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Abstract 

Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on 

cellular membranes and in the extracellular matrix of virtually all mammalian tissues. Their 

ability to bind proteins and alter protein-protein interactions or enzymatic activities has 

identified them as biologically important molecules. The binding specificity of GAGs is encoded 

in their primary structures, but ultimately depends on how their functional groups are presented 

to a protein in the three-dimensional space. The aim of this project is to develop and test 

methodologies for conformational studies of free and bound GAGs. 

Gas phase conformations of heparin-derived oligosaccharides were studied by using Ion 

Mobility Mass Spectrometry (IMMS) and molecular modelling. Gas phase conformations were 

modelled using the AMBER force field. Their theoretical collision cross-sections were compared 

with the IMMS data and a good agreement was obtained. The gas phase conformations of 

heparin oligosaccharides were more compact than those observed in solution or crystal structures 

of heparin-protein complexes. This was attributed to the effects of sodium cations interacting 

with the negatively charged sulfate and carboxyl groups of oligosaccharides. Adiabatic maps of 

dihedral angles vs. potential energy of disaccharide fragments of tetrasaccharides were 

calculated in the absence of the sodium cations. 

New NMR methods for the measurement of scalar and dipolar 'H-'H coupling constants and 

13C- 13C coupling constants in natural abundance 13C samples were developed. Performance of 

these methods was tested extensively. 

Solution conformation of the heparin-derived fully sulfated tetrasaccharide was studied by NMR 

spectroscopy. 'H-'H scalar coupling constants were used to characterize the dynamic equilibria 

of flexible monosaccharide rings. 'H- 1H and 'H-' 3C RDCs were used in the study of the 

conformations of the glycosidic linkages. RDC-refined structures were obtained from molecular 

dynamics with sodium cations in explicit water. 

Interactions of the heparin-derived fully sulfated tetrasaccharide with factor H modules, ffI 19, 

20 and f+-7, were studied using AUTODOCK. Conformation of a spin-labelled heparin-derived 

fully sulfated disaccharide was studied by NMIR and molecular modelling. 
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Chapter I 

Introduction 

I. 1 Glycosaminoglycans 

Glycosaminoglycans (GAGs) constitute a considerable, fraction of the glycoconjugates found on 

cellular membranes and in the extracellular matrix of virtually all mammalian tissues. Their 

ability to bind proteins and alter protein-protein interactions or enzymatic activities has 

identified them as important determinants of cellular responsiveness in development, 

homeostasis and disease. GAGs usually exist as the 0-linked side-chains of proteoglycans [1]. 

Members of the GAG family include heparin, heparan sulfate (HS), dermatan sulfate (DS), 

chondroitin sulfate (CS), hyaluronan (HA) and keratan sulfate (KS), whose unsulfated forms 

consist of repeating disaccharide units containing hexosamine and uronic acid residues (Table 

1.1.1). These polysaccharide precursors are extensively modified (epimerisation, N-deacetylation 

and N-, 0-sulfation) creating a wide heterogeneity to GAG structures. The binding specificity of 

GAGs is encoded in their primary structures, but ultimately depends on how their functional 

groups are presented to a protein in the three-dimensional space. In recent years, GAGs have 

attracted considerable attention from researchers across a spectrum of disciplines. 

Tih1e Li .1 Stnictiires of the main repeating units of different GAGs '[21 

GAGs Structure of main repeating disaccharide units 

Heparin -4)-u-L-IdoA2(0S0 3 )-( 1 -4)-a-D-GIcNSO 3 6(0S03 )-( 1- 

Unsulfated domain of HS 
Sulfated domain of HS 

-4)-D-D-G1cA-( 1 -4)-a-D-GIcNAc-( 1- 
-4)--D-IdoA2(0W0S0 3 )-( 1 -4)-a-D-GIcNSO 3 6(0H10S03 )-( 1- 

Dermatan Sulfate (DS) -4)-a-L-IdoA-( 1 -3)-f-D-GalNAc4(0S0 3 )-0- 
Chondroitin Sulfate CS4 -4)-f3-D-GlcA-( 1 -3)-3-D-Ga1NAc4(OS0 3 )-( 1- 

Chondroitin Sulfate CS6 -4)-f3-D-GlcA-(1 -3)--D-GalNAc6(OS0 3 )-0- 
Keratan Sulfate (KS) -3)-13-D-Gal-(1 -4)-[3-D-G1cNAc6(050 3 )-0- 

Hyaluronan (HA) -4)-f-D-G1cA-( 1 -3)-f3-D-GlcNAc-(1- 
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In the GAG family, heparin and HS attract major research interests because of their biological 

and pharmaceutical importance. Numerous heparin-binding proteins have been discovered and 

their binding characteristics described [3]. Among these are heparin-binding proteins such as 

basic Fibroblast Growth Factor (bFGF or FGF-2) [4], acidic FGF (FGF-1) [5], transforming 

Growth Factor -1 (TGF -1) [6], Hepatocyte Growth Factor (HGF) [7], Cardiotoxins (CTX5 [8] 

and Chemokines (CXC) [2]. HS has an important role as a co-receptor in activation of many 

growth factor receptors. By binding directly to both thrombin and antithrombin III, heparn 

inhibits blood coagulation - a property that leads to its clinical application [9]. Heparin also has a 

regulatory role in limiting inflammation, which is unrelated to its anticoagulant activity [10]. It 

has also been discovered that heparin can minimize angiogenesis, which enhances the growth of 

solid tumours [9]. 

Studies show that CS and DS chains, GlcAfIdoA-Ga1NAc, have intriguing functions in the 

central nervous system (CNS) development, wound repair, infection, growth factor signalling, 

morphogenesis and cell division [11]. CSs are used as chondroprotective and antirheumatic 

drugs in the treatment of tibiofibular osteoarthritis [12]. The presence of a sulfate group at C4 in 

Ga1NAc is thought to be important in the cytoadherence of malaria-infected red blood cells [13] 

and in the binding of the malaria parasite to placenta [14]. The over-sulfated CS with two or 

three sulfate groups per disaccharide unit exhibits enhanced antithrombotic activity [15]. CS and 

DS chains can specifically bind to some heparin-binding proteins. E.g. the interaction of DS with 

FGF-2 and FGF-7 is implicated in wound repair [6a] and DS also binds to HGF [16]. Sulfates at 

the C-2 of the iduronic acid residues and C-4 of the galactosamines constitute active regions that 

bind with HCII [17], an inhibitor of thrombin, which gives DS its mild anticoagulant activity. 

The key roles in regulating cell migration, recognition and tissue morphogenesis have been 

reviewed [18]. 

KS has been investigated as a potential early marker for osteoarthritis disease because 

osteoarthritis is associated with elevated KS levels, which can be determined by the monoclonal 

antibody [19]. Some structures or components of KS, derived from different tissues such as 

sheep brain [20], bovine [21] and bonefish [22] tissues have been studied by NIMR. 

HA have many physiological functions, such as water homeostasis, regulation of capillary 

growth, cell recognition and cell migration [23]. Some evidence suggests that HA plays an 
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essential role in the regulation of tumour growth, tissue invasion and metastasis [24]. The 

structure of a regulatory HA binding domain of the inflammatory Leukocyte Homing Receptor 

CD44 has been studied [25] by X-ray and NMR. HA-binding proteins such as TSG-6, BRAD 

have been reviewed [26]. 

In this project, heparin-derived, oligosaccharides are used for the conformational study. 

Therefore only heparin and HS conformations are discussed in the following sections. 

I. 2 Conformations of heparin and heparan sulfate (HS) 

Heparin and HS are both linear polysaccharides containing similar structural units of 1-4 linked 

pyranosyluronic acid and 2-amino-2-deoxyglucopyranose (glycosamine) residues (Fig.I.2. 1). 

The differences between their struciures are in the level of sulfate substitution and the 

occurrence of the predominant acid - idüronic acid in heparin and glucuronic acid in HS. An 

average heparin disaccharide contains 2.7 sulfate groups, whilst in HS there is only about one 

sulfate group per disaccharide unit [2]. HS contains all of the structural variations found in 

heparin but with more minor sequence variants, which makes HS much more complex than 

heparin [2]. 

CH2OSO 
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OH 	 NHSO 3T 
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CH2OH 
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NHCOCH3  
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CH 2OH/S0 3  
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Fig.I.2.lThe main' repeating disaccharide units of (a) heparin, (b) unsulfated domains of HS and (c) 

sulfated domains of HS 
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The solution conformation of heparin-derived oligosaccharide from NMR studies shows a 

helical structure with clustering of sulfate groups on two sides of the molecule [27]. The distance 

between the sulfate groups in the same position in the two consecutive repeating disaccharide 

units and at the same face of the helix is about 17 A [24]. This ribbon-like structure exists in 

both the free heparin in solution and the bound heparin in crystal structures [1]. When interacting 

with polylysine, heparin adopts a right-handed a-helical form, in which the sulfate groups are 

spaced at intervals of 17 A and match the spacing of lysine side-chains very well [27]. But a 

different geometry [3d] of heparin exists in the ternary complex of FGF1-FGFR2-heparin [4c], 

where a 'single, asymmetric' heparin molecule links the FGF-FGFR binary complexes [3c]. 

In carbohydrates the conformational flexibility is usually associated with glycosidic linkages, 

while the individual monosaccharide rings form rigid structures. This is not the case for heparin, 

where additional flexibility is conferred by the IdoA residues [1]. The conformation of the 

flexible L-iduronic acid (IdoA) residue varies depending on its substitution pattern and relative 

position in the polymeric chain [2]. Three possible conformations, 4C 1 , 'C4  and 2 S0  (Fig.I.2.2), 

exist when the IdoA is at the reducing end of the oligosaccharide. However, the internal IdoA 

adopts equilibrium between 'C 4  and 2S0  forms, apparently, without causing the whole 

polysaccharide chain to bend [1]. The 2S0  form appears to be slightly favoured [28]. One 

Molecular Dynamics (MD) study of heparin decasaçcharide in explicit water was carried out 

showing that IdoA shares both 2S0  and 'C4  conformations during a 3ns simulation [29]. 

4C 
I 

— 

Icoo_ 
so; 

1C  

OH •00 

so; 

2s0  

~'o
O_  

...-OHO 

\ 	O 

S037  

Fig.I.2.2 4C,, 1 C4  and 2S0  conformations of the iduronic acid residue [33]. In the chair forms, atoms C2, 

C3, CS and 05 are in one plane (the atom numbering is clockwise); in 4C, form C4 is above the plane 

while CI is below. In 'C 4  form, Cl is above the plane while C4 is below. In 2 S0  form, a plane can be 

defined containing atoms Cl, C3, C4 and C5, where C2 is above the plane while OS is below. 

Heparin and HS oligosaccharides prepared by enzymatic cleavage of polysaccharides contain a 

terminal unsaturated uronic acid residue (,UA). This residue can exist in either 2H, or 1 H2  forms 
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(Fig.I.2.3), and the equilibration between these two conformers is controlled by the sulfation 

pattern of this residue [25, 30]. NMR studies show that '112 is generally the favoured 

conformation [31], although both forms appeared in the same unit cell in a crystal structure [32], 

which indicates that they have nearly the same energy. 

2H 1  

- 	

— 	
o; 

so; 

Fig.I.2.3 'H2  and 2H, conformations of 4,5-unsatarated uronic acid residue [30]. When the atom 

numbering is clockwise, the plane is formed by C3, C4, C5 and 05. In the 'H2  form C  is above the plane 

while C2 is below. In the 2H, form C2 is above the plane while C  is below. 

Solution conformations of heparin-derived tetra- [28] and hexasaccharides [34a] and synthesized 

heparin-like hexasaccharides [34b] have been studied by NMR and molecular modelling. All 

glucosamine rings in the hexasaccharide showed 4C, conformation, while the iduronate rings 

were in the equilibrium between 'C 4  and 2S0  forms [31]. Both forms (for different IdoA residues) 

were found in the crystal structure of the heparin-derived hexasaccharide bound to FGF [31a, b]. 

This was also observed in the complex of a synthesized heparin-like hexasaccharide bound to 

FGF-1 [31c]. The glucosamines of the tetrasaccharide were also in the 4C, form while the 

iduronate rings mainly showed the 2 S 0  form rather than the 'C 4  form [28]. When bound to FGF-

2, the iduronate rings were stabilized in the 'C 4  form [28]. 

Alongside the studies of free heparin/HS structures, many protein-heparin/HS complexes have 

been investigated [2, 3c, 9, 35]. The existence of different sulfation patterns and alternative 

structural subunits in heparin/HS oligosaccharides [36] has direct consequences for their activity 

that is manifested through the binding to their protein receptors [37]. Studies that involve 

determination of residue types and sulfation patterns required for binding are therefore very 

important. Equally important is the determination of the conformation of GAGs in the bound 

state. In the complex of Annexin V [38] with a heparin-derived tetrasaccharide, the sugar shows 

a helical conformation that was also found by NMR in the free dodecasaccharide [39]. The 
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terminal uronate is in 1 112  form and the glucosamine residues are in 4C, form. The internal 

IdoA2S show both 2  S and 'C4  forms. In the co-crystal of bFGF with both tetra- and 

hexasaccharides [4a] containing internal -IdoA(2S0 3)-G1cNS03(60S03) sequences, the internal 

IdoA residues also show both 2 S0  and 'C4  forms. The IdoA(2S0 3) that was in contact with the 

protein was in the 'C 4  chair conformation while the interacting G1cNS0 3(60S03) residue was in 

the 4C 1  chair form. 

These examples illustrate that a variety of conformations exist in the heparinfHS family, 

Conformation studies of heparin/HS oligosaccharides mainly deal with the fully sulfated species 

and only a few studies have been carried out focussing on the effects the different sulfation 

patterns have on the conformation of these polyanions [40]. The negatively charged groups play 

important roles in protein binding; nevertheless, it is likely that the conformational changes that 

accompany the loss of specific sulfate groups are equally important in the recognition processes. 

I. 3 Aims of the project 

The aim of this project is to develop and test methodologies that can potentially be useful in the 

conformational studies of free and bound GAGs. In details the aims of the project are: 

+ study of the gas phase conformations of sodiated GAG oligosaccharide ions by Ion 

Mobility Mass Spectrometry (IMMS); 

+ study of the solution conformations of GAGs by NMR; This part of program lead to 

researches outlined in the next two points; 

•• development of new NMR methods for accurate and precise measurement of scalar and 

dipolar 1 H-'H coupling constants in aligned samples; 

+ development of new NMR methods for the measurement of 13C- 13C coupling constants 

in samples with natural abundance of 13 C; 

+ simulation of protein-GAG binding using docking; 

+ study of the conformation of a spin-labelled disaccharide using NMR and molecular 

modelling. 



I. 4 Molecular Modeling 

Computational methods were used to obtain molecular models of heparin-derived 

oligosaccharides for the interpretation of experimental results. Ab initio techniques consider all 

electrons for each atom in the molecule making them computationally intensive and therefore 

restricted to the optimisation of geometries of smaller systems [41]. Semi-empirical methods 

can, in principle, perform the conformational analysis [42] but they cannot consider the long 

range interactions between molecules [39]. Again, these methods are good for geometry 

optimisation of local minima. To study the conformations of oligosaccharides, a large variety of 

structures representing their dynamic nature are required to get close to the average 

conformation. Therefore the most efficient approach is to use molecular mechanics. 

In molecular mechanics, a molecule is described by simple analytical functions as a collection of 

atoms that interact with each other. Different implementations of this principle use different 

force fields such as MM3, CHARM and AMBER. All these force fields represent molecular 

energy surfaces by empirical and semi-empirical potential energy functions of small molecules 

[39] derived from experimental data such as bond lengths, bond angles, dihedral angles, strain 

energies etc. Assuming additive and transferable properties of these functions, parameters 

derived from small molecules can be used in studies of large and complex molecular systems 

[39]. AMBER uses the following additive potential energy function [43]: 

Vtotai = E Kr (r-req )2  + 	Ke(8-8eq )2  + 	V [1 + cos(n(1-y)] + 
bonds 	 angles 	 dihedrals 

2 

B ij  A 1  - 	+ qqj 	+ 	C1 	 - 	 D1 	 (Eq.I.4.1) 
<i 	R11 12 	R 6 	ERij 	H-bonds Rij 	R 1 1°  

Vtota i: total potential energy, which consists of functions of bonds, angles, dihedrals, van der Waals, 
electrostatic and H-bonds (in AMBER7 H-bonds is neglected); 

Kr: bond stretching constant; rlr eq : the (equilibrium) bond length; 	1): dihedral angle; 
I(: angle bending constant; 	O/O: the (equilibrium) angle between two/equilibrium bonds; 
V0 : the height of the torsion barrier; 	n: coefficient of symmetry, n= 1, 2, 3...; y: phase preference 
A, B, C, D: the atom-type dependent constants; q jj : the atoms' partial charges; 
R1 : the (equilibrium) distance separating the atoms' centers; 

: the relative dielectric coefficient of the medium between the charges; 

Different force fields have focused on parameterization of different functional groups. Most 

force fields are well parameterized for amino acids and nucleic acids. As the interest in 
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carbohydrates has grown, parameterizations specific to this class of molecules appeared over 

time, e.g. the GLYCAM parameter [44] set has been developed that is compatible with the 

AMBER force field. The latest version of AMIBER9 (2006) has a built-in force field 

parameterized for carbohydrates. The sulfur parameters were added in for 0S0 3  but not for 

NS03  groups, which are common in GAGs oligosaccharides. In this work AMBER7 was 

modified to include the parameters for sulfate carbohydrates (both 0S0 3  and NS03 ) and used 

for the molecular modelling. 

During a typical molecular modelling, the potential energy of the molecule is calculated by 

Eq.I.4.1, followed by an energy minimization step to drive the molecule to the nearest local 

minimum. The nature of this minimum depends on the minimization method and the initial 

conformation of the molecule. This process only explores a small percentage of the total 

conformational space. In order to sample larger conformational space, molecular dynamics and 

simulated annealing are used as the next step. Molecular dynamics explores multidimensional 

conformational spaces and provides a continuous dynamic picture of the molecular system. 

However,, this method is. limited to sampling minima with relatively small energy barriers. 

Simulated annealing can overcome high energy barriers to ensure transitions between local 

minima by heating the molecule to a high temperature. After the cooling down step, new 

conformations can be frozen out. However, not all conformations obtained by the simulated 

annealing correspond to low energy structures as' their geometries could have been distorted at 

high temperatures. 

I. 5 Ion Mobility Mass Spectrometry (IMMS) 1491 
IMMS has been used in gas phase structure analysis of biomolecules to provide information 

about their structures in the absence of solvent. Most of the researches in this area are focused on 

proteins [45] and peptides [46]. Some results were also obtained for carbon or metal clusters 

[47]. Only few papers have reported IMMS studies of carbohydrates [48]. Simple sodiated 

oligosaccharide ions were studied by Bowers et al. [45a]. 

Ion Mobility Mass Spectrometry is based on the theory of ion mobility in the gas phase [49]. 

The ion mobility of a gas phase ion is the quantity that describes how quickly the ion moves 

through a drift cell filled with a high pressure buffer gas (such as helium) under the influence of 
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a weak electric field. The shape of ions affects their speed, which results in different drifting 

times of ions in the cell. Small, compact ions with smaller collision cross-sections drift more 

quickly than large, extended ions with larger collision cross-sections. In this way, coupled with 

mass spectrometry, ions with the same mass-to-charge ratio but different shapes or structures are 

separated. 

The ion mobility is measured in a drift cell, which is usually 4-20 cm long, temperature 

controlled from 80-500 K, filled with a buffer gas at 1-5 Torr and under a weak (5-30 V cm'), 

uniform electric field. As the ions drift under the influence of the electrip field, they collide with 

He atoms. As a result of these two opposing forces, the electric field and the retardation caused. 

by collisions with a buffer gas, ions will drift through the cell with a constant velocity. The 

drifting time of ions can be expressed as: 

L 	L 	L2 	L2 T0 	P 

td = - 	= ____ = 	 (Eq.I.5.1) 
Vd 	KE 	KV 	K0P0T V 

the ion mobility; 	K0 : the reduced ion mobility; 

P: the buffer gas pressure; 	T: the cell temperature; 

PO: 76OTorr; T O : 273.15K; 

the length of the drift cell; 	V: the voltage across the cell; E: the electric field 

A plot of drifting times, td,  versus P/V ratio yields a straight line. The reduced ion mobility, K0, 

can be calculated from the slope of the line. The reduced ion mobility, K0, can be expressed as a 

function of the momentum transfer collision integral, Q, that depends on the shape of the ion. 

3e 	(2rr 1I2  I 
K0 = 	I 	

J 	
-(Eq.I.5.2) 

16N 	 c 

N: the buffer gas number density; 	j.t: the reduced mass of ion and buffer gas; 

KB: the Boltzman constant; 	e: the ion charge 

Using the experimental K0, the momentum transfer collision integral, Q, can be calculated. A 

good approximation of this integral, obtained using a Monte Carlo routine, is the projection 

cross-section, o. The theoretical projection cross-section can easily be calculated for various 
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conformations of studied molecule obtained from molecular modeling. By comparing the 

experimental and the theoretical collision cross-sections, the gas phase conformations of the ions 

can be deduced. 

I. 6 NMR spectroscopy 1501 

When placed in an external, static magnetic field, B 0, magnetic nuclei with a non-zero nuclear 

spin quantum number, I, will precess at a rate dependent on the field strength and the 

gyromagnetic ratio, y, of the spin. An associated nuclear spin magnetic moment, p,  is generated 

as a consequence of the motion of the charge bearing nuclei with the nuclear spin angular 

momentum, I (Eq.I.6.1). The magnetic moment generates a small local magnetic field, which 

interacts with the external magnetic field. The energy of the interaction can be calculated with 

the Hamiltonian operator, iTt, from the z-component of the nuclear spin angular monentum, I 

(Eq.I.6.2). 

= -yl 	 (Eq.I.6.1) 

H = -yBoI 	(Eq.I.6.2) 

The interaction energy between the nuclear magnetic moment and the external field is very much 

smaller than the energy of the thermal motion of the molecule. Therefore, individual magnetic 

moments adopt random orientations when first placed in a magnetic field. However, there is a 

slight energy difference between the two spin states of spin-half nuclei, a and P . The magnetic 

moments have a slight preference to align parallel with the external magnetic field occupying the 

lower energy a state. After time comparable to T1 , the spin-lattice relaxation time, magnetic 

moments will reach equilibrium distribution with a net bulk magnetization vector aligning 

parallel to the external magnetic field along the z-axis (Fig.I.6. 1). The process of the equilibrium 

formation is referred to as relaxation. When the bulk magnetization is flipped acquiring a non-

zero angle with the z-axis, it will execute the precessional motion. The rate of the precession is 

defined by the angular velocity, COü, or frequency u 0  as: 

wo  = -1B0 	(Eq.I.6.3) 

1)0 - - 	 (Eq.I.6.4) 
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v0  is known as the Larmor frequency (in Hz) of the nucleus. For a single spin-half nucleus, there 

are two energy levels (spin states), a (spin-up, +1/2, low energy) and 3 (spin-down, -1/2, high 

energy). When spinning nuclei absorb a quantum of energy, in the form of electromagnetic 

radiation, the spin state will change from a to P. 

yhB 
AE = h V 	 (Eq.I.6.5) 

o state 
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Fig.I.6.1 The formation of the equilibrium magnetization under external magnetic field and the Larmor 

precession 

If the frequency of the electromagnetic radiation matches the Larmor frequency of the nucleus, 

nuclear magnetic resonance signals are observed with absorption lines at specific positions 

corresponding to the Larmor frequencies in the NMR spectrum. The resonance frequencies are 

sensitive to the distribution of the electrons in the chemical bonds within the molecule. 

Therefore, the position of the absorption lines carries the structural information. 

The frequency of the absorption lines is proportional to the external magnetic field strength. This 

dependency makes it difficult to compare NIMR spectra from different magnets. Therefore, the 

chemical shift scale, which is independent of the magnetic field strength, is used. The unit of the 

chemical shift scale is ppm (parts per million). The zero ppm in 'H and ' 3C NMR spectra is 

defined using the signal of a reference compound, TMS (tetramethylsilane) and the chemical 

shift is defined as: 

&ppm) = 106  x (u - liref)/lJref 	(Eq.I.6.6) 

NMR signals are usually not singlets but also show a fine structure. This peak splitting comes 

from the spin-spin coupling (scalar coupling) transferred through chemical bonds between 

individual nuclei. The coupling interaction causes splitting of energy levels introducing several 
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additional transitions, which results in the splitting of peaks. The scalar coupling is independent 

of the magnetic field strength and enables establishing the bonds between atoms. For coupled 

spin-half nuclei, each spin can be in one of the two spin states, a or 3. The first spin experiences 

the two spin states of the second spin and its transitions are split equally into a doublet with a 

frequency difference of the scalar coupling constant, J in Hz. The doublet is centered at the 

frequency of the first spin with individual lines shifted by ±.J12. The same doublet with the 

splitting of J, exists at the frequency of the second spin (FigJ.6.2a). If more than two spins are 

coupled to each other, the shape of the multiplet can be predicted by a. tree diagram considering 

one coupling at a time (Fig.I.6.2b). This rule applies to both homo- and heteronuclear couplings. 

(b) 

J12 

J13 g 

I 

xT J12; 

Vi 	 V2 

   

Fig.I.6.2 (a) Doublet formed by the scalar coupling. (b) Tree diagram to predict simple couplings among 

multiple spins 

The spin-spin interactions are classified by the number of bonds between the two coupled nuclei. 

The couplings between two nuclei that are separated by two, three or four bonds are defined as 

geminal (2J) vicinal ()) or long-range (4J) couplings, respectively. 

The geminal proton-proton (2J) couplings are sensitive to a- and f3-substituents. The a-

substitution by an electronegative group leads to a positive change in the coupling constant. In 

contrast, the 13-substitution gives a negative change in the coupling constant. Similarly to the 

geminal couplings, an electronegative substituent results in a negative change in vicinal (3J) 

coupling constants. At the same time, vicinal coupling constants are dependent on the dihedral 
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angles, 0, between the coupled nuclei. The theoretical prediction of the coupling constant from 

the dihedral angle can be made by using the Karplus equation. In pyranose chairs of 

monosaccharides, the coupling constants between two axial protons are always larger than those 

between two equatorial protons or one axial and one equatorial proton. Karplus equations, 

appropriately parameterized for various molecular fragments, are a valuable tool in the 

conformational analysis of carbohydrates. The Karplus curve has the following general form: 

3J= A + Bcos + Ccos2 	(Eq.I.6.7) 

Long-range (4J) couplings are very small in magnitude but still can be observed especially when 

in the form of the W shape. 

In addition to through bond spin-spin couplings, through space interactions exist between nuclei. 

These dipole-dipole (dipolar) couplings are the direct interactions between the nuclear moments 

of spins. The magnitude of the dipolar interaction depends on the distance between the two 

coupled nuclei and the angle formed by their internuclear vector and the external magnetic field 

(Eq.I.5.8). In solution, the angle 0 varies with time because of the molecular tumbling. Therefore 

the integral of(3cos 2O-l) over time results in zero and the dipolar couplings vanish. No splitting 

of the signals is observed from the dipolar interactions. 

AB = 3t(3cos20-1)f3(to/47t) 	(Eq.I.6.8) 

Pulses and relaxation 

In FT NMR spectroscopy the spectra are obtained by a Fourier transformation of the FID (Free 

Induced Decay). The FID is generated by rotating magnetic moments and is measured in the 

transverse plane. This precession in the xy plane starts when the magnetization vector is rotated 

away from the equilibrium position along the z axis. This rotation is achieved by applying a 

radiofrequency (RF) pulse along the x-axis producing a linearly oscillating magnetic field, B 1 , 

with a transmitter frequency, co,. The RF field becomes static when a nuclear spin system is 

rotating about the z-axis at the same frequency as the RF field. This frame of references is called 

rotating frame in which the B 1  field is stationary along the x-axis. The apparent frequency of the 

Larmor precession of the nucleus becomes (COO - w) in the rotating frame. As a consequence, the 

apparent magnetic field along the z-axis changes to a reduced field, AB. The effective field, Beff, 

in the rotating frame, is a vector sum of B 1  and 4B. Beff forms an angle, 0, with the z-axis 
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(Fig.I.6.3). The magnetization performs precession about the effective field, while the RF pulse 

is on. 

AB = (()O(otx)/'Y 	(Eq.I.6.9) 

-------------- 
00- 

AB 
	 Beff 

X 

Bi 

Fig.I.6.3 The effective field in the rotating frame. 

When the transmitter frequency is the same as the nucleus spin Larmor frequency (w = coo), as 

well as when B 1  >> AB, the angle 0 = 900 and the effective field lies along the x-axis. The 

magnetization vector is rotated from the z-axis to the —y-axis. Similarly, an 180° x-pulse 

(inversion pulse) will rotate the magnetization vector from z-axis to the —z-axis. Both 90° and 

1800 x-pulses are commonly used in the NMR experiments. 

During the RI' pulse the equilibrium magnetization is rotated away from the z-axis and generates 

a non-zero transverse magnetization. After the RF pulse the transverse magnetization precesses 

around the external magnetic field inducing oscillating electric currents in the detection coils of 

NIMR spectrometer. Relaxation precesses drive the z-magnetization back to the steady state 

along the z-axis and the x-, and y-magnetizations decay to zero (Fig.I.6.4). This process is 

characterized by two rate constants, lIT1  and lIT2, and referred to as longitudinal and transverse 

relaxation. T1  and T2  are the spin-lattice and spin-spin relaxation times, respectively. 

—'-magnetization 

x-, y-magnetization 

time 

Fig.I.6.4 Magnetization changes during the relaxation 
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Product operators 

A convenient way of describing the fate of coupled spin systems during a multi-pulse sequence 

is to follow the evolution of the density operator, p(t)= !['(t)><!P(t)I, where ['(t) is the 

wavefunction for an ensemble of spin systems. For an ensemble of spin-half nuclei, the matrix 

representing the density operator can be expressed as a linear combination of the orthogonal 

basis operators in the form of matrices: 

p(t) = ax(t)lx  + a(t)I + a(t)I + aEE 	(Eq.I.610) 

where L. i, and I are the spin operators representing the x-, y- and z-components of the spin 

angular momentum, E is the unit operator and the amount of M, magnetization is given by the 

coefficient a,. Neglecting relaxation effects the time evolution of the density operators can be 

given by the Hamiltonian, I: 

p(t) = exp(-iILt)p(0)exp(ifIt) 	(Eq.I.6.1 1) 

The Hamiltonian determines how the spin evolves in time, which is different during pulses 

(Eq.I.5.12) and in free precession (Eq.I.5.13). 
A 	 A 

Hfree = ni 	 (Eq.I.6.12) 
A 

ITlxpulse  = 921, + (i)I 	(Eq.I.6.13) 

When two spins coupled to each other with a coupling constant .112, the coupling Hamiltonian 

becomes: 

Ei = 27cJi2'rI l I2Z 	 (Eq.I.6.14) 

During the period of free precession, the rotation of a spin operator can be represented by the 

diagrams shown in Fig.I.6.5. 

-y 	x 	Y x 	y 	-Xy 	z 	-y 

~~ _, --",) 11~~ _X 

Fig.I.6.5 Determination of a spin operator rotation about x, y and z. The 'new operator' is obtained by 

rotating the 'initial operator' according to the arrow direction. The result of the rotation is [cosO x  (initial 

operator) + sinO x  (new operator)]. 
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When two spins are coupled to each other, two set of operators (I 4,  I and E) are used to 

describe each of the spins. The possible combinations of the operators in a two-spin system are 

listed in Table.I.6.1. The scalar coupling between the two spins causes the interconversion 

between in- and antiphase magnetization. This coupling evolution can be used to transfer the 

coherence between the two spins through the antiphase terms. A diagram predicting the result of 

the scalar coupling evolution is shown in Fig.I.6.6. During acquisition antiphase operators 

evolve into observable in-phase operators (single-quantum coherence) yielding splitting because 

of the coupling. 

Table 1.6.1 Possible products of operators for a J coupled two-spin system. 

z- 
In-phase x-, y- 
magnetizations 

Antiphase x-, y- 
Multiple- 
quantum 

Non- 
equilibrium 

magnetization (SQ) 
magnetizations coherences population 

2I 1 j2X  
Spin 1 i1Z lix, fly 21 1X2z 	211yI2z 2IlI2y 

21 l y'2x 
21 1Z12Z  

Spin 2 12Z I2x, 12y  212x1l z 	212y11z 211 ,12,  

~~ Y  
_XZ 	ZZ 	XZ 

Fig.I.6.6 Interconversion of the scalar coupling during a time period, t, between in-phase (x or y) and 

antiphase (xz or yz). The 'new phase' is obtained by rotating the 'initial phase' according to the arrow 

direction. The evolution result is [cos(7th) x (initial phase) + sin(ir.Jt) x (new phase)]. 

The antiphase terms are essential in the multi-pulse NMR sequences because they can be used in 

both coherence transfers and generation of multiple-quantum coherences. The antiphase term is 

only generated during a scalar coupling evolution period. When a pulse is applied to the 

antiphase term, multiple-quantum (a mixture of zero- and double-quantum) coherences will be 

generated. A specific coherence can be selected by phase cycling or pulsed field gradients to 

generate required signals while a mixture of the unwanted coherences is eliminated. 
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Building blocks 

The most commonly used component of multi-pulse NMR experiments is a spin-echo 

(Fig.I.6.7). The spin-echo sequence starts with a 90 pulse followed by two equal time evolution 

periods with an 1 8O pulse in the middle. Both offsets (Q, chemical shift) and scalar couplings 

(J) evolve independently during the whole pulse sequence. The special feature of spin-echo is 

that at the end of the sequence the offset is refocused but the coupling evolves during the whole 

time period, 2r. 

900 x. 	180° x 

I 	T 	fl 

I 	H 
Fig.I.6.7 Spin-echo pulse sequence. The sequence ends after the second delay t, at the point of the dashed 

line. The delay t can be optimized for the scalar coupling evolution 

In the following the evolution of homonuclear two-spin is followed by using the product of 

operators. The magnetization is rotated from z-axis [Ii] to -y-axis [-Ii] by the first 900  pulse. The 

magnetization evolves during the first delay t. Offsets of different spins make the precession 

rates different which results in different effective evolution [-cos(}r)I + sin( -r)I]. The 180% 

pulse rotates the magnetizations around the x-axis to the mirror side of the xz-plane. This is 

reflected in change of the sign of the I term [cos(r)I + sin(92T)Q. The magnetization keeps 

evolving during the second delay T. Because the two delays are equal, the magnetizations evolve 

back to the y-axis [I,] irrespective of the offset. In other words, the chemical shift of the 

evolution is refocused during a spin-echo. 

Considering the coupling evolution for spinl during the first delay 'r, the in-phase term 

evolves into the antiphase term [-c0s(7r.J 12'r)I i  ± sin(7rfI 2T)2IIXI2] as predicted from the diagram 

shown in Fig.I.6.6. The 180O  pulse changes the signs of both terms [cos(ir.J 12t)I i  - 

sin(ir.J1 2t)2I1I2], yielding [cos(27r.J12t)I i  - sin(27r.J12t)2I1I2] at the end of the second delay r. 

The same evolution applies to spin2. The final result of the scalar coupling evolution during the 

spin-echo is effectively an evolution of the coupling for the time 2r combined with spin 

inversion. The in- and antiphase terms interconvert between each other independently of the 
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chemical shift evolution. This is referred as the f-modulated spin-echo. By optimizing the delay 

t, exclusive in- or antiphase doublets can be obtained. 

Heteronuclear two-spin system (I, S) can be easily manipulated to yield different spin states 

depending on the combination of I and S 180* pulses (Fig.I.6.8). The application of 180° pulses 

on both nuclei (Fig.I.6.8a), has the same effect as the application of a single 180° pulse to a 

homonuclear spin system (Fig.I.6.7). In addition, in heteronuclear spin-systems the 180° pulse 

can be applied only on one of the two nuclei, I or S (Fig.I.6.8.b,c). 

T 	 -r 

LI 

S 

-r 

S 

(C) 

-r 	 T 
4 	 I 

S .  

Fig.I.6.8 Spin-echo in a heteronuclear spin system. The 90° pulse is omitted compared with the pulse 

sequence in Fig.I.6.7. The spin-echo is represented by the blocks in between the two dashed lines. (a) 180° 

pulse on both spins; (b) 180% pulse only on I spin; (c) 180% pulse only on S spin. 

Taking the sequence in Fig.I.6.8b as an example, I spin experiences the complete spin-echo and 

its chemical shift is refocused. However, in the absence of the 180° pulse, the chemical shift of S 

spin will evolve during the whole period of delay 2r. Considering the coupling evolution the 

term -.I will have the form of [-cos(irJ st)I + sin(7rJjst)2I9] before the 180° pulse. The 180° 

pulse only affects the I spin, changing the sign of the first term and yielding [cos(irJisr)I y  + 
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sin(7rJis'r)21z]. After the second r delay, only the I,, operator is present meaning that the 

heteronuclear coupling is refocused. This is also true for the S spin. 

The INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) sequence (Fig.I.6.9) is 

usually used for the coherence transfer from the sensitive nucleus (I) to the insensitive one (S) 

through the antiphase terms. This polarization transfer increases the intensity of the insensitive 

nucleus by a factor of yl/ys,  which is 33% more than that obtained from the heteronuclear NOE 

(1 + y1/2ys) for 13C/'H only. 

I Y 

Y 

_LLJ1i 
Fig.I.6.9 INEPT pulse sequences. All pulses are from the x-axis unless otherwise indicated; (a) the 

coherence ends up with an antiphase term; (b) the coherence evolves into an in-phase term 

Before the second 900  pulse (a spin-echo sequence), an antiphase coherence [-sin(2r.Jisri)2I] 

is generated through scalar coupling evolution while the chemical shift is refocused. The 90° 

pulse on the I spin and 90 0  pulse on the S spin transfer the antiphase term from I to S [-

sin(2irJisri)2IJ. At this stage, as shown by the sequence in Fig.I.6.9a, antiphase doublet can be 

observed on S spin directly. By adding another spin-echo after the 900  pulses (Fig.I.6.9b), the 

antiphase magnetization evolves into in-phase during the delay 2r 2. Both r1  and r2  can be 

optimized to obtain optimal sensitivity for spin S. 
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INADEQUATE (Incredible Natural Abundance DoublE-QUAntum Transfer Experiment) uses 

double-quantum (DQ) coherences to correlate homonuclear chemical shifts and to measure the 

13C- 13C coupling constants (fcc).  The spectrum only contains signals from adjacent ' 3C-pairs, 

which is a very good way to establish the carbon connectivity of the molecule. The generation of 

the multiple-quantum coherence can be achieved by the pulse sequence shown in Fig.I.6. 10. 

X 	x 	Ti 	
L 
A. 	 (p 

• T 	TI 	 I 

14 	II4 	I' 	'i 	9) 

Fig.I.6.10 2D pulse sequence for DQ correlation; y , = 2(x, -x), (P2 = x, y, -x, -y and 'qi = x, -y, -x, y. 

The antiphase magnetization is obtained by the initial spin-echo during which the chemical shifts 

are refocused and fcc  couplings evolve during the time of 2r. The antiphase term is then 

converted into multiple-quantum coherence by the second 90° pulse. The DQ coherence is 

selected either by phase cycling or pulsed field gradients and evolves for time t i , before being 

converted back to single-quantum coherence by the last 90° pulse. The unwanted signals from 

isolated 13C spin are discarded by a coherence selection technique. Antiphase doublets in the 

directly detected dimension can be recorded immediately. Alternatively, a second spin-echo can 

be appended to evolve the antiphase into in-phase terms to obtain the in-phase doublets. Large 

'fcc coupling constants can be extracted from the frequency splitting. The same pulse sequence 

can be optimized also for nJcc  coupling constants yielding long-range carbon-carbon 

correlations. In this case the determination of coupling constants is not straightforward due to 

poor separations of the two lines of the doublet. Solutions to this problem are discussed in 

Chapter 111.3. 

As mentioned above coherence selection can be achieved by using phase cycling or the pulsed 

field gradients (PFG) technique. Each method has strengths and limitations. Phase cycling 

selects the required coherence by repeating the experiments several times with different phases 

of pulses and receiver. In each transient, both required and unwanted signals are recorded with a 

particular phase. When adding up transients, only the required coherences are added up 

coherently while the unwanted ones cancel out. Phase cycling thus relies on the cancellation of 
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the unwanted signals. This might be not complete, especially when the unwanted signals are 

much stronger than the required ones. The other drawback of the phase cycling is the prolonged 

experimental time as each t 1 -increment of a 2D experiment must be recorded using the complete 

phase cycle. 

The PFG method relies on the creation of a magnetic field during a short period, which changes 

the main magnetic field B 0  in a linear way along an arbitrary axis, usually the z-axis (Fig.I.6.1 1). 

Both the strength and polarity of PFGs can be controlled to select required coherences. This 

variation of the homogeneity of B 0  causes different phase shifts to be experienced by individual 

spins located in different parts of the sample. As a result, the transverse magnetization is 

averaged to zero (Fig.I.6.1 1). 

Bo B 

I 
I 

It 

no PFG with PFG 

Fig.I.6.11 Effect of a pulsed field gradient on the main magnetic field B 0  and the transverse 

magnetization. The result field during the PFG varies linearly along the z-axis. Transverse magnetizations 

cancel out across the whole sample because of the dephasing. 

When using a pair of PFGs, the coherences are dephased by the first and rephased by the second 

pulsed field gradient. The point is to control the ratio of the two PFGs to select certain coherence 

(Eq.I.6.15): 

= 	 = 0 	(Eq.I.6.15) 

where P, is the coherence order and other symbols have the usual meaning. 

PFGs can only de/rephase transverse magnetizations. Therefore the z-magnetization always 

survives during PFGs. The coherence selection by PFGs in a single scan is the strength of this 
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method compared with the phase cycling method. However, usually only half of the signal can 

'be selected by coherence selecting PFGs, which leads to 50% reduction of signal intensities. 

This loss can occasionally be eliminated or reduced. The first instance applies to sensitivity-

enhanced experiments [51]. The signal-to-noise loss of only 29% is sustained when PFGs are 

used for the selection of echo-antiecho coherences during t 1  as is the case for INADEQUATE 

sequences [52]. 

Some routine NMR experiments for the study of molecular structures include COSY (TOCSY), 

NOESY (ROESY), HSQC and HMBC. COSY and NOESY experiments are commonly used to 

establish the connectivity of the molecular frame through chemical bonds and distances in space, 

respectively. HSQC and HMBC experiments provide one-bond and long-range heteronuclear 

chemical shift correlations. 

COSY (Correlation Spectroscopy) and TOCSY (Total Correlation Spectroscopy) are 

homonuclear experiments (Fig.I.6. 12) mostly used to trace the proton-proton couplings and to 

correlate chemical shifts of coupled protons. The difference between the two experiments is in 

the distance which they transfer the magnetizations. COSY spectrum only records signals from' 

coupled protons. TOCSY spectrum can trace all protons in the same spin system with unbroken 

chain of couplings. The mixing period of COSY experiment consists of a single 90 pulse which 

transfers the magnetization between spins. 

(a) 	 t2 
ti 

T 	 t2 

MLx 

 

I• 	
ti 	

IlDIPSI-2I 

Fll~~ 

Fig.I.6.12 Pulse sequences of COSY (a) and TOCSY (b) experiments. 

In both experiments, the transverse magnetization evolves during the t 1  period coding both 

chemical shift and scalar couplings evolution. The COSY cross peaks show the active couplings 

in antiphase, while the passive spins are in-phase. The cross peaks and the diagonal peaks are 
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shifted by 900  in-phase in the basic experiment. Double-quantum-filtration, typically using PFGs 

for coherence selection, produces pure phase cross peaks and diagonal peaks and is typically 

used. In TOCSY experiment, the second 90° pulse is followed by a spin-echo mixing period, r m . 

The magnetization is transferred between all protons of one spin system during the mixing 

achieved by a mixing sequence, e.g. DIPSI-2 [53]. 

NOESY (Nuclear Overhauser Effect Spectroscopy) and ROESY. (Rotating frame Nuclear 

Overhauser Effect Spectroscopy) experiments (Fig.I.6. 13), respectively, generate cross peaks 

from the cross relaxations of z-magnetizations and spin-locked tilted magnetizations between 

spins close in space. 

ti 

I ti 	
t2 

1
xspin-Iock 

Fig.I.6.13 Pulse sequences of NOESY (a) and ROESY (b) experiments. 

In both experiments, the frequency-labeled magnetization during the t 1  period is subject to a 

mixing period that transfers the magnetization between spins through dipolar relaxation. The 900 

pulse rotates the magnetization back to the z-axis in NOESY, where it undergoes cross 

relaxation during the t mixing period transferring the z-magnetization to other spins close in 

space. The problem of NOESY transfer is that its efficiency depends on the molecular tumbling 

and the magnetic field strength and that it can change the sign. For certain regimes no NOB is 

observed. This can be avoided in ROESY experiment by using the cross-relaxation of the 

transverse magnetizations. After the frequency labeling period tj, the x-magnetization is locked 

along the effective axis using a weak spin-lock, where it undergoes the cross relaxation. The 

cross peaks in ROESY spectra are always positive, while the diagonal peaks are negative. 

HSQC (Heteronuclear Single-Quantum Correlation) experiment (Fig.I.6.14) is widely used to 

correlate the proton and carbon chemical shifts. The magnetization is generated from the I spin 
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('H) and transferred to the S spin ( 13C) using the previously described INEPT sequence. During 

the t, period, the spin-echo on I spins refocuses the heteronuclear couplings but the offsets of S 

spins evolve during the whole t1. The following two 900  pulses transfer the magnetization back 

to I spin and antiphase signals can be detected during t 2 . In practice, unless the 'JCH coupling 

constants are to be measured, an additional spin-echo follows and the signal is detected with ' 3C 

decoupling. 

 

tZ I.*HL4 H 
H I 	ti 

S 

 y 

I  IHLi H 
H I ti fi , 

Fig.I.6.14 Pulse sequences for heteronuclear correlation HSQC experiments (b) with refocusing period 

and decoupling during acquisition 

The HMBC (Heteronuclear Multiple-Bond Correlation) experiment (Fig.I.6. 15) is used to 

establish the long-range correlation and to measure the long-range coupling constants. This 

experiment starts by rotating the I magnetization to the transverse planes, where couplings 

evolve for the period of t generating antiphase terms. The 900  pulse on S spin converts the 

antiphase magnetization into multiple-quantum coherences, which evolve for t1 time. During the 

t1 period, the I spin offset is refocused and the multiple-quantum coherence is labeled by the 

effect of the S spin. The final 900  pulse on the S spin converts the multiple-quantum coherences 

back to single-quantum proton coherences, which are recorded during t 2  on the I spin yielding 

antiphase correlation peaks. Cross peaks in HMBC spectra have mixed phase because of proton 

chemical shift and proton-proton coupling evolution during r delay. 

t2 

1Jiii__ 

ti 

S 

Fig.I.6.15 Pulse sequence of HMBC experiment 
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I. 7 Alignment system 

In addition to scalar couplings, spins are also coupled via dipolar couplings. The dipolar 

interaction comes from direct, through space, interaction of magnetic moments of nuclei. 

Similarly to J couplings, two different orientations of spin-half nuclei cause the coupled spin to 

experience different local magnetic fields. This time, however, the strength of the interaction 

depends on the distance between the two spins and the immediate orientation of this internuclear 

vector with regard to the external magnetic field (Eq.I.7.1, Eq.I.7.2 and Fig.I.7.1). The dipolar 

coupling between the two spins is only derived from the z-component of the local magnetic field 

of the two spins. In isotropic solutions the direct dipole-dipole couplings cancel out because of 

thermal motion and random molecular tumbing during the acquisition time. The integral given in 

Eq.I.6.2 is zero and no splitting of signals can be observed. The dipolar interactions only 

contribute to the relaxation in isotropic solutions (Fig.I.7. 1). The dipolar interactions reflect the 

mutual relative positions of spins in space, providing useful long-range structural information 

about the molecules. If dipolar coupling constants could be measured in solution, they can be 

used to complement the short range structural information obtained from NOE. 

DAX = (io/87t2)(hyAyx/r3)(3coS20-1) 	(Eq.I.7.1) 

J 3(cos 2  9-1) sin aie = 0 
0 	 . 	 (Eq.I.7.2) 

IBO 0 r 
 TB O .XL . ; ,  

 1 0  

9-io. 
I 

Fig.I.7.1 Dipolar interaction between two spins A and X in isotropic solution 

The cancellation of the dipolar interactions in solution comes from the random Brownian 

motion. If this motion can be restricted slightly, the dipolar interaction will not vanish 

completely. Minor restriction of the Brownian motion can be achieved by using liquid crystals as 
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co-solvents to dissolve the solute. Through the interactions with the liquid crystal the solute 

molecule is forced to adopt preferably certain orientations, while still undergoing relatively free 

tumbling in the nematic phases formed by the liquid crystals (Fig.I.7.2). 

This interaction is either electrostatic or steric, and generates preferred angles between the 

internuclear vectors and the external magnetic field. The small resulting dipole-dipole coupling 

reflects this time averaged angle. Relating this angular information for many bonds of the 

molecule leads to structural information. By controlling the strength of the alignment media, the 

dipolar interactions are recovered only slightly without producing complicated spectra. The 

residual dipolar coupling (RDC) constants can be obtained from the difference between the 

splitting observed in the aligned media (J + D) and the scalar coupling constant (J) observed in 

isotropic samples. 

, J 	J+D 

Aligning medium 0 Molecule 

Fig.I.7.2 Schematic representation of the aligned sample and splitting obtained in isotropic and anisotropic 

solutions 

Some frequently used liquid crystalline media include phospholipid bicelles (DMPC/DHPC or 

DIODPC/CHAPSO) [54], filamentous phages [55], cetylpyridinium chloride/bromide and 

hexanol with NaCLINaBr [56], purple membrane fragments [57] and PEG (n-alkyl-poly(ethylefle 

glycol))/n-alkyl alcohol mixtures [58, 59]. Each medium has strengths and limitations in the 

application conditions, which are compared in Table 1.7.1. Almost all media are dependent on 

temperature, salt concentration and pH. The strength of the media can be conveniently 

monitored via the quadrupole splitting of the deuterium signal of D 20. For the same medium the 

splitting of the quadrupole signals is very sensitive to the temperature. 
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Table 1.7.1 Comparison of different liquid crystals applied as alignment media. 

Phospholipid Filamentous 
CPBr/hexanol 

Purple PEG 
bicelle phage  membrane (C 12E5) 

Charge none negative none negative none 

pH region 6-7 6.5-8 2.2-8.1 2.5-10 insensitive 

5-200 
Salt condition 

300 —100 
CPC1: 200- 

—5000 
little 

(MM) 500 sensitive 

Concentration 3-15% (w/v) 
60 

1-10 % (w/v) 
7-33 3-25% 
  

(mg/ml)  (mg/ml)  
Temperature 

22-50 5-45 15-60 -269-69 10-40 
( C C)  

Splitting (Hz) 5-27 - 50 0-21 2-14 13-138 
DMPC/DHPC: Solutes 

Irreversible High salt Binding 
are 

degradation at low Aggregate concentration tightly 
difficult to 

Limitation pH [60] below pH 6 of NaCl with with 
recover 

DIODPC/CHAPSO: CPCIIhexanol solute 
from the 

nonstable at neutral lamellar 
pH  phases 

The PEG/hexanol medium was used as the dilute liquid crystalline solvent to form the bilayer 

surface, which is oriented parallel to the external magnetic field [61]. The PEG molecule, C 12E5  

(3,6,9,12,15-pentaoxaheptacosan-l-ol), has 12 carbons in the n-alkyl group and 5 glycol units. 

When mixed with n-hexanol and different amounts of water, different strengths of alignment 

media can be prepared. The strength of the medium can be characterized by measuring the - 

residual quadrupole splitting of the deuterium signal of D 20 using 1D 2H spectrum. The 

composition of the alignment medium is characterized by the weight percentage ratio, wt%, of 

the C 12E5  to the D20 and the molar ratio, r, of C 12E5  to n-hexanol. A medium with smaller r is 

stable over a smaller range of temperatures. The aligning strength of the same medium is weaker 

at higher temperatures and reflected by smaller splitting of the deuterium signal. 

The splitting caused by the residual dipolar coupling of a pair of spin-half nuclei A and X can be 

expressed by the following equation: 

138 Hz was used for a very strong alignment required for the ' 3 C-detected INADEQUATE experiment 

development in this project, 15-40 Hz is the normal range according to [59] 
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DAx  = ( to/4ir2) (hYAyX/r3) <(3cos2O- 1)/2> 	(Eq.I.7.3) 

where YA  and y,  are the gyromagnetic ratios, rAx  is the internuclear distance and 0 is the angle 

between the internuclear vector and the external magnetic field, brackets indicate average due to 

motion. This anisotropic averaging can be simplified and expressed by the Saupe order matrix 

[62], which is a symmetric and traceless 3 x  3 matrix consisting of Sij  elements corresponding 

the.molecular coordinates defined in an arbitrary Cartesian coordinate system. 

Sij  = 3< (cosO 1cos8>I2-k/2 (Eq.I.74) 

sij  =s 	(Eq.I.7.5) 

Sxx + Syy  +Szz  = 0 	(Eq.I.7.6) 

<P2(cosO)> = 	 (Eq.I.7.7) 

1, j = {x, y, z}, ky  is the Kronecker delta function; cJi  and 0 are defined as follows. The 

internuclear vector within the molecule is defined by the direction cosines (Fig.I.7.3), cosP, and 

cos0, which describe the internal geometries of the molecule. Therefore, the solution of the 

matrix parameters gives the molecular structure information. 

S 

Y 

X 

Fig.I.7.3 Definition of the direction cosines of the internuclear vector AB within arbitrary molecular axis 

(angles ) and the magnetic field axis (angles 0) in the arbitrary molecular frame 



The definition of the Saupe order matrix requires only five independent parameters, which can 

be solved by measuring five independent RDCs of the molecule. The solved matrix can be 

further diagonalized to obtain the axial and rhombic parameters and a transformation matrix. The 

determination of this Saupe's order tensor relates the principle frame of the alignment tensor to 

the arbitrary molecular system. This procedure is carried out with Singular Value Decomposition 

[63] (SVD) method by solving a series of linear equations. 

Ax = b 	(Eq.I.7.8) 
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The tensor parameters (S, S y  and S) can be plotted in the manner of the Sanson-Flamsteed 

projection (Fig.I.7.4) to represent the orientation of the principle axis system. 

z 

-z 

Fig.I.7.4 Sanson-Flamsteed projection represents the orientation of the principle axis system 



Chapter II 

Materials and Methods 

II. 1 Heparin-derived di- and tetrasaccharides 

One disaccharide and three tetrasaccharides (Fig.II.1.1) were prepared by enzymatic 

digestion of low molecular weight heparin (LMWH) (Innohep; Leo Laboratories, Princes 

Risborough, U.K.) by our collaborators in the University of Manchester. 
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CH,OSONa 

00C 7O ii)OH l 
NHSONa 

OSONa CHOR OH OH
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-0OC

o 	 o 	

0 

0NHSONa 

(Hj 	
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OOH0OCOOH  
0 

J H 	0 	 NHSONa 

OH 	
Iv 
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Fig.H.1.1 Structures of the heparin-derived disaccharide (I) and three tetrasaccharides (H-IV) used in 

this study. iUA(2S)-GlcNS(6S)-Na3  (I), AUA(2S)-GIcNS(6S)-IdoA(2S)-GIcNS(6S)-Na 6  (II), 

i\UA(2S)-GIcNS(6S)-LdoA(2S)-G1cNS-Na 6  (Il) and \UA(2S)-GlcNS(6S)-GlcA-G1cNS(6S)-Na 5  

(IV). Letters A-D are used to label individual rings starting from the reducing end (A) and progressing 

towards the unsaturated non-reducing end (D) of the oligosaccharide. 
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The final digest was resolved into its constituent oligosaccharide size fractions by gel 

filtration chromatography on a Bio-Gel PlO (Bio-Rad Laboratories, Hemel Hempstead, UK) 

column (2.5 x 120 cm) eluted with 0.25 M NH 4HCO3  at a low rate of 10 ml.hr  with 

collection of 4 ml fractions. (Fig.II. 1.2a) 
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Fig.II.1.2 (a) The initial Bio-Gel PlO size fractionation of the heparin oligosaccharides; (b) the strong 

anion-exchange HPLC separation of the tetrasaccharides. 

The elution profile was monitored by UV absorption at 232 rim, specific to the unsaturated 

nonreducing ends of the oligosaccharides introduced by the lyase action of the heparinase 

enzyme. The disaccharide and tetrasaccharide peaks were separately pooled, freeze-dried 

twice, desalted on PD- 10 columns (Amersham Biosciences Ltd, Chalfont St. Giles, UK) and 

then dried. The di-and tetrasaccharide pools were resolved into their constituent species by 

strong anion-exchange HPLC chromatography on an lonPac AS 17 column (0.4 x 25 cm; 

Dionex, Camberley, UK) (Fig.II. 1.2b). After a brief wash with pH3 .5 water, the column was 

eluted with a 60 ml linear gradient of 0— 1.0 M NaCl, pH3.5, at a flow rate of 1 ml/min with 

collection of 1 ml fractions. The disaccharide compositions of specific oligosaccharides were 

determined by complete digestion to disaccharides with a mixture of heparinases I, II (F. 

heparinum; no EC number assigned) and III (F. heparinum; heparitin-sulfate lyase EC 

4.2.2.8) (Grampian Enzymes, Orkney, UK) in 50 mM sodium acetate, 0.5 mM calcium 

acetate, pH 7.2 at 37oC. Digests were then applied to a ProPac PAl strong-anion exchange 

HPLC column (0.4 x 25cm; Dionex). After a brief wash with pH3.5 water, they were eluted 

on a 45 ml gradient of 0— 1.0 M NaCl, pH3.5 at a flow rate of lmllmin. Disaccharides were 

monitored by on-line absorption at 232 nm and were identified by comparison with the 

elution positions of known disaccharide standards. 
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For NMR experiments, each sample was dissolved in 0.5 ml deuterium oxide (D 20 

>99.96%) and lyophilized to remove exchangeable protons. The powder was then 

redissolved in 320 lil D20 to be used as an isotropic sample for NMR experiments. Each 

sample was transferred into a 5 mm Shigemi tube in order to maximize the sensitivity. 

Approximately 25 tg for each sample was used for the primary structure determination. 

Heparin-derived fully sulfated tetrasaccharide (compound II) was selected for the 

measurement of scalar and dipolar coupling constants to characterize its conformation in 

solution. 550 ig were dissolved in 320 jtl D 20. In the initial sample, the proton peaks of B 

ring were too broad to obtain reliable coupling constants. This was the result of the 

equilibrium of the two exchangeable conformations. In order to slow down this exchange 

[64] CaC12  was added into the isotropic sample in concentration 4 times larger than that of 

the tetrasaccharide II. The pH value was adjusted to 7.5 by adding NaOH dissolved in D20. 

The sample was transferred back into a 5 mm Shigemi tube yielding sharp peaks suitable for 

the coupling constants measurements. Identical conditions were applied to the aligned 

sample using an open Shigemi tube without the plunger. The composition of the solvent was 

18.6 tl C 12E5 , 6.2 tl hexanol and 430 p1 D 20. 

II. 2 Compounds used for the development of NMR methods 

Deuterium oxide (D 20> 99.96%) was purchased from Sigma-Aldrich. All isotropic samples 

were prepared with 100% D 20 as solvent. 

Pentaethylene glycol monododecyl ether (C 12E5  ~: 98.0%, GC, purchased from Biochemika) 

and hexanol (>99%, anhydrous, purchased from Sigma-Aldrich) were used as the alignment 

medium (PEG) [59] for the preparation of aligned samples. 

Pfl filamentous phage (50 mg/ml, 10 mM kp 1 , pH = 7.6, 2 nM MgCl2, 0.02% NaN3) was 

purchased from Profos, Germany. The solvent was further diluted with D 20 to 1.7 mg/ml as 

the aligned medium to dissolve the cholic acid sodium salt. 

Cellobiose (Fig.II.2. 1 a) used for development of f-modulated methods for determination of 

scalar and proton-proton dipolar coupling constants was purchased from Sigma-Aldrich. 20 

mg were dissolved in 550 jil of D20. The aligned sample was prepared using the same 

amount of the compound in 550 jtl D20 containing 25.6 jil C 12E5  and 8.5 tl hexanol yielding 

4% (w/w) of the medium. Splitting of the 2H signal was 23.6 Hz at 25 °C. 
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Fig.H.2.1 Structures of (a) cellobiose (-D-glucopyranose disaccharide), (b) Me-3-D-lactoside, (c) 

Me- 13-D-  xylopyranoside and (d) cholic acid sodium salt 

Me--D-lactoside and Me-3-D-xylopyranoside (Fig.II.2. ib, c), used for the development of 

INADEQUATE methods, were purchased from Sigma. 25 mg of disaccharide and 71 mg of 

monosaccharide were dissolved in 350 I d of D20 and transferred into 5 mm Shigemi NMR 

tubes. The Me--D-xylopyranoside was aligned using a mixture of C 12E5fhexanol medium 

for the measurement of ' 3C-' 3C RDCs. 128 111 of C 12E5 , 38.8 p1 of hexanol and 600 j.tl of D20 

were used to dissolve 140 mg MeJ3-D-xylopyranoside. The mass fraction of the medium 

was 22% with the molar ratio r = 0.99. of C 12E5/hexanol. The splitting of the deuterium signal 

at 25 *C was 138.8 Hz. 

Cholic acid sodium salt (C24H39Na05  ~! 96%, Fig.II.2. id), used to illustrate the application of 

f-modulated methods for the measurement of 'H-'H RDCs, was purchased from 

Biochemika. Approximately 1 mg was dissolved in 550 tl D20 for the isotropic sample. The 

aligned sample was prepared by dissolving 2 mg of cholic acid sodium salt in 625 j.tl of 1.68 

mg/ml phage medium (Pfl filamentons phage). The splitting of the deuterium signal was 3.3 

Hz at 25 'C. 

13C 1 -glucopyranose and 13C-CH3COONa used for the development of INADEQUATE 

methods were purchased from Sigma-Aldrich. 20 mg 13C-CH3COONa was dissolved in 550 
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j.tl DO. 150 mg ' 3C,-glucopyranose was dissolved in 550 jtl D20. A mixture of 50 mg 13C-

CH3COONa and 50 mg 13 C 1 -glucopyranose was also dissolved in 550 iI D 20. 

II. 3 Spin-labelled disaccharide 

Spin-labelled heparin-derived fully sulfated disaccharide (compound V Fig.II.3.1) was 

synthesized by Astrid Jahnke [65]. 4-amino-2,2,6,6-tetramethyl-piperidine-1-oxyl, 4-amino-

TEMPO (a TEMPO derivative), was used as the spin label, linked with the carboxyl group of 

the non-reducing ring of the disaccharide. An NMR sample was prepared by dissolving 200 

jig of the molecule in 500 j.tl D20. 
HC 

CH3 

0 

II 
HN-C 	 CH2OSO3Na OHOhII>OH  

OS03Na 	NHSO3Na 

Fig.II.3.1 Spin-labelled heparin-derived fully sulfated disaccharide (compound V) 

II. 4 Ion Mobility Mass Spectrometry 1491 
Gas phase collision cross-sections of heparin oligosaccharides I-IV were determined using 

the Ion Mobility Mass Spectrometer in the Chemistry Department at the University of 

California at Santa Barbara". 

Samples were sprayed at a concentration of 200 jiM from a solution of 50% methanol 50% 

water and 2% acetic acid using the nano-electrospray method (negative electrospray 

ionization). The prepared samples contained 50 jig of oligosaccharides and we estimate that 

around 20 jig were actually used to collect the data. Ions were first selected by mass-to-

charge ratio before injected into the drift cell. 

The drift cell was temperature regulated (298 K), 4 cm long and pressurized with helium to 5 

Torr. The ions drifted under the influence of a 5-30 V cm' electrostatic field while retarded 

by collisions with the buffer gas. On the exit of the cell, the ions were analyzed using a 

"All experiments were carried out by Dr. Perdita E. Barran 
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quadrupole mass spectrometer (Extrel) operating in scanning mode. Mass spectra were 

obtained for each of the oligosaccharides, which were presented in singly or doubly charged 

forms as partially sodiated species. The experimental and predicted masses for the major 

species observed for each oligosaccharide are listed in Table 11.4.1. 

Table 11.4.1 Major peaks observed in mass spectra of oligosaccharides I—IV 

Compound Observed (mlz) Calculated (mlz) Assigned species 

642.7 642.4 [C12H15NO19S3Na31_ 

I 631.3 630.9 [C24H31N2O38S6Na5]2  

620.6 619.9 [c12H16N019s3Na21_ 

642.8 642.4 [C24H30N2O38S6Na6J2  

II 631.6 630.9 [C24H31N2O38S6Na5] 2  

621.1 620.4 [C24H32N2038S6Na4]2  

592.3 591.4 [C24H3N2035S5Na5]2  

III 581.2 580.4 [C24H32N2O35S5Na4]2  

570.1 569.4 [C24H33N2035S5Na3]2  

592.4 591.4 [C24H31N2035S5Na5] 2  

IV 581.1 580.4 [C24H32N2O35S5Na4]2  

570.1 569.4 [C24H33N2O35S5Na3]2  

When an ion was pulsed into the cell, the quadrupole was then 'parked' on the ion of interest 

and its arrival time at the detector, relative to the start time of the pulse, was recorded. 

Arrival time distributions (ATDs) were collected at several drift voltages (90, 60, 45, 30 and 

20V). 

II. 5 Nuclear Magnetic Resonance spectroscopy 

II. 5.1 Parameters of NMR experiments on compound II 

Unless stated otherwise, all spectra were recorded at 298 K on an 800 MHz Bruker Avance 

spectrometer equipped with a 5 mm triple-resonance probe and xyz-gradients. All data were 

processed using XW1NNMR program (Linux, version 3.6). 

The ID 'H NMR spectrum (Fig.III.1.2.1) of an isotropic sample was recorded using water 

presaturation during the relaxation delay. The 1D 'H NMR spectrum (Fig.III.4.4.1.1a) of the 

aligned sample was acquired using a CPMG pulse sequence with an interpulse delay of 1.6 

ms and a total duration of the spin-echoes of 32 ms. 
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1D TOCSY spectra (Fig.III.4.4.1.1b, c) were acquired using selective excitation of anomeric 

protons by a 30 ms Gaussian pulse followed by a DIPSI-2 spin-lock. The duration of the 

spin-lock was 100 ms for A and C rings, 80 ms for D ring and 160 ms for B ring. 

The 2D NOESY spectrum (Fig.III.4.2.2) of the isotropic sample was recorded using water 

presaturation during the relaxation delay and also during the mixing time of 300 ms. 50 ms 

Crp40. 1000 pulse with a 2 Gauss/cm PFG was used to suppress the zero-quantum (ZQ) 

coherence. Acquisition times in both t 1  and t2  were 256 ms. Sixteen scans were acquired per 

each of 1536 increments and the total experimental time was 18 hours. 

The 2D ROESY spectrum (Fig.III. 1.2.3) of the isotropic sample was recorded with water 

presaturation during the relaxation delay. The duration of the spin-lock was 300 ms using a 

CW pulse with YB, = 25000 Hz. Acquisition times in t1 and t2 were 80 and 256 ms, 

respectively. Number of scans was 48 and. 512 increments were acquired yielding the total 

experimental time of 14 hours. 

The proton-detected 'H-' 3C gradient selected phase-sensitive HMBC [68] spectrum 

(Fig.III.4.3.1) was acquired on a 600 MHz Bruker Avance spectrometer equipped with a 5 

mm cryoprobe with inverse geometry and z-gradients. Acquisition times in ti and t2 were 

21.2 and 852 ms, respectively. The number of scans was 256 with 256 increments and the 

total experimental time was 48 hours. Long-range C-H scalar coupling constants were 

obtained by a fitting procedure described by Keeler et al. [68] in the frequency domain. This 

procedure requires pure phase 'H multiplets that are used to reconstruct the HMBC 

multiplets. These were extracted from ID 'H or 1D TOCSY spectra. The C-H coupling 

constants across the three glycosidic linkages were of particular interest and were obtained 

by a home written program (Dr. Tran N. Pham). 

Non-refocused 2D 'H-' 3C HSQC spectra of both isotropic and aligned samples were 

recorded on a 600 MHz Bruker Avance spectrometer equipped with a 5 mm cryoprobe with 

inverse geometry and z-gradients. The spectra were acquired without decoupling in the 

directly detected dimension. Acquisition times of both isotropic and aligned samples in t1 

and t2 were 63.6 and 341 ms, respectively. Numbers of increments of both samples were 768. 

Numbers of scans in experiments using of isotropic and aligned samples were 160 and 116, 

respectively. The total experimental times were 62.5 and 45.5 hours, respectively. One-bond 

heteronuclear C-H scalar and dipolar coupling constants were extracted based on the 
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frequencies of the antiphase doublets from the spectra processed without using any window 

function. 

Typically SPFGSE-COSY and CSSF-COSY experiments were used for the measurement of 

'H-'H scalar and dipolar coupling constants using isotropic and aligned samples. For 

severely overlapped protons especially in the aligned sample, HOHAHA-COSY spectra 

were acquired. 

The spectra of the isotropic sample were normally acquired using 80 scans, while those of 

the aligned sample were recorded using 200 scans. The acquisition and relaxation times were 

0.96 s and 1.5 s, respectively, for both isotropic and aligned samples. 20 ms Gaussian pulses 

were used for the selective pulses and also during the COSY part in the SPFGSE-COSY 

experiments using isotropic sample, while 30 ms Gaussian pulses were used in the aligned 

sample. For 'H-'H coupling constants smaller than 1 Hz, 0.8 s constant-time SPFGSE-COSY 

spectra were acquired with 512 scans. More selective Gaussian pulses, e.g. 45 ms, were used 

for crowded protons. 

CSSF-COSY spectra were typically acquired using eight 5 ms or 10 ms CSSF increments for 

small or large 'H-'H coupling constants in both isotropic and aligned sample, respectively. 

30 ms Gaussian pulses were used for the selective pulses and also during the COSY part. 

The acquisition and relaxation times were 0.64 s and 1.5 s, respectively. The spectra were 

acquired using 4 scans. More selective Gaussian pulses, e.g. 45 ms, were used for crowded 

protons. 

1D double-selective HOHAHA spectra (Fig.III.4.4.1.1e) were acquired using the aligned 

sample. A 30 ms Gaussian pulse applied at 8H2,  80 ms double-selective rectangular pulse 

centered at 6 H2  and 6113  with RF field strength of 50 Hz [yB i /27r = (J34a14)(4n2 - 1)1/2, where 

J23  = 10 Hz and n = 101, acquisition and relaxation times of 1.0 and 1.5 s, respectively, and 

400 scans were used. A 50 ms 180° adiabatic smoothed (10%) CHIRP pulse with a 

frequency sweep of 40 kHz was used to purge dispersive components [69]. A 30 ms 

Gaussian pulse was used to select magnetization of proton H3. The selective pulses applied 

to H3 and H4 protons were 30 ms Gaussian pulses. 
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H. 5.2 Alignment media for the measurement of residual dipolar coupling 

constants 

The C 12E5/hexanol medium was initially tested on hyaluronan tetrasaccharide [70] 3-13-

glucuronic acid_3-(1--+3)-N-acetylglucosamine-P-1,4 (AB 2) (Fig.II.5.2.1). A series of 

different strength media were prepared and their effects tested. 

CH2OH 
COO- L__

0(  
CH2OH 	

o 	
OH 

t— o  
L___0 	 OH 	 HO\L__ 
Coo- 	

OH 	 NHCOCH3 KLTO 	0i T 
HO OH 

OH 	 NHCOCH3 

Fig.II.5.2.1 Structure of AB 2  molecule 

The aligned media with r = 0.9 were used, which are suitable for the temperature range 

around 25 °C [59]. A series of media with wt%'values of 6%, 5.2%, 4.5%, 4% and 3.3% 

were prepared to dissolve the AB 2  molecule using the same salt concentration and pH as was 

intended to be used for the heparin-derived fully sulfated tetrasaccharide II. Samples were 

kept in the magnet until the deuterium splitting was stable and symmetrical. All spectra were 

acquired on a 600 MHz Bruker spectrometer equipped with a 5 mm triple-resonance probe 

and xyz-gradients. The splittings of the deuterium signals at 25 °C are shown in Fig.II.5.2.2. 

10.3 Hz 
wt% = 33% 
r = 0.9 

wt% = 3.6% 
16.5 Hz 	 r0.9 

wv;'0 = 4.1% 
24.2 Hz 	 r = 0.9 
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28.6 Hz 	
r0.9 
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Fig.II.5.2.2 Splittings of deuterium signals on different strength of PEG media 



HSQC spectra were acquired and the corresponding one-bond (J + D) splittings of C1H1 

cross peaks were extracted by peak picking. The 'DCH  coupling constants were calculated 

using 1JCH  values from isotropic sample. Representative 'DCH coupling constants are 

summarized -in Table 11.5.2.1. 

Table 11.5.2.1 Dipolar coupling constants of Dc/HI  in different alignment media 

r=0.9/wt% 6% 4.7% 4.1% 3.6% 3.3% 

DCIHI(Hz) 19 15 13 8 5 

The medium with r = 0.9 and wt% = 3.7% was chosen for the aligned sample of the 

tetrasaccharide II. The composition of the mixture was 18.6 jii C 12E5, 6.2 j.tl hexanol and 430 

jrl D20. The splitting of the deuterium signal was 22.5 Hz at 25 °C. 

II. 5.3 Parameters of new INADEQUATE experiments 

All 13C- 13C 'H-detected INADEQUATE spectra were acquired on a 600 MHz Bruker 

Avance spectrometer equipped with a 5 mm cryoprobe with inverse geometry and z-

gradients. The 13C-detected INADEQUATE experiments on Me--D-xylopyranose were 

acquired on a 600 MHz cryoprobe with a cold 13C preamplifier (University of Glasgow). The 

experiment on Me-f3-D-lactoside was acquired on an 800 MHz eryoprobe with a cold 13C 

preamplifier (University of Edinburgh). Unless stated otherwise, the 'H-detected 

INADEQUATE spectra were processed with no window function in F 1  and a Gaussian 

function in 17 2 . 

DJM-INEPT-INADEQUATE: 

The 2D DiM-INEPT-INADEQUATE spectrum (Fig.III.3.1.2) ofMe-[3-D-xylopyranoside 

was recorded using 32 scans in each of 800 complex t, increments. Acquisition times in rI 

and r2 were 94.7 and 106 ms, respectively. The relaxation time was is and the total 

acquisition time was 23 hours. Adiabatic 180° pulses described in [71] were used as 500 ts 

(inversion) and 2 ms (refocusing) pulses. This experiment did not contain any fixed ' 3C-' 3C 

evolution delays. A scaling factor of 4 was used for f-modulation. An acquisition time t1 of 

95 ms was used to measure coupling constants as small as 2 Hz. The maximum f-modulation 

time was 380 ms. A compromised delay 13 = 2 ms was used in the experiment. 

DJM-REVLNEPT-INADEQUATE: 
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The 21) spectrum (Fig.III.3.2.5) of Me-3-D-xylopyranoside was acquired using 8 scans in 

each of 2688 complex t1 increments. A scaling factor of 4 was used for J-modulation. 

Acquisition times in t1 and t2 were 159.1 and 106.8 ms. A compromised delay r 3  = 2 ms was 

used in the experiment. The relaxation time was 1.5 s and the total acquisition time was 14 

hours. 

The 2D spectrum (Fig.III.3.2.6) of Me-13-D-lactoside  was acquired using 100 scans in each 

of 1280 complex t1 increments. A scaling factor of 4 was used for f-modulation. 

Acquisition times in t1 and t2 were 75.8 and 106.8 ms. The delay of r3 = 3.3 ms was 

optimized for the CH couplings in the experiment. The relaxation time was 1.3 s and the 

total acquisition time was 63 hours. 

13C spin-echo experiments (Fig.III.3.2.2) with or without 'H decoupling were acquired using 

the following parameters. The" acquisition times were 0.45 s for mono-, di- and 

tetrasaccharides. The relaxation times were 1 s for mono- and tetrasaccharides and 2 s for the 

disaccharide. Variable delays of 0-800 ms, 0-720 ms and 0-250 ms were used for mono-, 

di- and tetrasaccharides, respectively. The number of scans of 4, 512 and 2048 were used for 

mono-, di- and tetrasaccharides for the spectra acquisition, respectively. 

fM-DEPT-INADEQUATE: 

The in- and antiphase multiplets (Fig.III.3.3.3) of the Me-3-D-xylopyranoside were acquired 

in an interleaved manner using 8 scans in each of 3072 complex t1 increments. Acquisition 

times in t1 and t2 were 181.8 and 106.8 ms. The 'JCH, 'fcc and Vcc  were optimized for 150, 

42 and 3 Hz couplings, respectively. A scaling factor of 4 was used for f-modulation. The 

relaxation time was 1.0 s and the total acquisition time was 37.5 hours. 

The interleaved spectrum (Fig.III.3.3.4) including in- and antiphase slices of the Me-[3-D-

lactoside were acquired using 24 scans in each of 1750 complex t1 increments. Acquisition 

times in t, and t2 were 103.6 and 102.6 ms. The JCH, 'fcc and  Vcc  are optimized for 150, 42 

and 3 Hz couplings, respectively. A scaling factor of 4 was used for f-modulation. The 

relaxation time was 1.0 s and the total acquisition time was 54 hours. 

INEPT-INADEQUATE and REVINEPT-INADEQUATE: 

Both spectra (Fig.III.3.4.2) of Me--D-xylopyranoside were acquired using identical 

parameters. Each spectrum was acquired using 4 scans in each of 512 complex tj increments. 
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Acquisition times in t1 and t2 were 30.3 and 106.8 ms. The 1JCH  and 'Jcc were optimized for 

150 and 3 Hz couplings, respectively. The relaxation time was 1.3 s and the total acquisition 

time was 1 hour. 

REVINEPT-INADEQUATE spectra (Fig.III.3.4.4) optimized for long-range or one-bond 

Jcc coupling constants were acquired on the sample of Me--D-lactoside. Acquisition times 

in t1 and t2 were 30.3 and 106.8 ms, and the relaxation time was I s in both cases. The 'JCH 

was optimized for 150 Hz couplings. The nJcc  and 'Jcc  were optimized for 3 and 50 Hz, 

respectively. The long-range spectrum was acquired using 40 scans and 9.5 hours of 

spectrometer time. The one-bond correlation spectrum was acquired using 8 scans and 1.5 

hours of experimental time. 

JM-REVINEPT-INADEQUATE: 

The in- and antiphase spectra (Fig.III.3.5.2) of Me-f-D-xylopyranoside were acquired in an 

interleaved manner. Experiment with a refocusing delay yielded the in-phase spectrum; the 

experiment without refocusing period resulted in the antiphase spectrum. Each spectrum was 

acquired using 4 scans in each of 3072 complex t1 increments. Acquisition times in t1 and t2 

were 181.8 and 106.8 ms. The 1.Jc11  and t'Jcc  were optimized for 150 and 3 Hz couplings, 

respectively. A scaling factor of 4 was used for f-modulation. The relaxation time was 1.3 s 

and the total acquisition time was 19.5 hours. 

The interleaved spectrum (Fig.III.3.5.3) of the Me-13-D-lactoside  was acquired using 24 

scans in each of 2176 complex t1 increments. Acquisition times in t1 and t2 were 128.8 and 

106.8 ms. The 1JCH  and nJcc  were optimized for 150 and 3 Hz couplings, respectively. A 

scaling factor of 4 was used for J-modulation. The relaxation time was 1.3 s and the total 

acquisition time was 74 hours. 

13C-detected INADEQUATE: 

Two interleaved refocused and non-refocused 2D spectra (Fig.III.3.6.3) of Me - 13-D-

xylopyranoside (isotropic and aligned samples) were acquired using 64 scans in each of 364 

complex t., increments. Acquisition times in t,, and t2 were 46.4 and 452 ms. The nJcc  was 

optimized for 3.07 Hz coupling. The relaxation time was 1.0 s and the total acquisition time 

was 26 hours. The spectra were processed using Gaussian and Exponential window functions 

in the F 1  and F2  dimensions, respectively. Line-broadening of 1.0 Hz was used in the F 2  

dimension. Linear prediction was used in both dimensions. 
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Two interleaved refocused and non-refocused 2D spectrum (Fig.III.3.6.7) of Me-13-D-

lactoside were acquired using 256 scans in each of 112 complex t1 increments. Acquisition 

times in t1 and t2 were 18.6 and 511 ms. The Vcc  was optimized for 3.0 Hz couplings. The 

relaxation time was 0.5 s and the total acquisition time was 48 hours. The spectra were 

processed with Gaussian and Exponential window functions in the F 1  and F2  dimension, 

respectively. Line-broadening of 1.0 Hz was used in the F 2  dimension. Linear prediction in 

the F 1  dimension was used. 

II. 5.4 Parameters of NMR experiments for the measurement of JHH and D1 

coupling constants 

All spectra were recorded on an 800 MHz Bruker Avarice spectrometer equipped with a 5 

mm triple resonance probe and xyz-gradients. 

Cellobiose: 

A 1D spectrum of the aligned cellobiose (Fig.III.2.2.4a) was recorded using a CPMG pulse 

sequence with an interpulse delay of 1.6 ms and the total duration of the spin-echoes of 32 

ms. 1D TOCSY spectrum (Fig.III.2.2.4b) was acquired using selective excitation [72] of the 

anomeric proton H1 via a 30ms Gaussian pulse followed by a 120 ms DIPSI-2 spin-lock. 

A 1D double-selective HOHAHA spectrum (Fig.III.2.2.4c) was acquired using the pulse 

sequence of Fig.III.2.2.2a. Acquisition started at point a. The following parameters were 

used: 30 ms Gaussian pulse applied at 8H3a,  80 ms double selective rectangular pulse 

centered at 8H3a  and 6114a  with RF field strength of 44 Hz [yBi/2ir = (J3,414)(4fl2 - 1)1'2, where 

= 8.9 Hz and n = 101, acquisition and relaxation times of 1 and 2s, respectively, and 4 

scans. The spectrum of Fig.III.2.2.4d was acquired using identical parameters but acquisition 

was started at point b. 50 ms 180 °  adiabatic smoothed (10%) CHIRP pulse with a frequency 

sweep of 40 kHz was used to purge dispersive components. Practically all H3 magnetization 

was transferred to H4 a. The spectrum of Fig.III.2.2.4e was obtained by starting the 

acquisition at point c. A 30 ms Gaussian pulse was used to select magnetization of proton 

H4a. The J-modulated ID directed HOHAHA-COSY spectrum (Fig.III.2.2.4f) was acquired 

using the pulse sequence of Fig.III.2.2.2b. The parameters for the doubly selective 

HOHAHA step were identical to those used to acquire the spectrum of Fig.III.2.2.4e. T and 

r, were set to 200 ms and 250 ms, respectively, and refocusing was used. The selective 

pulses applied to H4 and H2 protons were 50 ms Gaussian pulses; 128 scans were 

accumulated. 
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The 1D ge-VT-CSSF spectrum [73] (Fig.III.2.3.2c) was acquired using the pulse sequence of 

Fig. 111.3.2.3. la and twelve 4 ms CSSF increments with 2 scans each. A 30 ms Gaussian 

pulse was applied to H3 a. The f-modulated 1D directed CSSF-COSY spectrum 

(Fig.III.2.3.2d) was acquired using the pulse sequence of Fig.III.2.3.la using 32 increments 

with 16 scans each. Other parameters of the CSSF were identical to those used to acquire the 

spectrum of Fig.III.2.3.2c. 45 ms Gaussian pulses were applied during the COSY part of the 

sequence; Tand tr were set to 100 ms and a refocusing period was used. 

Sodium cholate: 

A 'H spectrum of the aligned sample (Fig.III.2.5.1b) was recorded using a CPMG pulse 

sequence with an interpulse delay of 1.6 ms and total duration of the spin-echoes of 32 ms. 

1D TOCSY spectra (Fig.III.2.5.lc-f) were acquired using selective excitation of the proton 

H3, H7, H12 and C18-Me via a 30ms Gaussian pulse followed by a 140 ms DIPSI-2 spin-

lock. 

The non-refocused 2D 'H-' 3C HSQC spectra of isotropic and aligned samples were acquired 

without decoupling in the directly detected dimension. Identical acquisition parameters were 

used for the isotropic and aligned samples. Acquisition times in tj and t2 were 15.9 and 604.8 

ms, respectively. Numbers of increments were 512. Numbers of scans in experiments were 

48 and the total experimental times were 6.5 hours. One-bond heteronuclear C-H scalar and 

dipolar coupling constants were extracted based on the frequencies of the antiphase doublets 

from the spectra processed without using any window function. 

A series of typical ID SPFGSE-COSY spectra were acquired using the variable delays from 

30 to 360 ms for both isotropic and aligned samples. 30 ms Gaussian pulses were used for 

the selective pulse and also during the COSY part. A more selective Gaussian pulse, e.g. 70 

ms, was used for seriously overlapping protons such as H4. The acquisition and relaxation 

times were 0.8 s and 1.5 s, respectively. The spectra of the isotropic sample were acquired 

using 32 scans, while those of the aligned sample were recorded using 64 scans. 

A series of typical 1D non-refocused CSSF-COSY spectra were acquired using sixteen 5 ms 

CSSF increments for both isotropic and aligned samples. 30 ms Gaussian pulses were used 

for the selective pulse and also during the COSY part. The variable delays were set to be 30 

to 360 ms. The acquisition and relaxation times were 0.8 s and 2 s, respectively. The spectra 
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of the isotropic sample were acquired using 4 scans, while those of the aligned sample were 

recorded using 8 scans. 

II. 6 Parameters used for docking and modeling 

II. 6.1 Docking of heparin-derived fully sulfated tetrasaccharide to fH modules 

The C, N, 0, S and H atoms of the tetrasaccharide were used for the calculation of the 

affinity grid maps (Appendix I) as well as the electrostatic map before docking. The 

dielectric constant was set to be a constant of 1.0. The interactions of hydrogen-bonds 

befween. N-H, 0-H and S-H were also calculated. The protein was kept static during the 

whole process. The grid maps of the atomic affinity and electrostatic potentials were 

calculated for each element in the ligand. The potential energies of the interaction between 

the atoms of the ligand and the macromolecule were stored in points within the grid maps. 

These maps were used during the docking process (Appendix I) to evaluate the energy 

during each run at 298.15 K. The ligand changed the orientation along the rotatable bonds 

when moving around the surface of the protein. The energy was calculated and compared 

with the previous step. The configuration with the lowest energy was accepted in each cycle. 

The Darwinian genetic algorithm (GA) was used for the docking calculation in 250 runs, 

each including 50 cycles and producing 250 possible conformations around the binding sites. 

II. 6.2 Molecular modeling of the heparin-derived oligosaccharides 

II. 6.2.1 Parameterization of heparin-oligosaccharides for AMBER calculations 

Heparin-derived fully sulfated di- and tetrasaccharides were built using the atom types 

contained in the newly parameterized force field (Appendix II). Partial atom charges were 

calculated with the RESP (Restrained ElectroStatic Potential fit) procedure using Gaussian98 

with the 6-31G* basis set. The single point charge calculation was carried out with the 

convergence criteria of 1 .00D-02 and 1 .00D-04 for the maximal and RMSDs change of the 

density matrix elements, respectively. The net charges for the fully sulfated di- and 

tetrasaccharide were set to -4 and -8, respectively (PDB files with partial atom charges are 

shown in Appendix III.) Three and six sodium ions were added randomly as counter ions to 

the di- (I) and tetrasaccharide (II), respectively, to generate sodiated oligosaccharide models 

with total charges of -1 and -2, respectively. The topology and coordinate files were used for 

subsequent simulations. The same procedure was applied to build up the other two 

tetrasaccharides III and IV. Five sodium ions were presented in the final systems resulting in 

a total charge of-2. 
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II. 6.2.2 Protocols for gas/solution modeling of GAGs in AMBER 

The complexity of oligosaccharide conformations is mainly associated with the flexibility of 

the glycosidic linkages. In order to sample the conformational space sufficiently, a large 

number of conformers needs to be generated. Therefore, a simulated annealing procedure 

was used to generate candidate structures for each oligosacchande ions in the gas phase. 

Simulated annealing (Appendix IV) is a cyclic calculation protocol containing initial energy 

minimization, high temperature molecular dynamics followed by a rapid cooling step to a 

very low temperature to freeze out individual conformers, and a final energy minimization. 

The calculation was run in vacuum without any solvent or periodic box. In the initial energy 

minimization period, the starting conformation was optimised with a 3 Ps steepest descent 

step followed by a gradient method of a duration 0.5 ns. The optimized structure was 

subjected to a 30 Ps of molecular dynamics at 800 K with constraint on the bonds involving 

H-atoms (SHAKE). The system was then cooled to 0 K during a period of 10 ps using ten 

cooling steps of 80 K in order to freeze out one conformation. This geometry was then 

optimized by minimizing the energy in the same way as the initial energy minimization was 

carried out. The first candidate conformation was obtained in this way and used as the input 

for the next round of the simulated annealing. One hundred candidate structures were 

generated for di- and tetrasaccharides. Conformations within 5 kcal mof' of the lowest 

potential energy were considered to be thç correct models. The 10% lowest potential energy 

conformations out of the 100 structures were used as the final candidate structures for the 

theoretical calculation of collision cross-sections. These included 10 and 5 conformations for 

sodiated fully sulfated di- I and tetrasaccharide II models, respectively, 5 and 4 for the 

tetrasaccharides III and IV, respectively. Detail analysis and discussion for these gas phase 

conformations are in Chapter III.!. 

Fully sulfated tetrasaccharide, II, was also studied in solution. The structure with the lowest 

potential energy from gas phase simulation was dissolved in a water box for explicit solution 

periodical calculation (Appendix IV). Before adding the water molecules, eight sodium ions 

were added randomly to neutralize the whole unit. A cubic 40.675 A water box with a 

spacing of 8 A containing 1938 triangulated 3-point water molecules was generated. The 

whole water box was first energy minimized with a tight restraint on the tetrasaccharide 

atoms to relax the water molecules. Then the whole system was energy minimized without 

any restraint. The temperature of the system was then increased from 0 K to 300 K in 0.002 

ns and stabilized at 300 K for 0.02 ns at a constant volume state with constraint on the bonds 
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involving H-atoms while the tetrasaccharide molecule was restrained weakly. Another 0.1 ns 

equilibration molecular dynamic at 300 K and a constant pressure (1 atm) was simulated 

without any restraint before the molecular dynamic calculations. 

Restrained and unrestrained molecular dynamics (Appendix IV) were performed at constant 

pressure (1 atm) and temperature of 300 K for 4 and 2 ns, respectively. RDCs of both 

glucosamine rings (A and C rings in compound II) were used as experimental restraints. 

Comparisons of these two simulations are discussed in detail in Chapter 111.4. 

11.6.2.3 Calculation of cb/W energy maps of disaccharide fragments 

The relative orientation of individual monosaccharide rings is described by the dihedral 

angles 1 (H, -C, -O-C 4) and 'F (C 1  -0-C4-H4). These angles were restrained in 10-degree 

steps between -180 and 180 degrees and the structures were energy minimized during a 3 Ps 

steepest descent step followed by a gradient method of 0.5 ns, using the parameterized force 

field. The calculations (Appendix IV) were performed in vacuum and in the absence of Na 

ions. The non-bonded cut-off value was set to 999 A and a distance-dependant dielectric 

constant was used. For AUA2S and IdoA2S residues (rings D and B) two ( 1 1-12 and 2H,) and 

three ('C4, 4C, and 2S0) starting conformations were used, respectively. These conformations 

were not fixed during the calculations, although they did not change. Maps that produced 

only the lowest energy minima are shown in Fig.III. 1.6.1. The resulting ((I, 'F) maps were 

drawn using ten isoenergy contours in 1 kcal mol 1  steps above the global minimum. 

II. 6.3 Molecular modeling of the spin-labeled disaccharide 

Partial atom charges were calculated with the RESP procedure using Gaussian98 and the 6-

3 1G' basis set. The single point charge calculation was carried out with the convergence 

criteria of 1 .00D-02 and 1.0013-04 for the maximal and RMSD change of the density matrix 

elements, respectively. The net charge of the whole molecule was set to be -3. Both 'H 2  and 

2H, conformations of the uronic acid ring (D ring) were considered as starting structures. 

The TEMPO-disaccharide molecule (compound V) was dissolved in a cubic 32.683 A water 

box with a spacing of 8 A containing 981 triangulated 3-point water molecules. The water 

box was first energy minimized using tight restrains on.the solute atoms, followed by energy 

minimization of the complete system without restraining the solute. The temperature of the 

system was then increased from 0 K to 300 K in 0.002 ns and stabilized at 300 K for 0.02 ns 

at a constant volume using SHAKE for bonds involving H-atoms. The position of the solute 



was weakly restrained. This step was followed by a 0.1 ns equilibration molecular dynamics 

at 300 K and constant pressure, I atm, without any restraints on the position of the solute. 

Finally, a constant temperature free molecular dynamics with SHAKE at 300 K was.. 

performed for 1 ns. Both 'H 2  and 2H 1  starting conformations converged to the 2H 1  form 

during the simulation. 
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Chapter III 

Results and Discussion 
The heparin-derived oligosaccharides were studied in the gas phase and in solution 

experimentally. As the interpretation of the results requires theoretical structures, the 

description of the protocols used in molecular modeling is given first. 

III. 1 Gas phase conformations of heparin-derived oligosaccharides 1771 

III. 1.1 Parameterization of the AMBER force field for GAGs 

We have further parameterized the Parm99 force field in AMBER7 [74] by introducing the 

GLYCAM_2000a [75] parameter set for carbohydrates. This extension included creation of 

new atom types such as a-, 13-anomeric carbons, definition of parameters for glycosidic 

linkages and carbohydrate specific bonds, angles, torsion angles and improper torsion angles. 

However, GLYCAM_2000a does not contain parameters for sulfate groups, which are 

common in GAGs. Therefore, parameters for sulfates and sulfamates were applied according 

to Huige and Altona [76]. A new atom type, SO, for the sulfate group was created. Some 

parameters for sulfate groups that were not available from the work of Huige and Altona 

were approximated by using those for phosphates from Parm99. The compatibility of 

parameters arising from the presence of the double bond contained in the non-reducing 

terminal monosaccharide ring was also resolved (Appendix II). All of these modifications 

were written into a new file, which was used as a force field modified file loaded together 

with the original parm99 force field into XLEAP sessions. 

was used as a pilot study to test the 

performance of the modified force field parameters for carbohydrates. This compound was 

chosen because its glycosidic linkage was known to exist in two conformations. MM3 force 
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field structures of two energetically favored conformations were provided by S. Perez. The 

dihedral angles ((1, 'F) across the glycosidic linkages were (60, 120) (conformer 1) and (280, 

140) (conformer II), respectively. The starting structures were used as input files to calculate 

the atom charges with the AMI-BCC basis set using ANTECHAMBER. The output file was 

loaded into an XLEAP session to generate topology and coordinate files, which contain 

proper atom types and geometries, and used for further calculation. 

Free molecular dynamics was simulated in vacuum at 300 K for 6 ns with the two models. 

Bonds involving H-atoms were constrained using SHAKE during dynamic calculations 

eliminating stretching motions. From the trajectory files, 1' and 'F torsion angles across the 

glycosidic linkage were extracted and plotted as a function of time (Fig.ffl.1.1.1). The 

(b angle of conformer I changed from an average value of 60 degrees to 280 degrees, 

resulting in the changing from one minimum (conformer I) to the other (conformer H). The 

torsion angle distribution is shown in Fig.ffl. 1.1.2. 

Fig.ffl.1.1.1 Phi angle (H-C-O-C') across the glycosidic linkage of (3-DglucopyranoSYl-(1—'2)+D-

manopyranose during the simulation. Red dots show the phi angle of conformer H. Green dots show 

the phi angle of conformer 1. The phi angle jumped from 60 degrees to -80 degrees during the 

molecular dynamics of conformer I, which indicates the conformation change from one minimum to 

the other. 
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Fig.Ill.1.1.2 The distribution of ((D, 'I') angles during the simulation. 
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These calculations suggest that the parameterized force field can be applied to 

oligosaccharides and that the flexibility across the glycosidic linkages can be represented 

properly. The parameterization of heparin-derived oligosaccharides and protocols used for 

gas and solution modeling of GAG in AMBER are described in Chapter 11.6.2. 

III. 1.2 The studied species 

Heparin-derived disaccharide (I) and three tetrasaccharides (II-IV) were studied in the gas 

phase. Disaccharide I and tetrasaccharide II are fully sulfated species possessing three and 

six sulfate/suiphamate groups, respectively. Their structures were therefore obvious from 

disaccharide analysis (i.e. [iUA(2S)-GlcNS(6S)] 12  ), but were confirmed by NMR and MS. 

Two lesser sulfated tetrasaccharides (Ill and IV) were also obtained that possessed 

asymmetric disaccharide compositions. 

The 'H NMR spectra of oligo saccharides I-IV, obtained using water presaturation during the 

relaxation delay, are shown in Fig.III.1.2.1. In these spectra, signals with chemical shifts 

between 5.0 and 5.5 ppm are those of the anomeric protons. The signal at around 6.0 ppm 

seen in all spectra belongs to H4 of the terminal uronic acid ring (D ring). In the spectrum of 

sample IV, there is an additional signal at 4.542 ppm. This can be assigned to the Hi proton 

of a glucuronic acid. In heparin-derived tetrasacchandes glucuronic ring can only exist as a 

B ring. All other 19 carbon-bonded protons of tetrasaccharides resonate within the 2.9-4.9 

ppm region. Inspection of the 1D spectrum also revealed that sample III is heterogeneous, 

which complicated the analysis of the 'H NMR spectra of this compound. 

Iv * 

Dl 	 H BI 
Cl I I 

 I 
 

ii 	AlA1 	 I 	iii 

Ill 	Al 	
HLIO 	i I** 

Cl 

	

D1 	

C1 

II 
Cl Bi 

Al/ 

	

Dil 	.4A 

Fig.ffl.1.2.1 1 H NMR spectra of heparin-derived tetrasaccharides (II-1V). Signals labeled with * are 

non-carbohydrate impurities. 

* * 
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Using 1D traces of 2D TOCSY spectra of samples II-IV (Fig.III.1.2.2), four different spin 

systems associated with four carbohydrate rings were assigned. The signals of two iduronic 

rings in samples II and III can be assigned to rings B and D by inspection of TOCSY cross-

peaks alone, but this is not the case for the two glucosamine rings. The signals of rings B 

(glucuronic acid) and D (unsaturated uronic acid) can be unambiguously identified from the 

TOCSY spectrum of compound IV. 
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Fig.III.1.2.2 1D traces through anomeric protons taken from 2D TOCSY spectra for samples II-IV. 

A 2D ROESY experiment (Fig.III.1.23) of sample II was therefore used to confirm the 

sequence of monosaccharides as D-C-B-A and assign the glucosamine signals of the two 

rings A and C. Several ROE cross peaks between protons on both sides of the glycosidic 

linkage were identified. This allowed the assignment of the chemical shifts for each of the 

four rings of the three samples (Table 111.1.2.1). 

-j_JJkJLLJW&LJM 
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Cl 	 B3 	B4 	C2 

B 	
Bi 	 A6 A5 A4 

Al 	 A2 

6.0 	 5.5 	 5.0 	 4.5 	 4.0 	 3.5 	 ppm 

Fig.ffl.1.2.3 1D traces through anomeric protons taken from 2D ROESY spectrum of sample U. 

52 



Table 111.1.2.1 'H chemical shifts of the three tetrasaccharides II-IV. Literature [33] 
values are shown in bold: the differences are shown in narentheses 

Compound/Rings H, H2 H3 H4 H5 H6 H6' 

A 5.379/5.430 3.208/3.245 3.682/3.682 3.739/3.732 4.089/4.117 4.271 /4.290 4.271 /4.350 
(-0.051) (-0.037) (0) (0.007) (-0.028) (-0.019) (-0.079) 

5.301 / 5.203 4.285 / 4.303 4.197 / 4.198 4.035 / 4.097 4.794 / 4.765 

II (0.098) (-0.018) (-0.001) (-0.062) (0.029) - - 

5.335/5.416 3.260/3.285 3.660/3.631 3.809/3.823 4.019/4.024 4.179/4.237 4.301 /4.341 
(-0.081) (-0.025) (0.029) (-0.014) (-0.005) (-0.058) (-0.040) 

D 5.497 / 5.495 4.556 / 4.612 4.285 / 4.308 5.938 / 5.984 
(0.002) (-0.056) (-0.023) (-0.046) - - - 

A 5.395 / 5.433 3.174 / 3.220 3.623 / 3.671 3.661 / 3.698 - 3.823 / 3.860 3.873 / 3.860 
(-0.038) (-0.046) (-0.048) (-0.037) - (-0.037) (0.013) 

5.145 / 5.196 4.247 / 4.293 4.159 / 4.219 4.031 / 4.065 4.704 / 4.796 

III') (-0.051) (-0.046) (-0.060) (-0.034) (-0.092) - 

5.345 / 5.357 3.236 / 3.286 3.591 /3.645 3.773 / 3.824 3.981 / 4.008 4.185 / 4.231 4.284 / 4.342 
(-0.012) (-0.050) (-0.054) (-0.051) (-0.027) (-0.046) (-0.058) 

D 5.453 / 5.495 4.562 / 4.612 4.247 / 4.308 5.926 / 5.984 
(-0.042) (-0.050) (-0.061) (-0.058) - - - 

A 5.409/5.448 3.216/3.260 3.637/3.694 3.677/3.721 4.101 /4.142 4.290/4.330 4.290/4330 
(-0.039) (-0.044) (-0.057) (-0.044) (-0.041) (-0.040) (-0.040) 

4.542/4.589 3.324/3372 3.793/3.839 3.713/3.771 3.749/3.812 

PT 
(-0.047) (-0.048) (-0.046) (-0.058) (-0.063) - - 

5.517/5.555 3.248/3.292 3.587/3.631 3.775/3.823 3.927/3.976 4.137/4.188 4.286/4333 
(-0.038) (-0.044) (-0.044) (-0.048) (-0.049) (-0.051) (-0.047) 

D 5.459 / 5.495 4.572 / 4.612 4.264/4308 5.934 / 5.984 
(-0.036) (-0.040) (-0.044) (-0.050) - - - 

Overall, there is a good agreement between the measured 'H chemical shifts and the 

literature data for each tetrasaccharide. Nevertheless there are some differences. The largest 

difference (0.098 ppm) was found for Hi (B) of compound IL The reason for this is likely to 

be the different sample conditions. Sample II used in this work was at pH 7.5 and 4:1 excess 

of Ca 21  was used. 

In tetrasaccharide III, position C6 of ring A is not sulfated (i.e. G1cNS). In the case of 

tetrasaccharide IV, ring B is a nonsulfated G1cA rather than a 2-0-sulfated IdoA as in II and 

III. All oligosaccharides contain a C4-05 double-bond in the non-reducing uronate ring D 

resulting from the enzymatic lyase cleavage that was used to excise the oligosaccharides 

from the heparin polysaccharide. At the reducing end the a-anomers are the prevailing 

species in solution (cc: 13 = 9:1), as determined by NMR. There is no significant difference in 

the theoretical collision cross-sections between these two forms. This is in agreement with 

the experimental ATDs that did not show any indications of separate peaks attributable to 

different anomeric forms. Only a-anomeric configurations of the reducing end 

monosaccharides are therefore considered below. 
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III. 1.3 Measurement of the experimental collision cross-section? 

The ions generated from disaccharide I showed three distinct arrival distribution times 

(Fig.III.1.3.1a) at an apparent mass-to-charge ratio of 642.4 mlz. Early in the data analysis it 

became clear that the species with longer ATDs could not be reproduced by considering only 

a monomeric ion ([C 12H 15NO 19S3Na3f) and these corresponded to a dimer and trimer of I 

([C 12H 15NO 19S3Na3 1 22  and [C 12H 15NO 19S3Na3] 3 3 , respectively) that were formed in the 

collision cell. The ion mobility, K, was obtained via a plot of arrival times versus the 

pressure of helium divided by the drift voltage (Fig.III.1.3.1b). The experimental cross-

sections were calculated using those values from Eq.I.5.2 (Table 111.1.3.1). 
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Fig.Ifl.1.3.1 (a) Arrival time distributions for the 642.4 m/z ion of disaccharide I. An electric gradient 

of 60 V was used. The peaks labelled a-c correspond to a monomer, dimer and trimer of I, 

respectively. (b) Determination of experimental ion mobilities, K, for three arrival time distributions 

observed for disaccharide monomer (.), dimer  (.) and trimer (A) of I. (Data from Table 111.1.3.1) 

Table 111.1.3.1 Experimental data of ion mobilities of the disaccharide ion I. 

Fully sulfated disaccharide (I)  
Pressure(bar) 4.965 4.939 4.957 4.943 4.953 ,  
Voltage (V) 91.39 61.20 45.69 30.70 20.13 

P/V 0.054 0.081 0.108 0.161 0.246  

ATD(ps) 
385 
410 
485 

490 
530 
645 

600 
653 
805 

810 
890 
1120 

1150 
1280 
1625 

Monomer 
Dimer 
Trimer 

K0(cm 2V's) 4.024 5.274 5.992 

o(A2) 132.1 201.6 266.8 
Monomer Dimer Trimer 

"All experiments were carried out by Dr. Perdita E. Barran at UCSB (USA) 
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The ions generated using tetrasaccharides II-IV were principally monomeric and 

corresponded to the following species: [C 24H30N2O38S6Na6] 2  (II, 642.4 mlz) and 

[C24H31N2035 S5Na5]2  (III, IV, 591.4 mlz). The arrival time distributions of the 

oligosaccharides I-IV were analysed as explained above for the disaccharide, and the 

resulting experimental collision cross-sectional areas are summarized in Table 111.1.3.2. The 

number of Na atoms lost during the ionization process (one for the disaccharide and two for 

tetrasaccharides) corresponds to .the number of carboxyl groups, implying a stronger affinity 

of sulfate and sulfamate groups for sodium compared with carboxyl groups. 

Table 111.1.3.2 Experimental and theoretical cross sectional areas of 
1i hirideQ I-1V 

Compound I II 
I H 	iii IV 

I (A2) Monomer I 	Dimer I 	Trimer 

I Experimental 132.1 201.6 266.8 I 	198.4 190.4 191.6 

Calculated I 	134.8 191.7 250.2 204.1 190.3 I 	191.8 

III. 1.4 Modelling of the gas phase structures and calculation of the theoretical 

collision cross-sections 

Candidate structures of oligosaccharides and their oligomers were obtained by molecular 

modelling described in Chapter 11.6.2. For each of these structures the theoretical collision 

cross-sections were calculated (Table 111.1.3.2). 

The ions were modelled using the projection approximation method as a collection of 

overlapping hard spheres with radii equal to hard sphere collision distances, corrected for 

collision temperature [78]. The orientationally averaged geometric cross-section was 

determined by averaging the geometric cross-section over all possible collision geometries. 

The program Mobcal [79] was used to calculate the theoretical collision cross-sections for 

the candidate oligosaccharides. Fig.III. 1.4.1 shows plots of theoretical collision cross-

sections of 100 conformations of the sodiated heparin-derived oligosaccharide ions. 

The average theoretical collision cross-sections reported in the Table 111.1.3.2 for each of the 

oligosaccharide models were obtained by averaging the collision cross-sections of 10% 

lowest potential energy structures. The agreement between the experimental and theoretical 

cross-sections is very good. For monomers the differences were < 2.1%, while for oligomers 

they were < 6.2%. Representative structures of the oligosaccharides are shown in 

Fig.III. 1.4.2. 
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Fig.III.1.4.1 Theoretical cross sections of 100 candidate structures of (a) fully sulfated disaccharide I, 

(b) fully sulfated tetrasaccharide II, (c) tetrasaccharide III and (d) tetrasaccharide IV as a function of 

the potential energy. 

Fig.I1I.1.4.2 Typical structures of sodiated oligosaccharides, blue dots are sodium ions. I iUA(2S)-

GIcNS(6S)-Na3 ; II UA(2S)-GlcNS(6S)-IdoA(2S)-G1cNS(6S)-Na6; Ill iUA(2S)-GlcNS(6S)-

IdoA(2S)-GIcNS-Na5  and IV AUA(2S)-GIcNS(6S)-GIcA-GIcNS(6S)-Na5 
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III. 1.5 Analysis of the modelled gas phase structures 

Ten lowest energy structures of the monomeric disaccharide I ion, [C 121-1 15N019S3Na31, 

differed only slightly in the orientation of their functional groups (Fig.111. 1.5.1). 

(a) 

Fig.1I1.1 .5.1 Low energy structures of the M.JA(2S)-GIcNS(6s)-Na3 ([C , 2H , 5N0,9S3Na31) 

disaccharide I ion. (a) A typical structure of 1. Na is shown as spheres. (b) Overlay of ten lowest 

energy structures. The structures were generated using MolMol [80]. 

The AUA ring (D) was always found in the 1 1-12 conformation while the glucosamine residue 

(ring A) invariably occupied the 4C, conformation. Two Na ions were coordinated by two 

sulfate groups, while the third was positioned between the sulfamate and carboxyl groups. 

As a general feature of all structures simulated, the Na ions were found between 2.2 and 2.9 

A from oxygen atoms of at least two sulfate, sulfamate or carboxyl groups. 

Although the prevailing conformations of rings D and A in the dimer and the trimer 

(Fig.II1.1 .5.2) were the same as observed for the monomer disaccharide ('H2 and 4C,), other 

forms (133,0 for ring D and 'S 5 , 5S3 for ring A) were also found. The existence of these forms 

was attributed to the presence of the Columbic interactions between the Na ions and 

negatively charged groups causing distortions of the ring conformations. In all dimers the 

Na cations were simultaneously coordinated to both monomer units. In the trimers all Na 

ions were coordinated by at least two monomers, while some showed simultaneous 

interactions with all three monomers. In addition, several hydrogen bonds were observed 

between some monomers using the criterion for the distance between the atom, carrying 

hydrogen donor (D) and oxygen acceptor (A) < 3 A and the angle ID-H-A! <200. 
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Fig.111.1.5.2. Representative structures of (a) [C 12H 15NO 19S3Na3 ]22  and (b) C 12H, 5NO 19S3Na3]33  

ions corresponding to the dimer and trimer of I. The structures were generated with VMD [81]. 

Individual monomers are highlighted using van der Waals radii of their atoms. 

The overlay (Fig.III.1.5.3) of five of the lowest energy structures of ions tetrasaccharide II 

showed some heterogeneity in the conformation of individual monosaccharide rings. In 

particular, both '11 2  and 2H, forms were present in ring D. Ring A also showed, in addition to 

a 'C l  conformation, both boat and skew boat forms. The IdoA2S (ring B) consistently 

occupied a 4C 1  conformation, although the solution structure of II indicates the prevalence of 

the 2 S0  form [3 Ia]. 

Fig.I11.1.5.3 Fully sulfated tetrasaccharide H. (a) Representative structures of C 24H30N2O38S6Na62  

ion. (b) Overlay of the five lowest energy structures (c) Crystal structure [861 of II in complex with 

bFGF. 

Calculations performed on this tetrasaccharide with the Born Solvent model [31 b] resulted in 

interconversion between the usual 'C 4  and 2S0  forms for the B ring. This indicates that the 

4C 1  is specific to the gas phase rather than the AMBER force-field we have used. In order to 

see whether different conformations of the iduronic acid could be distinguished by IMMS, 

58 



(a) 
(C) (b 

theoretical collision cross-sections of 89.35 A 2  ('C4), 87.80 A2  (4C 1 ) and 89.40 A2  (2 S0) were 

calculated. As can be seen, the difference is < 2%, which would not be detected by an IMMS 

instrument. Nevertheless, in the context of a larger molecule different conformations of 

ldoA2S monosaccharide may influence the overall shape of the molecule and therefore be 

indirectly traceable via molecular modelling. 

A notable feature of the lowest energy structures of the tetrasaccharide ions is their 'compact' 

shape (Fig.I1I.1.5.3b), which differs from the more extended conformation observed in the 

X-ray structure [86] of H complexed with basic fibroblast growth factor (bFGF) 

(Fig.IlI. I .5.3c). The theoretical cross section of the X-ray structure (231.8 A 2) is 

substantially larger than that of the corresponding low energy structures in the gas phase 

(204.1 A2). Clearly, the value obtained from the calculated structures is much closer to the 

experimental value of 198 A2 . Even better agreement between the theoretical and 

experimental cross sections was observed for tetrasaccharide ions Ill and IV (Table 

111.1.3.2), indicating that the calculated model structures are a true representation of their gas 

phase conformations (Fig.I11. 1.5.4 and Fig.111. 1.5.5). 

Fig.111.15.4 Overlaid structures of low energy conformations of tetrasaccharides of III (a) all five 

conformations (b) and (c) two groups with different dihedral angles across the glycosidic linkages 

Generally, the conformations of the tetrasaccharide ifi (Fig.11L1.5.4) were the most 

compacted. D ring was in the 2H 1  form, while the two glucosmine rings (A and C) were in 

the 4C 1  conformation. However, the ldoA2S (ring B) were in the B 14  form. The 

conformational changes across the glycosdic linkages of the tetrasaccharide III 

(Fig.I11.1.5.4b, c) did not affect the overall collision cross-sections of the whole molecule. 
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Table 111.1.5.1. Structural parameters of the lowest energy conformers of the 

disacchari de    A and it 'l nrn&rc  

Ring  Ring P 

Monomer 'H2 4C, 	1 64 28 

X-ray [86] 
Solution [85] 

'H2 
'H2 4C, 45.7 

.3 
13.2 

Dimer 
'112 55 41 -30 

'112/1330 4C, 45 -16 
- 

Trimer 
'H2 4C, 26 -18 

'H2/B3,o 4C, 27 -4 

Fig.11I.I.5.5 Low energy structures of the tetrasaccharide IV ion. (a) A typical structure of IV. Na is 

shown as spheres. (b) Overlay of four lowest energy structures. 

Conformation of low energy structures of tetrasaccharide IV was heterogeneous 

(Fig.11l. I .5.5b) but different conformers had similar cross-sections. Both 'H2 and 2H, forms 

were obtained for the D ring, while both 4C, and 'C4 forms existed in the C ring. The GIcA 

(B ring) was in the 1,4B form and the A ring showed 'S5 form. These special conformations 

are very likely caused by distortions from the interactions between the negatively charged 

sulfate and carboxyl groups of IV and the sodium ions. The following tables summarize the 

dihedral angles of the lowest energy conformers of gas phase oligosaccharide ion structures. 

Table 111.1.5.2 Structural parameters of the lowest energy conformers of the 
IT iii 	iv 

Dihedral I 
angle 

Crystal 
structure [86] 

Solution 
structure [85]  

II 111 IV 

42.3 45.7 175.8 172.0 61.0 

TDC  18.3 13.2 -149.4 -159.7 20.0 

-18.5 -43.3 -48.8 -3.9 -129.8 

q'CB -3.5 -42.2 -10.8 5.0 -11.2 

BA 57.0 45.2 25.5 176.6 34.7 

PBA 25.1 15.0 -78.5 0.8 -30.0 



It can be seen that a small change in the primary structure can lead to very different 

conformations for tetrasaccharides II-IV in the gas phase. For example, tetrasaccharides 11 

and III, which differ only in one sulfate group at position A6, show markedly different 

conformations along the CB and BA glycosidic linkages. Similarly, GIcA/IdoA2S isomerism 

(compounds II and IV) resulted in very different conformations. This is an interesting result 

showing that, at least in the gas phase, differences in the primary structures of HS/heparin 

sequences can lead to different conformations. It is also possible that the conformations 

revealed by IMMS exist transiently in solution generating short-lived "kinks and turns" in 

otherwise regular, helical structures of HS/ heparin [82]. It can also be seen that large 

differences exist between these structures and the conformations in solution or solid state. In 

order to investigate the source of these differences next we have performed valuation in 

vacuum in the absence of sodium cations. 

III. 1.6 Molecular modelling of heparin-derived tetrasaccharide ions in the gas 

phase and in the absence of Na ions 

Compact structures of gas phase ions have been observed in an IMMS study of neutral, 

sodiated carbohydrates [83], and recent work by Hill et al. [84] reports the use of 

atmospheric pressure ion mobility to separate sodiated di- and trisaccharides. In our work, 

interactions of Na with negatively charged sulfates, sulfamates and carboxyl groups resulted 

in the formation of higher oligomers of disaccharide ions; aggregation was not reported by 

Hill. Are these interactions also responsible for the "compact" shape of the tetrasaccharide 

ions that reproduced so well our IMMS data? Or is it because of the newly parameterized 

force field favours certain conformations around the glycosidic linkage leading to compact 

structures? In order to answer these questions, structures of three disaccharide segments, 

contained in each of the tetrasaccharides II-IV, in the absence of Na*, were calculated. For 

these calculations conformations of individual rings corresponding to the most populated 

species found in the modelled gas phase structures in the presence of Na were used. The 

results of these calculations are presented in the form of ((D, P) energy maps (Fig.I1I. 1.6.1), 

that were calculated as described in Chapter 11.6.2.3. On these maps, the dihedral angles 

observed in the model structures of the gas phase ions (Tables 111.1.5.1 and 111.1.5.2), and 

also those found in the solution [85] and solid state structures [86] are indicated. 
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Fig.1I1.I.6.1 (1), 'I') energy maps calculated for disaccharide fragments of oligosaccharides 1-IV. The 

following conformations of individual rings were considered: DC: 'H2-4C1; CB and BA: 4C 1 -4C 1 . Ten 

isoenergy contours were drawn by interpolation of I kcal/mol above the global minimum. The 

conformation found for disaccharide ions are marked by + (monomer) and * (dimer and trimer). 

Conformations found for tetrasaccharide ions II, Ill and IV are labelled using A, • and ., 

respectively. The dihedral angles found in the solution structures of the tetrasaccharide II are marked 

by x and s, respectively. (a) CD disaccharide fragments. The energy minima labelled as 1 and 2 are 

separated by 4 kcal moE'. (b) Rings C and B in tetrasaccharide ions 11, Ill. The energy minima 1 and 

2 are separated by 3 kcal moE'. (c) Rings C and B in the tetrasaccharide ion IV. (d) Rings B and A in 

tetrasaccharide ion II. The energy minima marked as 1, 2 and 3 are separated by 1 kcal moE'. (e) 

Rings B and A in tetrasaccharide ion III. The energy minima I and 2, and 1 and 3 are separated by I 

and 3 kcal mol', respectively. (f) Rings B and A in tetrasaccharide ion IV. 
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Starting from the non-reducing end of the molecule, the DC disaccharide fragment was first 

examined. The dihedral angles observed for the monomeric disaccharide ion 

[C 12H 15NO19 S3Na3f deviate up to +300  on both angles from the deepest minimum of the 

W) map. Deviations in the opposite direction, and of up to 450  in the 'YDC  angle, were 

observed for dimenc and trimeric disaccharide ions. The largest differences were however 

observed for the DC linkages in the tetrasaccharide ions II and III, corresponding to the 

existence of anti conformers (symbols A and • in Fig.III.1.6.1a). This region of the (ct, ') 

map was not particularly energetically favoured in the absence of the sodium, but 

presumably became stabilized by the Na cations interacting with both D and A rings. The 

corresponding dihedral angles observed in the X-ray and solution structures were close to the 

minimum of the (D, tII)  map. 

The next two disaccharide fragments can only be examined in the context of the 

tetrasaccharides. Considering tetrasaccharide ions II and III first, the CB fragments are 

structurally identical in these two compounds and the dihedral angles of the tetrasaccharide 

ion II are close to the minimum of the (b, t11)  map (Fig.III. 1.6.1 b). However, in compound 

III the (tICB  angle differs by 45°. It is possible that this difference is a consequence of a 

different conformation found in the BA disaccharide fragment of ions II and III (see Table 

111.1.5.1 and Fig.III.1.6.1d,e), and it is therefore not possible to attribute this difference 

solely to effects of the Na ions. On the other hand, a large difference in the dihedral angle 

(1)03  (80°) was observed between the sodium-free disaccharide fragment and the gas phase 

conformation of tetrasaccharide ion IV (Fig.III. 1.6.1 c). The latter clearly occupies a high 

energy region of the (D, tP) map. 

Because of the differences in the primary sequence of tetrasaccharides II-IV, three separate 

cases must be considered when analysing the BA disaccharide fragment. In compound H the 

gas phase ion structure is not found in the global minimum ((1, 'I') = (180°, 10 °), but 

occupies a third minimum (+2 kcal mor') with coordinates (26, -79). This conformation also 

differs by —105° in the T AB  angle from the X-ray and solution structures. Ions III and IV on 

the other hand show conformations coinciding with the global minima of the sodium-free 

disaccharide segments (Fig.III. 1.6.1 e, f). 

The analysis presented above showed that considerable differences exist between the 

structures calculated in the presence or absence of Na. It appears that sodium atoms play an 

important role in stabilising the gas phase conformation of ions, leading to the appearance of 
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"compact" structures of tetrasaccharide ions. In these structures rings A and D are brought 

close to each other and bridged by sodium cations. In order to accommodate such 

conformations, some glycosidic linkages adopt conformations that differ from those 

calculated for the sodium free disaccharide segments, or those observed in the solution or X-

ray structures of tetrasaccharide II. 

Na ions interact differently with the negatively charged groups of GAGs in solution and in 

the gas phase. In solution the hydrated sodium counter-ions are delocalized in the volume 

around the polyanion [87], while in the gas phase the Na cations are localized near several 

negatively charged groups as seen in this study. This effect will lessen the Columbic 

repulsion that isolated sulfate groups would impart on each other, and has the effect of 

'tightening' the structures. This explains the lower cross section obtained in the gas-phase 

compared with that from X-ray data. 

In summary, the conformational analysis of ions of heparin-derived oligosaccharides using 

ion-mobility mass spectrometry and molecular modelling was performed in this project. 

Negative mode electrospray ionisation has produced singly (disaccharide) and doubly 

charged (tetrasaccharide) ions containing three and six Na ions, respectively. A good 

agreement was obtained between the experimental and theoretical cross sections. The latter 

were obtained using modelled structures generated by the AMBER-based force field. 

Analysis of the data shows that the sodium cations play a major role in stabilizing the ions in 

the gas phase. This was seen in the formation of oligomers of the disaccharide and 

"compact" structures of tetrasaccharide ions. Interestingly, the conformations of the three 

tetrasaccharides, differing by relatively small changes in primary structure, were 

significantly different. The Columbic interaction between sodium ions and negatively 

charged carboxyl and sulfate groups of oligosaccharides distorted their conformations. This 

made the whole structure compact. 

By using the ionization conditions as described by Zaia and Costello [88] it may be possible 

to obtain Natfree ions of heparin-derived oligosaccharides for ion-mobility studies that 

would bear a closer resemblance to conditions seen in solution. In particular, this may be 

possible for low sulfated HS species which so far have received much less attention 

compared with highly sulfated domains. Although the low sulfated species are less likely to 

be involved in protein recognition, they may well be the source of flexibility in HS/heparin 

polymers and this could be probed by IMMS. A significant advantage of IMMS over other 
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biophysical methods applicable to conformational studies of biomolecules is that the ion-

mobility experiments can be performed at near liquid nitrogen temperatures. Under these 

conditions different conformers can potentially be separated providing they exhibit distinct 

cross sectional areas. Other methods, such as NMR, can only report on the time-averaged 

structures. 
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III. 2 Development of methods for the measurement of JHH  and DHH  coupling 
constants• 

III. 2.1 J-modulated 1D directed COSY 

We have developed a set of robust intensity based ID NMR methods for accurate and 

precise measurement of the scalar and dipolar proton-proton coupling constants for small 

and medium size molecules. These techniques work despite the presence of overlapping and 

broad 'H multiplets that are typically observed for molecules in the weakly aligned media. 

The new methods were developed based on the J-modulated 1D directed COSY experiment 

which, in the original form [89], can only be used for compounds with resolved 'H 

resonances. Overlapping 'H resonances in spectra of small and medium size molecules 

cannot be directly used for the selective magnetization transfer. Therefore a more selective 

technique is required that is capable of selecting one proton despite extensive overlap with 

other protons. 

The original technique was a single-pulse field-gradient spin-echo (SPFGSE, Fig.III.2. 1.1) 

first to select the magnetization of proton k, which is, amongst other protons, coupled to 

proton 1. This is followed by a variable evolution interval, T, during which only protons k 

and 1 are selectively inverted. The signal intensity of proton I generated by the subsequent 

polarization transfer step depends on the length of this evolution interval. The experiment is 

repeated several times while varying T and the coupling constants JkJ  are obtained by fitting 

the signal intensities of proton 1 using a simple transfer function [89]. An optional refocusing 

interval, which partially restores the in-phase magnetization, is advantageous and 

recommended for aligned samples and/or small coupling constants. 

The high precision of coupling constant determination achieved by this experiment is due to 

the fact that the fitted signal is modulated by no more than one coupling constant regardless 

of how many other protons may have a scalar or a dipolar coupling with proton k. This basic 

method, SPFGSE-COSY, is limited to instances when proton k is sufficiently isolated to 

allow for its selection by a SPFGSE. The COSY evolution interval can be either variable or 

constant time (Fig.III.2. 1.1). The constant-time version is more suitable for the measurement 

of very small splittings (< 1 Hz), since the relaxation time can be omitted from the fitting, 

which increases the accuracy of the minimization procedure. 

Me 



® @Ci) 

	

P2(P3T8 	•r 6 I TIA Ti 
1 

2  J\J 2 	- 	AA 

	

6 	 6 

	

Gi 	G2 	G3 	G4  
PFG 	I 1 • 	i nn I I  

constant time 

fk ® 

	

1H I 2A 	A 	I[2 

Gi 	G2 
PFG 

Fig.III.2.1.1 Filled and open rectangles represent 90° and 1800  nonselective pulses, respectively, 

applied from the x axis unless specified otherwise. Selective 180° Gaussian pulses are indicated by 

open Gaussian envelopes and applied to spinsj, k or 1, as indicated. The refocusing interval enclosed 

in square brackets is optional; t1 = 1.2 ms and T and Tr are the variable and refocusing delays, 

respectively. Sine shaped gradient pulses were applied along the z (open squares) or x, y directions 

(filled squares). All pulse field gradients had duration 6 = 1 ms unless specified otherwise. All phase 

cycling given for pulse sequences, derived using the Bruker simulation program, ensure that 

disthrtion-free multiplets are acquired when 30-70 ms selective Gaussian pulses are used during the J-

modulated COSY step. (a) A variable-time 1D directed-COSY. Gradient strengths were G 1  = 20 

G/cm, G2  = 15 G/cm, G3  = 8 GIcm, G4  = 11 G/cm and the following phase cycling was applied: q = x, 

Y; (P2 = 2x, 2y, 2(-x), 2(-y); 93 = 8x, 8y, 8(-x), 8(-y); = x; = 32x, 32(-x); M' = x, 2(-x), x. (b) 

Constant-time J-modulated ID directed COSY. t1 = 1.1 Gradient strengths were G 1  = 15 G/cm, G2  = 8 

G/cm, G3  = 11 G/cm and the folloing phase cycling were applied: ' = x, y; (P2 = 2x, 2y, 2(-x), 2(-y); 

93 = 4x, 4(4); M' = x, 2(-x), x. 

As an example of the fitting process and a comparison of the data between the variable and 

constant-time methods, the determination of the J112aH3U coupling constant of Me-13-D-

cellobiose is shown in Fig.III.2.1.2. Although these data were obtained using the newly 

developed methods for the measurement of 'H-'H coupling constants, the principles behind 

the fitting are the same as for the basic method. 
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Fig.ffl.2.1.2 Coupling constant determination [J3. of Me-f-D-cellobiOSe] from signal intensities. 

I is the signal intensity of proton 1, 1°,, is the scaling factor; Kkj  = Jjd  or J + Dkl; T2k is the effective 

relaxation time of proton k; A is. the effective K evolution during the selective pulses. 

As can be seen from this example, the coupling constants are determined by fitting the peak 

intensities to the COSY delays. In order to obtain accurate intensities the peaks need to have 

pure phase, especially in the case of refocused spectra. Phase cycling of the J-modulated 1D 

directed COSY was therefore optimized during both selection of the magnetization and the 

refocusing period to achieve this. Multiplets obtained using the Bruker simulation program 

and different phase cyclings are shown in Fig.11L2.1.3. As multiple evolution points are 

required for the intensity based method, a concern is to keep the phase cycling to a minimum 

in order to reduce the experimental time. 
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Fig.III.2.1.3 Multiplets obtained from the f-modulated COSY experiments using different 

combinations of phase cycling in the pulse sequences of Fig.III.2.1.1a, simulated using NMRSIM 

within XW1NNMR. (a) to (f) were from the non-refocused pulse sequence to obtain magnetization 

transfer from H3 to Hi (Fig.III.2.1.1a) using phases (pi, (P2 (3 and '; (a') to (f) were from the 

refocused pulse sequence to transfer magnetization from Hi to 113 with phases (pi, (P2, (p3, 94 , (P5  and 

'V. 

Phase cycling optimization was first performed on the non-refocused pulse sequence 

(Fig.III.2.I.3a-f) by focusing on the 1800  pulses ((Pt, (P2 and (p3). Pure phase multiplets were 

obtained when all these pulses were phase cycled using full EXORCYCLE [90] 

independently. The spectrum simulated with such phase cyling ((Pt = x, y, -x, -y; (p2 = 4x, 

4y, 4(-x), 4(-y); (3 = 16x, 16y, 16(-x), 16(-y) and w = 4(x, -x), 4(-x, x)) was used as a 

reference (Fig.III.2.1.3a). In this spectrum the evolution delay was set to yield sizeable 

transfer of magnetization from H3 to HI. At the same time, the signal of proton H2, which 

should not appear in the spectrum, is small. In order to see the distortion on proton Hi or 

appearance of signal of H2, an evolution delay that resulted in a poor transfer of 

magnetization from H3 to Hi was used. Phase cycling (Pt  was then reduced to (x, y) in 

spectrum (b), which also gave a HI multipiet with a good phase. Phase cycling 92 was then 

reduced to (8x, 8y) or (8x, 8(-x)) in spectra (c) or (d). Spectrum (c) gave a large signal of 

proton H2. When phase cycles 92 = (8x, 8(-x)) and 'V = (x, -x) were used in spectrum (d) a 

good result was obtained. in spectrum (e), phase cycling (Pt = x, y, -x, -y; 92 = 4x, 4(-x); Y 3  = 

8x, 8y, 8(-x), 8(-y) and , = x, -x were used, which also gave a good result but with half the 



number of scans compared to previous spectra (a) to (d). The spectrum (f) showing a 

distortion free mutliplet was simulated using phase cycling of (pi = x, y; = 2x, 2y, 2(-x), 

2(-y); 93 = 8x, 8y, 8(-x), 8(-y) and i.ji = x, 2(-x), x with the same number of scans as that in 

the spectrum (e). As phase cycling in both (e) and (f) have the same member of items, the 

phase cycling used to obtain spectrum (f) was adopted arbitrarily for future experiments. 

The next step was to optimize the phases of (p 4  and (ps, which were used during the refocusing 

period. The simulated results of the magnetization transfer from protons Hi to H3 are shown 

in Fig.III.2.1.3a'-f'. Spectra (a') and (b') were acquired using full EXORCYCLE phase 

cycling on either Y4  or 95  and their mutiplets were in pure phase. Phase cycling (p 4  = 32x, 32y' 

32(-x), 32(-y) and (P5 = x were used for spectrum (a') and (p 4  = x and (5 = 32x, 32y, 32(-x), 

32(-y) for spectrum (b'). Multiplets in spectra (c'), (d') and (e') were acquired by reducing 

the phase cycling of either 94 or (p5 . These multiplets were phase distorted and their 

intensities were not reliable for intensity-based coupling constant determination. Spectrum 

(f') was simulated using phases Of 94 = x, (ps = 32x, 32(-x) and iv = x, 2(-x), x. The multiplet 

has a pure phase and the number of scans was reduced to half of that used in the spectrum 

(a') or (b') 

The above simplest combination of the phase cycling gave distortion-free multiplets and was 

implemented in all J-modulated experiments using 30-70 ms selective Gaussian pulses. 

Spectra acquired using the phase cycle given in Fig.III.2. 1.1 lead to increased accuracy of 

the coupling constant determination. 

Next we explore two approaches in order to make the f-modulated 1D directed COSY a 

more versatile method and to overcome the limitations of the initial SPFGSE excitation. The 

first one relies on multiple magnetization transfers, while the second explores a more 

selective signal selection than afforded by a SPFGSE. 

III. 2.2 J-modulated 1D directed HOIIAIIA-COSY 

In the first approach, a double-selective Hartman-Hahn transfer [91] is used to generate the 

magnetization of the proton k. In this experiment, the Hartman-Hahn condition is satisfied 

only at the resonance frequencies of the two J-coupled protons j and k. This results in a 

highly efficient magnetization transfer because of the absence of the leakage of the 

magnetization to other f-coupled protons and the lack of cross-relaxation during the double-

selective spin-lock [91]. The sensitivity of this method was compared with that of a regular 
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1D TOCSY experiment (Fig.III.2.2.1). The signals in the double-selective HOHAHA spectra 

(Fig.III.2.2.2.1d,e) are 1.8 times more intense than those in the TOCSY spectra 

.(Fig.11I.2.2. lb,c). 
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Fig.III.2.2.1 A comparison of ID TOCSY and ID double-selective HOHAHA spectra of isotropic 

cellobiose. All spectra were acquired using identical parameters and are plotted using the same 

vertical scale. The percentages given in spectra (b)-(e) show the relative signal intensity in comparison 

with the 1D spectrum (a). In spectra (b)-(e) the magnetization transfer pathway started on proton Hi' 

(outside the spectral range shown) and the purging scheme of Thrippleton and Keeler [92] was 

applied. 1D TOCSY spectra (b) and (c) were acquired using a DIPSI-2 spin-lock of 47 and 67 ms 

which yielded maximum magnetization for protons 112' and H3', respectively. Spectra (d) and (e) 

were acquired using one- and two-step double-selective HOHAFIA (pulse sequences of Fig.II1.2.2.2a, 

acquisition point c and pulse sequences of Fig.III.2.2.3, acquisition point d), respectively. Spin-lock 

times of 125 and 108 ms were used for the Hi' -+ H2' and 112' - 1 ­13' transfer steps, respectively. 

The-strengths of the corresponding B 1  fields were 46 and 38 Hz, respectively. 

The selectivity of the double-selective HOHAHA experiment exceeds that of the SPFGSE. 

Even if the multipiet of proton j is not isolated, providing none of the overlapping protons 

has a coupled partner exactly on resonance with proton k, a double-selective Hartman-Hahn 

transfer is capable of generating selectively the magnetization of proton k. 

Any antiphase magnetization of proton k arising from the mismatch between Jjk  and the 

length of the spin-lock period is removed by a purge element proposed by Thrippleton and 

Keeler [92] (Fig.III.2.2.2a, acquisition point b). Finally, the magnetization of proton k is 
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selected by a SPFGSE (Fig.III.2.2.2a, acquisition point c). When this building block 

(Fig.III.2.2.2a) is combined with the pulse sequence of Fig.III.2.1.1a, a J-modulated 1D 

directed HOHAHA-COSY experiment is obtained (Fig.III.2.2.2b). 
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Fig.III.2.2.2 Filled and open rectangles represent 90° and 1800  nonselective pulses, respectively, 

applied from the x axis unless specified otherwise. Selective 180° Gaussian pulses are indicated by 

open Gaussian envelopes and applied to spinsj, k or 1, as indicated. The refocusing interval enclosed 

in square brackets is optional; t1 = 1.2 ms and T and z are the variable and refocusing delays, 

respectively. Gradient sine shaped pulses were applied along the z (open squares) or x, y directions 

(filled squares). All pulse field gradients had duration ö = 1 ms unless specified otherwise. (a) 1D 

double-selective HOHAHA. Gradient strengths were G 1  = 13 G/cm, G2  = 4 G/cm and G3  = 17 G/cm. 

The length of G2  gradient was 49.8 ms. The following phase cycling was applied: p, = x, y; T2 = Y + a; 

(3 = X + ; (p4 = 2x, 2y; When the acquisition is started at points a and b, the receiver is phase cycled as 

w = x, -x; while for the acquisition starting at point c it is y = x,2(-x), x. Phases y 2  and (3 are 

optimized (a and f) in increments of 100  for the maximum signal in two experiments with acquisition 

starting at points a and b, respectively. The 'H frequency is changed at times specified by vertical 

arrows. The selective HOHAHA spin-lock is generated by a frequency-modulated rectangular pulse at 

resonances off and k protons. The RF field strength is calculated as (.d4)  (4n2  -1)', where Jj k is the 

proton-proton coupling constant; n=10 is typically used. The 180 0  adiabatic pulse is indicated as a 

rectangle with an inclined arrow. (b) 1 D J-modulated 1 D directed }IOHAHA-COSY; The following 

phase cycling was applied: (pi = X, y; (p2 = y; (p3 x; 94 = 2x, 2y; = 4x,4y,4(-x),4(-y); 96 = 

16x, 16y, 16(-x), 16(-y); T7 = x; (P8 = 64x, 64(4); p, = x, 2(-x), x, (-x), 2x, (-x). Gradient strengths were 

G1  = 13 G/cm, G2  = 15 G/cm, G3  = 8 G/cm, G4  = 11 G/cm, G5  =4 G/cm and G 6  = 17 G/cm. When the 

stability of a spectrometer is not an issue, pulse sequences (b) can be modified to use phase cycling 

rather than the gradient selection for the COSY transfer step. This entails setting G 3  = 0 and imposing 

a two-step phase cycle (y,-y) on the 90 0  polarization transfer pulse. This results in a two-fold increase 

of signal intensities. 
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The applicability of this approach can be further broadened by combining the COSY step 

with multiple selective HOHAHA transfers utilizing extended polarization transfer pathways 

(Fig.III.2.2.3). 

Gi  PFG 	
G3 

H 

Fig.ffl.2.2.3 1D two-step double-selective HOHAHA experiment. Filled rectangles represent 90° 

nonselective pulses applied from the x axis unless specified otherwise. Selective 1800  Gaussian pulses 

are indicated- by open Gaussian envelopes and applied to spins I and k, as indicated. Sine shaped 

gradient pulses were applied along the z axis. All pulse field gradients had duration 8 = 1 ms (t1 = 1.1 

ms) unless specified otherwise. Gradient strengths were G 1  = 13 G/cm, G2  = 4 G/cm and G 3  = 17 

G/cm. The length of G 2  gradient was 49.8 ms. The following phase cycling was applied: , = x, y; P 

= y + a; T3 = x + 0; CP4 = 2x, 2y; Cp5 = y + y; When the acquisition is started at points a, b, or c the 

receiver is phase cycled as iv = x, -x; while for the acquisition starting at point d it is i = x,2(-x), x. 

Phases CP2 , (P5 and CP3  are independently optimized (i.e. angles a, y and 3 determined) in increments 

of 10' for the maximum signal in three separate experiments with the acquisition starting at points a, b 

and c, respectively. The 'H frequency is changed at positions specified by vertical arrows. The 

selective HOHAHA spin lock is generated by a frequency modulated rectangular pulse at frequencies 

of i,j andj,k protons, respectively. The RF field strength is calculated as (J/4) (4n2 _1)'2,  where JHH  

is the proton-proton coupling constant. The 180* adiabatic pulse is indicated as a rectangle with an 

inclined arrow. 

A two-step double-selective HOHAHA transfer (Fig.III.2.2.4e) via coupling constants> 7 

Hz is still 1.8 times more sensitive than a regular 1D TOCSY experiment (Fig.III.2.2.4c). 

The use of two double-selective steps makes highly selective experiments possible. 

Application of the double-selective HOHAHA experiment to the measurement of 'H-'H 

RDCs of an aligned sample of cellobiose is shown in Fig.III.2.2.4. Selective excitation of 

H4a, which is buried in a crowded region, is required to initiate the transfer of the 

magnetization to H2 a  for the measurement of the mutual splitting. This is achieved by a 

double-selective HOHAHA transfer from H3a to H4a  (Fig.III.2.2.4c-e). Once the pure 
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multiplet of H4a  is obtained, a variable time COSY step is appended (Fig.III.2.2.4f) and 

magnetization is transferred to H2 a . 
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Fig.ffl.2.2.4 (a) Partial ID CPMG spectrum of aligned cellobiose. (b) Partial 1D TOCSY spectrum 

with selective excitation of the anomeric proton Hl. (c) 1D double-selective HOHAHA spectrum 

with a selective transfer of magnetization from H3 a  to H4a  acquired using the pulse sequence of 

Fig.III.2.2.2a and the acquisition started at point a. Note a very small amount of H5p that was 

generated in spite of close proximity of resonances H3,,,/H6 and also H4 afH5p. (d) The same as (c), 

but the acquisition started after purging of the antiphase magnetization, at point b. (e) The same as 

(d), but the acquisition started after the selection of H4 a  by a SPFGSE, at point c. Spectra (c)-(e) are 

plotted using the same vertical scale. (f) ID J-modulated directed HOHAHA-COSY acquired with the 

pulse sequence of Fig.III.2.2.2b and the polarization transfer pathway H3 a  1­14 x  H2a . 
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The intensities of H2 a  signals as a function of the COSY delay are fitted (Fig.II1.2.2.5) 

yielding an accurate D a + J4ca splitting. 
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Fig.ffl.2.2.5 Coupling constant determination, I.J+DIHJ4a of cellobiose using the variable-time J- 

modulated ID HOHAHA-COSY experiment. Signal intensities of proton H2 were fitted using the 

transfer function given in the inset. 

III. 2.3 J-modulated ID directed CSSF-COSY 
The second approach relies on a direct selection of a proton of interest without the need for 

an initial transfer of magnetization. The overlapping 'H multiplets can be selectively excited 

by gradient-enhanced chemical shift selective filters [73] (CSSFs, Fig.III.2.3 .1 a). Chemical 

shift differences as small as 1-2 Hz are sufficient to achieve this. Replacing the first SPFGSE 

of the J-modulated ID directed COSY by a ge-CSSF yields a pulse sequence of a 
J- 

modulated 1D directed CSSF-COSY (Fig.ffl.2.3.1b). 
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 Filled and open rectangles represent 90° and 1800  nonselective pulses, respectively, 

applied from the x axis unless specified otherwise. Selective 180 1  Gaussian pulses are indicated by 

open Gaussian envelopes and applied to spinsj, k or 1, as indicated. The refocusing interval enclosed 

in square brackets is optional; t1 = 1.2 ms and T and Dr are the variable and refocusing delays, 

respectively. Gradient sine shaped pulses were applied along the z (open squares) or x, y directions 

(filled squares). All pulse field gradients had duration ö = 1 ms unless specified otherwise. (a) 1D ge-

VT-CSSF; zi is the increment of the CSSF, N=0, 1, 2 . .n, and tmax=(N+1 )A. The following phase 

cycling was applied: Pi = x, y; W I  = x, -x; Gradient strengths were G I= 20 G/cm and G2=1 3 G/cm (b) 

1D J-modulated 1D directed CSSF-COSY; The following phase cycling was applied: = X, y; (P 2  = 

2x, 2y, 2(-x), 2(-y); (P3 = 8x, 8y, 8(-x), 8(-y); 9 4  = x; (5 = 32x, 32(-x) Wi = x, 2(-x), x. Gradient strengths 

were G 1  = 13 G/cm, G2  = 15 G/cm, G3  = 8 G!cm, G4  = 11 G/cm and G5  = 4 G/cm. When the stability 

of a spectrometer is not an issue, pulse sequences (b) can be modified to use phase cycling rather than 

the gradient selection for the COSY transfer step. This entails setting G 3  = 0 and imposing a two-step 

phase cycle (y,-y) on the 90° polarization transfer pulse. This results in a two-fold increase ,  of signal 

intensities. 

Fig.III.2.3.2 shows the application of this experiment to the measurement of the D304a + J3aj  

splitting of the aligned cellobiose. A CSSF filter, utilizing a 10 Hz separation between 

resonance frequencies of overlapping protons H3 a  and 1­16, is used to select the signal of 

H3. The subsequent J-modulated 1D directed COSY step transfers the magnetization to 

proton H4a. A series of experiments, with a variable COSY delays, yield the value of the 

D3a4a  + J3a4a splitting. 
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Fig.IH.2.3.2 (a) Partial 1D CPMG spectrum of aligned cellobiose. Lines indicate positions of 

chemical shifts of protons H3 a  and H6,; (b) Partial 1D TOCSY spectrum with selective excitation of 

the anomeric proton Hl,,,. (c) ID ge-VT-CSSF spectrum with a selection of proton H3 a  acquired with 

the pulse sequence of Fig.III.2.3.la. (d) 1D J-modulated 1D directed CSSF-COSY spectrum acquired 

with the pulse sequence of Fig.III.2.3. lb and a selective transfer of magnetization from H3 a  to H4a . 

Both variable-time and constant-time COSY evolution intervals were tested in combination 

with the double-selective HOHAHA and CSSF experiments. This is because the constant-

time experiments do not require fitting of the relaxation time. For small coupling constants, 

where the build-up of the magnetization competes with the relaxation in variable time 

experiments, the fit is not reliable. On the negative side, the constant-time experiments are 

less sensitive. 

Double-selective HOHAHA and CSSF based methods are especially useful for accurate and 

precise determination of the DHH coupling constants of medium size molecules that show 

complex, overlapping 'H NMR spectra. This greatly extends the applicability of the basic 

double-selective COSY technique which relies on the presence of resolved 1 H multiplets. 

The choice between the CSSF and double-selective HOHAHA based methods depends on 

the severity of spectral overlap and sizes of coupling constants involved. Determination of an 
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extensive set of proton-proton residual dipolar coupling constants is essential for the 

calculation of the alignment tensor of many molecules. 'DCH that are most easily accessible 

are often degenerate due to the limited variability of the orientations of CH vectors in small 

molecules. 

III. 2.4 Determination of the signs of coupling constants 

Only absolute values of J and (J + D) splittings are obtained from the f-modulated COSY 

experiments. Their signs can be determined either experimentally (e.g. E.COSY [93]) or 

iteratively during the calculation of the alignment tensor. Experimental determination is 

preferred, but, can be difficult for very small splittings. The iterative procedure outlined 

below relies on the tensor being reasonably well defined by a basic set of RDCs. This 

definition is firmed up by including additional splittings for which the signs are not known. 

This concerns the four- and five-bond 'H-'H RDCs. The signs of two-bond and three-bond J 

coupling constants are negative and positive, respectively, and therefore the determination of 

the signs of corresponding RDCs is trivial. 

Each pair of 4 J] and 41J+DI  satisfies four possible combinations of signs of J and D, 

consequently four different 4DHH coupling constants can be obtained. Here an example of the 

calculation of the alignment tensor of a-D-glucopyranose in aligned sample of cellobiose is 

given. The alignment tensor is initially calculated using unambiguous 1Dc11  and 3DHH 

coupling constants and the neutron-diffraction structure [94] of a-D-glucopyranose. 4D112114  is 

considered first. As the 4JH2H4 is almost zero, possible values of 4DH2H4 are ± 2.77 Hz. The 

negative 4DH2H4 gives smaller RMSDs between the experimental and back-calculated RDCs 

and is therefore taken forward for further analysis. Similarly 4JH3H5 is also close to zero 

meaning that only two rather than four values of 4DH3H5 must be tested. Therefore 32 

combinations of 4D111113 , 4DHIH5 and 4DH3H5 are considered next (Fig.III.2.4.1). For each 

combination the alignment tensor is optimized and the RDCs are back-calculated. The sum 

of the square of the differences (SSRs) between the experimental and calculated RDCs are 

shown in Fig.III.3.2.10. The lowest SSR (0.19 Hz 2) obtained for the combination of 4J24  = 0 

Hz, 4J13  = -0.52 Hz, 4J15 =  -0.61 Hz and 4J35 = 0 Hz and 4D24  = -2.77 Hz, 4D13 =  -0.19 Hz, 

4D15 = -0.6 Hz and 4D35  = 0.7 Hz represents the correct solution. 
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Fig.I1I.2.4.1 The parameters of the alignment tensor were first determined using four 'Dcx  and four 

3DH]4  RDCs, and the largest 4DHH (4D24  = ± 2.77 Hz). The value -2.77 yielded lower SSR (sum of the 

square of the differences) between the experimental and back-calculated RDCs. Only this value was 

taken forward for further analysis. Possible values for the remaining three 4DHJ-I RDCs (4D 13 , 4D15  and 

4D35) were calculated as ± 1.1 + DI ± 0 and SSR were obtained using all 32 permutations. 

Values of 1 H- 1 11 J and D coupling constants given in Table 111.2.4.1 were obtained as 

averages of four measurements (RMSD5 < 0.04 Hz) using forward and backward direction 

and both HOHAHA and CSSF based methods. The heteronuclear one-bond 'H- 13C splittings 

were determined from non-refocused 2D HSQC spectra acquired without decoupling in the 

directly detected dimension. 

Table 111.2.4.1 Scalar - and dipolar coupling constants of the reducing a-D- 

glueopyiuuusv 
H1 C 1 5  

Vi 

H2C25  
11'JULJ'. 

H3C35  F14C4 
_____ 

_H1F12 112H3  H3H4 114115 112114 I H1H3  H1 H5  H3H5  

J 169.9 144.5 146.5 145.6 3.83 9.8 8.9 10.0 QC -0.5 -0.6 0 

J±D 165.4 151.1 152.9 151.5 3.52 10.7 9.6 11.1 -2.8 -0.7 -1.2 0.7 

D, -4.5 6.6 6.4 5.9 -0.31 0.9 0.7 1.1 -2.8 -0.2 -0.6 0.7 

D,j -4.44 6.54 6.27 6.19 -0.26 0.69 0.69 0.91 -2.77 -0.21 -0.56 0.91 

° Determined from F2  proton-coupled 'H-' 3C HSQC spectra. b H5C5 was excluded because of higher 

order effects in the 13C satellite spectra. ' No transfer was observed. d Calculated using REDCAT [66]. 

Parameters of the alignment tensor are: S, = (-7.35 ± 0.45)e-05, S' = (-14.68 ± 0.18 )e-05, S'' = 

(22.03 ± 0.50) e-05. The Euler angles in the coordinate system of neutron diffraction structure of 

cellobiose: a = - 27.0 ± 1. 1, 3 = 74.6 ± 2.3 and' = 92.5 ± 6.4 degrees. 
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defined. 

(a) 

7z 

Five independent RDCs are required as a minimum in order to define the alignment tensor. 

In a pyranose chair five C-H bonds provide four different vectors at the most, therefore 
n
Dm 

are essential for the accurate determination of the alignment tensor. In carbohydrates 'D CH  

and 3DHH are typically used to define the tensor while inclusion of 4Dui-i  improves the 

accuracy of the definition (Fig.I11.2.4.2). In a-D-glucopyranose, only two CH vectors point 

in independent directions (equatorial and axial). Therefore the alignment tensor calculated 

relying mostly on the heteronuclear coupling constants is expected to show large ambiguity. 

When only five dipolar coupling constants (four 'D CH  and 3Dijti2 ) were used in the 

calculation of the tensor parameters, the largest component, S, was defined but the other 

two components S and S were not (Fig.III.2.4.2a). In this calculation, 3DHIH2 coupling 

constant was used. This coupling constant could be measured using the basic f-modulated 

ID directed COSY. Next, the coupling constants measured by the newly developed methods 

were added to the calculations in two steps. Initially, the other three three-bond coupling 

constants were added, followed by four four-bond coupling constants. As can be seen in 

FigJ1I.2.4.2 the ambiguity in the definition of the tensor is gradually reduced when all 3D1.111  

and then also 4 DHH coupling constants are included. The S and S components are now well 

(b)  
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FigJ11.2.4.2 Sanson-Flamsteed projections showing orientations of the alignment tensor principal 

axis system in the molecular frame of the neutron-diffraction structure of cellobiose calculated using 

REDCAT [66] (a) results based on five coupling constants (four ' DCH and 3DHIH2); (b) results based 

on four 'DCH  and four 3DHH coupling constants; (c) results based on all twelve RDCs given in Table 

111.2.4.1, (d) is an overlay of the S. vectors of the alignment system for the three cases; (e) is an 

overlay of the S. and S vectors of the alignment system for the three cases. 
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III. 2.5 Configuration of sodium cholate from 1H- 1H RDCs 

In the next section, the application of the proposed methods for the measurement of proton-

proton RDCs in the determination of the relative configuration of small molecules is 

illustrated. The problem arises when in six-member rings the number of independent 

orientations of CH vectors is limited. Considering a chair conformation, only 4 CH vectors 

are independent and this number can be reduced further when rings are fused, eliminating 

some CH vectors due to substitutions. On the other hand, the numbers of independent 

orientations considering 2DHH , 3DHH , 4DHH  and ' 5DHH are 3, 12, 10 and 9, respectively. 

Determining the alignment tensor using only the 'DCH coupling constants is rarely possible 

as more than five independent CH vectors are not available. Approximations need to be 

introduced, e.g. assuming the alignment tensors to be axially symmetric reduces the 

minimum number of required RDCs from 5 to 3. This approximation has been used in 

confirming the absolute configuration of three stereocenters at C3, C7 and C12 in sodium 

cholate using only 'DCH  coupling constants [95]. This, however, is not a general approach. 

Supplying several proton-proton RDCs can provide an answer without using any 

approximations. 

Fig.III.2.5.1 shows a comparison of 1D spectra of isotropic and aligned samples of sodium 

cholate together with 1D TOCSY spectra of the aligned sample. These spectra illustrate that 

despite considerable overlap in the ID spectrum, protons of individual rings of sodium 

cholate (labeled as in Fig.II.2. id) are resolved sufficiently for the measurement of numerous 

proton-proton RDCs. 

Fig.III.2.5.2 shows a particularly crowded region of the spectra where six protons resonate 

between 1.5 and 1.7 ppm. Despite this overlap, proton H8 can be selected by CSSF 

(Fig.III.2.5.2d) and the splitting H8H9 measured in a 1D J-modulated 1D directed CSSF-

COSY experiment (Fig.III.2.5.2e). 

Using a combination of CSSF and double-selective HOHAHA methods, four two-bond and 

ten three-bond proton-proton RDCs were measured together with fourteen 1D 11  coupling 

constants (Table 111.2.5.1). 
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Fig.III.2.5.1 (a) and (b) 1 H spectra of isotropic and aligned samples of sodium cholate; (c-f) 1D 

TOCSY spectra of different spin systems from the aligned sample of sodium cholate. A 50ms CPMG 

pulse is used to reduce the signals from the alignment medium. 

(e) 

(d) 
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FigJII.2.5.2 (a) Partial 1D CPMG spectrum of aligned sodium cholate. The crowded region of 

overlapped protons is enclosed in the box. (b) Partial 1D TOCSY spectrum of A ring with selective 

excitation from H3. (c) Partial 1D TOCSY spectrum of C ring with selective excitation from H7. (d) 

1D ge-VT-CSSF spectrum with a selection of proton H8 acquired with the pulse sequence of 

Fig.III.2.3. la. 

Hl- ip 



Table 111.2.5.1 Scalar and dipolar coupling constants of sodium cholate. RDCs in 
bold italic related to the atoms of these stereocenters were not used in the 
determination of the alignment tensor 

J (Hz) J+ D (Hz) RDCEX t (Hz) RDCca 1 (Hz) 

C 1 H 1  123.7 126.0 2.3 a 2.56 

CiHieq 128.6 126.0 -2.6 b -2.52 
C21­12  125.3 128.0 2.7 a 2.49 

C2H2eq  129.4 128.2 -1.2 C  0.95 
C3H3  141.7 144.4 2. 7a 2.56 

C4FL1eq  126.0 123.6 2•4b -2.55 
C4H4 ,, 126.2 128.9 2.7° 2.54 
C5H5  126.1 128.3 2.2 °  2.57 

C61­16eq 127.3 124.8 -2.5 b -2.44 
C61­16  122.2 124.2 2 .0a 1.88 
C7H7  144.9 143.8 -1.1 C  -0.99 
C9H9  122.4 122.8 1•5d 1.66 

C 1211 12  145.3 142.8 -2.5 b -2.53 

HiaHi e  -14.41 -14.65 0 .24e -0.16 

H2aH2e -12.21 -10.92 1.29" 0.98 
Hi eH2e  3.72 3.86 014g -0.14 

H2aHie 3.24 3.82 0.58 h 0.39 

H2eH3 4.40 3.66 -0.74 0.59 
H3H4e  4.50 4.50 0.00 41.21 
HH40  11.45 11.75 0•30k 0.22 

H4eH5 3.87 4.30 0.43 h 0.39 
H4aH4e  -12.50 -12.66 -0.16' -0.20 

H4a1715 13.37 14.08 0.71 m 053 
H6aH6e  -15.00 -15.31 -0.31 n  0.19 

H6,J17 3.59 4.49 0.90" 0.77 
H7H8  3.14 2.77 -037 0  -0.53 
H8H9  11.85 12.07 022 g 0.10 

Parameters of the alignment tensor are:  

± 0.85) e-05. The Euler angles in the coordinate system of neutron diffraction structure of sodium 

cholate: a = 12.6 ± 5.6, 0 = 33.5 ± 3.7 and y = 6.2 ± 4.0 degrees; a to o in superscripts on RDCE XP, are 

groups of same orientation for CH and HH vectors 

The alignment tensor was initially calculated using unambiguous 1D11 and 3D1-IH (excluding 

those containing H3, H7 and H12) coupling constants and the neutron-diffraction structure 

[96] of sodium cholate. Because of the lack of proton-proton RDCs involving proton H12, 

only 'DCH is considered for this stereocenter. Table 111.2.5.1 contains RDCs calculated based 

on the correct stereochemistry, which is reflected in a good agreement between the measured 

and calculated values. Back-calculated RDCs considering equatorial and axial positions of 

protons H3, H7 and H12 are shown in Table 111.2.5.2. These results indicate that protons H3, 

H7 and H12 are indeed equatorial. 
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Table 111.2.5.2 Back calculated dipolar coupling constants considering different 
orientations of protons of H3, H7 and H12 in sodium cholate. Bold values indicate a 
match between the exoerimental and theoretical RDCs. 

Experiment 1-17a H7e 

C3113e 2.7 2.56 2.56 
C7H7 -1.1 2.11 -0.99 

C12H12e [C12H12a1 -2.5 2.53 [2.0] -2.53 [2.0] 

H3eH2e -0.7 -0.59 -0.59 
H3eH4a  0.3 0.22 0.22 
H3eH4e 0.0 0.40 . 	 0.40 
H71-16a 0.9 0.55 0.77 
1-171-18 -0.4 0.02 -0.53 
C31-13a 2.7 1.41 1.41 

C7H7  -1.1 2.11 -0.99 
C12H12e 

[Cl2H12a*] -2.5 -2.53 [2.0] -2.53 [2.0] 
H3aH2e -0.7 -0.56 -0.56 
H3aH4a 0.3 -0.17 -0.17 

1-13a1714e 0.0 -0.38 -0.38 
1-171-16a 0.9 0.55 0.77 
1-171-18  1 	 -0.4 0.02 -0.53 

* Proton H 12 at the axial position does not fit the experimental data 

In summary, the results presented in this chapter [97] demonstrate that we are now able to 

measure accurately 'H-'H RDCs in spectra with significant overlap of resonances. The 

techniques outlined here were used to measure RDCs of the aligned sample of fully sulfated 

tetrasaccharide II. These were used in the conformational analysis of this molecule presented 

in Chapter 111.4. 
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111.3 Methods for the measurement of fcc  coupling constants 

The ultimate NMR experiments for establishing the structures of small organic molecules are 

based on the tracing of their carbon-carbon connectivity. This can be achieved by using 

INADEQUATE [98] (Incredible Natural-Abundance DoublE-QUAntum Transfer 

Experiment) experiments. At the heart of this experiment is a double-quantum filter that 

extracts ' 3C-' 3C satellites either by phase cycling or pulsed field gradients, while suppressing 

single-quantum carbon coherences. Besides providing the connectivity information, the 

INADEQUATE experiment opens a route towards the measurement of carbon-carbon 

coupling constants. In principle, both 'Jcc  and 'Jcc  coupling constants can be measured, 

although the latter are not easily obtained. 

The glycosidic linkage of the disaccharide unit is described by two dihedral angles CP and P 

(Fig.II1.3.1a). Both angles can be defined in two ways either as COCH or COCC angles 

across the linkage. Two proton-carbon coupling constants ( 3JHCI0CX and 3fciocxm) across the 

glycosidic linkage report the 1 and P angles, respectively. These coupling constants are 

easily obtained via HSQC or HMBC based experiments. However, as can be seen by way of 

example in Fig.1I1.3.lb four solutions are possible for a 3JHcoc coupling constant of 3.8 Hz. 

Addition of a 3fcocc  of coupling constant of 3.1 Hz leaves only one solution. Care must be 

taken when interpreting coupling constants to account for possible flexibility, nevertheless 

availability of an extended set of coupling constants is clearly beneficial to this analysis. This 

is the motivation behind our efforts in developing INADEQUATE methods with an 

emphasis on the measurement of long-range coupling constants presented below. 
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Fig.111.3.1 (a) Coupling constants reporting on dihedral angles, Oand 'P across the glycosidic 

linkage in a disaccharide unit. (b) Correlation between the D angle and 3JCOCH  and 3fcocc  coupling 

constants. [99] (c) Correlation between P angle and one 3Jc011,  two 3icocc  coupling Constants [99]. 

85 



The original INADEQUATE experiment [98] utilizes 13C polarization and ' 3C detection. 

.Introduction of inverse probes and pulsed field gradients made proton-detected 

INADEQUATE experiments possible. The sensitivity of NMR experiments is determined by 

the product of the gyromagnetic ratio in the form of Ystart
Y3/2 

 Detected, where ystart  and YDetected 

correspond respectively to the nucleus used to generate the initial polarization and to the 

nucleus used for detection. Four possible combinations have relative sensitivities given in 

Table 111.3.1. However, depending on individual experiments, an additional factor comes 

into play, and as will be seen later, the relative sensitivities of various implementations of the 

INADEQUATE experiment are much closer than given in Table 111.3.1. 

Table 111.3.1 Relative sensitivities of four experiments with different combinations 
,1ilil V.-.. 

Experiment 1D 13C INEPT Reverse INEPT HSQC 

Relative sensitivity yc yc3" 	- 	 1 YH YC 312  
1/2  

Yc YH 	 -8  
YH_Y_1/2 
	32 

Several INADEQUATE-based experiments developed for the measurement of the carbon-

carbon coupling constants and tested using mono- and disaccharides are presented next. 

These experiments provide valuable information about the geometry of the glycosidic 

linkage in a disaccharide unit. 

III. 3.1 DJM-INEPT-INADEQUATE 

One of the. factors contributing to the low sensitivity of the INADEQUATE experiments 

aimed at the measurement of long-range carbon-carbon coupling constants is the large 

spread of their values (0 - 6 Hz). Some magnetization is lost because of a mismatch between 

the coupling constants and the evolution intervals which are optimized for an average 

coupling constant. The first INADEQUATE experiment tested in our laboratory removed 

this limitation. It is referred to as 1 H-detected double-f-modulated (DIM) INEPT-

INADEQUATE [100] and contains no fixed delays. Because of this, it is capable of the 

measurement of both one-bond and long-range carbon-carbon coupling constants in a single 

experiment. When I joined this project, it was well advanced. My contribution was in 

assessing the performance of this method for fast relaxing compounds and small amounts of 

sample. The method is first briefly outlined before describing my analysis. 

In DIM-INEPT-INADEQUATE both fixed C-C coupling evolution intervals of the original 

INEPT-INADEQUATE experiment [101] are replaced by variable time intervals as shown in 

the pulse sequence of Fig.II1.3.1 .1. These variable time intervals are incremented 



1 H 

simultaneously with the double-quantum (DQ) evolution period (t1) causing evolution of 

both 1Jcc  and "Jcc  coupling constants. The signal is modulated by sin 2(TrJcc Kt i) = 0.5 [1 - 

cos(ltJccKti)], where & is the scaling factor of the f-evolution in t1. Therefore the cross peaks 

consist of three absorption lines in F 1 . The two outer lines are separated by 2 Jcc  Hz and 

have opposite phases with respect to the central line that is twice as intense. 
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 Pulse sequence of DIM-INEPT-INADEQUATE. Thin and thick open bars represent 90° 

and 180° rectangular pulses. The 13C pulse applied after G4  was a 120° pulse. The first and the last ' 3C 

180° pulses were regular smoothed chirp pulses (500 Its), while the other five 13C 180° pulses were 

composite smoothed chirp pulses (2 ms). Unless stated otherwise, all pulses were applied from the x 

direction. The following delays were used: RD = 1 s, 'r = 0.25/ 1JCH, 8 = 1.2 ms, M = 3 Rs, r 3  

1/(k*'JCH) + 0.5 ms, where k=4 for CH only and k=8 for all multiplicities. Addition of 0.5 ms 

compensates for partial refocusing during the composite adiabatic pulse. The phases of pulses were 

cycled as follows: (pi = x, -x; (P2 = 8x, 8(-x); 3 = 4x, 4(-x); C4 = 2x, 2(-x); (ps = 4y, 4(-y); W = (x, - 

X, x, -x), 2(-x, x, -x, x), (x, -x, x, -x). PFGs were applied during 1 ms using the following strengths 

(100% = 75 Gauss/cm): G 1  = 33%, G2  = 22%; while G 3  = 48%, G4  = -48%, and G 5  = 48.19% were 

used for N-type signal selection, G 3  = -48%, G4  = 48% and G 5  = 48.19% were used for P-type signal 

selection together with incrementing phase (P5 by 180 0. The spectra were processed using the echo-

antiecho protocol. 

The element PFG-9090-PFG at the end of the t 2  acquisition time was used to remove 

artifacts originating in the coherent proton magnetization of ' 2C-attached protons that 

survives between individual scans. The artifacts arising from the imperfect 180
o 13C pulses 

and single-quantum 13C coherences were removed by the phase cycling, PFGs (G 3  and G4) 

and the use of the adiabatic 180 ° 13C pulse [102]. The use, of long (2 ms) adiabatic pulses 

resulted in the same initial f-evolution for t 1  = 0. Consequently, particularly for 'fcc cross 

peaks, mixed phase multiplets were obtained. As will be shown later, this did not 



compromise the coupling constant analysis. A notable improvement of S/N was observed 

when adiabatic pulses were used. 

Common to all INEPT-INADEQUATE methods the cross peaks between quaternary carbons 

are missing in the D.JM-INEPT-INADEQUATE spectra. Nevertheless, the presence of long-

range cross peaks in the spectrum reduces the ambiguities arising from the absence of the 

one-bond cross-peaks between quaternary carbons in the INEPT-INADEQUATE optimized 

for 1Jcc coupling constants. The DiM-INEPT-INADEQUATE method is illustrated by 

tracing the carbon skeleton of the Me--D-xylopyranoside and measuring all its carbon-

carbon coupling constants (Fig.III.3. 1.2). All cross-peaks in the spectra show fine structure 

(Fig.III.3.1.2 and Fig.III.3.1.3), from which the values of Jcc coupling constants can be 

extracted. A more complicated shape of multiplets reduces the sensitivity of the method. The 

sensitivity of the DJM-INEPT-INADEQUATE is 50% of a fM-INEPT-INADEQUATE 

[103] experiment optimized for 'Jcc  coupling constants (Fig.III.3. 1.3 e,f). The intensity of 

the long-range cross peaks in the DIM-iNEPT-INADEQUATE is, however, enhanced by the 

fact that no fixed intervals are contained in the pulse sequence. If only the correlation 

information is of interest, this can be obtained from the presence of the central peak of the 

multiplets which is half as intense as the cross peaks of a regular INEPT-INADEQUATE 

experiment. 
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Fig.IH.3.1.2 A 2D DJM-INEPT-INADEQUATE spectrum of Me-f3-D-xylopyranoside. Cross peaks 

are numbered according to the structure shown in the inset. The first number in the labels of 1 
3  C DQ 

coherences identifies the proton on which the magnetization originated is detected. Arrows indicate 

the carbon—carbon connectivity mediated by 'fcc coupling constants. 
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Fig.11I.3.1.3 F, traces from 2D DiM-INEPT-INADEQUATE spectra at 'H chemical shifts of H3 (a) 

and (c) and 112 (b) and (d), respectively. The pulse sequence in Fig.11I.3.1.1 with rectangular (a) and 

(b) and adiabatic (c) and (d) 180 ° 'C pulses were used to acquire the 2D spectra. (e) and (f) 

Equivalent traces from a 2D JM-INEPT-INADEQUATE spectrum optimized for 1Jcc. Cross peaks are 

labeled using the numbering shown in Fig.III.3.1.2. 

The analysis of the coupling constants was performed in the time domain in order to 

eliminate the effects of limited digital resolution in the t, dimension of 2D experiment. The 

initial 2D Fourier transformation was followed by extraction of columns containing signals 

(Fig.III.3.1.4). Each multiplet excised from these F, traces was then inverse-Fourier 

transformed. The fast 13C- 13C DQ frequency component of the resulting FID was removed 

by applying a procedure described by Stonehouse and Keeler [1041, which has been further 



modified to include phase optimization by using the Powell minimization algorithm (Dr. 

Tran N. Pham). The simplified FID is described by the following equation: 

10 X  sin 2(lCJccKti + (p) x  exp(-tl/T2eff) 	(Eq.I11.3.1.1) 

A four-parameter fit (4  q', T2eff and KJcc) produces the values of fcc.  The whole process is 

illustrated in Fig.III.3. 1.4 for one-bond and long-range cross peaks and the extracted 

coupling constants of Me-3-D-xylopyranoside are summarized in Table 111.3.1.1. The 

obtained 'fcc coupling constants (Table 111.3.1.1) are identical to literature values [105]. 
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Fig.III.3.1.4 Two examples of the coupling constant determination from 2D DiM-INEPT-

iNADEQUATE cross peaks. (a) and (d) C3, C2 and C3, C5 cross peaks, respectively, excised from 

the H3 F, trace of the spectrum shown in Fig.III.3.1.3. (b) and (e) 800 real points of FIDs obtained 

after inverse Fourier transformation of the multiplets (a) and (d), respectively. The centered FIDs 

obtained by deconvolution with DQ frequencies are shown in (c) and (f). Also shown are the fitted 

centered FIDs (-0—) obtained using Eq.m.3.1.1. The exponential decay function in (c) was drawn 

using the value T2 eff = 297 ms obtained by the fitting. 

The effective relaxation time is used rather than the ' 3C relaxation time for several reasons. 

Firstly, the proton spin flips contribute towards the relaxation of 13C coherences. Secondly, 

the t 1  interferograms reflect the relaxation of a mixture of single- and double-quantum 

coherences. Thirdly, the fitted relaxation rates absorb the losses of the signal due to the 

diffusion taking place between the de- and refocusing PFGs. Finally and most significantly, 

the use of J-scaling accelerates the apparent relaxation of these coherences. 
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Table 111.3.1.1 Carbon-carbon coupling constants of Me--D-xylopyranoside, in Hz, 
tprmin1 frem thp cnp'tnim hAwn in Pic TH I 1 2 

C 1 C2 C2C3  C3C4  C4C 5  €C3  C2C4  C3C5  C 1 OMe C20Me 

46.8 38.8 39.1 40.0 4.1 2.9 2.4 2.3 3.2 
46.8 38.8 39.0 399b 40 2.9 2.2'  2.4 3.2 

'CXCY 39 . 8c 2 . 3c 
46 • 8d 388d 39 . 

 Id 399d  

a The first row gives values determined from HxCxCy cross-peaks, while the second corresponds to 

the HyCyCx cross-peaks 
b  Determined from H5 eq  cross-peak 

Determined from H5 cross-peak 
d  Values taken from [1 05] 

This method worked very well for a monosaccharide which has long relaxation times. We 

have decided to simulate the effects of the relaxation factor using the acquired spectrum of 

Me-J3-D-xylopyranoside in order to assess the applicability of this method to larger 

molecules. The effect of relaxation was simulated by applying exponential line broadening 

prior to the Fourier transformation in the t 1  dimension. A series of F 1 -traces obtained by 

using exponential line-broadening values of 0, 5 10, 20 and 30 Hz is shown in Fig.1II.3.1.5. 

This simulates approximately four-fold reduction of T2eff  relaxation times (from about 300 to 

70 ms). It can be seen from Fig.III.3. 1.5 that, with the exception of the cross peaks of the 

OMe carbon, the long-range cross peaks show a lower intensity compared to one-bond cross 

peaks. This is because of partial cancellation of opposite phase lines. It is well known that 

the cancellation of lines in antiphase multiplets leads to inaccurate coupling constants. Such 

cancellations are more pronounced for broad lined associated with faster relaxation. 

Individual multiplets were analyzed as described above and the obtained coupling constants 

are summarized in Table 111.3.1.2 and graphically presented in Fig.III.3.1.6. The deviations 

of the determined 'fcc  coupling constants increased steadily from their JLB = 0 values with 

increasing line broadening to a maximum of ± 0.4 Hz for JLB = 30 values. This is a relatively 

small deviation and we can conclude that for 'J - 40 Hz and a scaling factor ,c= 4, DJM-

INEPT-Th4ADEQUATE provides 'Jcc  coupling constants accurate within 1% for T2eff 

relaxation times as short as 70 ms. 
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Fig.11I.3.1.5 Effects of fast T2eff relaxation on the appearance of DiM-INEPT-INADEQUATE 

spectra. Shown are F 1  traces through individual protons extracted from spectra processed using 

increasing line, broadening (LB). Numbers beside and above the long-range correlation cross peaks 

give the intensity ratio of the positive and negative peaks within the long-range peaks (R 1) and the 

intensity ratio between the positive peaks of the one-bond and long-range peaks (R 2), respectively. 

Symbol 'J is used to indicate that R 1  3 and R 2  2 and thus the cross peak is suitable for coupling 

constant determination; otherwise symbol x  is used. The effective spin-spin relaxation times, T2eff, as 

determined by fitting the one-bond cross peaks are given on the right edges of the spectra. 



Table 111.3.1.2 "JCC  coupling constants in Hz obtained from spectra processed with 
..r. 1 	lrcrlpnincy 

Vcc(Hz) LB =0 LB 	5 LB 	10 LB = 20 LB = 3 0 

H 1 C 1 -C3 4.2 3.9 3.7 3.5 3.9 

H 1 C 1 -C2 46.8 46.8 46.8 46.9 46.9 

H 1 C 1 -OMe 2.3 2.3 2.5 2.7 3.0 

H2C2-C, 46.8 46.8 46.7 46.7 46.6 

H2C2-C3 38.8 38.8 38.8 38.8 38.8 

H2C2-C4 2.9 3.0 3.0 3.1 3.8 

H2C2-OMe 3.2 3.2 3.2 3.4 1.9 

H3C3-C1 4.0 4.0 4.1 4.1 4.4 

H3C3-C2 38.8 37.7 38.7 38.6 38.6 

H3C3-C4 39.1 39.1 39.2 39.2 39.3 

H3C3-05 2.4 2.5 2.4 1.0 0.7 

1714C4-C2 2.9 3.0 3.0 1.6 1.3 

H4C4-C3 39.0 39.0 39.0 39.0 38.9 

14 1C4-05 40.0 40.0 40.0 39.9 39.9 

H5 C5-C3 2.2 2.2 2.3 0.4 0.6 

H5C5-C4 39.9 39.8 39.8 39.6 39.4 

H5 C5-C3 2.3 2.3 2.3 0.8 0.8 

H5 C5-C4 39.7 39.6 39.5 1 	39.4 39.2 

OMe-C1 2.4 2.4 2.6 2.8 1  2.1 

OMe-C2 3.2 3.2 3.3 3.4 3.6 
(a) 

--H1-C1C2 
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Fig.III.3.1 .6 Effects of fast T uff  relaxation on the determination of carbon-carbon coupling constants. 

(a) The deviations from 'Jcc  values determined using LB = 0 increase steadily with increasing line 

broadening (shorter T 2,ff  relaxation times). This is most prominent for the coupling constants 

determined using H5 protons due to the fastest relaxation of coherences involving this CH2  group. (b) 

The same as in (a) but for 'Jcc  coupling constants. The values in rectangular boxes are from the 

analysis of cross peaks that do not comply with the criteria for reliable determination of coupling 

constants as defined in the text. 
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For small 'Jcc values, the results of the analysis were not so positive. The use of large line 

broadening resulted in unreliable results because of the increasing cancellation of negative 

and positive lines in the long-range correlation cross-peaks. Two criteria, independent of T2eff 

or Jcc,  were adopted to assess the reliability of the obtained long-range coupling constants. 

The first criterion is based on the observation that the partial line cancellation increases the 

ratio, R,, between the absolute intensities of the central and the two outer lines of a multiplet. 

Ideally, when there is no cancellation R, = 2. Based on our analysis, reliable coupling 

constants are obtained when R, S 3 (Fig.III.3.1.5). The second criterion is the ratio of the 

intensities of the central lines of 'fcc  and  Vcc  cross-peak, R2  2 (Fig.III.3. 1.5). Even when 

these criteria are fulfilled the values of Vcc  obtained at larger line broadening differ < ±0.3 

Hz from nJLB = 0 values. Considering the small values of long-range coupling constants this 

is a large relative error. It is therefore advisable that all precautions are taken in order to 

prolong the effective relaxation times. One such approach is presented in the next chapter. 

For the moment it can be concluded that similarly to simple antiphase multiplets, the 

coupling constants determined from sin  modulated multiplets can yield erroneous coupling 

constants due to partial cancellation of lines. This problem is aggravated by the poor signal-

to-noise ratios (SNRs). Therefore it was decided to determine the effect of poor SNRs on the 

reliability of coupling constants determined from DiM-INEPT-INADEQUATE spectra. This 

analysis was combined with increased effective relaxation simulated by using increasing LB 

values during the spectra processing. Only the long-range peaks that fulfilled the criteria 

outlined above were taken forward for this analysis. 

Random noise was extracted from the blank regions of the spectrum processed using 'JLB =  0. 

Using increasing scaling factors, the noise traces were added to the traces containing peaks 

in order to construct new traces with increasing SNR values. SNR was adjusted separately 

for individual cross peaks to achieve values of 10, 20, 40 and 60:1 as illustrated in 

Fig.III.3.1.7. Five different noise spectra were used and the average coupling constant 

together with RMSD was calculated. For 'Jcc  coupling constants the RMSDs increased 

exponentially with decreasing SNR (Fig.III.3.1.8), but even for SNR = 10 and LB = 30 Hz 

these were < 0.25 Hz. In other words, the deviation was always smaller than the systematic 

errors caused by fast relaxation. The RMSDs for Vcc  coupling constants followed a similar 

trend but increased faster with increasing line broadening values and decreasing SNIR 

(Fig.III.3. 1.8). For SNR ~: 20 the RMSD were < 0.25 Hz. 
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Fig.III.3.1.7 Effects of decreasing signal-to-noise ratios on the DiM-INEPT-INADEQUATE spectra. 

F 1  traces through H3 taken from the spectrum shown in Fig.III.3 .3.1.2 processed with different line 

broadenings in F 1  and increasing levels of noise as described in the main text. This is one of the five 

sets of data used in the analysis. 
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Fig.I11.3.1.8 Effects of decreasing signal-to-noise ratios on values of carbon—carbon coupling 

constants. (a) 'icc coupling constants. Standard deviations of 1JC3c2  (38.8 liz) and 'Jc3c4  (39.1 Hz) 

coupling constants obtained by the analysis of spectra processed with different line broadenings as a 

function of the increasing SNRs. (b) the same as (a) but for 2J3c1 (4.0 Hz) and 2Jc3c5  (2.4 Hz) 

coupling constants. Only cases which met the criteria for the analysis of 1'Jcc  coupling constants, as 

defined in the main text, were considered. Higher SNRs were not available for some of the cross-

peaks. 

In summary, one-bond tJcc coupling constants can be determined with high accuracy (± 0.25 

Hz) when T2eft 70 ms and SNR ~: 10, while the determination of long-range Jcc coupling 

constants requires T2r ? 100 ms and SNR? 20 for the same accuracy. As the long-range 

coupling constants are of particular interest to this work, improvements of the current DiM-

INEPT-INADEQUATE were explored aiming at increasing the effective relaxation times of 

involved coherences. 

III. 3.2 DiM-RE VINEPT-1NADEQUATE: 

Some sources of the increased relaxation of coherences discussed in the previous section can 

be removed. A modification described here prolongs the relaxation of coherences by 

eliminating the contributions of proton spin flips. During both the J evolution and DQ 

labeling intervals, the coherences in the D.JM-INEPT-INADEQUATE contain the proton 

terms e.g. or ' l,2y1• If these could be reduced to and 1x92y. longer 
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effective relaxation times would result. The central part of the pulse sequence of DiM-

INEPT-INADEQUATE (Fig 111.3 .2.la) was modified by adding the decoupling during the J-

modulated and DQ evolution intervals (Fig.I11.3.2.1b). Samples of mono-, di- and 

tetrasaccharides have been used to verify this experimentally. The effective relaxation times 

of 13C single-quantum coherences of these carbohydrates were measured by a simple 13C_ 
 

detected spin-echo experiment with or without 'H decoupling. 

H1LC1XC2/ 
IiprlZCIC22Zø 

H 1  C 1 .,L 

iFJ[1 	 I 	 El 
(p1 	 (p2  

H~ Ict2 iifl ~2~fij~ 

c 1xc2v 	C j C 

1H 	 WALTZ64 

(p1 	(p1 	 (p2  

C 	

p1 T3 ict 
1 3C 	

( 

8  H  241nj  =2  'rnifl ti .8n 	> 
Fig.III.3.2.1 Partial DiM-INEPT-INADEQUATE pulse sequences without (a) and with (b) 

decoupling. Relevant coherences are shown above. 

Fig.1II.3.2.2 shows a comparison of the effective T 2  relaxation times for mono-, di- and 

tetrasaccharides applicable to the above experiments. These were acquired using a ' 3C spin-

echo experiment with or without the 'H decoupling. When using 'H decoupling the effective 

relaxation time was prolonged although this effect was progressively smaller for large 

molecules. 
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Fig.H1.3.2.2 Effective relaxation time results, showing the effects of using decoupling during the 

coupling evolution intervals for (a) mono-, (b) di- and (c) tetrasaccharides. Red squares are results 

from decoupling and blue diamonds are without decoupling. 

A practical implementation of this idea into DJM-INEPT-INADEQUATE requires several 

changes to be made to the original pulse sequence. To start with, the refocusing of Jci-i 

coupling constants is required before the 'H decoupling can be switched on. During this 

refocusing (-3.3 ms) the carbon-carbon coupling constants would be evolving. Similar 

evolution would also take place during the defocusing period that is required for the reversed 

INEPT step. Even more detrimental, once the magnetization is on carbon, refocusing for 

CH2  and CH3  carbons requires a compromised setting of evolution intervals that leads to 

signal losses as illustrated in Fig.11I.3.2.3. 

1 

0.8 	 CH 

0.6 

OA 

0.2 

0 	114J 	112J 	314.) 	Ili 

Fig.III.3.2.3 Creation of the in-phase 13C magnetization for CH, CH 2  and CH 3  carbons during the 

refocusing interval. The dashed line represents the optimal setting for all multiplicities. 
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In order to alleviate these problems it is advantageous to start the experiment by utilizing the 

carbon polarization. This eliminates the first INEPT step and the associated refocusing 

interval. Such an implementation of the DiM-INEPT-INADEQUATE experiment shown in 

Fig.III.3.2.4 is referred to as DJM-REVINEPT-INADEQUATE. This experiment is only 

slightly less sensitive than its double INEPT version. The factor of 4 gained by starting the 

experiment with the proton polarization is countered by the heteronuclear NOE (max 1 + 

YH/2Yc = 3) in a carbon initiated experiment. In addition, the use of decoupling during the 

DQ evolution interval recovers one-half of the signals that are otherwise lost for correlations 

between two protonated carbons [106] as is often the case in carbohydrates. Theoretical 

relative intensities of the two experiments are given in the following Table 111.3.2. 1. 

Table 111.3.2.1' Sensitivity comparison between the INEPT and REVINEPT -
TNADFOT TATE. 

Method Sensitivity 
INEPT-INADEQUATE (CH) 32 x  0.5 (ZQC) = 16 

REVINEPT-INADEQUATE (CH only) 8 x  3 (NOE) =24 
REV1NEPT-INADEQUATE (CH) 8 x  3 (NOE) x  0.71 = 17.0 

REV1NEPT-INADEQUATE (CH2) 8 x  3 (NOE) x  0.5 = 12 
REVINEPT-INADEQUATE (CH3) 8 x  3 (NOE) x  035 = 8.4 

Returning to the pulse sequence of Fig.III.3.2.4, the D.JM-REV1NEPT-INADEQUATE 

experiment starts from 13C magnetization, and utilizing the SQ( 13 C)-DQ-SQ('H) pathway, 

the magnetization is transferred to protons for detection. The modulation of cross peaks by 

Jcc coupling constants is produced during two f-modulated variable-time intervals. The 

second interval is followed by a defocusing interval that can be optimized either for CH only 

or for all carbon multiplicities. A compromised setting of this interval leads to some losses of 

signal as shown in Table 111.3.2.1. 

1H 	I RD 	WALTZ64 	 WALTZ64 I 	I I 	' I 	11 
-yc2 	y 	(p3 	:p 	( 	(p 
II ti 	II t4 v11 

	

2 	 VP 2VV12, 

	

AA G2 	
AG3 

G4  

Fig.ffl.3.2.4 Pulse sequence of DJM-REVINEPT-INADEQUATE. Thin closed and thick open bars 

represent 90° and 180 0  rectangular pulses. 
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A 2D DJM-REV1NEPT-INADEQUATE spectrum of Me-13-D-xylopyranoside optimized for 

all carbon multiplicities is shown in Fig.III.3.2.5. All cross peaks show fine structures 

(Fig.III.3.2.5), from which Jcc coupling constants were extracted. 
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Fig.11[I.3.2.5 A 2D DiM-RE VINEPT-INADEQUATE spectrum of Me-3-D-xylopyranoside and the F 1  

traces at 'H chemical shifts. Cross peaks are numbered the same as in Fig.I1I.3.1.2. The first number 

in the labels of ' 3C DQ coherences identifies the proton on which the magnetization originated/is 

detected. 

The intensity ratios (Table 111.3.1.2) of the central positive lines in long-range and one-bond 

cross peaks is on average 20% higher compared to the DiM-INEPT-INADEQUATE 

spectrum. This reflects longer effective relaxation times in the REVINEPT experiment. 

Table 111.3.2.2 Ratio of the central positive lines of long-range to one-bond cross 
peaks in columns taken from DJM-INEPT-1NADQUATE and DJM-REVINEPT - 
TXTAI)C1ITATP crfr 

Cross C 1 C3  C 1 OMe C2C4 C20Me C3C1 C3C5  C4C2 C5axC3 C5eqC3 
peaks  
DiM 0.80 0.97 0.80 0.92 0.84 0.51 0.80 0.74 0.72 

DIM- 1.07 0.88 0.92 0.83 1.06 0.75 0.99 0.97 0.85 
REV 
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The Jcc  coupling constants were obtained from the DJM-REV1NEPT-1NADQUATE 

spectrum (Table 111.3.2.3) using the same procedure developed for the analysis of the D.JM-

1NEPT-1NADQUATE spectra. The long-range coupling constants (<4.0 Hz) of the former 

spectrum are slightly smaller, which perhaps is an indication that even modest cancellation 

of lines can cause an overestimation of coupling constants. 

Table 111.3.2.3 fcc  coupling constants from the DJM-REVINEPT-INADEQUATE 
r, 

C1C2 C2C3 C3C4 C4C5 C1C3 C2C4 C3C5 C1OMe C20Me 

46.7 38.8 39.1 39.8 4.1 2.8 2.1 2.3 3.0 

JCXCY 46.8 38.8 39.1 398b 4.2 2.8 23b 2.1 3.0 
397C 1.8c 

a The first row gives values determined from HxCxCy cross-peaks, wtuie the secona corresponos to 

the HyCyCx cross-peaks 
b  Determined from the H5 eq  cross-peak 

Determined from the H5 a,, cross-peak. These two last values of Jc3c5 are clearly affected by a poor 

SNR. 

In order to show the usefulness of this method for larger molecules than a monosaccharide 

and smaller amounts of sample, 25 mg of Me-f3-D-lactoside were used to acquire a DiM- 

REVINEPT-INADEQUATE spectrum (Fig.III.3.2.6) in 63 hours. The Jcc  coupling 

constants (Table 111.3.2.4) were obtained from the F, proton traces (Fig.III.3 .2.7). 
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Fig.ffl.3.2.6 A 2D DJM-REV1NEPT-INADEQUATE spectrum of Me-f-D-lactoside. On the right an 

expansion of the correlations of two anomeric protons is shown. Cross peaks 13', 14' and 15' 

correlate carbons of two rings. 
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Fig.III.3.2.7 F 1  traces from the 2D DJM-REVINEPT-INADEQUATE spectrum of Me-13-D-lactoside 

Table 111.3.2.4 1 "Vcc coupling constants of Me--D-lactoside obtained from ' a 2D 

DiM-RE VINEPT-INADEQUATE spectrum 

C 1 C2 C2C3 C3C4  C4C5  C 1 'C2' C2'C3' C3 'C4' C4'C5 ' C 1 'OMe C2'OMe 

46.8 40.0 39.0 38.5 47.2 39.7 
389 

2.1 3.0 
46.8 40.2*  38.9 38.5 47.2 39.8 41.6 2.9k  2.8k  

dc3 c3c5 c1c3 c2c4 c3c5 c1c4 c1c3 c1c5 c2c4 

5.2* 2.2  4.8* 2.5 3.2* 2.2 -0 2.4 3.0 
5.0 2.2 4.4 2.1* 3.0 2.6 -P0 2.4 33* 

The first row gives values determined from HxCxCy cross-peaks, while the second corresponds to the 

HyCyCx cross-peaks 

* extracted from overlapped cross peaks, likely in error 

+ represents values from cross peaks with very poor SNR 

The Vcc  coupling constants across the glycosidic linkage of the disaccharide are the most 

interesting. Traces through protons containing cross peaks of carbons from the two rings are 

shown in Fig.III.3.2.8. 
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Fig.III.3.2.8 F, traces containing cross peaks of carbons across the glycosidic linkage of Me - 13-13-

lactoside 

III. 3.3 JM-DEPT-INADEQUATE: 

We have shown that the performance of the basic DJM-INEPT-INADEQUATE experiment 

can be improved by using 'H decoupling during the long evolution delays. Longer effective 

relaxation times allow more accurate determination of small long-range carbon-carbon 

coupling constants. However, the improvements for' large molecules are smaller due to 

shorter relaxation times of 13C. 

It seems that partial cancellation of opposite phase lines is a fundamental problem when it 

comes to the extraction of coupling constants from antiphase multiplets [107]. The original 

J-modulated INEPT-INADEQUATE experiment [108] suffers from this problem, as 

antiphase nJcc  doublets are recorded in this experiment. In antiphase multiplets, the peak-to-

peak distances are larger than the true coupling constants. In an attempt to remove this 

limitation, a modification has been proposed [109] that records in-phase doublets in F,. 

However, if these doublets are not resolved, the coupling constants cannot be determined by 

this experiment and poorly resolved doublets lead to underestimation of the coupling 

constants. In the following a solution to this problem is proposed, which provides a way for 

the determination of very small 'Jcc  coupling constants. It is based on acquisition of both in-

and antiphase "fcc doublets. It has been shown [I 10] that addition/subtraction of in- and 

antiphase multiplets leads to simplified multiplets in which the active (antiphase) coupling 
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constant is missing. Its value can still be determined as a displacement of the two simplified 

multiplets as illustrated in Fig.111.3.3.1 for resolved and nonresolved multiplets. It can be 

seen that in both cases the coupling constant can be determined. Crucial to the success of this 

method is that the scaling factor between the in- and antiphase multiplets is known [110]. 

This is not always the case, as the two kinds of multiplets are obtained with different 

efficiency. In this section, assisted by an additional experiment, a solution to this problem for 

the INADEQUATE experiments is presented. A scaling factor is obtained by comparing one 

resolved doublet and non-resolved doublets. Firstly, the ratio of the integrals of the two 

doublets in the in-phase spectra is used to calculate an initial Jcc coupling constant. 

Secondly, this fcc coupling constant is used to calculate a scaling factor of the antiphase 

doublet. In this calculation the relaxation during the additional evolution interval was taken 

into account. Thirdly, the antiphase doublet is scaled down using the calculated scaling 

factor and added to or subtracted from the in-phase doublet to construct two singlets. Finally, 

the non-resolved Jcc coupling constant is read out from the splitting chemical shift 

difference of the two singlets. The coupling constant is therefore determined by the 

manipulation of in- and antiphase multiplets. 

Different implementations of this basic principle are presented below to proton-detected 

INADEQUATE and later also to a carbon-detected INADEQUATE pulse sequences. 

V 

Fig.I11.3.3.1 Simulated doublets for J = 4 Hz (T2  = 160 ms) and J = 2 Hz (T2  = ill ms). Red, pink 

and green curves are singlets obtained by addition/subtraction of in- and antiphase multiplets, blue 

curves are antiphase multiplets and dark-blue curves are in-phase multiplets. The 4 Hz doublet is well 

resolved and the splitting represents the coupling constant but the 2 Hz in-phase doublet is not 

resolved and the value obtained from the antiphase doublets is not accurate. 

The JM-DEPT-INADEQUATE experiment starts and ends up on protons. In order to 

maximize its sensitivity, 1 H decoupling is used during the long evolution intervals. As 

discussed previously, this doubles the signal intensities compared with INEPT- 
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INADEQUATE without 'H decoupling as no leakage of magnetization to ZQ coherences 

occurs. The decoupling also prolongs the relaxation times of 13 C coherences as illustrated in 

the previous chapter. DEPT rather than INEPT was used for polarization transfer, which 

reduced the numbers of pulses. This experiment contains two CH refocusing/defocusing 

intervals which would reduce its sensitivity, if all CH multiplets were to be recorded. 

Therefore this experiment was only used for the measurement of "Jcc  coupling constants 

between two CH carbons. Fig.III.3.3.2 shows  the pulse sequence of JM-DEPT-

iNADEQUATE. Refocusing of 13C_  'H coupling constants required before the 'H decoupling 

means that some evolution of the 13C- 13C coupling constant cannot be avoided. It was 

therefore decided to purge this magnetization in order to select only the in-phase 13C 

magnetization. For this, a gradient enhanced z-filter proposed by Thrippleton and Keeler 

[92] was used. At the same time, purging of one-bond correlation was achieved by setting 

the 2i, delay to 1/2('Jcc). This reduces the possibility of overlap in the final spectrum. The 

following incrementable J evolution interval therefore starts with pure in-phase carbon 

magnetization of long-range coupled 13C pairs. Although some magnetization is lost, the 

long-range correlations are barely affected. Selection of DQ ëoherences and their frequency 

labeling is followed by a fixed refocusing interval of 242 optimized for "Jcc  coupling 

constants. In such an experiment antiphase " Jcc  are recorded in F,. The in-phase doublets are 

acquired by inserting another block into the pulse sequence prior to the 90 13 C pulse that 

generates MQ coherences. This block selects the cosine modulated magnetization generated 

during the Ktj interval by purging the antiphase component. An additional defocusing 

interval of 24 2  generates the required antiphase magnetization. As mentioned above, this 

experiment is optimized for CH carbons in order to maximize its sensitivity. This is achieved 

by setting the flip angle of the DEPT to 90. 

Y 

1 H __'_)A71 1RD ItHcI 	I WIT7A 	 Huh 	[lit t 
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"c I [7 	A2  P11 A2  
/ 	G8 G9 	G9  ccA 	A A 

Fig.ffl.3.3.2 Pulse sequence of JM-DEPT-INADEQUATE. Thin closed and thick open bars represent 

900 and 1800  rectangular pulses. 
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The application of this pulse sequence to Me--D-xylopyranoside and Me-13-D-lactoside is 

presented next. The spectra (Fig.III.3.3.3) were processed with no window function in the F 1  

dimension. Long relaxation times of this small molecule, together with scaling up (K = 4) of 

the J-evolution meant that the coupling constants could be extracted by a peak picking and 

not by manipulation of in- and antiphase doublets. The only exception was the C3C5 cross 

peak which is mediated by a small coupling constant. This is a CH-CH2 correlation observed 

on the CH proton, which together with a faster relaxation of the CH 2  carbon contributed to 

the lower intensity of this cross peak. 
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Fig.H1.3.3.3 (a) 2D fM-DEPT-INADEQUATE spectrum of Me-f3-D-xylopyranoside and (b) F, traces 

of long-range doublets from both in- and antiphase spectra 
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Table 111.3.3.1 shows the long-range 'Jcc  coupling constants directly extracted from the in-

and antiphase traces (excluding the middle number of the nJC3C5  coupling constant (1.9 Hz), 

which was from the manipulation of in- and antiphase doublets) in Fig.III.3.3.3. These nJcc 

coupling constants are very similar to those determined by the two previously discussed 

methods (Table 111.3.1.1 and Table 111.3.2.3). 

Table 111.3.3.1 '.Jcc  coupling constants, in Hz, of Me-3-D-xylopyranoside from 2D 
JM-DEPT-1NADEOUATE in- and antiphase spectra 

JCXCY C1C3 C2C4. C3C5 C1OMe C20Me 

In-phase 
4.2 2.8 - 

- 

_______ 
2.1 3.2 

4.1 2.7 2.3 3.2 
1.9 

Antiphase 
4.2 2.8 1.8 2.1 3.2 
4.2 2.7 2.1 2.3 3.2 

The method was next tested on a more realistic sample of Me--D-lactoside. The antiphase 

fM-DEPT-INADEQUATE spectrum is shown in Fig.III.3.3.4 together with the F 1  traces 

extracted from both in- and antiphase spectra for inter-ring correlations. It can be seen that 

the signal-to-noise ratios are much worse (two times on average) in the in-phase spectra. 

This is due to the extra refocusing interval used in the in-phase experiment. Shorter 

relaxation times of Me-f3-D-lactoside also meant that the coupling constants cannot be 

determined any more by a simple peak picking. 
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Fig.Ill.3.3.4 (a) 2D fM-DEPT-INADEQUATE spectrum of Me--D-lactoside and (b) F 1  traces of 

long-range doublets from both in- and antiphase spectra showing inter-ring correlations. 

The long-range Vcc coupling constants (Table 111.3.3.2) obtained by the manipulation of in-

and antiphase doublets from the spectra in Fig.III.3 .3.4 are similar to those determined by the 

DJM-REV1NEPT-INADEQUATE method (Table 111.3.2.4). Small coupling constants <2.5 

Hz gave slightly smaller values in the JM-DEPT-INADEQUATE spectrum. This indicates 

overestimation of small coupling constants by the DJM-REVINEPT-INADEQUATE 

method. 

Table 111.3.3.2 "Jcc coupling constants, in Hz, of Me43-D-lactoside from 2D JM-
DEPT-iNADEQUATE in- and antiphase spectra 

C 1 C2  C2C3  C3 C4  C4C 5  C 1 'C2 ' C2'C3 ' C3 C4 ' C4'C5 ' C 1 -OMe C2'OMe 
2.1 3.4 
2.1 3.1 

CIC3 C3C5  C 1 C3  C2 C4  C3C5 C 1 C4  C 1 C3  C 1 C5  C2C4 

5.1 1.7 4.6 - 

2.5 
2.0 41 

2.0 3.1 
4.9 1.6 - 2.4 2.0 1.9 1 	3.1 

The first row gives values determined from HxCxCy cross-peaks, willie the secono corresponas to me 

HyCyCx cross-peaks 
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III. 3.4 REVINEPT-INADEQUATE: 

The JM-DEPT-INADEQUATE technique presented in the previous chapter performs well 

only for CH carbons. Taking into account our experience with the conversion of DiM-

iNEPT-INADEQUATE into the DiM-RE VINEPT-INADEQUATE pulse sequence, a 

reversed INEPT-based method for acquisition of in- and antiphase fcc doublets is explored 

next. Before proceeding with this, the sensitivity of the basic INEPT-INADEQUATE is 

compared with that of REV1NEPT-INADEQUATE. 
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Fig.HI.3.4.1 Pulse sequences of INEPT-INADEQUATE (a) and REV1NEPT-INADEQUATE (b). 

Thin closed and thick open bars represent 90° and 1800  rectangular pulses. 

In the 'H-detected INEPT-INADEQUATE experiment [103] (Fig.III.3 .4.1), the 

magnetization starts on 'H and is transferred to 13C where after the creation of the antiphase 

carbon-carbon magnetization, the desired double-quantum coherences are selected. 

Subsequently, the Jcc  is refocused and the magnetization is transferred to protons, for 

detection. In the reversed INEPT method, the magnetization starts directly from ' 3C. The ' 3C 

magnetization is enhanced by heteronuclear NOE, which can yield up to a three-fold gain in 

sensitivity. 'H decoupling applied throughout the pulse sequence ensures that DQ coherences 

are efficiently converted into observable magnetization. On the other hand, the acquisition of 

all carbon multiplets in the same experiment requires a compromise setting of a defocusing 

delay, t3, which leads to some loss of signal. A theoretical comparison, neglecting relaxation, 

given in Table 111.3.2.1, suggests that the sensitivity of both methods is comparable. 

The INEPT-INADEQUATE and REVTNEPT-INADEQUATE spectra of Me-f3-D-

xylopyranoside are shown in Fig.III.3.4.2. These experiments were acquired using a 2L 2  

delay of 167 ms. This value was set to be an even multiple of 1/2('Jcc) and close to the 

optimum delay for °Jcc  of 3 Hz. As a consequence, both one-bond and long-range 
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correlations appear in the spectra. Both spectra were acquired using the same overall 

experimental time of 1 hour. A compromise delay 'r 3  = 2 ms was used in the REV1NEPT-

iNADEQUATE experiment in order to see also the correlations of CH 2  and CH3 carbons. 

The F2  traces plotted with the same absolute scale for both experiments are shown in 

Fig.III.3.4.3 for direct comparison of the sensitivity of the two methods. Some F 2  traces 

through CH carbons from the REV1Th'TEPT-INADEQUATE are even more intense than those 

from the INEPT-INADEQUATE. This can be attributed to slower relaxation in the 

REV1NEPT-INADEQUATE experiment during the long (334 ms) evolution delays. 
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U  

6 06 
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0 0 0 

Fig.HI.3.4.2 2D INEPT-INADEQUATE and REVINEPT-INADEQUATE spectra of Me-3-D-

xylopyranoside 
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Fig.ffl.3.4.3 (a) F2  dimension proton traces from the 2D INEPT-INADEQUATE and (b) REVINEPT-

INADEQUATE spectra of Me-3-D-xylopyranoside. 
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The 2D REVINEPT-INADEQUATE experiment can be optimized to provide 

simultaneously both one-bond and long-range correlations (Fig.III.3.4.4a). Both types of 

correlations can be distinguished as the fast evolving one-bond couplings are very sensitive 

to the evolution delays, while the long-range couplings are not. Acquisition of two spectra 

optimized for long-range couplings but differing by 0.25/'Jcc in setting of the carbon-carbon 

evolution interval will avoid a zero-point for one-bond correlations at least in one of the 

spectra. Subtraction of the two spectra yields a spectrum with only one-bond cross peaks, 

albeit with reduced intensities. These can be used in the first instance to assign the carbon 

skeleton of the molecule supplemented by long-range correlations. This procedure is 

illustrated in Fig.III.3.4.4 using the REV1NEPT-INADEQUATE spectra of Me-f-D-

lactoside. 
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- 	 - 

S 

Fig.ffl.3.4.4 2D REVINEPT-INADEQUATE spectra of Me-13-D-Iactoside  (a) and (b) 2D spectra 

optimized for long-range and one-bond 1cc  couplings, respectively. (c) Addition of the two long-range 

correlation spectra acquired with different delays (2A 2, 22 + 0.25/'J). (d) Subtraction of the two 

spectra yielding one-bond multip lets only. 

112 



In summary, REVINEPT-INADEQUATE is a sensitive experiment suitable for conversion 

into a f-modulated experiment for the measurement of "fcc  coupling constants. 

III. 3.5 JM-REVINEPT-INADEQUATE: 

The REV1NEPT-INADEQUATE method can be easily adapted into a f-modulated 

experiment using the building blocks introduced in the discussion of JM-DEPT -

iNADEQUATE. Compared with the original fM-iNEPT-INADEQUATE method [101], 

JM-REVINEPT-INADEQUATE (Fig.III.3.5. 1) utilizes the carbon polarization as in all 

previous reversed experiments. The first fixed carbon-carbon coupling evolution interval 

(6.5/"Jcc) is converted into a f-modulated interval. 

1 H WALTZ64 WA1T7_64 	C, 

13C J 1 GJ 
'H /ri 	rN 

In phase multiplets 

13c 
 A2 	V1I7 	112 

I G'ea 
	

09j\  AGE
, 

Fig.III.3.5.1 Pulse sequence of JM-REVTNEPT-INADEQUATE. Thin closed and thick open bars 

represent 90° and 180° rectangular pulses. 

The in-,and antiphase spectra are acquired in the interleaved manner as was the case for JM-

DEPT-INADEQUATE. The in-phase and antiphase 2D JM-REV1NEPT-INADEQUATE 

spectra of Me-13-D-xylopyranoside are shown in Fig.III.3.5.2. All doublets, except for C 3C5 , 

were sufficiently resolved in both spectra to allow the coupling constants (Table 111.3.5.1) to 

be determined by simply peak picking. 

Table 111.3.5.1 "Vcc coupling constants, in Hz, of Me-3-D-xylopyranoside from 
snectrum of 2D JM-REVJNEPT-TNADEOIJATE in Fig- TIT-3-5-2 

JCXCY  C 1 C2  C2C3  C3C4  C4C5  C 1 C3  C2C4  C3C 5  C 1 OMe C20Me 
1.7 

In-phase 
46.8 38.9 39.0 40.0 4.2 2.8 - 2.1 3.1 

1.9* 46.7 38.9 39.0 - 4.3 2.8 2.1 3.1 

Antiphase 
46.8 38.8 39.1 40.0 4.1 2.7 2.1 2.3 3.2 
46.8 38.9 39.2 40. loq  4.2 2.7 2 . 0eq 2.3 3.2 

' determined by the manipulation of the in- and antiphase multiplets. 
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Fig.Ill.3.5.2 (a) 2D fM-RE VINEPT-INADEQUATE in- and antiphase spectra of Me--D-

xylopyranoside. (b) Inlantiphase F 1  traces from the 2D spectra. 
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The C3C5 multiplet is not well resolved. The Jc3C5  coupling constant determined from the in-

phase spectrum is much smaller compared with the result obtained from the antiphase 

spectrum. The coupling constants determined in this experiment are practically identical with 

the coupling constants extracted from JM-DEPT-INADEQUATE spectra of Me-13-D-

xylopyranoside. 

The JM-REV1NEPT-INADEQUATE experiment was further tested using the sample of Me-

13-D-lactoside. Both in- and antiphase spectra were acquired in an interleaved manner. The 

in-phase spectrum is shown in Fig.III.3.5.3 and the traces from both spectra through carbons 

around the glycosidic linkage are shown in Fig.III.3.5.4. Table 111.3.5.2 shows the coupling 

constants determined by the manipulation of in- and antiphase multiplets. 
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Fig.1113.5.3 2D JM-REVINEPT-INADEQUATE in-phase spectrum of Me--D-Iactoside 
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Fig.11I.3.5.4 F 1  traces across the glycosidic linkage of Me-3-D-lactoside from 2D spectrum of JM-

REVINEPT-INADEQUATE 

Table 111.3.5.2 1 "Vcc coupling constants, in Hz, of Me-13-D-lactoside  from 2D JM- 
RcVTMFPT1NArWO1 TATF sneetnim 

C 1 C2  C2 C3 C3C4  C4C5  C i 'C2 ' C2'C3 ' C3'C4 ' C4'C5 ' C 1 'OMe C2.OMe 

47.0 40.2 39.2 38.6 47.1 39.9 39.2 2.1 3.2 
47.0 40.4 38.9 38.7 - 39.8 39.2 - - - 

dc3  c3c 5  c 1 c3  C2'C4' C3 .C5  C 1 C4  C 1 C3  C 1 C5  C2C4 

5.2 1.5 4.5 2.4 2.5 2.0 0 
2.1 3.1 

5.2 1 	1.7 4.6 2.4 2.5 1 	2.0 1 2.1 3.2 1  

The first row gives values determined ftom HxCxCy cross-peaks, wilule tile seconu corresponas to one 

HyCyCx cross-peaks 

The coupling constants summarized in Table 111.3.5.2 are practically identical to those 

determined by the fM-DEPT-INADEQUATE (Table 111.3.3.2). 

III. 3.6 '3C-detected INADEQUATE: 

Next we turn our attention to ' 3C-detected INADEQUATE. At a first glance it may seem that 

the gap between the sensitivity of the INEPT-INADEQUATE polarization transfer pathway 

(proton-carbon-proton) and that of ' 3C-detected INADEQUATE (carbon-carbon polarization 

transfer pathway) is too big for the latter experiment to be worth contemplating. However, a 
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more detailed analysis reveals that this is not the case and in practice, the ' 3 C-detected 

INADEQUATE is a very competitive alternative to the 'H-detected INADEQUATE. Despite 

the low initial relative sensitivity of the 13C-detected INADEQUATE. of 1/32, when other 

factors are taken into account a more realistic picture emerges (Table 111.3.6.1). 

Table 111.3.6.1 Sensitivity of 'H- and ' 3C-detected INADEQUATE experiments 

INEPT-INADEQUATE 32 x  0.5  x  0.71 = 11.3 

' 3 C-detected INADEQUATE 1 x  3=3 

Here the loss of half of the magnetization, due to the leakage to other protonated carbons 

(0.5) and the loss associated with gradient selection (0.7), is considered for INEPT-

INADEQUATE. The stability of today's spectrometers does not require gradients for the 

signal selection in the ' 3C-detected INADEQUATE and therefore phase cycling [111] is the 

preferred option. This also eliminates diffusion-related losses associated with gradient 

selection. Considering heteronuclear NOE for the ' 3C-detected method, the relative 

sensitivity of the two experiments is 1/4. 

In 'H-detected INADEQUATE the signal is detected on nuclei that show extensive splitting 

of their signals due to J couplings. Acquisition is performed in the presence of 13C 

decoupling which limits the acquisition times considerably and a value of 100 ms is typical. 

When using appropriate window functions, the signals in the 'H dithension are broad. On the 

other hand, acquisition in ' 3C-detected INADEQUATE is performed with 'H decoupling, 

which allows longer acquisition times. The signal is only a doublet and can be properly 

sampled. A comparison of typical multiplets obtained in both experiments (Fig.III.3.6.1) 

clearly illustrates this difference. 

40Hz 

7L
A 3Hz 

1D 'H 	 INEPT-INADEQUATE 	 'C detection 

Fig.11I.3.6.1 Signals from 'H- and ' 3C-detected INADEQUATE spectra 

The above analysis shows that when the width of signals is taken into account the sensitivity 

of both experiments is comparable. The other factor that has to be taken into account when 

deciding which experiment to use is the available equipment. The availability of cryoprobes 

means that the range of NIMR sensitivities has widened as illustrated in Table 11I.3.6.2. 
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rr..Ii nii  c, i,ctviti rifnrnhe it 600 MHz (0-1 %V EtBz 

Probes 'H 	Sensitivity 	13C 

Triple resonance inverse probe 1000:1 

Triple resonance inverse cryoprobe 5000:1 

' 3 C direct detection probe 200:1 

' 3 C Triple resonance inverse cryoprobe 400:1 

Inverse cryoprobe with a cold ' 3C preamplifier 800:1 

I 	' 3C direct detection cryoprobe 1600:1 

Capitalizing on the know-how acquired during the development of the 'H-detected 

INADEQUATE experiments, the ' 3 C-detected experiment was designed as to provide (i) 

simultaneous one-bond and long-range correlations, and (ii) accurate values of all 1cc 

coupling constants including the small nJcc  coupling constants, in a single measurement. 

The original non-refocused INADEQUATE experiment [98] with a modified phase-cycling 

[111] and the preparation period, t, optimized for long-range correlations (Fig.III.3.6.2), is 

used for the acquisition of antiphase ' 3C doublets in the F2  dimension. 

Antiphase doublets 
Pc 	N 47j 

1 H I ~OE 	
WALTZ64 	 I 

Inphase doublets 
(p4 	 62. 	ig 

1 H I NOE I 	WALTZ64 	 I 	I WALTZ64 

Fig.ffl.3.6.2 ' 3C-detected, phase cycled (a) non-refocused and (b) refocused INADEQUATE. r = 

0.25/11Jc  or 0.25/flJ + 0.51'J. The phase cycling according to [I 11] was applied; 900  and 1800  

BEBOP pulses [112] were applied where appropriate. A 20 ms adiabatic pulse [92] was applied in (b) 

simultaneously with a 2.1 Gauss/cm pulsed field gradient (G,) followed by a purging gradient 

G2=23.8 G/cm. 
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Two experiments with t = 0.5/"Jcc and t = 0.5PJcc + 0.51'Jcc are acquired in an interleaved 

manner. Neglecting the relaxation effects, data obtained by addition or subtraction of the two 

spectra will always contain one-bond cross-peaks, albeit with a reduced intensity (at most by 

a factor 0.5-0.71 compared with an experiment optimized for 'Jcc). Variations of the 

evolution interval will only marginally affect the intensities of long-range cross peaks. The 

readout of. 'fcc  values from these spectra is trivial due to the large separation of the two 

components of the one-bond antiphase doublets. This is, however, not the case for the long-

range cross peaks, as partial cancellation of closely spaced antiphase lines produces an 

apparent splitting discussed previously. Similarly to 'H-detected JM-REV1NEPT-

INADEQUATE and JM-DEPT-INADEQUATE, in order to determine the Vcc  coupling 

constants the in-phase multiplets must also be acquired. Editing of the in- and antiphase 

doublets by using the correct intensity ratio of these multiplets leads to accurate coupling 

constants. 

Two additional INADEQUATE experiments (r = 0.5/ "fcc and t = 0.5/ "fcc + 0.51 'fcc), 

which include a refocusing period followed by an efficient purging of the residual antiphase 

component (Fig.III.3.6.2b) are therefore acquired. The purging is achieved by a z-filter with 

simultaneous suppression of DQ/ZQ coherences [92] placed after the refocusing interval. 

Two non-refocused and two refocused INADEQUATE spectra that contain both one-bond 

and long-range cross peaks are acquired in an interleaved manner. The scaling factor is 

calculated using the relevant transfer functions and the effective 13C spin-spin relaxation 

times are determined in a separate experiment. Spectral editing of these four spectra, which 

may also utilize the symmetry of INADEQUATE spectra in the directly detected dimension, 

leads to accurate determination of Jc  coupling constants. 

The new experiment is illustrated for accurate measurement of scalar and dipolar carbon-

carbon coupling constants of carbohydrates. ' 3C-detected INADEQUATE spectra of Me - 13-
D-xylopyranoside were acquired at 600 MHz using an inverse detected cryoprobe with a 

cold 13C preamplifier (University of Glasgow). The long-range evolution delay was 

optimized to an odd multiple of 0.5/'Jcc,  which was known from the previous experiments. 

Therefore in this instance only two spectra were acquired rather than four. The 2D 

INADEQUATE spectrum is shown in Fig.III.3.6.3. Also shown are F 2  traces of carbons C2 

to C5 taken from the refocused and non-refocused spectra. The determined coupling 

constants are listed in Table 111.3.6.3. 
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Table 111.3.6.3 Coupling constants of Me-3-D-xy1opyranoside, in Hz, determined 
from in- and antiphase spectra of isotropic (Fig.III.3.6.3) and aligned (not shown) 
C '1 tyifli flC 

C 1 C2  C2C3  C3 C4  C4C5  C 1 C3  C2C4  C3C 5  C 1 OMe C20Me 

J 46.8 38.7 39.0 39.8 4.2 2.7 2.0 2.2 3.1 

J+D 50.6 36.7 38.5 43.5 4.6 1.8 2.8 1.8 3.3 

Dexpt 3.8 2.0 0.5 3.6 0.4 0.9 0.8 0.3 0.2 
Dcala  3.8 -2.0 -0.8 3.5 0.7 -0.7 .1.0 0.3 0.1 

Dcai' 3.8 2.0 0.4 3.6 0.3 0.8 0.6 0.3 0.2 

C 1 H 1  C2H2  C3H3  C4H4  C5H5a C5H5b 

J 161.6 144.7 141.6 145.0 141.6 151.2 
J+D 151.1 134.8 133.5 134.6 130.8 149.9 

Dexpt 10.5 9.9 -8.1 -10.4 -10.8 -1.4 
Dcala -10.6 -10.2 -8.4 -10.5 -10.1 -1.5 

Dcai"  10.6 9.9 8.0 10.6 10.4 1.4 	-- 
from ab initio structure; Parameters of the alignment tensor are: Nxy =  2.Dj± u.uo)e-u,+, 	= '.o i 

± 0.16)e-04, S,,,, 	(-1.22 ± 0.02)e-03. The Euler angles in the coordinate system of the ab initio 

structure of Me--D-xyIopyranoside: a = -48.6 ± 0.2, D = -280.1 ± 0.5 and  = -5.4 ± 1.0 degrees. 

b  from solution structure [89a] Parameters of the alignment tensor are: S, = (2.43± 0.02)e-04, S' 

(9.09 ± 0.13)e-04, S= (-1.15 ± 0.01)e-03. The Euler angles in the coordinate system of the solution 

structure of Me--D-xylopyranoside: a = 260.0 ± 03, 3 = 128.3 ± 0.2 and y = 85.9 ± 1.1 degrees. 

Please note that the two structures are in different starting molecular coordinate systems. Because of 

that the Euler angles are very different between the two. 
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Fig.III.3.6.3 2D ' 3 C-detected INADEQUATE spectrum and the traces from the non-refocused/ 

refocused 2D INADEQUATE spectra. 

The second example illustrates the potential of the refocused/non-refocused INADEQUATE 

in studying compounds in aligned media. Providing a sufficient amount of compound is 

available, the use of Dcc  coupling constants for structural investigation of small organic 

molecules in anisotropic media is a very attractive proposition. Many media proposed for 

organic solvents thus far tend to align molecules rather strongly. Consequently, higher order 

effects prevent accurate measurement of DHH  and 1DCH  coupling constants. Since only two 

13C spins in each molecule are selected by the INADEQUATE pulse sequence, the extraction 

of numerous carbon-carbon RDCs is no different from the measurement of "Jcc coupling 

constants. The 1 11-detected INADEQUATE is not particularly suited for the measurement of 

carbon-carbon RDCs because of the broadening of 'H multiplets by numerous proton-proton 

RDCs in strongly aligned media. 

An aligned sample of Me--D-xylopyranoside was prepared yielding the residual 

quadrupolar splitting of D 20 of 138.8 Hz. A CPMG spectrum of the aligned sample is 

compared with the 'H spectrum of the isotropic sample in Fig.III.3.6.4, where a considerable 

broadening of 1H resonance is noticeable. ' 3C-detected INADEQUATE spectra of the 

aligned sample were of similar quality to the spectra acquired on the isotropic sample. The 

spectra were acquired using exactly the same conditions as for the non-aligned sample. The 

one-bond antiphase cross peaks from both spectra were used for the determination of 'Jc c  

RDCs including their signs (Fig.III.3.6.5a). The analysis of three long-range cross peaks 

shown in Fig.III.3.6.5b illustrates that coupling constant determination is as straightforward 

as for the isotropic sample. 

121 



- 

4.2 	4.0 	3.8 	3.6 	3.4 	3.2 	ppm 

Fig.E11.3.6.4 Comparison of 600 MHz 'H spectra of isotropic (blue) and aligned (red) samples 

C1,C2 	lz 
	 C2,C3 

D=38Hz 
	 D=-2.OHz 

C3,C4 t C4C5 
D=-0.6 Hz 	 \ D=3.6Hz 

I 
C1 ,C3 	5Hz 	C2,C4 	5Hz C3,C5  

D=0.4 	 Dff 

Fig.II1.3.6.5 Determination of 'Jcc and "Jcc coupling constants from in- and antiphase spectra of 
13C_ 

detected INADEQUATE F2  traces of Me-3-D-xylopyranoside sample 

In addition to 13C- 13C RDCs one-bond 'H-' 3C RDCs were also obtained using ID intensity 

based experiments (Fig.I11.3.6.6). In this experiment a BIRD '" is used to remove the 

evolution of long-range couplings and the signal is only modulated by 1JCH coupling 

constants. 
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Fig.11I.3.6.6 (a) Pulse sequence of the ID intensity based experiment for the measurement of 1 JCH 

coupling constant. (b) Spectrum of Me-3-D-xylopyranoside carbons at one delay. (c) Signal of carbon 

CI acquired using 12 delays (1.5-207.2 ms). The acquisition and relaxation times of 0.45 and 3 sand 

512 scans were used. 

The experimental and back-calculated RDCs, using ab initio and solution [89a] structures of 

Me-(3-D-xylopyranoside, refined previously by an extensive set of RDCs, are listed in Table 

111.3.6.3. The alignment tensor parameters are shown in Fig.III.3.6.7. The back-calculated 

RDCs from the refined solution structure give better agreement with the experimental RDCs 

compared to those from the ab initio structure (RMSD of 0.16 versus 0.26 Hz). 

Syy 
Szz 

Sxx 

Fig.IU.3.6.7 Sanson-Flamsteed projections showing the orientation of the alignment tensor principal 

axis system in the molecular frame of the solution structure of Me-3-D-xylopyranoside calculated 

using REDCAT. RDCs used for the calculation were taken from in Table 111.3 .6.3 (excluding C 1 OMe 

and C20Me). 
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The third example of the ' 3C-detected INADEQUATE comes from the measurement of rJcc  

across the glycosidic linkage of a disaccharide. 25 mg of a Me-f3-D-lactoside was used to 

record the non-refocused/refocused INADEQUATE spectra in 25 hours each (Fig.III.3.6.8). 

The S/N ratio of the antiphase long-range cross peaks of 7.1-14.6: 1 was obtained. 
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Fig.III.3.6.8 2D ' 3C-detected INADEQUATE spectrum of Me-3-D-lactoside and traces of long-range 

13C- 13C doublets from the refocused (in-phase)/non-refocused (antiphase) 2D INADEQUATE spectra. 

The carbon-carbon coupling constants determined by the manipulation of the in- and 

antiphase doublets are summarized in Table 111.3.6.4. These coupling constants are ,  

practically identical to those determined by the 'H-detected methods. 
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Table 1113.6.4 "fcc coupling constants, in Hz, of Me-3-D-1actoside determined 
frnm the ')fl ' 3C-dpteetpI INADPOI lATE snectra 

C 1 C2  C2C3 C3C4  C4C 5  C,.C2 . C2 'C 3 ' C3 .C4 ' C4 'C5  C 1 OMe C2 OMe 

46.9 39.8 38.8 38.5 44.5 47.6 39.6 2.0 3.0 

46.6 40.1 38.9 38.5 44.5 47.1 39.8 - 2.0 2.9 

C 1 C3  C3C5  C 1 'C3' C2.C4 . C3 C5  C 1 C4  C 1 C3  C 1 C5  C2C4  

5.1 1.4 4.8 2.4 2.4 2.0 
0 

2.0 3.0 

5.1 1.6 4.8 2.3 2.4 2.0 1.9 3.1  
The first row gives values determmecl trom I-ixLxuy cross-peaKs, wniie me seconu COFFCSUtIUS LU UIV 

HyCyCx cross-peaks 
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F'ig.Lll.3.6.9 (a) Definition of the dihedral angles across the glycosidic linkage of the Me -t3-D-

lactoside. (b) and (c) Determination of the D and 'P angles using the 3Jcc (results from the 2D 13C 

detected INADEQUATE experiment) and 3.Jcoc  [99] coupling constants. 

The measurement of 3Jcocc coupling constants across glycosidic linkages reduces the 

ambiguity in the corresponding dihedral angles which are determined from 3fcocn coupling 

constants as shown in Fig.IH.3.6.9. The 3Jc2c4'  coupling constant (Table 111.3.6.4) is 

dependent on the I angle, while 3Jcic3'  and 3Jc1c5'  reflect the 'P angle [99]. The 3JC2C4' = 3.0 

Hz coupling constant was measured in our experiments. Using this value, the possible 

dihedral angles are 30, 90, 210, and 260 degrees. When considering the 3J01'HI  [99] coupling 

constant (Fig.I1I.3.6.9b), possible values of the D angle are 30, 130, 230 and 330 degrees. A 

common value of 30 degrees therefore represents the experimental conformation. 
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8.0 

N 

- 6.0 r 

125 



The intensity of the C1C3' cross peak (Fig.III.3.6.8) is'very small, which suggests a close to 

zero coupling constant 3Jcic3'.  The C 105' multiplets are isolated in both Cl and CS' traces. 

A value of 2.0 Hz for the 3Jc1c5' coupling constant was used for the analysis. When combined 

with the 3JC1H4'  [99] coupling constant, the 'P angle across the glycosidic linkage of the Me-

13-D-lactoside (Fig.III.3.6.9c) should be —20 ° . This combination of (, l.JI) = (300, 20°) is not 

the same as found in the crystal structure of 13-lactoside, (400  -15°). Our results also differ 

from those of Bose [99], who determined the 'P angle at -15°. This discrepancy is likely 

caused by the difference in the 3Jcic5 ' coupling constant (2.0 vs. 1.6 Hz) between us and 

Bose. 

III. 3.7 Comparison of the sensitivity of developed INADEQUATE experiments 

The sensitivity of the new INADEQUATE experiments (DIM-INEPT-INADEQUATE, 

DIM-RE VINEPT-INADEQUATE, fM-DEPT-INADEQUATE, fM-RE V1NEPT-

iNADEQUATE and ' 3C-detected INADEQUATE) is discussed next. The comparison is 

based on the isotropic samples of both Me-3-D-xylopyranoside and Me-f3-D-lactoside. The 

acquisition parameters of DiM-INEPT-INADEQUATE were used as the reference for the 

Me-3-D-xy1opyranoside sample. All 'H-detected spectra were processed using a Gaussian 

window function in the F2  dimension but no window function was used in the F 1  dimension. 

' 3C-detected spectra were processed using no window function in the F 2  dimension and an 

exponential window function with LB = 1 Hz in the F, dimension. Signal-to-noise ratios 

were calculated for the C2C4 multiplets in the traces extracted from 2D spectra. This 

coupling constant (Jc2C4 = 2.7 Hz) is close to 3 Hz, which was used to set the evolution 

delay. In this way, when multiplet delays were used, only relaxation effects contributed to 

the loss of signal. Table 111.3.7.1 summarizes the results. 

Table 111.3.7.1 Sensitivities of INADEQUATE methods using Me-F3-D-
xvlonvranoside 

Parameters DIM- 
INEPT 

DIM- 
REVINEPT 

JM- 
DEPT 

JM- 
REV1NEPT 

' 3C-detected 
INADEQUATE 

Scaling factor 4 4 4 4 none 
Maximum t,(ms) 94 91 180 180 23 

Experimental time (hours) 23 11 15 8.5 13 
Corrected SNR 70:1 43:1 50:1 38:1 58:1 

Percentage 100% 61% 71% 54% 83% 
* All parameters are for a single 2D spectrum; two experiments were acquired for the last three 

experiments. SNR was the average value calculated from both C2C4 and C4C2 multiple ts. In the J- 

modulated and ' 3C-detected INADEQUATE experiments, the SNR is an average of SNRs measured 
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in in- and antiphase spectra. Because of different total experimental times the SNR was normalized to 

the 23 hours DiM-INEPT-INADEQUATE experiment. 

It would appear that the most sensitive experiment is DiM-INEPT-INADEQUATE. This 

could be rationalized by the absence of any long fixed delays in this pulse sequence. It 

should be noted that the SNR given is for the central peak of the multiplet which does not 

carry the information about the size of the coupling constant. The opposite phase satellites 

which are separated by the J coupling are only half as intense. The relatively high sensitivity 

of the D.JM-INEPT-INADEQUATE composed with the DJM-REVINEPT-INADEQUATE 

is likely caused by less than 100% heteronuclear NOE build up in the latter experiment. In 

this experiment the defocusing interval was optimized for all CH multiplicities, which also 

reduced its sensitivity. Similarly, .JM-DEPT-1NADEQUATE was optimized for CH only, 

while JM-REVINEPT-INADEQUATE was optimized for all multiplicities. The latter 

experiment does not contain purging of one-bond cross peaks that is likely responsible for 

some loss of signal in the DEPT version. As anticipated, the ' 3C-detected INADEQUATE 

shows good SNR for the reasons discussed in Chapter 111.3.6. 

Table 111.3.7.2 contains the comparison of SNRs of INADEQUATE spectra of Me-3-D-

lactoside. The SNRs in these spectra are comparable. The best performing experiment was 

DJM-REV1NEPT-INADEQUATE. This can be attributed to the lack of fixed intervals in 

this experiment. In the remaining three experiments one or two 167 ms delays (non-

refocused or refocused spectra) are comparable to effective T 2  relaxation times (- 260 ms). 

This decreases their sensitivities substantially. Also for this compound, the ' 3C-detection 

compares well with 'H-detected experiments. 

Table 111.3.7.2 Sensitivities of INADEQUATE methods using Me-3-D-lactoside 

Parameters 
DiM- 

REVINEPT 
JM- 

DEPT 
JM- 

REVINEPT 
' 3C-detected 

INADEQUATE 
Scaling factor 4 4 4 none 

Maximum t 1  (ms) 75.8 103.6 128.8 9.3 
Experimental time (hours) 63.5 23.8 33 25 

Corrected SNR 22.3 17.6 13.0 17.2 
Percentage 100% 79% 58% 77% 

* All parameters are for a single 2D spectrum; two experiments were acquirea ior me iast tnree 

experiments. SNR was the average value calculated from both C2C4' and C4'C2 multiplets. In the J-

modulated and ' 3 C-detected INADEQUATE experiments, the SNR is an average of SNRs measured 

in in- and antiphase spectra. Because of different total experimental times the SNR was normalized to 

the 63.5 hours DJM-REVINEPT-INADEQUATE experiment. 
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III. 3.8 DNP-INADEQUATE: 

The Dynamic Nuclear Polarization (DNP) technique has been shown to increase the 

sensitivity of NMR experiments significantly. In collaboration with Oxford Instruments, we 

have developed an INADEQUATE pulse sequence that yields the suppression of single-

quantum coherences in a single scan. 

The polarization of ' 3C nuclei is close to zero at 1 K, while that of electrons is —98% 

(Fig.III.3.8.1). If the polarization of electrons can be transferred to ' 3C nuclei, this will 

dramatically increase the ' 3C-detection. The polarization transfer can be achieved by using 

microwave irradiation through a combination of solid effect and thermal mixing mechanisms 

[113], which provides ' 3C hyperpolarization of —20% in the solution state and the resulting 

magnetization enhancement of _10 4 times. The typical 13C DNP sample is prepared by 

mixing the —100 tg solution sample with an equal quantity of trityl free radical in glassing 

solvent (e.g. DMSO/ethylene glycol), which forms a glass after being frozen with a volume 

of --10 to 200 i•  After hyperpolarization by DNP, the solid sample is dissolved and flushed 

into an NMR tube. A rapid transfer of the liquid sample into the NMR magnet is required for 

a one scan acquisition of a spectrum. 

o. 

0 

N 

.0. 
0 
a- 

0. 

io' 	10° 	
10 	10  

Temperature (K) 

Fig.HI.3.8.1 Polarizations of 1 H, ' 3C nuclei and electrons at low temperature 

The demand of a single scan dictates that pulse field gradients must be used for coherence 

selection. Fig.III.3.8.2a shows the pulse sequence of the basic nonrefocused gradient selected 

INADEQUATE pulse sequence, while Fig.III.3.8.2b shows the refocused version. The latter 

gave much better suppression of SQ 13C coherences and therefore only this pulse sequence is 

discussed next. 

128 



(a) 	 SO 	DQSQ 

13C 	flLV2fl&2flflfl 
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Fig.III.3.8.2 Nonrefocused (a) and refocused (b) pulse sequences of one-scan DNP-INADEQUATE 

method. Narrow and wide rectangles indicate 90 and 180 deg pulses, respectively. Unless stated 

otherwise, pulses were applied from the x-axis. For 4 scans experiments p=  x,y,-x,-y and P= x,-x. 

BEBOP (excitation) [1 12a] or BIBOP (inversion) [1 12b] can be used instead of rectangular pulses. 

Gradients were shaped according to CHIRP pulses and were applied only from z. G 1 =40%, G2=80% 

and G3=55%. The first two were 3.5ms long, the last two 0.5 ms. 

Over the wide range of 13C chemical shifts, rectangular pulses have poor amplitude and 

phase profiles as illustrated in Fig.III.3.8.3 on an inversion profile of a 26 Rs 1800 

rectangular pulse. In the context of the INADEQUATE pulse sequence this can have two 

consequences: (i) strong off-resonance effects can hamper suppression of SQ ' 3C coherences 

and (ii) loss of signal for off-resonance DQ coherences. In addition, poor B 1  homogeneity 

can also cause the two above effects. Therefore, more sophisticated pulses that minimize the 

problems associated with rectangular pulses were used in the pulse sequence' of DNP-

INADEQUATE. These pulses were also used in all INADEQUATE experiments discussed 

before with the exception of D.JM-INEPT-INADEQUTE. 
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Fig.III.3.8.3 Simulated inversion profiles of 1800  pulses (a) and (b) 26 Lt5 hard rectangular pulses and 

1400 ts BIBOP pulses (c) to (f). Starting magnetization was in z in (a-d) and x in (e) and (f). 

Recently published BEBOP (Broadband Excitation By Optimized Pulses) [1 12a] and BIBOP 

(Broadband Inversion By Optimized Pulses) pulses [1 12b] are resistant to miscalibration and 

B 1  inhomogenieties, cover larger offsets with stable phases and amplitudes compared to the 

hard rectangular pulses as illustrated in Fig.III.3.8.4. The BIBOP pulse is a universal rotator, 

constructed from two BEBOP pulses, meaning that it can be applied to all coherences 

irrespective of their state. This can be seen in Fig.III.3.8.3c, d, where the starting z 

magnetization is inverted within ±15 KHz completely by the BIBOP pulse. Similarly, 

starting from x magnetization, -x magnetization is created across the ±15 KHz range 

(Fig.III.3.8.3e, f) by the inversion pulse. 

As BEBOP and BIBOP pulses are both amplitude and phase modulated, they put high 

demands on the spectrometer hardware. These pulses were implemented on our 

spectrometers and their performances were tested. The experimental excitation (Fig.III.3.8.4) 

profiles show the expected performance of these pulses. The BEBOP pulse excites the 

magnetizations within ± 13.5 KJIz uniformly. The deviations of the amplitudes and phases 

are within 0.7% and 120,  respectively. 
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Fig.ffl.3.8.4 Amplitude (a, c) and phase (b, d) profiles of C1 signals of ' 3C 1 -glucopyranose using 700 

[is BEBOP (a, b) and 13.2[is hard rectangular (c, d) excitation pulses. The offset was changed ± 21 

KHz from the resonance ofC1 p on a 600 MHz NMR spectrometer. 

Both the simulation and experimental results indicate that BEBOP and BIBOP pulses are 

suitable for use in the DNP-INADEQUATE experiment. As BEBOP is not a universal 

rotator, only the first 90 0  pulse of the INADEQUATE pulse sequence could be replaced by 

this pulse. This is not the case for the BIBOP pulse, where all three 180° rectangular pulses 

can be replaced. Fig.III.3.8.5 shows a dramatic effect of this replacement by following the 

signal of "Cl of glucose in a DNP-INADEQUATE pulse sequence as a function of the 

carrier frequency. 

I BEBOP + 3 BIBOP 

DO 4 23 49 76 103 130 157 184 ppm 

14 kHz 

Rectangular 	 9 

+J ii ii J I U 
SO 12 25 38 51 64 77 90 103 PPM 

0 	2 4 6 8 10 12 14 kHz 

Fig.ffl.3.8.5 INADEQUATE signal intensities as a function of the offset from the C  p doublet using 

BEBOP/BIBOP and hard rectangular pulses 
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ID INADEQUATE spectra of 13C 1 -glucopyranose are shown in Fig.III.3.8.6 using the 

refocused pulse sequence of Fig.III.3.8.2. One scan, designed for DNP-INADEQUATE, and 

four scans, using the full phase cycling, spectra are compared in combination with 

BEBOP/BIBOP and hard rectangular pulses. As the range of ' 3C frequencies in 

glucopyranose is small, no difference was seen in the signal intensities in spectra acquired 

with rectangular or broad-band pulses. As can be seen, the phase cycling removes the 

artefacts seen around the C 1,,,,p signals, while for the C2,p signals the quality of the spectra is 

identical for one and four scans. As will be shown later, the natural abundance 13C samples 

gave good suppression of unwanted signals also with one scan. In addition to one-bond 

correlations, also long-range correlations were observed, but only in the one-scan spectra. 

150 mg of 13C-1 glucose, 600 MHz 

Cl 	Cl 	 alp = 86 ppm 	 C2 C2a 

d) 

C) 

b) 

BB pulses 	 NS=4 

Hard rectangular 
pulses 	 NS=4 

A hi * 
	 BB pulses 

	
NS=l 

I 	 Hard rectangular 
a) 	*J* 	JL 	pulses 	 NS=l 

99989 -,g699493929190 89888 -;868b883a28As0l918,;?6ms4 	ppr 

Fig.1II.3.8.6 1D INADEQUATE spectra of 13C 1 -glucopyranose acquired with the pulse sequence of 

Fig.III.3.8.2a. Arrows indicate long-range correlations; asterisks indicate artefacts originating from the 

main 13C-1 signal. The intensity of the artefacts varies depending on the offset. In (c, d) a trim pulse 

was used to suppress the long-range correlation together with the phase cycling. 

Encouraged by these results, we have tested the refocused INADEQUATE pulse sequence 

using a natural abundance 13C sample of pyridine (500 al). The results are presented in 

Fig.III.3.8.7 and show a good level of suppression of SQ coherences. The pulse sequence 

was also tested by Oxford Instruments using DNP. For this initial test 30 mg of 13 C labeled 

glucopyranose were used. The spectrum in Fig.III.3.8.8 shows that the pulse sequence 
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worked well, but the signal intensity is low. Considering the T, relaxation time of 0.7 s of Cl 

of glucopyranose and at least 3 s for the transfer of the sample from the polarizer, it can be 

calculated that only 1.4% of the initial polarization has survived. This points to a major 

limitation of this technique. Further experiments using natural abundance ' 3C samples with a 

more favorable relaxation time are planned. 

3,5 

2,6 
	

4 

	

150 	145 	140 	135 	130 	ppm 

Fig.III.3.8.7 600 MHz natural abundance 13C 1 D INADEQUATE spectrum of pyridine without DNP. 

500 pL of pyridine + 50 jtL of CD30D. Eight scans with no phase cycling were acquired (1.123 = 54.1 

Hz, 'J34 = 54.1 Hz). 

	

Cip 	Cia 

Fig.III.3.8.8 300 MHz hyperpolarized DNP-INADEQUATE spectrum of C-i ' 3C-labelled 

glucopyranose (30 mg in 4 ml CH30H) 

In conclusion, this one-scan INADEQUATE pulse sequence is capable of yielding sufficient 

suppression of SQ coherences in the DNP setup. In principle, such an experiment can give 

ID 13C INADEQUATE spectra from which the 'fcc  coupling constants could be determined 

and in favorable circumstances used to imply the structure of a molecule. If the technology 

of DNP improves, we would be interested to measure selected long-range 13C- 13C coupling 

constants that could be used in conformational analysis of carbohydrates. This type of 

experiment would require the use of selective 13C pulses, but we do not foresee any problems 

with designing such pulse sequences. 
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III. 4 Solution conformation of the heparin-derived fully sulfated 
tetrasaccharide H 

III. 4.1 AI'fflER based solution structures without experimental restraints 

Force field based solution structures of the fully sulfated tetrasaccharide IL were generated 

by free molecular dynamics using the protocol described in Chapter II1.1.3. The starting 

conformations of 4C,, 'C4, 4C 1  and 'H2  for rings A to D, respectively, (Fig.1I.1 .1) were 

considered. 

During a 2 ns free molecular dynamics simulation, the A and C rings (glucosamines) stayed 

in the "C, conformation. The average RMSDs of the A and C monosaccharide ring atoms 

relative to the starting structures were 0.1 A and 0.08 A, respectively (Fig.111.4.1.1). The B 

ring, the internal iduronic acid, changed from the starting 'C 4  conformation to 2S0  and stayed 

in this form until the end of the 2 ns period. This results in a significant change of the 

positions of the monosaccharide ring atoms (Fig.II1.4.1.1). The RMSD of this ring's atoms 

increases from 0.07 A to 0.35 A with reference to the starting positions. The inter-atom 

distance between 112 and H5 decreases from 3.8 A to 2.5 A. When the B ring is in the 'C4  

form, the two NHS0 3  groups of the A and C rings are placed on the opposite sides of the 

molecule ('side-side' geometry). This geometry changes to a 'side-top' when ring B flips to 

the 2S0  form (Fig.1I1.4.1 .2). The nonreducing terminal unsaturated uronic acid, D ring, 

changed from the starting 1 H2  conformation to 2H 1 , which is then stable until the end of the 2 

ns period. The RMSD of this ring's atoms changes from 0.06 A to 0.3 A (Fig.11I.4.1.1) with 

reference to the starting positions. The distance between HI and 113 decreases from 4.2 A to 

2.7 A. The D ring tends to be in an 'open' form when it is in the 
2, conformation with 

respect to the rest of the tetrasaccharide, compared to a 'closed' form when it occupies the 

1 142  conformation (Fig.II1.4. 1.2). In other words, the change of the D ring conformation is 

associated with a significant change of the conformation of the glycosidic linkages between 

rings CB and DC. 

6 
(a) 0.A ring 

0.5 
V.. 	(b)Bnng 

0.4 
C') 0.3 

0.1 
-V., . 
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Fig.II1.4.1.1 (a)-(d): RMSDs of individual monosaccharide ring atoms (5 carbons and 1 oxygen) with 

regard to the starting structures. (e) Change of the H2-H5 distance in ring B associated with the 

transition between the 2 S0  and 'C4  forms; (f) Change of the Hl-H3 distance in ring D indicates the 

change of the conformation of this ring from '11 2  to 2111. 

Fig.III.4.1.2 Closest to mean structures showing the differences caused by changed conformations of 

(a) B ring and (b) D ring. 
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The conformations of individual monosaccharide rings at the end of the simulation 

converged to a stable geometry with RMSD values for the ring atoms of individual 

monosaccharide rings of less than 0.13 A. The remaining conformational heterogeneity of 

the tetrasaccharide comes from the varying conformation across the glycosidic linkages. As 

thousands of structures were calculated during free MD, a subset was taken for further 

analysis. Fifty structures with the best agreement between the back-calculated and 

experimental RDCs of the A and C rings are overlaid on the C ring as shown in red in 

Fig.11I.4. I .3a. For this selection the RDCs were calculated separately for rings A and C in 

order not to bias the subset, but only to choose molecules with good geometries of individual 

rings. 

The glycosidic dihedral angles across the AB ring linkage (Fig.I11.4.1 .3.d) cluster around (cD, 

'1') = (38°, 0°) irrespective of the conformation of the B ring. The CB linkage 

(Fig.111.4. I .3.d) is affected by the conformational change of the B ring and shows a 

difference of 80 and 20 degrees in <D and '1' angles between the 'C 4  and 2 S0  conformations. 

This linkage is also affected by the conformation of the D ring ('H 2  and 2H,) with the (I) 

angle changes —70 degrees, while the 'P angle changes 16 degrees. The DC linkage 

(Fig.111.4.1.3.d) shows the heterogeneity, which originates in conformational changes of both 

B and D rings. When the B ring is in the 'C 4  form, the tPDC  is similar for both 'H 2  and 2H, 

conformations of the D ring. However, for the 'H 2  form the CIx angle is 28°, but for the 2H, 

form it oscillates between -30° and 180°. When the B ring is in the 2S0  form 1c  is 180° only 

and the TDc  is similar to the other conformer. The geometry of glycosidic linkages will be 

further characterized by using RDCs restrained molecular dynamics (Chapter 111.4.4.3). 

Before that, NMR data are analyzed in order to characterize the internal dynamics of 

individual rings. 
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Fig 111.4.1.3 (a) 50 structures overlaid on C ring; (b) 20 out of 50 structures overlaid on B ring in the 

form of 1 C4; (c) 30 out of 50 structures overlaid on B ring in the form of 2S0; (d) dihedral angles 

across the glycosidic linkages of 5,000 structures and statistics for dihedral angles. 

III. 4.2 Conformations of individual monosaccharide rings of compound II 

Three-bond proton-proton coupling constants (34 H) of the four monosaccharide rings (Table 

111.4.2.1) were measured using f-modulated SPFGSE-COSY, CSSF-COSY and HOl-IAFIA-

COSY methods described in Chapter 111.2. As evidenced by large values of .J23,  3J34  and 3J45  

coupling constants, the two glucosarnine rings (A and C) are stabilized in the 4C, 

conformation. The internal iduronic acid ring (B) and the nonreducing terminal of the 

unsaturated uronic acid ring (D) exist in a conformational equilibrium. Fig.I1I.4.2.1 shows 

the possible conformations for these rings. 

Table 	 1  11:JHH 
coupling constants, in Hz, of heparin-derived fully sulfated 

Rings / 3  J H1-H2 H2-H3 143414 

A 3.5 10.2 8.8 9.8 

C 3.7 
1 	10.6 9.0 10.1 

B 

D 

2.4 

3.4 

4.8 

2.6 

3.4 

4.7 

2.5 

- 
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Fig.IH.4.2.1 Possible conformations of the internal iduronic acid ring (B) and the nonreducing end 

unsaturated uronic acid ring (D) 

The three-bond proton-proton coupling constants (3JHH)  depend on the dihedral angle across 

the C-C bond and the electronegativities of the substituents. Considering the effects of 

substituents and incorporating them into a generic Karplus equation, an empirically 

parameterized (P 1  to P6) equation has been obtained from a set of 315 coupling constants 

[114] (Eq.IV.2.2.1): 

3JHH =  P 1 cos2 D + P2cosct + P3  + 	+ P5 cos2(t+ P6  A)) 

AXj group = LXasub - v 

Ay, is the difference of electronegativities between the substituent 

and proton attached to the carbon atom. 

is either +I or -1 depending on the orientation of the substituent. 

Using the Pauling electronegativity scale, the above equation for individual coupling 

constants of the iduronic ring (B ring) was parameterized as: 

3JHIH2 = 13.24cos2 b - O.91cos +1.1735{0.53 -2.4  1COS2((D + 15.5 X  1.1735)} 

+ 1.1735{0.53 —2.41 cos 2 (—(D + 15.5 X  1.1735)} 

+ 0.0479{0.53 —2.4lcos 2 (—(1 + 15.5 X  0.0479)} 

+ 1.167810.53 —2.4lcos 2(1' + 15.5 X  1.1678)} 
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3JH2H3= 13.24cos 2 -0.91cos-0.1212{0.53-2.41cos 2(-(I+ 15.5 XO.1212)} 

+ 0.047910.53 - 2.41cos2(-(D + 15.5 X  0.0479)} 

+ 1.24{0.53-2.41cos2(D+ 15.5 X  1.24)} 

+ 1.167810.53 - 2.41cos2((I + 15.5 X  1.1678)} 

3JH3H4= 13.24cos2  - 0.91cos +1.24{0.53 - 2.41cos 2((1 + 15.5 X  1.24)} 

+ 0.0479 {0.53 - 2.41cos2(-(D + 15.5 X  0.0479)} 

+ 0.047910.53 - 2.4lcos 2(-(D + 15.5 x 0.0479)} 

+ 1.1735{0.53-2.41cos2(+ 15.5X 1.1735)} 

3JH4H5= 13.24cos2 -0.91cos+1.1735{0.53-2.41cos2(-+ 15.5X 1.1735)} 

+ 1.173510.53 -2.41cos2(-(D + 15.5 x1.1735)} 

+ 0.0479 {0.53 -2.41cos2((D+ 15.5 X 0.0479)} 

- 0.3568{0.53 - 2.41cos2(t + 15.5 X  0.3568)} 

The iduronic acid ring can adopt three different conformations, 4C 1 , 1 C4  and 2 S0 , in solution 

but only 'C4  and 2 S0  were found for an internal iduronic acid (B ring) in fully sulfated 

tetrasaccharide [1, 21. The dihedral angles (Table III.4.2.2a) across the C-C bonds were 

measured for standard 'C 4  and 2 S0  conformations and used for the calculation of the 

theoretical 3JHII coupling constants using the above parameterized equations. The population 

of each conformer was calculated by fitting the calculated coupling constants to the 

experimental data. The result is shown in Table III.4.2.2b. The large deviation of 3J12  might 

be caused by not taking properly into account the geometry of the glycosidic linkage. 

Table 111.4.2.2 (a) Dihedral angles of H-C-C-H bonds of the B ring in the 
conformations of 'C4 and 2S0  (b) Least-square analysis of the populations of 
individual conformers 

Dihedral angles 
H 1 C,C2H2  H2C2C3H3  H3C3C4H4  H4C4C5H5  

(degree)  

'C4  70.8 -79.1 89.8 44.1 

148.2 -167.2 145.2 33.5 
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(b) 

3JHH (Hz) H,-H2 H2-H3 H3-H4 H4-H5 Wt% 

2.6 3.2 2.5 1.4 76% 

5.6 9.2 5.5 4.7 24% 

Expt. 2.4 4.8 3.4 2.5 
RMSD = 0.47 Hz 

2.2  Cal. 3.3 4.6 3.2 

The population of each conformer can be further inspected by analyzing the 2D NOESY 

spectrum. The distance between H5 and H4 is around 2.40 A in both 'C4  and 2 S0  conformers. 

But there is a significant change of the distance between atoms H5 and H2, when the B ring 

transits from 'C4  (3.90 A) to 2 S0  (2.51 A) form. The distance of 3.90 A is too large to be 

detected in the NOESY experiment for a molecule of the size of a tetrasaccharide. Therefore, 

the H2-H5 cross peaks in the NOESY spectrum (Fig.III.4.2.2a) can be assumed to originate 

from the 2 S0  conformer. Based on the identical distance between H4 and H5 in the two 

conformers, the comparison of the intensities [115] of the cross peaks of H2 and H4 in the 

H5 trace (Fig.III.4.2.2b) can be used to calculate the population of the 2 S0  form. The 2S0  

form is present in 22% based on this analysis, which is close to 24% determined based on the 

analysis of 3JHH coupling constants. Further analysis of the population of the two conformers 

of this internal iduronic ring based on RDCs and molecular modeling is presented in Chapter 

111.4.4.4 from the RDC-restrained MD results. 

(a)- 	 (b) 	

! 	4.6 	4.!L2 

H4 	Hi 

H3 

Fig.III.4.2.2 Partial 2D NOESY spectra of compound U and proton traces of (a) H5 on B ring and (b) 

H3 on D ring. 

In the case of the D ring, the parameterized Karplus equations of three-bond H-H coupling 

constants are shown below: 
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3JH1H2= 13.24cos2  - O.91coscI +1.1735{O.53 - 2.41cos 2((D+ 15.5 X  1.1735)} 

+ 1.1735{0.53-2.41cos 2(-(I+ 15.5x 1.1735)} 

+ 0.047910.53 - 2.41cos 2(-(t) + 15.5 x  0.0479)) 

+ 1.1678{O.53-2.41 cos 2((I+ 15.5x 1.1678)} 

3JH2H3 = 13.24cos2  - 0.91cos +1. 1678{O.53 - 2.41cos 2((I + 15.5 X  1. 1678)) 

+ 1.24{O.53 - 2.41cos 2((D + 15.5 x  1.24)} 

- 0.121210.53 - 2.41cos 2(-(D + 15.5 X O.1212)} 

+ 0.217{0.53 - 2.41cos2(-(D + 15.5 X 0.217)} 

3JH3H4= 13.24cos2  - 0.91cosb +1.24{0.53 - 2.41cos 2((D+ 15.5 X 1.24)} 

+ 0.095810.53 - 2.41cos 2(-(D + 15.5 X 0.0958)} 

+ 0.0479{0.53 - 2.41cos2(-t + 15.5 X  0.0479)} 

This unsaturated uronic acid ring exists in the equilibrium of 'H 2  and 2H, conformations. The 

dihedral angles (Table III.4.2.3a) across the C-C bonds were measured for standard 1 H2  and 

2H, conformations and used for the calculation of the theoretical 3JHH coupling constants 

using the above parameterized equations. The population of each conformer was calculated 

by fitting the calculated coupling constants to the experimental data (Table III.4.2.3b). 

Table 111.4.2.3 (a) Dihedral angles of H-C-C-H bonds of 'H 2  and 2H 1  conformers of 
the D ring. (b) Least-square analysis of the populations of individual conformers 

(a) 
Dihedral angles 

H,C I C2H2  H2C2C3H3  H3C3C4H4  
(degree)  

'142  57.8 -75.5 44.9 
2  H I -178.9 -161.6 72.1 

(b) 

3JHH (Hz) H,-H2  H2-H3  H3-H4  Wt% 

'112  3.10 0.18 5.98 78% 
2  H, 8.30 1020 1.67 22% 

Expt. 3.36 2.65 4.66 - 
RMSD = 0.57 Hz 

5.03  Cal. 4.24 2.38 
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The large deviation of 3.JHIH2  might be because of the effects of the glycosidic linkage and/or 

not very accurate parameterization of the Karplus equation for this particular coupling 

constant. The unsaturated double bond of C4-05 affects the accuracy of the analysis based 

on the 3JH3H4  coupling constant. All of these factors contribute to the relative ambiguity of 

this population analysis. Therefore, only a qualitative indication of the domination of the 'H 2  

conformation of ring D can be reached. 

Similar to the analysis of ring B, the NOESY spectrum can be used to analyze the 

conformation of ring D. The distance between H3 and H4 is around 2.50 A in both 'H2  and 

2H 1  conformers. But there is a significant change of the distance between atoms H3 and Hi 

from 'H2  (4.20 A) to 2H, (2.50 A). Only the distance of 2.50 A can be detected in the NOESY 

experiment. Therefore, the H3-H1 cross peaks in the NOESY spectrum (Fig.III.4.2.2b) must 

come from the 2H, conformer. By comparing the intensities of the H3-H1 and H3-H4 cross 

peaks in the H3 trace, the population of the 2H 1  form can be calculated as 56%. This result is 

very different from the scalar coupling constants analysis, which gives the population of the 

form 2H 1  to be 22%. 

III. 4.3 Geometry of glycosidic linkages 

Besides the flexibility of individual rings, the conformation of a carbohydrate is usually 

associated with the flexibility across the glycosidic linkages. The conformation of the 

glycosidic linkage is characterized by two dihedral angles D (Hp-C i .-O-C4) and i' (C,-O-C 4-

H4). Via the Karplus equation, c1 and kJI  angles can be related to the three-bond coupling 

constants. Three-bond heteronuclear C-H coupling constants ( 3Jcoc ) across the glycosidic 

linkages of tetrasaccharide H were determined from an HMBC spectrum (Fig.III.4.3.1 a and 

Table 111.4.3.1). Two identical multiplets extracted from ID 'H or 1D TOCSY spectra are 

manipulated first in order to simulate the chemical shift and coupling evolution of multiplets 

in the HMBC [68] experiment. Such modified multiplets are then shifted in opposite 

directions and subtracted yielding a theoretical HMBC multiplet (Fig.III.4.3. lb). The mutual 

shift of the two multiplets that reproduce best the HMBC multiplet represents the flJ11 

coupling constants (Fig.III.4.3. 1 c). 
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(a) 

CDI 	- 	 I -------------  - 	 " 	 Il H 

CCI 	
I 

C 1 	 I 	 JIHA4  

C4 	 P HDI 

-i H 

CA4 	 --- iii;---- 	I 
5.0 	3 	 54 	52 	5.0 	4.e 	4 	 4.4 	4.2 	4.0 	3.0 	 p 

- fitted spectlurn 
(b) 	 Carbon Dl trace 	

roon 	
(c) 

C4 	 — expenrnerl p 

IDTCcSY 
reconstruthon 

-. 

Fig.I11.4.3.1 (a) Traces of carbons of the glycosidic linkages extracted from the 2D HMBC spectrum 

of compound H; (b) Reconstruction of the HMBC multiplets from ID TOCSY spectra; (c) Best fit 

between the experimental and reconstructed mutliplets. 

Table 111.4.3.1 3
jCOCH across the glycosidic linkages from the HMBC spectrum of 

compound II. The first row: ID 1 H spectrum was used as a determined reference. 
1 n TCCQV crt'triim wn,, iiet1 nq q reference 

CA4HBI CB4HcI CC4HDI CDIHC4 Cc,HB4 CBIHA4 

3.8 
4.6 

4.4 
4.4 

4.1 
4.1 

5.0 
5.1 

— t 	 5.0 
4.8 
4.8 

The Karplus equation parameterized for the glycosidic linkage of carbohydrates was 

used to convert the measured coupling constants into dihedral angles [116]. The Karplus 

equations are not unambiguous and for each measured coupling constant there are four 

possible dihedral angles (Fig.111.4.3.2). 3Jcocc  would need to be measured to complement the 

3JcocH  coupling constants in order to decide if a single angle satisfies the experimental data 

or whether there is flexibility around the linkages. Several methods have been developed in 

J 
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this project to achieve this aim (Chapter 1113). Unfortunately, we did not have compound II 

in sufficient quantity to obtain 3fcocc  coupling constants and such analysis was left for a later 

day. 

8-I 

7 

4JBA  
U BA 

1 

0 1 	 1 	 I---  ____-____ -___ 

-180 	 -90 	 0 	 90 	 180 

dihedral angle (degree) 

Fig.11I.43.2 Dihedral angles across the glycosidic linkages of tetrasaccharide 11 on the Karplus curve 

[116] 3JCOCH = 5.7cos20 - 0.6cos9 + 0.5; red, blue and green asterisks represent the values obtained 

from the crystal structure [86], solution structure [85] of H, and our measurements, respectively. 

Table 111.4.3.2 Dihedral angles (in degrees) across the glycosidic linkages of the 
fully sulfated tetrasaccharide II from the measured 3JCFI coupling constants, solution 

[85] and crystal structure [86] in the complex with bFGF; values based on JCH  and 

	

xiCr?V r4ato r'.f'r,r,-,t..,-,i,rA II 	diwn in hmld 

DDC "DC  'CB 

±145 ±150 ±147 ±150 ±145 ±150 

TetrasaccharideLl ±30 ±20 ±25 ±20 ±35 ±20 

30 ±20 -25 -20 35 ±20 
Solution structure 

45.7 13.2 -43.3 -42.2 45.2 15.0 
[85]  

Crystal structure 
42.3 18.3 -18.5 -3.5 57.0 25.1 

[861 1 

The dihedral angles are compared to the literature values in Table ffl.4.3.2. Analysis of the 

NOESY spectrum allowed reducing the ambiguity of the six dihedral angles based on the 

interpretation of 3Jci,i  coupling constants. The absence of cross peaks of the anti conformer 

(dihedral angles around :1z 180°) in the NOESY spectra means that only conformations with 

1 and P angles within ± 90 °  are possible. In some instances a preference for a positive or 

negative dihedral angle could also be established. For example, in the NOESY spectrum, the 
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cross peak D1C3 (Hi of D ring and H3 of C ring) is weaker than that of D1C5, which 

indicates the distance between Dl C3 is larger than Dl C5. This selects the (IDc  angle to be 

300. The PDC  angle can be either 20° or 200.  The distances CI134 and C1133 are much 

smaller compared to CI135, which restricts cICB, PCB angles to -25° and -20°, respectively. 

The distance of A3135 is larger compared to that of A313 1, which indicates the (tBA  angle to 

be 35°. The kIJBA angle can be either 20° or 200.  The ambiguity of Dc or 'PBA  angles can be 

explained as the result of the conformational equilibria between forms of 'H 2  and 2H, for the 

D ring and 'C 4  and 2 S0  for the B ring. 

The solution [85] and crystal [86] structures of tetrasaccharide II are both in the 1 H2-4C,-'C4-

4c, form, while the 'H-'H coupling constant analysis of tetrasaccharide II in solution 

indicated the presence of an equilibrium process. Despite this, there is a qualitative 

agreement between our results and the crystal structure with differences of less than 20°. 

Comparing the experimental dihedral angles with the non-restrained molecular dynamics 

shows significant differences only for ring D, where the presence of the anti conformer in 

simulations is not confirmed by the experiment. 

RDC-restrained molecular dynamics calculations were used to further characterize the 

orientations across the glycosidic linkages. A detailed analysis is presented in the following 

chapter. 

III. 4.4 Conformation from residual dipolar coupling constants 

III. 4.4.1 Measurement of 3DHH and 'DCH residual dipolar coupling constants 

Scalar coupling constants can be measured from the isotropic sample. The aligned sample 

yields the sum of the scalar and dipolar coupling constants. Therefore, RDCs can be obtained 

from NMR experiments acquired under the same conditions using the two samples. The 

three-bond 'H-'H coupling constants were obtained from J-modulated SPFGSE-COSY, 

CSSF-COSY and HOHAHA-COSY experiments developed in this work (Chapter 111.2). An 

example of the coupling constant determination of tetrasaccharide II is shown in 

Fig.III.4.4. 1.1. 

p .  
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(f) 
CSSF-COSY: H3-.H4 

1.0 

0.8. 

0.6 	 J+D = 8.4 
0.4 
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0

° 	.- 

.6 	 J+D 8.4 
0.4 

0.2 

-0.6 
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3 

(d) 

4 	3 	Cring 	2 

--- 

cpmg 

4.3 	4.2 	4.1 	4.0 	3.9 	3.6 	3.7 	3.6 	3.2 	3.4 	3.3 	3.2 	PPM  

Fig.IH.4.4.1.1 (a) 1D CPMG spectrum of the aligned sample of tetrasaccharide II: the asterisk 

indicates the residual 'H signal of the medium. (b) and (c) are ID TOCSY spectra of the A and C 

rings; (d) ID double selective HOHAHA spectrum of II with a selective transfer of magnetization 

from H2 to H3 of the C ring; (e) and (f) coupling constant determinations of 3 V+DI,.i3H4 from the 

variable-time f-modulated ID HOHAHA-COSY and CSSF-COSY experiments, respectively. Signal 

intensities of proton H4 were fitted to the COSY delays. 

The one-bond C-H coupling constants were extracted from the F2 dimension of the 

nonrefocused 'H-' 3C HSQC spectrum. The coupling constants (Table M.4.4.1.1) of the two 

glucosamine rings (A and C) reflect the 4C, chair form, but those of the uronic acid rings (B 

and D) are average values of the exchanging conformations. 
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Table HI.4.4.1.1 Scalar and dipolar coupling constants of tetrasaccharide II 

Tetrasaccharide II J(Hz) J+ D (Hz) RDC (Hz) 

C-H coupling Cl-Hi 172.2 168.8 3.4 

constants C2-H2 139.1 144.9 5.8 
C3-H3 148.0 154.1 6.1 

A ring C4-H4 147.2 152.6 5.4 
C5-H5 146.9 153.1 6.2 
Cl-Hi 174.1 178.9 4.8 
C2-1-12 151.4 152.5 1.1 

Bring C3-1-13 151.5 148.9 -2.6 
C4-1-14 148.8 152.8 4.0 
C5-H5 146.1 145.7 -0.4 
Cl-Hi 172.6 177.7 5.1 
C2-H2 138.7 135.6 -3.1 

C ring C3-H3 147.4 144.4 -3.0 
C4-H4 147.2 142.4 -4.8 
C5-H5 147.0 143.4 -3.6 
Cl-Hi 175.9 177.0 1.1 

Dnng C2-H2 154.4 153.0 -1.4 
C3-1-13 151.6 155.7 4.1 
C4-1-14 169.6 169.5 -0.1 

H-H coupling Hl-H2 3.53 2.71 -0.82 
constants H2-H3 10.25 11.13 0.88 

H3-H4 8.79 9.75 0.96 
A ring H4-H5 9.85 10.75 0.90 

Hl-H2 2.42 3.97 1.55 
B ring H2-H3 4.76 3.53 -1.22  

1-13-1-14 3.41 3.30 -0.11 
H1-1-12 3.67 2.46 -1.21 

C ring H2-113 H2-H3 10.59 11.14 0.55 
 9.04 8.43 -0.61  

1-14-1-15 10.16 8.80 -1.36 
Hl-H2 3.36 3.83 0.47 

D ring H2-H3 2.65 3.50 0.85 
H3-H4 4.66 3.90 1 	-0.76 

III. 4.4.2 Analysis of the RDCs of A and C rings using disaccharides 

We have noticed in the past that RDCs are very sensitive to the actual geometry of a 

carbohydrate ring [89a]. Differences of a few degrees in dihedral and bond angles can 

provide measurable differences in RDCs. It is also known that the neighboring rings can 

affect the geometry of pyranose rings in oiigosaccharides. In collaboration with Dr. Milo 

Hricovini we have therefore decided to investigate whether we can see any proof for this by 

analyzing the geometry of rings A and C in the context of the tetrasaccharide II. By 

investigating these rings separately, we are not making any assumptions about the alignment 

of the whole tetrasaccharide. The flexibility of the molecule is absorbed by the alignment 

allowing accurate calculation of the alignment tensor. Dr. Hricovini has calculated ab initio 

structures of two disaccharides (private communication) GIcNS6S-1->4-IdoA2SMe and 

IdoA2S-1->4-GIcNS6SMe, in explicit water. These structures correspond to the C-B and B- 
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A fragments of tetrasaccharide II, respectively. Both 'C 4  and 2 S0  conformations were 

considered for the B ring (Fig.III.4.4.2.1). 

AM 

Fig.III.4.4.2.I CB and BA disaccharides overlaid on C (CB) and A (BA) rings. 

Selected structural parameters of the four disaccharides are given in Table 111.4.4.2.1. 

Differences in dihedral angles >100  and >3° in bond angles are highlighted in bold. 

Table 111.4.4.2.1 Dihedral and bond angles (in degree) of rings C and A in 
disaccharides CIA and RA resnectivelv 

CB 
( 1 C4 -4C1) 

CB 
(2S0-4C1) 

. 

Dtff.  
BA 

(4C 1 )C4) 
BA 

(4C1-2S0) 
Diff. 

H1-C1-01-C4 (Ia) -66.2 -50.3 -15.9 -42.3 67.7 -110.0 
C 1 -0 1 -C4 -H4. ('1') -37.3 -44.2 6.9 -45.6 50.8 -96.4 

H 1  -C1 -C2-H2 55.7 68.4 -12.7 55.7 56.9 -1.2 
H2 -C2 -C3 -113  179.2 166.0 13.2 166.6 -173.7 19.7 
H3 -C3-C4-H4  170.7 172.5 -1.8 -167.0 171.1 21.9 
H4 -C4-05-H5 -166.4 -155.3 -11.1 175.4 -176.2 8.4 

C5-0-C 1  116.9 116.9 0 117.5 110.5 7.0 
O-C 1 -H 1  105.3 106.1 -0.8 103.8 109.8 -6.0 

HI-CI-C2 111.6 112.6 -1.0 110.8 109.7 1.1 
C1-C2-C3 106.3 105.8 0.5 105.3 110.2 4.8 
H2-C2-C3 109.0 109.4 -0.4 107.3 110.2 -2.9 
C2-C3-H3 109.2 104.3 4.9 109.8 109.9 -0.1 
1-13-C3-C4 108.3 107.2 1.1 109.8 106.9 2.9 
C3-C4-H4 109.2 109.2 0 108.5 111.1 -2.6 
H4-C4-05 109.3 110.7 1 	1.4 108.0 110.3 -2.3 
C4-05-H5 108.1 106.6 1.5 108.9 107.0 1.9 
H5-05-C6 109.4 110.5 -0.9 109.3 107.6 1.7 
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There are differences >100  in several dihedral angles of the C ring in the CB disaccharide 

between the two conformations of the B ring (Table 111.4.4.2.1). As the I and P dihedral 

angles across the glycosidic linkage are very close in the two forms, it is possible that the 

primary reason for these differences is the changed orientation of the sulfate group at C2 of 

the iduronic acid which then affects the orientation of the sulfamate group of the 

glucosamine ring. The back-calculated RDCs agree very well with the experimental data 

using the 1 C4  form (Table 111.4.4.2.2), while larger differences were observed for the 2 S0  

conformation. This is in agreement with the dominance of the 1 C4  conformer (76%) in the 

tetrasaccharide II as implied from the analysis of the 3JHH coupling constants. 

Table 111.4.4.2.2 Experimental and back-calculated RDCs of the C ring using CB 
disaccharide 

RDC [Hz) Expt. 
4c 1 -'c4 (CB) 4C 1 -2 S0 (CB) 

Cal. Diff. Cal. Diff. 
C 1 -H 1  5.1 5.11 -0.01 5.14 -0.04 
C2-H2  -3.1. -2.98 -0.12 -2.65 -0.45 
C3-H3  -3.0 -3.09 0.09 -4.10 1.10 

-4.8 -4.88 0.08 -4.39 -0.41 
C5-H5 -3.6 -3.57 -0.03 -3.22 7.0.38 
H 1 -H2 -1.21 -1.22 0.01 -1.10 -0.11 

0.55 0.46 0.09 0.03 0.52 
H3-H4 -0.61 -0.48 -0.13 -0.32 -0.29 
H4-H5 1 	-1.36 -1.23 -0.13 -1.06 1 	-0.30 

RMSD 0.09 0.49 

In the case of the BA disaccharide, both conformers of the B ring gave very good agreement 

between the back-calculated and experimental RDCs of the A ring (Table 111.4.4.2.3). 

Table 111.4.4.2.3 Experimental and back-calculated RDCs of the A ring using BA 
disaccharide 

RDC (Hz) Expt. 
4C1-'C4 C1- 2  So 

Cal. Diff. Cal. Diff. 
C 1 -11 1  -3.4 -3.40 0.00 -3.41 0.01 
C2-H2  5.8 5.89 -0.09 5.89 -0.09 
C3-H3  6.1 6.07 0.03 6.07 0.03 
C4-H4  5.4 5.65 -0.25 5.59 -0.19 
C5-H5  6.2 5.94 0.26 6.04 0.16 
11 1 -112  -0.82 -0.82 0.00 -0.77 -0.05 
H2-H3  0.88 0.70 0.18 0.74 0.14 
H3-H4  0.96 0.86 0.10 0.76 0.20 
H4-H5  0.90 0.91 -0.01 0.43 0.47 

RMSD 0.14 0.20 
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This is despite the fact that large differences (up to 22°) were observed in the dihedral angles 

of the A ring in the BA disaccharide between the 'C 4  and 2 S0 conformations of the B ring, 

which presumably are a consequence of different conformations of the glycosidic linkage in 

these disaccharides. 

There are several factors which can affect our analysis. We are using data acquired on a 

tetrasaccharide, but are using the disaccharide structures to interpret the RDCs. Therefore, 

for example, the conformation of ring C in the CB disaccharide might be affected by the ring 

D which is absent in the ab initio structure. Nevertheless, we have obtained good agreement 

for one form of the CB disaccharide. Perhaps surprisingly, it is the disaccharide BA which 

gave us an inconclusive result; despite the fact that ring A is at the reducing end in both di-

and tetrasaccharides. Also the dihedral angles across the glycosidic linkage of the ab initio 

structures are not compatible with the measured coupling constants of the tetrasaccharide II 

and in the case of the BA disaccharide show large changes between the two conformations of 

the B ring. This observation puts the validity of our analysis into question and the ab initio 

tetrasaccharide structure (which is not available at present) needs to be analyzed in order to 

draw any conclusion. It remains to be seen if a detailed analysis of RDCs on the level of 

individual monosaccharides can be used to verify the ab initio structures of oligosaccharides. 

III. 4.4.3 Restrained molecular dynamics with RDCs 

Selected 'DCH  and 3DHH coupling constants were used to refine the conformation of the fully 

sulfated tetrasaccharide II. The glucosamine rings are stable in the 4C, chair form. In this 

conformation, all but the anomeric proton are in the axial position and therefore the CH 

RDCs sample only two independent orientations. However, at least five independent vectors 

are needed to define the alignment tensor. Therefore, 3DHH coupling constants played an 

essential role as they sample more directions. In the following, the analysis of RDCs is 

presented in an attempt to describe the relative orientations of individual monosaccharide 

rings of tetrasaccharide II. 

This analysis is complicated as in the tetrasaccharide II only rings A and C are rigid chairs. 

They are surrounded by flexible B and D rings and connected by possibly flexible glycosidic 

linkages. Our analysis of RDCs is based on assumptions that (i) despite this flexibility the 

overall shape of the molecule does not change implying that it can be described by one 

alignment tensor, and (ii) the averaged RDCs can be interpreted by a single alignment tensor. 
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For this analysis we chose RDCs of rings A and C, which have rigid conformations on the 

monosaccharide level. 

In our model, we thus assume that possible motions across the glycosidic linkages and the 

conformational exchanges of the B and D rings will only contribute to minor changes of the 

overall shape of the molecule. At the same time, we assume that the average measured RDC5 

can be attributed to an average alignment tensor reflecting the average molecule shape. The 

mutual orientation of the A and C rings does change only slightly, e.g. as a consequence of 

conformational transitions of ring B, allowing us to interpret RDCs using a single alignment 

tensor 

Eighteen RDCs from the A and C rings sampling twelve independent orientations were used 

as restraints during a 4 ns molecular dynamics using the protocol described in Chapter 

11.6.2.2. The alignment tensor was optimized during the RDC-restrained MD. These 

calculations require initial tensor parameters. These were calculated based on the free 

molecular dynamics structure that showed the best agreement between the experimental and 

back-calculated RDCs for individual rings. The qualitative analysis about the populations of 

each conformation can only be calculated from two ensembles of 'C 4  and 2 S0  forms 

generated during the dynamics. Results are shown in the next section. 
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Fig. 111.4.4.3.1 (a) to (d) RMSDs of the ring atoms for each monosaccharide; (e) H2-H5 and (f) HI -H3 

distance change 

All monosaccharide rings converged to good conformations. The two NHS03 groups of the 

A and C rings were placed on the opposite sides of the molecule ('side-side' geometry). 

During the 4 ns simulation, the B ring showed transitions between 'C 4  and 2 S0  forms, which 

is in agreement with the existence of the conformational equilibrium of the B ring in solution 

(Fig.II1.4.4.3.1). Ring D showed only one transition from the initial '112 to the 2H, form. The 

glucosamine rings stayed in 4C, conformations. The trajectories of the RDCs of the A and C 

rings during the restrained MD are shown in Fig.Ill.4.4.3.2. 
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Fig.1II.4.4.3.2 Back-calculated RDCs from restrained MD structures of (a) A and (b) C rings 

The ((1), 1') plots of all structures show that the dihedral angles converged to certain regions 

for all three glycosidic linkages under the constraints of RDCs. The orientations across the 

DC and CB linkages settled to one of the regions (Fig.II1.4.4.3.3) found in the free MD. 
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Fig.III.4.4.3.3 Comparison of the (1, 'I') maps obtained in nonrestrained and RDC-restrained 

molecular dynamics. (a) shows ((D. 'F) dihedral angles across the glycosidic linkages from 

nonrestrained MD; (b) are results of RDC-restrained simulations. 

This is reflected in reduced conformational heterogeneity of the teirasaccharide as illustrated 

in the overlay of selected structures in Fig.11I.4.4.3.4. 28 structures were selected based on 

the best fitted back-calculated RDCs of both A and C rings at the same time. Out of these, 21 

structures showed the B ring with the lC4  form, while the other 7 of the B ring were in the 

2S0 form. 

Fig.I1I.4.4.3.4 Comparison of structures obtained in nonrestrained and RDC-restrained molecular 

dynamics. (a) 50 best overlaid structures on the C ring from nonrestrained MD; 20 structures overlaid 

on the 'C4  form of the B ring and 30 structures overlaid on the 2S0  form of the B ring. (b) 28 structures 

overlaid on the C ring from RDC-restrained MD; 21 structures overlaid on the 'C 4  form of the B ring 

and 7 structures overlaid on the 2S0  form of the B ring 
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The average dihedral angles across the glycosidic linkages are given in Table 111.4.4.3.1. 

These are practically identical between the two forms with different conformations of B and 

D rings. This is in contrast with the unrestrained MD which showed heterogeneity of D 

angles. These agree well with the analysis of torsion angles based on the analysis of the 3JCH 

coupling constants (Table 111.4.4.3.1). 

Table 111.4.4.3.1 Dihedral angles (in degrees) across the glycosidic linkages of the 

tetrasaccharides II in RDCs-restrained MD structures. 

Tetrasaccharide ODC TDC ICB TCB DBA 

RDC-restrained 
MD  

42.6 ± 12.7 
41.4± 13.5 

7.2 ± 13.2 
9.1 ± 13.4 

-38.3 ± 3.9 
-32.7± 11.9 

-24.7 ± 14.0 
-10.2± 12.8 

41.0 ± 10.9 
34.1 ± 11.0 

4.8 ± 14.4 
-7.4± 16.3 

NMR analysis 30 ± 20 -25 -20 35 ± 20 

a  dihedral angles are the values from RDC-refined solution structures including 3200 2 S0  (first row) 

and 5700 'C4  (second row) for the internal iduronic ring (B ring); all structures of the D ring are in the 

2H, form. 

III. 4.4.4 Flexibility of the iduronic acid ring as described by RDCs 

During the 4 ns RDC-restrained MD dynamics, the A and C rings converged to a certain 

orientation reflecting their common alignment tensor. The RMSDs of the five carbon atoms 

on both rings are smaller than 0.2 A (Fig.III.4.4.3.1). In the frame work of mutually 

restricted orientation of rings A and C, the B ring changes between the two forms 'C 4  and 

2 S0. During this transition the distances between certain pairs of protons, e.g. H2 and H5, 

changed significantly (Fig.III.4.4.3.1), as was also seen in the unrestrained calculations. The 

dihedral angles across the CB and BA linkages, however, changed less than 14° (Table 

111.4.4.3.1) between the 'C 4  and 2 S0  forms. The structures were separated into two ensembles 

with the 'C4  and 2 S0  conformations of the B ring. 3200 structures were in the 2 S0  form and 

5700 in 'C4  form. These two ensembles were used to back-calculate RDCs for each form 

individually and are shown in Fig.III.4.4.4. 1. These RDCs were calculated using individual 

structures and corresponding alignment tensors generated during the simulation. 
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Fig.I1I.4.4.4.1 Back-calculated RDCs from restrained structures of the iduronic acid ring (B ring) in 

both forms of 'C 4  and 2S0  

These plots show a large spread of values with average RMSDs of 1.6 and 0.35 Hz for 'D CH  

and 3Dun  coupling constants, respectively. The average back-calculated RDCs of both 

conformers are shown in Table 111.4.4.4.1. Here only C 2H2, C 3H3, C5H5  and 1-12H3  RDCs are 

presented as only these were significantly different between the 'C 4  and 2S0  forms 

(Fig.III.4.4.4.1). These RDCs were used to determine the relative populations of the two 

forms by finding the best fit between the experimental and theoretical RDCs. The population 

of the 2S0  form was found to be 18%. This qualitatively agrees with the analysis of the 3J1, 

coupling constants, where the population of the 2S0  form was found to be 24%. 

Table 111.4.4.4.1 Population analysis of the 'C4 and 2S0  forms of the iduronic acid 
rirn (R rino' frnni the h k-elcilnted average RDCs 

RDC(Hz) C2H2  C3H3 C5115 H2H3 wt% 

'C4 -0.20 -3.72 -0.01 -1.27 82% 
3.80 2.78 2.38 -0.07 18% 

Expt. 1.1 -2.6 -0.4 -1.22 
RMSD =0.51 

Theory 0.52 -2.55 0.42 -1.05  
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For the D ring (the terminal unsaturated non-reducing uronic acid) the RDC-restrained 

molecular dynamics shows that the 2H, form is more stable than the 'H 2  form. This 

contradicts the experimental analysis based on the 3J,,j1  coupling constants, which shows that 

the 'H2  form is the dominant conformer (78%). Meanwhile the NOE analysis shows 56% of 

the 2H, form. However, a similar analysis as for the B ring using the average C,H,, C 2H2 , 

H,H2 and H2H3  RDCs from the D ring showed 50% of each conformer, 'H 2  and 2H, (Table 

111.4.4.4.2) despite the fact that the average RMSDs of 1.5 and 0.35 Hz for 'Da.i  and 3Dm-, 

coupling constants, respectively, are comparable to these in the B ring. The quality of the fit 

is poor 

Table H1.4.4.4.2 Population analysis of the 1 142 and 2H1 forms of D ring from the 

RDC (HZ) C,H, C2H2 H 1 H2 H2143 wt% 

'H2 -2.39 -2.08 0.10 0.59 50% 

2H, 2.09 1.86 0.68 -0.29 500/0 

Expt. 1.1 -1.4 0.47 0.85 RMSD 0.96 
Theory -0.15 -0.11 0.39 0.15  

In the free molecular dynamics distinct dihedral angles were found for different 

conformations of B and D rings. Fig.IU.4.4.4.2 shows that almost the same conformational 

space is occupied by both forms of the B ring from RDC-restrained Ml). 
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Fig.1114.4.4.2 (D, 'P) dihedral angles across the glycosidic linkages of BA, CB and DC rings of the 

RDC-restrained MD structures. Red dots are in the 'C 4  form (5700 structures) of the B ring, while the 

green ones are in the 2S0  form (3200 structures). 
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The orientation of the alignment tensor can be represented by the Sanson-Flamsteed 

projection plot (Fig.111.4.4.43) showing the eigenvectors of the alignment tensor parameters 

S and S), which represent the directions of the principal axis in the molecular 

coordinate system. Using the minimal difference between the experimental and back-

calculated RDCs of the A and C rings a small set of structures was chosen to calculate the 

alignment tensor. These structures were divided into two groups depending on the 

conformation of B ring. Both of these tensors show large rhombicity. Their two largest 

components (S and S) differ by less than 10%. In the 'C 4  conformer the two largest 

components swapped occasionally as seen in Fig.III.4.4.4.3d circled in colors pink or blue. 

As shown in Fig.III.4.4.4.4 one of the two large axes is nearly parallel to the long 

tetrasaccharide axis. The other large component reflects the presence of bulky sulfate groups 

on two sides of the molecule. The average alignment tensor parameters in the 2 S0  forms (S, 

= -1.44e-05, S = 1.43e-04 and S,,, = 1.58e-04) are slightly larger than those of the 'C 4  forms 

(S = -0.70e-05, 1.36e-04 and = 1.44e-04). 
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Fig.III.4.4.4.3 Sanson-Flamsteed projection plots of the eigenvectors constituting the principal axis 

(a) best fitted structure with the B ring in the form of 2;  (b) best fitted structure with the B ring in 

the form of 'C 4 ; (
c) the largest components (S) for 7 structures with the B ring in the form of 2S0; (d) 

the largest components (S) for 21 structures with the B ring in the form of 'C. 
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Szz = 1.40e-04 

Sxx = -7.72e-06 

Syy = -1.32e-04 

Fig.III.4.4.4.4 Eigenvectors constituting the principal axes for the best fitted structure (a) in 

Fig.111.4.4.4.3 

III. 4.5 Conclusions and future directions 

The heparin-derived fully sulfated tetrasaccharide II was refined using RDCs. This 

refinement yielded structures that are compatible with 3Jcu coupling constants across the 

glycosidic linkages. They are also broadly compatible (less than 200  difference) with the CB 

and BA glycosidic dihedral angles of the heparin solution structure from [117]. As the 

refinement was performed using certain assumptions, it would be desirable to verify the 

conformations of glycosidic linkages by measuring the Jcc  coupling constants. The effect of 

different substituents (e.g. compound HI and IV) on the conformations of monosaccharide 

rings and the glycosidic linkages can be further studied. Any effects of the degree of 

polymerization on the orientation of the whole molecule through establishing the dihedral 

angles across the glycosidic linkages can be further studied using hexa- or even 

polysaccharides. 
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Chapter IV 

The protein-heparin interactions 

Heparan sulfate (HS) and heparin play important roles in a variety of biological functions. 

These include protein folding, activation of cell-surface receptors, participation in cell-cell 

recognition and immunological recognitions [2]. These processes are mediated by HS-

protein interactions. Therefore understanding of protein-heparin interactions at the molecular 

level is important for studying physiological and pathophysiological processes and the 

design of new therapeutics. Factor H, constituted of 20 complement control protein modules 

(CCPS), is responsible for the host recognition via controlling the alternative pathway of 

complement activation [118], which defends organisms against invaders. This regulation 

occurs via factor H binding to cell surfaces which contain polyanions. Factor H interacts 

with polyanions, such as HS and related oligosaccharides, through CCP modules 7, 13 and 

20 [119]. Structures of modules 7 and 19, 20 of fH were solved by Dr. A. Herbert in Prof. 

Barlow's group in Edinburgh. These were used to model the protein-GAG interaction. 

Docking of heparin-derived fully sulfated tetrasaccharide, II, to factor H modules provided 

initial identification of binding sites prior to experimental studies. 

IV. 1 Docking of heparin-derived fully sulfated tetrasaccharide to fH modules 

All dockings were performed using AUTODOCK 2.4 [120] (autodock tools or ADT). 

Autodock calculates the binding energy using grid maps, which show the potential energy of 

individual atoms or functional groups of the ligand as well as the electrostatic potentials of 

the protein. The configurations of the ligand on the surface of the macromolecule are 

explored and their binding energies are calculated. In this way, the ligand with a random 

initial conformation searches a defined region of the macromolecule. By adopting different 
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geometries through rotations around the flexible bonds numerous conformations at the 

binding sites are considered. 

Solution structures of heparin-derived filly sulfated tetrasaccharide II with different starting 

monosaccharide conformations, 'H 2-4C 1-c4-4c 1 , 2H 1 -4C -'C4-4C 1  and 2H 1 -4C -2 S0-4C 1 , were 

used as ligands for docking to fH modules. The above three conformations were chosen due 

to their presence in the free molecular dynamics calculation in explicit water. The NMR-

refined solution structures of fl-I--19, 20 and ffl-7 (both Y402 and H402 isoforms) of factor 

H were provided by Dr. Herbert. 

The ligand was first prepared by transferring the AMBER pdb format to the Sybyl Mo12 

format in order to keep the exact partial atomic charges for each atom before loading it into 

the ADT program. ADT automatically merged non-polar hydrogens to heavy atoms. The 

root fragment was set to be the six-member C ring since its conformation is identical in all 

considered structures. During the whole docking process, all monosaccharide rings were 

fixed at their starting conformations, while the ring substituents were defined as flexible 

(although they could be made rigid during the docking). Altogether 27 torsion angles were 

set to be active and could rotate freely. The rotatable parts included all of the substituents of 

the ring atoms, i.e. 5 sulfate groups, 2 carboxyl groups, all 3 glycosidic linkages, 2 C5-C6 

bonds and 2 C2-N bonds of the glucosamine rings, and 5 hydroxyl groups (Fig.IV. 1.1). 

Allowing a significant degree of freedom to the carbohydrate resulted in a variety of 

conformations of the bound sugar. Therefore, the docking results reflect the specific 

conformations of the individual monosaccharide rings. 

Fig.IV.I.1 Definition of the rigid (red) and rotatable (green) bonds of the tetrasaccharide II ligand 

UA(2S)-GIcNS(6S)-ldoA(2S)-GlcNS(6S) (D-A rings). 
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IV. 1.1 Docking of the tetrasaccharide II to ffl--19, 20 

fl-I--i 9, 20 was prepared by adding Koliman charges and solvation parameters automatically 

using ADT. A volume of (120, 120, 120) grid points with 0.7 A spacing was used. The 

protein was put in the center of a cube large enough to cover the whole surface of the 

protein. The tetrasaccharide ligand was placed randomly into the box. 

Two binding sites were found, which contained tetrasaccharides with both 'C 4  and 2S0  

conformations of the iduronic acid B ring. Fig.IV.1.1.1 shows the result of 250 docking 

calculations. 85% of the tetrasaccharides bound to the C-terminus of module 20 interacting 

mainly with residues Arg1206 and Arg1231 and 15% appeared to bind close to the linker 

region between the modules 19 and 20 interacting primarily with residues Lys] 186 and 

Lys] 188. These four amino acids interacted with the sulfate and carboxyl groups of the 

tetrasaccharides. Binding conformations with lowest docking energies representing typical 

binding modes are shown in Fig.IV. 1.1.2. 

(a) 
	

(b) 
/ 

Fig.IV.1.1.I Surface map of M-19, 20. (a) two views of surface representation [121], red = disease-

associated mutations where the substituted residue does not undergo chemical shift perturbations upon 

heparin-binding; purple = both chemical shift perturbation occurs and these residues have been linked 

to aHUS; blue = significant chemical shift perturbations, where substitutions of these residues have 

not so far been linked to aHUS; pink = amino acid residues for which no chemical shift perturbation 

information could be obtained. (b) Two binding sites of tetrasaccharide on fl+-19, 20 obtained by 

AUTODOCK. 
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(a) 	 (b) 	 (C) 	 •. 	(d) 

Fig.IV. 1.1.2 Docking of heparin-derived fully sulfated tetrasaccharide to fl-I— 19, 20. (a-c) different 

binding conformations of the tetrasaccharide at the main binding site at the top of module 20; (d) the 

second binding site close to the linker between modules 19 and 20. 

The binding site in module 20 was centered on Arg1206 and Arg1231 (Fig.IV.l.i.2a,b,c). 

This could be further extended to Arg1203 (Fig.W.1.L2b) or His 1212 (Fig.IV. 1. 1.2c). This 

suggests that if the ligand is long enough, the oligosaccharide should be able to cover a 

larger surface. In all of the three binding conformations at least three sulfate or carboxyl 

groups interacted with the basic residue and A-6S (sulfate group on carbon 6 of ring A) and 

C-NS (sulfamate on carbon 2 of ring C) were always actively interacting with Arg1206 or 

1231. At the binding site close to the linker C-NS, A-6S, B-2S and the two carboxyl groups 

(B-000 and D-000) interacted with Lys I 186 and Lys I 188, while A-NS interacted with 

Mgi 192 and D-2S with TypI 183 (Fig.IV.1.1.2d). These docking results are similar to those 

of Gordon et al., which concluded that at least four positively charged residues interact with 

the negatively charged sulfate and carboxyl groups of fl-I [122]. 

The docking results agreed well with the NMR chemical shift mapping of the bound fl-I---19, 

20 by Dr. Herbert [121]. These studies found that the binding sites contained residues 

ArgI 182, Lysi 186 and LysI 188 in the hypervariable loop, the surrounding basic residues of 

Lys1202, Arg1203 and Arg]215, and the C-terminal residues of Lys1230 and Arg1231. 

Their chemical shifts changed more than 0.025 ppm between the free and bound forms. The 

chemical shift changes of Tyr1205 and Arg1206 were 0.015 and 0.022 ppm, respectively, 

while unambiguous assignment of G1y1204 was not available. The docking results found two 

binding sites containing residues Arg1231 and (Lys1186, LysI 188) were found. However, 

some extra surrounding residues, G1y1204, Tyr1205 and Arg1206 other than Lys1202 and 
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ArgI 203, showed contacts with the ligand. This suggests that these residues should be 

involved in the binding. The two binding sites obtained from docking mainly cover the blue 

region (Fig.IV.1.1.l) but not the purple one, even though residue Trpl 184 does interact with 

the sulfate group. 

IV.1..2 Module 7 of protein factor H 

Two NMR structures of f1-1-7 were used for docking; the only difference was in the residue 

402, which was either tyrosine (fl-1-7Y) or histidine (fl-I--71 ­1). This isomerism has been 

recently linked with age-related macular degeneration (AMD), a leading cause of irreversible 

visual impairment in the elderly population of western countries [123]. People who are 

homozygous for an at-risk allele in the fl-I gene are 7 fold more likely to develop AMD, and 

heterozygous people are 2.6 times more susceptible [124]. The at-risk allele encodes a His 

rather than Tyr at position 402. Experimental evidence is emerging showing that the two 

forms differ in their binding to GAGs. Experimental studies of the bindings of both forms to 

GAGs are carried out in our lab. In this project we studied the binding using docking. 

The lowest energy and closest to mean structures were the same for fW-7Y. But for fl-1--7H 

they were different as shown in Fig. IV. 1.2.1. The differences were mostly confined to the N-

terminal region of the protein. It was therefore decided to use three structures for docking, 

one for fl-l-7Y and two for fl-1---7H. A volume of (100, 100, 100) grid points with 0.6 A 

spacing was used for the whole surface exploration of fH-7. Otherwise, identical docking 

procedures and starting tetrasaccharide conformations were used as for f+-19, 20. The 

modeled structures of complexes for all three proteins are shown in FigJV. 1.2.2. 

AM 

 

GLU30  

closest to mean structure 

 

FIgJV. 1.2.1 NMR-refined tH-714 [1251 with labeled residues in different geometries mainly on the 

N-terminus 

WE 



(b) 	 (c) (d) 

(a) 	4Th 	& 	 K446 

V414L 

f
T02 S411 434 

K405 

Fig.IV.1.2.2 Surfaces of fl-1--7s. (a) Two views [125] of surface representation of ffi7Y; the side-

chains of 10 residues that undergo the largest (combined) chemical shift perturbation are highlighted 

in pink or purple. Arg404 and Lys405 (in purple) exhibit large chemical shift perturbations. Tyr402 

(exhibits 11th biggest CSP) and Lys410 (important according to mutagenesis but exhibiting no 

significant chemical shift perturbation) are colored red; binding of the tetrasaccharide to (b) fl-I--7Y (c) 

fI-1--7H (lowest energy structure) (d) fl-l-7H (closest to mean structure) 

Different monosaccharide conformations gave similar binding results for fH—'7Y. Two 

binding sites were found with 50% of tetrasaccharides binding to each site. Fig.IV. 1.2.3 

shows the conformations of the tetrasaccharide in the binding sites. In the first binding site, 

Lys3 88 and Lys405 were the most active residues interacting with at least four negatively 

charged sulfate or carboxyl groups (Fig.IV. 1.2.3a, b, c) always including A-6S, D-000 and 

B-2S. The rest of the negatively charged groups occasionally interact with the protein. These 

included interactions with extra residues, e.g. Leu386, Arg387, Arg404 and Phe406. In the 

second binding site located at the C-terminal (Fig.IV.1.2.3), Arg441, Arg444 and Lys446 

were important for binding with the tetrasaccharide. 
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(a) 

, V * 
(b) 	 (C) 	 (d) 

r J 

Fig.IV.1.23 Docking of heparin-derived fully sulfated tetrasaccharide to fW-7Y. (a-c) different 

binding conformations of the tetrasaccharide at the main binding site around Arg388 and Lys405; (d) 

the second binding site close to the Arg444 

The results of the docking to fl-I-7H were partially different when compared to the results of 

the binding to fl-I--7Y. Firstly, the C-terminal binding site was less well defined as indicated 

by a long spread of tetrasaccharide structures in this region. This was the case for both the 

closest to mean and the lowest energy structures of ffl7H. Secondly, differences were seen 

between the closest to mean and the lowest energy structures in the main binding site in 

f+-7H. In the lowest energy structure, extra conformations were found (Fig.IV. 1.2.4 and 

Fig.IV. 1.2.5) characterized by the involvements of extra residues Tyr390 and Arg441 in the 

binding. These may be caused by slight differences in the protein surface due to the 

replacement of Tyr by His at residues 402. 

(a) 	 - 	- 	 (b) 

Fig.IV.1.2.4 Docking of heparin-derived fully sulfated telrasaccharide to the NMR-refined lowest 

energy structure of fl-1---7H. (a) tetrasaccharide with 1 H2  of the terminal unsaturated uronic acid nag; 

(b) tetrasaccharide with 2H 1  conformation, showing extra interaction with residue Arg441 
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Different conformations of the N-terminus in the closest to mean structure of fl-I-7H 

(Fig.IV.1.2.1) gave extra binding possibilities as shown in Fig.IV.1.2.5 in addition to the 

above binding conformations. This additional mode of binding was mainly associated with 

the Glu382 residue. Their residues provide a binding surface and interact with the negatively 

charged sulfate groups together with Lys388 and Lys405. 

(a) 	 Id 	 (b) 

'S. 

Fig.IV.1.2.5 Docking of heparin-derived fully sulfated tetrasaccharide to the NMR-refmed closest to 

mean structure of fl-l---7H. These extra binding conformations are associated with the different 

geometry of G)u382 as shown in FigJV.L2.I 

Our docking results indicate that at least three positively charged amino acids of either f}l-7 

or fl-I--19, 20 are essential for the binding with the tetrasaccharide. Changes of the protein 

conformation will affect the binding mode as was seen in fl-1---7H structures differing in the 

orientation of the N-terminus. In accord with the observation of others (B. Mulloy, personal 

communication), the results of AUTODOCK simulations do not give an accurate picture of 

the conformation of the bound carbohydrate. They can only locate potential binding sites. As 

anticipated, the tetrasaccharides adopted different conformations; this was the case for both 

binding sites. They showed changing geometries of the glycosidic linkages and the 

assignment of rotatable sulfate groups, but also different directionality of the binding. This 

study also showed that allowing too much freedom in carbohydrate conformation will 

produce multiple binding modes. Perhaps freezing the geometry of the glycosidic linkages at 

values found in crystal structures of the GAG-protein complex will provide more accurate 

identification of crucial binding interactions. 
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IV. 2 Spin-labeled heparin-derived fully sulfated disaccharide 

Structure determination of the protein-GAG complex is a challenging task. The interactions 

are often weak and the bulky sulfate groups keep the GAG relatively far from the protein 

surface. Because of this, the intermolecular NOEs between the protein and GAG protons are 

difficult to detect. In the lack of such NOEs, the three dimensional coordinates of the 

protein-GAG complex cannot be determined by standard NMR methods. Chemical shift 

mapping, the main experimental technique used for locating the binding site, or theoretical 

docking studies can characterize the binding sites only qualitatively. For example, the 

directionality of the binding as shown in Fig.IV.2.1a, b is unknown. If a paramagnetic tag 

can be attached to the ligand then its exact binding position can be determined (Fig.IV.2.1c, 

d). The tag could be a spin-labeled molecule, which causes enhanced relaxation of nuclei in 

its vicinity. In a complex, effects of a spin-label attached to a ligand can be felt by the 

protein protons, e.g. NH protons. Ideally, two tags attached to the reducing and nonreducing 

ends of the molecule should be investigated in two separate experiments, triangulating the 

ligand accurately on the protein surface. 

(a) (C) 3 

(d) 

(bhITII7;;****TTTJ  C7  
Fig.IV.2.1 Protein-oligosaccharide binding using paramagnetic tags. Asterisks represent the active 

residues. (a) and (b) show two possible binding modes. (c) and (d) show the NH protons (0) affected 

by the paramagnetic tag. 

As an initial step in the development of this methodology, a 4-amino-TEMPO labeled 

disaccharide (compound V, Fig.IV.2.2) was prepared [651 in collaboration with Alison 

Hulme (Edinburgh). Below the results of an initial study of a spin-labeled disaccharide are 

presented. 
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Fig.IV.2.2 Preparation of spin-labeled disaccharide using 4-amino-TEMPO 

IV. 2.1 Primary structure determination of compound V by MS and NMR 

Mass spectra of compound V were obtained using a ZMD mass spectrometer. Experimental 

masses for the major species observed are listed in Table IV.2. 1.1. 

Table IV.2.1.1 Major neaks observed in MS hf the min-laheled disaccharide V 
Observed (mlz) Calculated (mlz) Assigned species 

773.8 773.8 [C21H33N3019S3Na2] 
729.2 729.8 [C21H35N3019S3] 
375.2 375.4 [C21H33N3019S3Na2 ] 
364.2 364.4 [C21H34N3019S3 2 ] 
242.8 242.6 [C21H33N3019S3 3 ] 

An NMR sample was prepared by dissolving 200 tg of compound V in 500 tl D 20. The 600 

MHz 'H NMR spectrum of compound V is shown in Fig.IV.2.1.1 and the resonance 

assignment is summarized in Table IV.2. 1.2. 

2A3 

A4 	 G4 

1 H 6.0 	5.5 	5.0 	4.5 	4.0 	3.5ppm 

Fig.IV.2.1.1 600 MHz 'H spectrum of compound V (4-amino-TEMP0-AUA2S-GIcNS6S). A 

significant broadening of resonances indicates the presence of the spin-label. 
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Table IV.2.1.2 (a) 'H Chemical shifts of compound V. Literature [89c] values of 
disaccharide are shown in bold and the differences are shown in parentheses 

H2 H3 H6 H6' 
5.41 3.27 3.74 4.21 4.33 

G1cNS6S 5.45 3.28 3.76 =3.834.16 

 

4.21 4.35 
(0.04) (0.01) (0.02)  (0.00) (0.02) 

5.56 4.58 4.37 6.12 
AUA2S 5.50 4.57 4.34 5.97 - - - 

(-0.06) (-0.01) (-0.03) (-0.15)  

The MS and NMR data confirm the primary structure of compound V. The 1 H chemical 

shifts of compound V are practically identical to those of the free disaccharide with the 

exception of LUA2S proton H4, whose chemical shift is affected by the TEMPO 

substitution. 'H signals of compound V are considerably broadened by the effects of the 

radical. The non-selective 'H 1, relaxation times of the compound were measured and the 

results are listed in Table IV.2.1.3. 

Tihle 1V21.3 The non-selective 114  T1 relaxation times of comnound V in ms. 
H 1  H2 H3 114  H5 H6 116 

G1cNS6S 84 27 42 32 59 77 84 
AUA2S 43 140 126 35 - - - 

In order to interpret these results, the structure of compound V was modeled using AMBER. 

IV. 2.2 Molecular modeling 

The model of compound V was built within XLEAP by adding 1 -oxyl-4-carboxamido-

2,2,6,6-tetra-methyl-piperidine (4-amino-TEMPO) to the carboxyl group of the uronic acid 

of the previously refined structure of the fully sulfated heparin-derived disaccharide (I). A 

representative modeled structure of compound V is shown in Fig.IV.2.2. 1. Dihedral angles, 

(1, P), across the glycosidic linkage of compound V are compared with those observed for 

the disaccharide fragment in the context of a tetrasaccharide in Table IV.2.2. 1. 

Table IV.2.2.1 Comparison of the dihedral angles across the glycosidic linkage of 
compound V and the disaccharide fragment of the tetrasaccharide II 

D Ring A Ring 1) (degree) iji (degree) 

Compound V 211, "C, 51.0 4.8 

X-ray [86] 
'112 4c, 42.3 18.3 tetrasaccharide  

Solution [85] 
112 "C, 45.7 13.2  tetrasaccharide 
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Electron-proton distances between the spin-label and protons of the disaccharide obtained 

from the modeled structure are listed in Table IV.2.2.2. The closer the proton of the 

disaccharide is to the radical the shorter will be its T 1  relaxation time. It is expected that 

similar effects will be observed for protein protons if they are part of the binding site in the 

GAG-protein complex, which will provide a better decision of the complex than chemical 

shift mapping. 

Table IV2.2.2 Electron-proton distances between the 4-ammo-TEMPO and protons 
,c+l- 	 A 

1-1 H2 H3 114 115 H6 116' 

G1cNS6S 8.1 6.3 8.4 7.7 10.1 11.11 11.14 

AUA2S 9.3 10.2 10.8 9.3 - - - 

The modeled structure shows a good qualitative agreement between the proton-electron 

distances and the measured relaxation times. Two CH protons with the fastest relaxation 

times (1-12' and H4' of the glucosamine ring) show the shortest distances, while the most 

distant protons (H2 and H3 of the uronic acid ring) relax most slowly (Fig.IV.2.2.1). 

'I 
It 
I' 
I 	I 

TEMPO 

 6.3 A (27 ms) 

I 	I 

	

Ak126m01(' 	

A 

10 

(D ring) 1) 	
GIcNS6S (A ring) 

Fig.IV.2.2.1 The lowest energy structure of compound V (4-amino-TEMPO-L\UA2S-GIcNS6S, 2H 1 -

4C 1).  The dihedral angles across the glycosidic linkage are within 100  of those observed for this 

disaccharide fragment in solution or X-ray structures of a tetrasaccharide. 
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As the next step, a restrained molecular dynamics study using the relaxation data will be 

performed so that such a model of compound V could be used to study the complex. Our 

collaborators are currently working on the preparation of a tetra- or hexasaccharide labeled 

separately at both nonreducing and reducing ends. Once the labeled oligosaccharides are 

available, the protein-heparin complex will be studied. We will start with protein NK1 (part 

of hepatocyte growth factor), which binds GAG strongly (KD 10 -9  M) and later extend the 

methodology to more weakly binding proteins such as factor H (KD 1 
-6  M). 

In principle, the radical-proton distances can also be implied from the relaxation 

measurements of carbohydrate protons in the complex and thus provide the bound 

conformation of carbohydrates. This is, however, not straightforward, and would require the 

use of double labeled protein and the X-filtered technique. Further complications would 

come from averaging between the free and bound forms of the ligand. Therefore, at present 

the main interest lies in using the labeled GAGs to characterize the binding site. 

- 	 - 	- 	.1.72 	- 



Conclusion 
New methodologies for the conformational study of free and bound GAGs in the gas phase 

and solution were developed and tested in this project. 

Gas phase conformations of heparin-derived oligosaccharides were obtained through 

interpretation of the IMMS experimental data using molecular modelling. Very good 

agreement was shown between the experimental and theoretical structures. The more 

compact conformations of the heparin oligosaccharides in the gas phase were attributed to 

the effects of sodium cations interacting with the negatively charged sulfate and carboxyl 

groups in the oligosaccharides. Formation of higher oligomers of the disaccharide, observed 

in the experiment, was confirmed by the modelling. Adiabatic maps of dihedral angles vs. 

potential energy of disaccharide fragments of the tetrasaccharides were calculated in the 

absence of the sodium cations. These results confirmed the reliability of the parameterized 

AMBER force field as the compact structures were not observed. Further studies using 

different ionization conditions are planned, in order to generate less sodiated species. 

Two new f-modulated COSY experiments, HOHAHA-COSY and CSSF-COSY, were 

developed for the measurement of scalar and dipolar 'H- 1 H coupling constants. These 

methods allow accurate and precise measurement of coupling constants from spectra with 

severely overlapping resonances. Good performance of these methods was obtained using 

model compounds. The developed methods were used to measure dipolar coupling constants 

of heparin-derived fully sulfated tetrasaccharide. 

A series of INADEQUATE experiments (DJM-INEPT-INADEUATE, DJM-REVINEPT-

INADEQUATE, JM-REVINEPT-INADEQUATE, .JM-DEPT-INADEQUATE, 

REV1NEPT-INADEQUATE, ' 3C-detected INADEQUATE and DNP-INADEQUATE) was 

developed for the measurement of long-range 13 C- 13C coupling constants in samples with 

natural abundance of 13 C. These experiments were developed primarily for the measurement 

of 13 C- 13C coupling constants across the glycosidic linkage of carbohydrates. Current 

sensitivity of NIMR spectrometers requires ca. 20 mg of a disaccharide for reliable 

determination of small 'Jcc  coupling constants. For samples where the quantity of material is 

not a limiting factor, ' 3C-detected INADEQUATE is particularly suited for the measurement 

of 13 C- 13C residual dipolar coupling constants. DNP-INADEQUATE was developed for one 

scan acquisition of 13 C- 13 C DQ filtered spectra. 
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Solution conformation of heparin-derived fully sulfated tetrasaccharide was studied using 

NMR spectroscopy. The conformations of the two flexible monosaccharide rings were 

investigated by 'H-'H scalar coupling constants and the population of each conformer 

contributing to the dynamic equilibrium was calculated. RDC-restrained molecular dynamics 

was carried out to study the conformations of the glycosidic linkages of the tetrasaccharide 

in solution. Using an assumption of a single alignment tensor, the analysis yielded a subset 

of structures seen in unrestrained MD. Insufficient material prevented us from measuring the 

3Jcc  coupling constants across the glycosidic linkages. These experiments would be very 

valuable as they would validate or not the assumption we made during the interpretation of 

RDCs. 

The study of the interaction between the heparin-derived fully sulfated tetrasaccharide and 

factor H modules, fH1 9, 20 and fl-1---'7, using docking identified possible binding sites on 

the protein surface. Some residues identified by the modelling were also implicated in the 

binding based on the chemical shift perturbation studies (Dr. A. Herbert). However, the 

binding conformations of the tetrasaccharide could not be determined from the docking. 

Various conformations and orientations of the oligosaccharide were observed. The spin-

labelled heparin-derived fully sulfated disaccharide showed significant broadening of 

spectral lines caused by the spin label (4-amino-TEMPO). The conformation of the 4-amino-

TEMPO-disaccharide generated with free molecular modelling was compatible with the 

measured T 1  relaxation times. Further studies of protein-GAG interactions using larger spin-

labelled oligosaccharide are planned. 
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Appendix I 

Docking Parameters 

Grid maps calculation: 

receptor fh7H40.pdbqs # macromolecule 
gridfld th7H40.maps.fld # grid 

_ 
data _file 

npts 100 100 100 # num.grid points in xyz 
spacing 0.6 # spacing(A) 
gridcenter 0.299 0.1 0.226 # xyz-coordinates or auto 
types CNOSH # atom type names 
smooth 0.5 # store minimum energy w/in rad(A) 

map fh7H40.C.map 	 # atom-specific affinity map 
nbp_r_eps 4.00 0.0222750 12 6 # C-C lj 
nbp_r_eps 3.75 0.0230026 12 6 # C-N lj 
nbp_r_eps 3.60 0.0257202 12 6 # C-0 lj 
nbp_r_eps 4.00 0.0257202 12 6 # C-S lj 
nbp_r_eps 3.00 0.008 1378 12 6 # C-H lj 
nbp_reps 3.00 0.008 1378 12 6 # C-H lj 
nbp_r_eps 3.00 0.008 1378 12 6 # C-H lj 
sol_par 12.77 0.6844 # C atomic fragmental volume, solvation parameters 
constant 0.000 # C grid map constant energy 

map th7H40.N.map 	 # atom-specific affinity map 
nbp_r_eps 3.75 0.0230026 12 6 # N-C lj 
nbp_r_eps 3.50 0.0237600 12 6 # N-N lj 
nbp_r_eps 3.35 0.0265667 12 6 # N-0 lj 
nbp_r_eps 3.75 0.0265667 12 6 #N-Slj 
nbp_r_eps 1.90 0.3280000 12 10 #N-Hhb 
nbp_r_eps 1.90 0.3280000 12 10 # N-H hb 
nbp_r_eps 1.90 0.3280000 12 10 #N-Hhb 
sol_par 0.00 0.0000 	# N atomic fragmental volume, solvation parameters 
constant 0.000 	# N grid map constant energy 

map fh7H40.0.map 	 # atom-specific affinity map 
nbp_r_eps 3.60 0.0257202 12 6 # 0-C lj 
nbp_r_eps 3.35 0.0265667 12 6 # 0-N lj 
nbp_r_eps 3.20 0.0297000 12 6 # 0-0 lj 
nbp_r_eps 3.60 0.0297000 12 6 # 0-S lj 
nbp_r_eps 1.90 0.3280000 12 10 # 0-H hb 
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nbp_r_eps 1.90 0.3280000 12 10 #0-Hhb 
nbp_r_eps 1.90 0.3280000 12 10 ft 0-H hb 
sol_par 0.00 0.0000 # 0 atomic fragmental volume, solvation parameters 
constant 0.236 # 0 grid map constant energy 

map fh7H40.S.map 	 # atom-specific affinity map 
nbp_r_eps 4.00 0.0257202 12 6 ft S-C lj 
nbp_r_eps 3.75 0.0265667 12 6 # S-N lj 
nbp_r_eps 3.60 0.0297000 12 6 # S-0 lj 
nbp_r_eps 4.00 0.0297000 12 6 ft S-S lj 
nbp_r_eps 2.50 0.0656000 12 10 # S-H hb 
nbp_r_eps 2.50 0.0656000 12 10 # S-H hb 
nbp_r_eps 2.50 0.0656000 12 10 # S-H hb 
sol_par 0.000 0.000 	#S atomic fragmental volume, solvation parameters 
constant 0.000 	#S grid map constant energy 

map ffi7H40.H.map 	# atom-specific affinity map 
nbp_r_eps 3.00 0.008 1378 12 6 # H-C lj 
nbp_r_eps 1.90 0.3280000 12 10 #H-Nhb 
nbp_r_eps 1.90 0.3280000 12 10 ft H-0 hb 
nbp_r_eps 2.50 0.0656000 12 10 # H-S hb 
nbp_r_eps 2.00 0.0029700 12 6 ft H-H lj 
nbp_r_eps 2.00 0.0029700 12 6 # H-H lj 
nbp_r_eps 2.00 0.0029700 12 6 ft H-H lj 
sol_par 0.00 0.0000 # H atomic fragmental volume, solvation parameters 
constant 0.118 # H grid map constant energy 

elecmap fh7H40.e.map 	# electrostatic potential map 
dielectric 1.0000 	ft <0, distance-dep.diel;>0, constant 
ftdielectric -0.1146 	# <0, distance-dep.diel;>0, constant 
# 

Docking: 

seed pid time ft seeds for random generator 
types CNOSH ft atom type names 
fid ffi7H40.maps.fld ft grid_data_file 
map fh7H40.C.map # atom-specific affinity map 
map fh7H40.N.map ft atom-specific affinity map 
map fl-i7H40.0.map # atom-specific affinity map 
map th7H40.S.map # atom-specific affinity map 
map fh7H40.H.map # atom-specific affinity map 
map fh7H40.e.map # electrostatics map 
move 161.pdbq ft small molecule 
about 19.7909 14.3745 17.4982 	ft small molecule center 
tranO random ft initial coordinates/A or random 
quatO random ft initial quatemion 
ndihe 27 # number of active torsions 
diheO random # initial dihedrals (relative) or random 
tstep 2.0 # translation step/A 
qstep 50.0 # quaternion step/deg 
dstep 50.0 # torsion step/deg 
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torsdof 22 0.3 113 	# torsional degrees of freedom and coefficients 

intnbp_r_eps 4.00 0.0222750 12 6 # C-C lj 
intnbp_r_eps 3.75 0.0230026 12 6 # C-N lj 
intnbp_r_eps 3.60 0.0257202 12 6 # C-0 lj 
intnbp_r_eps 4.00 0.0257202 12 6 # C-S lj 
intnbp_r_eps 3.00 0.0081378 12 6 #C-Hlj 
intnbp_r_eps 3.50 0.023 7600 12 6 # N-N lj 
intnbp_r_eps 3.35 0.0265667 12 6 # N-0 lj 
intnbp_r_eps 3.75 0.0265667 12 6 # N-S lj 
intnbp_r_eps 2.75 0.0084051 126 #N-H lj 
intnbp_r_eps 3.20 0.0297000 12 6 # 0-0 lj 
intnbp_r_eps 3.60 0.0297000 12 6 # 0-S lj 
intnbp_r_eps 2.600.0093852 126 #0-Hlj 
intnbp_r_eps 4.00 0.0297000 12 6 # S-S lj 
intnbp_r_eps 3.00 0.0093852 12 6 # S-H lj 
intnbp_r_eps 2.00 0.0029700 12 6 # H-H lj 

outlev 1 # diagnostic output level 
rmstol 0.5 # cluster_tolerance/A 
extnrg 1000.0 # external grid energy 
eOmax 0.0 10000 	 # max initial energy; max number of retriesga_pop_size 50 

# number of individuals in population 
ga_num_evals 250000 # maximum number of energy evaluations 
ga_num_generations 27000 # maximum number of generations 
ga_elitism 1 # number of top individuals to survive to next generation 
ga_mutation_rate 0.02 # rate of gene mutation 
ga_crossover_rate 0.8 # rate of crossover 
ga_window_size 10 # 
ga_cauchy_aipha 0.0 # Alpha parameter of Cauchy distribution 
ga_cauchy_beta 1.0 # Beta parameter Cauchy distribution 
set_ga # set the above parameters for GA or LGA 
do_global_only 250 # do this many GA runs 
analysis # perform a ranked cluster analysis 

177 



Appendix II 

Parameters of Sulfate/Sulfamate groups added to AMBER7 

MASS 

SO 32.06 '0.00 
	

Sulfate/Sulfamate group 

BOND 

CT-OS 320 1.41 
CT-NT 367 1.471 
SO-OS 230 1.62 
SO-02 525 1.44 
SO-NT 230 1.685 
OH-SO 230.0 1.610 JCC, 7, (1986), 230; NA Phosphate 

ANGL 

SO-NT-CT 100 110.4 
SO-NT-H2 45 109.5 
SO-OS-CT 100 120.5 
H2-NT-CT 35 109.5 
NT-CT-CT 80 109.7 
NT-SO-02 100 109.6 
02-SO-02 140 119.9 
HC-CT-NT 35 109.5 
OS-SO-02 100 108.23 
OS-SO-OS 45 102.6 
02-SO-OH 45.0 108.23 
NT-SO-OH 100 109.6 
HO-OH-SO 45.0 108.50 
SO-NT-H 45 109.5 
NT-CT-AC 80 109.7 
NT-CT-EC 80 109.7 
OH-SO-OS 45.0 102.60 
HO-OH-SO 45.0 108.50 
CM-OS-AC 60.0 117.00 
CM-OS-EC 60.0 117.00 
C -CM-OS 80.0 125.00 
CM-CT-OH 50.0 109.50 
CM-C -OH 80.0 125.30 
CM-C -02 80.0 125.30 

Parm99 Phosphate 
Appr. NT-SO-02 
Parm99 Phosphate 

Appr. SO-NT-H2 
Appr. NT-CT-CT 
Appr. NT-CT-CT 
Parm99 Phosphate 
Parm99 Phosphate 
Junmei et al, 1999 Appr. CM-OS-CT 
Junmei et al, 1999 Appr. CM-OS-CT 
Junmei et a!, 1999 Appr. CM-CM-OS 
Junmei et al, 1999 Appr. CM-CT-OS 
Appr. CM-C -O 
Appr. CM-C -O 
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X -CT-NT-X 3 0.00 0.00 6 
HC-CT-NT-SO 3 1.05 0.00 3 
CT-CT-NT-SO 3 1.05 0.00 3 
CT-CT-NT-SO 1 -6.4 0.00 3 
CT-CT-OS-SO 1 -1.16 0.00 1 
CT-CT-OS-SO 2 0.25 0.00 1 
CT-CT-OS-SO 3 -0.15 0.00 1 
CT-CT-OS-SO 4 -0.30 0.00 1 
HC-CT-OS-SO 3 0.15 0.00 1 
• -CT-OS-X 3 1.15 0.00 3 
• -OS-SO-X 3 0.75 0.00 3 
• -NT-SO-X 3 0.75 0.00 6 
CT-NT-SO-02 3 1.60 0.00 6 
X -OH-SO-X 3 0.75 0.00 3. 

IMPR 

HBON 

NONB 

JCC, 7, (1986), 230 Phosphate 
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Appendix III 

Pdb files of heparin-derived oligosaccharides with partial 

charges 

Disaccharide I 

ATOM 1 01 DAP 1 2.287 	1.412 	0.719 -0.6260 1.6612 
ATOM 2 Si DAP 1 1.973 	1.307 -0.711 	1.0710 2.0000 
ATOM 3 02 DAP 1 2.771 	1.913 -1.725 -0.6260 1.6612 
ATOM 4 03 DAP 1 0.500 	1.864 -0.924-0.6260 1.7210 
ATOM 5 04 DAP 1 1.889 -0.285 -1.141 -0.3950 1.6837 
ATOM 6 Cl DAP 1 1.569 -0.783 -2.414 0.0290 1.9080 
ATOM 7 Hi DAP 1 1.801 -0.075 -3.210 0.0840 1.3870 
ATOM 8 H2 DAP 1 0.492 -0.942 -2.454 0.0840 1.3870 
ATOM 9 C2 DAP 1 2.420 -2.080 -2.788 0.1200 1.9080 
ATOM 10 H3 DAP 1 2.199 -2.383 -3.811 0.0690 1.3870 
ATOM 11 05 DAP 1 3.822 -1.793 -2.655 -0.2960 1.6837 
ATOM 12 C3 DAP 1 4.716 -2.915 -2.726 0.0250 1.9080 
ATOM 13 H4 DAP 1 5.738 -2.569 -2.569 0.1750 1.2870 
ATOM 14 06 DAP 1 4.613 -3.470 -4.011 -0.6040 1.7210 
ATOM 15 H5 DAP 1 5.005 -4.345 -3.963 0.4350 0.0000 
ATOM 16 C4 DAP 1 4.411 	-3.948 -1.631 	0.0950 1.9080 
ATOM 17 H6 DAP 1 4.432 -3.305 -0.751 0.1140 1.3870 
ATOM 18 Ni DAP 1 5.411 	-5.084 -1.319-0.6640 1.8240 
ATOM 19 H7 DAP 1 4.809 -5.853 -1.062 0.3570 0.6000 
ATOM 20 S2 DAP 1 6.353 -5.705 -2.473 	1.0460 2.0000 
ATOM 21 07 DAP 1 6.689 -7.287 -2.182 -0.6330 1.7210 
ATOM 22 08 DAP 1 5.586 -5.729 -3.668 -0.6330 1.6612 
ATOM 23 09 DAP 1 7.662 -5.124 -2.532 -0.6330 1.6612 
ATOM 24 CS DAP 1 2.944 -4.436 -1.796 0.2170 1.9080 
ATOM 25 H8 DAP 1 2.962 -4.996 -2.731 0.1100 1.3870 
ATOM 26 010 DAP 1 2.678 -5.261 -0.665 -0.6760 1.7210 
ATOM 27 H9 DAP 1 1.728 -5.397 -0.634 0.4400 0.0000 
ATOM 28 C6 DAP 1 1.943 -3.301 -1.900 -0.0020 1.9080 
ATOM 29 H10 DAP 1 1.770 -2.945 -0.884 0.1360 1.3870 
ATOM 30 011 DAP 1 0.648 -3.859 -2.386-0.3560 1.8310 
ATOM 31 C7 DAP 1 -0.456 -3.971 	-1.511 	0.1450 1.9080 
ATOM 32 HI  DAP 1 -0.527 -3.091 -0.872 0.1480 1.2870 
ATOM 33 012 DAP 1 -0.352 -5.089 -0.602 -0.2880 1.6837 
ATOM 34 C8 DAP 1 -0.771 -6.259 -0.790 0.0900 1.9080 
ATOM 35 C9 DAP 1 -0.618 -7.326 	0.184 0.8380 1.9080 
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ATOM 36 013 DAP 1 0.122 -7.193 	1.195-0.8020 1.6612 
ATOM 37 014 DAP 1 -1.283 -8.520 	0.080-0.8020 1.7210 
ATOM 38 CIO DAP 1 -1.536 -6.543 -1.908 -0.4520 1.9080 
ATOM 39 H12 DAP 1 -1.857 -7.568 -2.020 0.1490 1.4590 
ATOM 40 Cli DAP 1 -1.922 -5.502 -2.929 0.3520 1.9080 
ATOM 41 H13 DAP 1 -2.971 -5.609 -3.206 0.0910 1.3870 
ATOM 42 015 DAP 1 -1.123 -5.815 -3.998-0.7110 1.7210 
ATOM 43 H14 DAP 1 -0.246 -5.872 -3.611 0.3940 0.0000 
ATOM 44 C12 DAP 1 -1.766 -4.029 -2.378 0.1320 1.9080 
ATOM 45 HiS DAP 1 -1.563 -3.366 -3.220 0.0810 1.3870 
ATOM 46 016 DAP 1 -2.910 -3.488 -1.709 -0.4220 1.6837 
ATOM 47 S3 DAP 1 -4.275 -3.008 -2.450 1.1410 2.0000 
ATOM 48 018 DAP 1 -5.080 -4.337 -2.743 -0.6410 1.7210 
ATOM 49 019 DAP 1 -3.920 -2.471 -3.752 -0.6410 1.6612 
ATOM 50 017 DAP 1 -5.094 -2.191 -1.614-0.6410 1.6612 

Tetrasaccharide II 

ATOM 1 06 TAP 1 13.482 10.732 20.442 -0.6600 1.6612 
ATOM 2 S2 TAP 1 13.925 11.479 19.247 1.1300 2.0000 
ATOM 3 07 TAP 1 13.100 	11.604 	18.083 -0.6600 	1.6612 
ATOM 4 08 TAP 1 14.046 13.073 	19.610 -0.6600 1.7210 
ATOM 5 05 TAP 1 15.437 	11.070 18.774-0.4140 1.6837 
ATOM 6 C4 TAP 1 15.755 9.731 	18.257 0.0770 1.9080 
ATOM 7 H2 TAP 1 16.768 9.526 18.605 0.0940 1.3870 
ATOM 8 H3 TAP 1 15.021 9.026 18.647 0.0940 1.3870 
ATOM 9 C3 TAP 1 15.825 9.589 16.730 0.0370 1.9080 
ATOM 10 H4 TAP 1 16.491 8.749 16.530 0.1640 1.3870 
ATOM 11 04 TAP 1 14.532 9.434 16.132 -0.3580 1.6837 
ATOM 12 C2 TAP 1 14.400 9.112 14.784 0.0650 1.9080 
ATOM 13 H6 TAP 1 13.341 9.119 14.526 0.2070 1.2870 
ATOM 14 Cl TAP 1 15.048 10.339 14.093 0.1560 1.9080 
ATOM 15 H7 TAP 1 14.476 11.240 14.315 0.1440 1.3870 
ATOM 16 CS TAP 1 16.495 10.676 14.526 0.0370 1.9080 
ATOM 17 H9 TAP 1 17.127 9.824 14.279 0.1070 1.3870 
ATOM 18 010 TAP 1 16.859 11.861 	13.880-0.6020 1.7210 
ATOM 19 H8 TAP 1 17.425 11.675 	13.128 0.4030 0.0000 
ATOM 20 Ni TAP 1 14.823 10.060 12.645 -0.7110 1.8240 
ATOM 21 Hi TAP 1 15.597 9.554 12.237 0.3780 0.6000 
ATOM 22 Si TAP 1 14.635 11.362 11.721 	1.0700 2.0000 
ATOM 23 01 TAP 1 14.101 12.485 12.406-0.6600 1.6612 
ATOM 24 02 TAP 1 13.603 11.072 10.523 -0.6600 1.7210 
ATOM 25 03 TAP 1 15.869 11.668 	11.103 -0.6600 	1.6612 
ATOM 26 09 TAP 1 15.015 7.936 14.413-0.5860 1.7210 
ATOM 27 H5 TAP 1 15.169 7.972 13.466 0.3920 0.0000 
ATOM 28 C6 TAP 1 16.561 10.793 	16.073 0.0220 1.9080 
ATOM 29 H1OTAP 1 16.085 11.743 	16.316 0.1260 	1.3870 
ATOM 30 011 TAP 1 17.940 10.720 16.479-0.3450 1.8310 
ATOM 31 C7 TAP 1 18.313 11.890 17.261 0.1480 1.9080 
ATOM 32H12 TAP 1 17.539 12.143 	17.985 0.1840 1.2870 
ATOM 33 012 TAP 1 18.398 13.133 	16.503 -0.3790 1.6837 
ATOM 34 C8 TAP 1 19.436 13.120 15.473 0.0380 1.9080 
ATOM 35 HI  TAP 1 19.256 12.285 14.796 0.0760 1.3870 
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ATOM 36 C9 TAP 1 19.330 14.394 14.609 0.8320 1.9080 
ATOM 37 013 TAP 1 18.694 15.443 14.811-0.7990 1.6612 
ATOM 38 014 TAP 1 19.940 14.301 13.372-0.7990 1.7210 
ATOM 39 CIO TAP 1 19.703 11.681 17.933 0.0470 1.9080 
ATOM 40 015 TAP 1 19.825 12.675 18.953 -0.3780 1.6837 
ATOM 41 S3 TAP 1 19.413 	12.315 20.445 1.0860 2.0000 
ATOM 42 016 TAP 1 20.283 11.249 20.890-0.6370 1.6612 
ATOM 43 017 TAP 1 18.001 12.109 20.501-0.6370 1.6612 
ATOM 44 018 TAP 1 19.754 13.559 21.324-0.6370 1.7210 
ATOM 45 H13 TAP 1 19.680 10.699 18.404 0.1450 1.3870 
ATOM 46 C11TAP 1 20.886 11.643 16.919 0.0440 1.9080 
ATOM 47 019 TAP I 20.816 10.511 15.981-0.5940 1.7210 
ATOM 48 H14 TAP 1 19.979 10.542 15.513 0.4140 0.0000 
ATOM 49 HiS TAP 1 21.815 11.532 17.478 0.1750 1.3870 
ATOM 50 C12 TAP 1 20.909 12.953 16.043 0.0080 1.9080 
ATOM 51 H16 TAP 1 21.611 12.863 15.214 0.0830 1.3870 
ATOM 52 020 TAP 1 21.270 14.109 16.935-0.2380 1.8310 
ATOM 53 C13 TAP 1 22.603 14.516 17.016-0.0250 1.9080 
ATOM 54 H17 TAP 1 23.234 13.765 16.540 0.1480 1.2870 
ATOM 55 025 TAP 1 22.775 15.676 16.264 -0.2480 1.6837 
ATOM 56 C16TAP 1 .22.297 16.915 16.888-0.1010 1.9080 
ATOM 57 H24 TAP 1 21.217 16.788 16.953 0.1400 1.3870 
ATOM 58 C17 TAP 1 22.548 18.038 15.822 -0.0330 1.9080 
ATOM 59 H22 TAP 1 22.119 17.670 14.891 0.1220 1.3870 
ATOM 60 H23 TAP 1 21.919 18.901 16.041 0.1220 1.3870 
ATOM 61 026 TAP 1 23.986 18.480 15.750 -0.3600 1.6837 
ATOM 62 S5 TAP 1 25.068 17.433 15.361 	1.1710 2.0000 
ATOM 63 027 TAP 1 26.449 18.120 15.029 -0.6640 1.7210 
ATOM 64 028 TAP 1 25.452 16.714 16.524 -0.6640 1.6612 
ATOM 65 029 TAP 1 24.807 16.736 14.138 -0.6640 1.6612 
ATOM 66 C14 TAP 1 23.082 14.677 18.530 0.1110 1.9080 
ATOM 67 H18 TAP 1 24.166 14.685 18.646 0.2090 1.3870 
ATOM 68 N2 TAP 1 22.728 13.412 19.244 -0.5960 1.8240 
ATOM 69 H21 TAP 1 22.743 13.592 20.237 0.3580 0.6000 
ATOM 70 S4 TAP 1 23.949 12.245 19.151 	1.0630 2.0000 
ATOM 71 022 TAP 1 24.701 12.420 20.318 -0.6610 1.6612 
ATOM 72 023 TAP 1 23.480 10.760 18.986 -0.6610 1.7210 
ATOM 73 024 TAP 1 24.656 12.431 17.910 -0.6610 1.6612 
ATOM 74 C15 TAP 1 22.540 15.917 19.169 0.1530 1.9080 
ATOM 75 H19 TAP 1 21.461 15.811 19.280 0.0970 1.3870 
ATOM 76 021 TAP 1 23.146 16.148 20.401 -0.6280 1.7210 
ATOM 77 H20 TAP 1 2.405 16.285 20.996 0.4280 0.0000 
ATOM 78 C18 TAP 1 22.815 17.158 18.288 -0.0850 1.9080 
ATOM 79 H25 TAP 1 23.886 17.363 18.282 0.1480 1.3870 
ATOM 80 030 TAP 1 21.942 18.276 18.606-0.2210 1.8310 
ATOM 81 C19 TAP 1 22.441 19.212 19.548 0.0670 1.9080 
ATOM 82 H26 TAP 1 23.525 19.217 19.437 0.1780 1.2870 
ATOM 83 031 TAP 1 22.063 18.858 20.904 -0.2730 1.6837 
ATOM 84 C20 TAP 1 20.886 18.776 21.210 0.1050 1.9080 
ATOM 85 C21 TAP 1 20.456 17.626 22.044 0.8600 1.9080 
ATOM 86 032 TAP 1 19.161 17.471 22.371-0.8310 1.7210 
ATOM 87 033 TAP 1 21.313 16.816 22.482-0.8310 1.6612 
ATOM 88 C22 TAP 1 20.029 19.765 20.747 -0.4130 1.9080 
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ATOM 89 H27 TAP 1 18.973 19.781 20.974 0.1290 1.4590 
ATOM 90 C23 TAP 1 20.555 20.895 19.880 0.2880 1.9080 
ATOM 91 H28 TAP 1 20.612 21.784 20.509 0.1150 1.3870 
ATOM 92 034 TAP 1 19.556 21.196 18.905-0.6980 1.7210 
ATOM 93 H29 TAP 1 19.220 20.370 18.550 0.4080 0.0000 
ATOM 94 C24 TAP 1 21.894 20.591 19.255 0.0730 1.9080 
ATOM 95 H30 TAP 1 21.863 20.628 18.166 0.1180 13870 
ATOM 96 035 TAP 1 22.775 21.636 19.636 -0.3680 1.6837 
ATOM 97 S6 TAP 1 23.506 21.888 21.039 1.1010 2.0000 
ATOM 98 037 TAP 1 24.697 21.116 20.950 -0.6460 1.6612 
ATOM 99 038 TAP 1 22.582 21.657 22.133 -0.6460 1.6612 
ATOM 100 036 TAP 1 24.002 23.391 20.860 -0.6460 1.7210 

Tetrasaccharide III 

ATOM 1 01 TAD 1 3.999 0.901 1.091 -0.6120 	1.7210 
ATOM 2 H31 TAD 1 3.399 0.542 1.748 0.3590 0.0000 
ATOM 3 Cl TAD 1 3.777 2.308 0.922 0.0740 1.9080 
ATOM 4 Hi TAD 1 3.961 2.584 -0.116 0.0710 1.3870 
ATOM 5 H2 TAD 1 2.752 2.605 1.145 0.0710 	1.3870 
ATOM 6 C2 TAD 1 4.617 3.162 1.909 0.0420 1.9080 
ATOM 7 H3 TAD 1 4.569 2.610 2.848 0.1770 1.3870 
ATOM 8 02 TAD 1 5.945 3.261 1.368 -0.3680 1.6837 
ATOM 9 C3 TAD 1 6.916 4.052 2.060 0.0330 1.9080 
ATOM 10 H4 TAD 1 7.826 4.101 1.463 0.2070 1.2870 
ATOM ii 07 TAD 1 7.207 3.527 3.343 -0.5550 1.7210 
ATOM 12 H9 TAD 1 6.434 3.628 3.902 0.3730 0.0000 
ATOM 13 C4 TAD 1 6.381 5.508 2.196 0.0760 1.9080 
ATOM 14 H5 TAD 1 6.161 5.871 1.192 0.1690 1.3870 
ATOM 15 Ni TAD 1 7.399 6.322 2.876-0.6890 1.8240 
ATOM 16 H8 TAD 1 6.934 7.187 3.114 0.3670 0.6000 
ATOM 17 Si TAD 1 8.623 6.797 1.892 1.1770 2.0000 
ATOM 18 04 TAD 1 8.943 8.216 2.238 -0.6820 1.7210 
ATOM 19 05 TAD 1 8.228 6.934 0.542 -0.6820 1.6612 
ATOM 20 06 TAD 1 9.830 6.094 2.203 -0.6820 1.6612 
ATOM 21 CS TAD i 5.025 5.428 2.949 0.0460 1.9080 
ATOM 22 H6 TAD 1 5.149 5.077 3.973 0.1430 1.3870 
ATOM 23 03 TAD 1 4.516 6.755 3.024 -0.5900 1.7210 
ATOM 24 H7 TAD 1 3.570 6.652 3.154 0.4020 0.0000 
ATOM 25 C6 TAD 1 3.961 4.489 2.191 -0.0350 	1.9080 
ATOM 26 H10 TAD 1 3.727 4.996 1.255 0.1490 	1.3870 
ATOM 27 08 TAD 1 2.777 4.404 3.063 -0.3810 	1.8310 
ATOM 28 C7 TAD 1 1.442 4.476 2.521 0.0990 1.9080 
ATOM 29 Hl  TAD 1 1.489 4.314 1.444 0.1860 1.2870 
ATOM 30 C10 TAD 1 0.572 3.390 3.213 0.0890 1.9080 
ATOM 31 012 TAD 1 1.035 2.168 2.672-0.3610 1.6837 
ATOM 32 S2 TAD 1 1.014 0.753 3.496 1.0730 2.0000 
ATOM 33 013 TAD 1 -0.281 0.470 3.984 -0.6170 1.6612 
ATOM 34 014 TAD 1 1.940 0.960 4.758 -0.6170 1.7210 
ATOM 35 015 TAD 1 1.745 -0.225 2.757 -0.6170 1.6612 
ATOM 36 H13 TAD 1 0.803 3.354 4.278 0.1500 1.3870 
ATOM 37 Cli TAD 1 -0.972 3.570 3.054 0.0290 1.9080 
ATOM 38 016 TAD 1 -1.606 	2.880 4.151-0.6730 	1.7210 
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ATOM 39 H14 TAD 
ATOM 40 H15 TAD 
ATOM 41 09 TAD 
ATOM 42 C8 TAD 
ATOM 43 H12 TAD 
ATOM 44 C9 TAD 
ATOM 45 010 TAD 
ATOM 46 011 TAD 
ATOM 47 C12 TAD 
ATOM 48 H16 TAD 
ATOM 49 017 TAD 
ATOM 50 C13 TAD 
ATOM 51 H17 TAD 
ATOM 52 C16 TAD 
ATOM 53 H21 TAD 
ATOM 54 N2 TAD 
ATOM 55 H22 TAD 
ATOM 56 S4 TAD 
ATOM 57 023 TAD 
ATOM 58 024 TAD 
ATOM 59 025 TAD 
ATOM 60 C17 TAD 
ATOM 61 H23 TAD 
ATOM 62 026 TAD 
ATOM 63 H24 TAD 
ATOM 64 018 TAD 
ATOM 65 C14 TAD 
ATOM 66 H18 TAD 
ATOM 67 CiS TAD 
ATOM 68hI9TAD 
ATOM 69 H20 TAD 
ATOM 70 019 TAD 
ATOM 71 S3 TAD 
ATOM 72 020 TAD 
ATOM 73 021 TAD 
ATOM 74 022 TAD 
ATOM 75 C18 TAD 
ATOM 76 H25 TAD 
ATOM 77 027 TAD 
ATOM 78 C19 TAD 
ATOM 79 H26 TAD 
ATOM 80 028 TAD 
ATOM 81 C20 TAD 
ATOM 82 C21 TAD 
ATOM 83 029 TAD 
ATOM 84 030 TAD 
ATOM 85 C22 TAD 
ATOM 86 H27 TAD 
ATOM 87 C23 TAD 
ATOM 88 H28 TAD 
ATOM 89 031 TAD 
ATOM 90 H29 TAD 
ATOM 91 C24 TAD 

1 	-1.257 1.986 
1 	-1.240 3.302 

0.892 5.754 
-0.482 5.969 

1 	-0.732 7.000 
-0.672 5.814 

1 	-0.848 7.003 
1 	-0.697 4.727 
1 	-1.418 5.069 
1 	-1.245 5.446 
1 	-2.869 5.292 
1 	-3.643 6.271 
1 	-2.964 7.022 
1 	-4.381 5.686 
1 	-4.888 6.531 

1 	-3.347 5.092 
1 	-3.299 4.089 

-3.645 5.291 
1 	-5.057 5.454 
1 	-2.978 4.233 
1 	-3.000 6.639 
1 	-5.447 4.740 
1 	-4.946 3.959 
1 	-6.058 4.136 
1 	-5.814 4.678 
1 	-4.669 6.969 
1 	-5.795 6.213 
1 	-5.383 5.5 10 
1 	-6.596 7.279 
1 	-6.038 7.748 
1 	-7.492 6.828 

-7.171 8.390 
-8.015 9.570 
-8.488 10.722 
-7.178 10.30€ 
-9.264 9.019 
-6.534 5.394 
-7.134 6.070 
-7.323 4.336 
-8.695 4.577 
-8.822 5.544 
-9.574 4.586 

-10.174 3.54 
-11.052 3.54 
-11.555 2.48 
-11.394 4.63 
-10.092 2.352 
-10.587 1.47' 
-9.401 2.176 
-9.976 1.519 
-8.203 1.559 
-7.877 2.147 
-9.177 3.530 

4.125 0.4690 0.0000 
2.032 0.1360 1.3870 

2.706 -0.2970 1.6837 
2.340 -0.0320 1.9080 
2.592 0.0580 1.3870 

0.795 0.8430 1.9080 
0.144-0.8100 1.7210 
0.221 -0.8100 1.6612 
3.183 0.0550 1.9080 
4.191 	0.1050 1.3870 
2.878 -0.2230 1.8310 
3.661 -0.0460 1.9080 
4.065 0.1760 1.2870 
4.911 0.0480 1.9080 
5.379 0.1890 1.3870 
5.812-0.5910 1.8240 
5.703 0.3600 0.6000 

7.455 1.0440 2.0000 
7.681 -0.6520 1.6612 
8.150-0.6520 1.6612 
8.000 -0.6520 1.7210 
4.408 0.1390 1.9080 
3.836 0.1600 1.3870 
5.593 -0.6130 1.7210 
6.347 0.4280 0.0000 
2.942 -0.2540 1.6837 
2.390 -0.0230 1.9080 
1.666 0.0980 1.3870 
1.573 -0.0080 1.9080 
0.762 0.1080 1.3870 
1.146 0.1080 1.3870 
2.327 -0.3690 1.6837 

1.558 1.1390 2.0000 
2.548-0.6540 1.7210 
0.606 -0.6540 1.6612 
1.099 -0.6540 1.6612 
3.498 -0.0610 1.9080 
4.108 0.1360 1.3870 
2.852 -0.3060 1.8310 
2.541 0.2460 1.9080 
2.054 0.1240 1.2870 
3.663 -0.2940 1.6837 
4.121 0.1070 1.9080 
5.321 0.8720 1.9080 

I 	5.705 -0.8360 1.6612 
6.001 -0.8360 1.7210 
3.421 -0.4490 1.9080 

7 	3.815 0.1280 1.4590 
2.136 0.3710 1.9080 
1.483 0.0850 1.3870 
2.517-0.7440 1.7210 
3.203 0.4340 0.0000 
1.434 0.1010 1.9080 
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ATOM 92 H30 TAD 1 -8.405 3.474 	0.667 0.0830 1.3870 
ATOM 93 032 TAD 1 -10.393 4.015 	0.799 -0.3990 1.6837 
ATOM 94 S5 TAD 1 -11.291 3.199 -0.319 1.0860 2.0000 
ATOM 95 034 TAD 1 -12.074 4.170 -1.067 -0.6410 1.6612 
ATOM 96 035 TAD 1 -11.952 2.014 	0.171 -0.6410 1.6612 
ATOM 97 033 TAD 1 -10.273 2.664 -1.451 -0.6410 1.7210 

Tetrasaccharide IV 

ATOM 1 01 HSA 1 -0.117 11.975 -2.879-0.6520 1.6612 
ATOM 2 Si HSA 1 0.347 13.095 -2.102 1.1210 2.0000 
ATOM 3 02 HSA 1 1.472 13.874 -2.559 -0.6520 1.6612 
ATOM 4 03 HSA 1 -0.867 14.153 -2.023 -0.6520 1.7210 
ATOM 5 04 HSA 1 0.589 12.664 -0.548-0.4060 1.6837 
ATOM 6 Cl HSA 1 0.001 	11.511 	0.065 0.0810 1.9080 
ATOM 7 Hi HSA 1 0.051 	11.640 	1.146 0.0800 1.3870 
ATOM 8 H2 HSA 1 -1.051 11.444 -0.217 0.0800 1.3870 
ATOM 9 C2 HSA 1 0.713 	10.189 -0.291 	0.0160 1.9080 
ATOM 10 H3 HSA 1 0.491 9.966 -1.336 0.1430 1.3870 
ATOM 11 05 HSA 1 2.123 10.371 -0.143 -0.2960 1.6837 
ATOM 12 C3 HSA 1 2.973 9.313 -0.580 0.0480 1.9080 
ATOM 13 H4 HSA 1 3.999 9.573 -0.305 0.1520 1.2870 
ATOM 14 010 HSA 1 2.935 9.141 	-1.969-0.5190 1.7210 
ATOM 15' H9 HSA 1 3.516 8.387 -2.133 0.3570 0.0000 
ATOM 16 C4 HSA 1 2.621 7.993 	0.130 0.0520 1.9080 
ATOM 17 H5 HSA 1 2.919 8.094 	1.176 0.1600 1.3870 
ATOM 18 Ni HSA 1 3.319 6.824 -0.490 -0.6320 1.8240 
ATOM 19 H8 HSA 1 3.088 6.008 	0.047 0.3590 0.6000 
ATOM 20 S2 HSA 1 4.966 6.839 -0.385 1.1020 2.0000 
ATOM 21 07 HSA 1 5.469 7.545 -1.530 -0.6610 1.6612 
ATOM 22 08 HSA 1 5.368 5.475 -0.188 -0.6610 1.6612 
ATOM 23 09 HSA 1 5.432 7.635 	0.921 -0.6610 1.7210 
ATOM 24 C5 HSA 1 1.095 7.756 	0.108 0.0200 1.9080 
ATOM 25 H6 HSA 1 0.808 7.578 -0.931 0.1590 1.3870 
ATOM 26 06 HSA 1 0.835 6.584 	0.872 -0.5650 1.7210 
ATOM 27 H7 HSA 1 -0.119 6.535 	1.064 0.3670 0.0000 
ATOM 28 C6 HSA 1 0.282 8.986 	0.603 0.0130 1.9080 
ATOM 29 HIOHSA 1 0.547 9.208 	1.638 0.1260 1.3870 
ATOM 30 011 HSA 1 -1.152 8.711 	0.495 -0.3270 1.8310 
ATOM 31 C7 HSA 1 -1.993 8.556 	1.655 0.0660 1.9080 
ATOM 32 HI 1 HSA 1 -2.996 8.336 	1.286 0.1550 1.2870 
ATOM 33 CIO HSA 1 -1.580 7.394 	2.585 0.1670 1.9080 
ATOM 34 015 HSA 1 -1.800 6.157 	1.916-0.6710 1.7210 
ATOM 35 H31 HSA 1 -2.719 5.917 	2.078 0.4160 0.0000 
ATOM 36 H13 HSA 1 -0.5 14 7.499 	2.786 0.0970 1.3870 
ATOM 37 Cli HSA 1 -2.282 7.376 	3.968 0.0520 1.9080 
ATOM 38 016 HSA 1 -1.315 7.600 	4.993 -0.6620 1.7210 
ATOM 39 H14HSA 1 -1.271 8.574 	5.168 0.4280 0.0000 
ATOM 40 HiS HSA 1 -2.679 6.375 	4.142 0.0390 1.3870 
ATOM 41 012 HSA 1 -2.106 9.746 	2.424 -0.2600 1.6837 
ATOM 42 C8 HSA 1 -3.056' 9.765 	3.5 16 -0.0490 1.9080 
ATOM 43 H12HSA 1 -3.965 10.255 	3.166 0.0280 1.3870 
ATOM 44 C9 HSA 1 -2.464 10.620 	4.652 0.8200 1.9080 
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ATOM 45 013 HSA 1 -3.091 11.822 4.837 -0.8010 1.7210 
ATOM 46 014 HSA 1 -1.484 10.188 5.308-0.8010 1.6612 
ATOM 47 C12 HSA 1 -3.460 8.373 4.089 0.2300 1.9080 
ATOM 48 H16HSA 1 -3.676 8.487 5.155 	0.1110 1.3870 
ATOM 49 017 HSA 1 -4.663 7.792 3.467-0.3610 1.8310 
ATOM 50 C13 HSA 1 -5.901 7.900 4.191 -0.0040 1.9080. 
ATOM 51 H17HSA 1 -5.774 8.654 4.973 0.1380 1.2870 
ATOM 52 C16HSA 1 -6.422 6.616 4.884 0.1150 1.9080 
ATOM 53 H21 HSA 1 -7.329 6.903 5.424 0.1550 1.3870 
ATOM 54 N2 HSA 1 -5.464 6.058 5.875 -0.3850 1.8240 
ATOM 55 H22 HSA 1 -5.731 5.097 6.009 0.2700 0.6000 
ATOM 56 S4 HSA 1 -5.721 	6.649 	7.417 1.0380 2.0000 
ATOM 57 023 HSA 1 -6.056 8.045 7.360 -0.6430 1.6612 
ATOM 58 024 HSA 1 -6.628 5.755 .8.081 -0.6430 1.6612 
ATOM 59 025 HSA 1 -4.372 6.521 8.278 -0.6430 1.7210 
ATOM 60 C17 HSA 1 -6.886 5.539 3.875 0.0880 1.9080 
ATOM 61 H23 HSA 1 -6.032 5.234 3.267 0.1300 1.3870 
ATOM 62 026 HSA 1 -7.373 4.444 4.661 -0.7020 1.7210 
ATOM 63 H24 HSA 1 -7.196 3.563 4.243 0.5070 0.0000 
ATOM 64 018 HSA 1 -6.972 8.375 3.371 -0.2720 1.6837 
ATOM 65 C14HSA 1 -7.554 7.505 2.395 0.0700 1.9080 
ATOM 66 H18HSA 1 -6.791 7.317 1.639 0.1070 1.3870 
ATOM 67 C15 HSA 1 -8.711 8.282 1.723 -0.0690 1.9080 
ATOM 68 H19HSA 1 -8.319 9.238 1.373 0.1120 1.3870 
ATOM 69 H20HSA 1 -9.066 7.722 0.857 0.1120 1.3870 
ATOM 70 019HSA 1 -9.822 8.534 2.584-0.3590 1.6837 
ATOM 71 S3 HSA 1 -11.027 9.562 2.166 1.1200 2.0000 
ATOM 72 020HSA 1 -11.606 8.990 0.776-0.6450 1.7210 
ATOM 73 021 HSA 1 -12.093 9.468 3.133 -0.6450 1.6612 
ATOM 74 022 HSA 1 -10.471 10.853 	1.853 -0.6450 1.6612 
ATOM 75 C18 HSA 1 -8.000 6.126 2.956 0.0370 1.9080' 
ATOM 76 H25 HSA 1 -8.885 6.292 3.574 0.1150 1.3870 
ATOM 77 027 HSA 1 -8.326 5.249 1.819 -0.5180 1.8310 
ATOM 78 C19 HSA 1 -9.362 4.271 1.993 0.5260 1.9080 
ATOM 79 H26HSA 1 -10.114 4.697 2.658 0.0760 1.2870 
ATOM 80 028 HSA 1 -8.842 3.106 2.619 -0.4010 1.6837 

ATOM 81 C20HSA 1 -8.080 2.307 2.018 0.0560 1.9080 
ATOM 82 C21 HSA 1 -7.074 1.530 2.771 0.8640 1.9080 
ATOM 83 029 HSA 1 -6.399 0.457 2.232 -0.8200 1.7210 
ATOM 84 030 HSA 1 -6.801 1.870 3.950 -0.8200 1.6612 
ATOM 85 C22 HSA 1 -8.157 2.172 0.662 -0.3970 1.9080 
ATOM 86 H27 HSA 1 -7.495 1.485 0.157 0.1270 1.4590 
ATOM 87 C23 HSA 1 -9.085 3.033 -0.163 0.3710 1.9080 
ATOM 88 H28 HSA 1 -9.613 2.422 -0.893 0.0850 1.3870 
ATOM 89 031 HSA 1 -8.204 3.891 -0.849-0.7460 1.7210 
ATOM 90 H29 HSA 1 -7.721 4.338 -0.140 0.4390 0.0000 
ATOM 91 C24HSA 1 -10.081 3.851 0.685 0.0780 1.9080 
ATOM 92 H30HSA 1 -10.346 4.752 0.134 0.0940 1.3870 
ATOM 93 032HSA 1 -11.301 3.132 0.967-0.4240 1.6837 
ATOM 94 S5 HSA 1 -12.277 2.534 -0.194 	1.1110 2.0000 
ATOM 95 034HSA 1 -11.765 1.268 -0.649-0.6410 1.6612 
ATOM 96 035 HSA 1 -12.558 3.567 -1.154-0.6410 	1.6612 
ATOM 97 033 HSA 1 -13.662 2.199 	0.563 -0.6410 1.7210 



Appendix IV 

Molecular Modelling Protocols 

Gas phase simulated annealing (modified from file given by Dr. Barran): 

#!/binlcsh 

	

# Simulated annealing using Amber7 	ann7.job 
# --------------------------------------------------- 
# does an initial minimization, runs dynamics at a 
# specified temperature (hightemp) for a specified 
# time (mdtime), cools the molecule from "hightemp" 
# to "lowtemp" in "coolstep" steps in "cooltime" time, 
# then minimizes again. The final minimized structure 
# is then used as input for a repeat of the above steps. 
# 
# time is in femtoseconds (generally, set by "dt" in the 
# input file). 
# 
# Edit this file as well as min7.in and md_x.in 
# before running or submitting to a queue. 
# 
# Must have initial.crd and prm.top in the directory 
# given just below: 
# 

# ------------------------ 
# * Initial minimization * 
# ------------------------ 

cp initial.crd prelim.crd 
rm -f initial_min.out initial.crd initial_min.crd \ 

mdinfo mden mdcrd mincor 

/usr/progs/amber/exe/sander -i min7.in \ 
-o initial_min.out \ 
-p prm.top \ 
-c prelim.crd \ 
-r initial.crd 	11 goto error 

cp initial.crd initial_min.crd 
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# 	- 
* Set limits * 

set index = I 
set j = 0 
set limit= 100 
set hightemp = 800 
set lowtemp = 000 
set numcoolsteps = 10 
set mdtime = 30000 
set cooltime = 10000 
set ntx= 1 

@ coolstep = (( $hightemp - $lowtemp ) / $numcoolsteps) 
@ coolsteptime ($cooltime / $numcoolsteps) 

sed "s/tempO_xxx/$hightemp/g" md_x.in> sen .1st 
_ sed "s/ntxxxxl$ntx/g" scrl.lst> scr2.lst 

sed "s/nstlim_xxx/$mdtime/g" scr2.lst> hotmd.in  

# --------------------- 
* Beginning of loop * 

while (Sindex <= $limit) 
/bin/rm -f mdinfo mdcrd dyn.$index.out dyn.crd 

# -------------------------------- 
* dynamics at high temperature * 

# -------------------------------- 

/usr/progs/amber/exe/sander -i hotmd.in  \ 
-o dyn.$index.out \ 
-p prm.top \. 
-c initial.crd \ 
-r dyn.crd 	II goto error 

set incrd = dyn.crd 

# -------------------- 
* stepwise cooling * 

# -------------------- 

set ntx = 5 
set coolcyc = 1 
set temp = $hightemp 

sed "s/nstlim_xxx/$coolsteptime/g" md_x.in > sen .1st 
sed "slntx_xxx/$ntxlg" scrl.lst> scr2.lst 

-- 
# *cooljng loop * 



# 

while ($coolcyc <= $numcoolsteps) 

@ temp = ( $temp - $coolstep) 
sed "s/tempO_xxx/$temp/g" scr2.lst> coolmd.in  
set outcrd = crd.$index.$coolcyc.crd 
rm -f cooldown.$index.$coolcyc.out \ 

$outcrd mdinfo mden mdcrd mincor 

/usr/progs/amber/exe/sander -i coolmd.in  \ 
-o cooldown. $index. $coolcyc.out \ 
-p prm.top \ 
-c $incrd \ 
-r $outcrd 	 II goto error 

set incrd = $outcrd 

@ coolcyc++ 
end 

# ----------------------- 
* energy minimization * 

/binlrm -f mdinfo mdcrd min.$index.out min.$index.crd 
/binlrm -f initial.crd mden mincor 
/usr/progs/amber/exe/sander -i min8.in  \ 

-o min.$index.out \ 
-p prm.top \. 
-c $incrd \ 
-r min.$index.crd 	goto error 

cp min.$index.crd initial.crd 

@ index++ 

# ----------------------- 
* clean up some files * 

# ----------------------- 

if $j > 0 then 
rm fdyn.$j.* 
rm fcoo1down.$j.*  .out 
rm _f crd.$j.*.crd 

endif 

* End of loop * 
# --------------- 

end 



# 	 - 
* Final cleanup * 

#------------------ 

cp prelim.crd initial.crd 
/bin/rm -f dyn.$j . * cooldown. $j * .out crd.$j . * .crd 
/bin/rm -fscrl.lst scr2.lst scr3.lst 0 dyn.crd prelim.crd \ 

mdinfo dyn.$index.out 

echo" it 

echo No errors detected 
exit(0) 

error: 
echo" --Failure: look at *.out,  fix problem and run this script again" 
echo"" 
exit(1) 

md_x.in 
Amber7 sander dynamics 
&cntrl 
nstlim = nstlim_xxx, tempO = tempO_xxx, ntx = ntx_xxx, 
ntc = 2, ntf= 2, ntt = 1, ntb = 0, ntpr = 1000, 
&end 

min7.in 
minimization with sander (Amber7) 
&cntrl 
imin = 1, maxcyc = 500000, drms = 0.005, ntb = 0, 
ntpr = 1000, cut = 999., ncyc = 3000, 
&end 

min8.in  
minimization with sander (Amber7) 
&cntrl 
imin = 1, maxcyc = 500000, drms = 0.0005, ntb = 0, 
ntpr = 1000, cut = 999., ncyc = 3000, 
&end 
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Gas phase (D, 'I') map calculation: 

min-res.in  
Minimization with restraints on the glycosidic angles 
&cntrl 
imin = 1, maxcyc = 50000, drms = 0.0005, ntb = 0, 
ntpr = 100, cut = 999., ncyc = 1000, 
nmropt= 1, 
&end 

&wt 
type = 'END', 

&end 
DISANG=restraints.dat 
LIST1N=POUT 
LISTOUT=POUT 

Solution molecular dynamics: 

minl.in 
Initial minimization with Cartesian restraints on solute to reduce bad VDW on solvent 
&cntrl 
imin = 1, maxcyc = 1000, ncyc = 500, 
drms=0.0005,ntb= 1, cut = 10,ntr= 1, 
&end 
Group input for restrained atoms 
500 

RES 1 
END 
END 

min2.in  
Minimization on the whole system 
&cntrl 
imin = 1, maxcyc = 3000, ncyc = 1000, 
drms = 0.0005, ntb = 1, cut = 10, ntr = 0, 
&end 

mdl.in  
Group input for restraint atoms 
10.0 

RES 11 
END 
END 
MD heating from 0 to 300K with restraints on the solute 
&cntrl 

imin = 0, ntpr = 100, ntwx = 100, ntwe = 100, ntwr = 1000, 
nstlim =I0000, dt = 0.002, 	 S  
ntb = 1,cut = 10, ntr = 1, ntc = 2, ntf= 2, nmropt = 1, 
tempi = 0.0, tempO = 300.0, nfl = 1, tautp = 0.5, 
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&end 
&wt 
type='TEMPO', istep 10, istep2= 1000, 

value 1=0.0, value2=300.0, 
&end 
&wt 
type='TEMPO', istep 1 = 1000, istep2=20000, 

value 1=300.0, value2=300.0, 
&end 
&wt 
type='ENTY, 
&end 

md2.in  
MD equilibration on the whole system at 300K 
&cntrl 

imin= 0, ntpr = 100, ntwx = 100, ntwe =. 100, ntwr = 1000, 
nstlim = 50000, dt = 0.002, irest = 1, ntx = 5, 
ntb = 2, presO = 1.0, ntp = 1, taup = 2.0, 
cut = 10, ntr = 0, ntc = 2, ntf= 2, 
tempi = 300.0, tempO = 300.0, ntt = 1, 

&end 

md-production.in  
Free MD production run 
&cntrl 

imin = 0, ntpr = 200, ntwx = 200, ntwe = 200, ntwr = 10000, ntwv = 200, 
nstlim = 200000, dt = 0.002, irest = 1, ntx = 5, 
ntb = 2, presO = 1.0, ntp = 1, taup = 2.0, 
cut = 8, ntr = 0, ntc = 2, ntf= 2, 
tempi = 300.0, tempO = 300.0, ntt = 1, 

&end 

md-RDC-refinement.in  
MD production run with RDCs restraints on A and C rings 
&cntrl 

imin = 0, ntpr = 200, ntwx = 200, ntwe = 200, ntwr = 20000, ntwv = 200, 
nstlim = 200000, dt = 0.002, irest = 0, ntx = 5, 
ntb = 2, presO = 1.0, ntp = 1, taup = 2.0, 
cut = 8, ntr = 0, ntc = 2, ntf= 2, 
tempi = 300.0, tempO = 300.0, ntt = 1, 
iscale = 5, nmropt = 1, 

&end 

&wt type =  'END', &end 

LISTOUT = POUT 
DIPOLE = RST-AC.f 

192 



RST-ACS 
RDCs restraints of A and C rings 
&align 
ndip=18,dcut=1.0,gigj=10*7.847,8*31.199,dwt=18*1.0, 
si 1 = -5.357, s22 = 8.746, s12 = -1.867, s13 = -1.617, s23 = -13.253, 
id(l) = 12,jd(1)= 13,dobs(1)=-3.4, 

= 14,jd(2)= 15, dobs(2) = 5.8, 
= 16, jd(3) = 17, dobs(3) = 6. 1, 
= 28, jd(4) = 29, dobs(4) = 5.4, 
= 9,jd(5) = 10, dobs(5) = 6.2, 
= 53,jd(6) = 54, dobs(6) = 5. 1, 
= 66,jd(7) = 67, dobs(7) = -3.1, 
=74,jd(8) = 75, dobs(8) = -3.0, 
= 78, jd(9) = 79, dobs(9) = -4.8, 

 = 56,jd(10) = 57, dobs(10) = -3.6, 
id(11)= 13,jd(11)= 15, dobs(11)=-0.82, 

 = 15,jd(12) = 17, dobs(12) = 0.88, 
 = 17,jd(13) = 29, dobs(13) = 0.96, 
 = 29, jd(14) = 10, dobs(14) = 0.90, 
 = 54,jd(15) = 67, dobs(15) = -1.21, 
 = 67, jd(16) = 75, dobs(16) = 0.55, 
 = 75,jd(17) = 79, dobs(17) = -0.61, 
 = 79,jd(18) = 57, dobs(18) = -1.36, 

&end 
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Appendix V 

Pulse sequences of new NMR methods 

HOHAHA-COSY: 

1D double-selective COSY with an initial one-step selective HOHAHA step 
R. Konrat, I. Burghardt and G. Bodenhausen I Am. Chem. Soc. 1991, 113, 9135-9140 
The magnetization is transferred from the on-resonance proton and the proton to which 
the magnetization is transferred is inverted. 
Selective spin-lock is used 

#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 

"dl 2=20u" 
"dl 3=4u" 
"p1 8=p 1 3-200u" 
TAU=2*d16+p1 6" 

"DELTA 1=0 5*d2TAU" 
"DELTA2=0 5 *d2.2*TAU.p12" 
"DELTA3=0 5*d32*TAU" 
uDELTA40.5*d3p 1 1-TAU-4u" 

1 ze 
2 20u BLKGRAD 
dl pll:fl 
d12 pll:fl 
d12 fq=cnstl(bfppm):fl 

1* spfgse  *1 
plphl 
d12 UNBLKGRAD 
p1 6:gp6 
d16 plO:fl 
pll:sp3 ph6 

d12 
p1 6:gp6 
d16 

/ sel. spin-lock */ 



4u 
p21:sp2l:fl ph2l 

4u 

1* purging pulse */ 
# ifdef PURGE 

d12 pll:fl 
p1 ph7:r 
d12 fq=cnst2(bf ppm):fl 
dl2plO:fl 

(p13:spl3 ph30)(100upl8:gp5 lOOu) 
d13 
d12 pll:fl 
p1 phi 

# endif 

# ifdef SPFGSE 

d13 	;SELl8Opulse 
pl6:gp3 
d16 plO:fl 
pli:spl ph3 

d13 
pl6:gp3 
d16 

# endif 

DELTA 1 
di6 
p1 6:gp 1 
d16 
(pll:spl ph4) 
4u 
(p12:sp2 ph8) 

d16 
p1 6:gp 1 
d16 

DELTA2 
d16 	pll:fl 
pi6:gp2 
d16 
p1 ph2 

# ifdef REFOCUS 
d16 
pl6:gp2 
d16 

DELTA3 
d16 
pl6:gp4 
d16 

(p12:sp2 ph5) 
4u 
(pll:spl ph5) 
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d16 
pl6:gp4 
d16 
DELTA4 

# else 
d16 
pl6:gp2 
d16 

# endif 

# ifdef SPFGSE 
go=2 ph3 1 

# else 
go=2 ph29 

# endif 
20u BLKGRAD 
wr #0 

exit 

phl=01 
ph2=1 
ph3=0 
ph4=0 0 11 
ph5=00001 111 

22223333 
ph6={0}*16 {1}*16 {2}*16 {3}*16 
ph7=0 
ph8={0}*64 {2}*64 
ph2l=1 
ph3O=1 
ph3l=0 2 2 02 0 02 
ph29=0 2 0 2 2 0 2 0 

;pll : power level for pulse (default = -5 dB) 
;pl 90 degree high power pulse (7.5us) 
;plO: 120dB 
;spl: power for p11 (180 Gauss) H-2 
;sp3: power for p1  1(180 Gauss) H- 1, 
;sp2: power for p12  (180 Gauss) H-3 

;cnstl - ppm of H-i 
;cnst2 - ppm of H-2 (=olp) 

;spoffl=0 
;spoff2=H3-H2 
;spoff3=0 
;p2l : spin-lock time (1/J) 
;sp2l : Rectangular shaped pulse (J/4)*sqrt(4*n*n  -1), n=10, J=7.936Hz => sp2l = 39.614z 
;pl : 90 degree high power pulse 
;dl : relaxation delay; 1-5 * Ti 
;NS:4*n 
;DS : 2 
;phcor2 1: phase correction (0 degree) 
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CSSF-COSY: 

ID double-selective COSY (variable time) with a hemical shift selective filter 
P. T. Robinson, T. N. Pham and D. UhrIn J. Magn. Reson. 2001, 151, 97-103 

#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 

"dl 2=20u" 
"dl 3=4u" 
"p2=pl"2" 

TAU=2*d16+p 16" 
"DELTA l=O 5*d2TAUd12" 
"DELTA2=0 5*d22*TAU" 
"DELTA3=0 5*d32*TAU" 
DELTA4=0.5*d3.p12TAU4u" 

1 ze 
2 30m 
3 50u BLKGRAD 

#ifdef PRE SAT 
d12 fq=cnstl(bfppm):fl 
d12 pl9:fl 
dl cw:fl ph29 
d13 do:fl 
d12 pll:fl 
d12 fq=cnst2(bfppm):fl 
d12 UNBLKGRAD 

# else 
dl pll:fl 
d12 UNBLKGRAD 

#endif 

;[cssf] 
p1 phi 
d23 *05 
pl6:gpl 
dl6plO:fl 
24u 
(pll:sp3 ph2:r):fl 
4u 
dl2pll:fl 
p2 phi 
pl6:gp2 
d16 
d23*0.5 
p1 ph5 
pl6:gp3 
d16 
plph6 
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;[cosy] 
d12 plO:fl 

(p12:sp2ph8) 
DELTA1 

d16 
pl6:gp4 
d16 
(p12:spl ph3) 
4u 
(p12:sp2ph8) 

d16 
pl6:gp4 
d16 

DELTA2 
d16 	pll:fl 
p16:gp5 
d16 
plph7 

# ifdef REFOCUS 
d16 
pl6:gp5 
d16 
DELTA3 plO:fl 
d16 
p1 6:gp6 
d16 

(p12:sp2 ph4) 
4u 
(p12:spl ph4) 

d16 
p1 6:gp6 
d16 
DELTA4 

# else 
d16 
p1 6:gp5 
d16 

# endif 

go=2 ph3 1 
30m mc #0 to 2 F0(id23 & zd) 

50urd23 
10 to 3 times 13 

wr #0 
4u BLKGRAD. 

exit 

ph 1=0 
ph2=0 1 
ph3=00 112233 
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ph8={0}*8 {1}*8 {2}*8 {3}*8 
ph4={0}*32 {2}*32 
ph5=0 
ph6=0 
ph7=i 
ph29=0 
ph3l=0 2 2 0 

;plO: 120dB 
;pll : fl channel - power level for pulse (default) 
;spl : fl channel - shaped pulse 180 degree 
;pl : fl channel - 90 degree high power pulse 
;p2: fl channel - 180 degree high power pulse 
;pll: 180 CSSF shaped pulse 
;sp3: for p11 
;pl2: 180 selective COSY shaped pulses 
;spi: on-resonpl2 
;sp2: off-reson p12 
;p 16: homospoillgradient pulse 

;dl : relaxation delay; 1-5 * Ti 
;d2 : defocusing delay 
;d3 : refocusing delay 
;dl 2: delay for power switching 
;dl 6: delay for homospoil/gradient recovery 
;d23: CSSF delay 
;id23: increment of CSSF 
;NS: 8 * TDO * 13 
;DS: 4 
;13 long term accum. Total NS=NS*TdO*13 
;use gradient ratio: gp 1: gp 2 = 40: -40 

;for z-only gradients: 
;gpzl: 40% 
;gpz2: -40% 
;gpz3: 5% 
;gpz4: 11% 
;gpz5: 4% 
;gpz6: 17% 

;use gradient files: 
;gpnaml: CRP.100 
;gpnam2: CRP.100 
;gpnam3: CRP.100 
;gpnam4: CRP.100 
;gpnaml: CRP.100 
;gpnam5: CRP.100 
;gpnam6: CRP.100 
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DJM-REVINEPT-INADEQUATE: 

2D doublet J-modulated reversed-INEPT-INADEQUATE starts on carbon 
both one-bond and long-range proton-carbon correlation and coupling constants obtained 
phase sensitive and phase cycling according to: 
M. Bourdonneau & B. Ancian, J. Magn. Reson. 132, 316-327 (1998) 
BEBOP and BIBOP pulses are used to cover the whole 13C chemical shift range 
(a) T. E. Skinner, T. 0. Reiss, B. Luy, N. Khaneja and S. J. Glaser I Magn. Reson. 2004, 
167, 68-74; (b) B. Luy, K. Kobzar, T. E. Skinner, N. Khaneja and S. J. Glaser 

;I Magn. Reson. 2005, 176, 179-186 

#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 

"p2=pl*2 
11p4=p3*21,  

"d2= 1 s/(cnst2*4)fl  ;JCH 
;"d3=l s/(cnst2*4)" ;kJCH 
"dl 1=30m" 
"dl 2=20u" 
"DELTA2=d2-p 1 6-d 1611 
"DELTA3=d3-p 1 9-di 6" 
"DELTA4=2*dO" 
"p1 8=2ms" 

# ifdefFll8O 
"dO=in0/2 + lu" 
# else 
"dO=3u" 
#endif 

"d20=3u" 
"in20=cnstl *in011 

"in2 1=cnstl*in0" 
"13=(tdl/2)" 
"d2 1=(in2 1+0.5 *in0)*l3+4u 
"TAU=d12*d1 14*d21H 

-----heating compensation 
ize 
dllpll2:f2 

2d11 do:f2 
d12 pll:fl ;removing the effects of 13C decoupling 
50u UNBLKGRAD 
p16:gpl 
d16 
(p1 phl):fl 
4u 
(p1 phl):fl 
pl6:gp2 
d16 BLKGRAD 
dO*2.0 
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O*4O 
d12 p12:12 p119:fl 
dli cpdsl:fi phi 
TAU 
4u do: fl 
d12 p118:fi 
d12 cpdsl:fl phi 
d2 1*4 

heating compensation 

50u UN3LKGRAD 

# ifdefBB9O ; real start 
3 (p1 l:spi ph3):f2 	; shifted because of shape by 90deg 

4u 
# else 
3 (p3 ph3):f2 

4u 
# endif 

d20 

# ifdefBB 180 
4u 
(pl2:sp2 ph3):f2 
4u 

# else 
(p4ph3):f2 

# endif 

4u 
d20 

(p3 ph3):f2 ;MQ generated 

dO*2.0 
d12 do:fl 
pi6 : gp5*EA 

# ifdefBBl8O 
di6 plO:f2 
(p12:sp2 phi):f2 

# else 
d16 
(p4 phi):f2 

# endif 

# ifdefFll8O 
lu 

# else 
DELTA4 

#endif 
pi6 : gp6*EA 
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d16 p12:12 
d12 cpdsl:fi phi 

(p3  phi):f2 

d20 ;refocusing starts here 

# ifdefBB 180 
4u 
(p12:sp2 ph4):12 
4u 

# else 
(p4  ph4):f2 

# endif 

d20 
4u do:fl 
DELTA3 p11:11 
pl9:gp8 
d16 

4ifdefBB180 
(center (pi2:sp2 ph5):12 (p2 phl):fi) 

# else 
(center (p4 ph5):f2 (p2 phl):fl) 

# endif 

pl9:gp8 
d16 
DELTA3 
(p3  ph2):f2 
pl6:gp9 
d16 

p1 phi 
d2 

#ifdefBBi8O 
(center (p12:sp2 phl):12 (p2 phl):fl) 

# else 
(center (p4 phl):f2 (p2 phl):fl) 

# endif 

p16:gp7 
d16 
DELTA2 p112:12 BLKGRAD 

go=2ph31 cpd2:12 
dl  do:12 mc #0 to 2 F1EA(igrad EA, idO & id20 & dd2l) 
dl  do:f2 

exit 

ph0=0 
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ph 1=0 
ph2=l 
ph3=0 1 2 3 
ph4=0 
ph5=2 
ph3l=0 2 

;pll.: fl channel - power level for pulse (default) 
;pll2: f2 channel - power level for CPD/BB decoupling 
;pl : fl channel - 90 degree high power pulse 
;p2: fl channel 180 degree high power pulse 
;dO: incremented delay (213) 
;dl : relaxation delay; 1-5 * Ti 

1/(4*1JCH)  for CH, 1/(8*1JCH)  for CHx 
1I(4J(CC)) 

;di 1: delay for disk 110 	 [30 msec] 

;cnsti: scaling factor 
;cnst2: = J(CH) 
;inO: 1/(2 * SW(X)) = DW(X) 
;ndo: 1 
;d21 : compensation for heating during increasing t 1 
;NS: 32 * 
;DS: 16 
;td 1: number of experiments 
;11=tdl/2: number of real points 
;FnMODE: Echo:antiecho 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

;gpzl: 20 
;gpz2:35 
;gpz5: 40.0 
;gpz6: -40.0 
;gpz7: 40.16 
;gpz8: 7 
;gpz9: 90 

;Processing 

;PHCO(F1): 90 
;PHC1(F1): -180 
;FCOR(Fi): 1 

;$Id: inadph,v 1.3 2002/06/12 09:04:58 ber Exp $ 

fM-DEPT-INADEQUATE: 

2D DEPT-INADEQUATE experiment yields interleaved in-phase/antiphase spectra in F 1  
two fixed evolution intervals are optimized for long-range couplings and one-bond 
correlations are suppressed 
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gradient selections are used 
adiabatic purge pulse/gradient block used according to 
M. J. Thrippleton and J. Keeler Angew. Chem. mt. Ed. Engi. .2003, 42, 3938-3941 

#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 

prosol relations=<triple> 

"p2=pl *2" 
"p4 p3*2" 

# ifdefFll8O 
d0=0.5*in0" 

"DELTA 1 = 1 u" 
# else 
"dO=3u" 
DELTA1=2*d0" 

#endif 

"d20=4u" 

"d31 s/(cnst2*2)" 
d5=1s/(cnst4*4)" 	; nJCC 

"d6=ls/(cnst3*4)" 	; 1JCC 
"TAU=d5-p 1 9-di 6" 
"TAU1=d6-p 16-di 6" 

"in20=cnstl *inO" 
"in2 1=(cnstl )*inO" 
"13=(tdl/4)" 
"d2 1=(in2 1+inO)*13+4u" 
"dl 1=30m" 
"dl 3=4u" 
"dl 2=20u" 

"DELTA=d3-pl 6-d16" 
"DELTA3=d5-p 1 9-di 6-20u" ;nJCC 
"DELTA4d5-p 1 9-dI 6-2 0*d320u"  ;nJCC 
"DELTA6=d6-d3-p 1-p1 6-di 6" ; I JCC 

1 ze 
dli p112:12 

2 dli do:f2 BLKGRAD 

d12 p119:fi 
20u cpdsl:fl. phi 	;1H dec on 
d2 I 
d2 1 
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if "10 %2 = 0" 	; heat compensation for antiphase multiplets 
{ 

DELTA3 
DELTA3 
} 

d12 do:fl 	; 1H dec off 
d12 pli:fl 
50u UNBLKGRAD 

pl6:gp6 
d16 
(p1 phl):fi 
4u 
(p1 ph2):fi 
pl6:gp7 
d16 BLKGRAD 

dl pll:fl 

3 (p1  phI) 	; this is the real start 
.d3 p12: f2 
(ralign (p2 phi) (p3 ph3):f2) ;90 deg 13C pulse 
d3 UNBLKGRAD 
(p1 ph2) 
DELTA6° 
pi6:gp4 
d16 

# ifdefCOMP2 
di2 p10:12 
(p24:sp7 ph3):f2 
d12 

# else 
(p4 ph3):f2 

# endif 
pl6:gp4 
d16 p12:12 
TAU 1 

(p3 ph2):f2 ;purge one-bond 

di2 p10:12 
lOu gronO 
(p30:sp3O phi 1):f2 
20u groff 
pi9:gp8 
d16 pIl9:fl 
d12 p12:12 
20ucpds1:fl phi ;lHdecon 

(p3 ph8):f2 
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# ifdefCOMP2 
d20 plO:f2 
4u 
(p24:sp7phlo):f2 
4u 
d20 p12:12 

# else 
d20 
(p4 phlO):f2 
d20 

# endif 

if "10 %2 = 1" 	; acquistion of inphase multiplets 
{ 

(p3 ph8):f2 ;purge antiphase 
20udo:fl ;lHdecoff 
d12 p10:12 
lOugronO 
(p30:sp3O phi 1):f2 
20u groff 
p1 9:gp9 
d16 p12:12 
20u cpdsl:fl phi 	;1H dec on 

(p3 ph9):f2 

# ifdef COMP2 ;evolve nJCC 
DELTA3 
20udo:fl ;lHdecoff 
p1 9:gp 10 
d16 p10:12 
4u 
(p24:sp7 phl):12 
4u 
pl9:gplO 
d16 
20u cpdsl:fl phi 	;1H dec on 

DELTA3 p12:12 
# else 

DELTA3 
pl9:gplO 
d16 p10:12 
4u 
(p4ph3):f2 
4u 
pl9:gpiO 
d16 
DELTA3 p12:12 

# endif 
} 
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(p3 ph2):f2 ;MQ 13C13C created 
dO 
dO 
20udo:fi ;lHdecoff 
p16:gpl*EA 
d16 

# ifdefCOMP2 
d12 plO:f2 
(p24:sp7 ph7):f2 
d12 

# else 
(p4  ph7):f2 

# endif 

DELTA1 
p16 :gp2*EA 
d16 p12:f2 
20u cpdsi:fi phl 	;1H dec on 
(p3 ph5):f2 ; MQ -- SQ transfer 
TAU 
2Ou do: fl ;llldecoff 
pl9:gp5 
d16 
d13 

# ifdef COMP2 
d12 plO:f2 
(p24:sp7 ph 12)J2 
d12 

# else 
(p4  phl):f2 

# endif 

d13 
pl9:gp5 
d16 p12:f2 
20u cpdsl:fl phi 	;iH dec on 

DELTA4 

20u do:fl ;1H dec off 
0 pll:fl 
(p1 phi):fl 
0 
(lalign (p2 phi) (p3 ph6):f2) 
d13 
DELTA 

p1 6:gp3 
d16 BLKGRAD pll2:f2 
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go=2 ph3 1 cpd2:f2 
dli do:f2mc#0to2 

F1I(iuO, 2) 
F1EA(igrad EA, idO & id2O & dd2l) 

exit 

ph 1=0 
ph2=l 
ph3=02 
ph4=1 
ph5=0 
ph6=1 
;ph6=1 111 3 3 33 
ph7=0 0 11 
ph8=3 
ph9=l 
phlO=0 0 00 2 2 22 
phi 1=0 
phl2=0 0 0 0 0 0 0 0 

11111111 
ph3l=02020202 

20202020 
;ph3l=0 2022020 

2 0200202 

;pll : fl channel - power level for pulse (default) 
;pl2 : 12 channel - power level for pulse (default) 
;p112: 12 channel - power level for CPD/BB decoupling 
;sp7: composite adiabatic 180: Crp60comp.4 
;spi3:180: Crp60,0.5,20.1 
;pl : fl channel - 90 degree high power pulse 
;p2 : fl channel - 180 degree high power pulse 
;p3 : 12 channel - 90 degree high power pulse 
;p4 : 12 channel - 180 degree high power pulse 
;p24: composite adiabatic 180: 2ms 
;p8: Crp60,0.5,20.1 500us 
;p 16: homospoiLfgradient pulse 

;dO: incremented delay (213) 	[3 used 
;dl : relaxation delay; 1-5 * Ti 
;di 1: delay for disk 110 	 [30 msed] 
;di3: short delay 	 [4 used 
;di 6: delay for homospoillgradient recovery 

;cnstl: = scaling factor 
;cnst2: = iJ(CH) 
;cnst3: = lJ(CC) 
;cnst4: = nJ(CC) 
;in0: 1/(2 * SW(X)) = DW(X) 
;ndO: 2 
;NS: 1 * n 
;DS: >= 16 
;td 1: number of experiments 
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;FnMODE: echo-antiecho 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

;use gradient ratio: gp 1: gp 2 : gp 3 = 40 : -40 : 40.16 for C-13 

;for z-only gradients: 
;gpzo: 4% 
;gpzl:40% 
;gpz2: -40% 
;gpz3: 40.16% 
;gpz4: 57% 
;gpz5: 77% 
;gpz6: 60% 
;gpz7: 70% 
;gpz8: 8% 
;gpz9: 15% 
;gpzl0:90% 

;use gradient files: 
;gpnaml: SINE. 100 
;gpnam2: SINE. 100 
;gpnam3: SINE. 100 

;$Id: invietgpsi,v 1.6 2000/05/08 11:40:23 eng Exp $ 

REVINEPT-INADEQUATE: 

2D reversed-INEPT-INADEQUATE experiment yields interleaved in-phase/antiphase 
correlations only with gradient selection 
phase sensitive and phase cycling according to: 
M. Bourdonneau & B. Ancian, J. Magn. Reson. 132, 316-327 (1998) 

#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 

"p2=pl*2" 
"p4=p3*2" 

"d2=1 s/(cnst2*4)"  ;JCH 
;"d3=l s/(cñst2*4)" ;kJCH 
"d4= 1 s/(cnst3 *4)  ;nJCC 
"d5= 1 s/(cnst3 *4)+  1 s/(cnst 1*8)"  ;delay for alternative exp. 
"dl 1=30m" 
"dl 220u" 

"DELTA 1 =d4-d3-dl 2" 
"DELTA3=d5-d3-d12" 	; for alternative experiment 
"DELTA2=d2-p 1 6-d 16" 

# ifdefFll8O 
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"dO=inO/2 + lu" 
# else 
"dO=3u" 
#endif 

DELTA4_2*dO 
"p1 8=2ms" 
"10=1" 

"in2 1=inO" 
"13=(tdl/4)" 
"d2 1=inO*13+4u" 
"TAU=d12*d1 12*d21u 

1 ze 
dli p112:f2 

2d11 do:f2pll:fl 

50u UNBLKGRAD 
pi6:gpi 	;purge 
d16 
(p1 phl):fl 
4u 
(p1 ph2):fl 
pi6:gp2 
d16 BLKGRAD 

heating compensation 
dO*2.0 
d12 p12:f2 p119:fl 
dli cpdsl:fi phi 
TAU 
4udo:fl 
di2 p118:11 
d12 cpdsl:fi ph2 
d21 *2.0 

---heating compensation 

50u UNBLKGRAD 

# ifdefBB90 ; real start 
3 (p11 :spl ph3):f2 	; shifted because of shape by 90deg 

4u 
# else 
3 (p3 ph3):f2 

4u 
# endif 

if"10%2= 1" 
{ 

d4 
} 

else 
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{ 

d5 
} 

# ifdefBB 180 
4u 
(p12:sp2 ph3):f2 
4u 

# else 
(p4ph3):f2 

# endif 

if "10 %2 = 1" 
{ 

d4 
} 

else 
{ 

d5 
} 

4u 

(p3 ph3):f2 ;MQ generated 

dO * 2 .0 
dl2do:fl 
p16 :gp5*EA 

# ifdefBB 180 
d16 plO:f2 
(p12:sp2phl):f2 

# else 
d16 
(p4phl):f2 

# endif 

# ifdefFl 180 
lu 

# else 
DELTA4 

#endif 

p16 : gp6*EA 
d16 pl2:f2 
d12 cpdsl:fl phi 

(p3  ph4):f2 

;refocusing starts here 
if "10 %2 = I" 

{ 

d4 
} 
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else 
{ 

d5 
} 

# ifdefBB 180 
4u 
(p12:sp2 ph5):f2 
4u 

# else 
(p4ph5):f2 

# endif 

if "10 %2 = 1" 
{ 

DELTA 1 
} 

else 
{ 

DELTA3 
} 

d12 do:fl 
0 p11 :fl ; optimize 0 for a compromise between CH and CH2 
(p3 ph2):f2 
p18:gp3 
d16 
p1 phi 
d2 

# ifdefBB 180 
(center (p12:sp2 phl):f2 (p2 phl):fl) 

# else 
(center (p4 phl):f2 (p2 phl):fl) 

# endif 

pl6:gp7 ;40.16 
d16 
DELTA2 p112:f2 BLKGRAD 

go=2ph31 cpd2:f2 
dl  do:f2mc#0to2 
F1I(iu0, 2) 
F1EA(igrad EA, idO & dd21) 
dli do:12 

exit 

phO=0 
ph 1=0 
ph2=i 
ph3=0 1 2 3 
ph4=0 0 0 0 2 2 2 2 
ph5=0 0 0 0 0 0 0 0 
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11111111 
ph3l=02 022020 

20200202 
;pll : fl channel - power level for pulse (default) 
;pll2: f2 channel - power level for CPD/BB decoupling 
;pl : fl channel - 90 degree high power pulse 
;p2: fl channel - 180 degree high power pulse 

;dO: incremented delay (213) 
;di : relaxation delay; 1-5 * Ti 

1/(2*1JCH)  for CH, 1/(4*1JCH)  for CHx 
1/(4J(CC)) 

;dl 1: delay for disk I/O 	 [30 msec] 

;cnstl: = 1J(CC) 
;cnst2: = J(CH) 
;cnst3: = nJ(CC) 
;in0: 1/(2 * SW(X)) = DW(X) 
;nd0: I 
;NS : 32* n  
;DS: 16 
;td 1: number of experiments 
;11=tdl/2: number of real points 
;FnMODE: States-TPPI, TPPI, States or QSEC 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

;;gpzl: 20% 
;;gpz2: 35% 
;gpz3: 90% 
;gpz5: 40% 
;gpz6: -40% 
;gpz7: 40.16 

;Processing 

;PHCO(F1): 90 
;PHC1(F1): -180 
;FCOR(F1): 1 

;$Id: inadph,v 1.3 2002/06/12 09:04:58 ber Exp $ 

JM-REVINEPT-INADEQUATE: 

2D reversed-iNEPT-INADEQUATE J-modulated experiment yields interleaved in-phase/ 
antiphase spectra of one-bond and long-range proton-carbon correlation and coupling 
constants in F 1  with gradient selection 
phase sensitive and phase cycling according to: 
M. Bourdonneau & B. Ancian, J. Magn. Reson. 132, 316-327 (1998) 

#include <Avance.incl> 
#include <Delay.incl> 
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#include <Grad.incl> 

"p2=pl *2" 
,,p4=p3*2 ,,  

"d2= I s/(cnst2*4)"  ;JCH 
;"d3=1 s/(cnst2*4)I  ;kJCH 
"d4= 1 s/(cnst3 *4)?  ;nJCC 
"dl 1=30m" 
"dl 2=20u" 

"DELTA 1 =d4-d3 -d 12" 
"DELTA2=d2-p 1 6-d 16" 
"DELTA3=2*dO" 
"DELTA4=d4-p 1 6-d 1 6-20u" ;nJCC 

"p1 8=2ms" 

# ifdefFll8O 
"dO=inO/2 + lu" 
# else 
"dO=3u" 
#endif 

"d20=3u" 
"in2O=cnstl *jnO" 
"in2 1=cnstl *inO? 
93=(td 1/4)" 
"d2 1=(in2l+inO)*13+4u" 
"TAU=d12*d1 12*d21" 

,, 1o=1  it 

I ze 
dli pll2:f2 

2d11 do:f2pll:fI 

50u UNBLKGRAD 
pl6:gpl 	;purge 
d16 
(p1 phl):fl 
4u 
(p1 ph2):fl 
p16:gp2 
d16 BLKGRAD 

-heating compensation 
dO*2.O 
d20*2.O 
d12 pl2:f2 p119:fl 
dli cpdsl:fl phi 
TAU 
4u do: fl 
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d12 p118:fl 
d12 cpdsl:fl phi 
d21*2 

if "10 %2 = 0" 	; heat compensation for antiphase multiplets 
{ 

DELTA4 
DELTA4 
} 

heating compensation 

50u UNBLKGRAD 

if "10 %2 = F' 	; acquistion of inphase multiplets 
{ 

ifdefBB90 ; real start 
3 (pll:spl phl):f2 

4u 
# else 
3 (p3 phl):f2 

4u 
# endif 

d20 

# ifdefBB 180 
4u 
(pl2:sp2 phl):f2 
4u 

# else 
(p4phl):f2 

# endif 

4u 
d20 

shifted because of shape by 90deg 

(p3 ph 1): 12 ;purge antiphase 
20udo:fl ;lHdecoff 
d12 p10:12 
lOu gronO 
(p30:sp3O phl):f2 
20u groff 
p1 6:gp9 
d16 p12:12 
20ucpdsi:fl phi 	;iHdecon 
(p3 ph3):f2 

# ifdefBB 180 ;evolve nJCC 
DELTA4 
20udo:fi ;lHdecoff 
p1 6:gp 10 
d16 p10:12 
4u 
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(p12:sp2 ph3):f2 
4u 
pl6:gplO 
d16 
20u cpdsl:fl phi 	;1H dec on 
DELTA4 pi2:f2 

# else 
20udo:fl ;lHdecoff 
DELTA4 
pl6:gplO 
d16 piO:f2 
4u 
(p4ph3):f2 
4u 
pl6:gplO 
d16 
20u cpdsl:fl phi 	;1H dec on 
DELTA4 p!2:12 

# endif 
} 

else 
{ 

# ifdefBB9O ; real start 
4 (pli:spl ph3):f2 	; shifted because of shape by 90deg 

4u 
# else 
4 (p3 ph3):f2 

4u 
# endif 

d20 

# ifdefBB 180 
4u 
(pl2:sp2 ph3):f2 
4u 

# else 
(p4ph3):f2 

# endif 

4u 
d20 

} 

(p3 ph3):12 ;MQ generated 

dO*2.0 
d12 do:fi 
p16:gp5*EA 

# ifdefBBl8O 
d16 p10:12 

216 



(p12:sp2 phl):f2 
# else 

d16 
(p4phl):f2 

# endif 

# ifdefFli8O 
lu 

# else 
DELTA3 

#endif 

p16:gp6*EA 
d16 pl2:f2 
d12 cpdsl:fl phi 

(p3 ph4):f2 

d4 ;refocusing starts here 

# ifdefBB 180 
4u 
(p12:sp2 ph5):f2 
4u 

# else 
(p4ph5):f2 

# endif 

DELTA 1 
d12 do:fl 
0 p11 :fl ; optimize 0 for a compromise between CH and CH2 
(p3ph2):f2 
p1 8:gp3 
d16 
p1 phi ;back to proton 
d2 

#ifdefBBi8O 
(center (pi2:sp2 phl):f2 (p2 phl):fl) 

# else 
(center (p4 phl):f2 (p2 phi):fl) 

# endif 

pl6:gp7 
d16 
DELTA2 pli2:f2 BLKGRAD 

go=2ph3i cpd2:f2 
dl  do:f2mc#0to2 
F1I(iu0, 2) 
F1EA(igrad EA, idO & id20 & dd2l) 
dli do:f2 

exit 
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ph 1=0 
ph2=1 
ph3=0 12 3 
ph4=0 0 0 0 2 2 2 2 
ph5=0 0 0 0 0 0 0 0 

11111111 
ph3l=02022020 

20200202 

;pll : fl channel - power level for pulse (default) 
;pll2: f2 channel - power level for CPD/BB decoupling 
;pl : fl channel - 90 degree high power pulse 
;p2 : fl channel - 180 degree high power pulse 

;dO : incremented delay (213) 
;dl relaxation delay; 1-5 * Ti 
;d3 : 1/(2*1JCH) for CH, 1/(4*1JCH)  for CHx 
;d4: 1/(4J(CC)) 
;dl 1: delay for disk 110 	 [30 msec] 

;cnstl: scaling factor 
;cnst2: = J(CH) 
;cnst3: = J(CC) 
;in0: 1/(2 * SW(X)) = DW(X) 
;ndO: I 
;d21 : compensation for heating during increasing t 1 
;NS: 32 * 
;DS: 16 
;tdl: number of experiments 
;11=tdl/2: number of real points 
;FnMODE: Echo:antiecho 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

;gpzO: 4% 
;gpzi: 67% 
;gpz2: 77% 
;gpz3: 90% 
;gpz5: 40% 
;gpz6: -40% 
;gpz7: 40.16% 
;gpz9: 13% 
;gpzlO: 7% 

;Processing 
;PHCO(F1): 90 
;PHC1(F1): -180 
;FCOR(F1): 1 

;$Id: inadph,v 1.3 2002/06/12 09:04:58 ber Exp $ 
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