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Abstract 

1,3 -Nucleophilic  addition reactions of thiols and amines with pyranosylnitrile oxides 

have been employed in the synthesis of C-glycosides. The nitrile oxides were 

generated by base-induced dehydrochlori nation of the corresponding hydroximoyl 

chlorides 106 and 107. 

D-Glucose derived hydroximoyl chloride 107 was prepared in four steps from D-

glucose and employed in collaborative work toward the synthesis of glucosinol ate 

analogues. Reactions of alkyl and aryl thiols with D-xylose nitrile oxide 151 afforded 

a series of desulfoisoglucosinolates in 55-76% yields. 

Reactions of alkyl and aryl amines with the D-xylose and D-glucose derived nitrile 

oxides 151 and 115 under basic conditions afforded the corresponding Z-

amidoximes. For example, (Z)-N-benzyl-(2,3 ,4,6-tetra-O-acetyl--D-

glucopyranosyl)formamide oxime (137) was prepared from 107 and benzylamine in 

88% yield. 

The addition of amino acid derived nucleophiles was also investigated. Reaction of 

the D-xylose and D-glucose nitrile oxides 151 and 115 with L-cysteine derivative 

147 under basic conditions afforded thiohydroximates 148 and 150 in high yield. 

Reaction of the D-xylose nitrile oxide 151 with glycine, L-leucine and L-

phenylalanine esters initially afforded amidoximes 152, 155 and 161. Cyclisation of 

152, 155 and 161 to form 1,2,4-oxadiazin-6-ones occurred on exposure to silica or 

prolonged standing. Employing L-proline benzyl ester as the nucleophile led to the 

formation -of predominantly oxadiazinone 163. Attempts to synthesise pyranosyl-

1 ,2,4-oxathiazin-6-ones were not successful. 

6-Amino-6-deoxy- 1,2:3 ,4-di-O-isopropylidene-a-D-galactopyranose hydrochloride 

was prepared from D-galactose in 4 steps, and reaction with D-xylose and D-glucose 

derived nitrile oxides 151 and 115 afforded (1—+6) amidoxime linked pseudo-

disaccharides 178 (81%) and 181 (75%). D-Xylose and D-glucose amines 182 and 

183 were prepared from the parent aldoses in 5 steps. Reaction of these amines with 
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D-xylose and D-glucose nitrile oxides 151 and 115 yielded a series of (1—+1) 

amidoxime linked pseudo-disaccharides (31-49% yields). Deprotection of 184 was 

achieved under basic conditions. 

Reaction of o-phenylenediamine, o-aninothiophenol, o-aminophenol with D-glucose 

nitrite oxide 115 gave access to the corresponding benzimidazole 218, benzothiazole 

215 and benzoxazole 221 in high yields (71-85%). Similarly, reaction with D-xylose 

nitrile oxide 151 afforded the corresponding xylose benzazoles (68-90%). 

Deprotection of the pyranosyl benzazoles was achieved under basic conditions. 2-

(2,3 ,5-Tri-O-benzoyl-3-D-ribopyranosy1)benzoxazole (241) and 2-(2,3 ,5-tri-O-

benzoyl-f3-D-ribopyranosyl) benzimidazole (242) were prepared similarly in 92 and 

90% yields respectively. Deprotection of 241 under Zemplen conditions led to an 

anomeric mixture (13 :a, 62:38) of products. Deprotection of 242 on the other hand, 

gave exclusively 2--D-Ribofuranosy1benzimidazole in 91% yield. 

Reaction of 1 ,8-diaminonapthalene with D-xylose derived nitrile oxide 151 at room 

temperature (16 hours) afforded perimidine 259 in 60% yield. Perimidines derived 

from D-glucose, D-mannose and D-galactose were prepared similarly (55-65%). 

Attempts to repeat the reaction at elevated temperature lead to the formation of 

glycal products 258 and 261. Glyceraldehyde derived hydroximoyl chloride 265 was 

prepared in 4 steps from D-mannitol and afforded perimidine 264 under the 

conditions described above in 61% yield. 
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1. Introduction 

1.1 Foreword 

The work presented in this thesis investigates the application of nitrile oxide 

chemistry as part of a route to novel C-glycosides. The synthesis of C-glycosides is 

of great interest due to their importance in biological systems. 1,2  The strategy exploits 

the ability of nitrile oxides to undergo 1,3-addition reactions with a range of 

nucleophiles. This introductory section briefly reviews general aspects of nitrile 

oxide chemistry, the remaining sections cover applications of 1 ,3-nucleophilic 

reactions of nitrile oxides in the synthesis of thiohydramates (specifically 

glucosinolates and their analogues), amidoximes and 5- and 6-membered 

heterocycles. 

1.2 Nitrile oxide chemistry overview 

1.2.1 Nitrile Oxides: Background 

Nitrile oxides are a member of the nitrilium betaine class of 1,3-dipoles. The 

existence of nitrile oxides has been known for over 200 years. Mercury and silver 

fulminate salts (formonitrile oxide salts) were described by Howard ca 1800 and 

benzonitrile oxide has been known since l894. The general nitrile oxide structure 

was first proposed by Ley in 1899, but not finally elucidated until IR experiments 

were conducted in the mid 1960s. 6  

1,3-Dipoles are three-atom, 4-2t electron systems, which have an overall neutral 

charge. They are divided into two, classes. 7  The allyl class have three sp 2-hybridised 

atoms, which allow a single 2t-bond and have a bent structure. The propargyl-allenyl 

class possess an additional orthogonal it-bond between two sp-hybridised atoms and 

are therefore linear. Both structural classes are further subdivided according to the 

nature of the X, Y and Z atoms. 
+ 

	

+ - 	 V 

	

XEY—Z 	 X .:I•. Z_ 

Propargyl-Allenyl Dipole 	Allyl Dipole 
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1,3-Dipolar species such as nitrile oxides are normally represented as having a 

zwitterionic structure. They are more accurately represented by a resonance hybrid of 

octet, sextet, diradical and carbene forms (Scheme l).8.9  A great deal of work has 

been conducted in the field of nitrile oxide chemistry over the last 40 years; a number 

of texts that provide detailed discussions of nitrile oxide structure and reactivity are 

available. 8-12 

	

RCEN—O 	 RCNO 	 RC=N-0 

- 	+ 

	

RC=N-0 
	

RC—N=O 	 RC=N-0 

Scheme 1 

1.2.2 Nitrile Oxides: Generation 

Like many 1,3-dipoles, nitrile oxides 1 are very reactive and are consequently rarely 

isolated; generation normally takes place in situ in the presence of the co-reactant. 

The key problem in the isolation of nitrile oxides is their ability to dimerise to form 

1,2,5-oxadiazole-2-oxides 2 13,14  (furoxans) (Scheme 2). It should be noted, however, 

that those with bulky substituents do not readily dimerise and are therefore isolable. 

Over the years a number of generation strategies have been devised,' 2" 5  the 

precursors are most frequently aldoxime derivatives 5-8 8,9,15  or nitro compounds 3 
8,9,16 (Scheme 2). 

The thermal cycloreversion of furoxans 2 also results in the formation of two nitrile 

oxide molecules. 13  This reaction is not frequently employed in synthetic strategies 

since high temperatures are usually required (200 0 C). Furoxans with bulky 

substituents' 8  and ring strained furoxans' 9  are observed to undergo cycloreversion at 

slightly lower temperatures. 
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One of the most widely employed strategies is the Mukaiyama dehydration  16  of 

primary nitro compounds 3. The reaction is base catalysed and usually employs an 

isocyanate as a dehydrating agent to generate the nitrile oxide. A variety of 

dehydrating agents have been. employed; these include t-Boc anhydride,  17  acid 

chlorides  ,20  phosphorous oxychloride, 2 ' p-toluenesulfonic acid 22  and DAST. 23  A 

recent publication has reported that Mukaiyama type dehydration takes place under 

microwave irradiation in the presence of 4-(4,6-dimethoxy[ 1,3 ,5]triazin-2-yl)-4- 

methylmorpholonium chloride (DMTMM). 24  Nitro substituted alkenes 4 are also 

known to afford nitrile oxides on treatment with organolithium compounds, Grignard 

reagents or titanium tetrachloride. 25,26 

A number of nitrile oxide generation strategies involve aldoximes 5 or their 

derivatives as precursors. The most widely used route proceeds via base  27 -30  or 

thermally  3 ' induced dehydrohalogenation of hydroximoyl halides 6. The 

hydroximoyl halide precurors are produced from the oxime by direct halogenation 32 

or treatment with N-chlorosuccinimide 33  or N-bromosuccinimide. 34  Hydroximoyl 

chlorides have also been reported to yield the corresponding nitrile oxide on 

treatment with silver(I) acetate.  35  Routes based on other aldoxime derivatives have 
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been reported, these include nitrolic acids 7 36,37  and a-hydroxyimino carboxylic 

acids 8.38 

Oxidation of aldoximes themselves can also yield the corresponding nitrile oxide. 

Employing alkaline sodium hypochlorite 39  or tBuOCl4°  as the oxidising agent affords 

the respective hydroximoyl halide in situ, which may then spontaneously 

dehydrohalogenate under the basic conditions. A number of other agents are known 

to afford nitrile oxides from aldoximes; these include chloramine-T 4 ' manganese 

dioxide ,42  lead tetraacetate 43  and iodosylbenzene. 44  

A completely novel strategy, that employs O-silylated hydroxamic acid precursors 9 

has recently been reported by Carreira et al.45  Treatment of the O-silylated 

hydroxamic acid with triflic anhydride leads to an activated intermediate 10 which 

may undergo de-silylation and C-O bond scission to afford the nitrile oxide 1 

(Scheme 3). 

SO2CF3 	 - 

R 	

Tt20, NEt3 	(0 	 -OTf 	 + - 

N °"SItBu Ph 	 ). 0 	 R-CEN-O 
R UNb SitBuPh2 	.TfOSitB u Ph2  H 	

2 

9 	 10 

Scheme 3 

1.2.3 Nitrile Oxides: Reactions 

The reactive character of nitrile oxides allows them to undergo a number of varied 

reactions (Scheme 4). Generation of nitrile oxides in the absence of any 

dipolarophile leads to the coupling of two molecules of nitrile oxide. The products of 

such reactions may be furoxans 2, 13,14 1,2,4-oxadiazole-4-oxides 11 or 1,4,2,5-

dioxazidines 12.14  The furoxan products are well known and are potential synthetic 

targets . 46  Furoxan formation is also found as a side reaction in cycloadditions of 

nitnle oxides with less reactive dipolarophiles.' 3  Nitrile oxide dimerisation is 2' 

order in [RCNO] whereas cycloaddition with dipolarophiles is 1 order. 47  

Dimensation may therefore be limited by in situ generation of nitrile oxides, since 

the concentration of dipole relative to dipolarophile remains low. 

El 



13 
R 

R 	
N ,Y 

R O. lit, 	 A 	 1N N ,Y 
'0 	 I  

x=v 	
N 

I / OR 
14  12 

+ - 
R—CEN—O 

R 	R 

N N 
0 0- 

2 

Scheme 4 

Nu 
NOH 

R 
16 

R—NC=O 

15 

/NuH 
R ,,O 

N' 0 R 

The most frequently exploited reaction of nitrile oxides is the 1,3-dipolar 

cycloaddition with alkenes and alkynes (where X=Y=C). 8 ' 9  The products of such 

reactions are isoxazolines 13 and isoxazoles 14 respectively; the former are 

frequently employed in natural product synthesis 48,49  and the latter are currently 

important subjects in the emerging field of "click" chemistry. 50"5 ' 1,3-Dipolar 

cycloadditions with C=N, C=O, C=S and CEN dipolarophiles are also well known. 8 ' 9  

Nitrile oxides also rearrange to isocyanates 15 at temperatures in excess of 1 1O0C .s 9  

1.2.4 1,3-Addition reactions 

The 1,3-addition of nucleophiles to nitrile oxides to afford substituted oximes 16 is a 

less well-known, yet valuable reaction. 8 ' 9  A large variety of nucleophiles undergo 

1,3-additions to nitrile oxides (Scheme 5). Hydroximoyl chlorides are the most 

convenient nitrile oxide precursors in 1,3-additions since Mukaiyama type conditions 

do not tolerate nucleophiles 52  and the nitrile oxide concentration may be more readily 
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controlled to limit furoxan formation. Arguably the most studied adducts to date have 

been the thiohydroxamates 17 and amidoximes  54.55 
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Scheme 5 

1.2.5 Mechanism of 1,3-addition reactions 

The reactivity of nitrile oxides with nucleophiles stems from the electrophilicity of 

the nitrilic carbon atom, indeed nitrile oxides may be considered as analogous to 

nitrilium cations.  56  An interesting facet of the 1,3-addition reactions is that they are 

stereospecific for the Z-oxime 19 (kinetic) product in all cases, despite the fact that 

many of the E-products 20 are thermodynamically favoured  .54,56 -66  The formation of 

the Z-oxime is thought to be stereoelectronically favoured; the entering nucleophile 

and the nitrogen lone pair of electrons adopt a favourable antiperiplanar arrangement, 

which forces the OH group and nucleophile to be cis to each other. 

me 
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The specificity of the reaction explains a number of observations that could 

previously not be fully rationalised. For example addition of carboxylates to nitrile 

oxides (Scheme 5) does not form the expected oxime derivative 22, instead as soon 

as the initial adduct is formed it undergoes a 1,4-acyl migration to form a 
57 hydroxamate ester 23.A second key observation is that addition of azide ion to a 

nitrile oxide affords exclusively Z-azidoxime 24; if any E-isomer was formed it 

would be expected to cyclise to the corresponding N-hydroxytetrazole, and a mixture 

of products should therefore be observed. 

Although the stereochemical outcome of nucleophilic additions is not in doubt there 

has been some debate as to the mechanistic origins of this specificity. The debate has 

centred on whether the reaction proceeds in a concerted or a stepwise manner. Work 

conducted in the mid-1980s by Sharma and Aggarwal 64 '65  concluded that the 

reactions of formonitrile oxide and acetonitrile oxide with methanol proceeded via a 

stepwise addition through two discrete transition states (TS1, TS2, Scheme 6). The 

findings of this study were based on semi-empirical MNDO calculations. 
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Hegarty and co-workers 54  have proposed that the 1,3-addition reactions proceed via 

an asynchronous concerted process (Scheme 7). As the nucleophile approaches the 

nitrile oxide, the dipolar species undergoes heavy-atom rearrangement in a trans 

fashion, thus establishing the Z configuration. Proton transfer is then believed to 

occur without having to overcome any energy barrier. Hegarty's conclusions are 

based on ab initio calculations concerning the additions of water, ammonia and 

methanol to formonitrile oxide. At present, Hegarty's work appears to have been that 

accepted, and no subsequent report has so far challenged his findings. 

R R-C'—O 	 R 

+ 	 " 	
Nu 	OH Nu -- 

NuH 	 H 

Scheme 7 

It was stated above that additions of nucleophiles to nitrile oxides proceeded under 

kinetic control to afford exclusively Z-configured products. It is known, however, 

that amidoximes produced by such reactions can be obtained only as E-configured 

products. 5963  Z versus E specificity has been found to be dependent on the nature of 

the amine nucleophile. These observations appear to contrast with the theory 

described previously, and it is therefore necessary to account for this apparent 

exception. Addition of ammonia or primary amines leads to only Z-adducts as 

isomerisation of such adducts is difficult due to hydrogen bond stabilisation by the 

"amido" type N-H bond and the oxime oxygen. 62  X-Ray crystallographic studies 

clearly demonstrate such bonding in non and mono-N-substituted amidoximes due to 

the adoption of a Z-antiperiplanar (Zap) or "S-trans" configuration, where the amidic 

N-H bond faces the oxime OH. 62 ' 66' 67  In contrast, Z configured NN-di-substituted 

amidoximes cannot be stabilised as above, and over time isomerise to the 

thermodynamically favoured E-antiperiplanar (Eap) oxime. 

N. 



H. 

N 
	

Iii 

RH 	
N° 
	 01 

N 
N  

10 	
RN 	 R- N 

Zap 	 Zap 	 Eap 

Z to E isomerisation is promoted by acid and indeed is >10 5  times faster6 ' than in 

neutral conditions, the proposed isomerisation mechanisms are illustrated in Scheme 

8. 
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1.3 Glucosinolates: A natural class of thiohydroximates 

1.3.1 Glucosinolates: Background 

Glucosinolates are a naturally occurring class of thiosaccharides that are isolated 

from all members of the botanical family Cruczferae.687 ' A number of familiar 

brassica crops such as oilseed rape, cabbage, Brussels sprouts and numerous 

mustards derive their characteristic flavours from the breakdown products of 

glucosinolates. Glucosinolates are broken down by the enzyme myrosinase (EC 

3.2.3.1) to produce a range of degradation products (refer to Scheme 9)6871  The 

most important of these are isothiocyanates (mustard oils). Glucosinolate-derived 

isothiocyanates possess a range of biological activities; these include toxic, anti-

nutritional, goitrogenic, anti-carcinogenic, anti-fungal and anti-bacterial effects in a 

wide range of mammals (including humans). 687 ' Some glucosinolates are also of 

interest themselves due to the role they play in host-plant recognition and as egg-

laying stimulants for bras sica-adapted insects. 72,73 

All glucosinolates conform to the general structure 27. The structure consists of three 

fragments: a 3-D-glucopyranose unit, an 0-sulfated thiohydroximate bridge and an 

aglycon side-chain (R) that varies according to biological origin (Table 1).6871 

OH R 

H9\i 
OH 

27 
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Glucosinolate Occurrence Side chain (R) Biosynthesis from 

Sinigrin Black mustard 

seeds (Brassica 2-Propenyl- Homomethionine 

nigra) 

Sinalbin White mustard 

seeds (Sinapis p-Hydroxybenzyl- Tyrosine 

alba) 

Gluconapin Rapeseed 3-Butenyl- 

(Brassica napus) 

Glucobrassicanapin Rapeseed 4-Pentenyl 

Glucotropaeolin Garden cress Benzyl- Phenylalanine 

(Lepidium 

sativum) 

Gluconasturtiin Watercress 

(Nasturtium Phenylethyl- Homophenylalanine 

officinale) 

Table 1: Selected examples of naturally occurring glucosinolates 

1.3.2 Glucosinolate Hydrolysis 

Myrosinase is a naturally occurring 3-thioglucosidase enzyme that is found in all 

known Cruciferae.758 ' It is the only known enzyme that is capable of catalysing the 

hydrolysis and degradation of glucosinolates. Following hydrolysis, glucosinolates 

undergo spontaneous Lossen rearrangement to afford a number of degradation 

products (Scheme 9)•6870  The major products are isothiocyanates (28), nitnles (29), 

thiocyanates (30) (Path A) and oxazolidine-2-thiones (31) (where the aglycon 

contains a hydroxy group [Path B]). 68 ' 70  

11 



Path A 
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A 	s' 	Myrosinase 	 A 

R—N=C=S 	R—C=N 	R—S—C=N 

28 	 29 	30 

Path B 

RCS 	

RXO 

31 

Scheme 9 

In Nature the myrosinase and the glucosinolate substrate only come together if plant 

cells are physically broken by chewing, cutting or grating etc. 7 ' This response is 

believed to be a plant defence mechanism against herbivores. The breakdown 

products can be toxic and therefore pose problems to commercial farming. 73 '74  

Humans do not normally show toxic effects on eating glucosinolate-rich vegetables 

since cooking destroys myrosinase. 

1.3.3 Myrosinase: Mechanism of Action 

The mechanism of myrosinase catalysed glucosinolate hydrolysis has been subject to 

extensive study in recent years. 75-81 
 The hydrolysis process is believed to resemble 

the well-established mechanism of (retaining) family 1 O-glycosidases (Scheme 

10),76 however there are significant differences. A study by Botting et al 75 

established that myrosinase is incapable of facilitating transglycosylation. This 

phenomenon was unexpected since analogous O-glycosidases have long been known 

to mediate transglycosylation. 
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The catalytic site in myrosinase differs from family 1 O-glycosidases by not having 

two glutamic acid residues, in myrosinase the upper residue is not present . 77  Work 

with 2-deoxyglucotropaeolin as a myrosinase inhibitor led to a 2-step/double-pocket 

active site hypothesis being initially put forward for the hydrolysis mechanism 

(Scheme 11).78  
 The first step was believed to be cleavage of the S-glycosidic bond to 

form a covalent intermediate; a histidyl cation was supposed to play the role of the 

absent glutamic acid residue. The cleavage step was thought to precede an enzyme-

independent Lossen rearrangement of the newly formed thiohydroximate-O-

sulfonate to afford degradation products. The covalent intermediate was then 

believed to undergo histidine-catalysed hydrolysis. 
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Subsequent studies with 2-deoxy-2-fluoroglucotropaeolin allowed the resulting 

glucosyl-enzyme intermediate to be studied by X-ray crystallography.  79  The results 

of this work have led to a revised mechanism (Scheme 12) . 79  The crystal structure 

showed that the myrosinase active site contains a glutamine residue in place of the 

glutamic acid found in family 1 O-glycosidases, this finding confirmed results 

obtained by Henrissat et al.77  The glutamine residue assists substrate binding by 

forming a hydrogen bond to the sulfate group. Its most crucial role, however, is to 

position an incoming water molecule via hydrogen bonding for hydrolysis of the 

enzyme-substrate intermediate.  79  The water molecule requires a base to initiate 

hydrolysis, a task normally performed by a glutamate residue.  76  In this case L-

ascorbate is found to enter the active site on loss of the aglycon and performs the 

glutamate role by abstracting a proton from the positioned water molecule, thus 

initiating the final hydrolysis step.  79  The presence of ascorbate as a co-factor leads to 

a significantly different hydrolysis process to those outlined in Schemes 10 and 11. 

The involvement of ascorbate is not entirely surprising since it has previously been 

reported that myrosinase activity is increased in the presence of ascorbic acid. 75,79 
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The function of the sulfate group is still a matter of debate. The previous studies 

concluded that the role of the anionic group was to facilitate enzyme-substrate 

binding. Withers et a180  have proposed that the sulfate acts as a substrate bound acid 

catalyst, thus removing the need for enzymatic acid catalysis (Scheme 13). 

According to their proposal, the pendant sulfate would be protonated on entry to the 

active site, which would then enable spontaneous formation of the enzyme/substrate 

intermediate and subsequent hydrolysis. Withers et al also suggest that the anionic 

sulfate would lead to poor glucosinolate binding to an O-glycosidase type active site, 

and Nature therefore has removed one of the glutamic acid residues in myrosinase to 

allow improved substrate binding. 80 
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1.3.4 Synthesis of Glucosinolates 

1.3.4.1 Biosynthesis 

The biosynthesis of glucosinolates from amino acids has been studied since the early 

1970s, and the currently accepted sequence is outlined in Scheme 14.6870  The initial 

step involves P-450 mediated amine hydroxylation of an amino acid and subsequent 

decarboxylation to afford an aldoxime intermediate. The aldoxime then undergoes a 

poorly understood conversion to a transient thiohydroximic acid which is 

glycosylated with UDP-glucose; the resultant desulfoglucosinolate is finally sulfated 

by 3' -phospho-adenosine-5' -phosphosulfate (PAPS). 
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1.3.4.2 Chemical Synthesis of Glucosinolates 

Over a hundred glucosinolates have been isolated from Nature and many are of 

interest on account of their biological activity. 68,69  To date, extraction procedures 

have been proven to be problematic and tedious in many cases; therefore synthetic 

approaches to natural 82-89  and unnatural 90-97  glucosinolates have been pursued. 

Pioneering work in the field was conducted by Ettlinger and Lundeen 82  in the late 

1950s. They first prepared glucotropaeolin (32) (benzyl glucosinolate) by coupling 

phenylacetothiohydroxamic acid (33) with acetylated bromoglucose (34) and 

sulfating the resultant adduct (35) (Scheme 15). The sulfated adduct was 

deacetylated in methanolic ammonia to yield glucotropaeolate 32. This initial work 

accomplishes the key glucose-sulfur bond in a similar manner to the natural 

synthesis. 
OAc 

NHOH 
Ac 	 S_ 

+ 	

(a) 
4 OAc 

Br 

34 	 33 

(b) 
 j 

OAc 	 OH 

(c), (d) 
Oft OH 

N 
HO K03S0 

	

35 	 32 

Scheme 15: (a) NH 20H.HCI, H 20 (b) KOH, MeOH (c) S03-Pyridine, (d) NH 3/MeOH 
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A nitnle oxide based strategy for glucotropaeolin synthesis was first accomplished 

by Benn 83 ' 84  in the early 1960s (Scheme 16). The key step in the strategy is a 1,3-

addition of 2,3 ,4,6-tetra-O-acetyl-3-D-glucopyranosylthiol (36) to phenylacetonitrile 

oxide (37) to afford thiohydroximate product 35. O-Sulfation of the adduct with 

sulfur trioxide/pyridine and subsequent deacetylation afforded the desired 

glucosinolate 32. 

OAC 	 OAc 

OAc 	 OAc 
36 	 o 

+ 	- 	 OH 	HO"  

(a) 	N 

c* 
Bn 	 Bn 	CI 	

35 

37 

OH 

(b), (c) 	H9 s 

OH 

KOSO 

32 

Scheme 16:(a) NEt3 , Et20 (b) S03-Pyridine, KHCO3  (c) NH 3/MeOH 

The nitrile oxide based strategy has proved versatile and has been the most widely 

exploited, indeed Benn, 83 ' 84  Rollin,8589  Botting72 '73  and others53  have employed and 

extended the nitrile oxide route in the synthesis of a large number of natural and 

unnatural glucosinolates. The reasons for this are 3-fold; the 1,3-addition of thiols to 

nitrile oxides is stereospecific for the naturally occurring Z-isomer, 687°  the nitrile 

oxide precursors can be made by a number of methods, and the products may 

obtained up to a gram scale if required .53 

Berm 98  has also proposed a route to glucosinolates that does not require the 

generation of a nitrile oxide intermediate. A modified version of the Copenhaver 

reaction is employed (Scheme 17) to couple 2,3,4,6-tetra-0-acetyl-3-D-

glucopyranosylthiol (31) with trialkylsilyl nitronate 38 to yield the thiohydroximate 

product as a 2:1 mixture of Z (39) and E isomers (40). The E-isomer readily 

rearranges to the Z-isomer under thermal and photochemical conditions (eg exposure 

to visible light at room temperature). O-sulfation and deacetylation is achieved by 

using standard conditions. The reported advantage of this route is the ability to 

access unnatural E-glucosinolates. 
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Scheme 17: (a) S03-Pyridine, KHCO 3  (b) NH3IMeOH 



1.4 Amidoximes 

Amidoximes constitute a large class of oxime derivatives 55  that adopt the general 

structure 41 (Scheme 18). Lossen and Schifferdecker first reported the synthesis of 

an amidoxime in 187399  by addition of hydroxylamine to hydrogen cyanide. There 

are three common modem synthetic routes to amidoximes (Scheme 18); 55  they 

involve nucleophilic attack by hydroxylamines on nitriles (43) and thioamides (42), 

and 1,3-addition of amines to nitrile oxides (1). The nitrile oxide based route is 

particularly amenable to the synthesis of N-mono and NN-disubstituted amidoximes. 

Interest in amidoximes stems from a number of areas; work has primarily focused on 

medicinal applications, use as ligands for metals and heterocyclic synthesis. 

+ - 
R-CN-O 

(b) 

NOH 

R '  NR' 2  

41 

RNR 2 	 R-C=N 

43 
	

42 

Scheme 18: (a) NH20H (b) NHR' 2 (c) NR' 20H 

The most recent development in amidoxime synthesis is ready access to a-hydroxy 

variants (Scheme 19).b00  Addition of hydroxylamines and 1,1'-carbonyl-diimidazole 

(CDT) to cyanohydrins (44) results in the formation of 3-hydrox-4-imino-oxazolidin-

2-one (45) intermediates, which afford the target amidoximes (46) on treatment with 

sodium methoxide. 
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0 

OH 	
OANOR' 
	(c) 	

OH 

R'CN 	

(a), (b) 

A 	NH 	 NH, 

44 	 45 	 46 

Scheme 19: (a) H2NOR' (b) CDI (c) NaOMe 

1.4.1 Amidoximes: Bioactivity 

Compounds containing the amidine functional group possess a range of biological 

activity including inhibition of serine protease and nitric oxide synthase.' ° '' °3  

Amidine based drugs such as Lamifiban (47)104  serve as anti-thrombotic agents in the 

treatment of coronary heart disease. 

R = H = 47, R=OH 

The amidine group is strongly basic and is therefore protonated under physiological 

conditions. 105  The protonated species is not readily absorbed from the gastrointestinal 

tract and as a result the bioactivity of amidine therapeutics may be greatly reduced. 

Fortunately amidoximes are reduced to amidines in vivo, 105and amidoxime analogues 

of amidine containing agents have therefore been examined as pro-drugs.' 04  The 

mechanism of in vivo amidoxime reduction is the subject of continuing research, the 

currently proposed mechanism of reduction by b5, b5 reductase and a P450 

isoenzyme is presented in Scheme 20.105 
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Scheme 20 

Amidoximes are known to undergo nitric oxide synthase and P-450 dependent 

oxidative cleavage of the C=N(OH) bond ' °6111  (Scheme 21). The resultant product is 

nitric oxide, therefore interest in amidoximes as potential nitric oxide donors has 

recently arisen. This research is driven by the major role that NO plays in the 

cardiovascular, immune and central and peripheral nervous systems. 

NON 	 P450 	0 	

+NO 	
02 

' 	
NO2 , NO3  

R NH2 	NADPH/02  A 	NH, 

Scheme 21 

1.4.2 Amidoximes: Metal ligation 

Amidoximes exhibit similar behaviour to oximes in terms of their ability to bind to a 

number of metal species. Metal binding ,  normally takes place via the oxime nitrogen 

as is typical of most oximes, although in certain cases binding may take place 

through the oxime oxygenJ' 2"3  In general the amido nitrogen is not involved in 

metal binding, especially if there are other co-ordinating sites available on the ligand 

(48). A recent publication by Barybin et a1," 2  however, has demonstrated a chelating 

oximato ligand (49) that binds to Cr(IH) and Al(III) through the oxime oxygen and 

the amido nitrogen. 

21 



ML 	 Mes 	N 	NMe2  

H2N 	OH 

48 	 49 

Amidoximes are known to form complexes with Fe(III), Cr(III), Hg(ll), Pd(H), 

Os(II), Cu(II)" 3  and polyoxometalate ions' 4 ' 115  ( such as {M040,o(OMe)21 2 ), and 

they are primarily employed in the chelation of heavy metal ions for analytical 

purposes.55"3  Amidoximes have found wide application in the extraction of uranium 

(and other heavy metal ions) from seawater, indeed complexes with dioxouranium 

(UO2) are well known. 113 
 The ability of amidoximes to chelate metal ions has 

recently been exploited in the design of class II fructose- i ,6-bisphospate aldolase 

inhibitors (Scheme 22),' 16 
 such inhibitors are of interest in the design of antibiotics. 

Amidoxime 50 was prepared in an attempt to mimic of enolate transition state 51. 

0 	 OZfl2  

HO3PO)LOH 	- 
Aldolase 	

HO3PO,. 	,,,JOH 

51 

Scheme 22 

+ 

50 

1.4.3 Amidoximes: Synthesis of Heterocycles 

Amidoximes have found applications in heterocycle synthesis for a number of 

years. " 7 ' 24  Much of this work has been devoted to the preparation of 1,2,4-

oxadiazoles' (55); these are particularly useful compounds since they function 

as bioisosteres for esters and amides. Oxadiazoles are more stable than esters and 

amides and are therefore ideal for use in pharmaceuticals.' 17-119 

There are two routes to oxadiazoles from amidoximes (Scheme 23). The first 

involves the condensation of an activated carboxylic acid. derivatives (52) with an 

amidoxime (53), followed by cyclisation.' 17-119 
 The second route involves 1,3-dipolar 

cycloaddition of a nitrile oxide (1) onto the C=N bond of an amidoxime to afford a 

1,2,4-oxadiazole-4-oxide (54) . 

120 
Deoxygenation of the product with trimethyl 
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phosphite yields the desired 1 ,2,4-oxadiazole (55). The second route is not regularly 

employed since the product(s) are obtained in only moderate yields as a result of 

extensive by-product formation. 

NOH 

)LNN2 	
N°'f_R 	

P(OMe)3 	
N' 

N 	R  -'- 

C I 	 R 	 H 

R 	 54 	 55 

NON 	 0 

RNH2 	
+ 	

XR 

53 	 52 

Scheme 23: X = CI, Br, OR, OAc, OH 

Treatment of unsubstituted and morto-substituted amidoximes with thionyl chloride 

allows construction of 1,2,3,5-oxathiadiazoles (56),121 similarly reaction with 

phosgene derivatives affords 1,2,4-oxadiazol-5-ones (57) (Scheme 24).122  1,2,3,5-

Oxathiadiazoles have been examined as antihyperglycemic agents for the treatment 

of type 2 diabetes. 123 
 1,2,3,5-Oxathiadiazoles and 1,2,4-oxadiazol-5-ones have been 

shown to behave as tetrazole isosteres and are therefore of potential interest in 

pharmacetical design.' 24 

0 
II 

N'SSO 

- 

R"  

56 

0 

11 
N 

OH 	
Nç O X 

II  
A"  

57 

Scheme 24 

The products covered so far retain the RN-C=N-OR unit from the parent 

amidoxime. Recent work has been directed toward amidoximes as sources of 

amidine (R'NH-C=NR) containing heterocycles. Zard et a1125  have recently reported 

a conversion amidoximes to imidazolines and/or imidazoles (Scheme 25). The 

23 



method involves radical cyclisation of N-allyl-O-benzoylamidoximes (58). The key 

intermediate is believed to be an amidinyl species (59) and the cyclic product is an 

imidazoline (60) that can be converted to the corresponding imidazole (61) following 

an oxidation step. 

PhCO2 	

(a) 	
N 	r  I 	(b) 

Ph 	N 	 Ph 
Ph 	 Ph 

COPh 	 COPh COPh 	 COPh 

58 	 59 	 60 	 61 

Scheme 25: (a) Bu 3SnH, AIBN, A (b) Pd/C, i\ 

A similar conversion has been achieved by Abell and co-workers' 26  via a palladium 

mediated amino Heck reaction (Scheme 26). N-Allyl-O-

perfluorobenzoylamidoximes (62) undergo oxidative addition to Pd(0) to form an 

alkylideneaminopalladium intermediate (63). n-Hydride elimination initially leads to 

dihydroimidazole species (64) which then isomerises to the desired imidazole (65). 
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jH 
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Pd 
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Bn 	NJ 	 8n 
Bn 	 Bn 

65 	 64 

Scheme 26 

1.5 1,3-Nucleophilic Addition Reactions to Nitrile Oxides in Heterocyclic 

Synthesis 

As was seen in Section 1.2.3, nitrile oxides are frequently and effectively employed 

in the synthesis of heterocycles via 1,3-dipolar cycloaddition reactions. Nucleophilc 

addition reactions with nitrile oxides may also result in heterocyclic products via a 
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variety of addition-cyclisation processes.  127  A brief overview of the general 

approaches is presented here (Scheme 27). 

We 
011 

 

RY 

R—C
-

N-0
+   

OH 

+ N 	X 	 B 

V 	X 
R 	V 	 R 	V 

C~ 

R'-Q 
Scheme 27 

1.5.1 Addition-Cyclisation A: Nucleophilic attack by the oxime hydroxyl 

In pathway A (Scheme 27) group X represents an electrophilic carbon centre. 

Addition of a nucleophile bearing an alkyl halide, followed by cyclisation step 

affords an 1,2,4-oxadiazine (66) [as does addition of an aziridine, Scheme 28 (i)].' 28  

Similarly, addition of amine and thiol nucleophiles possessing a pendant ester group 

afford an adduct which may undergo cyclisation to form 1 ,2,4-oxadiazine-6-ones 

(67)129 and 1 ,4,2-oxathiazin-6-one products (68)' °"' respectively [Scheme 28 (ii) 

and (iii)]. Hussein and co-workers  132  have reported that addition of isocyanate and 

thiocyanate' 33  ions led to formation of 1,2,4-oxadiazol-5-ones (69) and 5-imino-

1,4,2-oxathiazolines (70) [Scheme 28 (iv) and (v)}. There is dispute as to whether 

isocyanate addition proceeds via a 1 ,3-nucleophilic addition or 1,3-dipolar 

cycloaddition.' 27  
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Scheme 28 

1.5.2 Addition-Cyclisation B: Nucleophilic attack by the oxime nitrogen 

atom 

In pathway B (Scheme 27) group X still represents an electrophilic centre, but the 

cyclisation occurs via the oxime nitrogen atom; two representative examples are 

illustrated here. Addition of aryl N-methylhydrazones to nitrile oxides' 34  initially 

forms the expected Z-oxime 71, however subsequent reactions are possible, 

including reversible cyclisation to 72, isomerisation to E-adduct 73 or nitroso 

compound 74 (Scheme 29). In the presence of silica, cyclisation to triazole (75) 

products occurs. 
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Mono-substituted amidoximes have been found to add to nitrile oxides to afford 

adduct 76, which on heating may lead to the formation of 1 ,2,4-oxadiazole-4-oxides 

(77) (Scheme 30). 135 

0 
R2 	NA3 	 A2 	NR 	 R2 Y RCNO 	 NOH 

N 	 ,!) )L 	JI 
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N_0/ 

76 	 77 

Scheme 30 

1.5.3 Addition-Cyclisation C: post 1,3-addition nucleophilic attack on 

the oxime group 

Pathway C (Scheme 27) differs from those above since X in this case is nucleophilic, 

and addition of ambident nucleophiles leads to the formation of oxime adducts (78) 

which undero attack by the remaining nucleophilic centre with the extrusion of 

hydroxylamine.' 27 o-Substituted anilines are known to afford the corresponding 
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benzazole products (79) via the described nucleophilic attack/extrusion process 

(Scheme 31).136 

N 

RN 
HI 

YH 

78 	 79 

Scheme 31: Y = NH, S, 0 

A related example has been reported in the ring expansion of isoxazol-5-ones (80) to 

1,3-oxazin-6-ones (81),137  however the extruded species in this case is not 

hydroxylamine (Scheme 32). Nucleophilic attack on benzonitrile oxide leads to 

adduct 82, which may itself react with a further equivalent of nitrile oxide to form 

intermediate 83. The isoxazolo oxygen atom is belived to add to the C=N bond of 83 

to form shortlived 84, collapse of which leads to formation of the product (81), 

benzonitrile and nitrous acid. 
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1.5.4 Addition-Cyclisation D: 1,3 additions with functionalised nitrile 

oxides 

Examples have been reported of nucleophilic addition of ambident nucleophiles to 

nitrile oxide precursors containing good leaving groups. 127  Cyclisation may occur on 

generation of nitrile oxide and subsequent intra-molecular addition. The example 



illustrated in Scheme 33 involves addition of thioureas to chioro-substituted 

hydroximoyl chloride 85, and cyclisation to the 5-membered product 86 . 63  
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Scheme 33 
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2. Results and Discussion 

The main objective of the present work has been to explore the synthetic potential of 

the 1 ,3-nucleophilic addition reactions of pyranosyl nitrile oxides. Additions of thiols 

have been employed in the synthesis and evaluation of new myrosinase inhibitors. 

Addition of amines has been applied in the synthesis of novel carbohydrate derived 

amidoximes, benzazoles and perimidines. 

2.1 Synthetic Strategy 

The 1,3-dipolar cycloaddition reactions of pyranosyl nitrile oxides have previously 

been employed in the synthesis of heterocyclic C-glycosides, ' 38" 39  including 

pyranosyl isoxazolines (Scheme 34, path A). It was anticipated that pyranosyl nitrile 

oxides would also be able to undergo 1 ,3-nucleophilic addition reactions, and hence 

provide routes to novel glycosyl oximes (path B) and glycosyl benzazoles (path Q. 
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Scheme 34 

Several synthetically useful routes are available for the generation of nitrile oxides 

(Section 1.2.2). Reliable and efficient routes to pyranosyl nitrile oxides have been 

developed within the group in recent years (Scheme 35)52140 

Pyranosylnitromethanes (87) are convenient sources of the corresponding aldoximes 
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(88),52 these in turn may be efficiently transformed into hydroximoyl chlorides 

(89)' °  and the hydroximoyl chloride may be dehydrohalogenated in the presence of 

base to generate the required nitrile oxide (90). The final stage is addition of the 

chosen nucleophile to the freshly generated nitrile oxide. 66 
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Scheme 35 

It was hoped to demonstrate the utility of the methodology by extending it to other 

carbohydrate scaffolds, many other sugar derived nitrile oxides are known.' 38  It was 

decided that D-glyceraldehyde derived nitrile oxide 91 and D-ribose derived nitrile 

oxide 92 would be suitable for such studies, since preparations for both had already 

been described. 141,142  It was also necessary to employ an easily synthesised nitrile 

oxide for pilot reactions. Benzonitrile oxide 93 was chosen on account of its ease of 

access from commercially available starting materials. 143 

-N 
- 	 BzO()C 	

!IIII1 BzO' 	'OBz 
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2.2 Synthesis of Pyranosylnitrile Oxide Precursors 

2.2.1 Synthesis of Pyranosylnitromethanes 

2.2.1.1 3,4,5-Tri-O-acetyl--D-xyIopyranosyInitromethane (95) 

H OH 	o 
HOH2C 	

/< 	

(a), (b) 	
Ac '_°\CHO 

OH 	OH H 	 OAc 

94 	 95 

Scheme 36: (a) H3CN02, NaOMe/MeOH (b) Ac 20, TfOH 

3,4,5-Tri-O-acetyl--D-xylopyranosy1nitromethane (95) was prepared via a modified 

version of the general procedure reported by Koll for the synthesis of 

pyranosylnitromethanes (Scheme 37). The first stage is a nitroaldol (Henry) reaction 

between nitromethane and the open chain form of D-xylose (94). Dissolving metallic 

sodium in anhydrous methanol generated sodium methoxide, which was used to 

deprotonate nitromethane to form its nitronate anion. The aldehyde group of the 

xylose underwent nucleophilic attack by the nitronate anion to generate a nitroalditol 

(96) intermediate. Sodium ions were removed from the product liquor in an ion-

exchange column and residual methanol was removed in vacuo. Reflux of the 

resultant aqueous solution resulted in dehydration of the nitroalditol to form the a,-

unsaturated nitro compound (97). Nitroalkene 97 acts as an acceptor in the final step, 

which is an intramolecular Michael addition.' 45 
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Scheme 37 

The unprotected product (98) was acetylated in order to prevent free hydroxyl groups 

interfering with any of the later reaction steps and to make handling easier. 

Protection was achieved by dissolving a concentrate of the unprotected sugar in 

distilled acetic anhydride, adding a catalytic amount of triflic acid before heating the 

mixture under reflux. Triflic acid is employed as a catalyst in this procedure rather 

than the traditional basic conditions in order to avoid deprotonation a to the nitro 

group, and thus any potential side reactions. 

Excess acetic anhydride and acetic acid by-product were removed in vacuo and the 

product obtained on crystallisation of the concentrate from ethanol. The product was 

isolated as white needle-like crystalline solid in moderate yield (40%). 'H NMR 

spectroscopy indicated that the product (95) was obtained as the -anomer and in the 

5C2 conformation. The vicinal coupling constants involving ring protons H 2-H5  all 

fall in the range 9-11 Hz and are consistent with the p 5C2 conformation (Table 2). 

The -anomer is favoured over the a-anomer since the nitro methyl group is bulky 

and therefore adopts the more favourable equatorial position on cyclisation.1 44  'H 

and ' 3C NMR spectroscopy did not indicate that any of the a-anomer, starting 

material or nitroalditol were present. 
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H 5  

AcO 

 

H34 

 AcO 

I 	OAcj 
H4 	H2  

95 

Coupling J / Hz 

H2-H3  10.6 

H3-H4  9.2 

H4-H5  9.4 

Table 2: Vicinal coupling constants for nitromethyl sugar 95 

2.2.1.2 3,4,5,7-Tetra-0-acetyI-3-D-gI ucopyranosylnitromethane (99) 

3,4,5 ,7-Tetra-O-acetyl-f-D-glucopyranosylnitromethane (99) was prepared from D-

glucose in 20% overall yield by the approach described above (Section 2.2.1). 

Previous work 146 
 has demonstrated that the intermediate nitro sugar cannot be 

efficiently acetylated in situ; the free sugar was therefore isolated by liquid/liquid 

extraction before the protection stage. 

During the course of this work, an alternative route to unprotected D-glucose and L-

fucose derived pyranosylnitromethanes was reported by Gross et al. 147 This method 

differs from that above by employing DBU as base and pyridine as solvent. The 

reported reaction time is slightly shorter than Koll's procedure and the yields 

obtained are higher (50-60%). It is unclear, however, whether the reaction may be 

applied to as wide a range of aldoses as Kol1s method. 
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2.2.2 Synthesis of pyranosylaldoximes 

Several routes to pyranosylaldoximes have been reported in the last 40 years, many 

of which require a number of steps and were considered unattractive. The procedure 

chosen was developed by the group 52  and is based on a study by Bartra et al. 148 

Bartra's work demonstrated that primary and secondary nitro compounds may be 

reduced in the presence of a tin (II) complex to their corresponding oximes. 

PhSH 
SnCl2  
NEt3 	

\i>_CH=NOH 

Scheme 38 

The reducing species in this instance is believed to be the stannate complex 

[Sn(SPh) 3][Et3NH] that is readily generated in situ by mixing a solution of tin(II) 

chloride, thiophenol and triethylamine. The reducing species is believed to be in a 

rapid equilibrium with the starting reagents since attempts to isolate the complex 

have been unsuccessful. 141 

SnCl2  + 3PhSH + NEt3 	. 	 [Sn(SPh) 3][NHEt3] + 2HCI 

Scheme 39 

The proposed mechanism 148  for nitro group reduction is illustrated in Scheme 40. 

Primary and secondary nitroso intermediates are found to rapidly adopt the oxime 

tautomer, while tertiary nitroso species undergo further reduction to the 

corresponding hydroxylamine product. 
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The above procedure was employed in the synthesis of the pyranosyl oximes (100), 

(101) and (102) from D-xylose, D-glucose and D-mannose. 
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The respective pyranosylnitromethanes were treated with tin(II) chloride, thiophenol 

and triethylamine to afford the aldoxime products as white solids after separation 

from tin-based by-products by dry-flash chromatography. The reaction was found to 

proceed in good yields (69-86%) and the products were obtained as a mixture of E 

and Z isomers (Table 3). 

.....OH 

H ' R 

HO,.,... 

H'R 

2-Isomer E-Isomer 

Aldoxime % Yield E: Z isomer ratio 

100 86 4:1 

101 69 4:1 

102 
77 

2:1 

Table 3: Pyranosylaldoxime E:Z ratios 

The 'H NMR spectra of the aldoxime products showed characteristic signals for the 

E and Z isomers and therefore allowed the E:Z ratio to be determined; 3,4,5 -tri-0-

acetyI--D-xy1opyranosyIformaldoxime (100) serves as convenient example. The 'H 

NMR spectrum contains doublets at 6.63 ppm and 7.22 ppm that correspond to the 1-

H protons of the Z-isomer and E-isomer respectively. Broad singlets are observed at 

8.62 ppm and 8.88 ppm for the OH proton of the E-isomer and Z-isomer 

respectively. The assignment of geometry was based on literature values 52  and NMR 

studies by Phillips 149  and Lustig. 150  Phillips has proposed that the cis arrangement of 
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the 1-H proton to the oxime oxygen atom induces a paramagnetic (downfield) shift 

of the 1-H (E-isomer) signal relative to the 1-H (Z-isomer) signal. 

During the course of this work there have been two significant developments in the 

field. Somsak and Toth reported a route to pyranosylaldoximes from the 

corresponding nitriles;' 5 ' this process is outlined in detail in section 2.7.2.3. In a 

more general case, Carreira et al 152  have very recently reported a route to alkyl 

aldoximes from primary nitro compounds. This method is based on the Komblum 

type oxidation of benzyl bromides to aldehydes by reaction with nitronate anions. In 

the future, application of this latter reaction might be advantageous in the synthesis 

of pyranosyl aldoximes since it does not lead to the formation of potentially toxic tin 

by-products. 

2.2.3 Synthesis of pyranosyl hydroximoyl chlorides 

There are two main routes to hydroximoyl chlorides from aldoximes, direct 

chlorination 32  or a treatment with a "Cl" source such as N-chlorosuccinimide 

(NCS).33  Direct chlorination is a fairly harsh method, but usually allows 

straightforward purification. Chlorination of aldoximes is achieved by bubbling 

chlorine gas through a cooled (-78 0 C) solution of the substrate in ether or 

chloroform. 

The mechanism of the reaction is understood to be a SE2' process 7  and involves 

transient nitroso (103) and dimeric (104) intermediates (Scheme 41). 
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Scheme 41 

The nitroso intermediate 103 is believed to be responsible for the characteristic green 

and blue solutions that are observed over the course of the reaction. 53  The blue colour 

is due to a strong absorbance at 320 nm that arises from an N=O, t-ir electron 

transition. 53  On warming to room temperature the colour disappears indicating that 

the chloro-oxime (105) tautomer has been formed. The products were isolated as 

white solids on removal of the solvent in vacuo and did not require further 

purification. The D-xylose (106), D-glucose (107) and D-mannose (108) derived 

products were obtained in 96, 98, and 99% yields respectively. 
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Although it is theoretically possible to obtain E and Z isomers from this reaction only 

a single OH signal in the 'H NMR spectra was observed for each product. Work by 

Hegarty56  predicts that the Z-isomer is stereoelectronically favoured due to the 

antipenplanar relationship between the chlorine atom and the lone pair of electrons 

(compare with section 1.2.5). It is important to note that the Z-isomer is reported to 
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undergo base induced dehydrohalogenation Ca. 107  times faster than the E-isomer . 56  

This phenomenon is also attributed to the trans relationship between the leaving 

group and the lone pair of electrons on the oximic nitrogen. The presence of single 

CNOH derived signals in the 'H and ' 3C NMR spectra in addition to the reactivity 

of the obtained hydroximoyl chlorides implies that the Z-isomer was obtained 

exclusively in all cases. 140 

.OH 

R 1 CI 

Z-Isome 

2.2.4 Generation of pyranosyl nitrile oxides 

In principle the pyranosyl nitromethanes, aldoximes and hydroximoyl chlorides 

could all be-used to generate the required nitrile oxides, however the hydroximoyl 

chlorides were ultimately chosen for two reasons. The nitromethyl compound to 

nitrile oxide transformation is achieved by employing Mukaiyama's method; 16  this is 

unsuitable in the presence of nucleophiles since the isocyanate dehydrating agent 

reacts with thiols, amines and alcohols/phenols. 52  Generation directly from the 

aldoxime was ruled out due past experience of this method suffering lack of control 

over the rate of 1,3-dipole formation. 140 
 Large concentrations of nitrile oxide result in 

the formation of furoxan dimer. The only remaining option was the well-known 

Huigsen27  method (Scheme 42), which involves the base mediated 

dehydrohalogenation of hydroximoyl chlorides. Huigsens method allows control of 

nitrile oxide concentration by slow addition of base to the hydroximoyl chloride 

precursor thus minimising the formation of unwanted furoxan. Recent work by 

Taddei et al has described further minimisation of furoxan formation by conducting 

1,3-dipolar cycloaddition reactions in ionic liquids. 153,154 - 

NOH 	NEt3 	(N °  -CI - 	 + - 

	

- 	 - R—CEN—O 
R CI 	 RLCI 

Scheme 42 
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2.2.5 Synthesis of dipyranosyI-(2,3,4-tri-O-acetyl--D-xyIopyranosyI) 

1 ,2,5-oxadiazole-2-oxide (109) 

0"+"0 
N 	N 

 ---.---o.' 	II 
NEt3 , TDI, i

Co 

OAc AcO 

95 109 	ckOAC 

Scheme •43 

Dixylopyranosyl furoxan (109) was identified as a likely side-product in the 

proposed programme of 1,3-addition reactions, especially if poorer nucleophiles 

were employed. 146 
 An authentic sample of the furoxan was therefore prepared. The 

target compound was synthesised from the nitromethyl sugar by using a modified 

version of the Mukaiyama dehydration procedure. The approach employs an 

isocyanate to achieve dehydration of the primary nitro precursor to form the 

corresponding nitrile oxide (Scheme 44). The modified procedure of Baker et a! 140 

was employed in this work. This is a modification of the Mukaiyama procedure 

utilising tolylene diisocyanate (TDI), since a polymeric urea is formed as a co-

product and is easily removed by filtration. 
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Scheme 44 

The product was obtained as a white solid in 61 % yield. The 'H NMR spectrum was 

complex due to the overlap of the signals from the two xylose rings. The anomeric 

signals, however, were discernable as an overlapped pair of doublets centred at 4.53 

ppm. The anomeric protons showed axial-axial couplings (J,,2 = 9.5 Hz) to the 2-H 

protons that are indicative of each ring retaining the 3-configuration. The ' 3C NMR 

spectrum contained distinctive diagnostic peaks at 153 and 112 ppm that correspond 
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to the C-4 and C-3 respectively on the 1 ,2,5-oxadiazole-2-oxide ring. The FAB mass 

spectrum was also distinctive since a characteristic fragment peak at M-60 was 

observed; this peak corresponds to loss of N20 2  from the 1 ,2,5-oxadiazole-2-oxide 

unit. 140 
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2.3 1,3-Addition reactions: Thiol nucleophiles 

2.3.1 Myrosinase inhibition 

One of the current challenges in carbohydrate chemistry is a full understanding of the 

mechanism of glucosinolate hydrolysis catalysed by myrosinase (see section 1.3.3). 

To date, a considerable amount is known about the mode of action of myrosinase, 

however some significant gaps still remain. An important goal is to obtain X-ray 

crystallographic data to establish the nature of the myrosinase-substrate interaction 

and, in order to achieve this aim a suitable myrosinase inhibitor is required. Several 

myrosinase inhibitors have been synthesised with varying success.  90-97  There are two 

main classes. The first function by stabilising the glycosyl-enzyme intermediate. 2-

Deoxy-2-fluoroglucotropaeolin (110)93  and 2-deoxyglucotropaeolin (111)96  have 

both proved to be successful competitive inhibitors of the hydrolysis of 

glucotropaeolin (32) (Km=lniM). The second class are non-hydrolysable analogues 

of glucotropaeolin. The C-glucoside analogue of glucotropaeolin 91 '92  [C-GTL(1 12)] 

was not recognised by myrosinase and thus ineffective, however the carba-

glucotropaeolin (113) 0  has been found to exhibit inhibitory behaviour. 
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One of the best candidates to date is 2-fluoro-2-deoxy-glucotropaeolin (110). X-ray 

studies with this inhibitor have proved valuable (section 1.3.3); however rapid 

Lossen rearrangement of theaglycon component prevents a full understanding of the 

nature of the binding between the aglycon part and myrosinase. 79  A non-

hydrolysable substrate should enable a fuller analysis of the myrosinase- 



glucosinolate interactions. The potential to introduce the thiohydroximate 

functionality at the anomeric position is of particular interest since the product (114) 

would be a non-hydrolysable C-linked glucosinolate analogue. A collaborative 

project was initiated with Professor Rollin's group at the University of Orleans to 

investigate the synthesis and biological activity of such "isoglucosinolates". The key 

steps of the proposed synthesis are outlined in Scheme 45. 1,3-addition of thiols to 

115 would deliver desulfoisoglucosinolates (116) which, following sulfation steps 

and deprotection, would afford the target isoglucosinolates (118). 
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Scheme 45: (a) NEt3  (b) RSH (c) S0 3-Pyridine, (d) MeOK/MeOH 

The D-glucose based precursor 107 was to be prepared in Edinburgh and sent to 

Orleans for the latter stages. Work in Edinburgh was also to include synthesis of D-

xylose analogues of the "isoglucosinolates". It was anticipated that the lack of a C-6 

hydroxyl group would alter the ability to bind to myrosinase. In previous studies by 

Rollin et al deoxy-glucosinolates were shown to have varying binding affinities with 

myrosinase. 78  The results indicated that the presence of the C-2 glycosyl hydroxyl is 

crucial to allow hydrolysis and that the remaining glycosyl hydroxyls play a 

secondary binding role. The importance of the C-2 hydroxyl stems from the 

polarisation it confers to the S-glucose bond and in orientation of the glycosyl moiety 

in the enzyme pocket. 78  The previous observations are based on the fact that 2- 
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deoxy-glucosinolates function as competitive inhibitors of the hydrolysis of natural 

glucosinolates. 

Preliminary work on 1,3-additions of thiols to pyranosyl nitrile oxides had been 

conducted within the group by Baker. 146  Pilot reactions with D-glucopyranosyl nitrile 

oxide 115 and thiophenol were encouraging and thus the reaction was investigated in 

more detail. 

2.3.2 Synthesis of S-Phenyl 2,3,4-tri-O-acetyI-f-D-

xylopyranosylformothiohydroximate (119) 

N_OH 

Ac JJj 

OAc 

106 
	

119 

Scheme 46 

The nitrile oxide was generated by slowly adding an ethereal solution of 

triethylamine over 24 hours via a syringe to a vigorously stirred solution of 106 in 

dry ether. The slow addition of base controlled the nitrile oxide concentration thus 

minimising dimerisation to furoxan 109. Furthermore, furoxan formation was limited 

by adding the nucleophile in 3-fold excess. The product (119) was isolated as a white 

solid (75 %) after an aqueous work up and dry-flash chromatography. The product 

was characterised by 'H and ' 3C NMR spectroscopy. The 'H NMR spectrum 

displayed characteristic signals for the pyranose ring protons and aromatic ring 

derived signals were observed between 7.35 and 7.55 ppm. A doublet was observed 

at 3.56 ppm due to H-2; this signal is shifted to lower frequency relative to that for 

the nitrile oxide precursor. The coupling between H-2 and H-3 was found to be 9.94 

Hz, thus confirming that the product was obtained as the -anomer. A broad singlet 

at 8.81 ppm indicated the presence of the C=NOH group; no significant shift was 

noted relative to the CNOH signal of the hydroximoyl chloride. The ' 3C NMR 

spectrum displayed the expected aromatic and pyranose ring carbon signals and an 

oxime (C-i) derived quaternary peak at 148.8 ppm. The C=NOH signal appears at 

N_OH 
	

PhSH 

OAc 	 NEt3  

UJI 



higher frequency relative to that of the hydroximoyl chloride (136.5 ppm). The 

appearance of a single oxime signal was consistent with the exclusive formation of a 

Z-configured product (refer to Section 1.2.5). 

2.3.3 Synthesis of S-(2-Propyl) 2,3,4-tri-O-acetyI--D- 

xylopyranosylformothiohydroximate (120) 

N— OH 	'PrSH 	 N_OH 

Ac2-_J_J 
OAc 	 NEt3 	 OAc 

106 	 120 

Scheme 47 

Following the success of the previous reaction the addition of an alkyl thiol as a 

nucleophile was attempted. The Rollin group had employed primary thiols with 

success, therefore a secondary thiol was considered. 2-Propanethiol was easily 

available and the resultant adduct would constitute a xylose analogue of 

glucoputranjivin (isopropyl glucosinolate). 68  Using the conditions outlined in Section 

2.3.2, 2-propanethiol was reacted with 3 ,4,5-tri-O-acetyl-3-D-xylopyranosyl nitrile 

oxide to afford the desired adduct (120) in 55% yield. Furoxan 109 was also isolated 

from the reaction mixture in 45% yield. The reaction yield in this case is comparable 

to earlier work with aromatic nitrile oxides. 8  The bulky isopropyl group is 

presumably responsible for the observed lower reactivity and thus the formation of 

by-product. 'H and ' 3C NMR spectroscopy displayed the characteristic C=NOH 

derived signals at 8.88 ppm and 147.7 ppm. Signals characteristic of the isopropyl 

group were also observed in the 'H NMR spectrum. A closely spaced pair of 

"roofed" doublets at 1.23 and 1.25 ppm is consistent with inequivalence between the 

two methyl groups. A septet for the isopropyl CH was also present at 3.83 ppm. 
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2.3.4 Reaction of 3,4,5-tri-O-acetyl--D-xyIopyranosyInitriIe oxide with 

1 ,2-ethanedithiol 

As the previous studies had focused on monofunctional thiols, it was decided to 

examine addition of a difunctional thiol. Initially a similar procedure to that outlined 

in section 2.3.2 was adopted. The nitrile oxide was present in excess in an attempt to 

encourage formation of the bridged 2:1 adduct 122. Both adducts 121 and 122 

(Scheme 48) were formed along with a significant amount of furoxan 90 (-65%). 

The reaction was considered only to be a moderate success, therefore a new addition 

strategy was attempted. 

It was envisaged that adding hydroximoyl chloride 106 dropwise to a solution of 

nucleophile and triethylamine would allow the concentration of nitrile oxide to be 

minimised. Adding the nitrile oxide precursor to the nucleophile/base solution 

afforded 121 and 122 in 40% and 20% yield respectively, with minimal furoxan 

formation. Following dry-flash chromatography, 121 was isolated as a white solid 

and the 122 as a semi-solid. 'H and ' 3C NMR spectroscopy showed that both 

compounds possessed characteristic C=NOH signals and that the side chain CH2s 

were inequivalent. The CH 2  signals appear as a pair of complex multiplets, however 

the signals are shifted to higher frequency and the separation decreases slightly in the 

2:1 adduct 122 (Table 4). The key difference between both adducts is the appearance 

of an SH resonance at 1.65 ppm in the 'H NMR spectrum. The SH signal appears as 

a triplet due coupling to the 2 adjacent protons. The identity of the signal was 

confirmed by a COSY NMR experiment, which showed a cross-peak to the CH 2SH 

protons. 
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1:1 

(121) 

2:1 

(122) 

cH2a (8H/PPM) 3.10 3.15 

CH2b (8H/PPM) 2.63 2.82 

cH2a (00ppm) 34.7 31.7 

CH2b (0/ppm) 24.9 31.7 

OH 	(8H/PPM) 8.91 9.23 

C-i 	(Oc/ppm) 147.6 147.9 

Table 4: Comparison of oH  and 0c  values for adducts 121 and 122 
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Scheme 48 

2.3.5 Biological Testing/Postscript 

On receipt of several batches of hydroximoyl chloride 107, the Rollin group was 

successful in completing the synthesis of a number of "isoglucosinolates". They 

selected isoglucotropaeolin (115) and isoglucolepidiin (123) for testing versus the 

natural substrate, glucotropaeolin. Unfortunately both analogues were not recognised 

by myrosinase and therefore did not function as planned. 
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This result is not unprecedented, similar results were obtained in studies with the C-

analogue of glucotropaeolin (112).9091  The failure of C-glucosinolates and 

isoglucosinolates to inhibit myrosinase indicates that the sulfated thiohydroximate 

linkage must be intact and linked to the glucose unit through an anomeric sulfur 

atom, in order to be recognised. These conclusions appear to be partially reinforced 

by subsequent work conducted independently by Professor Rollin's group.  81  In an 

effort to further establish the requirement for the thiohydroximate bridge, compounds 

such as 124 and 125 were prepared; these retain the anomeric sulfur atom and 

anionic sulfate group, yet delete the nitrogen atom. 
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Compounds of the type 124 and 125 are found to generally display poor inhibitory 

properties. Carba-glucotropaeolin (113) retains a substrate-like sulfated 

thiohydroximate bridge and had been found to inhibit myrosinase before the 

collaboration began.90  The recent study finally achieved the objective of obtaining an 

X-crystal structure of a non-hydrolysable glucosinolate analogue bound to 

myrosinase. 8 ' The story is certainly not over, however, as recent work  8 ' has shown 

that analogues which do not resemble carbohydrates at all (!) such as 126 are actually 

superior inhibitors than Carba-glucotropaeolin. Clearly, there is more to learn about 

the glucosinolate/myrosinase couple. 
N OSO3K 

II 

126 
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2.3.6 Conclusions 

It has been shown that thiol nucleophiles successfully undergo 1,3-nucleophilic 

addition reactions with pyranosyl nitrile oxides to afford the corresponding 

thiohydroximates. Additions of alkyl and aryl thiols to 3,4,5-tri-O-acetyl-f3-D-

xylopyranosylnitrile oxide were found to give products in satisfactory yields (55 to 

75%). Collaborative work with the Rollin group was found to be successful with 

respect to synthetic aspects, however the targets that were ultimately prepared were 

found to be biologically inactive. The test results have, however, contributed toward 

the design of future myrosinase inhibitors. 
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24 Carbohydrate Derived Amidoximes - Introduction 

Amidoxime derivatives of monosaccharides have attracted interest as inhibitors of 

glycosyl hydrolases' 55  and transferases.' 56" 57  Such compounds are known to have 

similar conformational and electrostatic features to oxocarbonium like species 127 

associated with the mechanism of glycosidase action. 155  Amidoximes like 128 have 

the advantage over their amidrazone and amidine analogues by virtue of increased 

stability. 155  Glucosyl (128), mannosyl and galactosyl amidoximes, in which the 

oximic unit is part of the carbohydrate ring have been shown to be effective 

inhibitors of metabolically important glycosidases. 1 55  N-acetylxylosamidoxime 129 

has been synthesised as part of a study toward potential inhibitors of N-

acetylglucosamine specific glycosyltransferases.'56' 157 
OH 	 OH 

OH 	
OH 	 NHAc 

127 	 128 	 129 

To the authors knowledge, there have been few attempts to install an amidoxime exo 

to a carbohydrate ring. Zhang et a1158  have prepared amidoxime 131 via addition of 

hydroxylamine to nitrile 130 (Scheme 49). This compound was the key intermediate 

in the synthesis of 3-3-D-xylopyranosyl- 1,2,4-oxadiazoles (general structure 132) 

that are of interest as potential antibacterial and antitumor agents. 158 

OH 
N 	 NO (a) 	 (b) 

OBz 	 OBz 	
NH2 	

OBz 

130 	 131 	 132 

Scheme 49: (a) NH20H, MeOH (b) RC(0)CI 

1,3 -Nucleophilic  addition of ammonia to 3,4,6-tri-O-benzoyl--D-ribofuranosyl 

nitrile oxide (133) has been reported to afford amidoxime 134, which was 

transformed (in a similar manner to above) to 1,2,4-oxadiazole 1 59  
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Scheme 50: (a) NH3/MeOH (b) Acetic anhydride, A 

It was envisaged that pyranosyl nitrile oxides would undergo 1,3-additions with 

amines in a similar manner to the furanosyl analogues (Scheme 50). The resultant 

amidoximes would be novel C-glycosides that could potentially function as NO 

donors or as ligands for metals (Section 1.4.1). 
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2.4.1 Addition of Primary and Secondary Alkyl Amines 

The amidoximes were prepared by a modified version of the procedure employed in 

the synthesis of the pyranosyl thiohydroximates 121 and 122 (Section 2.3.4). In a 

typical experiment a solution of the glucopyranosyl-hydroximoyl chloride 107 in dry 

chloroform was added dropwise over 3 hours to a cooled (0 °C) vigorously stirred 

solution of benzylamine (3-4 equivalents) and excess triethylamine in chloroform. 

Removal of the solvent and chromatography of the residue afforded the N-benzyl 

amidoxime 137 (R' = Bn, R2  = H; 80% yield), 66  the furoxan dimer 109 was not 

detected. Xylopyranosyl-hydroximoyl chloride 106 reacted similarly to yield 

amidoxime 138 (R' = Bn, R2  = H; 67% yield). The structures of the products were 

assigned on the basis of their spectroscopic properties. Eg for D-xylose-derived 

amidoxime 138 in the NMR spectra there were, in addition to the expected signals 

for the carbons and protons of the pyranosyl and benzene rings, distinctive peaks for 

the oxime unit [c  148.9 ppm (C=N)] and the attached NHCH 2  group 4.38 ppm, 

dd, (CHa), 4.39 ppm, dd, (CHb), 5.22 ppm, t, (NH); JNH-CHa  5.5, JNH-CHb  6.8, JCHa-CI-Ib 

14.6 Hz; 8C  46.4 ppm (CH2)]. Shaking the N-benzylamine adducts with D20 resulted 

in loss of the NH signal and simplification of the benzyl signals to doublets. Both 

doublets displayed large geminal coupling constants (14.6 Hz). 66 
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A2 	 - 	 A2 	OH 
+ 	 RNHR1 	Ac _O\J Co_AC\CN - 

OAc 	 Oft
NHR'  

Amidoxime R' R2  %Yield 

137 Bn CH20Ac 80 

138 Bn H 67 

139 Bu H 63 

140 CH2CH=CH2 H 41 

141 Ph H 90 

142 Ph CH20Ac 80 

Table 5: Mono-substituted pyranosyl amidoximes 66  

Hydroximoyl chloride 106 also reacted readily with 1-aminobutane and allylamine to 

afford corresponding adducts (139 R' = Bu, R 2  = H; 63% yield), and (140 R' = 

CH2CH=CH2, R2  = H; 41% yield). 66  It is noteworthy that in the latter case the 

isolated product results from addition of the nitrile oxide to the amine moiety in 

allylamine rather than cycloaddition to the alkene. Earlier work has shown that 1,3-

addition of propargylamine to benzonitrile oxide has been reported to produce the 

amidoxime product;' °  in this study it was concluded that the nucleophilic reactivity 

of the amine was higher than the dipolarophilic activity of the alkyne. It has also 

been postulated that alkenes are superior to alkynes as dipolarophiles and thus should 

not lead to significant quantities of amidoxime product. 10  Work by Abell et al 126  and 

Zard et al 125  (Section 1.4.3) with alkyl and aryl nitrile oxides, in addition to our 

own, 66  has clearly shown that the above theory is not necessarily correct. 

Having successfully reacted primary alkyl amines with pyranosyl nitrile oxides it 

was decided to examine the additions of aromatic amines. Hydroximoyl chloride 106 

was reacted with aniline according to the procedure employed in the alkyl amine 

study. Amidoxime 141 was isolated as a white solid in 28 % yield following aqueous 

work up and dry-flash chromatography. Furoxan by-product 109 was also isolated in 
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16 % yield. The pilot reaction was disappointing, therefore an improved procedure 

was attempted based on that of Barbyrin et al.' 2  Heating a 2:1 mixture of aniline and 

hydroximoyl chloride 106 in ethanol at reflux for five hours afforded amidoxime 141 

(R' = Ph, R2  = H; 90% yield). And the corresponding reaction with D-

glucopyranosyl nitrile oxide gave amidoxime 142 (R' = Ph, R 2  = CH20Ac; 80%). 

Conducting the above reactions at room temperature afforded the same products after 

16 hours. In neither case was there any evidence for the formation of the furoxan 

dimers. The products were characterised by 'H and ' 3C NMR spectroscopy. The 'H 

and ' 3C NMR spectra displayed characteristic C=NOH derived signals 7.91 ppm and 

146.8 ppm respectively for the D-xylose derived amidoxime. The structure of (Z)-N-

phenyl-(2,3 ,4-tri-O-acetyl--D-xylopyranosyl)formamide oxime was established by 

X-ray crystallography (Figure l).66 

Figure 1 - Crystal structure of (Z)-N-phenyl-(2,3,4-tri-O-acetyl-f-D-xyIopyranosyl)formamide 

oxime (141) 

The structure confirms the Z-configuration of the oxime moiety and demonstrates an 

s-trans (Zap) conformation about the amidic nitrogen with the H of the NHR facing 

the oxime OH. These results are in accord with previous studies indicating that such 

additions occur in a concerted, but non-synchronous manner. 54  The near planarity of 

the NH-C=N-O unit [torsion angle 2.6(3)°] and the short non-bonded distance 
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between the amidic N and the oxime 0 [N to 0 = 2.508(3)A] are consistent with the 

existence of an intramolecular H-bond between these atoms. 66,67 

2.4.2 Addition of morpholine to (3,4,5-tri-O-acetyl--D-xyIopyranosyI) 

nitrite oxide 

Having successfully reacted primary amines with pyranosyl nitrile oxides, addition 

of a secondary amine was considered next for study. The procedure outlined for 

primary amines was employed. Addition of hydroximoyl chloride 106 to a solution 

of morpholine (4-fold excess) afforded a white solid in 67 % yield. The 'H and ' 3C 

NMR spectra displayed characteristic oxime signals [8H.8.38  ppm, bs, (OH) and 5c  

154.7 ppm (C=N)]. The OH resonance in CDC1 3  was very broad, however using 

CD3S(0)CD3  led to a much sharper singlet [oH 10.08 ppm]. The data indicated that 

only one oximic product was present. Signals corresponding to the heterocyclic ring 

were also apparent in the 'H and ' 3C NMR spectra. The morpholine protons were 

observed as three sets of multiplets [3.77-3.8 1, ppm, m, CH 2 ; 3.24-3.26 ppm, m, CH 2  

and 3.09-3.16 ppm, m, CH21. The signal at highest frequency corresponds to the 

protons adjacent to the ring oxygen atom, and those at lower frequency to the protons 

adjacent to the morpholine nitrogen. Previous studies 62  on additions of morpholine to 

p-nitrobenzonitrile oxide demonstrated that the Z-configured product was obtained 

initially, which could then undergo acid assisted isomerisation to the E-amidoxime. It 

was found that exposure to silica during chromatography was an acidic enough 

environment to allow isomerisation. The 'H NMR data quoted above were compared 

to literature values 62  Hegarty et at found the ring CH2 signals adjacent to nitrogen in 

the E-adduct to appear ca 2.91 ppm (i.e similar to morpholine itself) while those of 

the Z-adduct were observed ca 3.27 ppm. The signal for the morpholine CH 2s 

adjacent to the nitrogen in this example is more complex due to the nearby chiral 

(anomeric) centre, therefore direct comparison is not really possible. The product 

was purified by dry-flash chromatography and was therefore assumed to adopt an E-

configuration (143), based on previous observations. 62 
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2.4.3 Additions of amino acid derived nucleophiles: Introduction 

The success of the reactions of alkyl thiols and amines with pyranosyl nitrile oxides 

prompted work on addition of amino acid thiol and amine nucleophiles. The resultant 

adducts of such reactions would each constitute a novel class of C-linked 

glycopeptide analogues. 

N OH 

Amino Acidi 

Y= NH, S 

In general C-linked analogues of naturally occuring N- and O-glycosyl amino acids 

and peptides are of interest since they are resistant to enzymatic cleavage and are 

therefore useful, eg as probes for various biological processes. ' 6°  The field is large 

and has been extensively reviewed, 161  a few representative are illustrated overleaf. 

Isoxazole 144 has been prepared by Dondoni et a! by 1,3-dipolar cycloaddition of a 

pyranosyl nitrile oxide with an amino acid derived alkyne.' 6°  Glycopeptide analogue 

145 was made during an investigation into the synthesis of C-linked glycosyl 

asparagines.' 62  Glycopeptide analogue 146 has been synthesised and examined as a 

potential glycoamidase inhibitor. 163  Glycoamidase cleaves the amide linkage 

between the oligosaccharide and peptide units and is therefore important in the 

modification of proteins. 
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2.4.4 Additions of N-(tert-butoxycarbonyl)cysteine methyl ester (147) to 

pyranosylnitrile oxides 

L-Cysteine was chosen for study since it is a common constituent in many proteins. 

A cysteine derivative that possessed carboxyl and amine protection was required in 

order to prevent side reactions and N-Boc protected L-cysteine methyl ester 147 was 

selected for this purpose. The synthesis was accomplished by following the 

procedure of Gledhill et al. 114 L-Cysteine methyl ester hydrochloride, Boc anhydride 

and triethylamine were stirred at room temperature for 16 hours. The desired product 

was obtained as a colourless oil (95% yield). It was feared that on prolonged storage 

thiol 147 would oxidatively couple to form a disulfide, however it was found that 

storage in a freezer for more than one year avoided disulfide formation. 

The procedure used was based on that described earlier for addition of amines 

(section 2.4.1). A solution of D-xylose derived hydroximoyl chloride 106 was added 

slowly added dropwise to a chloroform solution of cysteine derivative 147 (3 

equivalents) and triethylamine (6 equivalents). The target thiohydroximate 148 was 

obtained as a white solid in 88% yield after purification by dry-flash chromatography 

(Scheme 52). The 'H and ' 3C NMR spectra clearly demonstrated that addition had 

taken place. Signals corresponding to the thiohydroximate linkage and the amino 

acid unit were observed [8H  9.44 ppm (bs, OH), 4.59 ppm (1H, m, cysteine CH), 

3.78 ppm (3H, s, methyl ester), 3.35-3.58 ppm (2H, m, cysteine CH2), 1.47 ppm (9H, 

s, Boc CH3) 8C  147 ppm (C=N), 53.7 ppm (CH), 52.7 ppm (methyl ester), 32.5 ppm 
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(CH 2), 28.1 ppm (Boc CH 3)} in addition to the pyranosyl ring signals. A second 

product was obtained as a white crystalline solid after chromatography, the NMR and 

mass spectrometry data indicated that it was disulfide 149.165  Presumably the basic 

reaction conditions and exposure to air favoured oxidation of the excess thiol to 

afford 149. 

NHBoc 

COMe 

CO2Me 

149 

Cysteine derivative 147 was reacted with glucose derived hydroximoyl chloride 107 

in a similar fashion to above and the expected adduct 150 was obtained in a 

comparable yield (85%). 

SH 	 SH 	 A 	 - 

H2NCO2Me 	

NEt3, Boc20  

Boci-IN 	CO Me OAc 

147 
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NHB0c 

148 R = H, 150 R = CH20Ac 

Scheme 52 

2.4.5 Additions of amino acid esters 

A larger range of amino acid N-nucleophiles were available for the preparation of 

amidoxime linked glycopeptide analogues; glycine was chosen for initial work since 

its simple structure would aid analysis of any products. A chloroform solution of D-

xylose derived hydroximoyl chloride 106 was added slowly to a stirred and cooled (0 

°C) mixture of glycine ethyl ester hydrochloride (3 equivalents) and triethylamine 
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(18-fold excess) in chloroform. 66  On completion of the addition, the reaction mixture 

was washed with 0.1 M HCI to remove excess amine. Analysis of the 'H and 13C 

NMR spectra of the crude product indicated that the expected amidoxime 152 was 

the major product (Scheme 53). Signals corresponding to the amidoxime linkage and 

the amino acid unit were evident [H  5.48 ppm (t, NH, JNH-CH  5.8 Hz), 4.16 ppm (q, 

Et ester CH2), 4.07 ppm (d, glycine Cl 2), 1.23 ppm (t, Et ester CH 3) öc 170. 7 ppm 

(C=O, Et ester), 148.1 ppm (C=N), 61.7 ppm (Et ester CH 2), 44.7 ppm (glycine 

CH2), 14.5 ppm (Et ester CH3)]. Purification by dry-flash chromatography was 

attempted, however two major and one minor product were obtained (Scheme 53). 

The amidoxime 152 was isolated in addition to a second compound which was later 

identified as oxadiazinone 153.66  The NMR spectra indicated that cyclisation had 

taken place, the ester peaks had been lost and the glycine-derived signals had 

simplified; [oH 5.61 ppm (bs, NH), 3.95 ppm (s, glycine CH 2 ) 0c  164.6 ppm 

(oxadiazinone C=O), 150.4 ppm (C=N), 40.2 ppm (oxadiazinone CH 2)]. 
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H2NCHRCO2 Et.HCI, NEt3  (d) glycylglycine.HCI, NEt3. 



Formation of the cyclised product is not entirely surprising since the Z-amidoxime 

geometry puts the nucleophilic OH group in a favourable position to attack the ester 

carbonyl in a 6-exo-trig process. Similar reactions have been observed for 

amidoximes in previous studies. 1297166A67  A minor product was also obtained that 

possessed similar spectroscopic properties to those of amidoxime 152. Two NH 

signals were clearly visible in the 'H NMR spectrum in addition to the ethyl ester 

quartet and triplet [H  7.45 ppm (t, NH, JNH-CH  7.5 Hz), 5.61 ppm (t, NH, JNH-CH  6.1 

Hz), 4.14 ppm, (q, Et ester CH2), 1.21 (t, CH 3  Et ester)]. The ' 3C NMR spectrum 

showed the diagnostic amidoxime imine signal and side chain attributed to a side 

chain 6c  170.9 ppm (Et ester C=O), 147.8 ppm (C=N), 61.0 ppm (Et ester CH2), 46.2 

ppm (Cl2), 40.9 ppm (CH2), 13.9 ppm (Et ester CH3)]. The minor product was 

therefore assigned structure 154, which results from attack on the oxadiazinone ring 

by a second equivalent of amino acid . 66  All three products could also be seen in the 

electrospray mass spectrum of the crude reaction mixture [ES 404 (MH, 152), 358 

(MH, 153), 461 (MH, 154)]. Similar results were obtained when the reaction was 

repeated with L-leucine methyl ester hydrochloride (Scheme 53). It was noted in this 

case that cyclisation took place to a greater extent before chromatography than in the 

previous experiment. Studies with L-leucine also found that formation of ring-

opened product could be minimised by reducing the amount of amino acid from 3 

equivalents to 1.5. 

The structures of oxadiazinones 153 and 156 were eventually confirmed by X-ray 

crystallography. To the author's knowledge these are the first such crystal structures 

to contain the 1,2,4-oxadiazin-6-one moiety. The crystals of oxadiazinone 153 were 

found too weakly diffracting and consequently gave poorer quality data than hoped. 

In contrast, the data obtained for oxadiazinone 156 were suitable for further analysis. 

Selected bond lengths, bond angles and torsion angles for the oxadiazinone ring 

system are shown in Table 6. 
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Bond Lengths! A Bond Angles! 0  Torsion Angles! 0  

0(1)-N(2) 1.463(2) 0(1)-N(2)-C(3) 113.96(18) 0(1)-N(2)-C(3)-N(4) -6.10 

N(2)-C(3) 1.290(3) N(2)-C(3)-N(4) 126.7 1(2) N(2)-C(3)-N(4)-C(5) -17.80 

C(3)-N(4) 1.33 1(3) C(3)-N(4)-C(5) 120.12(19) C(3)-N(4)-C(5)-C(6) 	35.65 

N(4)-C(5) 1.452(2) N(4)-C(5)-C(6) 108.28(17) N(4)-C(5)-C(6)-O(1) -32.68 

C(5)-C(6) 1.512(3) C(5)-C(6)-O(I) 117.82(19) C(5)-C(6)-O(])-N(2) 13.14 

C(6)-0(1)1.352(3) C(6)-O( I )-N(2) 122.82(17) C(6)-O(])-N(2)-C(3) 7.84 

Table 6: Selected bond lengths, bond angles and torsion angles for 156 

A survey of the literature revealed that 1,2,4-oxadiazin-6-ones are relatively rare 

heterocycles. The first report of such an oxadiazinone synthesis was made by Takacs 

and Ajzert,' 66  who reported that 157 was formed on reacting glycine carboxymethyl 

amidoxime 158 with 1 ,3-dicyclohexylcarbodiimide (DCC) (Scheme 54). 

OH 
N 

DCC 

158 	 157 

Scheme 54 

Suave et al have reported the formation of oxadiazinone 159 as a by-product under 

basic conditions whilst attempting to prepare amidoxime analogues of oligopeptides 

(Scheme 55)•  167 they also reported that oxadiazinone formation was avoided by 

replacing the methyl ester with a tbutyl  ester. 
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The most detailed study to date has been conducted by Hussein and co-workers, 129 

who found that the amidoximes from addition of L-valine, L-isoleucine and L-

phenyiglycine to aryl nitrile oxides spontaneously cyclised in the presence of NEt 3  to 

the corresponding oxadiazinones. Amino acids with less bulky side chains (such as 

glycine) afforded only amidoxime products. Hussein et al also obtained small 

amounts of ring-opened products analogous to amidoximes 154 and 160 (Scheme 

53). Further ring-opening reactions with sodium borohydride were found to yield 

amino alcohols via an aldehyde intermediate (Scheme 56). 
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Scheme 56 

Reactions were therefore attempted to verify some of the observations made in the 

initial experiments, and by Hussein et al. 129  Addition of glycylglycine ethyl ester to 

D-xylose derived hydroximoyl chloride 106 under the same conditions as in the 

synthesis of amidoxime 152 afforded the expected amidoxime adduct 154 (43% 

yield). The analytical and spectroscopic data were identical to those obtained 

previously. The next stage of the amino acid addition study was to conduct further 

investigations into the cyclisation reaction. 

2.4.6 Cyclisation Reactions 

The glycine and L-leucine amidoximes 152 and 155 were found to cyclise (60% and 

70% yields respectively) when refluxed in chloroform in the presence of silica for 6-

16 hours or over 2-3 days at room temperature (Scheme 53). Hussein had indicated 

that addition of amino acids with bulkier substituents spontaneously cyclised. The 

results obtained in this study with L-leucine, however, did not fully support this 

observation, since amidoxime 155 was the predominant product immediately after 

amine addition. L-Phenylalanine ethyl ester was selected to examine further the 

effect of larger substituents. Addition of L-phenylalanine ethyl ester hydrochloride to 

hydroximoyl chloride 106 afforded exclusively the corresponding amidoxime (161) 

62 



immediately after addition and dry-flash chromatography. Cyclisation of 161 to 

oxadiazinone 162 took place when a solution of 161 in chloroform was left to stand 

in an NMR tube for over a month (Scheme 53), the cyclisation process was slower 

for pyranosyl amidoximes compared with aryl amidoximes, even when bulky side-

chains were present. The NMR data for oxadiazinine 162 were similar to those 

observed for the previously obtained oxadiazinones. 

The fact that the amino group in L-proline is NN-disubstituted made it an interesting 

experimental candidate for two reasons. Hussein et al 129  had claimed that the 

cyclisation step was faster than potential Z to E isomerism under basic conditions. 

The increased tendency of disubstituted amidoximes such as morpholine derived 

amidoxime 143 to isomerise would challenge the above postulate. The product of L-

proline addition and cyclisation would also produce the interesting fused bicyclic 

product 163 (Scheme 57). 
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Addition of L-proline benzyl ester hydrochloride to hydroximoyl chloride 106 was 

conducted according to the procedure employed in the earlier amino acid 

additions.' 3C NMR analysis of the crude reaction mixture indicated that the major 

products were oxadiazinone 163 [diagnostic signals 8c 168.7 ppm (C=O, 151.8 ppm 

(C=N)}, benzyl alcohol and possibly small amounts of amidoxime adduct. The crude 

mixture was stirred in refluxing chloroform for 2 hours in the presence of silica to 

ensure cyclisation went to completion, and on work up, the oxadiazinone product 

was obtained as a white solid in 57%. The rigid ring system is believed to assist 

cyclisation in this case due to the Thorpe-Ingold effect. 168 

Addition of -alanine ethyl ester hydrochloride to hydroximoyl chloride 106 was 

attempted in order to ascertain whether cyclisation to form a 7-membered 1,2,4- 

63 



oxadiazepin-7-one would take place under the conditions previously established. The 

amidoxime 164 was obtained (after chromatographic purification) as a gummy solid 

in 50% yield (Scheme 58). 
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The 'H and ' 3C NMR spectra contained diagnostic signals for the amidoxime group 

and showed that the ethyl ester protecting group was still present [oH 5.36 ppm (t, 

NH), 4.13 ppm (q, Ft ester CH 2 ), 1.22 ppm (t, Ft ester CH 3 ) Oc  149.0 ppm (C=N), 

61.1 ppm (Et ester CH2), 14.5 ppm (Et ester CH 3)]. Amidoxime 164 was stirred 

with silica in refluxing chloroform for >48 hours without any cyclisation being 

observed on analysis by TLC, 'H NMR or electrospray mass spectrometry. 

Cyclisation to form a 7-membered ring was found to be unfavourable under the 

conditions that had allowed access to the 6-membered products. 

An attempt was also made to favour exclusive amidoxime formation. It was reasoned 

that replacing the ethyl or methyl ester protecting groups with a more sterically 

demanding group would suppress oxadiazinone formation. 167 tButyl protection is 

frequently employed in peptide synthesis, therefore deprotection and subsequent 

peptide coupling would potentially allow access to chain extended amidoxime linked 

glycopeptide analogues. 
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Amidoxime 165 was obtained (88% yield) in a similar fashion to the original glycine 

addition procedure (Scheme 59)•66  The 'H and ' 3C NMR spectra were comparable to 



those obtained for addition of glycine ethyl ester. Amidoxime 165 was stirred with 

silica in refluxing chloroform for >48 hours and the reaction monitored by NMR and 

electrospray mass spectrometry. No evidence was found for cyclisation having taken 

place, since the amidoxime imine and 'butyl signals were observed in the ' 3C NMR 

spectrum [öc 83.2 ppm (Cq) 148.9 ppm (C=N), 30.7 ppm (CH 3)1. 

2.4.7 Pyranosyl-1 ,4,2-oxathiazin-6-ones 

Sulfur analogues of 1 ,4,2-oxadiazin-6-ones are very rare, indeed, there has only been 

one publication related to 1,4,2-oxathiazin-6-ones. 130  Johnson and co-workers have 

accomplished the synthesis of such heterocycles by a two stage process; initial 

addition of a mercapto carboxylic acids to aromatic nitrile oxides was followed by a 

DCC mediated 6-exo-trig cyclisation (Scheme 60). The same researchers have also 

reported the synthesis of 5,6-dihydro-7-1,4,2-oxathiazepin-7-ones by a similar 

procedure. 13 ' 
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2.4.8 Attempted synthesis of 3-(2,3,4-tri-O-acetyI--D-xyIopyranosyI)-

1 ,4,2-oxathiazin-6-one 

An attempt was made to synthesise pyranosyl- 1 ,4,2-oxathiazin-6-ones from 

thiohydroximate 166 by the cyclisation procedure employed for pyranosyl- 1,2,4-

oxadiazin-6-ones. 
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Scheme 61 

Thiohydroximate 166 was prepared by reacting methyl thioglycolate with xylose 

derived hydroximoyl chloride 106 under the conditions described in section 2.4.5. 

Analysis of the 'H and ' 3C NMR spectra of the purified product showed diagnostic 

signals for the thiohydroximate unit and side-chain in addition to the carbohydrate 

peaks [H  9.39 ppm (bs, OH), 3.82 (1H, d, CH2b), 3.77 (1H, d, CH2a) 8c 148.1 ppm 

(C=N), 33.3 ppm (CH 2)]. The purified thiohydroximate was stirred with silica in 

refluxing chloroform for more than 2 days without any cyclisation taking place, so 

the reaction was repeated in refluxing toluene. A white solid was obtained after dry-

flash purification, however the electrospray mass spectrum indicated the mass of the 

product to be 285 a.m.0 rather than the expected 375 a.m.u. The ' 3C NMR showed a 

characteristic signal for a nitrile group [öc 114.2 ppm (CN)] and the compound was 

therefore assigned structure 167. Formation of nitriles is known to arise from 

oxathiazinone rings in the presence of hydroxide ion (Path A, Scheme 62).' °  In this 

case, it was thought that cyclisation had taken place and then the product had 

undergone thermal decomposition to the nitrile (Path B, Scheme 62).'° 
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An attempt was also made to repeat the procedure reported by Johnson et al, 130 

Mercapto acetic acid was added to xylose derived nitrile oxide and the resultant 

thiohydroximate treated with 1 -(3 -dimethylaminopropyl)-3-ethylcarbodiimide 

(EDCI). The reaction did not afford any identifiable products, extensive 

decomposition appeared to have taken place. The reasons for the failure of the 

reaction remain unclear, although it has been suggested that the stability of oxime 

acids such as 166 is R dependent.  130  It could be suggested that if 166 was unstable, it 

may decompose before cyclisation takes place. 

2.4.9 Conclusions/Further Work 

Addition of L-cysteine derived thiol 147 to D-xylose and D-glucose nitrile oxides 

was found to afford novel thiohydroximate linked glycopeptides 148 and 150 in good 

yield (88% and 85% respectively). Reactions of glycine, L-leucine and L-

phenylalanine ester hydrochlorides with hydroximoyl chloride 106 under basic 

conditions, were found to afford crude amidoximes 152, 155 and 161. Attempts to 

purify 152 and 155 by column chromatography led to the formation of 1,2,4-

oxadiazin-6-ones 153 and 156 (60% and 70% yield respectively). Compound 161 

was not found to cyclise during purification although, oxadiazinone 162 was 

obtained after allowing a chloroform solution of 161 to stand for 1 month. In 

contrast, L-proline benzyl ester hydrochloride afforded predominantly oxadiazinone 
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163 before column chromatography. Reaction of 3-alanine and glycine 'butyl ester 

with hydroximoyl chloride 106 in basic conditions afforded amidoximes which did 

not cyclise. Small amounts of by-products such as 154 were observed, these were the 

result of ring-opening of the oxadiazinone by residual amino acid. Further work 

could investigate the ring-opening reaction as a means of making chain extended 

amidoximes. An alternative chain extension strategy could involve deprotection of 

adduct 165 and employing classical peptide coupling conditions. 

2.5 Additions of carbohydrate derived nucleophiles: Introduction 

It was envisaged that sugar amines could be employed in 1,3-addition nucleophilic 

nucleophiles to pyranosyl nitrile oxides to afford a novel class of amidoxime-linked 

C-pseudodisaccharides (Scheme 63). There are few reports of such compounds in the 

literature; the closest relative known (168) was published by Gallos et al'69  as part of 

a study on nucleotide analogues. Oligonucleotides with a backbone that does not 

contain phosphorous are desirable, since they are resistant to nuclease induced 

cleavage and are more readily taken up by cells. Vasella et al 170  have prepared 

pyranose examples (eg 169), which have the amidoxime unit within the carbohydrate 

ring, as potential glycosidase inhibitors. The Rollin group have reported the synthesis 

of a series of thiohydroximate-bridged disaccharides (eg 170), as part of their work 

on glucosinolate analogues. 95 
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Although a number of sugar amines are known in the literature, it was decided to 

limit the initial study to amines that would result in the (1—*6) and (1-1) linked 

compounds 171 and 172. 
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The proposed structures resemble amide-linked disaccharides. For example, 173 has 

been studied as a glycosyl mimic.' 7 ' The rationale behind the use of peptide linkages 

is that they should be resistant to cleavage by glycosidase enzymes. Amidoximes 

share the same property and as a result have been exploited as amide substitutes. 169, 

167, 108 
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2.5.1 Synthesis of (1—.6) amidoxime-linked pseudodisaccharides 

2.5.1.1 Synthesis of 6-amino-6-deoxy-1 ,2:3,4-di-O-isopropylidene-a-D-

galactopyranose Hydrochloride (177) 

Galactose derived amine 177 was selected as a suitable nucleophile for addition to 

pyranosylnitrile oxides. Reitz et al 172  had reported a straightforward 3-step synthesis 

(Scheme 64) from 1,2:3 ,4-di-O-isopropylidene-a-D-galactopyranose (174), which 

itself is a well-known precursor in various carbohydrate syntheses. 173 
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Scheme 64: (a) TsCI, pyridine, MeCN (b) NaN 3 , DMSO (c) H2 , 	10% Pd/C, 50:1 

EtOH/CHCI3  (20 atm) 

Treatment of D-galactose with acetone in the presence of acid and anhydrous CuSO 4  

gave an oil, which on purification by Kugelrohr distillation afforded the product as a 

colourless glass in 61% yield. The 'H and ' 3C NMR spectra, mass spectra and 

analytical data were all in agreement with literature 174 
 

Protected galactose compound 174 was then stirred with p-toluenesulfonyl chloride 

in a 2:1 mixture of pyridine/acetonitrile at room temperature for 6 hours, and the 

tosylated product 175 isolated as a white solid (67% yield) following washing and 

trituration. The signals due to the tosyl group were clearly visible in the 'H NMR 

spectrum [. 2.37 (1H, s, ArCH3), 7.73 ppm (2H, d, AM), 7.26 ppm (2H, d, AM)]. 

In the next step, the tosylated galactose derivative 175 and sodium azide were then 

dissolved in DMSO and heated to 115°C for 24 hours. On cooling, the reaction 

mixture was washed with water, before isolating the azido sugar 176 as a colourless 

oil (96% yield). A characteristic absorption for an azide group was observed in the 

JR spectrum [Uma,c 2lOS cm1 ].' 75  
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The final stage of the synthesis required hydrogenation of azido compound 176 to 

form the required amine 177. The original procedure of Reitz and co-workers 

achieved this transformation by high-pressure (-50 psi) hydrogenation in the 

presence of 10% palladium on charcoal catalyst, followed by treatment with ethereal 

HC1 to afford the amine as a hydrochloride salt. 172  A paper by Secrist and co-

workers 176  had shown that addition of chloroform (-2%) to the reaction mixture 

allowed the amine hydrochloride salt to be formed in situ rather than having to add 

ether/HCI afterwards. This latter procedure 176  was successfully applied in this case to 

afford the title compound 177 as a white solid. A very broad signal was observed in 

the JR spectrum [Umax  3377 cm'] of the product that is characteristic for amine 

hydrochloride salts. 17' The 'H and ' 3C NMR spectra were found to be in agreement 

with those obtained in the original work. 172 

2.5.1.2 Additions of 6-amino-6-deoxy-1 ,2:3,4-di-O-isopropylidene-cx-D-

galactopyranose (177) to pyranosylnitrile oxides 

With galactose derived amine 177 in hand, it was possible to proceed with additions 

to pyranosylnitrile oxides. A solution of xylose derived hydroximoyl chloride 106 

was added to a vigorously stirred mixture of amine 177 and triethylamine in 

chloroform over one hour. The reaction mixture was washed with 0.1 M HCI (to 

remove residual amine) before being subjected to dry-flash chromatography. The 

expected amidoxime 178 was obtained as a white solid (81% yield). 
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Diagnostic peaks for the amidoxime bridge were observed in the 'H and ' 3C NMR 

spectra [oF, 7.76 ppm (bs, OH) 5.24 ppm (m, NH), 0c  149 ppm (C=N)]. The 'H NMR 

spectrum proved to be valuable for characterisation an account of conformation 

differences for the two carbohydrate rings giving well dispersed and characteristic 
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signals. The D-xylose ring adopts a 4C, chair conformation (179), whereas the D-

galactose ring adopts a skew (twist-boat) conformation 180, due to the presence of 

the isopropylidene protecting groups. 174 

4 

RO 	
0 	N_OH 

OR 

179 

0 

0 

0  

0 
HO 	HNH2C 

N 	 0 

	

Xyl 	180 

The peaks attributed to the xylose ring were similar to those observed in the 

amidoxime examples described previously (section 2.4.1). The anomeric proton [ö1, 

4.00 ppm (d, 1-11, JHIH2  10.1 Hz)] showed a large axial-axial coupling, thus 

confirming the f-configuration of the xylose component. The remaining xylose ring 

protons showed the expected large vicinal axial-axial couplings to each other (ca 9-

10 Hz), with the exception of the axial-equatorial coupling of H-4 to H-5e 

(equatorial) [H  4.15 ppm (dd, H-5e, JH5CH4  5.4 Hz)]. The peaks attributed to the 

galactose ring were found to have significantly different coupling patterns, since in 

the skew conformation the protons do not adopt formal axial and equatorial 

positions. The chemical shifts and coupling constants were found to compare 

favourably with those of literature compounds. 114  COSY and HSQC NMR 

experiments were conducted to confirm the identities of each of the carbohydrate 

ring protons. The ' 3C NMR spectrum showed the expected 12 carbohydrate skeletal 

carbon peaks and signals due to the xylose and galactose protecting groups [c 

(OAc) 170.2, 169.7, 169.3 ppm (3xC=O), (acetal) 109.3, 108.6 ppm (Cq), 25.9, 25.8 

24.8, 24.3 (CH3)}. The structure of amidoxime 178 was confirmed by X-ray 

crystallography. 
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n,4 	I <0• 

cn..f 

Figure 4 (Z)-N-(6-deoxy-1 ,2:3,4-di-Q-isopropyIidene-(x-D-gaIactopyranosy)-(2,3,4-tri-Q- 

acetyl-f-D-xylopyranosyI)formamide oxime (178) 

Each unit cell contained 2 molecules of 178, one of which is illustrated in Figure 4. 

The structure shows that the amidoxime unit in pseudo-disaccharide 178 moiety has 

similar features to those of amidoxime 141, which was discussed in section 2.4.1. 

The Z-configuration of the oxime and s-trails (Zap ) conformation about the amidic 

nitrogen are again apparent. The existence of an intramolecular H-bond is again 

observed and is attributed to the near planarity of the NH-C=N-O unit [torsion angle 

2.14'] and the short non-bonded distance between the amidic N and the oxime 0 [N 

to  = 2.53 1 A]. The Cremer and Pople' 77  puckering parameters for the two pyranoid 

rings are given in Table 7. The D-xylose ring has 95% of the puckering of an ideal 

cyclohexane chair conformation, with Q = 0.600 A and 0 = 5.75° compared with Q = 

0.630 A and 0 = 00 for an ideal 4C 1  chair. The corresponding values for the D-

galactose ring are Q = 0.657 A and 0 = 83.77°, and are consistent with a skew (twist-

boat) conformation. 
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Ring Atoms Q I A 0/0 4,/O  

D-Xylose 0(7)-C(2)-C(3)-C(4)-C(5)-C(6) 0.600 5.75 36.42 

D-Galactose 0(6')-C( I ')-C(2')-C(3' )-C(4')-C(5') 0.657 83.77 326.53 

Table 7. Cremer and Pop1e 177  puckering parameters for the pyranoid rings of 

amidoxime 178 

The above reaction was repeated with glucose derived nitrile oxide 115 and the 

expected amidoxime 181 was obtained as a white solid in 75% yield. The 'H and 13C 

NMR spectra were found to be very similar to those obtained for the xylose example 

178. 

2.5.2 Synthesis of (1-1) amidoxime-linked pseudodisaccharides 

2.5.2.1 Synthesis of D-xylose and D-glucose derived amines 

The strategy for the synthesis of (1—*1) amidoxime-linked pseudodisaccharides 

involved a dual role for pyranosylnitromethanes 182 and 183 (Scheme 65). The 

nitromethyl sugars 95 and 99 were employed as sources of the corresponding amines 

(for previous examples ' 78" 79) and nitrile oxides (section 2.2). Secrist et al 176 reported 

that nitro compounds, nitriles and oximes could afford amine hydrochlorides in a 

similar fashion to azides. 

74 



-R-O~~~O CH,NO,  
OAc 

95 R = H 
99 R = CH 20Ac 

'H 

Ac 
cO 	 CH2NH2 HCI 

OAc 

182 R' = H 
183 R' = CH 20Ac 

A 	 _OH 

A 0 J 

OAc 

106 R = H 
107 R = CH20Ac 

'H 	 OH 
OAc 

Ac2 \.1 

 NIA  11' 
OAc 	H 

184R=H, 	R'=H 
185R=H, 	R'=CH2OAc 
186 R = CH20Ac, R' = H 
187 R = CH20Ac, R' = CH 20Ac 

Scheme 65: (a) SnCl 2 , NEt3 , PhSH (b) C1 2  (c) H 2 , Pt02 , CHCI3/EtOH (d) NEt 3  

Nitro sugar 95 was therefore stirred with a catalytic amount of Pt0 2  in 

ethanol/chloroform (50:1) and heated (70°C) under hydrogen (40 atmospheres) in a 

high-pressure hydrogenation apparatus. The amino sugar 182 was obtained as a 

white solid after removal of the solvent. The product was water-soluble and again a 

very broad amine peak was observed in the IR spectrum [Umax  3367 cm'].' 75  The ' 3C 

NMR spectrum showed a significant chemical shift change to lower frequency of the 

exocyclic methylene group relative to that observed in the parent nitro compound [öc 

40.5 ppm (RCH 2NH2), Sc 75.8 ppm (RCH 2NO2)]. The reaction was found to be 

capricious; yields and product quality varied from batch to batch. An alternative 

procedure that involved stirring 95 in a mixture containing ZnIHC1 was therefore 

attempted.  180  A white solid product was obtained, however the 'H and ' 3C NMR 

spectra were not the same as those for the product obtained by high-pressure 
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hydrogenation. The new compound was identified as hydroxylamine 188, the 

product of partial reduction. The electrospray mass spectrum clearly showed 

formation of 188 (Scheme 66) since the molecular ion peak was 16 mass units 

heavier than the expected amine. Hydroxylamines of this kind are rare, although 

recent example was reported by Gross et al. 162 

	

AcR °\CHNo 	
Zn/HCI 

OAc 	 OAc 

95 	 188 

Scheme 66 

The troublesome reactions with nitro sugar 95 led to pyranosylnitnles being 

examined as amine precursors instead. It should be noted that pyranosylaldoximes 

were not considered (despite their availability) due to the possibility of residual thiol 

deactivating the catalyst. 

2.5.2.2 Alternative synthesis of pyranosylmethylamines 

Pyranosyl nitriles are well known and may be prepared by addition of sodium 

cyanide to glycosyl halides' 81,182  or trimethylsilyl cyanide to glycosyl acetates. 183-185 

Previous work within the group has used the procedure of Köll et al 186 to convert 

pyranosylnitromethanes to the corresponding nitrile; the latter procedure was chosen 

for this study (Scheme 67). 
A 	 A 

	

AcR \CHNO 	
PCI3, Pyridine 

OAc 	 OAc 

95 R=H 	 167 R = H 

	

99 R = CH20Ac 	 189 R = CH20Ac 

Scheme 67 

Pd 3  was added to a cooled (0°C) mixture of pyridine and 3,4,5-tri-O-acetyl-f3-D-

xylopyranosylnitromethane (95) and the mixture stirred for 3 days at. room 

temperature. On work-up, the target nitrile 167 was obtained as a white solid (75% 

yield) after dry-flash chromatography. A diagnostic signal was observed in the 13C 

NMR [öc 114.2 ppm (CN)] and analytical data were in agreement with literature .' 86  

The glucose derived nitrile 189 was obtained by the same procedure in 82% yield. 
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The procedure described above has been known for over 25 years. The mechanism 

was believed to proceed by the addition/elimination sequence illustrated in Scheme 

68. 186 

H 	 0 

	

RN-0 	 B 	
RN

1 11 
	

B- 	

0= C,2 

PCI3 

	

0—F—CI 	
R—CN 

0 	 I ci 

	

CI 	 CI 

Scheme 68 

This mechanism has been challenged very recently in a study by Yao and co-

workers.' 87  The new proposal is of particular interest since the key step involves 

deoxygenation of a nitrile oxide intermediate (Scheme 69). 
H 	 H 	 H 	 ci 

PcI31 	RLN2 	 A 	N 
-Cl2 PO 	 ___ 	

RNOH 
B 

______  
I 	

. 	C1_A 	NO2 	 A  

0- 	 0- 

~HCl/' 	I 

	

-H' j 	f/HCI 	
PCI3 

+ __o 	p3 

c_ A CN 

-C13P0 

Scheme 69 

Nitriles 167 and 189 were hydrogenated under similar conditions to those employed 

in Section 2.5.1.1 (although lower temperatures and pressures were required) and the 

desired amine salts 182 and 183 were obtained in 99% and 90% yields respectively. 

In-situ generation of the amine as a hydrochloride salt was particularly important 

when nitriles were employed for two reasons; O—+N-acetyl migration could possibly 

occur  183  and/or formation of aldimines such as 190,188  if free amine was formed. 

H 	 OAc 

OAc 

190 

2.5.2.3 Additions of xylose and glucose derived amines 182 and 183 

pyranosylnitrile oxides 

Amines 182 and 183 were reacted with the D-xylose and D-glucose nitrile oxides 

115 and 151 in the presence of triethylamine as outlined in section 2.5.1.2. All of the 
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four possible products were purified by dry-flash chromatography and the expected 

amidoximes were obtained as white solids (Table 8). 

•R 	 OH 
OAc 

OAc 	H 

Compound R Yield (%) 

184 H H 44 

185 CH20Ac H 40 

186 H CH20Ac 31 

187 CH20Ac CH20Ac 49 

Table 8: (1 --A) linked pseudodisaccharides 

The 'H and ' 3C NMR spectra of the products showed characteristic signals for the 

amidoxime linkage; (Z)-N-(3 ,4,5-tri-O-acetyl-3-D-xylopyranosylmethyl)-(2,3 ,4-tri-

O-acetyl--D-xylopyranosyl)formamide oxime (184) serves as a typical example. 

The 'H NMR spectra were expected to be more complicated than those obtained for 

the (1—*6)-linked amidoximes since both carbohydrate rings adopted 4 C, chair 

conformations and would probably lead to overlap of both sets of signals. A 600 

MHz 'H NMR experiment was required to obtain the required peak dispersion to 

achieve a full structural analysis, and D6-DMSO was needed to get the sample to 

fully dissolve. Diagnostic amidoxime OH and NH signals were clearly observed [oH 

9.97 ppm (bs, OH), 5.26-5.29 ppm (m, NH)] in the 'H NMR. The anomeric protons 

[OH 4.27 ppm (d, 1-H, JHIH2  10.1 Hz), 3.62 ppm (ddd, 2'-H, JH2'-H3'  9.6 Hz)] both 

exhibited large axial-axial coupling with the adjacent ring protons, thus confirming 

the n-configuration had been retained in each of the xylose components. The 

identities of the remaining carbohydrate ring protons were established by COSY and 

2D-TOCSY 'H NMR experiments. 

The ' 3C NMR spectrum displayed peaks associated with the acetyl protecting groups, 

in addition to the 12 peaks that corresponded to the carbohydrate framework. The 
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most diagnostic signals were those from the amidoxime unit and exo-methylene 

group [c  147.3 ppm (C=N), 42.4 ppm (C-l')]. Of the remaining ten signals, two 

corresponded, as expected, to the xylose ring methylene carbons [c  65.2 ppm (C-

6"), 65.1 ppm (C-5)]. 

2.5.2.4 By-product formation 

A polar by-product was identified on analysis by TLC (R1 <0.1 EtOAc), the 

formation of which was belived to responsible for the lower yields (31-49%) of the 

(1—*1) linked pseudodisaccharides. Attempts to isolate and analyse the by-product 

were unsuccessful, however it was thought to be compound 191 resulting from O—*N 

acetyl migration. 183  An authentic sample of the migration product was therefore 

prepared by hydrogenation of nitro sugar 95 under a balloon of hydrogen in the 

presence of Raney nickel. 162  A colourless oil was obtained from the reaction mixture, 

following filtration and solvent removal. The 'H and ' 3C NMR spectra indicated the 

acetate group had migrated from the 2-hydroxyl to the amino group since signals 

corresponding to a hydroxyl group [H  4.60 ppm (bs, OH)] and amide group were 

observed [c  174.7 ppm (C=O)]. The JR spectrum was particularly convincing since 

OH and amide C=O stretching frequencies were clearly visible, in addition to a 

signal attributed to N-H bending. [Umax  3364 cm' (OH), 1742 cm' (C=O ester), 

1651 cm-1  (C=O amide), 1550 cm' (NH bend)]. 175  Unfortunately the migration 

product 191 was never isolated from any of the addition reactions, although TLC 

analysis of reaction mixture versus the authentic migrated product indicated that 

migration could have occurred. Amide 191 is believed to be formed by 

intramolecular nucleophilic acyl substitution reaction between the amine group and 

the adjacent acetyl ester at C-2. 

Ac2'-' 2 O 

o \NH2 	 OH 

191 

Scheme 70 
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2.5.2.5 	Synthesis 	of 	deprotected 	(1—*1) 	amidoxime-linked 

pseudodisaccharide 

An attempt was made to deprotect amidoxime 184 by stirring the disaccharide in a 

triethylamine/methanol mixture at room temperature. 189  Analysis of the reaction 

mixture after two days by electrospray mass spectrometry showed that the reaction 

was taking place rather slowly. Peaks were observed for successive acetate loss [ES 

591 (MH, 6Ac), 549 (MH, SAc), 507 (MH, 4Ac), 465 (MH, 3Ac), 423 (MH, 

2Ac), 382 (MH2 , Ac), 340 (MH2, OAc)} from the fully protected form, right 

through to the desired fully deprotected compound 192. 

OH 	
OH 

Hc—\J 	
2 cH 

OH 	H 

192 

The reaction was driven to completion within 6 hours by heating the reaction mixture 

to afford the product as a viscous oil (95% yield). A full analysis of 192 by 'H NMR 

spectroscopy proved difficult since at 360 MHz all 12 ring proton signals overlapped 

and appeared as a large multiplet. A 600 MHz 'H NMR experiment was attempted to 

disperse the ring proton signals, however the resultant spectrum was too broad to be 

of any use. The 'H NMR spectra did show, however, that the acetyl groups had been 

removed. The ' 3C NMR spectrum showed that the 12 expected carbons were present, 

the most diagnostic being those due to the amidoxime unit and the exo-methylene 

group [c  153.7 ppm (C=N), 44.2 ppm (C- I')]. 

2.5.2.6 Conclusions/Further Work 

Reaction of galactose amine 177 with nitrile oxides 115 and 151 under basic 

conditions afforded (1—*6) linked pseudo-disaccharides 178 and 181 in good yield 

(81% and 75% respectively). Reactions of xylose and glucose amines (182 and 183) 

under similar conditions afforded (1—*1) linked pseudo-disaccharides 184, 185, 186 

and 187 (31-49% yield). The lower yields of the (1—*l) linked products were 

attributed to the formation of 191. Future work would be directed toward preventing 

formation of 191. This could be achieved by employing benzoyl protected amines. 



Deprotection of the pseudo-disaccharides would allow biological testing to be 

conducted, their potential function as nitric oxide donors would be of particular 

interest (Section 1.4.1). 



ri 

2.6 Ambident nucleophile additions 2-pyranosylbenzazole synthesis 

A logical extension of the work with amines was to examine the reactivity of a 

variety of ambident nucleophiles. A survey of the literature revealed work in this 

field by Sasaki et al, 136 and latterly by Parkanyi' 90  and Risitano. 19 ' They reported that 

addition of o-phenylenediamine, o-aminophenol and o-aminothiophenol to aryl 

nitrile oxides offered a mild and high yielding method of synthesising 2-

arylbenzimidazoles, benzoxazoles and benzothiazoles (Scheme 71). 

OH 
YH L 	+ 	

ci 
NH, 

N 	 -HCI 
II r-C- 

Y ArCI 	 Ar  

Scheme 71: Y= S, 0, NH 

This procedure has not received great attention since there are more accessible 

precursors for the synthesis of 2-arylbenzazoles; typically aromatic carboxylic acids 

or aldehydes are employed in the synthesis of such compounds. 192-194 

It was envisaged that the Sasaki procedure might provide a convenient route to 2-

pyranosylbenzothiazoles, benzimidazoles and benzoxazoles. The traditional routes 

are not as amenable to the synthesis of such compounds since the corresponding 

carboxylic acids and aldehydes are not easily accessed and/or the reaction conditions 

can be harsh. A brief survey of the current routes to pyranosylbenzazoles is presented 

below. 

2.6.1 Synthesis of 2-pyranosytbenzothiazoles 

2-Pyranosylbenzothiazoles have been known for over 25 years, 195  and have received 

attention as 3-D-galactosidase' 96  and glycogen phosphorylase inhibitors. 197  There are 

currently two major routes to 2-pyranosylbenzothiazoles: the first procedure involves 

addition of o-aminothiophenol to 2,6-anhydro-aldononitriles and subsequent 

cyclisation. Farkas' 95  and Somsak' 98  have employed this route in the synthesis of 2- 

-D- xylo, galacto, gluco, arabino and ribopyranosylbenzothiazoles. The Farkas 

procedure is relatively straightforward; the relevant acetylated glycosyl nitrile and 2- 



aminothiophenol are heated at reflux in ethanol under a nitrogen atmosphere for 4 

hours, (Scheme 72) and the products obtained by crystallisation in 57-77 % yield. 195 

CN 
OR 

L 
SH 

DOH, L 

Scheme 72 

OR 	S 

The second route, which was reported recently by Dondoni et al, 199  begins with 

addition of 2-lithiobenzothiazole to tetra- O-benzyl-D-gluconolactone (193) to afford 

a hemiacetal product 194 as a single isomer in 78% yield. Subsequent acetylation 

and deoxygenation leads to a 6:4 mixture of benzothiazole products (197 and 198); 

the a compound is transformed into the more stable P anomer 198 on treatment with 

NaOMe (80% combined yield on crystallisation). 
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Scheme 73: (a) 2-Iithiobenzothiazole, THF, -65 °C (b) Ac20, NEt3  (c) Et3SIH, TMSOTf, (d) 

NaOMe, MeOH. 



To date this procedure has not been extended to other monosaccharides. The 

benzothiazole may function as a masked aldehyde, on further manipulation 

hydrolysis of the heterocycle may be effected to afford the formyl C-glucoside 199 

(Scheme 73). 

2.6.2 Synthesis of 2-pyranosylbenzimidazoles 

Establishing a route to 2-pyranosylbenzimidazoles has proven to be more 

challenging, however a recent synthesis of 2-3-D-glucopyranosylbenzimidazole has 

been accomplished by Somsak et at (Scheme 74)•197  Somsaks route requires 

additiOn of ethanethiol to nitrile 200 to afford a thioimidate intermediate 201, which 

was transformed into the target 202 in a modest yield (34%) on treatment with o-

phenylenediamine. 

Bz 0\CN 	
(a) 	 (b) zO_

OBz 	 OBz 	 OBz 	H 

200 	 201 	 202 

Scheme 74: (a) EtSH, Et 20/HCI, 0°C, (b) 1 ,2-diaminobenzene, pyridine. 

The only other route known was reported by Chapleur and Castro 25 years ago 

(Scheme 75)•200  Coupling of ulosonic acid derivative 203 with o-phenylenediamine 

was achieved by employing Castro's reagent. The resultant amide 204 was found to 

cyclise in refluxing diglyme (1600C)  in the presence of Na 2CO3  to give 

benzimidazole 205 in 75% yield. Acid-induced hydrolysis then afforded a mixture 

of furanose and pyranosebenzimidazole products 206-208, the relative proportions of 

which were found to be solvent dependent. 
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Scheme 75: (a) 1 ,2-aminobenzene, BtOP(NMe) 3.PF6 , NEt3  (b) Na2CO3, Diglyme, (c) 

TFA, H20. 

2-Pyranosyimidazoles are also rare. 2-a-D-Glucopyranosylimidazole and 2-0-D-

glucopyranosylimidazole have been synthesised by Vasella and Granier (Scheme 

76)201 but, to the author's knowledge, no group has attempted to employ this 

methodology to prepare the analogous benzimidazoles. Vasella's route is similar to 

that of Dondoni (scheme 73); addition of 2-lithio-1-(dimethylamino)methyl-1H-

imidazole to tetra-O-benzyl-D-gluconolactone affords hemiacetal 209 (68%). 

Reduction of 209 formed a 12:88 mixture of diols 210 which, after chromatographic 

separation and dehydration, cyclised to the desired heterocyclic products 212 and 

213 (80% yield). 
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Scheme 76: (a) BuLi, 1-(Me2NCH2)lm, THF (b) NaBH4 , dioxane, H 20, AcOH (c) 3,5-

dinitrobenzoyl chloride, pyridine (d) NaH, DMF. 

2.6.3 Synthesis of 2-pyranosylbenzoxazoles 

At the outset of this work, 2-pyranosylbenzoxazoles were believed to be unknown, 

however rare examples of furanosyl analogues had been prepared. 202  The synthesis 

of these compounds is outlined later, in section 2.7.1. 

2.6.4 Nitrile oxide route to pyranosylbenzazoles 

2.6.4.1 2-Pyranosylbenzothiazoles 

Pilot work was conducted with D-xylose derived nitrile oxide 151, following a 

procedure based on that of Sasaki et al. 136  Stirring the hydroximoyl chloride 106 with 

2.5 equivalents of o-aminothiophenol in refluxing ethanol afforded 2-(2,3,4-tri-0-

acetyl-3-D-xylopyranosyl)benzothiazole (214, 90% yield) on cooling, or after dry-

flash chromatography. Distinctive NMR signals corresponding to the pyranosyl ring 

protons were observed. The coupling between H-i' and H-2' was found to be 9.5 Hz, 

which demonstrated that the expected f3-anomer was obtained. Signals characteristic 



for the heterocyclic ring were also observed in the 'H and ' 3C NMR spectra [&H 7.36-

7.44 (2H, m, Ar), 7.81-7.96 (2H, m, Ar), öc 166.6 ppm (C-2), 152.5 ppm (C-3a), 

134.7 ppm (C-7a)]. D-Glucose derived benzothiazole 215 was synthesised in a 

similar fashion (81% yield). The products of both reactions were found to have 

similar analytical and spectroscopic properties to those in the literature. 198 
5 

Rj2I P7. 

6 

The proposed reaction mechanism is outlined in Scheme 77 . 

1 36 One equivalent of 

amine is believed to dehydrochlorinate the hydroximoyl chloride to form a nitrile 

oxide, attack by a second equivalent of amine leads to amidoxime formation, and 

finally this intermediate can expel hydroxylamine and cyclise to the benzazole. In the 

case of benzothiazole formation, the possibility of initial attack by the thiol was 

considered unlikely on account of previous observations by the Sasaki group, 136 

presumably the neutral conditions do not allow formation of the more nucleophilic 

thiolate anion. Risitano et al'9 ' have isolated the postulated amidoxime intermediates 

when studying additions of o-phenylenediamine to aryl nitrile oxides. 

OH 
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HORN 
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Scheme 77 

S-2-aminophenyl-2,3 ,4-tri-O-acetyl-3-D-xylopyranosylformothiohydroximate (216) 

was prepared by stirring o-aninothiophenol with hydroximoyl chloride 106 in the 

presence of triethylamine (78% yield). 

N'  ~

0:9 

 NH, 

216 

The 'H and ' 3C NMR spectra were reminiscent of the thiophenol adduct, except for 

the presence of a broad singlet at 4.35 ppm due to the primary amino group. The 

structure of 216 was confirmed by X-ray crystallography (see Figure 5). The crystal 



structure clearly displayed that the thiohydroximate moiety exclusively adopted the 

expected Z-configuration. Stirring the thiohydroximate in refluxing ethanol over 5 

hours did not lead to any benzothiazole formation; this observation therefore also 

appeared to favour a mechanism involving initial attack on the nitrile oxide by the 

amino group. 

Figure 5- Crystal structure of S-2-aminophenyl-2,3,4-tri-O-acetyl-3-D- 

xylopyranosylformothiohydroximate (216) 

The work by Sasaki 136  and Parkanyi' 9°  indicated that the reaction proceeded under 

milder conditions. For example, stirring benzohydroximoyl chloride with 2 

equivalents of o-aminothiophenol at room temperature for 3 hours afforded the 

corresponding benzothiazole in 95% yield. Attempts to employ such conditions with 

D-xylose and D-glucose derived hydroximoyl chlorides 106 and 107 proved to be 

unsuccessful. 

2.6.4.2 Synthesis of 2-pyranosylbenzimidazoles 

Reaction of hydroximoyl chloride 106 with o-phenylenediarnine in refluxing ethanol 

in a similar manner to above (section 2.6.4.1) afforded the expected benzimidazole 

217 (83% yield). Unlike the previous cases, the reaction was also found to proceed 
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cleanly and efficiently when the starting materials were stirred at room temperature 

for 12-16 hours. In pilot studies the product was separated from excess starting 

material by dry-flash chromatography. The original work-up was found to be tedious, 

but was greatly improved by diluting the reaction mixture with DCM and washing 

with 4% CuSO4  solution. The washing step led to the formation of an insoluble lilac 

precipitate, which was attributed to the copper (II) ions chelating out the residual o-

phenylenediamine. Purified material was obtained after filtration through a silica pad 

and crystallisation from ethylacetate/hexane. The 'H and ' 3C NMR data provided 

useful structural information for identification of the product, since both were 

simpler than those obtained for the benzothiazoles. This phenomenon was attributed 

to certain positions becoming magnetically equivalent due to rapid proton exchange 

between N-i and N-3, Such prototropic tautomerism is well known to occur in 

CDC13  solutions of imidazoles and benzimidazoles (Scheme 113 
 

1 "N—H N'I 

\ 

Scheme 78 

The 'H NMR spectrum for D-xylose derived benzimidazole 217 showed a distinctive 

broad signal corresponding to H-4 and H-7 [&,, 7.50 ppm (2H, vbs)], while the ' 3C 

NMR spectrum showed only two major (heterocyclic) peaks (C-2 148.8 ppm, C-5,6 

123.4 ppm). The remaining quaternary carbons, C-4 and C-7 gave very broad signals 

c.f 2-methylbenzimidazole. The D-glucose analogue 218 was prepared similarly 

(89% yield). 
5 
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), p7a 
R 

The structure of 217 was confirmed by X-ray crystallography (Figure 6, ethyl acetate 

solvent has co-crystallised). 

EMO 



C(31) 

0(34) 	32( 

t33) 

C(36) 	5) 0 C(13) 

C(12)0(5) 	
0(7) 

0(3) 	
C(15) 

0 t S C ~(10) - :

~ 	

')DC(1~4) 

N)3') 	C(2') 
CM C(5) 

00) 
C(6') 

C(7') 	C(8) 

Figure 6- Crystal structure of 2-(2,3,4-Tri-O-acetyl--D-xylopyranosyi)benzimidazole (217) 

Selected bond lengths are compared with benzimidazole itself in Table 9•203  All bond 

distances are not significantly different (within 3), with the exception of N I A-CM, 

which is somewhat shorter than expected. This may be a direct result of the poor 

quality of the diffraction data. The distances quoted above were freely refined, 

whereas the benzene ring was constrained to be a perfect hexagon. No comparison 

was made with 2-methylbenzimidazole since the proton in this crystal structure is 

disordered over the two N atoms and this results in bond distances being averaged. 

Bond Length! A (217) Bond Length! A 
Benzirnidazole 203  

N3A-C2A 1.313(9) 1.311(5) 

N3A-C4A 1.380(9) 1.395(3) 

NIA-C2A 1.331(10) 1.346(4) 

NIA-C9A 1.346(8) 1.372(4) 

Table 9: Comparison of bond lengths in 217 and Benzimidazole 

Ell 



A number of substituted 1 ,2-diaminobenzenes are commercially available, therefore 

it was decided to investigate the possibility of subjecting such nucleophiles to the 

reaction conditions established in section 2.6.4.1. 4-Nitro-1,2-diaminobenzene was 

selected as a candidate due to the reduced nucleophilicity of the amino groups. It was 

believed that if this reaction was successful, other less electron poor nucleophiles 

(such as halogenated 1,2-diaminobenzenes) could be employed. Stirring 

hydroximoyl chloride 106 with 4-nitro- 1 ,2-diaminobenzene in refluxing ethanol 

afforded crude benzimidazole 219 (Scheme 80). In this case washing the reaction 

mixture with 4% CuSO4 solution did not efficiently chelate out the residual amine. 

Attempted purification by dry-flash and wet-flash chromatography was not 

completely successful, a red material was obtained which was estimated to be .90% 

benzimidazole by !H  NMR. 

)

NH, 

 NO 2  

02 N 	NH, 

+ 	
Ac \JfjI 

OAc 	H 
Ac - \CN —o  

OAc 	 219 

Scheme 80 

The pyranosyl ring region of the 'H NMR spectrum resembled those of the 

unsubstituted benzimidazoles although all of the ring proton signals were shifted to 

higher frequency. The aromatic region contained distinctive signals for each of the 3 

protons on the benzo-fused component [E, 8.64 ppm (d, 4-H, JH4H6  1.8 Hz), 8.28, 

(dd, 6-H, JH6-H7  8.8 Hz), 7.89, (d, 7-H, JH4-H6  1.8 Hz), 6.60 ppm (dd, H-4, JH4-H5  7.3 

Hz, JH4-H6  0.6 Hz), 6.58 ppm (dd, H-9, JH9-H8  7.3 Hz, JH9H7  0.6 Hz)]. Although the 

product was not fully purified, the experiment demonstrated that an electron poor 

1 ,2-diaminobenzene would indeed react under the established conditions. 

2.6.4.3 Synthesis of 2-pyranosylbenzoxazoles 

The success of the previous reactions encouraged attempts to prepare the hitherto 

unknown 2-pyranosylbenzoxazoles. Reaction of D-xylose nitrile oxide 151 with o- 
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aminophenol in refluxing ethanol, in a similar manner to that outlined in section 

2.6.4.1, afforded the expected benzoxazole 220 in 68% yield. The reaction was also 

found to proceed with no reduction of yield at room temperature after stirring for 16 

hours. Dry-flash chromatography was avoided by diluting the reaction mixture with 

DCM, as the phenol was found to be insoluble in chlorinated solvents. The solid was 

filtered off before removing any residual o-aminophenol with a 0.1 M HCI wash. 

Purified material was obtained after filtration through a silica pad and crystallisation 

from ethyl acetate/hexane. Again, the D-glucose analogue 221 was prepared 

similarly (71% yield). Distinctive NMR signals corresponding to the pyranosyl ring 

protons were observed in each case. Signals characteristic for the heterocyclic ring 

were also observed in the 'H and ' 3C NMR spectra [H  7.64-7.68 (1H, m, Ar), 7.49-

7.52 (111, m, Ar) 7.27-7.32 (214, m, Ar), öc 159.9 ppm (C-2), 150.6 ppm (C-7a), 

140.2 ppm (C-3a)]. The NMR data for both products were found to correlate with 

those found for 2-alkylbenzoxazoles. 194  
5 

ROTh 	

6 

2.6.5 Deprotection studies 

On completion of the peracetylated series of pyranosyl heterocycles, it was decided 

to investigate deprotection of 217, 218 and 220. Many conditions are available for 

deprotection: The classic Zemplen method (NaOMeIMeOH) was considered too 

harsh 204  and methanolic ammonia was regarded as being inconvenient. 204  Milder 

conditions were ultimately employed. Treatment of the acetylated substrates with 

triethylamine in methanol, 189  or (as recently reported by Field et a!205) 4A molecular 

sieves in methanol, allowed efficient deprotection in all cases (refer to Table 11, 

section 2.6.7). The latter conditions were found to achieve deprotection more rapidly. 

NMR spectra were obtained in D20 and D 3COD, however d6-DMSO was found to 

give superior resolution. The 'H and 13C spectra of deprotected benzoxazole 222 

were not significantly different from the acetylated precursors, although coupling 

was observed between the pyranosyl ring protons and the ring OHs (JH-oH 5.0-5.9 
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Hz) and hence more complex coupling patterns than expected were observed for the 

ring protons. The 'H and 13C spectra of the deprotected henzimidazoles 223 and 224, 

however, were markedly different from their acetylated derivatives, The D-glucose 

derived product 224 serves as a convenient example. The 'H NMR spectrum no 

longer showed H-4 and 1-1-7 as broad signals and the 13C NMR contained individual 

signals for the aromatic CHs and quaternary carbons. The NMR data indicated that 

proton exchange between N-I and N-3 had been limited in DMSO and hence any 

previously magnetically/chemically atoms were no longer so. The structure of 224 

was confirmed by X-ray crystallography (Figure 7). 

r / 

02 ,  

Figure 7- Crystal structure of 2--D-glucopyranosyIbenzimidazole (224) 

Selected bond lengths for compound 224 are compared with henzimidazole in Table 

10. The bond lengths were found to be in good agreement with those of 

benzimidazole (within 3). 
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Bond Length! A (224) Bond Length! A 
Benzimidazole 

N3A-C2A 1.314(2) 1.311(5) 

N3A-C4A 1.395(2) 1.395(3) 

NIA-C2A 1.360(2) 1.346(4) 

N1A-C9A 1.384(2) 1.372(4) 

Table 10: Comparison of bond lengths in 224 and benzimidazole 

As in the benzoxazoles case, coupling was observed between the pyranosyl ring 

protons and the OHs (JHOH  5-5.9 Hz) and again the ring protons gave rise to more 

complex splitting patterns. A COSY 'H NMR experiment allowed a full assignment 

of the spectrum. 

2.6.6 Biological activity 

During the course of the project, 2-3-D-g1ucopyranosy1benzimidazole was reported 

to inhibit glycogen phosphorylase (K 1  8.6 tM).' 97  This enzyme is currently a target 

for hypoglycemic drugs to treat impaired insulin production (type 2 diabetes). The 

function of glycogen phosphorylase is outlined below. 

2.6.6 Glycogen phosphorylase function 

Glycogen phosphorylase (GP) catalyses the breakdown of glycogen to glucose-i-

phosphate (Glc-1-P) (glycogenolysis), the process is illustrated in scheme 80.206 
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The mechanism of phospholytic cleavage of glycogen has been established by 

Helmreich and co-workers (Scheme 81).207  Pyridoxal phosphate is believed to 

function as an acid/base catalyst for orthophosphate, orthophosphate donates a proton 

to the departing "OR" group and then attacks the glucosyl cation to form (X-glucose-

1-phosphate. 
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As indicated in Schemes 80 and 81, the process is reversible, as the glycogen 4-OH 

can displace the Glc-1-P phosphate group to reform chain extended glycogen. 

Glycogen phosphorylase exists in two forms, Phosphorylase b is usually inactive and 

Phosphorylase a is active. Phosphorylase b is transformed into the a form by 

phosphorylation of the serine 14-residue on each subunit (Scheme 82).206208 

2ATP 	2ADP 

Phosphorylase b L 
Ser -OH 
	

2P043 	2H20 

	
Phosphorylase a L 

Ser -0P032  

Scheme 82 

Both Phosphorylase a and b are structurally different, a exists in an R-state (relaxed) 

while b exists in a T-state (tense). The glycogen binding site is 30 A from the 

catalytic site, they are connected by a tunnel, which is blocked in the T state. 206 

Molecules that would stabilise the inactive T-form of GPb, and thus inhibit 

glycogenolysis, have become drug targets for controlling blood glucose levels. 

The presence of glucose and caffeine (225) are known to favour the inactive form, 

with glucose binding to the active site and caffeine to a site nearby. 209  Analogues of 

glucose and caffeine have therefore been investigated as GP inhibitors.  209  Adenosine 

mono phosphate (AMP) is a known allosteric activator of GP, and as a• result 

inhibitors of AMP have also received attention.  209,210  In the last five years new 

allosteric sites have been identified through X-ray studies with novel inhibitors, and 

these sites offer potentially new drug targets . 209'21°  
0 

H\JQ
N 	 W040~ 

OH 	H I  

225 	 224 

An X-ray crystal structure of a 2--D-g1ucopyranosylbenzimidazole/enzyme 

complex has demonstrated that this inhibitor primarily binds to the catalytic site.2 



Binding was also found to take place at the indole/caffeine site and a previously 

unknown binding site, but it is unclear whether this new site will be of interest as a 

future drug target. 

2.6.7 Conclusions/Further Work 

2-3-D-Pyranosyl benzoxazoles, benzimidazoles and benzothiazoles have been 

synthesised in good yields (Table 11). The key addition/cyclisation reaction proceeds 

under mild and neutral conditions, which do not necessitate resilient protecting 

groups and chromatographic purification is largely avoided. Pilot experiments have 

indicated that substituted benzazoles could also be accessible by this methodology. 

Addition of halogenated o-hydroxy, thio or amino anilines could afford benzazoles 

which could be manipulated further using Pd(II) chemistry. 

Hydroximoyl 

Chloride 

X R Y Yield % 

214 H Ac S 90 

215 CH20Ac Ac S 81 

217 H Ac NH 88 

218 CH20Ac Ac NH 85 

220 H Ac 0 68 

221 CH20Ac Ac 0 71 

222 H H 0 92 

223 H H NH 93 

224 CH20H H NH 95 

Table 11: Summary of Benzazole Results 

2.6.7.1 Potential glycosidase inhibition 

The Vasella group have synthesised 2--D-glucopyranosylimidazo1e (213) (see 

section 2.6.2) 201  and found that this compound inhibits sweet almond glucosidase 

(K1  640j.tM). Glycosidase inhibitors have many therapeutic applications, including: 

antiviral activity, 212  anticancer activity, 213  treatment of diabetes , 214  treatment of 
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obesity,215  amongst others. The mode of action of retaining-3-0-glycosidases was 

outlined in section 2.6.1. Imidazoles such as 213 are believed to inhibit glycosidases 

by shuttling a proton between the glutamate residues in the glycosidase catalytic site 

(Scheme 83), thus preventing entry and binding of the substrate. 170  In principle, there 

is no reason why 2--D-glucopyranosylbenzimidazole or derivatives could not be 

employed in a similar capacity. 

	

- oo 	 oo 

<ND 

C 	H 

C 	o 	 _oo 

'r 
Scheme 83 



2.7 Ambident nucleophile additions 2-furanosylbenzazole synthesis 

Whilst investigating 2-pyranosylbenzazole chemistry, it was realised that the same 

methodology could be applied to the synthesis of furanosyl analogues. Such C-

nucleoside analogues are of great interest, particularly in the design of antiviral 

compounds .2' 
6,217  2-Furanosylbenzimidazoles, benzoxazoles, and benzothiazoles 

have been the subject of a recent patent, held by Celltech, 218  who report them to be 

potential therapeutic agents for cystic fibrosis. A brief overview of the available 

methods for making 2-3-furanosylbenzazoles is provided below. 

2.7.1 Synthesis of 2-furanosylbenzazoles 

Early research in this area examined additions of o-substituted anilines to aldonic 

acids,219  such procedures required harsh conditions (reflux in the presence of mineral 

acids), which could result in anomeric mixtures of products. Addition of lithiated 

heterocycles to sugar lactones featured in section 2.6.1 in syntheses of 2-

pyranosylbenzazoles, and the most successful approaches to furanosyl analogues also 

employ this method. Early work by Ogura and Takahashi 220  examined addition of 

lithiobenzothiazole and 1-benzylbenzimidazole to lactones such as the D-gulose 

derived compound 226 (Scheme 84). The heterocyclic unit in resultant hemiacetals 

227 was found to occupy the f3-position (40-70%). Disappointingly, however, 

attempts to remove the anomeric OH group with trimethylammonium formate 

proved to be unsuccessful. 

I:P  Li 

Y= S, NBn 

226 	 227 

Scheme 84 

Ogura's methodology has been revisited in recent years by Benhida et al (Scheme 

85).221 222 The initial stage in the updated method still features addition of a lithiated 

heterocycle to a furanosyl lactone, however the anomeric OH is removed by a 

successive reduction / Mitsunobu cyclisation strategy. Addition of benzyloxymethyl 



(BOM) protected 2-lithiobenzimidazole to ribose derived-lactone 228 afforded 

hemiacetal 229 in 75% yield as a mixture of anomers (45:55). Subsequent 

hydrogenation and borohydride reduction afforded a diastereomeric mixture (-.1/1 

ratio) of diols 230, which was converted to 2-3-D-ribofuranosyl derivative 231, in 

90% 	yield, 	by 	a 

TBDPSO_'(.7 	
(a), (b) 

228  

stereocontrolled 	Mitsunobu 

N 'Q 
o 	NH 3 

TBDPSO 	 011 	(c) 

229  

type 	cyclisation. 

N'9 
OH 	NH 

TBOPSO 
OH 

230 

/(d) 

N2 

TBDPSO1' 7)11  

231 
i

H  N 

DPSO 	

' 

* ( JI) 

Scheme 85: (a) NBOM benzimidazole, LDA, THF, -50°C (b) H 2  (60 psi), Pd/C, MeOH, 

THE (c) NaBH 4 , MeOH (d) DEAD, PPh 3 , MeOH. 

2-a-D-Ribofuranosylbenzimidazoles have also been made by this method. 

Performing a Felkin-Ahn controlled borohydride reduction before heterocycle 

deprotection afforded a diastereomeric mixture of diols, where the S diol (C*)  was 

the major product (95:5, S:R). Ring-closure was achieved in a similar fashion. There 

have been no reports to date that employ Benhida's procedure to prepare 

benzothiazole or benzoxazole derivatives. 
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235 	 236 	 237 

Scheme 86: (a) NaOMe (b) o-aminophenol, MeOH (c) EISH, HCI (d) H 2S, pyridine (e) o-

aminophenol, EIOH. 

It was stated in section 2.6.3 that furanosylbenzazoles were rare. The only synthesis 

reported until recently, was achieved by Kawai and El Khadem (Scheme 86).202  -D-

Ribofuranosyl cyanide 232 was converted to acetimidate 233, which was found to be 

highly hygroscopic and therefore required handling in a glove box. Refluxing 233 

and o-aminophenol in methanol for 2 hours afforded benzoxazole 234 in 20% yield. 

A second approach was attempted based on dithioate intermediate 237. Refluxing 

dithioate 237 with o-aminophenol in ethanol for 36 hours afforded benzoxazole 234 

in 24% yield. The low yields, careful handling and toxic reagents associated with the 

above procedures probably account for the limited use of this process. 

2.7.2 Nitrile oxide based strategy 

The first route examined the preparation of 2-3-D-ribofuranosylbenzazoles (Scheme 

87). The key difference between the strategy to be employed for the ribose-derived 

benzazoles and that for pyranose derivatives, was the use of a nitrile precursor, rather 

than a nitromethyl sugar. This decision was made since previous work within the 

group,223  and by others '224  had found the preparation of nitromethylribose in large 

quantities to be arduous and low yielding. In contrast, the ribose derived nitrile 238 
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184.185.225-230 was well known 	and readily accessible from commercially available 239 

(Scheme 87). 
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Scheme 87: (a) o-ami not hiophenol, EtOH (b) TMSCN, BF 3.Et20,MeCN (c) 

PhNHCH2CH2 NHPh, Raney Ni, NaH2PO2 , pyridine/AcOH/H20 (d) TsOH (e) NH 20H. HCI, 

pyridine (f) C 2  (f) Y=NH, o-phenylenediamine; EtOH, Y=O, o-aminophenol. 

The proposed strategy was also believed to be particularly advantageous over 

previous strategies because all three possible 3-D-ribofuranosylbenzazoles could be 
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made from the same starting material. The benzothiazole 240 could be accessed from 

nitrile 238 directly via the previously mentioned procedure of Farkas and co-

workers. 1 
95  The focus of the current work was to prepare the benzoxazole 241 and 

benzimidazole 242 by the nitrite oxide methodology (section 87). 

2.7.2.1 Ribose Nitrile Oxide Precursors 

2.7.2.2 Synthesis of 3,4,5-tri-O-benzoyI--D-ribofuranosyI cyanide (238) 

A survey of the literature revealed many methods for the preparation of the title 

compound,' 84,185,225-230  The method of Morelli et a1225  is representative and was 

ultimately chosen. -D-Ribofuranosyl acetate 239 was reacted with trimethylsilyl 

cyanide (TMSCN) in the presence of catalytic boron trifluoride etherate to afford an 

amber solution after 5 minutes. The reaction mixture was quenched with aqueous 

NaHCO3  and the target nitrile isolated in 86% yield after wet-flash chromatography. 

The reaction was found to proceed without reduction of yield when attempted on a 

gram scale. The 'H NMR spectrum was in agreement with the literature 225  and the 

' 3C NMR spectrum showed characteristic signals [c  115.6 ppm (CN)]. The 

reaction is stereospecific for the required 3-configured product, an effect attributed to 

neighbouring group participation of the benzoyl ester at C-2 (scheme 88).185 

CN 

	

BzO' BzO 'O 	
238 

Bz6 	OBz 	 Bz6 	 BzO 	9) 
Ph 

Scheme 88 

2.7.2.3 Synthesis of 2,5-anhydro-3,4,6-tri- O-benzoyI--D-aIlose oxime 

(243) 

Some years ago Moffat and co-workers reported a three-step synthesis of the title 

compound 243 from nitrile 238.231  The first step involved conversion of the nitrile to 

imidazoline 244, which on treatment with p-toluenesutfonic acid afforded formyl-C -

furanoside 245. Crude 245 was reacted with hydroxylamine hydrochloride to obtain 

the required oxime. A modified version of Moffat's procedure was employed in the 

current synthesis. 3 ,4,5-Tri-O-benzoyl-f3-D-ribofuranosyl cyanide was stirred with 
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Raney nickel, NN-diphenylethylenediamine (Wanzlicks reagent) and sodium 

hypophosphite in aqueous acetic acid and pyridine. Imidazoline 244 was isolated in 

59% yield after wet-flash chromatography. The separation between the product and 

diamine proved to be very small by TLC (R = —0.025, 30% EtOAc in hexane), 

which made purification more difficult than expected. In addition to the expected 

signals for the carbohydrate ring and its benzoyl protecting groups and the 

imidazoline N-phenyls, peaks corresponding to the imidazoline moiety itself were 

observed [öc 48.0 ppm (NCH2), 48.4 ppm (NCH2), 84.2 ppm (C-2), 6H 3.62-3.77 

ppm (2H, m, NCH2), 3.81-3.96 ppm (2H, m, NCH2), 5.97 ppm (1H, s, 2-H)]. The 

signal for H-2 appears as a singlet, an observation consistent with the product being 

obtained as the -anomer. Treatment of imidazoline 244 with p-toluenesulfonic acid 

afforded crude aldehyde 245, which was immediately reacted with hydroxylamine 

hydrochloride and pyridine. The title compound (45% yield) was finally obtained as 

a 4:1 mixture of isomers (E:Z) after purification by dry-flash chromatography. 

Diagnostic peaks for the oxime unit were seen in the NMR spectra [c  148.3 ppm 

(C=N), oH),  8.88 ppm, bs (OH) (E)),], and the analytical data were consistent with 

literature values. 142 

Although the required oxime 243 was obtained, the procedure was not considered 

satisfactory if larger scale syntheses were to be accomplished. Particular concerns 

included: the final yields of oxime and imidazoline were lower than expected, 

extensive chromatographic purification was required, and it was thought desirable to 

avoid the aldehyde intermediate if possible. The previously mentioned Somsak/Toth 

procedure 151  (section 2.2.2) for pyranosylaldoxime synthesis offered a viable 

alternative to that described above. 
NHCONH2  
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238 
	

246 	 243 

Scheme 89: (a) semicarbazide.HCI, KOH, Raney Ni, NaH 2PO2 , pyridine/AcOH/H 20 (b) 

NH20H. HCI, pyridine 
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The alternative procedure is essentially a modified version of that reported by Moffat 

et al.23 ' Somsak demonstrated 151  that sugar nitriles could be converted under 

reducing conditions into semicarbazones by reaction with semicarbazide and that 

these semicarbazones were found to efficiently undergo transimination with 

hydroxylamine to afford the corresponding aldoximes. Crucially, the aldehyde 

formation step is avoided and it was hoped that crude semicarbazone 246 could be 

employed in the final step and hence eliminate tedious purification steps. A mixture 

of 3 ,4,5-tri-O-benzoy1-3-D-ribofuranosyl cyanide (238) Raney nickel, semicarbazide 

hydrochloride, KOH, sodium hypophosphite in aqueous acetic acid and pyridine was 

heated to 40 'C for 4 hours. The reaction mixture was washed successively with 1 M 

HC1, saturated NaHCO 3  and water before isolating the crude semicarbazone as a 

light brown solid. Diagnostic peaks for the semicarbazone unit were seen in the 

NMR spectra [öc 157.4 ppm (C=O), 138.6 ppm (C=N) au).  9.85 ppm, bs, (OH), 7.13 

ppm, d, (CH=N), JHI-H2  5.2 Hz]. The crude material was taken on to the next step 

immediately. Hydroxylamine hydrochloride was added to a solution of crude 

semicarbazone in acetonitrile / pyridine and the reaction stirred at room temperature 

under argon for 16 hours. Purification by wet-flash chromatography afforded the title 

compound as a colourless oil (81% yield). The NMR data and physical properties 

were identical to those obtained previously by the original route. The second 

procedure was judged to be the more suitable of the two and allowed attempts to 

prepare ribose-derived hydroximoyl chloride 247. 

2.7.2.4 Attempted synthesis of ribose derived hydroximoyl chloride 

(247) 

It was envisaged that the procedures outlined in section 2.2.3 for the synthesis of 

pyranosylhydroximoyl chlorides would also be suitable for the required ribofuranose 

analogue. It was known that Moffat et a! 142  had used a similar procedure in the 

preparation of 247 toward the synthesis of -D-ribofuranosylisoxazoles. Repeated 

chiorinations were conducted in the manner described previously, but were 

disappointingly only partly successful. The 'H and ' 3C NMR spectra of the product 

were more complex than expected, indicating that more than one species was present 

after chlorination. Peaks corresponding to hydroximoyl chloride 247 could be 
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identified [c  137.2 ppm (C=N), oH 9.81 ppm, bs, (OH)], however they appeared to 

make up the minor component of the mixture. The identity of the other substance 

remains unclear. 

A milder chlorination procedure employing N-chlorosuccinimide 33  was attempted in 

order to avoid by-product formation. A pilot reaction with the aim of making the 

furoxan dimer 248 was employed to establish the usefulness of the new conditions. 

A mixture of oxime 243, N-chlorosuccinimide and pyridine in chloroform was 

heated to 40°C for ca 45 minutes. On cooling, triethylamine was added and the 

mixture stirred for 1 hour. Dry-flash chromatography afforded furoxan 248 as a 

colourless gum (107 mg, 72%). The formation of furoxan in high yield was a good 

indication that the NCS method was the better way of obtaining the desired nitrile 

oxide precursor 247. The newer method also had the advantage of being a one-pot 

procedure. 

BzO 0 	
"OBz 

BzO 	'OBz Bz OBz 

248 

2.7.2.5 Synthesis of 2-(2,3,5-Tri-0-benzoyI--D-

ribopyranosyl)benzoxazole (241) 

N 

(a) 	
BzO())CI 	

(b) 	BzO()0 

Bz 	'bBz 	 Bzd 	OBz 	 Bzd 	DBz 

243 	 247 	 241 

Scheme 90: (a) NCS, pyridine (b) o-aminophenot, EtOH 

A mixture of oxime 243, N-chlorosuccinimide and pyridine in chloroform was 

heated to 40°C for ca 45 minutes and, after cooling, the solvent was removed in 

vacuo. A solution of the resulting hydroximoyl chloride and o-aminophenol in 

ethanol was heated at reflux for 5 hours. The reaction mixture was washed with 1 M 
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HCI before dry-flash chromatography afforded 241 as a colourless gum (92% yield). 

Diagnostic peaks corresponding to the benzoxazole moiety were observed in the ' 3C 

NMR spectra [öc 162.5 ppm (C-2), 152.0 ppm (C-7a), 141.7 ppm (C-3a)]. 

2.7.2.6 Synthesis of 2-(2,3,5-Tri-O-benzoyI-3-D-

ribopyranosyl)benzimidazole (242)

OH 
N" 	 N' OH 

(a) 	 (b) 

Bzä 	bBz 	 Bzd 	OBz 

243 
	

247 

N2 
BzO(7 

Bz 	OBz 

242 

Scheme 91: (a) NCS, pyridine (b) o-phenylenediamine, EtOH 

A mixture of oxime 243, N-chlorosuccinimide and pyridine in chloroform was 

heated to 40°C for ca 45 minutes. On cooling, the solvent was removed in vacuo. 

The residue and o-phenylenediamine were refluxed in ethanol for 5 hours. The 

reaction mixture was washed with 4% CuSO 4  solution before dry-flash 

chromatography afforded 242 as a colourless gum (90% yield). The 1 H and ' 3C NMR 

spectra showed a distinctive benzimidazole signals that were reminiscent of the 

pyranosyl analogues [oH 7.90-7.94 ppm (211, m), 7.23-7.27 ppm (2H, m)], while the 

' 3C NMR showed only two major peaks [Oc  151.3 ppm (C-2), 123.2 ppm C-S. C-6)}. 

Tautomerism of the benzimidazole ring led the C-4 and C-7 signals being broadened 

out in an analogous fashion to the pyranosylbenzimidazoles in section 2.6.4.2. 
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2.7.2.7 	Deprotection 	of 	2-(2,3,5-Tri-0-benzoyl-J3-D- 

ribopyranosyl)benzoxazole (241) 

N9 
BzO'7 0  

Bzd 	'bBz 

241 

NaOMe, MeOH 

HO 

Hd 	10H 

249b 

HOQ . ' 

Hd 	'OH 

a 

249a 

Scheme 92 

Studies were conducted to establish efficient deprotection conditions. Benzoate 

esters are known to be more resilient than their acetyl counterparts, 204  therefore 

Zemplen deprotection of 2-(2,3 ,5-tri-O-benzoyl-3-D-ribopyranosyI)benzoxazole 

(241) with methanolic sodium methoxide was attempted .

204  The benzoxazole was 

stirred in freshly prepared sodium methoxide/methanol solution for 16 hours. The 

reaction was quenched with Amberlite 120(H') resin before purification by wet-flash 

chromatography. The product was obtained as a mixture of anomers. A COSY 'H 

NMR experiment allowed the carbohydrate ring protons for both isomers to be 

identified. The most distinctive signals for each were the anomeric [, 4.47 ppm, d, 

(1-H3), 5.08 ppm, d, (1-Ha) I protons, which were assigned a (249a) and f3 (249b) 

by comparison with analogous compounds in the literature. 221  The anomeric integrals 

were measured and hence the isomer ratio calculated (3:(x, 62:38). The aromatic 

protons were observed as a large set of multiplets between 6.92 and 7.67 ppm. The 

conditions used were evidently too harsh, therefore milder conditions were sought. 

Time precluded any further work with the benzoxazoles, consequently the remaining 

stock of benzimidazole 242 was used for further deprotection reactions. 
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2.7.2.8 Deprotection of 2-(2,3,5-Tri-O-benzoyI--D- 

ribopyranosyl)benzimidazole (242) 

N9_ 

BzO(D)N 	

NEt3, MeOH 

Bz 	bBz 

242 

Ho'ç' N 

250 

Scheme 93 

Stocks of benzimidazole 242 were limited and it was therefore impossible to 

investigate the effect on anomeric ratio by diluting the NaOMe solution or shortening 

the reaction time. It was therefore decided to employ the milder method of Bazin et 

al. ' 89  Benzimidazole 242 was dissolved in triethylamine and methanol; and heated to 

50°C for 4 days. After removal of the solvent and wet-flash chromatography, 2-13-D-

ribofuranosylbenzimidazole (250) was obtained as a white foam (91% yield). The 'H 

NMR spectrum showed diagnostic peaks for the benimidazole ring [H  7.07-7.10 

ppm (2H, m), 7.35-7.4 1 ppm (2H, m)] in addition to the expected carbohydrate ring 

signals. A comparison with literature 'H NMR values23 ' was made in order to 

confirm that the -anomer had indeed been prepared (Table 12). None of the c-

isomer was detected in the crude reaction mixture. 

H (PPM) Jr-2(Hz) 

Literature 0 23 ' 5.21 8.0 

Literature 3231 5.06 5.0 

250 4.92 5.3 

Table 12 Comparison of literature 8H / J values with benzimidazole 250 

The benzimidazole ring signals in the ' 3C NMR spectrum [c  152.9 ppm (C-2), 

123.2 ppm C-5, C-6)} were reminiscent of the protected compound 242; a very broad 

signal ca 115 ppm was attributed to C-4 and C-7. 
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2.7.3 Conclusions/Further Work 

A revised route to D-ribose derived hydroximoyl chloride 247 has been established. 

Reaction of nitrile 238 with semicarbazide afforded crude semicarbazone 246 in 

—85% yield and was transformed to oxime 243 by treatment with hydroxylamine 

hydrochloride. Hydroximoyl chloride 247 was initially prepared by chlorination, 

however the reaction was unsatisfactory due to formation of an unidentified by-

product. Treatment of 243 with NCS was found to afford crude hydroximoyl chloride 

in almost quantitative yield. Reaction of D-ribose derived nitrile oxide 92 with o-

phenylenediamine and o-aminophenol afforded benzimidazole 242 and benzoxazole 

241 in 90% and 92% yield respectively. An attempt to deprotect 241 under Zemplen 

conditions led to a 62:38 mixture of 2--D-ribofuranosylbenzoxazole (249b) and 2-

a-D-ribofuranosylbenzoxazole (249a). 24-D-Ribofuranosylbenzimidazole (250) 

was prepared in 91% yield by reacting 242 under mild conditions. The products 

obtained in this section are C-nucleoside analogues and may therefore be of interest 

as anti-viral agents, The established route offers a mild and stereocontrolled 

approach to future candidates for the treatment of cystic fibrosis. 
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2.8 Perimidine chemistry 

28.1 Introduction 

Perimidines (251) are peri-naptho-fused derivatives of pyrimidine. The chemistry of 

perimidines has been already been reviewed 232-234  and therefore only a brief 

overview of their synthesis and applications is presented here. 
5 

	

3a 	6a 

'iiI 	9b  
RN 

	

H 	g 

251 

Perimidines and their derivatives have found a variety of applications; they have 

been used in dyestuffs 232234  for many years and more recently in the manufacture of 

polyester fibres 232234  and antistatics. 235  The biological activity of perimidines and 

their derivatives have also been examined; they are believed to intercalate DNA, and 

have therefore been tested as antitumor agents .231,23'  They have also been found to 

possess antiulcer, antimicrobial and antifungal activity. 232-234 

A range of substituents have been installed at the 2-position of perimidines; these 

include alkyl, aryl and heterocyclic groups. In contrast, no report of a pyranosyl 

substituted perimidine has been made to date. The majority of the methods of 2-

perimidine (251) synthesis use 1,8-diaminonaphthalene (DAN) as the starting 

material, the most common routes are outlined in (Scheme 94)232234  Addition of 

DAN to carboxylic acid derivatives leads to amide intermediates (252), which 

cyclise in refluxing acid (4 M HCI or formic acid for example). The corresponding 

reaction with aldehydes affords 2,3-dihydroperimidine products (253), oxidation of 

which yield the desired 2-perimidine. Milder conditions 232  have been developed 

which involve cyclisation of amidine intermediates (254). 
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Scheme 94: (a) [X = halide, OR, COR, OH] 1 ,8-diaminonapthalene (b) H ref lux (c) 1,8-

DAN (d) Pd/C or DDQ (e) [Y = CN, HN=COR, HN=CNH 2] DAN (f) H. 

The rigid nature of 1 ,8-diaminonapthalene confers a reactivity similar to that of o-

phenylenediamine, 232  and it was therefore proposed that addition of DAN to nitrile 

oxides would provide a new and mild method of constructing 2-perimidines (Scheme 

95). 

NH, NH2  

R-C 

- - 

	N-O 
+ - 

-.- 
- 	 R 	N 

H 

Scheme 95 

2.8.2 Pilot studies 

As 2-phenylperimidine had previously been synthesised and fully characterised '231  it 

was chosen as a target for pilot work. Benzohydroximoyl chloride (255), the 

precursor for benzonitrile oxide (93), was prepared by passing chlorine gas through a 

chloroform solution of syn-benzaldoxime.' 43  The product was obtained as a white 

solid in 74% yield. The procedure that had been successfully applied to benzazoles 
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was employed in the attempted perimidine synthesis. A mixture of 

benzohydroximoyl chloride (255) and DAN was stirred in refluxing ethanol for 5 

hours, before washing the reaction mixture with 4% CuSO4 solution. The washing 

procedure was found to work well, although the resultant mixture required more 

extensive purification by comparison with the benzimidazole syntheses. 2-

Phenylperimidine (256) was obtained in 68% yield as an orange crystalline solid. 

NI-t 	NH 

N 
OH 

cI 

 

L\,EtOH 

255 	 256 

Scheme 96 

The 'H NMR spectrum and analytical data agreed with those in the literature. 238  The 

coloured nature of the product is also consistent with the perimidine ring being 

present, and the electronic structure of the heterocycle. Perimidines have 14it-

electrons delocalised over 13 atoms, 232234  the electron density is not uniform and this 

results in an electron deficient heterocyclic ring and an electron rich napthalene 

component (257).232234  The observed colour is attributed to a it-it charge transfer 

absorption, which is derived from electron transition from the naphthalene ring to the 

heterocyclic ring. 233 

90C  6+  
257 

2.8.3 Synthesis of 2-pyranosylperi midines 

The results of the pilot reaction were encouraging enough to attempt to transfer the 

procedure to carbohydrate scaffolds. D-Xylose derived hydroximoyl chloride 106 

was stirred with DAN in refluxing ethanol for 5 hours. Two compounds were 

isolated from the reaction mixture by chromatography. The least polar fraction (Rf 

[Et20] = 0.35) was found to contain glycal perimidine 258, the remaining fraction (Rf 

[Et20] = 0.27) afforded the expected pyranosyl perimidine 259. 
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The glycal derivative 258 was found to be the major product of the reaction (258 

43%,' 259 16%, 258:259 = 2.68:1, Table 16). The 'H NMR spectra of both 

compounds in CDCI3 had broad signals in the aromatic region due to annular 

tautomerism in a similar fashion to that observed in benzimidazoles (Scheme 97)•239 

4 	

RN) 

Scheme 97 

Repeating the NMR experiments in D 6-DMSO appeared to suppress or sufficiently 

slow the interconversion to obtain well-resolved signals in the aromatic region; the 

same effect was observed on cooling below -40 °C by Yavari et al.239  In both cases in 

D6-DMSO, the heteroatomic ring CH protons were observed at lower frequency than 

those of the naphthyl unit. Values from glycal perimidine 258 are representative EH 

7.47-7.51 ppm (4H, m, H-5, 11-6, H-7, H-9), 6.60 ppm (dd, H-4, JH4-H5  7.3 Hz, JH4-H6 

0.6 Hz), 6.58 ppm (dd, 11-9, JH9-H8  7.3 Hz, JH9-H7  0.6 Hz) 1. The NH was clearly 

defined [oH 10.49 ppm (bs, OH)]. In both 258 and 259 the perimidine derived signals 

in the ' 3C NMR could be assigned by comparison with data from a detailed study by 

Claramunt et al; 240  representative data sets from glycal perimidine 258 and pyranosyl 

perimidine 259 are presented in Table 13. 

C-X 2 3a 4 5 6 6a 7 8 9 9a 9b 

259 154.0 145.8 115.0 130.3 121.1 136.6 119.2 129.5 104.1 139.4 123.6 

ic/ppm 

258 150.1 145.9 115.2 130.4 121.0 136.6 119.5 129.5 104.7 139.2 123.8 

6c/ppm 

Table 13: Comparison of 13C chemical shifts of glycal perimidine 258 and 

pyranosyl perimidine 259 
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Several key features in the 'H and ' 3C NMR spectra indicated that glycal 258 had 

been formed. Only two peaks corresponding to the acetyl protecting groups were 

observed [oH 2.12, 2.10 ppm (2x CH 3); 5c  171.0, 170.9 ppm (2x C=O); 22.3, 22.2 

ppm (2x CH3)] and no signal appeared in anomeric proton region. In contrast, in the 

case of pyranosyl perimidine 259, three acetyl signals were observed [OH 2.05, 2.03, 

1.93 ppm (3x CH3); 0c  171.2, 171.1 170.7 ppm (3x C=O); 0c  22.0, 21.9, 21.8 ppm 

(3x CH3)] and the anomeric peak appeared as a doublet [OH 4.24 ppm (d, H-l', .JHI 

H2' 9.7 Hz)]. Glycals are known to adopt a half-chair conformation, 146  therefore the 

carbohydrate ring signals differ from those observed for a chair conformer. The 

coupling constant between the 2'-H and 3'-H protons [J2,3 5.1 Hz] was smaller than 

that observed in pyranosyl perimidine 259 [J2,3 9.6 Hz].  The remaining signals are 

observed as complex multiplets rather than discrete doublets of doublets with large 

coupling constants. The alkene signals in the ' 3C NMR spectrum were particularly 

apparent, the chemical shift of the anomeric carbon atom being significantly higher 

than that in perimidine 259 [258 0c  C- 1' 149.2 ppm, 259 0c  C- 1' 78.8 ppm]. 

The expected pyranosyl perimidine was a green/yellow colour, which is consistent 

with literature data for similar compounds. 232-234 The glycal was orange in colour, 

this shift to lower frequency is probably due to conjugation of the heterocycle with 

the double bond in the carbohydrate ring. On repeating the above reaction at room 

temperature for 16 hours, the major product was found to be 259 (60%) together with 

traces of 258 (TLC). 

When D-glucose hydroximoyl chloride 107 was reacted in ethanol at room 

temperature, similar results were obtained to the xylose case (pyranosyl perimidine 

260 65% yield, traces of glycal perimidine 261). Perimidine 260 was found to be the 

major product (260 34%, 261 16%, 260:261 = 2.13:1, Table 16) when the reaction 

was attempted in refluxing ethanol. 

Ac2] 

	

o 
H 

260 
	

261 
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Both products 260 and 261 had similar 'H and ' 3C NMR spectra to the xylose 

analogues. The structure of pyranosyl perimidine 260 was confirmed by X-ray 

crystallography. Selected bond lengths and bond angles are compared with 2-(anthr-

9-yl)perimidine 240  and were found to be in good agreement (Tables 14 and 15). 

•0 

(43) 

o(33) 

Figure 8- Crystal structure of 2-(2,3,4,6-Tetra-0-acetyl-13-D-glucopyranosyl)perimidine 

(260) 

The mechanism of glycal formation was proposed to occur via an E1cB elimination 

process due to charge delocalisation onto the heterocycle. Deprotonation would have 

to occur by the basic DAN nucleophile or a molecule of the newly formed 

perimidine. The PKa  of DAN is known to be ca 5, whereas the pK a  of 2-perimidines 
232 is ca 6: Clearly, the perimidine would be more basic than DAN and might be 

expected to be more able to deprotonate the anomeric position, however the pK a  

values of the anomeric proton of 259 or 260 are currently unknown. 
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Bond length/A 

260 

o 

Bond length/A 

2-(Anthr-9-yl)perimidine 240  

N(1)-C(2) 1.351(3) 1.352(2) 

N(1)-C(9a) 1.396(3) 1.398(2) 

N(3)-C(2) 1.300(2) 1.301(2) 

N(3)-C(3a) 1.410(3) 1.408(2) 

C(3a)-C(4) 1.377(3) 1.378(3) 

C(4)-C(5) 1.409(4) 1.404(3) 

C(5)-C(6) 1.359(4) 1.358(4) 

C(6)-C(6a) 1.420(4) 1.416(3) 

C(6a)-C(7) 1.413(4) 1.412(3) 

C(7)-C(8) 1.367(4) 1.355(3) 

C(8)-C(9) 1.412(3) 1.408(3) 

C(9)-C(9a) 1.378(3) 1.374(3) 

C(9a)-C(9b) 1.414(3) 1.412(2) 

C(9b)-C(6a) 1.426(3) 1.420(2) 

C(3a)-C(9b) 1.425(3) 1.416(2) 

Table 14: Comparison of bond lengths in 260 and 2-(anthr-9-yI)perimidine 

Bond Angle!° 

260 

Bond Angle/' 

2-(Anthr-9-yl)perimidine 240  

N(1)-C(2)-N(3) 125.57(18) 124.4(2) 

C(2)-N(3)-C(3a) 116.94(18) 117.5(1) 

N(3)-C(3a)-C(9b) 120.96(18) 120.8(1) 

C(3a)-C(9b)-C(9a) 119.57(18) 119.4(2) 

C(9b)-C(9a)-N(l) 116.08(18) 116.0(2) 

C(9a)-C(Nl)-C(2) 121.21(17) 121.9(1) 

Table 15: Comparison of bond angles in 260 and 2-(anthryl)perimidine 
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In order to provide further evidence for the reaction pathway, an attempt was made to 

prepare mannopyranosyl perimidine 262. In the mannose case, the OAc group would 

be anti-periplanar to the anomeric anion and thus ideally placed to undergo E2 

elimination in addition to E1cB and thus likely to favour formation of glycal 261. 

The glucopyranosyl perimidine 260 also afforded glycal 261, but the elimination was 

sluggish since only Elcb elimination is possible (Scheme 98). 

OAc OAc OAc  
o   Ac  2C 	0\__Ji__ - _______ ACOJJ( 

LOAcH 	H 	 H 	 H 

	

260 	 261 	 262 

Scheme 98 

Conducting the reaction of DAN with D-mannose hydroximoyl chloride 108 in 

ethanol at room temperature afforded pyranosyl perimidine 262 (55%) with traces of 

glycal 261. When the reaction was conducted in refluxing ethanol, glycal 261 was 

indeed the predominant product (26134%, 262 4%, 261:262 = 8.5:1, Table 16). The 

1 H and ' 3C NMR spectra of 261 and 262 were comparable with those of the D-xylose 

and D-glucose analogues. The observation that the proportion of glycal perimidine 

261 is significantly higher from perimidine 262 is consistent with the tandem 

elimination processes taking place. 

Carbohydrate 

Substituent 

Reaction 

Temperature/ °C 

% Yield 

Pyranosyl 

Perimidine 

% Yield 

Glycal 

Perimidine 

Glycal 

perimidine: 

Pyranosyl 

perimidine 

D-Xylose 25 60 <1 - 

D-Xylose 80 16 43 2.68:1 

D-Glucose 25 65 <1 - 

D-Glucose 80 34 16 1:2.13 

D-Mannose 25 55 <1 - 

D-Mannose 80 4 34 8.5:1 

Table 16: Glycal perimidine to pyranosyl perimidine ratios 
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The range of carbohydrate substituents was extended further with the room 

temperature synthesis of 2-(2,3 ,4,6-tetra-O-acetyl-3-D-gal actopyranosyl)perimidine 

(263) in 69% yield. The preparation of perimidine 263 and its precursors was 

completed in association with Andreas Fromm. 241 

OAc OAc 

ACO JLT 

OAc 	H 

263 

2.8.4 Preparation of D-glyceraldehyde derived perimidine 

The success of the perimidine methodology encouraged an attempt to synthesise a 

perimidine with an acyclic carbohydrate substituent. D-Glyceraldehyde derived 

perimidine 264 was selected as a target since the precursor nitrile oxide (91) was 

known. 14 ' The nitrile oxide is generated by dehydrochiorination of hydroximoyl 

chloride 265, which is accessible from D-mannitol derivative 266 via aldehyde 267 

and oxime 268 (Scheme 99). 242,243 
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Scheme 99: (a) Na104  (b) NH20H.HCI, NaCO3  (c) C1 2  (d) DAN, 

1,2:5 ,6-Di-O-isopropylidene-D-mannitol (266) was oxidatively cleaved with sodium 

periodate to form two equivalents of aldehyde 267. Treatment of the crude aldehyde 

with hydroxylamine hydrochloride and sodium carbonate afforded oxime 268 as a 

mixture of isomers (E:Z 3:1) in 63% yield. The 'H NMR spectrum showed 
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diagnostic peaks for the E and Z isomers [oH 9.18 ppm (Z- isomer, bs, OH), 8.89 

ppm (E- isomer, bs, OH)]. Oxime 268 was dissolved in ether and treated with 

chlorine gas to afford hydroximoyl chloride 265 as a grey solid (98% yield).' 4 ' The 

product was immediately taken on to the next stage to avoid the risk of 

decomposition on standing at room temperature. Hydroximoyl chloride 265 was 

stirred with DAN in refluxing ethanol for 5 hours to afford the target perimidine 264 

as a yellow/green solid (61% yield). The aromatic region of the 'H and ' 3C NMR 

spectra (in D6-DMSO), were found to mirror those observed in the pyranosyl series. 

The signals in the 'H and ' 3C NMR spectra corresponding to the acyclic component 

were clearly visible [OH 4.67 ppm (t, CH), 4.02 ppm (d, CH 2); 0c  73.9 ppm (CH), 

66.6 ppm (CH2)1. 

2.8.5 Conclusions I Further work 

A new and mild method for the preparation of perimidines has been established. For 

example, reaction of 1 ,8-diaminonapthalene (DAN) with D-xylose derived 

hydroximoyl chloride 106 at room temperature afforded pyranosyl perimidine 259 in 

60% yield. Reaction of D-Glucose, D-mannose and D-galactose derived 

hydroximoyl chlorides with DAN proceeded in a similar fashion (55-65% yield). 

Reaction of D-glucose hydroximoyl chloride 107 with DAN in refluxing ethanol 

afforded a 2.1:1 mixture of pyranosyl perimidine 260 and glycal perimidine 261. 

Under the same conditions, D-mannose hydroximoyl chloride 108 afforded a 1:8.5 

mixture of perimidine 262 and glycal perimidine 261. Application of the method to 

the D-glyceraldehyde hydroximoyl chloride 265 was also successful in delivering the 

corresponding perimidine 264 (61% yield). Future work in this area could include 

extension of the methodology to a ribose scaffold and an examination of the products 

as potential antiviral agents. The methodology could also be extended to the 

synthesis of substituted perimidines by reaction with derivatives of DAN. 
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3. Experimental 

3.1 General 

3.1.1 Instumentation 

All 'H and ' 3C NMR spectra were recorded on a Varian WP200SY, Bruker ARX250 

and Bruker avance 360 instruments by Mr J. R. A. Millar, Stewart Wharton and the 

author. High field 'H NMR was conducted on a Varian inova 600 instrument by Dr I. 

H. Sadler. 2D NMR spectra were obtained from the Bruker avance 360 and Varian 

inova 600 instruments. Chemical shifts (6) in all spectra are measured in parts per 

million (p.p.m), using tetramethylsilane (6 = 0.0) as a reference signal. 

FAB mass spectra and exact mass measurements were recorded on a Kratos 

MS50TC instrument using either glycerol or thioglycerol as a matrix by Mr A. 

Taylor. 

Melting points were measured on a Gallenkamp capillary tube apparatus and are 

uncorrected. Optical rotations were measured on an Optical Activity Polaar 20 

polarimeter using 2 cm  of filtered solution. IR spectra were obtained as liquid films 

or nujol mulls on a Perkin Elmer Paragon 1000 FT-JR spectrometer and are quoted in 

wavenumbers (cm'). Infrared spectra were recorded on a Jasco 1717/IR-460 using 

sodium chloride plates. 

Diffraction data were collected with graphite-monochromated Mo-Ka radiation (X = 

0.71073 A) on a Bruker Apex CCD diffractometer equipped with an Oxford 

Cryosystems low-temperature device operating at 150K. X-ray structural analysis of 

141, 153, 156, 178, 216, 217, 224, 260 by Dr S. Parsons, Dr I. Oswald, Mr S. 

Moggach, Miss F. Fabbiani and Mr F. White. 

High pressure hydrogenation was conducted using a Parr 4842 apparatus. 
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3.1.2 Chromatography 

Analytical TLC was carried out on Merck aluminium-backed plates with Kieselgel 

GF254  silica (0.2 mm). 

Dry flash chromatography was performed using a variety of sinters with different 

diameters filled with Kieselgel GF2 54  silica and eluted under a vacuum supplied by a 

water pump. 

3.1.3 Solvents and reagents 

All reagents and solvents were standard laboratory grade and were used as supplied 

unless specifically stated. 

Dichioromethane, chloroform and acetonitrile were purified by distillation from and 

stored over calcium hydride. 

Pyridine was purified by distillation from and stored over potassium hydroxide. 

Acetic anhydride was purified by fractional distillation and dried over 4A molecular 

sieves. 

THF was purified by distillation over calcium hydride. 

Toluene and ether were dried over sodium wire. 
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3.2 Synthesis of pyranosylnitrile oxide precursors 

3.2.1 Synthesis of pyranosylnitromethanes 

3.2.2.1 3,4,5-Tri-O-acetyl--D-xyIopyranosyInitromethane (95) 

Sample code: JASOO1 

Molecular formula: C 12H 17N09  

Molecular weight: 319 	 OAc 

Solid sodium (2.5 g, 108 mmol) was dissolved in methanol (90 ml) under an 

atmosphere of N 2. Sodium methoxide (90 ml in methanol) was added to a stirred 

solution of D-(+)-xylose (13.5 g, 83 mmol), nitromethane (45 ml, 0.83 mol) and dry 

methanol (30 ml). The solution was stirred for 24 h. The resultant brown solid was 

filtered, washed with ice-cold methanol, and dissolved in ice-cold deionised water 

(200 ml). The solution was rapidly forced through an amberlite 120 (H) ion-

exchange column. Excess nitromethane was removed in vacuo, and the residual 

liquid was heated at reflux for 48 h. Charcoal (5 g) was added to the solution and the 

mixture was heated at reflux for 2 h. The charcoal was filtered through celite and the 

filtrate concentrated in vacuo to yield an orange oil. The oil was dissolved in dry 

acetic anhydride (140 ml) (under an atmosphere of N 2), cooled to 0 °C, triflic acid 

(0.1 ml) was added, and the mixture stirred for 14 h. The resultant solution was 

added to ice-water (100 ml), extracted with chloroform (3 x 40 ml), washed with 

NaHCO3  (3 x 40 ml) and the combined extracts dried (MgSO4. The dried extract 

was concentrated in vacuo (residual water was co-evaporated with toluene) to afford 

an orange oil. The oil was dissolved in chloroform (100 ml) and activated charcoal (2 

g) was added. The solution was heated under reflux for 30 minutes, charcoal was 

filtered over celite and the filtrate concentrated in vacuo to yield an orange oil which 

was crystallised from ethanol. The purified product (95) was isolated as a white 

crystalline solid (10.48 g, 40%); M.p 163-165 °C (lit. 114  164-165 °C); 8H  (250 MHz, 

CDC13) 2.40 (9H, 3s, 3xCOCH3), 3.72 (1H, dd, 6b-H), 4.41 (1H, dd, 6a-H), 4.55 

(1H, m, 2-H), 4.74 (1H, dd, lb-H), 4.81 (1H, dd, la-H), 5.20 (1H, dd, 3-H), 5.36 

(1H, m, 5-H), 5.61 (1H, dd, 4-H); Ax-y)/Hz  la-lb 13.3, la-2 8.8, lb-2 2.9, 2-3 10.6, 
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3-4 9.3, 4-5 9.4, 5-6a 10.6, 5-6b 5.8, 6a-6b 11.3; 8c (63 MHz, CDCI3) 21.1, 21.2, 

21.4 (3xCOCH 3), 66.1, 68.5, 69.3, 72.9, 74.8, (C-6, C-2, C-3, C-4, C-5), 75.8 (C- 1), 

170.1, 170.2, 170.6 (3xCOCH3) 

3.2.2 3,4,5,7-Tetra-0-acetyI-3-D-gI ucopyranosylnitromethane (99) 

Sample code: IAS004 	 OAc  

Ac 	 0 
Molecular formula: C 1 5H2 1 N0 1 1 	 CO 	 CH2NO2 

O  
Molecular weight: 391 	 OAc 

Solid sodium (2.5 g, 108 mmol) was dissolved in methanol (90 ml) under an 

atmosphere of N 2. Sodium methoxide (90 ml in methanol) was added to a stirred 

solution of D-(+)-glucose (15.1 g, 84 mmol), nitromethane (45 ml, 0.83 mol) and dry 

methanol (30 ml). The solution was stirred for 24 h. The resultant brown solid was 

filtered, washed with ice-cold methanol, and dissolved in ice-cold deionised water 

(200 ml). The solution was rapidly forced through an amberlite 120 (H) ion-

exchange column. Excess nitromethane was removed in vacuo, and the residual 

liquid was heated at reflux for 48 h. Charcoal (5 g) was added to the sugar solution 

and the mixture was heated at reflux for 2 h. The charcoal was filtered through celite 

and the filtrate concentrated in vacuo to yield an orange oil. The product was isolated 

as a white solid by continuous liquid/liquid extraction using ethyl acetate/water (48 

hours), followed by concentration of the organic layer in vacuo. The resultant solid 

was dissolved in dry acetic anhydride (50 ml) (under an atmosphere of N2), cooled to 

0 °C , triflic acid (0.2 ml) was added, and the mixture stirred for 14 h. The resultant 

solution was added to ice-water (100 ml), extracted with chloroform (3 x 40 ml), 

washed with NaHCO3 (3 x 40 ml) and the combined extracts dried (MgSO 4). The 

dried extract was concentrated in vacuo (residual water was co-evaporated with 

toluene) to afford an orange oil. The oil was dissolved in chloroform (100 ml) and 

activated charcoal (2 g) was added. The solution was heated under reflux for 30 

minutes, charcoal was filtered over celite and the filtrate concentrated in vacuo to 

yield an orange oil which was crystallised from hexane/ethanol. The purified product 

(99) was isolated as a white crystalline solid. (6.72 g, 20%); M.p 143-145 °C (lit. 144 
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144-145 °C); oH (250 MHz, CDC13) 1.96,1.98, 2.00 (12H, 4s, 4xCOCH3), 3.67 (1H, 

ddd, 6-H), 3.98 (1H, dd, 7a-H), 4.21 (1H, dd, 7b-H), 4.22-4.27 (1H, m, 2-H), 4.34 

(1H, dd, lb-H), 4.47 (1H, dd, la-H), 4.87 (1H, dd, 3-H), 5.01 (1H, dd, 5-H) 5.21 

(1H, dd, 4-H); J(x-y)/Hz la-lb 13.7, la-2 2.8, lb-2 8.9, 2-3 9.3, 3-4 9.3, 4-5 9.6,5-6 

9.98, 6-7a 2.21, 6-7b 4.97, 7a-7b 12.5; 0c  (63 MHz, CDC13) 20.4, 20.4 (4xCOCH3), 

61.4 (C-7) 67.7, 69.3, 72.7, 73.4, 74.2 (C-2, C-3, C-4, C-S, C-6), 75.5 (C-l) 169.2, 

169.5, 169.9, 170.4 (4xCOCH 3). 

3.2.3 Synthesis of pyranosyloximes 

The acetylated D-gluco, D-xylo and D-mannose (provided by Mr A. Fromm) derived 

nitromethanes were reduced to their respective oximes using a modified version of 

the procedure of Bartra et a152 . 

3.2.3.1 Pyranosyloximes- General Procedure 

Triethylamine (5 equivalents) and thiophenol (4.5 equivalents) were added to a 

cooled (0 °C) solution of tin (II) chloride (1.5 equivalents) and acetylated 

pyranosylnitromethane (1 equivalent) in dry THF (5 ml) under nitrogen. The 

resulting yellow mixture was stirred for 16 hours. After removal of THF in vacuo, 

the residue was washed with hexane to remove excess thiophenol. The product was 

separated by dry-flash chromatography (silica / 0-100 % ether in hexane; gradient 

elution). 

3.2.3.2 3,4,5-Tri-O-acetyl--D-xyIopyranosyIformaIdoxime (100) 

Sample code: IAS005 

Molecular formula: C 12H 17N08 	 Nt 1 OH 

Molecular weight: 303 
OAc 

3,4,5-Tri-O-acetyl--D-xy1opyranosylnitromethane (95) (1.5 g, 3.13 mmol) was 

added to a cooled (0 °C) solution of tin (II) chloride (1.34 g, 4.7 mmol), 

triethylamine (3.3 ml, 15.7 mmol), and thiophenol (1.5 ml, 14.1 mmol) as outlined in 
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the general procedure above. The product (100) was isolated by dry-flash 

chromatography as a white solid (1.2 g, 86 %). Oxime 100 was recrystallised from a 

60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers in a 

4:1 ratio; M.p 128-130°C (lit. 52  135-137 °C); 5H  (250 MHz, CDCI3); 1.95, 1.97, 

1.98 (9H, 3s, 3xCOCH3), 3.29 (1H, dd, 6a-H), 3.92 (1H, dd, 2-H), 4.08 (1H, dd, 6b-

H), 4.85-4.93 (1H, m, 5-H), 4.99 (1H, dd, 3-H), 5.19 (1H, dd, 4-H),.6.63 (1H, d, 1-H 

(Z)), 7.72 (1H, d, 1-H (E)), 8.62 (1H, bs, OH (E)), 8.88 (IH, bs, OH (Z)); J(x-y)/Hz 

1-2 6.6, 2-3 9.8, 3-4 9.4, 4-5 9.5, 5-6a 10.2, 5-6b 5.6, 6a-6b 11.2; 8C  (63 MHz, 

CDC13) 20.4, 20.5 (3xCOCH 3), 66.5 (C-6), 68.8, 69.6, 72.9, 75.9 (C-2, C-3, C-4, C-

5), 146.7 (C-1),169.7, 169.8, 170.3 (3xCOCH3) 

3.2.3.3 3,4,5,7-Tetra-0-acetyI--D-gIucopyranosyIformaIdoxime (101) 

Sample code: IAS002/007 	 OAc N" OH '4 Molecular formula: C15H21N010 	 AC \Jj
CO 

Molecular weight: 375 	 OAC 

3,4,5,7-Tetra-0-acety1-3-D-glucopyranosylnitromethane (99) (1.1 g, 3.84 mmol) was 

added to a cooled (0 °C) solution of tin (II) chloride (1.1 g, 5.76 mmol), 

triethylamine (3.3 ml, 19.2 mmol), and thiophenol (2.1 ml, 17.3 mmol) as outlined in 

the general procedure above. The product (101) was isolated by dry- flash 

chromatography as a white solid (660 mg, 69 %). Oxime 101 was recrystallised from 

a 60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers in a 

4:1 ratio; M.p 158-160°C (lit. 52  155-157 °C); oH (250 MHz, CDCI3) 1.94, 1.95, 

1.97, 2.02 (12H, 4s, 4xCOCH3), 3.66 (1H, ddd, 6-H), 4.03 (1H, dd, 2-H), 4.08 (1H, 

dd, 7b-H), 4.21 (1H, dd, 7a-H), 5.06 (1H, dd, 3-H), 5.08 (1H, dd, 5-H), 5.20 (1H, dd, 

4-H), 6.8 (1H, d, 1-H (Z)), 7.41 (1H, d, 1-H(E)), 8.35 (1H, bs, OH (E)), 8.53 (1H, bs, 

OH (Z)); J(x-y)JHz 1-2 6.9, 2-3 9.9, 3-4 9.1, 4-5 9.8, 5-6 9.6, 6-7a 2.06, 6-7b 4.7, 7a-

7b 12.5; Oc  (63 MHz, CDC13) 20.5 (4xCOCH 3), 61.9 (C-7), 68.0, 69.4, 73.4, 75.7, 

75.7 (C-2, C-3, C-4, C-5, C-6), 146.7 (C- 1)169.4, 169.6, 170.2, 170.6 (4xCOCH3). 
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3.2.3.4 3,4,5,7-Tetra-0-acetyl--D-mannopyranosylformaldoxime (102) 

Sample code: 1AS088 	 OAc 	
OH 

4OAc N 

Molecular formula: C 15H21 N0 1 0 Ac 
Co 

Molecular weight: 375 

3,4,5 ,7 -Tetra- 0-acetyl- P-D-mannopyranosylnitromethane (supplied by A. Fromm) 

(1.57 g, 4.2 mmol) was added to a cooled (0 °C) solution of tin (II) chloride (1.15 g, 

6.28 mmol), triethylamine (2.8 ml, 20.9 mrnol), and thiophenol (1.85 ml, 18.8 mmol) 

as outlined in the general procedure above. The product (102) was isolated by dry-

flash chromatography as a white solid (1.16 g, 77 %). Oxime 102 was recrystallised 

from a 60:40 ether/hexane mix. The oxime was obtained as a mixture of E/Z isomers 

in a 2:1 ratio; M.p 151-152°C (lit. 52  152-154 °C); 6H  (360 MHz, CDC13) 2.00, 2.01 

2.08, 2.13, 2.14, 2.17, 2.19 (24H, 4s, 4xCOCH 3), 3.71-3.75 (2H, m, 6-H(E), 6-H(Z)), 

4.19 (211, dd, 7a-H(E), 7b-H(Z)), 4.25 (2H, dd, 7b-H(E), 7b-H(Z)), 4.40 (111, d, 2-

H(E)), 4.86 (1H, d, 2-H(Z)), 5.11-5.19 (2H, m, 4-H(E), 4-H(Z)), 5.24-5.33 (2H, m, 5-

H(E), 5-H(Z)), 5.54 (1H, dd, 3-H (H)), 5.85 (1H, dd, 3-H(Z)), 6.75 (1H, d, 1-11(Z)), 

7.35 (1H, d, 1-H(E)), 8.67 (1H, bs, OH (E)), 8.94 (1H, bs, OH (Z)); E-isomer J(x-

y)/Hz 1-2 5.5, 2-3 3.2, 3-4 nd, 4-5 nd, 5-6 nd, 6-7a 2.1, 6-7b 5.7, 7a-7b 12.3, Z-

isomer J(x-y)/Hz 1-2 4.0, 2-3 1.3, 3-4 nd, 4-5 nd, 5-6 nd, 6-7a 2.1, 6-7b 5.7, 7a-7b 

12.3. 

3.2.4 Synthesis of pyranosyihydroximoyl chlorides 

3.2.4.1 Hydroximoyl chlorides-General procedure 

Dry chlorine gas was bubbled through a cooled (-78 ° C) solution of 

pyranosylformaldoxime, in dry chloroform (under nitrogen) until the solution turned 

emerald green. Nitrogen gas was bubbled through the solution and it was allowed to 

warm to room temperature. On warming, the solution became green, blue, then 

colourless and the solvent was removed in vacuo to afford an oily solid. The product 

was obtained as a white solid on trituration with ice-cold ether. 32 

127 



3.2.4.2 3,4,5, -Tri-O-acetyl-2,6-anhydro-1 -deoxy-1 -chloro-1 - 

hydroxyimino-D-xylo-D-gu!o-hexitol (106) 

Sample code: IAS008 	 N_OH 

Molecular formula: C 12H 1 6N08C1 

Molecular weight: 337.5 	
OAc 

Following the procedure above, 3 ,4,5-tri-O-acetyl-3-D-xylopyranosylformaldoxime 

(100) (550 mg, 1.6 mmol) was converted to the corresponding hydroximoyl chloride. 

The product (106) was obtained as a white solid (600 mg, 98%); M.p 147-149°C; oH 

(250 MHz, CDC13); 1.92, 1.95, 1.98 (9H, 3s, 3xCOCH 3), 3.34 (111, dd, 6a-H), 4.12 

(1H, dd, 6b-H), 4.17 (1H, d, 2-H), 5.01 (1H, td, 5-H), 5.15 (1H, dd, 3-H), 5.22 (1H, 

dd, 4-H), 8.80 (1H, bs, OH; J(x-y)/Hz 2-3 9.3, 3-4 9.2, 4-5 8.0, 5-6a 10.8, 5-6b 6. 1, 

6a-6b 11.3; Oc  (63 MHz, CDCI 3) 20.4, 20.6 (3xCOCH3), 66.5 (C-6), 68.5, 68.9, 73. 1, 

78.8 (C-3, C-4, C-S, C-2), 136.5 (C-i) 169.3, 169.9, 170.5 (3xCOCFI 3); in/z (FAB) 

338 (M+1); HRMS (FAB) Found: M+l 338.06427. C 15H21NO1035C1 requires M+1 

338.06442. 

3.2.4.3 3,4,5,7 -Tetra-O-acetyl-2,6-anhydro-1 -deoxy-1 -chloro-1 - 

hydroxyimino-D-g!ycero-D-gulo-heptitol (107) 

Sample code: IAS003 	 ç_OAc N_OH 

Molecular formula: C15H20N010C1 	 Ac °\j
CO 

Molecular weight: 409.5 	 OAc 

Following 	the 	procedure 	above, 	3,4,5 ,7-tetra- O-acetyl-3-D- 

glucopyranosylformaldoxime (101) (600 mg, 1.5 mmol) was converted to the 

corresponding hydroximoyl chloride. The product (107) was obtained as a white 

solid (620 mg, 99%); M.p 158-160°C (lit."' 157-159°C); umaxlcm' (Nujol) 3311 

(OH), 1747 (C=O); [a]018  -5.0 (c = 1.0, CHC13); 0H  (250 MHz, CDCI 3); 2.14, 2.25, 

2.30, 2.35 (12H, 4s, 4xCOCH 3), 3.73 (1H, ddd, 6-H), 4.08 (1H, dd, 7a-H), 4.17 (1H, 

dd, 7b-H),4.24 (1H, dd, 2-H), 5.07 (1H, dd, 3-H), 5.19 (1H, dd, 5-H), 5.30 (1H,dd, 
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4-H), 8.78 (1H, bs, OH); J(x-y)IHz 2-3 9.8, 3-4 9.3, 4-5 9.4, 5-6 9.5, 6-7a 2.4, 6-7b 

4.6, 7a-7b 12.5; 6C (63 MHz, CDCI 3) 20.4, 20.5, 20.6 (4xCOC171 3), 61.8 (C-7), 67.8, 

68.7, 73.7, 75.7, 78.3 (C-3, C-4, C-S, C-6, C-2), 136.5 (C-i) 169.4, 169.6, 170.2, 

170.6 (4xCOCH 3); m/z (FAB) 410 (M +1) HRMS (FAB) Found M+1 410.08565, 

C 1 5H21 NO 1 035C1 requires M ++1 410.08540. 

3.2.4.4 3,4,5,7 -Tetra-O-acetyl-2,6-anhydro-1 -deoxy-1 -chloro-1 - 

hydroxyimino-D-g!ycero-D-galacto-heptitol (108) 

Sample code: 1AS089 	 OAc 	
OH 

Molecular formula: C15H20NO10C1 	
AcR.IiI CO 

Molecular weight: 409.5 

Following 	the 	procedure 	above, 	3,4,5 ,7-tetra-O-acetyl-3-D- 

mannopyranosylformaldoxime (102) (200 mg, 0.48 mmol) was converted to the 

corresponding hydroximoyl chloride. The product (108) was obtained as a white 

solid (210 mg, 96%). 

M.p 101°C (lit,  141 102-103°C); 8. (250 MHz, CDCI 3); 1.97, 2.04, 2.08, 2.10 (12H, 

4s, 4xCOCH3), 3.78 (1H, m, 6-H), 4.17 (1H, dd, 7a-H), 4.26 (1H, dd, 7b-H), 5.09-

5.34 (3H, m, 2-H, 4-H, 5-H), 5.71 (1H, dd, 3-H), 9.76 (1H, bs, OH); Ax-y)/Hz 2-3 

nd, 3-4 3.3, 4-5 nd, 5-6 nd, 6-7a 2.3, 6-7b 5.7, 7a-7b 12.2; öc (63 MHz, CDCI 3) 20.9, 

21.1, 21.1 (4xCOCH 3), 62.9 (C-7), 63.2, 66.1, 68.4, 72.2, 76.9 (C-3, C-4, C-S, C-6, 

C-2), 134.8 (C-l) 170.1, 170.6, 170.8, 171.3 (4xCOCH 3); m/z (FAB) 410 (M +1) 

HRMS (FAB) Found M+i 410.0855 1, C 15H2 1 N0 1 035C1 requires M+1 410.08540. 

3.2.4.5 DipyranosyI-(2,3,4-tri-O-acetyl-J-D-xyIopyranosyI)-1 ,2,5-

oxadiazole-2-oxide (109) 

Sample code: 1A5006 

CO 

N 	N 

Molecular formula: C24H32N2016 	 Ac °\jL 

Molecular weight: 602 	
OA 
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3,4,5-Tri-O-acetyl-13-D-xylopyranosylnitromethane (95) (1 g, 3.13 mmol) was 

dissolved in dry toluene (30 cm 3)  with stirring. Tnethylamine (0.5 ml) and TDI (1.56 

ml, 10.9mmol) were added and the resulting mixture was heated under reflux (85 °C) 

for 7 days. The mixture was stirred at room temperature for 1 h before cooling to 0 

T. The reaction was quenched with ethylenediamine (0.3 ml) and allowed to stir for 

18 h. Polymeric urea by-product was filtered off over celite, washed with toluene and 

chloroform and the filtrate was concentrated in vacuo. Dry flash chromatography (0-

100 % ether in hexane; gradient elution) of the residue yielded the product (109) as a 

white solid (568 mg, 61%); M.p 186-189°C (lit.' 40  190 °C); oH (250 MHz, CDCI 3); 

1.90, 1.93, 1.94, 1.95, 1.97 (18H, 6s, 6xCOCH3), 3.35-3.43 (2H, m,), 4.19-4.27 (2H, 

m), 4.54 (2H, 2 x d, 1'-H, 1"-H), 4.93-4.97 (2H, m), 5.20-5.31 (4H, m); Ax-Y)/Hz  1'-

2' 9.5, l"-2" 9.1; Oc  (63 MHz, CDCI3) 20.3, 20.5, 20.1 (6x COCH 3), 66.8, 66.9 (C-

6', C6") 68.3, 69.8, 70.3, 71.7, 72.4, 72.5, 73.9 (C-1'-C-5', C-1"-C-5"), 112.7 (C-3), 

153.7 (C-4), 169.3, 169.5, 169.7, 169.9, 169.9 (6x COCH3). 
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3.3 Synthesis of the pyranosylthiohydroximates 

3.3.1 Thiohydroximates- General procedures 

General procedure A 

To a cooled solution (0 °C) of the pyranosyl hydroximoyl chloride (0.6 mmol, 1 

equivalent) and thiol (1.2 mmol, 2 equivalents) in dry ether (5 ml), a solution of 

triethylamine (1.8 mmol, 3 equivalents) in dry ether (30 ml) was added dropwise via 

a syringe and the solution left to stir overnight. The mixture was then poured into 

water, the organic layer separated and the aqueous layer extracted with chloroform (3 

x 50 ml). The combined organic layers were dried (MgSO4) and the solvent removed 

in vacuo to yield the crude product, which was purified by dry-flash chromatography 

(silica, hexane/Et20 gradient elution). 

General procedure B 

A solution of the hydroximoyl chloride (1 equivalent) in dry ether or chloroform (35 

ml) was added dropwise over 1 hour to a cooled (0°C) and stirred solution of the 

nucleophile (2 equivalents) and triethylamine (3 equivalents) in dry ether or 

chloroform (5 ml) under N2. After stirring for 1 hour the mixture was poured into 

water (50 ml), extracted with DCM (3 x 50 ml), the combined organic layers dried 

(MgSO4), and the solvent removed in vacuo. The product was isolated by dry-flash 

chromatography (silica, hexanefEt20 gradient elution). 

3.3.1.1 5-Phenyl 2,3,4-tri-O-acetyl-13-D-

xylopyranosylformothiohydroximate (119) 

Sample code: IAS009 	 NOH 

Molecular formula: C 18H21 N208  s 
Molecular weight: 411 	

OAc 

To D-xylose derived hydroximoyl chloride (106) (200 mg, 0.6 mmol) in dry ether (5 

ml) was added thiophenol (0.12 ml, 1.2 mmol) followed by triethylamine (0.25 ml, 

1.8 mmol) in accordance to the general procedure A. Dry-flash chromatography 
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yielded (in order of elution) residual thiophenol, the title compound (119) as a white 

solid (180 mg, 75%) and a trace amount of furoxan by-product (<5 mg). 

M.p 177-178 °C (from Et20/hexane); [aID2°  7.3 (c = 0.8, CHC1 3); 8H  (250 MHz, 

CDCI 3); 1.89, 1.97 (9H, 3s, 3xCOCH3), 2.40 (1H, dd, 5a-H), 3.56 (1H, d, 1-H) 3.81 

(1H, dd, Se-H), 4.80 (1H, td, 4-H), 4.84 (1H, dd, 2-H), 5.34 (1H, dd, 3-H), 7.20-7.58 

(5H, m, ArH) 8.75 (1H, bs, OH); J(x-y)/Hz 1-2 9.9, 2-3 9.2, 3-4 9.8, 4-5a 10.2, 4-5e 

5.3, 5a-5e 11.3; 8c (63 MHz, CDCI3) 20.6 (3xCOCH 3), 66.1 (C-5), 68.6, 69.2, 73.8, 

75.2 (C-2, C-3, C-4, C-i), 127.3, 128.9, 129.8 (ArCH), 136.4 (ArC), 148.9 (C=N), 

169.5, 169.6, 170.6 (3xCOCH 3); in/z (FAB) 412 (M+i); HRMS (FAB) Found: 

M+i 412.10629. C 1 8H21 N08S requires M+H 412.10661. 

3.3.1.2 S-(2-Propyl) 2,3,4-tri-O-acetyI--D-

xylopyranosylformothiohydroximate (120) 

Sample code: JASO1O 

Molecular formula: C 15H23N08S 

Molecular weight: 377 	
OAc 

To D-xylose derived hydroximoyl chloride (106) (200 mg, 0.6 mmol) in dry ether (5 

ml) was added 2-propane thiol (0.11 ml, 1.2 mmol) followed by triethylamine (0.25 

ml, 1.8 mmol) in accordance to general procedure A. Dry-flash chromatography 

yielded (in order of elution) residual 2-propane thiol, the title compound (120) as a 

white solid (120 mg, 55%) and furoxan by-product (80 mg, 45%) 

M.p 97-98 °C; oH (250 MHz, CDCI 3); 1.23 (3H, d, CH3), 1.25 (3H, d, CH3), 1.95, 

1.97 (9H, 3s, 3xCOCH3), 3.27 (1H, dd, 5a-H), 3.83 (1H, septet, CH) 4.11 (1H, d, 1-

H) 4.13 (1H, dd, Se-H), 5.00 (1H, td, 4-H), 5.17 (1H, dd, 2-H), 5.32 (1H, dd, 3-H), 

8.88 (1H, bs, OH); J(x-y)/Hz 1-2 9.4, 2-3 9.3, 3-4 9.5, 4-5a 10.3, 4-5e 5.5, 5a-5e 

11.2 ; Oc (63 MHz, CDCI 3) 20.0 (3xCOCH 3), 22.9, 23.8 (CH 3), 36.1 (CH), 66.1 (C-

5), 68.1, 69.2, 73.2, 78.7 (C-2, C-3, C-4, C-i), 147.8 (C=N), 168.9, 169.3, 169.9 

(3xCOCH 3); 'n/z (FAB) 378 (M+i); HRMS (FAB) Found: M+1 378.12198. 

C 1  8H2 I NO8S requires M+H 378.12226. 
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3.3.1.3 S-Mercaptoethyl 2,3,4-tri-O-acetyI--D-

xylopyranosylformothiohydroximate (121) 

Sample code: IASOI1.1 

Molecular formula: C 1 4H21 N08S2 	
Ac2-\.j v- S   

Molecular weight: 395 	
OAc 

To a stirred mixture of 1,2-ethanedithiol (0.24 ml, 3 mmol) and triethylamine (0.31 

ml, 2.2 mmol) in dry ether (10 ml), D-xylose derived hydroximoyl chloride (106) 

(250 mg, 0.7 mmol) was added in accordance to general procedure B. Dry-flash 

chromatography yielded (in order of elution) residual 1 ,2-ethanedithiol, the title 

compound (121) as a white solid (112 mg, 40%) and 2:1 adduct 122 as a viscous oil• 

(57 mg, 22%). 

M.p 144-146 °C; [a]D20 -48 (c = 0.5,CHC13); 8H  (250 MHz, CDCI3); 1.65 (1H, t, SH), 

1.95, 1.97 (9H, 3s, 3xCOCH3), 2.63 (2H, m, CH2b),  3.10 (2H, m, cH2a),  3.26 (1H, 

dd, 5a-H), 4.02 (1H, d, 1-H), 4.06 (111, dd, 5e-H), 4.99 (1H, dt, 4-H), 5.18 (lH, dd, 

2-H), 5.32 (1H, dd, 3-H), 8.91 (1H, bs, OH); Ax-y)/Hz 1-2 9.6, 2-3 9.3, 3-4 9.52, 4-

5a 10.3, 4-5e 5.5, 5a-5e 11.0, SH-CH2 8.5; 8c (63 MHz, CDC13) 20.6 (3xCOCH3), 

24.9 (CH2b),  34.7 (CH) 66.5 (C-S), 68.6, 69.4, 73.5, 78.8 (C-2, C-3, C-4, C-i), 

147.6 (C=N) 169.5, 169.8, 170.4 (3xCOCH3); m/z (FAB) 396 (M+i); HRMS (FAB) 

Found: M+1 396.07842. C 1 8H2 1 N08S requires M+H 396.07869. 

3.3.1.4 2:1 adduct (122) 

Oft Sample code: IASO11.2 	
N_OH 	

j4—OAc 

Molecular formula: C 26H36N20 1  6S2 
Oft 	 b 

Molecular weight: 696 	 HO_N 

H (250 MHz, CDC13); 1.93, 1.98 (18H, 6s, 6xCOCH3), 2.82 (2H, m, CH2b),  3.15 

(2H, m, CH2a)  3.31 (1H, dd, 5a-H), 4.10 (1H, dd, Se-H) 4.15 (1H, d, i-H), 5.01 (1H, 

dt, 4-H), 5.18 (1H, dd, 2-H), 5.29 (1H, dd, 3-H), 9.23 (1H, bs, OH); Ax-Y)/Hz  1-2 

9.52, 2-3 9.3, 3-4 9.6, 4-5a 10.2, 4-5e 5.2, 5a-5e 10.8; 8C  (63 MHz, CDC13) 21.1 
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(6xCOCH3), 31.7 (CH2b),  38.9  (cH2a),  66.9 (C-5), 69.1, 70.0, 74.0, 79.3 (C-2, C-3, 

C-4, C-i), 147.9 (C=N) 170.4, 170.9 (6xCOCH3); mlz (FAB) 697 (M+l); HRMS 

(FAB) Found: M+1 697.15834. C 1 8H2 1 N08S requires M+H 697.15833. 

3.3.1.5 N-(tert-Butoxycarbonyl)cysteine methyl ester (147) 

Sample code: 1AS038 SH  4')(  
Molecular formula: C9H17N04S 	X 

N 	CO2 Me 
Molecular weight: 235 	 H 

Triethylamine (1.01 g, 10 mmol) was added to a well stirred slurry of L-cysteine 

methyl ester hydrochloride (1.72 g, 10 mmol) in DCM (20 ml), followed after 10 

minutes by di-tert-butyl dicarbonate (2.18 g, 10 mmol). The mixture was stirred for 

16 hours at room temperature, washed with water and dried (MgSO4). Evaporation of 

the solvent afforded the target (147) as a colourless oil (2.26 g, 95 %). 

H (250 MHz, CDC13); 1.45 (9H, s, 3xCH 3), 2.95-2.99 (2H, m, CH2), 3.76 (3H, s, 

OCH3), 4.60 (1H, dt, CH), 5.48 (iH, d, NH), J(x-y)IHz CH-CH2 4.1, CH-NH 7.0; 6c  

(63 MHz, CDC13) 27.1 (CH2), 28.1 (3xCH 3), 52.5 (OCH3), 54.7 (CH), 80.0 (C Boc), 

154.9 (C=O Boc) 170.6 (CO 2CH3); m/z (FAB) 236 (M+1); HRMS (FAB) Found: 

M+1 236.09575 C9H 18N04S requires M+H 236.09566. 

3.3.1.6 S-2-Methoxycarbonyl-2- tbutoxycarbonylamino-2,3,4-tri-O-acetyI-

-D-xylopyranosyIformothiohydroximate (148) 

Sample code: IAS040 	 NOH 

Molecular formula: C 21 H32N201 2 s 	Ac2 °\.J_s.CO2Me 

OAc 
Molecular weight: 536 	 NHB0c 

To a stirred mixture of N-(tert-butoxycarbonyl)-L-cysteine methyl ester (350 mg, 1.5 

mmol) and triethylamine (0.31 ml, 2.2 mmol) in dry chloroform (10 ml), D-xylose 

derived hydroximoyl chloride (106) (150 mg, 0.4 mmol) was added in accordance to 

general procedure B. Dry-flash chromatography yielded (in order of elution) NN- 
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bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (149, 107 mg, 31% recovery) and 

the title compound (148) as a white solid (209 mg, 88%). 

M.p 94-96 °C; [aID 2°  -39 (c = 1.0 ,CHCI 3); 8H  (250 MHz, CDC1 3); 1.47 (9H, s, 

3xCH3), 1.97, 2.03, 2.05 (9H, 3s, 3xCOCH 3), 3.35-3.58 (3H, m, 5a-H, CH 2  a,b), 

3.78 (3H, s, OCH3), 4.16 (1H, d, 1-H), 4.18 (1H, dd, 5e-H), 4.59 (1H, m, CH), 5.03 

(1H, dt, 4-H), 5.23 (111, dd, 2-H), 5.39 (1H, dd, 3-H), 9.44 (1H, bs, OH; J(x-y)/Hz 1-

2 9.6, 2-3 9.4, 3-4 9.4, 4-5a 10.2, 4-5e 5.4, 5a-5e 11.3; 6 C  (63 MHz, CDC1 3) 20.5 

(3xCOCH3), 28.1 (3xCH3), 32.5 (CH2), 52.7 (OCH 3), 53.7 (CH), 66.4 (C-5), 68.6, 

69.3, 73.5, 78.4 (C-i, C-2, C-3, C-4), 80.3 (C Boc), 147.0 (C=N) 155.2 (C=O Boc), 

169.5, 169.7, 170.3 (3xCOCH3), 170.7 (CO2CH3); m/z (FAB) 537 (M+1); HRMS 

(FAB) Found: M+i 537.17542 C 21 H33N201 2S requires M+H 537.17542. 

3.3.1.7 N, N-bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (149) 

Sample code: TAS039 	 NHBoc 

Molecular formula: C1 8H32N20852 	
B0cHN 	

CO,Me 

Molecular weight: 468 	 CO2 Me 

M.p 89-90 °C (lit 96-97°C); 8H  (250 MHz, CDCI 3); 1.45 (18H, 2xs, 6xCH 3), 3.16 

(4H, 2xd, 2xCH2), 3.77 (6H, 2xs, 2xOCH 3), 4.60 (2H, 2xdt, 2xCH), 5.41 (2H, 2xd, 

2xNH), Ax-y)/Hz CH-CH2  5.2, CH-NH 7.0; 8c (63 MHz, CDC1 3) 28.2 (6xCH3), 

41.1 (2xCH2) 52.5 (2xOCH3) 52.6 (2xCH), 80.2 (2xC Boc), 154.9 (2xC=O Boc), 

171.0 (2xCO2CH3); m/z (FAB) 469 (M+1); HRMS (FAB) Found: M+1 469.16810 

C 1 8H33N208S2 requires M+H 469.16784. 
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3.3.1.8 S-2-Methoxycarbonyl-2- tbutoxycarbonylamino-2,3,4,6-tetra-0-

acetyI-3-D-g I ucopyranosylformothiohydroximate (150) 

Sample code: 1AS042 	 fAc NOH 

Molecular formula: C24H36N20 1  4S 	 S2Me 

Molecular weight. 608 	 OAc 	
NHB0c 

To a stirred mixture of N-(tert-Butoxycarbonyl)cysteine methyl ester (260 mg, 1.1 

mmol) and triethylamine (0.31 ml, 2.2 mmol) in dry chloroform (10 ml), D-glucose 

derived hydroximoyl chloride (107) (150 mg, 0.36 mmol) was added in accordance 

to general procedure B. Dry-flash chromatography yielded (in order of elution) N, N-

bis(tert-Butoxy)carbonyl-L-cystine dimethyl ester (101 mg, 39% recovery) and the 

title compound (150) as a white solid (145 mg, 85%). 

M.p 145-147 °C; [a]u2°  -15 (c = 1.0 ,CHC1 3); 8H  (250 MHz, CDCI3); 1.40 (9H, S, 

3xCH3), 1.90, 1.93, 1.97, 2.03 (12H, 4xs, 4xCOCH3), 3.35 (1H, dd, CH2a), 3.54 

(1H, dd, CH2b), 3.73 (3H, s, OCH 3), 3.93-3.78 (1H, m, 5-H), 4.11-4.17 (2H, m, 6a-

H, 6b-H), 4.22 (1H, d, 1-H), 4.53 (1H, m, CH), 5.06 (1H, dd, 2-H), 5.17 (1H, dd, 4-

H), 5.39 (1H, dd, 3-H), 5.62 (1H, dd, NH), 9.63 (1H, bs, OH; J(x-y)/Hz 1-29.8,2-3 

9.6, 3-4 9.3, 4-5 9.2, 5-6a nd, 5-6b nd, 6a-6b nd ; 8 c  (63 MHz, CDC13) 20.5 

(4xCOCH3), 29.5 (3xCH 3), 32.1 (CH 2), 52.6 (OCH3), 53.7 (CH), 62.0 (C-6), 65.7, 

67.8, 69.1, 74.1, 75.6 (C-i, C-2, C-3, C-4, C-5), 80.3 (C Boc), 146.4 (C=N) 155.1 

(C=O Boc), 169.4, 170.3, 170.5 (4xCOCH 3), 170.6 (CO2CH3); m/z (FAB) 609 

(Mt-i-i); HRMS (FAB) Found: M+1 609.19777 C2 4H37N2014S requires M+H 

609. 19655. 
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3.3.1.9 S-Carbmethoxymethyl-2,3,4-tri- O-acetyI--D-

xylopyranosylformothiohydroximate (166) 

Sample code: 1AS067 	 NOH 

Molecular formula: C 15H2 1 N O10S 

Molecular weight: 407 	
OAc 

To a stirred mixture of methyl thioglycolate (0.08 ml, 0.9 mmol) and triethylamine 

(0.25 ml, 1.8 mmol) in dry chloroform (30 ml), D-xylose derived hydroximoyl 

chloride (106) (100 mg, 0.3 mmol) was added in accordance to general procedure B. 

Dry-flash chromatography yielded (in order of elution) residual methyl thioglycolate, 

and the title compound (166) as a white solid (85 mg, 70%) 

M.p 144-145°C; oH (360 MHz, CDC13); 1.98, 2.04, 2.05 (9H, 3s, 3xCOCH3), 3.38 

(1H, dd, 5a-H), 3.75 (1H, d, CH 2a), 3.77 (3H, s, CO2CH3), 3.82 (1H, d, CH2b), 4.14 

(1H, dd, 5e-H), 4.29 (1H, d, i-H), 5.01-5.08 (1H, m, 4-H), 5.25 (1H, dd, 2-H), 5.41 

(1H, dd, 3-H), 9.39 (1H, bs, OH; Ax-y)/Hz 1-2 9.6, 2-3 9.3, 3-4 9.5, 4-5a 10.6, 4-5e 

5.6, 5a-5e 11.2, 2a'-2b' 15.8; Oc (93 MHz, CDC1 3) 21.7, 21.8 (3xCOCH3), 33.3 

(SCH2CO2CH3) 53.9 (C0CH3) 67.5 (C-5), 69.7, 70.4, 74.6, 79.2 (C- 1, C-2, C-3, C-

4), 148.1 (C=N) 170.8, 170.9, 171.1 (3xCOCH3), 171.7 (CO2CH3); m,/z (ES) 408 

(MH). 

3.3.1.10 S-2-Am inophenyl 2,3,4-tri-O-acetyI-E-D-

xylopyranosylformothiohydroximate (216) 

Sample code: IAS021 

Molecular formula: C 1 8H22N208S 

Molecular weight: 426 

NOH 

Ac 
CO 	

0 	

S 	NH 2  
OAc 

To a stirred mixture of 2-amino-thiophenol (225 mg, 1.8 mmol) and triethylamine 

(0.25 ml, 1.8 mmol) in dry ether (10 ml), D-xylose derived hydroximoyl chloride 106 

(200mg, 0.6 mmol) was added in accordance to general procedure B. Dry-flash 

chromatography yielded (in order of elution) residual 2-amino-thiophenol , and the 

title compound (216) as a white solid (196 mg, 78%). 
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M.p 97-98°C ; [U]ii °  30 (c = 0.5 ,CHCI 3); 8H (250 MHz, CDC13); 1.91, 1.92, 1.98 

(9H, 3s, 3xCOCH3), 2.41 (IH, dd, 5a-H), 3.59 (1H, d, 1-H) 3.80 (1H, dd, 5b-H), 4.35 

(2H, bs, NH2), 4.84 (1H, td, 4-H), 4.90 (1H, dd, 2-H), 5.34 (1H, dd, 3-H), 6.64-6.73 

(2H, m, ArH), 7.14-7.18 (111, m, ArH), 7.36 (1H, dd, Ar); Ax-y)fHz 1-2 9.9,2-3 8.9, 

3-4 10.0, 4-5a 10.3, 4-5b 5.6, 5a-5b 11.1; 8C (63 MHz, CDC1 3) 21.0, 21.1 

(3xCOCH3), 66.6 (C-5), 69.2, 69.6, 74.5, 75.6 (C-2, C-3, C-4, C- 1), 110.2 (ArC-SR) 

115.7, 118.7, 132.3, 138.9 (ArCH) 148.6 (C=N) 150.3 (ArC-NH2)) 170.1, 170.2, 

171.1 (3xCOCH 3); mlz (FAB) 427 (M +1) HRMS (FAB) Found M+1 427.1167, 

C 1 8H22N208S requires M+H 427.1175. 
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3.4 Synthesis of the pyranosylamidoximes 

3.4.1 Alkyl/Aryl Am idoximes- General procedure 

A solution of the hydroximoyl chloride (1 equivalent) in chloroform (35-50 ml) was 

added dropwise over 2 hours to a cooled (0°C) and stirred solution of the amine (2 

equivalents) and triethylamine (3-18 equivalents) in chloroform (3-5 ml) under N2. 

After stirring for 1 hour the mixture was poured into water (50 ml), extracted with 

DCM (3 x 50 ml), the combined organic layers dried (MgSO 4), and the solvent 

removed in vacuo. The product was isolated by dry-flash chromatography (silica, 

hexanefEt 20 gradient elution). 

3.4.1.1 (Z)-N-BenzyI-(2,3,4,6-tetra-O-acetyl--D-

glucopyranosyl)formamide oxime (137) 

Sample code: IAS061 	 OAC NOH 

Molecular formula: C22H23N2010 	 CO 

Molecular weight: 480 	 OAc 	H 

To a stirred mixture of benzylamine (0.18 ml, 1.6 mmol) and triethylamine (1 ml, 7.2 

mmol) in dry chloroform (3 ml), D-glucose derived hydroximoyl chloride 107 (200 

mg, 0.5 mmol) was added in accordance to the general procedure above. Dry-flash 

chromatography yielded the title compound (137) as a white solid (205 mg, 88%). 

M.p. 128-129 °C ; [am 20  -12 (c = 1 CHCI3); 8H  (360 MHz, CDCI3) 1.85, 1.95, 1.98 

(12H, 4s, 4xCOCH 3), 3.59 (1 H, ddd, 5'-H), 4.00 (1H, d, 2'-H), 4.02 (1H, dd, 6a'-H), 

4.06 (1H, dd, 6b'-H), 4.36 (111, dd, Bna-H), 4.49 (1H, dd, Bnb-H), 5.02 (1H, dd, 3'-

H), 5.13 (1H, dd, 5'-H), 5.30 (lH, t, NH), 5.35 (1H, dd, 4'-H) 7.18-7.29 (5H, m, 

PhH), 8.55 (1H, bs, OH); Ax-y)/Hz l'-2' 10.3, 2'-3' 9.8, 3'-4' 9.7, 4'-5' 9.9, 5'-6a' 

2.4, 5'-6b' 4.7, 6a-6b 12.5 Bna-Bnb 14.5, Bna-NH 7.0, Bnb-NH 6.8; ac (93 MHz, 

CDCI3) 21.5, 21.6, 21.7, (4xCOCH 3), 47.5 (PhCFI), 63.0 (C-6'), 69.0, 69.5, 74.3, 

75.0, 76.6 (C- 1',C-2',C-3', C-4', C-5'), 128.4, 129.9, (5xPhCH), 140.0 (PhC), 149.7 

(C=N), 170.5, 170.7, 171.4, 171.7 (4xCOCH 3); mlz (FAB) 481 (M+1) HRMS 

(FAB) Found M-i-1 481.18263, C22H28N20 10  requires M+1 481.18222. 
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3.4.1.2 	(Z)-N-Benzyl-(2,3,4-tri-O-acetyl-J3-D-xylopyranosyl)formamide 

oxime (138) 

NOH 

Sample code: 1AS023 
	 Ac °\j N 

Molecular formula: C 1 9H24N208 
	 OAc 	H 

Molecular weight: 408 

To a stiffed mixture of benzylamine (0.14 ml, 1.3 mmol) and triethylamine (1 ml, 7.2 

mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride 106 (150 

mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash 

chromatography yielded the title compound (138) as a white solid (121 mg, 67%). 

M.p. 64-66'C ; [ all020  -3.7 (c = 0.54 CHCI3); & (250 MHz, CDCI3) 1.95, 1.96, 1.97 

(9H, 3s, 3xCOCH 3), 3.19 (1H, dd, 5a'-H), 3.89 (1H, d, l'-H), 4.07 (1H, dd, 5e'-H), 

4.38 (1H, dd, Bna-H), 4.39 (1H, dd, Bnb-H), 4.92 (1H, ddd, 4'-H), 5.11 (1H, dd, 3'-

H), 5.22 (IH, t, NH), 5.29 (1H, dd, 2'-H), 7.14-7.31 (5H, m, PhH); Ax-Y)/Hz  1'-2' 

10.0, 2'-3' 9.2, 3'-4' 9.5, 4'-5a' 10.4, 4'-5e' 5.6, 5a'-5e' 11.2, Bna-Bnb 14.6, Bna-

NH 5.5, Bnb-NH 6.8; öc (63 MHz, CDC13) 20.5 (3xCOCH3), 46.4 (PhCH2), 67.7 (C-

5'), 68.6, 68.7, 73.5, 76.1 (C-1',C-2',C-3', C-4'), 127.3, 127.4, 128.6 (5xPhCH), 

138.8 (PhC), 148.9 (C=N), 169.5, 169.7, 170.2 (3xCOCH 3); m/z (FAB) 409 (M +1) 

HRMS (FAB) Found M+1 409.16095, C 19H24N208 requires M-i-1 409.16 109. 

3.4.1.3 	(Z)-N-Butyl-(2,3,4-tri-O-acetyl--D-xyIopyranosyI)formamide 

oxime (139) 

Sample code: IAS016 

Molecular formula: C 1 6H26N208 

Molecular weight: 374 

N - OH 

Ac2T°\I 
N OAc 

To a stirred mixture of n-butylamine (0.21 ml, 2.2 mmol) and triethylamine (1 ml, 

7.2 mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride 106 
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(250 mg, 0.75 mmol) was added in accordance to the general procedure above. Dry-

flash chromatography yielded the title compound (139) as a white solid (169 mg, 

63%). 

M.p 111-113 oc; [aID2°  —41 (c = 0.8 ,CHC13); oH (250 MHz, CDC13); 1.91, 1.96, 

1.97 (9H, 3s, 3xCOCH3), (3H, t, Cl 3 0, (6H, m, CH2), 3.21 (1H, dd, 5a'-H), 3.86 

(1H, d, 1'-H), 4.10 (1H, dd, 5e'-H), 4.93 (1H, td, 4'-H), 5.12 (1H, dd, 2'-H), 5.24 

(1H, dd, 3'-H), 8.57 (1H, bs, OH); J(x-y)IHz 1'-2' 9.8, 2'-3' 9.3, 3'-4' 9.3, 4'-5a' 

10.7, 4'-5e' 6.0, 5a'-5e' 11.1; 0c  (63 MHz, CDC13) 14.1 (CH 3), 20.1 (CH2), 20.9 

(3xCOCH3), 33.3 (CH), 42.4 (CH2), 67.1 (C-5'), 69.2, 70.7, 73.9, 77.6 (C- V, C-2', 

C-3', C-4'), 149.5 (C=N) 169.9, 170.2, 170.6 (3xCOCH 3); m/z (FAB) 375 (M +1) 

HRMS (FAB) Found M+1 375.17622, C 1 6H26N208 requires M+1 375.17674. 

3.4.1.4 (Z)-N-PropenyI-(2,3,4-Tri-O-acetyI--D-xyIopyranosyI) formamide 

oxime (140) 

This experiment was done in collaboration with Miss K. S. Homer 

Sample code: KH09 	 NOH 

Molecular formula: 	
AcY °\j N 

C 15H22N208Molecular weight: 358 	
OAc 	H 

To a stirred mixture of allylamine (0.13 ml, 1.8 mmol) and triethylamine (1 ml, 7.2 

mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride 106 (150 

mg, 0.4 mmol) was added in accordance to the general procedure above. Dry-flash 

chromatography yielded the title compound (140) as a white solid (66 mg, 41%). 

Mp 52-54'C; [a]D20 = -3.5 (c = 0.34, CHC13); 8H  (250 MHz, CDC13); 1.99, 2.01 (9H, 

3s, 3xCOCH3), 3.24 (1H, dd, 5a-H), 3.85 (2H, d, CH 2), 3.88 (1H, d, 1-H), 4.09 (1H, 

dd, 5b-H), 4.95 (1H, m, 4-H), 5.11 (2H, dd, CH2), 5.13 (1H, dd, 2-H), 5.26 (1H, dd, 

3-H), 5.83 (1H, m, CH), 8.71 (1H, bs, OH); Ax-y)/Hz 1-2 9.8, 2-3 9.5, 3-4 5.4, 4-5a 

10.8, 4-5b 11.2; oc (63 MHz, CDC1 3); 20.0 (COCH3), 44.3 (CH2), 66.2 (C-S), 68.0, 

68.1, 72.9, 75.3 (C-2, C-3, C-4, C-i), 115.5 (Cl2), 134.7 (CH), 148.4 (C=N), 168.9, 

169.2, 169.6 (COCH3); m/z (FAB) 359 (M +1) HRMS (FAB) Found M+1 

359. 145 14, C15H22N 208 requires M+1 359.14544. 
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3.4.1.5 (Z)-N-Phenyl-(2,3,4-tri- O-acetyl-f-D-xyIopyranosyI)formamide 

oxime (141) 

Procedure A 

Sample code: IAS014 

Molecular formula: C 1 8H22N208  

Molecular weight: 394 

NOH 

CAOc 0 ~ ~~' 0 N 
OAc 	H 

To a stirred mixture of aniline (0.24 ml, 1.8 mmol) and triethylamine (0.25 ml, 1.8 

mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride 106 (200 

mg, 0.6 mmol) was added in accordance to the general procedure above. Dry-flash 

chromatography yielded the title compound (141) as a crystalline solid (65 mg, 

28%). 

Procedure B 

Xylose derived hydroximoyl chloride 106 (200 mg, 0.6 mmol) and aniline (0.12 ml, 

1.5 mmol) were dissolved in ethanol (10 ml) and the mixture stirred under an 

atmosphere of nitrogen at room temperature for 16 h or heated under reflux for 5 

hours. The reaction mixture was concentrated in vacuo to afford the crude product, 

which was purified by dry-flash chromatography (silica, hexanelEt 20 gradient 

elution). The title compound (141) was obtained as a crystalline solid (211 mg, 90%) 

M.p 179-180°C; [a]D20-82  (c = 1, CHC13); 8H  (250 MHz, CDC1 3); 1.93, 1.95 (9H, 

3s, 3xCOCH3), 3.07 (1H, dd, 5a'-H), 4.05 (1H, dd, 5e'-H) 4.09 (1H, d, l'-H), 4.95 

(1H, td, 4'-H), 5.02 (1H, dd, 2'-H), 5.35 (1H, dd, 3'-H), 6.94 (1H, b.s, NH), 7.04-

7.31 (5H, m, Ar), 7.91 (1H, bs, OH); J(x-y)/Hz 1'-2' 10.0, 2'-3' 9.1, 3'-4' 9.9, 4'-

5a' 10. 1, 4'-5b' 5.45, 5a'-5b' 11.00; öc (63 MHz, CDCI 3) 20.60 (3xCOCH3), 66.53 

(C-5), 68.59, 69.17, 73.31, 73.83 (C-i, C-2, C-3, C-4), 123.59, 124.84, 129.14 

(ArCH), 138.11 (ArC), 146.77 (C=N) 169.25, 169.61, 170.38 (3xCOCH 3); mlz 

(FAB) 395 (M +1) HRMS (FAB) Found M+1 395.14526, C 1 8H22N208 requires 

M-i-1 395.14544. 
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3.4.1.6 (Z)-N-PhenyI-(2,3,4,6-tetra-O-acetyI--D-

glucopyranosyl)formamide oxime (142) 

Sample code: JAS060 	 _OAc NOH 

Ac 0 Molecular formula: C 21 H26N20 1 0 	 CO 

Molecular weight: 466 	 OAc 	H 

D-Glucose derived hydroximoyl chloride 107 (200 mg, 0.5 mmol) and aniline (0.11 

ml, 1.2 mmol) were dissolved in ethanol (10 ml) and the mixture stirred under an 

atmosphere of nitrogen at room temperature for 16 h or heated under reflux for 5 

hours. The reaction mixture was concentrated in vacuo to afford the crude product, 

which was purified by dry-flash chromatography (silica, hexanelEt 20 gradient 

elution). The title compound (142) was obtained as a crystalline solid (190 mg, 83%) 

M.p 55-56°C; [aID20  —79 (c = 1, CHCI 3); 8H  (360 MHz, CDCI3); 1.91, 1.93, 1.94, 

1.98 (12H, 4s, 4xCOCH3), 3.48 (1H, dd, 5'-H), 4.01 (1H, dd, 6a'-H), 4.08 (1H, dd, 

6b'-H), 4.15 (1H, d, 1'-H), 4.97 (in, dd, 3'-H), 5.03 (1H, dd, 5'-H), 5.40 (1H, dd, 

4'-H), 7.04 (1H, b.s, NH), 7.10-7.30 (5H, m, ArH), 8.30 (1H, bs, OH); J(x-y)IHz 1'-

2' 10.2, 2'-3' 9.5, 3'-4' 9.3, 4'-5' 10.1, 5'-6a' 2.3, 5'-6b 6.1, 6a'-6b' 12.4; öc (93 

MHz, CDCI3) 20.3, 20.4, 20.6, 20.9 (4xCOCH3), 62.4 (C-6'), 68.0, 68.6, 72.7, 74.3, 

75.8 (C-2', C-3', C-4', C-5', C-I'), 123.6, 124.9, 129.1 (ArCH), 138.1 (ArC), 146.4 

(C=N) 170.4, 171.3, 171.5, 171.7 (4xCOCH3); m/z (FAB) 467 (M +1) HRMS 

(FAB) Found M-,-1 467.16695, C 21 H26N20 1 0 requires M+i 467.16657. 
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3.4.1.7 (E)-N-MorphoIino-(2,3,4-tri-O-acetyl--D-

xylopyranosyl)formamide oxime (143) 

Sample code: TAS018 

Molecular formula: C 16H24N209  

Molecular weight: 388 

HO N 

Ac \j 
N Co  

OAc 

To a stirred mixture of morpholine (0.26 ml, 3 mmol) and triethylamine (1 ml, 7.2 

mmol) in dry chloroform (5 ml), D-xylose derived hydroximoyl chloride 106 (250 

mg, 0.75 mmol) was added in accordance to the general procedure above. Dry-flash 

chromatography yielded the title compound (143) as a white solid (192 mg, 67%). 

M.p 108-111 °C [aID2°  16 (c = 0.5 ,CHC13); 8H  (250 MHz, CDCI3); 2.06, 2.10, 2.11 

(9H, 3s, 3xCOCH3), 3.09-3.16 (2H, m, morpholine CH2), 3.24-3.36 (2H, m, 

morpholine CH2), 3.39 (1H, dd, 5a'-H), 4.24 (1H, dd, 5e'-H) 3.77-3.81 (4H, m, 

morpholine CH 2), 5.12-5.16 (2H, m, 4'-H, l'-H), 5.3 1-5.36 (2H, m, 2'-H, 3'-H), 8.33 

(1H, bs, OH); Ax-y)/Hz l'-2' 9.9, 2'-3', nd, 3'-4' nd, 4'-5a' 10.9, 4'-5e' 5.6, 5a'-5e' 

11.3; öc (63 MHz, CDCI 3) 20.5 (3xCOCH 3), 47.4 (CH), 65.7 (CH2), 66.8 (C-5'), 

68.6, 69.3, 73.3, 77.1 (C-l', C-2', C-3', C-4'), 154.7 (C=N) 169.3, 169.6, 170.4 

(3xCOCH3); mlz (FAB) 389 (M +1) HRMS (FAB) Found M+1 389.15644, 

C26H24N209 requires M-i-1 389.15601. 

3.4.2 General procedure —Amidoxime linked glycopeptide analogues 

A solution of the hydroximoyl chloride (1 equivalent) in chloroform (35-50 ml) was 

added dropwise over 2 hours to a cooled (00  C) and stirred solution of the amino acid 

ester (1.5-2 equivalents) and triethylamine (18 equivalents) in chloroform (3-5 ml) 

under N2. On completion of addition, the mixture was diluted with DCM (50 ml), 

washed with 0.1 M HC1 (2 x 50 ml) and the organic layers dried (MgSO 4). The 

products were isolated by dry-flash chromatography (silica, hexane/Et 20 gradient 

elution). 
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3.4.2.1 (Z)-N-Carbethoxymethyl-(2,3,4-tri-O-acetyl-I3-D-

xylopyranosyl)formamide oxime (152) 

Sample code: IAS019 	 NOH 

Molecular formula: C16H24N2010 	 Ac-T°\j, 

Molecular weight: 404 

To a stirred mixture of glycine ethyl ester hydrochloride (186 mg, 1.125 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived 

hydroximoyl chloride 106 (250 mg, 0.75 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient 

elution) yielded the title compound (152) as a gum (156 mg, 52%). 

oH (250 MHz, CDCI3) 1.23 (3H, t, CO 2CH2CH3), 1.96, 1.97, 1.98 (9H, 3s, 

3xCOCH3), 3.28 (lB. dd, 5a'-H), 3.85 (1H, d, i'-H), 4.07 (2H, d, CH2), 4.06 (1H, 

dd, 5e'-H), 4.16 (211, q, CO 2CH2CH3), 4.8-5.0 (1H, m, 4'-H), 5.1-5.2 (2H, m, 2'-H & 

3'H), 5.48 (1H, t, NH); Ax-y)/Hz 1'-2' 9.8, 2'-3' 9.2, 3'-4' nd, 4'-5a' 10.2, 4'-5e' 

5.5, 5a'-5e' 11.5, CH2-NH 5.8; Oc  (63 MHz, CDC13) 14.5 (CO2CH2CH3), 21.0 

(3xCOCH3), 44.7 (CH), 61.7 (CO 2 CH2CH3), 67.1 (C-5'), 68.9, 69.1, 73.6, 76.9 (C-

4',C-2',C-3', C-I'), 148.1 (C=N), 170.1, 170.2, 170.5 (3xCOCH 3), 170.7 

(CO2CH2CH3); m/z (FAB) 405 (M +1) HRMS (FAB) Found M+1 405.15194, 

C 1 6H24N2010 requires M 1 -i-i 405.151092. 

3.4.2.2 2:1 Adduct (154) 

Sample code: IAS051 	 NOH 

H 
Molecular formula: 8H27N3011 	 N ..CO2 Et 

Molecular weight: 461 	
OAc 

0 
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Procedure A 

To a stirred mixture of glycyl glycine ethyl ester hydrochloride (120 mg, 0.6 mmol) 

and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient 

elution) yielded the title compound (154) as a gum (88 mg, 43%). 

Procedure B 

To a cooled (0°C) and stirred mixture of glycine ethyl ester hydrochloride (188 mg, 

1.4 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose 

derived hydroximoyl chloride (106) (300 mg, 0.9 mmol) in chloroform (45 ml) was 

added dropwise over 2 hours. On completion of addition the mixture was allowed to 

stir for 16 hours. The mixture was diluted with DCM (50 ml), washed with 0.1 M 

HCI (2 x 50 ml) and the organic layers dried (MgSO4). The organic layers were 

concentrated in vacuo and the residue subjected to dry-flash chromatography (silica, 

hexane/EtOAc gradient elution) to yield the product (154) as a white solid (82 mg, 

20%). 

[aID20  —35 (c = 1.0 ,CHC13); oH (250 MHz, CDC1 3) 1.21 (3H, t, CO2CH2CH3), 1.92, 

1.95, 1.97 (9H, 3s, 3xCOCH3), 3.29 (1H, dd, 5a-H), 3.90 (1H, d, 1-H), 3.98-4.08 

(5H, m, Se-H, CH2a, CH2b), 4.14 (2H, q, CO 2CH2CH3), 4.86-5.39 (3H, m, 4-H, 3-H, 

2-H), 5.61 (1H, t, NH), 7.45 (1H, t, NH); Ax-y)/Hz 1-2 9.6, 2-3 nd, 3-4 nd, 4-5a 

10.8, 4-5e nd, 5a-5e 11.0, CH 2-NH 5.8; Oc  (63 MHz, CDC13) 13.9 (CO2CH2CH3), 

20.4 (3xCOCH 3), 40.9 (CH2), 46.2 (CH2), 61.0 (CO 20H2CH3), 66.5 (C-5), 68.5, 

69.7, 73.0, 76.1 (C-i, C-2, C-3, C-4), 147.8 (C=N), 169.7, 169.9, 170.0 (3xCOCH3), 

170.9 (CO2CH2CH3); m/z (FAB) 462 (M +1) HRMS (FAB) Found M-i-1 

462.17268, C7H28N2010 requires M++1 462.17238. 
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3.4.2.3 (Z)-N-CarbmethoxymethyI-2-'butyI-(2,3,4-tri-O-acetyI-3-D-

xylopyranosyl)formamide oxime (155) 

Sample code: IAS046A 

Molecular formula: C 1 9H30N2010  

Molecular weight: 446 

N 

	

Ac2°\j 
N 	CO2 Me 

OAc 	H 

To a stirred mixture of L-leucine methyl ester hydrochloride (110 mg, 0.6 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient 

elution) yielded the title compound (155) as a colourless gum (105 mg, 53%). 

H (250 MHz, CDCI3) 0.88, 0.91 (6H, 2s, CH3(iPr)), 1.48-1.57 (2H, m, CH2(iPr)), 

1.60-1.78 (1H, m, CH(iPr)) 1.89, 1.97, 1.99 (9H, 3s, 3xCOCH 3), 3.29 (1H, dd, 5a-H), 

3.66 (3H, s, CO2CH3), 3.85 (1H, d, 1-H), 4.04 (1H, dd, Se-H), 4.16-4.27 (1H, m, 

CH), 4.86-5.03 (1H, m, 4-H), 5.09-5.31 (3H, m, 2-H, 3-H, NH) ; J(x-y)fHz 1-2 9.8, 

2-3 nd, 3-4 nd, 4-5a 10.8, 4-5e 5.7, 5a-5e 11.2, CH 2-NH 5.6; 8c  (63 MHz, CDC13) 

20.5, 21.2, 21.3 (3xCOCFI 3), 24.0, 24.7 (CH3('Pr)), 40.8 (CH 2('Pr)), 48.8 (CO2CH 3), 

66.5 (C-S), 68.4, 68.9, 72.2, 74.7 (C-i, C-2, C-3, C-4), 149.8 (C=N), 169.6, 169.7, 

169.8 (3xCOCH 3), 173.0 (CO2CH3); m/z (FAB) 447 (M +1) HRMS (FAB) Found 

M-i-1 447. 19823, C 19H30N20 10  requires M-i-1 447.19787. 

3.4.2.4 (Z)-N-CarbethoxymethyI-2-benzyI-(2,3,4-tri-O-acetyI-f-D-

xylopyranosyl)formamide oxirne (161) 

Sample code: 1A5045 

Molecular formula: C23H 30N20 1 0 	
NOH 

Molecular weight: 494 
	

AcY-\I N 

OAc 	H 
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To a stirred mixture of L-phenylalanine ethyl ester hydrochloride (306 mg, 0.6 

mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose 

derived hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to 

the general procedure above. Dry-flash chromatography (silica, hexane/EtOAc 

gradient elution) yielded the title compound (161) as a gum (115 mg, 52%). 

M.p 209-210 °C; [a]020-161  (c = 1.0 ,CHCI3); 8H  (250 MHz, CDCI3) 1.12 (3H, t, 

CO2CH2C), 1.89, 1.97, 1.98 (9H, 3s, 3xCOCH3), 3.01 (1H, dd, C1-1 2a), 3.09 (1 H, 

dd, CH2b), 3.21 (1H, dd, 5a-H), 3.82 (1H, d, 1-H), 4.00-4.09 (3H, m, CO2CH2CH3, 

5b-H), 4.46-4.55 (1H, m, CH), 4.86-4.97 (1H, m, 4-H), 5.09-5.20 (2H, m, 2-H, 3-H), 

5.26 (1H, d, NH), 7.08-7.39 (5H, m, PhH); Ax-y)/Hz 1-2 9.5, 2-3 nd, 3-4 nd, 4-5a 

10.7, 4-5e nd, 5a-5e 10.8., CH-NH 10.0; 8c (63 MHz, CDC1 3) 13.9 (CO2CH2 CH3), 

20.5 (3xCOCH3), 39.8 (PhCH 2), 56.2 (CH), 61.1 (CO2 CFI2CH3), 66.5 (C-5), 68.6, 

69.1, 73.3, 76.2 (C-i, C-2, C-3, C-4), 126.9, 128.4, 129.3 (ArCH), 135.6 (ArC), 

147.1 (C=N), 169.4, 169.7, 170.2 (3xCOCH 3), 172.1 (CO2CH2H3); m/z (FAB) 495 

(M +1) HRMS (FAB) Found M+l 495.19803, C23H3 1 N20 1 0 requires M+1 

495.19787. 

3.4.2.5 (Z)-N-CarbethoxyethyI-(2,3,4-tri-O-acetyI--D-

xylopyranosyl)formamide oxime beta alanine (164) 

Sample code: 1AS049 	 NOH 

Molecular formula: C1 7H27N2010 	
AcYg°\j 

Molecular weight: 418 

To a stirred mixture of -alanine ethyl ester hydrochloride (92 mg, 0.6 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (S ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient 

elution) yielded the title compound (164) as a gum (90 mg, 50%) 

M.p 110-112 °C; [c]o203S  (c = 1.0 ,CHC13); &- (360 MHz, CDCI 3); 1.22 (3H, t, 

CO2CH2CH3), 1.94, 1.98, 2.01 (9H, 3s, 3xCOCft),  2.53 (2H, t, CH2CH2CO 2Et), 

3.29 (1H, dd, 5a'-H), 3.53 (2H, m, CCH2CO2Et), 3.91 (1H, d, 1-H), 4.12 (1H, dd, 



5e'-H), 4.13 (3H, q, CO2CCH3), 4.96 (1H, ddd, 4-H), 5.18 (1H, dd, 2-H), 5.24 

(1H, dd, 3'-H), 5.36 (1H, t, NH); J(x-y)IHz 1-2 9.3,2-3 9.4, 3-4 9.0, 4-5a 10.8, 4-5e 

5.4, 5a-5e 11.2; 5c (93 MHz, CDC13) 14.5 (CO 2CH2CH3), 20.9, 21.0 (3xCOCH3), 

36.1 (CH20H2CO2Et), 38.9 (CH2CH2CO2Et), 61.1 (CO2CH2CH3), 67.14 (C-5), 69.0, 

69.2, 73.9, 76.9 (C- 1, C-2, C-3, C-4), 149.0 (C=N) 170.0, 170.2, 170.60 (3xCOCH3) 

170.3 (CO2CH2CH3); m/z (FAB) 419 (M +1) HRMS (FAB) Found M+l 

419.16741, C 17H28N20 1 0 requires M+i 419.16657. 

3.4.26 (Z)-N-Carb tbutoxymethyI-(2,3,4-tri-O-acetyI--D-

xylopyranosyl)formamide oxime (165) 

Sample code: IAS050 

Molecular formula: C 1 8H28N20 1 0 

Molecular weight: 432 

NOH 

	

Ac2°\j 
N 	CO2'Bu OAc 	H 

To a stirred mixture of glycine tertiarybutyl ester.AcOH (115 mg, 0.6 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography (silica, hexane/EtOAc gradient 

elution) yielded the title compound (165) as a colourless gum (170 mg, 88%). 

[a] 20 -49 (c = 1.35 ,CHC13) oH (360 MHz, CDC13) 1.45, (9H, s, CH3), 1.97, 2.02, 

2.03 (9H, 3s, 3xCOCH3), 3.32 (1H, dd, 5a-H), 3.87 (1H, d, 1-H), 3.92 (1H, dd, 

CH2a), 4.04 (1H, dd, CH2b), 4.16 (1H, dd, Se-H), 4.97-5.04 (1H, m, 4-H), 5.18-5.22 

(2H, m, 2-H & 3H), 5.49 (1H, t, NH) ; J(x-y)/Hz 1-2 9.8, 2-3 nd, 3-4 nd, 4-5a 10.8, 

4-5e 5.6, 5a-5e 11.2, CH2-NH 5.8; Oc  (93 MHz, CDCI 3) 21.7, 21.8 (3xCOCH3), 30.7 

(CH3), 45.8 (CH 2), 67.8 (C-S'), 69.6, 69.9, 74.3, 77.9 (C-4',C-2',C-3', C-l'), 83.2 

(Cq), 148.9 (C=N), 170.4, 170.8, 171.0 (3xCOCH3), 171.3 (CO2 tBu); m/z (FAB) 433 

(M +1) HRMS (FAB) Found M+1 433.18226, C 1 6H24N20 10  requires M+1 

433.18222. 
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3.4.3 Cyclisation Reactions 

3.4.3.1 	3-(2,3,4-Tri-O-acetyl--D-xyIopyranosyI)-1 ,2,4-oxadiazin-6-one 

(153) 

Sample code: IAS020 

Molecular formula: C 14H 1 8N209 

Molecular weight: 358 

co_~:~
j N :ro 

OAc 	H 

(Z)-N-Carbethoxymethyl-(2' ,3' ,4 ' -tri-O-acetyl--D-xylopyranosyl)formamide oxime 

(152) (156 mg, 0.4 mmol) was dissolved in chloroform (15 ml), stirred with silica 

(500 mg) and heated under reflux for 32 hours. On cooling, the product was obtained 

as a crystalline solid (83 mg, 60%) after dry-flash chromatography (silica, 

hexanelEt 20 gradient elution). 

M.p. 165 °C (decomp.) (from hexane-EtOAc), [a]0 2°  —151 (c = 2.25, CHC13); 

(250 MHz, CDC1 3) 1.98, 1.99, 2.00 (9H, 3s, 3xCOCH 3), 3.37 (1H, dd, 5a'-H), 3.94 

(1H, d, 1'-H), 3.95 (2H, s, CH 2), 4.14 (111, dd, 5e'-H), 4.93 (1H, ddd, 4'-H), 4.98 

(1H, dd, 3'-H), 5.26 (1H, t, 2'H), 5.61 (1H, br s, NH); Ax-y)/Hz i'-2' 9.7, 2'-3' 9.4, 

3'-4' 9.9, 4'-5a' 10.3, 4'-5e' 6.2, 5a'-5e' 11.6; öc (63 MHz, CDC13) 20.4 

(3xCOCH3), 40.2 (CH2), 66.5 (C-5'), 68.4, 69.1, 71.7 (C-2',C-3',C-4'), 74.9 (C-l'), 

150.4 (C=N), 164.6 (C=O), 169.7, 169.8, 170.1 (3xCOCH 3); m/z (FAB) 359 (M + 

1) HRMS (FAB) Found M+ 1 359.10950, C 14H 1 8N209 requires M + 1, 359.10906. 

3.4.3.2 	3-(2,3,4-Tri-O-acetyl--D-xyIopyranosyI)-5-(isopropyl)-1 ,2,4- 

oxadiazin-6-one (156) 

Sample code: IAS046B 	
N 

Molecular formula: C18H26N209 
	 Ac2°\J N 

Molecular weight: 414 
	

OAc 	H 

Amidoxime 155 (199 mg, 0.44 mmol) was dissolved in chloroform (15 ml), stirred 

with silica (500 mg) and heated under reflux for 32 hours. On cooling, the product 
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(156) was obtained as a crystalline solid (130 mg, 70%) after dry-flash 

chromatography (silica, hexanefEt 20 gradient elution). 

M.p 182-184 °C; [aID2°  —107 (c = 1.0 ,CHCI3); oH (360 MHz, CDCI3 ) 0.95, 0.99 

(6H, 2d, CH3(iPr)), 1.72-1.81 (2H, m, CH 2(iPr)), 2.04, 2.05 (9H, 3s, 3xCOCH3), 3.41 

(1H, dd, 5a'-H), 3.99-4.03 (2H, m, CH, F-H), 4.21 (1H, dd, 5e'-H), 5.00 (1H, m, 4'-

H), 5.02 (1H, dd, 2'-H), 5.28 (1H, dd, 3'-H); J(x-y)/Hz l'-2' 9.8, 2'-3' 9.5, 3'-4' 9.6, 

4'-5a' 10.8, 4'-5e' 5.6, 5a'-5e' 11.4; E,c (93 MHz, CDC1 3) 21.7, 22.4 (3xCOCH3), 

23.7, 25.2 (CH3('Pr)), 41.9 (CH20r)), 50.0 (C-5), 67.7 (C-5'), 69.6, 70.0, 73.3, 75.8 

(C-l', C-2', C-3', C-4'), 151.0 (C=N), 168.6 (C=O) 170.8, 170.9, 171.0 

(3xCOCH3); in/.z (FAB) 415 (M +1) HRMS (FAB) Found M+1 415.17168, 

C 1 8H27N209  requires M+1 415.17 166. 

3.4.3.3 3-(2,3,4-Tri- O-acetyI--D-xyIopyranosyI)-5-(benzyI)-1 ,2,4-

oxadiazin-6-one (162) 

Sample code: 1AS068 

Molecular formula: C21H24N209 	 Ac °\j N 

Molecular weight: 448 	 OAc 	H 

Amidoxime 161 (115 mg, 0.23 mmol) was allowed to stand in an N.M.R tube for - 6 

months at room temperature, after which time, the solvent was removed in vacuo to 

afford the title compound (162) as a white solid (104 mg, 98%). 

M.p 82-84 °C; [a]020  —24 (c = 5.1 ,CHCI 3); oH  (360 MHz, CDCI3) 2.08, 2.11, 2.14 

(9H, 3s, 3xCOCH3), 3.04 (1H, dd, CH 2a), 3.38 (1H, dd, 5a'-H), 3.45 (1H, dd, CH 2b), 

3.97 (1H, d, 1'-H), 4.12 (1H, dd, 5e'-H), 4.23 (1H, ddd, 5-H), 4.93 (1H, ddd, 4'-H), 

5.03 (1H, dd, 2'-H), 5.08 (1H, d, NH), 5.32 (1H, dd, 3'-H) ; J(x-y)IHz 1'-2' 9.8, 2'-

3' 9.6, 3'-4' 9.6, 4'-5a' 10.8, 4'-5e' 5.7, 5a'-5e' 11.4., CH-NH 1.8; Oc  (93 MHz, 

CDC13) 21.7, 21.8, 22.0 (3xCOCH3), 39.7 (CH2Ph), 52.9 (C-5), 67.2 (C-5'), 67.7, 

69.6, 73.1, 75.8 (C-l', C-2', C-3', C-4'), 128.8, 129.7, 130.3 (PhCH), 136.3 (PhC), 

150.4 (C=N), 167.6 (C=O) 170.9, 171.0, 171.2 (3xCOCH3); m/z (FAB) 449 (M +1) 

HRMS (FAB) Found M+1 449.15613, C2 1 H25N209 requires M+1 449.15601. 
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3.4.3.4 6-S-2-(2,3,4-Tri-O-acetyl-3-D-xyIopyranosyI)-4-oxa-1 ,3-

diazabicyclo[4.3.O]non-2-en-5-one (163) 

Sample code: 1AS053 	
N 

Molecular formula: C17H22N209 	 AC \I 	
H 

NJ 
Molecular weight: 398 	 OAc 

To a cooled (0°C) and stirred mixture of L-proline benzyl ester hydrochloride (326 

mg, 1.4 mmol) and triethylamine (1 ml, 7.2 mmol) in dry chloroform (5 ml), D-

xylose derived hydroximoyl chloride 106 (300 mg, 0.9 mmol) in chloroform (45 ml) 

was added dropwise over 2 hours. On completion of addition, the mixture was 

diluted with DCM (50 ml), washed with 0.1 M HCI (2 x 50 ml) and the organic 

layers dried (MgSO4). The organic layers were concentrated in vacuo and the residue 

subjected to dry-flash chromatography (silica, hexane/Et 20 gradient elution) to 

remove residual amino acid. The amidoxime/oxadiazinone mixture was dissolved in 

chloroform (15 ml), stirred with silica (500 mg) and heated under reflux for 2 hours. 

On cooling, the product (163) was obtained as a white solid (200 mg, 57%) after dry-

flash chromatography (silica, hexanelEt 20 gradient elution). 

M.p 71-73 °C; [(x]02°  —99 (c = 1.0 ,CHCI 3); E, (360 MHz, CDC1 3) 2.03, 2.07 (9H, 

3s, 3xCOCH3), 2.01-2.37 (4H, m, 2xproline CH2), 3.39 (1H, dd, 5a'-H), 3.72-3.80 

(2H, m, proline CH 2), 3.85-3.91 (1H, m, proline CH ), 4.03 (1H, d, 1'-H), 4.18 (1H, 

dd, 5e'-H), 5.02 (1H, ddd, 4'-H), 5.10 (1H, dd, 3'-H), 5.32 (1H, dd, 2'-H); Ax-Y)/Hz 

1'-2' 10.3, 2'-3' 9.6, 3'-4' 9.6, 4'-5a' 10.8, 4'-5e' 5.7, 5a'-5e' 11.3; 8c (93 MHz, 

CDC13) 20.3, 20.4 (3xCOCH 3), 24.1 (CH2), 26.8 (CH2), 47.1 (CH 2), 54.8 (CH), 66.6 

(C-5'), 68.0, 68.6, 72.2, 75.7 (C-l', C-2', C-3', C-4'), 151.8 (C=N), 168.7 (C=O) 

169.5, 169.7, 170.1 (3xCOCH3); m/z (FAB) 399 (M +1) HRMS (FAB) Found M-i-1 

399.14027, C17H23N209 requires M++1 399.14036. 
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3.5 Synthesis of Pyranosylamines 

3.5.11 ,2:3,4-Di-0-isopropylidene-a-D-galactopyranose (174) 

Sample code: 1AS034 

Molecular formula: C 1 2H20 0 

Molecular weight: 260 

X  0 OH 

D-Galactose (20 g, 0.11 mol), anhydrous Cu504 (43.7 g, 0.27 mol) and dry acetone 

(440 ml) were stirred at room temperature under nitrogen. Concentrated H2SO4 ( 

(2.2 ml) was added with vigourous stiring, the resulting mixture was left to stir for 24 

hours. The mixture was filtered, the resultant yellow filtrate was stirred with CaOH 2  

(15 g) for 24 hours. The mixture was filtered and the filtrate was concentrated in 

vacuo to afford an amber coloured oil that contained crude product. The crude 

material was purified by kugelrohr distillation, the product (174) was obtained as a 

colourless glass (17.5 g, 61%) 

[a] 20-56  (c = 3 ,CHC1 3) (lit. 173  [aID2°  -59 (c = 3, CHCI 3)); 8H  (360 MHz, CDCI 3); 

1.32, 1.44, 1.52, (12H, 4s, 4xCH 3), 2.38 (1H, bs, OH), 3.71 (1H, dd, 6a-H) 3.80-3.88 

(2H, m, 6b-H, 5-H), 4.25 (1H, dd, 4-H), 4.31 (1H, dd, 2-H), 4.59 (1H, dd, 3-H), 5.55 

(1H, d, 1-H); Ax-y)/Hz 1-2 5.0, 2-3 2.4, 3-4 7.9, 4-5 1.6, 5-6a 3.4, 5-6b 6a-6b 10.4; 

C (63 MHz, CDC13) 24.2, 24.8, 25.8, 25.9 (4xCH3), 62.2 (C-6), 68.4, 70.7, 70.8, 

71.6 (C-2, C-3, C-4, C-5), 96.2 (C-l), 108.5, 109.3, (2xC); m/z (FAB) 261 (M+l); 

HRMS (FAB) Found: M+1 261.13366. C12H2006 requires M+1 261.13381. 
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3.5.2 6-O-(p-Tolylsulfonyl)-1 ,2 :3,4-di-O-isopropylidene-a-D-

galactopyranose (175) 

Sample code: 1A5030 

Molecular formula: C 1 9H26  08 S 

Molecular weight: 414 
o*. /s 

0 

 

0 0 
0 

1 ,2:3,4-Di-O-isopropylidene-a-D-galactopyranose (174) (5 g, 19 mmol) and p-

toluenesulfonyl chloride (4.2 g, 22 mmol) were dissolved in a 2:1 mixture of 

pyridine:acetonitrile (60 ml) and stirred for 6 hours. The reaction mixture was mixed 

with ether (80 ml), washed 3 times water (70 ml) and once with 0.2 M HC1 (80 ml) 

before drying over MgSO4. The mixture was filtered and concentrated in vacuo to 

yield an oil. The oil was chilled in ice until it became a gum, and was vigourously 

triturated with 9:1 hexane:ethyl acetate (5 ml) to afford the title compound (175) as a 

white solid (5.3 g, 67 %). 

H (250 MHz, CDC1 3); 1.21, 1.24, 1.27, 1.43 (12H, 4s, 4xCH3), 2.37 (1H, s, ArCH3), 

3.94-4.05 (2H, m, 6a-H, 6b-H) 4.10-4.16 (2H, m, 5-H, 4-H), 4.22 (1H, dd, 2-H), 4.52 

(1H, dd, 3-H), 5.38 (1H, d, 1-H), 7.26 (2H, d, ArH) 7.73 (2H, d, ArH) ; Ax-Y)/Hz 1- 

2 4.9, 2-3 2.5, 3-4 7.9, 4-5 nd, 5-6a nd, 5-6b nd, 6a-6b nd; öC (63 MHz, CDC13) 21.5 

(ArMe), 24.2, 24.7, 25.6 (4xCH3), 68.0 (C-6), 65.7, 70.1, 70.2, 70.3 (C-2, C-3, C-4, 

C-5), 96.0 (C-i), 108.8, 109.4, (2xC), 127.9, 129.0, 132.6 (ArCH) 144.6 (ArC); mlz 

(FAB) 412 (M+1); HRMS (FAB) Found: M t-i-i 414.14292. C 1 9H2608S requires 

M+1 414.14267. 
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3.5.3 6-Azido-6-deoxy-1 ,2:3,4-di-O-isopropylidene-a-D-galactopyranose 

(176) 

Sample code: IAS031 	 0 	N3 

Molecular formula: C 1 2H 1 9N3  05 

Molecular weight. 285 	 0 

6-O-(p-tolylsulfonyl)- 1,2:3 ,4-di-O-isopropylidene-a-D-galactopyranose (175) (1 g, 

2.4 mmol) was dissolved in DMSO (10 ml) before adding sodium azide (315 mg, 5 

mmol). The mixture was heated to 115°C under reflux for 24 hours. On cooling, 

water (50 ml) and ether (50 ml) were added and the mixture was allowed to partition. 

The aqueous layer was extracted with ether (2x 50 ml) and the combined organic 

layers dried over MgSO 4 . The solution was filtered and concentrated in vacuo to 

afford the title compound (176) as a colourless oil (663 mg, 96%). 

'O max1cm (Nujol) 2105 (N3); 8H  (250 MHz, CDCI3); 1.27, 1.39, 1.48 (12H, 4s, 

4xCH3), 3.29 (lH, dd, 6a-H), 3.44 (1H, dd, 6b-H) 3.79-3.88 (2H, m, 5-H), 4.13 (1H, 

dd, 4-H), 4.26 (1H, dd, 2-H), 4.56 (1H, dd, 3-H), (1H, d, I-H); Ax-Y)/Hz 1-2 5.0, 2-

3 2.5, 3-4 7.9, 4-5 2.0, 5-6a 5.4, 5-6b 7.8, 6a-6b 12.7; 8C (63 MHz, CDC1 3) 24.2, 

24.7, 25.8, 25.9 (4xCH3), 50.5 (C-6),,66.9, 70.2, 70.6, 71.0 (C-2, C-3, C-4, C-5), 

96.2 (C-i), 108.6, 109.5, (2xC); m/z (FAB) 286 (M+l); HRMS (FAB) Found: M+1 

286. 14094. C 1 2H 1 9N305  requires M+1 286. 14030. 

3.5.4 6-Am ino-6-deoxy-1 ,2:3,4-di-O-isopropylidene-a-D-galactopyranose 

Hydrochloride (177) 

Sample code: 1AS033 

Molecular formula: C12H2 1 N 05  Cl 

Molecular weight: 295.5 

X 0 NH2.HCI 

A 
6-azido-6-deoxy- 1,2:3 ,4-di-O-isopropylidene-cx-D-galactopyranose (176) (660 mg, 2 

mmol) was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and 

stirred vigourously with 10% Pd/C (110 mg) for 16 hours under an atmosphere of 
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hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The Pd catalyst was 

filtered off through a celite pad and the filtrate removed in vacuo to afford the title 

compound (177) as a white solid (611 mg, 89%). 

umax/cm '  (Nujol) 3377 v.broad (NH 2); oH (250 MHz, D20); 1.39, 1.48, 1.56 (12H, 

4s, 4xCH3), 3.14-3.30 (2H, m, 6a-H, 6b-H), 4.08-4.16 (1H, m, 5-H) 4.46 (1H, dd, 4-

H), 4.57 (1H, dd, 2-H), 4.71-4.88 (1H, m, 3-11), 5.70 (1H, d, 1-H); Ax-y)/Hz 1-2 5.0, 

2-3 2.4, 3-4 7.9, 4-5 1.6, 5-6a nd, 5-6b nd, 6a-6b nd; OC (63 MHz, D20) 23.7, 24.3, 

25.3 (4xCH 3), 40.2 (C-6), 64.8, 70.2, 70.6, 71.5 (C-2, C-3, C-4, C-5), 96.3 (C-i), 

110.4, 110.9, (2xC); m/z (FAB) 260 (M+1); HRMS (FAB) Found: MH 260.14998. 

C 1 2H22N05  requires MH 260.14980. 

3.5.5 2,6-Anhydro-3,4,5-tri-O-acetyl--D-xyIopyranosyInitriIe (167) 

Sample code: 1AS043 

Molecular formula: C,2H, 5N 07  

Molecular weight: 285 	 OAc 

3,4,5-Tri-O-acetyl-3-D-xylopyranosylnitromethane (95) (1.5 g, 4.7 mmol) was 

dissolved in pyridine (30 ml) and cooled in an ice bath. PC13 0  ml) was added and 

the mixture stirred for 3 days at room temperature. Ice-cold 1 M HCI (30 ml) was 

added to the solution and the mixture stirred for 1 hour. The solution was extracted 

with chloroform (3 x 50 ml) and the combined organic layers were washed with 

NaHCO3  (2 x 50 ml) and water before drying over MgSO 4. The solvent was co-

evaporated with water (to remove residual pyridine) to afford crude product as a 

gummy solid. The title compound (167) was obtained as a white solid (1.34 g, 75%) 

after dry-flash chromatography. 

M.p 128-130°C (, it.  116 131-132°C); u max/cm' (Nujol) 2257 (CN) 1759 (C=0); 0H 

(250 MHz, CDC1 3); 2.02, 2.04, 2.06 (9H, 3s, 3xCOCH3), 3.54 (1H, dd, 6a-H), 4.17 

(1H, dd, 6b-H), 4.46 (1H, d, 2-H), 4.82-4.89 (1H, m, 5-H), 5.00-5.08 (2H, m, 3-H, 4-

H); J(x-y)/Hz 2-3 6.7, 3-4 nd, 4-5 nd, 5-6a 6.8, 5-6b 4.0, 6a-6b 12.4; Oc  (63 MHz, 

CDC1 3) 20.41, 20.58 (3xCOCH3), 65.1 (C-6), 65.3, 66.7, 67.7, 68.7 (C-3, C-4, C-5, 
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C-2), 114.2 (CN) 168.7, 169.2, 169.3 (3xCOCH 3); mlz (FAB) 286 (M+l); HRMS 

(FAB) Found: M+1 286.09240. C12H1 5N07  requires M+1 286.09268. 

3.5.6 2,3,4,6-Tetra-0-acetyl-1 -deoxy-1 --D-gIucopyranosyInitriIe (189) 

Sample code: 1AS057 	 OAc 

Ac 	 0 
Molecular formula: C 15H, 9N 09 

07  
Molecular weight: 357 	 OAc 

2,3 ,4,6-Tetra-O-acetyl--D-g1ucopyranosy1nitromethane (99) (1.5 g, 4.2 mmol) was 

dissolved in pyridine (30 ml) and cooled in an ice bath. PC1 3  (1 ml) was added and 

the mixture stirred for 3 days at room temperature. Ice-cold 1 M HCI (30 ml) was 

added to the solution and the mixture stirred for 1 hour. The solution was extracted 

with chloroform (3 x 50 ml) and the combined organic layers were washed with 

NaHCO3  (2 x 50 ml) and water before drying over MgSO 4. The solvent was co-

evaporated with water (to remove residual pyridine) to afford crude product as a 

gummy solid. The title compound (189) was obtained as a white solid (1.2 g, 82%) 

after dry-flash chromatography. 

M.p 114°C (lit. 186  114-115°C); u,,,,,,/cm- I max/cm '  (Nujol) 2257 (CN), 1753 (C=0); ö,, (250 

MHz, CDC13); 1.96, 1.97, 2.05 (12H, 4s, 4xCOCH 3), 3.67 (1H, ddd, 6-H), 4.07 (1H, 

dd, 7a-H), 4.17 (1H, dd, 7b-H), 4.29 (lH, dd, 2-H), 5.04 (1H, dd, 3-H), 5.12 (1H, dd, 

5-H), 5.25 (1H, dd, 4-H), 8.78 (1H, bs, OH); J(x-y)fHz 2-3 9.9, 3-4 9.2, 4-5 9.7, 5-6 

9.0, 6-7a 2.2, 6-7b 4.7, 7a-7b 12.7; 8 C  (63 MHz, CDC13) 20.7, 20.8, 21.0 

(4xCOCFI3), 61.7 (C-7), 66.68, 67.5, 69.2, 73.1, 76.9 (C-2, C-3, C-4, C-5, C-6,), 

114.5 (C-l) 169. 1, 169.5, 170.3, 170.8 (4xCOCH 3); ,nlz (ES) 358 (MH) 
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3.5.7 (3,4,5-Tn- O-acetyl--D-xylopyranosyl) methylam me hydrochloride 

(182) 

Sample code: 1AS036
HCI 

Molecular formula: C 12H20N7 07 Cl 	 OAc 

Molecular weight: 325.5 

2,6-Anhydro-3,4,5-tri-O-acetyl-3-D-xylopyranosylnitrile (167) (500 mg, 1.8 mmol) 

was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and stirred 

vigourously with Pl02 (Adams catalyst) (60 mg) for 16 hours under an atmosphere 

of hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The catalyst was 

filtered off through a celite pad and the filtrate removed in vacuo to afford the title 

compound as a white solid (182) (565 mg, 99%). 

Umax/cflTi' (Nujol) 3364 (NH2), 1745 (C=0); Rx1 20  129 (c = 1.5 , D20); M.p 183-

184°C, [ct]0 18  -38 (c = 1.6, D 20); 8H (250 MHz, D20); 2.01, 2.04 (9H, 3s, 

3xCOCH3), 3.02 (1H, dd, la-H), 3.18-3.25 (1H, m, lb-H), 3.45 (1H, dd, 6a-H), 3.79-

3.86 (1H, m, 2-H), 4.13 (1H, dd, 6e-H), 4.90 (1H, dd, 3-H), 4.95-5.06 (1H, m, 5-H), 

5.25 (1H, dd, 4-H); Ax-y)/Hz la-2 8.8, lb-2 nd, la-lb 13.5, 2-3 9.6, 3-4 9.3, 4-5 9. 1, 

5-6a 10.7, 5-6e 5.9, 6a-6e 11.4; 8c (63 MHz, D 20) 20.6 (3xCOCH 3), 40.5 (C- 1), 66.2 

(C-6), 69.3, 70.6, 74.2 (C-2, C-3, C-4, C-5), 173.3, 173.7 (3xCOCH3); m/z (FAB) 

290 (M+1); HRMS (FAB) Found: M+l 290.12351. C 1 2H 1 9N07  requires M+l 

290.12398. 

3.5.8 (3,4,5,7-Tetra- O-acetyl--D-glucopyranosyl) methylamine 

hydrochloride (183) 

Sample code: 1AS058 	 OAc 

Molecular formula: 5H3N 09 	 Ac 	
CH2NH2HCI

CO_ 

Molecular weight: 397.5 	 OAc 
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2,3 ,4,6-Tetra-O-acetyl- I -deoxy- 1 --D-glucopyranosylnitnle (189) (500 mg, 4.2 

mmol) was dissolved in a mixture of ethanol (50 ml) and chloroform (1 ml) and 

stirred vigourously with Pt0 2  (Adam's catalyst) (60 mg) for 16 hours under an 

atmosphere of hydrogen gas (20 bar) in a Parr high pressure hydrogenator. The 

catalyst was filtered off through a celite pad and the filtrate removed in vacuo to 

afford the title compound (183) as a waxy solid (476 mg, 90%). 

D rnax/cm (Nujol) 3367 (NH2), 1742 (C=O); [ct]D' 8  -5.0 (c = 0.2, D20); oH (250 MHz, 

D20); 2.03, 2.07, 2.08 (12H, 4s, 4xCOCH 3), 3.08 (111, dd, la-H), 3.24-3.32 (1H, m, 

lb-H), 3.81-4.03 (IH, dd, 2-H, 6-H), 4.18-4.24 (1H, m, 7a-H), 4.41 (1H, dd, 7b-H), 

4.97 (1H, dd, 3-H), 5.11 (1H, dd, 5-H), 5.36 (1H, dd, 4-H); J(x-y)/Hz la-2 9.1, lb-2 

nd, la-lb 13.5, 2-3 9.1, 3-4 10.1, 4-5 10.2, 5-6 9.2, 6-7a nd, 6-7b 3.6, 7a-7b 12.7; & 

(63 MHz, D20) 20.5 (4xCOCH3), 40.5 (C- 1), 62.4 (C-7), 68.5, 70.4, 73.7, 74.5, 75.3 

(C-2, C-3, C-4, C-5, C-6,), 173. 2, 173.7, 174.1 (4xCOCH 3); m/z (FAB) 362 (M ++ 1) 

HRMS (FAB) Found M+l 362. 14517, C 15H 1 9N09  requires M'1 +l 362.14511. 

3.5.9 (3,4,5-Tn- O-acetyl-f-D-xylopyranosyl) methylhydroxylam me 

hydrochloride (188) 

Sample code: 1AS054 

Molecular formula: C 1 2H 1 9N08 

Molecular weight: 341.5 

Ac 	 0 

NHOH. HCI 
OAc 

Nitromethyl compound 95 (312 mg, 1 mmol) was dissolved in a mixture of THF (75 

ml), conc HCI (3 ml), glacial acetic acid (16 ml) and water (30 ml). The mixture was 

cooled (0° C) and stirred before adding Zn dust (1.57 g, 24 mmol). On completion of 

the reaction (2 hours) the Zn was filtered off through a, celite pad and the filtrate 

diluted with DCM (50 ml). The solution was washed with NaHCO 3  (2x 50 ml) and 

water before drying over MgSO 4  The solvent was removed in vacuo and the title 

compound (188) was afforded as a white solid (565 mg, 98%) on treatment with 1 M 

ethereal HC1. 

M.p 156-157°C, [aID'8  -39 (c = 1, D20); 0H  (250 MHz, D20); 1.90, 1.95 (9H, 3s, 

3xCOCH3), 3.21-3.40 (3H, m, la-H, lb-H, 6a-H), 3.89-3.96 (1H, m, 2-H), 4.02 (1H, 

159 



dd, 6e-H), 4.85 (1H, dd, 3-H), 4.86-4.91 (1H, m, 5-H), 5.15 (111, dd, 4-H); Ax-y)/Hz 

la-2 nd, lb-2 nd, la-lb nd, 2-3 9.1, 3-4 10.2, 4-5 10.1, 5-6a nd, 5-6e 5.6, 6a-6e 11.5; 

öc (63 MHz, D20) 20.6 (3xCOCH3), 51.7 (C- 1), 66.2 (C-6), 69.3, 70.5, 71.5, 74.2 (C-

2, C-3, C-4, C-5), 173. 2, 173.3, 174.7 (3xCOCH3); mlz (FAB) 306 (M+l) HRMS 

(FAB) Found M-i-1 306.11864, C 12H 19N08  requires M+l 306.11889. 
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3.6 Synthesis of amidoxime-linked pseudodisaccharides 

3.6.1 Amidoxime linked pseudo-disaccharides- General procedure 

A solution of the hydroximoyl chloride (1 equivalent) in dry chloroform (40 ml) was 

added dropwise over 2 hours to a cooled (0°C) and stirred solution of the pyranosyl 

amine (1.5 equivalents) and triethylamine (1 ml, 18 equivalents) in dry chloroform (3 

ml) under N2. The mixture was diluted with DCM (50 ml), washed with 0.1 M HCI 

(2 x 50 ml) and the combined organic layers were dried over MgSO 4 . The product 

was isolated by dry-flash chromatography (silica, hexaneLEt 20 gradient elution). 

3.6.1.1 (Z)-N-(6-Deoxy-1 ,2 :3,4-di-O-isopropylidene-a-D-

galactopyranosyl)-(2,3,4-tri-O-acetyl-f-D-xylopyranosyl)formamide 

oxime (178) 

Sample code: IAS041 

Molecular formula: C24H36N20 1 3 

Molecular weight: 560 

N 
A 	 J 

OAc 

To a stirred mixture of D-galactose amine 177 (395 mg, 1.3 mmol) and triethylamine 

(1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride 

106 (150 mg, 0.4 mmol) was added in accordance to the general procedure above. 

Dry-flash chromatography yielded the title compound (178) as a white solid (201 

mg, 8 1%). 

M.p 167-168°C; [a]D20 -74 (c = 1.0 ,CHC1 3); 8H  (360 MHz, CDC13); 1.33, 1.38, 1.49, 

1.53 (12H, 4s, 4xCH 3), 1.97, 2.04, 2.05 (9H, 3s, 3xCOCH3), 3.33 (1H, dd, 5a-H), 

3.34-3.59 (2H, m, 6a'-H, 6b'-H), 3.84-3.89 (111, m, 5'-H), 4.00 (1H, d, 1-H), 4.15 

(1H, dd, Se-H), 4.29-4.34 (2H, m, 4'-H, 2'-H) 4.63 (1H, dd, 3'-H), 5.04 (1H, ddd, 4-

H), 5.20 (1H, dd, 3-H), 5.24 (1H, m, NH), 5.40 (1H, dd, 2-H), 5.53 (1H, d, 1'-H), 

7.76 (1H, bs, OH); J(x-y)/Hz 1-2 10.1, 2-3 9.4, 3-4 9.4, 4-5a 9.0, 4-5e 5.4, 5a-5e 

11.2, 1'-2' 5.0, 2'-3' 2.5, 3'-4' 7.9, 4'-5' nd, 5'-6a' nd, 5'-6b' nd, 6a'-6b' nd; 8C (93 

MHz, CDC13) 20.6 (3xCOCH3), 24.3, 24.8, 25.8, 25.9 (acetal 4xCH3), 42.6 (C-6'), 
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66.7 (C-5), 67.4, 68.6, 68.7, 70.4, 70.6, 70.9, 73.7, 76.2 (C-i, C-2, C-3, C-4, C-2', 

C-3', C-4', C-5'), 96.1 (C- 1'), 108.6, 109.3 (2xC), 149.0 (C=N), 169.3, 169.7, 170.2 

(3xCOCH3); m/z (FAB) 561 (M+1) HRMS (FAB) Found M +1 561.22821, 

C24H36N20 13  requires M +1 561.22919. 

3.6.1.2 (Z)-N-(6-Deoxy-1 ,2 :3,4-di-O-isopropyl idene-a-D-

gaIactopyranosyt)-(2,3,4,6-tetra-O-acetyI-J-D-gI ucopyranosyl)formamide 

oxime (181) 

Sample code: 1AS044 

Molecular formula: C27H40N201 

Molecular weight: 632 

OAc N 

Ac \jCO 
N 

OAc 

To a stirred mixture of D-galactose amine 177 (395 mg, 1.3 mmol) and triethylamine 

(1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived hydroximoyl chloride 

107 (150 mg, 0.36 mmol) was added in accordance to the general procedure above. 

Dry-flash chromatography yielded the title compound (181) as a white solid (173 

mg, 75%). 

M.p 110-ill °C; [(x]"20 -48 (c = 1.0 ,CHCI 3); 6H  (360 MHz, CDC1 3); 1.35, 1.40, 1.47, 

1.49 (12H, 4s, 4xCH3), 1.94, 1.98, 2.01, 2.06 (12H, 4s, 4xCOCH 3), 3.38 (1H, ddd, 

6a'-H), 3.58 (1H, ddd, 6b'-H), 3.68 (1H, dt, 5-H), 3.78-3.82 (IH, m, 5'-H), 4.08 (1H, 

d, 1-H), 4.13-4.18 (2H, m, 6a-H, 6b-H), 4.27 (IH, dd, 2'-H), 4.32 (1H, dd, 4'-H), 

4.61 (1H, dd, 3'-H), 5.11 (1H, dd, 4-H), 5.18 (1H, dd, 3-H), 5.17-5.20 (1H, m, NH), 

5.45 (1H, dd, 2-H), 5.50 (1H, d, i'-H), 7.78 (1H, bs, OH); J(x-y)/Hz 1-2 10.1, 2-3 

9.2, 3-4 9.5, 4-5 9.7, 5-6a nd, 5-6b nd, 6a-6b nd, i'-2' 5.0, 2'-3' 2.7, 3'-4' 8.0, 4'-5' 

1.8, 5'-6a' 6.5, 5'-6b' 6.8, 6a'-6b' 13.2; öc (93 MHz, CDC13) 20.5 (3xCOCH3), 24.2, 

24.7, 25.9 (ãcetal 4xCH3), 42.5 (C-6'), 61.8 (C-6), 67.3, 67.8, 68.3, 70.4, 70.6, 70.8, 

74.2, 75.6, 75.7 (C-I, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 96.2 (C- V), 108.5, 

109.3 (2xC), 148.7 (C=N), 169.3, 170.1, 170.6 (3xCOCH3); mlz (FAB) 633 (M+1) 

HRMS (FAB) Found M +1 633.25026, C27H 40N20 15  requires M +1 633.25069 

162 



3.6.1.3 (Z)-N-(3,4,5-Tri- O-acetyI--D-xyIopyranosyI methyl)-(2,3,4-tri-0-

acetyI--D-xyIopyranosyI)formam ide oxime (184) 

Sample code: 1AS037 	 OH 	
OAc 

Molecular formula: C24H34N70 15 	 OAc 

Molecular weight: 590 

To a stirred mixture of D-xylose derived amine (182) (215 mg, 0.7 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography yielded the title compound 

(184) as a white solid (115 mg, 44%). 

M.p 140-141 °C; 8H  (600 MHz, CD3S(0)CD 3); 1.89, 1.96, 1.97, 1.98, 1.99, 2.04 

(18H, 6s, 6xCOCH 3), 3.03 (1H, ddd, la'-H), 3.44-3.51 (2H, m, lb'-H, 6a'-H), 3.62 

(lB. ddd, 2'-H), 3.94 (IH, dd, Se-H), 3.98 (1H, dd, 6e'-H), 4.27 (1H, d, 1-H) 4.73 

(ill, dd, 3'-H), 4.79-4.85 (2H, m, 4-H, 5'-H), 5.15 (1H, dd, 2-H), 5.22 (1H, dd, 3-H), 

5.23 (1H, dd, 4'-H), 5.26-5.29 (1H, m, NH), 9.97 (1H, bs, OH); Ax-Y)/Hz  2-3 9.9,3- 

4 9.5, 4-5 9.5, 5-6a nd, 5-6e 5.5, 6a-6e 10.9, la'-2' 3.6, lb'-2 2.6, la'-lb' 11.3, 2'-3' 

9.6, 3'-4' 9.6, 4'-5' 9.5, 5'-6a' nd, 5'-6e' 5.6, 6a'-6e' 11,0; 8c  (63 MHz, 

CD3S(0)CD 3) 20.5 (6xCOCH3), 42.4 (C- F), 65.1, 65.2 (C-5, C-6'), 68.2, 68.6, 69.6, 

72.6, 72.9, 74.3, 76.7 (C-i, C-2, C-3, C-4, C-2', C-3', C-4', C-5'), 147.3 (C=N), 168. 

4, 169.4, 169.5 (6xCOCH 3); m/z (FAB) 591 (M+1) HRMS (FAB) Found M +1 

591.20377, C24H34N20 15  requires M +1 59 1.20374. 
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3.6.1.4 (Z)-N-(3,4,5-Tri-O-acetyl--D-xyIopyranosyI methyl)-(2,3,4,6-tetra-

0-acetyI--D-gIucopyranosyI)formamide oxime (185) 

Sample code: 1AS055 	 çOAc N 
	 OAc 

Ac 
Molecular formula: C27H38N7017 	 A77OAc 

Molecular weight: 662 

To a stirred mixture of D-xylose derived amine 182 (200 mg, 0.7 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-glucose derived 

hydroximoyl chloride 107 (150 mg, 0.36 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography yielded the title compound 

(185) as a white solid (100 mg, 40%). 

M.p 141-143°C; [a]D20 -36 (c = 1.0 ,CHCI 3); 6H  (600 MHz, CDC13); 1.93, 1.95, 1.98, 

1.99, 2.00, 2.03, 2.04 (21H, 7s, 7xCOCH3), 3.17 (1H, ddd, la'-H), 3.26 (1H, dd, 6a'-

H), 3.43 (1H, ddd, 2'-H), 3.54 (1H, ddd, lb'-H), 3.64 (1H, ddd, 5-H), 4.03 (1H, d, 1-

H) 4.04-4.07 (IH, m, 6a-H), 4.09 (1H, m, 6e'-H), 4.14 (1H, dd, 6b-H), 4.85 (1H, dd, 

3'-H), 4.89-4.93 (1H, m, 5'-H), 4.95 (1H, dd, 4-H), 5. 14-5.19 (2H, m, 4'-H, 3-H), 

5.25 (1H, dd, 2-H), 5.34 (1H, dd, NH); J(x-y)/Hz 1-2 10.2, 2-3 9.6, 3-4 9.7, 4-5 9.9, 

5-6a 2.2, 5-6b 5.8, 6a-6e 12.4, la'-2' 6.6, lb'-2 2.6, la'-lb' 11. 1, 2'-3' 9.6, 3'-4' 9.6, 

4'-5' 9.9, 5'-6a' 10.9, 5'-6e' 5.8, 6a'-6e' 11,2; 8c (93 MHz, CDCI 3) 20.4, 20.5, 20.6 

(7xCOCH3), 43.2 (C- 1'), 62.2 (C-6), 65.2 (C-6'), 68.0, 68.2, 68.9, 70.0, 73.1, 73.8, 

75.1, 75.9,77.5 (C-i, C-2, C-3, C-4, C-S, C-2', C-3', C-4', C-5'), 147.8 (C=N), 169. 

3, 169.7, 170.1, 170.4 (7xCOCH 3); in/z (FAB) 663 (M+1) HRMS (FAB) Found M 

+1 663.22504, C 27H38N2017  requires M +1663.22487. 
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3.6.1.5 (Z)-N-(3,4,5,7-Tetra- O-acetyI--D-gIucopyranosyI methyl)-(2,3,4-

tri-O-acetyI--D-xyIopyranosyI)formam ide oxime (186) 

Sample code: 1AS059 	 OAc 

Molecular formula: C27H38N2017 	
Acr-\J 

	
OAc 

OAc 	H 	 OAc 

Molecular weight: 662 

To a stirred mixture of D-glucose derived amine 183 (240 mg, 0.6 mmol) and 

triethylamine (1 ml, 7.2 mmol) in dry chloroform (3 ml), D-xylose derived 

hydroximoyl chloride 106 (150 mg, 0.4 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography yielded the title compound 186 

as a white solid (76 mg, 3 1%). 

M.p 193-194°C; 8H  (360 MHz, CD3S(0)CD3); 1.91, 1.97, 1.98, 2.00, 2.01, 2.03, 

2.06 (21H, 7s, 7xCOCH 3), 3.02-3.09 (1H, m, la'-H), 3.45-3.52 (2H, m, lb'-H, 5a-

H), 3.76 (1H, ddd, 2'-H), 3.95-4.08 (3H, m, 6'-H, Se-H, 7a'-H), 4.14 (1H, dd, 7b'-

H), 4.35 (1H, d, i-H) 4.77 (1H, dd, 3'-H), 4.87 (1H, dd, 5'-H), 4.82-4.88 (1H, m, 4-

H), 5.17 (lH, dd, 2-H), 5.23 (1H, dd, 3-H), 5.32 (1H, dd, 4'-H), 5.36 (1H, dd, NH), 

9.79 (1H, bs, OH); J(x-y)IHz 1-2 9.5, 2-3 10.0, 3-4 9.6, 4-5a 10.7, 4-5e nd, 5a-5e 

11.0, la'-2'7.4, lb'-2 2.5, la'-ib' nd, 2'-3' 9.7, 3'-4' 9.5, 4'-5' 9.8, 5'-6' 9.7, 6'-7a' 

nd, 6'-7b' 6.1, 7a'-7b' 12.3; 8c (93 MHz, CD 3S(0)CD3) 21.8 (7xCOCH3), 44.2 (C-

1'), 63.8 (C-6), 67.2 (C-6'), 70.1, 70.2, 70.3, 71.3, 74.9, 75.0, 76.0, 76.4, 77.9 (C- 1, 

C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 149.2 (C=N), 170. 0, 170.7, 170.9, 

171.0, 171.4 (7xCOCH3); m/z (FAB) 663 (M+1) HRMS (FAB) Found M +1 

663.22507, C27H38N2017  requires M +1 663.22487. 
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3.6.1.6 (Z)-N-(3,4,5,7-Tetra-O-acetyI--D-g lucopyranosyl methyl)-(2,3,4,6-

tetra- O-acetyI-3-D-gIucopyranosyt)formam ide oxime (187) 

Sample code: 1AS062 	 OAc N 
	 OAc 

0 
Molecular formula: C30H42N2019 	

Ac2 \j N 

OAc 	H 	 OAc 

Molecular weight: 734 

To a stirred mixture of D-glucose derived amine 183 (240 mg, 0.6 mmol) and 

triethylamine (1 ml, 7.2 mrnol) in dry chloroform (3 ml), D-glucose derived 

hydroximoyl chloride 107 (150 mg, 0.36 mmol) was added in accordance to the 

general procedure above. Dry-flash chromatography yielded the title compound 187 

as a white solid (131 mg, 49%). 

M.p 180-181 °C; [a]D20 -12 (c= 1.0 ,CHCI 3 ); oH (360 MHz, CDCI 3); 1.90, 1.91, 1.93, 

1.94, 1.95, 2.01, 2.02, 2.04 (24H, 8s, 8xCOCH 3), 3.13-3.20 (1H, m, la'-H), 3.47-

3,51 (1H, m, 2'-H), 3.53-3.68 (3H, m, 5-H, 6'-H, lb'-H), 4.01-4.18 (511, m, 1-H, 6a-

H, 6b-H, 7a'-H, 7b'-H), 4.87-4.97 (3H, m, 4-H, 3'-H, 5'-H), 5.09-5.27 (3H, m, 2-H, 

3-H, 4'-H) 5.36 (1H, dd, NH), 8.09 (lH, bs, OH); J(x-y)/Hz 1-2 nd, 2-3 nd, 3-4 nd, 

4-5 nd, 5-6a nd, 5-6b nd, 6a-6e nd, la'-2' nd, lb'-2 nd, la'-lb' nd, 2'-3' nd, 3'-4' nd, 

4'-5' nd, 5'-6' nd, 6'-7a' nd, 6'-7b' nd, 7a'-7b'nd; Oc  (93 MHz, CDC1 3) 21.6, 21.7, 

21.8 (8xCOCH3), 44.1 (C- F), 63.2, 63.4 (C-6, C-7'), 69.3, 69.4, 70.0, 70.7, 74.4, 

74.8, 75.0, 76.2, 76.6, 77.1, 78.3 (C-I, C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', C-

6'), 149.3 (C=N), 170.7, 170.8, 170.9, 171.3, 171.5, 171.6, 171.9 (8xCOCH 3); mlz 

(FAB) 735 (M+1) HRMS (FAB) Found M +1 735.24605, C 30H42N20 19  requires 

M +1 735.24600. 

3.6.2 N-Acetyl(4,5-di- O-acetyI--D-xyIopyranosyI) methylam me (191) 

Sample code: IAS081 	
CH2NHAc 

Molecular formula: C 1 2H 1 9N07 	 OH 

Molecular weight: 289 
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Nitromethyl compound 95 (300 mg, I mmol) was vigourously stirred in methanol (8 

ml) (THF added to improve solubility) with Raney nickel (500 mg) (stored under 

methanol-not water!) under a balloon of hydrogen gas for 16 hours. The mixture was 

filtered through a pad of celite and washed with methanol and DCM, before 

removing the solvent in vacuo to afford the title compound (191) as a colourless oil 

(260 mg, 96%). 

Umax/cm (Nujol) 3364 (OH), 1742 (C=O ester), 1651 (C=O amide), 1550 (NH 

bend); [a]D '8  129 (c = 1.5, CHC13); 8H  (360 MHz, CHCI3); 1.99, 2.03, 2.05 (9H, 3s, 

2xCOCH3 , 1xCONHCH 3), 3.16-3.31 (3H, m, la-H, 2-H, 3-H), 3.22 (1H, dd, 6a-H), 

3.86 (1H, ddd, lb-H), 4.01 (IH, dd, 6e-H), 4.60 (1H, bs, OH), 4.83 (1H, dt, 5-H), 

5.09 (1H, dd, 4-H); J(x-y)fHz la-2 2.9, lb-2 8.2, la-lb 11.0, 2-3 nd, 3-4 9.4, 4-5 

10.7, 5-6a 10.9, 5-6e 5.7, 6a-6e 11.0; öc (63 MHz, CHCI3) 20.6, 20.7 (2xCOCH 3), 

22.6 (1xCONHCH 3) 39.8 (C- 1), 66.2 (C-6), 68.4, 69.3, 74.4, 79.5 (C-3, C-5, C-4, C-

2), 170.1, 170.5 (2xCOCH 3) 172.5 (IxCONHCH 3); m/z (FAB) 290 (M+l) HRMS 

(FAB) Found M+l 290.1235 1, C 12H 19N07  requires M-i-1 290.12398. 

3.6.3 	(Z)-N-(-D-xyIopyranosyImethyI)-(-D-xyIopyranosyI)formamide 

oxime (192) 

Sample code: 1AS086 

Molecular formula: C 1 2H22N209 
	 OH 	

OH 

Molecular weight: 338 
OH 	H 

pseudodisaccharide 184 (110 mg, mmol) and triethylamine (0.05 ml, mmol) were 

stirred in methanol (5 ml) and the mixture heated (65° C), for 16 hours. On cooling, 

the reaction mixture was concentrated in vacuo to yield the title compound (192) as a 

viscous oil (60 mg, 95%). 

c (93 MHz, D20); 44.2 (C- 1'), 70.0 (C-5), 70.1 (C-6'), 70.3, 70.5, 71.7, 72.2, 77.3, 

78.1, 78.4, 80.9 (C-1, C-2, C-3, C-4, C-2', C-3', C-4', C-5'), 153.7 (C=N); m/z (ES) 

340 (MH2). 

167 



3.7 Synthesis of pyranosylbenzazoles 

3.7.1 Benzothiazoles - General procedure 

Pyranosyl hydroximoyl chloride (1 equivalent) and o-aminothiophenol (2.5 

equivalents) were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) 

under an atmosphere of nitrogen for 5 h. The products were usually found to 

crystallize on cooling, although, an alternative work-up could be employed, this 

proceeded as follows: The reaction mixture was diluted with DCM (50 ml) and 

washed with 0.1 M HC1 (50 ml), the aqueous layer was further extracted with DCM 

(2x 50 ml), and the combined organic layers dried (MgSO 4). Removal of the solvent 

in vacuo afforded the crude product which was purified by dry-flash chromatography 

(silica, hexanelEt 20 gradient elution). 

3.7.1.1 2-(2,3,4-Tri-O-acetyl--D-xylopyranosyl)benzothiazole (214) 

Sample code: 1AS024 

Molecular formula: C18H 1 9N07S 
	

Ac2 jj 
Molecular weight: 393 	 OAc 

Xylose derived hydroximoyl chloride 106 (200 mg, 0.6 mmol) and o-amino 

thiophenol (185 mg, 1.5 mmol) were added according to the general procedure 

above. The title compound (214) was obtained as a white solid (220 mg, 90%) after 

dry-flash chromatography. 

M.p 160-161 °C (lit.  115 161-162 °C); MD 20 = -36 (c = 0.6, CHCI 3); 6H (250 MHz, 

CDC13); 1.91, 1.97, 2.00 (9H, 3s, 3xCOCH 3), 3.48 (1H, dd, 5a'-H), 4.28 (1H, dd, 

5e'-H), 4.76 (1H, d, 1'-H), 5.06 (1H, m, 4'-H), 5.19 (1H, dd, 2'-H), 5.34 (1H, dd, 3'-

H), 7.36-7.44 (2H, m, Ar), 7.81-7.96 (2H, m, Ar); J(x-y)/Hz 1-2 9.5, 2-3 9.4, 3-4 9.3, 

4-5a 10.5, 4-5e 5.5, 5a-5e 11.2; 6C (63 MHz, CDCI 3); 20.5 (3xCOCH 3), 66.9 (C-5'), 

68.8, 71.4, 72.8, 77.9 (C- I - , C-2', C-3', C-4'), 121.8, 123.2, 125.4, 126.1 (C-7, C-6, 

C-5, C-4),134.7 (C-7a), 152.5 (C-3a), 166.6 (C-2), 169.3, 169.7, 170.1 (3xCOCH3); 



m/z (FAB) 393 (M +1) HRMS (FAB) Found M+l 393.09568, C 1 8H20N07S 

requires M+l 393.09605. 

3.7.1.2 2-(2,3,4,6-Tetra-O-acetyI-3-D-g Iucopyranosyl)benzothiazole (215) 

Sample code: 1AS027 

Molecular formula: C 21 H23N09S 

Molecular weight: 465 

OAc 

Ac2 JJI 

OAc 

Glucose derived hydroximoyl chloride 107 (200 mg, 0.5 mmol) and o-

aminothiophenol (188 mg, 1.5 mmol) were added according to the general procedure 

above. The title compound (215) was obtained as a white solid (185 mg, 81%) after 

dry-flash chromatography. 

M.p 128-129 °C (lit.' 98  129-130 °C); MD 20 -24 (c = 1, CHCI 3); s,-, (250 MHz, 

CDC13); 1.99, 2.05, 2.10, 2.14 (12H, 4s, 4xCOCH3), 3.99 (1H, m, 5'-H), 4.28 (1H, 

dd, 6b-H), 4.37 (1H, dd, 6a'-H), 4.97 (1H, d, 1'-H), 5.30 (1H, dd, 2'-H), 5.37 (1H, 

dd, 4'-H), 5.47 (1H, dd, 3'-H) 7.39-7.54 (2H, m, Ar), 7.89-8.56 (2H, m, Ar); Ax-

y)/Hz 1-2 9.5, 2-3 9.2, 3-4 9.3, 4-5 9.5, 5-6a 4.7, 5-6b 2.5, 6a-6b 12.4; öc (63 MHz, 

CDC13); 20.2, 20.3, 20.4 (4xCOCH3), 61.7 (C-6'), 67.9, 71.1, 73.3, 76.1, 76.4 (C-l', 

C-2', C-3', C-4'), 121.6, 123.1, 125.3, 125.9 (C-7, C-6, C-5, C-4), 134.6 (C-7a), 

152.4 (C-3a), 166.2 (C-2), 168.9, 169.1, 169.9, 170.3 (4xCOCH3); m/z (FAB) 466 

(M +1) HRMS (FAB) Found M+1 466.11680, C2 1 H24N09S requires M±1 

466.11718. 
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3.7.2 Benzimidazoles-General procedures 

General Procedure A 

Pyranosyl hydroximoyl chloride (1 equivalent) and o-phenylenediamine (2.5 

equivalents) were dissolved in ethanol (10 ml) and the mixture stirred under an 

atmosphere of nitrogen at room temperature for 16 h. The reaction mixture was 

diluted with DCM (50 ml) and washed with 4% CuSO 4  solution (50 ml), the aqueous 

layer was further extracted with DCM (2x 50 ml), and the combined organic layers 

dried (MgSO4). Removal of the solvent in vacuo afforded the crude product which 

was purified by filtration through a silica pad. 

General Procedure B 

Pyranosyl hydroximoyl chloride (1 equivalent) and o-phenylenediamine (2.5 

equivalents) were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) 

under an atmosphere of nitrogen for 5 h. The reaction mixture was diluted with DCM 

(50 ml) and washed with 4% CuSO4  solution (50 ml), the aqueous layer was further 

extracted with DCM (2x 50 ml), and the combined organic layers dried (MgSO 4). 

Removal of the solvent in vacuo afforded the crude product which was purified by 

filtration through a silica pad. 

3.7.2.1 2-(2,3,4-Tri-O-acetyl-f-D-xyIopyranosyl)benzim idazole (217) 

Sample code: 1AS025 

Molecular formula: C 1 8H20N207  
Molecular weight: 376 

AC2 
o / P 

Xylose derived hydroximoyl chloride 106 (200 mg, 0.6 mmol) and o-

phenylenediamine (162 mg, 1.5 mmol) were added according to general procedures 

A or B. The title compound (217) was obtained as a white solid (185 mg, 83%) after 

dry-flash chromatography. 

M.p 152-153 °C; [a] D20 = -78 (c = 1, CHC13); 8H  (250 MHz, CDC1 3); 1.89, 1.98, 2.01 

(9H, 3s, 3xCOCH3), 3.46 (1H, dd, 5a"-H), 4.18 (111, dd, 5e'-H), 4.70 (1H, d, I'-H), 
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5.03 (1H, m, 4'-H), 5.21 (1H, dd, 2'-H), 5.35 (1H, dd, 3'-H), 7.13-7.72 (2H, m, Ar), 

7.50 (2H, bs, Ar); J(x-y)IHz 1-2 9.7, 2-3 9.4, 3-4 9.6, 4-5a 10.4, 4-5e 5.6, 5a-5e 11.3; 

c (63 MHz, CDC13); 20.5, 20.5, 20.6 (3xCOCH3), 67.0 (C-5'), 68.9, 70.6, 72.7, 75.1 

(C-l - , C-2', C-3', C-4'), 122.9 (C-5, C-6), 148.6 (C-2), 169.8, 169.9, 170.0 

(3xCOCH3); mlz (FAB) 377 (M +1) HRMS (FAB) Found M+i 377.13424, 

C 1 8H21N207  requires M+1 377.13488. 

3.7.2.2 2-(2,3,4,6-Tetra-O-acetyI-f-D-gIucopyranosyI)benzimidazoIe (218) 

Sample code: 1AS032 

Molecular formula: C21H24N209 

Molecular weight: 448 

4OAc 

Ac2TTJ N>' CO 

OAc 	H 

Glucose derived hydroximoyl chloride 107 (350 mg, 0.8 mmol) and o-

phenylenediamine (231 mg, 1.9 mmol) were added according to general procedures 

A or B. The title compound (218) was obtained as a white solid (292 mg, 89%) after 

dry-flash chromatography. 

M.p 171-172 °C; [aJ020 = -20 (c = 1, CHC13); oH (250 MHz, CDCI3); 2.14, 2.21, 2.25 

(12H, 4s, 4xCOCH3), 4.12 (1H, m, 5'-H), 4.33 (1H, dd, 6b'-H), 4.51 (111, dd, 6a'-H), 

5.04 (1H, d, 1'-H), 5.36 (1H, dd, 2'-H), 5.50 (1H, dd, 4'-H), 5.61 (iH, dd, 3'-H) 

7.41-7.48 (2H, m, Ar), 7.76 (2H, bs, Ar); J(x-y)fHz 1-2 9.7, 2-3 9.5, 3-4 9.1, 4-5 

10.1, 5-6a 5.2, 5-6b 2.0, 6a-6b 12.5; Oc  (63 MHz, CDC13); 20.9, 21.0, 21.0, 21.1 

(4xCOCH3), 62.5 (C-6'), 66.2, 68.7, 70.9, 73.8, 75.1 (C- 1', C-2', C-3', C-4'), 123.4 

(C-5, C-6), 148.8 (C-2), 170.0, 170.5, 169.9, 171.1 (4xCOCH 3); m/z (FAB) 449 (M 

+1) HRMS (FAB) Found M+1 449.15606, C21 H24N209  requires M+1 449.15601. 
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3.7.2.3 	2-(2,3,4-Tri-O-acetyl--D-xyIopyranosyl)-5-nitro-benzimidazole 

(219) 

Sample code: TA5076 	 NO2 

Molecular formula: C18H19N309 	
N 

Molecular weight: 421  

Xylose derived hydroximoyl chloride 106 (200 mg, 0.6 mmol) and 4-nitro-1,2-

diamino benzene (230 mg, 1.5 mmol) were added according to general procedure B. 

The title compound (219) was obtained in a crude form (reddish solid) which resisted 

attempts at purification by dry and wet-flash chromatography. 

H (250 MHz, DMSO); 2.03, 2.19, 2.22 (9H, 3s, 3xCOCH 3), 3.98 (1H, dd, 5a'-H), 

4.36 (1H, dd, 5e'-H), 5.25 (1H, d, 1'-H), 5.19-5.34 (1H, m, 4'-H), 5.47 (1H, dd, 2'-

H), 5.70 (1H, dd, 3'-H), 7.89 (1H, d, 7-H), 8.28 (1H, dd, 6-H), 8.64 (1H, d, 4-H); 

Ax-y)/Hz 1'-2' 9.7, 2'-3' 9.4, 3"-4' 9.5, 4'-5a' 10.6, 4'-5e' 5.6, 5a'-5e' 11.0, 4-6 1.8, 

6-7 8.8; ,n/z (FAB) 422 (M +1) HRMS (FAB) Found M-i-1 422.11996, C 1 8H 1 9N309 

requires M+1 422.11995. 

3.7.3 Benzoxazoles - General procedures 

General procedure A 

Pyranosyl hydroximoyl chloride (1 equivalent) and o-aminophenol (2.5 equivalents) 

were dissolved in ethanol (10 ml) and the mixture stiffed under an atmosphere of 

nitrogen at room temperature for 16 h. The reaction mixture was diluted with DCM 

(50 ml) and washed with 0.1 M HCl (50 ml), the aqueous layer was further extracted 

with DCM (2x 50 ml), and the combined organic layers dried (MgSO4). Removal of 

the solvent in vacuo afforded the crude product which was purified by filtration 

through a silica pad. 
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General procedure B 

Pyranosyl hydroximoyl chloride (1 equivalent) and o-aminophenol (2.5 equivalents) 

were dissolved in ethanol (10 ml) and the mixture refluxed (80 °C) under an 

atmosphere of nitrogen at for 5 h. The reaction mixture was diluted with DCM (50 

ml) and washed with 0.1 M HCI (50 ml), the aqueous layer was further extracted 

with DCM (2x 50 ml), and the combined organic layers dried (MgSO 4). Removal of 

the solvent in vacuo afforded the crude product which was purified by filtration 

through a silica pad. 

3.7.3.1 2-(2,3,4-Tri-O-acetyl--D-xyIopyranosyI)benzoxazoIe (220) 

Sample code: 1AS026 

Molecular formula: C I  8H I  9N08 	
CO 

Molecular weight: 377 	 OAc 

Xylose derived hydroximoyl chloride 106 (185 mg, 0.6 mmol) and o-aminophenol 

(164 mg, 1.5 mmol) were added according to general procedures A or B. The title 

compound (220) was obtained as a white solid (140 mg, 68%) after dry-flash 

chromatography. 

M.p 155-156 °C; MD 20 = -74 (c = 1, CHC13); 8H  (250 MHz, CDCI3); ); 1.84, 1.97, 

2.00 (9H, 3s, 3xCOCH 3), 3.47 (1H, dd, 5a'-H), 4.26 (1H, dd, 5e'-H), 4.68 (1H, d, I'- 

H), 5.08 (1H, m, 4-H), 5.31 (1H, dd, 2'-H), 5.43 (1H, dd, 3'-H), 7.27-7.32 (2H, m, 

Ar), 7.47-7.51 (1H, m, Ar), 7.64-7.68 (1H, m, Ar); Ax-Y)/Hz  1-2 10.2, 2-3 9.1, 3-4 

9.2, 4-5a 10.3, 4-5e 5.5, 5a-5e 11.3; 8c (63 MHz, CDCI 3); 20.5, 20.6 (3xCOCH3), 

66.9 (C-5'), 68.5, 69.9, 72.6, 73.9 (C-1, C-2', C-3', C-4'), 110.8, 120.4, 124.6, 125.8 

(C-7, C-4, C-6, C-5), 140.2 (C-3a), 150.6 (C-7a), 159.9 (C-2), 169.1, 169.6, 170.1 

(3xCOCH3); inIz (FAB) 378 (M +1) HRMS (FAB) Found M+1 378.11935, 

C18H20N08 requires M+1 378.11889. 
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3.7.3.2 2-(2,3,4,6-Tetra-0-acetyI--D-gIucopyranosyI)benzoxazoIe (221) 

Sample code: 1AS029 

Molecular formula: C2 1 H24N0 10  

Molecular weight: 465 

OAc 

Ac 	 °\ JI 
OAc 

Glucose derived hydroximoyl chloride 107 (200 mg, 0.5 mmol) and o-aminophenol 

(110 mg, 1.0 mmol) were added according to general procedures A or B. The title 

compound (221) was obtained as a white solid (156 mg, 71%) after dry-flash 

chromatography. 

M.p 174-175 °C; [U]D20 = -36 (c = 1, CHC1 3); 6H  (250 MHz, CDC13); 1.81, 1.97, 1.99, 

2.01 (12H, 4s, 4xCOCH 3), 3.86 (1H, m, 5'-H), 4.09 (1H, dd, 6b'-H), 4.25 (1H, dd, 

6a'-H), 4.76 (1H, d, 1'-H), 5.19 (1H, dd, 2'-H), 5.33 (1H, dd, 4'-H), 5.51 (1H, dd, 3'-

H) 7.28-7.33 (2H, m, Ar), 7.49-7.52 (1H, m, Ar), 7.65-7.69 (1H, m, Ar); Ax-Y)/Hz  1-

2 10, 2-3 9.5, 3-4 9.3, 4-5 9.9, 5-6a 4.8, 5-6b 2.2, 6a-6b 12.6; 6C  (63 MHz, CDC13); 

20.7, 20.9, 21.0, 21.1 (4xCOCH3), 62.3 (C-6'), 68.3, 69.5, 70.2, 73.9, 76.9 (C- I', C-

2', C-3', C-4'), 111.5, 120.9, 125.1, 126.4 (C-7, C-4, C-6, C-5), 140.7 (C-3a), 151.2 

(C-7a), 159.9 (C-2), 169.3, 169.7, 170.6, 171.0 (4xCOCH 3); m/z (FAB) 450 (M +1) 

HRMS (FAB) Found M+1 450.14098, C21H2 4N0 10  requires M+1 450. 14002. 

3.7.4 Deprotections 

Procedure A 

The acetylated substrate (1 equivalent) and tnethylamine (1.33 mmol) were stirred in 

methanol (5 ml) at room temperature, under nitrogen for 36h. The reaction mixture 

was concentrated in vacuo to yield the crude product, which were crystallised from 

ice-cold methanol. 

Procedure B 

The acetylated substrate (1 equivalent) and powdered 4A molecular sieves (equal 

mass to that of substrate) were stirred in warm (40 °C) HPLC grade methanol (5 ml) 

for 12-24h. On completion of the reaction, the mixture was filtered through celite and 
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concentrated in vacuo to afford the crude product. The deprotected products were 

crystallised from ice-cold methanol. 

3.7.4.1 2--D-XyIopyranosytbenzoxazoIe (222) 

Sample code: 1AS047 

Molecular formula: C12H13N0 5  
0 	

nQ 
Molecular weight: 251 	 OH 

2-(2,3 ,4-Tri- O-acetyl-43-D-xylopyranosyl)benzoxazole (220) (100 mg, 0.3 mmol) 

was deacetylated according to deprotection A to afford the title compound (222) as a 

white solid (61 mg, 92%). 

M.p 192-194 °C; [a]D20 = -26 (c = 1, MeOH); 8H  (360 MHz, DMSO); 3.22 (1H, dd, 

5a-H), 3.24 (1H, td, 3'-H), 3.39 (1H, d, 4-H), 3.60 (1H, td, 2-H), 3.78 (1H, dd, 5&-

H), 4.32 (1H, d, 1'-H), 5.09 (1H, d, OH), 5.12 (1H, d,OH), 5.29 (1H, d, OH), 7.29-

7.40 (2H, m, Ar), 7.62-7.71 (2H, m, Ar); Ax-y)/Hz 1-2 9.8, 2-3 8.6, 3-4 nd, 4-5a 

10.4, 4-5e 5.2, 5a-5e 10.9; 8c  (93 MHz, DMSO); 69.3 (C-3'), 70.0 (C-5'), 71.9 (C-

2), 75.8 (C-1), 77.5 (C-4'), 110.8, 119.8, 124.4, 125.4 (C-7, C-4, C-6, C-5), 140.1 

(C-7a), 149.9 (C-3a), 162.8 (C-2); m/z (FAB) 252 (M +1) HRMS (FAB) Found 

M+1 252.08679, C 1 2H 14N05  requires M+1 252.08720. 

3.7.4.2 2--D-XyIopyranosyIbenzimidazoIe (223) 

Sample code: 1AS048 

Molecular formula: C12H 14N204  

Molecular weight: 250 	 OH 	H 

2-(2,3 ,4-Tri-O-acetyl-J3-D-xylopyranosyl)benzimjdazole (217) (100 mg, 0.3 mmol) 

was deacetylated according to deprotections A or B to afford the title compound 

(223) as a white solid (62 mg, 93%). 

M.p 232-233 °C; [a] 020 = -17 (c = 1, MeOH); 5H (360 MHz, DMSO) 3.20 (1H, dd, 

5a'-H), 3.25 (1H, dd, 3"-H), 3.42 (1H, ddd, 4'-H), 3.59 (1H, dd, 2-H), 3.81 (1H, dd, 
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5e'-H), 4.25 (lB. d, 1'-H), 5.12 (3H, bs, OH), 7.09-7.13 (2H, m, Ar), 7.45-7.49 (2H, 

m, Ar); J(x-y)/Hz 1-2 9.7, 2-3 8.7, 3-4 9.1, 4-5a 10.7, 4-5e 5.2, 5a-5e 10.9; & (93 

MHz, DMSO); 69.4 (C-3), 70.0 (C-5'), 72.6 (C-2'), 76.8 (C-1), 77.8 (C-4'), 111.2, 

118.6, 121.0, 122.0 (C-4, C-5, C-6, C-7), 134.6 (C-7a), 142.2 (C-3a), 152.2 (C-2); 

m/z (FAB) 251 (M +1) HRMS (FAB) Found M+1 25 1.10372, C12H15N 204  requires 

M+1 251.10318. 

3.7.4.3 2--D-GIucopyranosyIbenzjmjcjazole (224) 

Sample code: 1A5063 	 OH 

Molecular formula: C13H16N 205  

Molecular weight: 280 	 OH 	H 

2-(2,3 ,4,6-Tetra-O-acety1--D-g1ucopyranosy1)benzjmjdazole (218) (150 mg, 0.3 

rnmol) was deacetylated according to deprotection B to afford the title compound 

(224) as a white solid (89 mg, 95%). 

M.p 253-254 °C; [a]20=  21 (c = 1, MeOH); 8H (360 MHz, DMSO) 3.24 (111, dt, 4'-

H), 3.33 (1H, dt, 3'-H), 3.37 (1H, m, 5'-H), 3.49 (1H, dt, 6b'-H), 3.67 (1H, dt, 2'-H), 

3.75 (1H, ddd, 6a'-H), 4.37 (1H, d, 1'-H), 4.58 (1H, t, OH), 5.12 (1H, d, OH), 5.16 

(1H, d, OH), 5.19 (1H, d, OH), 7.12-7.26 (2H, m, Ar), 7.46-7.65 (2H, m, Ar); Ax-
y)/Hz 1-2 9.8, 2-3 9.2, 3-4 9.3, 4-5 9.0, 5-6a 1.4, 5-6b 5.8, 6a-6b 11.9; 8c (93 MHz, 

DMSO); 62.9 (C-6'), 71.6, 74.3, 77.5, 79.3 (C-2', C-3', C-4', C-5'), 83 (C- I'), 112.8, 

120.2, 122.6, 123.7 (C-4, C-5, C-6, C-7), 135.5 (C-7a), 144.0 (C-3a), 154.0 (C-2); 

mlz (FAB) 281 (M +1) HRMS (FAB) Found M-i-1 281.11362, C13H17N20 5  requires 

M-i-1 281.11375. 
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3.8 Synthesis of furanosylbenzazoles 

3.8.1 3,4,5-Tri-O-benzoyI--D-ribofuranosyI cyanide (238) 

Sample code: 1AS077 	 BzO'\.(O7fr 

Molecular formula: C27H2 1 N07  

Molecular weight: 471 	 Bzd 	OBz 

To a stirred solution of tri-O-benzoyI--D-ribofuranosyl acetate 239 (450 mg, 1 

mmol), trimethylsilyl cyanide (0.5 ml, 4 mmol) and dry acetonitnie (15 ml) a few 

drops (0.2 ml) of BF3.Et20 were added. The reaction mixture was stirred under argon 

at room temperature for 10 minutes. The reaction mixture was quenched with 

NaHCO3  (10 ml), the mixture extracted with ether (3 x 30 ml) and the organic layers 

were dried over MgSO4. The solvent was removed in vacuo, the resultant oil was 

purified by wet-flash chromatography (silica, 25% ethyl acetate in hexane) to afford 

the title compound (238) as a white solid (360 mg, 86%). 

M.p 78-80 °C (lit. 225  77-80 °C); [a}020  21 (c = 0.5 ,CHCI3) (lit [cx] 02°  23.9 (c = 0.5 

CHCI 3)); 81, (250 MHz, CDC1 3); 4.51 (1H, dd, 5a-H), 4.61-4.69 (2H, m, 4-H, 5b-H) 

4.91 (1H, d, 1-H), 5.78 (1H, dd, 3-H), 5.93 (1H,dd, 2-H), 7.27-7.53 (9H, m, ArH), 

7.82-8.06 (6H, m, ArH); J(x-y)IHz 1-2 4.3, 2-3 5.0, 3-4 5.4, 4-5a 4.7, 4-5b nd 5a-5b 

13.2; 8C (63 MHz, CDC13) 63.0 (C-S), 69.3, 71.7, 74.3, (C-2, C-3, C-4) 80.7 (C- 1)

115.6 (CN), 128.4, 129.7 (ArCH), 133.3, 133.7, 133.9 (ArC), 164.7, 164.9, 166.0 

(3xCOPh); m/z (ES) 472 (MH). 

3.8.2 1 ,3-DiphenyI-2-(2,3,5-tri-O-benzoyI--D-ribofuranosyI) imidazoline 

(244) 

Sample code: 1AS078 

Molecular formula: C26H30N20 7  

Molecular weight: 482 

Ph 

BzO 0 N 

Ph 

Bzc5 	OBz 
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Raney nickel (2 g) was added to a vigourously stirred solution of pyridine (8 ml), 

glacial acetic acid (6 ml) and water (6 ml). NaH2PO2.H20 0 g) was added, along 

with NN-diphenylethylenediamine (550 mg) and D-ribose derived nitrile 238 (550 

mg, 2.5 mmol). The reaction was stirred for 16 hours. The resultant mixture was 

filtered through a pad of celite and the filter cake was washed thoroughly with DCM. 

The filtrate was washed with water (-200 ml), extracted with DCM (2 x 50 ml) and 

the combined organic layers were dried over MgSO 4 . The solvent was co-evaporated 

with water (to remove residual pyridine) to yield a gum. The gum was dissolved in 

DCM (5 ml), acetic anhydride (4.72 ml) and triethylamine (8.3 ml) and the reaction 

mixture was stirred for 16 hours. The mixture was diluted with DCM (20 ml) and 

stirred with water (20 ml) for 20 minutes before extracting with DCM (2 x 10 ml). 

The combined organic layers were washed with NaHCO 3  (20 ml) and dried over 

MgSO4. Dry-flash chromatography (silica, hexane/Et 20 gradient elution) afforded 

the product (244) as a colourless oil, which solidified on addition of methanol (295 

mg, 59%). 

[aID2°  10 (c = 0.1 ,CHCI 3) (lit. 23 ' [ct]D20  11.2 (c = 0.1 ,CHC1 3)); oH (360 MHz, 

CDCI3); 3.62-3.77 (2H, m, NCH 2), 3.81-3.96 (2H, m, NCH 2), 4.48 (1H, dd, 5a'-H), 

4.57-4.61 (1H, m, 4'-H) 4.66 (1H, dd, 5b'-H), 4.92 (1H, d, 1'-H), 5.61 (1H, dd, 3'-

H), 5.81 (1H, dd, 2'-H), 5.97 (1H, s, 2-H), 6.79-6.97 (4H, m, ArH), 7.26-7.68 (15H, 

m, ArH), 7.82-8.06 (6H, m, ArH); Ax-y)/Hz 1'-2' 5.4, 2'-3' 5.7, 3'-4' 5.8, 4'-5a' 

4.7, 4'-5b' 3.2 5a-5b 11.6; OC (93 MHz, CDC13) 48.0 (NCH2), 48.4 (NCH2), 65.3 (C-

5'), 73.4, 73.8, 74.4, (C-2', C-3', C-4') 80.6 (C- l - ) 84.2 (C-2), 114.2, 114.6, 119. 1, 

128.5, 130.85 (ArCH), 134.1, 134.4, 134.5 (ArC), 166.5, 166.6, 167.2 (3xCOPh); 

m/z (ES) 483 (MH). 

3.8.3 2,5-Anhydro-3,4,6-tri-O-benzoyI--D-aIlose semicarbazone (246) 

Sample code: 1AS084 

Molecular formula: C 28H25N308 

Molecular weight: 531 

0 

	

N 	
NH2 

0 '  
BzO 	 H 

Bzd 	bBz 
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Raney nickel (3.75 g) was added to a vigourously stirred solution of pyridine (10 

ml), glacial acetic acid (9 in]) and water (5 ml). NaH2PO2.H 20 (1.85 g) was added, 

followed by semicarbazide hydrochloride (550 mg) and KOH (285 mg) in water (5 

ml) and D-ribose derived nitrile 238 (1.05 g) in pyridine (5 ml). The reaction was 

heated to 40°C for 4 hours. The resultant mixture was filtered through a pad of celite 

and the filter cake was washed thoroughly with DCM. The filtrate was washed with 

water (-.200 ml), extracted with DCM (2 x 50 ml) and the combined organic layers 

were dried over MgSO4. The solvent was co-evaporated with water (to remove 

residual pyridine) to yield a gum. The mixture was diluted with DCM (50 ml) and 

washed with 1 M HC1 (2 x 30 ml), NaHCO 3  (2 x 30 ml) and dried over MgSO 4 . 

removal of the solvent in vacuo to afford crude semicarbazone (246) as a brown 

foam (-1 g, -.85%). 

oH (250 MHz, CDC13); 4.43 (1H, dd, 5a-H), 4.51-4.64 (2H, m, 4-H, 5b-H) 4.76 (lH, 

d, 1-H), 5.67 (1H, dd, 3-H), 5.87 (1H, dd, 2-H), 7.13 (HC=N(NHCONH 2)), 7.22-7.49 

(9H, m, ArH), 7.82-8.03 (6H, m, ArH), 9.85 (1H, bs, OH); J(x-y)/Hz 1-2 5.7, 2-3 

5.2, 3-4 4.7, 4-5a 3.6, 4-5b nd 5a-5b 11.4; OC (63 MHz, CDCI 3) 63.8 (C-5), 67.7, 

72.6, 72.8, (C-2, C-3, C-4) 79.9 (C-i), 128.2, 128.3, 128.8, 129.2, 129.5 (ArCH), 

133.1, 133.3; 133.6 (ArC), 138.6 (HC=N(NHCONH 2), 157.4 (HC=N(NHCONH 2), 

165.1, 165.2, 166.0 (3xCOPh); m/z (ES) 532 (MH 1 ). 

3.8.4 2,5-Anhydro-3,4,6-tri-O-benzoyI--D-aIlose oxime (243) 

Sample code: IAS080 

Molecular formula: C27H23N08  

Molecular weight: 489 

Procedure A 

,p OH 
N 

0 
BzO 	 H 

Bzd 	bBz 

TsOH (212 mg, mmol) was added to a solution of D-ribose derived imidazoline 244 

in DCM (4.5 ml), and the mixture stiffed at room temperature under nitrogen for 45 

minutes. The resultant mixture was filtered and the filter cake washed with DCM, 
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before concentrating the filtrate in vacuo (the water bath temperature did not exceed 

30°C!). The residue was dissolved in ethanol (2.5 in]) and pyridine (2.25 ml), 

hydroxylamine hydrochloride (160 mg) was added, and the mixture heated to 95°C 

under reflux for 2.5 hours.On cooling, the reaction mixture was diluted with DCM 

(50 ml) and washed with saturated NHCO 3  solution (50 ml), water (50 ml) and 1 M 

HCl (50 ml) and the organic layer dried over MgSO 4 . Dry-flash chromatography 

(silica, hexanefEt 20 gradient elution) afforded the title compound (243) as a 

colourless oil (100 mg, 45%). 

Procedure B 

Hydroxylamine hydrochloride (278 mg) was added to crude semicarbazone 246 

(..500 mg) dissolved in acetonitrile (12.5 ml) and pyridine (4.2 ml), the resulting 

mixture was stirred at room temperature under argon for 16 hours. The mixture was 

diluted with ethyl acetate (30 ml) and washed with 1 M HCl (3 x 30 ml), NaHCO3 

(3x 30 in]) and brine (30 ml), before drying the organic layer over MgSO 4. Wet-flash 

chromatography (silica, 25% ethyl acetate in hexane) afforded the title compound 

(243) as a colourless oil (236 mg, 81 %).  

[cx}02°  14 (c = 0.2 ,MeOH) (lit. 
 142 [(Xm 20  12.9 (c = 0.2, MeOH)); 8H  (360 MHz, 

CDCI 3); 4.61 (1H, dd, 5a-H), 4.66-4.71 (1H, m, 4-H), 4.77 (1H, dd, 5b-H), 4.95 (1H, 

dd, 1-H(E)), 5.53 (1H, dd, 1-H(Z)), 5.75 (1H, dd, 3-H(Z)), 5.80-5.84 (2H, m, 3-H, 2-

H(E)) 5.92 (1H, dd, 2-H(Z)), 6.99 (1H, d, HC=NOH(Z)), 7.31-7.61 (19H, m, 

HC=NOH(E)), ArH), 7.92-8.22 (12H, m, ArH), 8.88 (1H, bs, OH (E)); Ax-y)/Hz 1-

2 5.5, 2-3 nd, 3-4 nd, 4-5a 4.3, 4-5b 3.2 5a-5b 11.7; (Z) J(x-y)/Hz 1-2 4.7, 2-3 5.5, 3-

4 5.2, 4-5a nd, 4-5b nd 5a-5b nd; öC (93 MHz, CDCI 3) 64.9 (C-5(Z)), 65.2 (C-S(E)), 

73.4, 73.6, 74.6, 75.1, 78.5, 79.6, (C-2, C-3, C-4 (E and Z) 80.2 (C-1(Z)), 80.4 (C-

1(E)), 129.5, 129.6, 129.9, 130.1, 130.4, 130.5, 130.8, 130.9, 131.2 (ArCH), 134.4, 

134.6, 134.7 (ArC), 148.8 (C=N), 166.3, 166.4, 166.5, 167.4 (6xCOPh); m/z (ES) 

490 (MW') 



3.8.5 Difuranosyl-(2,3,5-tri- O-benzoyI-f-D-ribofuranosyI)-1 ,2,5-

oxadiazole-2-oxide (248) 

Sample code: 1AS083 

Molecular formula: C54H 42N20 16  

Molecular weight: 974 

N 	N 

BzO O
) "OBz 

BzO 	'OBz BzOQBz 

A stirred mixture of ribose derived oxime 243 (150 mg, 0.3 mmol), N-

chlorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) 

was heated to 40°C under nitrogen for 45 minutes. On cooling, triethylamine (0.3 ml) 

was added and the mixture stirred for 1 hour. The solution was diluted with DCM 

(40 ml), 1 M HC1 (40 ml) and dried over MgSO 4 . Dry-flash chromatography (silica, 

hexane/Et 20 gradient elution) afforded the title compound (248) as a colourless gum 

(107 mg, 72%). 

[a]D2°  -7.4 (c = 5.65 ,CHCI3); 8H  (250 MHz, CDCI 3 ); 4.45-4.63 (6H, m, 5a-H, 5b-H, 

5a'-H, 5b-H, 4-H, 4'-H), 5.37 (2H, d, 1-H), 5.46 (2H, d, 1'-H) 5.73-5.77 (211, m, 3-

H, 3"H), 6.03 (1H, dd, 2-H), 6.15 (111, dd, 2'-H), 7.21-7.45 (18H, m, ArH), 7.81-8.18 

(12H, m, ArH); Ax-y)/Hz 1-2 5.4, 2-3 6.1, 3-4 nd, 4-5a nd, 4-5b nd 5a-5b nd, 1'-2' 

4.7, 2-3 5.3, 3'-4' nd, 4-5a nd, 4'-5b' nd 5a'-5b' nd; 8C (63 MHz, CDC1 3) 63.6 

(C-5), 63.8 (C-5'), 71.9, 72.4, 72.6, 73.9, 74.4, 76.0 (C-2, C-2',C-3, C-3', C-4, C-4') 

80.6 (C-i), 80.3 (C-I') 112.6 (C=N), 128.9, 129.1, 129.2, 129.7, 129.8, 130.0, 130.2 

(ArCH), 133.7, 134.1 (ArC), 155.0 (C=N), 165.6, 165.8, 166.4, 166.6 (6xCOPh); 

HRMS (FAB) Found: M+1 975.26020. C 54H42N20 16  requires M-t-H 975.26126. 
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3.8.6 2-(2,3,5-Tri-O-benzoyI-3-D-ribopyranosyI)benzoxazoIe (241) 

Sample code: 1AS085 

Molecular formula: C33H25N08 

Molecular weight: 563 BzO P 

Bzc3 	OBz 

A stirred mixture of ribose derived oxime 243 (150 mg, 0.3 mmol), N-

chiorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) 

was heated to 40°C under nitrogen for 45 minutes. The solvent was removed in 

vacuo before adding ethanol (10 ml) and o-aminophenol (85 mg, 0.75 mmol) and the 

mixture was heated to reflux for 5 hours. On cooling, the solvent was removed in 

vacuo and DCM added to precipitate out excess o-aminophenol. The solution was 

washed with 1 M HC1 (20 ml) and dried over Mg50 4 . Dry-flash chromatography 

(silica, hexanelEt 20 gradient elution) afforded the title compound (241) as a 

colourless gum (155 mg, 92%). 

[a]D20 -125 (c = 2.9 ,CHC13); 8H  (360 MHz, CDCI3); 4.66 (1H, dd, 5a-H), 4.83-4.92 

(2H, m, 4'-H, 5b-H) 5.62 (1H, d, F-H), 6.11 (1H, dd, 3-H), 6.28 (1H, dd, 2-H), 

7.30-7.41 (10H, m, ArH), 7.53-7.58 (3H, m, ArH), 7.72-7.74 (1H, m, ArH), 7.98-

8.12 (5H, m, ArH); J(x-y)/Hz 1-24.6,2-34.9,3-45.4, 4-5a 3.0, 4-5b nd 5a-5b 11.5; 

C (93 MHz, CDCI3) 61.4 (C-5'), 64.6, 73.6, 75.7, (C-2', C-3', C-4',) 81.6 (C-F) 

112.0 (C-7), 121.7 (C-4), 125.7 (C-6), 126.9 (C-5) 129.4, 129.5, 129.8, 129.9, 130.6, 

130.9 (ArCH), 131.0, 134.2, 134.6 (ArC), 141.7 (C-3a), 152.0 (C-7a), 162.5 (C-2), 

166.2, 166.3, 167.2 (3xCOPh); m/z (FAB) 564 (M+1); HRMS (FAB) Found: M+1 

564.16656 C33H 25N08  requires M+H 564.16584. 

3.8.7 2-(2,3,5-Tri-O-benzoyI--D-ribopyranosyI) benzimidazole (242) 

Sample code: 1AS087 

Molecular formula: C33H26N20 7  

Molecular weight: 562 
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rTQ 
BzO\ç7IN 

Bzd 	OBz 

A stirred mixture of ribose derived oxime 243 (150 mg, 0.3 mmol), N-

chiorosuccinimide (41 mg, 0.3 mmol), pyridine (0.01 ml) and chloroform (2.5 ml) 

was heated to 40°C under nitrogen for 45 minutes. The solvent was removed in 

vacuo before adding ethanol (10 ml) and o-phenylenediamine (85 mg, 0.75 mmol) 

and the mixture was heated to reflux for 5 hours. On cooling, the reaction mixture 

was diluted with DCM (50 ml) and washed with 4% CuSO 4  solution (50 ml), the 

aqueous layer was further extracted with DCM (2x 50 ml), and the combined organic 

layers dried (MgSO4). Dry-flash chromatography (silica, hexaneIEt 20 gradient 

elution) afforded the title compound (242) as a colourless gum (152 mg, 90%). 

[am20 -106 (c = 3.65 ,CHC13); oH (360 MHz, CDCI 3); 4.78-4.88 (3H, dd, 5a'-H, 4'-

H, 5b'-H) 5.72 (1H, d, i'-H), 5.80 (1H, dd, 3'-H), 6.09 (1H, dd, 2'-H), 7.23-7.27 

(2H, m, ArH), 7.33-7.59 (11H, m, ArH), 7.90-7.94 (2H, m, ArH), 8.03-8.08 (4H, m, 

ArH); J(x-y)/Hz 1-2 4.4, 2-3 4.8, 3-4 5.3, 4-5a nd, 4-5b nd 5a-5b nd; OC (93 MHz, 

CDC13) 64.6 (C-5'), 72.6, 76.5, 78.9 (C-2', C-3', C-4',) 80.9 (C-i') 114.2.-118.7 (bs, 

C-4, C-7),123.2 (C-S. C-6) 128.9, 129.0, 129.2, 129.3, 129.6, 130.2 (ArCH), 130.3, 

133.9 (ArC), 151.3 (C-2), 165.7, 167.2 (3xCOPh); m/z (FAB) 563 (M+i); HRMS 

(FAB) Found: M+1 563.18113. C33H26N207requires M+H 563.18183. 

3.8.8 2--D-RibofuranosyIbenzoxazoIe/2-a-D-RibofuranosyIbenzoxazoIe 

(249b1249a) 

Sample code: 1AS094 

Molecular formula: C12H 1 3NO5 

Molecular weight: 251 
CQ 

Ho 	 0 

HO 	OH 
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Ribose derived benzoxazole 241 (169 mg, 0.3 mmol) was stirred in methanol (8 ml) 

at room temperature. Freshly prepared 1 M NaOMe (7 ml) solution was added, and 

the reaction stirred for 16 hours. Amberlite 120(H') resin was added in portions until 

the solution was neutral to pH paper. All solids were filtered off and the filtrate 

concentrated in vacuo to afford a residue. Following wet-flash chromatography 

(silica, 10% methanol in ethyl acetate), the title compounds were obtained as an 

inseperable mixture of anomers (249b f3: 249a a, 62:38) (colourless foam, 65 mg, 

87%). 

oH (360 MHz, D20); 3-anomer éarbohydrate signals, 3.74 (1H, dd, 5a-H), 3.89 (1 H, 

dd, 5b'-H) 4.05-4.09 (1H, m, 4'-H), 4.11-4.16 (1H, m, 3'-H), 4.34 (1H, dd, 2'-H), 

4.47 (1H, d, 1'-H), a-anomer carbohydrate signals, 3.71 (lH, dd, 5a'-H), 3.82 (lH, 

dd, 5b-H) 4.11-4.16 (1H, m, 4'-H), 4.26 (1H, dd, 3-H), 4.53 (1H, dd, 2'-H), 5.08 

(1H, d, 1k-H), aromatic signals, 6.92-6.96 (2H, m, ArH), 7.12-7.14 (lH, m, ArH), 

7.38-7.44 (3H, m, ArH), 7.59-7.67 (2H, m, ArH); -anomer J(x-y)fHz 1'-2' 3.3, 2-

3 4.6, 3'-4' nd, 4-5a 4.1, 4'-5b 2.9 5a'-5b' 12.7; ct-anomer J(x-y)fHz 1'-2' 5.3, 

2-3' 5.2, 3"4' 5.2, 4-5a' 5.3, 4'-5b 3.44 5a'-5b' 12.6; OC (63 MHz, D 20) 60.6, 

61.8 (C-5'a, C-5'), 70.5, 71.5, 74.8, 74.9, 78.0, 83.3, 83.4, 85.1 (C-1'a, C-2a, C-

3'a, C-4'(x, C-1'3, C-2 -  P, C-3', C-4'3), 111.5, 116.6, 119.8, 120.9, 123.4, 125. 5, 

126.5, 128.3 (ArCH), 139.6, 149.3, 150.8 (ArC) 164.1 (C=N); m/z (FAB) 252 

(M+1); HRMS (FAB) Found: M+1 252.08755. C 12H 14N05  requires M+H 

252.08720. 

3.8.9 2--D-RibofuranosyIbenzimidazoIe (250) 

Sample code: 1A5095 

Molecular formula: C 1 2H 14N204  

Molecular weight: 250 HO7P 

HO 	OH 



Ribose derived benzimidazole (242) (90 mg, 0.16 mmol) was stirred in a mixture of 

methanol (5 ml) and triethylamine (0.8 ml, 5.7 mmol) which was heated to 50°C for 

4 days. On cooling, the mixture was purified by wet-flash chromatography (silica, 

10% methanol in ethyl acetate) to afford the title compound (250) as a colourless 

foam (43 mg, 91%). 

H (250 MHz, D20); 3.61 (1H, dd, 5a'-H), 3.76 (1H, dd, 5b'-H) 3.98-4.05 (2H, m, 

3'-H, 4'-H), 4.21 (1H, dd, 2'-H), 4.92 (lH, d, 1'-H), 7.07-7.10 (2H, m, ArH), 7.35-

7.41 (2H, m, ArH); Ax-y)/Hz 1-2 5.3, 2-3 4.4, 3-4 4.7, 4-5a 3.8, 4-5b 2.0 5a-5b 

12.3; öC (63 MHz, D20) 61.7 (C-5'), 71.2, 75.7, 78.9, 84.7 (C-3', C-2', C-l), 115.3 

(broad) (C-4, C-7), 123.2 (C-5, C-6), 152.9 (C-2); mlz (FAB) 251 (M+1); HRMS 

(FAB) Found: M+1251.10318.  C 12H 15N2O4  requires M+H 251.10318. 
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3.9 Synthesis of Pyranosylperimidines 

3.9.1 Synthesis of perimidine precursors 

3.9.1.1 Benzohydroximoyl chloride (255) 

N 

Sample code: IAS017 
- 	CI 

Molecular formula: C 7H6NO3CI 

Molecular weight: 155.5 

Syn-benzaldoxime (5 g, 33 mmol) was dissolved in dry chloroform (60 ml) and 

cooled in a dry-ice/acetone bath. Chlorine gas was passed through the solution until 

the colour changed from blue, through green, to yellow. The solvent was removed in 

vacuo to afford an oil, which gave the title compound (255) as a white solid (4.1 g 

74%) on trituration with pentane.; 49-50 °C (lit.  143 50-51 °C). 

3.9.1.2 2,2-Dimethyl-4-formyl-1 ,3-dioxolane oxime (268) 

Sample code: 1AS072 	
/ 

Molecular formula: C6H, ,NO3  
O, 	 N 

Molecular weight: 145 	
"' 	

IL 
OH 

H 

1,2:5,6-Di-0-isopropylidene-D-mannitol (266) (5.00 g, 20 mmol) in THF (48 ml) 

was added to a stirred solution of water (7 ml), THF (10 ml) and Na10 4  (4.56 g, 21.3 

mmol). The resulting mixture was stirred vigorously for 2 h before adding Et20 (70 

ml) and filtering of the resultant white flocculate. The filtrate was concentrated and 

extracted into DCM (2x 50 ml), dried (MgSO 4) and the solvent removed in vacuo to 

afford crude 2,2-Dimethyl-4-formyl-1,3-dioxolane (267) (ca 4 g). Na2CO3  (3.00 g, 

27.5 mmol) was added in portions to a stirred solution of NH20H.HCI (3.74 g, 54 

mmol) in water (40 ml). aldehyde 267 was added and the mixture stirred for 16 h. 

The reaction mixture was partitioned between water (20 ml) and Et20 (50 ml) and 

aqueous layer was extracted with Et 20 (2 x 50 ml). The combined layers were dried 



(MgSO4) and the solvent removed in vacuo to afford the title compound as an oil 

(3.48 g, 63%) (3:1 mixture of E:Z isomers). 

E-isomer 8H  (250 MHz, CDC1 3); 1.43, 1.48 (6H, s, CH3), 3.91 (1H, dd, 5a-H), 4.20 

(1H, dd, 5b-H), 4.67 (IH, q, 4-H), 7.42 (1H, d, H-i-H), 8.89 (1H, bs, OH); J(x-

y)fHz 1'-4 6.9, 4-5a 6.3, 4-5b 6.5, 5a-5b 8.6; (63 MHz CDCI3); 24.8, 25.8 (CH3), 

66.7 (C-5), 72.5 (C-4), 109.7 (C-2), 149.0 (C-1); Z-isomer 6H  (250 MHz, CDCI 3); 

1.43, 1.48 (6H, s, CH 3), 3.84 (1H, dd, 5a-H), 4.40 (1H, dd, 5b-H), 5.15 (1H, m, 4-H), 

6.99 (1H, d, H-1-H), 9.18 (1H, bs, OH); J(x-y)IHz 1-4 4.1, 4-5a 6.7, 4-5b 7.1, 5a-

5b 8.5; (63 MHz CDCI 3); 24.6, 25.4 (CH3), 67.2 (C-5), 70.0 (C-4), 109.1 (C-2), 

152.1 (C-i); m/z (ES) 146. 

3.9.1.3 2,2-Dimethyl-4-formyl-1 ,3-dioxolane Chloro-oxime (265) 

Sample code: 1AS073 

Molecular formula: C6H 1  1 NO3  

Molecular weight: 179.5 	 ON OH 

C! 

(E,Z) 2,2-Dimethyl-4-formyl-1,3-dioxoiane oxime (268) (1.00 g) was dissolved in 

dry Et20 (60 ml) and cooled to -78°C. Dry C12 gas was bubbled through the stirred 

solution for 20 minutes. The solution initially turned blue and then to emerald green. 

Nitrogen gas was bubbled through the solution and it was allowed to warm to room 

temperature. On warming, the solution became colourless and the solvent was 

removed in vacuo to afford an oily solid. The product was obtained as a grey solid 

(1.20 g, 98%) on trituration with cold pentane. The freshly prepared 2,2-Dimethyl-4-

formyl- 1 ,3-dioxolane Chloro-oxime (265) was taken on to the next step immediately. 

(250 MHz, CDC1 3); 1.68, 1.76 (6H, s, CH3), 4.35-4.50 (2H, m, 5a-H, 5b-H), 5.08 

(1H, dd, 4-H), 8.61 (1H, bs, OH); Ax-y)/Hz 4-5a 6.3, 4-5b 6.5, 5a-5b nd; (63 MHz 

CDCI3); 26.2, 26.7 (CH 3), 67.7 (C-5), 76.9 (C-4), 112.1 (C-2), 140.1 (C-i). 
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3.9.2 Synthesis of perimidines 

General Procedure A 

Hydroximoyl chloride (1 equivalent) and 1 ,8-diaminonapthalene (2.5 equivalents) 

were dissolved in ethanol (10 ml) and the mixture stirred under an atmosphere of 

nitrogen at room temperature for 16 h. The reaction mixture was diluted with DCM 

(50 ml) and firstly shaken with saturated K2CO3 (50 ml), and then with 4% CuSO 4  

solution (50 ml) until a dark precipitate was observed, the combined layers were 

filtered through a pad of celite. The organic layer was separated off, dried (MgSO 4) 

and the solvent removed in vacuo. The product was isolated by dry-flash 

chromatography (silica, hexaneLEt 20 gradient elution). 

General Procedure B 

Hydroximoyl chloride (1 equivalent) and 1 ,8-diaminonapthalene (2.5 equivalents) 

were stirred in refluxing ethanol (10 ml) under an atmosphere of nitrogen for 5 h. On 

cooling, the reaction mixture was diluted with DCM (50 ml) and firstly shaken with 

saturated K2CO3 (50 ml), and then with 4% CuSO4  solution (50 ml) until a dark 

precipitate was observed, the combined layers were filtered through a pad of celite. 

The organic layer was separated off, dried (MgSO 4) and the solvent removed in 

vacuo. The product was isolated by dry-flash chromatography (silica, hexane/Et 20 

gradient elution). 

3.9.2.1 2-(Phenyl)perimidine (256) 

Sample code: 1AS066 

Molecular formula: C17H 1 2N2  

Molecular weight: 244 

Benzohydroximoyl chloride (200 mg, 1.3 rnmol) and 1 ,8-diaminonapthalene (402 

mg, 2.5 mmol) were added according to general procedure B. The title compound 

was obtained as an orange crystalline solid (214 mg, 68%) after dry-flash 

chromatography. 

W. 



M.p 187-188 °C (lit. 238  187-188 °C); 8H  (360 MHz, CDCI3); 6.65 (2H, br s, 9-H, 4-

H), 7.14-7.26 (4H, m, ArH), 7.47-7.55 (3H, m, ArH), 7.85-7.90 (2H, m, ArH); m/z 

(El) 244 (Mt) HRMS (El) Found M 244. 10036, C 17H 12N2  requires M 244.10005. 

3.9.2.2 2-(2,3,4-Tri- O-acetyI--D-xyIopyranosyI)perimidine (259) 

Sample code: 1AS065 

Molecular formula: C22H22N 207  

Molecular weight: 426 

In 
Ac2 

D-Xylose derived hydroximoyl chloride 106 (120 mg, 0.35 mmol) and 1,8-

diaminonapthalene (170 mg, 1 mmol) were added according to general procedure A. 

In order of elution, glycal 258 (trace) was obtained as an orange solid and the title 

compound (259) was obtained as a yellow/green solid (92 mg, 60%) after dry-flash 

chromatography. 

M.p 169-170 °C; [a]D20 = -40 (c = 0.2, CHC13); ö (360 MHz, CD3S(0)CD 3); 1.93, 

2.03, 2.05 (9H, 3s, 3xCOCH 3), 3.67 (1H, dd, 5'a-H), 4.10 (1H, dd, 5'e-H), 4.24 (1 H, 

d, 1'-H), 5.02 (lH, m, 4'-H), 5.24 (1H, dd, 2-H), 5.41 (1H, dd, 3-H), 6.42 (1H, dd, 

9-H), 6.54 (1H, dd, 4-H), 6.99-7.17 (4H, m, H-S. H-6, H-7, H-8), 10.48 (1H, bs, 

NH); J(x-y)IHz 1'-2 9.7, 2'-3' 9.6, 3'-4' 9.5, 4'-5a 10.9, 4'-5'e 5.5, 5'a-5'e 11.0,4-

5 7.5, 4,6 1.1, 9-8 7.2, 9-7 0.9; 6c (93 MHz, CD 3S(0)CD3); 21.8, 21.9, 22.0 

(3xCOCFI3), 66.8 (C-5'), 69.8, 71.2, 73.6, 78.8 (C-2', C-3', C-4, C- 1'), 104.1 (C-9), 

115.0 (C-4), 119.2 (C-7), 121.1 (C-6), 123.6 (C-9b), 129.5 (C-8), 130.3 (C-5), 136.6 

(C-6a), 139.4 (C-9a), 145.8 (C-3a), 154.0 (C-2), 170.7, 171.1, 171.2 (3xCOCH 3); 

m/z (FAB) 427 (M +1) HRMS (FAB) Found M+1 427.15109, C 22H22N207  requires 

M 1 -i-1 427.15053. 
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3.9.2.3 2-(3,4-Di- O-acetyl-2-deoxy-1 ,2-didehydro-D-threo-pento-

pyranosyl)perimidine (258) 

Sample code: 1AS064 

Molecular formula: C20H 1 8N205  

Molecular weight: 366 
	

13 

D-Xylose derived hydroximoyl chloride 106 (150 mg, 0.4 mmol) and 1,8-

diaminonapthalene (170 mg, 1 mmol) were added according to general procedure B. 

In order of elution, the title compound (258) was obtained as an orange solid (70 

mg, 43%) and perimidine 259 (31 mg, 16%) after dry-flash chromatography. 

M.p 148-149 °C; [a]D20 = -113 (c = 0. 15, CHC13); 6H  (360 MHz, CD 3S(0)CD3); 2. 10, 

2.12 (611, 2s, 2xCOCH 3) 4.14 (1H, dd, 5'a-H), 4.48 (1H, dd, 5'b-H), 5.04 (1H, m, 3'-

H), 5.12 (1H, m, 4'-H), 6.02 (1H, d, 2'-H), 6.58 (1H, dd, 9-H), 6.60 (1H, dd, 4-H), 

7.47-7.5 1 (4H, m, H-5, H-6, H-7, H-8), 10.49 (1H, bs, NH); Ax-Y)/Hz  2'-3' 5.13, 3'-

4' nd, 4'-5"a nd, 4'-5'e nd, 5'a-5'e 12.3, 4-5 7.3, 4-6 0.6, 9-8 7.3, 9-7 0.6; öc (93 

MHz, CD3S(0)CD3); 22.2, 22.3 (2xCOCH 3), 64.5, 66.2, 67.6 (C-3', C-5', C-4'), 99.9 

(C-2'), 104.7 (C-9), 115.2 (C-4), 119.5 (C-7), 121.0 (C-6), 123.8 (C-9b), 129.5 (C-8), 

130.4 (C-5), 136.6 (C-6a), 139.2 (C-9a), 145.9 (C-3a), 149.2 (C-l'), 150.1 (C-2), 

170.9, 171.0 (2xCOCH 3); mlz (FAB) 367 (M +1) HRMS (FAB) Found M+1 

367.12985, C20H 1 8N205  requires M ++1 367.12940. 

3.9.2.4 2-(2,3,4,6-Tetra-0-acetyI--D-gIucopyranosyI)perjmjdjne (260) 

Sample code: 1AS069 

Molecular formula: C23H26N209 	 OAc 

Molecular weight: 498 
	

Ac2CO 
	01 

OAc 	H 

D-Glucose derived hydroximoyl chloride 107 (150 mg, 0.4 nmiol) and 1,8- 

diaminonapthalene (170 mg, 1 nimol) were added according to general procedure A. 
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In order of elution, glycal 261 (trace) was obtained as an orange solid and the title 

compound (260) was obtained as a yellow solid (120 mg, 65%) after dry-flash 

chromatography. 

M.p 105-106°C; [a]D20=  -233 (c = 0. 15, CHCI 3 ); 6H  (360 MHz, CD 3 S(0)CD3); 1.9 1, 

1.99, 2.05 (12H, 4s, 4xCOCH 3), 4.08-4.19 (3H, m, 6"a-H, 6'b-H, 5"-H), 4.33 (1H, d, 

1"-H), 5.05 (1H, dd, 2'-H), 5.35 (1H, dd, 4"-H), 5.45 (1H, dd, 3"-H), 6.38 (1H, d, 9-

H), 6.55 (1H, d, 4-H), 6.94-7.21 (4H, m, H-S. H-6, H-7, H-8), 10.44 (1H, bs, NH); 

Ax-y)/Hz 1"-2" 9.7, 2"-3" 8.9, 3"-4' 9.5, 4"-5" 8.6, 5"-6"a nd, 5"-6'b nd, 6"a-6'b nd, 4-

57.2, 9-8 7.3; 8c (93 MHz, CD3S(0)CD 3); 21.8, 21.9, 22.0 (4xCOCH 3), 63.9 (C-6'), 

69.5, 70.9, 74.1, 75.8, 78.2 (C-2", C-3", C-4', C-5", C-I"), 104.0 (C-9), 115.3 (C-4), 

119.3 (C-7), 121.3 (C-6), 123.5(C-9b), 129.5 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.3 

(C-9a), 145.7 (C-3a), 153.8 (C-2), 170.6, 171.0, 171.1, 171.7 (4xCOCH 3); mlz (FAB) 

499 (M +1) HRMS (FAB) Found M+1 499.17171, C2 5H26N209  requires M+1 

499.17166. 

3.9.2.5 	2-(3,4,6-Tri- O-acetyl-2-deoxy-1 ,2-d idehydro-D-arabino-hexo- 

pyranosyl)perimidine (261) (via Glucose derived hydroximoyl chloride) 

Sample code: JAS070 

Molecular formula: C23H22N207  

Molecular weight: 438 

OAc
N' 

CO 

H 

D-Glucose derived hydroximoyl chloride 107 (150 mg, 0.4 mmol) and 1,8-

diaminonapthalene (170 mg, 1 mmol) were added according to general procedure B. 

In order of elution, The title compound (261) was obtained as an orange solid (40 

mg, 16 %) and perimidine 260 was obtained as a yellow solid (100 mg, 34%) after 

dry-flash chromatography. 

M.p 154-155 °C; [a] 020 = 175 (c = 0.2, CHC1 3); 5H  (360 MHz, CD3S(0)CD3); 2.06, 

2.07 (9H, 3s, 3xCOCH 3), 4.24 (1H, dd, 6'a-H), 4.59 (1H, dd, 6"b-H), 4.69 (1H, m, 

5"-H), 5.22 (1H, m, 3'-H), 5.44 (1H, dd, 4'-H), 5.92 (1H, d, 2"-H), 6.56 (1H, d, 9-H), 
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6.58 (1H, d, 4-H), 7.00-7.18 (4H, m, H-5, H-6, H-7, H-8), 10.28 (11-1, bs, NH); Ax -
y)/Hz 2'-3 3.8, 3-4' nd, 4'-5' nd, 5'-6a 3.1, 5-6'b 5.5, 6'a-6'b 12.3, 4-5 7.2, 9-8 

7.3; 6c (93 MHz, CD 3S(0)CD 3); 21.8, 22.1, 22.2 (3xCOCH 3), 61.6 (C-6'), 69.7, 

69.7, 76.1 (C-3, C-4', C-5), 99.9 (C-2'), 104.6 (C-9), 115.3 (C-4), 119.5 (C-7), 

121.1 (C-6), 123.7 (C-9b), 129.5 (C-8), 130.4 (C-5), 136.6 (C-6a), 139.1 (C-9a), 

145.8 (C-3a), 148.1 (C-1), 148.6 (C-2), 170.7, 171.3, 171.6 (3xCOCH 3); m/z (FAB) 

439 (M +1) HRMS (FAB) Found M+l 439.15068, C231-1 22N207  requires M-i-1 

439.15053. 

3.9.2.6 	2-(3,4,6-Tri-O-acetyl-2-deoxy-1 ,2-didehydro-D-arabino-hexo- 

pyranosyl)perim idine (261) (via mannose derived hydroximoyl chloride) 

Sample code: IAS070 

Molecular formula: C23H 22N207 	 OAc 

Molecular weight: 438 
	

AcR 0 j 

H 

D-Mannose derived hydroximoyl chloride 108 (250 mg, 0.6 mmol) and 1,8-

diaminonapthalene (242 mg, 1.5 mmol) were added according to general procedure 

B. In order of elution, The title compound (261) was obtained as an orange solid (90 

mg, 34%) and perimidine 262 was obtained as a yellow solid (12 mg, 4%) after dry-

flash chromatography. 

3.9.2.7 2-(2,3,4,6-Tetra-0-acetyl--D-mannopyranosyI)perimjdjne (262) 

Sample code: IAS090 

Molecular formula: C23H 26N209  

Molecular weight: 498 

OAc 
OAc 

Ac 

H 
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Mannose derived hydroximoyl chloride 108 (250 mg, 0.6 mmol) and 1,8- 

diaminonapthalene (242 mg, 1.5 mmol) were added according to general procedure 

In order of elution, glycal 261 (trace) was obtained as an orange solid and the title 

compound (262) was obtained as a yellow solid (170 mg, 55%) after dry-flash 

chromatography. 

M.p 120-121 °C; [U]D20 = -193 (c = 0.75, CHC1 3); 6H  (360 MHz, CD3S(0)CD 3); 2.00, 

2.04, 2.08 (12H, 4s, 4xCOCH3), 4.09 (1H, m, 5'-H), 4.14 (111, dd, 6'a-H), 4.34 (1H, 

dd, 6b-H), 4.83 (1H, d, F-H), 5.17 (IH, dd, 4'-H), 5.36 (1H, dd, 3'-H), 5.67 (1H, 

dd, 2'-H) 6.50 (1H, d, 9-H), 6.60 (IH, d, 4-H), 7.03-7.19 (4H, m, H-S. H-6, H-7, H-

8), 10.06 (1H, bs, NH); J(x-y)fHz 1'-2 1. 1, 2"-3' 3.4, 3'-4' 10. 1, 4'-5 10.0, 5'-6'a 

2.5, 5"-6'b, 5.7, 6'a-6b 12.2, 4-5 6.8, 9-8 6.4; 8c (93 MHz, CD3S(0)CD 3); 21.8, 

21.9, 22.0, 22.2 (4xCOCH3), 63.1 (C-6'), 68.4, 69.0, 72.3, 75.3, 78.0 (C-2', C-3', C-

4", C-5", C-F'), 104.5 (C-9), 114.8 (C-4), 119.5 (C-7), 120.8 (C-6), 123.4(C-9b), 

129.4 (C-8), 130.3 (C-5), 136.6 (C-6a), 139.0 (C-9a), 145.6 (C-3a), 153.8 (C-2), 

171.2, 171.7 (4xCOCH 3); m/z (FAB) 499 (M' +1) HRMS (FAB) Found Mi-1 

499.17 133, C25H25N209  requires M+1 499.17166. 

3.9.2.8 2-(2,3,4,6-Tetra-0-acetyI--D-gaIactopyranosyI)perjmjdjne (263) 

This experiment was done in collaboration with Mr A. Fromm 

Sample code: AF015 

Molecular formula: C23H26N209 	 OAc OAc 

Molecular weight: 498 	
AcO L 

OAc 	H 

D-Galactose derived hydroximoyl chloride (150 mg, 0.36 mmol) and 1,8- 

diaminonapthalene (145 mg, 0.9 mmol) were added according to general procedure 

The title compound (263) was obtained as a yellow/orange glass (126 mg, 69%) 

after dry-flash chromatography. 
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Yellow/orange glass (%); MD 20 = -120 (c =, CHC1 3); 6H  (360 MHz, CD3S(0)CD3); 

1.95, 1.98, 2.04, 2.21 (12H, 4s, 4xCOCH3), 4.13 (1H, dd, 6'a-H), 4.18 (1H, dd, 6'b-

H), 4.26 (1H, d, l-H), 4.39 (1H, dd, 4'-H), 5.22-5.42 (3H, m, 2'-H, 3-H, 5-H), 

6.55 (2H, d, (9-H, 4-H), 7.04-7.13 (4H, m, 5-H, 6-H, 7-H, 8-H), 10.42 (1H, bs, NH); 

Ax-y)/Hz l-2 8.6, 2'-3' nd, 3'-4 6.3, 4'-5' 6.4, 5'-6a 7.14, 5'-6b, 5.77, 6'a-6'b 

11.53, 4-5 7.3, 9-8 7.3; 6c (93 MHz, CD3S(0)CD 3); 21.8, 21.9, 22.0, 22.2 

(4xCOCH 3), 63.2 (C-6'), 68.4, 69.0, 72.3, 75.3, 78.0 (C-l', C-2, C-3', C-4', C-5), 

104.4 (C-9), 115.0 (C-4), 119.3 (C-7), 121.1 (C-6), 123.6(C-9b), 129.4 (C-8), 130.3 

(C-5), 136.6 (C-6a), 139.3 (C-9a), 145.7 (C-3a), 153.6 (C-2), 170.2, 171.1, 171.5, 

171.6 (4xCOCH3); m/z (FAB) 499 (M +1) HRMS (FAB) Found M+1 499.17217, 

C25H25N209  requires M+1 499.17166. 

3.9.29 2-(2,2-Dimethyl-1 ,3-dioxolan-4-yI)perimidine (264) 

Sample code: 1A5074 

Molecular formula: C 1 6H 1 6N202 	
ON 

Molecular weight: 268 

HN ) 

D-glyceraldehyde derived hydroximoyl chloride 265 (150 mg, 0.8 mmol) and 1,8-

diaminonapthalene (316 mg, 2 mmol) were added according to general perimidine 

procedure B. The title compound (264) was obtained as a yellow/green solid (137 

mg, 61%) after dry-flash chromatography. 

M.p 101-102 °C; MD 20 = 60 (c = 0.2, CHCI 3); 6H  (250 MHz, CD3S(0)CD3); 1.21, 

1.26 (6H, s, CH3), 4.02 (2H, d, 5a-H, 5'b-H), 4.67 (1H, t, 4'-H), 6.37 (2H, d, 9-H, 4-

H), 6.68-7.04 (4H, m, , H-5, H-6, H-7, H-8), 10.13 (1H, bs, NH); J(x-y)/Hz 4'-5'a 

6.4, 4"-5"b 6.4, 5'a-5b 6.4, 4-5 7.2, 9-8 7.2; (63 MHz, CD 3S(0)CD 3); 25.2, 25.6 

(CH3), 66.6 (C-2'), 73.9 (C- 1 - ), 102.7 (C-9), 109.8 (acetal Cq) 113.1 (C-4), 117.6 (C-

7), 119.0 (C-6), 121.8 (C-9b), 127.7 (C-8), 128.5 (C-5), 134.9 (C-6a), 137.5 (C-9a), 

144.3 (C-3a), 155.5 (C-2); m/z (FAB) 268 (M t) HRMS (FAB) Found M 268.12111, 

C 1 6H 1 6N202  requires M 268.12 118. 
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Appendix 1 

(Z)-N-phenyl-(2',3',4'-tri- O-acetyl-3-D-xyIopyranosyI)formamide oxime (141) 

1 
	

-I 



Appendix 1 
able 1. crystal data and structure refinement for CRYSTALS—Cif. 

Contact 	 Stephen Moggach, S.Moggach@ed.aC.uk  

A. CRYSTAL DATA 

Empirical formula 	 C18 H22 N2 08 
LJ.Ø HZZ NZ UO 

Formula weight 394.38 

wavelength 0.71073 A 

Temperature 150 K 

crystal system monoclinic 

Space group P 1 21 1 

Unit cell dimensions a = 9.440(3) A 	alpha = 
b = 8.007(2) A 	beta = 

90 deg. 
103.711(4) deg. 

C = 12.932(4) A 	gamma = 90 deg. 

volume 949.6(5) AA3 

Number of reflections for cell 3805 (4.839 < theta < 56.847 deg.) 

Z 2 

Density (calculated) 1.379 Mg/mA3 

Absorption coefficient 0.110 mmt'-1 

F(000) 416.000 

DATA COLLECTION 

crystal description 	 colourless 	block 

crystal size 	 0.35 x 0.35 x 0.94 mm 

Instrument 	 Bruker smart apex 

Theta range for data collection 	2.221 to 28.510 deg. 

index ranges 	 -11<=h<=12, -10<=k<=10, -17<=l<=14 

Reflections collected 	 5834 

Independent reflections 	 2377 [R(int) = 0.02] 

scan type 	 \f & \w scans 

Absorption correction 	 semi-empirical from equivalents 
(Tmin= 0.819585, Tmax=1.00) 

SOLUTION AND REFINEMENT. 

solution 	 direct methods 

Refinement type 	 Full-matrix least-squares on F 

Program used for refinement 	CRYSTALS 

Hydrogen atom placement 	 geom 

Hydrogen atom treatment 	 mixed 
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Data 

Parameters 

Goodness-of-fit on FA2 

R 

RW 

Final maximum delta/sigma 

weighting scheme 

Largest diff. peak and hole 

2368 

253 

1.0108 

0.0397 

0.1056 

0.008215 

Chebychev Polynomial 

0.48 and -0.27 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for iasO14. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x y z u(eq) 

CM -1256(2) -584(3) -8902(2) 22 
N(1) -2561(2) -801(3) -9443(1) 25 
C(2) -1075(2) -45(3) -7765(2) 22 
N(2) -52(2) -916(3) -9304(1) 28 
C(3) -2315(2) 1071(3) -7595(2) 21 
C(4) -2074(2) 1424(3) -6408(2) 21 
C(S) -1851(2) -187(3) -5765(2) 24 
C(6) -662(3) -1236(3) -6054(2) 32 
0(7) -1044(2) -1553(2) -7171(1) 30 
C(10) 1427(2) -1113(3) -8736(2) 23 
C(11) 2131(2) -2554(3) -8912(2) 28 
0(11) -2543(2) -1481(2) -10455(1) 28 
C(12) 3593(3) -2803(4) -8417(2) 36 
C(13) 4341(3) -1597(4) -7743(2) 37 
C(14) 3645(3) -138(4) -7573(2) 36 
C(15) 2185(2) 126(3) -8087(2) 30 
0(31) -2180(2) 2608(2) -8145(1) 23 
C(32) -3417(2) 3417(3) -8616(2) 26 
0(33) -4598(2) 2896(3) -8594(2) 39 
C(34) -3116(3) 5019(3) -9116(2) 36 
0(41) -3325(2) 2250(2) -6176(1) 25 
C(42) -3235(3) 3934(3) -6041(2) 30 
0(43) -2236(2) 4759(2) -6170(2) 43 
C(44) -4550(4) 4580(4) -5716(3) 51 
0(51) -1413(2) 349(2) -4669(1) 25 
C(52) -1454(2) -798(3) -3912(2) 27 
0(53) -1842(2) -2208(2) -4108(2) 42 
C(54) -945(3) -57(4) -2830(2) 34 

Table 3. 	Bond lengths [A] and angles [deg] for iasO14. 

C(1)-N(2) 1.384(3) 
C(1)-C(2) 1.503(3) 
C(1)-N(1) 1.277(3) 
N(1)-0(11) 1.420(2) 
H(1)-0(11) 0.908 
C(2)-H(21) 1.000 
C(2)-0(7) 1.427(3) 
C(2)-C(3) 1.529(3) 
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Appendix 1 
N(2)-C(10) 1.424(3) 
N(2)-H(2) 0.909 
C(3)-H(31) 1.000 
c(3)-0(31) 1.443(3) 
C(3)-C(4) 1.523(3) 
C(4)-H(41) 0.999 
c(4)-0(41) 1.446(2) 
C(4)-C(5) 1.522(3) 
C(5)-H(51) 1.001 
c(5)-0(51) 1.444(2) 
C(5)-C(6) 1.519(3) 
C(6)-H(62) 0.999 
C(6)-H(61) 1.000 
c(6)-0(7) 1.427(3) 
C(10)-C(15) 1.384(3) 
c(10)-c(11) 1.377(3) 
C(11)-H(111) 1.000 
C(11)-C(12) 1.392(3) 
C(12)-H(121) 0.999 
C(12)-C(13) 1.378(4) 
C(13)-H(131) 1.001 
C(13)-C(14) 1.383(4) 
C(14)-H(141) 1.000 
C(14)-C(15) 1.397(3) 
C(15)-H(151) 1.002 
0(31)-c(32) 1.348(3) 
C(32)-C(34) 1.493(3) 
c(32)-0(33) 1.197(3) 
C(34)-H(343) 1.001 
C(34)-H(342) 0.999 
C(34)-H(341) 0.999 
0(41)-c(42) 1.360(3) 
C(42)-C(44) 1.494(4) 
c(42)-0(43) 1.195(3) 
C(44)-H(443) 1.003 
C(44)-H(442) 1.000 
C(44)-H(441) 0.999 
0(51)-c(52) 1.349(3) 
C(52)-C(54) 1.491(3) 
c(52)-0(53) 1.196(3) 
C(54)-H(543) 1.000 
C(54)-H(542) 1.000 
C(54)-H(541) 0.999 

N(2)-C(1)-C(2) 120.67(18) 
N(2)-C(1)-N(1) 122. 67(19) 
c(2)-c(1)-N(1) 116.54(18) 
0(11)-N(1)--c(1) 109.65(16) 
H(21)-C(2)-0(7) 113.382 
H(21)-C(2)-C(3) 105.594 
0(7)-c(2)-c(3) 109.59(16) 
H(21)-C(2)-C(1) 109.740 
0(7)-c(2)-c(1) 105.45(17) 
C(3)-C(2)-C(l) 113.26(16) 
C(10)-N(2)-H(2) 109.531 
C(10)-N(2)-C(l) 128.28(17) 
H(2)-N(2)-C(1) 112.984 
H(31)-C(3)-0(31) 111.872 
H(31)-C(3)-C(4) 109.090 
0(31)-c(3)-c(4) 109.25(17) 
H(31)-C(3)-C(2) 112.570 
0(31)-c(3)-c(2) 105.49(15) 
C(4)-C(3)-C(2) 108.46(16) 
H(41)-C(4)-0(41) 110.846 
H(41)-C(4)-C(5) 110.790 
0(41)-c(4)-c(5) 106.74(17) 
H(41)-C(4)-c(3) 106.230 
0(41)-c(4)-c(3) 111.08(16) 
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5)-C(4)-c(3) 
151)-c(5)-o(51) 
51)-c(5)-c(6) 
:51)-c5-c(6) 
51)-c(S)-c(4) 
51)-c(5)-c(4) 
6)-c(s) -c(4) 
62)-c(6)-H(61) 
62)-c(6)-0(7) 
61)-c(6)-0(7) 
62)-c(6) -c(s) 
61)-c(6)-c(5) 
7)-c(6)-C(S) 
16)-o(7) -C(2) 
:
15)-C(10)-C(11) 
115)-c(10)-N(2) 
111)-c(10)-N(2) 
11u)-c(11)-c(12) 
111)-C(li)-c(10) 
112)-c(11)-c(10) 
11)-011-N(1) 
121)-C(12)-C(13) 
121)-c(12)-c(11) 
:13) -C(12) -C (11) 
131)-c(13)-c(14) 
131)-C(13)-c(12) 

:
14)-C(13)-C(12) 
141)-C(14)-c(1S) 
141)-C(14)-c(13) 
115)-c(14)-c(13) 
151)-C(15)-C(10) 
151)-C(15)-c(14) 
110)-c(15)-c(14) 
:32)-0(31)-C(3) 
134)-c(32)-0(33) 
:
34)-C(32)-0(31) 
133)-c(32)-0(31) 
1343)-C(34)-H(342) 
1343)-c(34)-H(341) 
342)-c(34)-H(341) 
343)-004)-0O2) 
1342)-C(34)-C(32) 
1341)-C(34)-c(32) 
42)-0(41)-C(4) 
144)-c(42)-o(43) 
44)-c(42)-0(41) 
43)-C(42)-0(41) 
443)-C(44)-H(442) 
443)-C(44)-H(441) 

:
442)-C(44)-H(441) 
M3)-C(44)-C(42) 
442)-C(44)-C(42) 
441)-C(44)-c(42) 
52)-0(51)-C(5) 
154)-c(52)-0(53) 
154)-c(52)-0(51) 
153)-c(52)-0(51) 
1543)-C(54)-H(542) 
1543)-c(54)-H(541) 
1542)-C(54)-H(541) 
1543)-C(54)-c(52) 
1542)-c(54)-c(52) 
1541)-c(54)-c(52) 

Appendix 1 
111.23(18) 
112.114 
106.831 
110.43(17) 
112.324 
104.81(18) 
110.40(18) 
109.542 
109.673 
109.584 
109.660 
109.508 
108.86(17) 
111.25(18) 
120.0(2) 
122.5(2) 
117.4(2) 
119.673 
119.720 
120.6(2) 
102.018 
120.190 
120.199 
119.6(3) 
119.933 
119.963 
120.1(2) 
120.007 
119.761 
120.2(2) 
120.365 
120.241 
119.4(2) 
117.69(16) 
125. 7(2) 
112.01(19) 
122.3(2) 
109.424 
109.459 
109.608 
109.359 
109.523 
109.453 
116.84(18) 
125. 7(3) 
110.4(2) 
123. 9(2) 
109.289 
109.384 
109.599 
109.341 
109.552 
109.665 
117. 30(18) 
126.1(2) 
110.6(2) 
123. 3(2) 
109.439 
109.507 
109.537 
109.401 
109.431 
109.518 

Symmetry transformations used to generate equivalent atoms: 
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Table 4. 	AnisotrOpiC displacement parameters (AA2 x 10A3) for iasO14. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 ull + ... + 2 h k a*  b u12 I 

ull u22 u33 u23 u13 u12 

C(l) 
N(1) 

25(1) 
30(1) 

17(1) 
23(1) 

24(1) 
22(1) 

1(1) 
-1(1) 

4(1) 
4(1) 

2(1) 
-2(1) 

C(2) 
N(2) 

23(1) 
24(1) 

19(1) 
36(1) 

22(1) 
21(1) 

1(1) 
-6(1) 

2(1) 
2(1) 

3(1) 
2(1) 

 
 

21(1) 
20(1) 

17(1) 
18(1) 

23(1) 
24(1) 

2(1) 
0(1) 

3(1) 
3(1) 

1(1) 
1(1) 

C(S) 
C(6) 

30(1) 
43(1) 

21(1) 
29(1) 

18(1) 
22(1) 

1(1) 
3(1) 

1(1) 
3(1) 

0(1) 
16(1) 

0(7) 
 

47(1) 
24(1) 

20(1) 
24(1) 

22(1) 
22(1) 

3(1) 
3(1) 

4(1) 
7(1) 

10(1) 
-1(1) 

 
0(11) 

27(1) 
29(1) 

26(1) 
30(1) 

32(1) 
23(1) 

-5(1) 
-6(1) 

8(1) 
1(1) 

-2(1) 
-3(1) 

c(12) 
 

27(1) 
23(1) 

29(1) 
39(2) 

50(1) 
47(1) 

-1(1) 
1(1) 

7(1) 
2(1) 

2(1) 
-4(1) 

 
c(15) 

31(1) 
31(1) 

38(1) 
26(1) 

38(1) 
34(1) 

-7(1) 
-5(1) 

6(1) 
11(1) 

-11(1) 
-4(1) 

0(31) 
C(32) 

26(1) 
31(1) 

18(1) 
24(1) 

25(1) 
23(1) 

4(1) 
3(1) 

5(1) 
5(1) 

1(1) 
8(1) 

0(33) 
C(34) 

27(1) 
47(1) 

43(1) 
25(1) 

46(1) 
36(1) 

19(1) 
9(1) 

4(1) 
13(1) 

10(1) 
10(1) 

0(41) 
c(42) 

24(1) 
38(1) 

22(1) 
23(1) 

28(1) 
27(1) 

0(1) 
1(1) 

6(1) 
6(1) 

3(1) 
6(1) 

0(43) 
C(44) 

57(1) 
56(2) 

23(1) 
43(2) 

54(1) 
60(2) 

-6(1) 
-2(2) 

22(1) 
26(1) 

-4(1) 
20(2) 

0(51) 
C(52) 

32(1) 
28(1) 

21(1) 
27(1) 

21(1) 
25(1) 

-1(1) 
2(1) 6(1) 

3(1)  
2(1) 

0(53) 
C(54) 

67(1) 
46(1) 

25(1) 
35(1) 

32(1) 
22(1) 

3(1) 
-1(1) 

11(1) 
9(1) 

-7(1) 
-3(1) 

Table 5. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (M2 x 10A3) for iasO14. 

x y z u(eq) 

 -3507 -1650 -10745 50 

 -250 -1629 -9868 50 

H(21) -168 638 -7536 26 

H(31) -3296 546 -7858 25 

H(41) -1190 2149 -6213 25 

H(51) -2751 -893 -5902 28 

 285 -617 -5863 37 

 -564 -2317 -5657 37 

H(111) 1587 -3429 -9400 34 

H(121) 4098 -3851 -8548 43 

H(131) 5388 -1777 -7376 44 

H(141) 4192 732 -7081 43 

H(151) 1693 1201 -7987 37 

H(341) -4058 5577 -9454 44 

 -2560 4784 -9668 44 

 -2526 5767 -8556 44 

 -4471 5816 -5619 64 

 -5445 4305 -6279 64 

 -4616 4042 -5029 64 

H(541) -983 -922 -2280 41 
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-1591 	 902 	 -2751 

80 	 349 	 -2734 
41 
41 
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3-(2',3',4'-Tri- O-acetyI--D-xyIopyranosyI)-1 ,2,4-oxadiazin-6-one (152) 

F
0061) 

I 
141) 	 I 	-' 

0(181) 	I 	I 	N(41) 

quNP, 	

12.2L  &241)M21) 	1) 	O(71 

woop 
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able 1. crystal data and structure refinement for ias02O. 

Contact 	 Simon Parsons, s.parsons@ed.ac.uk  

A. CRYSTAL DATA 

Empirical formula 

Formula weight 

wavelength 

Temperature 

crystal system 

Space group 

Unit cell dimensions 

vol ume 

Number of reflections for cell 

Density (calculated) 

Absorption coefficient 

F(000) 

C14 H18 N2 09 
C14 H18 N2 09 

358.30 

0.71073 A 

150 K 

Monoclinic 

P 1 21 1 

a = 5.3400(6) A alpha = 90 deg. 
b = 17.884(2) A 	beta = 92.321(6) deg. 
c = 18.154(2) A gamma = 90 deg. 

1732.3(3) AA3 

1007 (3 < theta < 28 deg.) 

4 

1.374 Mg/mA3 

0.116 mmA-1 

752 

B. DATA COLLECTION 

crystal description 

crystal size 

Instrument 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Scan type 

Absorption correction  

colourless block 

0.37 x 0.18 x 0.16 mm 

Bruker SMART 

1.123 to 28.543 deg. 

-7<=h<=7, -23<=k<=23, -23<=l<=23 

15939 

2255 [R(int) = 0.0311 

\w 

Sadabs 
(Tmin= 0.622, Tmax=1.000) 

C. SOLUTION AND REFINEMENT. 

Solution 

Refinement type 

Program used for refinement 

Hydrogen atom placement 

direct (S1R92 (Altomare et al, 1994)) 

Full-matrix least-squares on FA2 

SHELXL -97 

geom 
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Appendix 2 
Hydrogen atom treatment 	 mixed 

Data I restraints / parameters 	3118/477/451 

Goodness-of-fit on FA2 

Conventional R [F>4sigma(F)] 

weighted R (FA2 and all data) 

Final maximum delta/sigma 

weighting scheme 

Largest diff. peak and hole 

0.9748 

Ri = 0.0835 [2673 data] 

wR2 = 0.1936 

0.009153 

shel drick weights. 

0.54 and -0.45 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for ias020. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x 
	

y 
	 z 	 u(eq) 

45 
32 
24 
28 
34 
33 
46 
27 
32 
31 
31 
28 
29 
37 
34 
44 
52 
36 
45 
73 
61 
33 
35 
43 
46 
37 
32 
23 
24 
30 
29 
41 
26 
26 
30 
27 
26 
24 
30 
28 
34 
43 

0(11) 
N(21) 
c(31) 
N(41) 
c(51) 
c(61) 
0(71) 
C(81) 
0(91) 
C(10i 
C(ii1 
C(121 
C(131 
0(14] 
M51 
0(16] 
C(173 
0(18] 
C(193 
0(20] 
U211 

C(m) 
o(241) 
C(251) 
0(12) 
N(22) 
c(32) 
N(42) 
C(52) 
C(62) 
0(72) 
C(82) 
0(92) 
C(102) 
c(112) 
C(122) 
C(132) 
0(142) 
C(152) 
0(162) 
C(172) 

407(7) 
312(7) 

-1946(7) 
-4063(7) 
-4054(8) 
-1578(7) 
-1271(9) 
-2104(9) 
-4157(9) 
-4433(15 
-5069(14: 
-3030(14: 
-2594(14' 
-5177(10: 
-7308(16 
-9065(10: 
-7240(20 
-3787(1d 
-2399(19 
-444(16 
-3470(20 
-464(10 
-556(15 
-2275(11 
1754(17 
2125 (6) 
1733(7) 
-618(7) 
-2571(7) 
-2277(8) 

272(7) 
744(8) 

-1078(9) 
-3181(9) 
-3789(14 
-4545(13 
-2478(14 
-1753(13 
-4923 (10 
-7126(14 
-8609(10 
-7470(1  

1061(32 
753(3' 
635(3'. 
792 (3'. 

1369(3: 
1400(4: 
1711(4: 
299(4: 

-205(3: 
-571(4: 

5(4 
580(4 
918(4 

-355(3 
-711(5 
-756(4 

-1024(6 
1170(3 
1296(5 
988(5 

1910(6 
1401(3 
2052 (4 
2220(3 
2 506(5 

-1098(3 
-825(3 
-720(3 
-888(3 

-1431(3 
-1385(4 
-1592(3 
-401(4 

78(3 
449(4 
-132(4 
-703(4 

-1028(4 
194(3 
552(4 
676(3 
773(5 
Page 

-2586(2) 
-1842(3) 
-1642(2) 
-2008(3) 
-2571(3) 
-2929(3) 
-3498(3) 
-878(2) 
-901(3 
-217(4 
370(42 
442(4, 

-307(4; 
1088 (32 
1225 (4 
786(4 

1980(5: 
924(3:  

1544(5 
1691(4: 
:1974(5: 
-234  (32 
-621(5: 

-1035(4 
-472(6: 

-2095(2 1  
-2855 (2: 
-3038(22 
-2659(2' 
-2071(3: 
-1710(22 
-1091(3 1  

-3803(2 
-3777(2 
-4460(4 
- 5041(4 
-5113(4 
-4358(4 
-5754(.3 
-5876(4 
-5406(3 
-6657(4 



Appendix 2 

0(182) 
c(192) 

-3366(10) 
-2179(18) 

-1311(3) 
-1402(5) 

-5565(3) 
-6207(4) 

32 
40 

0(202) 
c(212) 

-527(15) 
-3280(20) 

-1023(4) 
-2051(6) 

-6407(4) 
-6622(6) 

69 
54 

0(222) 
c(232) 

376(9) 
389(14) 

-1509(3) 
-2180(4) 

-4462(3) 
-4110(5) 

30 
32 

0(242) 
c(252) 

-1088(12) 
2570(18) 

-2348(3) 
-2640(5) 

-3668(3) 
-4326(6) 

43 
50 

Table 3. Bond lengths [A] and angles [deg] for ias020. 

1.462(5) 
1.351(5) 
1.291(5) 
1.318(5) 
1.517(6) 
1453(5) 
0.911 
1.497(5) 
0.991 
0.972 
1.191(6) 
1.419(6) 
1.548(9) 
0.976 
1.416(9) 
1.530(11) 
0.980 
0.983 
1.500(10) 
1.456(9) 
0.981 
1.514(11) 
1.438(9) 
0.983 
1.429(9) 
0.983 
1.337(10) 
1.208(10) 
1.480(12) 
0.980 
0.978 
0.976 
1.342(10) 
1.202(12) 
1.476(13) 
0.969 
0.984 
0.980 
1.360(10) 
1.202(10) 
1.492(12) 
0.970 
0.974 
0.992 
1.469(5) 
1.337(5) 
1.299(5) 
1.308(5) 
1.513(5) 
1.447(5) 
0.909 
1.489(5) 
0.970 
0.993 
1.200(5) 
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82)-o(92) 
82)-c(132) 
82)-H(821) 
92)-C(102) 
102)-C(112) 
102) -H(1021) 
102) -H(1022) 
112)-C(122) 
112) -0(142) 
112) -H(1121) 
122)-C(132) 
122) -0(182) 
122) -H(1221) 
132) -0(222) 
132) -H(1321) 
142)-C(152) 
152) -0(162) 
152)-C(172) 
172) -H(1721) 
172) -H(1722) 
172) -H(1723) 
182)-C(192) 
192) -0(202) 
192) -c(212) 
212) -H(2121) 
212) -H(2122) 
212)-H(2123) 
222)-c(232) 
232)-0(242) 
:232)-c(252) 
:
252)-H(2521) 

:
252)-H(2522) 
.252)-H(2523) 

21)-0(11)-C(61) 
11)-N(21)-C(31) 
21) -c(31)-N(41) 
21) -c(31) -c(81) 
41)-C(31)-C(81) 
31)-N(41)-C(51) 
31) -N(41) -H(41) 
51) -N(41) -H(41) 
41) -c(51) -c(61) 
41)-C(51)-H(511) 
61)-C(51)-H(511) 
41)-C(51)-H(512) 
61)-c(51)-H(512) 
511)-c(51)-H(512) 
51) -c(61) -0(11) 
51) -c(61) -0(71) 
11) -c(61) -0(71) 
31) -c(81) -0(91) 
31)-C(81)-C(131) 
91) -c(81) -c(131) 
31)-c(81)-H(811) 
91) -c(81) -H (811) 
131) -c(81) -H(811) 
81) -0(91) -c(101) 
91) -c(101) -c(111) 
91)-C(101)-H(1011) 
111) -c(101) -H(1011) 
91)-C(101)-H(1012) 
111) -c(101) -H(1012) 
1011)-C(101)-H(1012) 
101)-C(111)-C(121) 
101)-C(111)-0(141) 
121) -c(111) -0(141) 
101)-C(111)-H(1111) 

Appendix 2 
1.415(6) 
1.540(9) 
0.978 
1.432(9) 
1.524(10) 
0.975 
0.983 
1.514(10) 
1.426(9) 
0.983 
1.523(10) 
1.432(9) 
0.980 
1.445(8) 
0.982 
1.350(9) 
1.207(9) 
1.478(11) 
0.982 
0.983 
0.976 
1.359(9) 
1.181(11) 
1.493(13) 
0.980 
0.979 
0.980 
1.359(10) 
1.186(10) 
1.492(12) 
0.971 
0.973 
0.985 

56(9) 
112.91(9) 
128. 01(7) 
114.13(7) 
117.82(8) 
118.61(9) 
119.715 
121.641 
111.05(9) 
109.014 
107.761 
110.467 
109.273 
109.221 
118. 35(7) 

23(8) 
118.41(7) 
107.26(9) 
110.3(5) 
108.8(5) 
110.767 
110.033 
109.623 
112.1(4) 
109.5(6) 
110.031 
109.234 
109.883 
109.017 
109.172 
110. 0(6) 
110.1(6) 
106.3(6) 
110.031 
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121)-C(111)-H(1111) 
141)-c (111)-H (1111) 
111) -c(121) -c(131) 
111)-c(121) -0(181) 
131)-C(121)-0(181) 
111)-c (121) -H (1211) 
131)-C(121)-H(1211) 
181)-C(121)-H(1211) 
81)-C(131)-C(121) 
81)-C(131)-0(221) 
121)-c(131)-0(221) 
81)-c(131)--H(1311) 
121)-C(131)-H(1311) 
221)-C(131)-H(1311) 
111) -0(141) -c(151) 
141)-C(151)-0(161) 
141)-C(151)-C(171) 
161)-C(151)-C(171) 
151)-C(171)-H(1711) 
151)-C(171)-H(1712) 
1711)-C(171)-H(1712) 
151)-c(171)-H(1713) 
1711)-C(171)-H(1713) 
1712)-C(171)-H(1713) 
121)-0(181)-C(191) 
181)-c(191)-o(201) 
181)-C(191)-C(211) 
201)-C(191)-C(211) 
191)-C(211)-H(2111) 
191)-C(211)-H(2112) 
2111)-C(211)-H(2112) 
191)-C(211)-H(2113) 
2111)-c(211)-H(2113) 
2112)-c(211)-H(2113) 
131)-0(221)-C(231) 
221)-C(231)-0(241) 
221)-c(231)-c(251) 
241)-C(231)-C(251) 
231)-C(251)-H(2511) 
231)-C(251)-H(2512) 
2511)-c(251)-H(2512) 
231)-C(251)-H(2513) 
2511)-c(251)-H(2513) 
2512)-c(251)-H(2513) 
22)-0(12)-c(62) 
12)-N(22)-c(32) 
22)-C(32)-N(42) 
22)-C(32)-C(82) 
42)-C(32)-C(82) 
32)-N(42)-c(52) 
32)-N(42)-H(42) 
52)-N(42)-H(42) 
42)-C(52)-C(62) 
42)-c(52)-H(521) 
62)-C(52) -H(521) 
42)-C(52)-H(522) 
62)-C(52)-H(522) 
521)-C(52)-H(522) 
52)-C(62)-0(12) 
52)-c(62)-0(72) 
12)-C(62)-0(72) 
32)-C(82)-0(92) 
32)-c(82)-c(132) 
92)-C(82)-C(132) 
32)-c(82)-H(821) 
92)-c(82)-H(821) 
132)-C(82)-H(821) 
82)-0(92)-c(102) 

Appendix 2 
110.139 
110.242 
109.5(6) 
109.6(6) 
108.1(6) 
109.955 
109.597 
110.107 
110.6(6) 
109.8(6) 
108.0(6) 
109.724 
109.047 
109.651 
116.2(6) 
123. 6(8) 
111.3(7) 
125. 1(8) 
109.223 
108.953 
109.612 
109.263 
109.821 
109.950 
118. 3(7) 
123. 7(8) 
110.9(9) 
125.2(9) 
109.549 
108.645 
110.064 
108.947 
110.434 
109.167 
117.2(6) 
123.3(7) 
111. 1(7) 
125. 6(8) 
109.961 
109.319 
110.861 
108.306 
109.327 
109.019 
122.53(9) 
112.83(9) 
127. 94(7) 
114.15(7) 
117.81(8) 
118.53(9) 
120.049 
121.386 
110.95(9) 
110.908 
109.161 
109.286 
107.295 
109.156 
118.29(7) 
123.28(8) 
118.43(7) 
107.23(9) 
110.6(5) 
107. 3(5) 
111.046 
110.252 
110.297 
113. 8(4) 
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Appendix 2 
0(92)-c(102)-c(112) 109.1(6) 
0(92)-c(102)-H(1021) 109.835 
c(112)-c(102)-H(1021) 109.603 
0(92)-c(102)-H(1022) 109.499 
C(112)-C(102)-H(1022) 109.173 
H(1021)-C(102)-H(1022) 109.602 
C(102)-C(112)-C(122) 110.3(6) 
C(102)-c(112)-0(142) 112.0(6) 
c(122)-c(112)-0(142) 105.9(6) 
C(102)-C(112)-H(1121) 109.901 
C(122)-C(112)-H(1121) 109.276 
o(142)-c(U2)-H(1121) 109.388 
C(112)-C(122)-C(132) 109.9(6) 
c(112)-c(122)-0(182) 109.7(6) 
c(132)-c(122)-0(182) 107.0(6) 
C(112)-C(122)-H(1221) 109.672 
C(132)-C(122)-H(1221) 110.119 
0(182)-c(122)-H(1221) 110.490 
C(82)-C(132)-C(122) 110.8(6) 
c(82)-c(132)-0(222) 110.8(5) 
C(122)-C(132)-0(222) 106.4(5) 
C(82)-C(132)-H(1321) 109.797 
C(122)-C(132)-H(1321) 109.299 
0(222)-C(132)-H(1321) 109.727 
c(112)-0(142)-C(152) 115.6(6) 
0(142)-c(152)-0(162) 124. 3(7) 
0(142)-c(152)-c(172) 111.0(6) 
0(162)-C(152)-C(172) 124.7(7) 
C(152)-c(172)-H(1721) 109.265 
C(152)-C(172)-H(1722) 109.346 
H(1721)-C(172)-H(1722) 109.072 
C(152)-C(172)-H(1723) 109.981 
H(1721)-C(172)-H(1723) 109.643 
H(1722)-C(172)-H(1723) 109.515 
C(122)-0(182)-C(192) 115.3(6) 
0(182)-c(192)-0(202) 125.2(8) 
o(182)-c(192)-c(212) 109.7(8) 
0(202)-c(192)-c(212) 125.1(9) 
C(192)-C(212)-H(2121) 109.543 
c(192)-c(212)-H(2122) 109.647 
H(2121)-C(212)-H(2122) 109.586 
C(192)-C(212)-H(2123) 109.058 
H(2121)-C(212)-H(2123) 109.466 
H(2122)-C(212)-H(2123) 109.527 
c(132)-0(222)-c(232) 117.0(6) 
0(222)-C(232)-0(242) 123.4(7) 
0(222)-c(232)-c(252) 110.6(7) 
0(242)-c(232)-C(252) 125.9(8) 
C(232)-C(252)-H(2521) 109.426 
C(232)-C(252)-H(2522) 108.978 
H(2521)-C(252)-H(2522) 110.769 
C(232)-C(252)-H(2523) 108.302 
H(2521)-C(252)-H(2523) 109.758 
H(2522)-C(252)-H(2523) 109.563 

symmetry transformations used to generate equivalent atoms: 

Table 4. 	Anisotropic displacement parameters (AA2 x 10A3) for ias02O. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 Ull + ... + 2 h k a* b* u12 ] 

ull 	u22 	u33 	u23 	u13 	u12 
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Appendix 2 

23(2) 66(4) 45(3) 6(3) 1(2) -7(3) 
24(2) 27(4) 44(3) -3(3) 1(2) 3(3) 
23(2) 11(3) 38(3) -9(2) -2(2) 3(3) 
20(2) 32(3) 32(3) 0(2) -1(2) -4(3) 

25(3) 38(4) 40(4) 6(3) -1(3) -602 

25(3) 38(4) 36(3) -1(3) 0(2) -13(3 

44(3) 54(4) 42(3) 7(3) 5(2) -15(3 
14(3) 30(3) 37(3) -4(2) -10(2) 4(2 

36(3) 26(3) 33(2) 3(2) -9(2) -8(22 
40(4) 18(3) 34(3) 5(2) -15(3) 0(32 
28(4) 26(3) 37(3) 3(2) -11(3) 2(22 
30(4) 19(3) 35(3) -2(2) -12(3) 5(22 

25(3) 26(3) 36(3) -1(2) -10(3) 1(2 

35(3) 42(3) 33(2) 1(2) -1(2) -3(22 

38(3) 27(4) 36(3) -7(3) 3(2) -1(3 
28(3) 39(3) 65(4) 3(3) -4(2) 1(32 

65(6) 51(6) 42(4) 4(4) 7(4) -13(5: 

36(3) 27(3) 44(3) -5(2) 4(2) 5(22 

63(5) 42(5) 30(4) -5(3) 7(3) -4(4 

93(5) 76(5) 48(4) -23(4) -33(4) 22(4 
94(8) 51(6) 40(5) -14(4) 28(5) -io(s 
28(3) 27(2) 41(3) -8(2) -7(2) -1(2: 

27(3) 23(3) 56(5) -7(3) 1(3) 5(3 

32(3) 34(3) 63(4) 10(3) -1(2) 4(32 

34(4) 26(4) 77(7) 0(4) 0(4) -3(3: 
22(2) 46(4) 42(3) 6(2) 0(2) -3(2: 
22(2) 36(4) 37(3) -3(3) 0(2) -2(3: 
23(2) 18(3) 28(3) -7(2) 6(2) 5(3 
18(2) 26(3) 29(3) -3(2) 3(2) 7(3: 
19(3) 33(4) 38(4) 5(3) 0(2) 10: 
21(3) 31(4) 36(3) 5(3) -2(2) 4(3 

37(3) 51(4) 34(2) 8(3) -5(2) 5(3: 
24(3) 24(3) 32(3) -1(2) 3(2) 1(2: 
26(2) 26(3) 27(2) -3(2) 0(2) 3(2 
31(4) 30(4) 28(3) 0(2) -2(3) 2(3 

25(3) 26(3) 29(3) 2(2) 5(3) 
28(3) 22(3) 27(3) 2(2) 6(2) -5(2 
24(3) 24(3) 25(2) 1(2) 10(2) 0(2 

33(3) 29(3) 29(2) -1(2) 1(2) 5(2 

28(3) 30(4) 26(3) -6(3) -1(2) 1(3 

33(3) 34(3) 36(3) 7(3) 7(2) 8(2 
59(6) 38(5) 31(3) 5(4) -3(3) 11(4 
34(3) 28(3) 33(2) -3(2) -1(2) 0(2 

56(5) 34(4) 29(3) -1(3) 1(3) 2(3 

92(6) 68(5) 50(4) -20(4) 38(4) -24(4 
66(6) 51(5) 45(5) -18(4) -10(5) 5(4 
22(2) 27(2) 40(3) -2(2) 6(2) 0(2 

25(3) 28(3) 41(4) -1(3) -3(3) 0(3 
47(3) 32(3) 49(4) 8(3) 9(2) 2(3 

42(5) 38(5) 70(7) 1(5) 10(4) 11(4 

Table 5. 	Hydrogen coordinates ( x 10A4) 
displacement parameters (AA2 x 10A3) for 

and isotropic 
ias02O. 

x y z u(eq) 

 -5498 550 -1893 35 
 -4084 -678 -2777 30 

 -5353 1250 -2959 41 
 -4412 1855 -2360 41 

H(811) -559 34 -737 34 
H(1011) -5782 -942 -261 39 
H(1012) -2860 -824 -65 39 
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Appendix 2 
H(1111) -6677 245 238 38 
H(1211) -1474 348 638 34 
H(1311) -4078 1210 -467 36 
H(1711) -8834 -1276 2064 66 
H(1712) -6992 -616 2334 66 
H(1713) -5864 -1382 2033 66 
H(2111) -2440 1992 2419 76 
H(2112) -5181 1770 2103 76 
H(2113) -3540 2363 1671 76 
H(2511) 1666 2964 -757 58 
H(2512) 1928 2613 54 58 
H(2513) 3218 2208 -619 58 

 -2556 -1935 -2256 38 
 -3502 -1322 -1688 38 

H(821) 383 -123 -3961 34 
H(1021) -2339 729 -4619 36 
H(1022) -5198 794 -4394 36 
H(1121) -6088 -387 -4903 34 
H(1221) -1020 -467 -5327 31 
H(1321) -3156 -1323 -4181 30 
H(1721) -9090 1027 -6731 53 
H(1722) -7456 324 -6970 53 
H(1723) -6121 1108 -6793 53 
H(2121) -2429 -2114 -7086 68 
H(2122) -5073 -1962 -6728 68 
H(2123) -3068 -2504 -6322 68 
H(2521) 2555 -3115 -4066 61 
H(2522) 2465 -2718 -4857 61 
H(2523) 4118 -2364 -4189 61 
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3-(2' ,3',4'-Tri-O-acetyI--D-xyIopyranosyI)-5-(isopropyI)-1 ,2,4-oxadiazin-6-
one (156) 

. 	

I 

"V 
'TIO 

v  - , 0#0 
N go 

0000
~ 

NO 

0(6) 

-'7 



Appendix 3 
Table 1. crystal data and structure refinement for ias046. 

contact Simon Parsons, S.Parsons@ed.ac.uk  

A. CRYSTAL DATA 

Empirical formula c18 H26 N2 09 
C18 H26 N2 09 

Formula weight 414.41 

wavelength 0.71073 A 

Temperature 150 K 

Crystal system Monoclinic 

Space group C 2 

unit cell dimensions a = 28.1300(9) A alpha = 90 deg. 
b = 5.3729(2) A beta = 123.387(2) deg. 
c = 16.9066(5) A gamma = 90 deg. 

volume 2133.57(13) AA3 

Number of reflections for cell 6621 (2 < theta < 31 deg.) 

Z 4 

Density (calculated) 1.290 Mg/mA3 

Absorption coefficient 0.104 mmA-1 

F(000) 880 

DATA COLLECTION 

Crystal description 	 colourless slab 

crystal size 	 2.60 x 0.72 x 0.18 mm 

Instrument 	 Bruker SMART AX CCD 

Theta range for data collection 	1.734 to 30.541 deg. 

index ranges 	 -40<=h<=38, -7<=k<=7, -23<=l<=23 

Reflections collected 	 17968 

Independent reflections 	 3455 [R(int) = 0.0461 

Scan type 	 \w 

Absorption correction 	 Semi-empirical from equivalents 
(Tmin= 0.75, Tmax=0.98) 

SOLUTION AND REFINEMENT. 

Solution 	 direct (S1R92 (Altomare et al., 1994)) 

Refinement type 	 Full-matrix least-squares on FA2 

Program used for refinement 	CRYSTALS 

Hydrogen atom placement 	 geom 
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Hydrogen atom treatment 

Data 

Parameters 

Goodness-of-fit on FA2 

conventional R [F>4sigma(F)] 

RW 

Final maximum delta/sigma 

weighting scheme 

Largest diff. peak and hole 

Appendix 3 
mixed 

3455 

266 

0.8769 

Ri = 0.0451 [2730 data] 

0.1143 

0.000711 

sheldrick weights 

0.39 and -0.26 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for ias046. 	u(eq) is defined 
as one third of the trace of the orthogonalized uj tensor. 

X 
	

y 
	

z 	 u(eq) 

0(1) 10049(1) 5053(3) 3837(1) 41 
N(2) 9493(1) 4715(4) 3703(2) 36 
C(3) 9358(1) 2418(4) 3699(2) 26 
N(4) 9646(1) 422(4) 3723(2) 29 
C(5) 10067(1) 645(4) 3483(1) 26 
C(6) 10360(1) 3134(4) 3838(2) 28 
0(6) 10840(1) 3562 (4) 4081(1) 34 
C(7) 9801(1) 443(5) 2412(2) 34 
C(8) 10225(1) 270(5) 2118(2) 35 
C(9) 10526(1) -2223(6) 2377(2) 49 
C(10) 9924(2) 758(8) 1061(2) 67 
C(11) 8820(1) 2000(4) 3686(1) 26 
C(21) 8302(1) 1493(4) 2681(1) 27 
0(12) 8152(1) 3751(3) 2131(1) 30 
c(22) 8209(1) 3788(4) 1388(1) 29 
0(22) 8407(1) 2110(4) 1192(1) 37 
C(32) 7996(1) 6198(5) 858(2) 41 
C(31) 7796(1) 827(4) 2733(1) 28 
0(13) 7331(1) 37(4) 1807(1) 35 
C(23) 6817(1) 1115(7) 1468(2) 47 
0(23) 6747(1) 2913(5) 1811(2) 65 
C(43) 6360(1) -374(10) 640(2) 72 
C(41) 7942(1) -1316(4) 3415(1) 27 
0(14) 7456(1) -1566(3) 3484(1) 31 
C(24) 7419(1) -3705(5) 3864(2) 32 
0(24) 7781(1) -5288(3) 4174(1) 37 
C(34) 6879(1) -3810(6) 3834(2) 50 
C(51) 8474(1) -685(4) 4373(1) 27 
0(61) 8932(1) -142(3) 4254(1) 27 

Table 3. 	Bond lengths [A] and angles [deg] for ias046. 

0(1)-N(2) 1.463(2) 
0(1)-c(6) 1.352(3) 
N(2)-C(3) 1.290(3) 
C(3)-N(4) 1.331(3) 
C(3)-C(11) 1.517(3) 
N(4)-C(5) 1.452(2) 
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Appendix 3 
N(4)-H(4) 0.77(4) 
C(5)-C(6) 1.512(3) 
C(5)-C(7) 1.536(3) 
C(5)-H(51) 1.005 
c(6)-0(6) 1.198(2) 
C(7)-C(8) 1.528(3) 
C(7)-H(71) 1.001 
C(7)-H(72) 1.000 
C(8)-C(9) 1.515(4) 
c(8)-C(10) 1.522(3) 
C(8)-H(81) 0.999 
C(9)-H(91) 1.002 
C(9)-H(92) 1.001 
C(9)-H(93) 0.997 
C(10)-H(101) 1.002 
C(10)-H(102) 1.002 
c(10)-H(103) 0.996 
c(11)-c(21) 1.536(3) 
c(11)-o(61) 1.419(3) 
c(11)-H(111) 1.001 
c(21)-0(12) 1.443(3) 
c(21)-c(31) 1.519(3) 
C(21)-H(211) 1.000 
0(12)-C(22) 1.353(2) 
c(22)-0(22) 1.197(3) 
C(22)-C(32) 1.499(3) 
c(32)-H(321) 1.003 
c(32)-H(322) 0.997 
C(32)-H(323) 1.000 
c(31)-o(13) 1.445(2) 
c(31)-C(41) 1.517(3) 
c(31)-H(311) 1.002 
o(13)-C(23) 1.359(3) 
c(23)-0(23) 1.198(4) 
C(23)-C(43) 1.508(5) 
C(43)-H(431) 0.999 
c(43)-H(432) 0.995 
C(43)-H(433) 1.005 
c(41)-O(14) 1.440(2) 
c(41)-C(51) 1.520(3) 
C(41)-H(411) 1.001 
0(14)-c(24) 1.349(3) 
c(24)-0(24) 1.202(3) 
C(24)-C(34) 1.494(3) 
c(34)-H(341) 0.998 
c(34)-H(342) 1.000 
C(34)-H(343) 1.005 
c(51)-0(61) 1.439(2) 
c(51)-H(511) 1.001 
c(51)-H(512) 1.000 

N(2)-O(1)-C(6) 122.82(17) 
0(1)-N(2)-C(3) 113.96(18) 
N(2)-C(3)-N(4) 126.7(2) 
N(2)-C(3)-C(11) 115.47(19) 
N(4)-C(3)--C(11) 117.82(19) 
C(3)-N(4)-C(5) 120.12(19) 
C(3)-N(4)-H(4) 117(2) 
C(5)-N(4)-H(4) 122(2) 
N(4)-C(5)-C(6) 108.28(17) 
N(4)-C(5)-C(7) 112.33(17) 
C(6)-C(5)-C(7) 109.59(18) 
N(4)-C(5)-H(51) 109.037 
c(6)-C(5)-H(51) 108.574 
C(7)-C(5)-H(51) 108.968 
c(5)-c(6)-0(1) 117. 51(17) 
C(5)-C(6)-0(6) 124.9(2) 
0(1)-c(6)-0(6) 117. 5(2) 
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C 
0 
C 
0 
C 

5)-C(T)-C(8) 
5) -c(7) -H(71) 
8)-C(7)-H(71) 
5)-C(7)-H(72) 
8)-C(7)-H(72) 
71)-C(7)-H(72) 
7)-c(8)-c(9) 

-c(8) -c(10) 
9)-C(8)-C(10) 
7)-C(8)-H(81) 
9)-C(8)-H(81) 
10)-c(8)-H(81) 
8)-C(9)-H(91) 
8)-C(9)-H(92) 
91)-c(9)-H(92) 
8)-C(9)-H(93) 
91)-C(9)-H(93) 
92)-C(9)-H(93) 
8)-c(10)-H(101) 

-c(10) -H(102) 
101)-c(10) -H(102) 
8)-C(10)-H(103) 
101)-c(10)-H(103) 
102)-c(10)-H(103) 
:3) -C(11) -c(21) 
:3) -c(11) -0(61) 
:21) -c(11)-0(61) 

:61)-C(11)-H(111) 

12 

31)-C(21)-H(211) 
21)-o(12)-c(22) 
12)-C(22)-0(22) 
12)-c(22)-C(32) 
22)-C(22)-C(32) 
22)-C(32)-H(321) 
22)-C(32)-H(322) 
321)-C(32)-H(322) 
22)-C(32)-H(323) 
321)-C(32)-H(323) 
322)-C(32)-H(323) 
21) -c(31) -0(13) 
21) -c(31)-C(41) 
13)-C(31)-C(41) 
21)-C(31)-H(311) 
13)-C(31)-H(311) 
41)-C(31)-H(311) 
31)-o(13)-c(23) 
13)-c(23)-0(23) 
13)-c(23)-C(43) 
23)-C(23)-c(43) 
23)-c(43)-H(431) 
23)-c(43)-H(432) 
431)-c(43)-H(432) 
23)-0O3)-H(433) 
431)-C(43)-H(433) 
:432) -c(43) -H(433) 
:31)-c(41)-0(14) 
31)-c(41)-c(51) 

:14) -c(41) -H(411) 

Appendix 3 
115.27(17) 
107.897 
108.037 
107.972 
108.138 
109.433 
111.8(2) 
110.1(2) 
110.7(2) 
108.144 
108.006 
108.010 
109.461 
109.348 
109.241 
109.653 
109.532 
109.591 
109.397 
109.235 
109.170 
109.682 
109.695 
109.645 
111.91(16) 
105.25(16) 
109.07(17) 
109.979 
110.323 
110.180 
109.13(17) 
109.03(15) 
106.45(16) 
110.780 
110.668 
110.669 
117.90(16) 
123. 8(2) 
110.81(19) 
125.38(19) 
109.182 
109.654 
109.439 
109.571 
109.265 
109.715 
108.87(15) 
110.62(16) 
107.80(18) 
109.916 
109.763 
109.838 
116.72(18) 
124.1(3) 
109.4(3) 
126. 4(3) 
109.518 
109.525 
109.934 
109.189 
109.171 
109.488 
105.02(16) 
109.69(18) 
110.78(15) 
110.077 
110.482 
110.653 
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c(41) -o(14)-C(24) 
0(14)-C(24)-0(24) 
0(14)-c(24)-c(34) 
0(24)-c(24)-c(34) 
C(24)-C(34)-H(341) 
C(24)-C(34)-H(342) 
H(341)-C(34)-H(342) 
C(24)-C(34)-H(343) 
H(341)-C(34)-H(343) 
H(342)-C(34)-H(343) 
C(41)-c(51)-0(61) 
C(41)-C(51)-H(511) 
0(61) -c(51)-H(511) 
c(41)-C(51)-H(512) 
0(61)-C(51)-H(512) 
H(511)-C(51)-H(512) 
c(51) -0(61) -c(11) 

Appendix 3 
116.35(18) 
122.81(19) 
111. 1(2) 
126. 1(2) 
109.795 
109.638 
109.635 
109.398 
109.278 
109.082 
109.08(14) 
109.536 
109.505 
109.682 
109.628 
109.393 
112.19(15) 

symmetry transformations used to generate equivalent atoms: 

Table 4. 	AnisotrOpiC displacement parameters (AA2 x 10A3) for ias046. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 aA2 ull + ... + 2 h k a* b* u12 ] 

ull 	u22 	u33 	u23 	u13 	u12 

0(1, 
N(2 
C(3 1  

N(4 
c(5 
C(6 
0(6 
C(7 
C(8 
C(9 
CU 
c(1 
M 

C(22' 
0(22: 
c(32: 
c(31: 
0(13: 
c(23 
o(23 
c(43 
C(41 
0(14 
C(24 
o(24 
c(34 
C(51 
0(61 

43(1) 21(1) 75(1) -5(1) 421 

38(1) 22(1) 63(1) -2(1) 371 

27(1) 22(1) 32(1) 1(1) 181 

31(1) 18(1) 51(1) 2(1) 301 

24(1) 22(1) 36(1) 1(1) 191 

30(1) 23(1) 35(1) 5(1) 211 

29(1) 31(1) 42(1) 4(1) 19 

26(1) 39(1) 33(1) -3(1) 131 

39(1) 37(1) 36(1) 0(1) 24 

63(2) 39(2) 70(2) 0(1) 51 

79(2) 80(3) 41(1) 2(2) 34 

27(1) 24(1) 33(1) 0(1) 20 
31(1) 22(1) 31(1) 3(1) 19 

37(1) 24(1) 34(1) 4(1) 22 

30(1) 24(1) 30(1) -1(1) 14 

50(1) 31(1) 41(1) 2(1) 31 

57(2) 29(1) 35(1) 5(1) 24 

24(1) 28(1) 31(1) -2(1) 15 

28(1) 40(1) 33(1) -3(1) 14 

29(1) 64(2) 41(1) 2(1) 15 

40(1) 77(2) 64(1) -2(1) 19 

36(1) 105(3) 56(2) -17(2) 13 
25(1) 27(1) 34(1) -1(1) 20 

26(1) 31(1) 43(1) -2(1) 23 
33(1) 35(1) 35(1) -8(1) 22 

41(1) 30(1) 48(1) 0(1) 29 

45(1) 58(2) 67(2) -7(2) 43 
26(1) 28(1) 33(1) 1(1) 20 

24(1) 28(1) 35(1) 5(1) 20 

Table 5. 	Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10A3) for ias046. 
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x 	 y 	 z 	 u(eq) 

H(4) 9550(13) -850(70) 3790(20) 43(9) 
H(51) 10358 -708 3815 33 

 9558 1951 2104 39 
 9556 -1079 2177 39 

H(81) 10519 1593 2463 45 
 10800 -2265 2175 68 
 10740 -2460 3080 68 
 10240 -3583 2053 68 

 10206 646 876 80 
 9755 2470 914 80 
 9617 -496 700 80 

H(111) 8747 3469 3968 33 
H(211) 8386 125 2373 33 

 8043 6175 311 48 
 8219 7608 1288 48 
 7584 6406 613 48 

H(311) 7677 2310 2943 33 
 5980 408 392 77 
 6437 -422 132 77 
 6359 -2116 855 77 

H(411) 8000 -2876 3154 35 
 6859 -5406 4116 68 
 6864 -2377 4197 68 
 6545 -3705 3158 68 
 8581 -2135 4812 35 
 8399 798 4647 35 
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(Z)-N-(6-deoxy- 1,2:3,4-di-0-isopropyl idene-a-D-galactopyra nosy l)-(2,3,4-tri-

O-acetyI-3-D-xyIopyranosyI)formam ide oxime (178) 
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Table 1. Crystal data and structure refinement for mp0502. 

Contact 	 Stephen Moggach, s.moggach@ed.ac.uk  

CRYSTAL DATA 

Empirical formula 

Formula weight 

wavelength 

Temperature 

Crystal system 

Space group 

unit cell dimensions 

deg. 

vol ume 

Number of reflections for cell 

FA 

Density (calculated) 

Absorption coefficient 

F(000) 

DATA COLLECTION 

Crystal description 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Scan type 

Absorption correction 
0.724652, Tmax=].. 00) 

C52 H80 N4 028 
2(C24 H36 N2 013), C4 H8 02 

1209.20 

0.71073 A 

150(2) K 

Triclinic 

P1 

a = 7.3600(4) A 	alpha = 91.927(3) deg. 

b = 11.6820(6) A beta = 91.103(3) deg. 

C = 18.9910(10) A gamma = 108.254(3) 

1549.03(14) AA3 

5822 (4 < theta < 59 deg.) 

1 

1.296 Mg/mA3 

0.106 mmA-1 

644 

colourless block 

0.54 x 0.35 x 0.15 mm 

1.07 to 23.26 deg. 

-8<=h<=8, -12<=k<=12, -20.<=l.<=21 

15677 

8344 [R(int) = 0.0436] 

semi-empirical from equivalents (Tmi n= 

C. SOLUTION AND REFINEMENT. 

Solution 

Refinement type 

Program used for refinement 

Hydrogen atom placement 

direct (SHELxS-97 (sheidrick, 1990)) 

Full-matrix least-squares on FA2 

SHELXL-97 

geom 
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Hydrogen atom treatment 	 mixed 

Data / restraints / parameters 	8344/3/773 

Goodness-of-fit on FA2 

Conventional R [F>4sigma(F)] 

weighted R (FA2 and all data) 

Absolute structure parameter 

Final maximum delta/sigma 

1.124 

Ri = 0.0674 [7800 data] 

wR2 = 0.1756 

2.4(12) 

0.114 

weighting scheme 
caic w=1/{\sA2A(F0A2A)+(0.0935p)A2A+0.6247p] where P=(F0A2A+2FcA2A)/3 

Largest diff. peak and hole 	0.439 and -0.312 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for mp05O2. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x y z u(eq) 

C1'l -2119(8) -533(5) 6078(3) 40(1) 
011 -899(6) -2311(3) 2690(2) 53(1) 
Nil -606(6) -1035(4) 2640(2) 41(1) 
dl 21(7) -488(4) 3239(3) 32(1) 
0111 -2469(5) 601(3) 6019(2) 49(1) 
N21 398(6) -1050(4) 3816(2) 39(1) 
c2'1 -4032(8) -1447(5) 5859(3) 43(1) 
C21 487(7) 859(4) 3210(3) 32(1) 
02'l -4979(5) -782(3) 5457(2) 43(1) 
03'i -3020(5) -3171(3) 5839(2) 45(1) 
C3'1 -3845(7) -2504(5) 5412(3) 39(1) 
C31 2662(7) 1512(4) 3200(3) 32(1) 
041 -1401(6) -2940(3) 4817(2) 51(1) 
C4'l -2456(7) -2104(5) 4813(3) 38(1) 
041 3436(5) 1088(3) 2599(2) 36(1) 
C4A1 4619(8) 443(6) 2699(4) 56(2) 
C41 2938(7) 2844(4) 3125(3) 34(1) 
C5'1 -1130(7) -818(4) 4931(3) 33(1) 
051 4967(4) 3505(3) 3206(2) 35(1) 
C5B1 5851(7) 4085(4) 2629(3) 37(1) 
C5A1 5227(9) 45(6) 2026(4) 57(2) 
05A1 5056(11) 214(8) 3279(3) 130(3) 
C51 1935(8) 3305(5) 3704(3) 38(1) 
C6'1 709(7) -593(5) 4534(3) 35(1) 
06'l -611(5) -570(3) 5650(2) 38(1) 
061 2069(5) 4532(3) 3534(2) 43(1) 
C6C1 2258(7) 5329(5) 4086(3) 38(1) 
C6B1 7865(8) 4801(5) 2833(3) 51(2) 
06B1 5089(5) 4033(4) 2071(2) 51(1) 
C61 -157(8) 2538(5) 3722(3) 42(1) 
C7C1 2489(9) 6567(5) 3829(3) 54(2) 
07C1 2289(7) 5063(4) 4672(3) 67(1) 
071 -263(5) 1309(3) 3800(2) 39(1) 
C121 -4376(8) 415(5) 5764(3) 45(1) 
C131 -4318(10) 1292(6) 5189(4) 63(2) 
C141 -5650(9) 514(6) 6351(4) 61(2) 
C341 -1810(8) -3641(5) 5431(3) 45(1) 
C351 -2832(9) -4936(5) 5184(4) 57(2) 
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C361 -44(10) -3501(7) 5850(4) 65(2) 
c12 -1292(7) -2917(4) 10647(3) 32(1) 
C1'2 -3596(8) -2963(5) 7794(3) 45(1) 
01t2 -5081(6) -4059(4) 7883(2) 53(1) 
012 -369(6) -1108(3) 11204(2) 55(1) 
N12 -1339(6) -2383(4) 11245(2) 43(1) 
N22 -404(6) -2355(4) 10085(2) 41(1) 
C2'2 -4511(8) -2004(5) 7983(3) 46(1) 
o2'2 -6041(5) -2601(3) 8411(2) 43(1) 
C22 -2172(7) -4279(4) 10656(3) 35(1) 
C3'2 -3207(8) -920(5) 8402(3) 42(1) 
03'2 -1735(6) -318(4) 7943(2) 52(1) 
C32 -674(7) -4926(4) 10674(3) 32(1) 
042 565(5) -4524(3) 11282(2) 40(1) 
C4A2 2414(8) -3877(6) 11192(3) 54(2) 
C4'2 -2157(8) -1268(5) 9005(3) 41(1) 
04'2 -254(6) -462(3) 8980(2) 52(1) 
C42 -1710(7) -6276(4) 10749(3) 37(1) 
C5A2 3450(9) -3476(6) 11865(4) 59(2) 
05A2 3026(7) -3631(8) 10620(3) 136(3) 
C5'2 -2176(7) -2577(5) 8947(2) 35(1) 
C52 -3258(8) -6725(4) 10166(3) 39(1) 
052 -358(5) -6938(3) 10664(2) 39(1) 
C5B2 10(7) -7511(4) 11233(3) 38(1) 
C6'2 -557(7) -2806(5) 9350(3) 37(1) 
062 -2002(5) -2909(3) 8230(2) 42(1) 
C62 -4528(7) -5956(5) 10153(3) 41(1) 
062 -4319(5) -7944(3) 10334(2) 46(1) 
C6C2 -4859(8) -8769(5) 9802(3) 46(1) 
C682 1318(8) -8212(5) 11037(3) 49(1) 
06B2 -652(6) -7464(4) 11797(2) 53(1) 
072 -3421(5) -4721(3) 10066(2) 37(1) 
C7C2 -5859(9) -9990(5) 10043(4) 56(2) 
07c2 -4547(8) -8523(4) 9200(3) 81(2) 
C122 -6722(8) -3835(6) 8148(3) 52(2) 
C132 -7466(9) -4658(6) 8737(4) 59(2) 
C142 -8162(10) -3964(7) 7541(4) 70(2) 
C342 -62(10) 198(6) 8349(3) 55(2) 
C352 1623(10) 65(7) 7948(4) 69(2) 
C362 229(12) 1516(6) 8571(4) 75(2) 
033 -6110(10) -6610(5) -2904(3) 88(2) 
053 -3086(10) -5777(7) -3122(4) 113(2) 
C43 -4297(16) -6278(8) -2717(5) 90(3) 
C13 -8798(15) -6896(10) -3754(7) 133(4) 
C23 -6722(15) -6377(8) -3589(5) 95(3) 
C53 -3810(20) -6513(10) -2022(6) 127(4) 

Table 3. Bond lengths [A] and angles [deg] for mp0502. 

ci'1-06'1 1.399(6) 
C1'l-Ol'l 1.434(7) 
cV1-c2'1 1.517(8) 
C1'1-H1'1 1.0000 
011-Nil 1.445(5) 
011-Hil 0.8400 
Nil-Cu 1.288(6) 
C11-N21 1.364(6) 
C11-C21 1.505(7) 
01'1-C121 1.424(7) 
N21-C6'1 1.436(7) 
N21-H21 0.8800 
C2'1-02'1 1.424(6) 
c2t1-c31 1.517(8) 
C2t1-H2'1 1.0000 
C21-071 1.415(6) 
C21-C31 1.544(6) 
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C21-H21 1.0000 
o2'1-c121 1.428(7) 
03'1-c3'1 1.397(6) 
03'1-c341 1.414(7) 
C3'1-C4'1 1.530(8) 
C3'1-H3'1 1.0000 
C31-041 1.426(6) 
C31-C41 1.517(7) 
C31-H31 1.0000 
04'1-C4'1 1.425(6) 
04'1-C341 1.428(7) 
C4 t 1-05'1 1.520(7) 
C4'1-H4'1 1.0000 
041-C4A1 1.333(7) 
C4A1-05A1 1.203(8) 
C4A1-c5A1 1.471(9) 
C41-051 1.453(6) 
C41-051 1.511(7) 
C41-H41 1.0000 
C5'1-06'1 1.405(6) 
C5'1-C6'1 1.516(7) 
C5'1-H5'1 1.0000 
051-c5B1 1.372(6) 
C5B1-06B1 1.180(6) 
C5B1-C6B1 1.492(8) 
C5A1-H5A11 0.9800 
C5A1-H5A21 0.9800 
C5A1-H5A31 0.9800 
C51-061 1.454(6) 
C51-C61 1.521(8) 
C51-H51 1.0000 
C6'1-H6'11 0.9900 
C6'1-H6'21 0.9900 
061-c6cl 1.353(6) 
C6C1-07c1 1.168(7) 
c6c1-c7c1 1.501(8) 
c681-H6B11 0.9800 
c6B1-H6B21 0.9800 
c6B1-H6B31 0.9800 
C61-071 1.426(6) 
c61-H6A1 0.9900 
c61-H681 0.9900 
C7C1-H7c11 0.9800 
C7c1-H7c21 0.9800 
C7C1-H7C31 0.9800 
C121-C141 1.496(8) 
C121-C131 1.513(9) 
C131-H13A1 0.9800 
C131-H13B1 0.9800 
c131-H13c1 0.9800 
C141-H14A1 0.9800 
C141-H14B1 0.9800 
C141-H14C1 0.9800 
C341-C361 1.473(9) 
C341-C351 1.517(9) 
c351-H35A1 0.9800 
c351-H35B1 0.9800 
C351-H35c1 0.9800 
c361-H36A1 0.9800 
c361-H36B1 0.9800 
C361-H36c1 0.9800 
C12-N12 1.283(7) 
C12-N22 1.342(6) 
C12-C22 1.519(7) 
C1'2-06'2 1.406(6) 
cF2-ol'2 1.418(7) 
c1'2-c2'2 1.514(8) 
C1'2-H1'2 1.0000 
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01'2-C122 1.411(7) 
012-N12 1.442(5) 
012-H12 0.8400 
N22-C6'2 1.465(7) 
N22-H22 0.8800 
C2'2-02'2 1.414(7) 
C2'2-C3'2 1.517(8) 
C2'2-H2'2 1.0000 
02'2-c122 1.439(7) 
C22-072 1.412(6) 
C22-C32 1.520(7) 
C22-H22 1.0000 
C3'2-03'2 1.424(7) 
C3'2-C4'2 1.505(8) 
C3'2-H3'2 1.0000 
03'2-C342 1.393(8) 
C32-042 1.428(6) 
C32-C42 1.535(7) 
C32-H32 1.0000 
042-c4A2 1.351(7) 
C4A2-05A2 1.195(8) 
C4A2-c5A2 1.459(9) 
C4'2-04'2 1.425(7) 
C4'2-05'2 1.526(7) 
C4'2-H4'2 1.0000 
04'2-C342 1.433(7) 
C42-052 1.447(6) 
C42-c52 1.529(7) 
C42-H42 1.0000 
C5A2-H5Al2 0.9800 
C5A2-H5A22 0.9800 
C5A2-H5A32 0.9800 
C5'2-06'2 1.422(6) 
C5'2-c6'2 1.501(7) 
C5'2-H5'2 1.0000 
C52-062 1.443(6) 
C52-C62 1.486(8) 
C52-H52 1.0000 
052-05B2 1.356(6) 
C5B2-06B2 1.192(6) 
C5B2-C6B2 1.491(8) 
C6'2-H6'12 0.9900 
C6'2-H6'22 0.9900 
c62-072 1.434(6) 
C62-H6A2 0.9900 
C62-H6B2 0.9900 
062-C6c2 1.337(7) 
C6C2-07C2 1.196(7) 
C6C2-C7C2 1.479(8) 
C6B2-H6B12 0.9800 
C6B2-H6B22 0.9800 
C6B2-H6B32 0.9800 
C7c2-H7c12 0.9800 
C7C2-H7c22 0.9800 
C7C2-H7C32 0.9800 
C122-C132 1.497(9) 
C122-c142 1.521(9) 
C132-H13A2 0.9800 
C132-H13B2 0.9800 
C132-H13c2 0.9800 
C142-H14A2 0.9800 
C142-H14B2 0.9800 
C142-H14c2 0.9800 
C342-C352 1.513(9) 
C342-C362 1.529(9) 
C352-H35A2 0.9800 
C352-H35B2 0.9800 
C352-H35C2 0.9800 
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C362-H36A2 0.9800 
c362-H36B2 0.9800 
C362-H36c2 0.9800 
033-C43 1.306(11) 
033-c23 1.430(11) 
053-c43 1.206(10) 
C43-053 1.420(13) 
C13-C23 1.479(14) 
c13-H1A3 0.9800 
C13-H].B3 0.9800 
c13-H1c3 0.9800 
C23-H2A3 0.9900 
c23-H2B3 0.9900 
C53-H5A3 0.9800 
c53-H5B3 0.9800 
c53-H5c3 0.9800 

06'1-cl'1-01'1 109.9(4) 
06'1-cl'1-c2'1 114.1(4) 
01'1-c1'1-c2'1 103.2(4) 
06'1-Cl'l-Hl'l 109.8 
01'1-Cl'l-Hl'l 109.8 
C2'1-cl'l-Hl'l 109.8 
N11-011-H11 109.5 
Cli-Nil-Ol]. 109.7(4) 
N11-C11-N21 123.9(4) 
N11-C11-C21 112.4(4) 
N21-C11--C21 123.4(4) 
C121-01' 1-cl' 1 110.3(4) 
C11-N21-C6' 1 128.0(4) 
C11-N21-H21 116.0 
c6'1-N21-H21 116.0 
02'1-c2'1-c3'1 109.8(4) 
02'1-C2'1-cl'1 104.4(4) 
C3'1-C2'1-cl'1 113.3(5) 
02'1-c2'1-H2'1 109.8 
C3'1-C2'1-H2'1 109.8 
C1'1-C2'1-H2'1 109.8 
071-C21--cll 109.9(4) 
071-c21-c31 108. 7(4) 
C11-C21-C31 112. 3(4) 
071-C21-H21 108.6 
C11-C21-H21 108.6 
c31-C21-H21 108.6 
C2'1-o2' 1-c121 106.1(4) 
C3'1-03'1-C341 109.2(4) 
03'1-c3'1-c2'1 107.8(4) 
03'1-C3'1-c4'1 104.9(4) 
C2'1-C3'1-C4'1 112.5(4) 
03'1-C3'1-H3'1 110.5 
C2'1-c3'1-H3'1 110.5 
C4'1-c3'1-H3'1 110.5 
041-c31-c41 108.2(4) 
041-C31-C21 109.4(4) 
C41-c31-c21 107.3(4) 
041-01-H31 110.6 
C41-C31-H31 110.6 
C21-C31-H31 110.6 
C4'1-04'1-C341 110.2(4) 
04'1-C4'1-c5'1 110.9(4) 
04'1-c4'1-c3'1 103.4(4) 
C5'1-C4'1-C3'1 112.5(4) 
04'1-C4'1-H4'1 109.9 
C5'1-C4'1-H4'1 109.9 
C3'1-C4'1-H4'1 109.9 
C4A1-041-C31 118.7(4) 
05A1-C4A1-041 122.0(6) 
05A1-C4A1-05A]. 126. 4(6) 
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041-C4A1-c5A1 111.6(5) 
051-C41-c51 107.3(4) 
051-C41-c31 7(4) 
c51-c41-01 110.3(4) 
051-C41-H41 110.2 
C51-C41-H41 110.2 
c31-c41-H41 110.2 
06'1-05'1-c6'1 107.0(4) 
06'1-c5'1-c4'1 110.4(4) 
c6'1-c5'1-c4'1 112.3(4) 
06'1-c5'1-H5'1 109.0 
C6'1-05'1-H5'1 109.0 
C4'1-05'1-H5'1 109.0 
C5B1-051-c41 117. 1(4) 
06B1-c5B1--051 124.1(5) 
06B1-c5Bl-c6Bl 126. 7(5) 
051-05B1-c6B1 1(5) 
C4A1-05A1-H SAil 109.5 
C4A1-05A1-H5A21 109.5 
H5A11-05A1-H5A21 109.5 
C4A1-05A1-H5A31 109.5 
H5A11-05A1-H5A31 109.5 
H5A21-05A1-H5A31 109.5 
061-051-c41 106.0(4) 
061-c51-c61 109.8(4) 
C41-c51-c61 6(4) 
061-c51-H51 110.1 
C41-051-H51 110.1 
c61-c51-H51 110.1 
N21-C6'1-05'1 113.1(4) 
N21-C6'1-H6'11 109.0 
C5'1-C6'1-H6'11 109.0 
N21-C6'1-H6'21 109.0 
c5'1-c6'1-H6'21 109.0 
H6'11-C6'1-H6'21 107.8 
c1'1-06'1-c5'1 114.3(4) 
c6c1-o61-c51 116. 5(4) 
07c1-c6c1-o61 122.9(5) 
07c1-c6c1-c7c1 126. 6(5) 
061-c6cl-c7ci 110.4(5) 
C5B1-C6B].-H6B11 109.5 
C5B1-C6B1-H6B21 109.5 
H6B11-C6B1-H6B21 109.5 
C5B1-C6B1-H6B31 109.5 
H6B11-C6B1-H6B31 109.5 
H6B21-C6B1-H6B31 109.5 
071-C61-051 109. 1(4) 
071-c61-H6A1 109.9 
c51-c61-H6A1 109.9 
071-c61-H6B1 109.9 
c51-c61-H6B1 109.9 
H6A1-C61-H6B1 108.3 
C6c1-c7c1-H7c11 109.5 
c6c1-c7cl-H7c21 109.5 
H7C11-C7C1-H7C21 109.5 
C6c1-C7C1-H7c31 109.5 
H7C11-C7C1-H7C31 109.5 
H7C21-C7C1-H7C31 109.5 
c21-071-c61 1(4) 
02 '1-c121-ol' 1 104.7(4) 
02' 1-C121-C141 110.2(5) 

1-c121-c141 111.2(5) 
1-c121-c131 108.8(5) 

01' 1-c121-c131 108.4(5) 
C141-C121-C131 113. 3(5) 
C121-c131-H13A1 109.5 
C121-C131-H13B1 109.5 
H13A1-C].31--H13B1 109.5 
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c121-c131--H13c1 109.5 
H13A1-C131-H13C1 109.5 
H13B1-C131-H13C1 109.5 
c121-c141-H14A1 109.5 
C121-C141-H14B1 109.5 
H14A1-C141-H14B1 109.5 
C121-C141-H14c1 109.5 
H14A1-C141-H14C1 109.5 
H14B1-C141-H14C1 109.5 
03'l-c341-04'1 106.4(4) 
03'l-c341-c361 3(5) 
04'1-C341-C361 110.7(5) 
03'1-c341-c351 110.9(5) 
04'1-C341-c351 107.3(5) 
C361-C341-C351 113.1(5) 
C341-C351-H35A1 109.5 
c341-c351-H35B1 109.5 
H35A1-C351-H35B1 109.5 
c341-c351-H35c1 109.5 
H35A1-C351-H35C1 109.5 
H35B1-C351-H35C1 109.5 
c341-c361-H36A1 109.5 
c341-c361-H36B1 109.5 
H36A1-C361-H36B1 109.5 
c341-c361-H36c1 109.5 
H36A1-C361-.H36C1 109.5 
H36B1-C361-H36C1 109.5 
N12-C12-N22 124.0(4) 
N12-C12-C22 113.1(4) 
N22-C12-C22 122.6(5) 
06'2-cl'2-o1'2 110.0(4) 
06'2-C1'2-c2'2 113.6(4) 
01'2-c1'2-c2'2 103.6(5) 
06'2-cl'2-H1'2 109.8 
01'2-C1'2-H1'2 109.8 
C2'2-cl'2-H1'2 109.8 
c122-01'2--cl'2 110.8(4) 
N12-012-H12 109.5 
C12-N12-012 6(4) 
C12-N22-C6'2 128. 7(4) 
C12-N22-H22 115.7 
C6'2-N22-H22 115.7 
02'2-C2'2-c3'2 108.3(4) 
02'2-C2'2-cl'2 103.9(5) 
c3'2-c2'2-cl'2 114.3(4) 
02'2-c2'2-H2'2 110.1 
c3'2-c2'2-H2'2 110.1 
c12-c2'2-H2'2 110.1 
c2'2-02'2-c122 106.2(4) 
072-c22-c12 110.8(4) 
072-c22-c32 109.1(4) 
C12-C22-C32 112.6(4) 
072-c22-H22 108.1 
C12-C22-H22 108.1 
C32-C22-H22 108.1 
03'2-c3'2-c4'2 104.3(4) 
03'2-c3'2-c2'2 106.5(4) 
C4'2-C3'2-C2'2 112.8(5) 
03'2-c3'2-H3'2 111.0 
C4'2-c3'2-H3'2 111.0 
C2'2-C3'2-H3'2 111.0 
c342-03'2-c3'2 108.1(4) 
042-C32-c22 110.1(4) 
042-C32-c42 106.8(4) 
C22-C32-c42 108.1(4) 
042-c32-H32 110.6 
C22-C32-H32 110.6 
C42-C32-H32 110.6 
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C4A2-042-C32 118. 8(4) 
05A2-C4A2-042 6(6) 
05A2-C4A2-05A2 126. 4(6) 
042-C4A2-c5A2 111.9(5) 
042-C4'2-c3'2 104.3(4) 
04'2-c4'2-c5'2 110.9(4) 
C3'2-C4'2-05'2 113.4(4) 
04'2-c4'2-H4'2 109.4 
C3'2-C4'2-H4'2 109.4 
C5'2-c4'2-H4'2 109.4 
c4'2-04'2-c342 109.2(4) 
052-c42-c52 107.8(4) 
052-C42-C32 109.3(4) 
C52-C42-C32 109.4(4) 
052-c42-H42 110.1 
C52-C42-H42 110.1 
C32-c42-H42 110.1 
C4A2-05A2-H5Al2 109.5 
c4A2-c5A2-H5A22 109.5 
H5Al2-05A2-H5A22 109.5 
C4A2-c5A2-H5A32 109.5 
H5Al2-05A2-H5A32 109.5 
H5A22-05A2-H5A32 109.5 
062-c5'2-c6'2 106.4(4) 
06'2-c5'2-c4'2 109.6(4) 
C6'2-c52-c4'2 113.6(4) 
06'2-c5'2-H5'2 109.0 
C6'2-c5'2-H5'2 109.0 
C4'2-c5'2-H5'2 109.0 
062-052-c62 110.8(4) 
062-c52-c42 105. 5(4) 
C62-052-C42 110.6(4) 
062-c52-H52 109.9 
C62-c52-H52 109.9 
C42-052-H52 109.9 
C5B2-052-C42 117.0(4) 
06B2-c5B2-052 124.2(5) 
06B2-c5B2-c6B2 126.1(5) 
052-c5B2-c682 109.7(5) 
N22-C6'2-052 112.4(4) 
N22-C6'2-H6'12 109.1 
C5'2-c62-H6'12 109.1 
N22-C6'2-H622 109.1 
C5'2-c6'2-H6'22 109.1 
H6'12-C6'2-H6'22 107.8 
C1'2-06'2-c5'2 114.2(4) 
072-c62-c52 110.2(4) 
072-c62-H6A2 109.6 
c52-c62-H6A2 109.6 
072-c62-H6B2 109.6 
c52-c62-H6B2 109.6 
H6A2-C62-H6B2 108.1 
C6c2-062-c52 117.7(4) 
07C2-c6c2-062 5(5) 
07c2-c6c2-c7c2 124.9(5) 
062 -c6c2-c7c2 112.6(5) 
C5B2-C6B2-H6B12 109.5 
c5B2-c6B2-H6B22 109.5 
H6B12-C6B2-H6B22 109.5 
C5B2-C6B2-H6B32 109.5 
H6B12-C6B2-H6B32 109.5 
H6B22-C6B2-H6B32 109.5 
c22-072-c62 110. 1(3) 
c6c2-c7c2-H7c12 109.5 
C60-00-H702 109.5 
H7C12-C7C2-H7C22 109.5 
c6c2-c7c2-H7c32 109.5 
H7C12-00-H702 109.5 
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H7C22-C7C2-H7C32 109.5 
01'2-c122-02'2 104.4(4) 
01'2-c122-c132 109.1(5) 
02'2-C122-c132 110.2(5) 
01'2-C122-C142 108.7(5) 
02'2-C122-c142 109.8(5) 
C132-C122-C142 114.1(5) 
C122-c132-H13A2 109.5 
c122-c132-H13B2 109.5 
H13A2-C132-H13B2 109.5 
c122-c132-H13c2 109.5 
H13A2-C132-H13C2 109.5 
H13B2-C132-H13C2 109.5 
c122-c142-H14A2 109.5 
c122-c142-H14B2 109.5 
H14A2-C142-H14B2 109.5 
c122-c142-H14c2 109.5 
H14A2-C142-H14C2 109.5 
H14B2-C142-H14C2 109.5 
03'2-c342-04'2 106.8(5) 
03'2-C342-c352 109.2(5) 
04'2-c342-c352 109.4(5) 
03'2-c342-c362 112.7(5) 
04'2-c342-c362 107.1(5) 
c352-042-c362 111. 5(6) 
C342-C352-H35A2 109.5 
c342-c352-H35B2 109.5 
H35A2-C352-H35B2 109.5 
c342-c352-H35c2 109.5 
H35A2-C352-H35C2 109.5 
H35B2-C352-H35C2 109.5 
c342-c362-H36A2 109.5 
c342-c362-H36B2 109.5 
H36A2-C362-H3682 109.5 
c342-c362-H36c2 109.5 
H36A2-C362-H36C2 109.5 
H36B2-C362-H36C2 109.5 
C43-033-c23 121.2(8) 
053-c43-033 120.8(10) 
053-c43-c53 121.4(11) 
033-c43-c53 117.7(9) 
C23-c13-i-i1A3 109.5 
c23-c13-H1B3 109.5 
H1A3-C13-H1B3 109.5 
c23-c13-H1c3 109.5 
H1A3-C13-H1C3 109.5 
H1B3-C13-H1C3 109.5 
033-C23-c13 115. 5(9) 
033-c23-H2A3 108.4 
c13-c23-H2A3 108.4 
033-c23-H2B3 108.4 
c13-c23-H2B3 108.4 
H2A3-C23-H2B3 107.5 
C43-053-H5A3 109.5 
C43-c53-H5B3 109.5 
H5A3-053-H5B3 109.5 
C43-053-H5c3 109.5 
H5A3-053-H5C3 109.5 
H5B3-053-H5C3 109.5 

Symmetry transformations used to generate equivalent atoms: 

Table 4. 	Anisotropic displacement parameters (AA2 x 10A3) for mp05O2. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 ull + ... + 2 h k a* b* U12 ] 
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ull u22 u33 u23 u13 u12 

CF1 49(3) 30(3) 34(3) 0(2) 2(2) 5(2) 
011 92(3) 9(2) 51(2) -1(2) -4(2) 7(2) 
Nil 59(3) 13(25 49(3) 7(2) 2(2) 8(2) 
Cli 38(3) 18(3) 36(3) -1(2) 2(2) 6(2) 
oi'l 51(2) 32(2) 61(2) -9(2) 0(2) 9(2) 
N21 64(3) 25(2) 34(2) 3(2) 3(2) 23(2) 
C2'1 58(3) 37(3) 35(3) 4(2) 1(2) 18(3) 
C21 36(3) 16(3) 38(3) 5(2) 5(2) 1(2) 
02'i 42(2) 28(2) 54(2) 0(2) 2(2) 5(2) 
03'1 58(2) 30(2) 47(2) 15(2) 12(2) 9(2) 
c3'1 45(3) 24(3) 45(3) 0(2) -5(2) 6(2) 
c31 43(3) 21(3) 32(3) 1(2) 4(2) 10(2) 
04'l 74(3) 33(2) 50(2) 10(2) 20(2) 21(2) 
C4'l 49(3) 32(3) 31(3) -4(2) -3(2) 13(2) 
041 47(2) 21(2) 42(2) 5(2) 8(2) 11(2) 
C4A1 49(3) 61(4) 64(4) -2(3) 9(3) 25(3) 
C41 40(3) 17(3) 40(3) 7(2) 3(2) 2(2) 
C5'l 42(3) 21(3) 36(3) 3(2) -6(2) 11(2) 
051 37(2) 23(2) 42(2) 8(2) 1(2) 3(1) 
C5B1 43(3) 18(3) 52(3) 1(2) 5(3) 11(2) 
C5A1 53(3) 40(4) 75(4) -5(3) 14(3) 11(3) 
05A1 175(7) 223(9) 63(4) -5(4) -11(4) 169(7) 
C51 57(3) 20(3) 39(3) 8(2) 3(2) 15(2) 
C6'1 44(3) 22(3) 40(3) 8(2) 4(2) 10(2) 
06'l 44(2) 28(2) 39(2) -3(2) -3(2) 8(2) 
061 62(2) 14(2) 49(2) -4(2) -7(2) 10(2) 
C6C1 40(3) 26(3) 42(3) -8(2) -5(2) 2(2) 
c6B1 45(3) 20(3) 82(4) 16(3) 5(3) 0(2) 
06B1 51(2) 49(3) 46(2) 13(2) 1(2) 6(2) 
C61 53(3) 22(3) 55(3) 0(2) 8(3) 17(2) 
C7C1 67(4) 20(3) 75(4) -13(3) -18(3) 19(3) 
07c1 107(4) 40(3) 57(3) -15(2) -5(2) 29(2) 
071 46(2) 15(2) 53(2) 5(2) 10(2) 7(2) 
C121 47(3) 27(3) 61(4) -3(3) 10(3) 12(2) 
C131 63(4) 35(4) 91(5) 2(3) 4(3) 17(3) 
C141 64(4) 44(4) 79(4) 2(3) 18(3) 22(3) 
C341 57(3) 33(3) 46(3) 7(2) 10(3) 13(3) 
C351 67(4) 32(3) 70(4) 10(3) -2(3) 13(3) 
C361 77(4) 62(5) 60(4) -9(3) -6(3) 29(4) 
C12 34(2) 17(3) 41(3) 7(2) -3(2) 5(2) 
c1'2 58(3) 48(4) 31(3) -7(2) -9(2) 22(3) 
oV2 53(2) 38(2) 67(3) -14(2) -6(2) 13(2) 
012 91(3) 7(2) 53(2) 0(2) 1(2) -3(2) 
N12 60(3) 12(2) 51(3) 5(2) 2(2) 1(2) 
N22 46(2) 23(2) 42(3) 3(2) 0(2) -7(2) 
C2'2 52(3) 47(4) 44(3) 0(3) -2(3) 22(3) 
02v2 50(2) 33(2) 48(2) 1(2) 6(2) 15(2) 
C22 49(3) 19(3) 34(3) 4(2) -1(2) 7(2) 
C3'2 52(3) 36(3) 43(3) 4(2) 8(2) 23(3) 
03'2 67(3) 44(3) 46(2) 10(2) 1(2) 16(2) 
C32 41(3) 19(3) 32(3) 2(2) 3(2) 5(2) 
042 49(2) 24(2) 42(2) 6(2) -3(2) 6(2) 
C4A2 35(3) 63(4) 59(4) 2(3) 16(3) 9(3) 
C4'2 55(3) 25(3) 42(3) -1(2) 15(2) 11(2) 
04'2 63(2) 31(2) 55(2) 6(2) -7(2) 6(2) 
C42 44(3) 16(3) 52(3) 2(2) 8(2) 10(2) 
C5A2 57(4) 45(4) 72(4) -9(3) -16(3) 14(3) 
05A2 45(3) 235(9) 71(4) -28(4) 19(3) -36(4) 
C5'2 44(3) 29(3) 30(3) 2(2) 7(2) 8(2) 
C52 54(3) 14(3) 44(3) 1(2) 2(2) 4(2) 
052 48(2) 21(2) 48(2) 5(2) 5(2) 11(2) 
C5B2 39(3) 17(3) 52(3) 4(2) -4(3) 2(2) 
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C6'2 47(3) 24(3) 38(3) 4(2) 4(2) 6(2) 
06'2 52(2) 36(2) 38(2) -3(2) 6(2) 15(2) 
C62 37(3) 27(3) 48(3) 3(2) -6(2) -4(2) 
062 57(2) 18(2) 52(2) -4(2) 13(2) -4(2) 
c6c2 54(3) 28(3) 51(4) -8(3) 5(3) 8(3) 
c6B2 49(3) 31(3) 68(4) 11(3) 11(3) 11(3) 
06B2 65(3) 54(3) 50(3) 14(2) 12(2) 31(2) 
072 40(2) 18(2) 47(2) 2(2) -9(2) 1(1) 
C7C2 57(3) 24(3) 75(4) -8(3) 22(3) -4(2) 
07C2 119(4) 37(3) 57(3) -13(2) 4(3) -18(3) 
C122 48(3) 45(4) 65(4) -11(3) -2(3) 17(3) 
C132 56(4) 43(4) 76(4) -2(3) 5(3) 14(3) 
C142 68(4) 68(5) 72(5) -17(4) -16(3) 20(4) 
C342 78(4) 37(4) 56(4) 13(3) 12(3) 26(3) 
C352 75(4) 53(4) 73(5) -5(3) 11(4) 12(3) 
C362 98(5) 26(4) 100(6) 14(3) 12(4) 13(3) 
033 101(4) 43(3) 109(5) -1(3) -2(3) 7(3) 
053 95(4) 121(6) 119(5) 24(4) 17(4) 25(4) 
C43 109(7) 55(5) 113(7) 14(5) 38(6) 35(5) 
C13 106(8) 75(7) 194(12) -38(7) -13(8) 1(6) 
C23 119(7) 53(5) 103(7) -14(4) 0(5) 15(5) 
C53 197(13) 98(8) 114(8) 30(6) 27(8) 82(9) 

Table 5. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10A3) for mp05O2. 

x y z u(eq) 

H1'1 -1793 -643 6579 47 
Hil -1224 -2657 2291 79 
H21 458 -1785 3738 46 
H2'1 -4777 -1749 6286 51 
H21 -124 1045 2772 38 
H3'1 -5128 -3018 5222 47 
H31 3308 1379 3644 39 
H4'1 -3185 -2187 4355 45 
H41 2436 2982 2653 41 
H5t1 -1808 -248 4772 39 
H5A11 6185 -360 2117 86 
H5A21 5783 746 1741 86 
H5A31 4117 -518 1771 86 
H51 2590 3302 4170 45 
H611 1382 286 4541 42 
H6'21 1549 -978 4781 42 
H6B11 8742 4562 2522 77 
H6B21 8138 4650 3322 77 
H6B31 8037 5662 2788 77 
H6A1 -778 2816 4122 50 
H6B1 -835 2616 3280 50 
H7C11 2334 7090 4222 80 
H7C21 1517 6516 3459 80 
H7C31 3767 6903 3639 80 
H13A1 -3768 2120 5383 94 
H13B1 -5620 1173 5005 94 
H13C1 -3527 1150 4807 94 
H14A1 -5675 -98 6694 92 
H14B1 -6949 387 6161 92 
H14C1 -5161 1319 6583 92 
H35A1 -3956 -4968 4889 85 
H35B1 -3240 -5430 5594 85 
H35C1 -1961 -5247 4910 85 
H36A1 807 -3833 5577 97 
H36B1 -364 -3935 6286 97 
H36C1 602 -2644 5965 97 
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H1'2 -3220 -2904 7290 54 
H12 -173 -786 11612 82 
H22 373 -1617 10169 49 
H2'2 -5017 -1737 7546 55 
H22 -2938 -4474 11091 42 
H3'2 -3930 -373 8571 50 
H32 78 -4790 10234 38 
H4'2 -2731 -1123 9459 49 
H42 -2297 -6417 11222 45 
H5Al2 4824 -3148 11783 89 
H5A22 3217 -4162 12172 89 
H5A32 3005 -2850 12090 89 
H5'2 -3417 -3108 9122 42 
H52 -2653 -6724 9699 47 
H612 -751 -3684 9338 45 
H6'22 658 -2410 9116 45 
H6A2 -5485 -6236 9760 49 
H6B2 -5221 -6024 10599 49 
H6B12 2612 -7656 10982 74 
H6B22 861 -8669 10591 74 
H6B32 1340 -8770 11408 74 
H7C12 -6370 -10539 9634 84 
H7C22 -6914 -9958 10343 84 
H7C32 -4958 -10282 10314 84 
H13A2 -7630 -5492 8579 88 
H13B2 -8701 -4588 8879 88 
H13C2 -6553 -4431 9140 88 
H14A2 -7504 -3541 7136 105 
H14B2 -9149 -3613 7688 105 
H14C2 -8759 -4820 7409 105 
H35A2 1517 -791 7896 104 
H35B2 2815 503 8208 104 
H35C2 1627 398 7481 104 
H36A2 333 1994 8151 113 
H36B2 1404 1830 8864 113 
H36C2 -866 1568 8842 113 
H1A3 -9076 -6684 -4230 199 
H1B3 -9512 -6572 -3413 199 
H1C3 -9181 -7775 -3730 199 
H2A3 -6023 -6697 -3945 114 
H2B3 -6351 -5492 -3635 114 
H5A3 -4977 -6925 -1776 190 
H5B3 -3131 -5749 -1768 190 
H5C3 -2981 -7026 -2042 190 
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S-2-Aminophenyl 2,3,4-tn- O-acetyI--D- 
xylopyranosylformothiohydroximate (216) 

LI*X4 

r 	i 

C(53) 

C(43) 

0(321) 



Appendix 5 
Table 1. crystal data and structure refinement for ias021. 

contact iain.oswald@ed.ac.Uk 

A. CRYSTAL DATA 

Empi rical formula C18 H22 N2 08 S 
C18 H22 N2 08 S 

Formula weight 426.44 

wavelength 0.71073 A 

Temperature 150(2) K 

crystal system orthorhombic 

space group p2(1)2(1)2(1) 

Unit cell dimensions a = 9.1358(5) A alpha = 90 deg. 
b = 13.3082(7) A beta = 90 deg. 
c = 17.5321(9) A gamma = 90 deg. 

volume 2131.6(2) AA3 

Number of reflections for cell 9029 (2 < theta < 29 deg.) 

z4 

Density (calculated) 1.329 Mg/mA3 

Absorption coefficient 0.197 mmA-1 

F(000) 896 

DATA COLLECTION 

crystal description COLOURLESS BLOCK 

crystal size 0.46 x 0.40 x 0.31 mm 

Theta range for data collection 1.92 to 28.72 deg. 

Index ranges -11<=h<=12, -17.<=k<=17, -23<=l<=23 

Reflections collected 19133 

independent reflections 5175 [R(int) = 0.02561 

scan type \f &\w scans 

Absorption correction semi-empirical from equivalents (Tmin= 0.921, Tmax=1.000) 

SOLUTION AND REFINEMENT. 

Solution direct (SHELXS-97 (Sheidrick, 1990)) 

Refinement type Full-matrix least-squares on FA2 

Program used for refinement SHELXL-97 

Hydrogen atom placement geom 

Hydrogen atom treatment mixed 

Data / restraints I parameters 5175/0/278 
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Goodness-of-fit on FA2  1.094 

conventional R [F>4sigma(F)] Ri = 0.0380 [4960 data] 

weighted R (FA2 and all data) wR2 = 0.0964 

Absolute structure parameter 0.04(7) 

Final maximum delta/sigma 0.007 

weighting scheme 
calc w=1/[\5A2A(FOA2A)+(0.0490P)A2A+0.4805P] where P=(F0A2A+2FCA2A)/3 

Largest diff. peak and hole 0.364 and -0.216 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for IAS021. u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x y z u(eq) 

c(1) 7573(2) 5714(1) 8513(1) 23(1) 
N(1) 7086(2) 6436(1) 8915(1) 30(1) 
0(1) 6418(2) 7169(1) 8462(1) 38(1) 
c(2) 8191(2) 4821(1) 8936(1) 21(1) 
c(3) 8945(2) 5117(1) 9685(1) 22(1) 
0(31) 10308(1) 5593(1) 9450(1) 27(1) 

10870(2) 6307(1) 9907(1) 33(1) 
0(321) 10241(2) 6613(1) 10465(1) 44(1) 

12346(3) 6642(2) 9644(1) 47(1) 
c(4) 9307(2) 4187(1) 10154(1) 22(1) 
0(41) 9688(1) 4483(1) 10924(1) 27(1) 
c(42) 11118(2) 4517(1) 11108(1) 29(1) 
0(421) 12091(1) 4322(1) 10675(1) 36(1) 
C(43) 11298(2) 4858(2) 11918(1) 49(1) 
C(S) 7985(2) 3504(1) 10227(1) 25(1) 
0(51) 8516(1) 2601(1) 10590(1) 31(1) 

7518(2) 2062(2) 10983(1) 34(1) 
0(521) 6246(2) 2288(1) 11020(1) 37(1) 

8201(3) 1173(2) 11352(2) 71(1) 
C(6) 7391(2) 3265(1) 9438(1) 27(1) 
0(7) 6963(1) 4191(1) 9089(1) 25(1) 
s(1) 7307(1) 5710(1) 7514(1) 28(1) 
C(1') 8224(2) 4605(1) 7213(1) 26(1) 
c(2) 9501(2) 4709(2) 6779(1) 32(1) 
N(2') 10061(2) 5627(2) 6584(1) 47(1) 
C(3') 10234(2) 3818(2) 6565(1) 44(1) 

9719(3) 2892(2) 6781(1) 51(1) 
8431(3) 2800(2) 7187(1) 47(1) 

C(6') 7668(2) 3655(2) 7387(1) 36(1) 

Table 3. Bond lengths [A] and angles [deg] for 1As021. 

C(1)-N(1) 1.272(2) 
c(i)-c(2) 1.511(2) 
C(I)-S(1) 1.7673(16) 
N(1)-0(1) 1.399(2) 
C(2)-0(7) 1.425(2) 
c(2)-c(3) 1.534(2) 
c(3)-o(31) 1.4564(19) 
C(3)-C(4) 1.523(2) 
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0(31)-C(32) 1.345(2) 
c(32)-O(321) 1.206(3) 
C(32)-c(33) 1.493(3) 
C(4)-o(41) 1.4477(19) 
C(4)-C(5) 1.517(2) 
0(41)-C(42) 1.346(2) 
C(42)-0(421) 1.197(2) 
C(42)-c(43) 1.501(3) 
c(5)-0(51) 1.443(2) 
C(5)-c(6) 1.520(2) 
0(51)-C(52) 1.349(2) 
C(52)-0(521) 1.202(2) 
C(52)-c(53) 1.486(3) 
c(6)-0(7) 1.430(2) 
s(1)-C(1') 1.7725(17) 
c(1')-c(6') 1.396(3) 
c(1')-C(2') 1.401(3) 
c(2')-N(2') 1.367(3) 
c(2')-C(3) 1.412(3) 
c(3')-C(4') 1.373(4) 
c(4')-C(5') 1.381(4) 
c(5')-C(6') 1.380(3) 

N(1)-C(1)-C(2) 116.88(14) 
N(1)-C(1)-S(1) 120.26(13) 
c(2)-C(1)-S(1) 122.37(12) 
C(1)-N(1)-0(1) 111.34(14) 
0(7)-C(2)-C(1) 105.10(13) 
0(7)-C(2)-C(3) 110.06(13) 
c(1)-C(2)-C(3) 112.71(13) 
0(31)-C(3)-C(4) 108.68(13) 
0(31)-C(3)-C(2) 104.68(12) 
C(4)-C(3)-C(2) 110.58(13) 
c(32)-O(31)-C(3) 117. 73(14) 
0(321)-C(32)-0(31) 122.72(18) 
o(321)-C(32)-C(33) 125.44(19) 
0(31)-C(32)-C(33) 111.83(18) 
0(41)-C(4)-C(5) 106.06(13) 
0(41)-C(4)-C(3) 109. 55(13) 
C(5)-C(4)-c(3) 111.03(13) 
C(42)-0(41)-C(4) 117.76(13) 
0(421)-C(42)-0(41) 124.19(17) 
0(421)-C(42)-C(43) 125.69(17) 
0(41)-C(42)-C(43) 110.10(16) 
0(51)-C(5)-C(4) 105. 56(13) 
0(51)-C(5)-C(6) 110. 32(14) 
C(4)-C(5)-C(6) 109.49(13) 
c(52)-0(51)-C(5) 116.18(15) 
0(521)-C(52)-0(51) 123.22(18) 
0(521)-C(52)-C(53) 125.5(2) 
0(51)-C(52)-C(53) 111.23(19) 
0(7)-C(6)-C(5) 107.83(13) 
c(2)-0(7)-C(6) 111.85(12) 
c(1)-s(1)-C(1) 103.46(8) 
c(6')-C(1)-C(2') 120.75(17) 
c(6')-C(l')-S(l) 120.95(14) 
c(2')-C(1')-S(l) 118.28(14) 
N(2')-C(2')-C(1') 122.36(18) 
N(2')-C(2')-C(3') 120.43(19) 
c(1')-C(2')-C(3') 117.17(18) 
c(4')-C(3')-C(2') 121.2(2) 
c(3')-C(4')-C(5 ') 121.0(2) 
c(6')-c(5')-C(4') 119.2(2) 
c(SD-C(6')-C(lt) 120.5(2) 

symmetry transformations used to generate equivalent atoms: 
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Table 4. Anisotropic displacement parameters (AA2 x 10A3) for IAS021. 
The anisotropic displacement factor exponent takes the form: 
-2 pi A2 [ hA2 a*A2 ull + ... + 2 h k a* b* U12 J 

U11 u22 u33 u23 u13 u12 

c(l) 22(1) 24(1) 22(1) 0(1) 2(1) -2(1) 
N(].) 37(1) 25(1) 29(1) -2(1) 3(1) 6(1) 
0(1) 52(1) 29(1) 33(1) 0(1) 7(1) 19(1) 
C(2) 22(1) 20(1) 22(1) -3(1) 0(1) -1(1) 
c(3) 21(1) 23(1) 23(1) -4(1) -1(1) -4(1) 
0(31) 26(1) 28(1) 28(1) 0(1) -2(1) -9(1) 

35(1) 26(1) 37(1) 4(1) -10(1) -11(1) 
0(321) 51(1) 38(1) 44(1) -14(1) -5(1) -14(1) 

42(1) 50(1) 48(1) 10(1) -10(1) -24(1) 
C(4) 21(1) 25(1) 21(1) -2(1) -3(1) -2(1) 
0(41) 24(1) 36(1) 21(1) -3(1) -2(1) -3(1) 

27(1) 32(1) 27(1) -1(1) -6(1) -2(1) 
0(421) 25(1) 49(1) 35(1) -5(1) -4(1) 0(1) 

33(1) 84(2) 30(1) -13(1) -8(1) -6(1) 
C(S) 23(1) 25(1) 27(1) 3(1) -1(1) -2(1) 
0(51) 28(1) 31(1) 36(1) 11(1) -4(1) -3(1) 

36(1) 36(1) 31(1) 7(1) -6(1) -10(1) 
0(521) 35(1) 40(1) 36(1) 3(1) 3(1) -10(1) 

51(1) 68(2) 94(2) 57(2) -14(2) -10(1) 
C(6) 29(1) 21(1) 30(1) 1(1) -5(1) -5(1) 
0(7) 23(1) 25(1) 28(1) 2(1) -5(1) -4(1) 
S(1) 30(1) 31(1) 22(1) 0(1) 0(1) 10(1) 
c(l') 29(1) 28(1) 22(1) -5(1) -3(1) 5(1) 

28(1) 36(1) 31(1) -5(1) -2(1) 5(1) 
N(2') 36(1) 40(1) 66(1) -1(1) 20(1) 3(1) 

35(1) 47(1) 49(1) -16(1) 7(1) 11(1) 
60(2) 38(1) 54(1) -20(1) -4(1) 17(1) 

C(S') 75(2) 29(1) 38(1) -9(1) -1(1) -2(1) 
C(6') 45(1) 34(1) 29(1) -6(1) 2(1) -5(1) 

Table 5. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x loA3) for IAS021. 

x y z u(eq) 

8901 4456 8601 26 
8324 5594 9983 27 

H(33A) 13090 6172 9831 70 
H(33B) 12548 7315 9843 70 
H(33C) 12368 6657 9085 70 

10139 3813 9915 27 
H(43A) 12335 4826 12060 73 
H(43B) 10730 4419 12255 73 
H(430 10948 5550 11968 73 

7213 3829 10547 30 
H(53A) 8685 1382 11825 106 
H(53B) 8925 878 11006 106 
H(53C) 7445 675 11469 106 
H(6A) 8152 2930 9127 32 
H(6B) 6538 2809 9478 32 
H(3') 11100 3861 6266 52 
H(4 t ) 10255 2306 6648 61 
H(5') 8075 2155 7328 57 
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H(6') 6757 3597 7644 43 
H(1'1) 10770(40) 5600(20) 6259(18) 65(9) 
H(1'2) 9550(30) 6151(18) 6685(13) 34(6) 
H(1) 6060(30) 7500(20) 8753(16) 45(7) 
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2-(2' ,3' ,4' -Tn- O-acetyI--D-xyIopyranosyI)benzimidazoIe (217) 

(31) 

: 4  

32) 

(33) 

C(36) 	C(35) 	 0(13) 

O(5A) 
0(11) 

C(2) 

	

C(12) 	
0(6) 0(7) 

	

0(3) Li) 	 0(15) 

OW 

N(3') 	C(2') 
C(5') 	0(4') 
	

0(1) 7-)00""- 0(5) 
0(1) 

C(6') N (1 ' )  
9 1 ) 

0(7') 
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Table 11. Crystal data and structure refinement for 1as025. 

Contact 	 F.P.A.Fabbiani@ed.ac.uk  

CRYSTAL DATA 

Empirical formula 

Formula weight 

wavelength 

Temperature 

Crystal system 

Space group 

unit cell dimensions 

Volume 

Number of reflections for cell 

Z 

Density (calculated) 

Absorption coefficient 

F(000) 

DATA COLLECTION 

Crystal description 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Scan type 

Absorption correction 

C22 H28 N2 09 
C18 H20 N2 07, C4 H8 02 

464.46 

0.71073 A 

150(2) K 

Hexagonal 

P6(5) 

a = 12.1781(2) A alpha = 90 deg. 
b = 12.1781(2) A beta = 90 deg. 
c = 28.1631(6) A gamma = 120 deg. 

3617.18(11) AA3 

7363 (2.41 < theta < 23.43 deg.) 

6 

1.279 Mg/mA3 

0.100 mmA-1 

1476 

clolourless block 

0.97 x 0.66 x 0.24 mm 

1.93 to 24.99 deg. 

-14<=h<=14, -14<=k<=14, -33<=l<=33 

21712 

2060 [R(int) = 0.06731 

omega scans 

Multiscan (Tmin= 0.924, Tmax=0.976) 

C. SOLUTION AND REFINEMENT. 

Solution 	 direct (sHELxS-97 (Sheldrick, 1990)) 

Refinement type 	 Full-matrix least-squares on FA2 

Program used for refinement 	SHELXL-97 

Hydrogen atom placement 	 geom 

Hydrogen atom treatment 	 noref 

Data / restraints / parameters 	2060/15/295 
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Goodness-of-fit on FA2 

conventional R [F>4sigma(F)] 

weighted R (FA2 and all data) 

Absolute structure parameter 

Final maximum delta/sigma 

1.214 

Ri = 0.1049 [1810 data] 

wR2 = 0.2658 

-2(4) 

0.000 

weighting scheme 
calc w=1/[\sA2A(F0A2A)+(0.1307P)A2A+2.0931P]  where P=(F0A2A+2FcA2A)/3 

Largest diff. peak and hole 	0.344 and -0.239 e.AA-3 

Table 12. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for ias025. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x 	 y 	 z 	 u(eq) 

0(1) 10850(6) 11602(6) 68(2) 64(2) 
0(2) 8142(5) 8798(5) -447(2) 55(1) 
0(3) 7021(6) 10186(7) -98(2) 69(2) 
0(4) 8814(7) 12955(6) -106(2) 75(2) 
C(11) 7028(16) 6646(10) -616(4) 101(4) 
0(6) 6447(11) 10701(13) -763(4) 131(4) 
0(7) 7574(11) 12655(12) 516(3) 117(3) 
N(3A) 10657(10) 9066(9) 228(2) 81(3) 
N(1A) 11022(6) 9184(7) -540(2) 53(2) 
c(1) 10182(9) 10503(8) -244(2) 57(2) 

 8793(8) 9900(8) -142(2) 54(2) 
C(2A) 10653(7) 9611(8) -174(2) 52(2) 

 8314(8) 10797(8) -233(2) 56(2) 
 9099(9) 12012(9) 48(3) 64(2) 
 10488(10) 12522(9) -33(3) 68(2) 

C(4A) 11044(7) 8213(6) 109(2) 74(3) 
C(5A) 11209(9) 7357(8) 383(2) 104(4) 
C(6A) 11581(9) 6565(8) 169(2) 95(4) 
C(7A) 11787(8) 6629(7) -318(2) 94(3) 
C(8A) 11621(7) 7485(7) -592(2) 76(3) 
C(9A) 11250(6) 8277(6) -378(2) 58(2) 
C(].0) 7547(12) 7662(11) -237(2) 87(3) 

 7205(15) 7470(14) 176(4) 69(5) 
 7940(30) 7570(20) 142(5) 97(6) 

c(12) 6177(12) 10170(13) -388(4) 87(3) 
 4866(13) 9370(20) -212(7) 129(6) 
 8041(13) 13193(15) 162(5) 93(4) 
 7926(18) 14246(16) -66(6) 121(5) 

0(34) 1264(12) 4060(15) -1173(5) 162(5) 
 -634(18) 4120(20) -1312(9) 195(12) 
 563(15) 4228(15) -1501(6) 147(7) 
 2359(18) 4070(30) -1374(7) 178(9) 
 3070(20) 3950(30) -951(8) 217(16) 

0(33) 1010(30) 4430(30) -1889(6) 510(40) 

Table 13. Bond lengths [A] and angles [deg] for ias025. 

0(1)-C(S) 	 1.423(12) 
o(i)-c(1) 	 1.461(10) 
0(2)-C(10) 	 1.336(11) 
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-c(2) 
-c(12) 

3)-C(3) 
-c(14) 

4)-C(4) 
C 11) -c(l0) 

6)-C(12) 
7)-C(14) 

N 3A) -c(2A) 
N 3A) -c(4A) 
N 1A)-c(2A) 
N 1A)-c(9A) 
C l)-C(2A) 
C l)-C(2) 

-C(3) 
-C(4) 

C 4)-C(S) 
C 4A)-C(5A) 
C 4A) -c(9A) 
C 
C 
C 	-c 
C 	-c 
C 
C 10)-0(5A 
C 12) -c(13 
C 14)-C(15 
0 34)-C(32 
0 34)-c(35 
C 31)-C(32 
C 32)-o(33 
C 35)-C(36 

C 5)-0(1)-C(l) 
C 10)-0(2)-c(2) 
C 12)-0(3)-C(3) 
C 14)-0(4)-C(4) 
C 2A) -N(3A) -C(4A) 
C 2A) -N(1A) -c(9A) 
0 1) -c(1) -c(2A) 
0 l)-c(1)-c(2) 
C 2A)-C(l) -c(2) 
0 2)-C(2)-C(3) 
0 2)-C(2)-C(l) 
C 3)-C(2)-C(l) 
N 3A) -c(2A) -N (iA) 
N 3A) -c(2A) -C(1) 
N LA) -c(2A) -c(l) 
0 3)-C(3)-C(2) 
0 3)-C(3)-C(4) 
C 2)-C(3)-C(4) 
0 4)-C(4)-C(5) 
0 4)-C(4)-C(3) 
C 5)-c(4)-c(3) 
0 l)-C(5)-C(4) 
N 3A) -c(4A) -c(5A) 
N 3A) -c(4A) -c(9A) 
C SA) -c(4A) -c(9A) 
C 6A) -c(5A) -C(4A) 
C 5A) -c(6A) -c(7A) 
C 8A) -c(7A) -c(6A) 
C 7A) -C(8A) -c(9A) 
N LA) -c(9A) -c (8A) 
N LA) -c(9A) -c(4A) 
C 8A)-c(9A)-c(4A) 

5B)-C(10)-0(5A) 
5B)-C(10)-0(2) 
5A)-C(10)-0(2)  

Appendix 6 
1.450(10) 
1.305(12) 
1.416(11) 
1.346(13) 
1.422(12) 
1.513(16) 
1.196(16) 
1.172(18) 
1.313(9) 
1.380(9) 
1.331(10) 
1.346(8) 
1.473(13) 
1.497(13) 
1.496(12) 
1.523(12) 
1.500(14) 
1.3900 
1.3900 
1.3900 
1.3900 
1.3900 
1.3900 
1.199(10) 
1.217(9) 
1.48(2) 
1.50(2) 
1.342(9) 
1.441(10) 
1.495(9) 
1.192(10) 
1.520(10) 

110.6(6) 
117.4(6) 
120.0(8) 
118.8(9) 
105.0(6) 
107.8(5) 
110.6(6) 
108.0(6) 
112.0(7) 
110.1(6) 
107. 6(6) 
111.6(7) 
112.6(7) 
126. 1(6) 
121. 0(6) 
107.9(7) 
111.3(7) 
109.6(7) 
107. 4(7) 
109.7(7) 
110.6(7) 
111.9(8) 
131.4(4) 
108.6(4) 
120.0 
120.0 
120.0 
120.0 
120.0 
134. 0(4) 
106. 0(4) 
120.0 
41.1(12) 

117.3(14) 
125.3(12) 
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o(5s)-c(10)-c(11) 124.9(14) 
0(5A)-C(10)-C(11) 123.6(12) 
0(2)-c(10)-C(11) 108.9(7) 
0(6)-c(12)-0(3) 122.9(12) 
0(6)-C(12)-C(13) 124.4(12) 
0(3)-c(12)-C(13) 112.6(12) 
0(7)-C(14)-0(4) 123. 5(13) 
o(7)-C(14)-C(15) 127.9(11) 
0(4)-C(14)-C(15) 108.6(13) 
c(32)-o(34)-C(35) 112.5(10) 
o(33)-c(32)-o(34) 113. 7(12) 
o(33)-c(32)-C(31) 132.3(14) 
0(34)-c(32)-C(31) 114.0(12) 
0(34)-c(35)-C(36) 105.0(12) 

Symmetry transformations used to generate equivalent atoms: 

Table 14. 	Anisotropic displacement parameters (AA2 x 10A3) for 1as025. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 Ull + ... + 2 h k a* b* u12 ] 

ull u22 u33 u23 u13 u12 

0(1) 62(3) 86(4) 41(3) -6(2) -8(2) 36(3) 
0(2) 72(3) 67(3) 27(2) -2(2) -9(2) 36(3) 
0(3) 75(4) 95(4) 41(3) -12(3) -13(3) 44(3) 
0(4) 106(5) 65(4) 61(3) -4(3) -16(3) 48(4) 
c(11) 158(12) 63(6) 70(6) 4(5) -6(7) 45(7) 
0(6) 111(7) 212(12) 114(7) 16(8) -36(6) 113(8) 
0(7) 136(8) 171(10) 84(6) -9(6) 13(5) 107(8) 
N(3A) 136(7) 122(7) 27(3) 31(4) 30(4) 96(6) 
N(1A) 44(3) 102(5) 23(3) 21(3) 7(2) 44(3) 
c(1) 77(5) 81(5) 16(3) 7(3) -1(3) 41(5) 

 72(5) 62(4) 27(3) 4(3) -3(3) 34(4) 
C(2A) 51(4) 75(5) 24(3) 5(3) 9(3) 27(4) 

 62(5) 75(5) 28(3) -2(3) -10(3) 33(4) 
 87(6) 71(5) 34(4) -3(3) -2(4) 38(5) 
 84(6) 68(5) 50(4) 2(4) -10(4) 36(5) 

C(4A) 99(7) 90(6) 40(4) 32(4) 27(4) 52(6) 
c(5A) 154(11) 139(10) 46(5) 46(6) 45(6) 95(10) 
c(6A) 112(9) 118(9) 88(7) 41(7) 30(6) 83(8) 
c(7A) 99(8) 126(10) 77(7) -4(6) 12(6) 72(8) 
C(8A) 83(6) 113(8) 60(5) 10(5) 7(4) 70(6) 
C(9A) 39(4) 105(6) 34(3) 7(4) 16(3) 40(4) 
MO) 136(10) 82(7) 37(4) 13(4) -17(5) 50(7) 

 59(8) 49(7) 48(7) 22(5) -2(6) -12(7) 
 117(16) 77(11) 67(10) 15(7) -22(10) 27(13) 

c(12) 109(9) 121(9) 66(6) -23(6) -27(6) 85(8) 
c(13) 77(8) 186(17) 140(12) -41(11) -13(8) 78(10) 
c(14) 100(8) 125(10) 80(7) -38(7) -11(6) 78(8) 
c(15) 153(13) 124(11) 132(11) -9(9) -1(10) 103(11) 
o(34) 136(11) 153(11) 165(12) -28(9) 0(9) 49(9) 

 210(30) 116(15) 220(30) 38(16) 80(20) 55(15) 
 140(16) 145(16) 110(12) 3(11) -10(12) 36(12) 
 129(16) 200(20) 180(20) 23(18) 59(16) 68(16) 
 140(20) 300(40) 140(19) -20(20) 25(15) 60(20) 

0(33) 790(120) 320(50) 320(50) 190(40) 160(60) 210(60) 

Table 15. 	Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10A3) for ias025. 
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x y z u(eq) 

H(11A) 6589 5808 -466 152 
H(11B) 7728 6719 -811 152 
H(11C) 6432 6753 -817 152 
H(1A) 11102 9448 -836 64 

 10337 10800 -581 69 
 8634 9624 197 65 
 8387 11003 -580 67 
 8903 11841 394 77 

H(5A) 10694 12796 -368 82 
H(5B) 10980 13274 171 82 
H(5A1) 11069 7313 716 124 
H(6A) 11694 5980 356 114 
H(7A) 12040 6088 -464 113 
H(8A) 11762 7529 -925 91 
H(13A) 4884 9041 103 194 
H(13B) 4391 8668 -431 194 
H(130 4454 9888 -190 194 
H(15A) 8422 14508 -360 182 
H(15B) 8247 14968 153 182 
H(15C) 7033 13949 -138 182 
H(31A) -694 3944 -970 293 
H(31B) -1363 3428 -1474 293 
H(31C) -628 4918 -1366 293 
H(35A) 2896 4877 -1546 214 
H(35B) 2101 3357 -1596 214 
H(36A) 3833 3956 -1063 325 
H(36B) 2521 3156 -784 325 
H(36C) 3310 4668 -735 325 
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Table 1. crystal data and structure refinement for mpOSOl. 

Contact 	
Fraser J. white, f.j.white@sms.ed.ac.Uk 

A. CRYSTAL DATA 

Empirical formula 	 C13 H16 N2 05 
12 u1 	 oc 

..SJ lISSA 

280.28 

0.71073 A 

150(2) K 

Monocliflic 

P 21 

a = 6.2177(2) A alpha = 90 deg. - 
b = 9.6686(3) A beta = 92.6760(10) 

c = 10.6720(3) A gamma = 90 deg. 

640.86(3) AA3 

8993 (5.5 < theta < 58.5 deg.) 

2 

1.452 Mg/mA3 

0.113 mmA-1 

296 

Formula weight 

wavelength 

Temperature 

crystal system 

Space group 

unit cell dimensions 

deg. 

vol ume 

Number of reflections for cell 

Z 

Density (calculated) 

Absorption coefficient 

F(000) 

B. DATA COLLECTION 

Crystal description 

Crystal size 

Instrument 

Theta range for data collection 

Index ranges 

Reflections collected 

independent reflections 

Scan type 

Absorption correction  

block Colourless 

0.40 x 0.27 x 0.16 mm 

Bruker Smart AX CCD 

1.91 to 28.27 deg. 

-7<=h<=8, -12<=k<=12, -14<=l<=14 

18479 

1680 [R(int) = 0.03283 

Omega and Phi scans 

semi-empirical from equivalents 
(Tmin= 0.815, Tmax=0.98) 

C. SOLUTION AND REFINEMENT. 

solution 

Refinement type 

Program used for refinement 

Hydrogen atom placement 

direct (SHELXS-97 (sheidrick, 1990)) 

Full-matrix least-squares on FA2 

SHELXL- 97 

geom 
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19 
17 
19 
18 
23 
25 
28 
24 
18 
18 
17 
25 
17 
24 
18 
23 
17 
17 
22 
19 

-2386(1 
-1688(2 
-2155(l 
-3253(2 
-4108(2 
-5106(2 
-5249(2 
-4405(2 
-3385(2 
445(1 
-512(2 

-1632(1 
-705(2 
459(1 
541(2 

2737(1 
1564(2 
1642(1 
2198(1 
2 572 (2 

44' 
874 

2018 
2363 
3440 
3484 
2498 
1427 
1371 
1196 
171 

-1541 
-515 

-1623 
-1122 
-565 
-21 
635 

2887 
1815 

-1546(2 
118(3 

1069 (2 
-81(3 
146(3 

-1362(3 
-3021(3 
-3223(3 
-1717(3 
1150(2 
955(3 

2762 (2 
3134(3 
6149 (2 
4003(3 
4853(2 
4059(3 
1830(3 
3183 (2 
1764(3 

N(') 
C(2) 
N(3) 
C(4) 
C(S) 
C (6) 

 
 
 

0(1') 
c(1') 
0(2') 

 
0(3') 

 
0(4') 

 
C(S') 
0(6') 
C(6') 

Hydrogen atom treatment 

Data 

Restraints 

Parameters 

Goodness-of-fit on FA2 

conventional R [F>4sigma(F)] 

Rw 

Absolute structure parameter 

Final maximum delta/sigma 

weighting scheme 

Largest diff. peak and hole 

Appendix 7 

mixed 

1680 

1 

201 

1.071 

Ri = 0.0330 [1604 data] 

0.0842 

0(10) 

0.001 

sheidrick weights 

0.328 and -0.225 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for mpOSOl. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

X 
	

y 
	 z 	 u(eq) 

Table 3. 	Bond lengths [A] and angles [deg] for mpOSOl. 

N(1)-C(2) 1.314(2) 
N(1)-C(9) 1.395(2) 
C(2)-N(3) 1.360(2) 
C(2)-C(1') 1.500(2) 
N(3)-C(4) 1.384(2) 
N(3)-H(3) 0.88(3) 
C(4)-C(5) 1.396(2) 
C(4)-C(9) 1.400(2) 
C(5)-C(6) 1.387(2) 
c(S)-H(S) 0.9500 
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C(6)-C(7) 1.407(3) 
C(6)-H(6) 0.9500 
C(7)-C(8) 1.382(3) 
C(7)-H(7) 0.9500 
C(8)-C(9) 1.404(2) 
C(8)-H(8) 0.9500 
0(1')-c(11) 1.4246(19) 
0(1')-c(5') 1.4338(18) 
C(1')-c(2') 1.531(2) 
C(1')-H(1') 1.0000 
0(2')-c(2') 1.412(2) 
0(2')-H(2') 0.85(3) 
C(2')-c(3') 1.529(2) 
C(2')-H(2'1) 1.0000 
0(3')-c(3') 1.426(2) 
0(3')-H(3') 0.86(3) 
c(3')-c(4') 1.524(2) 
c(3')-H(3'1) 1.0000 
0(4')-c(4') 1.4248(19) 
0(4')-H(4') 0.84(3) 
c(4')-c(5') 1.530(2) 
C(4')-H(4'1) 1.0000 
c(5')-c(6') 1.514(2) 
c(5')-H(5') 1.0000 
0(6')-c(6') 1.430(2) 
0(6')-H(6') 0.87(3) 
c(6')-H(6'1) 0.9900 
C(6')-H(6'2) 0.9900 

c(2)-N(1)-c(9) 104.92(14) 
N(1)-C(2)-N(3) 113.30(15) 
N(1)-C(2)-C(1') 124.26(16) 
N(3)-C(2)-C(1') 122.42(14) 
C(2)-N(3)-c(4) 106.86(14) 
C(2)-N(3)-H(3) 121.1(17) 
C(4)-N(3)-H(3) 131. 3(17) 
N(3)-C(4)-C(5) 131.98(17) 
N(3)-C(4)-C(9) 105. 31(15) 
C(5)-C(4)-C(9) 122. 70(15) 
C(6)-c(5)-c(4) 116.06(17) 
C(6)-c(5)-H(5) 122.0 
C(4)-c(5)-H(5) 122.0 
C(5)-C(6)-C(7) 121.90(17) 
C(5)-c(6)-H(6) 119.0 
C(7)-c(6)-H(6) 119.0 
C(8)-c(7)-c(6) 121. 71(16) 
C(8)-c(7)-.H(7) 119.1 
C(6)-c(7)-H(7) 119.1 
c(7)-c(8)-c(9) 117.16(17) 
C(7)-c(8)--H(8) 121.4 
C(9)-c(8)-H(8) 121.4 
N(1)-C(9)-C(4) 109.60(14) 
N(1)-C(9)-.C(8) 129. 93(17) 
C(4)-C(9)-C(8) 120.46(16) 
C(1')-0(1')-c(5') 112.74(12) 
o(1')-c(l' )-c(2) 107.40(13) 
0(1')-c(1')-c(2) 110.62(12) 
C(2)-c(1')-c(2') 110.97(13) 
0(1' )-c(1' )-H(1') 109.3 

109.3 
109.3 

C(2')-O(2')-H(2') 108(2) 
0(2')-c(2')-c(3') 112.30(14) 
0(2')-c(2')-c(1') 106.37(13) 

109.12(13) 
0(2')-c(2')-H(2'1) 109.7 

109.7 
109.7 
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0(3': 
0(3': 
C(4 1  

o(3' 
C(4' 1  

 
C(4 1  
0(4' 
0(4' 

 
0(4' 
c(3' 
C(5 1  
0(1' 
0(1' 
c(6' 
0(1' 
c(6' 
C(4 1  
c(6' 
0(6' 
0(6' 
C(5 1  
0(6' 
C(5 1  
H (6' 

-0(3')-H(3') 
-c(3')-C(4') 
-c(3')-C(2') 
-c(3')-C(2') 
-c(3' )-H(3' 1) 
-c(3' )-H(3' 1) 

)-H(3' 1) 
-0(4')-H(4') 

)-c(3') 
-c(4' )-c(5') 
-c(4')-C(5') 
-c(4' )-H(4' 1) 
-c(4' )-H(4' 1) 
-c(4' )-H(4' 1) 
-c(5' )-C(6') 

-c(5' )-c(4') 

l-c(5')-H(5') 
l-c(5' )-H(5') 
-o(6' )-H(6') 
-c(6' )-c(5') 
)-C(6' )-H(6' 1) 
)-C(6' )-H(6' 1) 
)-C(6' )-H(6' 2) 
)-C(6' )-H(6' 2) 
L)-C(6')-H(6'2) 

Appendix 7 
111.7(18) 
106.90(13) 
111.72(13) 
110.51(14) 
109.2 
109.2 
109.2 
107.5(18) 
111. 52(14) 
112.49(13) 
109.74(13) 
107.6 
107.6 
107.6 
106.39(13) 
109.79(12) 
113. 59(13) 
109.0 
109.0 
109.0 
108.6(19) 
109.14(13) 
109.9 
109.9 
109.9 
109.9 
108.3 

symmetry transformations used to generate equivalent atoms: 

Table 4. 	AnisotropiC displacement parameters (AA2 x 10A3) for mpOSOl. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 ull + ... + 2 h k a* b* U12 ] 

ull 	u22 	u33 	u23 	u13 	u12 

N(1) 19(1) 18(1) 20(1) 01 

C(2) 16(1) 17(1) 17(1) -11 

N(3) 19(1) 19(1) 18(1) 11 

C(4) 18(1) 19(1) 17(1) -31 

C(S) 26(1) 21(1) 21(1) ii 

c(6) 32(1) 26(1) 17(1) Si 

 28(1) 36(1) 19(1) ii 

 24(1) 27(1) 21(1) -2 

C(9) 19(1) 18(1) 18(1) -1 

0(1') 21(1) 16(1) 15(1) 1' 

c(1') 17(1) 17(1) 17(1) 1 

0(2') 21(1) 28(1) 25(1) -11 

C(2') 16(1) 18(1) 18(1) -1 

0(3') 22(1) 29(1) 21(1) -5 

C(3') 18(1) 16(1) 18(1) 1 

0(4') 24(1) 27(1) 18(1) 5 

c(4') 17(1) 18(1) 15(1) 2 

C( 15' ) 18(1) 18(1) 15(1) 2 

0(6 1 ) 22(1) 17(1) 27(1) -2 

C(6') 20(1) 20(1) 18(1) -1 

Table 5. 	Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10A3) for mpOSOl. 
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y z u(eq) 

 
 

1268 
-1273 

4104 
4200 

-4012 
-5711 

27 
30 

 -4028 2571 
756 

-5943 
-4511 

34 
29 

 
H(1') 

-4333 
-100 -549 -264 20 

H(2'1) 
H(3'1) 

4169 
3050 

187 
-1899 

-1009 
789 

21 
21 

H(4'1) 
H(S') 

5075 
782 

720 
-93 

1313 
1882 

20 
20 

H(6'1) 
H(6'2) 

278 
2214 

2178 
1482 

2598 
3421 

23 
23 

H(6') 
H(3) 

2530(40) 
2080(40) 

3680(40) 
2460(30) 

2260(30) 
-1720(20) 

40(7) 
28(6) 

H(4') 
H(3) 

3960(40) 
6350(40) 

-1160(30) 
-2000(30) 

2970(20) 
-260(30) 

33(7) 
47(8) 

H(2') 3960(50) -1750(40) -1940(30) 48(8) 
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Table 1. crystal data and structure refinement for 1as069. 

contact 	 Stephen Moggach, s.moggach@ed.ac.uk  

A. CRYSTAL DATA 

Empirical formula 	 c25 H28 N2 010 

Formula weight 

wavelength 

Temperature 

crystal system 

Space group 

Unit cell dimensions 

CZ5 HLD NZ U, HZ 0  

498.48 

0.71073 A 

150(2) K 

orthorhombic 

P 21 21 21 

a = 9.9570(9) A alpha = 90 deg. 
b = 13.8850(12) A beta = 90 deg. 
c = 18.0620(18) - A gamma = 90 deg. 

2497.1(4) AA3 

4478 (4.510 < theta < 60.405 deg.) 

4 

1.326 Mg/mA3 

0.102 mmA-1 

1048 

Vol ume 

Number of reflections for cell 

Z 

Density (calculated) 

Absorption coefficient 

F(000) 

B. DATA COLLECTION 

Crystal description 

crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

independent reflections 

Scan type 

Absorption correction 
0.86, Tmax=1.00)  

yellow block 

0.50 x 0.36 x 0.20 mm 

1.85 to 30.31 deg. 

-13<=h<=14, -19<=k<=17, -15<=l<=24 

16966 

7043 [R(int) = 0.0323] 

\w 

semi-empirical from equivalents (Tmi n= 

C. SOLUTION AND REFINEMENT. 

Solution 

Refinement type 

Program used for refinement 

Hydrogen atom placement 

Hydrogen atom treatment 

direct (sHELxS-97 (sheldrick, 1990)) 

Full-matrix least-squares on FA2 

SHELXL-97 

geom 

mixed 
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Data / restraints / parameters 	7043/4/350 

Goodness-of-fit on FA2 

Conventional R [F>4sigma(F)] 

weighted R (FA2 and all data) 

Absolute structure parameter 

Final maximum del ta/sigma 

1.112 

RI = 0.0546 [6329 data] 

wR2 = 0.1302 

1.3(9) 

0.051 

weighting scheme 
caic w=1/[\5A2A(F0A2A)+(0.0509p)A2A+0. 7065P] where P=(F0A2A+2FcA2A)/3 

Largest diff. peak and hole 	0.310 and -0.244 e.AA-3 

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10A3) for ias069. 	u(eq) is defined 
as one third of the trace of the orthogonalized uij tensor. 

x y z u(eq) 

N(1) 1653(2) 2364(1) 10807(1) 24(1) 
C(1 1 ) 2706(2) 2223(1) 9597(1) 23(1) 
C(2) 2499(2) 2764(1) 10311(1) 24(1) 
C(2') 1606(2) 2510(1) 9040(1) 23(1) 
N(3) 3046(2) 3611(1) 10368(1) 26(1) 
C(3') 1655(2) 1907(1) 8339(1) 24(1) 
C(3A) 2634(2) 4189(2) 10968(1) 28(1) 
C(4) 3040(3) 5135(2) 11015(l) 38(1) 
C(4') 1842(2) 834 1) 8496(1) 24(1) 
C(5) 2607(3) 5707(2) 11614(2) 46(1) 
C(5') 2931(2) 678(1) 9085(1) 24(1) 
C(6) 1814(3) 5344(2) 12159(2) 44(1) 
0(6') 2585(1) 1218(1) 9733(1) 24(1) 
C(6') 3135(2) -353(2) 9312(1) 29(1) 
C(6A) 1354(2) 4376(2) 12137(1) 35(1) 

 527(2) 3943(2) 12679(1) 43(1) 
 93(3) 3015(2) 12603(1) 42(1) 
 452(2) 2456(2) 11980(1) 34(1) 

C(9A) 1277(2) 2854(2) 11450(1) 27(1) 
C(9B) 1761(2) 3807(2) 11520(1) 27(1) 
0(21) 1813(2) 3494(1) 8822(1) 27(1) 

 1120(2) 4177(2) 9205(1) 28(1) 
0(23) 273(2) 3986(1) 9657(1) 34(1) 

 1573(3) 5164(2) 8989(1) 40(1) 
0(31) 373(2) 2084(1) 7985(1) 28(1) 

 336(3) 2149(1) 7237(1) 31(1) 
0(33) 1283(2) 2004(1) 6843(1) 41(1) 

 -1040(3) 2441(2) 6984(2) 46(1) 
0(41) 2351(2) 376(1) 7836(1) 30(1) 

 1467(2) -37(2) 7364(1) 30(1) 
0(43) 293(2) -115(1) 7500(1) 43(1) 

 2143(3) -346(2) 6669(2) 45(1) 
0(61) 1912(2) -697(1) 9660(1) 34(1) 

 1918(3) -1642(2) 9844(1) 37(1) 
0(63) 2829(2) -2164(1) 9691(1) 56(1) 

 654(4) -1940(2) 10217(2) 69(1) 
0(15) 72(2) 647(1) 10594(1) 32(1) 

Table 3. Bond lengths [A] and angles [deg] for ias069. 
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1) -c(2) 
1) -c(9A) 

:
1)-H(l) 
1')-o(6') 

:
1')-C(2) 
1')-c(2') 
1')-H(i') 
2)-N(3) 
2' )-o(21) 
2')-c(3') 
2')-H(2') 

-C(3A) 
3')-0(31) 
3')-C(4') 
3')-H(3') 
3A) -c(4) 
3A)-C(9B) 
4)-c(s) 

-H(4) 
4')-0(41) 
4')-c(S') 
4')-H(4') 
5)-c(6) 
5)-H(S) 
5')-o(6') 
S')-C(6') 
5')-H(S') 
6)-c(6A) 

-H(6) 
6')-0(61) 
6')-H(6'1) 
6')-H(6'2) 
6A)-c(7) 
6A)-C(9B) 

-c(8) 
7)-H(7) 
8)-c(9) 

-H(8) 
9)-C(9A) 
9)-H(9) 
9A)-C(9B) 
21)-c(22) 

23) 
-c 23) 
-H 2 3A) 
-H 23B) 
-H 2 30 

 
-o 33) 

 
-H 3 3A) 
-H 33B) 
-H 330 

 
-o 43) 

 
-H 43A) 
-H 43B) 
-H 430 

62) 
62)-o 63) 
62)-c 63) 
63)-H 63A) 
63)-H 63B) 
63)-H 630 
1S)-H is) 
1S)-H 2s) 

N 
N 
N 
C 
C 
C 
C 
C 
C 
C 
C 
N 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
CI 
Cl 
Cl 
Cl 
o 
Cl 
Cl 
Cl 
Ci 
Ci 
01 
Cl 
Cl 
Cl 
Cl 
Cl 

C 
C 
C 
C 
C 
0 
C 
C 
C 
C 
C 
0 
0 
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1.351(3) 
1.396(3) 
0.898(16) 
1.422(2) 
1.506(3) 
1.539(3) 
1.0000 
1.300(2) 
1.438(2) 
1.519(3) 
1.0000 
1.410(3) 
1.448(2) 
1.529(3) 
1.0000 
1.377(3) 
1.425(3) 
1.409(4) 
0.9500 
1.443(2) 
1.533(3) 
1.0000 
1.359(4) 
0.9500 
1.432(2) 
1.503(3) 
1.0000 
1.420(4) 
0.9500 
1.450(3) 
0.9900 
0.9900 
1.413(4) 
1.426(3) 
1.367(4) 
0.9500 
1.412(3) 
0.9500 
1.378(3) 
0.9500 
1.414(3) 
1.362(2) 
1.202(3) 
1.494(3) 
0.9800 
0.9800 
0.9800 
1.355(2) 
1.199(3) 
1.500(4) 
0.9800 
0.9800 
0.9800 
1.353(3) 
1.199(3) 
1.489(3) 
0.9800 
0.9800 
0.9800 
1.354(3) 
1.193(3) 
1.486(4) 
0.9800 
0.9800 
0.9800 
0.862(16) 
0.866(17) 
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c(2)-N(1)-c(9A) 121.21(17) 
C(2)-N(1)-H(1) 118.4(16) 
c(9A)-N(1)-H(1) 3(17) 
0(6')-c(1)-c(2) 109.29(15) 
0(6')-c(1')-c(2') 107.80(14) 
c(2)-c(1')-c(2') 109.45(15) 
0(6')-c(1')-H(1') 110.1 
c(2)-c(1')-H(1') 110.1 
c(2')-c(1')-H(1') 110.1 
N(3)-C(2)-N(1) 125.57(18) 
N(3)-C(2)-C(1') 117.46(18) 
N(1)-C(2)-C(1') 116.64(16) 
0(21)-c(2')-c(3') 106.85(15) 
0(21)-c(2')-c(1') 108.88(15) 
c(3')-c(2')-c(1') 	- 112.32(16) 
0(21)-c(2')-H(2') 109.6 
c(3')-c(2t)-i-i(2') 109.6 
c(1')-c(2')-H(2') 109.6 
C(2)-N(3)-C(3A) 116.94(18) 
0(31)-c(3')-c(2') 104.26(15) 
0(31)-c(3')-c(4) 110.76(15) 
c(2')-c(3')-c(4') 112.69(16) 
0(31)-c(3')-H(3') 109.7 
c(2')-c(3')-H(3') 109.7 
c(4')-c(3)-H(3') 109.7 
c(4)-c(3A)-N(3) 120.3(2) 
c(4)-c(3A)-c(9B) 119.4(2) 
N(3)-C(3A)-C(9B) 120.26(18) 
c(3A)-c(4)-c(5) 119.7(2) 
c(3A)-c(4)--H(4) 120.2 
C(5)-C(4)-H(4) 120.2 
0(41)-c(4')-c(3') 108.54(16) 
0(41)-c(4')-c(5t) 105.22(15) 
c(31)_c(4!)_c(51) 110.64(15) 
O(41)-C(4)-H(4') 110.8 
c(3t)-c(4')-H(4') 110.8 
c(5')-c(4')-H(4') 110.8 
C(6)-C(5)-C(4) 7(2) 

119.2 
C(4)-C(5)-H(5) 119.2 
0(6t)-c(5')-c(6') 107.92(16) 
0(6')-c(5')-c(4') 108.82(15) 
c(6')-c(5')-c(4') 114.81(16) 
0(6')-c(5')-H(5') 108.4 
c(6')-c(5')-H(5') 108.4 
c(4')-c(5')-H(5') 108.4 
C(5)-C(6)-C(6A) 121.2(2) 
C(5)-C(6)-H(6) 119.4 
c(6A)-c(6)-H(6) 119.4 
c(1')-0(6t)-c(5') 110.65(14) 
0(61)-c(6')-c(5') 108.56(16) 
0(61)-c(6')-H(6'1) 110.0 
c(5')-c(6')-H(6'1) 110.0 
0(61)-c(6')-H(6'2) 110.0 
c(5')-c(6')-H(6'2) 110.0 
H(6'1)-C(6')-H(6'2) 108.4 
c(7)-c(6A)-c(6) 124.9(2) 
c(7)-c(6A)-c(9B) 118.1(2) 
c(6)-c(6A)-c(9B) 117.0(2) 
C(8)-C(7)-C(6A) 121.0(2) 
C(8)-C(7)-H(7) 119.5 
c(6A)-c(7)-H(7) 119.5 
C(7)-C(8)-C(9) 121.3(2) 
C(7)-C(8)-H(8) 119.4 
C(9)-C(8)-H(8) 119.4 
c(9A)-c(9)-c(8) 119.0(2) 
c(9A)-c(9)-H(9) 120.5 
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C(8)-C(9)-H(9) 120.5 
c(9)-c(9A)-N(1) 122.8(2) 
c(9)-c(9A)-c(98) 121.1(2) 
N(1)-C(9A)-C(98) 116.08(18) 
c(9A)-c(9B)-c(3A) 119. 57(18) 
c(9A)-c(9B)-c(6A) 119. 5(2) 
c(3A)-c(9B)-c(6A) 120.9(2) 
c(22)-o(21)-c(2') 116.75(15) 
0(23)-c(22)-0(21) 123.10(19) 
0(23)-c(22)-c(23) 126.2(2) 
0(21)-c(22)-c(23) 110.65(19) 
C(22)-C(23)-H(23A) 109.5 
C(22)-C(23)-H(23B) 109.5 
H(23A)-C(23)-H(23B) 109.5 
C(22)-C(23)-H(23C) 109.5 
H(23A)-C(23)-H(23C) 109.5 
H(23B)-C(23)-H(23C) 109.5 
c(32)-0(31)-c(3') 118.41(17) 
0(33)-c(32)-0(31) 124.0(2) 
0(33)-c(32)-c(33) 125.6(2) 
0(31)-c(32)-c(33) 110.3(2) 
c(32)-c(33)-H(33A) 109.5 
C(32)-C(33)-H(33B) 109.5 
H(33A)-C(33)-H(33B) 109.5 
c(32)-c(33)-H(33c) 109.5 
H(33A)-C(33)-H(33C) 109.5 
H(338)-C(33)-H(33C) 109.5 
c(42) -0(41) -c(4') 118.61(16) 
0(43)-c(42)-0(41) 122.9(2) 
0(43)-c(42)-c(43) 126.0(2) 
0(41)-c(42)-c(43) 111. 10(19) 
C(42)-C(43)-H(43A) 109.5 
C(42)-C(43)-H(43B) 109.5 
H(43A)-C(43)-H(43B) 109.5 
C(42)-c(43)-H(43c) 109.5 
H(43A)-C(43)-H(43C) 109.5 
H(43B)-C(43)-H(43C) 109.5 
c(62) -0(61) -c(6') 114.96(18) 
0(63)-c(62)-0(61) 122.3(2) 
0(63)-c(62)-c(63) 125. 5(2) 
0(61)-c(62)-c(63) 112.2(2) 
C(62)-C(63)-H(63A) 109.5 
C(62)-C(63)-H(63B) 109.5 
H(63A)-C(63)-H(63B) 109.5 
C(62)-C(63)-H(63c) 109.5 
H(63A)-C(63)-H(63C) 109.5 
H(63B)-C(63)-H(63C) 109.5 
H(1S)-0(1S)-H(2S) 106(2) 

Symmetry transformations used to generate equivalent atoms: 

Table 4. 	Anisotropic displacement parameters (AA2 x 10A3) for ias069. 
The anisotropic displacement factor exponent takes the form: 
-2 piA2 [ hA2 a*A2 ull + ... + 2 h k a* b* u12 ] 

ull u22 u33 u23 u13 u12 

N(1) 27(1) 23(1) 23(1) -3(1) -1(1) -2(1) 
c(1 1 ) 21(1) 23(1) 24(1) -4(1) 0(1) -1(1) 
C(2) 23(1) 24(1) 24(1) -1(1) -4(1) 2(1) 
C(2') 24(1) 22(1) 22(1) -1(1) 2(1) -1(1) 
N(3) 26(1) 25(1) 26(1) -2(1) -3(1) -2(1) 
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C(3') 24(1) 27(1) 21(1) -3(1) 1(1) -3(1) 
C(3A) 24(1) 29(1) 30(1) -6(1) -7(1) 2(1) 
C(4) 37(1) 32(1) 45(1) -9(1) -6(1) -2(1) 
C(4') 22(1) 25(1) 24(1) -6(1) 1(1) -2(1) 

 44(1) 33(1) 61(2) -19(1) -15(1) 0(1) 
c(S') 20(1) 25(1) 28(1) -5(1) 1(1) -1(1) 

 38(1) 44(1) 50(1) -26(1) -11(1) 14(1) 
0(6') 26(1) 22(1) 24(1) -3(1) -1(1) 1(1) 
C(6') 27(1) 27(1) 34(1) -6(1) -1(1) 1(1) 
C(6A) 29(1) 43(1) 34(1) -15(1) -9(1) 11(1) 

 33(1) 63(2) 32(1) -20(1) -1(1) 14(1) 
 33(1) 64(2) 28(1) -5(1) 6(1) 5(1) 
 31(1) 44(1) 28(1) -1(1) 1(1) 0(1) 

C(9A) 24(1) 33(1) 23(1) -2(1) -5(1) 3(1) 
C(9B) 24(1) 32(1) 27(1) -5(1) -6(1) 6(1) 
0(21) 32(1) 23(1) 24(1) 0(1) 3(1) -1(1) 

 30(1) 27(1) 25(1) -2(1) -5(1) 2(1) 
0(23) 30(1) 33(1) 41(1) -4(1) 5(1) 4(1) 

 51(2) 27(1) 41(1) 1(1) -2(1) 1(1) 
0(31) 28(1) 33(1) 24(1) -1(1) -3(1) -1(1) 

 49(1) 21(1) 24(1) 2(1) -5(1) -6(1) 
0(33) 59(1) 40(1) 25(1) 1(1) 6(1) -8(1) 

 61(2) 39(1) 38(1) -2(1) -17(1) 2(1) 
0(41) 27(1) 34(1) 29(1) -12(1) 4(1) -1(1) 
C(42) 35(1) 27(1) 29(1) -6(1) -2(1) -1(1) 
0(43) 36(1) 54(1) 40(1) -11(1) -1(1) -15(1) 
c(43) 43(1) 52(1) 41(1) -22(1) -1(1) 6(1) 
0(61) 36(1) 25(1) 41(1) 0(1) 7(1) 1(1) 

 50(1) 27(1) 36(1) -1(1) -4(1) 0(1) 
0(63) 54(1) 32(1) 82(2) 7(1) 2(1) 9(1) 

 85(2) 41(2) 81(2) 13(2) 36(2) -5(2) 
o(ls) 28(1) 31(1) 38(1) -3(1) -1(1) 1(1) 

Table 5. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10A3) for ias069. 

x y z u(eq) 

H(1) 1300(20) 1784(13) 10704(14) 33(7) 
H(1') 3613 2371 9389 27 
H(2') 704 2442 9278 27 
H(3') 2398 2141 8013 29 
H(4) 3609 5401 10645 46 
H(4) 975 533 8654 28 
t-i(5) 2876 6362 11637 SS 
H(5') 3800 931 8887 29 

 1563 5745 12561 52 
H(6'1) 3346 -752 8873 35 
H(6'2) 3894 -400 9664 35 

 269 4303 13103 51 
 -460 2740 12975 50 
 129 1816 11928 41 

H(23A) 1072 5644 9275 59 
H(23B) 1408 5263 8459 59 
H(230 2535 5231 9091 59 
H(33A) -1120 3144 7002 69 
H(33B) -1716 2151 7309 69 
H(330 -1183 2219 6475 69 
H(43A) 1645 -884 6449 68 
H(43B) 3062 -552 6780 68 
H(43C) 2166 193 6319 68 
H(63A) -31 -2082 9843 104 
H(63B) 339 -1417 10538 104 
H(630 820 -2517 10516 104 
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H(1S) 	-560(20) 
H(2S) 	 560(30) 

Appendix 8 

	

857(19) 	10312(14) 	44(8) 

	

280(20) 	10317(16) 	69(11) 
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Abstract—Addition of amines to pyranosyl nitrile oxides, generated by base-induced dehydrochlorination of the corresponding 
hydroximoyl chloride, affords pyranosyl N-alkyl/aryl-formamide oximes (41-90%). Reaction with amino acid esters yields the cor-
responding amidoximes and/or 3-pyranosyl- I ,2,4-oxadiazin-6-ones. The structure of N-phenyl-C-(2,3,4-tri-O-acetyl--o-xylopyrano-
syl)formamide oxime was established by X-ray crystallography. 
© 2004 Elsevier Ltd. All rights reserved. 

We have recently reported a short and efficient synthetic 
route from monosaccharides to pyranosyl hydroximoyl 
chlorides.' -3  The approach, which is illustrated in 
Scheme. 1 for the D-glucose-derived compound 1, in-
volves addition of nitromethane to D-glucose and acetyl-
ation to afford the pyranosylnitromethane 2, followed 
by reduction to oxime 3, and finally reaction with chlo-
rine. The hydroximoyl chorides were then used as a 
source of the corresponding nitrile oxide, for example, 
4, from which a variety of novel C-glycosides were pre-
pared by cycloaddition to dipolarophiles XY. 

We now report that dehydrochlorination of these 
hydroximoyl chlorides in the presence of a primary or 
secondary amine provides easy access to a range of no-
vel pyranosyl amidoximes (Scheme 2). 1,3-Addition of 
amines to arene nitrite oxides has been known for many 
years 4,5  and the resulting amidoximes have been shown 
to have a variety of useful properties. These include 
metal ligation 6-8  and biological activity, for example, 
as nitric oxide donors  and amidine prodrugs.'° Less 
attention, however, has been paid to carbohydrate ana-
logues; rare examples include cyclic amidoximes as 
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glycosidase and glycosyl transferase inhibitors 11,12  and 
amidoxime-linked 11ucleosides) 3  

In the present work the pyranosyl nitrite oxides were 
generated by dehydrochiorination of the corresponding 
hydroxinioyl chlorides in situ in order to minimise dime-
risation to I ,2,5-oxadiazole N-oxides (furoxans), which 
are often formed as by-products in reactions involving 
nitrile oxides. 34  In it typical experiment a solution of 
the glucopyranosyl-hydroximoyl chloride I (0A4 mmol) 
in dry chloroform (40m1) was added dropwise over 3h 
to a cooled (0°C) vigorously stirred solution of benzyl-
amine (1.32mmol) and dry triethylamine (7.1mmol) in 
dry chloroform (5 ml) under nitrogen. Removal of the 
solvent and chromatography of the residue (silica, hex-
ane-EtOAc) afforded the N-benzyl amidoxime 5 
(R 2  = Bn. R 3  = H) in 80% yield. The furoxan dimer 9 
was not detected. D-Xylopyranosyl nitrite oxide 6, gen-
erated from the hydroximoyl chloride 7. reacted simi-
larly to yield amidoxime 8 (R 2  = Bn. R 3  = I-I) (67Vo). 
The structures of the products were assigned on the ba-
sis of their spectroscopic properties; for example, in the 
NMR spectrum of D-xylose-derived aniidoxime 8 
(R 2  = Bn, R 3  = H) there are, in addition to the expected 
signals for the carbons and protons of the pyranosyl and 
benzene rings, distinctive peaks for the oxime unit [ó 
148.9 ppm (CN)] and the attached NHCH group [5F1 
4.38 (CH 1 ). 4.39ppm (CH I,), 5.22 (NH): JNII ,i 5.5, 
iNtl (Al,, 6.8, J(11  14.61 1z; - 46.4 ppm (CH)]. 

Nitrite oxide 6 also reacted readily with 1-aminobutane. 
morpholine and allylamine to afford the corresponding 
adducts (8 R 2  = Bu, R' = I-I; 637)), (8 R 2 R 3  
CH,CHOCH2CH; 677) and (8 R2 = CU7CH=CH,, 
R 3  = H; 41Vo). It is noteworthy that in the latter case 
the isolated product results from addition of the nitrite 
oxide to the amine moiety in allytamine rather than 
cycloaddition to the alkene. 

More forcing conditions were used for the correspond- 
ing reactions with aniline. Heating a 2:1 mixture of ani- 

line and i)-glucopyranosyl-hydroximoyl chloride I in 
ethanol at reflux for 5h afforded amidoxirne 5 

0 (R = Ph. R 	H) in 80/a yield. The corresponding 
reaction with n-xylop'ranosyl nitrile oxide 6 gave amid-
oxime 8 (R = Ph, R = H) (907). In neither case was 
there any evidence for the formation of the furoxan di-
met-  (9,10). However, reaction with aniline in the pres-
ence of triethylamine as dehydrochlorinating agent 
afforded a mixture (-..'1:3) of the amidoxime and the 
f'uroxan. 

The structure of the adduct 8 (R 2  = Ph. R 3  = H) formed 
by 1,3-addition of aniline to nitrite oxide 6 was estab-
lished by X-ray crystallography (Fig. 1)) Of particular 
note are the 2-configuration of the oxime moiety and 
the s-trans conformation about the amidic nitrogen with 
the 1-I of the NHR facing the oxime OH. These results 
are in accord with previous studies indicating that such 
additions occur in a concerted, but rion synch ronous 
manner. 17  The near planarity of the NH-C=N-O unit 
[torsion angle 2.6(3)1 and the short nonbonded distance 
between the amidic N and the oxime 0 [N to 
0 = 2.508(3)  (A)1 are consistent with the existence of 
an intramolecular H-bond between these atoms. 17,111 

1. X-ray crystal structure 01 uniidoximc 8 (11 2  = Ph. R = II) 
showing the Z-s-trans arrangement. 
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Having established that simple amines such as aniline 
and benzylamine add readily to the pyranosyl nitrile oxi-
des, the corresponding reactions with amino acid esters 
were examined. The resulting adducts were considered 
of interest as they would contain an unusual amidoxime 
sugar/amino acid linkage, and extension of the reaction 
to oligopeptides might provide access to novel glycopep-
tide analogues. 

Reaction of hydroximoyl chloride 7 with glycine ethyl 
ester hydrochloride and triethylamine (1:1.5:15 molar 
ratio) at 0°C afforded a mixture of three products, two 
of which were isolated and characterised (Scheme 3). 
The first (40%) proved to be the amidoxime 11 
(R' = H, R2  = E0' 9  resulting from the expected addition 
of glycine ethyl ester to nitrile oxide 6; the other major 
product was identified from its spectroscopic proper-
ties20  as the 1,2,4-oxadiazin-6-one 12 (R' = H) PH  3.95 
(CH 2), 5.61 ppm (NH); bc  40.2 (CH2), 150.4 (C=N), 
164.6ppm (C0)], and the third was provisionally as-
signed structure 13 (R' = H, R 2  = Et) on the basis of 
its NMR and mass spectra. In contrast, when the 
reaction was repeated under the same conditions with 
glcine t-butyl ester the amidoxime 11 (R' = Pr', 
R = But) (881/6) was the only isolated product. The cor-
responding reaction with L-leucine ethyl ester afforded 
53% of amidoxime 11 (R' = CH 2CHMe2, R2  = Et) 
(53%) as the main product, which readily cyclised to 
oxadiazinone 12 (R' = CH 2CHMe2) (71%). Reaction 
with -alanine ethyl ester, for which cyclisation would re-
sult in a seven-membered ring, afforded only the expected 
amidoxime 8 (R 2 = CH 2CH2CO2Et, R3  = H) (50%). 

These results are consistent with nucleophilic addition of 
the amino acid ester to nitrile oxide 6 forming adduct 11, 
followed by intramolecular cyclisation with expulsion of 
ethanol to afford oxadiazinone 12, and finally nucleo-
philic ring opening to form dipeptide amidoxime 13 
(Scheme 3). Similar facile cyclisations of amino acid 
amidoximes have been reported previously for adducts 
from benzonitrile oxide, 2 ' and for oligopeptides incor-
porating amidoxime links. 22 

Support for the pathway shown in Scheme 3 was the 
observation that, in the presence of silica, amidoxime 

11 (R' = H, R2  = Et) was smoothly converted to oxadi-
azinone 12 (R' = H) (-.6h in CHC1 3  at reflux, 2-3 days 
at room temperature). Furthermore, reaction of nitrile 
oxide 6 with glycylglycine ethyl ester afforded the dipep-
tide amidoxime 13 (R' = H, R 2  = Et) directly (43 0/6), 

thus confirming the identity of the 2:1 adduct in the gly-
cine ethyl ester reaction described above. 

In conclusion, an efficient route to pyranosyl amid-
oximes has been established based on 1,3-addition of 
amines to pyranosyl nitrile oxides, which were generated 
from readily accessible hydroximoyl chlorides. The ad-
ducts resulting from the addition of amino acid esters 
cyclised to afford 3-pyranosyl- 1 ,2,4-oxadiazin-6-ones; 
the feasibility of using the oxadiazinones as precursors 
for pyranosyl oligopeptides is currently under 
investigation. 
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