conducting the reaction of DAN with D-mannose hydroximoyl chloride **108** in ethanol at room temperature afforded pyranosyl perimidine **262** (55%) with traces of glycal **261**. When the reaction was conducted in refluxing ethanol, glycal **261** was indeed the predominant product (**261** 34%, **262** 4%, **261**:**262** = 8.5:1, Table 16). The ¹H and ¹³C NMR spectra of **261** and **262** were comparable with those of the D-xylose and D-glucose analogues. The observation that the proportion of glycal perimidine **261** is significantly higher from perimidine **262** is consistent with the tandem elimination processes taking place.

		% Yield	% Yield	Glycal
Carbohydrate	Reaction	Pyranosyl	Glycal	perimidine :
Substituent	Temperature/ °C	Perimidine	Perimidine	Pyranosyl
				perimidine
D-Xylose	25	60	<1	-
D-Xylose	80	16	43	2.68:1
D-Glucose	25	65	<1	-
D-Glucose	80	34	16	1:2.13
D-Mannose	25	55	<1	-
D-Mannose	80	4	34	8.5:1

Table 16: Glycal perimidine to pyranosyl perimidine ratios

The range of carbohydrate substituents was extended further with the room temperature synthesis of 2-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)perimidine (263) in 69% yield. The preparation of perimidine 263 and its precursors was completed in association with Andreas Fromm.²⁴¹

2.8.4 Preparation of D-glyceraldehyde derived perimidine

The success of the perimidine methodology encouraged an attempt to synthesise a perimidine with an acyclic carbohydrate substituent. D-Glyceraldehyde derived perimidine **264** was selected as a target since the precursor nitrile oxide (**91**) was known.¹⁴¹ The nitrile oxide is generated by dehydrochlorination of hydroximoyl chloride **265**, which is accessible from D-mannitol derivative **266** *via* aldehyde **267** and oxime **268** (Scheme 99).^{242,243}

Scheme 99: (a) NalO₄ (b) NH₂OH.HCl, NaCO₃ (c) Cl₂ (d) DAN, Δ

1,2:5,6-Di-O-isopropylidene-D-mannitol (266) was oxidatively cleaved with sodium periodate to form two equivalents of aldehyde 267. Treatment of the crude aldehyde with hydroxylamine hydrochloride and sodium carbonate afforded oxime 268 as a mixture of isomers (E:Z 3:1) in 63% yield. The ¹H NMR spectrum showed

diagnostic peaks for the *E* and *Z* isomers [$\delta_{\rm H}$ 9.18 ppm (*Z*- isomer, bs, OH), 8.89 ppm (*E*- isomer, bs, OH)]. Oxime **268** was dissolved in ether and treated with chlorine gas to afford hydroximoyl chloride **265** as a grey solid (98% yield).¹⁴¹ The product was immediately taken on to the next stage to avoid the risk of decomposition on standing at room temperature. Hydroximoyl chloride **265** was stirred with DAN in refluxing ethanol for 5 hours to afford the target perimidine **264** as a yellow/green solid (61% yield). The aromatic region of the ¹H and ¹³C NMR spectra (in D₆-DMSO), were found to mirror those observed in the pyranosyl series. The signals in the ¹H and ¹³C NMR spectra corresponding to the acyclic component were clearly visible [$\delta_{\rm H}$ 4.67 ppm (t, CH), 4.02 ppm (d, CH₂); $\delta_{\rm C}$ 73.9 ppm (CH), 66.6 ppm (CH₂)].

2.8.5 Conclusions / Further work

A new and mild method for the preparation of perimidines has been established. For example, reaction of 1,8-diaminonapthalene (DAN) with D-xylose derived hydroximoyl chloride 106 at room temperature afforded pyranosyl perimidine 259 in 60% vield. Reaction of D-Glucose, D-mannose and D-galactose derived hydroximoyl chlorides with DAN proceeded in a similar fashion (55-65% yield). Reaction of D-glucose hydroximoyl chloride 107 with DAN in refluxing ethanol afforded a 2.1:1 mixture of pyranosyl perimidine 260 and glycal perimidine 261. Under the same conditions, D-mannose hydroximoyl chloride 108 afforded a 1:8.5 mixture of perimidine 262 and glycal perimidine 261. Application of the method to the D-glyceraldehyde hydroximoyl chloride 265 was also successful in delivering the corresponding perimidine 264 (61% yield). Future work in this area could include extension of the methodology to a ribose scaffold and an examination of the products as potential antiviral agents. The methodology could also be extended to the synthesis of substituted perimidines by reaction with derivatives of DAN.

3. Experimental

3.1 General

3.1.1 Instumentation

All ¹H and ¹³C NMR spectra were recorded on a Varian WP200SY, Bruker ARX250 and Bruker avance 360 instruments by Mr J. R. A. Millar, Stewart Wharton and the author. High field ¹H NMR was conducted on a Varian inova 600 instrument by Dr I. H. Sadler. 2D NMR spectra were obtained from the Bruker avance 360 and Varian inova 600 instruments. Chemical shifts (δ) in all spectra are measured in parts per million (p.p.m), using tetramethylsilane (δ = 0.0) as a reference signal.

FAB mass spectra and exact mass measurements were recorded on a Kratos MS50TC instrument using either glycerol or thioglycerol as a matrix by Mr A. Taylor.

Melting points were measured on a Gallenkamp capillary tube apparatus and are uncorrected. Optical rotations were measured on an Optical Activity Polaar 20 polarimeter using 2 cm³ of filtered solution. IR spectra were obtained as liquid films or nujol mulls on a Perkin Elmer Paragon 1000 FT-IR spectrometer and are quoted in wavenumbers (cm⁻¹). Infrared spectra were recorded on a Jasco FT/IR-460 using sodium chloride plates.

Diffraction data were collected with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) on a Bruker Apex CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at 150K. X-ray structural analysis of **141**, **153**, **156**, **178**, **216**, **217**, **224**, **260** by Dr S. Parsons, Dr I. Oswald, Mr S. Moggach, Miss F. Fabbiani and Mr F. White.

High pressure hydrogenation was conducted using a Parr 4842 apparatus.

3.1.2 Chromatography

Analytical TLC was carried out on Merck aluminium-backed plates with Kieselgel GF_{254} silica (0.2 mm).

Dry flash chromatography was performed using a variety of sinters with different diameters filled with Kieselgel GF_{254} silica and eluted under a vacuum supplied by a water pump.

3.1.3 Solvents and reagents

All reagents and solvents were standard laboratory grade and were used as supplied unless specifically stated.

Dichloromethane, chloroform and acetonitrile were purified by distillation from and stored over calcium hydride.

Pyridine was purified by distillation from and stored over potassium hydroxide.

Acetic anhydride was purified by fractional distillation and dried over 4A molecular sieves.

THF was purified by distillation over calcium hydride.

Toluene and ether were dried over sodium wire.

3.2 Synthesis of pyranosylnitrile oxide precursors

3.2.1 Synthesis of pyranosylnitromethanes3.2.2.1 3,4,5-Tri-O-acetyl-β-D-xylopyranosylnitromethane (95)

Sample code: IAS001 Molecular formula: C₁₂H₁₇NO₉ Molecular weight: 319

Solid sodium (2.5 g, 108 mmol) was dissolved in methanol (90 ml) under an atmosphere of N₂. Sodium methoxide (90 ml in methanol) was added to a stirred solution of D-(+)-xylose (13.5 g, 83 mmol), nitromethane (45 ml, 0.83 mol) and dry methanol (30 ml). The solution was stirred for 24 h. The resultant brown solid was filtered, washed with ice-cold methanol, and dissolved in ice-cold deionised water (200 ml). The solution was rapidly forced through an amberlite 120 (H⁺) ionexchange column. Excess nitromethane was removed in vacuo, and the residual liquid was heated at reflux for 48 h. Charcoal (5 g) was added to the solution and the mixture was heated at reflux for 2 h. The charcoal was filtered through celite and the filtrate concentrated in vacuo to yield an orange oil. The oil was dissolved in dry acetic anhydride (140 ml) (under an atmosphere of N₂), cooled to 0 °C, triflic acid (0.1 ml) was added, and the mixture stirred for 14 h. The resultant solution was added to ice-water (100 ml), extracted with chloroform (3 x 40 ml), washed with NaHCO₃ (3 x 40 ml) and the combined extracts dried (MgSO₄). The dried extract was concentrated in vacuo (residual water was co-evaporated with toluene) to afford an orange oil. The oil was dissolved in chloroform (100 ml) and activated charcoal (2 g) was added. The solution was heated under reflux for 30 minutes, charcoal was filtered over celite and the filtrate concentrated in vacuo to yield an orange oil which was crystallised from ethanol. The purified product (95) was isolated as a white crystalline solid (10.48 g, 40%); M.p 163-165 °C (lit.¹⁴⁴ 164-165 °C); δ_H (250 MHz, CDCl₃) 2.40 (9H, 3s, 3xCOCH₃), 3.72 (1H, dd, 6b-H), 4.41 (1H, dd, 6a-H), 4.55 (1H, m, 2-H), 4.74 (1H, dd, 1b-H), 4.81 (1H, dd, 1a-H), 5.20 (1H, dd, 3-H), 5.36 (1H, m, 5-H), 5.61 (1H, dd, 4-H); J(x-y)/Hz 1a-1b 13.3, 1a-2 8.8, 1b-2 2.9, 2-3 10.6,

3-4 9.3, 4-5 9.4, 5-6a 10.6, 5-6b 5.8, 6a-6b 11.3; δ_{C} (63 MHz, CDCl₃) 21.1, 21.2, 21.4 (3xCOCH₃), 66.1, 68.5, 69.3, 72.9, 74.8, (C-6, C-2, C-3, C-4, C-5), 75.8 (C-1), 170.1, 170.2, 170.6 (3xCOCH₃)

3.2.2 3,4,5,7-Tetra-*O*-acetyl-β-D-glucopyranosylnitromethane (99)

Sample code: IAS004 Molecular formula: C₁₅H₂₁NO₁₁ Molecular weight: 391

Solid sodium (2.5 g, 108 mmol) was dissolved in methanol (90 ml) under an atmosphere of N₂. Sodium methoxide (90 ml in methanol) was added to a stirred solution of D-(+)-glucose (15.1 g, 84 mmol), nitromethane (45 ml, 0.83 mol) and dry methanol (30 ml). The solution was stirred for 24 h. The resultant brown solid was filtered, washed with ice-cold methanol, and dissolved in ice-cold deionised water (200 ml). The solution was rapidly forced through an amberlite 120 (H^+) ionexchange column. Excess nitromethane was removed in vacuo, and the residual liquid was heated at reflux for 48 h. Charcoal (5 g) was added to the sugar solution and the mixture was heated at reflux for 2 h. The charcoal was filtered through celite and the filtrate concentrated in vacuo to yield an orange oil. The product was isolated as a white solid by continuous liquid/liquid extraction using ethyl acetate/water (48 hours), followed by concentration of the organic layer in vacuo. The resultant solid was dissolved in dry acetic anhydride (50 ml) (under an atmosphere of N₂), cooled to 0 °C, triflic acid (0.2 ml) was added, and the mixture stirred for 14 h. The resultant solution was added to ice-water (100 ml), extracted with chloroform (3 x 40 ml), washed with NaHCO₃ (3 x 40 ml) and the combined extracts dried (MgSO₄). The dried extract was concentrated in vacuo (residual water was co-evaporated with toluene) to afford an orange oil. The oil was dissolved in chloroform (100 ml) and activated charcoal (2 g) was added. The solution was heated under reflux for 30 minutes, charcoal was filtered over celite and the filtrate concentrated in vacuo to yield an orange oil which was crystallised from hexane/ethanol. The purified product (99) was isolated as a white crystalline solid. (6.72 g, 20%); M.p 143-145 $^{\circ}$ C (lit.¹⁴⁴

144-145 °C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.96,1.98, 2.00 (12H, 4s, 4xCOCH₃), 3.67 (1H, dd, 6-H), 3.98 (1H, dd, 7a-H), 4.21 (1H, dd, 7b-H), 4.22-4.27 (1H, m, 2-H), 4.34 (1H, dd, 1b-H), 4.47 (1H, dd, 1a-H), 4.87 (1H, dd, 3-H), 5.01 (1H, dd, 5-H) 5.21 (1H, dd, 4-H); *J*(x-y)/Hz 1a-1b 13.7, 1a-2 2.8, 1b-2 8.9, 2-3 9.3, 3-4 9.3, 4-5 9.6, 5-6 9.98, 6-7a 2.21, 6-7b 4.97, 7a-7b 12.5; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.4, 20.4 (4xCOCH₃), 61.4 (C-7) 67.7, 69.3, 72.7, 73.4, 74.2 (C-2, C-3, C-4, C-5, C-6), 75.5 (C-1) 169.2, 169.5, 169.9, 170.4 (4xCOCH₃).

3.2.3 Synthesis of pyranosyloximes

The acetylated D-gluco, D-xylo and D-mannose (provided by Mr A. Fromm) derived nitromethanes were reduced to their respective oximes using a modified version of the procedure of Bartra *et al*⁵².

3.2.3.1 Pyranosyloximes- General Procedure

Triethylamine (5 equivalents) and thiophenol (4.5 equivalents) were added to a cooled (0 °C) solution of tin (II) chloride (1.5 equivalents) and acetylated pyranosylnitromethane (1 equivalent) in dry THF (5 ml) under nitrogen. The resulting yellow mixture was stirred for 16 hours. After removal of THF *in vacuo*, the residue was washed with hexane to remove excess thiophenol. The product was separated by dry-flash chromatography (silica / 0-100 % ether in hexane; gradient elution).

3.2.3.2 3,4,5-Tri-*O*-acetyl-β-D-xylopyranosylformaldoxime (100)

Sample code: IAS005 Molecular formula: C₁₂H₁₇NO₈ Molecular weight: 303

3,4,5-Tri-*O*-acetyl- β -D-xylopyranosylnitromethane (**95**) (1.5 g, 3.13 mmol) was added to a cooled (0 °C) solution of tin (II) chloride (1.34 g, 4.7 mmol), triethylamine (3.3 ml, 15.7 mmol), and thiophenol (1.5 ml, 14.1 mmol) as outlined in
the general procedure above. The product (**100**) was isolated by dry-flash chromatography as a white solid (1.2 g, 86 %). Oxime **100** was recrystallised from a 60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers in a 4:1 ratio; M.p 128-130 °C (lit.⁵² 135-137 °C); $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.95, 1.97, 1.98 (9H, 3s, 3xCOCH₃), 3.29 (1H, dd, 6a-H), 3.92 (1H, dd, 2-H), 4.08 (1H, dd, 6b-H), 4.85-4.93 (1H, m, 5-H), 4.99 (1H, dd, 3-H), 5.19 (1H, dd, 4-H), 6.63 (1H, d, 1-H (*Z*)), 7.72 (1H, d, 1-H (*E*)), 8.62 (1H, bs, OH (*E*)), 8.88 (1H, bs, OH (*Z*)); *J*(x-y)/Hz 1-2 6.6, 2-3 9.8, 3-4 9.4, 4-5 9.5, 5-6a 10.2, 5-6b 5.6, 6a-6b 11.2; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.4, 20.5 (3xCOCH₃), 66.5 (C-6), 68.8, 69.6, 72.9, 75.9 (C-2, C-3, C-4, C-5), 146.7 (C-1),169.7, 169.8, 170.3 (3xCOCH₃)

3.2.3.3 3,4,5,7-Tetra-*O*-acetyl-β-D-glucopyranosylformaldoxime (101)

Sample code: IAS002/007 Molecular formula: $C_{15}H_{21}NO_{10}$ Molecular weight: 375

3,4,5,7-Tetra-*O*-acetyl-β-D-glucopyranosylnitromethane (**99**) (1.1 g, 3.84 mmol) was added to a cooled (0 °C) solution of tin (II) chloride (1.1 g, 5.76 mmol), triethylamine (3.3 ml, 19.2 mmol), and thiophenol (2.1 ml, 17.3 mmol) as outlined in the general procedure above. The product (**101**) was isolated by dry- flash chromatography as a white solid (660 mg, 69 %). Oxime **101** was recrystallised from a 60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers in a 4:1 ratio; M.p 158-160 °C (lit.⁵² 155-157 °C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.94, 1.95, 1.97, 2.02 (12H, 4s, 4xCOCH₃), 3.66 (1H, dd, 6-H), 4.03 (1H, dd, 2-H), 4.08 (1H, dd, 7b-H), 4.21 (1H, dd, 7a-H), 5.06 (1H, dd, 3-H), 5.08 (1H, dd, 5-H), 5.20 (1H, dd, 4-H), 6.8 (1H, d, 1-H (Z)), 7.41 (1H, d, 1-H(E)), 8.35 (1H, bs, OH (E)), 8.53 (1H, bs, OH (Z)); *J*(x-y)/Hz 1-2 6.9, 2-3 9.9, 3-4 9.1, 4-5 9.8, 5-6 9.6, 6-7a 2.06, 6-7b 4.7, 7a-7b 12.5; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.5 (4xCOCH₃), 61.9 (C-7), 68.0, 69.4, 73.4, 75.7, 75.7 (C-2, C-3, C-4, C-5, C-6), 146.7 (C-1) 169.4, 169.6, 170.2, 170.6 (4xCOCH₃).

3.2.3.4 3,4,5,7-Tetra-O-acetyl-β-D-mannopyranosylformaldoxime (102)

Sample code: IAS088 Molecular formula: C₁₅H₂₁NO₁₀ Molecular weight: 375

3,4,5,7-Tetra-*O*-acetyl-β-D-mannopyranosylnitromethane (supplied by A. Fromm) (1.57 g, 4.2 mmol) was added to a cooled (0 °C) solution of tin (II) chloride (1.15 g, 6.28 mmol), triethylamine (2.8 ml, 20.9 mmol), and thiophenol (1.85 ml, 18.8 mmol) as outlined in the general procedure above. The product (**102**) was isolated by dry-flash chromatography as a white solid (1.16 g, 77 %). Oxime **102** was recrystallised from a 60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers in a 2:1 ratio; M.p 151-152 °C (lit.⁵² 152-154 °C); $\delta_{\rm H}$ (360 MHz, CDCl₃) 2.00, 2.01 2.08, 2.13, 2.14, 2.17, 2.19 (24H, 4s, 4xCOCH₃), 3.71-3.75 (2H, m, 6-H(*E*), 6-H(*Z*)), 4.19 (2H, dd, 7a-H(*E*), 7b-H(*Z*)), 4.25 (2H, dd, 7b-H(*E*), 7b-H(*Z*)), 4.40 (1H, d, 2-H(*E*)), 4.86 (1H, d, 2-H(*Z*)), 5.11-5.19 (2H, m, 4-H(*E*), 4-H(*Z*)), 5.24-5.33 (2H, m, 5-H(*E*), 5-H(*Z*)), 5.54 (1H, dd, 3-H (*E*)), 5.85 (1H, dd, 3-H(*Z*)), 6.75 (1H, d, 1-H(*Z*)), 7.35 (1H, d, 1-H(*E*)), 8.67 (1H, bs, OH (*E*)), 8.94 (1H, bs, OH (*Z*)); *E*-isomer *J*(x-y)/Hz 1-2 5.5, 2-3 3.2, 3-4 nd, 4-5 nd, 5-6 nd, 6-7a 2.1, 6-7b 5.7, 7a-7b 12.3, *Z*-isomer *J*(x-y)/Hz 1-2 4.0, 2-3 1.3, 3-4 nd, 4-5 nd, 5-6 nd, 6-7a 2.1, 6-7b 5.7, 7a-7b 12.3.

3.2.4 Synthesis of pyranosylhydroximoyl chlorides

3.2.4.1 Hydroximoyl chlorides-General procedure

Dry chlorine gas was bubbled through a cooled (-78 °C) solution of pyranosylformaldoxime, in dry chloroform (under nitrogen) until the solution turned emerald green. Nitrogen gas was bubbled through the solution and it was allowed to warm to room temperature. On warming, the solution became green, blue, then colourless and the solvent was removed *in vacuo* to afford an oily solid. The product was obtained as a white solid on trituration with ice-cold ether.³²

3.2.4.2 3,4,5, -Tri-*O*-acetyl-2,6-anhydro-1-deoxy-1-chloro-1hydroxyimino-D-*xylo*-D-*gulo*-hexitol (106)

Sample code: IAS008 Molecular formula: C₁₂H₁₆NO₈Cl Molecular weight: 337.5

Following the procedure above, 3,4,5-tri-*O*-acetyl- β -D-xylopyranosylformaldoxime (**100**) (550 mg, 1.6 mmol) was converted to the corresponding hydroximoyl chloride. The product (**106**) was obtained as a white solid (600 mg, 98%); M.p 147-149°C; $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.92, 1.95, 1.98 (9H, 3s, 3xCOCH₃), 3.34 (1H, dd, 6a-H), 4.12 (1H, dd, 6b-H), 4.17 (1H, d, 2-H), 5.01 (1H, td, 5-H), 5.15 (1H, dd, 3-H), 5.22 (1H, dd, 4-H), 8.80 (1H, bs, OH; *J*(x-y)/Hz 2-3 9.3, 3-4 9.2, 4-5 8.0, 5-6a 10.8, 5-6b 6.1, 6a-6b 11.3; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.4, 20.6 (3xCOCH₃), 66.5 (C-6), 68.5, 68.9, 73.1, 78.8 (C-3, C-4, C-5, C-2), 136.5 (C-1) 169.3, 169.9, 170.5 (3xCOCH₃); *m/z* (FAB) 338 (M⁺+1); HRMS (FAB) Found: M⁺+1 338.06427. C₁₅H₂₁NO₁₀³⁵Cl requires M⁺+1 338.06442.

3.2.4.3 3,4,5,7 -Tetra-*O*-acetyl-2,6-anhydro-1-deoxy-1-chloro-1hydroxyimino-D-*glycero*-D-*gulo*-heptitol (107)

Sample code: IAS003 Molecular formula: $C_{15}H_{20}NO_{10}Cl$ Molecular weight: 409.5

Following the procedure above, 3,4,5,7-tetra-*O*-acetyl-β-Dglucopyranosylformaldoxime (**101**) (600 mg, 1.5 mmol) was converted to the corresponding hydroximoyl chloride. The product (**107**) was obtained as a white solid (620 mg, 99%); M.p 158-160 °C (lit.¹⁴⁰ 157-159 °C); v_{max}/cm^{-1} (Nujol) 3311 (OH), 1747 (C=O); $[\alpha]_D^{18}$ -5.0 (c = 1.0, CHCl₃); δ_H (250 MHz, CDCl₃); 2.14, 2.25, 2.30, 2.35 (12H, 4s, 4xCO<u>C</u>H₃), 3.73 (1H, ddd, 6-H), 4.08 (1H, dd, 7a-H), 4.17 (1H, dd, 7b-H), 4.24 (1H, dd, 2-H), 5.07 (1H, dd, 3-H), 5.19 (1H, dd, 5-H), 5.30 (1H, dd, 4-H), 8.78 (1H, bs, OH); J(x-y)/Hz 2-3 9.8, 3-4 9.3, 4-5 9.4, 5-6 9.5, 6-7a 2.4, 6-7b 4.6, 7a-7b 12.5; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.4, 20.5, 20.6 (4xCOCH₃), 61.8 (C-7), 67.8, 68.7, 73.7, 75.7, 78.3 (C-3, C-4, C-5, C-6, C-2), 136.5 (C-1) 169.4, 169.6, 170.2, 170.6 (4xCOCH₃); m/z (FAB) 410 (M⁺ +1) HRMS (FAB) Found M⁺+1 410.08565, C₁₅H₂₁NO₁₀³⁵Cl requires M⁺+1 410.08540.

3.2.4.4 3,4,5,7 -Tetra-*O*-acetyl-2,6-anhydro-1-deoxy-1-chloro-1hydroxyimino-D-*glycero*-D-*galacto*-heptitol (108)

Sample code: IAS089 Molecular formula: C₁₅H₂₀NO₁₀Cl Molecular weight: 409.5

Following the procedure above, 3,4,5,7-tetra-*O*-acetyl- β -D-mannopyranosylformaldoxime (**102**) (200 mg, 0.48 mmol) was converted to the corresponding hydroximoyl chloride. The product (**108**) was obtained as a white solid (210 mg, 96%).

M.p 101 °C (lit,¹⁴⁰ 102-103 °C); $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.97, 2.04, 2.08, 2.10 (12H, 4s, 4xCOCH₃), 3.78 (1H, m, 6-H), 4.17 (1H, dd, 7a-H), 4.26 (1H, dd, 7b-H), 5.09-5.34 (3H, m, 2-H, 4-H, 5-H), 5.71 (1H, dd, 3-H), 9.76 (1H, bs, OH); *J*(x-y)/Hz 2-3 nd, 3-4 3.3, 4-5 nd, 5-6 nd, 6-7a 2.3, 6-7b 5.7, 7a-7b 12.2; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.9, 21.1, 21.1 (4xCOCH₃), 62.9 (C-7), 63.2, 66.1, 68.4, 72.2, 76.9 (C-3, C-4, C-5, C-6, C-2), 134.8 (C-1) 170.1, 170.6, 170.8, 171.3 (4xCOCH₃); *m/z* (FAB) 410 (M⁺ +1) HRMS (FAB) Found M⁺+1 410.08551, C₁₅H₂₁NO₁₀³⁵Cl requires M⁺+1 410.08540.

3.2.4.5 Dipyranosyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)-1,2,5oxadiazole-2-oxide (109)

Sample code: IAS006 Molecular formula: C₂₄H₃₂N₂O₁₆ Molecular weight: 602

3,4,5-Tri-*O*-acetyl- β -D-xylopyranosylnitromethane (**95**) (1 g, 3.13 mmol) was dissolved in dry toluene (30 cm³) with stirring. Triethylamine (0.5 ml) and TDI (1.56 ml, 10.9mmol) were added and the resulting mixture was heated under reflux (85 °C) for 7 days. The mixture was stirred at room temperature for 1 h before cooling to 0 °C. The reaction was quenched with ethylenediamine (0.3 ml) and allowed to stir for 18 h. Polymeric urea by-product was filtered off over celite, washed with toluene and chloroform and the filtrate was concentrated *in vacuo*. Dry flash chromatography (0-100 % ether in hexane; gradient elution) of the residue yielded the product (**109**) as a white solid (568 mg, 61%); M.p 186-189 °C (lit.¹⁴⁰ 190 °C); $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.90, 1.93, 1.94, 1.95, 1.97 (18H, 6s, 6xCOCH₃), 3.35-3.43 (2H, m.), 4.19-4.27 (2H, m.), 4.54 (2H, 2 x d, 1'-H, 1"-H), 4.93-4.97 (2H, m.), 5.20-5.31 (4H, m.); *J*(x-y)/Hz 1'-2' 9.5, 1"-2" 9.1; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.3, 20.5, 20.1 (6x COCH₃), 66.8, 66.9 (C-6', C6") 68.3, 69.8, 70.3, 71.7, 72.4, 72.5, 73.9 (C-1'-C-5', C-1"-C-5"), 112.7 (C-3), 153.7 (C-4), 169.3, 169.5, 169.7, 169.9, 169.9 (6x COCH₃).

3.3 Synthesis of the pyranosylthiohydroximates

3.3.1 Thiohydroximates- General procedures

General procedure A

To a cooled solution (0 °C) of the pyranosyl hydroximoyl chloride (0.6 mmol, 1 equivalent) and thiol (1.2 mmol, 2 equivalents) in dry ether (5 ml), a solution of triethylamine (1.8 mmol, 3 equivalents) in dry ether (30 ml) was added dropwise *via* a syringe and the solution left to stir overnight. The mixture was then poured into water, the organic layer separated and the aqueous layer extracted with chloroform (3 x 50 ml). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo* to yield the crude product, which was purified by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

General procedure B

A solution of the hydroximoyl chloride (1 equivalent) in dry ether or chloroform (35 ml) was added dropwise over 1 hour to a cooled (0°C) and stirred solution of the nucleophile (2 equivalents) and triethylamine (3 equivalents) in dry ether or chloroform (5 ml) under N₂. After stirring for 1 hour the mixture was poured into water (50 ml), extracted with DCM (3 x 50 ml), the combined organic layers dried (MgSO₄), and the solvent removed *in vacuo*. The product was isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.3.1.1 S-Phenyl 2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (119)

To D-xylose derived hydroximoyl chloride (**106**) (200 mg, 0.6 mmol) in dry ether (5 ml) was added thiophenol (0.12 ml, 1.2 mmol) followed by triethylamine (0.25 ml, 1.8 mmol) in accordance to the general procedure A. Dry-flash chromatography

_OH

SPh

yielded (in order of elution) residual thiophenol, the title compound (**119**) as a white solid (180 mg, 75%) and a trace amount of furoxan by-product (<5 mg).

M.p 177-178 °C (from Et₂O/hexane); $[\alpha]_D^{20}$ 7.3 (c = 0.8, CHCl₃); δ_H (250 MHz, CDCl₃); 1.89, 1.97 (9H, 3s, 3xCOCH₃), 2.40 (1H, dd, 5a-H), 3.56 (1H, d, 1-H) 3.81 (1H, dd, 5e-H), 4.80 (1H, td, 4-H), 4.84 (1H, dd, 2-H), 5.34 (1H, dd, 3-H), 7.20-7.58 (5H, m, ArH) 8.75 (1H, bs, OH); J(x-y)/Hz 1-2 9.9, 2-3 9.2, 3-4 9.8, 4-5a 10.2, 4-5e 5.3, 5a-5e 11.3; δ_C (63 MHz, CDCl₃) 20.6 (3xCOCH₃), 66.1 (C-5), 68.6, 69.2, 73.8, 75.2 (C-2, C-3, C-4, C-1), 127.3, 128.9, 129.8 (ArCH), 136.4 (ArC), 148.9 (C=N), 169.5, 169.6, 170.6 (3xCOCH₃); m/z (FAB) 412 (M⁺+1); HRMS (FAB) Found: M⁺+1 412.10629. C₁₈H₂₁NO₈S requires M⁺+H 412.10661.

3.3.1.2 S-(2-Propyl) 2,3,4-tri-O-acetyl- β -D-xylopyranosylformothiohydroximate (120)

Sample code: IAS010AcOOMolecular formula: $C_{15}H_{23}NO_8S$ AcOOMolecular weight: 377OAc

To D-xylose derived hydroximoyl chloride (**106**) (200 mg, 0.6 mmol) in dry ether (5 ml) was added 2-propane thiol (0.11 ml, 1.2 mmol) followed by triethylamine (0.25 ml, 1.8 mmol) in accordance to general procedure A. Dry-flash chromatography yielded (in order of elution) residual 2-propane thiol, the title compound (**120**) as a white solid (120 mg, 55%) and furoxan by-product (80 mg, 45%)

-OH

M.p 97-98 °C; $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.23 (3H, d, CH₃), 1.25 (3H, d, CH₃), 1.95, 1.97 (9H, 3s, 3xCOCH₃), 3.27 (1H, dd, 5a-H), 3.83 (1H, septet, CH) 4.11 (1H, d, 1-H) 4.13 (1H, dd, 5e-H), 5.00 (1H, td, 4-H), 5.17 (1H, dd, 2-H), 5.32 (1H, dd, 3-H), 8.88 (1H, bs, OH); J(x-y)/Hz 1-2 9.4, 2-3 9.3, 3-4 9.5, 4-5a 10.3, 4-5e 5.5, 5a-5e 11.2; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.0 (3xCOCH₃), 22.9, 23.8 (CH₃), 36.1 (CH), 66.1 (C-5), 68.1, 69.2, 73.2, 78.7 (C-2, C-3, C-4, C-1), 147.8 (C=N), 168.9, 169.3, 169.9 (3xCOCH₃); m/z (FAB) 378 (M⁺+1); HRMS (FAB) Found: M⁺+1 378.12198. C₁₈H₂₁NO₈S requires M⁺+H 378.12226.

3.3.1.3 S-Mercaptoethyl 2,3,4-tri-O-acetyl- β -Dxylopyranosylformothiohydroximate (121)

Sample code: IAS011.1 Molecular formula: C₁₄H₂₁NO₈S₂ Molecular weight: 395

To a stirred mixture of 1,2-ethanedithiol (0.24 ml, 3 mmol) and triethylamine (0.31 ml, 2.2 mmol) in dry ether (10 ml), D-xylose derived hydroximoyl chloride (**106**) (250 mg, 0.7 mmol) was added in accordance to general procedure B. Dry-flash chromatography yielded (in order of elution) residual 1,2-ethanedithiol, the title compound (**121**) as a white solid (112 mg, 40%) and 2:1 adduct **122** as a viscous oil (57 mg, 22%).

M.p 144-146 °C; $[\alpha]_D^{20}$ -48 (c = 0.5,CHCl₃); δ_H (250 MHz, CDCl₃); 1.65 (1H, t, SH), 1.95, 1.97 (9H, 3s, 3xCOCH₃), 2.63 (2H, m, CH₂^b), 3.10 (2H, m, CH₂^a), 3.26 (1H, dd, 5a-H), 4.02 (1H, d, 1-H), 4.06 (1H, dd, 5e-H), 4.99 (1H, dt, 4-H), 5.18 (1H, dd, 2-H), 5.32 (1H, dd, 3-H), 8.91 (1H, bs, OH); *J*(x-y)/Hz 1-2 9.6, 2-3 9.3, 3-4 9.52, 4-5a 10.3, 4-5e 5.5, 5a-5e 11.0, SH-CH₂ 8.5; δ_C (63 MHz, CDCl₃) 20.6 (3xCOCH₃), 24.9 (CH₂^b), 34.7 (CH₂^a) 66.5 (C-5), 68.6, 69.4, 73.5, 78.8 (C-2, C-3, C-4, C-1), 147.6 (C=N) 169.5, 169.8, 170.4 (3xCOCH₃); *m/z* (FAB) 396 (M⁺+1); HRMS (FAB) Found: M⁺+1 396.07842. C₁₈H₂₁NO₈S requires M⁺+H 396.07869.

3.3.1.4 2:1 adduct (122)

Sample code: IAS011.2 Molecular formula: C₂₆H₃₆N₂O₁₆S₂ Molecular weight: 696

 $δ_{\rm H}$ (250 MHz, CDCl₃); 1.93, 1.98 (18H, 6s, 6xCOCH₃), 2.82 (2H, m, CH₂^b), 3.15 (2H, m, CH₂^a) 3.31 (1H, dd, 5a-H), 4.10 (1H, dd, 5e-H) 4.15 (1H, d, 1-H), 5.01 (1H, dt, 4-H), 5.18 (1H, dd, 2-H), 5.29 (1H, dd, 3-H), 9.23 (1H, bs, OH); *J*(x-y)/Hz 1-2 9.52, 2-3 9.3, 3-4 9.6, 4-5a 10.2, 4-5e 5.2, 5a-5e 10.8; $δ_{\rm C}$ (63 MHz, CDCl₃) 21.1

 $(6xCOCH_3)$, 31.7 (CH_2^{b}) , 38.9 (CH_2^{a}) , 66.9 (C-5), 69.1, 70.0, 74.0, 79.3 (C-2, C-3, C-4, C-1), 147.9 (C=N) 170.4, 170.9 $(6xCOCH_3)$; *m/z* (FAB) 697 (M^++1) ; HRMS (FAB) Found: M^++1 697.15834. $C_{18}H_{21}NO_8S$ requires M^++H 697.15833.

3.3.1.5 N-(tert-Butoxycarbonyl)cysteine methyl ester (147)

Sample code: IAS038 Molecular formula: C₉H₁₇NO₄S Molecular weight: 235

Triethylamine (1.01 g, 10 mmol) was added to a well stirred slurry of L-cysteine methyl ester hydrochloride (1.72 g, 10 mmol) in DCM (20 ml), followed after 10 minutes by di-tert-butyl dicarbonate (2.18 g, 10 mmol). The mixture was stirred for 16 hours at room temperature, washed with water and dried (MgSO₄). Evaporation of the solvent afforded the target (**147**) as a colourless oil (2.26 g, 95 %).

 $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.45 (9H, s, 3xCH₃), 2.95-2.99 (2H, m, CH₂), 3.76 (3H, s, OCH₃), 4.60 (1H, dt, CH), 5.48 (1H, d, NH), *J*(x-y)/Hz CH-CH₂ 4.1, CH-NH 7.0; $\delta_{\rm C}$ (63 MHz, CDCl₃) 27.1 (CH₂), 28.1 (3x<u>C</u>H₃), 52.5 (O<u>C</u>H₃), 54.7 (CH), 80.0 (C Boc), 154.9 (C=O Boc) 170.6 (<u>C</u>O₂CH₃); *m/z* (FAB) 236 (M⁺+1); HRMS (FAB) Found: M⁺+1 236.09575 C₉H₁₈NO₄S requires M⁺+H 236.09566.

3.3.1.6 S-2-Methoxycarbonyl-2-^tbutoxycarbonylamino-2,3,4-tri-O-acetyl- β -D-xylopyranosylformothiohydroximate (148)

Sample code: IAS040 Molecular formula: C₂₁H₃₂N₂O₁₂S Molecular weight: 536

To a stirred mixture of *N*-(tert-butoxycarbonyl)-L-cysteine methyl ester (350 mg, 1.5 mmol) and triethylamine (0.31 ml, 2.2 mmol) in dry chloroform (10 ml), D-xylose derived hydroximoyl chloride (**106**) (150 mg, 0.4 mmol) was added in accordance to general procedure B. Dry-flash chromatography yielded (in order of elution) N,N-

bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (**149**, 107 mg, 31% recovery) and the title compound (**148**) as a white solid (209 mg, 88%).

M.p 94-96 °C; $[\alpha]_D^{20}$ -39 (c = 1.0 ,CHCl₃); δ_H (250 MHz, CDCl₃); 1.47 (9H, s, 3xCH₃), 1.97, 2.03, 2.05 (9H, 3s, 3xCOCH₃), 3.35-3.58 (3H, m, 5a-H, CH₂ a,b), 3.78 (3H, s, OCH₃), 4.16 (1H, d, 1-H), 4.18 (1H, dd, 5e-H), 4.59 (1H, m, CH), 5.03 (1H, dt, 4-H), 5.23 (1H, dd, 2-H), 5.39 (1H, dd, 3-H), 9.44 (1H, bs, OH; *J*(x-y)/Hz 1-2 9.6, 2-3 9.4, 3-4 9.4, 4-5a 10.2, 4-5e 5.4, 5a-5e 11.3; δ_C (63 MHz, CDCl₃) 20.5 (3xCOCH₃), 28.1 (3xCH₃), 32.5 (CH₂), 52.7 (OCH₃), 53.7 (CH), 66.4 (C-5), 68.6, 69.3, 73.5, 78.4 (C-1, C-2, C-3, C-4), 80.3 (C Boc), 147.0 (C=N) 155.2 (C=O Boc), 169.5, 169.7, 170.3 (3xCOCH₃), 170.7 (CO₂CH₃); *m*/z (FAB) 537 (M⁺+1); HRMS (FAB) Found: M⁺+1 537.17542 C₂₁H₃₃N₂O₁₂S requires M⁺+H 537.17542.

3.3.1.7 N, N-bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (149)

M.p 89-90 °C (lit 96-97°C); $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.45 (18H, 2xs, 6xCH₃), 3.16 (4H, 2xd, 2xCH₂), 3.77 (6H, 2xs, 2xOCH₃), 4.60 (2H, 2xdt, 2xCH), 5.41 (2H, 2xd, 2xNH), *J*(x-y)/Hz CH-CH₂ 5.2, CH-NH 7.0; $\delta_{\rm C}$ (63 MHz, CDCl₃) 28.2 (6xCH₃), 41.1 (2xCH₂) 52.5 (2xOCH₃) 52.6 (2xCH), 80.2 (2xC Boc), 154.9 (2xC=O Boc), 171.0 (2x<u>C</u>O₂CH₃); *m/z* (FAB) 469 (M⁺+1); HRMS (FAB) Found: M⁺+1 469.16810 C₁₈H₃₃N₂O₈S₂ requires M⁺+H 469.16784.

3.3.1.8 S-2-Methoxycarbonyl-2-^tbutoxycarbonylamino-2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylformothiohydroximate (150)

Sample code: IAS042 Molecular formula: $C_{24}H_{36}N_2O_{14}S$ Molecular weight: 608

CO₂Me

To a stirred mixture of *N*-(tert-Butoxycarbonyl)cysteine methyl ester (260 mg, 1.1 mmol) and triethylamine (0.31 ml, 2.2 mmol) in dry chloroform (10 ml), D-glucose derived hydroximoyl chloride (107) (150 mg, 0.36 mmol) was added in accordance to general procedure B. Dry-flash chromatography yielded (in order of elution) *N*, *N*-bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (101 mg, 39% recovery) and the title compound (150) as a white solid (145 mg, 85%).

M.p 145-147 °C; $[\alpha]_D^{20}$ -15 (c = 1.0 ,CHCl₃); δ_H (250 MHz, CDCl₃); 1.40 (9H, s, 3xCH₃), 1.90, 1.93, 1.97, 2.03 (12H, 4xs, 4xCOCH₃), 3.35 (1H, dd, CH₂a), 3.54 (1H, dd, CH₂b), 3.73 (3H, s, OCH₃), 3.93-3.78 (1H, m, 5-H), 4.11-4.17 (2H, m, 6a-H, 6b-H), 4.22 (1H, d, 1-H), 4.53 (1H, m, CH), 5.06 (1H, dd, 2-H), 5.17 (1H, dd, 4-H), 5.39 (1H, dd, 3-H), 5.62 (1H, dd, NH), 9.63 (1H, bs, OH; *J*(x-y)/Hz 1-2 9.8, 2-3 9.6, 3-4 9.3, 4-5 9.2, 5-6a nd, 5-6b nd, 6a-6b nd ; δ_C (63 MHz, CDCl₃) 20.5 (4xCOCH₃), 29.5 (3xCH₃), 32.1 (CH₂), 52.6 (OCH₃), 53.7 (CH), 62.0 (C-6), 65.7, 67.8, 69.1, 74.1, 75.6 (C-1, C-2, C-3, C-4, C-5), 80.3 (C Boc), 146.4 (C=N) 155.1 (C=O Boc), 169.4, 170.3, 170.5 (4xCOCH₃), 170.6 (*C*O₂CH₃); *m*/z (FAB) 609 (M⁺+1); HRMS (FAB) Found: M⁺+1 609.19777 C₂₄H₃₇N₂O₁₄S requires M⁺+H 609.19655.

3.3.1.9 S-Carbmethoxymethyl-2,3,4-tri-O-acetyl- β -Dxylopyranosylformothiohydroximate (166)

Sample code: IAS067 Molecular formula: C₁₅H₂₁NO₁₀S Molecular weight: 407

To a stirred mixture of methyl thioglycolate (0.08 ml, 0.9 mmol) and triethylamine (0.25 ml, 1.8 mmol) in dry chloroform (30 ml), D-xylose derived hydroximoyl chloride (106) (100 mg, 0.3 mmol) was added in accordance to general procedure B. Dry-flash chromatography yielded (in order of elution) residual methyl thioglycolate, and the title compound (166) as a white solid (85 mg, 70%)

M.p 144-145°C; $\delta_{\rm H}$ (360 MHz, CDCl₃); 1.98, 2.04, 2.05 (9H, 3s, 3xCOCH₃), 3.38 (1H, dd, 5a-H), 3.75 (1H, d, CH₂a), 3.77 (3H, s, CO₂<u>C</u>H₃), 3.82 (1H, d, CH₂b), 4.14 (1H, dd, 5e-H), 4.29 (1H, d, 1-H), 5.01-5.08 (1H, m, 4-H), 5.25 (1H, dd, 2-H), 5.41 (1H, dd, 3-H), 9.39 (1H, bs, OH; J(x-y)/Hz 1-2 9.6, 2-3 9.3, 3-4 9.5, 4-5a 10.6, 4-5e 5.6, 5a-5e 11.2, 2a'-2b' 15.8; $\delta_{\rm C}$ (93 MHz, CDCl₃) 21.7, 21.8 (3xCOCH₃), 33.3 (SCH₂CO₂CH₃) 53.9 (CO₂CH₃) 67.5 (C-5), 69.7, 70.4, 74.6, 79.2 (C-1, C-2, C-3, C-4), 148.1 (C=N) 170.8, 170.9, 171.1 (3xCOCH₃), 171.7 (CO₂CH₃); m/z (ES) 408 (MH⁺).

3.3.1.10 S-2-Aminophenyl 2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (216)

Sample code: IAS021 Molecular formula: C₁₈H₂₂N₂O₈S Molecular weight: 426

To a stirred mixture of 2-amino-thiophenol (225 mg, 1.8 mmol) and triethylamine (0.25 ml, 1.8 mmol) in dry ether (10 ml), D-xylose derived hydroximoyl chloride **106** (200mg, 0.6 mmol) was added in accordance to general procedure B. Dry-flash chromatography yielded (in order of elution) residual 2-amino-thiophenol, and the title compound (**216**) as a white solid (196 mg, 78%).

M.p 97-98°C ; $[\alpha]_D^{20}$ 30 (c = 0.5 ,CHCl₃); δ H (250 MHz, CDCl₃); 1.91, 1.92, 1.98 (9H, 3s, 3xCOCH₃), 2.41 (1H, dd, 5a-H), 3.59 (1H, d, 1-H) 3.80 (1H, dd, 5b-H), 4.35 (2H, bs, NH₂), 4.84 (1H, td, 4-H), 4.90 (1H, dd, 2-H), 5.34 (1H, dd, 3-H), 6.64-6.73 (2H, m, ArH), 7.14-7.18 (1H, m, ArH), 7.36 (1H, dd, Ar); J(x-y)/Hz 1-2 9.9, 2-3 8.9, 3-4 10.0, 4-5a 10.3, 4-5b 5.6, 5a-5b 11.1; δ C (63 MHz, CDCl₃) 21.0, 21.1 (3xCOCH₃), 66.6 (C-5), 69.2, 69.6, 74.5, 75.6 (C-2, C-3, C-4, C-1), 110.2 (ArC-SR) 115.7, 118.7, 132.3, 138.9 (ArCH) 148.6 (C=N) 150.3 (ArC-NH₂)) 170.1, 170.2, 171.1 (3xCOCH₃); m/z (FAB) 427 (M⁺ +1) HRMS (FAB) Found M⁺+1 427.1167, C₁₈H₂₂N₂O₈S requires M⁺+H 427.1175.

3.4 Synthesis of the pyranosylamidoximes

3.4.1 Alkyl/Aryl Amidoximes- General procedure

A solution of the hydroximoyl chloride (1 equivalent) in chloroform (35-50 ml) was added dropwise over 2 hours to a cooled (0°C) and stirred solution of the amine (2 equivalents) and triethylamine (3-18 equivalents) in chloroform (3-5 ml) under N₂. After stirring for 1 hour the mixture was poured into water (50 ml), extracted with DCM (3 x 50 ml), the combined organic layers dried (MgSO₄), and the solvent removed *in vacuo*. The product was isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.4.1.1 (Z)-*N*-Benzyl-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)formamide oxime (137)

To a stirred mixture of benzylamine (0.18 ml, 1.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-glucose derived hydroximoyl chloride **107** (200 mg, 0.5 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**137**) as a white solid (205 mg, 88%). M.p. 128-129 °C ; $[\alpha]_D^{20}$ -12 (c = 1 CHCl₃); δ_H (360 MHz, CDCl₃) 1.85, 1.95, 1.98 (12H, 4s, 4xCOCH₃), 3.59 (1H, ddd, 5'-H), 4.00 (1H, d, 2'-H), 4.02 (1H, dd, 6a'-H), 4.06 (1H, dd, 6b'-H), 4.36 (1H, dd, Bna-H), 4.49 (1H, dd, Bnb-H), 5.02 (1H, dd, 3'-H), 5.13 (1H, dd, 5'-H), 5.30 (1H, t, NH), 5.35 (1H, dd, 4'-H) 7.18-7.29 (5H, m, PhH), 8.55 (1H, bs, OH); J(x-y)/Hz 1'-2' 10.3, 2'-3' 9.8, 3'-4' 9.7, 4'-5' 9.9, 5'-6a' 2.4, 5'-6b' 4.7, 6a-6b 12.5 Bna-Bnb 14.5, Bna-NH 7.0, Bnb-NH 6.8; δ_C (93 MHz, CDCl₃) 21.5, 21.6, 21.7, (4xCOCH₃), 47.5 (PhCH₂), 63.0 (C-6'), 69.0, 69.5, 74.3, 75.0, 76.6 (C-1',C-2',C-3', C-4', C-5'), 128.4, 129.9, (5xPhCH), 140.0 (PhC), 149.7 (C=N), 170.5, 170.7, 171.4, 171.7 (4xCOCH₃); m/z (FAB) 481 (M⁺+1) HRMS (FAB) Found M⁺+1 481.18263, C₂₂H₂₈N₂O₁₀ requires M⁺+1 481.18222.

3.4.1.2 (Z)-*N*-Benzyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime (138)

Sample code: IAS023 Molecular formula: C₁₉H₂₄N₂O₈ Molecular weight: 408

To a stirred mixture of benzylamine (0.14 ml, 1.3 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**138**) as a white solid (121 mg, 67%). M.p. 64-66 °C ; $[\alpha]_D^{20}$ -3.7 (c = 0.54 CHCl₃); δ_H (250 MHz, CDCl₃) 1.95, 1.96, 1.97 (9H, 3s, 3xCOCH₃), 3.19 (1H, dd, 5a'-H), 3.89 (1H, d, 1'-H), 4.07 (1H, dd, 5e'-H), 4.38 (1H, dd, Bna-H), 4.39 (1H, dd, Bnb-H), 4.92 (1H, ddd, 4'-H), 5.11 (1H, dd, 3'-H), 5.22 (1H, t, NH), 5.29 (1H, dd, 2'-H), 7.14-7.31 (5H, m, PhH); *J*(x-y)/Hz 1'-2' 10.0, 2'-3' 9.2, 3'-4' 9.5, 4'-5a' 10.4, 4'-5e' 5.6, 5a'-5e' 11.2, Bna-Bnb 14.6, Bna-NH 5.5, Bnb-NH 6.8; δ_C (63 MHz, CDCl₃) 20.5 (3xCOCH₃), 46.4 (PhCH₂), 67.7 (C-5'), 68.6, 68.7, 73.5, 76.1 (C-1',C-2',C-3', C-4'), 127.3, 127.4, 128.6 (5xPhCH), 138.8 (PhC), 148.9 (C=N), 169.5, 169.7, 170.2 (3xCOCH₃); *m/z* (FAB) 409 (M⁺ +1) HRMS (FAB) Found M⁺+1 409.16095, C₁₉H₂₄N₂O₈ requires M⁺+1 409.16109.

3.4.1.3 (Z)-*N*-Butyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime (139)

Sample code: IAS016 Molecular formula: C₁₆H₂₆N₂O₈ Molecular weight: 374

To a stirred mixture of *n*-butylamine (0.21 ml, 2.2 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride 106

(250 mg, 0.75 mmol) was added in accordance to the general procedure above. Dryflash chromatography yielded the title compound (**139**) as a white solid (169 mg, 63%).

M.p 111-113 °C; $[\alpha]_D^{20}$ -41 (c = 0.8 ,CHCl₃); δ_H (250 MHz, CDCl₃); 1.91, 1.96, 1.97 (9H, 3s, 3xCOCH₃), (3H, t, CH₃,), (6H, m, CH₂), 3.21 (1H, dd, 5a'-H), 3.86 (1H, d, 1'-H), 4.10 (1H, dd, 5e'-H), 4.93 (1H, td, 4'-H), 5.12 (1H, dd, 2'-H), 5.24 (1H, dd, 3'-H), 8.57 (1H, bs, OH); J(x-y)/Hz 1'-2' 9.8, 2'-3' 9.3, 3'-4' 9.3, 4'-5a' 10.7, 4'-5e' 6.0, 5a'-5e' 11.1; δ_C (63 MHz, CDCl₃) 14.1 (CH₃), 20.1 (CH₂), 20.9 (3xCOCH₃), 33.3 (CH₂), 42.4 (CH₂), 67.1 (C-5'), 69.2, 70.7, 73.9, 77.6 (C-1', C-2', C-3', C-4'), 149.5 (C=N) 169.9, 170.2, 170.6 (3xCOCH₃); m/z (FAB) 375 (M⁺ +1) HRMS (FAB) Found M⁺+1 375.17622, C₁₆H₂₆N₂O₈ requires M⁺+1 375.17674.

3.4.1.4 (*Z*)-N-Propenyl-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl) formamide oxime (140)

This experiment was done in collaboration with Miss K. S. Horner

Sample code: KH09 Molecular formula: C₁₅H₂₂N₂O₈Molecular weight: 358

To a stirred mixture of allylamine (0.13 ml, 1.8 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**140**) as a white solid (66 mg, 41%). Mp 52-54 °C; $[\alpha]_D^{20} = -3.5$ (c = 0.34, CHCl₃); δ_H (250 MHz, CDCl₃); 1.99, 2.01 (9H, 3s, 3xCOCH₃), 3.24 (1H, dd, 5a-H), 3.85 (2H, d, CH₂), 3.88 (1H, d, 1-H), 4.09 (1H, dd, 5b-H), 4.95 (1H, m, 4-H), 5.11 (2H, dd, CH₂), 5.13 (1H, dd, 2-H), 5.26 (1H, dd, 3-H), 5.83 (1H, m, CH), 8.71 (1H, bs, OH); J(x-y)/Hz 1-2 9.8, 2-3 9.5, 3-4 5.4, 4-5a 10.8, 4-5b 11.2; δ_C (63 MHz, CDCl₃); 20.0 (COCH₃), 44.3 (CH₂), 66.2 (C-5), 68.0, 68.1, 72.9, 75.3 (C-2, C-3, C-4, C-1), 115.5 (CH₂), 134.7 (CH), 148.4 (C=N), 168.9, 169.2, 169.6 (COCH₃); m/z (FAB) 359 (M⁺ +1) HRMS (FAB) Found M⁺+1 359.14514, C₁₅H₂₂N₂O₈ requires M⁺+1 359.14544.

3.4.1.5 (Z)-*N*-Phenyl-(2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime (141) Procedure A

Sample code: IAS014 Molecular formula: C₁₈H₂₂N₂O₈ Molecular weight: 394

To a stirred mixture of aniline (0.24 ml, 1.8 mmol) and triethylamine (0.25 ml, 1.8 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (200 mg, 0.6 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**141**) as a crystalline solid (65 mg, 28%).

Procedure B

Xylose derived hydroximoyl chloride **106** (200 mg, 0.6 mmol) and aniline (0.12 ml, 1.5 mmol) were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of nitrogen at room temperature for 16 h or heated under reflux for 5 hours. The reaction mixture was concentrated *in vacuo* to afford the crude product, which was purified by dry-flash chromatography (silica, hexane/Et₂O gradient elution). The title compound (**141**) was obtained as a crystalline solid (211 mg, 90%)

M.p 179-180 °C; $[\alpha]_D^{20}$ -82 (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃); 1.93, 1.95 (9H, 3s, 3xCOCH₃), 3.07 (1H, dd, 5a'-H), 4.05 (1H, dd, 5e'-H) 4.09 (1H, d, 1'-H), 4.95 (1H, td, 4'-H), 5.02 (1H, dd, 2'-H), 5.35 (1H, dd, 3'-H), 6.94 (1H, b.s, NH), 7.04-7.31 (5H, m, Ar), 7.91 (1H, bs, OH); J(x-y)/Hz 1'-2' 10.0, 2'-3' 9.1, 3'-4' 9.9, 4'-5a' 10.1, 4'-5b' 5.45, 5a'-5b' 11.00; δ_C (63 MHz, CDCl₃) 20.60 (3xCOCH₃), 66.53 (C-5), 68.59, 69.17, 73.31, 73.83 (C-1, C-2, C-3, C-4), 123.59, 124.84, 129.14 (ArCH), 138.11 (ArC), 146.77 (C=N) 169.25, 169.61, 170.38 (3xCOCH₃); m/z (FAB) 395 (M⁺ +1) HRMS (FAB) Found M⁺+1 395.14526, C₁₈H₂₂N₂O₈ requires M⁺+1 395.14544.

3.4.1.6 (Z)-*N*-Phenyl-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)formamide oxime (142)

Sample code: IAS060 Molecular formula: C₂₁H₂₆N₂O₁₀ Molecular weight: 466

D-Glucose derived hydroximoyl chloride **107** (200 mg, 0.5 mmol) and aniline (0.11 ml, 1.2 mmol) were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of nitrogen at room temperature for 16 h or heated under reflux for 5 hours. The reaction mixture was concentrated *in vacuo* to afford the crude product, which was purified by dry-flash chromatography (silica, hexane/Et₂O gradient elution). The title compound (**142**) was obtained as a crystalline solid (190 mg, 83%) M.p 55-56°C; $[\alpha]_D^{20}$ –79 (c = 1, CHCl₃); δ_H (360 MHz, CDCl₃); 1.91, 1.93, 1.94, 1.98 (12H, 4s, 4xCOCH₃), 3.48 (1H, dd, 5'-H), 4.01 (1H, dd, 6a'-H), 4.08 (1H, dd, 6b'-H), 4.15 (1H, d, 1'-H), 4.97 (1H, dd, 3'-H), 5.03 (1H, dd, 5'-H), 5.40 (1H, dd, 4'-H), 7.04 (1H, b.s, NH), 7.10-7.30 (5H, m, ArH), 8.30 (1H, b.s, OH); *J*(x-y)/Hz 1'-2' 10.2, 2'-3' 9.5, 3'-4' 9.3, 4'-5' 10.1, 5'-6a' 2.3, 5'-6b 6.1, 6a'-6b' 12.4; δ_C (93 MHz, CDCl₃) 20.3, 20.4, 20.6, 20.9 (4xCOCH₃), 62.4 (C-6'), 68.0, 68.6, 72.7, 74.3, 75.8 (C-2', C-3', C-4', C-5', C-1'), 123.6, 124.9, 129.1 (ArCH), 138.1 (ArC), 146.4 (C=N) 170.4, 171.3, 171.5, 171.7 (4xCOCH₃); *m/z* (FAB) 467 (M⁺ +1) HRMS (FAB) Found M⁺+1 467.16695, C₂₁H₂₆N₂O₁₀ requires M⁺+1 467.16657.

3.4.1.7 (*E*)-*N*-Morpholino-(2,3,4-tri-*O*-acetyl- β -Dxylopyranosyl)formamide oxime (143)

Sample code: IAS018 Molecular formula: C₁₆H₂₄N₂O₉ Molecular weight: 388

To a stirred mixture of morpholine (0.26 ml, 3 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (250 mg, 0.75 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**143**) as a white solid (192 mg, 67%). M.p 108-111 °C $[\alpha]_D^{20}$ 16 (c = 0.5 ,CHCl₃); δ_H (250 MHz, CDCl₃); 2.06, 2.10, 2.11 (9H, 3s, 3xCO<u>C</u>H₃), 3.09-3.16 (2H, m, morpholine CH₂), 3.24-3.36 (2H, m, morpholine CH₂), 3.39 (1H, dd, 5a'-H), 4.24 (1H, dd, 5e'-H) 3.77-3.81 (4H, m, morpholine CH₂), 5.12-5.16 (2H, m, 4'-H, 1'-H), 5.31-5.36 (2H, m, 2'-H, 3'-H), 8.33 (1H, bs, OH); *J*(x-y)/Hz 1'-2' 9.9, 2'-3', nd, 3'-4' nd, 4'-5a' 10.9, 4'-5e' 5.6, 5a'-5e' 11.3; δ_C (63 MHz, CDCl₃) 20.5 (3xCOCH₃), 47.4 (CH₂), 65.7 (CH₂), 66.8 (C-5'), 68.6, 69.3, 73.3, 77.1 (C-1', C-2', C-3', C-4'), 154.7 (C=N) 169.3, 169.6, 170.4 (3xCOCH₃); *m*/z (FAB) 389 (M⁺ +1) HRMS (FAB) Found M⁺+1 389.15644, C₂₆H₂₄N₂O₉ requires M⁺+1 389.15601.

3.4.2 General procedure – Amidoxime linked glycopeptide analogues

A solution of the hydroximoyl chloride (1 equivalent) in chloroform (35-50 ml) was added dropwise over 2 hours to a cooled (0°C) and stirred solution of the amino acid ester (1.5-2 equivalents) and triethylamine (18 equivalents) in chloroform (3-5 ml) under N₂. On completion of addition, the mixture was diluted with DCM (50 ml), washed with 0.1 M HCl (2 x 50 ml) and the organic layers dried (MgSO₄). The products were isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.4.2.1 (Z)-*N*-Carbethoxymethyl-(2,3,4-tri-*O*-acetyl- β -Dxylopyranosyl)formamide oxime (152)

Sample code: IAS019

Molecular formula: $C_{16}H_{24}N_2O_{10}$ Molecular weight: 404

To a stirred mixture of glycine ethyl ester hydrochloride (186 mg, 1.125 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (250 mg, 0.75 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**152**) as a gum (156 mg, 52%).

 $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.23 (3H, t, CO₂CH₂CH₃), 1.96, 1.97, 1.98 (9H, 3s, 3xCOCH₃), 3.28 (1H, dd, 5a'-H), 3.85 (1H, d, 1'-H), 4.07 (2H, d, CH₂), 4.06 (1H, dd, 5e'-H), 4.16 (2H, q, CO₂CH₂CH₃), 4.8-5.0 (1H, m, 4'-H), 5.1-5.2 (2H, m, 2'-H & 3'H), 5.48 (1H, t, NH); *J*(x-y)/Hz 1'-2' 9.8, 2'-3' 9.2, 3'-4' nd, 4'-5a' 10.2, 4'-5e' 5.5, 5a'-5e' 11.5, CH₂-NH 5.8; $\delta_{\rm C}$ (63 MHz, CDCl₃) 14.5 (CO₂CH₂CH₃), 21.0 (3xCOCH₃), 44.7 (CH₂), 61.7 (CO₂CH₂CH₃), 67.1 (C-5'), 68.9, 69.1, 73.6, 76.9 (C-4',C-2',C-3', C-1'), 148.1 (C=N), 170.1, 170.2, 170.5 (3xCOCH₃), 170.7 (CO₂CH₂CH₃); *m*/z (FAB) 405 (M⁺ +1) HRMS (FAB) Found M⁺+1 405.15194, C₁₆H₂₄N₂O₁₀ requires M⁺+1 405.151092.

3.4.2.2 2:1 Adduct (154)

Sample code: IAS051 Molecular formula: C₁₈H₂₇N₃O₁₁ Molecular weight: 461

Procedure A

To a stirred mixture of glycyl glycine ethyl ester hydrochloride (120 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**154**) as a gum (88 mg, 43%).

Procedure B

To a cooled (0 °C) and stirred mixture of glycine ethyl ester hydrochloride (188 mg, 1.4 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride (**106**) (300 mg, 0.9 mmol) in chloroform (45 ml) was added dropwise over 2 hours. On completion of addition the mixture was allowed to stir for 16 hours. The mixture was diluted with DCM (50 ml), washed with 0.1 M HCl (2 x 50 ml) and the organic layers dried (MgSO₄). The organic layers were concentrated *in vacuo* and the residue subjected to dry-flash chromatography (silica, hexane/EtOAc gradient elution) to yield the product (**154**) as a white solid (82 mg, 20%).

[α]_D²⁰ -35 (c = 1.0 ,CHCl₃); $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.21 (3H, t, CO₂CH₂CH₃), 1.92, 1.95, 1.97 (9H, 3s, 3xCOCH₃), 3.29 (1H, dd, 5a-H), 3.90 (1H, d, 1-H), 3.98-4.08 (5H, m, 5e-H, CH₂a, CH₂b), 4.14 (2H, q, CO₂CH₂CH₃), 4.86-5.39 (3H, m, 4-H, 3-H, 2-H), 5.61 (1H, t, NH), 7.45 (1H, t, NH); *J*(x-y)/Hz 1-2 9.6, 2-3 nd, 3-4 nd, 4-5a 10.8, 4-5e nd, 5a-5e 11.0, CH₂-NH 5.8; $\delta_{\rm C}$ (63 MHz, CDCl₃) 13.9 (CO₂CH₂CH₃), 20.4 (3xCOCH₃), 40.9 (CH₂), 46.2 (CH₂), 61.0 (CO₂CH₂CH₃), 66.5 (C-5), 68.5, 69.7, 73.0, 76.1 (C-1, C-2, C-3, C-4), 147.8 (C=N), 169.7, 169.9, 170.0 (3xCOCH₃), 170.9 (CO₂CH₂CH₃); *m*/z (FAB) 462 (M⁺ +1) HRMS (FAB) Found M⁺+1 462.17268, C₁₇H₂₈N₂O₁₀ requires M⁺+1 462.17238.

3.4.2.3 (Z)-*N*-Carbmethoxymethyl-2-ⁱbutyl-(2,3,4-tri-*O*-acetyl-β-Dxylopyranosyl)formamide oxime (155)

Sample code: IAS046A Molecular formula: C₁₉H₃₀N₂O₁₀ Molecular weight: 446

To a stirred mixture of L-leucine methyl ester hydrochloride (110 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**155**) as a colourless gum (105 mg, 53%).

 $δ_{\rm H}$ (250 MHz, CDCl₃) 0.88, 0.91 (6H, 2s, CH₃(iPr)), 1.48-1.57 (2H, m, CH₂(iPr)), 1.60-1.78 (1H, m, CH(iPr)) 1.89, 1.97, 1.99 (9H, 3s, 3xCOCH₃), 3.29 (1H, dd, 5a-H), 3.66 (3H, s, CO₂CH₃), 3.85 (1H, d, 1-H), 4.04 (1H, dd, 5e-H), 4.16-4.27 (1H, m, CH), 4.86-5.03 (1H, m, 4-H), 5.09-5.31 (3H, m, 2-H, 3-H, NH) ; *J*(x-y)/Hz 1-2 9.8, 2-3 nd, 3-4 nd, 4-5a 10.8, 4-5e 5.7, 5a-5e 11.2, CH₂-NH 5.6; $δ_{\rm C}$ (63 MHz, CDCl₃) 20.5, 21.2, 21.3 (3xCOCH₃), 24.0, 24.7 (CH₃(ⁱPr)), 40.8 (CH₂(ⁱPr)), 48.8 (CO₂CH₃), 66.5 (C-5), 68.4, 68.9, 72.2, 74.7 (C-1, C-2, C-3, C-4), 149.8 (C=N), 169.6, 169.7, 169.8 (3xCOCH₃), 173.0 (*C*O₂CH₃); *m/z* (FAB) 447 (M⁺ +1) HRMS (FAB) Found M⁺+1 447.19823, C₁₉H₃₀N₂O₁₀ requires M⁺+1 447.19787.

3.4.2.4 (Z)-*N*-Carbethoxymethyl-2-benzyl-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (161)

Sample code: IAS045 Molecular formula: $C_{23}H_{30}N_2O_{10}$ Molecular weight: 494

OH AcO-AcO CO₂Et ` OAc

To a stirred mixture of L-phenylalanine ethyl ester hydrochloride (306 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**161**) as a gum (115 mg, 52%).

M.p 209-210 °C; $[\alpha]_D^{20}$ –161 (c = 1.0 ,CHCl₃); δ_H (250 MHz, CDCl₃) 1.12 (3H, t, CO₂CH₂C<u>H₃</u>), 1.89, 1.97, 1.98 (9H, 3s, 3xCOCH₃), 3.01 (1H, dd, CH₂a), 3.09 (1H, dd, CH₂b), 3.21 (1H, dd, 5a-H), 3.82 (1H, d, 1-H), 4.00-4.09 (3H, m, CO₂C<u>H₂CH₃</u>, 5b-H), 4.46-4.55 (1H, m, CH), 4.86-4.97 (1H, m, 4-H), 5.09-5.20 (2H, m, 2-H, 3-H), 5.26 (1H, d, NH), 7.08-7.39 (5H, m, PhH); J(x-y)/Hz 1-2 9.5, 2-3 nd, 3-4 nd, 4-5a 10.7, 4-5e nd, 5a-5e 10.8., CH-NH 10.0; δ_C (63 MHz, CDCl₃) 13.9 (CO₂CH₂CH₃), 20.5 (3xCOCH₃), 39.8 (PhCH₂), 56.2 (CH), 61.1 (CO₂CH₂CH₃), 66.5 (C-5), 68.6, 69.1, 73.3, 76.2 (C-1, C-2, C-3, C-4), 126.9, 128.4, 129.3 (ArCH), 135.6 (ArC), 147.1 (C=N), 169.4, 169.7, 170.2 (3xCOCH₃), 172.1 (CO₂CH₂H₃); m/z (FAB) 495 (M⁺ +1) HRMS (FAB) Found M⁺+1 495.19803, C₂₃H₃₁N₂O₁₀ requires M⁺+1 495.19787.

3.4.2.5 (Z)-*N*-Carbethoxyethyl-(2,3,4-tri-*O*-acetyl- β -Dxylopyranosyl)formamide oxime beta alanine (164)

To a stirred mixture of β -alanine ethyl ester hydrochloride (92 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**164**) as a gum (90 mg, 50%)

 5e'-H), 4.13 (3H, q, CO₂C<u>H</u>₂CH₃), 4.96 (1H, ddd, 4-H), 5.18 (1H, dd, 2-H), 5.24 (1H, dd, 3'-H), 5.36 (1H, t, NH); J(x-y)/Hz 1-2 9.3, 2-3 9.4, 3-4 9.0, 4-5a 10.8, 4-5e 5.4, 5a-5e 11.2; δ_C (93 MHz, CDCl₃) 14.5 (CO₂CH₂CH₃), 20.9, 21.0 (3xCOCH₃), 36.1 (CH₂CH₂CO₂Et), 38.9 (CH₂CH₂CO₂Et), 61.1 (CO₂CH₂CH₃), 67.14 (C-5), 69.0, 69.2, 73.9, 76.9 (C-1, C-2, C-3, C-4), 149.0 (C=N) 170.0, 170.2, 170.60 (3xCOCH₃) 170.3 (CO₂CH₂CH₃); m/z (FAB) 419 (M⁺ +1) HRMS (FAB) Found M⁺+1 419.16741, C₁₇H₂₈N₂O₁₀ requires M⁺+1 419.16657.

3.4.2.6 (Z)-*N*-Carb^tbutoxymethyl-(2,3,4-tri-*O*-acetyl- β -Dxylopyranosyl)formamide oxime (165)

Sample code: IAS050 Molecular formula: C₁₈H₂₈N₂O₁₀ Molecular weight: 432

To a stirred mixture of glycine tertiarybutyl ester.AcOH (115 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient elution) yielded the title compound (**165**) as a colourless gum (170 mg, 88%).

[α]_D²⁰ –49 (c = 1.35 ,CHCl₃) $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.45, (9H, s, CH₃), 1.97, 2.02, 2.03 (9H, 3s, 3xCOCH₃), 3.32 (1H, dd, 5a-H), 3.87 (1H, d, 1-H), 3.92 (1H, dd, CH₂a), 4.04 (1H, dd, CH₂b), 4.16 (1H, dd, 5e-H), 4.97-5.04 (1H, m, 4-H), 5.18-5.22 (2H, m, 2-H & 3H), 5.49 (1H, t, NH) ; *J*(x-y)/Hz 1-2 9.8, 2-3 nd, 3-4 nd, 4-5a 10.8, 4-5e 5.6, 5a-5e 11.2, CH₂-NH 5.8; $\delta_{\rm C}$ (93 MHz, CDCl₃) 21.7, 21.8 (3xCOCH₃), 30.7 (CH₃), 45.8 (CH₂), 67.8 (C-5'), 69.6, 69.9, 74.3, 77.9 (C-4',C-2',C-3', C-1'), 83.2 (Cq), 148.9 (C=N), 170.4, 170.8, 171.0 (3xCOCH₃), 171.3 (CO₂'Bu); *m/z* (FAB) 433 (M⁺ +1) HRMS (FAB) Found M⁺+1 433.18226, C₁₆H₂₄N₂O₁₀ requires M⁺+1 433.18222.

3.4.3 Cyclisation Reactions

3.4.3.1 3-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)-1,2,4-oxadiazin-6-one (153)

Sample code: IAS020 Molecular formula: C₁₄H₁₈N₂O₉ Molecular weight: 358

(Z)-*N*-Carbethoxymethyl-(2',3',4'-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (**152**) (156 mg, 0.4 mmol) was dissolved in chloroform (15 ml), stirred with silica (500 mg) and heated under reflux for 32 hours. On cooling, the product was obtained as a crystalline solid (83 mg, 60%) after dry-flash chromatography (silica, hexane/Et₂O gradient elution).

M.p. 165 °C (decomp.) (from hexane-EtOAc), $[\alpha]_D^{20}$ –151 (c = 2.25, CHCl₃); δ_H (250 MHz, CDCl₃) 1.98, 1.99, 2.00 (9H, 3s, 3xCOCH₃), 3.37 (1H, dd, 5a'-H), 3.94 (1H, d, 1'-H), 3.95 (2H, s, CH₂), 4.14 (1H, dd, 5e'-H), 4.93 (1H, ddd, 4'-H), 4.98 (1H, dd, 3'-H), 5.26 (1H, t, 2'H), 5.61 (1H, br s, NH); J(x-y)/Hz 1'-2' 9.7, 2'-3' 9.4, 3'-4' 9.9, 4'-5a' 10.3, 4'-5e' 6.2, 5a'-5e' 11.6; δ_C (63 MHz, CDCl₃) 20.4 (3xCOCH₃), 40.2 (CH₂), 66.5 (C-5'), 68.4, 69.1, 71.7 (C-2',C-3',C-4'), 74.9 (C-1'), 150.4 (C=N), 164.6 (C=O), 169.7, 169.8, 170.1 (3xCOCH₃); m/z (FAB) 359 (M⁺ + 1) HRMS (FAB) Found M⁺+ 1 359.10950, C₁₄H₁₈N₂O₉ requires M⁺ + 1, 359.10906.

3.4.3.2 3-(2,3,4-Tri-O-acetyl- β -D-xylopyranosyl)-5-(isopropyl)-1,2,4oxadiazin-6-one (156)

Amidoxime 155 (199 mg, 0.44 mmol) was dissolved in chloroform (15 ml), stirred with silica (500 mg) and heated under reflux for 32 hours. On cooling, the product

(156) was obtained as a crystalline solid (130 mg, 70%) after dry-flash chromatography (silica, hexane/ Et_2O gradient elution).

M.p 182-184 °C; $[\alpha]_D^{20}$ –107 (c = 1.0 ,CHCl₃); δ_H (360 MHz, CDCl₃) 0.95, 0.99 (6H, 2d, CH₃(iPr)), 1.72-1.81 (2H, m, CH₂(iPr)), 2.04, 2.05 (9H, 3s, 3xCOCH₃), 3.41 (1H, dd, 5a'-H), 3.99-4.03 (2H, m, CH, 1'-H), 4.21 (1H, dd, 5e'-H), 5.00 (1H, m, 4'-H), 5.02 (1H, dd, 2'-H), 5.28 (1H, dd, 3'-H); J(x-y)/Hz 1'-2' 9.8, 2'-3' 9.5, 3'-4' 9.6, 4'-5a' 10.8, 4'-5e' 5.6, 5a'-5e' 11.4; δ_C (93 MHz, CDCl₃) 21.7, 22.4 (3xCOCH₃), 23.7, 25.2 (CH₃(ⁱPr)), 41.9 (CH₂(ⁱPr)), 50.0 (C-5), 67.7 (C-5'), 69.6, 70.0, 73.3, 75.8 (C-1', C-2', C-3', C-4'), 151.0 (C=N), 168.6 (C=O) 170.8, 170.9, 171.0 (3xCOCH₃); m/z (FAB) 415 (M⁺ +1) HRMS (FAB) Found M⁺+1 415.17168, C₁₈H₂₇N₂O₉ requires M⁺+1 415.17166.

3.4.3.3 3-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)-5-(benzyl)-1,2,4oxadiazin-6-one (162)

Sample code: IAS068 Molecular formula: C₂₁H₂₄N₂O₉ Molecular weight: 448

Amidoxime **161** (115 mg, 0.23 mmol) was allowed to stand in an N.M.R tube for ~ 6 months at room temperature, after which time, the solvent was removed *in vacuo* to afford the title compound (**162**) as a white solid (104 mg, 98%).

M.p 82-84 °C; $[\alpha]_D^{20}$ –24 (c = 5.1 ,CHCl₃); δ_H (360 MHz, CDCl₃) 2.08, 2.11, 2.14 (9H, 3s, 3xCOCH₃), 3.04 (1H, dd, CH₂a), 3.38 (1H, dd, 5a'-H), 3.45 (1H, dd, CH₂b), 3.97 (1H, d, 1'-H), 4.12 (1H, dd, 5e'-H), 4.23 (1H, ddd, 5-H), 4.93 (1H, ddd, 4'-H), 5.03 (1H, dd, 2'-H), 5.08 (1H, d, NH), 5.32 (1H, dd, 3'-H) ; J(x-y)/Hz 1'-2' 9.8, 2'-3' 9.6, 3'-4' 9.6, 4'-5a' 10.8, 4'-5e' 5.7, 5a'-5e' 11.4., CH-NH 1.8; δ_C (93 MHz, CDCl₃) 21.7, 21.8, 22.0 (3xCOCH₃), 39.7 (CH₂Ph), 52.9 (C-5), 67.2 (C-5'), 67.7, 69.6, 73.1, 75.8 (C-1', C-2', C-3', C-4'), 128.8, 129.7, 130.3 (PhCH), 136.3 (PhC), 150.4 (C=N), 167.6 (C=O) 170.9, 171.0, 171.2 (3xCOCH₃); m/z (FAB) 449 (M⁺ +1) HRMS (FAB) Found M⁺+1 449.15613, C₂₁H₂₅N₂O₉ requires M⁺+1 449.15601.

3.4.3.4 6-S-2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)-4-oxa-1,3-

diazabicyclo[4.3.0]non-2-en-5-one (163)

Sample code: IAS053 Molecular formula: C₁₇H₂₂N₂O₉ Molecular weight: 398

To a cooled (0°C) and stirred mixture of L-proline benzyl ester hydrochloride (326 mg, 1.4 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), Dxylose derived hydroximoyl chloride **106** (300 mg, 0.9 mmol) in chloroform (45 ml) was added dropwise over 2 hours. On completion of addition, the mixture was diluted with DCM (50 ml), washed with 0.1 M HCl (2 x 50 ml) and the organic layers dried (MgSO₄). The organic layers were concentrated *in vacuo* and the residue subjected to dry-flash chromatography (silica, hexane/Et₂O gradient elution) to remove residual amino acid. The amidoxime/oxadiazinone mixture was dissolved in chloroform (15 ml), stirred with silica (500 mg) and heated under reflux for 2 hours. On cooling, the product (**163**) was obtained as a white solid (200 mg, 57%) after dry-flash chromatography (silica, hexane/Et₂O gradient elution).

M.p 71-73 °C; $[\alpha]_D^{20}$ –99 (c = 1.0 ,CHCl₃); δ_H (360 MHz, CDCl₃) 2.03, 2.07 (9H, 3s, 3xCOCH₃), 2.01-2.37 (4H, m, 2xproline CH₂), 3.39 (1H, dd, 5a'-H), 3.72-3.80 (2H, m, proline CH₂), 3.85-3.91 (1H, m, proline CH), 4.03 (1H, d, 1'-H), 4.18 (1H, dd, 5e'-H), 5.02 (1H, ddd, 4'-H), 5.10 (1H, dd, 3'-H), 5.32 (1H, dd, 2'-H); *J*(x-y)/Hz 1'-2' 10.3, 2'-3' 9.6, 3'-4' 9.6, 4'-5a' 10.8, 4'-5e' 5.7, 5a'-5e' 11.3; δ_C (93 MHz, CDCl₃) 20.3, 20.4 (3xCOCH₃), 24.1 (CH₂), 26.8 (CH₂), 47.1 (CH₂), 54.8 (CH), 66.6 (C-5'), 68.0, 68.6, 72.2, 75.7 (C-1', C-2', C-3', C-4'), 151.8 (C=N), 168.7 (C=O) 169.5, 169.7, 170.1 (3xCOCH₃); *m/z* (FAB) 399 (M⁺ +1) HRMS (FAB) Found M⁺+1 399.14027, C₁₇H₂₃N₂O₉ requires M⁺+1 399.14036.

3.5 Synthesis of Pyranosylamines

3.5.1 1,2:3,4-Di-*O*-isopropylidene- α -D-galactopyranose (174)

Sample code: IAS034 Molecular formula: C₁₂H₂₀O₆ Molecular weight: 260

D-Galactose (20 g, 0.11 mol), anhydrous CuSO₄ (43.7 g, 0.27 mol) and dry acetone (440 ml) were stirred at room temperature under nitrogen. Concentrated H_2SO_4 ((2.2 ml) was added with vigourous stiring, the resulting mixture was left to stir for 24 hours. The mixture was filtered, the resultant yellow filtrate was stirred with CaOH₂ (15 g) for 24 hours. The mixture was filtered and the filtrate was concentrated *in vacuo* to afford an amber coloured oil that contained crude product. The crude material was purified by kügelrohr distillation, the product (174) was obtained as a colourless glass (17.5 g, 61%)

 $[\alpha]_D{}^{20} -56 (c = 3 , CHCl_3) (lit.{}^{173} [\alpha]_D{}^{20} -59 (c = 3, CHCl_3)); \delta_H (360 MHz, CDCl_3);$ 1.32, 1.44, 1.52, (12H, 4s, 4xCH₃), 2.38 (1H, bs, OH), 3.71 (1H, dd, 6a-H) 3.80-3.88 (2H, m, 6b-H, 5-H), 4.25 (1H, dd, 4-H), 4.31 (1H, dd, 2-H), 4.59 (1H, dd, 3-H), 5.55 (1H, d, 1-H); *J*(x-y)/Hz 1-2 5.0, 2-3 2.4, 3-4 7.9, 4-5 1.6, 5-6a 3.4, 5-6b 6a-6b 10.4; δC (63 MHz, CDCl₃) 24.2, 24.8, 25.8, 25.9 (4xCH₃), 62.2 (C-6), 68.4, 70.7, 70.8, 71.6 (C-2, C-3, C-4, C-5), 96.2 (C-1), 108.5, 109.3, (2xC); *m/z* (FAB) 261 (M⁺+1); HRMS (FAB) Found: M⁺+1 261.13366. C₁₂H₂₀O₆ requires M⁺+1 261.13381.

3.5.2 6-*O*-(*p*-Tolylsulfonyl)-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose (175)

Sample code: IAS030 Molecular formula: C₁₉H₂₆O₈S Molecular weight: 414

1,2:3,4-Di-*O*-isopropylidene- α -D-galactopyranose (174) (5 g, 19 mmol) and ptoluenesulfonyl chloride (4.2 g, 22 mmol) were dissolved in a 2:1 mixture of pyridine:acetonitrile (60 ml) and stirred for 6 hours. The reaction mixture was mixed with ether (80 ml), washed 3 times water (70 ml) and once with 0.2 M HCl (80 ml) before drying over MgSO₄. The mixture was filtered and concentrated *in vacuo* to yield an oil. The oil was chilled in ice until it became a gum, and was vigourously triturated with 9:1 hexane:ethyl acetate (5 ml) to afford the title compound (175) as a white solid (5.3 g, 67 %).

 $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.21, 1.24, 1.27, 1.43 (12H, 4s, 4xCH₃), 2.37 (1H, s, ArCH₃), 3.94-4.05 (2H, m, 6a-H, 6b-H) 4.10-4.16 (2H, m, 5-H, 4-H), 4.22 (1H, dd, 2-H), 4.52 (1H, dd, 3-H), 5.38 (1H, d, 1-H), 7.26 (2H, d, ArH) 7.73 (2H, d, ArH) ; *J*(x-y)/Hz 1-2 4.9, 2-3 2.5, 3-4 7.9, 4-5 nd, 5-6a nd, 5-6b nd, 6a-6b nd; δ C (63 MHz, CDCl₃) 21.5 (ArMe), 24.2, 24.7, 25.6 (4xCH₃), 68.0 (C-6), 65.7, 70.1, 70.2, 70.3 (C-2, C-3, C-4, C-5), 96.0 (C-1), 108.8, 109.4, (2xC), 127.9, 129.0, 132.6 (ArCH) 144.6 (ArC); *m/z* (FAB) 412 (M⁺+1); HRMS (FAB) Found: M⁺+1 414.14292. C₁₉H₂₆O₈S requires M⁺+1 414.14267.

3.5.3 6-Azido-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (176)

Sample code: IAS031 Molecular formula: C₁₂H₁₉N₃O₅ Molecular weight: 285

6-*O*-(*p*-tolylsulfonyl)-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose (175) (1 g, 2.4 mmol) was dissolved in DMSO (10 ml) before adding sodium azide (315 mg, 5 mmol). The mixture was heated to 115°C under reflux for 24 hours. On cooling, water (50 ml) and ether (50 ml) were added and the mixture was allowed to partition. The aqueous layer was extracted with ether (2x 50 ml) and the combined organic layers dried over MgSO₄. The solution was filtered and concentrated *in vacuo* to afford the title compound (176) as a colourless oil (663 mg, 96%).

 υ_{max}/cm^{-1} (Nujol) 2105 (N₃); δ_{H} (250 MHz, CDCl₃); 1.27, 1.39, 1.48 (12H, 4s, 4xCH₃), 3.29 (1H, dd, 6a-H), 3.44 (1H, dd, 6b-H) 3.79-3.88 (2H, m, 5-H), 4.13 (1H, dd, 4-H), 4.26 (1H, dd, 2-H), 4.56 (1H, dd, 3-H), (1H, d, 1-H); *J*(x-y)/Hz 1-2 5.0, 2-3 2.5, 3-4 7.9, 4-5 2.0, 5-6a 5.4, 5-6b 7.8, 6a-6b 12.7; δC (63 MHz, CDCl₃) 24.2, 24.7, 25.8, 25.9 (4xCH₃), 50.5 (C-6), 66.9, 70.2, 70.6, 71.0 (C-2, C-3, C-4, C-5), 96.2 (C-1), 108.6, 109.5, (2xC); *m/z* (FAB) 286 (M⁺+1); HRMS (FAB) Found: M⁺+1 286.14094. C₁₂H₁₉N₃O₅ requires M⁺+1 286.14030.

3.5.4 6-Amino-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose Hydrochloride (177)

Sample code: IAS033 Molecular formula: C₁₂H₂₁N O₅ Cl Molecular weight: 295.5

6-azido-6-deoxy-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose (176) (660 mg, 2 mmol) was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and stirred vigourously with 10% Pd/C (110 mg) for 16 hours under an atmosphere of

hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The Pd catalyst was filtered off through a celite pad and the filtrate removed *in vacuo* to afford the title compound (**177**) as a white solid (611 mg, 89%).

 υ_{max}/cm^{-1} (Nujol) 3377 v.broad (NH₂); δ_{H} (250 MHz, D₂O); 1.39, 1.48, 1.56 (12H, 4s, 4xCH₃), 3.14-3.30 (2H, m, 6a-H, 6b-H), 4.08-4.16 (1H, m, 5-H) 4.46 (1H, dd, 4-H), 4.57 (1H, dd, 2-H), 4.71-4.88 (1H, m, 3-H), 5.70 (1H, d, 1-H); *J*(x-y)/Hz 1-2 5.0, 2-3 2.4, 3-4 7.9, 4-5 1.6, 5-6a nd, 5-6b nd, 6a-6b nd; δC (63 MHz, D₂O) 23.7, 24.3, 25.3 (4xCH₃), 40.2 (C-6), 64.8, 70.2, 70.6, 71.5 (C-2, C-3, C-4, C-5), 96.3 (C-1), 110.4, 110.9, (2xC); *m/z* (FAB) 260 (M⁺+1); HRMS (FAB) Found: MH⁺ 260.14998. C₁₂H₂₂NO₅ requires MH⁺ 260.14980.

3.5.5 2,6-Anhydro-3,4,5-tri-O-acetyl- β -D-xylopyranosylnitrile (167)

Sample code: IAS043 Molecular formula: C₁₂H₁₅N O₇ Molecular weight: 285

3,4,5-Tri-O-acetyl- β -D-xylopyranosylnitromethane (95) (1.5 g, 4.7 mmol) was dissolved in pyridine (30 ml) and cooled in an ice bath. PCl₃ (1 ml) was added and the mixture stirred for 3 days at room temperature. Ice-cold 1 M HCl (30 ml) was added to the solution and the mixture stirred for 1 hour. The solution was extracted with chloroform (3 x 50 ml) and the combined organic layers were washed with NaHCO₃ (2 x 50 ml) and water before drying over MgSO₄. The solvent was co-evaporated with water (to remove residual pyridine) to afford crude product as a gummy solid. The title compound (167) was obtained as a white solid (1.34 g, 75%) after dry-flash chromatography.

M.p 128-130 °C (lit.¹⁸⁶ 131-132 °C); υ_{max}/cm^{-1} (Nujol) 2257 (CN) 1759 (C=O); δ_{H} (250 MHz, CDCl₃); 2.02, 2.04, 2.06 (9H, 3s, 3xCOCH₃), 3.54 (1H, dd, 6a-H), 4.17 (1H, dd, 6b-H), 4.46 (1H, d, 2-H), 4.82-4.89 (1H, m, 5-H), 5.00-5.08 (2H, m, 3-H, 4-H); J(x-y)/Hz 2-3 6.7, 3-4 nd, 4-5 nd, 5-6a 6.8, 5-6b 4.0, 6a-6b 12.4; δ_{C} (63 MHz, CDCl₃) 20.41, 20.58 (3xCOCH₃), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, CDCl₃) 20.41, 20.58 (3xCOCH₃), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, CDCl₃) 20.41, 20.58 (3xCOCH₃), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, CDCl₃) 20.41, 20.58 (3xCOCH₃), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, CDCl₃) 20.41, 20.58 (3xCOCH₃), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, C-4, C-5).

C-2), 114.2 (CN) 168.7, 169.2, 169.3 ($3xCOCH_3$); m/z (FAB) 286 (M^++1); HRMS (FAB) Found: M^++1 286.09240. $C_{12}H_{15}NO_7$ requires M^++1 286.09268.

3.5.6 2,3,4,6-Tetra-*O*-acetyl-1-deoxy-1-β-D-glucopyranosylnitrile (189)

Sample code: IAS057 Molecular formula: C₁₅H₁₉N O₉ Molecular weight: 357

2,3,4,6-Tetra-*O*-acetyl- β -D-glucopyranosylnitromethane (**99**) (1.5 g, 4.2 mmol) was dissolved in pyridine (30 ml) and cooled in an ice bath. PCl₃ (1 ml) was added and the mixture stirred for 3 days at room temperature. Ice-cold 1 M HCl (30 ml) was added to the solution and the mixture stirred for 1 hour. The solution was extracted with chloroform (3 x 50 ml) and the combined organic layers were washed with NaHCO₃ (2 x 50 ml) and water before drying over MgSO₄. The solvent was co-evaporated with water (to remove residual pyridine) to afford crude product as a gummy solid. The title compound (**189**) was obtained as a white solid (1.2 g, 82%) after dry-flash chromatography.

M.p 114 °C (lit.¹⁸⁶ 114-115 °C); v_{max}/cm^{-1} (Nujol) 2257 (CN), 1753 (C=O); δ_{H} (250 MHz, CDCl₃); 1.96, 1.97, 2.05 (12H, 4s, 4xCOCH₃), 3.67 (1H, ddd, 6-H), 4.07 (1H, dd, 7a-H), 4.17 (1H, dd, 7b-H), 4.29 (1H, dd, 2-H), 5.04 (1H, dd, 3-H), 5.12 (1H, dd, 5-H), 5.25 (1H, dd, 4-H), 8.78 (1H, bs, OH); J(x-y)/Hz 2-3 9.9, 3-4 9.2, 4-5 9.7, 5-6 9.0, 6-7a 2.2, 6-7b 4.7, 7a-7b 12.7; δ_{C} (63 MHz, CDCl₃) 20.7, 20.8, 21.0 (4xCOCH₃), 61.7 (C-7), 66.68, 67.5, 69.2, 73.1, 76.9 (C-2, C-3, C-4, C-5, C-6), 114.5 (C-1) 169. 1, 169.5, 170.3, 170.8 (4xCOCH₃); m/z (ES) 358 (MH⁺)

3.5.7 (3,4,5-Tri-*O*-acetyl-β-D-xylopyranosyl) methylamine hydrochloride (182)

Sample code: IAS036 Molecular formula: C₁₂H₂₀N₂O₇Cl Molecular weight: 325.5

2,6-Anhydro-3,4,5-tri-*O*-acetyl- β -D-xylopyranosylnitrile (**167**) (500 mg, 1.8 mmol) was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and stirred vigourously with PtO₂ (Adam's catalyst) (60 mg) for 16 hours under an atmosphere of hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The catalyst was filtered off through a celite pad and the filtrate removed *in vacuo* to afford the title compound as a white solid (**182**) (565 mg, 99%).

 v_{max}/cm^{-1} (Nujol) 3364 (NH₂), 1745 (C=O); $[\alpha]_D^{20}$ 129 (c = 1.5 , D₂O); M.p 183-184 °C, $[\alpha]_D^{18}$ -38 (c = 1.6, D₂O); δ_H (250 MHz, D₂O); 2.01, 2.04 (9H, 3s, 3xCOCH₃), 3.02 (1H, dd, 1a-H), 3.18-3.25 (1H, m, 1b-H), 3.45 (1H, dd, 6a-H), 3.79-3.86 (1H, m, 2-H), 4.13 (1H, dd, 6e-H), 4.90 (1H, dd, 3-H), 4.95-5.06 (1H, m, 5-H), 5.25 (1H, dd, 4-H); *J*(x-y)/Hz 1a-2 8.8, 1b-2 nd, 1a-1b 13.5, 2-3 9.6, 3-4 9.3, 4-5 9.1, 5-6a 10.7, 5-6e 5.9, 6a-6e 11.4; δ_C (63 MHz, D₂O) 20.6 (3xCOCH₃), 40.5 (C-1), 66.2 (C-6), 69.3, 70.6, 74.2 (C-2, C-3, C-4, C-5), 173.3, 173.7 (3xCOCH₃); *m/z* (FAB) 290 (M⁺+1); HRMS (FAB) Found: M⁺+1 290.12351. C₁₂H₁₉NO₇ requires M⁺+1 290.12398.

3.5.8 (3,4,5,7-Tetra-O-acetyl- β -D-glucopyranosyl) methylamine hydrochloride (183)

Sample code: IAS058 Molecular formula: C₁₅H₂₃N O₉ Molecular weight: 397.5

2,3,4,6-Tetra-*O*-acetyl-1-deoxy-1- β -D-glucopyranosylnitrile (189) (500 mg, 4.2 mmol) was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and stirred vigourously with PtO₂ (Adam's catalyst) (60 mg) for 16 hours under an atmosphere of hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The catalyst was filtered off through a celite pad and the filtrate removed *in vacuo* to afford the title compound (183) as a waxy solid (476 mg, 90%).

 v_{max}/cm^{-1} (Nujol) 3367 (NH₂), 1742 (C=O); [α]_D¹⁸ -5.0 (c = 0.2, D₂O); δ_{H} (250 MHz, D₂O); 2.03, 2.07, 2.08 (12H, 4s, 4xCOCH₃), 3.08 (1H, dd, 1a-H), 3.24-3.32 (1H, m, 1b-H), 3.81-4.03 (1H, dd, 2-H, 6-H), 4.18-4.24 (1H, m, 7a-H), 4.41 (1H, dd, 7b-H), 4.97 (1H, dd, 3-H), 5.11 (1H, dd, 5-H), 5.36 (1H, dd, 4-H); *J*(x-y)/Hz 1a-2 9.1, 1b-2 nd, 1a-1b 13.5, 2-3 9.1, 3-4 10.1, 4-5 10.2, 5-6 9.2, 6-7a nd, 6-7b 3.6, 7a-7b 12.7; δ_{C} (63 MHz, D₂O) 20.5 (4xCOCH₃), 40.5 (C-1), 62.4 (C-7), 68.5, 70.4, 73.7, 74.5, 75.3 (C-2, C-3, C-4, C-5, C-6), 173. 2, 173.7, 174.1 (4xCOCH₃); *m/z* (FAB) 362 (M⁺+1) HRMS (FAB) Found M⁺+1 362.14517, C₁₅H₁₉NO₉ requires M⁺+1 362.14511.

3.5.9 (3,4,5-Tri-*O*-acetyl- β -D-xylopyranosyl) methylhydroxylamine hydrochloride (188)

Sample code: IAS054 Molecular formula: C₁₂H₁₉NO₈ Molecular weight: 341.5

Nitromethyl compound **95** (312 mg, 1 mmol) was dissolved in a mixture of THF (75 ml), conc HCl (3 ml), glacial acetic acid (16 ml) and water (30 ml). The mixture was cooled (0°C) and stirred before adding Zn dust (1.57 g, 24 mmol). On completion of the reaction (2 hours) the Zn was filtered off through a celite pad and the filtrate diluted with DCM (50 ml). The solution was washed with NaHCO₃ (2x 50 ml) and water before drying over MgSO₄ The solvent was removed *in vacuo* and the title compound (**188**) was afforded as a white solid (565 mg, 98%) on treatment with 1 M ethereal HCl.

M.p 156-157 °C, $[\alpha]_D^{18}$ -39 (c = 1, D₂O); δ_H (250 MHz, D₂O); 1.90, 1.95 (9H, 3s, 3xCOCH₃), 3.21-3.40 (3H, m, 1a-H, 1b-H, 6a-H), 3.89-3.96 (1H, m, 2-H), 4.02 (1H,

dd, 6e-H), 4.85 (1H, dd, 3-H), 4.86-4.91 (1H, m, 5-H), 5.15 (1H, dd, 4-H); J(x-y)/Hz1a-2 nd, 1b-2 nd, 1a-1b nd, 2-3 9.1, 3-4 10.2, 4-5 10.1, 5-6a nd, 5-6e 5.6, 6a-6e 11.5; $\delta_{\rm C}$ (63 MHz, D₂0) 20.6 (3xCOCH₃), 51.7 (C-1), 66.2 (C-6), 69.3, 70.5, 71.5, 74.2 (C-2, C-3, C-4, C-5), 173. 2, 173.3, 174.7 (3xCOCH₃); m/z (FAB) 306 (M⁺+1) HRMS (FAB) Found M⁺+1 306.11864, C₁₂H₁₉NO₈ requires M⁺+1 306.11889.

3.6 Synthesis of amidoxime-linked pseudodisaccharides

3.6.1 Amidoxime linked pseudo-disaccharides- General procedure

A solution of the hydroximoyl chloride (1 equivalent) in dry chloroform (40 ml) was added dropwise over 2 hours to a cooled (0°C) and stirred solution of the pyranosyl amine (1.5 equivalents) and triethylamine (1 ml, 18 equivalents) in dry chloroform (3 ml) under N₂. The mixture was diluted with DCM (50 ml), washed with 0.1 M HCl (2 x 50 ml) and the combined organic layers were dried over MgSO₄. The product was isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.6.1.1 (Z)-*N*-(6-Deoxy-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranosyl)-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (178)

Sample code: IAS041 Molecular formula: C₂₄H₃₆N₂O₁₃ Molecular weight: 560

To a stirred mixture of D-galactose amine **177** (395 mg, 1.3 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**178**) as a white solid (201 mg, 81%).

M.p 167-168 °C; $[\alpha]_D^{20}$ -74 (c = 1.0 ,CHCl₃); δ_H (360 MHz, CDCl₃); 1.33, 1.38, 1.49, 1.53 (12H, 4s, 4xCH₃), 1.97, 2.04, 2.05 (9H, 3s, 3xCO<u>C</u>H₃), 3.33 (1H, dd, 5a-H), 3.34-3.59 (2H, m, 6a'-H, 6b'-H), 3.84-3.89 (1H, m, 5'-H), 4.00 (1H, d, 1-H), 4.15 (1H, dd, 5e-H), 4.29-4.34 (2H, m, 4'-H, 2'-H) 4.63 (1H, dd, 3'-H), 5.04 (1H, ddd, 4-H), 5.20 (1H, dd, 3-H), 5.24 (1H, m, NH), 5.40 (1H, dd, 2-H), 5.53 (1H, d, 1'-H), 7.76 (1H, bs, OH); *J*(x-y)/Hz 1-2 10.1, 2-3 9.4, 3-4 9.4, 4-5a 9.0, 4-5e 5.4, 5a-5e 11.2, 1'-2' 5.0, 2'-3' 2.5, 3'-4' 7.9, 4'-5' nd, 5'-6a' nd, 5'-6b' nd, 6a'-6b' nd; δ_C (93 MHz, CDCl₃) 20.6 (3xCOCH₃), 24.3, 24.8, 25.8, 25.9 (acetal 4xCH₃), 42.6 (C-6'),
66.7 (C-5), 67.4, 68.6, 68.7, 70.4, 70.6, 70.9, 73.7, 76.2 (C-1, C-2, C-3, C-4, C-2', C-3', C-4', C-5'), 96.1 (C-1'), 108.6, 109.3 (2xC), 149.0 (C=N), 169.3, 169.7, 170.2 ($3xCOCH_3$); m/z (FAB) 561 (M⁺+1) HRMS (FAB) Found M⁺ +1 561.22821, C₂₄H₃₆N₂O₁₃ requires M⁺ +1 561.22919.

3.6.1.2 (Z)-*N*-(6-Deoxy-1,2:3,4-di-*O*-isopropylidene-α-Dgalactopyranosyl)-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl)formamide oxime (181)

Sample code: IAS044 Molecular formula: $C_{27}H_{40}N_2O_{15}$ Molecular weight: 632

To a stirred mixture of D-galactose amine **177** (395 mg, 1.3 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride **107** (150 mg, 0.36 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**181**) as a white solid (173 mg, 75%).

M.p 110-111 °C; $[\alpha]_D^{20}$ -48 (c = 1.0 ,CHCl₃); δ_H (360 MHz, CDCl₃); 1.35, 1.40, 1.47, 1.49 (12H, 4s, 4xCH₃), 1.94, 1.98, 2.01, 2.06 (12H, 4s, 4xCO<u>C</u>H₃), 3.38 (1H, ddd, 6a'-H), 3.58 (1H, ddd, 6b'-H), 3.68 (1H, dt, 5-H), 3.78-3.82 (1H, m, 5'-H), 4.08 (1H, d, 1-H), 4.13-4.18 (2H, m, 6a-H, 6b-H), 4.27 (1H, dd, 2'-H), 4.32 (1H, dd, 4'-H), 4.61 (1H, dd, 3'-H), 5.11 (1H, dd, 4-H), 5.18 (1H, dd, 3-H), 5.17-5.20 (1H, m, NH), 5.45 (1H, dd, 2-H), 5.50 (1H, d, 1'-H), 7.78 (1H, bs, OH); J(x-y)/Hz 1-2 10.1, 2-3 9.2, 3-4 9.5, 4-5 9.7, 5-6a nd, 5-6b nd, 6a-6b nd, 1'-2' 5.0, 2'-3' 2.7, 3'-4' 8.0, 4'-5' 1.8, 5'-6a' 6.5, 5'-6b' 6.8, 6a'-6b' 13.2; δ_C (93 MHz, CDCl₃) 20.5 (3xCOCH₃), 24.2, 24.7, 25.9 (acetal 4xCH₃), 42.5 (C-6'), 61.8 (C-6), 67.3, 67.8, 68.3, 70.4, 70.6, 70.8, 74.2, 75.6, 75.7 (C-1, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 96.2 (C-1'), 108.5, 109.3 (2xC), 148.7 (C=N), 169.3, 170.1, 170.6 (3xCOCH₃); m/z (FAB) 633 (M⁺+1) HRMS (FAB) Found M⁺ +1 633.25026, C₂₇H₄₀N₂O₁₅ requires M⁺ +1 633.25069

3.6.1.3 (Z)-*N*-(3,4,5-Tri-*O*-acetyl- β -D-xylopyranosyl methyl)-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (184)

Sample code: IAS037 Molecular formula: C₂₄H₃₄N₂O₁₅ Molecular weight: 590

To a stirred mixture of D-xylose derived amine (182) (215 mg, 0.7 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (184) as a white solid (115 mg, 44%).

M.p 140-141 °C; $\delta_{\rm H}$ (600 MHz, CD₃S(O)CD₃); 1.89, 1.96, 1.97, 1.98, 1.99, 2.04 (18H, 6s, 6xCOCH₃), 3.03 (1H, ddd, 1a'-H), 3.44-3.51 (2H, m, 1b'-H, 6a'-H), 3.62 (1H, ddd, 2'-H), 3.94 (1H, dd, 5e-H), 3.98 (1H, dd, 6e'-H), 4.27 (1H, d, 1-H) 4.73 (1H, dd, 3'-H), 4.79-4.85 (2H, m, 4-H, 5'-H), 5.15 (1H, dd, 2-H), 5.22 (1H, dd, 3-H), 5.23 (1H, dd, 4'-H), 5.26-5.29 (1H, m, NH), 9.97 (1H, bs, OH); *J*(x-y)/Hz 2-3 9.9, 3-4 9.5, 4-5 9.5, 5-6a nd, 5-6e 5.5, 6a-6e 10.9, 1a'-2' 3.6, 1b'-2 2.6, 1a'-1b' 11.3, 2'-3' 9.6, 3'-4' 9.6, 4'-5' 9.5, 5'-6a' nd, 5'-6e' 5.6, 6a'-6e' 11,0; $\delta_{\rm C}$ (63 MHz, CD₃S(O)CD₃) 20.5 (6xCOCH₃), 42.4 (C-1'), 65.1, 65.2 (C-5, C-6'), 68.2, 68.6, 69.6, 72.6, 72.9, 74.3, 76.7 (C-1, C-2, C-3, C-4, C-2', C-3', C-4', C-5'), 147.3 (C=N), 168. 4, 169.4, 169.5 (6xCOCH₃); *m*/*z* (FAB) 591 (M⁺+1) HRMS (FAB) Found M⁺ +1 591.20377, C₂₄H₃₄N₂O₁₅ requires M⁺ +1 591.20374.

3.6.1.4 (Z)-*N*-(3,4,5-Tri-*O*-acetyl- β -D-xylopyranosyl methyl)-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)formamide oxime (185)

Sample code: IAS055 Molecular formula: C₂₇H₃₈N₂O₁₇ Molecular weight: 662

To a stirred mixture of D-xylose derived amine **182** (200 mg, 0.7 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-glucose derived hydroximoyl chloride **107** (150 mg, 0.36 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound (**185**) as a white solid (100 mg, 40%).

M.p 141-143 °C; $[\alpha]_D^{20}$ -36 (c = 1.0 ,CHCl₃); δ_H (600 MHz, CDCl₃); 1.93, 1.95, 1.98, 1.99, 2.00, 2.03, 2.04 (21H, 7s, 7xCOCH₃), 3.17 (1H, ddd, 1a'-H), 3.26 (1H, dd, 6a'-H), 3.43 (1H, ddd, 2'-H), 3.54 (1H, ddd, 1b'-H), 3.64 (1H, ddd, 5-H), 4.03 (1H, d, 1-H) 4.04-4.07 (1H, m, 6a-H), 4.09 (1H, m, 6e'-H), 4.14 (1H, dd, 6b-H), 4.85 (1H, dd, 3'-H), 4.89-4.93 (1H, m, 5'-H), 4.95 (1H, dd, 4-H), 5.14-5.19 (2H, m, 4'-H, 3-H), 5.25 (1H, dd, 2-H), 5.34 (1H, dd, NH); J(x-y)/Hz 1-2 10.2, 2-3 9.6, 3-4 9.7, 4-5 9.9, 5-6a 2.2, 5-6b 5.8, 6a-6e 12.4, 1a'-2' 6.6, 1b'-2 2.6, 1a'-1b' 11.1, 2'-3' 9.6, 3'-4' 9.6, 4'-5' 9.9, 5'-6a' 10.9, 5'-6e' 5.8, 6a'-6e' 11.2; δ_C (93 MHz, CDCl₃) 20.4, 20.5, 20.6 (7xCOCH₃), 43.2 (C-1'), 62.2 (C-6), 65.2 (C-6'), 68.0, 68.2, 68.9, 70.0, 73.1, 73.8, 75.1, 75.9, 77.5 (C-1, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 147.8 (C=N), 169. 3, 169.7, 170.1, 170.4 (7xCOCH₃); m/z (FAB) 663 (M⁺+1) HRMS (FAB) Found M⁺ +1 663.22504, C₂₇H₃₈N₂O₁₇ requires M⁺ +1 663.22487.

3.6.1.5 (Z)-*N*-(3,4,5,7-Tetra-*O*-acetyl- β -D-glucopyranosyl methyl)-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (186)

Sample code: IAS059 Molecular formula: C₂₇H₃₈N₂O₁₇ Molecular weight: 662

To a stirred mixture of D-glucose derived amine **183** (240 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound **186** as a white solid (76 mg, 31%).

M.p 193-194 °C; $\delta_{\rm H}$ (360 MHz, CD₃S(O)CD₃); 1.91, 1.97, 1.98, 2.00, 2.01, 2.03, 2.06 (21H, 7s, 7xCOCH₃), 3.02-3.09 (1H, m, 1a'-H), 3.45-3.52 (2H, m, 1b'-H, 5a-H), 3.76 (1H, ddd, 2'-H), 3.95-4.08 (3H, m, 6'-H, 5e-H, 7a'-H), 4.14 (1H, dd, 7b'-H), 4.35 (1H, d, 1-H) 4.77 (1H, dd, 3'-H), 4.87 (1H, dd, 5'-H), 4.82-4.88 (1H, m, 4-H), 5.17 (1H, dd, 2-H), 5.23 (1H, dd, 3-H), 5.32 (1H, dd, 4'-H), 5.36 (1H, dd, NH), 9.79 (1H, bs, OH); J(x-y)/Hz 1-2 9.5, 2-3 10.0, 3-4 9.6, 4-5a 10.7, 4-5e nd, 5a-5e 11.0, 1a'-2' 7.4, 1b'-2 2.5, 1a'-1b' nd, 2'-3' 9.7, 3'-4' 9.5, 4'-5' 9.8, 5'-6' 9.7, 6'-7a' nd, 6'-7b' 6.1, 7a'-7b' 12.3; $\delta_{\rm C}$ (93 MHz, CD₃S(O)CD₃) 21.8 (7xCOCH₃), 44.2 (C-1'), 63.8 (C-6), 67.2 (C-6'), 70.1, 70.2, 70.3, 71.3, 74.9, 75.0, 76.0, 76.4, 77.9 (C-1, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 149.2 (C=N), 170. 0, 170.7, 170.9, 171.0, 171.4 (7xCOCH₃); m/z (FAB) 663 (M⁺+1) HRMS (FAB) Found M⁺ +1 663.22507, C₂₇H₃₈N₂O₁₇ requires M⁺ +1 663.22487.

3.6.1.6 (Z)-*N*-(3,4,5,7-Tetra-*O*-acetyl- β -D-glucopyranosyl methyl)-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)formamide oxime (187)

Sample code: IAS062 Molecular formula: C₃₀H₄₂N₂O₁₉ Molecular weight: 734

To a stirred mixture of D-glucose derived amine **183** (240 mg, 0.6 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-glucose derived hydroximoyl chloride **107** (150 mg, 0.36 mmol) was added in accordance to the general procedure above. Dry-flash chromatography yielded the title compound **187** as a white solid (131 mg, 49%).

M.p 180-181 °C; $[\alpha]_D^{20}$ -12 (c = 1.0 ,CHCl₃); δ_H (360 MHz, CDCl₃); 1.90, 1.91, 1.93, 1.94, 1.95, 2.01, 2.02, 2.04 (24H, 8s, 8xCOCH₃), 3.13-3.20 (1H, m, 1a'-H), 3.47-3.51 (1H, m, 2'-H), 3.53-3.68 (3H, m, 5-H, 6'-H, 1b'-H), 4.01-4.18 (5H, m, 1-H, 6a-H, 6b-H, 7a'-H, 7b'-H), 4.87-4.97 (3H, m, 4-H, 3'-H, 5'-H), 5.09-5.27 (3H, m, 2-H, 3-H, 4'-H) 5.36 (1H, dd, NH), 8.09 (1H, bs, OH); J(x-y)/Hz 1-2 nd, 2-3 nd, 3-4 nd, 4-5 nd, 5-6a nd, 5-6b nd, 6a-6e nd, 1a'-2' nd, 1b'-2 nd, 1a'-1b' nd, 2'-3' nd, 3'-4' nd, 4'-5' nd, 5'-6' nd, 6'-7a' nd, 6'-7b' nd, 7a'-7b'nd; δ_C (93 MHz, CDCl₃) 21.6, 21.7, 21.8 (8xCOCH₃), 44.1 (C-1'), 63.2, 63.4 (C-6, C-7'), 69.3, 69.4, 70.0, 70.7, 74.4, 74.8, 75.0, 76.2, 76.6, 77.1, 78.3 (C-1, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', C-6'), 149.3 (C=N), 170.7, 170.8, 170.9, 171.3, 171.5, 171.6, 171.9 (8xCOCH₃); *m/z* (FAB) 735 (M⁺+1) HRMS (FAB) Found M⁺ +1 735.24605, C₃₀H₄₂N₂O₁₉ requires M⁺ +1 735.24600.

3.6.2 *N*-Acetyl(4,5-di-*O*-acetyl- β -D-xylopyranosyl) methylamine (191)

Sample code: IAS081 Molecular formula: C₁₂H₁₉NO₇ Molecular weight: 289

Nitromethyl compound **95** (300 mg, 1 mmol) was vigourously stirred in methanol (8 ml) (THF added to improve solubility) with Raney nickel (500 mg) (stored under methanol-not water!) under a balloon of hydrogen gas for 16 hours. The mixture was filtered through a pad of celite and washed with methanol and DCM, before removing the solvent *in vacuo* to afford the title compound (**191**) as a colourless oil (260 mg, 96%).

 v_{max}/cm^{-1} (Nujol) 3364 (OH), 1742 (C=O ester), 1651 (C=O amide), 1550 (NH bend); [α]_D¹⁸ 129 (c = 1.5, CHCl₃); δ_{H} (360 MHz, CHCl₃); 1.99, 2.03, 2.05 (9H, 3s, 2xCO<u>C</u>H₃, 1xCONHCH₃), 3.16-3.31 (3H, m, 1a-H, 2-H, 3-H), 3.22 (1H, dd, 6a-H), 3.86 (1H, ddd, 1b-H), 4.01 (1H, dd, 6e-H), 4.60 (1H, bs, OH), 4.83 (1H, dt, 5-H), 5.09 (1H, dd, 4-H); *J*(x-y)/Hz 1a-2 2.9, 1b-2 8.2, 1a-1b 11.0, 2-3 nd, 3-4 9.4, 4-5 10.7, 5-6a 10.9, 5-6e 5.7, 6a-6e 11.0; δ_{C} (63 MHz, CHCl₃) 20.6, 20.7 (2xCOCH₃), 22.6 (1xCONHCH₃) 39.8 (C-1), 66.2 (C-6), 68.4, 69.3, 74.4, 79.5 (C-3, C-5, C-4, C-2), 170.1, 170.5 (2xCOCH₃) 172.5 (1xCONHCH₃); *m/z* (FAB) 290 (M⁺+1) HRMS (FAB) Found M⁺+1 290.12351, C₁₂H₁₉NO₇ requires M⁺+1 290.12398.

3.6.3 (Z)-*N*-(β -D-xylopyranosylmethyl)-(β -D-xylopyranosyl)formamide oxime (192)

Sample code: IAS086 Molecular formula: C₁₂H₂₂N₂O₉ Molecular weight: 338

pseudodisaccharide **184** (110 mg, mmol) and triethylamine (0.05 ml, mmol) were stirred in methanol (5 ml) and the mixture heated (65 °C), for 16 hours. On cooling, the reaction mixture was concentrated *in vacuo* to yield the title compound (**192**) as a viscous oil (60 mg, 95%).

 $\delta_{\rm C}$ (93 MHz, D₂O); 44.2 (C-1'), 70.0 (C-5), 70.1 (C-6'), 70.3, 70.5, 71.7, 72.2, 77.3, 78.1, 78.4, 80.9 (C-1, C-2, C-3, C-4, C-2', C-3', C-4', C-5'), 153.7 (C=N); *m*/z (ES) 340 (MH₂⁺).

3.7 Synthesis of pyranosylbenzazoles

3.7.1 Benzothiazoles - General procedure

Pyranosyl hydroximoyl chloride (1 equivalent) and *o*-aminothiophenol (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) under an atmosphere of nitrogen for 5 h. The products were usually found to crystallize on cooling, although, an alternative work-up could be employed, this proceeded as follows: The reaction mixture was diluted with DCM (50 ml) and washed with 0.1 M HCl (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Removal of the solvent *in vacuo* afforded the crude product which was purified by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.7.1.1 2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)benzothiazole (214)

Sample code: IAS024 Molecular formula: C₁₈H₁₉NO₇S Molecular weight: 393

Xylose derived hydroximoyl chloride **106** (200 mg, 0.6 mmol) and *o*-amino thiophenol (185 mg, 1.5 mmol) were added according to the general procedure above. The title compound (**214**) was obtained as a white solid (220 mg, 90%) after dry-flash chromatography.

M.p 160-161 °C (lit.¹⁹⁵ 161-162 °C); $[\alpha]_D^{20} = -36$ (c = 0.6, CHCl₃); δ_H (250 MHz, CDCl₃); 1.91, 1.97, 2.00 (9H, 3s, 3xCOCH₃), 3.48 (1H, dd, 5a`-H), 4.28 (1H, dd, 5e`-H), 4.76 (1H, d, 1`-H), 5.06 (1H, m, 4`-H), 5.19 (1H, dd, 2`-H), 5.34 (1H, dd, 3`-H), 7.36-7.44 (2H, m, Ar), 7.81-7.96 (2H, m, Ar); J(x-y)/Hz 1-2 9.5, 2-3 9.4, 3-4 9.3, 4-5a 10.5, 4-5e 5.5, 5a-5e 11.2; δ_C (63 MHz, CDCl₃); 20.5 (3xCOCH₃), 66.9 (C-5`), 68.8, 71.4, 72.8, 77.9 (C-1`, C-2`, C-3`, C-4`), 121.8, 123.2, 125.4, 126.1 (C-7, C-6, C-5, C-4), 134.7 (C-7a), 152.5 (C-3a), 166.6 (C-2), 169.3, 169.7, 170.1 (3xCOCH₃);

m/z (FAB) 393 (M⁺ +1) HRMS (FAB) Found M⁺+1 393.09568, C₁₈H₂₀NO₇S requires M⁺+1 393.09605.

3.7.1.2 2-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)benzothiazole (215)

Sample code: IAS027 Molecular formula: C₂₁H₂₃NO₉S Molecular weight: 465

Glucose derived hydroximoyl chloride **107** (200 mg, 0.5 mmol) and *o*-aminothiophenol (188 mg, 1.5 mmol) were added according to the general procedure above. The title compound (**215**) was obtained as a white solid (185 mg, 81%) after dry-flash chromatography.

M.p 128-129 °C (lit.¹⁹⁸ 129-130 °C); $[\alpha]_D^{20} = -24$ (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃); 1.99, 2.05, 2.10, 2.14 (12H, 4s, 4xCOCH₃), 3.99 (1H, m, 5`-H), 4.28 (1H, dd, 6b`-H), 4.37 (1H, dd, 6a`-H), 4.97 (1H, d, 1`-H), 5.30 (1H, dd, 2`-H), 5.37 (1H, dd, 4`-H), 5.47 (1H, dd, 3`-H) 7.39-7.54 (2H, m, Ar), 7.89-8.56 (2H, m, Ar); *J*(x-y)/Hz 1-2 9.5, 2-3 9.2, 3-4 9.3, 4-5 9.5, 5-6a 4.7, 5-6b 2.5, 6a-6b 12.4; δ_C (63 MHz, CDCl₃); 20.2, 20.3, 20.4 (4xCOCH₃), 61.7 (C-6`), 67.9, 71.1, 73.3, 76.1, 76.4 (C-1`, C-2`, C-3`, C-4`), 121.6, 123.1, 125.3, 125.9 (C-7, C-6, C-5, C-4), 134.6 (C-7a), 152.4 (C-3a), 166.2 (C-2), 168.9, 169.1, 169.9, 170.3 (4xCOCH₃); *m/z* (FAB) 466 (M⁺ +1) HRMS (FAB) Found M⁺+1 466.11680, C₂₁H₂₄NO₉S requires M⁺+1 466.11718.

3.7.2 Benzimidazoles-General procedures

General Procedure A

Pyranosyl hydroximoyl chloride (1 equivalent) and *o*-phenylenediamine (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of nitrogen at room temperature for 16 h. The reaction mixture was diluted with DCM (50 ml) and washed with 4% CuSO₄ solution (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Removal of the solvent *in vacuo* afforded the crude product which was purified by filtration through a silica pad.

General Procedure B

Pyranosyl hydroximoyl chloride (1 equivalent) and *o*-phenylenediamine (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) under an atmosphere of nitrogen for 5 h. The reaction mixture was diluted with DCM (50 ml) and washed with 4% CuSO₄ solution (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Removal of the solvent *in vacuo* afforded the crude product which was purified by filtration through a silica pad.

3.7.2.1 2-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)benzimidazole (217)

Sample code: IAS025 Molecular formula: $C_{18}H_{20}N_2O_7$ Molecular weight: 376

Xylose derived hydroximoyl chloride **106** (200 mg, 0.6 mmol) and *o*-phenylenediamine (162 mg, 1.5 mmol) were added according to general procedures A or B. The title compound (**217**) was obtained as a white solid (185 mg, 83%) after dry-flash chromatography.

M.p 152-153 °C; $[\alpha]_D^{20} = -78$ (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃); 1.89, 1.98, 2.01 (9H, 3s, 3xCOCH₃), 3.46 (1H, dd, 5a⁻-H), 4.18 (1H, dd, 5e⁻-H), 4.70 (1H, d, 1⁻-H),

5.03 (1H, m, 4^{\comp}-H), 5.21 (1H, dd, 2^{\comp}-H), 5.35 (1H, dd, 3^{\comp}-H), 7.13-7.72 (2H, m, Ar), 7.50 (2H, bs, Ar); J(x-y)/Hz 1-2 9.7, 2-3 9.4, 3-4 9.6, 4-5a 10.4, 4-5e 5.6, 5a-5e 11.3; $\delta_{\rm C}$ (63 MHz, CDCl₃); 20.5, 20.5, 20.6 (3xCOCH₃), 67.0 (C-5^{\comp}), 68.9, 70.6, 72.7, 75.1 (C-1^{\comp}, C-2^{\comp}, C-3^{\comp}, C-4^{\comp}), 122.9 (C-5, C-6), 148.6 (C-2), 169.8, 169.9, 170.0 (3xCOCH₃); m/z (FAB) 377 (M⁺ +1) HRMS (FAB) Found M⁺+1 377.13424, C₁₈H₂₁N₂O₇ requires M⁺+1 377.13488.

3.7.2.2 2-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)benzimidazole (218)

Sample code: IAS032 Molecular formula: C₂₁H₂₄N₂O₉ Molecular weight: 448

Glucose derived hydroximoyl chloride **107** (350 mg, 0.8 mmol) and *o*-phenylenediamine (231 mg, 1.9 mmol) were added according to general procedures A or B. The title compound (**218**) was obtained as a white solid (292 mg, 89%) after dry-flash chromatography.

M.p 171-172 °C; $[\alpha]_D^{20} = -20$ (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃); 2.14, 2.21, 2.25 (12H, 4s, 4xCOCH₃), 4.12 (1H, m, 5`-H), 4.33 (1H, dd, 6b`-H), 4.51 (1H, dd, 6a`-H), 5.04 (1H, d, 1`-H), 5.36 (1H, dd, 2`-H), 5.50 (1H, dd, 4`-H), 5.61 (1H, dd, 3`-H) 7.41-7.48 (2H, m, Ar), 7.76 (2H, bs, Ar); J(x-y)/Hz 1-2 9.7, 2-3 9.5, 3-4 9.1, 4-5 10.1, 5-6a 5.2, 5-6b 2.0, 6a-6b 12.5; δ_C (63 MHz, CDCl₃); 20.9, 21.0, 21.0, 21.1 (4xCOCH₃), 62.5 (C-6`), 66.2, 68.7, 70.9, 73.8, 75.1 (C-1`, C-2`, C-3`, C-4`), 123.4 (C-5, C-6), 148.8 (C-2), 170.0, 170.5, 169.9, 171.1 (4xCOCH₃); m/z (FAB) 449 (M⁺ +1) HRMS (FAB) Found M⁺+1 449.15606, C₂₁H₂₄N₂O₉ requires M⁺+1 449.15601.

3.7.2.3 2-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)-5-nitro-benzimidazole (219)

Sample code: IAS076 Molecular formula: C₁₈H₁₉N₃O₉ Molecular weight: 421

Xylose derived hydroximoyl chloride **106** (200 mg, 0.6 mmol) and 4-nitro-1,2diamino benzene (230 mg, 1.5 mmol) were added according to general procedure B. The title compound (**219**) was obtained in a crude form (reddish solid) which resisted attempts at purification by dry and wet-flash chromatography.

 $δ_{\rm H}$ (250 MHz, DMSO); 2.03, 2.19, 2.22 (9H, 3s, 3xCOCH₃), 3.98 (1H, dd, 5a⁻-H), 4.36 (1H, dd, 5e⁻-H), 5.25 (1H, d, 1⁻-H), 5.19-5.34 (1H, m, 4⁻-H), 5.47 (1H, dd, 2⁻-H), 5.70 (1H, dd, 3⁻-H), 7.89 (1H, d, 7-H), 8.28 (1H, dd, 6-H), 8.64 (1H, d, 4-H); J(x-y)/Hz 1⁻-2⁻9.7, 2⁻-3⁻9.4, 3⁻-4⁻9.5, 4⁻-5a⁻10.6, 4⁻-5e⁻5.6, 5a⁻-5e⁻11.0, 4-6 1.8, 6-7 8.8; m/z (FAB) 422 (M⁺ +1) HRMS (FAB) Found M⁺+1 422.11996, C₁₈H₁₉N₃O₉ requires M⁺+1 422.11995.

3.7.3 Benzoxazoles - General procedures

General procedure A

Pyranosyl hydroximoyl chloride (1 equivalent) and *o*-aminophenol (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of nitrogen at room temperature for 16 h. The reaction mixture was diluted with DCM (50 ml) and washed with 0.1 M HCl (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Removal of the solvent *in vacuo* afforded the crude product which was purified by filtration through a silica pad.

General procedure B

Pyranosyl hydroximoyl chloride (1 equivalent) and *o*-aminophenol (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) under an atmosphere of nitrogen at for 5 h. The reaction mixture was diluted with DCM (50 ml) and washed with 0.1 M HCl (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Removal of the solvent *in vacuo* afforded the crude product which was purified by filtration through a silica pad.

3.7.3.1 2-(2,3,4-Tri-O-acetyl-β-D-xylopyranosyl)benzoxazole (220)

Sample code: IAS026 Molecular formula: C₁₈H₁₉NO₈ Molecular weight: 377

Xylose derived hydroximoyl chloride **106** (185 mg, 0.6 mmol) and *o*-aminophenol (164 mg, 1.5 mmol) were added according to general procedures A or B. The title compound (**220**) was obtained as a white solid (140 mg, 68%) after dry-flash chromatography.

M.p 155-156 °C; $[\alpha]_D^{20} = -74$ (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃);); 1.84, 1.97, 2.00 (9H, 3s, 3xCOCH₃), 3.47 (1H, dd, 5a`-H), 4.26 (1H, dd, 5e`-H), 4.68 (1H, d, 1`-H), 5.08 (1H, m, 4`-H), 5.31 (1H, dd, 2`-H), 5.43 (1H, dd, 3`-H), 7.27-7.32 (2H, m, Ar), 7.47-7.51 (1H, m, Ar), 7.64-7.68 (1H, m, Ar); J(x-y)/Hz 1-2 10.2, 2-3 9.1, 3-4 9.2, 4-5a 10.3, 4-5e 5.5, 5a-5e 11.3; δ_C (63 MHz, CDCl₃); 20.5, 20.6 (3xCOCH₃), 66.9 (C-5`), 68.5, 69.9, 72.6, 73.9 (C-1`, C-2`, C-3`, C-4`), 110.8, 120.4, 124.6, 125.8 (C-7, C-4, C-6, C-5), 140.2 (C-3a), 150.6 (C-7a), 159.9 (C-2), 169.1, 169.6, 170.1 (3xCOCH₃); m/z (FAB) 378 (M⁺ +1) HRMS (FAB) Found M⁺+1 378.11935, C₁₈H₂₀NO₈ requires M⁺+1 378.11889.

3.7.3.2 2-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)benzoxazole (221)

Sample code: IAS029 Molecular formula: C₂₁H₂₄NO₁₀ Molecular weight: 465

Glucose derived hydroximoyl chloride **107** (200 mg, 0.5 mmol) and *o*-aminophenol (110 mg, 1.0 mmol) were added according to general procedures A or B. The title compound (**221**) was obtained as a white solid (156 mg, 71%) after dry-flash chromatography.

M.p 174-175 °C; $[\alpha]_D^{20} = -36$ (c = 1, CHCl₃); δ_H (250 MHz, CDCl₃); 1.81, 1.97, 1.99, 2.01 (12H, 4s, 4xCOCH₃), 3.86 (1H, m, 5`-H), 4.09 (1H, dd, 6b`-H), 4.25 (1H, dd, 6a`-H), 4.76 (1H, d, 1`-H), 5.19 (1H, dd, 2`-H), 5.33 (1H, dd, 4`-H), 5.51 (1H, dd, 3`-H) 7.28-7.33 (2H, m, Ar), 7.49-7.52 (1H, m, Ar), 7.65-7.69 (1H, m, Ar); *J*(x-y)/Hz 1-2 10, 2-3 9.5, 3-4 9.3, 4-5 9.9, 5-6a 4.8, 5-6b 2.2, 6a-6b 12.6; δ_C (63 MHz, CDCl₃); 20.7, 20.9, 21.0, 21.1 (4xCOCH₃), 62.3 (C-6`), 68.3, 69.5, 70.2, 73.9, 76.9 (C-1`, C-2`, C-3`, C-4`), 111.5, 120.9, 125.1, 126.4 (C-7, C-4, C-6, C-5), 140.7 (C-3a), 151.2 (C-7a), 159.9 (C-2), 169.3, 169.7, 170.6, 171.0 (4xCOCH₃); *m/z* (FAB) 450 (M⁺ +1) HRMS (FAB) Found M⁺+1 450.14098, C₂₁H₂₄NO₁₀ requires M⁺+1 450.14002.

3.7.4 Deprotections

Procedure A

The acetylated substrate (1 equivalent) and triethylamine (1.33 mmol) were stirred in methanol (5 ml) at room temperature, under nitrogen for 36h. The reaction mixture was concentrated *in vacuo* to yield the crude product, which were crystallised from ice-cold methanol.

Procedure B

The acetylated substrate (1 equivalent) and powdered 4A molecular sieves (equal mass to that of substrate) were stirred in warm (40 °C) HPLC grade methanol (5 ml) for 12-24h. On completion of the reaction, the mixture was filtered through celite and

concentrated *in vacuo* to afford the crude product. The deprotected products were crystallised from ice-cold methanol.

3.7.4.1 2-β-D-Xylopyranosylbenzoxazole (222)

Sample code: IAS047 Molecular formula: C₁₂H₁₃NO₅ Molecular weight: 251

2-(2,3,4-Tri-O-acetyl- β -D-xylopyranosyl)benzoxazole (**220**) (100 mg, 0.3 mmol) was deacetylated according to deprotection A to afford the title compound (**222**) as a white solid (61 mg, 92%).

M.p 192-194 °C; $[\alpha]_D^{20} = -26$ (c = 1, MeOH); δ_H (360 MHz, DMSO); 3.22 (1H, dd, 5a`-H), 3.24 (1H, td, 3`-H), 3.39 (1H, d, 4`-H), 3.60 (1H, td, 2`-H), 3.78 (1H, dd, 5e`-H), 4.32 (1H, d, 1`-H), 5.09 (1H, d, OH), 5.12 (1H, d, OH), 5.29 (1H, d, OH), 7.29-7.40 (2H, m, Ar), 7.62-7.71 (2H, m, Ar); J(x-y)/Hz 1-2 9.8, 2-3 8.6, 3-4 nd, 4-5a 10.4, 4-5e 5.2, 5a-5e 10.9; δ_C (93 MHz, DMSO); 69.3 (C-3`), 70.0 (C-5`), 71.9 (C-2`), 75.8 (C-1`), 77.5 (C-4`), 110.8, 119.8, 124.4, 125.4 (C-7, C-4, C-6, C-5), 140.1 (C-7a), 149.9 (C-3a), 162.8 (C-2); m/z (FAB) 252 (M⁺ +1) HRMS (FAB) Found M⁺+1 252.08679, C₁₂H₁₄NO₅ requires M⁺+1 252.08720.

3.7.4.2 2-β-D-Xylopyranosylbenzimidazole (223)

2-(2,3,4-Tri-O-acetyl- β -D-xylopyranosyl)benzimidazole (217) (100 mg, 0.3 mmol) was deacetylated according to deprotections A or B to afford the title compound (223) as a white solid (62 mg, 93%).

M.p 232-233 °C; $[\alpha]_D^{20} = -17$ (c = 1, MeOH); δ_H (360 MHz, DMSO) 3.20 (1H, dd, 5a`-H), 3.25 (1H, dd, 3`-H), 3.42 (1H, ddd, 4`-H), 3.59 (1H, dd, 2`-H), 3.81 (1H, dd,

5e[°]-H), 4.25 (1H, d, 1[°]-H), 5.12 (3H, bs, OH), 7.09-7.13 (2H, m, Ar), 7.45-7.49 (2H, m, Ar); J(x-y)/Hz 1-2 9.7, 2-3 8.7, 3-4 9.1, 4-5a 10.7, 4-5e 5.2, 5a-5e 10.9; δ_C (93 MHz, DMSO); 69.4 (C-3[°]), 70.0 (C-5[°]), 72.6 (C-2[°]), 76.8 (C-1[°]), 77.8 (C-4[°]), 111.2, 118.6, 121.0, 122.0 (C-4, C-5, C-6, C-7), 134.6 (C-7a), 142.2 (C-3a), 152.2 (C-2); m/z (FAB) 251 (M⁺ +1) HRMS (FAB) Found M⁺+1 251.10372, C₁₂H₁₅N₂O₄ requires M⁺+1 251.10318.

3.7.4.3 2- β -D-Glucopyranosylbenzimidazole (224)

Sample code: IAS063 Molecular formula: C₁₃H₁₆N₂O₅ Molecular weight: 280

2-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)benzimidazole (**218**) (150 mg, 0.3 mmol) was deacetylated according to deprotection B to afford the title compound (**224**) as a white solid (89 mg, 95%).

M.p 253-254 °C; $[\alpha]_D^{20} = 21$ (c = 1, MeOH); δ_H (360 MHz, DMSO) 3.24 (1H, dt, 4'-H), 3.33 (1H, dt, 3'-H), 3.37 (1H, m, 5'-H), 3.49 (1H, dt, 6b'-H), 3.67 (1H, dt, 2'-H), 3.75 (1H, ddd, 6a'-H), 4.37 (1H, d, 1'-H), 4.58 (1H, t, OH), 5.12 (1H, d, OH), 5.16 (1H, d, OH), 5.19 (1H, d, OH), 7.12-7.26 (2H, m, Ar), 7.46-7.65 (2H, m, Ar); *J*(x-y)/Hz 1-2 9.8, 2-3 9.2, 3-4 9.3, 4-5 9.0, 5-6a 1.4, 5-6b 5.8, 6a-6b 11.9; δ_C (93 MHz, DMSO); 62.9 (C-6'), 71.6, 74.3, 77.5, 79.3 (C-2', C-3', C-4', C-5'), 83 (C-1'), 112.8, 120.2, 122.6, 123.7 (C-4, C-5, C-6, C-7), 135.5 (C-7a), 144.0 (C-3a), 154.0 (C-2); *m/z* (FAB) 281 (M⁺ +1) HRMS (FAB) Found M⁺+1 281.11362, C₁₃H₁₇N₂O₅ requires M⁺+1 281.11375.

3.8 Synthesis of furanosylbenzazoles

3.8.1 3,4,5-Tri-*O*-benzoyl-β-D-ribofuranosyl cyanide (238)

Sample code: IAS077 Molecular formula: C₂₇H₂₁NO₇ Molecular weight: 471

To a stirred solution of tri-O-benzoyl- β -D-ribofuranosyl acetate **239** (450 mg, 1 mmol), trimethylsilyl cyanide (0.5 ml, 4 mmol) and dry acetonitrile (15 ml) a few drops (0.2 ml) of BF₃.Et₂O were added. The reaction mixture was stirred under argon at room temperature for 10 minutes. The reaction mixture was quenched with NaHCO₃ (10 ml), the mixture extracted with ether (3 x 30 ml) and the organic layers were dried over MgSO₄. The solvent was removed *in vacuo*, the resultant oil was purified by wet-flash chromatography (silica, 25% ethyl acetate in hexane) to afford the title compound (**238**) as a white solid (360 mg, 86%).

M.p 78-80 °C (lit.²²⁵ 77-80 °C); $[\alpha]_D{}^{20} 21$ (c = 0.5 ,CHCl₃) (lit $[\alpha]_D{}^{20} 23.9$ (c = 0.5 , CHCl₃)); δ_H (250 MHz, CDCl₃); 4.51 (1H, dd, 5a-H), 4.61-4.69 (2H, m, 4-H, 5b-H) 4.91 (1H, d, 1-H), 5.78 (1H, dd, 3-H), 5.93 (1H, dd, 2-H), 7.27-7.53 (9H, m, ArH), 7.82-8.06 (6H, m, ArH); J(x-y)/Hz 1-2 4.3, 2-3 5.0, 3-4 5.4, 4-5a 4.7, 4-5b nd 5a-5b 13.2; δ C (63 MHz, CDCl₃) 63.0 (C-5), 69.3, 71.7, 74.3, (C-2, C-3, C-4,) 80.7 (C-1) 115.6 (CN), 128.4, 129.7 (ArCH), 133.3, 133.7, 133.9 (ArC), 164.7, 164.9, 166.0 (3xCOPh); m/z (ES) 472 (MH⁺).

3.8.2 1,3-Diphenyl-2-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl) imidazoline (244)

Sample code: IAS078 Molecular formula: C₂₆H₃₀N₂O₇ Molecular weight: 482

Raney nickel (2 g) was added to a vigourously stirred solution of pyridine (8 ml), glacial acetic acid (6 ml) and water (6 ml). NaH₂PO₂.H₂O (1 g) was added, along with *N*,*N*-diphenylethylenediamine (550 mg) and D-ribose derived nitrile **238** (550 mg, 2.5 mmol). The reaction was stirred for 16 hours. The resultant mixture was filtered through a pad of celite and the filter cake was washed thoroughly with DCM. The filtrate was washed with water (~200 ml), extracted with DCM (2 x 50 ml) and the combined organic layers were dried over MgSO₄. The solvent was co-evaporated with water (to remove residual pyridine) to yield a gum. The gum was dissolved in DCM (5 ml), acetic anhydride (4.72 ml) and triethylamine (8.3 ml) and the reaction mixture was stirred for 16 hours. The mixture was diluted with DCM (2 x 10 ml). The combined organic layers were washed with NaHCO₃ (20 ml) and dried over MgSO₄. Dry-flash chromatography (silica, hexane/Et₂O gradient elution) afforded the product (**244**) as a colourless oil, which solidified on addition of methanol (295 mg, 59%).

[α]_D²⁰ 10 (c = 0.1 ,CHCl₃) (lit.²³¹ [α]_D²⁰ 11.2 (c = 0.1 ,CHCl₃)); δ_H (360 MHz, CDCl₃); 3.62-3.77 (2H, m, NCH₂), 3.81-3.96 (2H, m, NCH₂), 4.48 (1H, dd, 5a⁻-H), 4.57-4.61 (1H, m, 4⁻-H) 4.66 (1H, dd, 5b⁻-H), 4.92 (1H, d, 1⁻-H), 5.61 (1H, dd, 3⁻-H), 5.81 (1H, dd, 2⁻-H), 5.97 (1H, s, 2-H), 6.79-6.97 (4H, m, ArH), 7.26-7.68 (15H, m, ArH), 7.82-8.06 (6H, m, ArH); J(x-y)/Hz 1⁻-2⁻ 5.4, 2⁻-3⁻ 5.7, 3⁻-4⁻ 5.8, 4⁻-5a⁻ 4.7, 4⁻-5b⁻ 3.2 5a-5b 11.6; δC (93 MHz, CDCl₃) 48.0 (NCH₂), 48.4 (NCH₂), 65.3 (C-5⁻), 73.4, 73.8, 74.4, (C-2⁻, C-3⁻, C-4⁻,) 80.6 (C-1⁻) 84.2 (C-2), 114.2, 114.6, 119.1, 128.5, 130.85 (ArCH), 134.1, 134.4, 134.5 (ArC), 166.5, 166.6, 167.2 (3xCOPh); m/z (ES) 483 (MH⁺).

3.8.3 2,5-Anhydro-3,4,6-tri-O-benzoyl-β-D-allose semicarbazone (246)

Sample code: IAS084 Molecular formula: C₂₈H₂₅N₃O₈ Molecular weight: 531

Raney nickel (3.75 g) was added to a vigourously stirred solution of pyridine (10 ml), glacial acetic acid (9 ml) and water (5 ml). NaH₂PO₂.H₂O (1.85 g) was added, followed by semicarbazide hydrochloride (550 mg) and KOH (285 mg) in water (5 ml) and D-ribose derived nitrile **238** (1.05 g) in pyridine (5 ml). The reaction was heated to 40°C for 4 hours. The resultant mixture was filtered through a pad of celite and the filter cake was washed thoroughly with DCM. The filtrate was washed with water (~200 ml), extracted with DCM (2 x 50 ml) and the combined organic layers were dried over MgSO₄. The solvent was co-evaporated with water (to remove residual pyridine) to yield a gum. The mixture was diluted with DCM (50 ml) and washed with 1 M HCl (2 x 30 ml), NaHCO₃ (2 x 30 ml) and dried over MgSO₄. removal of the solvent *in vacuo* to afford crude semicarbazone (**246**) as a brown foam (~1 g, ~85%).

 $\delta_{\rm H}$ (250 MHz, CDCl₃); 4.43 (1H, dd, 5a-H), 4.51-4.64 (2H, m, 4-H, 5b-H) 4.76 (1H, d, 1-H), 5.67 (1H, dd, 3-H), 5.87 (1H, dd, 2-H), 7.13 (<u>H</u>C=N(NHCONH₂)), 7.22-7.49 (9H, m, ArH), 7.82-8.03 (6H, m, ArH), 9.85 (1H, bs, OH); *J*(x-y)/Hz 1-2 5.7, 2-3 5.2, 3-4 4.7, 4-5a 3.6, 4-5b nd 5a-5b 11.4; δC (63 MHz, CDCl₃) 63.8 (C-5), 67.7, 72.6, 72.8, (C-2, C-3, C-4,) 79.9 (C-1), 128.2, 128.3, 128.8, 129.2, 129.5 (ArCH), 133.1, 133.3, 133.6 (ArC), 138.6 (H*C*=N(NHCONH₂), 157.4 (HC=N(NHCONH₂), 165.1, 165.2, 166.0 (3xCOPh); *m*/z (ES) 532 (MH⁺).

3.8.4 2,5-Anhydro-3,4,6-tri-O-benzoyl-β-D-allose oxime (243)

Procedure A

TsOH (212 mg, mmol) was added to a solution of D-ribose derived imidazoline 244 in DCM (4.5 ml), and the mixture stirred at room temperature under nitrogen for 45 minutes. The resultant mixture was filtered and the filter cake washed with DCM,

before concentrating the filtrate *in vacuo* (the water bath temperature did not exceed 30° C!). The residue was dissolved in ethanol (2.5 ml) and pyridine (2.25 ml), hydroxylamine hydrochloride (160 mg) was added, and the mixture heated to 95°C under reflux for 2.5 hours.On cooling, the reaction mixture was diluted with DCM (50 ml) and washed with saturated NHCO₃ solution (50 ml), water (50 ml) and 1 M HCl (50 ml) and the organic layer dried over MgSO₄. Dry-flash chromatography (silica, hexane/Et₂O gradient elution) afforded the title compound (**243**) as a colourless oil (100 mg, 45%).

Procedure B

Hydroxylamine hydrochloride (278 mg) was added to crude semicarbazone **246** (~500 mg) dissolved in acetonitrile (12.5 ml) and pyridine (4.2 ml), the resulting mixture was stirred at room temperature under argon for 16 hours. The mixture was diluted with ethyl acetate (30 ml) and washed with 1 M HCl (3 x 30 ml), NaHCO₃ (3x 30 ml) and brine (30 ml), before drying the organic layer over MgSO₄. Wet-flash chromatography (silica, 25% ethyl acetate in hexane) afforded the title compound (**243**) as a colourless oil (236 mg, 81%).

[α]_D²⁰ 14 (c = 0.2 ,MeOH) (lit.¹⁴² [α]_D²⁰ 12.9 (c = 0.2, MeOH)); $\delta_{\rm H}$ (360 MHz, CDCl₃); 4.61 (1H, dd, 5a-H), 4.66-4.71 (1H, m, 4-H), 4.77 (1H, dd, 5b-H), 4.95 (1H, dd, 1-H(*E*)), 5.53 (1H, dd, 1-H(*Z*)), 5.75 (1H, dd, 3-H(*Z*)), 5.80-5.84 (2H, m, 3-H, 2-H(*E*)) 5.92 (1H, dd, 2-H(*Z*)), 6.99 (1H, d, *H*C=NOH(*Z*)), 7.31-7.61 (19H, m, *H*C=NOH(*E*)), ArH), 7.92-8.22 (12H, m, ArH), 8.88 (1H, bs, OH (*E*)); *J*(x-y)/Hz 1-2 5.5, 2-3 nd, 3-4 nd, 4-5a 4.3, 4-5b 3.2 5a-5b 11.7; (*Z*) *J*(x-y)/Hz 1-2 4.7, 2-3 5.5, 3-4 5.2, 4-5a nd, 4-5b nd 5a-5b nd; δC (93 MHz, CDCl₃) 64.9 (C-5(*Z*)), 65.2 (C-5(*E*)), 73.4, 73.6, 74.6, 75.1, 78.5, 79.6, (C-2, C-3, C-4 (*E* and *Z*) 80.2 (C-1(*Z*)), 80.4 (C-1(*E*)), 129.5, 129.6, 129.9, 130.1, 130.4, 130.5, 130.8, 130.9, 131.2 (ArCH), 134.4, 134.6, 134.7 (ArC), 148.8 (C=N), 166.3, 166.4, 166.5, 167.4 (6xCOPh); *m*/z (ES) 490 (MH⁺).

180

3.8.5 Difuranosyl-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)-1,2,5oxadiazole-2-oxide (248)

Sample code: IAS083 Molecular formula: C₅₄H₄₂N₂O₁₆ Molecular weight: 974

A stirred mixture of ribose derived oxime **243** (150 mg, 0.3 mmol), *N*-chlorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) was heated to 40°C under nitrogen for 45 minutes. On cooling, triethylamine (0.3 ml) was added and the mixture stirred for 1 hour. The solution was diluted with DCM (40 ml), 1 M HCl (40 ml) and dried over MgSO₄. Dry-flash chromatography (silica, hexane/Et₂O gradient elution) afforded the title compound (**248**) as a colourless gum (107 mg, 72%).

[α]_D²⁰ -7.4 (c = 5.65 ,CHCl₃); $\delta_{\rm H}$ (250 MHz, CDCl₃); 4.45-4.63 (6H, m, 5a-H, 5b-H, 5a`-H, 5b`-H, 4-H, 4`-H), 5.37 (2H, d, 1-H), 5.46 (2H, d, 1`-H) 5.73-5.77 (2H, m, 3-H, 3`H), 6.03 (1H, dd, 2-H), 6.15 (1H, dd, 2`-H), 7.21-7.45 (18H, m, ArH), 7.81-8.18 (12H, m, ArH); *J*(x-y)/Hz 1-2 5.4, 2-3 6.1, 3-4 nd, 4-5a nd, 4-5b nd 5a-5b nd, 1`-2` 4.7, 2`-3` 5.3, 3`-4` nd, 4`-5a` nd, 4`-5b` nd 5a`-5b` nd; δ C (63 MHz, CDCl₃) 63.6 (C-5), 63.8 (C-5`), 71.9, 72.4, 72.6, 73.9, 74.4, 76.0 (C-2, C-2`,C-3, C-3`, C-4, C-4`) 80.6 (C-1), 80.3 (C-1`) 112.6 (C=N), 128.9, 129.1, 129.2, 129.7, 129.8, 130.0, 130.2 (ArCH), 133.7, 134.1 (ArC), 155.0 (C=N⁺), 165.6, 165.8, 166.4, 166.6 (6xCOPh); HRMS (FAB) Found: M⁺+1 975.26020. C₅₄H₄₂N₂O₁₆ requires M⁺+H 975.26126.

3.8.6 2-(2,3,5-Tri-O-benzoyl-β-D-ribopyranosyl)benzoxazole (241)

Sample code: IAS085 Molecular formula: C₃₃H₂₅NO₈ Molecular weight: 563

A stirred mixture of ribose derived oxime **243** (150 mg, 0.3 mmol), *N*-chlorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) was heated to 40°C under nitrogen for 45 minutes. The solvent was removed *in vacuo* before adding ethanol (10 ml) and *o*-aminophenol (85 mg, 0.75 mmol) and the mixture was heated to reflux for 5 hours. On cooling, the solvent was removed *in vacuo* and DCM added to precipitate out excess *o*-aminophenol. The solution was washed with 1 M HCl (20 ml) and dried over MgSO₄. Dry-flash chromatography (silica, hexane/Et₂O gradient elution) afforded the title compound (**241**) as a colourless gum (155 mg, 92%).

[α]_D²⁰-125 (c = 2.9 ,CHCl₃); $\delta_{\rm H}$ (360 MHz, CDCl₃); 4.66 (1H, dd, 5a`-H), 4.83-4.92 (2H, m, 4`-H, 5b`-H) 5.62 (1H, d, 1`-H), 6.11 (1H, dd, 3`-H), 6.28 (1H, dd, 2`-H), 7.30-7.41 (10H, m, ArH), 7.53-7.58 (3H, m, ArH), 7.72-7.74 (1H, m, ArH), 7.98-8.12 (5H, m, ArH); *J*(x-y)/Hz 1-2 4.6, 2-3 4.9, 3-4 5.4, 4-5a 3.0, 4-5b nd 5a-5b 11.5; δ C (93 MHz, CDCl₃) 61.4 (C-5`), 64.6, 73.6, 75.7, (C-2`, C-3`, C-4`,) 81.6 (C-1`) 112.0 (C-7), 121.7 (C-4), 125.7 (C-6), 126.9 (C-5) 129.4, 129.5, 129.8, 129.9, 130.6, 130.9 (ArCH), 131.0, 134.2, 134.6 (ArC), 141.7 (C-3a), 152.0 (C-7a), 162.5 (C-2), 166.2, 166.3, 167.2 (3xCOPh); *m/z* (FAB) 564 (M⁺+1); HRMS (FAB) Found: M⁺+1 564.16656 C₃₃H₂₅NO₈ requires M⁺+H 564.16584.

3.8.7 2-(2,3,5-Tri-O-benzoyl-β-D-ribopyranosyl) benzimidazole (242)

Sample code: IAS087 Molecular formula: C₃₃H₂₆N₂O₇ Molecular weight: 562

A stirred mixture of ribose derived oxime **243** (150 mg, 0.3 mmol), *N*-chlorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) was heated to 40°C under nitrogen for 45 minutes. The solvent was removed *in vacuo* before adding ethanol (10 ml) and *o*-phenylenediamine (85 mg, 0.75 mmol) and the mixture was heated to reflux for 5 hours. On cooling, the reaction mixture was diluted with DCM (50 ml) and washed with 4% CuSO₄ solution (50 ml), the aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO₄). Dry-flash chromatography (silica, hexane/Et₂O gradient elution) afforded the title compound (**242**) as a colourless gum (152 mg, 90%).

 $[\alpha]_D{}^{20}$ -106 (c = 3.65 ,CHCl₃); δ_H (360 MHz, CDCl₃); 4.78-4.88 (3H, dd, 5a`-H, 4`-H, 5b`-H) 5.72 (1H, d, 1`-H), 5.80 (1H, dd, 3`-H), 6.09 (1H, dd, 2`-H), 7.23-7.27 (2H, m, ArH), 7.33-7.59 (11H, m, ArH), 7.90-7.94 (2H, m, ArH), 8.03-8.08 (4H, m, ArH); *J*(x-y)/Hz 1-2 4.4, 2-3 4.8, 3-4 5.3, 4-5a nd, 4-5b nd 5a-5b nd; δ C (93 MHz, CDCl₃) 64.6 (C-5`), 72.6, 76.5, 78.9 (C-2`, C-3`, C-4`,) 80.9 (C-1`) 114.2.-118.7 (bs, C-4, C-7), 123.2 (C-5, C-6) 128.9, 129.0, 129.2, 129.3, 129.6, 130.2 (ArCH), 130.3, 133.9 (ArC), 151.3 (C-2), 165.7, 167.2 (3xCOPh); *m*/z (FAB) 563 (M⁺+1); HRMS (FAB) Found: M⁺+1 563.18113. C₃₃H₂₆N₂O₇requires M⁺+H 563.18183.

3.8.8 2- β -D-Ribofuranosylbenzoxazole/2- α -D-Ribofuranosylbenzoxazole (249b/249a)

Sample code: IAS094 Molecular formula: C₁₂H₁₃NO₅ Molecular weight: 251

Ribose derived benzoxazole **241** (169 mg, 0.3 mmol) was stirred in methanol (8 ml) at room temperature. Freshly prepared 1 M NaOMe (7 ml) solution was added, and the reaction stirred for 16 hours. Amberlite 120(H⁺) resin was added in portions until the solution was neutral to pH paper. All solids were filtered off and the filtrate concentrated *in vacuo* to afford a residue. Following wet-flash chromatography (silica, 10% methanol in ethyl acetate), the title compounds were obtained as an inseperable mixture of anomers (**249b** β : **249a** α , 62:38) (colourless foam, 65 mg, 87%).

 $\delta_{\rm H}$ (360 MHz, D₂O); β-anomer carbohydrate signals, 3.74 (1H, dd, 5a`-H), 3.89 (1H, dd, 5b`-H) 4.05-4.09 (1H, m, 4`-H), 4.11-4.16 (1H, m, 3`-H), 4.34 (1H, dd, 2`-H), 4.47 (1H, d, 1`-H), α-anomer carbohydrate signals, 3.71 (1H, dd, 5a`-H), 3.82 (1H, dd, 5b`-H) 4.11-4.16 (1H, m, 4`-H), 4.26 (1H, dd, 3`-H), 4.53 (1H, dd, 2`-H), 5.08 (1H, d, 1`-H), aromatic signals, 6.92-6.96 (2H, m, ArH), 7.12-7.14 (1H, m, ArH), 7.38-7.44 (3H, m, ArH), 7.59-7.67 (2H, m, ArH); β-anomer *J*(x-y)/Hz 1`-2` 3.3, 2`-3` 4.6, 3`-4` nd, 4`-5a` 4.1, 4`-5b` 2.9 5a`-5b` 12.7; α-anomer *J*(x-y)/Hz 1`-2` 5.3, 2`-3` 5.2, 3`-4` 5.2, 4`-5a` 5.3, 4`-5b` 3.44 5a`-5b` 12.6; δC (63 MHz, D₂O) 60.6, 61.8 (C-5`α, C-5`β), 70.5, 71.5, 74.8, 74.9, 78.0, 83.3, 83.4, 85.1 (C-1`α, C-2`α, C-3`α, C-4`α, C-1`β, C-2`β, C-3`β, C-4`β), 111.5, 116.6, 119.8, 120.9, 123.4, 125. 5, 126.5, 128.3 (ArCH), 139.6, 149.3, 150.8 (ArC) 164.1 (C=N); *m/z* (FAB) 252 (M⁺+1); HRMS (FAB) Found: M⁺+1 252.08755. C₁₂H₁₄NO₅ requires M⁺+H 252.08720.

3.8.9 2-β-D-Ribofuranosylbenzimidazole (250)

Sample code: IAS095 Molecular formula: C₁₂H₁₄N₂O₄ Molecular weight: 250

Ribose derived benzimidazole (242) (90 mg, 0.16 mmol) was stirred in a mixture of methanol (5 ml) and triethylamine (0.8 ml, 5.7 mmol) which was heated to 50°C for 4 days. On cooling, the mixture was purified by wet-flash chromatography (silica, 10% methanol in ethyl acetate) to afford the title compound (250) as a colourless foam (43 mg, 91%).

 $\delta_{\rm H}$ (250 MHz, D₂O); 3.61 (1H, dd, 5a`-H), 3.76 (1H, dd, 5b`-H) 3.98-4.05 (2H, m, 3`-H, 4`-H), 4.21 (1H, dd, 2`-H), 4.92 (1H, d, 1`-H), 7.07-7.10 (2H, m, ArH), 7.35-7.41 (2H, m, ArH); *J*(x-y)/Hz 1-2 5.3, 2-3 4.4, 3-4 4.7, 4-5a 3.8, 4-5b 2.0 5a-5b 12.3; δC (63 MHz, D₂O) 61.7 (C-5`), 71.2, 75.7, 78.9, 84.7 (C-3`, C-2`, C-1`), 115.3 (broad) (C-4, C-7), 123.2 (C-5, C-6), 152.9 (C-2); *m/z* (FAB) 251 (M⁺+1); HRMS (FAB) Found: M⁺+1 251.10318. C₁₂H₁₅N₂O₄ requires M⁺+H 251.10318.

3.9 Synthesis of Pyranosylperimidines

3.9.1 Synthesis of perimidine precursors 3.9.1.1 Benzohydroximoyl chloride (255)

Sample code: IAS017 Molecular formula: C₇H₆NO₃Cl Molecular weight: 155.5

Syn-benzaldoxime (5 g, 33 mmol) was dissolved in dry chloroform (60 ml) and cooled in a dry-ice/acetone bath. Chlorine gas was passed through the solution until the colour changed from blue, through green, to yellow. The solvent was removed *in vacuo* to afford an oil, which gave the title compound (**255**) as a white solid (4.1 g 74%) on trituration with pentane.; 49-50 °C (lit.¹⁴³ 50-51 °C).

3.9.1.2 2,2-Dimethyl-4-formyl-1,3-dioxolane oxime (268)

Sample code: IAS072 Molecular formula: $C_6H_{11}NO_3$ Molecular weight: 145

1,2:5,6-Di-*O*-isopropylidene-D-mannitol (**266**) (5.00 g, 20 mmol) in THF (48 ml) was added to a stirred solution of water (7 ml), THF (10 ml) and NaIO₄ (4.56 g, 21.3 mmol). The resulting mixture was stirred vigorously for 2 h before adding Et₂O (70 ml) and filtering of the resultant white flocculate. The filtrate was concentrated and extracted into DCM (2x 50 ml), dried (MgSO₄) and the solvent removed in vacuo to afford crude 2,2-Dimethyl-4-formyl-1,3-dioxolane (**267**) (*ca* 4 g). Na₂CO₃ (3.00 g, 27.5 mmol) was added in portions to a stirred solution of NH₂OH.HCl (3.74 g, 54 mmol) in water (40 ml). aldehyde **267** was added and the mixture stirred for 16 h. The reaction mixture was partitioned between water (20 ml) and Et₂O (50 ml) and aqueous layer was extracted with Et₂O (2 x 50 ml). The combined layers were dried

(MgSO₄) and the solvent removed *in vacuo* to afford the title compound as an oil (3.48 g, 63%) (3:1 mixture of *E:Z* isomers).

E-isomer $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.43, 1.48 (6H, s, CH₃), 3.91 (1H, dd, 5a-H), 4.20 (1H, dd, 5b-H), 4.67 (1H, q, 4-H), 7.42 (1H, d, H-1`-H), 8.89 (1H, bs, OH); *J*(x-y)/Hz 1`-4 6.9, 4-5a 6.3, 4-5b 6.5, 5a-5b 8.6; (63 MHz CDCl₃); 24.8, 25.8 (CH₃), 66.7 (C-5), 72.5 (C-4), 109.7 (C-2), 149.0 (C-1`); *Z*-isomer $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.43, 1.48 (6H, s, CH₃), 3.84 (1H, dd, 5a-H), 4.40 (1H, dd, 5b-H), 5.15 (1H, m, 4-H), 6.99 (1H, d, H-1`-H), 9.18 (1H, bs, OH); *J*(x-y)/Hz 1`-4 4.1, 4-5a 6.7, 4-5b 7.1, 5a-5b 8.5; (63 MHz CDCl₃); 24.6, 25.4 (CH₃), 67.2 (C-5), 70.0 (C-4), 109.1 (C-2), 152.1 (C-1); *m/z* (ES) 146.

3.9.1.3 2,2-Dimethyl-4-formyl-1,3-dioxolane Chloro-oxime (265)

Sample code: IAS073 Molecular formula: C₆H₁₁NO₃ Molecular weight: 179.5

(E,Z) 2,2-Dimethyl-4-formyl-1,3-dioxolane oxime (**268**) (1.00 g) was dissolved in dry Et₂O (60 ml) and cooled to -78°C. Dry Cl₂ gas was bubbled through the stirred solution for 20 minutes. The solution initially turned blue and then to emerald green. Nitrogen gas was bubbled through the solution and it was allowed to warm to room temperature. On warming, the solution became colourless and the solvent was removed *in vacuo* to afford an oily solid. The product was obtained as a grey solid (1.20 g, 98%) on trituration with cold pentane. The freshly prepared 2,2-Dimethyl-4-formyl-1,3-dioxolane Chloro-oxime (**265**) was taken on to the next step immediately. $\delta_{\rm H}$ (250 MHz, CDCl₃); 1.68, 1.76 (6H, s, CH₃), 4.35-4.50 (2H, m, 5a-H, 5b-H), 5.08 (1H, dd, 4-H), 8.61 (1H, bs, OH); *J*(x-y)/Hz 4-5a 6.3, 4-5b 6.5, 5a-5b nd; (63 MHz CDCl₃); 26.2, 26.7 (CH₃), 67.7 (C-5), 76.9 (C-4), 112.1 (C-2), 140.1 (C-1).

3.9.2 Synthesis of perimidines

General Procedure A

Hydroximoyl chloride (1 equivalent) and 1,8-diaminonapthalene (2.5 equivalents) were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of nitrogen at room temperature for 16 h. The reaction mixture was diluted with DCM (50 ml) and firstly shaken with saturated K_2CO_3 (50 ml), and then with 4% CuSO₄ solution (50 ml) until a dark precipitate was observed, the combined layers were filtered through a pad of celite. The organic layer was separated off, dried (MgSO₄) and the solvent removed *in vacuo*. The product was isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

General Procedure B

Hydroximoyl chloride (1 equivalent) and 1,8-diaminonapthalene (2.5 equivalents) were stirred in refluxing ethanol (10 ml) under an atmosphere of nitrogen for 5 h. On cooling, the reaction mixture was diluted with DCM (50 ml) and firstly shaken with saturated K_2CO_3 (50 ml), and then with 4% CuSO₄ solution (50 ml) until a dark precipitate was observed, the combined layers were filtered through a pad of celite. The organic layer was separated off, dried (MgSO₄) and the solvent removed *in vacuo*. The product was isolated by dry-flash chromatography (silica, hexane/Et₂O gradient elution).

3.9.2.1 2-(Phenyl)perimidine (256)

Sample code: IAS066 Molecular formula: C₁₇H₁₂N₂ Molecular weight: 244

Benzohydroximoyl chloride (200 mg, 1.3 mmol) and 1,8-diaminonapthalene (402 mg, 2.5 mmol) were added according to general procedure B. The title compound was obtained as an orange crystalline solid (214 mg, 68%) after dry-flash chromatography.

M.p 187-188 °C (lit.²³⁸ 187-188 °C); $\delta_{\rm H}$ (360 MHz, CDCl₃); 6.65 (2H, br s, 9-H, 4-H), 7.14-7.26 (4H, m, ArH), 7.47-7.55 (3H, m, ArH), 7.85-7.90 (2H, m, ArH); *m/z* (EI) 244 (M⁺) HRMS (EI) Found M⁺ 244.10036, C₁₇H₁₂N₂ requires M⁺ 244.10005.

3.9.2.2 2-(2,3,4-Tri-*O*-acetyl-β-D-xylopyranosyl)perimidine (259)

Sample code: IAS065 Molecular formula: $C_{22}H_{22}N_2O_7$ Molecular weight: 426

D-Xylose derived hydroximoyl chloride **106** (120 mg, 0.35 mmol) and 1,8diaminonapthalene (170 mg, 1 mmol) were added according to general procedure A. In order of elution, glycal **258** (trace) was obtained as an orange solid and the title compound (**259**) was obtained as a yellow/green solid (92 mg, 60%) after dry-flash chromatography.

M.p 169-170 °C; $[\alpha]_D^{20} = -40$ (c = 0.2, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 1.93, 2.03, 2.05 (9H, 3s, 3xCOCH₃), 3.67 (1H, dd, 5`a-H), 4.10 (1H, dd, 5`e-H), 4.24 (1H, d, 1`-H), 5.02 (1H, m, 4`-H), 5.24 (1H, dd, 2`-H), 5.41 (1H, dd, 3`-H), 6.42 (1H, dd, 9-H), 6.54 (1H, dd, 4-H), 6.99-7.17 (4H, m, H-5, H-6, H-7, H-8), 10.48 (1H, bs, NH); J(x-y)/Hz 1`-2` 9.7, 2`-3` 9.6, 3`-4` 9.5, 4`-5`a 10.9, 4`-5`e 5.5, 5`a-5`e 11.0, 4-5 7.5, 4,6 1.1, 9-8 7.2, 9-7 0.9; δ_C (93 MHz, CD₃S(O)CD₃); 21.8, 21.9, 22.0 (3xCOCH₃), 66.8 (C-5`), 69.8, 71.2, 73.6, 78.8 (C-2`, C-3`, C-4`, C-1`), 104.1 (C-9), 115.0 (C-4), 119.2 (C-7), 121.1 (C-6), 123.6 (C-9b), 129.5 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.4 (C-9a), 145.8 (C-3a), 154.0 (C-2), 170.7, 171.1, 171.2 (3xCOCH₃); m/z (FAB) 427 (M⁺ +1) HRMS (FAB) Found M⁺+1 427.15109, C₂₂H₂₂N₂O₇ requires M⁺+1 427.15053.

3.9.2.3 2-(3,4-Di-*O*-acetyl-2-deoxy-1,2-didehydro-D-*threo*-pentopyranosyl)perimidine (258)

Sample code: IAS064 Molecular formula: C₂₀H₁₈N₂O₅ Molecular weight: 366

D-Xylose derived hydroximoyl chloride **106** (150 mg, 0.4 mmol) and 1,8diaminonapthalene (170 mg, 1 mmol) were added according to general procedure B. In order of elution, the title compound (**258**) was obtained as an orange solid (70 mg, 43%) and perimidine **259** (31 mg, 16%) after dry-flash chromatography. M.p 148-149 °C; $[\alpha]_D^{20} = -113$ (c = 0.15, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 2.10, 2.12 (6H, 2s, 2xCOCH₃) 4.14 (1H, dd, 5°a-H), 4.48 (1H, dd, 5°b-H), 5.04 (1H, m, 3°-H), 5.12 (1H, m, 4°-H), 6.02 (1H, d, 2°-H), 6.58 (1H, dd, 9-H), 6.60 (1H, dd, 4-H), 7.47-7.51 (4H, m, H-5, H-6, H-7, H-8), 10.49 (1H, bs, NH); *J*(x-y)/Hz 2°-3° 5.13, 3°-4° nd, 4°-5°a nd, 4°-5°e nd, 5°a-5°e 12.3, 4-5 7.3, 4-6 0.6, 9-8 7.3, 9-7 0.6; δ_C (93 MHz, CD₃S(O)CD₃); 22.2, 22.3 (2xCOCH₃), 64.5, 66.2, 67.6 (C-3°, C-5°, C-4°), 99.9 (C-2°), 104.7 (C-9), 115.2 (C-4), 119.5 (C-7), 121.0 (C-6), 123.8 (C-9b), 129.5 (C-8), 130.4 (C-5), 136.6 (C-6a), 139.2 (C-9a), 145.9 (C-3a), 149.2 (C-1°), 150.1 (C-2), 170.9, 171.0 (2xCOCH₃); *m*/*z* (FAB) 367 (M⁺ +1) HRMS (FAB) Found M⁺+1 367.12985, C₂₀H₁₈N₂O₅ requires M⁺+1 367.12940.

3.9.2.4 2-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)perimidine (260)

Sample code: IAS069 Molecular formula: C₂₃H₂₆N₂O₉ Molecular weight: 498

D-Glucose derived hydroximoyl chloride **107** (150 mg, 0.4 mmol) and 1,8diaminonapthalene (170 mg, 1 mmol) were added according to general procedure A. In order of elution, glycal **261** (trace) was obtained as an orange solid and the title compound (**260**) was obtained as a yellow solid (120 mg, 65%) after dry-flash chromatography.

M.p 105-106 °C; $[\alpha]_D^{20} = -233$ (c = 0.15, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 1.91, 1.99, 2.05 (12H, 4s, 4xCOCH₃), 4.08-4.19 (3H, m, 6`a-H, 6`b-H, 5`-H), 4.33 (1H, d, 1`-H), 5.05 (1H, dd, 2`-H), 5.35 (1H, dd, 4`-H), 5.45 (1H, dd, 3`-H), 6.38 (1H, d, 9-H), 6.55 (1H, d, 4-H), 6.94-7.21 (4H, m, H-5, H-6, H-7, H-8), 10.44 (1H, bs, NH); J(x-y)/Hz 1`-2` 9.7, 2`-3` 8.9, 3`-4` 9.5, 4`-5` 8.6, 5`-6`a nd, 5`-6`b nd, 6`a-6`b nd, 4-57.2, 9-8 7.3; δ_C (93 MHz, CD₃S(O)CD₃); 21.8, 21.9, 22.0 (4xCOCH₃), 63.9 (C-6`), 69.5, 70.9, 74.1, 75.8, 78.2 (C-2`, C-3`, C-4`, C-5`, C-1`), 104.0 (C-9), 115.3 (C-4), 119.3 (C-7), 121.3 (C-6), 123.5(C-9b), 129.5 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.3 (C-9a), 145.7 (C-3a), 153.8 (C-2), 170.6, 171.0, 171.1, 171.7 (4xCOCH₃); m/z (FAB) 499 (M⁺ +1) HRMS (FAB) Found M⁺+1 499.17171, C₂₅H₂₆N₂O₉ requires M⁺+1 499.17166.

3.9.2.5 2-(3,4,6-Tri-*O*-acetyl-2-deoxy-1,2-didehydro-D-*arabino*-hexopyranosyl)perimidine (261) (*via* Glucose derived hydroximoyl chloride)

Sample code: IAS070 Molecular formula: C₂₃H₂₂N₂O₇ Molecular weight: 438

D-Glucose derived hydroximoyl chloride **107** (150 mg, 0.4 mmol) and 1,8diaminonapthalene (170 mg, 1 mmol) were added according to general procedure B. In order of elution, The title compound (**261**) was obtained as an orange solid (40 mg, 16 %) and perimidine **260** was obtained as a yellow solid (100 mg, 34%) after dry-flash chromatography.

M.p 154-155 °C; $[\alpha]_D^{20} = 175$ (c = 0.2, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 2.06, 2.07 (9H, 3s, 3xCOCH₃), 4.24 (1H, dd, 6`a-H), 4.59 (1H, dd, 6`b-H), 4.69 (1H, m, 5`-H), 5.22 (1H, m, 3`-H), 5.44 (1H, dd, 4`-H), 5.92 (1H, d, 2`-H), 6.56 (1H, d, 9-H),

6.58 (1H, d, 4-H), 7.00-7.18 (4H, m, H-5, H-6, H-7, H-8), 10.28 (1H, bs, NH); J(x-y)/Hz 2`-3` 3.8, 3`-4` nd, 4`-5` nd, 5`-6`a 3.1, 5`-6`b 5.5, 6`a-6`b 12.3, 4-5 7.2, 9-8 7.3; $\delta_{\rm C}$ (93 MHz, CD₃S(O)CD₃); 21.8, 22.1, 22.2 (3xCOCH₃), 61.6 (C-6`), 69.7, 69.7, 76.1 (C-3`, C-4`, C-5`), 99.9 (C-2`), 104.6 (C-9), 115.3 (C-4), 119.5 (C-7), 121.1 (C-6), 123.7 (C-9b), 129.5 (C-8), 130.4 (C-5), 136.6 (C-6a), 139.1 (C-9a), 145.8 (C-3a), 148.1 (C-1`), 148.6 (C-2), 170.7, 171.3, 171.6 (3xCOCH₃); m/z (FAB) 439 (M⁺ +1) HRMS (FAB) Found M⁺+1 439.15068, C₂₃H₂₂N₂O₇ requires M⁺+1 439.15053.

3.9.2.6 2-(3,4,6-Tri-*O*-acetyl-2-deoxy-1,2-didehydro-D-*arabino*-hexopyranosyl)perimidine (261) (*via* mannose derived hydroximoyl chloride)

Sample code: IAS070 Molecular formula: C₂₃H₂₂N₂O₇ Molecular weight: 438

D-Mannose derived hydroximoyl chloride **108** (250 mg, 0.6 mmol) and 1,8diaminonapthalene (242 mg, 1.5 mmol) were added according to general procedure B. In order of elution, The title compound (**261**) was obtained as an orange solid (90 mg, 34%) and perimidine **262** was obtained as a yellow solid (12 mg, 4%) after dryflash chromatography.

3.9.2.7 2-(2,3,4,6-Tetra-*O*-acetyl-β-D-mannopyranosyl)perimidine (262)

Sample code: IAS090 Molecular formula: C₂₃H₂₆N₂O₉ Molecular weight: 498

OAc OAc

Mannose derived hydroximoyl chloride **108** (250 mg, 0.6 mmol) and 1,8diaminonapthalene (242 mg, 1.5 mmol) were added according to general procedure A. In order of elution, glycal **261** (trace) was obtained as an orange solid and the title compound (**262**) was obtained as a yellow solid (170 mg, 55%) after dry-flash chromatography.

M.p 120-121 °C; $[\alpha]_D^{20} = -193$ (c = 0.75, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 2.00, 2.04, 2.08 (12H, 4s, 4xCOCH₃), 4.09 (1H, m, 5`-H), 4.14 (1H, dd, 6`a-H), 4.34 (1H, dd, 6`b-H), 4.83 (1H, d, 1`-H), 5.17 (1H, dd, 4`-H), 5.36 (1H, dd, 3`-H), 5.67 (1H, dd, 2`-H) 6.50 (1H, d, 9-H), 6.60 (1H, d, 4-H), 7.03-7.19 (4H, m, H-5, H-6, H-7, H-8), 10.06 (1H, bs, NH); J(x-y)/Hz 1`-2` 1.1, 2`-3` 3.4, 3`-4` 10.1, 4`-5` 10.0, 5`-6`a 2.5, 5`-6`b, 5.7, 6`a-6`b 12.2, 4-5 6.8, 9-8 6.4; δ_C (93 MHz, CD₃S(O)CD₃); 21.8, 21.9, 22.0, 22.2 (4xCOCH₃), 63.1 (C-6`), 68.4, 69.0, 72.3, 75.3, 78.0 (C-2`, C-3`, C-4`, C-5`, C-1`), 104.5 (C-9), 114.8 (C-4), 119.5 (C-7), 120.8 (C-6), 123.4(C-9b), 129.4 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.0 (C-9a), 145.6 (C-3a), 153.8 (C-2), 171.2, 171.7 (4xCOCH₃); m/z (FAB) 499 (M⁺ +1) HRMS (FAB) Found M⁺+1 499.17133, C₂₅H₂₆N₂O₉ requires M⁺+1 499.17166.

3.9.2.8 2-(2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl)perimidine (263)

This experiment was done in collaboration with Mr A. Fromm

D-Galactose derived hydroximoyl chloride (150 mg, 0.36 mmol) and 1,8diaminonapthalene (145 mg, 0.9 mmol) were added according to general procedure B. The title compound (**263**) was obtained as a yellow/orange glass (126 mg, 69%) after dry-flash chromatography. Yellow/orange glass (%); $[\alpha]_D^{20} = -120$ (c =, CHCl₃); δ_H (360 MHz, CD₃S(O)CD₃); 1.95, 1.98, 2.04, 2.21 (12H, 4s, 4xCOCH₃), 4.13 (1H, dd, 6'a-H), 4.18 (1H, dd, 6'b-H), 4.26 (1H, d, 1'-H), 4.39 (1H, dd, 4'-H), 5.22-5.42 (3H, m, 2'-H, 3'-H, 5'-H), 6.55 (2H, d, (9-H, 4-H), 7.04-7.13 (4H, m, 5-H, 6-H, 7-H, 8-H), 10.42 (1H, bs, NH); J(x-y)/Hz 1'-2' 8.6, 2'-3' nd, 3'-4' 6.3, 4'-5' 6.4, 5'-6'a 7.14, 5'-6'b, 5.77, 6'a-6'b 11.53, 4-5 7.3, 9-8 7.3; δ_C (93 MHz, CD₃S(O)CD₃); 21.8, 21.9, 22.0, 22.2 (4xCOCH₃), 63.2 (C-6'), 68.4, 69.0, 72.3, 75.3, 78.0 (C-1', C-2', C-3', C-4', C-5'), 104.4 (C-9), 115.0 (C-4), 119.3 (C-7), 121.1 (C-6), 123.6(C-9b), 129.4 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.3 (C-9a), 145.7 (C-3a), 153.6 (C-2), 170.2, 171.1, 171.5, 171.6 (4xCOCH₃); *m*/z (FAB) 499 (M⁺ +1) HRMS (FAB) Found M⁺+1 499.17217, C₂₅H₂₆N₂O₉ requires M⁺+1 499.17166.

3.9.2.9 2-(2,2-Dimethyl-1,3-dioxolan-4-yl)perimidine (264)

Sample code: IAS074 Molecular formula: $C_{16}H_{16}N_2O_2$ Molecular weight: 268

D-glyceraldehyde derived hydroximoyl chloride **265** (150 mg, 0.8 mmol) and 1,8diaminonapthalene (316 mg, 2 mmol) were added according to general perimidine procedure B. The title compound (**264**) was obtained as a yellow/green solid (137 mg, 61%) after dry-flash chromatography.

M.p 101-102 °C; $[\alpha]_D^{20} = 60$ (c = 0.2, CHCl₃); δ_H (250 MHz, CD₃S(O)CD₃); 1.21, 1.26 (6H, s, CH₃), 4.02 (2H, d, 5`a-H, 5`b-H), 4.67 (1H, t, 4`-H), 6.37 (2H, d, 9-H, 4-H), 6.68-7.04 (4H, m, , H-5, H-6, H-7, H-8), 10.13 (1H, bs, NH); J(x-y)/Hz 4`-5`a 6.4, 4`-5`b 6.4, 5`a-5b 6.4, 4-5 7.2, 9-8 7.2; (63 MHz, CD₃S(O)CD₃); 25.2, 25.6 (CH₃), 66.6 (C-2`), 73.9 (C-1`), 102.7 (C-9), 109.8 (acetal Cq) 113.1 (C-4), 117.6 (C-7), 119.0 (C-6), 121.8 (C-9b), 127.7 (C-8), 128.5 (C-5), 134.9 (C-6a), 137.5 (C-9a), 144.3 (C-3a), 155.5 (C-2); m/z (FAB) 268 (M⁺) HRMS (FAB) Found M⁺ 268.12111, C₁₆H₁₆N₂O₂ requires M⁺ 268.12118.

4. References

- D. E. Levy and C. Tang, *The Chemistry of C-Glycosides*, Pergamon, Oxford, 1995
- 2. M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Ranton, 1995
- 3. E. Howard, Phil. Trans. Roy. Soc. London, 1800, 204
- 4. A. Werner, H. Buss, Ber. 1894, 27, 2193
- 5. H. Ley, M.Kissel, Ber. 1899, 32, 1357
- 6. W. Beck, E. Schuierer, K. Feldl, Angew. Chem. 1965, 77, 722
- J. March, Advanced Organic Chemistry-4th edition, 1992, Wiley-Interscience, New York
- 8. C. Grundman and P. Grünanger, *The Nitrile Oxides*, Springer-Verlag, Berlin, 1971
- 9. K. B. G. Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH, New York, 1988
- 10. P. Grünanger, and P. Vita-Finzi, *Isoxazoles: The Chemistry of Heterocyclic compounds*, Wiley, New York, 1991, Volume 49 part 1
- 11. S. Kanemasa, and O. Tsuge, *Heterocycles*, 1990, 30, 719
- 12. S. Kanemasa, Science of Synthesis, 2004, 19, 17
- R. M. Paton, *Comprehensive Heterocyclic Chemistry II*, A.R. Katritzky, C.
 W. Rees, E. F. V. Scriven Eds, Pergamon, Oxford, 1996, Chapter 4.05
- 14. Z. Yu, P. Caramella, K. N. Houk, J. Am. Chem. Soc., 2003, 125, 15420
- 15. C. Escolano, S. Vazquez, Comprehensive Organic Transformations 2, Volume 2, Elsevier, Oxford, 2005
- 16. T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339
- 17. Y. Basel, A. Hassner, Synthesis, 1997, 302
- 18. D. P. Curran, C. J. Fenk, J. Am. Chem. Soc., 1985, 107, 6023
- J. F. Barnes, M. J. Barnes, M. M. Harding, R. M. Paton, P. L. Ashcroft, J. L. Crosby, C. J. Joyce, J. Chem. Res. (S) 1978, 314
- 20. T. Shimizu, Y. Hayashi, K. Teramura, J. Org. Chem., 1983, 48, 3053
- 21. G. B. Bachmon, L. Storm, J. Org. Chem., 1963, 28, 1150
- 22. T. Shimizu, Y. Hayashi, H. Shibafuchi, K. Teramura, Bull. Chem. Soc. Jpn., 1986, 59, 2827

- 23. N. Maugein, A. Wagner, C. Mioskowski, Tetrahedron Lett., 1997, 38, 1547
- 24. G. Giacomelli, L. D. Luca, A. Porcheddu, Tetrahedron, 2003, 59, 5437
- 25. C. Yao, Tetrahedron, 1998, 54, 791
- 26. G. Kumaran, G. H. Kulkarni, J. Org. Chem., 1997, 62, 1516
- 27. R. Huigsen, W. Mack, Tetrahedron Lett., 1961, 29, 583
- 28. R. Huigsen, W. Mack, E. Annensan, Angew. Chem., 1961, 73, 656
- 29. R. Huigsen, Angew. Chem. Int. Ed Eng., 1963, 2, 565
- 30. J. N. Kim, K. H. Chung, E. K. Ryu, Heterocycles, 1991, 32, 477
- 31. J. Armand, J. P. Gentle, F. Valentini, Bull. Soc. Chem. Fr., 1968, 4585
- 32. G. Casanati, A. Ricca, Tetrahedron Lett., 1967, 327
- 33. K. E. Larsen, K. B. G. Torssell, Tetrahedron, 1984, 40, 2985
- 34. P. Grundman, R. Richter, J. Org. Chem., 1968, 33, 476
- 35. Y. Tokunage, M. Ihara, K. Fukamoto, Heterocycles, 1996, 43, 1771
- 36. C. Egan, M. Clery, A.F. Hegarty, A. J. Welch, J. Chem. Soc. Perkin Trans. 2, 1991, 249
- C. Mett, A. Gissot, A. Wagner, C. Mioskowski, *Tetrahedron Lett.*, 2000, 41, 1191
- N. Arai, M. Iwakoshi, K. Tanabe, K. Narasaka, Bull. Chem. Soc. Jpn., 1999, 72, 2277
- 39. G. A. Lee, Synthesis, 1982, 508
- 40. J. W. Bode, N. Fraefel, D. Muri, E. M. Carreira, Angew. Chem. Int. Ed., 2001, 40, 2082
- 41. A. Hassner, K. M. Lokanatha Rai, Synthesis, 1989, 57
- 42. J. Kiegiel, M. Poplanska, J. Jozwik, M. Kosior, J. Jurczak, *Tetrahedron Lett.*, 1999, **40**, 5605
- 43. G. Just, K. Dahl, Tetrahedron, 1968, 24, 5251
- 44. S. Tanaka, K. Kishikawa, S. Kohmoto, M. Yamamoto, Nippon Kagaku Kaishi, 2002, 3, 471
- 45. D. Muri, J. W. Bode, E. M. Carreira, Org. Lett., 2000, 4, 539
- 46. P. G. Wang, M. Xian, X. P. Tang, X. J. Wu, Z. Wen, T. W. Cai, A. J. Janczuk, *Chem. Rev.*, 2002, **104**, 1091
- 47. D. P. Curran, Adv. Cycloaddition, 1988, 1, 129

- 48. D. Muri, N. Fraefel, E. M. Carreira, Angew. Chem. Int. Ed., 2005, 44, 4036.
- 49. A. Aungst, C. Chan, R. L. Funk, Org. Lett., 2001, 3, 2611
- 50. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210
- 51. T. V. Hansen, P. Wu, V. V. Fokin, J. Org. Chem., 2005, 70, 7761
- 52. K. W. J. Baker, A. Gibb, A.R. March, R. M. Paton, *Tetrahedron Lett.*, 2001, 42, 4065
- 53. V. Gil, A. J. Mcleod, Tetrahedron, 1980, 36, 779
- M. T. Nguyen, S. Malone, A. F. Hegarty, I. I. Williams, J. Org. Chem., 1991, 56, 3683
- 55. F. Eloy, R. Lenaers, Chem. Rev., 1962, 62, 155
- 56. A. F. Hegarty, M. Mullane, J. Chem. Soc. Perkin Trans. 2, 1986, 995
- 57. K. J. Dignum, A. F. Hegarty, P. L. Quain, J. Org. Chem., 1978, 43, 388
- 58. G. Leroy, M. T. Nguyen, M. Sana, K. J. Dignum, A. F. Hegarty, J. Am. Chem. Soc., 1979, 101, 1988
- 59. K. J. Dignum, A. F. Hegarty, J. Chem. Soc. Chem. Commun., 1976, 862
- 60. K. J. Dignum, A. F. Hegarty, P. L. Quain, J. Chem. Soc. Perkin Trans 2, 1977, 1457
- 61. K. J. Dignum, A. F. Hegarty, J. Chem. Soc. Perkin Trans. 2, 1979, 1437
- 62. K. J. Dignum, A. F. Hegarty, M. J. Begley, J. Chem. Soc. Perkin Trans. 2, 1980, 704
- 63. D. F. Bushey, F. C. Hoover, J. Org. Chem., 1980, 45, 4198
- 64. K. K. Sharma, A. K. Agarwal, Int. J. Quantum Chem., 1986, 30, 213
- 65. K. K. Sharma, A. K. Agarwal, J. Mol. Struct. (Theochem.), 1988, 181, 389
- 66. K. W. J. Baker, K. S. Horner, S. A. Moggach, R. M. Paton, I. A. S. Smellie, *Tetrahedron Lett.*, 2004, **45**, 8913
- 67. A. Dondoni, G. Gilli, M. Sacerdoti, J. Chem. Soc., Perkin Trans. 1, 1976, 1036
- 68. G. R. Fenwick, R. K. Heaney, W. J. Mullin, CRC Crit. Sci. Rev. Food Sci. Nutr., 1983, 18, 123
- 69. J. W. Fahey, A. T. Zalcmann, P. Talalay, Phytochemistry, 2001, 56, 5
- H. D. Belitz and W. Grosch, Food Chemistry 2nd Edition, Springer-Verlag, Berlin, 1999
- 71. T. P. Coultate, Food: The Chemistry of its Components, RSC paperback, London, 1989.
- N. E. Davidson, T. J. Rutherford, N. P. Botting, *Carbohydr. Res.*, 2001, 330, 295
- 73. A. B. Robertson, N. P. Botting, Tetrahedron., 1999, 55, 13269
- H. Streicher, L. Latxague, T. Wiemann, P. Rollin, J. Thiem, Carbohydr. Res., 1995, 278, 257
- 75. M. G. Botti, M. G. Taylor, N. P. Botting, J. Biol. Chem., 1995, 270, 20530
- 76. S. Cottaz, B. Henrissat, H. Driguez, Biochemistry, 1996, 35, 15256
- 77. B. Henrissat, I. Callebaut, S. Fabrega, P. Lehn, J. P. Mornon, G. Davies, *Proc. Natl, Acad. Sci. USA*, 1995, **92**, 7090
- 78. R. Iori, P. Rollin, H. Streicher, J. Thiem, S. Palmieri, *FEBS Lett.*, 1996, 385, 87
- 79. W. P. Burmeister, S. Cottaz, P. Rollin, A. Vasella, B. Henrissat, J. Biol. Chem., 2000, 275, 39385
- 80. Q. Wang, S. G. Withers, J. Am. Chem. Soc., 1995, 117, 10137
- A. Bourderioux, M. Lefoix, D. Gueyrard, A. Tatibouet, S. Cottaz, Steffi Arzt,
 W. P. Burmeister, P. Rollin, *Org. Biomol. Chem.*, 2005, 3, 1872
- 82. M. G. Ettlinger, A. J. Lundeen, J. Am. Chem. Soc., 1957, 79, 1764
- 83. M. H. Benn, Can. J. Chem., 1963, 41, 2836
- 84. For a review of M. H. Benn's work, see Reference 8 pages 151-152
- 85. D. Gueyrard, J. Barillari, R, Iori, S. Palmieri, P. Rollin, *Tetrahedron Lett.*, 2000, **41**, 8307
- 86. R. Iori, R. Bernardi, D. Gueyrard, P. Rollin, S. Palmieri, *Bioorg. Med. Chem.* Lett., 1999, 9, 1047
- S. Cassel, B. Casenave, G. Deleris, L. Lataxague, P. Rollin, *Tetrahedron*, 1998, 54, 8515
- M. Mavretzotis, V. Dourtoglou, C. Lorin, P. Rollin, *Tetrahedron Lett.*, 1996, 37, 5699
- 89. M. C. Viaud, P. Rollin, Tetrahedron Lett., 1990, 31, 1417.

- 90. M. Lefoix, A. Tatibouet, S. Cottaz, H. Driguez, P. Rollin. *Tetrahedron Lett.*, 2002, **43**, 2889
- 91. V. Aucagne, D. Gueyrard, A. Tatibouet, A. Quinsac, P. Rollin, *Tetrahedron*, 2000, **56**, 2647
- V. Aucagne, D. Gueyrard, A. Tatibouet, S. Cottaz, H. Driguez, M. Lafosse, P. Rollin, *Tetrahedron Lett*, 1999, 40, 7319
- 93. S. Cottaz, P. Rollin, H. Driguez, Carbohydr. Res., 1997, 298, 127
- 94. M. Mavratzotis, V. Dourtoglou, C. Lorin, P. Rollin, *Tetrahedron Lett*, 1996, 37, 5699
- 95. J. Benoit, P. Rollin, Carbohydr. Res, 1995, 266, 321
- 96. H. Streicher, L. Latxague, T. Wieman, P. Rollin, J. Thiem, Carbohydr. Res, 1995, 278, 257.
- 97. S. Lazar, P. Rollin, *Tetrahedron Lett*, 1994, 35, 2173
- 98. T. H. Keller, L. J. Yelland, M. H. Benn, Can. J. Chem., 1984, 62, 437
- 99. W. Lossen, W. Schifferdecker, Ann., 1873, 166, 295
- 100. T. Kurz, K. Widyan, Org. Lett., 2004, 6, 4403
- Y. Song, L. Clizbe, C. Bhakta, W. Teng, P. Wong, B. Huang, K. Tran, U. Sinha, G. Park, A. Reed, R. M. Scarborough, B. Y. Zhu, *Bioorg. Med. Chem. Lett.*, 1999, 9, 1047
- M. Aubazhagan, D. W. Boykin, C. E. Stephens, *Tetrahedron Lett.*, 2002, 43, 9089
- 103. J. Cesar, K. Nadrah, M. S. Dolenc, Tetrahedron Lett., 2004, 45, 7445
- 104. T. Weller, L. Alig, M. Beresini, J. Med. Chem., 1996, 39, 3139
- 105. B. Clement, Drug. Metab. Rev., 2002, 34, 565
- 106. J. F. Kerwin, J. Heller, M. Heller, Med. Res. Rev., 1994, 14, 23
- D. Lefevre-Groboillot, S. Dijols, J. L. Boucher, J. P. Mahy, R. Ricoux, A. Desbois, J. L. Zimmerman, D. Mansuy, *Biochemistry*, 2001, 40, 9909
- 108. C. Moali, M. Brollo, J. Custot, M. A. Sari, J. L. Boucher, D. J. Stuehr, D. Mansuy, *Biochemistry*, 2000, **39**, 8208
- A. Jousserandot, J. L.Boucher, Y. Henry, B. Niklaus, B. Clement, D. Mansuy, *Biochemistry*, 1998, 37, 17179

- L. N. Koikov, N. V. Alexeeva, E. A. Lisitzu, Mendeleev. Commun., 1998, 4, 165
- Jousserandot, J. L. Boucher. C. Dessaux, M. Delaforge, D, Mansuy, *Bioorg. Med. Chem. Lett.*, 1995, 5, 423
- M. V. Barybin, P. L. Diaconescu, C. C. Cummins, *Inorg. Chem.*, 2001, 40, 2892
- 113. V. Y. Kukushkin, D. Tudela, A. J. L. Pombiero, Coord. Chem. Rev., 1996, 156, 333
- 114. S. G. Roh, A. Proust, F. Robert, P. Gouzerh, *Inorg. Chim. Acta*, 2003, **342**, 311
- 115. P. Gouzerh, A. Proust, Chem. Rev., 1998, 98, 77-111
- M. Fonvielle, P. Weber, K. Dabkowska, M. Therisod, *Bioorg. Med. Chem.* Lett., 2004, 14, 2923
- 117. Y. Wang, R. L. Miller, D. R. Sauer, S. W. Djuric, Org Lett, 2005, 7, 925
- A. Hamze, J. F. Hernandez, P. Fulcrand, J. Martinez, J. Org. Chem., 2003, 68, 7316
- 119. R. Young, R. J. Devita, Tetrahedron Lett., 1998, 39, 3931
- P. Quadrelli, A.G. Invernizzi, M. Falzoni, P. Caramella, *Tetrahedron*, 1997, 53, 1787
- 121. A. Dondoni, G. Barbaro, A. Battaglia, J. Org. Chem., 1977, 42, 3372
- T. L. Gilchrist, C. J. Moody, C. W. Rees, J. Chem. Soc. Perkin Trans 1, 1979, 1871
- J. W. Ellingboe, L. J. Lombardo, T. R. Alessi, T. T. Nguyen, F. Guzzo, C. J. Guinosso, J. Bullington, E. N. C. Browne, J. F. Behan, J. Wrenn, K. Steiner, M. L. McCaleb, J. Med. Chem., 1993, 36, 2485
- 124. Y. Kohara, K. Kubo, E. Imamiya, T. Wada, Y. Inada, T. Naka, J. Med. Chem., 1996, **39**, 5228
- 125. D. Gennet, S. Z. Zard, H. Zhang, Chem. Commun., 2003, 1870
- 126. S. Zaman, K Mitsuru, A. D. Abell, Org Lett, 2005, 7, 609
- 127. G. Grassi, F. Risitano, Targets in Heterocyclic Synthesis, 1997, 141
- 128. P. Rajagopalan, C. N. Talaty, J. Am. Chem. Soc., 1966, 88, 5048

- A. Q. Hussein, M. M. El-Abehdelah, W. S. Sabri, J. Heterocyclic Chem., 1984, 21, 455
- 130. W. M. Johnson, S. W. Littler, C. E. Skene, Aust. J. Chem, 1993, 46, 315
- 131. W. M. Johnson, S. W. Littler, C. E. Skene, Heterocycles, 1993, 36, 1471
- 132. A. Q. Hussein, J. Chem. Eng. Data, 1987, 32, 127
- 133. A. Q. Hussein, M. M. El-Abehdelah, W. S. Sabri, J. Heterocyclic Chem., 1983, 20, 301
- 134. F. Risitano, G. Grassi, F. Foti, G. Bruno, F. Nicolo, *Tetrahedron*, 1993, 49, 10427
- 135. F. Risitano, G. Grassi, F. Foti, F. Filocarno, Tetrahedron, 1997, 53, 1089
- 136. T. Sasaki, T. Yoshioka, Y. Susuki, Bull. Chem. Soc. Jpn., 1969, 42, 3335
- 137. F. Risitano, G. Grassi, F. Foti, F. Caruso, G. Lo Vecchio, J. Chem. Soc. Perkin Trans 1, 1979, 1522
- 138. J. K. Gallos, A.E. Koumbis, Curr. Org. Chem., 2003, 7, 395
- 139. H. M. I. Osborn, N. Gemmell, L. M. Harwood, J. Chem. Soc. Perkin Trans 1, 2002, 2419
- 140. K. W. J. Baker, A. R. March, S. Parsons, R. M. Paton, G. W. Stewart, *Tetrahedron*, 2002, **58**, 8505
- 141. R. H. Jones, G. C. Robinson, E. J. Thomson, Tetrahedron, 1984, 40, 177
- 142. H. P. Albrecht, D. B. Repke, J. G. Moffat, J. Org. Chem., 1975, 40, 2143
- 143. Y. H. Chiang, J. Org. Chem., 1971, 36, 2146
- 144. P. Koll, A. Fortsch, H. Kogelberg, Carbohydr. Res., 1987, 164, 391
- 145. L. Hough, S.H. Shute, J. Chem. Soc., 1962, 4633
- 146. K. W. J. Baker, PhD Thesis, The University of Edinburgh, 2002
- 147. P. Phiasivongsa, V. V. Samoshin, P. H. Gross, *Tetrahedron Lett.*, 2003, 44, 5495
- 148. M. Bartra, P. Romea, F. Urpi, J. Vilarrasa, Tetrahedron, 1990, 46, 587
- 149. W. D. Phillips, Ann. N. Y. Acad. Sci., 1958, 70, 817
- 150. E. Lustig, J. Phys. Chem., 1961, 65, 491
- 151. M. Toth, L. Somsak, Carbohydr. Res., 2003, 338, 1319
- 152. C. Czekelius, E. M. Carreira, Angew. Chem. Int. Ed., 2005, 44, 612

- D. Conti, M. Rodriguez, A. Sega, M. Taddei, *Tetrahedron Lett.*, 2003, 44, 5327
- 154. M. Rodriguez, A. Sega, M. Taddei, Org. Lett., 2003, 5, 4029
- 155. G. Papandreou, M. K. Tong, B. Ganem, J. Am. Chem. Soc., 1993, 115, 11682
- L. Devel, L. Hamon, H. Becker, A. Thelland, A. Vidal-Cros, *Carbohydr. Res.*, 2003, **338**, 1591
- 157. L. Devel, A. Vidal-Cros, A. Thelland, Tetrahedron Lett., 2000, 41, 299
- 158. L. J. Dong, L. Li, L. T. Ma, L. H. Zhang, Chin. Chem. Lett., 1992, 3, 597
- 159. H. P. Albrecht, D. B. Repke, J. G. Moffat, J. Org. Chem., 1975, 40, 2481
- 160. A. Dondoni, P. P. Giovannini, A. Massi, Org. Lett., 2004, 6, 2929
- 161. A. Dondoni, A. Marra, Chem. Rev., 2000, 100, 4395
- O. Simo, V. P. Lee, A. S. Davis, C. Kreutz, P. H. Gross, P. R. Jones, K. Michael, *Carbohydr. Res.*, 2005, 340, 557
- 163. L. X. Wang, M. Tang, T. Suzuki, K. Kitajima, Y. Inoue, S. Inoue, J. Q. Fan,
 Y. C. Lee, J. Am. Chem. Soc., 1997, 119, 11137
- 164. M. D. Threadgill, A. P. Gledhill, J. Org. Chem., 1989, 54, 2940
- C. Kuligowski, S. Bezzerine-Lafollee, G. Chaume, J. Mahuteau, J. C. Barriere, E. Bacque, A. Pancrazi, J. Ardisson, J. Org. Chem., 2002, 67, 4565
- 166. K. I. Ajzert, K. Takacs, Chem. Ber., 1984, 117, 2999
- 167. G. Suave, V. S. Rao, G. Lajoie, B. Belleau, Can. J. Chem., 1985, 63, 3089
- J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, Oxford, 2001, pp 1138-1139
- 169. J. K. Gallos, C. C. Dellios, Tetrahedron Lett., 2003, 44, 5679
- 170. A. T. Vasella, T. D. Heightmann, Angew. Chem. Int. Ed., 1999, 38, 750
- 171. S. Sabesan, Tetrahedron Lett., 1997, 38, 3127
- 172. A. B. Reitz, R. W. Tuman, C. S. Marchione, A. D. Jordan, C. R. Bowden, B.
 E. Maryanoff, *J. Med. Chem*, 1989, **32**, 2110
- 173. R. L. Whistler, M. L. Wolfrom, Methods Carbohydr. Chem., 1963, II, 324
- M. U. Roslund, K. D. Klika, R. L. Lehtila, P. Tahtinem, R. Sillanpaa, R. Leino J. Org. Chem., 2004, 69, 18
- 175. J. B. Lambert, H. F. Shurvell, D. A. Lightner, R. G. Crooks, Organic Structural Spectroscopy, Prentice Hall, New Jersey, 1998

- 176. J. A. Secrist, M. W. Logue, J. Org. Chem., 1972, 37, 335
- 177. D. Cremer, J. A.Pople, J. Am. Chem. Soc., 1975, 97, 1354
- 178. J. N. BeMiller, M. P. Yadav, V. N. Kalabokis, R. W. Myers, *Carbohydr. Res.*, 1990, **200**, 111
- 179. W. Lai, O. R. Martin, Carbohydr. Res., 1993, 250, 185
- 180. N. Barroca, R. R. Schmidt, Org. Lett., 2004, 6, 1551
- 181. B. Coxon, H. G. Fletcher, J. Am. Chem. Soc., 1964, 86, 922
- 182. R. M. Meyers, Y. C. Lee, Carbohydr. Res., 1984, 132, 61
- P. Phiasivongsa, J. Gallagher, C. N. Chen, P. R. Jones, V. V. Samoshin, P. H. Gross, Org. Lett., 2002, 4, 4587
- K. Utimoto, Y. Wakabayashi, T. Horiie, M. Inoue, Y. Shishiyama, M. Obayashi, H. Nozaki, *Tetrahedron*, 1983, **39**, 967
- 185. F. G. de las Heras, P. Fernandez-Resa, J. Chem. Soc. Perkin Trans. 1, 1982, 903
- 186. P. Koll, A. Fortsch, Carbohydr. Res., 1987, 171, 301
- 187. Z. Tu, Y. Tang, C. Lin, J. T. Liu, J. Hsu, M. N. V. Sastry, C. F. Yao, *Tetrahedron*, 2005, **61**, 10541
- 188. D. H. Lenz, G. E. Norris, C. M. Taylor, G. C. Slim, *Tetrahedron Lett.*, 2001, 42, 4589
- 189. H. G. Bazin, I. Capila, R. J. Lindhardt, Carbohydr. Res., 1998, 309, 135
- A. O. Abdelhamid, C. Parkanyi, S. M. Rashid, W. D. Lloyd, J. Het. Chem., 1988, 25, 403
- 191. F. Risitano, G. Grassi, F. Foti, F. Caruso, J. Chem. Res. (S), 1983, 52
- 192. A. Dondoni, P. Merino, Comprehensive Heterocyclic Chemistry II, A.R. Katritzky, C. W. Rees, E. F. V. Scriven Eds, Pergamon, Oxford, 1996, Chapter 3.06
- M. R. Grimmet, *Comprehensive Heterocyclic Chemistry I*, A.R. Katritzky, C.
 W. Rees, Eds, Pergamon, Oxford, 1984, Chapter 4.06-4.08
- F. W. Hartner, Comprehensive Heterocyclic Chemistry II, A.R. Katritzky, C.
 W. Rees, E. F. V. Scriven Eds, Pergamon, Oxford, 1996, Chapter 3.04
- 195. I. Farkas, I. Szabo, R. Bognar, Carbohydr. Res., 1977, 56, 404
- 196. L. Kiss, L. Somsak, Carbohydr. Res., 1996, 291, 43

- 197. Z. Hadady, M. Toth, L. Somsak, Arkivoc, 2004, 7, 140
- 198. S. H. Mahmoud, L. Somsak, I. Farkas, Carbohydr. Res., 1994, 254, 91
- 199. A. Dondoni, A Marra, Tetrahedron Lett., 2003, 44, 13
- 200. Y. Chapleur, B. Castro, J. Chem. Soc. Perkin Trans. 1, 1980, 2683
- 201. T. Granier, A. Vasella, Helv. Chim. Acta, 1995, 78, 1738
- 202. H. S. El Khadem, J. Kawai, Carbohydr. Res., 1986, 153, 271
- 203. P. A. Escande, J. L. Galigne, Acta. Cryst., 1974, B30, 1647
- 204. T. W. Greene, P. G. M. Wuts, *Protective Groups in Organic Synthesis 3rd* edition, John Wiley and Sons, New York, 1999
- 205. K. P. R. Kartha, B, Mukhopadhyay, R. A. Field, *Carbohydr. Res.*, 2004, **339**, 729
- 206. L. Stryer, *Biochemistry-4th edition*, W. H. Freeman and Company, New York, 1995
- 207. D. Palm, H. W. Klein, R. Schnizel, M. Bueher, E. J. M. Helmreich, Biochemistry, 1990, 29, 1099
- 208. L. N. Johnson, D. Barford, J. Biol. Chem., 1990, 265, 2409
- V. L. Rath, M. Ammirati, D. E. Danley, J. L. Ekstrom, E. M. Gibbs, T. R. Hynes, A. M. Mathiowetz, R. K. McPherson, T. V. Olson, J. L. Treadway, D. J. Hoover, *Chem. Biol.*, 2000, 7, 677
- 210. E. D. Chrysina, M. N. Kosmopoulou, R. Kardakaris, N. Bischler, D. D. Leonidas, T. Kannan, D. Loganathan, N. G. Oikonomakos, *Bioorg. Med. Chem. Lett.*, 2005, 13, 765
- E. D. Chrysina, M. N. Kosmopoulou, C. Tiraidis, R. Kardakaris, N. Bischler,
 D. D. Leonidas, Z. Hadady, L. Somsak, T. Docsu, P. Gergely, N. G. Oikonomakos, *Protein Sci.*, 2005, 14, 873
- 212. Y. K. Fu, T. K. Hart, Z. L. Jonak, P. J. Bugelski, J. Virol, 1993, 67, 3818
- 213. J. W. Dennis, K. Koch, S. Yousefi, I. Vander Elst, Cancer Res., 1990, 50, 1867
- 214. J. A. Balfour, D. McTavish, Drugs, 1993, 46, 1025
- 215. S. Fujioka, Y. Matsuzawa, K. Tokunaga, Y. Keno, T. Kobatake, S. Tarui, *Int. J. Obesity*, 1991, 15, 59
- 216. R. Kumar, Curr. Med. Chem., 2004, 11, 2749

- 217. A. Holy, Curr. Pharm. Design, 2003, 9, 2567
- S. R. Mack, V. M. Sabin, F. C. A. Galvin, 2003, PCT Int. Appl., GB 2002-5956 20020314
- 219. M. Bobek, I. Farkas, Collect. Czech. Commun., 1969, 34, 247
- 220. H. Ogura, H. Takahashi, J. Org. Chem., 1974, 39, 1374
- 221. D. Guianvarc'h, J. L. Fourrey, M. E. Tran Huu Dau, V. Guerineau, R. Benhida, J. Org. Chem., 2002, 67, 3724
- 222. D. Guianvarc'h, J. L. Fourrey, R. Benhida, Tetrahedron Lett., 2001, 42, 647
- 223. K. Boyle, Honours Project, The University of Edinburgh, 2000
- 224. P. Koll, J. Kopf, D. Wess, H. Brandenburg, Liebigs Ann. Chem., 1988, 685
- 225. C. F. Morelli, N. Manferdini, A. C. Veronese, Tetrahedron, 1999, 55, 10803
- 226. I. Hachiya, S. Kobayashi, Tetrahedron Lett., 1994, 35, 3319
- 227. M. Popsavin, V. Popsavin, N. Vukojevic, J. Csanadi, D. Miljkovic, Carbohydr. Res., 1994, 260, 145
- 228. T. Mukaiyama, S. Kobayashi, Carbohydr. Res., 1987, 171, 81
- 229. P. D. Cook, D. J. McNamara, J. Heterocyclic Chem., 1986, 23, 155
- 230. M. T. Reetz, I. Chatziiosifidis, H. Kunzer, H. Muller-Starke, *Tetrahedron*, 1983, **39**, 961
- 231. H. P. Albrecht, D. B. Repke, J. G. Moffat, J. Org. Chem., 1973, 38, 1836
- K. Undheim, T. Benneche, *Comprehensive Heterocyclic Chemistry II*, A.R. Katritzky, C. W. Rees, E. F. V. Scriven Eds, Pergamon, Oxford, 1996, Chapter 6.02
- 233. A. F. Pozharskii, V. V. Dal'nikovskaya, Russ. Chem. Rev., 1981, 50, 816
- 234. R. M. Claramunt, J. Dotor, J. Elguero, Anales de Quimica 1995, 91, 151
- 235. A. F. Pozharskii, I. V. Borovlev, G. G. Yurchuk, O. M. Bagrova, Y. I. Basilenok, V. N. Lagunova, *Khim. Geterotsikl. Soed.*, 1980, 84
- 236. J. M. Herbert, P. D. Woodgate, W. A. Denny, J. Med. Chem., 1987, 30, 2081
- 237. X. Bu, L. W. Deady, G. J. Finlay, B. C. Baguley, W. A. Denny, J. Med. Chem., 2001, 44, 2004
- 238. M. A. Sierra, M. J. Mancheno, J. C. del Amo, I. Fernandez, *Chem. Eur. J.*, 2003, **9**, 4943

- 239. I. Yavari, M. Adib, F. Jahani-Moghaddam, H. R. Bijanzadeh, *Tetrahedron*, 2002, 58, 6901
- A. L. Llamas-Sainz, C. Foces-Foces, D. Sanz, R. M. Claramunt, J. Dotor, J. Elguero, J. Catalan, J. C. del Valle, J. Chem. Soc. Perkin Trans 2, 1995, 1389
- 241. A. Fromm, ERASMUS Project, The University of Edinburgh, 2005
- 242. J. Mann, N. K. Partlett, A. Thomas, J. Chem. Res. (S), 1987, 369
- 243. R. W. Hoffmann, G. Eichler, A. Endesfelder, *Liebigs Ann. Chem.*, 1983, 2000

(Z)-*N*-phenyl-(2',3',4'-tri-*O*-acetyl-β-D-xylopyranosyl)formamide oxime (141)

able 1. Crystal data and structure refinement for CRYSTALS_cif.

Stephen Moggach, S.Moggach@ed.ac.uk Contact A. CRYSTAL DATA C18 H22 N2 O8 C18 H22 N2 O8 Empirical formula 394.38 Formula weight 0.71073 A **Wavelength** 150 K Temperature Monoclinic Crystal system P 1 21 1 Space group alpha = 90 deg. beta = 103.711(4) deg. a = 9.440(3) Ab = 8.007(2) AUnit cell dimensions gamma = 90 deg.c = 12.932(4) A949.6(5) A^3 Volume 3805 (4.839 < theta < 56.847 deg.) Number of reflections for cell 2 Ζ 1.379 Mg/m^3 Density (calculated) 0.110 mm^-1 Absorption coefficient 416.000 F(000) **B. DATA COLLECTION** block colourless Crystal description 0.35 x 0.35 x 0.94 mm Crystal size Bruker smart apex Instrument 2.221 to 28.510 deg. Theta range for data collection -11<=h<=12, -10<=k<=10, -17<=1<=14 Index ranges 5834 Reflections collected 2377 [R(int) = 0.02]Independent reflections f & w scansScan type Semi-empirical from equivalents Absorption correction (Tmin= 0.819585, Tmax=1.00) C. SOLUTION AND REFINEMENT. direct methods Solution Full-matrix least-squares on F Refinement type Program used for refinement CRYSTALS Hydrogen atom placement geom mixed Hydrogen atom treatment Page 1

Арре	ndix 1
Data	2368
Parameters	253
Goodness-of-fit on F^2	1.0108
R	0.0397
Rw	0.1056
Final maximum delta/sigma	0.008215
Weighting scheme	Chebychev Polynomial
Largest diff. peak and hole	0.48 and -0.27 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for ias014. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1) N(1) C(2) N(2) C(3) C(4) C(5) C(6) 0(7) C(10) C(11) 0(11) C(12) C(13) C(14) C(15) 0(31) C(14) C(15) 0(31) C(32) 0(33) C(34) 0(41) C(42) 0(43) C(44) 0(51) C(52) 0(53) C(54)	-1256(2) -2561(2) -1075(2) -52(2) -2315(2) -2074(2) -1851(2) -662(3) -1044(2) 1427(2) 2131(2) -2543(2) 3593(3) 4341(3) 3645(3) 2185(2) -2180(2) -3417(2) -4598(2) -3116(3) -3225(2) -3235(3) -2236(2) -4550(4) -1413(2) -1454(2) -1842(2) -945(3)	-584(3) -801(3) -45(3) -916(3) 1071(3) 1424(3) -187(3) -1236(3) -1553(2) -1113(3) -2554(3) -1481(2) -2803(4) -138(4) 126(3) 2608(2) 3417(3) 2896(3) 5019(3) 2250(2) 3934(3) 4759(2) 4580(4) 349(2) -798(3) -208(2) -57(4)	$\begin{array}{c} -8902(2)\\ -9443(1)\\ -7765(2)\\ -9304(1)\\ -7595(2)\\ -6408(2)\\ -5765(2)\\ -6054(2)\\ -7171(1)\\ -8736(2)\\ -8912(2)\\ -10455(1)\\ -8912(2)\\ -10455(1)\\ -8417(2)\\ -7743(2)\\ -7743(2)\\ -7743(2)\\ -7743(2)\\ -8816(2)\\ -88145(1)\\ -8616(2)\\ -8594(2)\\ -9116(2)\\ -6176(1)\\ -6041(2)\\ -6170(2)\\ -5716(3)\\ -4669(1)\\ -3912(2)\\ -4108(2)\\ -2830(2)\\ \end{array}$	22 25 22 28 21 21 24 32 30 23 28 28 36 37 36 30 23 26 39 36 25 30 43 51 25 27 42 34
Table 3.	Bond lengths	[A] and ang]	es [deg] for ia	as014.
C(1)-N(2) C(1)-C(2) C(1)-N(1) N(1)-O(11 H(1)-O(11 C(2)-H(21 C(2)-C(3)	-) -) -)	1.384 1.503 1.277 1.420 0.908 1.000 1.427 1.529 Page 2	(3) (3) (2) (3) (2) (3) (3)	

	Appendix 1
N(2) - C(10)	1.424(3)
C(3) - H(31)	1.000
C(3) - O(31)	1.443(3)
C(3) - C(4) C(4) - H(41)	1.525(3)
č(4)-0(41)	1.446(2)
C(4) - C(5)	1.522(3)
C(5) - O(51)	1.444(2)
C(5)-C(6)	1.519(3)
C(6) - H(62)	0.999
C(6) - O(7)	1.427(3)
C(10) - C(15)	1.384(3)
C(10) - C(11) C(11) - H(111)	1.000
c(11)-c(12)	1.392(3)
C(12) - H(121) C(12) - C(13)	0.999 1 378(4)
С(13)-н(131)	1.001
C(13) - C(14)	1.383(4)
C(14) - H(141) C(14) - C(15)	1.000
C(15)-H(151)	1.002
0(31)-C(32)	1.348(3)
C(32) - C(34) C(32) - O(33)	1.197(3)
С(34)-Н(343)	1.001
C(34)-H(342) C(34)-H(341)	0.999
0(41)-C(42)	1.360(3)
C(42) - C(44)	1.494(4)
C(42) = O(43) C(44) = H(443)	1.003
С(44)-Н(442)	1.000
C(44)-H(441) O(51)-C(52)	0.999 1 349(3)
c(52)-c(54)	1.491(3)
C(52)-0(53)	1.196(3)
C(54) - H(543) C(54) - H(542)	1.000
С(54)-Н(541)	0.999
N(2)-C(1)-C(2)	120,67(18)
N(2) - C(1) - N(1)	122.67(19)
C(2)-C(1)-N(1) O(11)-N(1)-C(1)	116.54(18)
H(21)-C(2)-O(7)	113.382
H(21)-C(2)-C(3)	105.594
H(21)-C(2)-C(1)	109.740
0(7)-c(2)-c(1)	105.45(17)
C(3)-C(2)-C(1) C(10)-N(2)-H(2)	113.26(16)
C(10) - N(2) - C(1)	128.28(17)
H(2)-N(2)-C(1)	112.984
H(31)-C(3)-C(4)	109.090
0(31)-c(3)-c(4)	109.25(17)
H(31)-C(3)-C(2) D(31)-C(3)-C(2)	112.570 105 40(15)
c(4)-c(3)-c(2)	108.46(16)
H(41)-C(4)-O(41)	110.846
0(41) - C(4) - C(5)	106.74(17)
H(41)-C(4)-C(3)	106.230
0(41)-C(4)-C(3)	111.08(16)

Page 3

.

	Appendix 1
C(5)-C(4)-C(3)	111.23(18)
H(51)-C(5)-C(5)	106 831
0(51)-c(5)-c(6)	110.43(17)
H(51)-C(5)-C(4)	112.324
0(51)-c(5)-c(4)	104.81(18)
C(6)-C(5)-C(4)	110.40(18) 109.542
H(62)-C(6)-O(7)	109.673
H(61)-C(6)-O(7)	109.584
H(62)-C(6)-C(5)	109.660
H(61)-C(6)-C(5)	109.508 108.86(17)
C(6) - O(7) - C(2)	100.00(17) 111.25(18)
c(15) - c(10) - c(11)	120.0(2)
C(15)-C(10)-N(2)	122.5(2)
C(11)-C(10)-N(2)	11/.4(2)
H(111)-C(11)-C(12)	119.073
c(12)-c(11)-c(10)	120.6(2)
H(1)-O(11)-N(1)	102.018
H(121)-C(12)-C(13)	120.190
C(13)-C(12)-C(11)	120.199 119.6(3)
H(131)-C(13)-C(14)	119.933
н(131)-с(13)-с(12)	119.963
C(14) - C(13) - C(12)	120.1(2)
H(141)-C(14)-C(15) H(141)-C(14)-C(13)	119 761
C(15)-C(14)-C(13)	120.2(2)
H(151)-C(15)-C(10)	120.365
H(151)-C(15)-C(14)	120.241
C(10) - C(15) - C(14) C(32) - O(31) - C(3)	119.4(2) 117.69(16)
c(34)-c(32)-o(33)	125.7(2)
c(34)-c(32)-o(31)	112.01(19)
0(33)-C(32)-O(31)	122.3(2)
H(343)-C(34)-H(342) H(343)-C(34)-H(341)	109.424
н(342)-с(34)-н(341)	109.608
H(343)-C(34)-C(32)	109.359
H(342)-C(34)-C(32)	109.523
c(42) - o(41) - c(4)	109.433 116.84(18)
c(44) - c(42) - o(43)	125.7(3)
c(44)-c(42)-0(41)	110.4(2)
O(43)-C(42)-O(41)	123.9(2)
H(443)-C(44)-H(441)	109.384
н(442)-с(44)-н(441)	109.599
H(443)-C(44)-C(42)	109.341
H(442)-C(44)-C(42)	109.552
C(52) - 0(51) - C(5)	109.005 117.30(18)
c(54)-c(52)-o(53)	126.1(2)
c(54)-c(52)-o(51)	110.6(2)
U(33)-C(32)-O(51) H(543)-C(54)-H(547)	123.3(2) 100 430
H(543)-C(54)-H(541)	109.507
H(542)-C(54)-H(541)	109.537
H(543)-C(54)-C(52)	109.401
H(542)-C(54)-C(52) H(541)-C(54)-C(52)	109.431 100 518
11(342)************************************	T03.9T0

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
C(1) N(1) C(2) N(2) C(3) C(4) C(5) C(10) C(11) C(11) C(12) C(13) C(14) C(15) O(31) C(32) O(33) C(34) O(41) C(42) O(43) C(44) O(51)	25(1) 30(1) 23(1) 24(1) 21(1) 20(1) 30(1) 43(1) 47(1) 24(1) 27(1) 27(1) 23(1) 31(1) 26(1) 31(1) 27(1) 47(1) 24(1) 31(1) 27(1) 47(1) 24(1) 31(1) 27(1) 47(1) 24(1) 31(1) 27(1) 31(1) 27(1) 31(1) 27(1) 32(1) 32(1) 32(1)	$17(1) \\ 23(1) \\ 19(1) \\ 36(1) \\ 17(1) \\ 18(1) \\ 21(1) \\ 29(1) \\ 20(1) \\ 24(1) \\ 26(1) \\ 30(1) \\ 29(1) \\ 39(2) \\ 38(1) \\ 26(1) \\ 18(1) \\ 24(1) \\ 43(1) \\ 25(1) \\ 23(1) \\ 23(1) \\ 43(2) \\ 21(1$	24(1) 22(1) 22(1) 21(1) 23(1) 24(1) 18(1) 22(1) 22(1) 22(1) 22(1) 32(1) 32(1) 50(1) 47(1) 38(1) 34(1) 25(1) 23(1) 46(1) 28(1) 27(1) 54(1) 54(1) 27(1) 54(1) 27(1) 54(1) 27(1	$1(1) \\ -1(1) \\ 1(1) \\ -6(1) \\ 2(1) \\ 0(1) \\ 1(1) \\ 3(1) \\ 3(1) \\ -5(1) \\ -6(1) \\ -1(1) \\ 1(1) \\ -7(1) \\ -5(1) \\ 4(1) \\ 3(1) \\ 19(1) \\ 9(1) \\ 9(1) \\ 0(1) \\ 1(1) \\ -6(1) \\ -2(2) \\ -1(1) \\ 2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2($	$\begin{array}{c} 4(1) \\ 4(1) \\ 2(1) \\ 2(1) \\ 3(1) \\ 3(1) \\ 1(1) \\ 3(1) \\ 4(1) \\ 7(1) \\ 8(1) \\ 1(1) \\ 7(1) \\ 2(1) \\ 6(1) \\ 13(1) \\ 6(1) \\ 22(1) \\ 26(1) \\ 3(1) \\ 6(1) \\ 3(1) \\ 6(1) \\ 22(1) \\ 3(1) \\ 6(1) \\ 3(1) $	$\begin{array}{c} 2(1) \\ -2(1) \\ 3(1) \\ 2(1) \\ 1(1) \\ 1(1) \\ 0(1) \\ 16(1) \\ 10(1) \\ -2(1) \\ -3(1) \\ 2(1) \\ -4(1) \\ -4(1) \\ 10(1) \\ 10(1) \\ 10(1) \\ 3(1) \\ 6(1) \\ -4(1) \\ 20(2) \\ -1(1) \\ 2(1) \end{array}$
0(53) C(54)	67(1) 46(1)	25(1) 35(1)	$\frac{1}{32(1)}$ 22(1)	3(1) -1(1)	11(1) 9(1)	-7(1) -3(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for ias014. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for ias014.

<u> </u>	x	У	Z	U(eq)
H(1) H(2) H(21) H(31) H(41) H(51) H(61) H(62) H(111) H(121) H(131) H(141) H(141) H(341) H(342) H(343) H(441) H(442) H(443) H(541)	$\begin{array}{r} -3507 \\ -250 \\ -168 \\ -3296 \\ -1190 \\ -2751 \\ 285 \\ -564 \\ 1587 \\ 4098 \\ 5388 \\ 4192 \\ 1693 \\ -4058 \\ -2560 \\ -2526 \\ -4471 \\ -5445 \\ -4616 \\ -983 \end{array}$	-1650 -1629 638 546 2149 -893 -617 -2317 -3429 -3851 -1777 732 1201 5577 4784 5767 5816 4305 4042 -922 Page 5	-10745 -9868 -7536 -7858 -6213 -5902 -5863 -5657 -9400 -8548 -7376 -7081 -7987 -9454 -9668 -8556 -5619 -6279 -5029 -2280	50 50 26 25 25 28 37 37 34 43 44 43 44 43 37 44 44 44 64 64 64 64 64 41
H(343) H(441) H(442) H(443) H(541)	-2526 -4471 -5445 -4616 -983	5767 5816 4305 4042 -922 Page 5	-8556 -5619 -6279 -5029 -2280	44 64 64 64 41

Appendix 1

		Appendix 1		
H(542)	-1591	902	-2751	41
H(543)	80	349	-2734	41

.

3-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-1,2,4-oxadiazin-6-one (152)

Crystal data and structure refinement for ias020. able 1. Simon Parsons, S.Parsons@ed.ac.uk Contact A. CRYSTAL DATA C14 H18 N2 09 Empirical formula C14 H18 N2 09 358.30 Formula weight 0.71073 A **wavelength** 150 K Temperature Monoclinic Crystal system P 1 21 1 Space group alpha = 90 deg. beta = 92.321(6) deg. gamma = 90 deg. a = 5.3400(6) A b = 17.884(2) A c = 18.154(2) Aunit cell dimensions 1732.3(3) A^3 volume 1007 (3 < theta < 28 deg.) Number of reflections for cell 4 Ζ 1.374 Mg/m^3 Density (calculated) 0.116 mm^{-1} Absorption coefficient 752 F(000) **B. DATA COLLECTION** colourless block crystal description 0.37 x 0.18 x 0.16 mm Crystal size Bruker SMART Instrument Theta range for data collection 1.123 to 28.543 deg. -7<=h<=7, -23<=k<=23, -23<=1<=23 Index ranges 15939 Reflections collected 2255 [R(int) = 0.031]Independent reflections \w Scan type Sadabs Absorption correction (Tmin= 0.622, Tmax=1.000) C. SOLUTION AND REFINEMENT. direct (SIR92 (Altomare et al, 1994)) solution Full-matrix least-squares on F^2 Refinement type SHELXL-97 Program used for refinement Hydrogen atom placement geom Page 1

	Appendix 2
Hydrogen atom treatment	mixed
Data / restraints / parameter	rs 3118/477/451
Goodness-of-fit on F^2	0.9748
Conventional R [F>4sigma(F)]	R1 = 0.0835 [2673 data]
weighted R (F^2 and all data)) $wR2 = 0.1936$
Final maximum delta/sigma	0.009153
weighting scheme	Sheldrick weights.
Largest diff. peak and hole	0.54 and -0.45 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for ias020. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<u></u>	x	у	Z	U(eq)
0(11) N(21) C(31) N(41) C(51) C(61) 0(71) C(81) 0(91) C(101) C(101) C(121) C(131) 0(141) C(151) 0(161) C(171)	x 407(7) 312(7) -1946(7) -4063(7) -4054(8) -1578(7) -1271(9) -2104(9) -4157(9) -4433(15) -5069(14) -3030(14) -2594(14) -5177(10) -7308(16) -9065(10) -7240(20)	y 1061(3) 753(3) 635(3) 792(3) 1369(3) 1400(4) 1711(4) 299(4) -205(3) -571(4) 580(4) 918(4) -355(3) -711(5) -756(4) -1024(6) 1170(3)	z -2586(2) -1842(3) -1642(2) -2008(3) -2571(3) -2929(3) -3498(3) -3498(3) -878(2) -901(3) -217(4) 370(4) 442(4) -307(4) 1088(3) 1225(4) 786(4) 1980(5) 924(3)	U(eq) 45 32 24 28 34 33 46 27 32 31 31 28 29 37 34 44 52 36
O(181) C(191) O(201) C(211) O(221) C(231) O(241) C(251) O(12) N(22) C(32) N(42) C(52) C(52) C(52) C(62) O(72) C(82) O(92)	-3787(10) -2399(19) -444(16) -3470(20) -464(10) -556(15) -2275(11) 1754(17) 2125(6) 1733(7) -618(7) -2571(7) -2277(8) 272(7) 744(8) -1078(9) -3181(9)	$1170(3) \\ 1296(5) \\ 988(5) \\ 1910(6) \\ 1401(3) \\ 2052(4) \\ 2220(3) \\ 2506(5) \\ -1098(3) \\ -825(3) \\ -720(3) \\ -888(3) \\ -1431(3) \\ -1385(4) \\ -1592(3) \\ -401(4) \\ 78(3)$	924(3) 1544(5) 1691(4) 1974(5) -234(3) -621(5) -1035(4) -472(6) -2095(2) -2855(2) -3038(2) -2659(2) -2071(3) -1710(2) -1091(3) -3803(2) -3777(2)	36 45 73 61 33 35 43 46 37 32 23 24 30 29 41 26 26
C(102) C(112) C(122) C(132) O(142) C(152) O(162) C(172)	-3789(14) -4545(13) -2478(14) -1753(13) -4923(10) -7126(14) -8609(10) -7470(18)	449(4) -132(4) -703(4) -1028(4) 194(3) 552(4) 676(3) 773(5) Page 2	-4460(4) -5041(4) -5113(4) -4358(4) -5754(3) -5876(4) -5406(3) -6657(4)	30 27 26 24 30 28 34 43

0(182) -3366 c(192) -2179 0(202) -527 c(212) -3280 0(222) 376 c(232) 389 0(242) -1088 c(252) 2570	$\begin{array}{rrrr} & \text{Appendix } 2 \\ 5(10) & -1311(3) \\ 0(18) & -1402(5) \\ 7(15) & -1023(4) \\ 0(20) & -2051(6) \\ 5(9) & -1509(3) \\ 0(14) & -2180(4) \\ 3(12) & -2348(3) \\ 0(18) & -2640(5) \end{array}$	-5565(3) -6207(4) -6407(4) -6622(6) -4462(3) -4110(5) -3668(3) -4326(6)	32 40 69 54 30 32 43 50
---	---	--	--

Table 3. Bond lengths [A] and angles [deg] for ias020.

0(11)-N(21) 0(11)-C(61) N(21)-C(31) C(31)-N(41) C(31)-C(81) N(41)-C(51) N(41)-H(41) C(51)-C(61) C(51)-H(511) C(51)-H(512) C(61)-0(71) C(81)-0(91)	1.462(5) 1.351(5) 1.291(5) 1.318(5) 1.517(6) 1.453(5) 0.911 1.497(5) 0.991 0.972 1.191(6) 1.419(6)	
C(81)-C(131) C(81)-H(811) O(91)-C(101)	0.976 1.416(9)	
C(101) - C(101) C(101) - C(111) $C(101) - \mu(1011)$	1.530(11) 0.980	
C(101) - H(1011) C(101) - H(1012) C(111) - C(121)	0.983	
C(111) - C(121) C(111) - O(141)	1.456(9)	
C(111) - H(1111) C(121) - C(131)	1.514(11) 1.438(9)	
С(121)-0(181) С(121)-H(1211)	0.983	
С(131)-0(221) С(131)-Н(1311)	0.983	
0(141)-C(151) C(151)-O(161)	1.208(10)	
С(151)-С(171) С(171)-Н(1711)	1.480(12) 0.980	
С(171)-Н(1712) С(171)-Н(1713)	0.978 0.976	
0(181)-C(191) C(191)-O(201)	1.342(10) 1.202(12)	
C(191)-C(211) C(211)-H(2111)	1.476(13) 0.969	
C(211)-H(2112) C(211)-H(2113)	0.984 0.980	
0(221) - C(231) C(231) - O(241)	1.360(10) 1.202(10)	
C(231)-C(251) C(231)-C(251) C(251)-H(2511)	1.492(12) 0.970	
C(251) - H(2512) C(251) - H(2512) C(251) - H(2513)	0.974	
0(12)-N(22)	1.469(5)	
N(22)-C(32)	1.299(5)	
C(32)-N(42) C(32)-C(82)	1.513(5)	
N(42)-C(52) N(42)-H(42)	0.909	
C(52)-C(62) C(52)-H(521)	1.489(5) 0.970	
С(52)-Н(522) С(62)-0(72)	0.993 1.200(5)	
	Page 3	

	Appendix 2
C(82)-O(92) C(82)-C(132)	1.415(6) 1.540(9)
C(82) - H(821)	0.978
C(102) - C(102)	1.524(10)
C(102) - H(1021) C(102) - H(1022)	0.975 0.983
C(112) - C(122)	1.514(10) 1.426(9)
С(112)-0(142) С(112)-Н(1121)	0.983
C(122)-C(132) C(122)-O(182)	1.523(10) 1.432(9)
C(122)-H(1221) C(132)-O(222)	0.980 1.445(8)
С(132)-Н(1321)	0.982
C(142) - C(152) C(152) - O(162)	1.207(9)
C(152)-C(172) C(172)-H(1721)	1.478(11) 0.982
C(172) - H(1722) C(172) - H(1723)	0.983
0(182) - C(192)	1.359(9)
C(192)-O(202) C(192)-C(212)	1.181(11) 1.493(13)
C(212)-H(2121) C(212)-H(2122)	0.980 0.979
С(212)-Н(2123)	0.980
C(232)-O(242)	1.339(10) 1.186(10)
C(232)-C(252) C(252)-H(2521)	1.492(12) 0.971
C(252) - H(2522) C(252) - H(2523)	0.973
	122 56(0)
N(21) - O(11) - C(61) O(11) - N(21) - C(31)	112.91(9)
N(21)-C(31)-N(41) N(21)-C(31)-C(81)	128.01(7) 114.13(7)
N(41) - C(31) - C(81) C(31) - N(41) - C(51)	117.82(8) 118.61(9)
C(31)-N(41)-H(41)	119.715
N(41)-C(51)-C(61)	111.05(9)
N(41)-C(51)-H(511) C(61)-C(51)-H(511)	$109.014 \\ 107.761$
N(41)-C(51)-H(512) C(61)-C(51)-H(512)	110.467
H(511)-C(51)-H(512)	109.221
C(51)-C(61)-O(11) C(51)-C(61)-O(71)	123.23(8)
0(11)-C(61)-O(71) C(31)-C(81)-O(91)	118.41(7) 107.26(9)
C(31) - C(81) - C(131)	110.3(5)
С(31)-С(81)-Н(811)	110.767
C(131)-C(81)-H(811)	109.623
C(81)-O(91)-C(101) O(91)-C(101)-C(111)	112.1(4) 109.5(6)
O(91) - C(101) - H(1011) C(111) - C(101) - H(1011)	110.031 109 234
0(91)-с(101)-н(1012)	109.883
H(1011)-C(101)-H(1012)	109.172
C(101)-C(111)-C(121) C(101)-C(111)-O(141)	110.0(6) 110.1(6)
C(121)-C(111)-O(141) C(101)-C(111)-H(1111)	106.3(6) 110.031
	Page 4

	Annondix 7
$C(121) - C(111) - \mu(1111)$	
0(141)-C(111)-H(1111)	110.133
C(111) - C(121) - C(131)	109.5(6)
c(111) - c(121) - o(181)	109.6(6)
c(131)-c(121)-o(181)	108.1(6)
C(111)-C(121)-H(1211)	109.955
С(131)-С(121)-Н(1211)	109.597
0(181)-С(121)-Н(1211)	110.107
C(81)-C(131)-C(121)	110.6(6)
C(81)-C(131)-O(221)	109.8(6)
C(121)-C(131)-O(221)	108.0(6)
C(81)-C(131)-H(1311)	109.724
C(121) - C(131) - H(1311)	109.047
$C(111)_{-0}(141)_{-0}(151)$	109.001 116.2(6)
0(141)-0(151)-0(161)	123 6(8)
0(141) - c(151) - c(171)	111.3(7)
0(161) - c(151) - c(171)	125.1(8)
с(151)-с(171)-н(1711)	109.223
С(151)-С(171)-Н(1712)	108.953
H(1711)-C(171)-H(1712)	109.612
С(151)-С(171)-Н(1713)	109.263
H(1/11) - C(1/1) - H(1/13)	109.821
H(1/12) - C(1/1) - H(1/13)	119.950
C(121) - O(101) - C(191)	123.3(7)
0(181) - c(191) - c(201)	123.7(8) 110 9(9)
0(201) - c(191) - c(211)	125.2(9)
c(191)-c(211)-H(2111)	109.549
с(191)-с(211)-н(2112)	108.645
H(2111)-C(211)-H(2112)	110.064
С(191)-С(211)-Н(2113)	108.947
H(2111)-C(211)-H(2113)	110.434
H(2112)-C(211)-H(2113)	109.10/
O(221) - O(221) - O(231)	123 3(7)
0(221) - c(231) - c(251)	111.1(7)
o(241)-c(231)-c(251)	125.6(8)
С(231)-С(251)-Н(2511)	109.961
С(231)-С(251)-Н(2512)	109.319
H(2511)-C(251)-H(2512)	110.861
C(231)-C(251)-H(2513)	108.306
H(2511) - C(251) - H(2515)	109.327
N(22) = O(12) = O(62)	122.53(9)
O(12) - N(22) - C(32)	112.83(9)
N(22)-C(32)-N(42)	127.94(7)
N(22)-C(32)-C(82)	114.15(7)
N(42)-C(32)-C(82)	117.81(8)
C(32) - N(42) - C(52)	118.53(9)
C(52) = N(42) = H(42)	120.049
N(42) - C(52) - C(62)	121.300 110.95(9)
N(42) - C(52) - H(521)	110.908
С(62)-С(52)-Н(521)	109.161
N(42)-C(52)-H(522)	109.286
С(62)-С(52)-Н(522)	107.295
H(521)-C(52)-H(522)	109.156
C(52) - C(62) - O(12)	118.29(7)
C(32) - C(02) - O(72)	112 A2(7)
C(32) - C(82) - O(72)	107 22(0)
c(32) - c(82) - c(132)	110.6(5)
ō(92)-c(82)-c(132)	107.3(5)
с(32)-с(82)-н(821)	111.046
0(92)-С(82)-Н(821)	110.252
С(132)-С(82)-Н(821)	110.297
C(82) - O(92) - C(102)	113.8(4) Page 5

	Appendix 2
0(92)-C(102)-C(112)	109.1(6)
O(92)-C(102)-H(1021)	109.835
C(112)-C(102)-H(1021)	109.003
C(112) - C(102) - H(1022)	109.433
H(1021) - C(102) - H(1022)	109.602
c(102)-c(112)-c(122)	110.3(6)
c(102) - c(112) - o(142)	112.0(6)
C(122)-C(112)-O(142)	105.9(6)
С(102)-С(112)-Н(1121)	109.901
C(122)-C(112)-H(1121)	109.276
O(142) - C(112) - H(1121) C(112) - C(122) - C(132)	109.300
C(112) - C(122) - C(132)	109.9(0) 109.7(6)
C(132) - C(122) - O(182)	107.0(6)
с(112)-с(122)-н(1221)	109.672
с(132)-с(122)-н(1221)	110.119
0(182)-С(122)-Н(1221)	110.490
C(82)-C(132)-C(122)	110.8(6)
C(82)-C(132)-O(222)	110.8(5)
C(122)-C(132)-U(222)	100.4(5)
C(122)-C(132)-H(1321)	109.797
O(222)-C(132)-H(1321)	109.727
c(112)-0(142)-c(152)	115.6(6)
0(142)-C(152)-O(162)	124.3(7)
0(142)-C(152)-C(172)	111.0(6)
O(162)-C(152)-C(1/2)	124.7(7)
C(152)-C(172)-H(1721)	109.205
H(1721)-C(172)-H(1722)	109.072
С(152)-С(172)-Н(1723)	109.981
$\dot{H}(1721)-\dot{C}(172)-\dot{H}(1723)$	109.643
H(1722)-C(172)-H(1723)	109.515
C(122) - O(182) - C(192)	115.3(6)
O(182) - C(192) - O(202)	125.2(8) 100 7(8)
O(102) - C(192) - C(212)	109.7(8) 125 1(9)
C(192) - C(212) - H(2121)	109.543
с(192)-с(212)-н(2122)	109.647
H(2121)-C(212)-H(2122)	109.586
С(192)-С(212)-Н(2123)	109.058
Н(2121)-С(212)-Н(2123)	109.466
H(2122)-C(212)-H(2123)	109.527
0(222) - 0(222) - 0(232)	123.4(7)
O(222) - C(232) - C(252)	110.6(7)
o(242)-c(232)-c(252)	125.9(8)
С(232)-С(252)-Н(2521)	109.426
С(232)-С(252)-Н(2522)	108.978
H(2521)-C(252)-H(2522)	100 202
L(232)-L(232)-H(2323) H(2521)-C(252)-H(2523)	100.302
H(2522)-C(252)-H(2523)	109.563

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for ias020. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

 U11	U22	U33	U23	U13	U12
 ····		Page 6	5		

Table 5. Hydrogen coordinates ($x = 10^4$) and isotropic displacement parameters (A² x 10³) for ias020.

	x	У	Z	U(eq)
H(41) H(42) H(511) H(512) H(811) H(1011) H(1012)	-5498 -4084 -5353 -4412 -559 -5782 -2860	550 -678 1250 1855 34 -942 -824 Page 7	-1893 -2777 -2959 -2360 -737 -261 -65	35 30 41 41 34 39 39

Appendix 2

		Appendix 2		
н(1111)	-6677	245	238	38
H(1211)	-1474	348	638	34
H(1311)	-4078	1210	-467	36
	-8834	-1276	2064	66
H(1712)	-6992	-616	2334	66
H(1713)	-5864	-1382	2033	66
H(2111)	-2440	1992	2419	76
H(2112)	-5181	1770	2103	76
H(2113)	-3540	2363	1671	76
H(2511)	1666	2964	-757	58
H(2512)	1928	2613	54	58
H(2513)	3218	2208	-619	58
н(521)	-2556	-1935	-2256	38
н(522)	-3502	-1322	-1688	38
н(821)	383	-123	-3961	34
н(1021)	-2339	729	-4619	36
H(1022)	-5198	794	-4394	36
н(1121)	-6088	-387	-4903	34
H(1221)	-1020	-467	-5327	31
н(1321)	-3156	-1323	-4181	30
н(1721)	-9090	1027	-6731	53
H(1722)	-7456	324	-6970	53
H(1723)	-6121	1108	-6793	53
H(2121)	-2429	-2114	-7086	68
H(2122)	-5073	-1962	-6728	68
H(2123)	-3068	-2504	-6322	68
H(2521)	2555	-3115	-4066	61
H(2522)	2465	-2718	-4857	61
н(2523)	4118	-2364	-4189	61

3-(2',3',4'-Tri-*O*-acetyl-β-D-xylopyranosyl)-5-(isopropyl)-1,2,4-oxadiazin-6-one (156)

Table 1. Crystal data and structure refinement for ias046. Simon Parsons, S.Parsons@ed.ac.uk Contact A. CRYSTAL DATA C18 H26 N2 O9 Empirical formula C18 H26 N2 O9 414.41 Formula weight 0.71073 A Wavelength 150 K Temperature Monoclinic Crystal system C 2 Space group a = 28.1300(9) Ab = 5.3729(2) Aalpha = 90 deg.beta = 123.387(2) deg. Unit cell dimensions c = 16.9066(5) Agamma = 90 deg.2133.57(13) A^3 volume Number of reflections for cell 6621 (2 < theta < 31 deg.)4 Ζ 1.290 Mg/m^3 Density (calculated) 0.104 mm^{-1} Absorption coefficient 880 F(000) **B. DATA COLLECTION** colourless slab Crystal description Crystal size 2.60 x 0.72 x 0.18 mm Bruker SMART Apex CCD Instrument Theta range for data collection 1.734 to 30.541 deg. -40<=h<=38, -7<=k<=7, -23<=1<=23 Index ranges 17968 Reflections collected 3455 [R(int) = 0.046]Independent reflections \w Scan type Semi-empirical from equivalents Absorption correction (Tmin= 0.75, Tmax=0.98) C. SOLUTION AND REFINEMENT. direct (SIR92 (Altomare et al., 1994)) Solution Full-matrix least-squares on F^2 Refinement type Program used for refinement CRYSTALS Hydrogen atom placement geom Page 1

Hydrogen atom treatment	Appendix 3 mixed
Data	3455
Parameters	266
Goodness-of-fit on F^2	0.8769
Conventional R [F>4sigma(F)]	R1 = 0.0451 [2730 data]
Rw	0.1143
Final maximum delta/sigma	0.000711
Weighting scheme	Sheldrick Weights
Largest diff. peak and hole	0.39 and -0.26 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for ias046. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
0(1) N(2) C(3) N(4) C(5) C(6) O(6) C(7) C(8) C(10) C(11) C(21) O(12) C(22) O(22) C(32) C(31) O(13) C(23) O(23) C(41) O(14) C(24) C(41) O(14) C(24) C(34) C(51) O(61)	10049(1) 9493(1) 9358(1) 9646(1) 10067(1) 10360(1) 10840(1) 9801(1) 10225(1) 10526(1) 9924(2) 8820(1) 8302(1) 8302(1) 8407(1) 7796(1) 7796(1) 7796(1) 7331(1) 6817(1) 6817(1) 6360(1) 7942(1) 7456(1) 7419(1) 7781(1) 6879(1) 8474(1) 8932(1)	5053(3) 4715(4) 2418(4) 422(4) 645(4) 3134(4) 3562(4) 443(5) 270(5) -2223(6) 758(8) 2000(4) 1493(4) 3751(3) 3788(4) 2110(4) 6198(5) 827(4) 37(4) 1115(7) 2913(5) -374(10) -1316(4) -1566(3) -3705(5) -5288(3) -3810(6) -685(4) -142(3)	3837(1) 3703(2) 3699(2) 3723(2) 3483(1) 3838(2) 4081(1) 2412(2) 2118(2) 2377(2) 1061(2) 3686(1) 2681(1) 2131(1) 1388(1) 1192(1) 858(2) 2733(1) 1807(1) 1468(2) 1811(2) 640(2) 3415(1) 3484(1) 3864(2) 4174(1) 3834(2) 4373(1) 4254(1)	41 36 29 26 28 34 35 49 67 26 27 30 29 37 41 28 35 47 65 72 27 31 32 37 50 27 27
Table 3.	Bond length	s [A] and angle	es [deg] for i	as046.
0(1)-N(2) 0(1)-C(6) N(2)-C(3) C(3)-N(4) C(3)-C(1) N(4)-C(5)))) L)	1.463 1.352 1.290 1.331 1.517 1.452 Page 2	(2) (3) (3) (3) (3) (2)	

.

	Appendix 3
N(4)-H(4) C(5)-C(6) C(5)-C(7) C(5)-H(51) C(6)-O(6) C(7)-C(8)	0.77(4) 1.512(3) 1.536(3) 1.005 1.198(2) 1.528(3) 1.001
C(7)-H(71) C(7)-H(72) C(8)-C(9) C(8)-C(10) C(8)-H(81) C(9)-H(91) C(9)-H(92)	1.000 1.515(4) 1.522(3) 0.999 1.002 1.001
C(9)-H(93)	0.997
C(10)-H(101)	1.002
C(10)-H(102)	1.002
C(10)-H(103)	0.996
C(11)-C(21)	1.536(3)
C(11)-O(61)	1.419(3)
C(11)-H(111)	1.001
C(21)-O(12)	1.443(3)
C(21)-C(31)	1.519(3)
C(21)-H(211)	1.000
O(12)-C(22)	1.353(2)
C(22)-O(22)	1.197(3)
C(22)-C(32)	1.499(3)
C(32)-H(321)	1.003
C(32)-H(322)	0.997
C(32)-H(323)	1.000
C(31)-O(13)	1.445(2)
C(31)-C(41)	1.517(3)
C(31)-H(311)	1.002
C(31)-C(23)	1.359(3)
C(23)-C(23)	1.198(4)
C(23)-C(43)	1.508(5)
C(43)-H(431)	0.999
C(43)-H(432)	0.995
C(43)-H(433)	1.005
C(41)-0(14)	1.440(2)
C(41)-C(51)	1.520(3)
C(41)-H(411)	1.001
0(14)-C(24)	1.349(3)
C(24)-0(24)	1.202(3)
C(24)-C(34)	1.494(3)
C(34)-H(341)	0.998
C(34)-H(342)	1.000
C(34)-H(343)	1.005
C(51)-O(61)	1.439(2)
C(51)-H(511)	1.001
C(51)-H(512)	1.000
N(2)-O(1)-C(6)	122.82(17)
O(1)-N(2)-C(3)	113.96(18)
N(2)-C(3)-N(4)	126.7(2)
N(2)-C(3)-C(11)	115.47(19)
N(4)-C(3)-C(11)	117.82(19)
C(3)-N(4)-C(5)	120.12(19)
C(3)-N(4)-H(4) C(5)-N(4)-H(4) N(4)-C(5)-C(6) N(4)-C(5)-C(7) C(6)-C(5)-C(7) N(4)-C(5)-H(51) C(5)-C(5)-H(51)	117(2) 122(2) 108.28(17) 112.33(17) 109.59(18) 109.037
C(0)-C(3)-H(31)	108.968
C(7)-C(5)-H(51)	117.51(17)
C(5)-C(6)-O(1)	124.9(2)
C(5)-C(6)-O(6)	117.5(2)
O(1)-C(6)-O(6)	Page 3

Page 3

	Appendix 3
c(5)-c(7)-c(8)	115.27(17)
C(5) - C(7) - H(71)	107.897
C(5)-C(7)-H(72)	107.972
С(8)-С(7)-Н(72)	108.138
H(71)-C(7)-H(72)	109.455 111.8(2)
c(7)-c(8)-c(10)	110.1(2)
c(9) - c(8) - c(10)	110.7(2)
C(7) - C(8) - H(81)	108.144
C(10) - C(8) - H(81)	108.010
С(8)-С(9)-Н(91)	109.461
C(8) - C(9) - H(92) H(91) - C(9) - H(92)	109.241
с(8)-с(9)-н(93)	109.653
H(91)-C(9)-H(93)	109.532
C(8) - C(10) - H(101)	109.397
с(8)-с(10)-н(102)	109.235
H(101)-C(10)-H(102)	109.170
H(101)-C(10)-H(103)	109.695
H(102)-C(10)-H(103)	109.645
C(3) - C(11) - C(21)	111.91(16) 105.25(16)
c(21)-c(11)-0(61)	109.07(17)
С(3)-С(11)-Н(111)	109.979
C(21)-C(11)-H(111)	110.323
c(11)-c(21)-o(12)	109.13(17)
c(11) - c(21) - c(31)	109.03(15)
O(12)-C(21)-C(31) C(11)-C(21)-H(211)	110.780
о(12)-с(21)-н(211)	110.668
C(31)-C(21)-H(211)	110.669 117.90(16)
O(12) - C(22) - O(22)	123.8(2)
0(12)-c(22)-c(32)	110.81(19)
O(22)-C(22)-C(32) C(22)-C(32)-H(321)	109.182
с(22)-с(32)-н(322)	109.654
H(321)-C(32)-H(322)	109.439
H(321)-C(32)-H(323)	109.265
н(322)-с(32)-н(323)	109.715
C(21)-C(31)-O(13)	108.87(15) 110 62(16)
0(13) - c(31) - c(41)	107.80(18)
с(21)-с(31)-н(311)	109.916
O(13)-C(31)-H(311) C(41)-C(31)-H(311)	109.838
c(31)-0(13)-c(23)	116.72(18)
0(13)-C(23)-O(23)	124.1(3) 109 4(3)
0(23)-c(23)-c(43)	126.4(3)
с(23)-с(43)-н(431)	109.518
C(23)-C(43)-H(432)	109.525
C(23)-C(43)-H(433)	109.189
H(431)-C(43)-H(433)	109.171
H(432)-C(43)-H(433) C(31)-C(41)-O(14)	109.466 105.02(16)
č(31)-č(41)-č(51)	109.69(18)
0(14)-C(41)-C(51)	110.78(15)
C(31) - C(41) - H(411) = 0(14) - C(41) - H(411)	110.482
с(51)-с(41)-н(411)	110.653
	Page 4

•

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for ias046. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	υ22	U33	U23	U13	U12
0(1) N(2) C(3) N(4) C(5) C(6) O(6) C(7) C(8) C(10) C(11) C(21) O(12) C(22) O(12) C(22) C(22) C(31) O(23) C(23) C(23) C(23) C(23) C(23) C(23) C(23) C(23) C(23) C(23) C(24) C(24) C(24) C(25) C(25) C(25) C(24) C(25) C(25) C(25) C(26) C(26) C(27) C(2	$\begin{array}{c} 43(1)\\ 38(1)\\ 27(1)\\ 31(1)\\ 24(1)\\ 30(1)\\ 29(1)\\ 26(1)\\ 39(1)\\ 63(2)\\ 79(2)\\ 27(1)\\ 31(1)\\ 37(1)\\ 30(1)\\ 57(2)\\ 24(1)\\ 28(1)\\ 29(1)\\ 40(1)\\ 36(1)\\ 25(1)\\ 26(1)\\ 33(1)\\ 41(1)\\ 45(1)\\ 26(1)\\ 26(1)\\ \end{array}$	$\begin{array}{c} 21(1)\\ 22(1)\\ 22(1)\\ 18(1)\\ 22(1)\\ 31(1)\\ 39(1)\\ 37(1)\\ 39(2)\\ 80(3)\\ 24(1)\\ 22(1)\\ 24(1)\\ 24(1)\\ 24(1)\\ 31(1)\\ 29(1)\\ 28(1)\\ 40(1)\\ 64(2)\\ 77(2)\\ 105(3)\\ 27(1)\\ 31(1)\\ 35(1)\\ 30(1)\\ 58(2)\\ 28(1)\\ 40(1)\\ 64(2)\\ 77(2)\\ 105(3)\\ 27(1)\\ 31(1)\\ 35(1)\\ 30(1)\\ 58(2)\\ 28(1)\\ 28(1)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(2)\\ 30(1)\\ 58(1)\\ $	75(1) 63(1) 32(1) 51(1) 36(1) 35(1) 42(1) 33(1) 36(1) 70(2) 41(1) 31(1) 31(1) 31(1) 31(1) 31(1) 31(1) 31(1) 33(1) 41(1) 56(2) 34(1) 56(2) 34(1) 43(1) 35(1) 43(1) 35(1) 41(1) 31(1)	$\begin{array}{c} -5(1) \\ -2(1) \\ 1(1) \\ 2(1) \\ 1(1) \\ 5(1) \\ 4(1) \\ -3(1) \\ 0(1) \\ 0(1) \\ 2(2) \\ 0(1) \\ 2(2) \\ 0(1) \\ 3(1) \\ 4(1) \\ -1(1) \\ 2(1) \\ 5(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -1(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -1(1) \\ -2(1) $	$\begin{array}{c} 42(1)\\ 37(1)\\ 18(1)\\ 30(1)\\ 19(1)\\ 21(1)\\ 19(1)\\ 13(1)\\ 24(1)\\ 51(2)\\ 34(2)\\ 20(1)\\ 19(1)\\ 22(1)\\ 14(1)\\ 15(1)\\ 14(1)\\ 15(1)\\ 14(1)\\ 15(1)\\ 19(1)\\ 22(1)\\ 23(1)\\ 22(1)\\ 29(1)\\ 29(1)\\ 20$	$\begin{array}{c} -5(1) \\ 0(1) \\ 1(1) \\ -1(1) \\ 0(1) \\ -5(1) \\ 1(1) \\ 0(1) \\ 4(1) \\ 8(2) \\ 3(1) \\ 4(1) \\ 7(1) \\ -3(1) \\ 5(1) \\ 1(1) \\ 1(1) \\ 5(1) \\ 24(1) \\ -5(2) \\ 1(1) \\ 0(1) \\ -7(1) \\ -1(1) \\ 1(1) \\ 3(1) \end{array}$
0(61)	24(1)	28(1)	22(1)	5(1)	20(1)	5(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for ias046.

	x	Appendix 3 y	z	U(eq)
H(4) H(51) H(71) H(72) H(81) H(91) H(92) H(93) H(101) H(102) H(103) H(103) H(111) H(211) H(321) H(322) H(323) H(311) H(431) H(431) H(431) H(431) H(431) H(342) H(343) H(511) H(512)	9550(13) 10358 9558 9556 10519 10800 10740 10240 10206 9755 9617 8747 8386 8043 8219 7584 7677 5980 6437 6359 8000 6859 6864 6545 8581 8399	-850(70) -708 1951 -1079 1593 -2265 -2460 -3583 646 2470 -496 3469 125 6175 7608 6406 2310 408 -422 -2116 -2876 -5406 -2377 -3705 -2135 798	3790(20) 3815 2104 2177 2463 2175 3080 2053 876 914 700 3968 2373 311 1288 613 2943 392 132 855 3154 4116 4197 3158 4812 4647	43(9) 33 39 39 45 68 68 68 80 80 80 80 80 80 80 80 80 8

(Z)-*N*-(6-deoxy-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranosyl)-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime (178)

Appendix 4 Crystal data and structure refinement for mp0502. Table 1. Contact Stephen Moggach, s.moggach@ed.ac.uk A. CRYSTAL DATA Empirical formula C52 H80 N4 O28 2(C24 H36 N2 013), C4 H8 02 Formula weight 1209.20 Wavelength 0.71073 A Temperature 150(2) K Triclinic Crystal system Space group P 1 Unit cell dimensions a = 7.3600(4) Aalpha = 91.927(3) deg.b = 11.6820(6) Abeta = 91.103(3) deg.c = 18.9910(10) Aqamma = 108.254(3)deg. Volume 1549.03(14) A^3 Number of reflections for cell 5822 (4 < theta < 59 deg.)Ζ 1 Density (calculated) 1.296 Mg/m^3 Absorption coefficient 0.106 mm^{-1} F(000) 644 **B. DATA COLLECTION** Crystal description colourless block Crystal size $0.54 \times 0.35 \times 0.15 \text{ mm}$ Theta range for data collection 1.07 to 23.26 deg. Index ranges -8<=h<=8, -12<=k<=12, -20<=1<=21 Reflections collected 15677 Independent reflections 8344 [R(int) = 0.0436]? Scan type Absorption correction Semi-empirical from equivalents (Tmin= 0.724652, Tmax=1.00) C. SOLUTION AND REFINEMENT. Solution direct (SHELXS-97 (Sheldrick, 1990)) Refinement type Full-matrix least-squares on F^2 Program used for refinement SHELXL-97 Hydrogen atom placement geom Page 1

Appendix 4			
Hydrogen atom treatment	mixed		
Data / restraints / parameters	8344/3/773		
Goodness-of-fit on F^2	1.124		
Conventional R [F>4sigma(F)]	R1 = 0.0674 [7800 data]		
Weighted R (F^2 and all data)	wR2 = 0.1756		
Absolute structure parameter	2.4(12)		
Final maximum delta/sigma	0.114		
Weighting scheme calc w=1/[\s^2^(Fo^2^)+(0.0935P)^2	2^+0.6247P] where P=(Fo^2^+2Fc^2^)/3		
Largest diff. peak and hole	0.439 and -0.312 e.A^-3		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A^2 $x \ 10^3$) for mp0502. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

		Appendix 4		
C361	-44(10)	-3501(7)	5850(4)	65(2)
c12	-1202(7)	-3017(4)	10647(2)	
C12 C112	-1232(7)	-2917(4)	10047(5)	32(1)
		-2903(5)	7794(3)	45(1)
	-2081(0)	-4059(4)	/883(2)	53(1)
012	-369(6)	-1108(3)	11204(2)	55(1)
N12	-1339(6)	-2383(4)	11245(2)	43(1)
N22	-404(6)	-2355(4)	10085(2)	41(1)
C2'2	-4511(8)	-2004(5)	7983(3)	46(1)
02'2	-6041(5)	-2601(3)	8411(2)	43(1)
C22	-2172(7)	-4279(4)	10656(3)	35(1)
C3'2	-3207(8)	-920(5)	8402(3)	42(1)
03'2	-1735(6)	-318(4)	7943(2)	52(1)
c32	-674(7)	-4926(4)	10674(3)	32(1)
042	565(5)	-4524(3)	11282(2)	
C4A2	2414(8)		11102(2)	
C4A2	2157(0)		11192(2)	54(2)
	-2137(6)	-1200(5)	9005(3)	41(1)
04 2	-234(0)	-462(3)	8980(2)	52(1)
C42	-1/10(7)	-6276(4)	10/49(3)	37(1)
CSAZ	3450(9)	-3476(6)	11865(4)	59(2)
05A2	3026(7)	-3631(8)	10620(3)	136(3)
C5'2	-2176(7)	-2577(5)	8947(2)	35(1)
C52	-3258(8)	-6725(4)	10166(3)	39(1)
052	-358(5)	-6938(3)	10664(2)	39(1)
С5в2	10(7)	-7511(4)	11233(3)	38(1)
C6'2	-557(7)	-2806(5)	9350(3)	37(1)
06'2	-2002(5)	-2909(3)	8230(2)	42(1)
C62	-4528(7)	-5956(5)	10153(3)	41(1)
062	-4319(5)	-7944(3)	10334(2)	46(1)
c6c2	-4859(8)	-8769(5)		46(1)
C682	1318(8)	-8212(5)	11037(3)	
0682	-652(6)	-7464(4)	11707(3)	
072	2421(5)	4701(2)	10066(2)	22(1)
C7C2	- 3421(3)	-4/21(5)	10066(2)	3/(1)
0702		-9990(5)	10043(4)	56(2)
C122	-4347(0)	-0525(4)	9200(3)	81(2)
C122	-0/22(8)	-3835(6)	8148(3)	52(2)
C132	-/466(9)	-4658(6)	8737(4)	59(2)
C142	-8162(10)	-3964(7)	7541(4)	70(2)
C342	-62(10)	198(6)	8349(3)	55(2)
C352	1623(10)	65(7)	7948(4)	69(2)
C362	229(12)	1516(6)	8571(4)	75(2)
033	-6110(10)	-6610(5)	-2904(3)	88(2)
053	-3086(10)	-5777(7)	-3122(4)	113(2)
C43	-4297(16)	-6278(8)	-2717(5)	90(3)
C13	-8798(15)	-6896(10)	-3754(7)	133(4)
C23	-6722(15)	-6377(8)	-3589(5)	-95(3)
C53	-3810(20)	-6513(10)	-2022/61	127741
		0020(20)	2022(0)	

Table 3. Bond lengths [A] and angles [deg] for mp0502.

C1'1-06'1 C1'1-01'1 C1'1-C2'1 C1'1-H1'1 011-N11 011-H11 N11-C11 C11-C21 01'1-C121 N21-C6'1 N21-H21 C2'1-C2'1 C2'1-C3'1 C21-071 C21-C31	$\begin{array}{c} 1.399(6)\\ 1.434(7)\\ 1.517(8)\\ 1.0000\\ 1.445(5)\\ 0.8400\\ 1.288(6)\\ 1.364(6)\\ 1.505(7)\\ 1.424(7)\\ 1.436(7)\\ 0.8800\\ 1.424(6)\\ 1.517(8)\\ 1.0000\\ 1.415(6)\\ 1.544(6)\end{array}$
C21-C31	1.415(6) 1.544(6)
	Page 3
AD11 AD11	
---------------------------------------	--
03 1-03 1 03 1-0341	
C3'1-C4'1 C3'1-H3'1 C31-041	
C31-C41 C31-C41 C31-H31	
04'1-C4'1 04'1-C341	
C4'1-C5'1 C4'1-H4'1	
041-C4A1 C4A1-05A1 C4A1-C5A1	
C41-051 C41-C51	
C41-H41 C5'1-06'1	
C5'1-C6'1 C5'1-H5'1	
C5B1-06B1 C5B1-C6B1	
С5А1-Н5А11 С5А1-Н5А21	
C5A1-H5A31 C51-061	
С51-Н51 С6'1-Н6'11	
C6'1-H6'21 O61-C6C1	
С6С1-0/С1 С6С1-С7С1 С6В1-н6В11	
С6В1-Н6В21 С6В1-Н6В31	
C61-071 C61-H6A1	
C7C1-H7C11 C7C1-H7C21	
С7С1-H7С31 С121-С141	
C121-C131 C131-H13A1 C131-H13B1	
C131-H13C1 C141-H14A1	
C141-H14B1 C141-H14C1	
C341-C361 C341-C351 C351-H3541	
С351-H35B1 С351-H35C1	
C361-H36A1 C361-H36B1	
C12-N12 C12-N22	
C12-C22 C1'2-06'2	
C1 2-01 2 C1'2-C2'2 C1'2-H1'2	

Annend	liv 4
Appene	1.0000
	1.428(7)
	1.397(6) 1.414(7)
	1.530(8)
	1.0000
	1.426(6) 1.517(7)
	1.0000
	1.425(6)
	1.428(7) 1.520(7)
	1.0000
	1.333(7)
	1.203(8) 1.471(9)
	1.453(6)
	1.511(7)
	1.405(6)
	1.516(7)
	1.0000
	1.372(6) 1.180(6)
	1.492(8)
	0.9800
	0.9800
	1.454(6)
	1.521(8)
	0.9900
	0.9900
	1.353(6) 1 168(7)
,	1.501(8)
	0.9800
	0.9800
	1.426(6)
	0.9900
	0.9900
	0.9800
	0.9800
	1.490(8) 1.513(9)
	0.9800
	0.9800
	0.9800
	0.9800
	0.9800 1 473(9)
	1.517(9)
	0.9800
	0.9800
	0.9800
	0.9800
	1.283(7)
	1.342(6)
	1.519(7)
	1.418(7)
	1.514(8)
Page	1.0000
raye	-

012-N12
012-H12
N22-C6'2
$C2^{-}2-02^{-}2$
C2'2-C3'2
CZ'Z-HZ'Z
02 2-0122
$C_{22} = 0/2$
$C_{22} - C_{32}$
$C_{2}^{2} = C_{2}^{2} = C_{2$
C3 2-C4 2
C_{2}^{-1}
$C_{32}^{-}C_{342}^{-}$
$C_{32} = C_{42}$
C32-C42
042-042
C4A2 = 05A2
C4A2 = 0JA2
(4'2-04'2)
(4'2-04'2)
(4'2-44'2)
n4'2-r342
C42 - 052
C42 - C52
C42_H42
C542-H5412
С542-н5422
C5A2-H5A32
c5'2-06'2
c5'2-c6'2
C5'2-H5'2
C52-062
C52-C62
С52-Н52
С52-H52 О52-С5в2
С52-Н52 О52-С5в2 С5в2-О6в2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2 O62-C6C2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2 O62-C6C2 C6C2-O7C2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6B2-H6B12
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6A2 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B22
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B32 C7C2-H7C12
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C22
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C22 C7C2-H7C32
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C142 C132-H13A2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C142 C132-H13B2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C142 C132-H13B2 C132-H13C2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C142 C132-H13B2 C132-H13C2 C142-H14A2 C142-H14A2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H14B2 C142-H14B2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H13C2 C142-H14B2 C142-H14C2 C142-H14C2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H13B2 C132-H14B2 C142-H14C2 C142-H14C2 C342-C352
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-C7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B22 C6B2-H6B32 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H13B2 C132-H13B2 C142-H14B2 C142-H14B2 C142-H14C2 C342-C352 C342-C352 C342-C362 C352-C362 C352-C362 C352-C362
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H13B2 C132-H13B2 C142-H14B2 C142-H14B2 C142-H14C2 C342-C352 C352-H35A2 C352-H35A2
C52-H52 O52-C5B2 C5B2-O6B2 C5B2-C6B2 C6'2-H6'12 C6'2-H6'22 C62-O72 C62-H6B2 O62-C6C2 C6C2-O7C2 C6C2-O7C2 C6C2-C7C2 C6B2-H6B12 C6B2-H6B12 C6B2-H6B22 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C12 C7C2-H7C32 C122-C132 C122-C132 C122-C142 C132-H13B2 C132-H13B2 C132-H13B2 C142-H14B2 C142-H14B2 C142-H14B2 C142-H14C2 C352-H35B2 C352-H35B2 C352-H35B2

Annond	iv A
Append	1.411(7)
	1.442(5)
	1.465(7)
	0.8800
	1.414(7) 1.517(8)
	1.0000
	1.439(7) 1 412(6)
	1.520(7)
	1.0000
	1.505(8)
	1.0000
	1.428(6)
	1.535(7)
	1.351(7)
	1.195(8)
	1.439(9) 1.425(7)
	1.526(7)
	1.0000 1.433(7)
	1.447(6)
	1.0000
	0.9800
	0.9800
	1.422(6)
	1.501(7) 1.0000
	1.443(6)
	1.486(8) 1.0000
	1.356(6)
	1.192(6) 1.491(8)
	0.9900
	0.9900 1.434(6)
	0.9900
	0.9900 1.337(7)
	1.196(7)
	1.4/9(8)
	0.9800
	0.9800
	0.9800
	0.9800 1.497(9)
	1.521(9)
	0.9800
	0.9800
	0.9800 0.9800
	0.9800
	1.513(9) 1.529(9)
	0.9800
	0.9800
Page	5

C362-H36A2 C362-H36B2 C362-H36C2 033-C43 033-C23 053-C43 C43-C53 C13-H1A3 C13-H1B3 C13-H1B3 C13-H1C3 C23-H2A3 C23-H2B3 C53-H5A3 C53-H5C3	
06'1-C1'1-01'1 06'1-C1'1-C2'1 01'1-C1'1-C2'1 06'1-C1'1-H1'1 01'1-C1'1-H1'1 C2'1-C1'1-H1'1 N11-011-H11 C11-N11-011 N11-C11-C21 N21-C11-C21 C121-01'1-C1'1 C11-N21-C6'1 C11-N21-H21 02'1-C2'1-C1'1 02'1-C2'1-C1'1 02'1-C2'1-C1'1 02'1-C2'1-C1'1 02'1-C2'1-C1'1 02'1-C2'1-H2'1 C3'1-C2'1-H2'1 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-C31 071-C21-H21 C3'1-C3'1-H21 C3'1-C3'1-H21 C3'1-C3'1-H21 C3'1-C3'1-H3'1 C4'1-C3'1-H3'1 C4'1-C3'1-H31 C4'1-C3'1-H31 C4'1-C3'1-H31 C4'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 04'1-C4'1-C3'1 05A1-C4A1-C5A1	

Appendix 4 0.9800 0.9800 1.306(11 1.430(11 1.206(10 1.420(13 1.479(14 0.9800 0.9800 0.9800 0.9800 0.9900 0.9900 0.9800 0.9800 0.9800 0.9800 0.9800	ししつり
109.9(4) 114.1(4) 103.2(4) 109.8 109.8 109.5 109.7(4) 123.9(4) 112.4(4) 123.4(4) 110.3(4) 128.0(4) 116.0 109.8(4) 104.4(4) 113.3(5) 109.8 109.8 109.8 109.9(4) 108.7(4) 112.3(4) 108.6 108.2(4) 107.8(4) 102.5(4) 110.5 110.5 100.5 100.5 100.5 100.5 100.4(4) 103.4(4) 112.5(4) 109.9 109.0 109.0 100.0 10	

	Appendix 4
041-C4A1-C5A1	111.6(5)
051-c41-c51	107.3(4)
051-C41-C31	108.7(4)
C51-C41-C31	110.3(4)
051-C41-H41	110.2
	110.2
C_{1}	110.2
00 1 - 05 1 - 00 1 06' 1 - 05' 1 - 04' 1	107.0(4)
C6'1-C5'1-C4'1	110.4(4) 112.3(4)
06'1-05'1-45'1	
С6'1-С5'1-Н5'1	109.0
С4'1-С5'1-Н5'1	109.0
С5в1-051-С41	117.1(4)
06B1-C5B1-051	124.1(5)
0681-C581-C681	126.7(5)
051-C5B1-C6B1	109.1(5)
	109.5
	109.5
$C4\Delta1 - C5\Delta1 - H5\Delta31$	109.5
H5A11-C5A1-H5A31	109.5
H5A21-C5A1-H5A31	109.5
061-C51-C41	106.0(4)
061-C51-C61	109.8(4)
C41-C51-C61	110.6(4)
061-С51-Н51	110.1
C41-C51-H51	110.1
N21 - C51 - H51	110.1
N21-C6'1-H6'11	100 0
С5'1-С6'1-н6'11	109.0
N21-C6'1-H6'21	109.0
С5'1-С6'1-Н6'21	109.0
Н6'11-С6'1-Н6'21	107.8
C1'1-06'1-C5'1	114.3(4)
CbC1 - 0b1 - C51	116.5(4)
07C1 - C6C1 - C7C1	122.9(5) 126.6(5)
061 - C6C1 - C7C1	120.0(5) 110 4(5)
C5B1-C6B1-H6B11	109.5
С5В1-С6В1-Н6В21	109.5
Н6В11-С6В1-Н6В21	109.5
С5В1-С6В1-Н6В31	109.5
H6B11-C6B1-H6B31	109.5
071-C61-C51	109.5
071-C61-H641	109.1(4)
C51-C61-H6A1	109.9
071-С61-Н6В1	109.9
С51-С61-н6в1	109.9
H6A1-C61-H6B1	108.3
C6C1-C7C1-H7C11	109.5
	109.5
$\frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}$	109.5
H7C11 - C7C1 - H7C31	109.5
H7C21-C7C1-H7C31	109.5
C21-071-C61	111.1(4)
02'1-C121-01'1	104.7(4)
02'1-C121-C141	110.2(5)
01 1-C121-C141	111.2(5)
02 1-C121-C131 01'1-C121 - C131	
C141 - C121 - C121	112 2(5)
С121-С131-Н13Δ1	109 5
С121-С131-Н13В1	109.5
H13A1-C131-H13B1	109.5
	Page 7

C121 H138 C121 C121 H138 C121 H14A C121 C12-C C1	-C131: -C131: -C141: -C141: -C141: -C141: -C141: -C141: -C341: -C341: -C341: -C351: -C351: -C351: -C351: -C361:	-H-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	
C4'2- C2'2- C342- O42-C O42-C C22-C O42-C C42-C C42-C	C3'2- C3'2- O3'2- 32-C2 32-C4 32-C4 32-H3 32-H3 32-H3	H3'2 H3'2 C3'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Appendix 4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 106.4(4 108.3(5 110.7(5 113.1(5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	
109.5 109.5 109.5 109.5 109.5 109.5 109.5 124.0(4 113.1(4 122.6(5) 110.0(4 113.6(4) 103.6(5) 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5(4)	
115.7 115.7 108.3(4) 103.9(5) 114.3(4) 110.1 110.1))))
110.1 106.2(4) 110.8(4) 109.1(4) 112.6(4) 108.1 108.1))))
108.1 104.3(4) 106.5(4) 112.8(5) 111.0 111.0 111.0)))
108.1(4) 110.1(4) 106.8(4) 108.1(4) 110.6 110.6 110.6 Page 8	

	Appendix 4
C4A2-042-C32	118.8(4)
05A2 - CAA2 - 042	121 6(6)
USAZ-C4AZ-C5AZ	126.4(6)
042-C4A2-C5A2	111.9(5)
n4'2-c4'2-c3'2	104 3(4)
04 2-64 2-65 2	110.9(4)
c3'2-c4'2-c5'2	113.4(4)
04'2-C4'2-H4'2	109 4
	100 4
	109.4
C5'2-C4'2-H4'2	109.4
C4'2-04'2-C342	109.2(4)
052-C42-C52	107 8(4)
	107.0(4)
052-C42-C32	109.3(4)
c52-c42-c32	109.4(4)
052-642-442	110 1
	110.1
C52-C42-H42	110.1
С32-С42-Н42	110.1
С4А2-С5А2-Н5А12	109 5
	100 5
C4AZ-CJAZ-HJAZZ	109.5
H5ALZ-C5AZ-H5AZZ	109.5
С4А2-С5А2-Н5А32	109.5
45412-0542-45432	100 5
	109.5
HSAZZ-CSAZ-HSA3Z	109.5
06'2-c5'2-c6'2	106.4(4)
06'2-c5'2-c4'2	109 6(4)
6 2-65 2-64 2	113.6(4)
06'2-с5'2-н5'2	109.0
C6'2-C5'2-H5'2	109 0
	100.0
C4 2-C5 2-H5 2	109.0
062-C52-C62	110.8(4)
062-C52-C42	105.5(4)
$c_{62} - c_{52} - c_{42}$	110 6(4)
	110.0(4)
062-C52-H52	109.9
С62-С52-Н52	109.9
C42-C52-H52	109 9
	1170(4)
C3B2-052-C42	117.0(4)
06B2-C5B2-052	124.2(5)
06B2-C5B2-C6B2	126 1(5)
$O_{2}^{2} C_{2}^{2} C_{2$	
	109.7(5)
N22-C6'2-C5'2	112.4(4)
N22-C6'2-H6'12	109.1
C5'2-C6'2-H6'12	100 1
	109.1
N22-C0 2-H0 22	109.1
C5'2-C6'2-H6'22	109.1
н6'12-с6'2-н6'22	107.8
$(1')_{-06'}^{-}$	$114^{-2}(4)$
	114.2(4)
0/2-002-052	110.2(4)
072-C62-H6A2	109.6
С52-С62-н642	109 6
072 662 11682	100 6
	109.6
C52-C62-H6B2	109.6
H6A2-C62-H6B2	108.1
c6c2 - 062 - c52	1177(A)
	11/./(4/
0/C2-C6C2-062	122.5(5)
07C2-C6C2-C7C2	124.9(5)
062 - c6c2 - c7c2	112 6(5)
C_{D}	
C2R5-C0R5-H0RT5	109.5
C5B2-C6B2-H6B22	109.5
Н6В12-С6В2-Н6В22	109.5
C587-C687-U6837	100 5
	T03.2
HORTS-CORS-HOB35	TOA'2
н6в22-с6в2-н6в32	109.5
c22-072-c62	110 1(3)
C_{C}^{-1}	
	T03.2
сьс2-с7с2-н7с22	109.5
Н7С12-С7С2-Н7С22	109.5
C6C2-C7C2-47C32	100 5
LULL-LILL-NILJZ N7c10 c7c0 N7c00	T02.2
H/C12-C/C2-H7C32	109.5
	Page 9

	Appendix 4
H7C22-C7C2-H7C32	109.5
$01^{2}-c122-02^{2}$	104.4(4) 109.1(5)
02'2-c122-c132	110.2(5)
01'2-c122-c142	108.7(5)
02'2-c122-c142	109.8(5)
c132-c122-c142	114.1(5)
C122-C132-H13A2	109.5
L122-L132-H13B2	109.5
с122-с132-н13с2	109.5
H13A2-C132-H13C2	109.5
н13в2-с132-н13с2	109.5
С122-С142-Н14А2	109.5
C122-C142-H14B2	109.5
H14A2-C142-H14B2 C122-C142-H14C2	109.5
Н14А2-С142-Н14С2	109.5
Н14В2-С142-Н14С2	109.5
03'2-c342-04'2	106.8(5)
03'2-C342-C352	109.2(5)
$04^{2}-C342-C352$	109.4(5)
03 2 - 0342 - 0302 04'2 - 0342 - 0362	112.7(3) 107 1(5)
c352-c342-c362	111.5(6)
C342-C352-H35A2	109.5
С342-С352-Н35В2	109.5
H35A2-C352-H35B2	109.5
	109.5
H35B2-C352-H35C2	109.5
C342-C362-H36A2	109.5
С342-С362-Н36В2	109.5
Н36А2-С362-Н36В2	109.5
C342-C362-H36C2	109.5
H36B2-C362-H36C2	109.5
C43-033-C23	121.2(8)
053-C43-033	120.8(10)
053-C43-C53	121.4(11)
033-C43-C53	117.7(9)
C23-C13-H1A3	109.5
H1A3-C13-H1B3	109.5
С23-С13-Н1С3	109.5
н1а3-с13-н1с3	109.5
H1B3-C13-H1C3	109.5
033-023-013	115.5(9)
C13-C23-H2A3	108.4
033-С23-Н2В3	108.4
С13-С23-Н2В3	108.4
Н2АЗ-С2З-Н2ВЗ	107.5
C43-C33-H5A3	109.5
L-J-LJJ-HJDJ H5A3-C53-H5R3	109.5
С43-С53-Н5С3	109.5
Н5А3-С53-Н5С3	109.5
н5в3-с53-н5с3	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for mp0502. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12] Page 10

	U1 1	U22	U33	U23	U13	U12
C1'1 N11 C11 01'1 C11 01'1 C2'1 00'1 C2'1 00'1 C2'1 00'1 C2'1 00'1 C2'1 00'1 C2'1 00'1 C2'2 00'2 C2'2 00'2	U11 49(3) 92(3) 59(3) 38(3) 51(2) 64(3) 58(3) 36(3) 42(2) 58(2) 45(3) 47(2) 49(3) 47(2) 49(3) 47(2) 49(3) 47(2) 49(3) 47(2) 40(3) 47(2) 40(3) 53(3) 175(7) 57(3) 44(2) 53(3) 51(2) 53(3) 51(2) 53(3) 51(2) 53(3) 67(4) 46(2) 53(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 57(3) 67(4) 77(4) 34(2) 53(3) 53(2) 91(3) 67(4) 52(3) 50(2) 49(3) 52(3) 57(3) 67(4) 77(4) 34(2) 53(3) 53(2) 91(3) 67(4) 52(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(3) 53(2) 53(3) 53(2) 53(3) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(2) 53(3) 53(3) 53(2) 53(3) 53(3) 53(3) 53(3) 53(3) 53(2) 53(3) 53(U22 30(3) 9(2) 13(2) 18(3) 32(2) 25(2) 37(3) 16(3) 28(2) 30(2) 24(3) 21(3) 33(2) 32(3) 21(2) 61(4) 17(3) 21(3) 23(2) 18(3) 40(4) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 22(3) 20(3) 40(4) 22(3) 20(3) 40(4) 22(3) 20(3) 40(4) 35(2) 20(3) 40(4) 35(2) 27(3) 35(4) 44(4) 33(2) 17(3) 44(4) 33(2) 19(3) 36(3) 44(3) 36(3) 36(3) 44(3) 36(3)	U33 34(3) 51(2) 49(3) 36(3) 61(2) 34(2) 35(3) 38(3) 54(2) 47(2) 45(3) 32(3) 50(2) 31(3) 42(2) 64(4) 40(3) 32(3) 42(2) 52(3) 75(4) 63(4) 39(2) 42(3) 82(4) 46(2) 55(3) 75(4) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(2) 53(3) 53(2) 53(2) 53(3) 53(3) 53(2) 53(3	$\begin{array}{c} \text{U23} \\ 0(2) \\ -1(2) \\ 7(2) \\ -9(2) \\ 3(2) \\ 4(2) \\ 5(2) \\ 0(2) \\ 15(2) \\ 0(2) \\ 15(2) \\ 0(2) \\ 15(2) \\ 0(2) \\ 15(2) \\ 0(2) \\ 15(2) \\ 0(2) \\ -4(2) \\ 5(2) \\ -2(3) \\ 7(2) \\ 3(2) \\ 8(2) \\ -3(2) \\ -4(2) \\ -5(3) \\ -5(3) \\ -5(4) \\ 8(2) \\ -3(2) \\ -4(2) \\ -8(2) \\ 10(3) \\ -9(3) \\ 7(2) \\ -14(2) \\ 0(2) \\ 5(2) \\ -3(3) \\ 2(3) \\ 7(2) \\ 10(3) \\ -9(3) \\ 7(2) \\ -14(2) \\ 0(2) \\ 5(2) \\ 3(2) \\ 0(3) \\ 1(2) \\ 4(2) \\ 4(2) \\ 10(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 4(2) \\ 10(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 4(2) \\ 10(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(3) \\ 0(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ 0(3) \\ 0(3) \\ 0(3) \\ 0(3) \\ 0(2) \\ 0(3) \\ 0(3) \\ 0(3) \\ 0(3) \\ 0(3) \\ 0(2) \\ 0(3) \\$	U13 2(2) -4(2) 2(2) 2(2) 0(2) 3(2) 1(2) 5(2) 2(2) 12(2) -5(2) 4(2) 20(2) -3(2) 8(2) 9(3) 3(2) -6(2) 1(2) 5(3) 14(3) -11(4) 3(2) 4(2) -3(2) -5(2) 5(3) 1(2) 5(3) -5(2) 1(2) 2(2) -6(3) -2(3) -6(2) 1(2) 2(2) 0(2) -2(3) 6(2) -1(2) 8(2) 1(2) 1(2) 2(2) 0(2) -2(3) 6(2) -1(2) 8(2) 1(2) 1(2) 2(2) -2(3) 6(2) -1(2) 3(2) -1(2) 3(2) -1(2)	U12 5(2) 7(2) 8(2) 6(2) 9(2) 23(2) 18(3) 1(2) 5(2) 9(2) 6(2) 10(2) 21(2) 13(2) 11(2) 25(3) 2(2) 11(2) 3(1) 11(2) 12(2) 10(2) 8(2) 10(2) 2(2) 0(2) 6(2) 17(2) 19(3) 29(2) 12(2) 17(2) 13(3) 13(3) 29(4) 5(2) 13(2) -3(2) 15(2) 13(2) -3(2) 15(2) 13(3) 13(3) 29(4) 5(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(3) 29(4) 5(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(3) 29(4) 5(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 15(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(3) 29(4) 5(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 13(2) -3(2) 22(3) 15(2) 22(3) 22(3) 15(2) 22(3) 22(
C32 042 C4A2 C4'2 04'2 C42 C5A2 05A2 C5'2 C52 052 C5B2	41(3) 49(2) 35(3) 55(3) 63(2) 44(3) 57(4) 45(3) 44(3) 54(3) 54(3) 48(2) 39(3)	19(3) 24(2) 63(4) 25(3) 31(2) 16(3) 45(4) 235(9) 29(3) 14(3) 21(2) 17(3)	42(2) 59(4) 42(3) 55(2) 52(3) 72(4) 71(4) 30(3) 44(3) 48(2) 52(3)	$ \begin{array}{c} 10(2) \\ 2(2) \\ 6(2) \\ 2(3) \\ -1(2) \\ 6(2) \\ 2(2) \\ -9(3) \\ -28(4) \\ 2(2) \\ 1(2) \\ 5(2) \\ 4(2) \\ \end{array} $	$ \begin{array}{r} 3(2) \\ -3(2) \\ 16(3) \\ 15(2) \\ -7(2) \\ 8(2) \\ -16(3) \\ 19(3) \\ 7(2) \\ 2(2) \\ 5(2) \\ -4(3) \end{array} $	$ \begin{array}{r} 10(2) \\ 5(2) \\ 9(3) \\ 11(2) \\ 6(2) \\ 10(2) \\ 14(3) \\ -36(4) \\ 8(2) \\ 4(2) \\ 11(2) \\ 2(2) \\ \end{array} $

2(3) Page 11

			Appendi	x 4		
C6'2	47(3)	24(3)	38(3)	4(2)	4(2)	6(2)
05'2	52(2)	36(2)	38(2)	-3(2)	6(2)	15(2)
062	57(3)	27(3)	48(3)	-4(2)	-0(2)	-4(2)
C6C2	57(2) 54(3)	28(3)	51(4)	-8(3)	5(3)	8(3)
C682	49(3)	31(3)	68(4)	11(3)	11(3)	11(3)
06B2	65(3)	54(3)	50(3)	14(2)	12(2)	31(2)
072	40(2)	18(2)	47(2)	2(2)	-9(2)	1(1)
0762	5/(3)	24(3)	/5(4)	-8(3)	22(3)	-4(2)
c122	48(3)	45(4)	57(5) 65(4)	-13(2)	-2(3)	-18(3) 17(3)
C132	56(4)	43(4)	76(4)	-2(3)	5(3)	14(3)
C142	68(4)	68(5)	72(5)	-17(4)	-16(3)	20(4)
C342	78(4)	37(4)	56(4)	13(3)	12(3)	26(3)
C352	/5(4)	53(4)	73(5)	-5(3)	11(4)	12(3)
033	101(4)	20(4)	109(5)	$\frac{14(3)}{-1(3)}$	$\frac{12(4)}{-2(3)}$	13(3)
053	95(4)	121(6)	119(5)	24(4)	$\frac{-2(3)}{17(4)}$	25(4)
C43	109(7)	55(5)	113(7)	14(5)	38(6)	35(5)
C13	106(8)	75(7)	194(12)	-38(7)	-13(8)	1(6)
C23	119(7)	53(5)	103(7)	-14(4)	0(5)	15(5)
())	T31(T2)	30(0)	114(8)	30(6)	27(8)	82(9)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for mp0502.

	x	У	Z	U(eq)
H1'1 H11	-1793 -1224	-643 -2657	6579 2291	47 79
H21 H2'1	458	-1785	3738	46
H21	-124	1045	2772	38
Н3'1	-5128	-3018	5222	47
H31	3308	1379	3644	39
	-3185	-2187	4355	45
H5'1	-1808	-248	2035 4772	41 30
H5A11	6185	-360	2117	86
H5A21	5783	746	1741	86
H5A31	4117	-518	1771	86
нэт н6'11	2390	3302	41/0 4541	45
H6'21	1549	-978	4781	42
н6в11	8742	4562	2522	77
H6B21	8138	4650	3322	<u>77</u>
H0B31	8037	5662 2816	2/88	77
н6в1	-835	2616	3280	50
H7C11	2334	7090	4222	80
H7C21	1517	6516	3459	80
	3/6/	6903	3639	80
H13B1	-5620	1173	5005	94 94
H13C1	-3527	1150	4807	94
H14A1	-5675	-98	6694	92
H14B1	-6949	387	6161	92
H14C1 H35A1	-3026	-4968	0583	92
H35B1	-3240	-5430	5594	85
H35C1	-1961	-5247	4910	85
H36A1	807	-3833	5577	97
H30RT	-364	-3935 -2644	6286	97 07
HJUCT	002	Page 12	2902	97
		· - 3		

		Annendix 4		
н1'2	-3220	-2904	7200	54
L12	_173	796	11610	
1122	-1/3	-700	1012	02
	575	-101/	10109	49
HZ Z	-2017	-1/3/	/546	55
HZZ	-2938	-44/4	11091	42
H3 2	-3930	-373	8571	50
H32	78	-4790	10234	38
H4'2	-2731	-1123	9459	49
H42	-2297	-6417	11222	45
H5A12	4824	-3148	11783	89
H5A22	3217	-4162	12172	89
н5а32	3005	-2850	12090	89
н5'2	-3417	-3108	9122	42
н52	-2653	-6724	9699	47
н6'12	-751	-3684	9338	45
н6'22	658	-2410	9116	45
H6A2	-5485	-6236	9760	49
н6в2	-5221	-6024	10599	49
н6в12	2612	-7656	10982	74
H6B22	861	-8669	10591	74
H6B32	1340	-8770	11408	74
H7C12	-6370	-10539	9634	84
H7C22	-6914	-9958	10343	84
H7C32	-4958	-10282	10314	84
н1342	-7630	-5492	8570	04
H13R2	-8701	-4588	8870	00
H13C2	-6553	-4300	01/0	00
	-7504	- 35/1	7126	105
u1/02	-7 304	-3341	7130	105
11402 u1402	- J14J 0750	-2012	7000	105
	-0/39	-4620	7409	105
		-/91	7090	104
	2015	202	8208	104
	1027	398	7481	104
HJOAZ	222	1994	8151	113
HOOB2	1404	1830	8864	113
H30C2	-800	1568	8842	113
HIAS	-90/6	-6684	-4230	199
HTR2	-9512	-65/2	-3413	199
HTC3	-9181	-///5	-3730	199
HZA3	-6023	-6697	-3945	114
HZB3	-6351	-5492	-3635	114
H5A3	-4977	-6925	-1776	190
H5B3	-3131	-5749	-1768	190
HSC3	-2981	-7026	-2042	190

S-2-Aminophenyl 2,3,4-tri-*O*-acetyl-β-Dxylopyranosylformothiohydroximate (216)

Appendix 5 Table 1. Crystal data and structure refinement for ias021. Contact Iain.Oswald@ed.ac.uk A. CRYSTAL DATA Empirical formula C18 H22 N2 O8 S C18 H22 N2 08 S Formula weight 426.44 Wavelength 0.71073 A Temperature 150(2) K Crystal system Orthorhombic Space group P2(1)2(1)2(1) Unit cell dimensions $a = 9.1358(5) \ A \ alpha = 90 \ deg.$ $b = 13.3082(7) \ A \ beta = 90 \ deg.$ $c = 17.5321(9) \ A \ gamma = 90 \ deg.$ Volume 2131.6(2) A^3 Number of reflections for cell 9029 (2 < theta < 29 deg.) z 4 Density (calculated) 1.329 Mg/m^3 Absorption coefficient 0.197 mm^-1 F(000) 896 **B. DATA COLLECTION** Crystal description COLOURLESS BLOCK Crystal size 0.46 x 0.40 x 0.31 mm Theta range for data collection 1.92 to 28.72 deg. Index ranges -11<=h<=12, -17<=k<=17, -23<=1<=23 Reflections collected 19133 Independent reflections 5175 [R(int) = 0.0256] Scan type \f &\w scans Absorption correction Semi-empirical from equivalents (Tmin= 0.921, Tmax=1.000) C. SOLUTION AND REFINEMENT. Solution direct (SHELXS-97 (Sheldrick, 1990)) Refinement type Full-matrix least-squares on F^2 Program used for refinement SHELXL-97 Hydrogen atom placement geom Hydrogen atom treatment mixed Data / restraints / parameters 5175/0/278 Page 1

Goodness-of-fit on F^2 1.094

Conventional R [F>4sigma(F)] R1 = 0.0380 [4960 data]

Weighted R (F^2 and all data) wR2 = 0.0964

Absolute structure parameter 0.04(7)

Final maximum delta/sigma 0.007

weighting scheme
calc w=1/[\s^2^(Fo^2^)+(0.0490P)^2^+0.4805P] where P=(Fo^2^+2Fc^2^)/3

Largest diff. peak and hole 0.364 and -0.216 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for IAS021. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

C(1) 7573(2) 5714(1) 8513(1) 23(1) N(1) 7086(2) 6436(1) 8915(1) 30(1) O(1) 6418(2) 7169(1) 8462(1) 38(1)	
$\begin{array}{c} C(2) & 8191(2) & 4821(1) & 8936(1) & 21(1) \\ C(3) & 8945(2) & 5117(1) & 9685(1) & 22(1) \\ 0(31) & 10308(1) & 5593(1) & 9450(1) & 27(1) \\ C(32) & 10870(2) & 6307(1) & 9907(1) & 33(1) \\ 0(321) & 10241(2) & 6612(1) & 10465(1) & 44(1) \\ \end{array}$	
$\begin{array}{c} 0(321) & 10241(2) & 0013(1) & 10403(1) & 47(1) \\ c(33) & 12346(3) & 6642(2) & 9644(1) & 47(1) \\ c(4) & 9307(2) & 4187(1) & 10154(1) & 22(1) \\ 0(41) & 9688(1) & 4483(1) & 10924(1) & 27(1) \\ c(42) & 11118(2) & 4517(1) & 11108(1) & 29(1) \\ \end{array}$	
$\begin{array}{c} (42) & 1110(2) & 1110(75(1) & 13(1) \\ 0(421) & 12091(1) & 4322(1) & 10675(1) & 36(1) \\ c(43) & 11298(2) & 4858(2) & 11918(1) & 49(1) \\ c(5) & 7985(2) & 3504(1) & 10227(1) & 25(1) \\ 0(51) & 8516(1) & 2601(1) & 10590(1) & 31(1) \end{array}$	
C(52) 7518(2) 2062(2) 10983(1) 34(1) 0(521) 6246(2) 2288(1) 11020(1) 37(1) C(53) 8201(3) 1173(2) 11352(2) 71(1) C(6) 7391(2) 3265(1) 9438(1) 27(1)	
0(7) 6963(1) 4191(1) 9089(1) 25(1) s(1) 7307(1) 5710(1) 7514(1) 28(1) c(1') 8224(2) 4605(1) 7213(1) 26(1) c(2') 9501(2) 4709(2) 6779(1) 32(1)	
N(2') 10061(2) 5627(2) 6584(1) 47(1) C(3') 10234(2) 3818(2) 6565(1) 44(1) C(4') 9719(3) 2892(2) 6781(1) 51(1) C(5') 8431(3) 2800(2) 7187(1) 47(1) C(6') 7668(2) 3655(2) 7387(1) 36(1)	

Table 3. Bond lengths [A] and angles [deg] for IAS021.

C(1)-N(1) 1.272(2) C(1)-C(2) 1.511(2) C(1)-S(1) 1.7673(16) N(1)-O(1) 1.399(2) C(2)-O(7) 1.425(2) C(2)-C(3) 1.534(2) C(3)-O(31) 1.4564(19) C(3)-C(4) 1.523(2)

o(31) c(32) c(32) c(4)- (41) c(42) c(42) c(42) c(5)- c(51) c(52)- c(51)- c(52)- c(51)- c(52)- c(52)- c(52)- c(5)-	-c(32) -o(321 -c(33) o(41) c(5) 1 -c(42) -o(421 -c(43) o(51) c(6) 1 -c(52) -o(521 -c(53) o(7) 1 c(1') -c(6') -c(2') -c(3') -c(3') -c(5') -c(6')	$\begin{array}{c} 1.34\\) 1.2\\ 1.49\\ 1.47\\ .517(\\ 1.34\\) 1.3\\ 1.50\\ 1.44\\ .520\\ 1.34\\ .430\\ 1.77\\ 1.3\\ 1.4\\ 1.3\\ 1.4\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3$	45(2) 206(3) 77(19 (2) 46(2) 197(2) 197(2) 197(2) 202(2) 86(3) (2) (2) (2) (2) (2) (2) (3) (3) (4) 81(4) 80(3)		
NC(1)	C(1) - C(2) - C(2) - C(2) - C(2) - C(2) - C(2) - C(3) -	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$\begin{array}{c} 110.2\\ 120.2\\ 122.3\\ 111.3\\ 105.1\\ 110.0\\ 112.7\\ 108.\\ 104.\\ 104.\\ 104.\\ 104.\\ 104.\\ 104.\\ 104.\\ 105.\\ 107.$	(14) (26) (13) (12) (12) (13) (12) (13) (13) (13) (13) (12) (13) (13) (12) (13) (13) (12) (13) (12) (13) (13) (12) (13) (13) (12) (13) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12) (13) (12)	(13) (14) (15) (17) (16) (17) (16) (17) (16) (17) (19) (17) (14) (18) (19) (18) (2) (2) (19) (17) (14) (18) (2) $(2$

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for IAS021. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

U11 U22 U33 U23 U13 U12

c(1)	22(1)	24(1)	22(1) ()(1) 2((1) - 2()	1)	
				2711	(1) AC	1)	
N(I)	욄문			(1) 7(11 100	ií	
0(1)	52(1)					おい	
C(2)	22(1)	20(1)	22(1) -	.3(1) 0	<u>111</u>		
C(3)	21(1)	23(1)	23(1) -	-4(1) -	-1(1) -	4(1)	
0(31)	26(1) 28(1)	28(1)	0(1) -	2(1) -	9(1)	
c(32)	35(1	(1) 26(1)	37(1)	4(1) -	·10(1)	-11(1)	
0(321	$1)^{5}10$	$(1)^{-}38(1)$) 44(1)	-14(1)) -5(1) -14(1)	
c(33)	1271	50(1)	(48(1))	10(1)	-10(1)	-24(1)	
	21(1)	25(1)	21(1).	-2(1) -	$-3(1)^{-}$	2(1)	
		122(1)		$\frac{1}{2}$	-271)	-371)	
0(41	/ 24(1				-2/1/	-2/11	
C(42) 2/(1)	(1) (32(1))					
0(42	1) 25((1) 49(1)) 32(1)	-2(1)			
C(43)) 33(1	.) 84(2)	_30(T)	-13(1)			
C(5)	23(1)	25(1)	27(1)	3(1) -1	L(1) -2	(1)	
0(51)) 28(1	.) 31(1)	36(1)	11(1)	-4(1)	-3(1)	
c(52) 36(1	36(1)	31(1)	7(1) -	-6(1) -	10(1)	
$\tilde{0}\tilde{5}\tilde{2}$	1) 350	1) 40(1) 36(1) 3(1)	3(1) -	10(1)	
C(53	5171	1 68721	94(2)	57(2)	-14(2)	-10(1)	
CCSS		21(1)	30(1)	1(1) -	$5(1)^{-5}$	(1)	
	23(1)	\$ 5573		5/11 -	5(1) -4	111	
	23(1)		$\frac{20(1)}{22(1)}$		$(1)^{-1}$	- i	
S(1)	30(T)				(1) 10(5(1)	
C(1)) 29(1			-5243	-3243		
C(2)) 28(1	L) 36(L)	31(1)	-3(1)			
N(2') 36(1	L) 40(1)	66(1)	-1(1)	20(1)	3(1)	
C(3') 35(1	L) 47(1)	49(1)	-16(1) 7(1)	$\Pi(I)$	
C(4') 60Č	2) 38(1)	54(1)	-20(1)) -4(1)	17(1)	
c(5'	5 750	2) 29(1)	38(1)	-9(1)	-1(1)	-2(1)	
761	5 456	15 34(1)	29(1)	-6(1)	2(1) -	·5(1)	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for IASO21.

x y z U(eq)

H(6') 6757 3597 7644 43 H(1'1) 10770(40) 5600(20) 6259(18) 65(9) H(1'2) 9550(30) 6151(18) 6685(13) 34(6) H(1) 6060(30) 7500(20) 8753(16) 45(7)

Appendix 6 Table 11. Crystal data and structure refinement for ias025. Contact F.P.A.Fabbiani@ed.ac.uk A. CRYSTAL DATA Empirical formula C22 H28 N2 09 C18 H20 N2 07, C4 H8 02 Formula weight 464.46 **Wavelength** 0.71073 A Temperature 150(2) K Crystal system Hexagonal Space group P6(5) Unit cell dimensions a = 12.1781(2) Ab = 12.1781(2) Aalpha = 90 deg.beta = 90 deg. c = 28.1631(6) Agamma = 120 deg.Volume 3617.18(11) A^3 Number of reflections for cell 7363 (2.41 < theta < 23.43 deg.) Ζ 6 Density (calculated) 1.279 Mg/m^3 Absorption coefficient 0.100 mm^{-1} F(000) 1476 **B. DATA COLLECTION** Crystal description clolourless block Crystal size 0.97 x 0.66 x 0.24 mm Theta range for data collection 1.93 to 24.99 deg. Index ranges -14<=h<=14, -14<=k<=14, -33<=1<=33 Reflections collected 21712 Independent reflections 2060 [R(int) = 0.0673]Scan type omega scans Absorption correction Multiscan (Tmin= 0.924, Tmax=0.976) C. SOLUTION AND REFINEMENT. Solution direct (SHELXS-97 (Sheldrick, 1990)) Refinement type Full-matrix least-squares on FA2 Program used for refinement SHELXL-97 Hydrogen atom placement qeom Hydrogen atom treatment noref Data / restraints / parameters 2060/15/295 Page 1

Apı	pendix 6
Goodness-of-fit on F^2	1.214
Conventional R [F>4sigma(F)]	R1 = 0.1049 [1810 data]
weighted R (F^2 and all data)	wR2 = 0.2658
Absolute structure parameter	-2(4)
Final maximum delta/sigma	0.000
weighting scheme calc w=1/[\s^2^(Fo^2^)+(0.1307P)	0^2^+2.0931P] where P=(F0^2^+2Fc^2^)/3

Largest diff. peak and hole 0.344 and -0.239 e.A^-3

Table 12. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for ias025. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 13. Bond lengths [A] and angles [deg] for ias025.

0(1)-C(5) 0(1)-C(1) 0(2)-C(10)

1.423(12) 1.461(10) 1.336(11) Page 2

	Appendix 6
0(2) - C(2) 0(3) - C(12)	1.450(10) 1.305(12)
o(3)-c(3)	1.416(11)
0(4) - C(14)	1.346(13) 1.422(12)
C(11) - C(10)	1.422(12) 1.513(16)
o(6)-c(12)	1.196(16)
0(7) - C(14)	1.172(18) 1.313(9)
N(3A) - C(2A) N(3A) - C(4A)	1.313(9) 1.380(9)
N(1A)-C(2A)	1.331(10)
N(1A) - C(9A)	1.346(8) 1.473(13)
c(1) - c(2)	1.497(13)
c(2)-c(3)	1.496(12)
C(3) - C(4) C(4) - C(5)	1.525(12) 1.500(14)
C(4A) - C(5A)	1.3900
C(4A) - C(9A) C(5A) - C(6A)	1 3900
C(6A) - C(7A)	1.3900
C(7A) - C(8A)	1.3900
C(3A) - C(3A) C(10) - O(5B)	1.199(10)
C(10)-0(5A)	1.217(9)
C(12)-C(13)	1.48(2)
O(34) - C(32)	1.342(9)
0(34)-c(35)	1.441(10)
C(31) - C(32) C(32) - O(33)	1.192(10)
c(35)-c(36)	1.520(10)
C(5)-O(1)-C(1)	110.6(6)
C(10) - O(2) - C(2)	117.4(6)
C(12) = O(3) = C(3) C(14) = O(4) = C(4)	120.0(8) 118.8(9)
C(2A) - N(3A) - C(4A)	105.0(6)
C(2A) - N(1A) - C(9A) O(1) - C(1) - C(2A)	107.8(5) 110.6(6)
0(1)-C(1)-C(2)	108.0(6)
C(2A) - C(1) - C(2)	112.0(7) 110.1(6)
0(2)-C(2)-C(3) 0(2)-C(2)-C(1)	107.6(6)
C(3) - C(2) - C(1)	111.6(7)
N(3A) - C(2A) - N(1A) N(3A) - C(2A) - C(1)	112.6(7) 126.1(6)
N(1A) - C(2A) - C(1)	121.0(6)
0(3)-C(3)-C(2) 0(3)-C(3)-C(4)	107.9(7) 111 3(7)
c(2)-c(3)-c(4)	109.6(7)
0(4) - C(4) - C(5)	107.4(7)
C(5) - C(4) - C(3)	110.6(7)
0(1)-C(5)-C(4)	
N(3A) - C(4A) - C(5A) N(3A) - C(4A) - C(9A)	131.4(4) 108.6(4)
c(5a)-c(4a)-c(9a)	120.0
C(6A) - C(5A) - C(4A)	120.0
C(3A) - C(7A) - C(7A) C(8A) - C(7A) - C(6A)	120.0
C(7A) - C(8A) - C(9A)	120.0
N(1A) - C(9A) - C(8A) N(1A) - C(9A) - C(4A)	106.0(4)
C(8A)-C(9A)-C(4A)	120.0
O(5B)-C(10)-O(5A) O(5B)-C(10)-O(2)	41.1(12) 117.3(14)
o(5A)-c(10)-o(2)	125.3(12)

Page 3

	Appendix 6
O(5B)-C(10)-C(11)	124.9(14)
O(5A) - C(10) - C(11)	123.6(12)
0(2) - C(10) - C(11)	108.9(7)
0(6) - C(12) - O(3)	122.9(12)
0(6) - C(12) - C(13)	124.4(12)
0(3)-C(12)-C(13)	112.6(12)
0(7) - C(14) - O(4)	123.5(13)
O(7)-C(14)-C(15)	127.9(11)
O(4) - C(14) - C(15)	108.6(13)
c(32)-0(34)-c(35)	112.5(10)
o(33)-c(32)-o(34)	113.7(12)
o(33)-c(32)-c(31)	132.3(14)
o(34)-c(32)-c(31)	114.0(12)
o(34)-c(35)-c(36)	105.0(12)

Symmetry transformations used to generate equivalent atoms:

Table 14. Anisotropic displacement parameters (A^2 x 10^3) for ias025. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
0(1) 0(2) 0(3) 0(4) C(11) 0(6) 0(7) N(1A) C(2) C(2A) C(62(3) 72(3) 75(4) 106(5) 158(12) 111(7) 136(8) 136(7) 44(3) 77(5) 72(5) 51(4) 62(5) 87(6) 84(6) 99(7) 154(11) 112(9) 99(8) 83(6) 39(4) 136(10) 59(8) 117(16) 109(9) 77(8) 100(8) 153(13) 136(11) 210(30)	86(4) 67(3) 95(4) 65(4) 63(6) 212(12) 171(10) 122(7) 102(5) 81(5) 62(4) 75(5) 71(5) 68(5) 90(6) 139(10) 118(9) 126(10) 113(8) 105(6) 82(7) 49(7) 77(11) 121(9) 186(17) 125(10) 124(11) 153(11) 116(15) 145(16)	41(3) 27(2) 41(3) 61(3) 70(6) 114(7) 84(6) 27(3) 23(3) 16(3) 27(3) 24(3) 28(3) 34(4) 50(4) 40(4) 46(5) 88(7) 77(7) 60(5) 34(3) 37(4) 48(7) 67(10) 66(6) 140(12) 80(7) 132(11) 165(12) 220(30) 110(12)	$\begin{array}{c} -6(2) \\ -2(2) \\ -12(3) \\ -4(3) \\ 4(5) \\ 16(8) \\ -9(6) \\ 31(4) \\ 21(3) \\ 7(3) \\ 4(3) \\ 5(3) \\ -2(3) \\ -3(3) \\ 2(4) \\ 32(4) \\ 46(6) \\ 41(7) \\ -4(6) \\ 10(5) \\ 7(4) \\ 13(4) \\ 22(5) \\ 15(7) \\ -23(6) \\ -41(11) \\ -38(7) \\ -9(9) \\ -28(9) \\ 38(16) \\ 3(11) \end{array}$	-8(2) -9(2) -13(3) -16(3) -6(7) -36(6) 13(5) 30(4) 7(2) -1(3) -3(3) 9(3) -10(3) -2(4) -10(4) 27(4) 45(6) 30(6) 12(6) 7(4) 16(3) -17(5) -2(6) -22(10) -27(6) -13(8) -11(6) -1(10) 0(9) 80(20) -10(12)	$\begin{array}{c} 36(3)\\ 36(3)\\ 44(3)\\ 48(4)\\ 45(7)\\ 113(8)\\ 107(8)\\ 96(6)\\ 44(3)\\ 41(5)\\ 34(4)\\ 27(4)\\ 33(4)\\ 38(5)\\ 36(5)\\ 52(6)\\ 95(10)\\ 83(8)\\ 72(8)\\ 70(6)\\ 40(4)\\ 50(7)\\ -12(7)\\ 27(13)\\ 85(8)\\ 78(10)\\ 78(8)\\ 103(11)\\ 49(9)\\ 55(15)\\ 36(12)\\ \end{array}$
C(35) C(36) O(33)	129(16) 140(20) 790(120)	200(20) 300(40) 320(50)	180(20) 140(19) 320(50)	23(18) -20(20) 190(40)	59(16) 25(15) 160(60)	68(16) 60(20) 210(60)

Table 15. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for ias025.

,

	x	У	Z	U(eq)
H(11A) H(11B) H(11C) H(1A) H(1) H(2) H(3) H(4) H(5A) H(5A) H(5A) H(5A) H(5A) H(13A) H(13B) H(13C) H(15A) H(15B)	x 6589 7728 6432 11102 10337 8634 8387 8903 10694 10980 11069 11694 12040 11762 4884 4391 4454 8422 8247	y 5808 6719 6753 9448 10800 9624 11003 11841 12796 13274 7313 5980 6088 7529 9041 8668 9888 14508 14968	z -466 -811 -817 -836 -581 197 -580 394 -368 171 716 356 -464 -925 103 -431 -190 -360 153	U(eq) 152 152 152 64 69 65 67 77 82 82 124 114 113 91 194 194 194 194 182 182 182
H(15C) H(31A) H(31B) H(31C) H(35A)	7033 -694 -1363 -628 2896	13949 3944 3428 4918 4877	-138 -970 -1474 -1366 -1546	182 293 293 293 293 214
H(35B) H(36A) H(36B) H(36C)	2101 3833 2521 3310	3357 3956 3156 4668	-1596 -1063 -784 -735	214 325 325 325

Appendix 6

,

2-β-D-Glucopyranosylbenzimidazole (224)

Appendix 7 Table 1. Crystal data and structure refinement for mp0501.

Fraser J. white, f.j.white@sms.ed.ac.uk Contact A. CRYSTAL DATA C13 H16 N2 05 Empirical formula C13 H16 N2 05 280.28 Formula weight 0.71073 A wavelength 150(2) K Temperature Monoclinic Crystal system P 21 Space group a = 6.2177(2) Ab = 9.6686(3) Aalpha = 90 deg.unit cell dimensions beta = 92.6760(10)deg. gamma = 90 deg.c = 10.6720(3) A640.86(3) A^3 volume 8993 (5.5 < theta < 58.5 deg.) Number of reflections for cell 2 Z 1.452 Mg/m^3 Density (calculated) 0.113 mm^-1 Absorption coefficient 296 F(000)B. DATA COLLECTION block Colourless crystal description 0.40 x 0.27 x 0.16 mm Crystal size Bruker Smart Apex CCD Instrument Theta range for data collection 1.91 to 28.27 deg. -7<=h<=8, -12<=k<=12, -14<=1<=14 Index ranges 18479 Reflections collected 1680 [R(int) = 0.0328]Independent reflections Omega and Phi scans Scan type Semi-empirical from equivalents Absorption correction (Tmin= 0.815, Tmax=0.98) C. SOLUTION AND REFINEMENT. direct (SHELXS-97 (Sheldrick, 1990)) solution Full-matrix least-squares on FA2 Refinement type Program used for refinement SHELXL-97 geom Hydrogen atom placement Page 1

	Appendix 7
Hydrogen atom treatment	mixed
Data	1680
Restraints	1
Parameters	201
Goodness-of-fit on F^2	1.071
Conventional R [F>4sigma(F)]	R1 = 0.0330 [1604 data]
Rw	0.0842
Absolute structure parameter	0(10)
Final maximum delta/sigma	0.001
Weighting scheme	Sheldrick Weights
Largest diff. peak and hole	0.328 and -0.225 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for mp0501. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
N(1) C(2) N(3) C(4) C(5) C(6) C(7) C(8) C(9) O(1') C(1') O(2') C(2') C(2') C(2') C(2') C(3') C(3') C(3') C(4') C(4') C(5') C(6') C(6')	$\begin{array}{c} -1546(2)\\ 118(3)\\ 1069(2)\\ -81(3)\\ 146(3)\\ -1362(3)\\ -3021(3)\\ -3223(3)\\ -3223(3)\\ -1717(3)\\ 1150(2)\\ 955(3)\\ 2762(2)\\ 3134(3)\\ 6149(2)\\ 4003(3)\\ 4853(2)\\ 4059(3)\\ 1830(3)\\ 3183(2)\\ 1764(3)\end{array}$	$\begin{array}{c} 441(2)\\ 874(2)\\ 2018(2)\\ 2363(2)\\ 3440(2)\\ 3484(2)\\ 2498(2)\\ 1427(2)\\ 1371(2)\\ 1196(1)\\ 171(2)\\ -1541(2)\\ -515(2)\\ -1623(2)\\ -1122(2)\\ -565(2)\\ -21(2)\\ 635(2)\\ 2887(1)\\ 1815(2)\end{array}$	$\begin{array}{c} -2386(1) \\ -1688(2) \\ -2155(1) \\ -3253(2) \\ -4108(2) \\ -5106(2) \\ -5249(2) \\ -4405(2) \\ -3385(2) \\ 445(1) \\ -512(2) \\ -1632(1) \\ -705(2) \\ 459(1) \\ 541(2) \\ 2737(1) \\ 1564(2) \\ 1642(1) \\ 2198(1) \\ 2572(2) \end{array}$	$19(1) \\ 17(1) \\ 19(1) \\ 18(1) \\ 23(1) \\ 25(1) \\ 28(1) \\ 24(1) \\ 18(1) \\ 18(1) \\ 17(1) \\ 25(1) \\ 17(1) \\ 24(1) \\ 18(1) \\ 23(1) \\ 17(1) \\ 17(1) \\ 22(1) \\ 19(1) \\ 19(1) \\ 10000000000000000000000000000000000$
Table 3.	Bond length	s [A] and ang]	es [deg] for m	p0501.
N(1)-C(2) 1.314(2) N(1)-C(9) 1.395(2) C(2)-N(3) 1.360(2) C(2)-C(1') 1.500(2) N(3)-C(4) 1.384(2) N(3)-H(3) 0.88(3) C(4)-C(5) 1.396(2) C(4)-C(9) 1.400(2) C(5)-C(6) 1.387(2) C(5)-H(5) 0.9500 Page 2 2				

.

c(f) = c(f)	Appendix 7
С(6)-Н(6)	1.407(3) 0.9500
C(7) - C(8)	1.382(3)
c(8)-c(9)	0.9500 1.404(2)
С(8)-Н(8)	0.9500
o(1')-c(5')	1.4246(19) 1.4338(18)
C(1')-C(2')	1.531(2)
o(2')-c(2')	1.412(2)
0(2')-H(2') C(2')-C(3')	0.85(3)
C(2') - H(2')	1.0000
0(3')-H(3')	1.426(2)
C(3') - C(4')	1.524(2)
O(4') - C(4')	1.0000 1.4248(19)
O(4') - H(4')	0.84(3)
C(4') - H(4'1)	1.530(2) 1.0000
C(5')-C(6') C(5')-H(5')	1.514(2)
ō(6')-c(6')	1.430(2)
O(6')-H(6') C(6')-H(6'1)	
C(6')-H(6'2)	0.9900
C(2)-N(1)-C(9)	104.92(14)
N(1)-C(2)-N(3) N(1)-C(2)-C(1')	113.30(15)
N(3) - C(2) - C(1')	122.42(14)
C(2) - N(3) - C(4) C(2) - N(3) - H(3)	106.86(14) 121.1(17)
C(4) - N(3) - H(3)	131.3(17)
N(3)-C(4)-C(9)	131.98(1/) 105.31(15)
C(5)-C(4)-C(9) C(6)-C(5)-C(4)	122.70(15)
C(6)-C(5)-H(5)	122.0
C(4)-C(5)-H(5) C(5)-C(6)-C(7)	122.0 121 90(17)
C(5) - C(6) - H(6)	119.0
C(8) - C(7) - C(6)	119.0 121.71(16)
C(8)-C(7)-H(7) C(6)-C(7)-H(7)	119.1
c(7) - c(8) - c(9)	119.1 117.16(17)
С(/)-С(8)-Н(8) С(9)-С(8)-Н(8)	121.4
N(1) - C(9) - C(4)	109.60(14)
C(4) - C(9) - C(8)	129.93(17) 120.46(16)
C(1')-O(1')-C(5')	112.74(12)
0(1')-c(1')-c(2')	107.40(13) 110.62(12)
C(2)-C(1')-C(2') O(1')-C(1')-H(1')	110.97(13)
С(2)-С(1)-н(1)	109.3
C(2') - O(2') - H(2')	109.3 108(2)
0(2')-c(2')-c(3')	112.30(14)
c(3')-c(2')-c(1')	106.37(13) 109.12(13)
О(2')-C(2')-H(2'1) C(3')-C(2')-H(2'1)	109.7
Ċ(Ĩ')-Č(Ĩ')-Ĥ(Ž'Ĩ)	109.7
	Page 3

C(3')-0(3')-H(3') O(3')-C(3')-C(4')	Appendix 7 111.7(18) 106.90(13) 111.72(13)
C(4')-C(3')-C(2')	110.51(14)
O(3')-C(3')-H(3'1)	109.2
C(4')-C(3')-H(3'1) C(2')-C(3')-H(3'1)	109.2 109.2 107.5(18)
C(4')-O(4')-H(4') O(4')-C(4')-C(3') O(4')-C(4')-C(5')	$ \begin{array}{r} 107.9(18) \\ 111.52(14) \\ 112.49(13) \end{array} $
с(3')-с(4')-с(5')	109.74(13)
о(4')-с(4')-н(4'1)	107.6
C(3')-C(4')-H(4'1) C(5')-C(4')-H(4'1) C(5')-C(5')-C(6')	107.6 106.39(13)
0(1')-c(5')-c(4')	109.79(12)
c(6')-c(5')-c(4')	113.59(13)
0(1')-c(5')-H(5')	109.0
c(6')-c(5')-H(5')	109.0
C(4')-C(5')-H(5')	109.0
C(6')-0(6')-H(6')	108.6(19)
O(6')-C(6')-C(5')	109.14(13)
0(6')-с(6')-H(6'1)	109.9
с(5')-с(6')-H(6'1)	109.9
0(6')-C(6')-H(6'2) C(5')-C(6')-H(6'2)	109.9 109.9 108.3
	200.0

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for mp0501. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
N(1) C(2) N(3) C(5) C(6) C(7) C(6) C(7) C(2) O(1') O(1') O(2') O(2') O(2') O(3') C(3') O(4') C(3') O(4') C(5) C(6) C(5) C(2') O(1') C(2) C(6) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(6) C(7) C(2) C(7) C(6) C(7) C(2) C(6) C(7) C(2) C(7) C(2) C(6) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(7) C(2) C(2) C(7) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2	$19(1) \\ 16(1) \\ 19(1) \\ 18(1) \\ 26(1) \\ 32(1) \\ 28(1) \\ 24(1) \\ 19(1) \\ 21(1) \\ 17(1) \\ 16(1) \\ 22(1) \\ 18(1) \\ 24(1) \\ 17(1) \\ 18(1) \\ 22(1) \\ 20(1) \\ 20(1) \\ $	$18(1) \\ 17(1) \\ 19(1) \\ 19(1) \\ 21(1) \\ 26(1) \\ 36(1) \\ 27(1) \\ 18(1) \\ 16(1) \\ 17(1) \\ 28(1) \\ 18(1) \\ 29(1) \\ 16(1) \\ 27(1) \\ 18(1) \\ 18(1) \\ 18(1) \\ 18(1) \\ 17(1) \\ 20(1) \\ 20(1) \\ 10000000000000000000000000000000000$	$20(1) \\ 17(1) \\ 18(1) \\ 17(1) \\ 21(1) \\ 17(1) \\ 19(1) \\ 21(1) \\ 18(1) \\ 15(1) \\ 15(1) \\ 17(1) \\ 25(1) \\ 18(1) \\ 18(1) \\ 18(1) \\ 15(1) \\ 15(1) \\ 27(1) \\ 18(1) \\ 18(1) \\ 18(1) \\ 15(1) \\ 27(1) \\ 18(1$	$\begin{array}{c} 0(1) \\ -1(1) \\ 1(1) \\ -3(1) \\ 1(1) \\ 5(1) \\ 1(1) \\ -2(1) \\ -1(1) \\ 1(1) \\ -1(1) \\ 1(1) \\ -1(1) \\ -5(1) \\ 1(1) \\ 5(1) \\ 2(1) \\ 2(1) \\ -2(1) \\ -1(1) \end{array}$	$\begin{array}{c} -4(1) \\ 0(1) \\ -4(1) \\ -2(1) \\ 1(1) \\ 1(1) \\ -7(1) \\ -7(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -4(1) \\ -3(1) \\ -4(1) \\ -1(1) \\ 1(1) \\ 3(1) \end{array}$	$\begin{array}{c} 0(1) \\ 1(1) \\ -3(1) \\ 2(1) \\ -1(1) \\ 3(1) \\ -2(1) \\ 1(1) \\ 3(1) \\ -1(1) \\ 12(1) \\ 12(1) \\ 3(1) \\ 3(1) \\ 2(1) \\ 3(1) \\ 2(1) \\ 2(1) \\ 4(1) \end{array}$

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for mp0501.

Appendix 7

	×	У	Z	U(eq)
H(5) H(6) H(7) H(8) H(1') H(2'1) H(3'1) H(4'1) H(5') H(6'1) H(6'2) H(6') H(6') H(3) H(4') H(3') H(2')	1268 -1273 -4028 -4333 -100 4169 3050 5075 782 278 2214 2530(40) 2080(40) 3960(40) 6350(40) 3960(50)	4104 4200 2571 756 -549 187 -1899 720 -93 2178 1482 3680(40) 2460(30) -1160(30) -2000(30) -1750(40)	-4012 -5711 -5943 -4511 -264 -1009 789 1313 1882 2598 3421 2260(30) -1720(20) 2970(20) -260(30) -1940(30)	27 30 34 29 20 21 21 20 20 23 23 40(7) 28(6) 33(7) 47(8) 48(8)

-

÷.

Table 1. Crystal data and structure refinement for ias069. Stephen Moggach, s.moggach@ed.ac.uk Contact A. CRYSTAL DATA C25 H28 N2 010 Empirical formula C25 H26 N2 O9, H2 O 498.48 Formula weight 0.71073 A **wavelength** 150(2) K Temperature Orthorhombic Crystal system P 21 21 21 Space group a = 9.9570(9) A alpha = 90 deg. b = 13.8850(12) A beta = 90 deg c = 18.0620(18) A gamma = 90 deg Unit cell dimensions beta = 90 deg. gamma = 90 deg.2497.1(4) A^3 Volume 4478 (4.510 < theta < 60.405 deg.) Number of reflections for cell 4 Ζ 1.326 Mg/m^3 Density (calculated) 0.102 mm^{-1} Absorption coefficient 1048 F(000)**B. DATA COLLECTION** yellow block Crystal description 0.50 x 0.36 x 0.20 mm Crystal size 1.85 to 30.31 deg. Theta range for data collection -13<=h<=14, -19<=k<=17, -15<=1<=24 Index ranges 16966 Reflections collected 7043 [R(int) = 0.0323]Independent reflections \w Scan type Semi-empirical from equivalents (Tmin= Absorption correction 0.86, Tmax=1.00) C. SOLUTION AND REFINEMENT. direct (SHELXS-97 (Sheldrick, 1990)) Solution Full-matrix least-squares on F^2 Refinement type SHELXL-97 program used for refinement geom Hydrogen atom placement mixed Hydrogen atom treatment Page 1

Appendix 8

Appendix 8 Data / restraints / parameters 7043/4/350 Goodness-of-fit on FA2 1.112 Conventional R [F>4sigma(F)] R1 = 0.0546[6329 data] Weighted R (F^2 and all data) wR2 = 0.1302Absolute structure parameter 1.3(9) Final maximum delta/sigma 0.051 Weighting scheme calc w=1/[\s^2^(Fo^2^)+(0.0509P)^2^+0.7065P] where P=(Fo^2^+2Fc^2^)/3 Largest diff. peak and hole 0.310 and -0.244 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for ias069. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
N(1) C(1') C(2) C(2') N(3) C(3A) C(3A) C(4) C(4') C(5) C(6) O(6') C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(7) C(6A) C(22) O(23) C(23) O(21) C(22) O(23) C(23) C(33) C(33) C(33) C(33) C(33) C(33) C(43) C(43) C(61) C(62) O(63) C(63) O(15)	$\begin{array}{c} 1653(2)\\ 2706(2)\\ 2499(2)\\ 1606(2)\\ 3046(2)\\ 1655(2)\\ 2634(2)\\ 3040(3)\\ 1842(2)\\ 2607(3)\\ 2931(2)\\ 1814(3)\\ 2585(1)\\ 3135(2)\\ 1354(2)\\ 527(2)\\ 93(3)\\ 452(2)\\ 1277(2)\\ 1761(2)\\ 1813(2)\\ 1120(2)\\ 273(2)\\ 1573(3)\\ 373(2)\\ 336(3)\\ 1283(2)\\ -1040(3)\\ 2351(2)\\ 1467(2)\\ 293(2)\\ 2143(3)\\ 1912(2)\\ 2143(3)\\ 1912(2)\\ 2143(3)\\ 1918(3)\\ 2829(2)\\ 654(4)\\ 72(2)\\ \end{array}$	$\begin{array}{c} 2364(1)\\ 2223(1)\\ 2764(1)\\ 2510(1)\\ 3611(1)\\ 1907(1)\\ 4189(2)\\ 5135(2)\\ 834(1)\\ 5707(2)\\ 678(1)\\ 5344(2)\\ 1218(1)\\ -353(2)\\ 4376(2)\\ 3943(2)\\ 3015(2)\\ 2456(2)\\ 2854(2)\\ 3807(2)\\ 3494(1)\\ 4177(2)\\ 3986(1)\\ 5164(2)\\ 2084(1)\\ 2149(1)\\ 2004(1)\\ 2441(2)\\ 376(1)\\ -37(2)\\ -115(1)\\ -346(2)\\ -697(1)\\ -1642(2)\\ -2164(1)\\ -1940(2)\\ 647(1)\\ \end{array}$	$\begin{array}{c} 10807(1)\\ 9597(1)\\ 10311(1)\\ 9040(1)\\ 10368(1)\\ 8339(1)\\ 10968(1)\\ 11015(1)\\ 8496(1)\\ 11015(1)\\ 8496(1)\\ 11614(2)\\ 9085(1)\\ 12159(2)\\ 9733(1)\\ 9312(1)\\ 12137(1)\\ 12679(1)\\ 12679(1)\\ 12603(1)\\ 11980(1)\\ 11450(1)\\ 11450(1)\\ 11520(1)\\ 8822(1)\\ 9205(1)\\ 9657(1)\\ 8989(1)\\ 7985(1)\\ 7237(1)\\ 6843(1)\\ 6984(2)\\ 7836(1)\\ 7364(1)\\ 7500(1)\\ 6669(2)\\ 9661(1)\\ 10217(2)\\ 10594(1)\\ \end{array}$	$\begin{array}{c} 24(1)\\ 23(1)\\ 24(1)\\ 23(1)\\ 26(1)\\ 24(1)\\ 28(1)\\ 38(1)\\ 24(1)\\ 46(1)\\ 24(1)\\ 25(1)\\ 35(1)\\ 34(1)\\ 45(1)\\ 30(1)\\ 30(1)\\ 30(1)\\ 30(1)\\ 43(1)\\ 45(1)\\ 34(1)\\ 37(1)\\ 56(1)\\ 69(1)\\ 32(1)\\ \end{array}$
Table 3.	Bond length	s [A] and angl	es [deg] for ia	as069.

N(1)-C(2)
N(1)-C(9A)
C(1')-O(6')
c(1')-c(2)
C(1')-C(2')
C(1) - H(1) C(2) - N(3)
c(2')-0(21)
c(2')-c(3')
$N(3) - C(3\Delta)$
C(3')-O(31)
C(3')-C(4')
$C(3\Delta) - C(4)$
C(3A) - C(9B)
C(4) - C(5)
C(4) - H(4) C(4') - O(41)
c(4')-c(5')
С(4')-Н(4')
C(5) - C(6) C(5) - H(5)
C(5')-0(6')
C(5')-C(6')
$C(5^{\circ}) - H(5^{\circ})$
C(6) - H(6)
C(6')-0(61)
C(6')-H(6'1)
C(6A) - C(7)
C(6A)-C(9B)
C(7) - C(8)
C(7) = H(7) C(8) = C(9)
С(8)-Н(8)
C(9) - C(9A)
C(9) - H(9) C(9A) - C(9B)
0(21)-c(22)
C(22) - O(23)
C(22) - C(23) C(23) - H(23a)
С(23)-Н(23В)
С(23)-Н(23С)
C(32) - C(32)
c(32) - c(33)
С(33)-Н(33А)
C(33) - H(33B)
0(41)-c(42)
C(42)-0(43)
C(42) - C(43)
C(43) - H(43B)
С(43)-Н(43С)
O(61) - C(62)
C(62)-C(63)
С(63)-Н(63А)
C(63) - H(63B)
0(1S) - H(1S)
0(1S)-H(2S)

.

,

	1.351(3) 1.396(3) 0.898(16) 1.422(2) 1.506(3) 1.539(3) 1.0000 1.300(2) 1.438(2) 1.519(3) 1.0000 1.410(3) 1.448(2) 1.529(3) 1.0000 1.443(2) 1.529(3) 1.0000 1.425(3) 1.409(4) 0.9500 1.432(2) 1.503(3) 1.0000 1.420(4) 0.9500 1.422(2) 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.420(4) 0.9500 1.422(2) 1.420(4) 0.9500 1.422(2)
	1.202(3) 1.494(3) 0.9800 0.9800 1.355(2) 1.199(3) 1.500(4) 0.9800 0.9800 0.9800 1.353(3) 1.199(3) 1.499(3)
Page	1.489(3) 0.9800 0.9800 1.354(3) 1.193(3) 1.486(4) 0.9800 0.9800 0.9800 0.862(16) 0.866(17) 3

C(2) C(9A O(6' O(6' C(2) O(6' C(2) C(2' N(3)	-N(1)-C(9A) -N(1)-H(1))-N(1)-H(1))-C(1')-C(2))-C(1')-C(2') -C(1')-C(2'))-C(1')-H(1') -C(1')-H(1'))-C(1')-H(1') -C(2)-N(1)	
N(1) 0(21 0(21 C(3' 0(21 C(3' C(1' C(2) 0(31 0(31	-c(2)-c(1'))-c(2')-c(3'))-c(2')-c(1'))-c(2')-c(1'))-c(2')-H(2'))-c(2')-H(2'))-c(2')-H(2'))-c(2')-H(2'))-c(3')-c(3A))-c(3')-c(2')	-
C(2' 0(31 C(2' C(4' C(4) C(4) C(4) N(3) C(3A C(3A C(5))-c(3')-c(4'))-c(3')-H(3'))-c(3')-H(3'))-c(3')-H(3') -c(3A)-N(3) -c(3A)-c(9B) -c(3A)-c(9B) -c(4)-c(5))-c(4)-H(4) -c(4)-H(4)	
0(41 0(41 C(3' 0(41 C(3' C(5' C(6) C(6) C(4) 0(6')-c(4')-c(3'))-c(4')-c(5'))-c(4')-c(5'))-c(4')-H(4'))-c(4')-H(4'))-c(4')-H(4'))-c(5)-c(4) -c(5)-c(4) -c(5)-H(5) -c(5)-H(5)	
0(6' C(6' C(6' C(6' C(4' C(5) C(5) C(6A C(1')-c(5')-c(4'))-c(5')-c(4'))-c(5')-H(5'))-c(5')-H(5'))-c(5')-H(5') -c(6)-C(6A) -c(6)-H(6))-c(6)-H(6))-c(6')-c(5')	
0(61 C(5' 0(61 C(5' H(6' C(7) C(7) C(6) C(8) C(8))-c(6)-H(6'1))-c(6')-H(6'1))-c(6')-H(6'2))-c(6')-H(6'2) L)-c(6')-H(6'2) L)-c(6)-c(6) -c(6A)-c(9B) -c(6A)-c(9B) -c(7)-c(6A) -c(7)-H(7))
C(7) C(7) C(9) C(9A C(9A)	-c(8)-c(9) -c(8)-H(8) -c(8)-H(8) -c(9)-c(8))-c(9)-c(8)	

121.21(17) 118.4(16) 120.3(17) 109.29(15) 107.80(14) 109.45(15) 110.1 110.1
110.1 125.57(18) 117.46(18) 116.64(16) 106.85(15) 108.88(15) 112.32(16) 109.6
109.6 109.6 116.94(18) 104.26(15) 110.76(15) 112.69(16) 109.7 109.7 109.7
120.3(2) 119.4(2) 120.26(18) 119.7(2) 120.2 120.2 120.2 108.54(16)
105.22(15) 110.64(15) 110.8 110.8 110.8 110.8 121.7(2) 119.2
119.2 107.92(16) 108.82(15) 114.81(16) 108.4 108.4 108.4
121.2(2) 119.4 119.4 110.65(14) 108.56(16) 110.0 110.0 110.0
110.0 108.4 124.9(2) 118.1(2) 117.0(2) 121.0(2) 119.5
119.5 121.3(2) 119.4 119.4 119.0(2) 120.5 Page 4

٢

,

	Appendix 8
С(8)-С(9)-Н(9)	120.5
C(9) - C(9A) - N(1)	122.8(2)
С(9)-С(9А)-С(9В)	121.1(2)
N(1)-C(9A)-C(9B)	116.08(18)
C(9A) - C(9B) - C(3A)	119.57(18)
C(9A) - C(9B) - C(6A)	119.5(2)
C(3A) - C(9B) - C(6A)	120.9(2)
c(22)-o(21)-c(2')	116.75(15)
0(23)-C(22)-0(21)	123.10(19)
$0(\overline{23}) - \overline{C(\overline{22})} - \overline{C(\overline{23})}$	126.2(2)
0(21) - C(22) - C(23)	110.65(19)
c(22)-c(23)-H(23A)	109.5
C(22) - C(23) - H(23B)	109 5
H(23A) - C(23) - H(23B)	109 5
C(22)-C(23)-H(23C)	109 5
H(23A) = C(23) = H(23C)	109.5
$\mu(23R) = C(23) = \mu(23C)$	109.5
C(32) = O(31) = C(3')	119.1
O(33) - O(31) - O(31)	124 0(2)
0(33) - C(32) - C(33)	124.0(2) 125 6(2)
0(31) - c(32) - c(33)	123.0(2)
C(32) - C(32) - U(32A)	110.5(2)
C(32) - C(33) - H(33A)	
P(33Y) = C(33) = P(33P)	109.5
$(33) - (33) - \mu(33c)$	109.5
$(32)^{-}((32)^{-}((32)^{-})$	109.5
H(338) - C(33) - H(33C)	109.5
$C(A_2) = C(3_3) - B(3_3C)$	103.3 110 61(16)
O(42) - O(41) - O(41)	122 0(2)
O(43) - C(42) - O(41)	
O(43) - C(42) - C(43)	111 10(10)
C(42) - C(42) - C(43)	
C(42) - C(43) - H(43A)	109.5
U(42) - U(43) - H(43B)	109.5
$\pi(43A) - C(43) - \pi(43B)$	109.5
U(42) - U(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5
H(43B) - C(43) - H(43C)	109.5
C(02) - O(01) - C(0)	114.90(10)
0(03) - 0(02) - 0(01)	122.3(2)
0(03) - 0(02) - 0(03)	
C(62) - C(62) - C(63)	
C(02) - C(03) - H(03A)	109.5
U(02) - U(03) - H(03B)	109.5
$\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}$	109.5
	109.5
H(DSA) - C(DS) - H(DSC)	109.5
H(0)BJ-C(0)J-H(0)CJ	105(2)
n(13)-0(13)-H(23)	100(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for ias069. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
N(1) C(1') C(2) C(2') N(3)	27(1) 21(1) 23(1) 24(1) 26(1)	23(1) 23(1) 24(1) 22(1) 25(1)	23(1) 24(1) 24(1) 22(1) 26(1) Page 5	-3(1) -4(1) -1(1) -1(1) -2(1)	-1(1) 0(1) -4(1) 2(1) -3(1)	-2(1) -1(1) 2(1) -1(1) -2(1)

			Appendi	x 8		
C(3')	24(1)	27(1)	21(1)	-3(1)	1(1)	-3(1)
C(3A)	24(1)	29(1)	30(1)	-6(1)	-7(1)	2(1)
C(4)	$\frac{37(1)}{22(1)}$	$\frac{32(1)}{25(1)}$	$\frac{43(1)}{24(1)}$	-9(1)	-0(1) 1(1)	-2(1)
c(5)	44(1)	33(1)	61(2)	-19(1)	-15(1)	0(1)
C(5')	20(1)	25(1)	28(1)	-5(1)	1(1)	$-1(\bar{1})$
C(6)	38(1)	44(1)	50(1)	-26(1)	-11(1)	14(1)
0(6')	26(1)	22(1)	24(1)	-3(1)	-1(1)	1(1)
C(6)	27(1) 29(1)	43(1)	34(1)	-5(1)	-1(1) -9(1)	1(1)
C(7)	33(1)	63(2)	32(1)	-20(1)	-1(1)	14(1)
C(8)	33(1)	64(2)	28(1)	-5(1)	$\overline{6}(\overline{1})$	5(1)
C(9)	31(1)	44(1)	28(1)	-1(1)	1(1)	0(1)
C(9A)	24(1)	33(1)	23(1) 27(1)	-2(1)	-5(1)	3(1)
0(21)	32(1)	23(1)	27(1) 24(1)	-3(1) 0(1)	-0(1)	-1(1)
č(22)	30(1)	27(1)	25(1)	-2(1)	-5(1)	
0(23)	30(1)	33(1)	41(1)	-4(1)	5(1)	4(1)
C(23)	51(2)	27(1)	41(1)	1(1)	-2(1)	1(1)
C(32)	28(1)	$\frac{33(1)}{21(1)}$	24(1) 24(1)	-1(1) 2(1)	-3(1)	-1(1)
0(33)	59(1)	40(1)	25(1)	1(1)	6(1)	-8(1)
c(33)	61(2)	39(1)	38(1)	$-\bar{2}(\bar{1})$	-17(1)	Ž(1)
0(41)	27(1)	34(1)	29(1)	-12(1)	4(1)	-1(1)
C(42)	35(1)	$\frac{2}{1}$	29(1)	-6(1)	-2(1)	-1(1)
C(43)	43(1)	52(1)	40(1) 41(1)	-22(1)	-1(1)	-13(1) 6(1)
0(61)	36(1)	25(1)	41(1)		7(1)	1(1)
C(62)	50(1)	27(1)	36(1)	-1(1)	-4(1)	0(1)
0(63)	54(1)	32(1)	82(2)	7(1)	2(1)	9(1)
0(15)	$\frac{65(2)}{28(1)}$	$\frac{41(2)}{31(1)}$	38(1)	-3(1)	$\frac{50(2)}{-1(1)}$	-3(2) 1(1)
		J = (=)			-(-)	-(-)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A² x 10^3) for ias069.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x	У	Z	U(eq)
H(8) -460 2740 12975 50 $H(9)$ 129 1816 11928 41 $H(23A)$ 1072 5644 9275 59 $H(23B)$ 1408 5263 8459 59 $H(23C)$ 2535 5231 9091 59 $H(33A)$ -1120 3144 7002 69 $H(33B)$ -1716 2151 7309 69 $H(33C)$ -1183 2219 6475 69 $H(43A)$ 1645 -884 6449 68 $H(43B)$ 3062 -552 6780 68 $H(43C)$ 2166 193 6319 68 $H(63A)$ -31 -2082 9843 104 $H(63B)$ 339 -1417 10538 104	H(1) H(1') H(2') H(3') H(4) H(4) H(5) H(5') H(6) H(6'1) H(6'2) H(7) H(6) H(23A) H(23A) H(23A) H(23A) H(23A) H(23A) H(23A) H(33C) H(43A) H(43B) H(43C) H(63B)	x 1300(20) 3613 704 2398 3609 975 2876 3800 1563 3346 3894 269 -460 129 1072 1408 2535 -1120 -1716 -1183 1645 3062 2166 -31 339	y 1784(13) 2371 2442 2141 5401 533 6362 931 5745 -752 -400 4303 2740 1816 5644 5263 5231 3144 2151 2219 -884 -552 193 -2082 -1417	z 10704(14) 9389 9278 8013 10645 8654 11637 8887 12561 8873 9664 13103 12975 11928 9275 8459 9091 7002 7309 6475 6449 6780 6319 9843 10538	U(eq) 33(7) 27 27 29 46 28 55 29 52 35 35 51 50 41 59 59 69 69 69 69 69 68 68 68 68 68 104 104
H(b3C) 820 -2517 10516 104 Page 6	H(63C)	820	-2517 Page 6	10516	104

Į

		Appendix 8		
H(1S)	-560(20)	857(19)	10312(14)	44(8)
H(2S)	560(30)	280(20)	10317(16)	69(11)

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 45 (2004) 8913-8916

Synthesis of pyranosyl amidoximes by addition of amines to pyranosyl nitrile oxides

Kenneth W. J. Baker, Katherine S. Horner, Stephen A. Moggach, R. Michael Paton* and Iain A. S. Smellie

School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK Received 23 August 2004; revised 13 September 2004; accepted 23 September 2004

Abstract—Addition of amines to pyranosyl nitrile oxides, generated by base-induced dehydrochlorination of the corresponding hydroximoyl chloride, affords pyranosyl *N*-alkyl/aryl-formamide oximes (41–90%). Reaction with amino acid esters yields the corresponding amidoximes and/or 3-pyranosyl-1,2,4-oxadiazin-6-ones. The structure of *N*-phenyl-*C*-(2,3,4-tri-*O*-acetyl- β -D-xylopyranosyl)formamide oxime was established by X-ray crystallography. © 2004 Elsevier Ltd. All rights reserved.

We have recently reported a short and efficient synthetic route from monosaccharides to pyranosyl hydroximoyl chlorides.¹⁻³ The approach, which is illustrated in Scheme. 1 for the D-glucose-derived compound 1, involves addition of nitromethane to D-glucose and acetylation to afford the pyranosylnitromethane 2, followed by reduction to oxime 3, and finally reaction with chlorine. The hydroximoyl chorides were then used as a source of the corresponding nitrile oxide, for example, 4, from which a variety of novel C-glycosides were prepared by cycloaddition to dipolarophiles X=Y.

We now report that dehydrochlorination of these hydroximoyl chlorides in the presence of a primary or secondary amine provides easy access to a range of novel pyranosyl amidoximes (Scheme 2). 1,3-Addition of amines to arene nitrile oxides has been known for many years^{4,5} and the resulting amidoximes have been shown to have a variety of useful properties. These include metal ligation⁶⁻⁸ and biological activity, for example, as nitric oxide donors⁹ and amidine prodrugs.¹⁰ Less attention, however, has been paid to carbohydrate analogues; rare examples include cyclic amidoximes as

Scheme 1.

Keywords: C-Glycosides; Nitrile oxides; Amidoximes; 1,2,4-Oxadiazin-6-ones.

^{*} Corresponding author. Tel.: +44 31 650 4714; fax: +44 31 650 4743; e-mail: r.m.paton@ed.ac.uk

^{0040-4039/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.09.173

K. W. J. Baker et al. | Tetrahedron Letters 45 (2004) 8913-8916

Scheme 2.

glycosidase and glycosyl transferase inhibitors^{11,12} and amidoxime-linked nucleosides.¹³

In the present work the pyranosyl nitrile oxides were generated by dehydrochlorination of the corresponding hydroximoyl chlorides in situ in order to minimise dimerisation to 1,2,5-oxadiazole N-oxides (furoxans), which are often formed as by-products in reactions involving nitrile oxides.^{3,14} In a typical experiment a solution of the glucopyranosyl-hydroximoyl chloride 1 (0.44 mmol) in dry chloroform (40 ml) was added dropwise over 3 h to a cooled (0°C) vigorously stirred solution of benzylamine (1.32mmol) and dry triethylamine (7.1mmol) in dry chloroform (5ml) under nitrogen. Removal of the solvent and chromatography of the residue (silica, hexane-EtOAc) afforded the N-benzyl amidoxime 5 $(R^2 = Bn, R^3 = H)$ in 80% yield. The furoxan dimer 9 was not detected. p-Xylopyranosyl nitrile oxide 6, generated from the hydroximoyl chloride 7, reacted similarly to yield amidoxime 8 ($R^2 = Bn$, $R^3 = H$) (67%). The structures of the products were assigned on the basis of their spectroscopic properties; for example, in the NMR spectrum of D-xylose-derived amidoxime 8 $(R^2 = Bn, R^3 = H)$ there are, in addition to the expected signals for the carbons and protons of the pyranosyl and benzene rings,¹⁵ distinctive peaks for the oxime unit [$\delta_{\rm C}$ 148.9 ppm (C=N)] and the attached NHCH₂ group [$\delta_{\rm H}$ 4.38 (CH_a), 4.39 ppm (CH_b), 5.22 (NH); J_{NH-CH}, 5.5, J_{NH-CH_b} 6.8, J_{CH_c-CH_b} 14.6Hz; δ_C 46.4 ppm (CH₂)].

Nitrile oxide 6 also reacted readily with 1-aminobutane, morpholine and allylamine to afford the corresponding adducts (8 $R^2 = Bu$, $R^3 = H$; 63%), (8 $R^2R^3 =$ CH₂CH₂OCH₂CH₂CH₂; 67%) and (8 $R^2 =$ CH₂CH=CH₂, $R^3 =$ H; 41%). It is noteworthy that in the latter case the isolated product results from addition of the nitrile oxide to the amine moiety in allylamine rather than cycloaddition to the alkene.

More forcing conditions were used for the corresponding reactions with aniline. Heating a 2:1 mixture of aniline and D-glucopyranosyl-hydroximoyl chloride 1 in ethanol at reflux for 5h afforded amidoxime 5 $(R^2 = Ph, R^3 = H)$ in 80% yield. The corresponding reaction with D-xylopyranosyl nitrile oxide 6 gave amidoxime 8 $(R^2 = Ph, R^3 = H)$ (90%). In neither case was there any evidence for the formation of the furoxan dimer (9,10). However, reaction with aniline in the presence of triethylamine as dehydrochlorinating agent afforded a mixture (~1:3) of the amidoxime and the furoxan.

The structure of the adduct 8 ($R^2 = Ph$, $R^3 = H$) formed by 1,3-addition of aniline to nitrile oxide 6 was established by X-ray crystallography (Fig. 1).¹⁶ Of particular note are the Z-configuration of the oxime moiety and the *s*-trans conformation about the amidic nitrogen with the H of the NHR facing the oxime OH. These results are in accord with previous studies indicating that such additions occur in a concerted, but nonsynchronous manner.¹⁷ The near planarity of the NH–C=N–O unit [torsion angle 2.6(3)°] and the short nonbonded distance between the amidic N and the oxime O [N to O = 2.508(3) (Å)] are consistent with the existence of an intramolecular H-bond between these atoms.^{17,18}

Figure 1. X-ray crystal structure of amidoxime 8 ($R^2 = Ph$, $R^3 = H$) showing the Z-s-trans arrangement.

Scheme 3.

Having established that simple amines such as aniline and benzylamine add readily to the pyranosyl nitrile oxides, the corresponding reactions with amino acid esters were examined. The resulting adducts were considered of interest as they would contain an unusual amidoxime sugar/amino acid linkage, and extension of the reaction to oligopeptides might provide access to novel glycopeptide analogues.

Reaction of hydroximovl chloride 7 with glycine ethyl ester hydrochloride and triethylamine (1:1.5:15 molar ratio) at 0°C afforded a mixture of three products, two of which were isolated and characterised (Scheme 3). The first (40%) proved to be the amidoxime 11 $(R^1 = H, R^2 = Et)^{19}$ resulting from the expected addition of glycine ethyl ester to nitrile oxide 6; the other major product was identified from its spectroscopic properties²⁰ as the 1,2,4-oxadiazin-6-one **12** ($\mathbf{R}^1 = \mathbf{\hat{H}}$) [$\hat{\delta}_{\mathbf{H}}$ 3.95 (CH₂), 5.61 ppm (NH); $\delta_{\rm C}$ 40.2 (CH₂), 150.4 (C=N), 164.6 ppm (C=O)], and the third was provisionally as-signed structure 13 ($R^1 = H$, $R^2 = Et$) on the basis of its NMR and mass spectra. In contrast, when the reaction was repeated under the same conditions with glycine *t*-butyl ester the amidoxime 11 ($\mathbf{R}^1 = \mathbf{Pr}^i$, $\mathbf{R}^2 = \mathbf{Bu}'$ (88%) was the only isolated product. The corresponding reaction with L-leucine ethyl ester afforded 53% of amidoxime 11 ($R^1 = CH_2CHMe_2$, $R^2 = Et$) (53%) as the main product, which readily cyclised to oxadiazinone 12 ($R^1 = CH_2CHMe_2$) (71%). Reaction with β -alanine ethyl ester, for which cyclisation would result in a seven-membered ring, afforded only the expected amidoxime 8 ($R^2 = CH_2CH_2CO_2Et$, $R^3 = H$) (50%).

These results are consistent with nucleophilic addition of the amino acid ester to nitrile oxide 6 forming adduct 11, followed by intramolecular cyclisation with expulsion of ethanol to afford oxadiazinone 12, and finally nucleophilic ring opening to form dipeptide amidoxime 13 (Scheme 3). Similar facile cyclisations of amino acid amidoximes have been reported previously for adducts from benzonitrile oxide,²¹ and for oligopeptides incorporating amidoxime links.²²

Support for the pathway shown in Scheme 3 was the observation that, in the presence of silica, amidoxime

11 ($R^1 = H$, $R^2 = Et$) was smoothly converted to oxadiazinone 12 ($R^1 = H$) (~6h in CHCl₃ at reflux, 2–3 days at room temperature). Furthermore, reaction of nitrile oxide 6 with glycylglycine ethyl ester afforded the dipeptide amidoxime 13 ($R^1 = H$, $R^2 = Et$) directly (43%), thus confirming the identity of the 2:1 adduct in the glycine ethyl ester reaction described above.

In conclusion, an efficient route to pyranosyl amidoximes has been established based on 1,3-addition of amines to pyranosyl nitrile oxides, which were generated from readily accessible hydroximoyl chlorides. The adducts resulting from the addition of amino acid esters cyclised to afford 3-pyranosyl-1,2,4-oxadiazin-6-ones; the feasibility of using the oxadiazinones as precursors for pyranosyl oligopeptides is currently under investigation.

Acknowledgements

We wish to thank Dr. I. H. Sadler for help with NMR spectra, and the EPSRC for financial support.

References and notes

- 1. Baker, K. W. J.; Gibb, A.; March, A. R.; Paton, R. M. *Tetrahedron Lett.* 2001, 42, 4065-4068.
- Baker, K. W. J.; Gibb, A.; March, A. R.; Parsons, S.; Paton, R. M. Synth. Commun. 2003, 33, 1701–1715.
- Baker, K. W. J.; March, A. R.; Parsons, S.; Paton, R. M.; Stewart, G. W. Tetrahedron 2002, 58, 8505–8513.
- 4. Ponzio, G.; De Paolini, I. Gazz. Chim. Ital. 1926, 56, 247-256.
- 5. Grundmann, Ch.; Grünanger, P. *The Nitrile Oxides*; Springer-Verlag: Berlin-Heidelberg-New York, 1971, Ch. 6.
- Kukushkin, V. Y.; Tudela, D.; Pombiero, A. J. L. Coord. Chem. Rev. 1996, 156, 333-362.
- 7. Gouzeh, P.; Proust, A. Chem. Rev. 1998, 98, 77-111.
- Barybin, M. V.; Diaconescu, P. L.; Cummings, C. C. Inorg. Chem. 2001, 40, 2892-2897.
- Moali, C.; Brollo, M.; Custot, J.; Suri, M.-A.; Boucher, J.-L. Biochemistry 2000, 39, 8208-8218.
- (a) Clement, B. Drug Metab. Rev. 2002, 34, 565–579; (b) Clement, B. Drug Metab. Dispos. 2003, 31, 645–651.

- 11. Ganem, B.; Dong, Y.; Zheng; Yi, F.; Prestwich, G. D. J. Org. Chem. 1999, 64, 5441-5446, and references therein.
- 12. Devel, L.; Hamon, L.; Becker, H.; Thellend, A.; Vidal-Cros, A. Carbohydr. Res. 2003, 338, 1591-1601.
- 13. Gallos, J. K.; Dellios, C. C. Tetrahedron Lett. 2003, 44, 5679-5681.
- Caramella, P.; Grünanger, P. In *1,3-Dipolar Cycloaddition* Chemistry; Padwa, A., Ed.; Wiley-Interscience: New York, 1984; Vol. 1, Chapter 3.
- 15. (Z)-N-benzyl-(2',3⁷,4'-tri-O-acetyl-β-D-xylopyranosyl)formamide oxime (**8**, R² = Bn, R³ = H): mp 64-66 °C (from hexane-EtOAc). [α]_D²⁰ -3.7 (c = 0.54 CHCl₃). $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.95, 1.96, 1.97 (9H, 3s, 3 × COCH₃), 3.19 (1H, dd, 5a'-H), 3.89 (1H, d, 1'-H), 4.07 (1H, dd, 5e'-H), 4.38 (1H, dd, Bn-H_a), 4.39 (1H, dd, Bn-H_b), 4.92 (1H, dd, 4'-H), 5.11 (1H, dd, 3'-H), 5.22 (1H, t, NH), 5.29 (1H, dd, 2'-H); J(X-Y)/Hz 1'-2' 10.0, 2'-3' 9.2, 3'-4' 9.5, 4'-5a' 10.4, 4'-5e' 5.6, 5a'-5e' 11.2, Bna-Bnb 14.6, Bna-NH 5.5, Bnb-NH 6.8; $\delta_{\rm C}$ (63 MHz, CDCl₃) 20.5 (3 × COCH₃), 46.4 (BnCH₂), 67.7 (C-5'), 68.6, 68.7, 73.5 (C-2',C-3',C-4'), 76.1 (C-1'), 127.3, 127.4, 128.6 (5 × PhCH), 138.8 (PhC), 148.9 (C=N), 169.5, 169.7, 170.2 (3 × C=O). FAB-HRMS [M + H]⁺ calculated for C₁₉H₂₄N₂O₈: 409.16109; found: 409.16095.
- 16. CCDC No. 247472.
- Nguyen, M. T.; Malone, S.; Hegarty, A. F.; Williams, I. I. J. Org. Chem. 1991, 56, 3683-3687.
- Dondoni, A.; Gilli, G.; Sacerdoti, M. J. Chem. Soc., Perkin Trans. 1 1976, 1036–1040.
- 19. (Z)-N-Carbethoxymethyl-(2',3',4'-tri-O-acetyl- β -D-xylopyranosyl)formamide oxime (11, R¹ = H, R² = Et): $\delta_{\rm H}$

(250 MHz, CDCl₃) 1.23 (3H, t, CH₃), 1.96, 1.97, 1.98 (9H, 3s, $3 \times COCH_3$), 3.28 (1H, dd, 5a'-H), 3.85 (1H, d, 1'-H), 4.07 (2H, d, CH₂), 4.06 (1H, dd, 5e'-H), 4.16 (2H, q, OCH₂), 4.85–5.02 (1H, m, 4'-H), 5.12–5.21 (2H, m, 2'-H & 3'H), 5.48 (1H, t, NH); J(X-Y)/Hz 1'–2' 9.8, 2'–3' 9.2, 3'–4' nd, 4'–5a' 10.2, 4'–5e' 5.5, 5a'–5e' 11.5, CH₂–NH 5.8; δ_C (63MHz, CDCl₃) 14.5 (CH₃), 21.0 (3 × CH₃), 44.7 (CH₂), 61.7 (OCH₂), 67.1 (C-5'), 68.9, 69.1, 73.6 (C-2',C-3',C-4'), 76.9 (C-1'), 148.1 (C=N), 170.1, 170.2, 170.5, 170.7 (4 × C=O). FAB-HRMS [M + H]⁺ calculated for C₁₆H₂₄N₂O₁₀: 405.15092; found: 405.15194.

- 20. 3-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-1,2,4-oxadiazin-6-one (12, R¹ = H): mp 165°C (decomp.) (from hexane-EtOAc). δ_{H} (250 MHz, CDCl₃) 1.98, 1.99, 2.00 (9H, 3s, $3 \times \text{COCH}_3$), 3.37 (1H, dd, 5a'-H), 3.94 (1H, d, 1'-H), 3.95 (2H, s, CH₂), 4.14 (1H, dd, 5e'-H), 4.93 (1H, ddd, 4'-H), 4.98 (1H, dd, 3'-H), 5.26 (1H, t, 2'H), 5.61 (1H, br s, NH); $J(X-Y)/\text{Hz} 1'-2' 9.7, 2'-3' 9.4, 3'-4' 9.9, 4'-5a' 10.3, 4'-5e' 6.2, 5a'-5e' 11.6; <math>\delta_{C}$ (63 MHz, CDCl₃) 20.4 (3 × COCH₃), 40.2 (CH₂), 66.5 (C-5'), 68.4, 69.1, 71.7 (C-2',C-3',C-4'), 74.9 (C-1'), 150.4 (C=N), 164.6 (C=O), 169.7, 169.8, 170.1 (3 × C=O). FAB-HRMS [M + H]⁺ calculated for C₁₄H₁₈N₂O₉: 359.10906; found 359.10950. The structure of oxadiazinone 12 has been confirmed by X-ray crystallography (Parsons, S.; Paton, R. M.; Smellie, I. A. S. unpublished observations).
- Hussein, A. Q.; El-Abadelah, M. M.; Sabri, W. S. J. Heterocycl. Chem. 1984, 21, 455-459.
- 22. Sauve, G.; Rao, V. S.; Lajoie, G.; Belleau, B. Can. J. Chem. 1985, 63, 3089-3101.