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Abstract

In forensic contexts, evidence gathered are valuable in suggesting possible crimes. The

problems forensic scientists are often interested in are whether evidence found at the

scene of the crime match those that are found related to some suspect. Prosecution

and defense propositions are often put forward assuming the evidence came from the

same source or they are not from the same source. A popular and objective measure

of the value of evidence is the use of the likelihood ratios that is calculated as the ratio

between the probabilities of observing the evidence given each proposition.

In this thesis, we will provide methodologies for the evaluation of the likelihood ra-

tio when evidence are characterised by functional data such as mass spectrophotometry

data. Three models will be developed based on fundamental functional data analysis

and use of systems of basis functions for the decomposition of means. Each of the

three models considers a different covariance structure for between- and within-group

variations. They are independent and constant variances across groups, independent

and constant within-group variances and auto-covariance. Two models that only make

use of the data after dimension reduction are also developed. One is multivariate nor-

mal random-effects model with constant covariance matrix and the other one puts an

inverse Wishart prior distribution on within-group covariance matrix. Both models

consider two levels of variability, within- and between-group, for the mean.

All models will be used to calculate likelihood ratios for three sets of data and re-

sults will be compared using different measures of performances such of rates of mis-

leading evidence, Tippett plots and empirical cross-entropy (ECE) plots. Sensitivity

analysis is then done to test the effect of using different estimations of the hyperpa-

rameters on likelihood ratios. Furthermore, we also preprocessed the data in another

way, that is taking first order differences and replace the original data to feed into the
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models. Conclusions will be drawn based on the performances of each model on each

dataset, including sensitivity analysis and more data preprocessing. Finally, guidances

on how to choose the model for the calculation of likelihood ratios for other kinds of

data will be provided.
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Lay summary

It is forensic experts’ job to comment on evidence in a court case. When a crime is

committed and evidence gathered, forensic experts can use their expertise that comes

from experiences to suggest how likely there is a connection between a suspect and the

crime based on the evidence gathered. To do so, comparisons are to be made between

two competing hypothesis; they are prosecution and defense or alternative hypotheses.

Likelihood ratios can then be calculated as an objective measure of the strength of evi-

dences in support of the prosecution hypothesis over the alternative hypothesis. It is

the ratio between the probabilities of observing the evidence given the two hypotheses.

There are many ways of calculating likelihood ratios, all of which require mod-

elling of the measurements obtained from the evidence and some databases with a

collection of measurements of the same type of evidence from some relevant popula-

tion. Methods for obtaining likelihood ratio were first developed for univariate contin-

uous measurements but as there are more and more types of data becoming available,

new ways of calculating likelihood ratios need to be developed. We will be focusing

on analysing microspectrophotometry data that are functional data. They are multi-

variate and can be seen as observations of a smooth underlying function over a range

of values. This is different from multivariate data as there are hidden structures be-

tween the points that makes them highly correlated. In the past, this types of data was

compared visually or evaluated after many transformations. However, we are able to

develop models that take into account all variabilities that are essential for distinguish-

ing between evidence in one probabilistic model and produce likelihood ratios that are

useful for the purpose of evaluating evidences. After all, our methodologies can be

readily applied on different kinds of data with slight modifications.
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Chapter 1

Introduction

1.1 Introduction to evidence evaluation

In forensic context, a problem of interest is to compare trace evidence, i.e., evidence

that can possibly be used to suggest a crime. For example, blood stains, glass frag-

ments, or gunshot residue found at the scene of a crime.

In cases where the source of evidence is of interest, or whether trace evidence

found at different places suggest a connection, comparisons are made by assuming

two competing propositions related to the origin of the evidence. For example, in a

document examination problem where a document is suspected of being altered, the

question of interest is whether it was produced by a suspect’s pen, or ink. In such a

problem, the prosecution proposition is called Hp and suggests possible connection

and the defence proposition is called Hd and suggests otherwise. When comparing

trace evidence, the one that is produced by the suspect is typically of known origin

(the suspect) and the other one is of unknown origin. Here and throughout we call

them the control and recovered evidence, respectively. The comparison between trace

evidence will be based on these two propositions.

In order to compare Hp and Hd, a set of measurements has to be obtained for both

control and recovered evidence. These measurements are used to represent features of

evidence and are typically used to discriminate evidence for forensic purposes. The

trace evidence are either discretely characterised, for example DNA profile of blood

stain, or continuously characterised, for example measurements of refractive indices
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and elemental concentrations of glass fragments.

To aid fact-finders in making decisions, likelihood ratios (Section 2.6) are widely

accepted as an objective measure of the strength of the evidence in support of the

proposition Hp over Hd. It is the ratio of the probabilities of observing the evidence

given Hp and Hd, respectively.

Figure 1.1: The evaluation of likelihood ratios for two scenarios under the two propo-
sitions Hp and Hd. The two propositions give two distinct distributions as illustrated
by the densities drawn in both panels. The density under Hp typically has a smaller
variation; hence is represented by the one towards the right. The purple lines represent
some statistics of control and recovered evidence observed. Likelihood ratios are eval-
uated as the ratio between the two intersecting points with the numerator being the one
intersecting with the density given Hp. The top panel gives a likelihood ratio that is
greater than one, which supports Hp over Hd and the bottom panel gives a likelihood
ratio that is less than one.

The evaluation of such probabilities requires knowledge of the distribution of the ev-

idence given each proposition as shown in Figure 1.1, which requires the choice of a
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relevant population. A database of relevant population is a collection of the same type

of evidence that can be used for a given case. As an example, consider a murder case

that happened in Central England where the suspect had left a bloodstain, the relevant

population would not be the same as a murder case that happened in Spain regarding

the ethnic composition of the general population in each region. Given common crimes

and databases constructed, the use of likelihood ratio for the evaluation of evidence is

well developed for evidence that are characterised by either discrete or continuous data

(Aitken and Taroni, 2005). However, the use of likelihood ratio for evaluating evidence

that are characterised by functional data where one or more variables is defined over a

continuum, has not been well developed. Our primary aims are to develop statistical

models that can be used to evaluate evidence that are characterised by functional data

by building up existing methodologies used to analyse multivariate data and evidence

evaluation with applications to ink and fibre data.

1.2 Ink and fibre data

Forensic ink examination have been performed for decades in aid of investigating

forged documents. Although ink as an evidence does not have as big an impact in

detecting and convicting crimes as other evidence such as fingerprint or shoe prints,

it was used in many high profile cases since the U.S. Secret Service created the Inter-

national Ink Library (Burfield et al., 2015). Burfield et al. (2015) also reviewed the

use of functional data in characterising, comparing and classifying chemical data. It is

found that functional data analysis is a powerful technique which enables to control the

dimensionality and smoothness of a functional dataset but the implementation is com-

plex when compared to multivariate analysis. While their work was on analysing ink

chromatograms, we are interested in analysing microspectrophotometry data that can

be obtained without destructing the evidence. Microspectrophotometry (MSP) data is

the measure of colour which has many applications in forensic science as virtually ev-

erything has a colour. It is especially useful when we want to differentiate colours that

look indifferent to the naked eyes.

Fibres are probably the most common form of evidence. They are used as evidence

in a variety of cases (Frank and Sobol, 1990). Since the 1970’s MSP has been used in
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forensic science as an objective method for providing reproducible and discriminating

analysis of the colour of a single fibre (Was-Gubala and Starczak, 2015).

Microspectrophotometry data of ink and fibre are the motivating examples of func-

tional data our developed models are based on. To show their distinctive properties, a

sample selected from each dataset is drawn. In Figure 1.2, some replicates of the same

type are drawn as curves in the same panel for ink, wool and cotton separately.

Figure 1.2: Three plots each showing multiple observations of microspectrophotome-
try (MSP) data by connecting m points {(wj, ykij), j = 1, . . . ,m} of a type of ink, red
woollen and red cotton.

Even though these are all microspectrophotometry data, they can look different for

different materials. Microspectrophotometry data are useful in differentiating between

colours that look indifferent to naked eyes so they can be used in forensic ink and fibre

examinations.

By the visual representation of (functional) data of our interest, we will use the

word curve to indicate a set of pairs of observations that form a single unit of the data.

Five models are introduced for the evaluation of evidence that are characterised by

functional data. Three of which are proposed and two were pre-existing. The newly

proposed models have an additive structure which assumes that each curve is mainly

composed of an overall shape and errors at each point of observation. The shape is

assumed to be representable by a linear combination of some basis functions and the

errors follow certain distributions according to different assumptions for each model.

They are constant and independent for all groups, constant and independent within

groups, and constant and autocorrelated within groups. This method was unprece-
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dented as it requires probabilistic models that can be complicated to evaluate for com-

plex (functional) data. It is made possible through writing the overall shape as a linear

combination of basis functions that serves as a medium for dimension reduction. How-

ever, it has the advantage of direct evaluation of likelihood ratios from the original data.

For forensic ink or fibre evaluation this has never been tried before although methods

for the evaluation of score-based likelihood ratios for ink data were proposed by Mar-

tyna et al. (2013). The pre-existing models are multivariate normal random-effects

model (Aitken and Lucy, 2004) and the consideration of within-group variation on top

of that (Bozza et al., 2008) but they had applications in the elemental composition of

glass and handwriting evidence, respectively. To evaluate evidence using these mod-

els, we have to use common techniques of multivariate data analysis to first transform

our data before a lower dimensional representation can be used in place of the original

functional data of our interest.

Next, three datasets will be used to assess the performance of these models after

basis selection and checking of assumptions. They are blue inks and red wool and

cotton fibre data. Each one represents functional data with certain characteristics which

will be introduced in Chapter 4. Tables and plots will be displayed to demonstrate

the advantages and disadvantages of each model for different data. Discussion and

conclusion will be drawn based on these results.

1.3 Chapter summary

Chapter 2 is mainly composed of two parts. Sections 2.2 to 2.5 and appendix D.1

introduce notation and methodologies that are fundamental for the understanding of

the thesis. Section 2.6 introduces likelihood ratio for comparison problem in foren-

sic context. Section 2.6.1 summarises the use of likelihood ratio in the evaluation of

continuous data both univariate and multivariate, and Section 2.6.3 introduces score-

based likelihood ratios. Section 2.6.4 gives references to evidence evaluation on ink

and woollen and cotton fibre data which we use to evaluate the performances of our

models and finally Section 2.6.5 introduces evidence evaluation for evidence charac-

terised by functional data.

Chapter 3 introduces five models for the evaluation of likelihood ratio for evidence
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characterised by functional data; three of them component-wise, that is, treating the

curves as mainly composed of a function and some error for each measurement, and

two of them dimension reduced, that is, only considering a representation of the orig-

inal curves. These models are applicable to all functional data. They are introduced

independently of data we use to assess the performance. Based on models specified in

this chapter, the methods for evaluation with likelihood ratios are presented along with

how estimates can be obtained from training data (relevant population).

Chapter 4 introduces three sets of data, each of them will be described in detail and

various types of plots will be displayed for the ease of understanding. For the develop-

ment and assessment of models to be used for likelihood ratio calculation, properties of

these data will be examined and appropriate numbers of basis functions will be chosen

using bases and criteria discussed in Section 2.3.

Chapter 5 examines model assumptions for each dataset before the models are

used to evaluate likelihood ratios in Chapter 6. After fitting the models to each dataset,

more data are simulated by assuming they are generated using the same procedure as

our proposed models and the simulated data are compared with the original data as

another way to assess the models’ fit.

Chapter 6 contains likelihood ratios calculated for data introduced in Chapter 4 us-

ing models described in Chapter 3 and summarises in tables and plots to assess and

compare the performance of each model on each dataset. For each dataset in Chap-

ter 4 log likelihood ratios (lLRs) are calculated by splitting up the data into training

and testing sets for estimation of model parameters and likelihood ratio calculation,

respectively. For the purpose of performance evaluation, lLRs are calculated for pos-

sible pairs of evidence so we are able to obtain a massive number of lLRs. Tables

with values that summarise these log likelihood ratios including average log likelihood

ratios and rates of misleading evidence are presented for different set-ups, i.e., differ-

ent sizes of intervals (int) and number (ns) of curves within a set (Y c or Y r) to be

used in one comparison. Tippett plots and empirical cross entropies are also shown

and compared across models and datasets.

Chapter 7 includes sensitivity analysis of likelihood ratios obtained using different

estimates of parameters when evaluating under a selection of models. A selection

of two sets of curves will also be drawn to illustrate the cases that are failed to be
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distinguished by lLR’s under each model as a way to show the models’ limitations.

Chapter 8 contains more results, for when data is pre-processed before feeding into

the models. The process chosen is taking differences. It is done in order to to eliminate

certain characteristics present within the original data that might contribute to some

of the difficulties that some models introduced in Chapter 3 encounter while trying to

distinguish evidence through the calculation of likelihood ratios. The likelihood ratios

calculated using the processed data is presented in the same way as in Chapter 6 and

compared with those in Chapter 6.

Chapter 9 summarises results presented so far and provides a list of future research

directions including a guideline on selecting between proposed models for use on a

new dataset.

Parts of this thesis are summarised in Aitken et al. (2019), they will be mentioned

where appropriate.
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Chapter 2

Background

2.1 Introduction

This chapter is mainly composed of two parts. Sections 2.2 to 2.5 and appendix D.1 in-

troduce notations that are fundamental for the understanding of this thesis and method-

ologies that are used throughout. The rest of the chapter provides background and

existing methodologies our work is built upon.

The following sections are organised so that Section 2.6 introduces likelihood ra-

tios for comparison problems in a forensic context. Section 2.6.1 summarises the use

of likelihood ratios in the evaluation of univariate continuous data and Section 2.6.2

extends the idea to multivariate continuous data, and Section 2.6.3 introduces score-

based likelihood ratios. Section 2.6.4 gives references to evidence evaluation for ink

and woollen and cotton fibre data which are the motivating examples of data of our in-

terest and used for evaluating the performances of our models and finally, Section 2.6.5

introduces evidence evaluation for evidence characterised by functional data.

2.2 Some notation

Lower and upper case letters are used to denote a scalar or function with p(·), f(·)

and π(·) commonly associated with probability density functions. The word sequence

is used throughout to denote an indexed set, so that, for instance, a sequence {yi}

of real numbers is a real-valued function on a certain index set {i}. If {yi} is a se-
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quence of objects, each yi is called an element of the sequence. Boldface lower case

letters or numbers such as v ∈ Rm are used to denote anm-dimensional column vector

(v1, . . . , vm)T and boldface upper case letters such asM ∈ Rm×n are used to denote an

m by n matrix, which we sometimes write as [v1 v2 . . .vn−1 vn], i.e., a concatenation

of n m-dimensional vectors. For a matrixM that can be written as a concatenation of

vectors vi ∈ Rm for i ∈ {1 . . . n}, M i,j will be used to denote the (i, j)− th entry of

M or the i− th element of vj .

By convention, arithmetic operations on vectors are applied component-wise. For

example, if f : R 7→ R, v ∈ Rn, then f(v) = (f(v1), f(v2), . . . , f(vn))T . Given

functions f and g, the inner product 〈f, g〉 is defined as 〈f, g〉 =
∫
f(t)g(t)dt.

2.3 Dimension reduction

Dimension reduction, or transformation of data of interest into a smaller space is a

common technique when dealing with multivariate data primarily because it is easier

to work with data in lower dimensions.

Dimension reduction can be achieved in two ways, either by feature selection or

feature extraction. Feature selection relates to identifying subsets of important vari-

ables by some measure of predictive performance whereas in feature extraction raw

variables are projected onto a lower dimensional Euclidean space or manifold in gen-

eral. Feature selection constitutes an important aspect of the model building process

that can be used to further improve performance or could emanate as a natural method

for multivariate data analysis in many applications. However we will only consider

feature extraction in this thesis.

2.3.1 Principal component analysis

Principal component analysis is a dimension reduction technique that can be used to

approximate the data by introducing systems of eigenvectors that point towards direc-

tions with the largest variances.

Given a set of data Y ={yj ∈ Rm: j = 1, . . . , n}, an n-by-B matrix Θ=Y V con-

sisting of the original data Y projected onto a new coordinate system that represents
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directions with the maximum variances, can be obtained. This is based on the fact that

any n-by-mmatrix Y can be written asUDV T , whereU is an n-by-nmatrix consist-

ing of left singular vectors of Y ,D is a n-by-m diagonal matrix consisting of singular

values of Y and V is an m-by-m matrix consisting of right singular vectors of Y .

A n-by-m diagonal (rectangular) matrix D has nonzero elements only at its diagonal

entries Di,i for all 1 ≤ i ≤ min{m,n}. Multiplying V from the right in both left and

right hand side of Y = UDV T gives the scores Θ = Y V = UD.

The matrix V = [v1v2 . . .vB] ∈ Rm×B is obtained as follows. First,

v1 = argmax
||v||=1

n∑
i=1

|yi · v|2 = argmax
||v||=1

||Y v||2 = argmax
v

vTY TY v

vTv

= argmax
v

vTSv

vTv
.

SinceS = Y TY is positive semidefinite, it has a spectral decompositionS =
∑m

j=1 λjeje
T
j

where λj ≥ 0 ∀j, ||ej||=1 and eTs et = 0 ∀s 6= t so it follows that v1 = e1, the

eigenvector that corresponds to the maximum eigenvalue λ1. For k > 1, let Ỹ be

the projection of Y onto the remaining subspace, i.e., Ỹ
(k)

= Y −
∑k−1

j=1 Y vjv
T
j =

Y (I−
∑k−1

j=1 vjv
T
j ), then vk is given by

vk = argmax
||v||=1

n∑
i=1

|Ỹ (k)

i · v|2 = argmax
||v||=1

||Ỹ (k)
v||2 = argmax

v

vT Ỹ
(k)T
Ỹ

(k)
v

vTv

= argmax
v

vT (I−
∑k−1

j=1 vjv
T
j )TY TY (I −

∑k−1
j=1 vjv

T
j )v

vTv

= argmax
v

vT (I −
∑k−1

j=1 vjv
T
j )TY TY (I −

∑k−1
j=1 vjv

T
j )v

vT (I −
∑k−1

j=1 vjv
T
j )T (I −

∑k−1
j=1 vjv

T
j )v

= argmax
v

ṽTSṽ

ṽT ṽ
= ek.

Depending on whether n > m, a maximum of min{m,n} of these orthonormal vectors

can be obtained, hence B ≤ min{m,n}. When B = m, Y = UDV T and B < m,

an estimate for Y can be obtained by retaining selected (first B) columns of D so

Ỹ B = UDBV
T . The scores are ordered by decreasing variance so by selecting only

a subset of principal components, dimension reduction is achieved.

Using a two dimensional dataset Y as an example, the left panel in Figure 2.1

shows centered original data and two directions with the greatest variances indicated
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Figure 2.1: Example of principal component analysis on bivariate data Y . For illustra-
tion purposes, this example shows transformation instead of dimension reduction. The
bivariate data Y is constructed by putting two sets (clusters) of bivariate data together.
They were generated using multivariate normal distribution with different means and
covariance matrices and drawn as red and black numbers. The plot on the left shows
the two dimensions of the data plotted against each other after subtracting their means,
or centering. The plot on the right shows the first two principal components plotted
against each other after the transformation. The blue and grey lines (in both plots)
represent directions with the greatest and second greatest variations.

by blue and grey lines. The two lines are perpendicular. The right panel shows the

transformed data, or principal components scores Θ.

2.3.2 Systems of basis functions

Any vector y ∈ Rn, for n ∈ N, can be written as a linear combination of at most n

linearly independent vectors ei ∈ Rn, i.e., the vectors e1, . . . , en satisfy c1e1 + c2e2 +

· · · + cnen = 0 if and only if c = 0. The set of vectors {ei}ni=1 forms a basis of Rn,

in the sense that the span of e1, . . . , en is Rn. A system of basis functions is a set of

known functions {φb : R 7→ R, b ∈ {1, 2, . . . ,∞}} whose span is equal to the space

of functions H such that for any function g : R 7→ R, there exists a sequence of scalars

{θb} such that for all x ∈ R, g(x) =
∑∞

b=1 θbφb(x). Therefore, in contrast to a discrete

vector space of Rn where n linearly independent vectors {vi ∈ Rn : 1 ≤ i ≤ n}

are needed to span the vector space, an infinitely many of these φb(x) are needed to

form a basis that spans H, we can think of H as infinite dimensional. In practice, an

approximation based on truncating the infinite series and considering only the first B

terms of the sum, B ∈ N, is considered. An example of a system of basis function
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is a collection of monomials {φb(x) = xb−1 : b = 1, 2, . . . } (Ramsay and Silverman,

2005).

To illustrate how systems of basis functions can be used to approximate another

function, an example is shown in Figure 2.2. In Figure 2.2, the function G(x) shown

Figure 2.2: Example of basis functions {Bi : R 7→ [0, 1], i ∈ {1, . . . , 6}} and a func-
tionG shown in shaded grey. The functionG(x) can be written as a linear combination
of B1, . . . , B6, for example, θ2 = θ6 = 1, θ1 = θ3 = θ4 = θ5 = 0. The functions are
plotted over x ∈ [0, 30].

can be written as a linear combination of functions B2(x) and B6(x), i.e., G(x) =

B2(x) + B6(x) for x ∈ [0, 30]. The example is designed so that the function G equals

the sum of only two functions but this is rarely the case since, in general, a finite

number of basis functions might not be sufficient to fully reconstruct the function G.

2.3.3 Systems of B-spline basis functions

Spline functions are the most common choice of approximation system for functional

data without cyclical or periodic patterns. A spline function defined on [a, b] is a piece-

wise polynomial determined by the order o ∈ N that indicates polynomials of degree

o−1 and a nondecreasing knot sequence {τi}N+1
i=0 =(τ0 = a, τ1, . . . , τN , τN+1 = b) with

N interior knots where adjacent polynomials pieces of order o meet. Since any linear

combination of spline functions is still a spline function, it makes sense to make use of

the system of basis functions that serve as the building block of these splines.

For a given number N of interior knots, a set of spline basis functions can be

constructed as follows. Given τ = (τ0, τ1, . . . , τN+1) where τ0 ≤ τ1 ≤ · · · ≤ τN+1,
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define the augmented knot sequence as τ ∗ = (τ−(o−1), . . . , τ0, . . . , τN+1, . . . , τN+o)

with τ−(o−1) = · · · = τ0 ≤ τ1 ≤ · · · ≤ τN+1 = · · · = τN+o by appending boundary

knots o − 1 times. Re-index the augmented knot sequence as τ ∗ = (τ0, . . . , τN+2o−1)

then a set of real-valued functions Bi,j (for i = 0, . . . , N + 2o − 1, j = 1, . . . , o) can

be obtained recursively by

Bi,1(x) =

{
1 if τ ∗i ≤ x < τ ∗i+1

0 otherwise
(2.1)

and,

Bi,j+1(x) = αi,j+1(x)Bi,j(x) + [1− αi+1,j+1(x)]Bi+1,j(x) (2.2)

where

αi,j(x) =

{ x−τ∗i
τ∗i+j−1−τ∗i

if τ ∗i+j 6= τ ∗i

0 otherwise.
(2.3)

Two examples for obtaining basis functions are to be described. They are the sys-

tems of B-spline basis functions used in our analysis. The first example is the set of

basis functions used for fibre data where there areN = 3 equidistant interior knots with

boundary knots at (0, 4), and the order of the splines is o = 3. The augmented knot se-

quence used to construct the B-spline is (0, 0, 0, 1, 2, 3, 4, 4, 4). The domains used here

are for illustration only. The number of order o = 3 basis functions is B = 6 = N + o.

The exact formula for the bases can be obtained using Equations (2.1) and (2.2) recur-

sively as laid out in Figure 2.3 below. Every basis of order o is a linear combination of

bases of degree o− 1. Only non-zero B’s are shown.

The second example is the set of basis functions where there are N = 6 equidistant

interior knots with boundary knots at (0, 7), and the order of the splines is o = 3. The

augmented knot sequence used to construct the B-spline is (0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7).

Again, the boundary knots at (0, 7) is for demonstration only. The number of basis

functions (at order o = 3) is B = 9 = N + o. The detailed derivation of these basis

functions can be found in Appendix B. In our models where B-splines are used, we
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τ ∗2 = 0

τ ∗3 = 1

τ ∗4 = 2

τ ∗5 = 3

τ ∗6 = 4

B2,1

B3,1

B4,1

B5,1

B1,2

1− α2,2

B2,2
α2,2

1− α3,2

B3,2
α3,2

1− α4,2

B4,2
α4,2

1− α5,2

B5,2
α5,2

B0,3

1− α1,3

B1,3
α1,3

1− α2,3

B2,3
α2,3

1− α3,3

B3,3
α3,3

1− α4,3

B4,3
α4,3

1− α5,3

B5,3
α5,3

Figure 2.3: Example of derivation of a set of B-spline basis with N = 3 interior knots
and o = 3 using Equations (2.1) and (2.2) recursively.

(a) Four bases of order 1. (b) Five bases of order 2
that are linear combinations of
bases of order 1.

(c) Six bases of order 3 that
are linear combinations of
bases of order 2.

Figure 2.4: Example of obtaining 6 bases of order 3 by assuming 5 equidistant knots
(3 interior) from 4 bases of order 1.
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(a) Seven bases of order 1. (b) Eight bases of order 2
that are linear combinations of
bases of order 1.

(c) Nine bases of order 3
that are linear combinations of
bases of order 2.

Figure 2.5: Example of obtaining 9 bases of order 3 by assuming 8 equidistant knots
(6 interior) from 7 bases of order 1.

define the set of basis functions by B and o instead of τ since equidistant knots are

assumed. The problem now becomes selecting the right number of basis B of order o

to fit the data. It will be discussed in Section 2.5. Part of this section is summarised in

Aitken et al. (2019).

2.4 Functional data analysis

Ramsay and Silverman (2005) use the term functional data to describe a class of data

with certain characteristics. A set of points {(wj,yj) : j = 1, . . . ,m} is said to be

functional if the sequence {yj} is considered to be samples of a smooth underlying

function x : R 7→ Rs. Typically, the sequence {yj ∈ Rs} represents observations

from a function x at points {wj} with error so that yj = x(wj) + εj where {wj} is

a sequence of strictly increasing numbers. The set {wj : 1 ≤ j ≤ m} is commonly

taken as time or wavelengths.

By convention, y = {yj} will be used to represent a sequence of measurements

that are taken at w = {wj}, or y = (y1, . . . , ym)T for s = 1 and analysed using ideas

borrowed from multivariate data analysis. However, there are fundamental differences

between multivariate and functional data; if y is treated as multivariate data, properties

such as dimensionality and dependence of the elements yj need to be taken care of.

The following sections will explain how this is implemented by introducing techniques

already common to multivariate data and how it will be used for analysing functional

data.
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2.4.1 System of basis functions and functional data

Let {yj} be observations of function f at {wj} with error. Now, suppose we have

w = {wj : 1 ≤ j ≤ m}, a sequence of strictly increasing real numbers in the

range [0, 30] and g = {gj} = G(w) ∈ Rm, the function G evaluated at w. Using

the same example as in Figure 2.2, if we also have bi = {bij} = Bi(w) ∈ Rm for

all i ∈ {1, . . . , 6}, g of dimension m can be represented by θ = (0, 1, 0, 0, 0, 1)T , the

coefficients of these basis functions, which is of a much smaller dimension. The vector

of coefficients θ is obtained as the unique solution of the system of linear equation so

thatBθ = [b1 b2 · · · b6]θ = g. ConsiderB∗ = [b1 b3 b4 b5], there are no θ∗ such that

B∗θ∗ = g but an estimate for θ∗ can be obtained using least squares that minimises

||g −B∗θ∗||2, θ̂
∗

= (B∗TB∗)−1B∗Tg. Note that as long as g, b1, . . . , b6 are function

evaluations at a given w, then w can be suppressed without loss. Similarly, we only

concern {yj} in the analysis of functional data.

2.4.2 Functional principal component analysis (fPCA)

In functional principal component analysis, we assume an underlying function x that

our observations are based on, or yj = x(wj) + ej where x(wj) is centered at some

true mean µ(wj). We are interested in writing x(w) as a linear combination of some

functions {φb(w) : b ∈ {1, 2, . . . ,∞}}, or x(wj) = µ(wj) +
∑∞

b=1 θbφb(wj).

Since the measurements are taken at fixed and equally spaced intervals, the mean

and variance of this function x(w) can be estimated empirically by first estimating

µ(wj) by the sample mean 1
nK

∑nK
i=1 yij of all n replicates for all K groups and the

covariance surface Σ by the sample covariance 1
nK

∑nK
i=1(yis− µ̂(ws))(yit− µ̂(wt)) for

all s 6= t and Cov(s, s) is obtained by smoothing. The spectral decomposition gives

Σs,t =
∑∞

b=1 λbφb(s)φb(t) ≈
∑B

b=1 λbφb(s)φb(t) where {φb(w) : R 7→ R : b ∈ {1, . . . , B}}

are the eigenfunctions of x(w), specifically,
∫
φs(w)φt(w)dw = 0 for all s 6= t and.

Given the eigenfunctions, the scores are obtained by θ(i)
b =

∫
(xi(w)−µ(w))φb(w)dw.

So Σ̂ = (Y − Ȳ )T (Y − Ȳ ) = Y T
c Y c = V D2V T where Y i,j = yij using the

same decomposition as in Section 2.3.1 after centering and the scores can then be ob-

tained by Θ = Y cV . This is equivalent as regressing Y c onto V using ordinary

linear regression Θ = Y cV (V TV )−1 = Y cV since V TV = I for V a collection of
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eigenfunctions.

2.5 Selecting the number of basis functions

When dimension reduction is necessary for the analysis of data, choosing the right

number of basis functions is crucial. The ultimate goal is to retain as least components

as possible to avoid over-fitting but the reduced data have to be a proper representation

of the original data so that no information is lost for the purpose of our work; i.e.,

reduced data will be sufficient for us to differentiate between propositions as we wish

by the calculation of likelihood ratios. To this end we consider information criteria as

means of assessing model fit while penalising model complexity in order to select the

number of basis functions. Additionally, we also look at simple measures of goodness-

of-fit tests such as residual sum of squares to aid model building.

For finite dimensional multivariate regression, the sums of squared residuals re-

sulted from fitting a linear models always decreases as the number of independent

variables increases so penalties need to be considered as otherwise complex models

will always be preferred.

2.5.1 Information criteria

Statistical models are often constructed to find patterns based on limited amount of data

in the hope of understanding the whole population of interest. When several models

are proposed, criteria have to be considered for selecting the most appropriate model.

In selecting the most appropriate models, methods such as maximum likelihood can be

used for the estimation of parameters when the dimension and structure are specified.

However, the problem is not as straightforward when the dimension is unknown as the

method always favours the most complicated models for the fit always gets better as

the model gets more complicated. In overcoming the shortcoming, Akaike proposed

an information criterion as an extension to the maximum likelihood paradigm to select

models without pre-specified dimension. For a given set of data y, it is assumed that it

was generated by some mechanism or true model g(y) that is unknown to us. The goal

is to find a suitable model for y from a collection of candidate models with dimension
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k such that it minimises the distance, that is, the Kullback-Leibler information defined

as

I(θk) = Eg(y)

[
log

g(y)

f(y|θk)

]
.

Define d(θk) = E [−2 log f(y|θk)]. Then we can write 2I(θk) = d(θk)−E [−2 log g(y)]

but E [−2 log g(y)] does not depend on θk so d(θk) alone is used instead of I(θk) and

it is called the Kullback discrepancy. To measure the discrepancy, d(θk) would be

evaluated at θ̂k, the maximum likelihood estimates for the collection of models with

dimension k. However, it is still not possible as g(y) is unknown. Akaike suggested

the use of AIC = −2 log f(y|θk) + 2k as it provides an asymptotically unbiased es-

timator of the expected Kullback discrepancy E
[
d(θ̂k)

]
. The term that includes the

empirical log-likelihood −2 log f(y|θk) is called the goodness-of-fit term and 2k the

penalty. While being asymptotically unbiased, Shibata (1980, 1981) claimed that AIC

is not consistent. Several variants have been proposed such as CAIC (Bozdogan, 1987)

and GIC (Konishi and Kitagawa, 1996) to correct for consistency and relax its assump-

tions, respectively. These variants differ mainly by their penalty terms. However, they

all give a relative measure of the goodness of a model so if all of the candidate models

fit the data terribly, they do not tell. For example, when comparing two models A and

B which giveAIC’s of 5 and 10, respectively, we prefer model A over B for its smaller

AIC but we do not know where a model that gives AIC = 5 stands in an absolute

sense and how small these values can get. For smaller sample sizes, variants based on

computationally intensive methods such as cross-validation, bootstrapping and Monte

Carlo simulation tend to perform well.

Another commonly used criterion is Bayesian information criterion which selects

the model that is a posteriori most probable. BIC = −2 log f(y|θk) + k log n places

a larger penalty on the number of parameters, favours lower-dimensional models com-

pared to AIC.

For the purpose of choosing the number of components, information criteria AIC

and BIC are often used. Ideally, we would pick the model with the lowest AIC or

BIC but these values can decrease monotonically as the model gets larger so different

techniques are used to choosing the optimal model based on these values including he

use of scree plots.
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2.5.2 Chi-squared like goodness of fit test

Since AIC and BIC are likelihood functions with some penalty, we consider another

way of selecting models, that is, R2E defined as

R2E =
∑
k,i,j

(ykij − ŷkij)2

|ŷkij|
=
∑
k,i,j

r̂2
kij

|ŷkij|
·

This is analogous to Chi-square goodness of fit test. It is better than AIC in the sense

that there is division involved so the terms in the summation have limit. Since ykij =

ŷkij + r̂kij , given data ykij , the closer ŷkij is to ykij the smaller r̂kij so this is to be

minimised as well. This provides another measure of fit compared to AIC and BIC.

2.6 Evidence evaluation and likelihood ratios

Likelihood ratio is a widely accepted measure for the evaluation of evidence (Lindley,

1977; Martyna et al., 2013; Aitken and Lucy, 2004). The prior odds in favour of Hp

compared with Hd are updated to posterior odds so that evidential value is taken into

account. To see this, let p(·) be the relevant probability density function and E =

{Ec,Er} be the set of controlled and recovered evidence. Then

p(Hp|E)

p(Hd|E)
=
p(E|Hp)

p(E|Hd)
× p(Hp)

p(Hd)
= LR× prior odds.

The likelihood ratio can be seen as a measure of the strength of evidence in support

of Hp over Hd with a value greater than one supporting Hp over Hd, a value less than

one supporting Hd over Hp and a value equal to one supporting both equally strongly.

The evidential value is calculated by careful considerations of 1) the similarity of fea-

tures observed for evidence being compared, 2) possible sources of variation including

within- and between-group variations, 3) the dependency relations among features and

4) the rarity of the features. The value of evidence in support of the prosecution propo-

sition should be stronger when measurements are similar and rare in the relevant pop-

ulation as opposed to similar but common. Likelihood ratio allows for an integrated

evaluation given all of the aforementioned points (Martyna et al., 2013). Traditional

significance test approach will also be mentioned briefly in the univariate continuous
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case in Section 2.6.1 to show why it is not preferred.

2.6.1 Likelihood ratio and significance test for comparing evidence

characterised by continuous data - the univariate case

Using glass fragments as example Lindley (1977) derived likelihood ratios under both

normal and nonnormal assumptions for univariate measurements. Suppose glass frag-

ments are found at a crime scene and on a suspect. We are interested in knowing

whether they come from the same source, or not. Measurements are taken of the re-

fractive indices of the fragments from the crime scene and the clothings of the suspect.

Let the fragments found at the crime scene be indexed by 1 to nc and those found on

the clothings of the suspect be indexed by 1 to nr. Their measurements x1, x2, . . . , xnc

and y1, y2, . . . , ynr are assumed to follow normal distributions with true values θc and

θr as means and a known and constant variance σ2. Denote the collection of measure-

ments x1, x2, . . . , xnc and y1, y2, . . . , ynr as x and y, respectively. Their means x̄ and

ȳ therefore follow normal distributions with means θc and θr and variances σ2/nc and

σ2/nr. Under Hp where x and y are assumed to have the same origin, θc is assumed

to equal to θr but not under Hd where the marginal density of x is assumed to be in-

dependent of that of y. Like x and y, the true values θc and θr are also assumed to

follow normal distributions but with common mean µ and variance τ 2. Unlike a fully

Bayesian approach, both of µ and τ 2 are assumed to be constant in the model and are

to be estimated from some relevant population. Usually between-group variance τ 2 is

assumed to be much greater than within-group variance σ2 if not identical. This can

be explained by the assumption that evidence of our interest are samples of the rele-

vant population and measurements from within the same groups have smaller variation

compared to those between different groups.

Likelihood ratio as defined previously in this section is evaluated as p(x̄, ȳ|Hp)/p(x̄, ȳ|Hd).

The numerator is evaluated by p(x̄, ȳ|Hp) =
∫
p(x̄|θ)p(ȳ|θ)p(θ)dθ since under Hp, x

and y are assumed to have the same origin; hence θ is common for measurements found

at either places (crime scene and suspect) and x̄ and ȳ are independent given θ. The de-

nominator, on the other hand, is evaluated by p(x̄, ȳ|Hd) =
∫
p(x̄|θ)p(θ)dθ

∫
p(ȳ|θ)p(θ)dθ

since under Hd, x and y are assumed to have independent origins; hence their joint
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marginal density is the product of individual marginal densities. In evaluating the per-

formance of this approach, comparisons are being carried out with a significance test

under the frequentitst approach. Using a significance test, the comparison problem

becomes testing of the null hypothesis that assumes the sets of evidence are similar or

the difference between the means of their measurements follows a normal distribution

with a known variance. The null hypothesis can then be rejected if the test statistic is

in the critical region. Cases with different ratios between between- and within-group

variances τ 2 and σ2 are compared to show that the significance test approach fails to

take into account the rarity of the measurements. It also only considers one hypothe-

sis; the null hypothesis is assumed to be true until enough evidence is found to show

otherwise at a pre-specified significance level that seems arbitrary. With these in mind,

likelihood ratio is favoured over significance test in that it considers two propositions

at once and it takes rarity into consideration when measuring the evidential value.

2.6.2 Likelihood ratio for comparing evidence characterised by con-

tinuous data - the multivariate case

It is not always possible to characterise evidence using univariate measurements and

the advancement of technology especially in the computational power and storage ca-

pacities gave rise to a wide range of data becoming available for analysis which are

typically multidimensional. Aitken and Lucy (2004) developed models for the calcula-

tion of likelihood ratios when the data is multivariate and normally distributed. Initially

motivated by measurements of the concentrations in three elemental ratios, these mul-

tivariate measurements yc,1, · · · ,yc,nc and yr,1, · · · ,yr,nr are assumed to be normally

distributed with the real values θc and θr as means for control and recovered evidence

with constant and known within-group variance covariance matrix U . Similarly, θc

and θr are assumed to follow a normal distribution about µ with variance covariance

matrix C, both constant and known. Similar to the univariate case we introduced ear-

lier on in this section, x̄ and ȳ are also centred at θc and θr but with variances U/nc

and U/nr, respectively. The likelihood ratio defined as p(x̄, ȳ|Hp)/p(x̄, ȳ|Hd) has

numerator that can be written as p(x̄, ȳ|Hp) =
∫
p(x̄|θ,U)p(ȳ|θ,U)p(θ|µ,C)dθ

and denominator p(x̄, ȳ|Hd) =
∫
p(x̄|θ,U )p(θ|µ,C)dθ

∫
p(ȳ|θ,U )p(θ|µ,C)dθ.
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It has a closed form solution due to the conjugacy nature of normal distributions.

It might be sensible to assume constant within-group variance covariance ma-

trix in the above application where measurements are of concentrations in elemen-

tal ratios; however, in cases where there might be variations among within-group

variance-covariance matrix, (Marquis et al., 2006) argued that the assumption of con-

stant within-group variation might be unrealistic and can result in unknown uncertainty

in likelihood ratios calculated since the variance still needs to be estimated. Therefore,

Bozza et al. (2008) proposed a two-level model that take randomness of the covari-

ance matrix into account and the original estimation problem of the covariance matrix

becomes estimation of its hyperparameters.

By conjugacy, the within-group variance covariance matrix U is assumed to fol-

low an inverse Wishart distribution with parameters Ω and ν. The likelihood ratio

defined as p(x̄, ȳ|Hp)/p(x̄, ȳ|Hd) has numerator that can be written as p(x̄, ȳ|Hp) =∫ ∫
p(x̄|θ,U)p(ȳ|θ,U)p(θ|µ,C)dθp(U |Ω, ν)dU . However, this can not be evalu-

ated analytically so approximations using Gibb’s sampling is required. Using the rela-

tion p(x̄, ȳ|Ψ)p(Ψ) = p(Ψ|x̄, ȳ)p(x̄, ȳ) where Ψ={θ,U} represents the parameters

of interest, the marginal densities we are interested in, p(x̄, ȳ), can be approximated

using point estimates of p(x̄, ȳ|Ψ), p(Ψ) and p(Ψ|x̄, ȳ) evaluated at a given value of

Ψ∗ that is usually taken to be the maximum likelihood estimate. The detailed algorithm

can be found in Appendix C.5.

2.6.3 Score based likelihood ratios

The method for evidence evaluation laid out in Section 2.6.1 requires an exact speci-

fication of the probabilistic model for the data, which is sometimes hard to formulate,

especially when the data generating mechanism is complex (Hepler et al., 2012). Even

if the model is known, reliable evidential values rely on the estimation of parameters

which are not always easy to obtain due to the uniqueness of each individual cases.

Score based approaches can be used to overcome some of these difficulties by first

calculating scores from features and then to evaluate the likelihood ratio using those

scores as new features. The scores measure the similarity between features of the con-

trol and recovered evidence; they usually indicate the proximity under some choice of
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distance.

Score based likelihood ratios are common in the evaluation of handwriting (Hepler

et al., 2012) and forensic speaker recognition (Gonzalez-Rodriguez et al., 2006). How-

ever, it still requires the evaluation of likelihood ratios. A hybrid approach that com-

bines chemometrics and likelihood ratio has been proposed by Martyna et al. (2016).

In this work multiple multivariate scores are first calculated using linear discriminant

analysis and subsequently, likelihood ratios of these scores are evaluated using the

multivariate normal random-effects model proposed by Aitken and Lucy (2004) and

finally score-based likelihood ratios are obtained by multiplying these individual like-

lihood ratios together. This is called naive likelihood models.

2.6.4 Evidence evaluation with reference to ink and fibre data

Forensic ink analysis is important for document examinations including identification

of forgeries, counterfeit document, alternations to document, and determine the origin

and dating of documents (White, 2004; Neumann et al., 2011). The examination of

documents were mostly done visually (Thanasoulias et al., 2003; White, 2004). Visual

examination of ink colour is very easily carried out and provides high discrimina-

tion power without being destructive to the samples. However, anyone intending to

forge a document will try his best to match the colour of the ink; what looks similar

with unaided eye might have substantially different chemical components or look very

different under other lighting conditions (White, 2004). Therefore, objective colour

comparison is needed and may be carried out by microspectrophotometric reflective

measurements (Pfefferli, 1983). Martyna et al. (2013) used a hybrid approach for

the evaluation of evidence as described in Section 2.6.3 on parameterised microspec-

trophotometry data using the so-called three colour systems.

Forensic fibre analysis is mostly done by colour measurements through thin layer

chromatography (TLC), microspectrophotometry (MSP) or Raman spectroscopy (Buzzini

and Massonnet, 2015; Massonnet et al., 2003). Among these, MSP is non-destructive

and allows for measurements with small samples (De Wael et al., 2015; Was-Gubala

and Starczak, 2015) so is often preferred. These spectra were used to be compared

visually and discriminating power is computed (Smalldon and Moffat, 1973) as the
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ratio between the number of distinguishable pairs to total number of pairs being com-

pared. Natural fibres such as cottons and wools are harder to characterise using light

microscopy due to limited number of morphological features (Buzzini and Massonnet,

2015) and variation within absorption and transmission curves within a fibre sample

may occur due to uneven dye uptake that makes analysis more difficult. After all, no

evidential values like likelihood ratios are currently used for forensic evaluation of fi-

bres at the source level alone (Ray, 2016) as it is claimed that reporting this without

case specific information is like communicating facts with no foundation of meaning.

Nonetheless, the data available can still be used to test the performance of our models.

2.6.5 Evidence evaluation for evidence characterised by functional

data

There are always chemical and physical features associated with forensic evidence that

can be useful for comparisons. Chemical analyses that involve extraction of composi-

tions usually provide more information as mixing components are identified. Examples

of instrumental techniques include high performance liquid chromatography (HPLC)

(Banas et al., 2010; Pfefferli, 1983; Kher et al., 2006), high performance thin layer

chromatography (HPTLC) (Neumann et al., 2011), time-of-flight secondary ion mass

spectrometry (ToF-SIMS) (Denman et al., 2010), direct analysis in real time (DART)

(Cody et al., 2005) and desorption electrospray ionisation (DESI) (Takáts et al., 2004)

for forensic ink analysis (Martyna et al., 2013). However, they are often destructive

(Martyna et al., 2013; Ziȩba-Palus and Kunicki, 2006; Kher et al., 2006) so the samples

would not be available for further analysis later in an investigation. Therefore, non-

destructive methods such as Fourier transform infrared spectroscopy (FTIR) (Banas

et al., 2010; Bojko et al., 2008; Martyna et al., 2015), Raman spectroscopy (Braz et al.,

2013; de Souza Lins Borba et al., 2015; Massonnet et al., 2003) and microspectropho-

tometry (MSP) (De Wael et al., 2015) are often preferred (Martyna et al., 2013; Mas-

sonnet et al., 2003). These produce functional data (Section 2.4) that can be analysed

using techniques borrowed from multivariate analysis so the evaluation of evidence

based on these data usually focuses primarily on dimension reduction using a combi-

nation of chemometric techniques such as principal component analysis (Adam et al.,
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2008), linear discriminant analysis (Kher et al., 2006) and statistical cluster analysis

(Adam, 2008; Denman et al., 2010; Thanasoulias et al., 2002, 2003; Martyna et al.,

2015, 2016; Roux et al., 1999). Since every case is unique and relevant background

data that can be used to estimate the parameters are often small compared to the num-

ber of variables, independence is usually assumed where possible (Aitken et al., 2007).

Burfield et al. (2015) assessed the possible use of functional data analysis for com-

paring and classifying forensic ink chromatograms. Martyna et al. (2015) combined

chemometric tools with the likelihood ratio approach on the evaluation of evidential

value of FTIR spectra of polymers and Raman spectra of car paints, which was un-

precedented despite the development of compressing multidimensional physicochem-

ical data using wavelet transforms. Based on these works we took a step further to

develop probabilistic models that are able to account for all variabilities despite data

complexity to obtain likelihood ratios that can be used as a reliable measure of the

strength of evidence in support of the propositions.
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Chapter 3

Models for functional data

3.1 Introduction

In this chapter, five models are introduced for the evaluation of likelihood ratio for evi-

dence characterised by functional data; three of them component-wise, that is, treating

the curves as mainly composed of a function and some error for each measurement,

and two of them dimension reduced, that is, only consider a representation of the orig-

inal curves. These models are applicable for all functional data. They are introduced

independently of the data we use to assess the performance. Based on models specified

in this chapter, the methods for evaluation of likelihood ratios are presented along with

how estimates can be obtained from training data.

3.2 Component-wise additive models for functional data

Given controlled and recovered evidence {Ec} and {Er} that are in the form of func-

tional data, we are interested in calculating likelihood ratios, to be written as the ratio

between two probabilities, each concerning a proposition that has to do with the ori-

gin of the evidence. In particular, when evidence is in the form of continuous data,

probabilities means products of probability density functions.

Following the introduction to functional data in Section 2.4, each observation con-

sists of measurements atm distinct values ofw, denoted by {(wj, yj), j ∈ {1, . . . ,m}},

which will sometimes be called a curve. It is assumed that {yj} are observations
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of a function x at {wj} with error, or yj = x(wj) + ej . Since there are usually

groups of observations and observations within groups, a set of data will be denoted

by {(wj, ykij), j ∈ {1, . . . ,m}, i ∈ {1, . . . , nk}, k ∈ {1, . . . , K}} where k indicates

the group the observation belongs to. Moreover, each component of an observation

can be decomposed into an additive representation of a trend function xk at wkij that is

dependent on group k, and measurement error ekij , written as ykij = xk(wj) + ekij or

yki = xk(w) + eki for the ith observation in group k.

Using systems of basis functions introduced in Section 2.3.2, xk(w) can be written

as xk(w) =
∑∞

b=1 θ
(k)
b φb(w) and approximated (Section 2.3.2) by

∑B
b=1 θ

(k)
b φb(w) =

Φθk for B < m <∞, where Φ = [φ1(w) φ2(w) · · ·φB(w)], a matrix of size m×B

that consists of basis function evaluations and θk = (θ
(k)
1 , . . . , θ

(k)
B )T .

3.2.1 Problem definition

Our overall aim is to compare two sets of evidence, controlled and recovered, that

are characterised by data Y c = [yc,1 . . .yc,nc ] and Y r = [yr,1 . . .yr,nr ] where nc and

nr are the numbers of observations in the sets given data from some relevant popu-

lation {Y k} = {[yk,1 . . .yk,nk ], k = 1, . . . , K}. Note that Y q, q ∈ {c, r} and Eq,

q ∈ {c, r} are used interchangeably as we always refer to the data that characterise the

evidence and we are only interested in the differentiability of data assuming evidence

Eq, q ∈ {c, r} we want to differentiate have measurements Y q, q ∈ {c, r} that are dif-

ferentiable. That is to say, there might be cases where evidence from different sources

share the same characteristics but that is not the scope of our work here. An example

can be that two types of inks used by two different pens have the exact same colour;

hence non-differentiable MSP, then we would consider them to be of the same source.

For models to be introduced in Sections 3.2.2 to 3.2.4 we assume component-wise

additive relation

yci = xc(w) + eci = Φθc + rci, and yri′ = xr(w) + eri′ = Φθr + rri′ (3.1)

where Φ is a matrix consisting of basis function evaluations and r represents the resid-

ual that consists of measurement error and error arising from using only B basis func-
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tions.

For the purpose of evidence evaluation using calculation of likelihood ratios the

comparison is to be made under the competing propositions that

Hp : the sets of evidence have the same origin, and

Hd : the sets of evidence have different origins

assuming yci, i = 1, . . . , nc and yri′ , i′ = 1, . . . , nr each follows a multivariate nor-

mal distribution with parameters (Φθc,Σc) and (Φθr,Σr) where Σq =var(Y q|θq),

q ∈ {c, r} denotes the within-group covariance matrix. Under Hp, it is assumed that

(Φθc,Σc) = (Φθr,Σr), denoted by (Φθ,Σ) and under Hd, (Φθc,Σc) is statistically

independent of (Φθr,Σr).

Random effects are considered for θk using hierarchical models to take into ac-

count between-group variabilities for trend or shape. A natural candidate for the dis-

tribution of θk is multivariate normal with mean η. In special cases we also consider

random effect models for the within-group covariance structure. In what follows, we

assume that the within-group covariance matrices are scalar multiples of a positive

definite matrix P , i.e., Σk = σ2
kP with (σ1, . . . , σK) ∈ (0,∞)K . This modelling as-

sumption can be classified further to the case of common between-group covariance

given by {(σ1, . . . , σK) ∈ (0,∞)K : σ1 = · · · = σK} and to the case of varying

between group-covariance (σ1, . . . , σK) ∈ (0,∞)K . The matrix P is of size m-by-m

so further modelling assumptions are required in order to reduce the number of free

parameters and render estimation and inference possible.

The parameters in the models are estimated by using some relevant population

{Y k}=(Y 1, · · · ,Y K) that the evidence (Y c,Y r) are thought to have come from. In

cases where uncertainty is accounted for for either mean θ or covariance matrices Σ,

estimation of the fixed parameters translates to estimation of their hyperparameters in

their prior distributions under empirical Bayes approach. Due to the conjugacy of the

chosen distributions, likelihood ratios evaluated under models specified in this section
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have closed forms and these are obtained via

LR =
f(Y c,Yr|Hp)

f(Y c,Y r|Hd)
=

∫
Σ

∫
θ
f(Y c|Φθ,Σ)f(Y r|Φθ,Σ)f(θ,Σ|Hp)dθdΣ∏

q∈{c,r}
∫
Σ

∫
θ
f(Y q|Φθq,Σ)f(θ,Σ|Hd)dθdΣ

(3.2)

where f(θ,Σ|·) indicates the joint prior density for θ and Σ; it is usually taken to be

independent f(θ|·)f(Σ|·) or dependent f(θ|Σ, ·)f(Σ|·) for models to be specified in

this section.

3.2.2 CA-S Simplified multivariate normal random-effects model

The simplest case is considered here where yki = Φθk + rki where rki = σεki for εki

such that Cov(εki) = I . This is saying Cov(rki) = Σk = σ2Im, that is, the variance

at each component is independent and identically distributed for all components for all

curves and for all groups.

The location parameter θk follows a B-dimensional multivariate normal distribu-

tion with mean η and covariance matrix a diagonal matrixD, denoted θk ∼ NB(η,D)

for all k.

The within-source variation represented by Σ is assumed to be a multiple of iden-

tity matrix σ2Im where σ2 is assumed to be constant over all groups, and will be

estimated by the unbiased average mean squared error across all components for all

curves for all groups obtained through the analysis of variance. That is calculated as

σ̂2 =
1

K(nm−B)

K∑
k=1

nk∑
i=1

||yki −Φθ̂k||2

where θ̂k is the minimizer of
∑nk

i=1 ||yki − Φθk||2, or θ̂k = (ΦTΦ)−1ΦT 1
nk

Yk1nk

where 1nk is a length nk vector of ones.

When random effect is considered for θk, it is assumed to be centered at η which

is to be estimated by averaging over all estimated group means θ̂k, that is

η̂ =
1

K

K∑
k=1

θ̂k.
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θ ∼ NB(η,D)

θc θr

(yc1, . . . ,ycnc) (yr1, . . . ,yrnr)

εci εri

εki ∼ Nm(0, I)

Figure 3.1: Schematic representation of simplified multivariate random-effects model
for control and recovered evidence under the defense proposition where (θc 6= θr).

The diagonal elements of its covariance matrix D is then estimated by

D̂bb = ω̂b =
1

K − 1

K∑
k=1

(θ̂
(k)
b − η̂b)

2 − σ̂2

nk
ΦTΦ.

using analysis of variance.

The integrand for the numerator of the likelihood ratio consists of three parts, the

likelihoods
∏nc

i=1 f(yci|Φθ, σ2Im) and
∏nr

i=1 f(yri|Φθ, σ2Im), and a prior on θ, or

between-group representation distribution f(θ|η,D) as θ is only the coefficient of the

shape, or trend. Overall, there are two types of variation accounted, one within-group

and one between-group. Putting all these together gives

LR =
f(Y c,Y r|Hp)

f(Y c,Y r|Hd)
=

∫
θ

∏nc
i=1 f(yci|Φθ, σ2Im)

∏nr
i=1 f(yri|Φθ, σ2Im)f(θ|η,D)dθ∏

q∈{c,r}
∫
θ

∏nq
i=1 f(yqi|Φθ, σ2Im)f(θ|η,D)dθ
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under this model. The resulting likelihood ratio can be simplified to

|Σ∗n|1/2exp
{

1
2
µ∗Tn Σ∗−1

n µ∗n
}

|Σ∗c |1/2|Σ∗r|1/2|D|−1/2exp
{
−1

2
ηTD−1η + 1

2
µ∗Tc Σ∗−1

c µ∗c + 1
2
µ∗Tr Σ∗−1

r µ∗r
}

where

Σ∗−1
n =

nc + nr
σ2

ΦTΦ +D−1

µ∗n =

(
nc + nr
σ2

ΦTΦ +D−1

)−1
(

1

σ2

(
nc∑
i=1

ΦTyci +
nr∑
i=1

ΦTyri

)
+D−1η

)

and

Σ∗−1
q =

nq
σ2

ΦTΦ +D−1

µ∗q =
(nq
σ2

ΦTΦ +D−1
)−1

(
1

σ2

nq∑
i=1

ΦTyqi +D−1η

)
for q ∈ {c, r}.

The likelihood ratio can then be evaluated by plugging in estimates of hyperparameters

from the relevant population.

3.2.3 CA-const. Constant within-group variance model

In this model, we relax the constant variance across groups assumption and assume

curves from different groups have different variances but constant within group. This

is taking Σk to be σ2
kIm, again a diagonal matrix but dependent on k. Also, in con-

trast to the simplified multivariate normal random-effects model, we assume that the

covariance for the coefficient vector θk for group k is a multiple of a positive definite

matrix. The multiple is taken to be the same as the within group variance, or σ2
k. Over

all they follow an inverse gamma distribution, denoted σ2 ∼ IG(γ, δ).

In contrary to the simplified multivariate normal random-effects model, the con-

stant within-group variance model assumes variation in within-group variance-covariance

matrix where σ2
k will be estimated by the mean squared error within groups, that is,

σ̂2
k = RSSk/(mnk −B) =

1

mn−B

nq∑
i=1

||yki −Φθk||2 = 1/λ̂k
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where θ̂k is the minimizer of
∑nk

i=1 ||yki −Φθk||2, or

θ̂k = (ΦTΦ)−1ΦT 1

nk
Y k1nk

with 1nk being a length nk vector of ones. An inverse gamma prior on σ2
k is equivalent

as a gamma prior on λk. Using the expectation and variance of gamma distribution;

E[λ] = γ/δ and V ar(λ) = γ/δ2, the parameters are estimated by δ̂ = λ̂/s2
λ and

γ̂ = λ̂2/s2
λ where λ̂ = 1

K

∑K
k=1 λk and s2

λ = 1
K−1

∑K
k=1(λ̂k − λ̂)2.

σ2 ∼ Inv −Gam(γ, δ)

σ2
c σ2

r

θ ∼ NB(η, σ
2
cC) θ ∼ NB(η, σ

2
rC)

θc θr

(yc1, . . . ,ycnc) (yr1, . . . ,yrnr)

εci εri

εki ∼ Nm(0, I)

Figure 3.2: Schematic representation of constant within-group variance model for con-
trol and recovered evidence under the defense proposition where (θc 6= θr).
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The between-source variance covariance matrix is to be estimated as

Ĉ =
1

K − 1

K∑
k=1

(θ̂k − η̂)2/

∑K
k=1 σ̂

2
k

K
− 1

n
ΦTΦ

using the analysis of variance.

Under this model, there is one extra term in each of the integrals comparing to

simplified multivariate normal random-effects model.

LR =
f(Y c,Yr|Hp)

f(Y c,Y r|Hd)

=

∫
σ2

∫
θ

∏nc
i=1 f(yci|Φθ, σ2Im)

∏nr
i=1 f(yri|Φθ, σ2Im)f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2∏

q∈{c,r}
∫
σ2

∫
θ

∏nq
i=1 f(yqi|Φθ, σ2Im)f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2

under this model, which can be simplified to

LR =
Γ(γ)|C|1/2

δγ
Γ(γ∗)

Γ(γ∗c )Γ(γ∗r )

δ
∗γ∗c
c δ

∗γ∗r
r

δ∗γ∗
|(nc + nr)Φ

TΦ +C−1|−1/2

|ncΦTΦ +C−1|−1/2|nrΦTΦ +C−1|−1/2

where

γ∗q = γ +
nqm

2
,

δ∗q = δ +
1

2

[
nq∑
i=1

yTqiyqi + ηTC−1η

−

(
ηTC−1 +

nq∑
i=1

yTqiΦ

)(
nqΦ

TΦ +C−1
)−1

(
C−1η + ΦT

nq∑
i=1

yqi

)]
,

γ∗ = γ +
ncm

2
+
nrm

2
, and

δ∗ = δ +
1

2

(
nc∑
i=1

yTciyci +
nr∑
i=1

yTriyri + ηTC−1η − µ∗Tn Σ∗−1
n µ∗n

)

with

µ∗n =
(
C−1ηT + ΦT (ncȳc + nrȳr)

)
Σ∗n = ((nc + nr)Φ

TΦ +C−1)−1.
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3.2.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model

In this model we relax the assumption of independent within group variance and as-

sume an autoregressive structure on P . For data yki = Φθk + rki = Φθk + σkεki we

assume a lag 1 autoregressive structure for residuals

rkij = ψrki,j−1 + ωkij and ωkij ∼ N(0, τ 2
k ) for all k, i, j (3.3)

where r is independent of ω. The positive definite matrix P is again var(εki) but with

non-zero off-diagonal elements. The (j, j − s)th element of P , when multiplied by

plugging in σ2
k, gives σ2

kP j,j−s = cov(rkij, rki,j−s) = cov(ψrki,j−1 + ωkij, rki,j−s) =

ψcov(rki,j−1, rki,j−s) = ψsσ2
k for 0 ≤ s ≤ j; therefore, P is simply a function of ψ

and P̂ will be estimated by plugging in ψ̂.

This can be obtained using regression by assuming a linear relation y∗ki = ψx∗ki +

wki where y∗ki = [rki2rki3 . . . rkim]T and x∗ki = [rki1rki2 . . . rki,m−1]T for all i for all

k. Since P is assumed to be constant and fixed for all k, ψ̂ is simply taken to be the

average of all ψ̂k’s obtained using distinct k’s.

P̂ =



1 ψ̂ ψ̂2 · · · ψ̂m−1

ψ̂ 1 ψ̂

ψ̂2 ψ̂ 1
... . . . ...

ψ̂m−1 · · · 1


Using the relation rkij = σkεkij together with Equation (3.3) gives σkεkij = ψσkεki,j−1+

ωkij . Taking variance on both sides then gives σ2
k = ψ2

kσ
2
k + τ 2

k and σ̂2
k =

τ̂2k
1−ψ̂2

k

for all

k. To obtain σ̂2
k we also need τ̂ 2

k . Given ψ̂, τ̂ 2
k can be estimated by the mean residual

sum of squares
∑

i ||y∗ki− ψ̂x∗ki||2/(n(m− 1)− 1) and σ̂2
k can then be estimated using

σ̂2
k =

τ̂2k
1−ψ̂2

for a given k.

The rest of the hyperparameters can be estimated using the same way as the con-

stant within-group variance model. Details can be found in Appendix C.
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σ2 ∼ Inv −Gam(γ, δ)

σ2
c σ2

r

θ ∼ NB(η, σ
2
cC) θ ∼ NB(η, σ

2
rC)

θc θr

(yc1, . . . ,ycnc) (yr1, . . . ,yrnr)

εci εri

εki ∼ Nm(0,U )

Figure 3.3: Schematic representation of multivariate normal random-effects with au-
toregressive within-group covariance model for control and recovered evidence under
the defense proposition where (θc 6= θr).
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Likelihood ratio defined as

f(Y c,Y r|Hp)

f(Y c,Y r|Hd)

=

∫
σ2

∫
θ

∏nc
i=1 f(yci|θ, σ2P )

∏nr
i=1 f(yri|θ, σ2P )f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2∏

q∈{c,r}
∫
σ2

∫
θ

∏nq
i=1 f(yci|θ, σ2P )f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2

under this model can be simplified to

LR =
Γ(γ)|C|1/2

δγ
Γ(γ∗)

Γ(γ∗c )Γ(γ∗r )

δ
∗γ∗c
c δ

∗γ∗r
r

δ∗γ∗
|(nc + nr)Φ

TP−1Φ +C−1|−1/2

|ncΦTP−1Φ +C−1|−1/2|nrΦTP−1Φ +C−1|−1/2

where

γ∗q = γ +
nqm

2
,

δ∗q = δ +
1

2

[
nq∑
i=1

yTqiP
−1yqi + ηTC−1η

−

(
ηTC−1 +

nq∑
i=1

yTqiP
−1Φ

)(
nqΦ

TP−1Φ +C−1
)−1

(
C−1η + ΦTP−1

nq∑
i=1

yqi

)]
,

γ∗ = γ +
ncm

2
+
nrm

2
, and

δ∗ = δ +
1

2

[
nc∑
i=1

yTciP
−1yci +

nr∑
i=1

yTriP
−1yri + ηTC−1η − µ∗Tn Σ∗−1

n µ∗n

]

with

µ∗n =
(
C−1ηT + ΦTP−1 (ncȳc + nrȳr)

)
Σ∗n = ((nc + nr)Φ

TP−1Φ +C−1)−1.

3.3 Models with dimension reduction

Again, our aim is to compare two sets of evidence, controlled and recovered, that are

characterised by data Y c = [yc,1 . . .yc,nc ] and Y r = [yr,1 . . .yr,nr ] where nc and

nr are the numbers of observations in the sets given data from some relevant pop-

ulation {Y k} = {[yk,1 . . .yk,nk ], k = 1, . . . , K}. For models to be introduced in

Sections 3.3.1 and 3.3.2 we work with the dimension reduced data Zk = ΦTY k where
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Φ is a m by B matrix consisting of function evaluations of B basis functions (Sec-

tion 2.3.2) at m points. Comparing to the component-wise additive models for func-

tional data, this Zk has mean equal to the estimate of θk assuming E[Y ki] = Φθk. So

our likelihood ratio will be evaluated by assuming

LR =
f(Y c,Y r|Hp)

f(Y c,Y r|Hd)
=
f(Zc,Zr|Hp)

f(Zc,Zr|Hd)
.

In dealing with dimension reduced data only, we are only modeling the shape or

trend parameter and ignoring the variances and residuals, that is, r in Equation 3.1, by

assuming they are negligible. This simplifies the problem a lot by working with a lower

dimensional representation of our data Y but there will also be loss of information. A

dimension reduced multivariate normal random-effects model has been published in

Aitken et al. (2019) together with some results that will be presented in Chapter 6.

3.3.1 DR-S Dimension reduced multivariate normal random-effects

model

Let θk be the group mean, U be the within-group covariance matrix, η be the overall

mean and C be the between-group covariance matrix. We assume the dimension re-

duced data zki, that is, ΦTyki follows a multivariate normal distribution with mean θk

and covariance U . The group θk follows a multivariate normal distribution with mean

η and covariance C. A special case is considered where the within-group covariance

U and between-group covarianceC are assumed to be diagonal andD will be used to

denote the diagonal between-group covariance.

The overall mean is estimated by the average ofK group means, or η̂ =
∑K

k=1 θ̂k/K

where θ̂k is the minimiser of
∑nk

i=1 ||zki − θk||2. The within-group covariance is esti-

mated by Û = v̂ar(zki) =
∑nk

i=1(zki−θ̂)(zki−θ̂)T/(Kn−K) and the between-group

covariance is estimated by Ĉ = v̂ar(θk) =
∑nk

i=1

(
θ̂k − η̂

)(
θ̂k − η̂

)T
/ (K − 1) −

Û/n using the analysis of variance.

For the special case where we assume diagonal variance-covariance matrices, the
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between-group covariance will be estimated by

σ̂2 =
1

KB(n− 1)

K∑
k=1

n∑
i=1

||zki − θ̂k||2

and between-group covariance matrix with diagonal values estimated by

ω̂2
i =

1

K − 1

K∑
k=1

(
θ̂

(k)
i − η̂i

)2

− σ̂2

n
ΦTΦ.

The likelihood ratio under this model can be written as

LR =

∫
θ

∏nc
i=1 f(zci|θ,U)

∏nr
i=1 f(zri|θ,U)f(θ|η,C)dθ∏

q∈{c,r}
∫
θ

∏nq
i=1 f(zci|θ,U)f(θ|η,C)dθ

where all probability density functions f(·) are multivariate normal. The numerator of

the likelihood ratio can be shown to simplify to

|2πU |−(nc+nr)/2|2πC|−1/2|2π
(
(nc + nr)U

−1 +C−1
)−1 |1/2exp

{
−1

2
(H1 +H2 +H3)

}

where

H1 =
nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c) +
nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

= tr

(
nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c)

)
+ tr

(
nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

)
due to the dimensions (1 by 1) of the expressions

= tr

(
nc∑
i=1

(zci − z̄c)(zci − z̄c)TU−1

)
+ tr

(
nr∑
i=1

(zri − z̄r)(zri − z̄r)TU−1

)
= tr

(
ScU

−1
)

+ tr
(
SrU

−1
)
,

H2 = (z∗ − η)T
(

U

nc + nr
+C

)−1

(z∗ − η), and

H3 = (z̄c − z̄r)T
(
U

nc
+
U

nr

)−1

(z̄c − z̄r)

with

z∗ =
ncz̄c + nrz̄r
nc + nr

.
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The denominator, on the other hand, has two similar and independent terms, each can

be simplified as

|2πU |−nq/2|2πC|−1/2|2π
(
nqU

−1 +C−1
)−1 |1/2exp

{
−1

2
(H1q +H4q)

}

where

H1q = tr
(
SqU

−1
)

, and

H4q = (zq − η)T
(
U

nq
+C

)−1

(zq − η).

LR can then be evaluated as

|2πU |−(nc+nr)/2 |2πC|−1/2
∣∣∣2π ((nc + nr)U

−1 +C−1
)−1
∣∣∣1/2 exp

{
−1

2
(H1 +H2 +H3)

}
∏

q∈{c,r} |2πU |
−nq/2 |2πC|−1/2

∣∣∣2π (nqU−1 +C−1
)−1
∣∣∣1/2 exp

{
−1

2
(H1q +H4q)

}
=

∣∣∣((nc + nr)U
−1 +C−1

)−1
∣∣∣1/2 exp

{
−1

2
(H2 +H3)

}
|C|−1/2

∣∣∣(ncU−1 +C−1
)−1
∣∣∣1/2 ∣∣∣(nrU−1 +C−1

)−1
∣∣∣1/2 exp

{
−1

2
(H4c +H4r)

} .
3.3.2 DR-C Multivariate normal random-effects with non constant

within-group covariance

For this model we relax the constant within-group covariance assumption from Sec-

tion 3.3.1 and assume that the within-group covariance follows an inverse Wishart

(Ω, ν) distribution. This was first proposed by Bozza et al. (2008) to take into account

non-constant within-group covariance for hand-writing data. The likelihood ratio we

would like to evaluate has one extra term in the integrals compared to the model defined

in Section 3.3.1 and can be written as

LR =
f(Zc,Zr|Hp)

f(Zc,Zr|Hd)
=

∫
U

∫
θ

∏nc
i=1 f(zci|θ,U)

∏nr
i=1 f(zri|θ,U)f(θ|η,C)dθf(U |Ω, ν)dU∏

q∈{c,r}
∫
U

∫
θ

∏nq
i=1 f(zci|θ,U)f(θ|η,C)dθf(U |Ω, ν)dU

While the likelihood ratio derived under this model cannot be evaluated directly, the

calculation relies heavily on the conjugacy of the distributions.

The numerator of the likelihood ratio is evaluated under the proposition that the
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data for the recovered curve and the control curve come from the same origin, or

θr = θc and U r = U c.

We are interested in

f(Zc,Zr|Hp) =

∫ ∫ nc∏
i=1

f(zci|θ,U)
nr∏
i=1

f(zri|θ,U)f(θ|η,C)dθf(U |Ω, ν)dU

which is difficult to evaluate analytically. However, using Bayes’ Theorem as in Chib

(1995), the marginal likelihood can be written as

f(Z|Hp) =
f(Z|Ψ, Hp)π(Ψ|Hp)

π(Ψ|Z, Hp)

where Ψ = (θ,U) and Z = {Zc,Zr}. Denoting the maximum likelihood estimate

as Ψ∗, the estimate of the marginal density on logarithmic scale is

ln{f̂(Z|Hp)} = ln{f(Z|Ψ∗, Hp)}+ ln{π(Ψ∗|Hp)} − ln{π̂(Ψ∗|Z, Hp)} (3.4)

where π̂(Ψ∗|Z, Hp), the posterior joint density given data can be estimated using sam-

ples drawn from Gibbs sampling algorithm described in Bozza et al (2008).

The density function of the observation, or profile likelihood is given by

f(Z|Ψ, Hp) =
nc∏
i=1

f(zci|θ,U )
nr∏
i=1

f(zri|θ,U) (3.5)

=
∏

q∈{c,r}

nq∏
i=1

(2π)−p/2|U |−1/2exp
{
−1

2
(zqi − θ)TU−1(zqi − θ)

}
.

(3.6)

The prior density for Ψ is given by

f(Ψ|Hp)

= (2π)−p/2|C|−1/2exp
{
−1

2
(θ − η)TC−1(θ − η)

}
|Ω| ν2 |U |− ν+p+1

2

2νp/2Γp(ν/2)
exp

{
−1

2
tr
(
ΩU−1

)}
.
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The complete conditional density of θ is then

f(θ|Z,U ) =
f(Z|θ,U)f(θ|η,C)∫
f(Z|θ,U)f(θ|η,C)dθ

∝ exp

−1

2

 ∑
q∈{c,r}

nq∑
i=1

(zqi − θ)TU−1(zqi − θ) + (θ − η)TC−1(θ − η)


which can be shown to be still of type normal with parameters (η∗,C∗), where

C∗ =

(
2∑
l=1

nl∑
i=1

U−1 +C−1

)−1

η∗ = C∗

(
C−1η +

2∑
l=1

nl∑
i=1

U−1zli

)
.

The complete conditional density of U would be

f(U |Z,θ)

∝ |U |−(nc+nr)/2|U |−(ν+p+1)/2exp

−1

2

 ∑
q∈{c,r}

nq∑
i=1

(zqi − θ)TU−1(zqi − θ) + tr
(
ΩU−1

)
∝ |U |−(nc+nr+ν+p+1)/2exp

−1

2

tr

 ∑
q∈{c,r}

nq∑
i=1

(zqi − θ)(zqi − θ)TU−1

+ tr
(
ΩU−1

)
∝ |U |−(nc+nr+ν+p+1)/2exp

−1

2

tr

Ω +
∑
q∈{c,r}

nq∑
i=1

(zqi − θ)(zqi − θ)T

U−1


which can be shown to be still of type inverse-Wishart with parameters (Ω∗, ν∗), where

Ω∗ = Ω +
∑
q∈{c,r}

nq∑
i=1

(zqi − θ)(zqi − θ)T

ν∗ = ν + nc + nr.

The algorithm is then

1. Estimate η̂, Ĉ, and Ω̂ from background (relevant population).

2. Sample θg ∼ NB(η∗,C∗) and U g ∼ IW(Ω∗, ν∗), g = 1, . . . , G alternatively.
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3. Obtain maximum likelihood approximation of Ψ∗ = (θ∗,U ∗) by

Ψ∗ = maxΨgf(Z|Ψg, Hp).

4. Compute

π̂(U ∗|Z) =
G∑
g=1

π(U ∗|Z,θg)
G

5. Posterior is then given by π̂(Ψ∗|Z) = π(θ∗|U ∗,Z)π̂(U ∗|Z).

The marginal likelihood (on logarithmic scale) can then be estimated using equation

(3.4). A similar procedure can be carried out for the denominator of LR. The two

independent integrals can be estimated by replacing Z with Zc and Zr.
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Chapter 4

Data description and selection of basis

functions

4.1 Introduction

We are mainly interested in evaluating evidence that are characterised by functional

data (Ramsay and Silverman, 2005), that is, it is assumed to be samples of an underly-

ing function of another variable (explained in detail in Section 2.4). Previously, these

kind of data was compared visually, our work aims to develop a systematic way of

comparing them more objectively by the calculation of likelihood ratios.

Likelihood ratios calculated based on different models or assumptions can vary.

Data to be used for the evaluation of performance of our models are described and

presented here. They are the motivating examples that represent data of interest for the

development of our models.

Three sets of data will be introduced, each of them will be described in detail and

various types of plots will be displayed for the ease of understanding. The same sets

of data are included in Aitken et al. (2019). Since dimension reduction is essential in

all cases and all of our proposed models have a dimension reduction component; the

component-wise additive models all assume dataY k is centred at Φθk given θk and the

dimension reduced models are applicable to data after a transformation Zk = ΦTY k,

the data will first be fitted to choose the most appropriate model for this purpose.

When modelling Y , we are interested in its mean and variances. In this chapter, we
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focus on modeling the mean. Since our data are functional, it makes sense to assume

a functional mean. For dimension reduction purpose, we will use approximation, with

an intention to represent the data using a smaller dimensional representation. To do

so, basis functions are natural choices. There are many systems of basis functions that

can be used to approximate functions. For example, it is natural to use basis functions

with periodic boundary conditions in order to reconstruct and estimate seasonal cycles

in data. Some common choices of basis functions that are independent of the data are

Fourier series, splines, wavelets, exponential and power bases. An example of basis

functions that are constructed from the data are empirical orthogonal functions, or

eigenfunctions. Based on the properties of the data of our interest in this thesis (to be

specified later on in Chapter 4), we will only be using B-spline basis and eigenfunctions

for our data.

Given the sample sizes of our datasets (to be specified in the relevant section for

each dataset), we will only consider the number of basis (B) to be between 5 and 10

and order of basis (o) between 2 and 4 inclusive. For each of these combinations of

B and o, AIC and R2E (Section 2.5) will be calculated and plots will be drawn for

original data alongside fitted mean curves and residuals for the same choices of B and

o. The optimal configuration will be chosen based on both numerical (AIC and R2E

values) and visual fit. OnceB and o are selected for a given dataset, the fit by using the

same numbers of eigenfunctions will also be plotted against those by using B-spline

basis with selected order o for comparison. Both of these choices of basis functions,

that is, B-spline basis functions and eigenfunctions obtained using fPCA, will be used

for all models.

4.1.1 Selecting the number of B-spline basis functions

We would like to find the most appropriate set of basis functions for dimension re-

duction. Numerically, it is done by assuming control and recovered curves Y c =

{yci, . . .ycn} and Y r follow a multivariate normal distribution centred at Φθ(M)
c and

Φθ(M)
r , respectively where M specifies the model, or choices of number of B-spline

basis functions or eigenfunctions (principal components) used for the purpose of di-

mension reduction here. Since we do not know the structure of var(yci) or var(yri),
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AIC and R2E are calculated based on assuming yki ∼ Nm(Φθ
(M)
k , σ

2(M)
k Im) for all

i ∈ {1, . . . , n} for all k ∈ {1, 2, . . . , K}, the variance is independent and identical

for all points on the curves for a given group where K is the number of groups in the

relevant population. AIC introduced in Section 2.5.1 translates to

AIC = −2
∑
k

∑
i

log f(yki|Φθk, σ2
k) + 2KB

where f(yki|θk, σ2
k) is multivariate normal density function and

R2E =
∑
k

∑
i

∑
j

(ykij − ŷkij)2

|ŷkij|

where ŷkij = Φθ̂k(j), the j-th component of the fitted curve Φθ̂k.

Maximum decrement will be used as our main criteria to select the number and

order of basis functions when AIC and R2E are calculated if there is no obvious

minimum. This is similar to selecting the number of components to retain using scree

test in principal component analysis Cattell (1966).

For visual fit test, three sets of figures will be plotted for each dataset. Each with

a different order starting from o = 2. The optimal combination will then be chosen

based on numerical and visual criteria. Some of these figures are used in Aitken et al.

(2019). After the number (and order) of basis functions is chosen, plots will be drawn

to show the fits using different choices of basis, that is, B-spline basis functions and

eigenfunctions obtained from fPCA.

4.1.2 Functional principal component analysis

In contrast to B-spline basis functions which are independent of data, eigenfunctions

as introduced in Section 2.4.2 are empirical basis functions constructed using data

so they are different fundamentally. We will check the fits of these basis functions

and make comparison with fits using B-spline basis functions. To show the effect of

eigenfunctions being empirical orthogonal functions, it is compared with fits of B-

spline basis functions when the number of basis functions is small.
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4.2 Pen ink

The data was provided by Institute of Forensic Research in Krakow, Poland. Forty blue

inks that were collected primarily from the Polish market were analysed. One line was

drawn by each and 10 observations were taken using microspectrophotometer (MSP)

Zeiss Axioplan 2 with a J&M Tidas Diode Array Detector (DAD; MCS/16 1024/100-1,

Germany), which was configured for the VIS range (380-800 nm) analyses.

Each observation consists of m measurements of absorbance yj at wavelength wj

ranging from 380 to 800 nanometers. Absorbance is calculated as y = log(Io/I)

where Io and I are the intensities of the electromagnetic beam before and after contact

with the sample. Data collection is described in detail in Martyna et al. (2013) where

re-parameterised data was analysed.

Forty diagrams each showing nk = 10 observations of MSP of the same type k

of ink are shown. Every colour dashed line is drawn by connecting m = 421 points

{(wkij, ykij), j = 1, . . . ,m} in R2 for visualisation of an observation of a sample (one

sample for each type). For a given dataset, {wj} is fixed for all types k and observations

i, i.e., {wj}={380, . . . , 800}. For ink data, the intervalswki,j+1−wkij , or the difference

in wavelength at which the measurements are taken is fixed at 1 nm. Different intervals

(int) will also be considered in analysing the data where only every int-th point are

used.

Figure 4.1: Forty plots each showing nk = 10 observations of MSP by connecting
m = 421 points {(wj, ykij), j = 1, . . . ,m} of a type of ink.
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Figure 4.2: Each block shows nk = 10 measurements of a type k of ink.

It can be seen that the curves (spectra) are quite smooth as there are generally no sharp

edges, that is, non-differentiable points, when being drawn by connecting the points

{(wj, ykij), j = 1, . . . ,m} that are assumed to be samples of an underlying function

x(w). Also, the general shapes are different for each group (type) of ink and overall the

shapes consist of 1 to 3 major peaks with 1 of them being highest and 2 shoulder-like.

Different types of ink can be categorised into 3 or 4 kinds of shapes, for example,

1 and 17 are very similar and 15 and 16 are of a similar type of shape; however, 5 and

33 are quite unique, and 8, 10, 21 and 35 are also similar in shape. Other than visually

distinguishable shapes there are usually vertical separation of curves that is possibly

caused by the difference in the concentration of ink (dye) measured (Was-Gubala and

Starczak, 2015), which contribute to within-group variation.

4.2.1 Choosing the number of B-spline basis functions

The resulting AIC and R2E values for ink data are summarised in Tables 4.1 and 4.2

with most optimal values shaded pink. They indicate the most favouring choices based

on the decrements and magnitudes in comparison with values nearby.

Based on Table 4.1 there is an overall decrease of AIC as B increases and there

are large drops as B increases from 8 to 9 regardless of o and these drops are larger

than when B is increased from 5 to 6. However, as B is increased to 10, AIC goes

up for o = 4 so B = 9 is more optimal than B = 10. Similar pattern can be seen in

Table 4.2 for B = 9 where the next drop happens at B = 13 but not as much.

The extreme cases where there are spikes of R2E at basis functions of order 4 is

due to the fact that the ratio r2
kij to |ŷkij| gives more weight to r2

kij with smaller values
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B \ o 2 3 4
5 -313539 -337762 -331881
6 -415318 -386114 -364320
7 -442129 -396490 -388058
8 -442268 -453792 -461255
9 -502492 -551178 -540106

10 -554339 -568836 -534948
11 -563310 -569831 -566362
12 -579995 -592041 -592956
13 -596833 -601354 -596841

Table 4.1: AIC values for ink data

B \ o 2 3 4
5 18413 21510 51454
6 13223 19821 21069
7 24067 14099 13566
8 12824 20710 65786
9 9899 7818 7784
10 10918 6879 15570
11 14481 5581 10471
12 9448 6596 5519
13 50110 14094 8090

Table 4.2: R2E values for ink data

of |ŷkij|; therefore, slightly worse fit for smaller fitted values have a great effect in the

over all R2E’s. Based on these numerical results, we found that B might not need to

exceed 10 so the fits are plotted for B between 5 and 10. Before we draw some plots

of the data, it is easier to compare AIC and R2E by plotting them against number of

B-spline basis functions used.

(a) AIC values for ink data in barplot. (b) R2E values for ink data in barplot.

Figure 4.3: AIC and R2E values for ink data in barplots.

We can see from Tables 4.1 and 4.2 that given the same number of basis functions,

higher orders do not always perform better especially forB = 4, 5, 8, 10 in Figure 4.3b.

In cases where higher orders perform better, there is only a small improvement. This

effect can be explained using Figure 2.3; same number but higher order basis functions

are obtained by fewer order 1 (independent) basis functions.
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Figure 4.4: Fitting of a type of ink using different number of B-spline basis functions of
order 2. From top left to bottom right, the number of basis functions used are between 5
and 10 (inclusive). The curves underneath are residuals after the fitted (purple) curves
are subtracted from the original curves above.

Figure 4.5: Fitting of a type of ink using different number of B-spline basis functions of
order 3. From top left to bottom right, the number of basis functions used are between 5
and 10 (inclusive). The curves underneath are residuals after the fitted (purple) curves
are subtracted from the original curves above.
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Based on Figure 4.4 while the fits seem to follow the shape of our curves and errors

are small, there are some edges due to basis functions are of degree 1. These fits do not

seem to resemble our data, which fails to represent these curves on average so they are

not ideal. Moreover, Table 4.1 also suggested the same; o = 3 generally outperforms

o = 2 given B. For order 3, 9 and 10 B-spline basis functions seem to fit the data quite

well and there is no significant improvement as number of basis functions increases

from 9 to 10.

Figure 4.6: Fitting of a type of ink using different number of B-spline basis functions of
order 4. From top left to bottom right, the number of basis functions used are between 5
and 10 (inclusive). The curves underneath are residuals after the fitted (purple) curves
are subtracted from the original curves above.

For order 4, 9 and 10 B-spline basis functions also seem to fit the data well. In this

case B = 9 and o = 3 seems reasonable for ink data.

4.2.2 Functional principal component analysis

Once B is selected along with o for B-spline basis functions, the fit of using B-spline

basis functions will be used to be compared with the use of eigenfunctions.
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Figure 4.7: Compare fittings of a type of ink using same numbers of B-spline basis
functions of order 3 and eigenfunctions obtained from functional principal component
analysis. From left to right, the number of basis functions used are between 4 and 6
inclusive. The first row shows the use of B-spline basis functions and second row show
the use of eigenfunctions as basis functions. The curves underneath are residuals after
the fitted (purple) curves are subtracted from the original curves above.

Since eigenfunctions are constructed empirically, or tailored to the data, it has greater

fit for smaller numbers of basis functions, as expected. A number of basis as low as 5

provides reasonably well fit.

4.2.3 Conclusion

We managed to select the optimal number and order of basis for using B-spline basis

functions. The order chosen is 3 and number of basis functions chosen is 9 for both

choices of basis functions. This will give us more options when fitting models for the

evaluation of likelihood ratios. However, modeling only the mean is never enough but

it is essential for this applications. We will look at variance covariance structure later

on.
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4.3 Red wool fibre data

Other than ink data, we also have red wool and cotton data. Both datasets consist of 20

samples. Nine replicates of MSP spectra were collected for each sample. The red wool

dataset includes data of spectra ranging from 350 to 690 nm (visible spectral range)

with intervals of 5 nm.

Figure 4.8: Each block shows nk = 9 measurements of a type k of wool.
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Compared to ink data, woollen fibre data have greater within-sample variation. Other

than vertical separations, the slopes and gradients seem to be dependent on the loca-

tions. Taking wool 13 as an example, the vertical separation that occurs between 450

and 550 nm results in flatter curve for the curve at the top (drawn as blue dotted) and

sharper for red and purple solid curve (drawn by solid line); this can easily be seen

for wool 3 as well. In other words, the separation causes more variation in the shapes

which makes it hard to distinguish between groups due to the similarities of the shapes

of all types of wool; smaller between-group variation compared to within-group vari-

ations. They are all spoon-like with a big drop in transmittance roughly between 400

and 550 nm, depending on the group. Overall, the similarities among different groups

together with noticeable within-group variations makes it harder to distinguish than

ink data.

4.3.1 Choosing the number of B-spline basis functions

The resulting AIC and R2E values for wool data are summarised in Section 4.3.1

and table 4.4 with most optimal values shaded pink. They indicate the most favouring

choices based on the decrements and magnitudes in comparison with values nearby.

B \ o 2 3 4
5 89579 88357 89948
6 83183 86655 88485
7 84469 85680 85457
8 83002 81524 81631
9 79775 79929 81362

10 79419 80591 81145
11 79612 79455 79286
12 78753 78419 78816
13 78291 78254 78775

Table 4.3: AIC values for wool data

B \ o 2 3 4
5 186554 167051 75120
6 47276 39569 29793
7 37476 42671 94039
8 52994 40847 134110
9 30450 25675 51837

10 40390 29623 36142
11 25283 30714 27015
12 29059 18762 18505
13 20396 17889 21373

Table 4.4: R2E values for wool data

For wool data, we can see o = 4 doesn’t outperform o < 4 if not worse. Given

o = 3, B = 6, 8 seem to be good choices using the same criteria: maximum decrement

but when considering R2E together with AIC, B = 6 looks more optimal.
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(a) AIC values for wool data in barplot (b) R2E values for wool data in barplot

Figure 4.9: AIC and R2E values for wool data in barplots

Based on AIC alone in Figure 4.9, it is hard to pick B but B = 6 is clearly the

best given R2E as there is no more big drops for the values as B increases. B = 6

gives the best R2E for all orders and the next best number of basis functions would be

9 but the decrement from B = 8 to B = 9 is much smaller compared to from B = 5

to B = 6. We will make a decision after checking the fits.

The combination of B = 9, o = 2 also looks good but the decrease from B = 8 is

not as large as those from B = 5 to B = 6. Moreover, we only have 9 replicates for

each group of wool data so B = 6 is favourable for parameter estimation purpose.

55



Figure 4.10: Fitting of a type of wool using different number of B-spline basis func-
tions of order 2. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.

Figure 4.11: Fitting of a type of wool using different number of B-spline basis func-
tions of order 3. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.
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Figure 4.12: Fitting of a type of wool using different number of B-spline basis func-
tions of order 4. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.

Our choice of B = 6, o = 3 using AIC and R2E does not seem to have the best fit by

looking at the purple or red shaded lines (fitted mean curve); however, when looking

at residuals, that are the curves underneath them, there is no significant differences

among different choices of B and o so we will stick with B = 6, o = 3.

4.3.2 Functional principal component analysis

Once B is selected along with o for B-spline basis functions, the fit of using B-spline

basis functions will be used to be compared with the use of eigenfunctions.
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Figure 4.13: Compare fittings of a type of wool using same numbers of B-spline basis
functions of order 3 with eigenfunctions obtained from functional principal component
analysis. From left to right, the number of basis functions used are between 4 and 6
(inclusive). The first row shows the use of B-spline basis functions and second row
show the use of eigenfunctions as basis functions. The curves underneath are residuals
after the fitted (purple) curves are subtracted from the original curves above.

Based on the fits on one type of wool, using eigenfunctions obtained from fPCA does

not seem to outperform that of using B-splines basis functions for B < 6.

4.3.3 Conclusion

We choose B = 6, o = 3 primarily based on AIC and R2E and the size of our dataset.

However, regarding the fits, there are still vertical separation to account for.

4.4 Red cotton fibre data

Both wool and cotton fibre data consist of 20 samples. Nine replicates of MSP spectra

were collected for each sample. The red cottons dataset includes data of spectra from

240 to 690 nm (UV-visible spectral range) with intervals of 5 nm. This is different
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from wool data due to the fact that wool absorbs UV radiation and therefore there is

no informative signal in the UV range comprised here between 240 and 350 nm.

Figure 4.14: Each block shows nk = 9 measurements of a type k of cotton.

Similar to ink data, there is some between-group variation but not as large, and

also some within-group variations other than vertical separation. For cotton data, it

is harder to distinguish between curves as the main shapes all look similar just like

wool data; there is smaller between-group variation in terms of overall shape. All
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groups have curves that look like a hat roughly between 240-550 nm with a neck and

head from 550 nm onward. These are the main traits we should make note of when

modeling the data.

4.4.1 Choosing the number of B-spline basis functions

The resulting AIC and R2E values for cotton data are summarised in Section 4.4.1

and table 4.6 with most optimal values shaded pink. They indicate the most favouring

choices based on the decrements and magnitudes in comparison with values nearby.

B \ o 2 3 4
5 124929 126587 126558
6 120131 116580 116386
7 113982 114936 116700
8 113782 116434 116693
9 113655 113140 112838

10 112126 110965 112094
11 109865 110873 111541
12 110098 111257 110699
13 111078 110444 109671

Table 4.5: AIC values for cotton data

B \ o 2 3 4
5 56373 79508 78746
6 42768 37452 33627
7 31037 28929 30794
8 27233 30651 44482
9 28194 32089 30325
10 29598 27196 29103
11 28240 79758 26426
12 24093 25007 28013
13 25147 26906 27413

Table 4.6: R2E values for cotton data

(a) AIC values for cotton data in barplot (b) R2E values for cotton data in barplot

Figure 4.15: AIC and R2E values for cotton data in barplots

Again for cotton data, it is quite clear to see B = 6, o = 3 is optimal given the

decrement and consensus given by AIC and R2E. We will make a decision after

checking the fits.
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There are some drops at B = 9 for R2E as can be seen in Figure 4.15. However,

this is not agreed by AIC and not favourable considering our sample size so we will

stick with B = 6, o = 3.

Figure 4.16: Fitting of a type of cotton using different number of B-spline basis func-
tions of order 2. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.

Overall fits of order 4 B-spline basis functions do not outperform order 3 B-spline

basis functions given the same number of basis. For order 3, different numbers B =

6, 7, 8, 9, 10 of B-spline basis all perform similarly so B = 6 is still optimal.

4.4.2 Functional principal component analysis

Once B is selected along with o for B-spline basis functions, the fit of using B-spline

basis functions will be used to be compared with the use of eigenfunctions.
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Figure 4.17: Fitting of a type of cotton using different number of B-spline basis func-
tions of order 3. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.

Figure 4.18: Fitting of a type of cotton using different number of B-spline basis func-
tions of order 4. From top left to bottom right, the number of basis functions used
are between 5 and 10 (inclusive). The curves underneath are residuals after the fitted
(purple) curves are subtracted from the original curves above.
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Figure 4.19: Compare fittings of a type of cotton using same numbers of B-spline basis
functions of order 3 with eigenfunctions obtained from functional principal component
analysis. From left to right, the number of basis functions used are between 4 and 6
(inclusive). The first row shows the use of B-spline basis functions and second row
show the use of eigenfunctions as basis functions. The curves underneath are residuals
after the fitted (purple) curves are subtracted from the original curves above.

The fits of eigenfunctions obtained from fPCA outperform that of B-spline basis func-

tions in terms of smaller residuals overall as can be seen from 600 nm onward.

4.4.3 Conclusion

The choices we make for cotton data is also B = 6, o = 3, same as for wool data.

4.5 Conclusion

There are limitations in the number of basis functions we can pick due to the size of

our dataset so we do not always pick the ones with possibly the best fits.
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Chapter 5

Model fitting and simulations

5.1 Introduction

All models introduced in Chapter 3 will be used to calculate likelihood ratios for all

datasets introduced in Chapter 4. Before likelihood ratios are evaluated, various meth-

ods are used to check the fits of the models to each dataset including simulation. Model

fitting includes checking the distributions of residuals since basis function fitting for

the group mean has been done in Chapter 4 for the purpose of dimension reduction.

A few methods will be used to check the assumptions of the proposed model. These

include boxplots and Chi-squared Q-Q plots presented for both choices of basis func-

tions. After the assumptions have been checked, simulations will be used to replicate

datasets based on the parameters estimated under each model and they will be com-

pared visually with the original data for similarities and differences.

5.2 Data exploration

Since our proposed hierarchical models differ primarily by variance-covariance struc-

tures and between-group (shape) distributions are all assumed to be multivariate nor-

mal, we are interested in checking whether these assumptions are indeed true for the

datasets. We will use the notations

yki = x(w) + eki = Φθki + rki
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to represent a curve for 1 ≤ i ≤ nk = n observations for each group k where 1 ≤ k ≤

K and yki ∈ Rm. The matrix Φ is a collection of basis functions φ1 . . . φb evaluated at

w. The parameter θki depends sometimes on k alone and between-group distributions

for θk are assumed to be multivariate normal for all proposed models.

5.2.1 Within-group covariance and residuals

When assuming yki = Φθk + rki it is not possible to estimate Σ =var(yki) for small

datasets since Σ is a positive semi-definite matrix of size m by m and m is usually

much greater than sample size n.

Boxplots of r̂kij will be drawn both by element (j) and group (k) separately to see

the distributions within the same groups and across different groups.

5.2.2 Between-group distribution

First θk will be estimated using ordinary least square, i.e., θ̂k = (ΦTΦ)−1ΦT∑n
i=1 yki/n =

ΦT∑n
i=1

yki
n

for orthonormal basis functions used. Boxplots and pairwise scatter plots

will be used to show the magnitudes and distribution of each element of θ̂
(b)

ki in compar-

ison with one another. Chi-squared Q-Q plots will also be used. They are multivariate

version of qq-plots that plots the squared Mahalanobis distance, that is the multivariate

generalization of z-score, against its Chi-squared quantile. A straight line is expected

for data that follows a multivariate normal distribution.

5.3 Simulation

Simulations are used to check the fit of the models by replicating the generating mech-

anism that our datasets are assumed to have come from. Thus, given accurate estimates

of model parameters, if the models are valid, should produce data that are similar to

our original data. In order to simulate these datasets, estimation of parameters are

obtained using formulas given in relevant sections in Chapter 3 and data are gener-

ated using processes as indicated by the schematic representations, also in the relevant

sections in Chapter 3 for the same numbers of replicates n and types K as the orig-

inal data. For the purpose of examining model fit in this chapter, only a selection of
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4 groups of the simulated data will be drawn for illustration purposes, they will be

named as [data] g in the figures where g ∈ {1, 2, 3, 4} indicate curves’ group mem-

bership. These have nothing to do with original data with the same group number as

drawn in Chapter 4. Using models introduced in Chapter 3, datasets will be generated

in the following orders specified for each model.

5.3.1 Simplified multivariate normal random-effects model

Under this model, datasets will be generated by first simulate group means θk ∼

N(η̂, D̂) then yki ∼ N(Φθk, σ̂
2Im) for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Details of

this model can be found in Section 3.2.2 and CR-S will be used to refer to this model.

5.3.2 Constant within-group variance model

Under this model, datasets will be generated by first simulate group variances σ2
k ∼

Inv−Gam(γ̂, δ̂) then group means θk ∼ N(η̂, σ2
kĈ) and finally, yki ∼ N(Φθk, σ

2
kIm)

for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Details of this model can be found in Section 3.2.3

and CR-const. will be used to refer to this model.

5.3.3 Multivariate normal random-effects with autoregressive within-

group covariance model

Under this model, datasets will be generated by first simulate group variances σ2
k ∼

Inv−Gam(γ̂, δ̂) then group means θk ∼ N(η̂, σ2
kĈ) and finally, yki ∼ N(Φθk, σ

2
kP )

for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Details of this model can be found in Section 3.2.4

and CR-ar will be used to refer to this model.

5.3.4 Dimension reduced multivariate normal random-effects model

Under this model, datasets will be generated by first simulate group means θk ∼

N(η̂, Ĉ) then zki ∼ N(θk, Û) for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. To compare

with original data we will reconstruct ŷki as Φzki. Details of this model can be found

in Section 3.3.1 and DR-S will be used to refer to this model.
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5.4 Ink data

Sample of ink data consists of K = 40 groups of n = nk = 10 MSP measurements of

absorbance yki versus wavelength for 1 ≤ i ≤ n for all k. Absorbance are measured

at wavelengths ranging from 380-800 nm with intervals of 1nm so using all the points,

that is, taking interval or int = 1, the total number of points, the dimension of our

data, is m = 421.

5.4.1 Residuals

Elementwise residuals are displayed when different basis functions are used to show

difference in the distributions. The use of int = 15, or taking every 15th point, results

in 29 points left from m = 421 for the ease of illustration.

(a) Boxplots for elements of r̂ki for all Kn
curves for 9 B-spline basis functions and
interval int = 15.

(b) Boxplots for elements of r̂ki for all
Kn curves for 9 eigenfunctions and inter-
val int = 15.

Figure 5.1: Boxplots of elements of r̂ki for 9 basis functions of different choice where
int = 15.

Each boxplot in Figure 5.1 is for an element of rki for all 1 ≤ i ≤ n = 10 for all

1 ≤ k ≤ K = 40 (400 each). Each boxplot in Figure 5.2 is for all m elements of

rki for all 1 ≤ i ≤ n = 10 curves for a given group k where 1 ≤ k ≤ K = 40

(10 × m each). Based on Figure 5.1 it seems that variances of elements of r̂ki vary
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more across different groups when eigenfunctions obtained from fPCA are used in

comparison with B-spline basis functions used. However, Figure 5.2 shows quite the

opposite but the differences in variation are smaller. This can be explained by the better

fits in Figure 4.7.

(a) Boxplots of r̂ki for all m points on n
curves within group k for 9 B-spline basis
functions and interval int = 1.

(b) Boxplots of r̂ki for all m points on n
curves within group k for 9 eigenfunctions
and interval int = 1.

Figure 5.2: Boxplots of r̂ki by group for 9 basis functions of different choices where
int = 1.

5.4.2 Between-group distribution for ink data

Chi-squared Q-Q plots are multivariate version of qq-plots that plots the squared Ma-

halanobis distance, that is the multivariate generalization of z-score, against its Chi-

squared quantile. A straight line is expected for data that follows a multivariate normal

distribution.
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(a) Chi-squared Q-Q plot of fitted θk for 9
B-spline basis functions of order 3 where
int = 1.

(b) Chi-squared Q-Q plot of fitted θk for 9
eigenfunctions obtained from fPCA used
where int = 1.

Figure 5.3: Chi-squared Q-Q plots of fitted θk for 9 basis functions of different choices
used whertr interval int = 1.

Based on Figure 5.3, the fitted θk might not follow multivariate normal distribution.

(a) Boxplots of fitted θk for 9 B-spline ba-
sis functions of order 3 where int = 1.

(b) Boxplots of fitted θk for 9 eigenfunc-
tions obtained from fPCA where int = 1.

Figure 5.4: Boxplots of fitted θk for 9 basis functions of different choices where int =
1.
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(a) Pairwise scatter plot of the first 5 ele-
ments of the fitted θk when 9 B-spline ba-
sis functions of order 3 are used.

(b) Pairwise scatter plot of the first 5 ele-
ments of the fitted θk when 9 eigenfunc-
tions obtained from fPCA are used.

Figure 5.5: Pairwise scatter plot of the first 5 elements in Zk for 6 basis functions of
different choices where int = 1.

From the Chi-squared Q-Q plot and pairwise scatterplots it is pretty clear that fitted

θk for different choices of basis functions do not follow the same distribution.

5.4.3 Simulation - CA-S for ink data

Simulated ink data using CA-S with parameters estimated from the original data and

data generated for the same number of replicates.

Figure 5.6: Each block shows nk = 10 measurements of a type k of ink data simulated
under simplified multivariate normal random-effects model. Refer to Section 5.3.1 for
details.
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Curves within the same group are centred at the same mean (pointwise) which does

not resemble original data that have vertical separations. However, in terms of shapes

where there are peaks and shoulders, these simulated data do resemble those of the

original data.

5.4.4 Simulation - CA-const. for ink data

Simulated ink data using CA-const. with parameters estimated from the original data

and data generated for the same number of replicates.

Figure 5.7: Each block shows n = 10 measurements for each of 4 types of ink data
simulated under constant within-group variance model. Refer to Section 5.3.2 for de-
tails.

This model differs to CA-S primarily by the relaxation of constant between-group

variances but this difference is not very obvious from these plots. These plots also

show that the model fails to model the separation of curves within groups.

5.4.5 Simulation - CA-ar for ink data

Simulated ink data using CA-ar with parameters estimated from the original data and

data generated for the same number of replicates.
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Figure 5.8: Each block shows n = 10 measurements for each of 4 types of ink data
simulated under multivariate normal random-effects with autoregressive within-group
covariance model. Refer to Section 5.3.3 for details.

By assuming autoregressive lag-1 errors, the error part looks more continuous due to

high correlations thus resulted in separation of curves that make them resemble the

original data (ink).

5.4.6 Simulation - DR-S for ink data

Simulated ink data using DR-S with parameters estimated from the original data and

data generated for the same number of replicates.

Figure 5.9: Each block shows n = 10 measurements for each of 4 types of ink data
simulated under dimension reduced multivariate normal random-effects model. Refer
to Section 5.3.4 for details.

This model successfully captures the overall shape and separation of curves that is

somehow dependent on the position or magnitude of absorbance. Since this model

generates curves similar to our original data, we expect it to give likelihood ratios that

can be helpful in distinguishing between groups.
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5.4.7 Conclusion

Simulated ink data successfully capture the shape and the variations in overall shape

that can be used to distinguish between groups. However, simplified multivariate nor-

mal random-effects model and constant within-group variance model fail to model

within-group variations as expected as independent variances at each point is assumed.

However, multivariate normal random-effects with autoregressive within-group covari-

ance model successfully models the slight separation of curves within the same groups

and behaves like dimension reduced multivariate normal random-effects model which

only models the shape. Overall, modeling of the variations within groups do not look

necessary for ink data.

5.5 Wool data

Sample of wool data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 350-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 1, the total number of points, the dimension

of our data, is m = 69. An interval int of 2 means every observation is 10 nm apart.

5.5.1 Residuals

Elementwise residuals are displayed when different basis functions are used to show

difference in the distributions. The use of int = 3, or taking every 3rd point, results in

31 points left from m = 69 for the ease of illustration. Each boxplot in Figure 5.10 is

for an element of rki for all curves 1 ≤ i ≤ n = 9 for all groups 1 ≤ k ≤ K = 20.

Each boxplot in Figure 5.11 is for all elements of rki for all curves 1 ≤ i ≤ n = 10

for a given group 1 ≤ k ≤ K = 40.
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(a) Boxplots for elements of r̂ki for all Kn
curves for 6 B-spline basis functions and
interval int = 3.

(b) Boxplots for elements of r̂ki for all Kn
curves for 6 eigenfunctions from fPCA
and interval int = 3.

Figure 5.10: Boxplots of elements of r̂ki for 9 basis functions of different choice where
int = 1.

Like ink data, elementwise boxplots show greater variations when eigenfunctions ob-

tained from fPCA are used compared to B-spline basis functions used.

(a) Boxplots of r̂ki for all m points on n
curves within group k for 6 B-spline basis
functions where int = 1.

(b) Boxplots of r̂ki for all m points on n
curves within group k for 6 eigenfunctions
from fPCA where int = 1.

Figure 5.11: Boxplots of r̂ki by group for 6 basis functions of different choice where
int = 1.
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5.5.2 Between-group distribution for wool data

Chi-squared Q-Q plots are multivariate version of qq-plots that plots the squared Ma-

halanobis distance, that is the multivariate generalization of z-score, against its Chi-

squared quantile. A straight line is expected for data that follows a multivariate normal

distribution.

(a) Chi-squared Q-Q plot of fitted θk for 6
B-spline basis functions of order 3 where
int = 1.

(b) Chi-squared Q-Q plot of fitted θk for 6
eigenfunctions obtained from fPCA used
where int = 1.

Figure 5.12: Chi-squared Q-Q plots of fitted θk for 6 basis functions of different
choices used whertr interval int = 1.
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(a) Boxplots of fitted coefficients θk for 6
B-spline basis functions of order 3 where
int = 1.

(b) Boxplots of fitted coefficients θk for
6 eigenfunctions from fPCA and interval
int = 1.

Figure 5.13: Boxplots of fitted coefficients θk when B = 6 for different choices of
basis functions and int = 1.

(a) Pairwise scatter plot of the first 5 ele-
ments of the fitted θk when 6 B-spline ba-
sis functions of order 3 are used.

(b) Pairwise scatter plot of the first 5 ele-
ments of the fitted θk when 6 eigenfunc-
tions obtained from fPCA are used.

Figure 5.14: Pairwise scatter plot of the first 5 elements of fitted θk for different choices
of basis functions.

From the Chi-squared Q-Q plot and pairwise scatterplots it can be seen that the fitted
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θk probably follows multivariate normal distribution. However, the fitted coefficients

obtained using different choices of basis functions follow different distributions.

5.5.3 Simulation - CA-S for wool data

Simulated wool data using CA-S with parameters estimated from the original data and

data generated for the same number of replicates.

Figure 5.15: Each block shows n = 9 measurements for each of 4 types of wool
data simulated under simplified multivariate normal random-effects model. Refer to
Section 5.3.1 for details.

This model seems to capture the shape of wool data, that is, a check mark; however, the

curves all seem to be centred at one place with variation around it at each point (wave-

length). This is consistent with our model assumption but not our data, as expected.

There are some variation between groups in terms of shape.

5.5.4 Simulation - CA-const. for wool data

Simulated wool data using CA-const. with parameters estimated from the original data

and data generated for the same number of replicates.
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Figure 5.16: Each block shows n = 9 measurements for each of 4 types of wool
data simulated under constant within-group variance model. Refer to Section 5.3.2 for
details.

This model is very similar to CA-S with not quite noticeable change of variance at each

point between different groups. The variation among shapes are similar to that of CA-S

so there is no noticeable effect of using a diagonal between-group variance-covariance

structure.

5.5.5 Simulation - CA-ar for wool data

Simulated wool data using CA-ar with parameters estimated from the original data and

data generated for the same number of replicates.

Figure 5.17: Each block shows n = 9 measurements for each of 4 types of wool data
simulated under multivariate normal random-effects with autoregressive within-group
covariance model. Refer to Section 5.3.3 for details.

There are some separation of curves as we want.
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5.5.6 Simulation - DR-S for wool data

Simulated wool data using DR-S with parameters estimated from the original data and

data generated for the same number of replicates.

Figure 5.18: Each block shows n = 9 measurements for each of 4 types of wool data
simulated under dimension reduced multivariate normal random-effects model. Refer
to Section 5.3.4 for details.

All curves are separated with larger between-group variations comparing to the previ-

ous models, which is also as expected given our model assumptions.

5.5.7 Conclusion

The models perform as expected; however, the larger variation within-groups com-

pared to between-groups for wool data makes it harder to distinguish in comparison

with ink data. Moreover, all models seem to fail to model the shape of the curves at

wavelength above 650 nm. This could be due to the B-spline basis functions used to

model the shape.

5.6 Cotton data

Sample of cotton data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 240-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 1, the total number of points, the dimension

of our data, is m = 91. An interval int of 2 means every observation is 10 nm apart.
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5.6.1 Residuals

Elementwise residuals are displayed when different basis functions are used to show

difference in the distributions. The use of int = 3, or taking every 3rd point, results in

31 points left from m = 91 for the ease of illustration.

(a) Boxplots for elements of r̂ki for all
Kn curves for 6 B-spline basis functions
where int = 3.

(b) Boxplots for elements of r̂ki for all Kn
curves for 6 eigenfunctions obtained from
fPCA where int = 3.

Figure 5.19: Boxplots of r̂ki when 6 B-spline basis functions of order 3 are used.

(a) Boxplots of r̂ki for all m points on n
curves within group k for 6 B-spline basis
functions where int = 1.

(b) Boxplots of r̂ki for all m points on n
curves within group k for 6 eigenfunctions
obtained from fPCA where int = 1.

Figure 5.20: Boxplots of r̂ki by group for 6 basis functions of different choice where
int = 1.
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Each boxplot within Figure 5.19 is for an element of rki for all 1 ≤ i ≤ n = 9 for

all 1 ≤ k ≤ K = 20. From this plot we can tell variances varies within-group. Each

boxplot within Figure 5.20 is for an element of rki for all 1 ≤ i ≤ n = 10 for all

1 ≤ k ≤ K = 40.

5.6.2 Between-group distribution for cotton data

Chi-squared Q-Q plots are multivariate version of qq-plots that plots the squared Ma-

halanobis distance, that is the multivariate generalization of z-score, against its Chi-

squared quantile. A straight line is expected for data that follows a multivariate normal

distribution.

(a) Chi-squared Q-Q plot of fitted θk for
6 B-spline basis functions of order 3 used
where int = 1.

(b) Chi-squared Q-Q plot of fitted θk for 6
eigenfunctions obtained from fPCA used
where int = 1.

Figure 5.21: Chi-squared Q-Q plots of fitted θk for 6 basis functions of different
choices used where interval int = 1.
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(a) Boxplots of fitted coefficients θk for 6
B-spline basis functions of order 3 where
int = 1.

(b) Boxplots of fitted coefficients θk for 6
eigenfunctions from fPCA where int = 1.

Figure 5.22: Boxplots of fitted coefficients θk when B = 6 for different choices of
basis functions and int = 1.

Chi-squared Q-Q plots and boxplots of fitted coefficients θk suggest that they might

follow a multivariate normal distribution for when eigenfunctions obtained from fPCA

are used.

(a) Pairwise scatter plot of the first 5 el-
ements of the fitted θk when 6 B-spline
basis functions of order 3 are used where
int = 1.

(b) Pairwise scatter plot of the first 5 ele-
ments of the fitted θk when 6 eigenfunc-
tions obtained from fPCA are used where
int = 1.

Figure 5.23: Pairwise scatter plots of fitted θk under different basis functions where
int = 1.
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From the boxplots and pairwise scatterplots it is pretty clear that fitted θk for differ-

ent choice of basis functions used do not follow the same distribution. There are higher

correlations for those fitted when B-spline basis functions are used and the other ones

(fitted coefficients when eigenfunctions from fPCA are used) are centred around zero.

5.6.3 Simulation - CA-S for cotton data

Simulated cotton data using CA-S with parameters estimated from the original data

and data generated for the same number of replicates.

Figure 5.24: Each block shows n = 9 measurements for each of 4 types of cotton data
simulated under simplified multivariate normal random-effects model.

The simulations show that this model does not capture the shapes of the curves ex-

actly and it fails to model one of the most important features of the data, within-group

variations primarily expressed as separation of the curves. These curves only resemble

original data at local minimums and maximums.

5.6.4 Simulation - CA-const. for cotton data

Simulated cotton data using CA-const. with parameters estimated from the original

data and data generated for the same number of replicates.
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Figure 5.25: Each block shows n = 9 measurements for each of 4 types of cotton data
simulated under constant within-group variance model.

Data simulated from this model look similar to those simulated from the previous

model (CA-S). Some variations for within-group variance can be seen but not too ob-

vious. Neither is it easy to see the effect of relaxing the diagonal covariance assumption

for the coefficients (for the shape). It is still not modeling the within-group variation

as expected.

5.6.5 Simulation - CA-ar for cotton data

Simulated cotton data using CA-ar with parameters estimated from the original data

and data generated for the same number of replicates.

Figure 5.26: Each block shows n = 9 measurements for each of 4 types of cotton data
simulated under multivariate normal random-effects with autoregressive within-group
covariance model.

Data simulated under this model show an improvement in modeling the within-group

variation as represented by the separation of curves. Since the measurements are taken

at smaller intervals for our ink data, there are greater dependencies between consecu-

tive points on the curve.
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5.6.6 Simulation - DR-S for cotton data

Simulated cotton data using DR-S with parameters estimated from the original data

and data generated for the same number of replicates.

Figure 5.27: Each block shows n = 9 measurements for each of 4 types of cotton data
simulated under dimension reduced multivariate normal random-effects model.

The variations that are dependent on the location of the curves in the original data can

be seen modeled here but the overall shape does not resemble that of original data. This

can be explained by the poor fit given by our choice of the number of basis functions.

5.6.7 Conclusion

The models perform as expected. There are limitations for each model and these are

expected given the model assumptions.

5.7 Conclusion

We will see via the results in the next chapter whether each of the limitations as set

out by the assumptions of the models have an impact in whether the likelihood ratios

estimated can distinguish between curves from different groups.
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Chapter 6

Results and interpretations

6.1 Introduction

In this chapter, all models introduced in Chapter 3 are used to evaluate likelihood ratios

for datasets introduced in Chapter 4.

Likelihood ratios are calculated as follow. Suppose there are K groups for each

dataset, each having n measurements of m points per curve for a total of Kn curves.

Each comparison that gives one likelihood ratio is obtained by first picking 2 sets of

ns curves to represent control and recovered evidence. Denote these sets of ns curves

by Y c and Y r, respectively where Y c can be equivalent to Y r. The hyperparameters

are estimated using the rest of the K groups by assuming they represent the relevant

population. Given Y c,Y r and the estimation of the hyperparameters, likelihood ratios

are calculated by the formulas given in the relevant section for each model in Chapter

3. Likelihood ratios will be reported after a log base 10 transformation for the ease of

comparison given the scale of their magnitude. They will be denoted by

lLRM,ΞM (c, r) = log10(LR) = log10
pM,ΞM (Y c,Y r|Hp)

pM,ΞM (Y c,Y r|Hd)
.

where M is the model used and ΞM is the set of parameters used for evaluation under

chosen M including int and ns. The lLR′s are expected to be greater than 0 for c = r

and less than 0 otherwise. For each setup (int, ns, B, M ) a table of lLR will be

calculated. The choices and combinations of these are dependent on models and data.

The table can be decomposed as in Figure 6.1.
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(1, 1)

(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3)

...

(K − 2, 2)(K − 2, 1) (K − 2, 3)

(K − 1, 1) (K − 1, 2) (K − 1, 3)

(K, 1) (K, 2) (K, 3)

· · ·

(K,K−2) (K,K−1) (K,K)

Figure 6.1: Table of lLR calculated given each setup. Each block represent a subtable
for comparisons between 2 (identical or distinct) groups. The dimension of the tables
are dependent on n and ns, that are, the number of repeated measurements within a
group k = 1, . . . , K and the number of curves to be used in a comparison. The shaded
blocks on the diagonal represent tables of lLR from within-group comparisons and
they are lower triangular. The rest of the blocks represent tables of lLR from between
groups and they are full.

Results of these lLR’s obtained are assessed in various ways including tables, and

Tippett and empirical cross entropy plots. Summary tables are used to compare lLR’s

obtained for different setups and chosen basis functions. The choices for basis func-

tions are B-spline basis functions (subsection 2.3.3) and eigenfunctions obtained us-

ing functional principal component analysis (subsection 2.4.2). These tables consist of

four numbers S, D, FP and FN to summarise results. The notation S denotes aver-

age lLRM,ΞM (c, r) for sets of curves {Y c,Y r} where c = r, and D denotes average

lLRM,ΞM (c, r) for c 6= r, they are averages taken from diagonal and off diagonal tables

in Figure 6.1, respectively. The notation FP (FN) denotes percentage of misleading

evidence when a lLR greater (less) than zero is obtained for a between (within) group

comparison. Figures are rounded to the nearest second decimal place. Tippett plots of
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p(log10(LR) > x) =
∑
lLRs I(lLR>x)

|lLR| , the proportion of lLR’s that are greater than the

value at the x− axis will be drawn to show the empirical (inverse) cumulative propor-

tion for some of the best models along with empirical cross entropy (ECE) plots. The

setups selected for plots might not be the same as those selected based on the sum-

mary tables due to different criteria used. Summary tables and selected Tippett plots

obtained from dimension reduced multivariate normal random-effects model for three

sets of data are published in Aitken et al. (2019) using the same procedure described

above.

Although we are only interested in p(E|Hp)/p(E|Hd), to assess the performance

of these models, it would be helpful to consider some cost functions in comparing

between the models since we not only want the signs of these lLR’s to be correct,

the magnitudes of these likelihood ratios should be large in either direction for the

support of the propositions. Empirical cross entropy plots consider all cases of prior

probabilities and the notion of penalty. It is calculated as

ECE =
P (Hp)

Ns

Ns∑
i=1

log2

[
1 +

P (Hd)

LRiP (Hp)

]
+
P (Hd)

Nd

Nd∑
i=1

log2

[
1 +

LRiP (Hp)

P (Hd)

]

where Ns and Nd are the number of within- and between-group comparisons, respec-

tively. Each ECE plot consists of three (ECE) lines. A black dotted line represents

the null likelihood ratio where there is no information given by the observations and

that the likelihood is always equal to one. The blue dashed line represents the ECE for

calibrated likelihood ratios. This shows the best set of ECE for when there is no loss of

information due to calibrations. It represents the best likelihood ratio values set for all

other sets that give the same discriminating power Martyna et al. (2013); Zadora et al.

(2013) and it is calculated by using the Pool Adjacent Violators algorithm Cover and

Thomas (2005). Finally, the red line is the ECE for our observed likelihood ratios.
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6.3 Ink

Sample of ink data consists of K = 40 groups of n = nk = 10 MSP measurements of

absorbance yki versus wavelength for 1 ≤ i ≤ n for all k. Absorbance are measured

at wavelengths ranging from 380-800 nm with intervals of 1nm so using all the points,

that is, taking interval or int = 1, the total number of points, the dimension of our

data, is m = 421.

6.3.1 Summary tables for ink data

For each model, three tables of results will be reported for ink data for 3 distinct values

of ns. The three values are 1, 3 and 5. Since we have 10 measurements of one sample

for each of the 40 different types of ink, there are 10× 11÷ 2 = 55 within-group and

10×10 = 100 between-group lLR’s for comparisons between 40 and 40×39÷2 = 780

pairs of groups for ns = 1. For ns = 3, lLR’s are obtained for comparing sets of

ns = 3 measurements with another (mutually exclusive) set of ns = 3 measurements

so there are
⌊

10
3

⌋
× (
⌊

10
3

⌋
+ 1) ÷ 2 = 6 within-group and

⌊
10
3

⌋
×
⌊

10
3

⌋
= 9 between-

group lLR’s for comparisons between 40 and 40× 39÷ 2 = 780 pairs of groups. For

ns = 5 there are
⌊

10
5

⌋
× (
⌊

10
5

⌋
+ 1) ÷ 2 = 3 within-group (including with itself) and⌊

10
5

⌋
×
⌊

10
5

⌋
= 4 between-group lLR’s for comparisons between 40 and 40×39÷2 =

780 pairs of groups. Within-group comparisons include comparisons with the same

group of curve(s) itself.

For component-wise additive models, the number B of basis functions is set to 9

as chosen in Chapter 4 for both B-spline basis functions and eigenfunctions obtained

from fPCA. The order o of B-spline basis functions is always set to 3. The intervals

int considered are 1, 5 and 15 to take into account situations where data available is

limited. It is also used to represent cases where there might be different structures

among data due to data collected at different intervals. For dimension reduced models,

the chosen B are between 4 and 9 inclusive for B-spline basis functions used and 2 to

9 inclusive for eigenfunctions from fPCA used.
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6.3.2 CA-S Simplified multivariate normal random-effects model

- ink data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for ink data are summarised in tables and plots for assessing the performance

are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -45.41 -853.43 0.04 72.09 -67.44 -1202.19 0.02 75.86
1 5 -2.63 -161.96 0.66 40.18 7.05 -10.09 17.94 6.55
1 15 2.88 -48.64 2.93 15.45 0.38 -0.01 49.32 4.09

3 1 -42.50 -2458.89 0.00 44.17 -64.31 -3458.58 0.00 45.83
3 5 -0.65 -478.51 0.19 22.08 15.35 -49.13 7.46 2.92
3 15 4.71 -150.92 0.83 12.08 2.69 -0.30 45.91 1.67

5 1 -50.18 -4098.20 0.00 32.50 -75.40 -5759.94 0.00 33.33
5 5 -1.50 -803.10 0.00 22.50 19.94 -95.05 4.94 3.33
5 15 5.01 -256.94 0.45 12.50 6.10 -1.22 43.56 1.67

Table 6.2: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model for different choices of basis (B-splines and eigenfunctions ob-
tained using functional principal component analysis) for different ns and intervals
(int) where number of basis (B) used is 9 and order of basis used is 3 for B-spline
basis functions.

Based on Table 6.2, someD are enormous in magnitude. We can see from the table

that given ns, as int increases S and FP generally goes up and D and FN goes down

drastically. This is true for both B-spline basis functions and eigenfunctions from fPCA

used. There are usually trade-offs between FP and FN . Given int, as ns increases,

FN rate generally declines as well. Patterns of results obtained using B-spline basis

functions differ a lot from results obtained using eigenfunctions from fPCA; when

B-spline basis functions are used, the performance improves as int or ns increases.

However, when eigenfunctions from fPCA are used, performance is always optimal at

int = 5 given ns and worsen int either increases or decreases. The performance is

highly dependent on setup, i.e., ns = 5, int = 5 with eigenfunctions obtained from

functional principal component analysis, gives the best results in terms of FP and FN

for ink data under this model (CA-S).
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Figure 6.2: Tippett plot for ink data with setup ns = 5, int = 5 under model CA-S
when eigenfunctions from fPCA are used.

Figure 6.3: ECE plot for ink data with setup ns = 5, int = 5 under model CA-S when
eigenfunctions from fPCA are used.

Although the Tippett plot as drawn in Figure 6.2 shows only a small percentages of

overlap between the two sets (between- and within-group comparisons) of likelihood

ratios, the ECE as drawn in Figure 6.3 is saying this model is not giving any useful

information as the loss of information is greater than likelihood ratios all equal to one.

6.3.3 CA-const. Constant within-group variance model - ink data

Log likelihood ratios calculated using the constant within-group variance model for

ink data are summarised in tables and plots for assessing the performance are drawn

for one selection of setups.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -101.19 -472.61 0.01 78.45 -202.88 -689.62 0.00 80.59
1 5 -8.14 -80.36 0.27 57.23 9.77 -21.60 8.93 10.23
1 15 1.65 -21.98 1.06 30.32 1.04 -1.74 31.97 5.36

3 1 -61.52 -1024.49 0.00 47.08 -86.31 -1241.68 0.00 49.58
3 5 -3.42 -196.49 0.14 34.17 30.08 -98.10 3.52 4.58
3 15 3.79 -61.35 0.47 17.08 4.84 -6.24 25.23 1.25

5 1 -50.84 -1579.49 0.00 33.33 -69.64 -1879.77 0.00 33.33
5 5 -1.43 -309.11 0.06 27.50 44.91 -192.05 1.92 4.17
5 15 4.73 -99.65 0.26 15.00 10.01 -12.10 23.59 1.67

Table 6.3: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 9 and order of basis used is 3 for B-spline basis functions.

Based on Table 6.3, the magnitudes of D decreases from those obtained under

CA-S. Using B-spline basis functions, FN rates are always too high but decreases as

either ns and int increases. Using eigenfunctions from fPCA, FP and FN are similar

to those obtained under CA-S. Since FN increases compared to CA-S, FP rates are

generally smaller. Finally, the best setup is still ns = 5, int = 5 when eigenfunctions

from fPCA are used with lowered FP compared to CA-S.

Figure 6.4: Tippett plot for ink data with setup ns = 3, int = 5 under model CA-const.
when eigenfunctions obtained from fPCA are used.
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Figure 6.5: ECE plot for ink data with setup ns = 3, int = 5 under model CA-const.
when eigenfunctions obtained from fPCA are used.

Based on Figure 6.5, there are even more loss of information than CA-S.

6.3.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - ink data

Log likelihood ratios calculated using the multivariate normal random-effects with au-

toregressive within-group covariance model for ink data are summarised in tables and

plots for assessing the performance are drawn for one selection of setups. Overall the

magnitudes of S and D drop according to Table 6.4. The patterns for FP and FN

stays the same; however, just by changing the within-group covariance matrix FN

rates decreased drastically, especially for int = 1 meaning the assumption of auto-

correlation is somewhat important at least for int = 1, which is consistent with our

assumptions. The best setup is still ns = 5, int = 5 with eigenfunctions from fPCA

just like CA-const.. Even though overall this model outperforms CA-const., its best

performing setup is not better than that obtained under CA-const. in terms of sum of

FP and FN rates. Under this setup, S, D, FP , and FN are all of similar magnitude

to those obtained using CA-const.. More setups that give reasonably excellent results

include ns = 3, int = 5 with eigenfunctions from fPCA and ns = 3, int = 15 with

B-spline basis functions.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.63 -86.98 0.50 32.64 -3.99 -141.09 0.16 49.09
1 5 3.39 -24.51 1.39 13.82 9.27 -14.37 9.07 3.91
1 15 3.26 -9.48 3.86 8.18 1.09 -1.25 35.92 2.59

3 1 1.45 -260.01 0.14 26.67 -2.71 -404.51 0.04 32.50
3 5 5.16 -79.21 0.56 14.17 26.10 -73.31 3.80 2.92
3 15 5.12 -33.32 0.98 7.92 4.65 -5.01 21.89 0.83

5 1 0.76 -437.12 0.06 22.50 -3.57 -671.62 0.00 25.83
5 5 5.57 -135.80 0.35 15.83 38.62 -147.77 2.05 4.17
5 15 5.88 -58.18 0.58 10.83 9.80 -10.09 18.62 0.83

Table 6.4: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model for different choices of basis (B-
splines and eigenfunctions obtained using functional principal component analysis) for
different ns and intervals (int) where number of basis (B) used is 9 and order of basis
used is 3 for B-spline basis functions.

Figure 6.6: Tippett plot for ink data with setup ns = 1, int = 15 under model CA-ar.
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Figure 6.7: ECE plot for ink data with setup ns = 1, int = 15 under model CA-ar.

Including an autocorrelation structure to the covariance matrix makes the loss in infor-

mation much smaller compare to CA-const. according to their ECE plots.

6.3.5 DR-S Dimension reduced multivariate random-effects model

- ink data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for ink data are summarised in tables and plots for assessing the perfor-

mance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.05 -8.47 17.11 4.23
3 - - - - 1.74 -15.89 10.17 3.50
4 1.98 -20.95 10.94 3.77 2.42 -28.65 6.42 3.09
5 2.63 -28.34 6.25 2.73 2.91 -33.90 5.24 1.91
6 3.21 -42.39 5.17 1.68 3.42 -45.12 4.28 1.82
7 3.86 -49.76 4.07 0.95 4.04 -55.08 4.01 1.14
8 4.47 -56.25 3.46 0.86 4.58 -62.08 3.56 0.82
9 4.95 -63.87 3.21 0.73 5.24 -67.86 3.00 0.59

Table 6.5: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 1 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

Both S and D fell to more reasonable magnitudes as indicated in Table 6.5 com-

pared to component-wise additive models. The performance looks good forB as small
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as 4 as both FP and FN rates are much smaller comparing to component-wise addi-

tive models.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.57 -27.28 8.11 2.08
3 - - - - 2.46 -50.89 4.29 2.92
4 2.91 -66.82 4.59 3.75 3.39 -90.67 2.44 3.33
5 3.83 -89.89 2.34 3.33 4.16 -107.12 1.97 2.92
6 4.68 -133.31 2.02 2.08 4.88 -141.81 1.48 2.50
7 5.63 -156.68 1.44 1.67 5.82 -172.78 1.50 2.50
8 6.56 -177.52 1.10 1.67 6.68 -194.87 1.30 2.08
9 7.38 -200.96 1.11 1.25 7.64 -213.84 1.04 1.25

Table 6.6: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 3 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

For ns = 3 there is still no trade-off between FP and FN . As ns increases from 1

to 3, smaller B gives smaller FP and FN and larger B gives smaller FP and larger

FN . This is the first model so far that given ns, both FP and FN decline as B

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.75 -46.61 5.83 3.33
3 - - - - 2.72 -86.76 2.40 5.00
4 3.31 -113.28 2.50 4.17 3.81 -153.35 1.63 3.33
5 4.39 -152.95 1.47 5.00 4.67 -181.83 1.44 5.00
6 5.31 -225.79 1.12 4.17 5.53 -240.22 1.09 3.33
7 6.33 -265.58 0.87 3.33 6.58 -292.62 0.93 3.33
8 7.37 -300.67 0.87 3.33 7.52 -329.94 0.74 3.33
9 8.31 -341.00 0.64 2.50 8.62 -362.05 0.67 2.50

Table 6.7: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 5 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

increases. Just by considering within- and between-group variations for the represen-

tation of the overall shape of the curves, huge improvements are being made as FP and

FN declined drastically compared to component-wise additive models. From B = 7

onward there is no noticeable improvement of performance for either choice of basis

functions.
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Figure 6.8: Tippett plot for ink data with setup ns = 3, B = 6 under model DR-S.

Figure 6.9: ECE plot for ink data with setup ns = 3, B = 6 under model DR-S.

According to Figure 6.9 this model is not as good calibrated at log10(Odds) > 1.6 but

the loss of information is small when log10(Odds) < 1.6. This model is so far the best

performing model compared to all component-wise additive models with much lower

FP and FN even at smaller B and indicated by the ECE plot in Figure 6.9.

6.3.6 DR-C Multivariate normal random-effects model with non

constant within-group covariance model - ink data

Log likelihood ratios calculated using the multivariate normal random-effects model

with non constant within-group covariance model for ink data are summarised in tables

and plots for assessing the performance are drawn for one selection of setups.
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.07 -3.08 17.07 4.14
3 - - - - 1.76 -4.17 10.50 2.91
4 2.03 -4.35 11.51 3.18 2.47 -5.38 7.17 1.95
5 2.71 -5.10 6.99 1.41 2.97 -5.54 6.17 1.09
6 3.31 -5.67 6.39 0.73 3.50 -5.83 5.43 0.68
7 3.97 -5.65 5.40 0.32 4.14 -5.89 5.54 0.36
8 4.59 -5.59 5.33 0.32 4.70 -5.77 5.35 0.32
9 5.13 -5.23 5.41 0.27 5.37 -0.47 5.22 0.18

Table 6.8: Summary table of lLR’s obtained using multivariate normal random-effects
model with non constant within-group covariance model for comparing sets of size
ns = 1 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

Looking at ns = 1 alone, this is one of the best performing models for ink data.

Like DR-S, both FP and FN decrease as B increases. Comparing to DR-S, there is a

decline in FN and increase of FP , which results in an overall worse performance in

terms of sums of FP and FN .

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.67 -6.58 8.25 2.08
3 - - - - 2.66 -8.51 4.44 2.50
4 3.25 -8.61 5.03 2.92 3.75 -10.21 2.99 2.08
5 4.36 -9.75 2.72 2.08 4.66 -10.39 2.38 1.67
6 5.42 -10.48 2.44 0.42 5.62 -10.72 2.05 1.25
7 6.65 -10.40 2.15 0.42 6.75 -10.69 2.11 0.00
8 7.88 -10.38 2.02 0.00 8.03 -10.55 2.09 0.00
9 9.02 -10.01 1.89 0.42 9.31 -10.29 1.89 0.00

Table 6.9: Summary table of lLR’s obtained using multivariate normal random-effects
model with non constant within-group covariance model for comparing sets of size
ns = 3 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

Both FP and FN generally decrease as B increases. As ns increases from 1 to 3,

there is a drop in FP , which makes this model better than DR-S.
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 1.98 -9.41 5.71 3.33
3 - - - - 3.18 -11.96 2.72 5.00
4 4.09 -12.09 2.72 4.17 4.61 -14.03 1.99 3.33
5 5.53 -13.60 1.83 2.50 5.81 -14.37 1.67 2.50
6 6.91 -14.57 1.47 1.67 7.14 -14.83 1.35 1.67
7 8.53 -14.54 1.22 0.83 8.72 -14.88 1.41 0.00
8 10.18 -14.71 1.28 0.83 10.31 -14.92 1.19 0.00
9 11.89 -14.43 1.25 0.00 12.21 -15.09 1.15 0.00

Table 6.10: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 5 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

As ns increases from 3 to 5, FP all decrease. This model differs from DR-S only

in the consideration of variation in within-group variance-covariance matrix and the

results clearly indicate this by the declines in FN from DR-S that might be due to

within-group variation. However, this is offset by a slight increase in FP as tradeoff.

Figure 6.10: Tippett plot for ink data with setup ns = 1, B = 6 under model DR-C.
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Figure 6.11: ECE plot for ink data with setup ns = 1, B = 6 under model DR-C.

We can tell from the ECE plots that DR-C is the best performing model although this

is not clear from the summary tables or Tippett plots when comparing with DR-S.

6.3.7 Conclusion

Based on these results, we can tell there are variation among the overall shape of the

curves, both within- and between-groups and when a model takes into account both of

these variations, it performs well in terms of lowered FP and FN . The ECE further

suggests DR-C outperforms DR-S.

6.4 Wool data

Sample of wool data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 350-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 5, the total number of points, the dimension

of our data, is m = 69.

6.4.1 Summary table for wool data

For each model, three tables of results will be reported for wool data for 3 distinct

values of ns. The three values are 1, 2 and 3. Since we have 9 measurements of one
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sample for each of the 20 different types of wool fibres, there are 9 × 10 ÷ 2 = 45

within-group and 9 × 9 = 81 between-group lLR’s for comparisons between 20 and

20 × 19 ÷ 2 = 190 pairs of groups for ns = 1. For ns = 2, lLR’s are obtained for

comparing sets of ns = 2 measurements with another (mutually exclusive) set of ns =

2 measurements so there are
⌊

9
2

⌋
×(
⌊

9
2

⌋
+1)÷2 = 10 within group and

⌊
9
2

⌋
×
⌊

9
2

⌋
= 16

between group lLR’s for comparisons between 20 and 20 × 19 ÷ 2 = 190 pairs of

groups. For ns = 3 there are
⌊

9
3

⌋
× (
⌊

9
3

⌋
+1)÷2 = 6 within-group and

⌊
9
3

⌋
×
⌊

9
3

⌋
= 9

between-group lLR’s for comparisons between 20 and 20 × 19 ÷ 2 = 190 pairs of

groups.

6.4.2 CA-S Simplified multivariate normal random-effects model

- wool data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for wool data are summarised in tables and plots for assessing the performance

are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -1.90 -33.09 5.42 40.33 -7.96 -70.88 1.45 52.67
1 2 0.47 -14.58 11.56 27.78 0.60 -13.57 13.55 27.22
1 3 0.97 -9.42 16.09 21.22 1.31 -3.95 32.63 15.89

2 1 -0.77 -60.87 2.60 31.00 -6.28 -127.24 0.86 43.50
2 2 1.32 -27.96 6.51 20.50 1.91 -26.54 7.11 18.50
2 3 1.72 -18.62 9.24 15.00 2.39 -8.89 24.54 8.00

3 1 -2.70 -98.31 1.75 33.33 -10.86 -202.61 0.29 40.83
3 2 0.65 -46.07 4.15 21.67 1.67 -44.49 4.85 22.50
3 3 1.38 -31.14 6.26 19.17 3.03 -15.96 17.78 10.00

Table 6.11: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model for different choices of ba-
sis (B-splines and eigenfunctions obtained using functional principal component anal-
ysis) for different ns and intervals (int) where number of basis (B) used is 6 and order
of basis used is 3 for B-spline basis functions.

Based on Table 6.11 the use of eigenfunctions from fPCA behaves differently com-

pared to using B-spline basis functions. Using B-spline basis functions gives high FN
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compared to FP for smaller ns and declines as either int or ns increases. On the other

hand, the use of eigenfunctions from fPCA always performs best when int = 2 given

ns and either FP or FN increases as int increases or decreases. Overall, for any setup

(choice of ns and int), this model always gives high (greater than 15%) FP or FN

rate, which can possibly be explained by its overall roughness and high within-group

variations of its original data. Comparing to ink data, this models generally performs

better for smaller ns and worse as either ns or int increases. The best performing setup

is ns = 2, int = 2 using eigenfunctions from fPCA.

Figure 6.12: Tippett plot for wool data with setup ns = 2, int = 3 under model CA-S
when eigenfunctions obtained from fPCA are used.

Figure 6.13: ECE plot for wool data with setup ns = 2, int = 3 under model CA-S
when eigenfunctions obtained from fPCA are used.

104



Like for ink data, there is too much loss of information suggested by ECE plot as

shown in Figure 6.13 that the model is not giving any useful information.

6.4.3 CA-const. Constant within-group variance model - wool data

Log likelihood ratios calculated using the constant within-group variance model for

wool data are summarised in tables and plots for assessing the performance are drawn

for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -3.02 -26.74 2.83 47.44 -13.73 -61.69 0.38 61.44
1 2 -0.13 -11.55 6.89 35.56 1.48 -11.83 11.65 28.56
1 3 0.46 -7.31 10.52 29.56 1.60 -3.47 29.82 17.78

2 1 -1.76 -47.21 1.32 40.00 -11.19 -96.32 0.26 52.50
2 2 0.83 -21.36 3.95 26.50 3.89 -25.60 5.62 22.50
2 3 1.33 -13.83 5.89 21.00 3.66 -8.74 20.69 10.00

3 1 -3.87 -72.28 0.64 40.00 -15.84 -138.64 0.06 45.83
3 2 0.02 -33.56 2.22 30.83 4.00 -43.17 3.74 26.67
3 3 0.91 -22.05 3.74 25.00 5.06 -16.06 14.80 11.67

Table 6.12: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 6 and order of basis used is 3 for B-spline basis functions.

The use of eigenfunctions from fPCA also behaves differently compared to using

B-spline basis functions. Using B-spline basis functions give higher FN compared

to FP and declines as ns increases. The results obtained by using eigenfunctions

from fPCA exhibit similar pattern as CA-S, that is, better when int = 2 given ns and

worsen as int increases or decreases. Like ink data when modeled using CA-const.,

there are always trade-offs between FP and FN as int increases given ns but not

necessarily as ns increases for a given int. Overall, FP rates decreased and FN rates

increased from those obtained under CA-S by the consideration of variation in the

constant within-group variances and relaxation of diagonal between-group covariance

matrix. Comparing to ink data, using either eigenfunctions from fPCA or B-spline

basis functions gives lower FN for smaller ns and higher FN for larger ns. Like CA-
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S, this model favours larger ns and int when using B-spline basis functions. The best

performing setup is ns = 3, int = 3 usng eigenfunctions from fPCA.

Figure 6.14: Tippett plot for wool data with setup ns = 3, int = 3 under model
CA-const. when eigenfunctions obtained from fPCA are used.

Figure 6.15: ECE plot for wool data with setup ns = 3, int = 3 under model CA-const.
when eigenfunctions obtained from fPCA are used.

Based on Figure 6.15 more loss of information is seen when taking into account vari-

ation in within-group variances comparing to CA-S.
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6.4.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - wool data

Log likelihood ratios calculated using the multivariate normal random-effects with au-

toregressive within-group covariance model for wool data are summarised in tables

and plots for assessing the performance are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 1.96 -1.50 31.51 2.78 1.31 -22.24 1.45 21.56
1 2 1.30 -0.87 34.35 3.44 2.93 -6.74 7.55 8.78
1 3 1.06 -1.09 33.43 6.22 2.06 -1.82 25.24 5.44

2 1 3.01 -4.65 16.64 3.00 1.71 -45.46 0.86 19.00
2 2 2.18 -2.68 19.77 3.00 4.89 -17.51 3.29 6.50
2 3 1.84 -2.85 19.97 4.00 4.22 -5.91 12.04 4.00

3 1 3.68 -8.45 9.47 3.33 0.80 -70.67 0.47 22.50
3 2 2.72 -5.15 12.81 3.33 5.95 -30.02 2.63 9.17
3 3 2.23 -5.32 12.81 7.50 5.99 -11.38 7.08 5.00

Table 6.13: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model for different choices of ba-
sis (B-splines and eigenfunctions obtained using functional principal component anal-
ysis) for different ns and intervals (int) where number of basis (B) used is 6 and order
of basis used is 3 for B-spline basis functions.

Like other component-wise additive models, use of eigenfunctions from fPCA be-

haves differently compared to using B-spline basis functions. The magnitudes and

signs of S and D look promising as they are of signs we expect to see and not too

large in magnitude. Using B-spline basis functions overall gives high FP and low FN

rates but using eigenfunctions from fPCA gives better and satisfactory results when

ns = 2, int = 2 and performance worsen as either ns or int increases or decreases.

Comparing to CA-const., just by considering autoregressive structure on within-group

covariance matrix we are able to bring down FN ; however, there is also an increase

of FP but for larger ns, there are overall decrease in the sum of FP and FN when

B-spline basis functions are used. On the other hand, using eigenfunctions from fPCA

always give lower FP and FN comparing to those obtained under CA-const.. The

best performing setup is ns = 2, int = 2 using eigenfunctions from fPCA.
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Figure 6.16: Tippett plot for wool data with setup ns = 3, int = 2 under model CA-ar.

Figure 6.17: ECE plot for wool data with setup ns = 3, int = 2 under model CA-ar.

According to Figure 6.17 there is much smaller loss of information compared to other

CA models.

6.4.5 DR-S Dimension reduced multivariate random-effects model

- wool data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for wool data are summarised in tables and plots for assessing the per-

formance are drawn for one selection of setups.
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.44 -0.80 34.13 10.56
3 - - - - 0.87 -2.04 22.36 5.78
4 3.21 -16.05 10.70 7.67 2.65 -13.81 11.59 7.89
5 1.63 -7.96 8.40 9.22 1.48 -7.71 9.01 7.00
6 1.48 -10.21 6.17 9.33 1.94 -10.47 5.50 7.78
7 1.88 -13.47 5.05 8.78 1.76 -15.09 4.09 8.67
8 2.10 -16.24 3.72 9.33 2.04 -16.43 3.78 9.11

Table 6.14: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 1 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

Just looking at ns = 1, the magnitudes and signs of S and D look promising

with both FP and FN generally decrease as B increases. However, FN reaches a

minimum and increases afterwards.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.67 -1.86 25.95 7.00
3 - - - - 1.23 -4.76 14.84 4.00
4 4.19 -35.45 6.64 7.50 3.27 -31.16 7.17 6.50
5 2.18 -17.54 4.67 9.00 1.82 -17.48 4.90 8.00
6 1.74 -22.44 3.03 9.50 2.41 -23.35 2.70 7.00
7 2.36 -29.58 2.73 7.50 2.10 -32.44 2.04 8.50
8 2.65 -35.64 1.55 8.50 2.52 -35.38 1.78 7.00

Table 6.15: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 2 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

When ns increases from 1 to 2, FP rates generally decrease and FN decreases for

small B. The magnitude of D increases comparing to ns = 1 and the effect is reflected

in decreased FP .
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.75 -3.32 21.81 10.00
3 - - - - 1.36 -7.88 10.47 8.33
4 4.34 -55.87 4.56 10.83 3.02 -48.96 5.03 9.17
5 2.27 -27.86 3.27 14.17 1.70 -27.40 3.27 9.17
6 1.28 -35.78 1.93 13.33 2.30 -36.85 1.81 10.83
7 1.78 -47.04 1.99 14.17 1.41 -51.65 0.99 10.00
8 1.92 -56.41 1.05 14.17 1.90 -56.38 0.94 10.83

Table 6.16: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 3 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

When ns increases from 2 to 3, FN rates generally increase. The magnitude of D

increases again comparing to ns = 2 and the effect is reflected in slight decrease of

FP ; however, this is offset by a larger increase in FN . The best performing setup is

ns = 2, B = 8. Overall, the improvement of DR-S from component-wise additive

models explain there are also both within- and between-group variations among the

representation of the overall shape of the curves for wool data.

Figure 6.18: Tippett plot for wool data with setup ns = 2, B = 8 under model DR-S
when eigenfunctions obtained from fPCA are used.
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Figure 6.19: ECE for wool data with setup ns = 2, B = 8 under model DR-S when
eigenfunctions obtained from fPCA are used.

Comparing to CA-ar, this model have larger loss of information at log10(Odds) >

−0.1 which possibly suggests there are within-group variations that need to be mod-

eled.

6.4.6 DR-C Multivariate normal random-effects with non constant

within-group covariance model - wool data

Log likelihood ratios calculated using the multivariate normal random-effects with non

constant within-group covariance model for wool data are summarised in tables and

plots for assessing the performance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.45 -0.56 33.22 11.11
3 - - - - 0.90 -1.16 22.16 5.78
4 1.39 -6.97 10.70 7.67 1.16 -5.19 12.72 7.11
5 1.75 -2.68 9.56 8.11 1.82 -2.58 10.10 6.56
6 2.14 -2.92 7.85 7.89 2.32 -3.00 6.81 6.67
7 2.80 -3.05 7.93 7.00 2.70 -3.50 5.84 7.56
8 3.20 -3.10 6.71 7.67 3.15 -3.42 6.08 6.56

Table 6.17: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 1 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.
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The magnitudes of D are smaller comparing to those obtained using DR-S. Com-

paring to ns = 1 results obtained from DR-S, there is an overall decrease of FN .

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.73 -1.24 25.49 7.50
3 - - - - 1.34 -2.38 14.90 4.00
4 1.82 -15.39 6.64 7.50 1.45 -11.87 7.76 6.00
5 2.55 -4.58 6.05 6.00 2.65 -4.57 5.53 5.50
6 3.19 -4.91 4.24 5.50 3.38 -5.07 3.62 6.00
7 4.20 -5.03 4.31 5.00 4.06 -5.55 3.19 4.50
8 4.88 -4.98 3.59 5.00 4.69 -5.51 3.06 5.50

Table 6.18: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 2 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

The setup ns = 2 outperforms ns = 1 completely in terms of decreased FP and

FN . Comparing to DR-S, FN rates are generally smaller for larger B.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.87 -2.01 21.40 10.00
3 - - - - 1.55 -3.58 10.41 8.33
4 1.89 -24.26 4.56 10.83 1.39 -18.74 5.44 9.17
5 2.95 -6.30 4.09 11.67 3.04 -6.22 3.80 9.17
6 3.75 -6.69 3.10 8.33 3.94 -6.86 2.34 8.33
7 4.98 -6.90 3.33 6.67 4.70 -7.41 1.87 7.50
8 5.95 -6.60 2.16 7.50 5.74 -7.43 1.75 7.50

Table 6.19: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 3 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

As expected, FN declined compared to DR-S as a result of considering variation

for within-group variance-covariance matrix. However, the decrease is offset by a

slight increase in FP . The best performing setup is ns = 2, B = 7.
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Figure 6.20: Tippett plot for wool data with setup ns = 1, B = 6 under model DR-C.

Figure 6.21: ECE for wool data with setup ns = 1, B = 6 under model DR-C.

According to Figure 6.21 this model performs similar to that of CA-ar, which could

possibly suggest the models pretty much capture the same amount of information

through modeling of within-group variability.

6.4.7 Conclusion

The results are quite different for wool data compared to ink data for component-wise

additive models. This can possibly be explained by the difference in between- and

within-group variations present in the original datasets. However, dimension reduced

models consistently perform well for either datasets suggesting there might be no need

to model component-wise variances for either ink or wool data.
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6.5 Cotton data

Sample of ink data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 240-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 5, the total number of points, the dimension

of our data, is m = 91.

6.5.1 Summary tables for cotton data

For each model, results will be reported for cotton data for 3 distinct values of ns. The

three values are 1, 2 and 3. Since we have 9 measurements of one sample for each of

the 20 different types of cotton fibres, there are 9 × 10 ÷ 2 = 45 within-group and

9× 9 = 81 between-group lLR’s for comparisons between 20 and 20× 19÷ 2 = 190

pairs of groups for ns = 1. For ns = 2, lLR’s are obtained for comparing sets of

ns = 2 measurements with another (mutually exclusive) set of ns = 2 measurements

so there are
⌊

9
2

⌋
×(
⌊

9
2

⌋
+1)÷2 = 10 within group and

⌊
9
2

⌋
×
⌊

9
2

⌋
= 16 between group

lLR’s for comparisons between 20 and 20× 19÷ 2 = 190 pairs of groups. For ns = 3

there are
⌊

9
3

⌋
× (
⌊

9
3

⌋
+ 1) ÷ 2 = 6 within-group and

⌊
9
3

⌋
×
⌊

9
3

⌋
= 9 between-group

lLR’s for comparisons between 20 and 20× 19÷ 2 = 190 pairs of groups.

6.5.2 CA-S Simplified multivariate normal random-effects model

- cotton data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for cotton data are summarised in tables and plots for assessing the performance

are drawn for one selection of setups.

We can see from S and D in Table 6.20 that the results are not optimal as their

signs are not as expected and effects of these are reflected in high FP or FN rates.

Use of B-spline basis functions gives very similar results from using eigenfunctions

from fPCA; they generally give high FN rates and slightly lower FP yet still quite

high. There are always trade-offs between FN and FP given ns. Using B-spline basis

functions, results worsen as int increases given ns in terms of sum of FP and FN .
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -6.08 -28.38 13.13 51.44 -13.26 -49.47 3.91 63.44
1 2 -1.68 -12.51 22.16 41.11 -2.71 -14.77 17.15 48.89
1 3 -0.44 -7.49 28.60 35.00 0.06 -5.64 28.32 38.56

2 1 -5.23 -50.58 7.93 43.50 -11.71 -84.67 2.11 48.50
2 2 -1.06 -23.37 16.64 35.50 -2.05 -27.11 11.35 40.50
2 3 0.12 -14.58 23.32 33.00 0.45 -12.04 23.52 34.50

3 1 -4.92 -72.99 4.85 31.67 -11.27 -120.56 1.40 43.33
3 2 -0.75 -34.40 10.99 28.33 -1.60 -39.72 6.90 29.17
3 3 0.42 -21.83 18.36 23.33 0.75 -18.61 18.60 23.33

Table 6.20: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model for different choices of basis (B-splines and eigenfunctions ob-
tained using functional principal component analysis) for different ns and intervals
(int) where number of basis (B) used is 6 and order of basis used is 3 for B-spline
basis functions.

Using eigenfunctions from fPCA, results are best when int = 2 given ns and worsen

as int either decreases or increases; however, given int, results are generally better as

ns increases for either basis functions used. There must be features of the data that are

essential for distinguishing between groups not being captured here.

Figure 6.22: Tippett plot for cotton data with setup ns = 3, int = 2 under model CA-S
when eigenfunctions obtained from fPCA are used.
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Figure 6.23: ECE plot for cotton data with setup ns = 3, int = 2 under model CA-S
when eigenfunctions obtained from fPCA are used.

According to ECE plot in Figure 6.23 this model does not provide information useful

for distinguishing between curves.

6.5.3 CA-const. Constant within-group variance model - cotton

data

Log likelihood ratios calculated using the constant within-group variance model for

cotton data are summarised in tables and plots for assessing the performance are drawn

for one selection of setups. In Table 6.21 the signs of S are also alarming and the effect

is reflected in high FN for all set-ups for either choices of basis functions. The FN

rates are higher comparing to those obtained using CA-S for all set-ups; however, there

is trade-offs between FP and FN . The performance improves as large increase in FN

is completely offset by even larger decline in FP using B-spline basis functions but

not as much when eigenfunctions from fPCA are used.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 -9.21 -28.54 5.00 61.89 -25.48 -62.85 1.05 68.67
1 2 -3.28 -12.41 11.43 53.00 -4.55 -17.25 10.58 53.78
1 3 -1.69 -7.58 16.86 48.78 -0.90 -7.12 21.23 43.89

2 1 -8.93 -46.48 1.81 49.00 -21.88 -86.15 0.16 56.00
2 2 -3.05 -21.28 5.16 47.50 -4.31 -30.52 3.55 46.00
2 3 -1.42 -13.36 8.62 44.00 -0.54 -14.65 12.37 40.50

3 1 -9.31 -64.38 1.70 46.67 -23.44 -114.92 0.41 49.17
3 2 -3.20 -30.17 3.45 40.83 -4.87 -44.33 2.40 41.67
3 3 -1.47 -19.20 5.73 37.50 -0.62 -22.58 8.54 34.17

Table 6.21: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 6 and order of basis used is 3 for B-spline basis functions.

Figure 6.24: Tippett plot for cotton data with setup ns = 3, int = 3 under model
CA-const. when eigenfunctions obtained from fPCA are used.
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Figure 6.25: ECE plot for cotton data with setup ns = 3, int = 3 under model CA-
const. when eigenfunctions obtained from fPCA are used.

The high FP and FN rates together with the ECE as plotted in Figure 6.25 suggests

that this model does not capture any information useful for distinguishing between

curves for cotton data.

6.5.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - cotton data

Log likelihood ratios calculated using the multivariate normal random-effects with au-

toregressive within-group covariance model for cotton data are summarised in tables

and plots for assessing the performance are drawn for one selection of setups. The pat-

tern of in Table 6.22 resembles more of that obtained using CA-S than CA-const. when

using B-spline basis functions. However, comparing with CA-const., this models per-

forms better in terms of sums of FP and FN when B-spline basis functions are used

but larger FP is not favoured. The use of eigenfunctions from fPCA generally results

in declined of FN and not as large increase in FP , which is better than CA-const..

When B-spline basis functions are used, increasing int results in increase of FP given

ns. From the results above (from all 3 models) it can be seen that component-wise

models have their limits in the ability to distinguish between groups for cotton data.

Moreover, considering variation for within-group variances might worsen the perfor-

mance but a correct structure of variance-covariance matrix helps a lot in terms of

lowered FP and FN . The best performing setup is ns = 3, int = 2.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.69 -1.66 29.69 15.78 0.01 -18.25 4.73 32.44
1 2 0.56 -0.94 35.04 13.89 1.68 -8.30 11.77 21.22
1 3 0.46 -0.80 36.86 15.89 2.02 -3.12 21.33 12.67

2 1 1.23 -3.78 20.95 8.00 1.16 -35.09 2.27 27.00
2 2 0.96 -2.27 27.24 8.50 2.85 -18.48 5.82 18.00
2 3 0.79 -1.91 28.88 9.00 3.61 -8.52 15.62 12.00

3 1 1.47 -6.26 14.74 9.17 1.44 -52.46 1.52 26.67
3 2 1.11 -3.87 20.88 12.50 3.46 -29.51 3.33 19.17
3 3 0.92 -3.23 23.39 10.83 4.74 -14.88 10.07 10.83

Table 6.22: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model for different choices of ba-
sis (B-splines and eigenfunctions obtained using functional principal component anal-
ysis) for different ns and intervals (int) where number of basis (B) used is 6 and order
of basis used is 3 for B-spline basis functions.

Figure 6.26: Tippett plot for cotton data with setup ns = 3, int = 1 under model
CA-ar.
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Figure 6.27: ECE plot for cotton data with setup ns = 3, int = 1 under model CA-ar.

Surprisingly with high FP and FN rates, the ECE as plotted in Figure 6.27 is showing

that the model is reasonably well (not perfectly) calibrated with much smaller loss of

information.

6.5.5 DR-S Dimension reduced multivariate random-effects model

- cotton data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for cotton data are summarised in tables and plots for assessing the per-

formance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.15 -0.14 51.98 17.78
2 - - - - 0.21 -0.25 48.57 17.00
3 - - - - 0.42 -0.65 38.36 14.00
4 0.48 -0.90 34.89 12.33 0.58 -1.04 29.34 12.00
5 0.62 -1.20 29.53 12.67 0.70 -1.21 30.18 10.89
6 0.71 -2.37 20.80 10.78 0.76 -2.16 23.53 11.11
7 1.16 -3.82 18.35 9.00 0.80 -4.47 16.76 11.56
8 1.41 -5.87 13.22 10.33 1.54 -8.47 12.70 10.00

Table 6.23: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 1 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.
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B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.27 -0.41 46.48 12.50
2 - - - - 0.37 -0.66 41.88 13.00
3 - - - - 0.74 -1.59 29.97 7.50
4 0.83 -2.22 23.59 10.00 0.98 -2.54 19.87 9.50
5 1.09 -2.94 19.28 12.50 1.16 -3.01 18.85 8.00
6 1.17 -5.41 12.24 10.00 1.23 -5.02 15.16 10.50
7 1.87 -8.76 10.69 10.00 1.27 -9.73 9.61 13.50
8 2.14 -13.23 6.84 12.50 2.29 -18.31 7.50 11.00

Table 6.24: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 2 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

The signs and magnitudes of S and D look promising. Like ink and wool data,

FP and FN generally decrease at the same time as B increases for DR-S. When ns

increases from 1 to 2, magnitudes of S and D increase slightly and both FP and FN

generally decrease for B < 7.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.35 -0.72 43.16 10.00
2 - - - - 0.43 -1.17 37.31 10.83
3 - - - - 0.88 -2.69 25.15 10.00
4 1.02 -3.71 17.08 11.67 1.20 -4.25 14.74 12.50
5 1.39 -4.89 13.92 13.33 1.47 -4.93 11.70 10.83
6 1.56 -8.77 8.54 9.17 1.75 -7.84 9.82 10.83
7 2.52 -14.06 7.08 10.83 1.86 -14.99 6.78 11.67
8 2.83 -20.84 4.50 12.50 2.98 -28.96 5.50 11.67

Table 6.25: Summary table of lLR’s obtained using dimension reduced multivariate
random-effects model for comparing sets of size ns = 3 for different choices of basis
(B-splines and eigenfunctions obtained using functional principal component analysis)
for different numbers B of basis functions.

It looks like larger ns and B are required for capturing the features used to dis-

tinguish between groups as sums of FP and FN generally decline as ns increases.

Surprisingly, FP and FN do not keep decreasing as B increases and this probably

suggest that B = 6 is optimal, which is consistent with our selection in chapter 4.
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Figure 6.28: Tippett plot for cotton data with setup ns = 3, B = 6 under model DR-S.

Figure 6.29: ECE for cotton data with setup ns = 3, B = 6 under model DR-S.

Comparing to CA-ar., there are some loss of information which suggests there might

be within-group variations that are essential for distinguishing between curves.

6.5.6 DR-C Multivariate normal random-effects model with non

constant within-group covariance model - cotton data

Log likelihood ratios calculated using the multivariate normal random-effects model

with non constant within-group covariance model for cotton data are summarised in

tables and plots for assessing the performance are drawn for one selection of setups.
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.22 -0.19 46.47 19.33
3 - - - - 0.45 -0.42 36.30 15.89
4 0.57 -0.50 32.42 13.11 0.67 -0.64 27.89 12.89
5 0.80 -0.61 27.92 12.22 0.91 -0.64 29.17 10.67
6 1.12 -0.99 20.55 9.67 1.16 -1.04 23.21 10.89
7 1.68 -1.21 20.79 8.11 1.52 -1.67 17.20 10.22
8 2.14 -1.57 15.46 8.44 2.41 -1.96 14.83 8.56

Table 6.26: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 1 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

The signs of S and D look promising. There is a general decrease of FP and FN

as B increases without tradeoffs. There is really no improvement from DR-S.

B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.41 -0.48 39.84 13.00
3 - - - - 0.86 -0.96 28.88 8.00
4 1.12 -1.14 21.81 8.00 1.23 -1.42 19.34 9.00
5 1.57 -1.36 18.36 7.50 1.67 -1.45 18.36 6.50
6 2.11 -1.98 12.27 6.00 2.15 -2.07 15.36 7.50
7 3.03 -2.28 12.43 5.50 2.75 -2.98 10.72 6.50
8 3.76 -2.83 9.41 5.00 4.15 -3.47 9.84 3.50

Table 6.27: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets of
size ns = 2 for different choices of basis (B-splines and eigenfunctions obtained using
functional principal component analysis) for different numbers B of basis functions.

When ns is increased from 1 to 2, the magnitudes of S and D increase slightly

and both FP and FN rates decreased so this is outperforming ns = 1. Comparing to

DR-S, there is an overall decrease in FN with a slight increase in FP so this model is

capturing the within-group variations present in the data.
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B-spline fPCA
B S D FP FN S D FP FN
2 - - - - 0.53 -0.83 34.56 11.67
3 - - - - 1.08 -1.59 23.80 11.67
4 1.49 -1.87 15.96 8.33 1.60 -2.26 13.86 9.17
5 2.13 -2.24 12.92 6.67 2.21 -2.34 12.34 7.50
6 2.93 -3.04 9.06 6.67 2.94 -3.07 10.23 7.50
7 3.80 -3.48 8.60 7.50 3.85 -4.20 8.19 6.67
8 5.07 -4.11 6.96 5.83 4.91 -5.18 7.43 6.67

Table 6.28: Summary table of lLR’s obtained using multivariate normal random-
effects model with non constant within-group covariance model for comparing sets
of size ns = 3 for different choice of basis and number of basis functions (B).

We see some decrease in both FN and FP rates when comparing with DR-S for

ns > 1. This model is able to decrease FN rates to single digits but overall it might

not worth the computation time as there is no visible advantage over DR-S. Moreover,

when B-spline basis functions are used, the best setup is again B = 6.

Figure 6.30: Tippett plot for cotton data with setup ns = 3, B = 7 under model DR-C
when eigenfunctions obtained from fPCA are used.
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Figure 6.31: ECE plot for cotton data with setup ns = 3, B = 7 under model DR-C
when eigenfunctions obtained from fPCA are used.

This model performs similar to CA-ar according to the ECE plots but with much

smaller FP and FN rates.

6.5.7 Conclusion

The best model for cotton data is multivariate normal random-effects model with non

constant within-group covariance but not much better than dimension reduced multi-

variate random-effects model according to the summary tables. However, according

to ECE CA-ar and DR-C perform best. Both of these models take into account some

within-group variabilities.

6.6 Conclusion

DR-C is the best choice for all datasets although this is not clear by just looking at the

summary tables. It can be seen that the most complicated model is still the best. It takes

into account both between- and within-group variabilities. However, computationally

CA-ar or DR-S can be used instead for ink and wool data.
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Chapter 7

Sensitivity analysis

7.1 Introduction

In this chapter, we are mainly interested in the effect of hyperparameter estimates in

the evaluation of likelihood ratios. Forensic cases are often unique in nature with

different relevant populations so it is hard to find out the exact distributions that are

useful for each case. Moreover, the size of the samples available for analysis is not

always large enough for proper inference so a number of adjustments on the esti-

mates are made and tested for their effects on likelihood ratios evaluated. Here we

pick a few models that are introduced in Chapter 3 and make adjustments mainly with

within-group variance or covariance matrices since the estimation of the means are

more straight-forward. The models picked are simplified multivariate normal random-

effects model (CA-S), constant within-group variance model (CA-const.), multivari-

ate normal random-effects with autoregressive within-group covariance model (CA-

ar) and dimension reduced multivariate normal random-effects model (DR-S), in the

same order. Results will be presented under the relevant subsection for the given model

under the section for each dataset. These include a set of summary tables each with

different choice of ns. Selection of set-ups that give the largest and smallest lLR’s

for that model will be picked and sets of {Y c,Y r} will be chosen to showcase the

sets of curves that are worst distinguished by lLRs In other words, curves within the

same groups that gives the smallest lLR and curves from different groups that give the

largest lLR. Each of these sets will be drawn and compared visually and numerically
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(by lLR).

Sections 7.1.1 to 7.1.4 describe how estimations of parameters will be manipulated

under each model.

7.1.1 Simplified multivariate normal random-effects model

Under this model we have enormous FN rates for small intervals int and big differ-

ence in results for different choice of basis functions. It might be worthwhile to check

the effect of using different estimates of the variance (σ̂2) on lLRs obtained. For this

model, the estimates of the variance (σ̂2) will be both increased and decreased by 20%.

This amount is set by trial and error to show that it is able to make some differences in

FP or FN to give us an idea of the effect of different estimations on the lLR’s.

7.1.2 Constant within-group variance model

Under contant within-group variance model, the hyperparameters associated with within-

group variances are γ and δ. Four cases are considered for sensitivity analysis; they

are

• A: γnew = 0.5× γ̂, δnew = 0.5× δ̂

• B: γnew = 0.5× γ̂, δnew = 1.5× δ̂

• C: γnew = 1.5× γ̂, δnew = 0.5× δ̂

• D: γnew = 1.5× γ̂, δnew = 1.5× δ̂

The results are presented for the same setups, that are, combinations of ns and int as in

Chapter 6. Results presented in Chapter 6 are also displayed under the Case Original.

7.1.3 Multivariate normal random-effects with autoregressive within-

group covariance model

Recall that multivariate normal random-effects with autoregressive within-group co-

variance model differs from contant within-group variance model only by the assump-

tion of an autocorrelated within-group variance-covariance matrix. The hyperparame-
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ters associated with within-group variances are again γ and δ. Four cases are consid-

ered for sensitivity analysis; they are again

• A: γnew = 0.5× γ̂, δnew = 0.5× δ̂

• B: γnew = 0.5× γ̂, δnew = 1.5× δ̂

• C: γnew = 1.5× γ̂, δnew = 0.5× δ̂

• D: γnew = 1.5× γ̂, δnew = 1.5× δ̂

The results are presented for the same setups, that are, combinations of ns and int as in

Chapter 6. Results presented in Chapter 6 are also displayed under the Case Original.

7.1.4 Dimension reduced multivariate normal random-effects model

For the dimension reduced multivariate normal random-effects model, U , the within-

group variance-covariance is assumed to be constant for all groups, which can be over

simplistic. We will consider four cases with varying U .

• A: Unew = 0.5× Û

• B: Unew = 2.5× Û

• C: Unew = Û − 0.2diag(Û)

• D: Unew = Û + 0.2diag(Û)

The results are presented for the same setups, that are, combinations of ns and int

as in Chapter 6. However, only one selection of B is used due to the similarity of

their performances. Results presented in Chapter 6 are also displayed under the Case

Original.

7.1.5 Visual comparison and likelihood ratios

Although lLRs are not meant to be classifiers, we do expect to see larger values of lLR

either in the positive or negative direction for support of one proposition over another.

For the purpose of performance evaluation, when a pair of sets of curves that are within
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the same group but a negative lLR is obtained or vice versa using a given model, we

claim that they are failed to be distinguished by lLR. After numerical results are

presented for sensitivity analyses given a model, two sets of curves that failed to be

distinguished by lLR’s are drawn. They represent two setups selected using the table

of lLR introduced in Figure 6.1 where setup is a combination of ns and int (and B in

some cases). There will be two sets of figures drawn to illustrate these cases. The first

set of figures are curves from within the same group but negative lLR’s are obtained

using that model under the selected setup. The second set of figures show curves from

different groups but positive lLR’s are obtained under another selected setup. They are

plotted together and separately for a total of 3 figures per set. The lLR’s along with

their setup will also be presented.

7.2 Ink data

Recall from Chapter 6 the best performing model for original ink data is DR-C ac-

cording to the summary tables and ECE plots. Most of the ECE plots produced from

results obtained using component additive models suggest too much loss in informa-

tion although low FP and FN rates can be obtained when the right setup is chosen.

7.2.1 CA-S Simplified multivariate normal random-effects model

- ink data

For this model, the estimates of the variance (σ2) will be both increased and decreased

by 20% and results will be presented in the same way as in Chapter 6.
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Adjustment of int S D FP FN
Subtract 20% 1 -59.34 -1069.62 0.03 74.86

Original 1 -45.41 -853.43 0.04 72.09
Plus 20% 1 -36.20 -709.37 0.05 70.00

Subtract 20% 5 -5.07 -204.48 0.45 44.86
Original 5 -2.63 -161.96 0.66 40.18
Plus 20% 5 -1.07 -133.68 0.88 35.45

Subtract 20% 15 2.35 -62.29 2.16 19.41
Original 15 2.88 -48.64 2.93 15.45
Plus 20% 15 3.17 -39.60 3.79 12.82

Table 7.1: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
9 B-spline basis functions of order 3 are used for ns = 1.

Adjustment of int S D FP FN
Subtract 20% 1 -56.17 -3076.91 0.00 45.42

Original 1 -42.50 -2458.89 0.00 44.17
Plus 20% 1 -33.46 -2046.94 0.00 42.92

Subtract 20% 5 -3.08 -600.66 0.14 26.67
Original 5 -0.65 -478.51 0.19 22.08
Plus 20% 5 0.90 -397.14 0.27 20.42

Subtract 20% 15 4.15 -190.63 0.58 13.75
Original 15 4.71 -150.92 0.83 12.08
Plus 20% 15 5.02 -124.50 1.10 11.67

Table 7.2: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
9 B-spline basis functions of order 3 are used for ns = 3.

There are always trade-offs; a change in an estimate increases one of FP and FN

and decreases the other one. We can see our original estimates do not always give the

lowest FP or FN among all the adjustments given the same settings (int and ns) but

overall, they generally give the most balanced results in terms of FP and FN rates,

which is optimal. For this model there are higher FN rates so the trade-offs are not

balanced in magnitude; take ns = 1, int = 5 as example, a drop of 9% for FN (from

44.86 to 40.18) resulted in an increase of almost 50% for FP (from 0.45 to 0.66) but

magnitude-wise FN has much greater change so when FN rates are large, ’Plus 20%’

or larger estimates of σ2 gives better results which indicates a higher probability of
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Adjustment of int S D FP FN
Subtract 20% 1 -66.01 -5126.29 0.00 32.50

Original 1 -50.18 -4098.20 0.00 32.50
Plus 20% 1 -39.70 -3412.87 0.00 31.67

Subtract 20% 5 -4.37 -1006.63 0.00 24.17
Original 5 -1.50 -803.10 0.00 22.50
Plus 20% 5 0.35 -667.47 0.03 21.67

Subtract 20% 15 4.28 -323.40 0.29 12.50
Original 15 5.01 -256.94 0.45 12.50
Plus 20% 15 5.42 -212.69 0.48 7.50

Table 7.3: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
9 B-spline basis functions of order 3 are used for ns = 5.

getting a positive lLR when the tolerance for within-group error is increased. In other

cases where both FP and FN are small, the estimates do not matter as much as either

adjustments perform well.

The interval int selected is 1 with number of curves ns = 3 in a set in a comparison.

The lLR obtained is -1426.58.

Figure 7.1: Curves from within the group 5 yet negative lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The interval int selected is 15 with number of curves ns = 1 in a set in a compari-

son. The lLR obtained is 7.79.
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Figure 7.2: Curves from groups 17 and 1 yet positive lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

From these two sets of figures we can tell the model fails when there are vertical

separations between curves. However, when the curves are reasonably close, a positive

lLR will be obtained.

7.2.2 CA-const. Constant within-group variance model - ink data

Under contant within-group variance model, the hyperparameters associated with within-

group variances are γ and δ. Four cases are considered for sensitivity analysis; they

are

• A: γnew = 0.5× γ̂, δnew = 0.5× δ̂

• B: γnew = 0.5× γ̂, δnew = 1.5× δ̂

• C: γnew = 1.5× γ̂, δnew = 0.5× δ̂

• D: γnew = 1.5× γ̂, δnew = 1.5× δ̂

The results are presented the same way as in Chapter 6 alongside results from Chapter 6

reproduced here under the Case Original.
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int Case S D FP FN Case S D FP FN
1 -101.19 -472.61 0.01 78.45
1 A -102.43 -473.78 0.01 78.55 B -98.08 -467.57 0.01 78.09
1 C -104.00 -477.38 0.01 78.59 D -100.00 -471.50 0.01 78.23

5 -8.14 -80.36 0.27 57.23
5 A -8.50 -80.52 0.26 57.82 B -6.65 -77.25 0.30 54.95
5 C -9.43 -83.32 0.26 59.05 D -7.82 -80.25 0.27 57.00

15 1.65 -21.98 1.06 30.32
15 A 1.60 -21.77 1.03 30.86 B 2.21 -20.15 1.39 26.59
15 C 1.24 -23.74 0.88 33.55 D 1.69 -22.21 1.09 29.95

Table 7.4: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 9 and 3 for B-spline basis functions for
ns = 1. Refer to Section 7.1.2 for cases (adjustments).

int Case S D FP FN Case S D FP FN
1 -61.52 -1024.49 0.00 47.08
1 A -61.61 -1024.24 0.00 47.08 B -60.71 -1022.26 0.00 47.08
1 C -61.91 -1026.31 0.00 47.08 D -61.41 -1024.73 0.00 47.08

5 -3.42 -196.49 0.14 34.17
5 A -3.47 -196.20 0.14 34.17 B -2.77 -194.48 0.14 32.50
5 C -3.69 -198.14 0.16 33.75 D -3.35 -196.78 0.14 34.17

15 3.79 -61.35 0.47 17.08
15 A 3.77 -61.03 0.47 17.08 B 4.22 -59.65 0.50 15.83
15 C 3.68 -62.76 0.46 17.50 D 3.81 -61.67 0.47 17.08

Table 7.5: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 9 and 3 for B-spline basis functions for
ns = 3.

Based on the results in Tables 7.4 to 7.6, it can be seen that when the modek (con-

stant and independent within-group variance for all points on the curve for a given

group with a common centre curve) fails to account for characteristics that are essen-

tial for distinguishing between curves, the resulting likelihood ratios are not sensitive

to the estimation of hyperparameters.
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int Case S D FP FN Case S D FP FN
1 -50.84 -1579.49 0.00 33.33
1 A -50.86 -1579.13 0.00 33.33 B -50.34 -1577.69 0.00 33.33
1 C -50.92 -1580.87 0.00 33.33 D -50.80 -1579.84 0.00 33.33

5 -1.43 -309.11 0.06 27.50
5 A -1.44 -308.75 0.06 27.50 B -0.99 -307.39 0.06 27.50
5 C -1.47 -310.44 0.06 27.50 D -1.40 -309.46 0.06 27.50

15 4.73 -99.65 0.26 15.00
15 A 4.73 -99.29 0.26 15.83 B 5.08 -98.07 0.29 15.00
15 C 4.75 -100.88 0.29 15.83 D 4.75 -100.00 0.29 15.00

Table 7.6: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 9 and 3 for B-spline basis functions for
ns = 5. Refer to Section 7.1.2 for cases (adjustments).

The interval int selected is 1 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -594.15.

Figure 7.3: Curves from within the group 7 yet negative lLR is obtained under model
CA-const.. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

The interval int selected is 15 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is 9.91.
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Figure 7.4: Curves from groups 17 and 1 yet positive lLR is obtained under model
CA-const.. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

Again this model is sensitive to the distance (separation) between the curves; curves

closer together have a higher probability of getting lLR that is greater than 1 and vice

versa.

7.2.3 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - ink data

Four cases are considered for sensitivity analysis. They are the same as CA-const..

int Case S D FP FN Case S D FP FN
1 0.63 -86.98 0.50 32.64
1 A 0.77 -86.81 0.51 31.82 B 1.06 -86.32 0.54 30.59
1 C 0.82 -87.01 0.52 32.05 D 0.57 -87.06 0.49 32.86

5 3.39 -24.51 1.39 13.82
5 A 3.44 -24.39 1.42 13.73 B 4.03 -23.25 1.83 10.55
5 C 3.76 -24.77 1.46 14.14 D 3.40 -24.57 1.40 13.82

15 3.26 -9.48 3.86 8.18
15 A 3.25 -9.24 3.90 8.32 B 3.81 -7.77 6.83 4.23
15 C 4.00 -9.99 4.41 9.14 D 3.29 -9.68 3.89 8.18

Table 7.7: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model with varying estimation of δ and
γ for different intervals (int) where 9 B-spline basis functions of order 3 are used for
ns = 1. Refer to Section 7.1.3 for cases (adjustments).
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int Case S D FP FN Case S D FP FN
1 1.45 -260.01 0.14 26.67
1 A 1.60 -259.84 0.14 26.67 B 1.86 -259.38 0.14 26.67
1 C 1.67 -260.01 0.17 26.67 D 1.38 -260.10 0.13 26.67

5 5.16 -79.21 0.56 14.17
5 A 5.24 -79.05 0.56 13.33 B 5.80 -77.93 0.57 13.33
5 C 5.59 -79.41 0.60 13.75 D 5.15 -79.29 0.56 14.17

15 5.12 -33.32 0.98 7.92
15 A 5.15 -33.03 0.97 7.92 B 5.86 -31.30 1.30 6.67
15 C 6.00 -33.76 1.15 7.50 D 5.15 -33.55 0.94 7.92

Table 7.8: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model with varying estimation of δ and
γ for different intervals (int) where 9 B-spline basis functions of order 3 are used for
ns = 3. Refer to Section 7.1.3 for cases (adjustments).

int Case S D FP FN Case S D FP FN
1 0.76 -437.12 0.06 22.50
1 A 0.91 -436.95 0.06 22.50 B 1.16 -436.5 0.06 21.67
1 C 0.98 -437.11 0.06 22.50 D 0.69 -437.21 0.06 22.50

5 5.57 -135.80 0.35 15.83
5 A 5.65 -135.64 0.32 15.83 B 6.2 -134.53 0.35 15.00
5 C 6.03 -135.99 0.38 15.00 D 5.56 -135.89 0.35 15.83

15 5.88 -58.18 0.58 10.83
15 A 5.91 -57.88 0.61 10.83 B 6.66 -56.10 0.77 8.33
15 C 6.81 -58.58 0.67 10.83 D 5.92 -58.42 0.61 10.83

Table 7.9: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model with varying estimation of δ and
γ for different intervals (int) where 9 B-spline basis functions of order 3 are used for
ns = 5. Refer to Section 7.1.3 for cases (adjustments).

This model is also not sensitive to the choice of hyperparameters (γ and δ) although

there are exceptional cases (int = 15 under Case B).

The interval int selected is 1 with number of curves ns = 3 in a set in a comparison.

The lLR obtained is -105.92.
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Figure 7.5: Curves from within the group 22 yet negative lLR is obtained under model
CA-ar. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The reason why this pair of curves gives a negative lLR is unclear from the plots.

The interval int selected is 15 with number of curves ns = 1 in a set in a compari-

son. The lLR obtained is 7.42.

Figure 7.6: Curves from groups 17 and 1 yet positive lLR is obtained under model
CA-ar. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The curves are of similar shape; with local minima and maxima close to the other set’s.

7.2.4 DR-S Dimension reduced multivariate normal random-effects

model - ink data

For the dimension reduced multivariate normal random-effects model, U , the within-

group variance-covariance is assumed to be constant for all groups. For the sensitivity

analyses we will consider four cases with varying U .
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• A: Unew = 0.5× Û

• B: Unew = 2.5× Û

• C: Unew = Û − 0.2diag(Û)

• D: Unew = Û + 0.2diag(Û )

The results are presented for the same setups, that are, combinations of ns and int

as in Chapter 6. However, only selections of B will be considered used due to the

similarity of their performances. Results are presented as in Chapter 6 with results

from Chapter 6 reproduced here under the Case Original.

B Case S D FP FN Case S D FP FN
5 A 2.49 -60.06 2.98 10.00 C 2.37 -29.61 34.20 12.77
5 Original 2.63 -28.34 6.25 2.73 Original 2.63 -28.34 6.25 2.73
5 B 2.17 -9.90 12.62 0.09 D 2.43 -11.90 9.43 0.73

7 A 3.68 -104.50 1.85 8.05 C 4.97 22.29 69.81 1.64
7 Original 3.86 -49.76 4.07 0.95 Original 3.86 -49.76 4.07 0.95
7 B 3.21 -17.76 9.41 0.00 D 3.38 -17.79 7.62 0.32

9 A 4.73 -134.21 1.38 7.09 C 0.45 87.59 86.43 37.27
9 Original 4.95 -63.87 3.21 0.73 Original 4.95 -63.87 3.21 0.73
9 B 4.09 -22.79 8.93 0.00 D 3.93 -21.35 7.25 0.23

Table 7.10: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 1.
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B Case S D FP FN Case S D FP FN
5 A 3.75 -184.37 1.03 7.50 C 3.70 -90.46 31.11 9.17
5 Original 3.83 -89.89 2.34 3.33 Original 3.83 -89.89 2.34 3.33
5 B 3.32 -33.79 6.08 0.42 D 3.60 -40.35 4.09 2.50

7 A 5.58 -320.08 0.68 7.08 C 6.42 57.57 65.44 1.25
7 Original 5.63 -156.68 1.44 1.67 Original 5.63 -156.68 1.44 1.67
7 B 4.84 -59.50 3.93 0.00 D 5.04 -59.92 2.89 0.42

9 A 7.43 -410.70 0.48 5.00 C 9.11 268.17 90.28 0.00
9 Original 7.38 -200.96 1.11 1.25 Original 7.38 -200.96 1.11 1.25
9 B 6.28 -76.25 3.02 0.00 D 6.09 -71.70 2.48 0.42

Table 7.11: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 3.

B Case S D FP FN Case S D FP FN
5 A 4.29 -311.07 0.61 10.00 C 4.00 -158.44 29.87 9.17
5 Original 4.39 -152.95 1.47 5.00 Original 4.39 -152.95 1.47 5.00
5 B 3.88 -58.66 3.69 0.00 D 4.14 -69.99 2.60 3.33

7 A 6.21 -538.67 0.42 8.33 C 6.89 89.12 63.56 5.00
7 Original 6.33 -265.58 0.87 3.33 Original 6.33 -265.58 0.87 3.33
7 B 5.60 -102.56 2.40 0.00 D 5.77 -103.63 1.70 2.50

9 A 8.27 -691.86 0.22 5.83 C 9.39 438.22 87.72 0.00
9 Original 8.31 -341.00 0.64 2.50 Original 8.31 -341.00 0.64 2.50
9 B 7.28 -131.60 1.86 0.00 D 7.07 -123.90 1.63 0.80

Table 7.12: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 5.

Overall, our original estimates are robust in terms of sums of FN and FP .

The number of basis functions B selected is 9 with number of curves ns = 3 in a

set in a comparison. The lLR obtained is -11.04.
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Figure 7.7: Curves from within the group 5 yet negative lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The number of basis functions B selected is 9 with number of curves ns = 1 in a set

in a comparison. The lLR obtained is 29.43.

Figure 7.8: Curves from groups 17 and 1 yet positive lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The same groups (17 and 1) are picked up by all component-wise additive models.

7.2.5 Conclusion

If a model fails to account for characteristics that are essential for distinguishing be-

tween curves, the resulting likelihood ratios are not sensitive to the estimation of hy-

perparameters; however, if a model fits well, the performance is optimum even for a

slight change in the estimation.
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7.3 Wool data

Recall from Chapter 6 wool data had the worst result among all datasets. Some models

are able to obtain low FP and FN rates but the ECE plots said otherwise. The only

acceptable models are CA-ar and DR-C under certain setups.

7.3.1 CA-S Simplified multivariate normal random-effects model

- wool data

For this model, the estimates of the variance (σ2) will be both increased and decreased

by 20% and results will be presented in the same way as in Chapter 6.

Adjustment of int S D FP FN
Subtract 20% 1 -3.23 -42.38 4.10 44.44

Original 1 -1.90 -33.09 5.42 40.33
Plus 20% 1 -1.06 -26.95 6.64 36.56

Subtract 20% 2 -0.05 -19.01 9.22 30.67
Original 2 0.47 -14.58 11.56 27.78
Plus 20% 2 0.78 -11.67 13.65 24.78

Subtract 20% 3 0.68 -12.44 12.92 25.33
Original 3 0.97 -9.42 16.09 21.22
Plus 20% 3 1.12 -7.45 18.93 19.22

Table 7.13: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 1.
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Adjustment of int S D FP FN
Subtract 20% 1 -1.95 -77.26 1.97 34.50

Original 1 -0.77 -60.87 2.60 31.00
Plus 20% 1 -0.02 -50.00 3.42 26.00

Subtract 20% 2 0.87 -35.87 4.84 22.00
Original 2 1.32 -27.96 6.51 20.50
Plus 20% 2 1.57 -22.72 7.66 17.50

Subtract 20% 3 1.48 -24.09 7.27 18.50
Original 3 1.72 -18.62 9.24 15.00
Plus 20% 3 1.84 -15.02 10.79 10.50

Table 7.14: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 2.

Based on the results above, it can be seen that when the assumption is wrong, the

resulting likelihood ratios are not sensitive to the estimation of variance.

Adjustment of int S D FP FN
Subtract 20% 1 -4.53 -124.23 1.23 35.00

Original 1 -2.70 -98.31 1.75 33.33
Plus 20% 1 -1.54 -81.09 2.05 28.33

Subtract 20% 2 -0.10 -58.67 2.98 25.00
Original 2 0.65 -46.07 4.15 21.67
Plus 20% 2 1.11 -37.71 5.32 20.00

Subtract 20% 3 0.94 -39.88 4.80 20.00
Original 3 1.38 -31.14 6.26 19.17
Plus 20% 3 1.64 -25.36 7.49 18.33

Table 7.15: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 3.

The interval int selected is 1 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -95.09.
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Figure 7.9: Curves from within the group 14 yet negative lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The interval int selected is 3 with number of curves ns = 3 in a set in a comparison.

The lLR obtained is 4.87.

Figure 7.10: Curves from groups 12 and 7 yet positive lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

Note that these two sets of curves have means very close to each other, which might be

the reason for a positive lLR obtained.

7.3.2 CA-const. Constant within group covariance model - wool

data

Under contant within-group variance model, the hyperparameters associated with within-

group variances are γ and δ. Four cases are considered for sensitivity analysis; they

are
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• A: γnew = 0.5× γ̂, δnew = 0.5× δ̂

• B: γnew = 0.5× γ̂, δnew = 1.5× δ̂

• C: γnew = 1.5× γ̂, δnew = 0.5× δ̂

• D: γnew = 1.5× γ̂, δnew = 1.5× δ̂

The results are presented the same way as in Chapter 6 alongside results from Chapter 6

reproduced here under the Case Original.

int Case S D FP FN Case S D FP FN
1 -3.02 -26.74 2.83 47.44
1 A -3.21 -26.78 2.63 48.22 B 0.21 -20.82 7.25 34.56
1 C -3.63 -30.41 3.01 47.78 D -2.89 -26.78 2.95 47.22

2 -0.13 -11.55 6.89 35.56
2 A -0.12 -11.33 6.73 35.89 B 1.74 -7.56 16.87 21.67
2 C -0.02 -14.04 7.87 35.67 D -0.14 -11.76 7.04 35.11

3 0.46 -7.31 10.52 29.56
3 A 0.51 -7.02 10.45 29.44 B 1.72 -4.17 23.93 15.89
3 C 0.73 -9.46 11.10 29.78 D 0.42 -7.56 10.64 29.67

Table 7.16: Summary table of lLR’s obtained using constant within group covariance
model with varying estimation of δ and γ for different intervals (int) where number of
basis (B) and order of basis used are 6 and 3 for B-spline basis functions for ns = 1.
Refer to Section 7.1.2 for cases (adjustments).

int Case S D FP FN Case S D FP FN
1 -1.76 -47.21 1.32 40.00
1 A -1.90 -47.16 1.32 39.50 B 1.20 -41.44 3.12 27.00
1 C -1.02 -49.46 2.01 34.00 D -1.62 -47.28 1.38 39.50

2 0.83 -21.36 3.95 26.50
2 A 0.81 -21.15 3.85 27.00 B 2.89 -16.88 8.03 17.00
2 C 1.87 -23.03 5.86 23.00 D 0.85 -21.56 3.95 26.50

3 1.33 -13.83 5.89 21.00
3 A 1.36 -13.54 5.72 21.00 B 2.91 -9.99 12.40 10.50
3 C 2.40 -15.40 8.49 19.50 D 1.32 -14.09 5.86 21.00

Table 7.17: Summary table of lLR’s obtained using constant within group covariance
model with varying estimation of δ and γ for different intervals (int) where number of
basis (B) and order of basis used are 6 and 3 for B-spline basis functions for ns = 2.
Refer to Section 7.1.2 for cases (adjustments).
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int Case S D FP FN Case S D FP FN
1 -3.87 -72.28 0.64 40.00
1 A -3.99 -72.12 0.64 40.00 B -0.77 -66.33 1.87 33.33
1 C -2.91 -74.28 1.11 37.50 D -3.74 -72.43 0.64 39.17

2 0.02 -33.56 2.22 30.83
2 A 0.01 -33.30 2.16 31.67 B 2.40 -28.63 5.26 21.67
2 C 1.20 -35.14 3.86 29.17 D 0.06 -33.81 2.28 29.17

3 0.91 -22.05 3.74 25.00
3 A 0.93 -21.71 3.68 25.00 B 2.88 -17.63 8.48 17.50
3 C 2.09 -23.61 5.85 24.17 D 0.91 -22.35 3.74 25.00

Table 7.18: Summary table of lLR’s obtained using constant within group covariance
model with varying estimation of δ and γ for different intervals (int) where number of
basis (B) and order of basis used are 6 and 3 for B-spline basis functions for ns = 3.
Refer to Section 7.1.2 for cases (adjustments).

Based on the tables above, the results are not sensitive to the estimations of the

hyperparameters.

The interval int selected is 1 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -58.74.

Figure 7.11: Curves from within the group 14 yet negative lLR is obtained under
model CA-const.. The second panel shows the first set of curves, the third panel shows
the second set of curves, the first panel shows all of these plotted together.

The interval int selected is 3 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is 5.24.
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Figure 7.12: Curves from groups 14 and 7 yet positive lLR is obtained under model
CA-const.. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

These two curves have different shapes; however, it is also hard to distinguish by eyes.

7.3.3 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - wool data

Four cases are considered for sensitivity analysis. They are the same as CA-const..

int Case S D FP FN Case S D FP FN
1 1.96 -1.50 31.51 2.78
1 A 2.02 -1.49 32.29 2.78 B 2.97 -0.2 53.74 1.33
1 C 3.01 -0.76 46.08 2.56 D 1.94 -1.47 31.82 2.89

2 1.30 -0.87 34.35 3.44
2 A 1.35 -0.87 34.78 3.44 B 2.13 0.37 65.71 0.00
2 C 2.80 0.12 56.41 2.44 D 1.28 -0.85 34.81 3.33

3 1.06 -1.09 33.43 6.22
3 A 1.11 -1.05 33.87 6.00 B 1.67 0.05 59.71 0.89
3 C 2.48 -0.41 50.47 4.33 D 1.04 -1.11 33.57 6.44

Table 7.19: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model with varying estimation of
δ and γ for different intervals (int) where 6 B-spline basis functions of order 3 are used
for ns = 1. Refer to Section 7.1.3 for cases (adjustments).
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int Case S D FP FN Case S D FP FN
1 3.01 -4.65 16.64 3.00
1 A 3.06 -4.68 16.94 3.00 B 4.25 -3.07 30.82 1.50
1 C 4.06 -3.96 25.36 3.00 D 3.01 -4.58 16.78 3.00

2 2.18 -2.68 19.77 3.00
2 A 2.22 -2.72 19.84 3.00 B 3.42 -0.89 43.91 1.00
2 C 3.88 -1.60 36.38 3.00 D 2.17 -2.62 20.49 3.00

3 1.84 -2.85 19.97 4.00
3 A 1.90 -2.83 20.30 4.00 B 2.86 -1.08 42.83 2.00
3 C 3.63 -1.95 37.01 3.00 D 1.82 -2.84 20.26 4.00

Table 7.20: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model with varying estimation of
δ and γ for different intervals (int) where 6 B-spline basis functions of order 3 are used
for ns = 2. Refer to Section 7.1.3 for cases (adjustments).

int Case S D FP FN Case S D FP FN
1 3.68 -8.45 9.47 3.33
1 A 3.72 -8.50 9.53 3.33 B 5.05 -6.69 17.78 1.67
1 C 4.67 -7.84 15.91 3.33 D 3.70 -8.35 10.00 3.33

2 2.72 -5.15 12.81 3.33
2 A 2.75 -5.22 13.10 3.33 B 4.23 -2.99 29.30 2.50
2 C 4.42 -4.14 25.38 3.33 D 2.73 -5.05 13.04 3.33

3 2.23 -5.32 12.81 7.50
3 A 2.28 -5.32 13.10 7.50 B 3.56 -3.11 29.47 2.50
3 C 4.09 -4.46 27.31 4.17 D 2.22 -5.30 12.87 7.50

Table 7.21: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model with varying estimation of
δ and γ for different intervals (int) where 6 B-spline basis functions of order 3 are used
for ns = 3. Refer to Section 7.1.3 for cases (adjustments).

Our original estimates are robust in terms of lowest FP or FN .

The interval int selected is 3 with number of curves ns = 3 in a set in a comparison.

The lLR obtained is -5.85.
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Figure 7.13: Curves from within the group 14 yet negative lLR is obtained under
model CA-ar. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

Curves from the same group (14) have been picked up for all component-wise additive

models to give negative lLRs.

The interval int selected is 2 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is 3.55.

Figure 7.14: Curves from groups 14 and 7 yet positive lLR is obtained under model
CA-ar. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

These two curves have different shapes; however, it is also hard to distinguish by eyes

when looking at them separately.

148



7.3.4 DR-S Dimension reduced multivariate normal random-effects

model - wool data

For the dimension reduced multivariate normal random-effects model, U , the within-

group variance-covariance is assumed to be constant for all groups. For the sensitivity

analyses we will consider four cases with varying U .

• A: Unew = 0.5× Û

• B: Unew = 2.5× Û

• C: Unew = Û − 0.2diag(Û)

• D: Unew = Û + 0.2diag(Û )

The results are presented the same way as in Chapter 6 alongside results from Chap-

ter 6 reproduced here under the Case Original. However, only selections of B will be

considered due to the similarity of their performances.

B Case S D FP FN Case S D FP FN
4 A 1.28 -15.90 5.93 15.00 C 1.98 5.33 90.22 0.78
4 Original 1.39 -6.97 10.70 7.67 Original 1.39 -6.97 10.70 7.67
4 B 1.09 -2.05 23.47 3.00 D 1.05 -1.44 24.83 3.00

6 A 0.72 -23.40 3.00 16.00 C -0.79 23.26 87.90 33.44
6 Original 1.48 -10.21 6.17 9.33 Original 1.48 -10.21 6.17 9.33
6 B 1.33 -3.01 17.96 3.89 D 1.43 -1.89 19.21 4.44

8 A 1.06 -36.84 1.63 17.00 C 2.34 -463.97 68.60 37.11
8 Original 2.10 -16.24 3.72 9.33 Original 2.10 -16.24 3.72 9.33
8 B 1.88 -4.93 12.25 4.67 D 1.63 -2.24 17.72 4.56

Table 7.22: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 1. Refer to Section 7.1.4 for cases
(adjustments).

149



B Case S D FP FN Case S D FP FN
4 A 1.61 -33.33 3.49 13.00 C 2.38 8.72 85.33 1.50
4 Original 1.82 -15.39 6.64 7.50 Original 1.82 -15.39 6.64 7.50
4 B 1.53 -5.10 13.29 4.50 D 1.54 -3.77 14.74 3.00

6 A 0.41 -48.75 1.51 16.50 C 8.60 53.81 89.08 6.50
6 Original 1.74 -22.44 3.03 9.50 Original 1.74 -22.44 3.03 9.50
6 B 1.87 -7.39 8.26 4.00 D 2.08 -5.07 10.26 4.00

8 A 0.81 -77.25 0.82 18.00 C 7.06 19.84 73.03 8.50
8 Original 2.65 -35.64 1.55 8.50 Original 2.65 -35.64 1.55 8.50
8 B 2.71 -11.91 5.36 3.50 D 2.46 -5.96 9.24 4.00

Table 7.23: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 2. Refer to Section 7.1.4 for cases
(adjustments).

B Case S D FP FN Case S D FP FN
4 A 1.36 -51.50 2.16 15.83 C 2.69 11.54 80.53 1.67
4 Original 1.89 -24.26 4.56 10.83 Original 1.89 -24.26 4.56 10.83
4 B 1.75 -8.43 9.42 6.67 D 1.79 -6.52 10.12 5.00

6 A -1.10 -76.07 0.88 20.83 C 10.34 69.99 91.52 2.50
6 Original 1.28 -35.78 1.93 13.33 Original 1.28 -35.78 1.93 13.33
6 B 2.00 -12.36 5.73 5.83 D 2.37 -8.79 6.20 5.00

8 A -1.61 -119.90 0.53 19.17 C 11.15 29.73 77.37 4.17
8 Original 1.92 -56.41 1.05 14.17 Original 1.92 -56.41 1.05 14.17
8 B 2.90 -19.63 2.98 5.83 D 2.87 -10.24 5.44 5.83

Table 7.24: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 3. Refer to Section 7.1.4 for cases
(adjustments).

Based on sums of FN and FP alone, larger variance (covariance) as represented

by cases B and D sometimes perform better than original estimates.

The number of basis functions B selected is 6 with number of curves ns = 1 in a

set in a comparison. The lLR obtained is -50.17.
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Figure 7.15: Curves from within the group 7 yet negative lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

It makes sense to get a negative lLR for this pair of curves as they look completely

different and the within-group variation is higher than all other groups.

The number of basis functions B selected is 6 with number of curves ns = 3 in a

set in a comparison. The lLR obtained is 4.34.

Figure 7.16: Curves from groups 10 and 5 yet positive lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

These sets of curves are hard to tell apart by eye.

7.3.5 Conclusion

We can always tell from the plots why lLR’s of the wrong sign as expected are obtained

as these groups are exceptionally hard to distinguish, even by eyes. However, the
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selected cases are the most extreme ones so it might be easier than those not drawn

here. Overall, the models are performing as expected.

7.4 Cotton data

Recall from Chapter 6 that CA-ar and DR-C are the best performing models for original

cotton data. This might be due to the fact that within-group variation is considered or

modelled correctly.

7.4.1 CA-S Simplified multivariate normal random-effects model

- cotton data

For this model, the estimates of the variance (σ2) will be both increased and decreased

by 20% and results will be presented in the same way as in Chapter 6.

Adjustment of int S D FP FN
Subtract 20% 1 -8.46 -36.50 10.40 54.56

Original 1 -6.08 -28.38 13.13 51.44
Plus 20% 1 -4.54 -23.02 15.38 48.44

Subtract 20% 2 -2.71 -16.40 19.09 45.11
Original % 2 -1.68 -12.51 22.16 41.11
Plus 20% 2 -1.03 -9.97 24.98 39.00

Subtract 20% 3 -1.03 -9.98 25.13 39.11
Original 3 -0.44 -7.49 28.60 35.00
Plus 20% 3 -0.08 -5.87 31.25 31.56

Table 7.25: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 1.

The trade-off among FP and FN suggests there is limitations as how well the

model can perform and the estimate of parameter does not help too much if the model

does not fit well.
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Adjustment of int S D FP FN
Subtract 20% 1 -7.48 -64.35 5.86 45.50

Original 1 -5.23 -50.58 7.93 43.50
Plus 20% 1 -3.77 -41.45 9.70 41.00

Subtract 20% 2 -2.04 -30.10 13.19 37.50
Original 2 -1.06 -23.37 16.64 35.50
Plus 20% 2 -0.44 -18.93 19.61 33.50

Subtract 20% 3 -0.44 -18.97 19.70 33.50
Original 3 0.12 -14.58 23.32 33.00
Plus 20% 3 0.46 -11.69 25.59 31.50

Table 7.26: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 2.

Adjustment of int S D FP FN
Subtract 20% 1 -7.16 -92.46 3.86 37.50

Original 1 -4.92 -72.99 4.85 31.67
Plus 20% 1 -3.46 -60.07 6.37 28.33

Subtract 20% 2 -1.74 -43.97 8.83 28.33
Original 2 -0.75 -34.40 10.99 28.33
Plus 20% 2 -0.14 -28.06 13.92 27.50

Subtract 20% 3 -0.15 -28.13 14.44 27.50
Original 3 0.42 -21.83 18.36 23.33
Plus 20% 3 0.76 -17.67 20.82 22.50

Table 7.27: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model with varying estimation of σ2 for different intervals (int) where
6 B-spline basis functions of order 3 are used for ns = 3.

The interval int selected is 1 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -93.99.
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Figure 7.17: Curves from within the group 5 yet negative lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

Even though the curves being compared have the same shape as represented by local

minimum and maximums, the separation or vertical distance might be the cause of

getting a negative lLR.

The interval int selected is 3 with number of curves ns = 3 in a set in a comparison.

The lLR obtained is 6.23.

Figure 7.18: Curves from groups 5 and 3 yet positive lLR is obtained under model
CA-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

We can see some differences in the shapes among the sets of curves being compared;

however, a positive lLR is obtained, which suggests more weight is put on the distance

than the shape.
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7.4.2 CA-const. Constant within group covariance model - cotton

data

Under contant within-group variance model, the hyperparameters associated with within-

group variances are γ and δ. Four cases are considered for sensitivity analysis; they

are

• A: γnew = 0.5× γ̂, δnew = 0.5× δ̂

• B: γnew = 0.5× γ̂, δnew = 1.5× δ̂

• C: γnew = 1.5× γ̂, δnew = 0.5× δ̂

• D: γnew = 1.5× γ̂, δnew = 1.5× δ̂

The results are presented the same way as in Chapter 6 alongside results from Chapter 6

reproduced here under the Case Original.

int Case S D FP FN Case S D FP FN
1 -9.21 -28.54 5.00 61.89
1 A -9.52 -28.93 4.51 62.67 B -6.25 -24.48 11.84 53.11
1 C -10.39 -30.89 3.98 64.00 D -8.95 -28.22 5.53 60.78

2 -3.28 -12.41 11.43 53.00
2 A -3.37 -12.53 10.69 53.67 B -1.15 -9.37 24.39 42.00
2 C -3.93 -14.08 9.53 57.33 D -3.20 -12.32 12.12 52.22

3 -1.69 -7.58 16.86 48.78
3 A -1.71 -7.60 16.08 49.33 B 0.00 -5.11 31.83 35.11
3 C -2.10 -8.92 14.74 51.67 D -1.67 -7.59 17.49 48.67

Table 7.28: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 6 and 3 for B-spline basis functions for
ns = 1. Refer to Section 7.1.2 for cases (adjustments).
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int Case S D FP FN Case S D FP FN
1 -8.93 -46.48 1.81 49.00
1 A -9.10 -46.67 1.84 49.50 B -6.70 -43.19 4.14 48.00
1 C -8.91 -47.56 2.47 48.50 D -8.74 -46.28 2.04 49.00

2 -3.05 -21.28 5.16 47.50
2 A -3.12 -21.35 5.00 47.50 B -1.21 -18.49 11.51 41.50
2 C -2.83 -22.08 6.91 45.50 D -2.95 -21.19 5.43 47.50

3 -1.42 -13.36 8.62 44.00
3 A -1.45 -13.37 8.49 44.50 B 0.16 -10.89 18.36 36.50
3 C -1.10 -14.00 11.15 42.00 D -1.36 -13.33 8.91 44.00

Table 7.29: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 6 and 3 for B-spline basis functions for
ns = 2. Refer to Section 7.1.2 for cases (adjustments).

int Case S D FP FN Case S D FP FN
1 -9.31 -64.38 1.70 46.67
1 A -9.43 -64.49 1.70 46.67 B -7.31 -61.34 2.63 42.50
1 C -8.93 -65.06 2.34 45.83 D -9.14 -64.22 1.75 45.83

2 -3.20 -30.17 3.45 40.83
2 A -3.27 -30.22 3.16 40.00 B -1.46 -27.46 7.49 35.83
2 C -2.72 -30.68 4.91 37.50 D -3.10 -30.09 3.57 40.83

3 -1.47 -19.20 5.73 37.50
3 A -1.50 -19.21 5.85 37.50 B 0.10 -16.73 12.87 33.33
3 C -0.91 -19.61 8.54 34.17 D -1.40 -19.17 6.02 37.50

Table 7.30: Summary table of lLR’s obtained using constant within group covariance
model and manipulating estimation of δ and γ for different intervals (int) where num-
ber of basis (B) and order of basis used are 6 and 3 for B-spline basis functions for
ns = 3. Refer to Section 7.1.2 for cases (adjustments).

The interval int selected is 2 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -35.42.
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Figure 7.19: Curves from within the group 6 yet negative lLR is obtained under model
CA-const.. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

The interval int selected is 3 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is 4.55.

Figure 7.20: Curves from groups 5 and 3 yet positive lLR is obtained under model
CA-const.. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

Based on these figures, it can be seen that distance is again the main reason for the

lLR’s of wrong signs than expected are obtained

7.4.3 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - cotton data

Four cases are considered for sensitivity analysis. They are the same as CA-const..
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int Case S D FP FN Case S D FP FN
1 0.69 -1.66 29.69 15.78
1 A 0.72 -1.67 31.32 15.33 B 1.91 -0.23 58.10 3.67
1 C 2.22 -0.35 55.78 6.00 D 0.70 -1.61 29.59 16.11

2 0.56 -0.94 35.04 13.89
2 A 0.61 -0.94 36.92 12.56 B 1.48 0.17 66.69 2.11
2 C 1.84 0.10 62.16 5.11 D 0.56 -0.91 34.78 14.44

3 0.46 -0.80 36.86 15.89
3 A 0.52 -0.78 38.84 14.44 B 1.22 0.16 68.01 5.44
3 C 1.57 0.05 62.14 7.11 D 0.45 -0.80 36.71 16.44

Table 7.31: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model and manipulating estima-
tion of δ and γ for different intervals (int) where number of basis (B) and order of
basis used are 6 and 3 for B-spline basis functions for ns = 1. Refer to Section 7.1.3
for cases (adjustments).

Our original estimates are robust in terms of lowest FP or FN .

int Case S D FP FN Case S D FP FN
1 1.23 -3.78 20.95 8.00
1 A 1.28 -3.78 22.17 8.00 B 2.58 -2.20 40.56 1.50
1 C 2.93 -2.31 42.99 1.50 D 1.24 -3.72 21.02 8.50

2 0.96 -2.27 27.24 8.50
2 A 1.01 -2.26 28.36 5.00 B 2.05 -0.94 50.30 1.50
2 C 2.45 -1.04 49.31 1.50 D 0.96 -2.24 26.81 8.50

3 0.79 -1.91 28.88 9.00
3 A 0.85 -1.88 30.10 8.00 B 1.75 -0.70 53.32 2.50
3 C 2.16 -0.83 51.28 3.00 D 0.78 -1.89 28.98 10.00

Table 7.32: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model and manipulating estima-
tion of δ and γ for different intervals (int) where number of basis (B) and order of
basis used are 6 and 3 for B-spline basis functions for ns = 2. Refer to Section 7.1.3
for cases (adjustments).
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int Case S D FP FN Case S D FP FN
1 1.47 -6.26 14.74 9.17
1 A 1.52 -6.27 15.85 10.00 B 2.90 -4.59 30.94 1.67
1 C 3.20 -4.77 33.63 4.17 D 1.49 -6.19 15.03 9.17

2 1.11 -3.87 20.88 12.50
2 A 1.16 -3.87 21.87 10.00 B 2.32 -2.41 38.95 3.33
2 C 2.64 -2.61 39.88 2.50 D 1.12 -3.82 20.82 12.50

3 0.92 -3.23 23.39 10.83
3 A 0.98 -3.21 24.44 10.83 B 2.00 -1.87 42.92 4.17
3 C 2.35 -2.10 41.75 5.83 D 0.92 -3.20 23.51 10.00

Table 7.33: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model and manipulating estima-
tion of δ and γ for different intervals (int) where number of basis (B) and order of
basis used are 6 and 3 for B-spline basis functions for ns = 3. Refer to Section 7.1.3
for cases (adjustments).

The interval int selected is 3 with number of curves ns = 1 in a set in a comparison.

The lLR obtained is -3.42.

Figure 7.21: Curves from within the group 19 yet negative lLR is obtained under
model CA-ar. The second panel shows the first set of curves, the third panel shows the
second set of curves, the first panel shows all of these plotted together.

The interval int selected is 3 with number of curves ns = 2 in a set in a comparison.

The lLR obtained is 1.90.
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Figure 7.22: Curves from groups 15 and 11 yet positive lLR is obtained under model
CA-ar. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

Similarly to CA-const., distance is more important than shape.

7.4.4 DR-S Dimension reduced multivariate normal random-effects

model - cotton data

For the dimension reduced multivariate normal random-effects model, U , the within-

group variance-covariance is assumed to be constant for all groups. For the sensitivity

analyses we will consider four cases with varying U .

• A: Unew = 0.5× Û

• B: Unew = 2.5× Û

• C: Unew = Û − 0.2diag(Û)

• D: Unew = Û + 0.2diag(Û )

The results are presented the same way as in Chapter 6 alongside results from Chap-

ter 6 reproduced here under the Case Original. However, only selections of B will be

considered due to the similarity of their performances.
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B Case S D FP FN Case S D FP FN
4 A 0.40 -2.64 21.49 21.33 C 5.93 2.57 58.93 44.33
4 Original 0.48 -0.90 34.89 12.33 Original 0.48 -0.90 34.89 12.33
4 B 0.30 -0.14 54.11 5.78 D 0.34 -0.29 49.59 10.89

6 A 0.33 -6.34 11.32 17.22 C 1.57 47.90 74.66 40.44
6 Original 0.71 -2.37 20.80 10.78 Original 0.71 -2.37 20.80 10.78
6 B 0.54 -0.49 41.47 5.89 D 0.44 -0.25 48.41 9.22

8 A 0.80 -14.66 6.57 15.33 C -1.96 -37.10 54.92 34.44
8 Original 1.41 -5.87 13.22 10.33 Original 1.41 -5.87 13.22 10.33
8 B 1.12 -1.42 29.71 6.11 D 0.60 -0.30 45.76 7.00

Table 7.34: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 1. Refer to Section 7.1.4 for cases
(adjustments).

B Case S D FP FN Case S D FP FN
4 A 0.78 -5.69 13.39 17.50 C -9.04 -1.23 61.48 32.50
4 Original 0.83 -2.22 23.59 10.00 Original 0.83 -2.22 23.59 10.00
4 B 0.57 -0.49 43.39 4.00 D 0.61 -0.83 41.18 6.00

6 A 0.66 -13.15 6.05 16.50 C 4.02 23.43 89.80 5.00
6 Original 1.17 -5.41 12.24 10.00 Original 1.17 -5.41 12.24 10.00
6 B 0.97 -1.38 27.47 5.50 D 0.83 -0.80 37.37 4.00

8 A 1.18 -30.64 3.16 15.00 C 6.34 -26.73 32.96 60.50
8 Original 2.14 -13.23 6.84 12.50 Original 2.14 -13.23 6.84 12.50
8 B 1.85 -3.79 17.37 7.50 D 1.13 -0.98 33.42 3.00

Table 7.35: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 2. Refer to Section 7.1.4 for cases
(adjustments).

Our original estimates are robust in terms of lowest FP or FN .
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B Case S D FP FN Case S D FP FN
4 A 0.94 -8.96 9.01 20.83 C 3.24 5.13 86.90 2.50
4 Original 1.02 -3.71 17.08 11.67 Original 1.02 -3.71 17.08 11.67
4 B 0.75 -0.95 35.26 1.67 D 0.78 -1.50 34.15 5.00

6 A 0.99 -20.37 4.21 18.33 C 7.95 11.50 85.79 21.67
6 Original 1.56 -8.77 8.54 9.17 Original 1.56 -8.77 8.54 9.17
6 B 1.31 -2.49 21.29 3.33 D 1.10 -1.53 29.06 3.33

8 A 1.53 -46.90 1.93 20.00 C -16.25 -32.17 32.87 64.17
8 Original 2.83 -20.84 4.50 12.50 Original 2.83 -20.84 4.50 12.50
8 B 2.46 -6.42 12.40 4.17 D 1.51 -1.89 24.39 3.33

Table 7.36: Summary table of lLR’s obtained using dimension reduced multivariate
normal random-effects model with varying estimates for U for different number (B)
of B-spline basis functions of order 3 for ns = 3. Refer to Section 7.1.4 for cases
(adjustments).

The number of basis functions B selected is 6 with number of curves ns = 1 in a

set in a comparison. The lLR obtained is -21.28.

Figure 7.23: Curves from within the group 9 yet negative lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The within-group variation among curves within group 9 makes it hard to find them

from the same group.

The number of basis functions B selected is 6 with number of curves ns = 3 in a

set in a comparison. The lLR obtained is 3.51.

162



Figure 7.24: Curves from groups 13 and 7 yet positive lLR is obtained under model
DR-S. The second panel shows the first set of curves, the third panel shows the second
set of curves, the first panel shows all of these plotted together.

The shape of these sets of curves are somewhat different; however, they have local

minima and maxima very close to the other set’s so this can probably explain the

positive lLR obtained. Moreover, it is also hard to tell apart from eye when they are

plotted together.

7.4.5 Conclusion

The estimates are only sensitive if the model fits.

7.5 Conclusion

We do not need to worry about what estimates to use for variance as a small change

has no effect on the overall performance of a model if it is a good fit to our data.
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Chapter 8

More results - data preprocessing

8.1 Introduction

Recall in Chapter 4 and Chapter 7 that our models fail to model the separation between

curves within-groups. We would like to manually process the data before modelling.

The process we choose is taking differences since the general shapes of the curves are

very similar but the separation of curves can depend on the shape at each point.

Figure 8.1: Plots of original data that show separation of curves within groups along
with fitted mean curves using B-spline basis functions of order 3.
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We can see from Figure 8.1 that even though B-spline basis functions can be used to

approximate the means quite well, most of our models assume curves are centred at the

means, which is not the case and therefore give mediocre results. The separation we

see in all 3 types of ink as well as wool 1 and cotton 1 from Figure 8.1 are plain vertical

separations but wool 3, cotton 2 and 3 show differences in curvatures as well as vertical

separations. This can be seen easily by only looking at purple and black curves in wool

3 and cotton 3. However, cotton 2 is more complicated as there seems to be horizontal

shifts between curves as well. We hope to resolve most of these problems by taking

the differences of consecutive points on the curve. The new points are calculated as

y∗ki = [
yki2 − yki1

2
,
yki3 − yki1

2
, · · · , ykim − yki,m−2

2
,
ykim − yki,m−1

2
] =

yd,0ki + y0,d
ki

2

where

yd,0ki = [yki2, yki3, · · · , ykim, ykim]− yki

y0,d
ki = yki − [yki1, yki1, · · · , yki,m−2, yki,m−1]

for all ith curve in all group k. The rest of the chapter is organised as follows. Each

section includes results for one dataset. There will be a short summary of the dataset

along with some graphs to compare the new dataset with the original. Four of our five

models proposed in Chapter 3 will be used to evaluate likelihood ratios using the same

procedure described in Section 6.1 and reported in the same way. The same choices

of parameters will be used for the ease of comparison so no more selection of basis

functions will be done like in Chapter 5. The results will be compared with those in

Chapter 6.

8.2 Ink data

Sample of ink data consists of K = 40 groups of n = nk = 10 MSP measurements of

absorbance yki versus wavelength for 1 ≤ i ≤ n for all k. Absorbance are measured

at wavelengths ranging from 380-800 nm with intervals of 1nm so using all the points,
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that is, taking interval or int = 1, the total number of points, the dimension of our

data, is m = 421.

Figure 8.2: Fitting original and the first differences of three types of ink using 9 B-
spline basis functions of order 3.

Using the same number of B-spline basis functions gives worse fit by the look but

the scales of these plots are very different so residuals are a bit smaller. It is harder

to differentiate between Ink 2 and Ink 3 compared to either one and Ink 1 due to the

locations of their minima and maxima. However, curves from within the same groups

are much closer now.

8.2.1 Summary table for preprocessed ink data

For each model, three tables of results will be reported for ink data for 3 distinct values

of ns. The three values are 1, 3 and 5. Since we have 10 measurements of one sample

for each of the 40 different types of ink, there are 10× 11÷ 2 = 55 within-group and

10×10 = 100 between-group lLR’s for comparisons between 40 and 40×39÷2 = 780

pairs of groups for ns = 1. For ns = 3, lLR’s are obtained for comparing a sets of

ns = 3 measurements with another (mutually exclusive) set of ns = 3 measurements

so there are
⌊

10
3

⌋
×(
⌊

10
3

⌋
+1)÷2 = 6 within group and

⌊
10
3

⌋
×
⌊

10
3

⌋
= 9 between group
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lLR’s for comparisons between 40 and 40× 39÷ 2 = 780 pairs of groups. For ns = 5

there are
⌊

10
5

⌋
× (
⌊

10
5

⌋
+ 1)÷ 2 = 3 within-group and

⌊
10
5

⌋
×
⌊

10
5

⌋
= 4 between-group

lLR’s for comparisons between 40 and 40× 39÷ 2 = 780 pairs of groups.

8.2.2 CA-S Simplified multivariate normal random-effects model

- ink data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for preprocessed ink data are summarised in tables and plots for assessing the

performance are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 2.81 -113.85 0.97 21.86 -14.44 -581.25 0.04 66.09
1 5 3.37 -18.44 6.33 7.05 6.95 -6.11 18.78 2.77

3 1 4.04 -343.78 0.28 19.17 -14.03 -1696.85 0.00 43.33
3 5 5.38 -60.78 2.17 7.08 16.53 -35.68 7.81 2.50

5 1 4.02 -584.43 0.10 18.33 -16.97 -2856.73 0.00 31.67
5 5 6.20 -106.71 1.28 8.33 22.47 -73.52 5.03 2.50

Table 8.1: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model for different choices of basis (B-splines and eigenfunctions ob-
tained using functional principal component analysis) for different ns and intervals
(int) where number of basis (B) used is 9 and order of basis used is 3 for B-spline
basis functions.

The result is improved compared to those obtained using the original data as shown

in Table 6.2 in terms of smaller S andD in magnitudes and huge drop in FN rates from

over 70% for ns = 1, int = 1 when B-spline basis functions are used, to a reasonable

22%. The best setup ns = 5, int = 5 also has much lowered FN although this is

offset by an increase in FP . Using eigenfunctions, on the other hand, does not result

in significant improvement but some improvements can be seen. Comparing to results

in Table 6.2, the magnitudes of S and D are halved for int = 1. It is surprising to see

the effects of taking differences to the use of different basis functions. Under the setup

ns = 3, int = 5, the performance of using B-spline basis functions is comparable to

that of using eigenfunctions from fPCA in terms of sums of FP and FN in contrast to
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the much larger FN in Table 6.2 when B-spline basis functions are used.

Figure 8.3: Tippett plot for ink data with setup ns = 3, int = 5 under model CA-S.

Figure 8.4: ECE for ink data with setup ns = 3, int = 5 under model CA-S.

The ECE shows that using first order differences results in better fit by the model as

indicated by much smaller loss of information.

8.2.3 CA-const. Constant within-group variance model - ink data

Log likelihood ratios calculated using the constant within-group variance model for

preprocessed ink data are summarised in tables and plots for assessing the performance

are drawn for one selection of setups.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.81 -100.02 0.49 33.05 -14.10 -225.42 0.15 65.09
1 5 3.08 -16.28 3.48 10.64 7.76 -11.68 10.48 5.23

3 1 2.39 -299.17 0.16 25.83 -10.90 -616.01 0.07 42.50
3 5 4.99 -54.13 1.14 9.17 22.96 -59.46 3.97 3.33

5 1 1.92 -501.31 0.03 22.50 -12.01 -1006.22 0.00 29.17
5 5 5.66 -93.08 0.45 12.50 34.02 -119.63 2.37 3.33

Table 8.2: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 9 and order of basis used is 3 for B-spline basis functions.

Again, the results as shown in Table 8.2 are improved compared to those obtained

using the original data as shown in Table 6.3, especially when B-spline basis functions

are used; FN rates are halved for smaller ns. The best setup is still ns = 5, int = 5

when eigenfunctions from fPCA are used. The signs for S are corrected (positive now)

when B-spline basis functions are used and D almost a third in magnitude. Overall,

larger ns and int gives better results.

Figure 8.5: Tippett plot for ink data with setup ns = 3, int = 5 under model CA-const..
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Figure 8.6: ECE for ink data with setup ns = 3, int = 5 under model CA-const..

Similarly to CA-S, the ECE shows that using first order differences results in better

fit by the model as indicated by much smaller loss of information comparing to using

original data.

8.2.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - ink data

Log likelihood ratios calculated using the multivariate normal random-effects with au-

toregressive within-group covariance model for preprocessed ink data are summarised

in tables and plots for assessing the performance are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.48 -19.51 3.14 29.41 -5.51 -104.19 0.18 59.59
1 5 1.49 -7.17 7.11 18.41 2.86 -6.52 13.28 20.23

3 1 2.64 -58.12 0.90 18.33 -1.73 -285.52 0.07 37.92
3 5 3.16 -24.05 2.35 12.50 10.87 -29.03 4.25 11.67

5 1 3.60 -99.92 0.45 18.33 -0.66 -471.63 0.00 30.00
5 5 3.60 -41.99 1.31 10.83 16.87 -57.33 1.60 8.33

Table 8.3: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model for different choices of basis (B-
splines and eigenfunctions obtained using functional principal component analysis) for
different ns and intervals (int) where number of basis (B) used is 9 and order of basis
used is 3 for B-spline basis functions.
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This is the first model for ink data that performs similarly for differences as for

original data. However, the magnitudes of D are reduced at least when B-spline basis

functions are used. Overall, the results obtained when eigenfunctions from fPCA are

used are worse than those from original data but still outperform those when B-spline

basis functions are used for this model.

Figure 8.7: Tippett plot for ink data with setup ns = 3, int = 5 under model CA-ar.

Figure 8.8: ECE for ink data with setup ns = 3, int = 5 under model CA-ar.

There is no difference in the shape of the ECE obtained using first order differences

under CA-ar compared to using original data just like the summary tables suggest.
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8.2.5 DR-S Dimension reduced multivariate random-effects model

- ink data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for preprocessed ink data are summarised in tables and plots for assess-

ing the performance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.55 -2.89 31.64 6.50
2 - - - - 1.25 -12.05 13.46 3.55
3 - - - - 2.09 -27.14 9.04 2.14
4 2.09 -19.83 7.00 2.82 2.89 -42.78 5.56 1.18
5 2.80 -36.63 5.65 1.91 3.45 -47.80 4.69 0.82
6 3.42 -38.97 4.61 1.59 3.90 -54.51 4.31 0.68
7 4.01 -49.22 4.34 0.59 4.26 -62.94 4.06 0.73
8 4.78 -56.05 4.09 0.59 4.73 -65.79 3.39 0.68
9 5.52 -61.06 3.48 0.32 4.91 -68.84 3.22 0.59

Table 8.4: Summary table of lLR’s for comparing sets of size ns = 1 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.70 -9.63 21.14 7.92
2 - - - - 1.69 -38.34 6.51 2.92
3 - - - - 2.84 -84.72 3.52 2.92
4 3.00 -63.18 3.02 3.75 3.93 -133.21 2.49 1.25
5 4.02 -115.16 2.26 2.50 4.81 -149.42 2.39 0.00
6 4.95 -123.22 1.67 0.42 5.53 -170.49 2.14 0.00
7 5.87 -155.38 1.52 0.42 6.12 -196.25 1.94 0.42
8 7.05 -177.32 1.47 0.42 6.94 -205.58 1.57 0.00
9 8.20 -194.16 1.44 0.42 7.29 -214.95 1.45 0.42

Table 8.5: Summary table of lLR’s for comparing sets of size ns = 3 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

For ns = 1, taking the difference makes no difference to the performance; however,

for ns > 1, both FP and FN rates dropped even to 0 in many cases for FN . This

suggests that FN is caused by the separation of curves in the original data.
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B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.73 -16.71 16.96 10.00
2 - - - - 1.83 -65.40 4.20 7.50
3 - - - - 3.11 -144.39 2.08 5.00
4 3.46 -108.13 1.89 5.83 4.32 -225.90 1.31 2.50
5 4.57 -195.18 1.60 4.17 5.32 -253.04 1.38 0.00
6 5.62 -209.56 1.06 2.50 6.17 -288.54 1.03 0.00
7 6.68 -263.53 0.96 0.83 6.88 -332.10 1.06 0.00
8 8.00 -301.32 0.67 0.00 7.83 -348.40 0.64 0.00
9 9.29 -329.79 0.64 0.00 8.30 -364.27 0.54 0.00

Table 8.6: Summary table of lLR’s for comparing sets of size ns = 5 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

Figure 8.9: Tippett plot for ink data with setup ns = 1, B = 8 under model DR-S.

Figure 8.10: ECE for ink data with setup ns = 1, B = 8 under model DR-S.
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There is almost no loss of information for log10(Odds) large.

8.2.6 Conclusion

Taking differences makes component-wise additive models perform better as indicated

by Tippett and ECE plots. However, there is still room for improvement as indicated

by high ECE at some log10(Odd) values.

8.3 Wool data

Sample of ink data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 350-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 5, the total number of points, the dimension

of our data, is m = 69.

Figure 8.11: Fitting original and the first derivative of three types of wool using 6
B-spline basis functions of order 3.

Taking differences gets rid of some separations as we can see from Wool 2 in Fig-

ure 8.11 but like we mentioned previously in Chapter 4 there are more variations that
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are dependent of the location or magnitudes as shown around 600 nm of Wool 3, which

are still there and they represent within-group variations for our new data.

8.3.1 Summary tables for preprocessed wool data

For each model, three tables of results will be reported for wool data for 3 distinct

values of ns. The three values are 1, 2 and 3. Since we have 9 measurements of one

sample for each of the 20 different types of wool fibres, there are 9 × 10 ÷ 2 = 45

within-group and 9 × 9 = 81 between-group lLR’s for comparisons between 20 and

20 × 19 ÷ 2 = 190 pairs of groups for ns = 1. For ns = 2, lLR’s are obtained for

comparing sets of ns = 2 measurements with another (mutually exclusive) set of ns =

2 measurements so there are
⌊

9
2

⌋
×(
⌊

9
2

⌋
+1)÷2 = 10 within group and

⌊
9
2

⌋
×
⌊

9
2

⌋
= 16

between group lLR’s for comparisons between 20 and 20 × 19 ÷ 2 = 190 pairs of

groups. For ns = 3 there are
⌊

9
3

⌋
× (
⌊

9
3

⌋
+1)÷2 = 6 within-group and

⌊
9
3

⌋
×
⌊

9
3

⌋
= 9

between-group lLR’s for comparisons between 20 and 20 × 19 ÷ 2 = 190 pairs of

groups.

8.3.2 CA-S Simplified multivariate normal random-effects model

- wool data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for preprocessed wool data are summarised in tables and plots for assessing the

performance are drawn for one selection of setups.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 1.28 -0.93 28.21 3.22 -2.33 -73.63 0.71 31.33
1 2 0.73 -0.17 43.74 1.78 2.65 -11.56 8.01 7.22

2 1 2.02 -2.90 16.97 4.00 -3.42 -147.35 0.46 26.00
2 2 1.32 -0.84 28.72 2.00 3.74 -26.69 3.19 6.00

3 1 2.43 -5.29 10.29 5.00 -6.94 -224.33 0.41 27.50
3 2 1.73 -1.78 21.40 3.33 3.84 -43.26 2.28 7.50

Table 8.7: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model for different choices of basis (B-splines and eigenfunctions ob-
tained using functional principal component analysis) for different ns and intervals
(int) where number of basis (B) used is 6 and order of basis used is 3 for B-spline
basis functions.

Using B-spline basis functions performs worse on differences than original data

in terms of enormous increases in FP rates. However, we see a slight improvement

when eigenfunctions from fPCA are used. Overall, the setup ns = 3, int = 2 gives

reasonable result.

Figure 8.12: Tippett plot for wool data with setup ns = 3, int = 2 under model CA-S.
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Figure 8.13: ECE for wool data with setup ns = 3, int = 2 under model CA-S.

A slight improvement in performance suggested by the summary tables is actually a

great one as ECE plots as shown in Figure 8.13 suggest. Using differences makes the

model perform much better compared to using original data.

8.3.3 CA-const. Constant within-group variance model - wool data

Log likelihood ratios calculated using the constant within-group variance model for

preprocessed wool data are summarised in tables and plots for assessing the perfor-

mance are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 1.85 -4.58 17.67 5.44 -0.67 -35.87 0.83 33.56
1 2 1.37 -1.56 30.22 3.33 3.11 -8.70 5.54 8.78

2 1 2.66 -10.76 9.74 5.00 -0.53 -68.07 0.49 27.50
2 2 2.08 -4.20 19.31 3.00 4.94 -21.58 2.40 8.00

3 1 2.95 -18.05 5.91 8.33 -2.22 -102.56 0.41 25.00
3 2 2.46 -7.48 13.33 3.33 5.60 -36.49 1.46 10.83

Table 8.8: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 6 and order of basis used is 3 for B-spline basis functions.

Compared to results obtained using original data, there is an general decline of FN

especially when B-spline basis functions are used but this is offset by some increase in
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FP . Overall the performance is improved and the best setup is ns = 2, int = 2 when

eigenfunctions from fPCA are used.

Figure 8.14: Tippett plot for wool data with setup ns = 2, int = 2 under model
CA-const..

Figure 8.15: ECE for wool data with setup ns = 2, int = 2 under model CA-const..

Similar to CA-S, this model performs much better on differences than on original data

according to ECE plots.

8.3.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - wool data

Log likelihood ratios calculated using the multivariate normal random-effects with

autoregressive within-group covariance model for preprocessed wool data are sum-
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marised in tables and plots for assessing the performance are drawn for one selection

of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.89 -1.80 36.02 4.89 1.51 -16.27 3.70 16.00
1 2 0.82 -0.92 40.82 3.11 2.40 -6.67 9.85 7.78

2 1 1.29 -4.21 26.81 5.50 2.03 -32.66 1.48 13.50
2 2 1.27 -2.40 30.82 2.50 3.71 -16.14 4.54 6.50

3 1 1.44 -7.16 18.83 5.83 1.46 -50.83 1.05 14.17
3 2 1.47 -4.26 22.75 3.33 4.18 -27.15 3.10 7.50

Table 8.9: Summary table of lLR’s obtained using multivariate normal random-effects
with autoregressive within-group covariance model for different choices of basis (B-
splines and eigenfunctions obtained using functional principal component analysis) for
different ns and intervals (int) where number of basis (B) used is 6 and order of basis
used is 3 for B-spline basis functions.

Based on Table 8.9 the performance is worse than those obtained using original

data when B-spline basis functions are used. There is very little improvement for

when eigenfunctions from fPCA are used. Compared to using original data, there is no

improvement for ns < 3, especially when B-spline basis functions are used. However,

ns = 3, int = 2 is acceptable in terms of FP and FN .

Figure 8.16: Tippett plot for wool data with setup ns = 2, int = 2 under model CA-ar.
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Figure 8.17: ECE for wool data with setup ns = 2, int = 2 under model CA-ar.

The improvement made by using differences is more easily seen when comparing the

ECE plots.

8.3.5 DR-S Dimension reduced multivariate random-effects model

- wool data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for preprocessed wool data are summarised in tables and plots for as-

sessing the performance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.30 -1.09 42.07 4.67
2 - - - - 0.71 -2.69 23.31 7.33
3 - - - - 1.11 -4.65 14.42 9.33
4 1.42 -4.66 11.33 8.22 1.56 -6.30 10.86 9.67
5 1.63 -8.40 6.99 8.67 1.80 -9.87 6.43 7.33
6 2.19 -11.68 5.11 7.89 2.36 -15.72 2.90 6.78
7 2.25 -14.24 3.90 9.11 2.47 -16.84 2.53 7.11
8 2.45 -17.05 3.29 8.78 2.80 -17.91 2.25 6.89
9 2.54 -20.94 2.82 8.67 2.89 -19.13 2.20 6.89

Table 8.10: Summary table of lLR’s for comparing sets of size ns = 1 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

Under this model, the results obtained from using original data was already quite

good. There is no improvement when differences are used.
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B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.34 -2.56 34.38 4.50
2 - - - - 0.88 -6.18 15.23 6.50
3 - - - - 1.39 -10.60 7.57 9.00
4 1.92 -10.73 5.30 9.00 1.94 -14.37 5.46 9.00
5 2.03 -18.77 2.96 7.50 2.18 -22.03 2.24 8.50
6 2.89 -26.05 2.60 7.50 2.87 -34.23 1.25 8.50
7 2.90 -31.42 1.61 7.00 2.96 -36.85 0.99 8.00
8 3.15 -37.34 1.58 6.00 3.46 -39.30 1.15 8.00
9 3.18 -45.54 1.12 7.00 3.62 -41.82 1.15 8.00

Table 8.11: Summary table of lLR’s for comparing sets of size ns = 2 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

When ns increases from 1 to 2, FP rates generally decreased.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.27 -4.18 30.70 5.00
2 - - - - 0.80 -9.89 11.93 5.00
3 - - - - 1.35 -16.75 5.56 9.17
4 1.99 -17.34 3.22 13.33 1.89 -22.67 3.22 11.67
5 1.96 -29.68 1.58 10.83 1.97 -34.46 1.17 12.50
6 2.99 -40.52 1.58 10.00 2.67 -53.42 0.88 11.67
7 2.83 -48.96 0.88 9.17 2.62 -57.53 0.70 12.50
8 2.89 -58.69 0.76 9.17 3.10 -61.43 0.70 12.50
9 2.46 -72.03 0.64 10.83 3.26 -65.41 0.70 13.33

Table 8.12: Summary table of lLR’s for comparing sets of size ns = 3 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

FN rates goes up for larger ns and B.
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Figure 8.18: Tippett plot for wool data with setup ns = 2, B = 7 under model DR-S.

Figure 8.19: ECE plot for wool data with setup ns = 2, B = 7 under model DR-S.

There is no visible improvement according to ECE plot as shown in Figure 8.19 com-

pared to use of original data for model DR-S.

8.3.6 Conclusion

The improvements of performances of models when differences are used instead of

original data is easy to see for all component-wise additive models for wool data.
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8.4 Cotton data

Sample of ink data consists of K = 20 groups of n = nk = 9 MSP measurements

of transmittance yki versus wavelength for 1 ≤ i ≤ n for all k. Transmittance are

measured at wavelengths ranging from 240-690 nm with intervals of 5 nm so using all

the points, that is, taking interval or int = 5, the total number of points, the dimension

of our data, is m = 91.

Figure 8.20: Fitting original and the first differences of three types of cotton using 6
B-spline basis functions of order 3.

Taking differences almost get rid of the vertical separations completely except at some

small ranges of wavelengths. Following the simulations in Chapter 5 and results from

Chapter 7, we expect our models to perform better on this new set of data.

8.4.1 Summary tables for preprocessed cotton data

For each model, results will be reported for cotton data for 3 distinct values of ns. The

three values are 1, 2 and 3. Since we have 9 measurements of one sample for each of

the 20 different types of cotton fibres, there are 9 × 10 ÷ 2 = 45 within-group and

9× 9 = 81 between-group lLR’s for comparisons between 20 and 20× 19÷ 2 = 190
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pairs of groups for ns = 1. For ns = 2, lLR’s are obtained for comparing sets of

ns = 2 measurements with another (mutually exclusive) set of ns = 2 measurements

so there are
⌊

9
2

⌋
×(
⌊

9
2

⌋
+1)÷2 = 10 within group and

⌊
9
2

⌋
×
⌊

9
2

⌋
= 16 between group

lLR’s for comparisons between 20 and 20× 19÷ 2 = 190 pairs of groups. For ns = 3

there are
⌊

9
3

⌋
× (
⌊

9
3

⌋
+ 1) ÷ 2 = 6 within-group and

⌊
9
3

⌋
×
⌊

9
3

⌋
= 9 between-group

lLR’s for comparisons between 20 and 20× 19÷ 2 = 190 pairs of groups.

8.4.2 CA-S Simplified multivariate normal random-effects model

- cotton data

Log likelihood ratios calculated using the simplified multivariate normal random-effects

model for preprocessed cotton data are summarised in tables and plots for assessing

the performance are drawn for one selection of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.56 -0.21 50.28 5.00 -4.03 -57.32 2.51 41.78
1 2 0.24 -0.02 59.95 2.78 2.16 -11.15 12.39 18.89

2 1 1.09 -0.76 39.61 2.00 -3.10 -110.30 1.41 36.50
2 2 0.53 -0.15 53.06 0.00 3.65 -24.86 6.18 16.00

3 1 1.49 -1.53 31.81 0.83 -2.51 -163.82 0.88 34.17
3 2 0.79 -0.37 47.13 0.00 4.58 -39.42 3.98 17.50

Table 8.13: Summary table of lLR’s obtained using simplified multivariate normal
random-effects model for different choices of basis (B-splines and eigenfunctions ob-
tained using functional principal component analysis) for different ns and intervals
(int) where number of basis (B) used is 6 and order of basis used is 3 for B-spline
basis functions.

Like the effect of taking differences on wool data, high FN on original data be-

came high FP for when B-spline basis functions are used. This can possibly suggest

that separation causes high FN rates. However, a different pattern is seen when eigen-

functions from fPCA are used; both FP and FN decline.
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Figure 8.21: Tippett plot for cotton data with setup ns = 3, int = 2 under model
CA-S.

Figure 8.22: ECE plot for cotton data with setup ns = 3, int = 2 under model CA-S.

Despite the high FP rate, this model is much better calibrated compared to using

original data based on the ECE plots.

8.4.3 CA-const. Constant within-group variance model - cotton

data

Log likelihood ratios calculated using the constant within-group variance model for

preprocessed cotton data are summarised in tables and plots for assessing the perfor-

mance are drawn for one selection of setups.
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B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.71 -1.46 36.30 15.33 -3.49 -35.68 1.41 42.33
1 2 0.52 -0.44 47.39 11.78 2.11 -9.69 10.23 19.44

2 1 1.32 -3.34 27.66 7.00 -2.34 -63.48 0.49 39.50
2 2 0.94 -1.17 39.64 4.00 3.63 -21.46 4.51 19.50

3 1 1.55 -5.60 20.99 8.33 -2.38 -91.81 0.23 35.83
3 2 1.12 -2.12 33.57 3.33 4.42 -34.15 2.57 19.17

Table 8.14: Summary table of lLR’s obtained using constant within-group variance
model for different choices of basis (B-splines and eigenfunctions obtained using func-
tional principal component analysis) for different ns and intervals (int) where number
of basis (B) used is 6 and order of basis used is 3 for B-spline basis functions.

Based on Table 8.14 the pattern of results obtained from this model looks very

similar to that obtained from CA-S. However, FP rates generally decrease but this

is offset by increase in FN so overall, this model performs similar to CA-S as well.

Using eigenfunctions from fPCA resulted in much lowered FN for use of differences

compared to the use of original data.

Figure 8.23: Tippett plot for cotton data with setup ns = 3, int = 2 under model
CA-const..
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Figure 8.24: ECE plot for cotton data with setup ns = 3, int = 2 under model CA-
const..

Compared to original data, this model has much smaller loss of information when

differences are used.

8.4.4 CA-ar Multivariate normal random-effects with autoregres-

sive within-group covariance model - cotton data

Log likelihood ratios calculated using the multivariate normal random-effects with

autoregressive within-group covariance model for preprocessed cotton data are sum-

marised in tables and plots for assessing the performance are drawn for one selection

of setups.

B-spline fPCA
ns int S D FP FN S D FP FN
1 1 0.36 -0.47 49.74 15.56 0.69 -17.02 5.27 28.00
1 2 0.32 -0.24 51.88 11.89 1.98 -7.71 13.00 16.33

2 1 0.60 -1.15 41.68 12.50 1.82 -33.13 2.89 22.00
2 2 0.55 -0.68 45.03 7.50 3.26 -17.16 6.38 14.00

3 1 0.17 -2.47 22.63 33.33 2.56 -48.83 2.22 24.17
3 2 0.44 -1.41 33.10 19.17 4.06 -27.18 4.27 15.83

Table 8.15: Summary table of lLR’s obtained using multivariate normal random-
effects with autoregressive within-group covariance model for different choices of ba-
sis (B-splines and eigenfunctions obtained using functional principal component anal-
ysis) for different ns and intervals (int) where number of basis (B) used is 6 and order
of basis used is 3 for B-spline basis functions.
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According to Table 8.15 the performance improves when differences are used in-

stead of original data (see Table 6.22) when eigenfunctions from fPCA are used. How-

ever, when B-spline basis functions are used, FP goes up compared to original data

used. When B-spline basis functions are used, CA-ar performs worse than CA-const.

in terms of sums of FP and FN when differences are used whereas CA-ar outperforms

CA-const. when original data is used.

Figure 8.25: Tippett plot for cotton data with setup ns = 2, int = 2 under model
CA-ar.

Figure 8.26: ECE plot for cotton data with setup ns = 2, int = 2 under model CA-ar.

There is a slightly larger loss of information compared to when original data is used.

However, it is still close to calibrated LR using the PAV algorithm so is still acceptable

although the FP is quite high.
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8.4.5 DR-S Dimension reduced multivariate random-effects model

- cotton data

Log likelihood ratios calculated using the dimension reduced multivariate random-

effects model for preprocessed cotton data are summarised in tables and plots for as-

sessing the performance are drawn for one selection of setups.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.32 -0.54 46.54 9.44
2 - - - - 0.65 -1.93 27.75 8.33
3 - - - - 0.96 -2.23 27.84 9.11
4 0.71 -1.24 27.80 10.89 0.94 -3.01 25.54 8.22
5 0.83 -1.61 25.61 10.56 0.92 -4.83 19.45 8.67
6 1.12 -2.05 22.94 10.33 1.26 -9.23 13.85 9.22
7 1.29 -3.87 15.86 9.11 1.58 -11.19 12.46 8.44
8 1.68 -5.58 17.58 7.78 1.78 -12.08 12.05 8.11
9 1.61 -7.40 14.91 9.44 1.74 -12.87 12.09 9.78

Table 8.16: Summary table of lLR’s for comparing sets of size ns = 1 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.48 -1.32 38.91 7.00
2 - - - - 0.97 -4.37 21.91 7.00
3 - - - - 1.41 -5.29 20.59 6.50
4 1.19 -3.09 18.78 7.50 1.35 -6.86 18.03 9.50
5 1.39 -3.98 16.22 6.50 1.29 -10.56 12.99 10.00
6 1.90 -5.09 12.47 7.50 1.75 -19.77 7.83 11.00
7 2.10 -8.87 8.36 9.00 2.23 -23.97 7.34 7.50
8 2.81 -12.49 10.00 9.50 2.54 -25.90 7.37 8.00
9 2.69 -16.30 7.80 10.00 2.65 -27.41 7.73 8.00

Table 8.17: Summary table of lLR’s for comparing sets of size ns = 2 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

There are slight improvements of performance when differences are used instead

of original data in terms of lowered FN and FP for smaller B. However, based on

summary tables alone, using differences does not outperform use of original data. The

only setups that give improvements are those with ns = 3 and large B.
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B-spline fPCA
B S D FP FN S D FP FN
1 - - - - 0.52 -2.13 34.04 6.67
2 - - - - 1.15 -6.93 17.54 5.83
3 - - - - 1.77 -8.41 16.14 5.00
4 1.47 -5.13 14.85 9.17 1.80 -10.80 13.68 6.67
5 1.78 -6.45 10.47 7.50 2.02 -16.42 9.06 9.17
6 2.47 -8.43 8.83 8.33 2.59 -30.20 5.67 8.33
7 2.69 -14.44 5.79 9.17 3.12 -36.68 5.50 8.33
8 3.72 -20.45 6.67 7.50 3.53 -39.66 5.20 7.50
9 3.80 -25.61 5.03 10.00 3.74 -41.88 5.50 7.50

Table 8.18: Summary table of lLR’s for comparing sets of size ns = 3 for differ-
ent choices of basis (B-splines and eigenfunctions obtained using functional principal
component analysis) for different numbers B of basis functions.

Figure 8.27: Tippett plot for cotton data with setup ns = 3, B = 7 under model DR-S.

Figure 8.28: ECE plot for cotton data with setup ns = 3, B = 7 under model DR-S.
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Based on ECE plots, there is no improvement made by this model when differences

are used instead of original data.

8.4.6 Conclusion

Some improvements can be seen for all four models, especially as indicated by ECE

plots for CA-S and CA-const..

8.5 Conclusion

There are improvements for all models for all datasets. Even though some are small

when looking at the summary tables alone, ECE plots show otherwise. Overall, wool

data shows the most improvements among all datasets when differences are used in

replacement of original data.
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Chapter 9

Conclusion, recommendations and

future direction

9.1 Summary

We have developed models to evaluate evidence in the form of functional data by the

use of likelihood ratios with applications in microspectrophotometry data. Previous

work on the evaluation of evidence in the form of functional data used either a score

approach for likelihood ratio calculation or visual comparisons. We developed models

for the calculation of likelihood ratios in a probabilistic approach to take into account

different levels of variation together.

Overall, two types of models are developed, one is based on fundamental functional

data analaysis that decomposes the curves as a sum of two components, a smooth un-

derlying curve and some error, and one analyses the dimension reduced representation

of the data. In either one, two types of basis functions are used: B-spline basis func-

tions and eigenfunctions obtained from using functional principal component analysis.

We can tell from the model fittings and simulations in Chapter 5 what variations exist

in the data and what characteristics each model is able to capture. Based on these, we

found results presented as summary tables, Tippett plots and ECE plots in Chapter 6

to be consistent with our findings in Chapter 5 about each model and further gained

insights about the models through sensitivity analysis in Chapter 7. Finally, we im-

proved the performances of the models through preprocessing of our data with results
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presented in Chapter 8.

Although we only worked on microspectrophotometry data, the same techniques

we employed in analysing functional data can be readily applied on any data of similar

type. Overall, our approach provides an objective and innovative way of calculating

likelihood ratios for the evaluation of evidence in the form of functional data.

9.2 Recommendations

When measurements are obtained, the first thing to do is to examine the variations

among them, both within- and between-groups. Moreover, they should be compared

visually to pick up the characteristics that can be used to distinguish whether two sets

of evidence are from the same origin or not. Based on the properties of each dataset,

an appropriate basis must be chosen first for the purpose of dimension reduction if

the dimension of the original (input) data is large, meaning larger than samples avail-

able. After that, analyses can be done to distinguish the main features that can help to

differentiate among different evidence. Variable selection might be necessary for fur-

ther dimension reduction. Based on the complexity of the data, whether it has greater

between- or within-group variations, appropriate models can be chosen to accommo-

date that by the use of a hierarchical model with different covariance structures. The

number of levels required depends on the number of levels present in the data that are

essential for distinguishing between groups. The exact structures of the parameters

such as variance-covariance matrices, can be modified based on that of the data,i.e.,

independent or conditional independent.

9.3 Future research directions

The results of our proposed models for evaluating evidence using likelihood ratios by

comparing evidence in the form of functional data is excellent when the right model

and setups are chosen. However, the following can still be addressed for generalisation

purposes and possibly better results.

• Assumption of normality for between-group distribution
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Only normality is assumed for different levels of our data, which might not al-

ways be the case as we can see in Chapter 5. Kernel densities can be used instead

if one wishes to consider the complexity.

• Consider different basis and datasets

So far, B-spline basis functions and eigenfunctions are used for all datasets be-

cause of them being microspectrophotometry data; however, the same method-

ology can be easily generalised to other types of (functional) data, thus different

choices of basis functions might be needed. For example, it might be better to

use wavelet transform for fourier transformed infrared spectra (FTIR) based on

the properties (shapes) of the data. After the transformation, it might be worth-

while to select the variables to pick up the most prominent ones.

• Model and data complexity

We would be interested to analyse data that are more complicated: either con-

taminated or collected at different times as it might add another level of variabil-

ity. Moreover, models we developed so far are yet able to capture the separations

among curves from within the same groups although this problem is solved by

pre-processing the data as we can see from the results presented in Chapter 8.

However, it is always preferred if a model is able to capture all characteristics

that are useful in distinguishing between evidence.
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Appendix A

Distributions

Distributions used throughout the thesis have probability density function specified

here.

A univariate random variable X ∈ R following a normal distribution, denoted as

X ∼ N(µ, σ2) has probability density function

f(x;µ, σ) = (2πσ2)−1/2exp
{
−(x− µ)2

2σ2

}
, x ∈ R.

A multivariate random variable X ∈ Rm following a multivariate normal distribu-

tion with mean vector µ and covariance matrix Σ, denoted as X ∼ Nm(µ,Σ) has

probability density function

f(x;µ,Σ) = (2π)−m/2|Σ|−1/2exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rm.

A univariate random variable X ∈ (0,∞) following a gamma distribution with shape

parameter γ > 0 and scale parameter δ > 0, denoted as X ∼ Γ(γ, δ) has probability

density function

f(x; γ, δ) =
δγ

Γ(γ)
xγ−1exp (−δx) , x ∈ R+.

If X ∼ Γ(γ, δ), its inverse X−1 follows an inverse gamma distribution. A univariate

random variable X ∈ (0,∞) following an inverse gamma distribution with shape

parameter γ > 0 and scale parameter δ > 0, denoted as X ∼ Inv −Gamma(γ, δ)
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has probability density function

f(x; γ, δ) =
δγ

Γ(γ)
x−γ−1exp

(
− δ
x

)
, x ∈ R+.

An positive semi-definite random variable Σ ∈ Rp×p following an inverse Wishart

distribution with scale matrix Ω and degrees of freedom parameter ν > p− 1, denoted

as Σ ∼ W−1(Ω, ν) has probability density function

f(Σ; Ω, ν) =
|Ω| ν2

2νp/2Γp(ν/2)
|Σ|−

ν+p+1
2 exp

{
−1

2
tr
(
ΩX−1

)}
where tr(·) is the trace function.
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Appendix B

Systems of B-spline basis function

used throughout

Two examples of obtaining basis functions are to be described. They are the systems

of B-spline basis functions used in our analysis. The first example is the set of basis

functions where there are N = 3 equidistant interior knots with boundary knots at

(0,4), and the order of the splines is o = 3. The augmented knot sequence used to

construct the B-spline is τ ∗ = (τ0, . . . , τN+2o−1) = (0, 0, 0, 1, 2, 3, 4, 4, 4). The do-

mains used here are for illustration only. The number of order o = 3 basis functions

is B = 6 = N + o. The exact formula for the bases are derived below. These are

obtained using Equations (2.1) and (2.2) recursively as laid out in Figure 2.3. Every

basis of order o is a linear combination of bases of degree o − 1. Only non-zero B’s

are shown.

B2,1(x) =

{
1 if τ2 ≤ x < τ3

0 otherwise
=

{
1 if 0 ≤ x < 1

0 otherwise.

Likewise,

B3,1(x) =

{
1 if 1 ≤ x < 2

0 otherwise,
B4,1(x) =

{
1 if 2 ≤ x < 3

0 otherwise,

B5,1(x) =

{
1 if 3 ≤ x < 4

0 otherwise.
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For order 2, we have

B1,2(x) = α1,2B1,1(x) +

(
1− x− τ2

τ3 − τ2

)
B2,1(x)

= (1− x)B2,1(x) =

 1− x if 0 ≤ x < 1

0 otherwise,

B2,2(x) =
x− τ2

τ3 − τ2

B2,1(x) +

(
1− x− τ3

τ4 − τ3

)
B3,1(x)

= xB2,1(x) + (1− (x− 1))B3,1(x) =


x if 0 ≤ x < 1

2− x if 1 ≤ x < 2

0 otherwise,

B3,2(x) =
x− τ3

τ4 − τ3

B3,1(x) +

(
1− x− τ4

τ5 − τ4

)
B4,1(x)

= (x− 1)B3,1(x) + (1− (x− 2))B4,1(x) =


x− 1 if 1 ≤ x < 2

3− x if 2 ≤ x < 3

0 otherwise,

B4,2(x) =
x− τ4

τ5 − τ4

B4,1(x) +

(
1− x− τ5

τ6 − τ5

)
B5,1(x)

= (x− 2)B4,1(x) + (1− (x− 3))B5,1(x) =


x− 2 if 2 ≤ x < 3

4− x if 3 ≤ x < 4

0 otherwise,

B5,2(x) =
x− τ5

τ6 − τ5

B5,1(x) +

(
1− x− τ6

τ7 − τ6

)
B6,1(x)

= (x− 3)B5,1(x) + (1− (x− 4))B6,1(x) =

 x− 3 if 3 ≤ x < 4

0 otherwise.

For order 3, we have

B0,3(x) = α0,3B0,2(x) +

(
1− x− τ1

τ3 − τ1

)
B1,2(x) = (1− x)B1,2(x)

=

 (1− x)2 if 0 ≤ x < 1

0 otherwise,
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B1,3(x) =
x− τ1

τ3 − τ1

B1,2(x) +

(
1− x− τ2

τ4 − τ2

)
B2,2(x) = xB1,2(x) + (1− (x/2))B2,2(x)

=


x(1− x) + (2−x)x

2
if 0 ≤ x < 1

(2−x)2

2
if 1 ≤ x < 2

0 otherwise,

B2,3(x) =
x− τ2

τ4 − τ2

B2,2(x) +

(
1− x− τ3

τ5 − τ3

)
B3,2(x) =

x

2
B2,2(x) + (1− x− 1

2
)B3,2(x)

=
x

2
[xB2,1(x) + (2− x)B3,1(x)] +

(
1− x− 1

2

)
[(x− 1)B3,1(x) + (3− x)B4,1(x)]

=



x2

2
if 0 ≤ x < 1

x(2−x)+(3−x)(x−1)
2

if 1 ≤ x < 2

(3−x)2

2
if 2 ≤ x < 3

0 otherwise,

B3,3(x) =
x− τ3

τ5 − τ3

B3,2(x) +

(
1− x− τ4

τ6 − τ4

)
B4,2(x) =

x− 1

2
B3,2(x) +

(
1− x− 2

2

)
B4,2(x)

=
x− 1

2
[(x− 1)B3,1(x) + (3− x)B4,1(x)]

+

(
1− x− 2

2

)
[(x− 2)B4,1(x) + (4− x)B5,1(x)]

=



(x−1)2

2
if 1 ≤ x < 2

(x−1)(3−x)+(4−x)(x−2)
2

if 2 ≤ x < 3

(4−x)2

2
if 3 ≤ x < 4

0 otherwise,

B4,3(x) =
x− τ4

τ6 − τ4

B4,2(x) +

(
1− x− τ5

τ7 − τ5

)
B5,2(x) =

x− 2

2
B4,2(x) +

(
1− x− 3

2

)
B5,2(x)

=
x− 2

2
[(x− 2)B4,1(x) + (4− x)B5,1(x)] + (4− x)(x− 3)B5,1(x)

=


(x−2)2

2
if 2 ≤ x < 3

(x−2)(4−x)
2

+ (4− x)(x− 3) if 3 ≤ x < 4

0 otherwise,

B5,3(x) =
x− τ5

τ7 − τ5

B5,2(x) + (1− α6,3)B6,2(x) = (x− 3)B5,2(x)

=

 (x− 3)2 if 3 ≤ x < 4

0 otherwise.
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The second example is the set of basis functions used for fibre data where there are

N = 6 equidistant interior knots with boundary knots at (0,7), and the order of the

splines is o = 3. The augmented knot sequence used to construct the B-spline is

(0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7). Again, the boundary knots at (0,7) is for demonstration

only. The number of basis functions (at order o = 3) is B = 9 = N + o. The exact

formula for the bases are derived below. These are obtained using Equations 2.1, 2.2

and 2.3 recursively like that in Figure 2.3. Every basis of order o is a linear combination

of bases of degree o− 1. Only non-zero B’s are laid out.

B2,1(x) =

{
1 if τ2 ≤ x < τ3

0 otherwise.
=

{
1 if 0 ≤ x < 1

0 otherwise.

Likewise,

B3,1(x) =

{
1 if 1 ≤ x < 2

0 otherwise.
B4,1(x) =

{
1 if 2 ≤ x < 3

0 otherwise.

B5,1(x) =

{
1 if 3 ≤ x < 4

0 otherwise.
B6,1(x) =

{
1 if 4 ≤ x < 5

0 otherwise.

B7,1(x) =

{
1 if 5 ≤ x < 6

0 otherwise.
B8,1(x) =

{
1 if 6 ≤ x < 7

0 otherwise.

For order 2, we have

B1,2(x) = α1,2B1,1(x) +

(
1− x− τ2

τ3 − τ2

)
B2,1(x)

= (1− x)B2,1(x) =

 1− x if 0 ≤ x < 1

0 otherwise.

B2,2(x) =
x− τ2

τ3 − τ2

B2,1(x) +

(
1− x− τ3

τ4 − τ3

)
B3,1(x)

= xB2,1(x) + (1− (x− 1))B3,1(x) =


x if 0 ≤ x < 1

2− x if 1 ≤ x < 2

0 otherwise.
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B3,2(x) =
x− τ3

τ4 − τ3

B3,1(x) +

(
1− x− τ4

τ5 − τ4

)
B4,1(x)

= (x− 1)B3,1(x) + (1− (x− 2))B4,1(x) =


x− 1 if 1 ≤ x < 2

3− x if 2 ≤ x < 3

0 otherwise.

B4,2(x) =
x− τ4

τ5 − τ4

B4,1(x) +

(
1− x− τ5

τ6 − τ5

)
B5,1(x)

= (x− 2)B4,1(x) + (1− (x− 3))B5,1(x) =


x− 2 if 2 ≤ x < 3

4− x if 3 ≤ x < 4

0 otherwise.

B5,2(x) =
x− τ5

τ6 − τ5

B5,1(x) +

(
1− x− τ6

τ7 − τ6

)
B6,1(x)

= (x− 3)B5,1(x) + (1− (x− 4))B6,1(x) =


x− 3 if 3 ≤ x < 4

5− x if 4 ≤ x < 5

0 otherwise.

B6,2(x) =
x− τ6

τ7 − τ6

B6,1(x) +

(
1− x− τ7

τ8 − τ7

)
B7,1(x)

= (x− 4)B6,1(x) + (1− (x− 5))B7,1(x) =


x− 4 if 4 ≤ x < 5

6− x if 5 ≤ x < 6

0 otherwise.

B7,2(x) =
x− τ7

τ8 − τ7

B7,1(x) +

(
1− x− τ8

τ9 − τ8

)
B8,1(x)

= (x− 5)B7,1(x) + (1− (x− 6))B8,1(x) =


x− 5 if 5 ≤ x < 6

7− x if 6 ≤ x < 7

0 otherwise.

B8,2(x) =
x− τ8

τ9 − τ8

B8,1(x) +

(
1− x− τ9

τ10 − τ9

)
B9,1(x)

= (x− 6)B8,1(x) + (1− (x− 7))B9,1(x) =

 x− 6 if 6 ≤ x < 7

0 otherwise.
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For order 3, we have

B0,3(x) = α0,3B0,2(x) +

(
1− x− τ1

τ3 − τ1

)
B1,2(x) = (1− x)B1,2(x)

=

 (1− x)2 if 0 ≤ x < 1

0 otherwise,

B1,3(x) =
x− τ1

τ3 − τ1

B1,2(x) +

(
1− x− τ2

τ4 − τ2

)
B2,2(x) = xB1,2(x) + (1− (x/2))B2,2(x)

=


x(1− x) + (2−x)x

2
if 0 ≤ x < 1

(2−x)2

2
if 1 ≤ x < 2

0 otherwise,

B2,3(x) =
x− τ2

τ4 − τ2

B2,2(x) +

(
1− x− τ3

τ5 − τ3

)
B3,2(x) =

x

2
B2,2(x) +

(
1− x− 1

2

)
B3,2(x)

=
x

2
[xB2,1(x) + (2− x)B3,1(x)] +

(
1− x− 1

2

)
[(x− 1)B3,1(x) + (3− x)B4,1(x)]

=



x2

2
if 0 ≤ x < 1

x(2−x)+(3−x)(x−1)
2

if 1 ≤ x < 2

(3−x)2

2
if 2 ≤ x < 3

0 otherwise,

B3,3(x) =
x− τ3

τ5 − τ3

B3,2(x) +

(
1− x− τ4

τ6 − τ4

)
B4,2(x) =

x− 1

2
B3,2(x) +

(
1− x− 2

2

)
B4,2(x)

=
x− 1

2
[(x− 1)B3,1(x) + (3− x)B4,1(x)]

+

(
1− x− 2

2

)
[(x− 2)B4,1(x) + (4− x)B5,1(x)]

=



(x−1)2

2
if 1 ≤ x < 2

(x−1)(3−x)+(4−x)(x−2)
2

if 2 ≤ x < 3

(4−x)2

2
if 3 ≤ x < 4

0 otherwise,

202



B4,3(x) =
x− τ4

τ6 − τ4

B4,2(x) +

(
1− x− τ5

τ7 − τ5

)
B5,2(x) =

x− 2

2
B4,2(x) +

(
1− x− 3

2

)
B5,2(x)

=
x− 2

2
[(x− 2)B4,1(x) + (4− x)B5,1(x)] +

5− x
2

[(x− 3)B5,1(x) + (5− x)B6,1(x)]

=



(x−2)2

2
if 2 ≤ x < 3

(x−2)(4−x)
2

+ (5−x)(x−3)
2

if 3 ≤ x < 4

(5−x)2

2
if 4 ≤ x < 5

0 otherwise,

B5,3(x) =
x− τ5

τ7 − τ5

B5,2(x) +

(
1− x− τ6

τ8 − τ6

)
B6,2(x) =

x− 3

2
B5,2(x) + (1− x− 4

2
)B6,2(x)

=
x− 3

2
[(x− 3)B5,1(x) + (5− x)B6,1(x)]

+

(
1− x− 4

2

)
[(x− 4)B6,1(x) + (6− x)B7,1(x)]

=



(x−3)2

2
if 3 ≤ x < 4

(x−3)(5−x)
2

+ (6−x)(x−4)
2

if 4 ≤ x < 5

(6−x)2

2
if 5 ≤ x < 6

0 otherwise,

B6,3(x) =
x− τ6

τ8 − τ6

B6,2(x) +

(
1− x− τ7

τ9 − τ7

)
B7,2(x) =

x− 4

2
B6,2(x) +

(
1− x− 5

2

)
B7,2(x)

=
x− 4

2
[(x− 4)B6,1(x) + (6− x)B7,1(x)]

+

(
1− x− 5

2

)
[(x− 5)B7,1(x) + (7− x)B8,1(x)]

=



(x−4)2

2
if 4 ≤ x < 5

(x−4)(6−x)
2

+ (7−x)(x−5)
2

if 5 ≤ x < 6

(7−x)2

2
if 6 ≤ x < 7

0 otherwise,

B7,3(x) =
x− τ7

τ9 − τ7

B7,2(x) +

(
1− x− τ8

τ10 − τ8

)
B8,2(x) =

x− 5

2
B7,2(x) + (1− (x− 6))B8,2(x)

=
x− 5

2
[(x− 5)B7,1(x) + (7− x)B8,1(x)] + (7− x)(x− 6)B8,1(x)

=


(x−5)2

2
if 5 ≤ x < 6

(x−5)(7−x)
2

+ (7− x)(x− 6) if 6 ≤ x < 7

0 otherwise,
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B8,3(x) =
x− τ8

τ10 − τ8

B8,2(x) + (1− α9,3)B9,2(x) = (x− 6)B8,2(x)

=

 (x− 6)2 if 6 ≤ x < 7

0 otherwise.
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Appendix C

Derivation of likelihood ratios

C.1 CA-S Simplified multivariate normal random-effects

model

LR =
f(Y c,Y r|Hp)

f(Y c,Y r|Hd)
=

∫
θ

∏nc
i=1 f(yci|Φθ, σ2Im)

∏nr
i=1 f(yri|Φθ, σ2Im)f(θ|η,D)dθ∏

q∈{c,r}
∫
θ

∏nq
i=1 f(yqi|Φθ, σ2Im)f(θ|η,D)dθ

C.1.1 Likelihood ratio evaluation under prosecution proposition

The numerator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from the same origin, or θr = θc.

∫ nc∏
i=1

f(yci|Φθ, σ2Im)
nr∏
i=1

f(yri|Φθ, σ2Im)f(θ|η,D)dθ

=

∫
(2π)−(nc+nr)m/2σ−(nc+nr)m|2πD|−1/2exp

{
− 1

2σ2

nc∑
i=1

(yci −Φθ)T (yci −Φθ)

}

exp

{
− 1

2σ2

nr∑
i=1

(yri −Φθ)T (yri −Φθ)

}
exp

{
−1

2
(θ − η)TD−1(θ − η)

}
dθ

=

∫
(2π)−(nc+nr)m/2σ−(nc+nr)m|2πD|−1/2exp

{
− 1

2σ2

(
nc∑
i=1

yTciyci +
nr∑
i=1

yTriyri

)
− 1

2
ηTD−1η

}

exp

{
−1

2

[
nc + nr
σ2

θTΦTΦ + θTD−1 −

(
2

σ2

(
nc∑
i=1

yTci +
nr∑
i=1

yTri

)
Φ + 2ηTD−1

)]
θ

}
dθ
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=(2π)−(nc+nr)m/2σ−(nc+nr)m|D|−1/2|Σ∗n|1/2

exp

{
− 1

2σ2

nc∑
i=1

yTciyci −
1

2σ2

nr∑
i=1

yTriyri −
1

2
ηTD−1η +

1

2
µ∗Tn Σ∗−1

n µ∗n

}

where

Σ∗−1
n =

nc + nr
σ2

ΦTΦ +D−1

µ∗n =

(
nc + nr
σ2

ΦTΦ +D−1

)−1
(

1

σ2
ΦT

(
nc∑
i=1

yci +
nr∑
i=1

yri

)
+D−1η

)

C.1.2 Likelihood ratio evaluation under alternative proposition

The denominator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from different origins, indepen-

dently.

∏
q∈{c,r}

∫ nq∏
i=1

f(yqi|Φθq, σ2I)f(θq|η,D)dθq

The two terms are similar so a general case is derived.

∫ nq∏
i=1

f(yqi|Φθq, σ2I)f(θq|η,D)dθq

=(2π)−nqm/2σ−nqm|D|−1/2|Σ∗q|1/2exp{− 1

2σ2

nq∑
i=1

yTqiyqi −
1

2
ηTD−1η +

1

2
µ∗Tq Σ∗−1

q µ∗q}

where

Σ∗−1
q =

nq
σ2

ΦTΦ +D−1

µ∗q =
(nq
σ2

ΦTΦ +D−1
)−1

(
1

σ2

nq∑
i=1

ΦTyqi +D−1η

)
.
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C.1.3 Likelihood ratio

Putting the numerator and denominator together we get

LR =
|Σ∗n|1/2exp{1

2
µ∗Tn Σ∗−1

n µ∗n}
|Σ∗c |1/2|Σ∗r|1/2|D|−1/2exp

{
−1

2
ηTD−1η + 1

2
µ∗Tc Σ∗−1

c µ∗c + 1
2
µ∗Tr Σ∗−1

r µ∗r
} .

C.1.4 Estimate of hyperparameters using relevant population

yki ∼ Nm(Φθk, σ
2Im), k = 1, . . . , K, i = 1, . . . , nk

θq ∼ NB(η,D),D diagonal (Dii = ω2
i )

σ̂2 =
1

K(mn−B)

K∑
k=1

nq∑
i=1

∥∥∥yki −Φθ̂k

∥∥∥2

,

η̂ =
1

K

K∑
k=1

θ̂k,

D̂bb = ω̂b =
1

K − 1

K∑
k=1

(
θ̂

(k)
b − η̂b

)2

− σ̂2

nk
ΦTΦ.

C.1.5 Simulation

Under this model, datasets will be generated by first simulate group means θk ∼

N(η̂, D̂) then yki ∼ N(Φθk, σ̂
2Im) for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Descrip-

tions of this model can be found in Section 3.2.2.

C.2 CA-const. Constant within-group variance model

LR =
f(Y c,Yr|Hp)

f(Y c,Y r|Hd)

=

∫
σ2

∫
θ

∏nc
i=1 f(yci|Φθ, σ2Im)

∏nr
i=1 f(yri|Φθ, σ2Im)f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2∏

q∈{c,r}
∫
σ2

∫
θ

∏nq
i=1 f(yqi|Φθ, σ2Im)f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2

C.2.1 Likelihood ratio evaluation under prosecution proposition

The numerator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and from the control curve come from the same origin, or θr =
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θc.∫ ∫ nc∏
i=1

f(yci|Φθ, I/λ)
nr∏
i=1

f(yri|Φθ, I/λ)f(θ|η,C/λ)dθf(λ|γ, δ)dλ

=

∫
f(λ|γ, δ)

∫ nc∏
i=1

f(yci|Φθ, I/λ)
nr∏
i=1

f(yri|Φθ, I/λ)f(θ|η,C/λ)dθdλ

=

∫
f(λ|γ, δ)

∫ (
λ

2π

)ncm/2
exp

{
−λ

2

nc∑
i=1

(yci −Φθ)T (yci −Φθ)

}
(
λ

2π

)nrm/2
exp

{
−λ

2

nr∑
i=1

(yri −Φθ)T (yri −Φθ)

}
(
λ

2π

)B/2
|C|−1/2exp

{
−λ

2
(θ − η)TC−1(θ − η)

}
dθdλ

=

∫
f(λ|γ, δ)

∫ (
λ

2π

) (nc+nr)m+B
2

|C|−1/2exp

{
−λ

2

[
nc∑
i=1

yTciyci +
nr∑
i=1

yTriyri + ηTC−1η

]}

exp

{
−λ

2

[
(nc + nr)θ

TΦTΦθ + θTC−1θ − 2ηTC−1θ − 2

(
nc∑
i=1

yTci +
nr∑
i=1

yTri

)
Φθ

]}
dθdλ

Let

C∗−1
n = (nc + nr)Φ

TΦ +C−1

µ∗n =
(
(nc + nr)Φ

TΦ +C−1
)−1

(
ηTC−1 +

(
nc∑
i=1

yTci +
nr∑
i=1

yTri

)
Φ

)T

Overall, the integral then becomes

∫
δγ

Γ(γ)
λγ−1exp {−δλ}

(
λ

2π

) (nc+nr)m
2 (

|C∗−1||C|
)−1/2

exp

{
−λ

2

[
nc∑
i=1

yTciyci +
nr∑
i=1

yTriyri + ηTC−1η − µ∗Tn C∗−1
n µ∗n

]}
dλ

=
δγ

Γ(γ)

(
1

2π

) (nc+nr)m
2

∣∣∣∣∣
nc∑
i=1

ΦTΦ +
nr∑
i=1

ΦTΦ +C−1

∣∣∣∣∣
−1/2

|C|−1/2 Γ(γ∗)

δ∗γ∗
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With

γ∗ = γ +
(nc + nr)m

2

δ∗ = δ +
1

2

(
nc∑
i=1

yTciyci +
nr∑
i=1

yTriyri + ηTC−1η − µ∗Tn C∗−1
n µ∗n

)

C.2.2 Likelihood ratio evaluation under alternative proposition

The denominator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and from the control curve have different origins, or θr 6= θc.

∏
q∈{c,r}

∫
λ

∫
θ

nq∏
i=1

f(yqi|Φθ, I/λ)f(θ|η,C/λ)dθf(λ|γ, δ)dλ

=
∏

q∈{c,r}

δγ

Γ(γ)

(
1

2π

)nqm

2

∣∣∣∣∣
nc∑
i=1

ΦTΦ +C−1

∣∣∣∣∣
−1/2

|C|−1/2 Γ(γ∗q )

δ
∗γ∗q
q

where

γ∗q = γ+
nqm

2

δ∗q = δ+
1

2

[
nq∑
i=1

yTqiyqi + ηTC−1η

−

(
ηTC−1 +

nq∑
i=1

yTqiΦ

)(
nqΦ

TΦ +C−1
)−1

(
ηTC−1 + ΦT

nq∑
i=1

yqi

)T


C.2.3 Likelihood ratio

Putting the numerator and denominator together we get

LR =
Γ(γ)|C|1/2

δγ
Γ(γ∗)

Γ(γ∗c )Γ(γ∗r )

δ
∗γ∗c
c δ

∗γ∗r
r

δ∗γ∗
|(nc + nr)Φ

TΦ +C−1|−1/2

|ncΦTΦ +C−1|−1/2|nrΦTΦ +C−1|−1/2
.
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C.2.4 Estimation of hyperparameters using relevant population

yki ∼ Nm(Φθk, Im/λk), k = 1, . . . , K

λ̂k =
1

RSSk/(mnk −B)

λ̂ =
1

K

∑
k

λ̂k = γ/δ

s2
λ =

1

K − 1

∑
k

(λ̂k − λ̂)2 = γ/δ2

δ̂ = λ̂/s2
λ, γ̂ = λ̂2/s2

λ

θk ∼ NB(η,C/λk), k = 1, . . . , K

η̂ =
1

K

∑
k

θ̂k

θ̂k =
1

nk

∑
i

θ̂ki

Ĉ =
1

K

∑
k

v̂ar(θk)λ̂

=
1

K − 1

K∑
k=1

(θ̂k − η̂)2/

∑K
k=1 σ̂

2
k

K
− 1

n
ΦTΦ

C.2.5 Simulation

Under this model, datasets will be generated by first simulate group variances σ2
k ∼

Inv−Gam(γ̂, δ̂) then group means θk ∼ N(η̂, σ2
kĈ) and finally, yki ∼ N(Φθk, σ

2
kIm)

for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Descriptions of this model can be found in Sec-

tion 3.2.3.
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C.3 CA-ar Multivariate normal random-effects with au-

toregressive within-group covariance model

f(Y c,Y r|Hp)

f(Y c,Y r|Hd)

=

∫
σ2

∫
θ

∏nc
i=1 f(yci|θ, σ2P )

∏nr
i=1 f(yri|θ, σ2P )f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2∏

q∈{c,r}
∫
σ2

∫
θ

∏nq
i=1 f(yci|θ, σ2P )f(θ|η, σ2C)f(σ2|γ, δ)dθdσ2

C.3.1 Likelihood ratio evaluation under prosecution proposition

The numerator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from the same origin, or θr = θc.

∫ ∫ nc∏
i=1

f(yci|Φθ,P /λ)
nr∏
i=1

f(yri|Φθ,P /λ)f(θ|η,C/λ)dθf(λ|γ, δ)dλ

=

∫
f(λ|γ, δ)

∫ nc∏
i=1

f(yci|Φθ,P /λ)
nr∏
i=1

f(yri|Φθ,P /λ)f(θ|η,C/λ)dθdλ

=

∫
f(λ|γ, δ)

∫ (
λ

2π

)ncm/2
|P |−nc/2exp

{
−λ

2

nc∑
i=1

(yci −Φθ)TP−1(yci −Φθ)

}
(
λ

2π

)nrm/2
|P |−nr/2exp

{
−λ

2

nr∑
i=1

(yri −Φθ)TP−1(yri −Φθ)

}
(
λ

2π

)B/2
|C|−1/2exp

{
−λ

2
(θ − η)TC−1 (θ − η)

}
dθdλ

=

∫
f(λ|γ, δ)

∫ (
λ

2π

) (nc+nr)m+B
2

|P |−
nc+nr

2 |C|−1/2

exp

{
−λ

2

(
nc∑
i=1

yTciP
−1yci +

nr∑
i=1

yTriP
−1yri + ηTC−1η

)}

exp

{
−λ

2

(
nc∑
i=1

θTΦTP−1Φθ +
nr∑
i=1

θTΦTP−1Φθ + θTC−1θ

)}

exp

{
−λ

2

(
−2ηTC−1θ − 2

nc∑
i=1

yTciP
−1Φθ − 2

nr∑
i=1

yTriP
−1Φθ

)}
dθdλ

Let

P ∗−1
n = (nc + nr)Φ

TP−1Φ +C−1
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µ∗n =
(
(nc + nr)Φ

TP−1Φ +C−1
)−1

(
ηTC−1 +

nc∑
i=1

yTciP
−1Φ +

nr∑
i=1

yTriP
−1Φ

)T

Overall, the integral then becomes

∫
δγ

Γ(γ)
λγ−1exp {−δλ}

(
λ

2π

) (nc+nr)m
2

|P ∗n|1/2|P |−
nc+nr

2 |C|−1/2

exp

{
−λ

2
(
nc∑
i=1

yTciP
−1yci +

nr∑
i=1

yTriP
−1yri + ηTC−1η − µ∗Tn P ∗−1

n µ∗n)

}
dλ

=
δγ

Γ(γ)

(
1

2π

) (nc+nr)m
2 ∣∣(nc + nr)Φ

TP−1Φ +C−1
∣∣−1/2 |P |−

nc+nr
2 |C|−1/2 Γ(γ∗)

δ∗γ∗

With

γ∗ =γ +
(nc + nr)m

2

δ∗ =δ +
1

2

(
nc∑
i=1

yTciP
−1yci +

nr∑
i=1

yTriP
−1yri + ηTC−1η − µ∗Tn P ∗−1

n µ∗n

)

=δ +
1

2

{
nc∑
i=1

yTciP
−1yci +

nr∑
i=1

yTriP
−1yri + ηTC−1η

−

(
ηTC−1 +

(
nc∑
i=1

yTci +
nr∑
i=1

yTri

)
P−1Φ

)

((nc + nr)Φ
TP−1Φ +C−1)−1

(
C−1η + ΦTP−1

(
nc∑
i=1

yci +
nr∑
i=1

yri

))}

C.3.2 Likelihood ratio evaluation under prosecution proposition

The denominator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from different origins, indepen-

dently.

∏
q∈{c,r}

∫ ∫ nq∏
i=1

f(yqi|Φθ,P /λ)f(θ|η,C/λ)dθf(λ|γ, δ)dλ
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The two terms are similar so a general case is derived.

∫ ∫ nq∏
i=1

f(yqi|Φθ,P /λq)f(θ|η,C/λq)dθf(λ|γ, δ)dλq

=

∫
f(λ|γ, δ)

∫ (
λ

2π

)nqm

2

|P |−nq/2exp

{
−λ

2

nq∑
i=1

(yqi −Φθ)TP−1(yqi −Φθ)

}
(
λ

2π

)B/2
|C|−1/2exp

{
−λ

2
(θ − η)TC−1(θ − η)

}
dθdλ

=

∫
f(λ|γ, δ)

∫ (
λ

2π

)nqm+B

2

|P |−nq/2|C|−1/2exp

{
−λ

2

(
nq∑
i=1

yTqiP
−1yqi + ηTC−1η

)}

exp

{
−λ

2

(
nq∑
i=1

θTΦTP−1Φθ + θTC−1θ − 2ηTC−1θ − 2
nc∑
i=1

yTciP
−1Φθ

)}
dθdλ

Let

P ∗−1
q =

nq∑
i=1

ΦTP−1Φ +C−1

µ∗q =

(
nq∑
i=1

ΦTP−1Φ +C−1

)−1(
ηTC−1 +

nq∑
i=1

yTciP
−1Φ

)T

Overall, the integral then becomes

∫
δγ

Γ(γ)
λγ−1exp{−δλ}

(
λ

2π

)nqm

2

|P ∗q|1/2|P |−nq/2|C|−1/2

exp

{
−λ

2

(
nq∑
i=1

yTqiP
−1yqi + ηTC−1η − µ∗Tq P ∗−1

q µ∗q

)}
dλ

=
δγ

Γ(γ)

(
1

2π

)nqm

2

∣∣∣∣∣
nq∑
i=1

ΦTP−1Φ +C−1

∣∣∣∣∣
−1/2

|P |−nq/2|C|−1/2
Γ(γ∗q )

δ
∗γ∗q
q

With

γ∗q = γ +
nqm

2

δ∗q = δ +
1

2

(
nq∑
i=1

yTqiP
−1yqi + ηTC−1η − µ∗Tq P ∗−1

q µ∗q

)
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= δ +
1

2

[
nq∑
i=1

yTqiP
−1yqi + ηTC−1η

−

(
ηTC−1 +

nq∑
i=1

yTqiP
−1Φ

)
(nqΦ

TP−1Φ +C−1)−1

(
C−1η + ΦTP−1

nq∑
i=1

yqi

)]

C.3.3 Likelihood ratio

Putting the numerator and denominator together we get

LR =
Γ(γ)|C|1/2

δγ
Γ(γ∗)

Γ(γ∗c )Γ(γ∗r )

δ
∗γ∗c
c δ

∗γ∗r
r

δ∗γ∗
|(nc + nr)Φ

TP−1Φ +C−1|−1/2

|ncΦTP−1Φ +C−1|−1/2|nrΦTP−1Φ +C−1|−1/2
.

C.3.4 Estimation of hyperparameters from relevant population

Ykij = fk(j) + rkij = fk(j) + σkεkij

rkij = σkεkij = σk(ψ1εki,j−1 + ψ2εki,j−2 + ...+ ψpεki,j−p) + ωkij

Preliminary analysis suggests p=1. So

rkij = ψrki,j−1 + ωkij

σkεkij = ψ(σkεki,j−1) + ωkij.

Equating the variances of both side gives

V ar(σkεkij) = V ar(ψ(σkεki,j−1) + ωkij)

σ2
k = ψ2

(k)σ
2
k + τ 2

k

variables with subscript (k) are transitional (for estimation only)

σ̂2
k =

τ̂ 2
k

1− ψ̂2
(k)

=
1

λ̂k

where τ̂ 2
k =

∑
i

∑m
j=2(rkij − ψ̂(k)rki,j−1)2

n(m− 1)− 1

λ̂ =
1

K

∑
k

λ̂k = γ/δ

s2
λ =

1

K − 1

∑
k

(λ̂k − λ̂)2 = γ/δ2

δ̂ = λ̂/s2
λ, γ̂ = λ̂2/s2

λ
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P̂ (k) =



1 ψ̂(k) ψ̂2
(k) · · · ψ̂m−1

(k)

ψ̂(k) 1 ψ̂(k)

ψ̂2
(k) ψ̂(k) 1
... . . . ...

ψ̂m−1
(k) · · · 1



P̂ =

∑K
k=1 P̂ (k)

K

θ ∼ NB(η,C/λ), k = 1, . . . , K

η̂ =
1

K

∑
k

θ̂k

θ̂k =
1

nk

∑
i

θ̂ki

Ĉ =
1

K

∑
k

v̂ar(θk)λ̂

=
1

K − 1

K∑
k=1

(θ̂k − η̂)2/

∑K
k=1 σ̂

2
k

K
− 1

n
ΦTΦ

C.3.5 Simulation

Under this model, datasets will be generated by first simulate group variances σ2
k ∼

Inv−Gam(γ̂, δ̂) then group means θk ∼ N(η̂, σ2
kĈ) and finally, yki ∼ N(Φθk, σ

2
kP̂ )

for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. Descriptions of this model can be found in Sec-

tion 3.2.4.
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C.4 DR-S Dimension reduced multivariate normal random-

effects model

C.4.1 Likelihood ratio evaluation under prosecution proposition

The numerator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from the same origin, or θr = θc.

∫ nc∏
i=1

f(zci|θ,U )
nr∏
i=1

f(zri|θ,U)f(θ|η,C)dθ

=

∫
|2πU |−nc/2 |2πU |−nr/2 |2πC|−1/2 exp

{
−1

2

nc∑
i=1

(zci − θ)TU−1(zci − θ)

}

exp

{
−1

2

nr∑
i=1

(zri − θ)TU−1(zri − θ)

}
exp

{
−1

2
(θ − η)TC−1(θ − η)

}
dθ

=

∫
|2πU |−nc/2 |2πU |−nr/2 |2πC|−1/2 exp

{
−1

2
(θ − η)TC−1(θ − η)

}
exp

{
−1

2

nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c)−
1

2

nc∑
i=1

(z̄c − θ)TU−1(z̄c − θ)

}

exp

{
−1

2

nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)−
1

2

nr∑
i=1

(z̄r − θ)TU−1(z̄r − θ)

}
dθ

=

∫
|2πU |−(nc+nr)/2 |2πC|−1/2

exp

{
−1

2

nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c)−
1

2

nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

}

exp

{
−1

2

(
nc∑
i=1

z̄Tc U
−1z̄c +

nr∑
i=1

z̄TrU
−1z̄r + ηTC−1η

)}

exp

{
−1

2
(
nc∑
i=1

θTU−1θ +
nr∑
i=1

θTU−1θ + θTC−1θ)

}

exp

{
−1

2
(−2ηTC−1θ − 2

nc∑
i=1

z̄Tc U
−1θ − 2

nr∑
i=1

z̄TrU
−1θ)

}
dθ

Let

Σ∗−1
n =

nc∑
i=1

U−1 +
nr∑
i=1

U−1 +C−1 = (nc + nr)U
−1 +C−1

η∗n =
(
(nc + nr)U

−1 +C−1
)−1 (

C−1η +U−1ncz̄c +U−1nrz̄r
)
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Overall, the integral becomes

|2πU |−(nc+nr)/2 |2πC|−1/2

exp

{
−1

2

nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c)−
1

2

nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

}

exp

{
−1

2

(
nc∑
i=1

z̄Tc U
−1z̄c +

nr∑
i=1

z̄TrU
−1z̄r + ηTC−1η − η∗Tn Σ∗−1

n η∗n

)}

which can be shown to simply to

|2πU |−(nc+nr)/2 |2πC|−1/2
∣∣2π((nc + nr)U

−1 +C−1)−1
∣∣1/2 exp

{
−1

2
(h1 + h2 + h3)

}

where

h1 =
nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c) +
nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

= tr

(
nc∑
i=1

(zci − z̄c)TU−1(zci − z̄c)

)
+ tr

(
nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

)

= tr

(
nc∑
i=1

(zci − z̄c)(zci − z̄c)TU−1

)
+ tr

(
nr∑
i=1

(zri − z̄r)(zri − z̄r)TU−1

)
= tr

(
ScU

−1
)

+ tr(SrU−1)

h2 = (z∗ − η)T
(

U

nc + nr
+C

)−1

(z∗ − η)

h3 = (z̄c − z̄r)T
(
U

nc
+
U

nr

)−1

(z̄c − z̄r)

with

z∗ =
ncz̄c + nrz̄r
nc + nr

.

C.4.2 Likelihood ratio evaluation under alternative proposition

The denominator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from different origins, indepen-
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dently.

∫ nc∏
i=1

f(zci|θc,U)f(θc|η,C)dθc

∫ nr∏
i=1

f(zri|θr,U )f(θr|η,C)dθr

These two parts are similar, so the calculation is showed for the general case.

∫ nq∏
i=1

f(zqi|θq,U)f(θq|η,C)dθq

=

∫
|2πU |−nq/2 exp

{
−1

2

nq∑
i=1

(zqi − θq)TU−1(zqi − θq)

}
|2πC|−1/2

exp
{
−1

2
(θq − η)TC−1(θq − η)

}
dθq

= |2πU |−nq/2 |2πC|−1/2∫
exp

{
−1

2

nq∑
i=1

(zqi − z̄q)TU−1(zqi − z̄q)−
1

2

nq∑
i=1

(z̄q − θq)TU−1(z̄q − θq)

}

exp
{
−1

2
(θq − η)TC−1(θq − η)

}
dθq

= |2πU |−nq/2 |2πC|−1/2∫
exp

{
−1

2

nq∑
i=1

(zqi − z̄q)TU−1(zqi − z̄q)−
1

2

(
nq∑
i=1

z̄TqU
−1z̄q + ηTC−1η

)}

exp

{
−1

2

(
nq∑
i=1

θTqU
−1θq + θTqC

−1θq − 2ηTC−1θq − 2

nq∑
i=1

z̄TqU
−1θq

)}
dθq

Let

Σ∗−1
q =

nq∑
i=1

U−1 +C−1

η∗q =

(
nq∑
i=1

U−1 +C−1

)−1(
C−1η +

nq∑
i=1

U−1z̄q

)

which integrates to

|2πU |−nq/2 |2πC|−1/2
∣∣2πΣ∗q

∣∣1/2
exp

{
−1

2

(
nq∑
i=1

(zqi − z̄q)TU−1(zqi − z̄q)−
nq∑
i=1

z̄TqU
−1z̄q + ηTC−1η − η∗Tq Σ∗−1

q η∗q

)}
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Using the relation

(A+B)−1 = A−1
(
A−1 +B−1

)−1
B−1 = B−1

(
A−1 +B−1

)−1
A−1

we get

A−1 = (A+B)−1B(A−1 +B−1)

B−1 = (A+B)−1A
(
A−1 +B−1

)
hence

nqU
−1 =

(
U

nq
+C

)−1

C(nqU
−1 +C−1)

C−1 =

(
U

nq
+C

)−1
U

nq

(
nqU

−1 +C−1
)

(
nqU

−1 +C−1
)−1

=
U

nq

(
U

nq
+C

)−1

C = C

(
U

nq
+C

)−1
U

nq

So

nq∑
i=1

z̄TqU
−1z̄q + ηTC−1η − η∗Tq Σ∗−1

q η∗q

=

nq∑
i=1

z̄TqU
−1z̄q + ηTC−1η

−

(
ηTC−1 +

nq∑
i=1

z̄TqU
−1

)(
nq∑
i=1

U−1 +C−1

)−1(
C−1η +

nq∑
i=1

U−1z̄q

)

=z̄Tq

(
U

nq
+C

)−1

C(nqU
−1 +C−1)z̄q − z̄Tq

(
U

nq
+C

)−1

CnqU
−1z̄q

+ ηT
(
U

nq
+C

)−1
U

nq
(nqU

−1 +C−1)η − ηTC−1C

(
U

nq
+C

)−1
U

nq
C−1η

− 2z̄Tq nqU
−1U

nq

(
U

nq
+C

)−1

CC−1η

=z̄Tq

(
U

nq
+C

)−1

z̄q + ηT
(
U

nq
+C

)−1

η − 2z̄Tq T

(
U

nq
+C

)−1

η

=(z̄q − η)T
(
U

nq
+C

)−1

(z̄q − η).
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The integral is then evaluated as

|2πU |−nq/2|2πC|−1/2|2πΣ∗q|1/2exp

{
−1

2
tr
(
SqU

−1
)
− 1

2
(z̄q − η)T

(
U

nq
+C

)−1

(z̄q − η)

}

where

Sq =

nq∑
i=1

(zqi − z̄q)(zqi − z̄q)T .

Putting these together with the numerator gives

LR =
|2πU |−(nc+nr)/2 |2πC|−1/2

∣∣∣2π ((nc + nr)U
−1 +C−1

)−1
∣∣∣1/2 exp

{
−1

2
(h1 + h2 + h3)

}
∏

q∈{c,r} |2πU |
−nq/2 |2πC|−1/2

∣∣∣2π (nqU−1 +C−1
)−1
∣∣∣1/2 exp

{
−1

2
(h1q + h4q)

}
=

∣∣∣((nc + nr)U
−1 +C−1

)−1
∣∣∣1/2 exp

{
−1

2
(h2 + h3)

}
|C|−1/2

∣∣∣(ncU−1 +C−1
)−1
∣∣∣1/2 ∣∣∣(nrU−1 +C−1

)−1
∣∣∣1/2 exp

{
−1

2
(h4c + h4r)

} .
C.4.3 Estimation of hyperparameters using relevant population

zki ∼ NB(θk,U), k = 1, . . . , K, i = 1, . . . , nk

θk ∼ NB(η,C), k = 1, . . . , K

η̂ =
1

K

∑
k

θ̂k

θ̂k =
1

nk

∑
i

zki

Ĉ =
1

K − 1

∑
k

ˆV ar(θk) =
1

K − 1

∑
k

(
θ̂k − η̂

)(
θ̂k − η̂

)T
− Û
nk
.

C.4.4 Simulation

Under this model, datasets will be generated by first simulate group means θk ∼

N(η̂, Ĉ) then zki ∼ N(θk, Û) for 1 ≤ k ≤ K and 1 ≤ i ≤ nk. To compare

with original data we will reconstruct ŷki as Φzki. Descriptions of this model can be

found in Section 3.3.1.
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C.5 DR-C Multivariate normal random-effects with non

constant within-group covariance

C.5.1 Likelihood ratio evaluation under prosecution proposition

The numerator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from the same origin, or θr = θc

and U r = U c.

We are interested in

m(Z|Hp) =

∫ ∫ nc∏
i=1

f(zci|θ,U)
nr∏
i=1

f(zri|θ,U)f(θ|η,C)dθf(U |Ω, ν)dU

which is difficult to evaluate analytically. However, using Bayes’ Theorem as in Chib

(1995), the marginal likelihood can be written as

m(Z|Hp) =
f(Z|Ψ, Hp)π(Ψ|Hp)

π(Ψ|Z, Hp)

where Ψ = (θ,U). Denoting the maximum likelihood estimate as Ψ∗, the estimate of

the marginal density on logarithmic scale is

log [m̂(Z|Hp)] = log [f(Z|Ψ∗, Hp)] + log [π(Ψ∗|Hp)]− log [π̂(Ψ∗|Z, Hp)] (C.1)

where π̂(Ψ∗|z, Hp) can be estimated using Gibbs sampling algorithm described in

Bozza et al (2008).

The density function of the observation is given by

f(Z|Ψ, Hp) =
nc∏
i=1

f(zci|θ,U)
nr∏
i=1

f(zri|θ,U )

=
∏

q∈{c,r}

nl∏
i=1

(2π)−p/2|U |−1/2exp
{
−1

2
(zqi − θ)TU−1(zqi − θ)

}
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The prior density for Ψ is given by

f(Ψ|Hp)

= (2π)−p/2|C|−1/2exp
{
−1

2
(θ − η)TC−1(θ − η)

}
|Ω| ν2 |U |− ν+p+1

2

2νp/2Γp(ν/2)
exp

{
−1

2
tr
(
ΩU−1

)}
.

The complete conditional density of θ is then

f(θ|Z,U ) =
f(Z|θ,U)f(θ|η,C)∫
f(Z|θ,U)f(θ|η,C)dθ

∝ exp

{
−1

2

[
2∑
l=1

nl∑
i=1

(zli − θ)TU−1(zli − θ) + (θ − η)TC−1(θ − η)

]}

which can be shown to be still of type normal with parameters (η∗,C∗), where

C∗ =

 ∑
q∈{c,r}

nq∑
i=1

U−1 +C−1

−1

η∗ = C∗

C−1η +
∑
q∈{c,r}

nq∑
i=1

U−1zqi

 .

And the complete conditional density of U would be

f(U |z,θ)

∝ |U |−(nc+nr)/2 |U |−(ν+p+1)/2 exp

−1

2

 ∑
q∈{c,r}

nq∑
i=1

(zli − θ)TU−1 (zli − θ) + tr
(
ΩU−1

)
∝ |U |−(nc+nr+ν+p+1)/2exp

−1

2

tr

 ∑
q∈{c,r}

nq∑
i=1

(zli − θ) (yli − θ)TU−1

+ tr
(
ΩU−1

)
∝ |U |−(nc+nr+ν+p+1)/2exp

−1

2

tr

Ω +
∑
q∈{c,r}

nq∑
i=1

(zqi − θ) (zqi − θ)T

U−1


which can be shown to be still of type inverse Wishart with parameters (Ω∗, ν∗), where

Ω∗ = Ω +
∑
q∈{c,r}

nq∑
i=1

(zqi − θ)(zqi − θ)T

ν∗ = ν + nc + nr.
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The algorithm is then

1. Estimate η̂, Ĉ, and Ω̂ from background

2. Sample pairs of θg ∼ NB(η∗,C∗) and U g ∼ IW(Ω∗, ν∗), g = 1, . . . , G

3. Obtain maximum likelihood approximation of Ψ∗ = (θ∗,U ∗) as

Ψ∗ = maxΨgf(z|Ψg, Hp)

4. Compute

π̂(U ∗|Z) =
G∑
g=1

π(U ∗|Z,θg)
G

5. Posterior is then given by π̂(Ψ∗|Z) = π(θ∗|U ∗,Z)π̂(U ∗|Z).

The marginal likelihood (on logarithmic scale) can then be estimated using equation

(C.1).

C.5.2 Likelihood ratio evaluation under alternative proposition

The denominator of the likelihood ratio is evaluated under the proposition that the data

for the recovered curve and the control curve come from different origins.

We are interested in

m(Z|Hp) =
∏

q∈{c,r}

∫ ∫ nq∏
i=1

f(zqi|θ,U)f(θ|η,C)dθf(U |Ω, ν)dU

which can also be estimated using

m(Z|Hd) = m(Zc)m(Zr) =
f(Zc|Ψ)π(Ψ)

π(Ψ|Zc)

f(Zr|Ψ)π(Ψ)

π(Ψ|Zr)
(C.2)

=
∏

q∈{c,r}

f(Zq|Ψ)π(Ψ)

π(Ψ|Zq)
=
∏

q∈{c,r}

m(Zq) (C.3)
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where Ψ = (θ,U). Denoting the maximum likelihood estimate as Ψ∗, the estimate of

the marginal density on logarithmic scale is

log [m̂(Zq)] = log [f(Zq|Ψ∗)] + log [π(Ψ∗)]− log [π̂(Ψ∗|Zq)]

where π̂(Ψ∗q|Zq) can be estimated using Gibbs sampling algorithm described in Bozza

et al. (2008).

The density function of the observation is given by

f(Zq|Ψ) =

nq∏
i=1

f(zqi|θ,U)

=

nq∏
i=1

(2π)−p/2|U |−1/2exp
{
−1

2
(zqi − θ)TU−1(zqi − θ)

}
.

The prior density for Ψ is given by

f(Ψ|Hd) = (2π)−p/2|C|−1/2exp{−1

2
(θ − η)TC−1(θ − η)}Const.|Ω|

ν
2

|U | ν+p+1
2

exp{−1

2
tr
(
ΩU−1

)
}.

The complete conditional density of θ is then

f(θ|Zq,U) =
f(Zq|θ,U)f(θ|η,C)∫
f(Zq|θ,U)f(θ|η,C)dθ

∝ exp

{
−1

2

[
nq∑
i=1

(zqi − θ)TU−1(zqi − θ) + (θ − η)TC−1(θ − η)

]}

which can be shown to be still of type normal with parameters (η∗,C∗), where

C∗ = (

nq∑
i=1

U−1 +C−1)−1

η∗ = C∗(C−1η +

nq∑
i=1

U−1zqi).

And the complete conditional density of U would be

f(U |Zq,θ) ∝ |U |−nq/2|U |−(ν+p+1)/2exp

{
−1

2

[
nq∑
i=1

(zqi − θ)TU−1(zqi − θ) + tr
(
ΩU−1

)]}
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∝ |U |−(nq+ν+p+1)/2exp

{
−1

2

[
tr

(
nq∑
i=1

(zqi − θ)(zqi − θ)TU−1

)
+ tr(ΩU−1)

]}

∝ |U |−(nq+ν+p+1)/2exp

{
−1

2

[
tr

((
Ω +

nq∑
i=1

(zqi − θ)(zqi − θ)T

)
U−1

)]}

which can be shown to be still of type inverse Wishart with parameters (Ω∗, ν∗), where

Ω∗ = Ω +

nq∑
i=1

(zqi − θ)(zqi − θ)T

ν∗ = ν + nq.

The algorithm is then

1. Estimate η̂, Ĉ, and Ω̂ from background

2. Sample θg|U g,Zq ∼ NB(η∗,C∗) and update θ∗ to equal to θg if f(Zq|θg,U ∗)π(θg,U ∗) =

maxθgf(Zq|θg,U ∗)π(θg,U ∗)

3. SampleU g|θg,Zq ∼ IW(Ω∗, ν∗) and updateU ∗ to equal toU g if f(Zq|θ∗,U g)π(θ∗,U g) =

maxUgf(Zq|θ∗,U g)π(θ∗,U g)

4. Compute

π̂(U ∗|Zq) =
G∑
g=1

π(U ∗|Zq,θ
g)

G

5. Posterior is then given by π̂(Ψ∗|Zq) = π(θ∗|U ∗,Zq)π̂(U ∗|Zq).

The marginal likelihood on logarithmic scale (log m̂(Zq|Hd)) can then be estimated

using equation (C.2).

C.5.3 Likelihood ratio

Putting the numerator and denominator together we get

log(LR) = log [m̂(Z|Hp)]− log [m̂(Zc|Hd)]− log [m̂(Zr|Hd)] .
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C.5.4 Estimation of hyperparameters using relevant population

zki ∼ NB(θk,U k), k = 1, . . . , K, i = 1, . . . , nk

θk ∼ NB(η,C), k = 1, . . . , K

U k ∼ W−1(Ω, ν).

η̂ =
1

K

∑
k

θ̂k

θ̂k =
1

nk

∑
i

zki

Ĉ =
1

K − 1

∑
k

ˆV ar(θk) =
1

K − 1

∑
k

(
θ̂k − η̂

)(
θ̂k − η̂

)T
Ω̂ = (ν −B − 1)

∑
k

Û k/K.

C.5.5 Simulation

Under this model, datasets will be generated by first simulate group means θk ∼

N(η̂, Ĉ) then within-group covariance U ∼ W−1(Ω̂, ν̂) and zki ∼ N(θk, Û) for

1 ≤ k ≤ K and 1 ≤ i ≤ nk. To compare with original data we will reconstruct ŷki as

Φzki. Descriptions of this model can be found in Section 3.3.2.
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Appendix D

Parameter and variance estimation

D.1 Generalised inverse and pseudo-determinant

When evaluating the probability density function of the multivariate normal distribu-

tion with mean µ and variance Σ, it often requires inverting Σ and raising its determi-

nant to power of halves. This should not result in any problems provided Σ is a positive

definite covariance matrix. However, when a covariance matrix Σ∗ is estimated from

data, the estimated matrix can be negative definite.

The problem arises when using multivariate analysis of variance to estimate between-

group covariance matrix in a random-effects model with nested covariance structure.

The estimation requires taking the difference between between-group and within-group

mean squares and can produce an estimate that is negative definite. This can be an in-

dication that the real between-group covariance is zero or the model is wrong since

the estimate is unbiased (Searle, 1992). Solutions have been proposed to resolve this

problem in Amemiya (1985) but it only guarantees nonnegative definite, i.e., it only

concerns point estimate of Σ∗ which can be singular. Therefore, we will use gener-

alised inverse and pseudo-determinants when these problems arise.

A matrixM has to be non-singular and square to be invertible. However, there are

cases where the inverse is needed whenM is rectangular or not of full rank. For these

matrices, the Moore–Penrose inverse can be obtained, i.e., for any m-by-n matrix M ,

an n-by-m matrixM ∗ can be found so thatMM ∗M = M andM ∗MM ∗ = M ∗.

The determinant of a positive semi-definite matrix is non-negative since the de-
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terminant of a matrix equals to the product of its eigenvalues and they should all be

positive. However, when Σ is estimated using data, there might be eigenvalues that

are negative. In such cases, pseudo-determinants calculated as the product of positive

eigenvalues, is used.

228



Bibliography

Adam, C. D. (2008). In situ luminescence spectroscopy with multivariate analysis

for the discrimination of black ballpoint pen ink-lines on paper. Forensic Science

International 182(1-3), 27–34.

Adam, C. D., S. L. Sherratt, and V. L. Zholobenko (2008). Classification and individ-

ualisation of black ballpoint pen inks using principal component analysis of uv-vis

absorption spectra. Forensic Science International 174(1), 16–25.

Aitken, C. G. G., Y.-T. Chang, P. Buzzini, G. Zadora, and G. Massonnet (2019). The

evaluation of evidence for microspectrophotometry data using functional data anal-

ysis. Forensic Science International 305, 110007.

Aitken, C. G. G. and D. Lucy (2004, February). Evaluation of trace evidence in the

form of multivariate data. Applied Statistics 53(1), 109–122.

Aitken, C. G. G. and F. Taroni (2005). Statistics and the Evaluation of Evidence for

Forensic Scientists: Second Edition. Wiley.

Aitken, C. G. G., G. Zadora, and D. Lucy (2007). A two-level model for evidence

evaluation. Journal of Forensic Sciences 52(2), 412–419.

Amemiya, Y. (1985). What should be done when an estimated between-group covari-

ance matrix is not nonnegative definite? The American Statistician 39(2), 112–117.

Banas, K., A. Banas, H. O. Moser, M. Bahou, W. Li, P. Yang, M. Cholewa, and S. K.

Lim (2010). Multivariate analysis techniques in the forensics investigation of the

postblast residues by means of fourier transform-infrared spectroscopy. Analytical

Chemistry 82(7), 3038–3044.

229



Bojko, K., C. Roux, and B. J. Reedy (2008). An examination of the sequence of in-

tersecting lines using attenuated total reflectance fourier transform infrared spectral

imaging*. Journal of Forensic Sciences 53(6), 1458–1467.

Bozdogan, H. (1987, Sep). Model selection and akaike’s information criterion (aic):

The general theory and its analytical extensions. Psychometrika 52(3), 345–370.

Bozza, S., F. Taroni, R. Marquis, and M. Schmittbuhl (2008, June). Probabilistic

evaluation of handwriting evidence: likelihood ratio for authorship. 57(3), 329–

341.

Braz, A., M. López-López, and C. García-Ruiz (2013). Raman spectroscopy for foren-

sic analysis of inks in questioned documents. Forensic Science International 232(1-

3), 206–212.

Burfield, R., C. Neumann, and C. P. Saunders (2015, December). Review and appli-

cation of functional data analysis to chemical data—the example of the comparison,

classification, and database search of forensic ink chromatograms. Chemometrics

and Intelligent Laboratory Systems 149, 97–106.

Buzzini, P. and G. Massonnet (2015). The analysis of colored acrylic, cotton, and

wool textile fibers using micro-raman spectroscopy. part 2: Comparison with the

traditional methods of fiber examination. Journal of Forensic Sciences 60(3), 712–

720.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral

Research 1(2), 245–276.

Chib, S. (1995, December). Marginal likelihood from the gibbs output. 90(432),

1313–1321.

Cody, R. B., J. A. Laramée, and H. D. Durst (2005). Versatile new ion source for

the analysis of materials in open air under ambient conditions. Analytical Chem-

istry 77(8), 2297–2302.

Cover, T. and J. Thomas (2005). Elements of Information Theory. John Wiley and

Sons.

230



de Souza Lins Borba, F., R. Saldanha Honorato, and A. de Juan (2015). Use of raman

spectroscopy and chemometrics to distinguish blue ballpoint pen inks. Forensic

Science International 249, 73–82.

De Wael, K., K. Van Dijck, and F. Gason (2015). Discrimination of reactively-dyed

cotton fibres with thin layer chromatography and uv microspectrophotometry. Sci-

ence & Justice 55(6), 422–430.

Denman, J. A., W. M. Skinner, K. P. Kirkbride, and I. M. Kempson (2010). Organic and

inorganic discrimination of ballpoint pen inks by tof-sims and multivariate statistics.

Applied Surface Science 256(7), 2155–2163.

Frank, R. S. and S. P. Sobol (1990). Fibres and their examination in forensic science. In

A. Maehly and R. Williams (Eds.), Forensic Science Progress, Berlin, Heidelberg,

pp. 41–125. Springer Berlin Heidelberg.

Gonzalez-Rodriguez, J., A. Drygajlo, D. Ramos-Castro, M. Garcia-Gomar, and

J. Ortega-Garcia (2006). Robust estimation, interpretation and assessment of likeli-

hood ratios in forensic speaker recognition. Computer Speech Language 20(2-3),

331–355.

Hepler, A. B., C. P. Saunders, L. J. Davis, and J. Buscaglia (2012). Score-based like-

lihood ratios for handwriting evidence. Forensic Science International 219(1-3),

129–140.

Kher, A., M. Mulholland, E. Green, and B. Reedy (2006). Forensic classification

of ballpoint pen inks using high performance liquid chromatography and infrared

spectroscopy with principal components analysis and linear discriminant analysis.

Vibrational Spectroscopy 40(2), 270–277.

Konishi, S. and G. Kitagawa (1996). Generalised information criteria in model selec-

tion. Biometrika 83(4), 875–890.

Lindley, D. V. (1977). A problem in forensic science. Biometrika 64(2), 207–213.

231



Marquis, R., F. Taroni, S. Bozza, and M. Schmittbuhl (2006). Quantitative character-

ization of morphological polymorphism of handwritten characters loops. Forensic

Science International 164(2-3), 211–220.

Martyna, A., D. Lucy, G. Zadora, B. M. Trzcinska, D. Ramos, and A. Parczewski

(2013). The evidential value of microspectrophotometry measurements made for

pen inks. Anal. Methods 5, 6788–6795.

Martyna, A., A. Michalska, and G. Zadora (2015). Interpretation of ftir spectra of

polymers and raman spectra of car paints by means of likelihood ratio approach

supported by wavelet transform for reducing data dimensionality. Analytical and

Bioanalytical Chemistry 407(12), 3357–3376.

Martyna, A., G. Zadora, T. Neocleous, A. Michalska, and N. Dean (2016). Hybrid

approach combining chemometrics and likelihood ratio framework for reporting the

evidential value of spectra. Analytica Chimica Acta 931, 34–46.

Massonnet, G., P. Buzzini, G. Jochem, M. Staube, T. Coyle, C. Roux, J. Thomas,

H. Leijenhorst, Z. van Zanten, R. Griffin, K. Wiggins, and S. Chabli (2003). Eval-

uation of raman spectroscopy for the analysis of coloured fibres: A collaborative

study. Forensic Science International 136, 124–124.

Neumann, C., R. Ramotowski, and T. Genessay (2011). Forensic examination of ink

by high-performance thin layer chromatography - the united states secret service

digital ink library. Journal of Chromatography A 1218(19), 2793–2811.

Pfefferli, P. W. (1983). Application of microspectrophotometry in document examina-

tion. Forensic Science International 23(2), 129–136.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis (Second edition.

ed.). Springer series in Statistics. New York: Springer.

Ray, P. (2016). The evaluation of fibre evidence in the investigation of serious crime.

Roux, C., M. Novotny, I. Evans, and C. Lennard (1999). A study to investigate the

evidential value of blue and black ballpoint pen inks in australia. Forensic Science

International 101(3), 167–176.

232



Searle, S. R. S. R. (1992). Variance components. Wiley series in probability and

mathematical statistics. Applied probability and statistics. New York: Wiley.

Shibata, R. (1980). Asymptotically efficient selection of the order of the model for

estimating parameters of a linear process. The Annals of Statistics 8(1), 147–164.

Shibata, R. (1981). An optimal selection of regression variables. Biometrika 68(1),

45–54.

Smalldon, K. and A. Moffat (1973). The calculation of discriminating power for a

series of correlated attributes. Journal of the Forensic Science Society 13(4), 291–

295.

Takáts, Z., J. M. Wiseman, B. Gologan, and R. G. Cooks (2004). Mass spectrometry

sampling under ambient conditions with desorption electrospray ionization. Science

(New York, N.Y.) 306(5695).

Thanasoulias, N. C., N. A. Parisis, and N. P. Evmiridis (2003). Multivariate chemo-

metrics for the forensic discrimination of blue ball-point pen inks based on their vis

spectra. Forensic Science International 138(1), 75–84.

Thanasoulias, N. C., E. T. Piliouris, M.-S. E. Kotti, and N. P. Evmiridis (2002). Appli-

cation of multivariate chemometrics in forensic soil discrimination based on the uv-

vis spectrum of the acid fraction of humus. Forensic Science International 130(2),

73–82.

Was-Gubala, J. and R. Starczak (2015). Uv-vis microspectrophotometry as a method

of differentiation between cotton fibre evidence coloured with reactive dyes. Spec-

trochimica acta. Part A, Molecular and biomolecular spectroscopy 142, 118–125.

White, P. (2004). Crime scene to court : the essentials of forensic science (Second

edition.. ed.). Cambridge, UK: Royal Society of Chemistry.

Zadora, G., A. Martyna, D. Ramos, and C. G. G. Aitken (2013). Statistical Analysis in

Forensic Science : Evidential Values of Multivariate Physicochemical Data. Wiley.

233
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