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ABSTRACT

Animal breeding theory is based on the assumption that traits are controlled by 

many genes each having small effect, however, genes with a large effect have been 

identified in favourable circumstances. Where major genes can be identified, and individual 

animals genotyped, exploitation of the genetic variation can be optimised. Segregation 

analysis has been proposed as a suitable method for detecting major genes. It involves 

maximising and comparing the likelihood of the data under different genetic models to 

ascertain the most likely genetic structure. To identify a major gene the likelihood of the 

data under a polygenic model is maximised and compared with the maximum likelihood 

under the mixed model (i.e. containing a major gene and polygenic component). A 

significant improvement in the likelihood obtained by incorporating the major gene gives 

evidence for its existence.

Equations for the exact mixed model and polygenic likelihoods can be obtained, 

however the mixed model likelihood involves the integration of a complex function. 

Several approximations to this likelihood have been investigated. The first effectively 

retains the integration and approximates crossproduct terms involving the major gene 

and the polygenic component. The second (Herm) approximates the integration with a

summation using the Hermrte polynomial. The likelihood has been maximised using a quasi-
u 

Newton algorithm. The third and fojth methods are extensions of mixed model methods

(in the statistical sense, i.e. including fixed and random effects), which are already familiar 

to animal breeders. One replaces the integration with a single estimate of the mode of 

each sire's transmitting ability distribution (ME1), the other estimates three modes one 

for each possible major genotype of the sire (ME3). These have been implemented using 

an expectation-maximisation algorithm.

The first approximation was thought too complex to extend to include, for 

example, fixed effects. The operational characteristics of the other three methods have 

been investigated using simulated data. The Monte-Carlo simulation program uses 

Boolean algebra to describe the genotype of individuals at each locus and the inheritance 

of the alleles. Different genetic models have been considered and the data was analysed 

twice, firstly assuming that the polygenic heritability was known and fixing it at the 

expected value, secondly estimating the heritability from the data. For all the analyses the 

simulated data contained 50 sires each with 20 half-sib offspring.

The test statistic obtained using Herm when analysing polygenic data was not 

significantly different from the expected distribution: a x2 distribution with three degrees 

of freedom. However, the other two approximations gave lower test statistics for the 

same data and a high percentage resulted in a polygenic model with zero test statistic.

VI



When analysing data containing a major gene, Herm was the most powerful. The 

frequency of detection of a major gene depended on the proportion of the genetic 

variance explained by the major gene and whether the major gene caused the distribution 

to be skewed. A dominant major gene explained the highest proportion of the genetic 

variance (79%) and caused skewness of the distribution and was detected in virtually all 

the analyses with all the methods. In terms of power, the approximations were most 

different when the simulated major gene was additive with equal allele frequencies and 

explained 61% of the genetic variance and the heritability was fixed in the analyses, 

Herm detected a major gene in 75% of analyses, ME3 in 33% and ME1 in only 4%. With 

the heritability fixed the Herm and ME3 analyses were more powerful, however, the 

analyses are not robust to incorrect values for the polygenic heritability and if under 

estimated a major gene can be inferred to explain the additional genetic variance not 

explained by the heritability. Using Herm in the majority of analyses the mixed model was 

most likely if not significantly so. Using ME1 and, to a lesser extent, ME3, the analyses 

often resulted in a polygenic or major gene model. The parameter estimates, when a 

mixed model resulted, were, on average, in reasonable agreement with the expected value 

for all three approximations. When a model containing a major gene resulted the three 

methods were similar in their ability to genotype individuals at the major locus.

Segregation analysis is capable of detecting a major gene segregating in a
con 

population and accurately estimate its effect and frequency. Approximations to the mixed
A

model likelihood make the method feasible for large data sets.

VII



CHAPTER 1 

DETECTION OF GENES WITH LARGE EFFECT

1.1 INTRODUCTION

Animal breeding theory is based on the assumption that traits are controlled by 

many genes each having small effect. The action of individual genes cannot be observed 

directly and traits are generally described in terms of summary statistics such as the 

heritability. However, genes with large effect on commercial traits have been identified in 

favourable circumstances. Notable examples are the dwarfing gene in poultry (Merat and 

Ricard, 1974), the Booroola gene affecting ovulation rate in sheep (Piper and Bindon, 

1982; Piper et a/., 1985), the double muscling gene in cattle (Rollins et at., 1972; Hanset 

and Michaux, 1985a, b), and the gene determining halothane sensitivity in pigs (Smith 

and Bampton, 1977). Where genes can be identified and individual animals genotyped 

exploitation of the genetic variance can be optimised. Major genes could also provide raw 

material for genetic engineering programmes.

Despite large phenotypic effects, major genes are often not immediately apparent 

due to the obscuring effects of polygenic and environmental variation. Hence, it is likely 

that genes of lesser effect than those already known but still of major phenotypic and 

potential economic importance remain to be detected.

The aim of this work is to develop statistical methods for the detection of major 

genes in farm animal populations. First a review of existing methods will be given.

1.2 REVIEW

1.2.1 Prior Information - Number of Genes

In farm animals there is little information about the numbers and effects of genes 

influencing quantitative traits, apart from the few major genes which have been 

identified. In laboratory animals, and particularly Drosophila, data are much more 

extensive. There are several questions that can be posed; for example: How many genes 

influence the trait? How much selection response can be attributed to one or a few loci? 

What proportion of the variation in a population is accounted for by segregation at the 

most important locus, the second most important locus, etc? Most completely: what is 

the distribution of gene effects on the trait in the population, supplemented, if possible,



by the distribution of gene frequencies? As background, the methods and results of 

estimates of gene number are briefly reviewed.

Effective Number of Genes. The classical estimate of effective number of genes 
2

r JL * devised by Wright (Castle, 1921; Wright, 1952) has been very widely used variance x o

and does, in principle, demonstrate the presence of genes of large effect if the estimate 

of number is very tow. Various modifications have recently been suggested (Lande, 1981; 

Comstock and EnfiekJ, 1981; Cockerham, 1986), but the estimate is likely to be biassed 

downwards by linkage of genes in coupling. Estimates from different species and 

experiments vary greatly (see, for example, Falconer, 1981), and it is difficult to draw 

general conclusions from them.

Genotype Assay. The genotype assay method proposed by Jinks and Towey (1976) can 

be used in plants were rapid inbreeding can be practised, and genes are identified by 

segregation within sublines drawn from lines having already had two or more generations 

of self ing following a cross.

Chromosomal and Intra-Chromosomal Analysis. The identification of effects of individual 

chromosomes has been carried out in analyses of selected lines of Drosophila using 

marker and cross-over suppressor techniques (e.g. Mather and Jinks, 1982). These 

analyses can be extended to analyse effects within chromosomes by forming 

recombinants against multiple marked chromosome stocks and, in principle, if continued 

with enough effort, leads to the mapping of all genes differentiating a pair of extreme 

lines (Thoday, 1961).

The most complete data are from analyses of lines of Drosophila selected for bristle 

number, where chromosome manipulation can be used to attribute effects to 

chromosomes and to sites within chromosomes. Analyses made by Mather and others 

(Mather and Jinks, 1982) have shown that selected lines usually differ at all 

chromosomes. Analyses of recombinants within chromosomes have suggested, at least 

in some cases, that most selection response is due to very few (two or three) genes; 

Thompson and Thoday (1979) give a review. A frequency distribution of effects has been 

compiled by Shrimpton (1981). It shows gene effects on bristles of up to more than two 

standard deviations, but with an increasingly higher frequency of genes of smaller effect, 

down to about one-half of a standard deviation. Below that size of effect, the method 

used does not enable the genes to be ascertained separately. A model with an 

exponential form seems appropriate to describe the distribution of effects, but hard



evidence for it is lacking. It seems likely from such detailed analysis, that there are some 

genes of large effect segregating for most traits.

1.2.2 Methods

Methods have been proposed for the detection of genes of large effect both from 

the analysis of differences between populations and where the gene is segregating within 

a population. In animals, the use of population differences has mainly been in species 

which can be experimentally manipulated, especially where inbred lines can be maintained. 

For genes segregating within a population there has been substantial work in recent 

years by human geneticists, developing methods for identifying genes of large effect on 

continuous and discrete traits such as disease incidence, motivated by attempts to 

understand the basis of their inheritance for use in counselling. Most of the tests are 

based on finding departures from normal distributions; some involve simple computations 

but others require heavy computation of likelihoods. Their utility depends on their ease of 

use, power in detecting segregation of a major gene, and sensitivity to breakdown of 

assumptions, notably of normality of environmental and background genetic 

distributions.

Segregation in Crosses and Backcrosses

Perhaps the standard method for identifying genes of large effect is from the 

analysis of segregation in crosses and backcrosses among homozygous lines, particularly 

those which differ substantially for the metric trait of interest. However, if the lines are 

inbred, then nothing can be done until the F2 and backcrosses are obtained, when it is 

possible to search for non-normality possibly using likelihood fitting routines. With 

outbreeding lines, a significant increase in the variance of the F2 and backcrosses may be 

an indication that a gene of large effect is segregating. In any event, the analysis has to 

be continued for at least one more generation to test putative genotypes. When family 

information on two or more generations is combined, then maximum likelihood 

techniques such as segregation analysis can be used. It is clear, however, that two or 

more closely linked genes in coupling cannot be distinguished from a single major gene in 

the early generations after line crossing.

Repeated Backcrosslng and Selection

Wright (1952) suggested that genes of large effect could be identified by repeated 

backcrossing of, e.g., crosses of a high scoring line to a low scoring line, and selecting 

for high score. This method leads to a halving of allele frequency in the absence of



selection, so only genes having large effect in the heterozygote, such that fitness of 

animals carrying them is effectively doubled, can be maintained against the backcrossing 

force. Thus, selection for prolificacy by the Seears brothers maintained the Booroola 

gene despite their use of only bought-in rams (Piper and Bindon, 1982).

Departures from Normality

If no major genes are segregating, many genes with small effect are acting

additively on the trait, and environmental deviations are continuously distributed 
/   - -"-^Duted

additive to genetic effects, the central limit theorem implies that, after appropriate
A

scaling, observations of traits on individuals and their relatives follow a multivariate 

normal distribution. Various tests have been suggested that are based on departures 

from multivariate normality: skewness or kurtosis of distributions of observations and of 

family means, non-linearity of regression of performance of progeny on parent, 

asymmetry of responses to high and low selection, heterogeneity of variance within 

families, and association between variance and level of performance. These will be 

reviewed only briefly, for all such methods use only part of the information contained in 

the data and, therefore, as computing power increases, are likely to be superseded by 

methods making fuller use of the data, notably maximum likelihood.

Heterogeneity of Variance. If a gene of large effect is segregating in the population, 

heterogeneity of variance within families is expected. Further, as Pearson (1904) was the 

first to point out, the variability of progeny about the parental value will be greater for 

intermediate scoring parents than for extremes (see also Felsenstein, 1973; Smith et al., 

1978), and the variability will be greater within families of intermediate than of extreme 

mean performance (Fain, 1978). Similarly, Penrose (1969) showed how the differences 

between the full-sib and offspring-parent correlations depended on the number of genes 

and mean score. Matthysse et al. (1979) suggested that the correlation between the 

within-family variance and the family mean be used as a statistic. The efficiency and 

sensitivity of these methods have been analyzed by their proposers and by others (Mayo 

et al., 1983), who considered their power, or lack thereof, and sensitivity to 

assumptions. These include genes having a geometric distribution of effects (Matthysse 

ef al., 1979), differences in environmental variance between homozygotes and 

heterozygotes (Mayo era/., 1980), dominance (Felsenstein, 1973), and so on.

Skewness and Kurtosis. Segregation of genes of large effect leads to both skewness, 

except at specific gene frequencies (Fisher et al., 1932), and kurtosis, and the degree of 

kurtosis can be used as an estimator of gene number (O'Donald, 1971). The method



rests very strongly on the basic normal assumptions of, for example, the environmental 

error distribution, and is sensitive to heterogeneity of variance. Hammond and James 

(1972) demonstrate the lack of power using data from Drosophila.

These methods were extended by Merat (1968), who suggested that deviations 

from family mean in families of high and low variance should be pooled, and skewness 

and kurtosis checked on the deviations. The method was discussed and used on 

Drosophila data by Hammond and James (1970).

Non-Linearity of Regression of Progeny on Parent. Robertson (1977) analysed the 

influence of genes of large effect and other factors such as skewed environmental 

distributions on departures from linearity of the regression of progeny on parent and, 

consequently, on asymmetry of response to high and low selection for the trait. 

Departures are largest for recessive genes at tow frequency. Maki-Tanila (1982) 

discussed this further, and considered the use of sib on sib regression in addition to the 

offspring on parent regression. The power of tests for single genes using non-linearity 

has not be investigated.

Q-Q plots. The use of quantile-quantile plots has been suggested for obtaining evidence 

for the presence of mixtures (Titterington et a/., 1985; Everitt and Hand, 1981). 

Hoeschele (I988a) suggests its use for the detection of a segregating major gene in 

animal breeding data. For a sire model she proposes predicting the additive genetic 

effects for each sire assuming a model without major genotypes, i.e. a polygenic model, 

and using these as the mixture quantiles. There is a problem with the fact that 

covariances exist between the estimates, but Hoeschele suggests ignoring them. The 

points of inflection, slopes and intercepts can be used to obtain estimates of the mixing 

proportions, the component means and the standard deviation. Hoeschele (1988a) 

suggests fitting a function to this curve, the second derivatives of which give the mixing 

weights. Using these the other estimates can be obtained by teast squares. Everitt and 

Hand (1981) indicate that unless the difference between the means is large, the method 

has very little power.

Structured Exploratory Data Analysis

A simple and quite different method, subsequently called structured exploratory 

data analysis (SEDA), was proposed by Karlin et al. (1979), and has been extended to 

include a group of tests, which, it has been suggested, should be applied together to 

indicate the presence of a major gene. The three tests that have been most used are the



major gene index (MGI), offspring between-parents function (OBP), and mid-parental 

correlation coefficient (MPCC).

The MGI has received most attention and is based on the argument that If a major 

gene is segregating, the deviation of the observation on an individual from the parent 

mean would tend to be larger than the geometric mean of deviations from the individual 

parents. Subsequently Famula (1986) suggested an improvement to the method and also 

showed how mixed model methods could be employed to estimate fixed effects.

OBP defines the proportion of offspring within an interval of defined length 

around the mid-parental value. A larger proportion should be nearer the mid-parental 

value with multifactorial compared with monogenic inheritance. MPCC is the correlation 

of the offspring on the mid-parental value. This should be greater than zero if variation in 

the trait is genetically controlled.

Other tests and graphical methods have also been suggested. Analyses of 

properties of the methods have been undertaken by Karlin et al. (1979, 1981), Karlin and 

Williams (1981), Mayo et al. (1983), Morion et al. (1982), Famula (1986), and Kammerer 

et al. (1984). SEDA Is not based on normal assumptions, which should make it more 

robust. However, although quick and simple to apply, the method seems rather ad hoc 

and, as pointed out by Mayo et al. (1983), for models of unequal effects gives values 

similar to those for multifactorial models. Kammerer et al. (1984) found that although 

reasonably sensitive in detecting the presence of a major gene, SEDA lacked specificity 

and consistently classified polygenic traits as due to a major gene. It seems likely that 

SEDA will be superseded by more formal methods.

Segregation Analysis

Segregation analysis combines information on distributions and genetic 

relationships using maximum likelihood techniques. Originally, formally described for the 

situation of a major gene segregating within a population (Elston and Stewart, 1971) 

and later considered for the analysis of crosses originating from homozygous lines 

(Elston and Stewart, 1973). The method involves maximising and comparing the 

likelihood of the data under different genetic models to ascertain the most likely genetic 

structure. Possible genetic models could be the major gene model, the polygenic model or 

the mixed model (a combination of the former two models; Morton and MacLean, 1974). 

It is computationally demanding, especially for the mixed model, and hence only small 

pedigrees can be analysed. Therefore methods need to be simplified in order to be 

suitable for large animal breeding data sets. The use of maximum likelihood means that 

parameter estimates to describe the genetic model being considered are obtained.



Although analyses in human data structures, generally nuclear families consisting of 

parents and their full-sib offspring, suggest that the method is fairly powerful (MacLean 

et a/., 1975) data structures relevant to animal breeding have not been considered. 

However, the method is sensitive to non-normality of the data, and any non-normality 

might be misinterpreted as a major gene {MacLean et a/., 1975).

Bonney (1984, 1986) has proposed the use of regressive models in which the 

phenotypes of relatives are fitted as covariates in computing the likelihood under 

different genetic models. These methods may lead to substantial improvements in 

computing efficiency, and recently their equivalence with the mixed model has been 

shown under certain conditions (Demenais and Bonney, 1989).

Use of Physiological Markers

On the assumption that more basic traits, such as levels of a hormone or 

metabolite, ajpy influenced by fewer genes than traits of commercial importance such as 

growth rate or egg production, then it may be useful in analyses of crosses to monitor 

such traits. Any evidence of discontinuity or bimodality may point to genes affecting the 

physiological trait, and their effect on the economic trait can then be estimated. 

Segregation analysis can be employed to increase efficiency.

Application of this method within a segregating population is less likely to be useful, 

when there is no prior information. If, however, such data were collected for other 

purposes there might be benefit in analysing them. Also the use of lines selected high and 

low for a trait of interest offers an efficient method for the detection of major genes. If 

there is little or no difference in the physiological trait between the selected lines, there is 

no point continuing. Further, if there is a difference between the lines but there is no 

increased variance or bimodality in the F2, there is also no point in continuing the 

analysis of correlated variables as potential indicators of commercial traits. Only genes 

producing very large differences in the indicator trait are likely to be of interest because 

the consequent difference in the commercial trait is likely to be smaller.

Use of Linked Markers

By use of marker genes, which are now becoming available in large numbers as 

restriction fragment length polymorphisms (RFLPs) and minisatellites (Jeffreys et a/., 

1985), the effects on quantitative traits of regions of chromosomes can be estimated 

(e.g. Seller and Beckmann, 1982, 1985; Elston, 1990b). For markers associated with 

regions of large effect, further generations of crossing can be performed to detect 

whether the effect is due mostly or entirely to a single gene and is close to the marker. 

Of course, as more markers become available and associations with more traits can be



tested, the greater the chance that spurious effects will be detected unless the power of 

individual tests is reduced. Markers such as the RFLPs and minisatellite probes to 

particular sites are likely to be more useful than the available minisatellites which hybridize 

to many sites. This is so because although the latter are hypervariable, their allelism is 

usually difficult to ascertain and bands of the same mobility may not correspond to the 

same locus.

This method has been discussed for farm animals by Seller and Beckmann (1982, 

1985) and reviewed further by Elston (1990). Major genes detected by association with 

a marker can be easily manipulated both for selection within a population and 

introgression to another population. Crosses from inbred lines will be easiest to utilise as 

in outbreeding populations the phase of the linkage will have to be assessed for each 

family.

Miscellanea

Non-Normally Distributed Traits. Segregation analysis is appropriate for traits which, in 

the absence of segregation of a major gene, are normally distributed or can be 

transformed to normality, and for all-or-none characters in which a normal-threshold 

model can be assumed. Some traits in farm animals, however, such as litter size in pigs or 

in prolific breeds of sheep, have discrete distributions with many classes; these traits are 

likely to be close enough to normal for crude but not for fine-scale analysis. Other traits 

have notably non-normal distributions: particularly egg number in poultry and body size in 

fish after rearing under competitive conditions. These distributions are skewed and not 

normalised by any standard transformation. It is clear that developments in the formal 

methods are needed, but it is not clear how these should proceed. Nevertheless, ad hoc 

methods can be used successfully. For example, Piper and Bindon (1982) adopted an 

arbitrary cut-off at three lambs born, and were thereby able to demonstrate major gene 

inheritance of litter size in the Booroola strain of sheep. Also, Hanrahan and Owen 

(1985) used the fact that the repeatability of litter size is likely to be much higher in 

sheep populations in which a major gene is segregating. Neither of these authors tested 

alternative hypotheses, however, and the high repeatability was associated with a high 

mean and heritability.

Breeding from Extreme Animals. In view of the low power of detection of single genes by 

assessing departures from normality, it may be worthwhile to breed from extreme animals 

on a regular basis, as suggested by Roberts and Smith (1982). In this way more data is 

accumulated for testing, and if indeed a major gene is present, progress would be made 

towards its identification.

8



Use of Selected Populations. If widely divergent populations for analysis through 

crossing and backcrossing methods as discussed previously are not available, it may be 

possible to create these by selecting high and tow individuals from some base. Then, any 

genes of large effect which are segregating in the population will contribute a large part 

of the high-low difference. Such a scheme can only utilise variants segregating initially 

and so it would seem to have little to offer for gene identification over an analysis using 

maximum likelihood directly in the base population. There is the potential benefit that in 

the cross between high and low lines the genes may be at intermediate frequency, but 

the disadvantage that in the crosses the effects of different genes are correlated by 

linkage disequilibrium.

Selection has more promise as a technique for identifying genes through their 

effects on other physiological or structural variables. If the trait is expensive to measure 

then use of divergent lines is more efficient than analysis of the base population. For 

example, assume selection is for high and low growth rate. As Bulfield (1985) has 

suggested, two-dimensional (2-D) gel electrophoresis can be used to identify differences 

in amount and structure of proteins in several tissues. If such differences are found, the 

protein can, in principle, be identified and ultimately cloned. Such analyses can give us 

information about the nature of genes which are associated with genetic changes in the 

quantitative trait, and have the potential of enabling subsequent manipulation using the 

cloned gene. Although 2-D gel analyses offer the possibility of screening very large 

numbers of loci at one time, unless gels are of very high quality differences in protein 

positions and intensity are hard to detect.

Molecular Manipulation. Transposable elements and retroviruses might be a useful way of 

detecting major genes if the potential gene has been created by using these as mutagenic 

agents, as the mutant genes can be identified by tagging with the element. (Mackay, 

1985). Alternatively the transposon might provide a probe for an RFLP enabling analysis 

as if they were linked markers, although the mutant gene itself is being located. (Soller 

and Beckmann, 1985). However, the chance of advantageous mutants occurring is low.

1.2.3 Use of the major gene

Selection. There have been a few studies considering the benefit of including a major 

gene in the breeding programme. Mainly they have concentrated on its effect when 

incorporated in a selection scheme (Smith, 1967; Roberts and Smith, 1982). The 

genotypes of all individuals are required before the information can be utilised and the



benefit of the major gene depends on the proportion of the genetic variance explained 

by the major gene. If selection using usual methods is effective, the additional information 

contributes little to the rate of improvement. However, if the heritability is low or where 

indirect selection has to be practised the rate can be increased substantially. The gain will 

be maximised at intermediate allele frequencies for the major gene (Smith, 1967). As 

emphasised by Roberts and Smith (1982) and Smith and Webb (1981) reliable 

information is required on the effects of the genotypes on all the traits of economic 

importance. Otherwise the selection programme could be misdirected. Recently, 

considering the benefits of selecting for certain milk proteins, Gibson et al. (1990) have 

confirmed the necessity of accurate estimates of the effects of the genotypes, 

demonstrating that incorrect estimates possibly lead to losses in improvement relative to 

ignoring the major gene information.

Fixation. An alternative would be to make the population homozygous for the 

advantageous allele, possibly using a linked marker. However, Smith (1967) states that 

the response from fixing the better allele is normally less than the response from 

selecting on all available information. Genes closely linked to the major gene will also be 

selected, and these might have a deleterious effect, and genes that are advantageous 

might be lost.

Heterozygote advantage. Smith and Webb (1981) consider benefits from designing a 

breeding strategy to exploit the halothane gene, where, it was suggested that the 

heterozygote would be the most advantageous genotype. However, this would mean 

maintaining the less advantageous homozygotes, which in this case would mean keeping 

sires which had a risk of suffering from porcine stress syndrome and might reduce the 

rate of future genetic response and be costly or difficult to maintain.

Introgression. This method to exploit the major gene has had little attention. However, 

transfer of the major gene into another line that does not have the gene might be a 

good way to improve the other breed. Obviously, the gene might have other deleterious 

effects in the new breed that had already been eliminated from the old breed and these 

would have to be selected against.

1.3 DISCUSSION

A large number of methods for identifying genes of large effect have been 

reviewed, but a more quantitative analysis and discussion is still needed. Several workers
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have investigated the efficiency of individual methods, but it is necessary to bring these 

together and compare their powers and limitations for a range of models. For example, 

how powerful are they at detecting a single gene when all the rest are of infinitesimal 

effect, or when the rest have a distribution of effects? How sensitive are the methods 

to heteroscedasticity of environmental variance, or to non-normality of environmental 

deviations? How readily can they cope with sex-limited traits and nearly continuous traits 

such as litter size?

The formal methods, notably segregation analysis, for detection of genes within 

populations have been developed for data on man. Their extension to farm animal 

populations is clearly necessary and the data available are generally more suitable. For 

livestock there are repeated records, large family sizes, data on individuals from previous 

generations recorded at the same age, and large contemporary environmental groups. If 

human geneticists can get anything from segregation analysis, then surely so can the 

animal breeders. There are problems, for example, of selection; in principle, however, 

maximum likelihood techniques can handle these, so there is obviously room for a tot of 

work and for a very large computer. It is also important to consider the power of the 

methods and the size and design of experiments to provide data for such analyses. It 

seems likely to be of little benefit, except in an exploratory.sense, to pursue simple 

methods based on departures from normality. Karlin's SEDA procedure would seem to 

have the benefit of being less dependent on normality of underlying variation, but has 

only an ad hoc. foundation. There is clearly a need to adapt maximum likelihood methods 

to non-normal data, for example, on egg production of poultry.

There are obvious benefits in being able to attribute variation between and within 

populations to single genes. This is illustrated by the use in breeding practice of the 

dwarf, halothane, double muscling, and Booroola genes in poultry, pigs, cattle, and 

sheep, respectively. Ironically, the Booroola gene has too large an effect on litter size for 

many management systems and even its inheritance was not clarified until many years 

after the Booroola flock was known.

11



CHAPTER 2 

SEGREGATION ANALYSIS

2.1 INTRODUCTION

Segregation analysis has been developed and widely used by human geneticists in 

order to ascertain the mode of inheritance of disease traits. Although segregation 

analysis is likely to be the most generally appropriate method when determining 

mechanisms of genetic control in animal populations, it has had little attention from 

animal breeders. The extension to livestock is clearly necessary, where the pedigrees can 

be much larger than in human data sets and with larger family sizes, but often only simple 

relationships are considered, for example paternal half-sibs. With farm animals there is 

the advantage of being able to manipulate them experimentally and, for example, have 

planned mating schemes, repeat records or records on different individuals at the same 

age. The use of a maximum likelihood (ML) method means that alternative models of 

genetic determination can be compared and estimates of the parameters involved in the 

model can be obtained within a sound statistical framework.

2.2 REVIEW

Segregation analysis was formally described by Elston and Stewart (1971) to 

encourage the use of the whole pedigree in human genetics when trying to ascertain the 

mode of inheritance. Prior to this nuclear families (parents and their full-sib offspring) 

had generally been analysed, assuming independence between families. Although this 

ignores many of the potentially useful relationships, the aim of most of the analyses had 

been to establish whether a dichotomous trait was inherited in a dominant or recessive 

fashion, and hence the loss of information was not important. However, the wish to test 

more complex models of inheritance including polygenic or environmental components, 

or several loci required a more powerful method.

The aims of the method were: to establish whether there is evidence for a genetic 

component in the control of variation of a trait, and if there is to elucidate the 

mechanism of control, and to calculate the 'risk' that an individual, either in the 

population or yet to be born, has a particular genotype. The method suggested by Elston 

and Stewart (1971) obtains this information by maximising the likelihood of the data 

under different genetic models and comparing these MLs to find the mode of inheritance 

that best explains the data.
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Elston and Stewart (1971) describe many genetic models, all in terms of the 

transmission of genetic effects from parent to offspring. To test for the presence of a 

major gene, a model with a major gene with Mendelian transmission probabilities of 0,1/2 

and 1 (for the probability that parents of genotype aa, Aa and AA, respectively, transmit 

allele A to their offspring) and an environmental component is fitted and the ML 

compared with that from a non-genetic model, with equal transmission probabilities. A 

significant increase in the likelihood when the major gene is included, and no further 

significant increase when the transmission frequencies are estimated, relaxing the 

assumption of Mendelian transmission, is evidence for a major gene. Later Lalouel ef al 

(1983) called this the general transmission single tocus model. This single locus model can 

be easily extended to include sex-linkage or many toci. As the number of loci increases, 

considering each one separately quickly becomes cumbersome. In the limiting case as the 

number of loci tends to infinity, i.e. polygenic inheritance, a more simple expression is 

derived. However, the direct comparison of the likelihoods of a single gene and a 

polygenic model can not be made as the parameters to be estimated to describe the two 

models are different, i.e. the two hypotheses are not nested with one being a more 

general form of the other. A model with the phenotype resulting from the joint effects of 

a major locus, a polygenic component and random environment, which would allow for 

the test of a major locus and polygenic component, was suggested but thought to be 

computationally infeasible.

An alternative method was developed by Morion and MacLean (1974). Again 

based on a full pedigree (and now called complex segregation analysis) they suggested 

the 'mixed model' including a major locus, a polygenic component, random and common 

environmental effects. (Throughout this thesis, the term 'mixed model', following the 

terminology of human geneticists, will be used to describe a model containing both a 

major gene and polygenic component, rather than the mixed model in the animal breeding 

sense, containing random and fixed effects). The common family environmental effects 

were incorporated to prevent any such effect from being interpreted as dominance at a 

major locus (Morton and MacLean, 1974).

To test for a major gene Morton and MacLean (1974) fit a normal distribution in 

which genetic and environmental variances are estimated, and then the same model plus 

parameters for the frequency, effect and degree of dominance of a single gene, i.e. the 

mixed model. A significant increase in the ML indicates that a major gene is segregating.

Complex segregation analysis is more powerful than other methods based on 

normality because all the information contained in the data is used. In considering its 

efficiency, account has to be taken both of the possibility of detecting individual genes 

which are not actually present (false positives) and of missing genes of large effect that
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are segregating (false negatives). False positives could be caused by non-normality of the 

data, for example by skewness of the distribution, particularly when continuous genetic, 

individual and family environmental distributions, and a segregating locus are fitted 

(Elston, 1979; Eaves, 1983). Power transformations of the data (MacLean era/., 1976) 

can be used to transform to normality allowing for one, two, or three underlying 

distributions, and to reduce the chances of false detection. In any case, if two 

distributions fit better than one, this is suggestive of a major gene. There have been no 

analyses of the power of complex segregation analysis in data structures relevant to 

animal breeding, the usual structure being that of nuclear families of man, comprising 

parents and full-sibs. For such a structure, results have been given by Go et al. (1978) 

and MacLean et al. (1975) and these are not presented in a form readily transferable to 

the animal breeding context. The power of the model is, of course, dependent on the 

effect and frequency of the major gene and on family size, and is greater for continuously 

distributed than for all-or-none traits because more information is present in the data. 

Simulation results of MacLean et al. (1975) serve as an illustration of the power. They 

assumed 500 families with records on each of the father, mother, and four sibs on a trait 

with normally distributed genetic and environmental distributions. For an additive gene 

with frequency 0.1 and effect, expressed as the difference between homozygotes, of 

0.5, 1.0, and 1.5 residual phenotypic standard deviations, the power of detecting its 

presence was, respectively, negligible, about one-half, and close to one.

More recently, the approaches of Elston and Stewart and of Morton and MacLean 

have been unified (Lalouel et al., 1983) by including terms for both continuous genetic 

variation and non-Mendelian transmission probabilities. The mixed model was found to be 

sensitive to the distribution of the data (MacLean et a/.,1975) and if skewed a spurious 

major gene might be suggested. To overcome this, Lalouel et al. (1983) suggest that a 

polygenic model and a major gene model should be first tested against a non-genetic 

model to confirm that there is a genetic component in the control of variation in the 

trait. Both of these models can then be compared with a mixed model. If there is 

evidence for both components, i.e. that the mixed model is a significant improvement 

over both the major gene and polygenic models, then the mixed model should be tested 

against a 'mixed model* in which the transmission probabilities are estimated. If skewness 

of the distribution of phenotypes was not caused by a major gene, this general model, 

although difficult to interpret genetically, should be a significant improvement over the 

mixed model and hence prevent the spurious detection of a major gene. The major gene 

model should also be tested against the 'major gene' model in which the transmission 

frequencies are not restricted.
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A major problem is the very laborious computation of the likelihood for large 

pedigrees and considerable ingenuity has gone into designing efficient algorithms (for 

example, Cannings et a/., 1978; Lalouel and Morton, 1981). MacCluer et al. (1983) have 

compared the ability of different computer packages to determine the mode of 

inheritance. Although tests were based on only 40 nuclear families, the results obtained 

were in fairly good agreement, with some programs giving parameter estimates very 

similar to those simulated. As computing costs fall and methods of programming become 

more sophisticated, it is likely that the use of ML will become more widespread.

2.3 LIKELIHOODS

To illustrate the principles of segregation analysis a simple sire model, with balanced 

structure, will be used. All parents are assumed to be unrelated and randomly mated. A 

single trait is considered with one observation on each of the offspring. For the 

development of the likelihoods, fixed effects, such as herd or year, will be ignored, 

although the extensions to include these or more complex relationships are possible in 

theory.

The trait is assumed to be controlled by many unlinked loci, each with 2 alleles 

segregating at equal frequency and with equal effect, and an individual random 

environmental component. The aim is to see whether there is also an allele of large effect 

segregating against this background. Hence only two likelihoods will be considered, the 

polygenic and the mixed model.

The model to describe the data under a particular genotype for offspring j of sire i 

can be represented as:

= u. + u^ + Uj +

Where: yjj is the performance of the jth offspring of the ith sire.

u. is the overall population mean of the polygenic and environmental 

components.

d is the offspring major genotype, set to zero for the polygenic model. 
\JL4 is the effect of major genotype d ( for polygenic model u^ equals zero). 

Uj is the random effect for sire i (i.e. polygenic component) independent of u,d ;

u~N(0,o2) 

ey is the residual random effect for each individual, independent of Uj and u^;

e~N(0,cy2)
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2.3.1 Polygenic likelihood

Under the polygenic model the likelihood for each individual is composed of two 

likelihoods:

i) The conditional likelihood of the offspring's phenotype given the sire's transmitting 

ability (Uj), denoted kofrjj | ji.Uj, a*).

exp
w

2dw

Where exp{...] means e raised to the power of the function in brackets.

ii) The likelihood of the sire's transmitting ability (Uj), denoted h(Uj).

h(Uj) =
27UG2,

exp

Given the sire's genotype, the genotypes of the offspring are independent of each 

other and the conditional likelihood of the phenotypes of the n sibs is the product of the 

likelihood for each one. This likelihood is conditional on the sire's genotype (which is 

unknown and can take any value between minus infinity and plus infinity). Hence, the 

likelihood of the sibship is obtained by weighting the conditional likelihood of the sibship 

by the likelihood of the sire's transmitting ability, and integrating this function over all 

possible values of the transmitting ability. Sires were assumed to be unrelated, therefore 

the likelihood of the complete data is the product of the likelihood for each sibship. The 

following likelihood is obtained:

L(poly)=
M

Where: s is the number of sires.

n is the number of offspring per sire.

This likelihood can be integrated to give the following expression:
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n

In matrix notation, using the equivalent model:

y = 1^i + Zu +e

Where: y is the vector of phenotypes for the offspring.

u, is the overall population mean of the polygenic and environmental

	components.

u is the vector of sires' transmitting ability.

e is the vector of individual random effects.

1 is a vector of 1s.

Z is a design matrix, linking offspring to their sires.

the likelihood is:

L(poly) = (2a)8n/2 |V« 1/2
exp[-l(y-1u)'V- 1 (y-1u)]

Where: V - variance (y) = Z Z' aj + I a*

2.3.2 Mixed model likelihood.

[2.1]

The likelihood for the mixed model can be obtained in a similar way, including the 

probability of the major gene. For each offspring it is composed of the following:

i) The conditional likelihood of the offspring's phenotype given the sire's transmitting 
ability and the offspring's major genotype, denoted kd (yy | U^.UJ.CT^).

exp
w

ii) The probability of the offspring's major genotype given the sire's major genotype, i.e. 

based on Mendelian transmission probabilities and the ailele frequency in the dam,
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denoted trans(d|c), where c is the major genotype of the sire. These probabilities are 

shown in figure 2.1 and, for example, the transmission probability of a sire with 

genotype AA having an offspring with genotype Aa can be written trans(2 |1) and is 

equal to (1-p).

Figure 2.1 Probability of the genotype of the offspring given the genotype of the sire, for 

a single tocus.

Genotype of offspring 

AA____Aa____aa_

Genotype

of sire

AA

Aa

P

£ 
2

(1-P)

1 
2

0

d-P) 
2

aa Op (1-p) 

Assuming random mating and that the frequency of allele A in dams is p.

iii) The likelihood of the sire's genotype, which includes the transmitting ability 

denoted h(Uj), as before, and now also the probability of his major genotype (p(c)),

ignoring family information. That is, p(c) is the population genotype frequency for sires.

These likelihoods can be combined as for the polygenic model to obtain the mixed 

model likelihood, now, however the possible major genotype combinations for the

offspring and sire need to be considered. The likelihood that the jth offspring has 

phenotype yy given the sire's major genotype is c and his polygenic contribution is Uj is:
m

^trans(dlc)

In the same way as for the polygenic component, given the major genotype of the sire 

the offspring genotypes are independent and, hence, the conditional likelihood for the 

whole sibship is the product of this likelihood for each offspring. This likelihood is 

calculated for each major genotype of the sire, and for all possible values of the sire's 

transmitting ability, and weighted by the probabilities of these genotypes. Hence the 

following likelihood is obtained for the mixed model:
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s m n m

m*"^ TT^1 , 
2^P<c) h(Uj)| |2rf trans(d lc)kd(ylj ln^.u.c

t=i ** c=1 H d=l [2.2] 

Where: m is the number of major genotypes, assumed to be equal to 3.

After rearrangement, this can be integrated and using matrix notation, gives the 

following likelihood for the mixed model:

n
m m

L(MM) =Q   !  ^^P(c)trans(D|c)expT-l(yr1n-^ 
^=1 (2n) I Vj I (^1 [^

[2.3] 
Where: yj is the vector of offspring phenotypes for sire i.

Vj is the variance covariance matrix for the offspring of sire i.

D is one of the mn major genotype combinations for the offspring of a

sire.

trans(D|c) is the transmission probability for the sibship when their major genotypes 

are D, which equals the product of the transmission 

probability for each offspring. 
W D is an n x m matrix containing 1 or 0, depending on the genotype being

considered for each offspring. 
|id is the vector containing the mean effect of the major genotypes.

2.3.3 Restricted Maximum Likelihood

The parameter estimates obtained at the maximum of the likelihoods given above 

will be ML estimates. The variance estimates obtained in this way can be shown to be 

biassed (Shaw, 1987) as they do not take account of the degrees of freedom lost due to 

the use of the same data to estimate fixed effects. An alternative procedure, restricted 

maximum likelihood (REML), has been suggested (Patterson and Thompson, 1971) to 

correct for this by calculating the likelihood of a series of error contrasts (Harville, 

1977). In this case the likelihood contains additional determinants (Searle, 1979). One 

based on the fixed effects structure and the other on the variance-covariance matrix for 

fixed effects. For a polygenic model the likelihood can be written as:

Ix'xl 1/2 r 1 1 i L(poiy)= (sn_t)/2   :  exR ~j ( y -XP)/V (y -xp)
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Where: X is the design matrix for fixed effects

p is the vector of fixed effects

t is the rank of X'X

X'X is constant for a given fixed effect design and does not alter the parameter 

estimates. X'V~ 1 X effects the equation for the variance estimates, reducing the degrees 

of freedom associated with the sums of squares and hence will give different parameter 

estimates compared with ML. The variance estimates are now unbiassed. However, 

differences between the REML likelihoods cannot be used as a measure of goodness of 

fit when comparing different fixed effect models, only when comparing different random 

effect models with constant fixed effect structure (R. Thompson, personal 

communication). In the comparison of the mixed model and polygenic model, although 

the major genotypes are not fixed effects in the usual sense they are effectively treated 

as such and, hence, a model with one fixed effect, the mean, is being compared with a 

model with three fixed effects, the three genotype means, hence the REML likelihoods 

obtained will not be comparable. Further investigation is required to overcome this 

problem.

2.4 TEST STATISTIC

A test statistic is provided by twice the difference between the natural logarithms 

of the MLs under the mixed model and the polygenic model. This test statistic is 

expected asymptotically to follow a x2 distribution with degrees of freedom (d.f.) equal 

to the number of parameters fixed under the polygenic model (poly) but estimated under 

the mixed model (MM) (Wilks, 1938).

Test statistic = 2 ( InL (MM) - InL (poly)) ~ x2 [2.4]

Wilks obtained this distribution for the comparison of a general likelihood with one 

where some of the parameters were fixed, and showed it was approximate, ignoring

terms of the order —==., where N was the number of observations. Several assumptions
VN

were made in deriving this distribution for the test statistic and there has been little work 

to test whether these are valid in the comparison of the mixed and polygenic models. 

However, in the related area of mixture models, where the aim is generally to identify the 

number of component distributions in a mixture of such distributions, there is evidence 

that this sampling distribution for the test statistic is inappropriate (McLachlan and
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Basford, 1987; Titterington et a/., 1985). Under the null hypothesis the mixing 

proportions lie on the boundary of the parameter space. For example, when testing 
whether a distribution is composed of two normal distributions, one with mean u^ and 

variance or2 and the other with u.2 and a2, and the proportion in the first distribution p, or

composed of one normal distribution, the null hypothesis of one distribution can be 
described using the full model and fixing p at 1, a boundary. With this restriction u,2 and 

<y§ cannot be estimated. Alternatively if the means and variances of the two distributions 

are constrained to be equal then it is impossible to estimate the mixing proportion. 

Hence, although the hypothesis of two normal distributions estimates three parameters 

more than the null hypothesis, the comparison can be made enforcing only one 

restriction, that p is equal to zero or 1.

On the basis of a simulation study Wolfe (1971) suggested the following modified 

test statistic to be used as a guideline when testing the number of component 

distributions:

Where: N is the sample size.

v is the number of variables, 

r and r' are the number of component distributions under the two hypotheses;

r' > r. 

Lr is the likelihood under model r.

Further investigations of this criterion (e.g. Everitt, 1981) confirm that although this 

distribution may be appropriate in certain circumstances, it is not generally applicable and 

further work is required to ascertain the true distribution of the test statistic.

The interpretation of this work in the context of segregation analysis is not clear, 

although it is obvious that care should be taken before assuming that the distribution of 

the test statistic will be x2 When comparing the likelihoods from the mixed and polygenic 

models an hypothesis with the distribution composed of three component distributions 

(r'=3) is being compared with an hypothesis of just one distribution (r=1). Following 

Wolfe's modification the relevant x2 distribution would have four d.f. (2(r'-r)). However, 

unlike the mixture model situation, when considering the mixed model there is information 

about the relative proportions of the three component distributions. For example, it 

Hardy-Weinberg equilibrium is assumed, then the frequencies of the distributions can be 

explained by a single parameter and the proportions will be p2 , 2p(1-p) and (1-p) 2 .
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2.5 GENOTYPING AT THE MAJOR LOCUS

In order to utilise the knowledge that an allele with large effect on the trait of 

interest is segregating in the population, identification of the genotype of each individual 

at that locus is required. Mating schemes could then be designed to optimise 

improvement.

The genotypes of animals can not be determined with complete certainty but the 

most probable genotype can be obtained assuming that the mode of inheritance is 

known and that all parameters in the likelihood are known. General expressions for 

genotyping individuals have been considered by Elston and Stewart (1971) and an 

iterative scheme by Arendonk et al. (1988). However the possibility of a trait being 

controlled by both a major gene and polygenic component was ignored. Essentially, to 

obtain the probability of an individual being a particular genotype the ratio of the 

likelihood of the pedigree assuming that the individual is that genotype to the total 

likelihood for the pedigree is obtained.

For the sire model being considered, extension to include a polygenic component is 

straightforward (Elsen et a/., 1988). Sires are assumed to be independent of each other 

and, hence, the conditional probability of each genotype for each sire is dependent on 

the phenotypes of his half-sib offspring only. Using the notation described already 

(section 2.2) and assuming that the trait is controlled both by a major gene and a 

polygenic component, the conditional probability for sire i having genotype c is :

p(c)jf

n m

h(u j) |J > .trans(d ] c) k^y^ I U^IH.U i,c£). du j 
H

m ,_. n m

[2.5]

In practice the parameters required to describe the effect and frequency of the alleles at 

the major locus and the polygenic and residual variances will be replaced by their ML 

estimates.

2.6 DISCUSSION

The likelihoods have been derived for the polygenic and mixed models assuming a 

simple pedigree structure. With this structure, it is possible to write these in a form 

enabling exact calculation of the likelihood. However, the exact mixed model likelihood
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involves a summation for each combination of major genotypes for the pedigree, hence 

as the number of offspring increases calculation of the likelihood soon becomes 

infeasible, i.e. with 5 offspring, 36 (729) summations are required and with 10 offspring 

3 11 (177147) summations.

Although segregation analysis is appealing, having a general application and 

enabling both the testing of hypotheses and obtaining estimates of the parameters 

involved, the mixed model likelihood would be impossible to calculate in most animal 

breeding situations. Hence in order to be able to use this method approximations to the 

mixed model will be required.
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CHAPTER 3

APPROXIMATION 1 • PEDIGREE ANALYSIS PACKAGE 

3.1 INTRODUCTION

The Pedigree Analysis Package (PAP) (version 2.0) (Hasstedt and Cartwright, 

1981) is a Fortran computer package which can calculate and maximise the likelihood of 

the data under many different genetic models for pedigrees of any complexity. It is based 

on segregation analysis described by Elston and Stewart (1971) and has been written 

primarily for human geneticists.

The package is composed of a 'driver1 and many subroutines. The user incorporates 

subroutines relevant to their requirements and hence a large choice of possible genetic 

models exists. For example, to calculate the likelihood under a major gene model 

subroutines need to be combined to describe the frequency of the major genotypes in 

the founder population, the transmission of alleles from parent to offspring and the 

penetrance (or the probability of the phenotype given the genotype). In the same way 

more complicated models can be obtained, including the possibility of incorporating a 

polygenic component, having linkage to a marker gene, sex linked traits or age 

dependent traits. Once the subroutines have been assembled there is still some flexibility 

as to the model, for example enforcing dominance or estimating the transmission 

probabilities.

Three sources of information are required to run PAP: a file containing the 

phenotypes, another file containing the pedigree information and the last the model. The 

phenotype file contains a list of identification numbers, each specific to an individual 

within each pedigree, and associated information on the sex of the individual, the 

phenotype for the traits to be analysed and if relevant the genotype at any marker loci of 

interest. The pedigree file gives the pedigree in the form of nuclear families indicating 

which members of the family also appear in subsequent families. The final information 

specifies the genetic model, giving initial parameter estimates for the maximisation 

process, indicating which parameters are to be estimated, and giving bounds within 

which the parameter estimates have to lie. It is also possible to specify, for example, 

dominance, by enforcing two parameters to take the same value.

When running the program several options are available: to calculate the likelihood 

for a set of parameters at fixed values, to maximise the likelihood from a given starting 

values, to grid the likelihood with respect to one or two parameters or to calculate the 

risk that an individual has a particular genotype given the model. The last option is of
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importance in genetic counselling especially as risks can be obtained for individuals which 

are not yet born. A recent revision of the package (version 3.0) (Hasstedt, 1989) is 

more flexible, allowing the analysis of dichotomous traits with a continuous underlying 

genetic component, and additional run time options, for example the calculation of 

standard errors for given maximum likelihood parameter estimates.

The program has been written so that any complexity of pedigree can be analysed, 

including pedigrees containing loops, for example when the two parents of an individual 

are related within the pedigree, i.e. the individual is inbred (other types of loops are 

described by Cannings et a/., 1978). The likelihood is calculated using a method called 

peeling. The speed of calculation of the likelihood depends on the complexity of the 

pedigree and on the order in which the individuals within a pedigree are considered. The 

onus is on the user to supply an efficient ordering, and algorithms have been designed to 

obtain optimum orders (for example, Thomas, 1986b).

PAP contains the minimisation routine GEMINI (Lalouel, 1979). This is a quasi- 

Newton routine that retains generality by estimating the 1st and 2nd derivatives by finite 

difference, hence requiring only the calculation of the likelihood value for specified 

parameter combinations. It is possible to constrain the parameters using bounds. 

Maximisation can be slow because the parameters being estimated are on different 

scales; for example the frequencies are constrained between zero and one while the 

means can take any value. For efficient maximisation the parameters need to be scaled so 

that one unit change in the parameter value causes one unit change in the log likelihood. 

The new version of PAP (3.0) incorporates the possibility of scaling the parameters by 

adding and multiplying by constants, however more sophisticated reparameterisations 

cannot be included in order to retain flexibility, for example to enable the option of any 

number of major genotypes, the frequency of each genotype cannot easily be 

constrained to be between zero and one.

The new version (3.0) also enables preliminary transformation of the data 

(MacLean et a/., 1976) to one or more normal distributions.

Fixed effects cannot be incorporated in the model but have to be estimated and 

the data adjusted prior to the segregation analysis, which is a disadvantage for animal 

breeders.

A brief description of the algorithm used to calculate the polygenic and mixed 

model likelihoods in the PAP package is given betow and the package has been used to 

analyse some data of a-glucosidase activity in cattle to look for evidence for a major 

gene.
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3.2 DESCRIPTION OF POLYGENIC AND MIXED MODEL LIKELIHOOD 

CALCULATIONS

Two of the models under which the likelihood of the data can be calculated using 

PAP are the polygenic and the mixed model. These two models require the same 

subroutines and the polygenic model is obtained by setting the number of major 

genotypes to one. In version 2.0 of the PAP package (Hasstedt and Cartwright, 1981) 

two mixed models are offered, an exact calculation suitable for pedigrees with up to 10 

members, and an approximation (Hasstedt, 1982). In both cases the corresponding 

polygenic likelihood is exact and the algorithm for its calculation similar.

3.2.1 Polygenic model

Classically, in the field of human genetics, pedigrees have been considered in the 

form of nuclear families, that is, parents and their full-sib offspring. However, this 

ignores many useful relationships. PAP makes use of this additional information, including 

relationships between the nuclear families. Any relationship can be considered, leading to 

pedigrees of any complexity. In animal breeding terminology this would be an animal 

model.

y = Xu, + Zg +e

Where: X is a design matrix for fixed effects

u, is a vector of fixed effect class means

Z is a design matrix for random genetic effects

g is a vector of additive polygenic breeding values; g-N(O.ai)

e is an individual random effect; e~N(0,a|)

In PAP X is treated as a vector of 1s (1) and ji a scalar equal to the population mean

(u)

Following equation [2.1], and assuming that all N individuals have phenotypic 

information, the likelihood can be written as follows:

InL(poly) = - n(2rc) - n|V| - y-luJ'ly-l^) [3.1]

Where: Z is now an identity matrix (I) 

V =
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CT^ is the genetic variance

a§ is the environmental variance

A is the additive genetic relationship matrix 

The inverse of the variance matrix is:

V-1__L . -LAv - «2 02 
V ^J ^

Hence the likelihood can be written containing a part that is dependent only on the

individual being considered: - ;dy-1u.)' -5 (y-1^) and a part that takes into account the2 of
1 I /A" 1 I V1 I - ' - — ~ ~relationships with other individuals in the pedigree: - y-^i -^ —^ +

CTe V CTg °e) ®e

The calculations involving all related individuals are obviously computationally 

demanding requiring the inverse of two matrices of the order of the number of 

individuals. Fortunately, Henderson (1976) showed that the inverse of the relationship 

matrix can be obtained directly without the need to invert A. However the inversion of
/ A-1 I \
  - + ~ I is still required. PAP overcomes the need to invert the whole matrix using a

method called peeling.

Peeling

Elston and Stewart (1971) suggested a recursive method for the calculation of 

probabilities on pedigrees that successively reduces the size of the pedigree by collapsing 

information from offspring onto their parents. Cannings et al. (1976 and 1978) 

extended this idea and described a general method which allowed collapsing of 

information both 'upwards* onto parents and 'downwards* onto offspring. This process 

of collapsing information was called 'peeling 1 by Cannings et al. (1976). In essence, the 

method involves defining individuals or sets of individuals, called the cutset, that split the 

pedigree into at least two parts, so that the parts are connected only through the cutset. 

A sequence of such sets is required so that one of the parts always contains all the 

peeled animals and, eventually, the whole pedigree is within this set. Given the genotype 

of the cutset members, the two parts of the pedigree, peeled and unpeeled, are 

independent. Hence the probability of all genetic and genealogical information in the 

peeled set conditional on (if parents have not yet been peeled) or joint with (if parents 

are peeled) genotypes of the individuals in the cutset can be accumulated, by considering
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the recently peeled individuals. The possibility of peeling information onto a set of 

individuals jointly allows for pedigrees of arbitrary complexity to be considered.

The most common means of implementing this method is to consider one complete 

marriage in one operation, i.e. considering nuclear families in turn. Then the order of 

marriages specifies the cutset sequence. However, this may not be the optimum peeling 

sequence and Thomas (1986 a and b) considers methods of obtaining this optimum 

sequence for complex pedigrees by including the possibility of having several 

independent components to the pedigree with the cutset removed.

For pedigrees without loops the peeling process is relatively simple. Under these 

conditions it is possible to consider the nuclear families in an order so that there is only 

one member of each nuclear family that will also be present in a family not yet considered, 

i.e there is only ever one cutset member to consider and, hence, only one probability 

function. With loops in the pedigree the whole process becomes much more complex and 

time consuming, with several cutset members required.

Example
To illustrate the process a simple pedigree will be considered with two nuclear 

families connected by a common sire. 

Pedigree:

o-rr
This pedigree can be decomposed into the following nuclear families:

Sire

1

1

Dam

2

3

Offspring

4

5

With this example it is obvious that, by 'removing' the sire to the cutset, two discrete 

pedigrees are produced and hence, given the genotype of the sire the two nuclear 

families are independent. Information from the first nuclear family can be peeled onto the 

sire, at the same time calculating the contribution to the likelihood of this family 

independent of the sire. Then the second family can be considered, in the same way as 

for the first family, with the sire containing additional information from the first family.

28



. p

Multiplying f  5-+-^V by a;? gives (A' 1 + kH where k is -|, which is a more 
I, °g °ej 9 °e

convenient structure to consider and will be denoted, c.

When constructing c all individuals are considered either to be a founder or an 

offspring, and if an offspring they are assumed to have two known parents. This can 

easily be obtained by incorporating a parent with unknown phenotype if the parent is 

missing. By considering nuclear families the genetic relationship matrix is always relatively 

simple to create. The matrix for the first nuclear family is:

^1.5+k 0.5 -1 

0.5 1.5+k -1

V
-1 -1 2+k J

c12 c 14

°22 C24

C42 044 J

The vector containing the phenotypes for this nuclear family can be written as follows:

v

b2

Hence the data part of the likelihood for the first nuclear family can be written as:

First, the pedigree can be reduced by peeling individual 4. The contribution to the 

likelihood from his own phenotype, ignoring all relatives, is calculated as:

However, there are also terms which are functions of both individual 4 and his 

parents. This information can be transferred to the parents, reducing the size of the 

matrix. Giving the following matrices:

C 14 c41 C 12 -
C44 

C24 C42

V

C24 C41 „ 
C21 ~~^T" 2*~ C44
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i.e. the original likelihood can be rewritten as

2ae 2ae

After any further offspring have been peeled the contribution from the dam can be 

calculated. In the same way as for the offspring, there is a contribution that is 

independent of the remaining members of the pedigree (the sire) which can be added to 

the likelihood already calculated from the offspring:

and a joint contribution from the sire and dam which can be collapsed onto the sire as 

follows:

C22
C11

b*r b2

Hence all the information on the first nuclear family has either been incorporated 

into the likelihood function (from dam and offspring) or anything relating to the sire is 

stored in cj} and b". Now the second nuclear family can be considered, the matrices will

look similar to those set up for the first family except that the sire will already have 

information relating to his first nuclear family.

0.5 -1

1.5+k -1

V - -1 2+k J

0.5 

-1
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b =

As for the first family, the information from the offspring and dam can be peeled 

onto the sire. Hence, after both families have been considered all relevant information on 

the sire has been obtained and the contribution of the likelihood due to him (and related 

terms) can be calculated:

where ° indicates that all information from both families has been peeled.

For a more complex pedigree the procedure is the same although information will 

have to be stored on additional individuals.

The determinant required is a function of c and can be calculated at the same time 

as peeling information to calculate the data part of the likelihood. Partitioning the matrix 

into four sub-matrices gives the following expression for the determinant:

If F is a single element, | F | is equal to the value of the element F and | D - E F' 1 E' | is the 

matrix c* after F has been peeled. Hence, repeatedly using this equality, with F 

corresponding to each individual in the pedigree in turn, gives an expression for the 

determinant in terms of the product of the diagonals of matrix c after information has 

been peeled.

3.2.2 Mixed models

Exact likelihood
The form of the mixed model likelihood calculated is given in equation [2.3] with V 

as given in [3.1]. In effect the procedure described above is repeated for each possible 

major genotype combination for the pedigree. For each individual u, is the effect of the 

relevant major genotype for the combination being considered. There are many 

combinations and hence the likelihood calculation takes a long time.
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Approximate likelihood
In the approximation (Hasstedt, 1982), rather than setting up the matrices for 

each combination of major genotypes as described above, the matrices are used just once 

with a weighted mean for each individual instead of the major genotype mean. A 

correction is made for the use of this weighted mean for each combination of major 

genotypes.

The mixed model for a particular genotype, c, for individual i can be written as:

v i = Mc+ $ 2 d + zi + e i 

Where: p^ is the effect of major genotype c.

gs is the polygenic contribution to the genotype of the sire of individual i

(i.e. the sire's polygenic breeding value). 

g<j is the polygenic contribution to the genotype of the dam of individual i.

( Zj is the Mendelian sampling component for i; z - Nl 0,

6j is the individual random effect; e ~ N(O, af)

Note that 9: = s g q + z-i

With the model written in this form the likelihood for individual i with sire s and 

dam d can be written as follows:

L(MM) = p(cs ) p(cd ) trans(q I cs ,cd)  =

  

400 r / / /_._\\2

exp 1 (yj-m.-g^J- 1

, A A

Integrating over g, and substituting

(Vj - Mc)(Qs + 9d) with (Vi' Ai)(9s + 9d) + (Ai - Hc)(9s+9d) 

gives the following expression for the mixed model likelihood:
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L(MM)= p(cs )p(cd)trans(Cjcs,cd)

[A]
( _2 

1 . . ? On
exp

2
[A]

[B]

[C]

Where: A is the individual contribution as described tor the polygenic model calculated 

using the weighted mean, £j.

B is the contribution from the sire and dam calculated implicitly in the polygenic 

model.

C is the adjustment for the use of the approximate mean in A and the individual 

contribution using the correct major genotype.

Whereas A and B are the same for all major genotypes and hence need only be calculated 

once, in the same way as for the polygenic model described above, C needs to be 

calculated for every genotype combination of parents and their full-sib offspring. 

However while working through these combinations the genotype of the parents is 

specified and hence the offspring can be treated independently. This reduces the number 

of calculations required, especially for large families. For example, for a nuclear family 

there are 9 possible parental genotype combinations, which, if they have one offspring 

result in a total of 15 different combinations of major genotype for the family. With two 

offspring, if treated independently, there would be 15 combinations involving each 

offspring. The combinations for the family treated as a whole are given below.

Treating offspring independently gives 15n combinations each with 3 individuals, if 

they are not treated independently 4+4(2 n ) + 3n combinations of n are required. The 

second option very soon becomes infeasible with increasing n, even if, as in this example 

an efficient algorithm excluding all impossible combinations is used.
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Parental

1

1

1

2

2

2

3

3

3

genotypes

1

2

3

1

2

3

1

2

3

Number of

1 offspring

1

2

1

2

3

2

1

2

1

15

possible combinations

2 offsprina n offsorina

1
22

1
22

32

22

1

22

1

29

1
2 n

1

2 n

3 n

2 n

1

2 n

1

4+4(2 n ) + 3n

The accuracy of the approximation depends on the values for § s , £ d and jlj used. 

Obviously if £ s = 9S and 3d = 9d tne approximation would be exact. However the values 

of gs and gd are not known and have to be estimated.

The best estimates for § s and §d are BLUP estimates obtained using the relevant

major genotype mean to adjust the data. The BLUP equations can be written as follows:

where: A, I, g, y, u: contain all relatives of the sire and dam.

|1 is a vector of major genotype means

However, estimates are only required for the sire and dam of the nuclear family 

being considered (§s and §<j)> hence the information from relatives can be absorbed into

the equations for these two animals, so that only two equations need to be solved 

simultaneously. The peeling process described above has already accumulated terms 

similar to these, containing information on all related individuals already peeled, and 

stored them in matrices c and b. The problem is that rather than the data being adjusted 

for the major genotype being considered for that individual a weighted mean has been 

used (|lj). A correction for the use of the incorrect mean is required.

At any one time, a major genotype is only being considered for three individuals, 

the sire, dam and one offspring, and the equations for § s and $ d can be corrected for
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the major genotype of these individuals. However, the expected frequency of the major 

genotype for any other full-sibs will be altered depending on the genotypes being 

considered for parents. Therefore, rather than using the weighted mean calculated 

previously for these full-sibs, a new weighted mean can be calculated which weights the 

genotype means by their expected frequency given the parental genotypes:

m
]T u,c trans(c | cs , cd ) 
c-1

For all other individuals no correction is made, which is equivalent to using the 

original weighted mean calculated for these individuals.

Considering the pedigree described before, with two nuclear families with a 

common father, when calculating the likelihood contribution from the first nuclear family 

it is only known that the sire has one offspring, hence only these three individuals are 
involved when calculating Ss and^- For tne sire tne information from the offspring and 

dam have already been absorbed into the sire and hence £s can be calculated as:

However b" contains £j for the three members of the family :

- i) - (V2 - ) - <Y4 - 4) - (V4 - C44

this can be corrected for a particular major genotype combination as follows when 

considering offspring 4:

** A /A A ^24^0-12 A Cl4 
= bi + (u^ - m) + I (Jl2 ' Md) ' (M4 ' Mi) 777 I^H + (M4 - Mi) 044

Where: |is , mj. Mi are tne relevant major genotype means.

In the approximation by Hasstedt (1982), instead of completely replacing the weighted 

mean with the correct value, half the difference between the two is used:
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A similar equation can be derived for the dam using the relevant parts of c after 

the information from the offspring has been absorbed:

Sd = (t>2 ' °21 fls ) °22" 1

As before, b2 can be corrected for the use of the weighted mean for the dam and 

offspring.

In this way estimates for the polygenic component of the sire and dam are 

estimated under the hypothesis of different major genotype combinations and C 

calculated.

When the next nuclear family is considered the sire already has some information 

from the first nuclear family, which is included in the calculations of his breeding value but 

not adjusted for the major genotype.

The value of the approximate mean also affects the likelihood value. The equation 

used to calculate this mean in PAP is as follows:

Where: Pj(c) is the probability of genotype c for individual i, based on pedigree 

information already accumulated, which can be written as:

P(c) ex p[-

Pj(C) = -^—— 2

IP(c') exd - ^%- p(c'|lj)
c'«1

Where: p(c|lj) is the probability of individual i having genotype c given all the information 

from individuals already peeled. For example, when individuals are first encountered there 

is no information on their major genotype and hence for parents the population 

frequencies are used for these probabilities and for offspring the probabilities are set to 

one. For an individual who has already been considered in another nuclear family, the 

probability of being each major genotype given the information from all relatives already 

peeled will have been stored and this is used.

The determinant can be calculated in the same way as for the polygenic model, as 

this is not dependent on the data and hence not on the major genotypes.
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3.2.3 Discussion

The likelihood of the data under a polygenic model is calculated as written in [3.1] 

and hence the inverse of the variance matrix, V, is required. The procedure described 

allows any complexity of pedigree to be analysed without the need to set up this 

complete matrix. The mixed model approximation follows the same procedure and hence, 

effectively retains the integration but approximates the crossproducts between the major 

genotype and polygenic components.

Algorithms for the calculation of the likelihood under a polygenic model have been 

considered in animal breeding situations (for example, Graser et al., 1987). The pedigree 

is not usually partitioned into nuclear families but considered as a whole. However, when 

computing the likelihood use of the knowledge of the structure of the matrix and sparse 

matrix techniques are used to reduce the computation and storage requirements. The 

method of Graser et al. (1987), which has been implemented (and extended) in 

programmes such as DFREML (Meyer, 1988), involves rewriting the likelihood, giving 

several determinants and a quadratic in terms of the phenotypes, and then making use of 

extended mixed model (random and fixed effects) matrices including the data (Meyer, 

1989). The use of Gaussian elimination on this extended matrix, which is the procedure 

described previously to remove rows and columns of a matrix, results in the required 

quadratic of the data and the possible accumulation of the determinants (Meyer, 1989). 

Unlike the approximation in PAP, this method is easy to extend to incorporate fixed 

effects or additional random components such as common family environment. However, 

it cannot be used for the mixed model as this would involve the calculation required for 

the polygenic model to be repeated for each major genotype combination for the 

pedigree.

3.3 ANALYSIS OF a-GLUCOSIDASE ACTIVITY IN CATTLE 

3.3.1 Introduction

A deficiency of the lysozomal a-glucosidase causes excessive tissue accumulation of 

glycogen and a lack of glucose. The disease associated with this trait is generalised 

glycogenosis type II or Pompe's disease and is known to affect humans as well as cattle 

(Howell et al., 1981). Affected animals are clinically normal at birth, although have 

decreased a-glucosidase activity and excessive glycogen deposition, but fail to grow as 

rapidly as their contemporaries and eventually die. Two clinical forms of the disease have 

been observed in cattle (Howell et al., 1981) One is similar to the infantile onset seen in
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children, where the animals die within the first months of life usually due to cardiac failure. 

In the second form, more closely related to the childhood form observed in humans, the 

affected animals remain clinically normal for about 9 months before showing gradual loss 

of condition and muscular weakness and eventually require to be slaughtered by 16 

months of age.

The condition is thought to be controlled by a recessive allele at a single autosomal 

locus, with additive effect (Howell et ai, 1981, Healy et a/., 1987). The two forms of the 

disease have been observed within one family and are thought to be related and possibly 

caused by the same genetic lesion with variation in clinical expression.

The aim of this study was to determine the mode of inheritance of the disease 

using segregation analysis on data kindly provided by C.P. McPhee.

3.3.2 Description of the data

The data consisted of mononuclear blood cell enzyme activities recorded for a- 

glucosidase and two reference enzymes, p-galactosidase and hexosaminidase (methods 

of enzyme analysis are given in Healy, 1982), on individuals in one herd of Brahman 

cattle in Australia taking part in a programme for the control of Pompe's disease. The 

data contained the identities of the sire and dam of each individual, but not necessarily 

other information on these parents. The enzyme activities had been recorded over 

several overlapping generations, and contained records of dams being mated more than 

once and offspring also appearing as parents.

Originally, unlike a-glucosidase, variation in the activity of the reference enzymes 

was not thought to be controlled genetically within this population but dependent on the 

environment. Correlations between these three enzymes exist which must, therefore, be 

caused by the environment. From analyses of 180 clinically normal dairy cattle the 

following multiple regression equation was obtained to predict the activity of 

a-glucosidase based on the activities of the reference enzymes:

predicted a-glucosidase = 0.03496 + 0.09585 GAL + 0.003187 HEX

Where GAL and HEX are the activities of p-galactosidase and hexosaminidase, 

respectively. (Reichmann era/., 1987).
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The standard procedure has been to express observed a-glucosidase activity as a 

proportion of the predicted activity. Animals with less than 70% observed activity are 

assumed to be heterozygotes (Reichmann et a/., 1987). However, there is no rational 

basis for this procedure and the use of percentages leads to a trait which is not easily 

amenable to analysis, especially as the distribution is expected to be non-normal. In this 

situation it would seem more logical to subtract the predicted value from that observed in 

order to remove some of the (supposedly) environmentally caused variation. This trait, 

DEV, would be expected to be distributed more closely to a normal distribution.

3.3.3 Analyses

Summary statistics

The data were analysed assuming that the sires were all randomly mated and all 

parents unrelated, i.e. assuming that offspring were related either as full-sibs or paternal 

half-sibs. The data analysed contained :

No. individuals No. with observations

on enzyme activity

Sires 126 12 

Dams 551 167 

Offspring 571__________571

Total 1248 750

Four traits were considered: the activity of the three enzymes (GLU, GAL and 

HEX) and the observed minus the predicted activity for a-glucosidase (DEV).

The distributions of the 4 traits for all 750 animals are given in figures 3.1 to 3.4. 

Summaries of the distributions, in terms of the mean, standard deviation, skewness and 

kurtosis are given in table 3.1.
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Figure 3.1 Distribution of a-glucosidase enzyme activities for the total data set.
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2 4 6 8 10 12 14 16 18 20 
a-glucosidase activity x 10

Figure 3.2 Distribution of fi-galactosidase enzyme activities for the total data set.
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p-galactosidase enzyme activity x 10
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Figure 3.3 Distribution of hexosaminidase enzyme activities for the total data set.
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hexosaminidase enzyme activity

Figure 3.4 Distribution of observed minus predicted a-glucosidase enzyme activity for the 

total data set.
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observed - predicteda-glucosidase activity x100
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Table 3.1 Mean, standard deviation, skewness and kurtosis for the total data.

Trait

GLU (X10000)

GAL (xlOOO)

HEX (x100)

DEV (X10000)

mean standard deviation

4791.47

1603.26

6696.83

349.03

2187.25

558.11

2182.33

1762.95

skewness
» * *

1.212
0.764*"

0.791*"

0.622*"

kurtosis
2.917***

* * *
1.102
1.061*"

2.218***

Skewness is given as:  m.  (sd = 0.089) and kurtosis as: . n ~ - 3 (sd = 0.179)
m2Vm2 ( m2)

where: mp = n

indicates significance at 0.1% level.

Using the 571 offspring records and assuming a sire model, so that all full-sibs 

were assumed to be half-sibs, Harvey's mixed model least squares program (LSML76, 

Harvey, 1977) was used to obtain estimates of the heritabilities and correlations, genetic 

and phenotypic, between the traits. These are given in table 3.2.

Table 3.2 Heritabilities on the diagonals, phenotypic correlations between traits above and 

genetic correlations below.

Trait GLU .GAL. HEX PEV

GLU 

GAL 

HEX 

DEV

0.55±0.16 
0.6710.14 
0.63±0.21 
0.9110.06

0.57
0.4910.16
0.7010.16
0.3610.24

0.55

0.73

0.2410.14

0.3010.33

0.82

0.08

0.01

0.4910.16
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These results are in agreement with the estimates obtained by McPhee and 

Reichmann (1990) using a larger set of data. There is evidence that variation in the 

reference enzymes is genetically controlled and positive genetic correlations exist 

between the traits, however the estimates for the standard errors are large. The genetic 

correlation between HEX and GLU is much higher here than reported by McPhee and 

Reichmann (1990) . As expected, the phenotypic correlation between DEV and GAL and 

DEV and HEX are approximately zero. The genetic correlations between these are 

positive and although of reasonable size are not significantly different from zero. The 

estimate of the heritability for DEV is lower than for GLU, which would not be expected 

if the reference enzymes removed some of the environmentally caused variation.

In PAP the trait is is assumed to be normally distributed within each mode, i.e. that 

a polygenic model is composed of a single normal distribution and the mixed and major 

gene models of two or three normal distributions. Non-normal data, caused by non- 

genetic effects is likely to be interpreted as evidence for a major gene (MacLean et al., 
1975). To reduce the possibility of spuriously detecting a major gene the data can be 

transformed before analysis.

In these analyses SKUMIX (MacLean et al., 1976) was used to find the best 

transform. SKUMIX is a Fortran program that uses the transform:

Where: yj is the transformed variable.

p is the power.
Xj is the original variable, transformed to have a mean of zero and unit

variance.
Xj

r is a scale parameter, such that-1 +1 > 0 for all Xj, here set to 5.

All observations are assumed to be independent, i.e. familial relationships are 

ignored, and using maximum likelihood techniques enables the user to transform the data 

to a mixture of 1, 2 or 3 normal distributions. Likelihoods can also be calculated under the 

assumption of different numbers of underlying distributions without transformation. A 

comparison of the likelihoods will suggest whether the observed distribution is, for 

example, composed of one skewed distribution or several normal distributions. For these 

analyses the data were transformed to a single normal distribution, this favouring the 

polygenic or non-genetic models where a unimodal distribution is expected rather than
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the mixed or major gene models where a non-normal distribution might be expected and 

hence reducing the chance of spuriously detecting a major gene. Table 3.3 gives the 

transforms used and the difference between the likelihoods for a single normal 

distribution with and without transformation. The distributions of the transformed data 

sets are given in figures 3.5 to 3.8. Comparing these to the distributions prior to 

transformation it can be seen that these more closely resemble a normal distribution and, 

in fact, are no longer significantly skewed or kurtic.

The transformed data were reanalysed using Harvey's program (LSML76), as 

described above, (with the assumption of normality, based on measures of skewness and 

kurtosis, now satisfied) and the results are given in table 3.4.

Table 3.3 Skewness parameters used for complete data, and associated change in 

likelihood.

Trait

GLU

GAL

HEX

DEV

p

-0.799

-0.138

-0.286

0.521

InL difference

161.07

70.71

82.64

21.46

Table 3.4 Heritabilities on the diagonals, phenotypic correlations between traits above and 

genetic correlations below for the transformed data

Trait

GLU

GAL

HEX

DEV

0

0

0

0

GLU

.66±0.

.60±0.

.61±0.

.91±0.

17

14

19

06

0

0

0

0

GAL

.58

.4910.

.75±0.

.27±0.

16

14

23

0

0

0

0

HEX

.55

.76

.26±0.15

.25±0.31

0

0

-0

0

DEV

.78

.05

.02

.54±0.1 6

There is little difference in the correlations between the traits calculated after 

transformation and those given previously in table 3.2 prior to transformation. The 

largest change is in the heritability of GLU which has increased.
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Figure 3.5 Distribution of a-glucosidase enzyme activities for the transformed data set.

-40 -20 0 20 40 60 80 100 120
a-glucosidase activity (transformed)

Figure 3.6 Distribution of p-galactosidase enzyme activities for the transformed data set.

140 -i

120 -

-4 0 4 8 12 16 20 24 28 32 36
p-galactosidase activity (transformed)
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Figure 3.7 Distribution of hexosaminidase enzyme activities for the transformed data set.

-20 0 20 40 60 80 100 120 140
hexosaminidase activity (transformed)

Figure 3.8 Distribution of observed minus predicted a-glucosidase enzyme activity for the 

transformed data set.

200

-80 -60 -40 -20 0 20 40 60 80 100
observed - predicteda-glucosidase activity (transformed)
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Segregation analyses

The maximum likelihoods of the data under the models given in table 3.5 were 

obtained using the relevant subroutines from PAP. The likelihood under the mixed model 

was calculated using the approximation described above (Hasstedt, 1982). The 

population was assumed to be in Hardy-Weinberg equilibrium with respect to the major 

gene and hence an allele frequency can describe the three genotype frequencies. The 

parameters required to be estimated for each model are also given in table 3.5. The 

likelihoods for the models are given in Appendix 1.

Table 3.5 Models considered and the parameters necessary to describe these models

Model

Mixed 

Polygenic

Major gene

Parameters estimated

P(A) HAA

P(A) HAA

MAa M^aa

^Aa Haa

h poly ae 

npoly ae

a§

Non-genetic

Hence the tests given in table 3.6 can be made to determine the mode of 

inheritance, where, as described before, for nested hypotheses, the degrees of freedom 

are calculated as the difference in the number of parameters estimated under the more 

general model but fixed under the restricted model. For example, when comparing the 

mixed model and major gene model the only additional parameter required to explain the 

mixed model is the polygenic herrtability, therefore the test has one d.f.

Table 3.6 Possible comparison of hypotheses and the relevant degrees of freedom.

test

1

2

3

4

MUgenerah

Major gene

Polygenic

Mixed

Mixed

MUrestricted}

Non-genetic

Non-genetic

Major gene

Polygenic

d.f.

3

1

1

3

Where the test is 2ln(ML(general)/ML(restricted)) - x2 d.f.
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If tests 1 and 2 are significant, that is, if both the major gene model and the 

polygenic model are significant improvements over the non-genetic model there is 

evidence that the variation in the trait has a genetic component of control. If only one of 

them is significant this suggests the mechanism of genetic control. Given that tests 1 

and 2 are both significant, if tests 3 and 4 are also significant, so that the mixed model is 

a significant improvement over both the major gene and polygenic models, there is 

evidence that the genetic component is composed of both a major gene and a polygenic 

component. However, if test 3 indicates a significant improvement of the mixed model 

over the major gene model but test 4 is not significant, this suggests that the trait is 

controlled by polygenes, and hence the addition of a polygenic component to a major 

gene model significantly increases the likelihood, but the addition of a major gene to the 

polygenic model does not. If test 4 gives a significant result but test 3 does not the 

evidence is for a major gene. A consideration of the parameter estimates obtained is also 

required because some models may not be sensible in terms of their genetic 

interpretation.

The inclusion of the small number of parental phenotypes might lead to biassed 

estimates because some individuals are in the data as different animals. To overcome this 

possible bias the analyses were repeated using only the offspring phenotypes. The data 

were transformed using the transforms given in table 3.3. To reduce the possibility that 

evidence for a major gene was being found because of the presence of a few animals 

with extreme enzyme activities the data were also reanalysed after removal of the 

extreme 2% of individuals, followed by transformation to normality. If these outlying 

observations were in fact caused by the major gene then evidence for this gene might be 

removed and the parameter estimates might be biassed, hence the results of these 

analyses have to be considered along with the results from the complete data.

Results of segregation analysis
The test statistics from the different tests are given in tables 3.7, 3.8 and 3.9 for 

the three data sets. The likelihoods and parameter estimates on the transformed scale for 

the four traits are given in tables 3.10 to 3.13 for the models assuming Hardy-Weinberg 

equilibrium for any genetic component. In tables 3.14 to 3.17 the estimates for the 

means have been transformed back to the original scale and, hence, the within mode 

standard deviation has been given as a standard deviation on either side of the mean.
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Table 3.7 Test statistics for the four tests described in table 3.6 using the complete data 

set.

Test

1

2

3

4

GLU
45.78"*

55.86"*

10.88*"

0.80

GAL
19.76*"

21.66***

4.36*

2.46

HEX
12.34**

11.68***

-

-

DEV
68.70***

66.88***

19.78***

21.60***

indicates significance at the 0.1% level, at the 1% level and at the 5% level.

Table 3.8 Test statistics using the data containing offspring phenotypes only.

Test

1

2

3

4

GLU
32.64***

* * *

41.46
8.38**

0.44

GAL
* » *

19.46
25.60***

5.72*

0.42

HEX

12.26
10.80**

0.16

1.62

DEV
50.34***

35.16***

5.78*
20.96***

Table 3.9 Test statistics using the complete data with the extreme scoring 2% of

individuals removed.

Test

1

2

3

4

GLU
27.68***

33.56*"

6.96**

1.08

GAL
18.60***

24.80***

6.64**

0.80

HEX
17.92***

14.96***

0.02

2.98

DEV
38.04***

43.50***

* * *

11.46

6.00
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GLU (Tables 3.10 and 3.14)

The addition of either a polygenic component or a major gene causes a significant 

increase in the likelihood compared with the non-genetic model. The loss of the polygenic 
component from the mixed model causes a significant decrease in the likelihood, 

however, the loss of the major gene has virtually no effect on the likelihood. Hence there 

is evidence to suggest that the trait is controlled by many genes of small effect. The 
estimate for the heritability on the transformed scale is 0.48. Figures 3.9 and 3.10 

illustrate the expected distribution of the population under the polygenic model and the 
mixed model.

Analyses of the other data sets gave essentially the same results, although with the 
removal of the extreme individuals the parameter estimates were altered slightly. The 
mixed model resulted in an high scoring allele with dominant effect and low frequency 
(p=0.22) and the major gene model suggested an allele of high effect with a frequency of 
0.32. The polygenic heritability estimate decreased.

GAL (Tables 3.11 and 3.15)

There is strong evidence for a genetic component controlling variation in the 
activity of GAL, as both the polygenic and major gene models are significant when 
compared with the non-genetic model. When the mixed model is compared with these 
two sub-models, the comparison with the major gene model is just significant, whereas 
the comparison with the polygenic model is not significant. These results support the 
hypothesis that the trait is polygenically controlled with an heritability of 0.33.

When analysing data containing the phenotypes of the offspring only, the same 
conclusion was drawn and the parameter estimates were similar. With the extreme 2% of 

individuals removed, for the mixed model the allele frequency remained extreme but with 

few high scoring rather than low scoring individuals. The major gene model gave 

intermediate allele frequencies and an approximately additive model. A polygenic model 

would still be suggested.

HEX (Tables 3.12 and 3.16)
There is evidence that variation in the activity of HEX has a genetic component of 

control, with the likelihood under a polygenic model being more significant than under a 
major gene model although with a slightly lower value for the likelihood. With the 

extension to a mixed model, convergence to a model containing both components with 

likelihood greater than the major gene model could not be attained.

Using the other two data sets, a maximum for the mixed model likelihood was 

attained, but it was not a significant improvement over either the polygenic or the major
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gene models. Both of these models were significantly better than a non-genetic model 

and it is not possible to suggest the mechanism of inheritance.

When a maximum was attained for the mixed model the parameter estimates for 

the major gene were similar to the estimates under the major gene model and the 

herrtability estimate was less than 0.1. Parameter estimates from the three data sets were 
similar.

DEV (Tables 3.13 and 3.17)

Both the likelihood under the major gene model and under the polygenic model are 

significantly larger than the likelihood of the non-genetic model, suggesting that variation 

in the trait is genetically controlled. The mixed model is a significant improvement over 

both of these sub-models. Hence there is evidence for both a major gene and polygenic 

component. However, the mixed model suggested has a rare allele, with an extremely 

high mean effect of the homozygous genotype for this allele. The tow frequency of this 

genotype suggests that this model is explaining some remaining non-normality of the 

data with a slight excess of individuals with high score.

The results using the offspring phenotypes only were essentially the same. 

However, with the extreme 2% of observations removed there was no longer evidence 

for a mixed model, and polygenic inheritance would suggested. The major genes 

suggested have intermediate allele frequencies and the genotype means are less extreme 

presumably because of the removal of the few individuals causing the results observed 

with the full data set.

3.3.4 Discussion

The results of the analyses presented above suggest that there is no evidence to 

support the hypothesis of a major gene controlling a-glucosidase activity. The three 

enzymes all show evidence of polygenic inheritance for their activity. DEV is a 

combination of three traits and the variation in each of these traits has been shown to 

be genetically controlled, hence, the interpretation of the results is difficult.

A major gene model, which associates mortality with the low scoring homozygous 

genotype, has been suggested for the inheritance of a-glucosidase activity (Howell et al. 

1981). Hence, except when taken at birth, the offspring are not expected to be in 

Hardy-Weinberg equilibrium, even if the parents are randomly mated. Also, only two 

genotypes would be observed in the data. Obviously, the major gene model fitted cannot 

exactly describe this hypothesised model; if however, the data were derived under this
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model it would be expected that, when analysed, a model including a major gene would fit 
better than a polygenic one.

Transforming the data prior to analysis might have removed evidence of a major 

gene as the original distribution, although non-normal, has only a single mode. Analysis 

of the data without prior transformation would have given a useful indication of the 

effect of the transformation, in case the non-normality was a product of a major gene 
rather than environmental. There is an additional problem that the phenotypes are 

influenced by fixed effects which could not be accounted for in the analyses presented 

here. For example, the analyses are sensitive to the age of the animal from which the 
sample was taken, sex of the animal and length of time from the sample being taken to 
the assay being carried out (McPhee and Reichmann, 1990). These would be expected to 
alter the estimates and possibly the suggested mode of inheritance. For example, a sex 
difference in the trait would mean that there are effectively two normal distributions of 
enzyme activity within the population and this could be interpreted as a major gene.

Removal of the extreme scoring individuals did not alter the conclusions of the 

analyses except in the case of DEV which had been identifying a few individuals with 
extreme scores. For the other traits some of the parameter estimates were altered, in 
general, these were predictable changes with the major genotype means becoming less 

extreme.
The assumption that individuals within a generation can only be related as full-sibs 

or paternal half-sibs and hence that ail parents are unrelated, leads to a loss of 
information. It is not clear how useful this additional information might be; its inclusion 
would certainly significantly reduce the speed of computation. A small bias might be 

introduced when individuals with phenotypes appear in the data more than once with a 

different identification. Analysing the data without the parental phenotypes should, 

however, remove this bias and the results form these analyses were in agreement with 

those from the total data set.

The allele frequency estimated is the frequency in the founder or, in this case, the
s 

parent generation. The sires in the data leave very unequal numberAof progeny which will
effect the frequency of the major genotype in the offspring generation. The distribution 
of offspring genotype frequencies will depend on the conditional genotype probability of 

each parent weighted by the number of offspring the matings produce.

ct-glucosidase activity is known to be associated with mortality as when activity is 

too low animals can no longer survive. The analyses above suggest that the level of 

activity is genetically controlled and hence there must be a relationship between the 

genotype of an animal and the probability of its death. The effect of this is that selection 

is being practised, with selection against the low activity genotypes. Hence parameter
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estimates would be expected to alter over generations. For example, if a major gene was 

involved the frequency of the allele conveying tow activity would be expected to decrease 

and if polygenically controlled a change in the variance and associated heritability might 

be observed. The two generation model used cannot take these into account. 

Information on the individuals which died from Pompe's disease would be useful, 

although its incorporation into the analyses is not straight forward.

Extensions to the models offered in PAP
The hypothesised mode of inheritance is that a-glucosidase activity is controlled by 

a single locus with two alleles, the wild type and a mutant allele that decreases the activity 

to the extent that the homozygous animals for the mutant allele die. If this is correct, the 

genotype frequencies in the parent population are not expected to be in Hardy-Weinberg 

equilibrium. In fact the affected homozygote is not expected to reach maturity and hence 

will be absent from the parent generation. It is possible, however, that the genotype 

could be present in the offspring population if testing for the enzyme activity was carried 

out early in development, possibly before clinical signs of the disease were present. 

Additional parameters to those used in the models above are required to describe this 

model.
First, parameters are required to describe the fitness of the major genotypes in the 

parent and offspring generations:

Geno t vce______________________AA___Aa___aa

Relative fitness in the parents 
Relative fitness to testing in the offspring

1 
1

1 
1

sp 
so

sp can take a value of zero or one. If set to one, this is the most general model 

with regards the parental genotype frequencies with the possibility of all three genotypes 

being present without assumptions about their relative frequency. If sp is set to zero the 

genotype aa is assumed to be absent from the parental generation, which is the 

hypothesised model and a sub-model of the more general one with sp equal to one. The 

second parameter, so, affects the expected frequencies of observed major genotypes in 

the offspring population given the parental genotypes. Hence, the transmission 

frequencies are as follows:
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Offspring genotypes 
Mating type AA

1

0.5

0.25
0.25+0. 5+0. 25S0

0

0

0

Aa

0

0.5

0.5
0.25+0. 5+0. 25so

1

0.5
0.5+0.5so

0

aa

0

0

0.25so
0.25+0. 5+0. 25so

0

0.5so
0.5+O.Sso

1

AA x AA

AA x Aa

Aa x Aa

AA x aa

Aa x aa

aa x aa

Matings, however, will not be represented in the data if the offspring does not 
have a record. If the major gene hypothesis is correct and some of the individuals with 
genotype aa die before being tested there will be fewer matings than expected in the 
data which give rise to affected progeny. Assuming that each mating produces n 
offspring and matings are expected to appear in the data if at least one offspring 
survives, then the expected frequency of each mating type depends on the relative 
fitness of offspring (so) and the number of offspring per mating. In the case of cattle, 
to a good approximate, each mating produces one catt. Hence the probability of an Aa x 
Aa mating being present is:

probability that the calf survives

= prob(calt AA) + prob(calf Aa) + prob(calf aa and survives)
_3+so
~ 4

More generally for n offspring the probability of an Aa x Aa mating being present is: 
= prob(at least one offspring survives) 

= 1 - prob(no offspring survive) 

= 1 - prob(al) calves are aa and die) 
= 1 - (prob(offspring dies|aa)prob(aa))n

However it would be possible for parents to be remated if the offspring died soon 
after birth. A correction could be incorporated to allow for the possibility that some of 
the mating types are present at a higher frequency than would be expected if all the 
matings which resulted in only dead offspring are omitted. Hence a third parameter, 
which corrects the expected frequency of the different mating types, is required to 
describe this model. For one expected progeny per mating the corrections are as follows:
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Mating type —Expected frequency present in the data x TOT

AA x AA p(AA) p(AA)

AA x Aa 2 p(AA) p(Aa)
/1j.cn\Xm

x Aa p(Aa) p(Aa)

AA x aa 2 p(AA) p(aa)

( 14. so\ xm 

27

aa x aa p(aa) p(aa) so™7

Where: TOT = sum of all the above frequencies, i.e. frequencies are corrected so that

they sum to one.
m

p(c) is the frequency of genotype c in the parental population and ^T p(c) = 1
c=1

xm can take any value between zero and one. If set to zero the matings appear in 

the frequency expected assuming random mating of the parental genotypes, which could 

be explained by parents being remated to each other if their progeny died. If xm is set to 

one there is a correction for those matings which produced an offspring that died before 

testing and the expected number of this mating type is reduced. Intermediate values 

indicate that a proportion of the parents whose offspring die are being remated.

The most general model can be obtained by setting sp to one and allowing so and 

xm to be estimated. Models with fixed parameter values can then be compared as sub 

models of this one. The parameter xm could be omitted and possibly with the data 

structure used there would not be enough information to estimate it.

An alternative model that could be tested assumes that the trait is controlled by 

many genes of small effect with a threshold, and when the enzyme activity falls below 

this level the individual dies.

3.4 DISCUSSION

Using PAP (Hasstedt and Cartwright, 1981) the likelihood of a given set of data 

under many different models can be calculated. Peeling, a recursive procedure, permits 

the analysis of any complexity of pedigree and is an efficient way of reducing the storage 

requirements of the program, as at any time matrices are only of the size of the nuclear 

family being considered and additional information is only being retained on individuals 

which reappear in the pedigree.
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The approximation to the mixed model likelihood is accurate. Although for each 
likelihood calculation the approximation is much faster than the exact form the 
approximation is fairly complex involving many calculations. Overall speed could be 
improved by scaling the parameter estimates in the maximisation routine and, if memory 
space allows, retaining the phenotypes in memory rather than reading in for each 
evaluation of the likelihood.

Data from animal populations generally involves many fixed effects, such as herd 
or year, and these cannot be included in the analysis. Estimation of these effects could 
take place, and the data adjusted, prior to analysis. Theoretically this would not be the 
best solution and estimation simultaneously with the genetic parameters would be 
preferable. Also, unlike in human genetics, the knowledge of breeding values is important 
and these cannot be obtained immediately from the program as written and additional 
subroutines would be required.

Although the program is designed to enable the user to alter or add subroutines 
the complexity of the package means that this cannot always be achieved easily. This is 
especially true when considering the approximation to the mixed model which is not 
clearly documented. If extensions were required, for example to include fixed effects or 
common environment, the use of alternative approximations might prove easier. 
Increasing the number of parameters to be estimated is difficult.

Many of the models considered are unlikely to be suitable for animal populations, 
and hence the program could be simplified by reducing the number of possible genetic 
situations that can be analysed.

Problems were encountered attaining convergence for some models, especially 
when, rather than assuming that the genotypes were in Hardy-Weinberg equilibrium, they 
were estimated individually. Although the frequencies of two of the genotypes are 
constrained between zero and one, the third is obtained by subtracting these two 
frequencies from one and hence can easily become negative, at which point the likelihood 
often increases markedly. Although it would be possible to constrain the three 
frequencies to be between zero and one the retention of a general model enabling any 
number of alleles makes this difficult.
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Appendix 1

A1.1 Models and likelihoods 

A1.1.1 Non-genetic model

The non-genetic model assumes that the trait is environmentally controlled. In 
these analyses the individual random environmental effects (6j) were assumed to be

normally distributed.

Model: 
Where:

Likelihood:

e~N(0,a|)

N

L =
1=1

exp ——Ly*
_ 9'l

or in matrix notation y = e

and
L = — exp

2a
rV'Y

e

Where y and e are vectors of length N.

A1.1.2 Polygenic model

The polygenic model assumes that the trait is controlled by many genes of small 
effect, giving a normal distribution of genetic effects (gj), and an individual random 

environmental effect (e\) which is assumed to be normally distributed.

Model: 

Where:

Likelihood:

L =

yj = p. +gj + 

e~N(0,ai) 

0~N(0,a§)

00 00 00

/ n

N

n°<
v k=

\f f

'•T
(Hasstedt, 1982)
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The integrations are over the polygenic component for each individual. The first product
is over all (N) individuals, the second over all (f) founders and the third all (n) offspring,
where f + n = N.
gk1 and gk2 are the polygenic effects of the parents of gk .
0 y (u.,CT2 ) is the conditional likelihood that y is from a normal distribution with mean u. and

variance a2 , which is equal to
exp|"—l^y-u.) 

L 202

In matrix notation, y = 1u, 

and

(271)

Where: V = kr| + ZAZ'af,

Z is the design matrix for polygenic effects
1 is a vector of ones
u, is the population mean
A is the additive genetic relationship matrix

A1.1.3 Major gene model

The major gene model describes the situation where the genetic component of the 
phenotype is controlled by a single locus. The variation within each genotype is assumed 
to be environmentally controlled and normally distributed. The model for an individual 
with genotype c is:

Model yj = Me + 6j 
Where: e~N(0,a|)

u,c is the mean effect of genotype c.

That is, the phenotypic distribution is composed of a mixture of normal distributions, the 
number of distributions being equal to the number of distinguishable genotype means. 
For the analyses described here, it was assumed that there were two alleles at this locus 
and hence three genotypes (m=3). The likelihood is composed of the following:

i) The conditional likelihood of the phenotype given the major genotype - 0 y (|ici ,a|) 
ii) The probability of the major genotype for a random (founder) individual - p(q)
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iii) The probability of the major genotype given the major genotype of the parents - 
trans(Cj|cs ,cd )

Likelihood
mm m N

L = 0c transCk ck1 .
k=1

[Hasstedt, 1982]

The summations are each over the m genotypes with one for each individual, which is 
equivalent to having a single summation over the mN genotype combinations. The first 

product is over all individuals, the second over all founders and the third all offspring. 
ck1 and c^ are the major genotypes of the parents of k.

In matrix notation the model for one genotype combination is:

Y = W D u,c + e 

and
Nm

--Vy - wD^c)'(y -
0=1

Where: D is one of the mN combinations of major genotype for the pedigree.
p{D) is the probability of genotype combination D, which is equal to the product 

of
transmission probabilities for offspring given the parents genotypes and the 
relevant population frequency for founders. 

WD is an n x m matrix containing a 1 for the genotype being considered for each

individual and a zero otherwise. 
|ic is a vector of major gene effects.

A1.1.4 Mixed model

As described previously (2.3.2) the mixed model assumes that the trait is 
controlled by both a major gene and polygenes. The variation within each major genotype 
is assumed to be the same for each genotype and equal to the sum of the polygenic and 
environmental variances. As before the individual environmental component is assumed 

to be normally distributed. The model under genotype c is:
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Model 

Likelihood
Vi = ^ + 9i

oo oi -j
-"° ~

v k=1 /

[Hasstedt, 1982]
This is a combination of the mixed and polygenic likelihoods, with a summation over all 
the major genotypes and an integration over the polygenic component for each 
individual. 
In matrix notation the model for a given genotype combination is

Y = + Zg + e

and
m

p(D) exp -(y -
0=1
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CHAPTER 4

APPROXIMATION 2 • USING HERMITE INTEGRATION 

4.1 INTRODUCTION

The exact mixed model likelihood [2.2] contains an integration of a complicated 

function, over all possible values for each sire's transmitting ability. A standard statistical 

approximation to an integration is to replace It with a weighted summation, so that 

effectively a continuous density function (c(x)) is replaced by a discrete histogram.

j;
9=1 [4.1]

points in the 
Where: G is the number of summation.

A
Xg are the abscissae within the range a to b. 

W are the weights.

Suitable weights and abscissae need to be supplied. Obviously as the number of
points in tine
summation increases the approximation improves, an integration being equivalent to an 

infinite number of po'unt-s. However, by taking into account the distribution of the 

function to be integrated, the abscissae and weights can be provided to reduce the
points in tirve

number of summation required to provide a reasonable approximation compared with 

ignoring this information and, for example, using evenly spaced abscissae. In the case of 

the mixed model likelihood, the variable over which integration takes place appears in the

form exp[-x2 ] and hence efficient abscissae and weights can be obtained from the
points ui tne

Hermite polynomial (HikJebrand, 1974). If G Asummation are required the abscissae are 

obtained from the roots of the order G polynomial:

dxL

Fortunately tables of the weights and abscissae exist for various numbers of 
points th tuc
summation and are given for a standard curve, symmetrically placed about the origin 
^
(e.g. Selby, 1970). A reduction in the number of poLncs required for a reasonable 

approximation may be obtained by transforming the weights and abscissae, so that they
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reflect the correct mean and variance of the variable over which the integration is to be 
made.

4.2 LIKELIHOOD

4.2.1 Derivation of the mixed model likelihood using Hermite integration.

The exact mixed model likelihood can be written as follows, with the integration 

over each sire's transmitting ability (see chapter 2 for notation and derivation):

L(MM) =n/M J^

1
2K02

exp
2a?,u J

m n m

I /Jrans(d)c) —r
j=1 6=1 2aw

However, to allow some flexibility so the summation can be taken around a value other 
than zero, and the variance of the parameter altered, the transmitting ability (Uj) can be

transformed:

X; =
Uj-UCj

1 V;

where: uq are the location parameters 

Vj are the scaling parameters

and the likelihood can be rewritten as folbws:

L(MM) =n/
M ^ 2710?,

exp
u 2 x2u i A i

202 2

m n m

o=1 H 6=1

-exp

Rewriting the transform Uj=VjXj+uCi

and hence dUi=Vj.dXj

then changing the integration over Uj to an integration over x f gives the following

equation for the mixed model likelihood:
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L(MM) = exp
M

•+• rexp

m n m

c=1 1=1 <*=1
exp .dXj

[4.2]

Finally replacing the integration over Xj with a summation gives the following mixed model 

likelihood:

G f m
MML=

n m

2 
w

2aw
[4.3]

The integration in [4.2] is to be taken over Xj. The Hermrte polynomial is appropriate 

when c(x) [4.1] is of the form exp[-x2 ], whereas here the variable to be integrated is

-—exg --rM hence the abscissae obtained from standard tables (e.g. Selby, 1970)
V27C L ^ J

should be multiplied by V2 and the weights divided by VTC. This approximation will be 

denoted Herm.

4.2.2 Effect of transforming the abscissae.

To investigate the effect of different scaling and location parameters on the 

number of summation required to obtain a reasonable approximation a simple polygenic 

model will be considered initially.

Polygenic model
Data were simulated under a polygenic model with balanced structure. An exact 

expression for the maximum likelihood of the data under this polygenic model can be 

written in terms of the between and within sire components of variance as follows 

(Searle, 1971):
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An equation for the likelihood under a polygenic model using Hermite integration 
can be obtained from [4.3] by fixing ^ = ^i2 = 1^3 = 0. To calculate the likelihood, values 

for the mean (u.) and the variance components (oj, a*) were obtained from the data. The 

integration is over the sire's transmitting ability and information about this parameter can 

be obtained by considering the observations on his progeny. Four cases were 

considered, representing different use of the information on the distribution of 

transmitting abilities:

Case
Parameter
location parameter (uq)

scaling parameter (Vj)

1
0

au

2

Oi

V

3

0

V*

4
A

au

Where: 0. . y| _ . progeny mean X . V. .

The first case ignores all the information about the effect of individual sires, and 

the abscissae are taken around a mean of zero, this being the mean of the transmitting 

ability distribution assumed in the model. In the second case, the location parameters, 
around which the abscissae are placed, are the transmitting abilities for each sire (Gj).

With this value for the location parameter it can be shown that the approximation is 
povr>t */% -Une (j2 s

exact with one summation and V^=T—r-r. Case 3 uses zero, as the location parameters ^ (n+A) *

and the scaling parameter from case 2. Case 4 uses the transmitting abilities for each sire 

as the location parameter and the square root of the sire variance component as the
pochts LO tine 

scaling parameter. For each case a range of the number of summation was tried.
F-

Table 4.1 gives the natural log likelihoods as a deviation from the true log likelihood
pounts \Jn -Ooe.

calculated using [4.4]. As expected, as the number of summation increases the likelihood
^

approximated using Hermite integration approaches the value of the exact likelihood. 

When the transmitting abilities were used it was possible, with the correct scaling, to 

obtain the exact likelihood with one poLnt. Even when the scaling parameter was

not the most appropriate for the location parameters used (cases 3 and 4) the likelihood
pounts ua -one

calculated with Hermite integration was close to the exact with only 10 or 16 summation 

although not very good with only a few poinbs. Lack of information about the
pou~)t-S to -une

parameters can be overcome by increasing the number of ̂ summation.
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Table 4.1 Polygenic log likelihood using Hermite integration with different location, scaling
points i* t+Tt.

parameters and number of summation expressed as a deviation from the exact log
&

likelihood.

Number 
Points

32

20

16

10

5

3

1

1

0.0000

0.0000

0.0000

0.0000

0.0375

-0.0997

-7.1383

2

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Case 
3

0.0000

0.0000

0.0000

0.0000

-0.0509

-1.2312

-24.4325

4

0.0000

0.0000

0.0000

-0.0011

0.2662

2.3302

17.2942

Mixed model
The mixed model likelihood cannot be calculated by considering the variance

pcxnts un tine
components, however, as shown for the polygenic model, as the number of Nsummation 
used in Hermite integration increases the approximation to the likelihood should near the

pO/TtS <^ t.H€.
exact value. To investigate the number of Asummatk>n required to obtain a reasonable 
approximation, data were simulated under a mixed model. The expected values were used 
for the major genotype means and frequencies and the variance components. Four 
different combinations of scaling and location parameters were used, equivalent to those 
tried for the polygenic model. For a mixed model the mean of the progeny cannot be 
used as a measure of the sire's polygenic transmitting ability, as the mean will also include 
the major gene component. To see if an improvement in the approximation might be 
obtained if an estimate of the polygenic transmitting ability was available, the mean of the 
simulated phenotypic values for the offspring with the effect of their major genotype 
subtracted, were used where the progeny means had been used in the polygenic model 
(in cases 2 and 4). The results are given in table 4.2, with the likelihood given relative to

pouits uo t»oe
that calculated using 32 summation.

A
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Table 4.2 Mixed model log likelihood using Hermite integration with different location,
points Cn fie. 

scaling parameters and number of summation expressed as a deviation from the log
likelihood calculated with 32 summations.

Number 
Pounts

32

20

16

10

5

3

1

1

0.0000

0.0000

0.0000

0.0000

-0.0135

-0.1518

-0.6837

2

0.0000

0.0000

0.0000

-0.0016

-0.3239

-2.3570

-21.0727

Case
3

0.0000

0.0000

0.0000

-0.0004

-0.1482

-1.5178

-18.8714

4

0.0000

0.0000

0.0000

0.0030

0.0074

0.0954

-2.8850

There is no further improvement in the approximation by including more than 16 
pouots ua tJr»e
summation,, for all four cases considered. With fewer summations, taking account of the
A

polygenic contribution of the sire does not improve the approximation. With a single
point C/"v tJoC
summation, using the 'true' value for the transmitting ability might make the sire very
A

likely to be one of the homozygotes, whereas if this information was ignored this 
genotype would not be more likely and information would also come from the other 
genotypes.

Although for a large pedigree the exact mixed model likelihood is too 
computationally demanding, for a small pedigree the exact likelihood can be calculated 
using equation [2.3]. Data were simulated for 10 half-sibs from each of 20 sires. The 
exact mixed model likelihood was calculated and compared with the approximate

poCntS un t^ie
likelihood calculated using Hermite integration with 20 summation. Several different 
parameter values were tried and in all cases the two likelihoods were the same to 8

poCotS un tine
significant figures. Hence, using Hermite integration with 20 summation is effectively 
the same as using the exact likelihood.

4.3 MAXIMISATION 

4.3.1 Algorithm

The likelihood was maximised explicitly using a quasi-Newton algorithm (E04JAF) 

from the NAG library (Numerical Algorithms Group, 1988). This algorithm is based on the
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Newton-Raphson algorithm which can be derived from a Taylor expansion. Denoting the 
parameters to be estimated 6, where 0a is the value of these parameters at iteration a, the

following equation can be obtained:

ainL(ea)ainuea_ 1 ) a2 inuea_i)

Ignoring quadratic and higher order terms of (6 a -6 a _i) the equation can be 

rearranged to give the fol towing algorithm for maximisation:

\-1

[4.5]

This requires both the vector of partial 1st derivatives of the log likelihood with 
respect to the parameters 0 (gradient vector) and the Hessian matrix of partial 2nd
derivatives of the log likelihood with respect to the parameters. The quasi-Newton

at 
algorithm used approximates the gradient vector by finite difference and each iteration
the approximation to the Hessian matrix is updated and improved.

The algorithm minimises a function and so in this case the negative tog likelihood 
for the mixed model is minimised which is equivalent to maximising the likelihood. A 
routine that calculates the function to be minimised for given parameter values needs to 
be supplied along with initial parameter estimates from which the minimisation process 
starts.

The rate of convergence can be improved by scaling the parameters, ideally so that 
a unit change in the parameter causes a unit change in the function value (Numerical 
Algorithms Group, 1988). In the mixed model the genotype frequencies are obviously on 
a different scale to the means and variances. To improve this situation and also to 
prevent the necessity for constraining the parameters with bounds, the parameters can 
be transformed. If the population is assumed to be in Hardy-Weinberg equilibrium with 
respect to the major gene, then only a single allele frequency (p(A)) is required to be 
estimated in order to describe the frequencies of the major genotypes. Using a logistic 
transformation of the frequency, p(A)* = In/ LA\)» enables the parameter to be

estimated to take any value between negative and positive infinity, while the allele 
frequency is effectively constrained to have a value between zero and one. To convert 
back to the original scale the transform required is p(A) =
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The assumption of the population being in Hardy-Weinberg equilibrium with respect 
to the major gene can be relaxed and genotype frequencies estimated for the founders. 
In this case the following reparameterisation can be made to constrain each of the 
frequencies to be between zero and one, while also constraining the sum of the 
frequencies to be one.

Frequency_____Reparameterisation 
freq(AA) x^ 

freq(Aa) (1-x-|)x2 
freq(aa) 1-freq(AA)-freq(Aa)

Where x-j and x2 can take values between zero and one. The parameters x-| and x2

can be treated in the same way as the allele frequency and transformed using a logistic 
transformation (giving x-j* and x2*). The transformed parameters are estimated and can

be converted back into the genotype frequencies for the likelihood calculation using the 
following transformations:

Frequency______Transformation___ 

freq(AA)

freq(A3) (1+exp[Xl *])(Uexp[x2*]) 

freq(aa) 1-freq(AA)-freq(Aa)

To constrain the variance estimates to be positive the square root of the variance
A

components (standard deviation) are estimated. 

4.3.2 Initial parameter estimates

A small simulation study was undertaken to determine how sensitive the 
maximisation routine was to the initial parameter estimates used to start the process. 
Data were simulated under a mixed model containing 20 half-sib progeny from each of 50 
sires with all parents unrelated and randomly mated. The additive polygenic variance was 
equal to one quarter the environmental variance. The major locus had two alleles at equal 
frequency with effect equal to 2 within major genotype standard deviations between the 
homozygotes and with additive action. Initially the population was assumed to be in 
Hardy-Weinberg equilibrium and a single allele frequency was estimated, then the analyses
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were repeated estimating the genotype frequencies in the sire population and an allele 

frequency for the dams. The polygenic heritability was assumed to be known and fixed at 
the expected value (h^). Five different starting places were tried as follows:

Model
1
2

3

4

5

DfAl

0.5

0.5

0.5

0.5

0.5

——— HA A ———————— UAa ———

2VVW+VU Vvw+vu

2VVW+VU Vvw+vu

2Vvw+vu Vvw+vu
Vvw+vu o.5Vvw+vu

0 0

n

y..' ^Aa
y..' HAa+5

y..' HAa" 5

y..- ^Aa

y..

(j2

V * vw
V * vw
V * vw
V * vw
Vw*

Where: Vw is the within sire variance component from an analysis of variancew 
Vu 

y
V * v w

is the between sire variance component from an analysis of variance 
is the mean of the phenotypes

1 ' hPo'Y
V -Vv u v

Vmg = 2p(A)

The simulation and analyses were repeated ten times.

Results
If the maximisation process was started from a polygenic model, the end values 

were also a polygenic model. When assuming that the population was in Hardy-Weinberg 
equilibrium and estimating an allele frequency, for all but two of the simulated data sets all 

the analyses converged to the same maximum. For these two sets of data, one model 
(model 2 in one case and model 3 in the other) resulted in a maximum that was just more 
likely than the others which all gave the same result. In one of these cases both of the 

mixed models obtained were a significant improvement over the polygenic model. The 
parameter estimates and likelihood as a deviation from the polygenic model are given in 

table 4.3.
When genotype frequencies were estimated, the maximisation process was more 

sensitive to the initial values of the parameters. Two of the data sets resulted in the same 

maximum for all four of the initial models tried. For the other simulations, several local 

maxima were obtained. More than one set of parameter estimates could be obtained with 
a similar likelihood. Examples of the resulting models and their likelihoods are given in 

table 4.3.
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4.4 SIMULATION STUDY 

4.4.1 Data

To investigate the approximation, data were simulated using the Fortran program 

described in Appendix 2. Phenotypes of 20 half-sib progeny from each of 50 sires were 

simulated, with all parents unrelated and randomly mated. The phenotypes were 

composed of a polygenic component, an individual environmental component and a major 

gene. The polygenic component comprised of 24 unlinked loci, with equal effect. At each 

locus there were two alleles at equal frequency and with an additive effect. Four different 

models were considered for the major locus, in each there were two alleles (A and a) in 

the following models:

Where: h£

Model

Add1

Add2

Dom
Rare

,2

n ooK/j-X-My

0.2

0.4

0.2

0.2

4o§

P(A)

0.5

0.5

0.5

0.2

U.AA
* " *

2

2

2

2

U.A a
, ,*.

1

1

2

1

—— Uaa-

0

0

0

0

p(A) is the frequency of the high scoring allele in the parent population, 
is the effect of genotype d in units of within major gene standard

deviations

4.4.2 Analyses

poCnts C 
Hermite integration was used with 20^summation with the abscissae located

around zero and using the square root of the sire variance estimate as the scaling 
parameter (au ), i.e. case 1 from table 4.2.

In the analysis the mean effect of the low scoring homozygous genotype (n) at the 

major locus and the deviation from this mean of the other two major genotype means 
(UAA and u.Aa ) were estimated. The population was assumed to be in Hardy-Weinberg

equilibrium and hence an allele frequency (p(A)) was estimated. Two analyses of each data 

set were carried out, the first assuming that the polygenic heritability was known, and 

estimating just the residual variance, and the second estimating the polygenic heritability 

as well as the residual variance.
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As described above parameter estimates are required from which the maximisation 
process can start. If these are close to the global maximum, convergence to this 
maximum is more likely to be obtained. With the assumption of the population being in 
Hardy-Weinberg equilibrium the method has been shown not to be very sensitive to the 
initial parameter estimates (see section 4.3.2). In these simulations the expected 
parameters are known and hence these were used as initial estimates. In practice this 
would not be the case and several starting points should be tried in order to confirm that 
the global maximum has been attained.

Genotyplng at the major locus
For the knowledge that a major gene exists to be of use, not only are good 

estimates of the parameters involved required, but also the identification of the genotype 
of each individual. To obtain an indication of how reliable the method is at genotyping 
individuals the probability of each genotype for each sire was calculated. Equation [2.5] 
gave this probability for the exact mixed model, however, in the same way as the 
likelihood has been rewritten by replacing the integration with a summation, this 
probability can also be rewritten:

qs (c) = 9=1

n m

J[ | / Jrans(d|c)exp
j=1 6=1 2a

w.W

G m

9=1 CM

n m

d=i

[4.6]
After maximisation of the likelihood, this probability can be calculated using the ML 

estimates for the parameters. As the sires are assumed to be independent, the genotype 
that is most likely for each sire will also be the most likely for that sire when considering 
all the sires together. Although expressions for the genotype probabilities for the 
offspring can be obtained, these will be less reliable as they are composed of the 
probabilities of the genotypes of their sire and the deviation of their own phenotype 
from the major gene means.

4.4.3 Test statistic

A test for the presence of a segregating major gene is the likelihood ratio test 
[2.4]. Under the null hypothesis of no major gene component, this test statistic is 
expected asymptotically to follow a x2 distribution with three degrees of freedom, as
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three parameters are estimated in the mixed model but fixed in the polygenic model 
(P(A), HAA- M-Aa)- To confirm this expected distribution data were simulated under a

polygenic model. The simulation program described in Appendix 2 was used with the 

genetic component being controlled by 25 loci with equal effect and no linkage between 

them. At each locus there were two alleles, with additive effect and equal frequency. 

There was also an individual random component giving a heritability of 0.2 or 0.4, these 

being the polygenic heritabilities in the mixed model simulations. 100 replicates of each 
model were simulated.

In the same way as for the analyses of mixed model data each data set was 

analysed assuming that the heritability was known and fixing it at the value used in the 

simulation, and then repeated estimating the heritability. For the mixed model analyses 

initial estimates assumed that the major gene explained half of the total variance. The 

MLs of the data under the polygenic and mixed models were obtained and minus twice 

the natural log of the likelihood ratio calculated.

Results
The distribution of test statistics for the data with heritability 0.2 and 0.4, analysed 

assuming the heritability was known and estimating the heritability are shown in figures 

4.1 and 4.2. The expected distribution, a x2 distribution with three degrees of freedom, 

is shown in figure 4.3.

Table 4.4 Mean and variance of the test statistic and the number of analyses where the 

test statistic was significant at the 5% and 1% significance levels of a x2 distribution with 

3 degrees of freedom.

Expected
h2=0.2
h2=0.2
h2=0.4
h2=0.4

(X 2 3 d.f.)

fixed
estimated
fixed
estimated

Mean

3
2.886
3.352

3.056

3.483

Variance

5.430

6.321

8.975

10.470

5%

5

5

6

5

8

1%

1

0

0

3

4

Based on 100 simulations of each genetic model.
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Figure 4.1 Distribution of the test statistic from analyses of polygenic data with an 

expected heritability of 0.2.

a) With the polygenic heritability assumed to be known in the analyses.

25

20

15

10

4 6 8 10 
Test statistic

b) With the polygenic heritability estimated in the analyses.

0)

4 6 8 10 
Test statistic

12 14
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Figure 4.2 Distribution of the test statistic from analyses of polygenic data with an 

expected heritability of 0.4.

a) With the polygenic heritability assumed to be known in the analyses.

I I I I !

0 2 4 6 8 10 12 14 16 18 20 22
Test statistic

b) With the polygenic heritability estimated in the analyses.

25 -i

20 -

u- 10

0 2 4 6 8 10 12 14 16 18 20 
Test statistic
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Figure 4.3 jf distribution with 3 degrees of freedom.

8 10 12 14
o

X value

The mean and variance of these distributions and number of analyses giving 

significant test statistics at the 5% and 1% significance levels of a x 2 distribution with 

three degrees of freedom are given in table 4.4. Estimating the heritability increases the 

mean and variance of the distribution compared with fixing it at the expected value, also 

with higher polygenic variance the mean and variances of the test statistic distributions 

were higher. There is a linear relationship between the test statistic obtained with the 

heritability fixed compared with that obtained with the heritability estimated for the same 

set of data, the slope of the regressions being about 0.65 and the correlations 0.70.

As a test for the presence of a segregating major gene the upper tail of the 

distribution obtained from data simulated under a polygenic model is of interest. However 

with only 100 analyses good estimates of suitable 5% and 1% quantiles can not be 

obtained. An indication of whether the observed distribution follows a x2 distribution 

can be obtained by calculating the observed number of test statistics that fall within 10 

equal classes of a x2 distribution, and comparing these with the expected distribution 

using a x2 test. Table 4.5 shows the distribution of observed test statistics for the four 

analyses compared with a x2 distribution with two, three and four degrees of freedom. 

None of the observed distributions were significantly different from a x 2 distribution 

with three degrees of freedom. The distribution of the test statistic obtained analysing 

the data with an expected polygenic heritability of 0.4, estimated in the analyses, was
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also just not significantly different from a x2 distribution with four degrees of freedom at 

the 5% level. However, based on the x2 (9 d.f.) statistic, the distribution more closely 

resembled a x2 with three degrees of freedom.

with 2,3 or 4

Proportion
ofx2

degrees of freedom.

Anatvses - oolvaenic

0.2, fixed
distributionExoected 2df 3df 4df

0.0-0.1

0.1-0.2

0.2-0.3

0.3-0.4

0.4-0.5

0.5-0.6

0.6-0.7

0.7-0.8

0.8-0.9

0.9-1.0

X 2 (9 d.f.)

10

10

10

10

10

10

10

10

10

10

19

16

12

13

11

5

6

5

7

6

22.

10

9

10

10

9

12

10

7

8

15

.2 4.4

5

7

6

8

7

6

15

11

11

24

30.0

0.2, estimated
2df 3df

26

17

13

13

5

6

7

7

4

3

46.5

15

11

14

6

11

12

5

6

10

10

10

4df

6

9

9

10

8

6

14

10

7

21

.4 17.7

heritabilitv

0.4, fixed
?nf
22

15

13

8

8

12

4

13

2

3

34.8

M

10

11

11

8

10

7

6

15

9

13

6.6

4df

5

6

8

8

9

6

8

9

17

24

31.6

0.4, estimated
2df

20

23

13

10

10

7

5

7

3

2

43.4

3(1f
10

9

15

15

7

10

10

7

7

10

7.8

4df

8

4

6

9

16

8

8

13

11

17

16.0

Discussion
From these 100 simulations there is no evidence to suggest that the test statistic 

distribution does not follow a x2 distribution with degrees of freedom equal to the 

number of parameters estimated in the mixed model but fixed in the polygenic model. 

That is, the distribution suggested by Wilks (1938) appears to hold when comparing the 

mixed and polygenic models.
In the context of segregation analysis Elsen and Le Roy (1989) interpret the 

degrees of freedom in Wolfe's modified likelihood ratio (Wolfe, 1971) to be equal to twice 

the minimum number of parameters that need to be fixed in the mixed model in order to 

obtain the polygenic model. In the simulations presented here only one parameter needs
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to be fixed, the frequency of allele A in the population (p(A)). Hence a x 2 distribution 
with two degrees of freedom would be used. This is not supported by the simulations. An 
alternative interpretation, using twice the difference in the number of component 
distributions (Wolfe, 1971) would suggest testing the likelihood ratio with a x 2 
distribution with four degrees of freedom. This is also not supported by the simulation.

Le Roy et al. (1989) and Elsen and Le Roy (1989) also look at the likelihood ratio 
distribution for this likelihood (called SA in their notation). Le Roy et al. (1989) consider 
data containing 5, 10 or 20 half-sib progeny from each of 5, 10 or 20 sires, when 
assuming that the poly genie heritability is known and fixing it at the expected value, and 
just the largest data set when estimating the heritability. With fixed heritability, based on 
500 simulations of each data structure, the mean of the test statistic distribution was 
remarkably constant, about 4.5, over all the situations. Their analyses estimate the major 
genotype frequencies for the sires and the allele frequency for the dams, and hence using 
the constraint u, 1 = u_2 = 113 the observed distribution is compared with a x2 distribution

with four degrees of freedom (this being twice the minimum number of parameters 
required to be fixed in the mixed model to obtain the polygenic model). Although 
significantly different from this distribution, the mean of 4.5 suggests that the correct 
distribution would have degrees of freedom somewhere between 4 and 5, the latter also 
being the distribution suggested by Wilks (1938). This mean might increase if the surface 
was searched more thoroughly for a maximum. The large number of simulations enables 
the 5% and 1% quantiles to be estimated from the data. For the largest simulation (s=20, 
n=20) these are 11.25 and 15.65 (for 5% and 1% respectively) which are similar to 
values that would be obtained using a x 2 distribution with five degrees of freedom 
(11.07 and 15.09). Although searching further might increase the mean of this 
distribution it is unlikely to affect the extreme values as any mixed model that is much 
more likely than the polygenic model should have been located already. With heritability 
estimated Elsen and Le Roy (1989) also found that increasing the heritability of the data 
increased the mean and variance of the test statistic distribution. Again, although the 
number of simulations was less, about 200, they estimated the 5% and 1% quantiles, 
which are similar to the values that would be obtained from a x2 distribution with five 
degrees of freedom.

Unfortunately, Elsen and Le Roy (1989) analysed different data when assuming 
that the polygenic heritability was known compared with when estimating it. Therefore, 
the effect of making the assumption is difficult to ascertain. Their results show a decrease 
in the mean and standard deviation of the test statistic distribution when the heritability 
was estimated compared with when it was assumed to be known. However, this coukJ be 

because the same data sets were not being considered in the two cases.
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4.4.4 Simulation Results

Power

The number of analyses in which evidence of a major gene was found is summarised 
in table 4.6 along with the mean and standard deviation of the test statistic. When the 

simulated data contained a dominant major gene, a major gene was most easily detected, 
with evidence for its existence being found in all the analyses, at the 1% significance level 

(using a x2 distribution with three degrees of freedom). For the three additive major 

genes, when the heritability was fixed, the larger the proportion of genetic variance 
explained by the major gene simulated the more data sets in which evidence for a major 
gene was found. With the heritability estimated a major gene was detected in the highest 
proportion of analyses when the simulated gene had a rare allele. When the heritability 

was assumed to be known, and the expected value from the simulation used in the 
analysis, a major gene was detected in more analyses than when the heritability was 
estimated at the same time.

Table 4.6 Mean and standard deviation of the test statistic and the number of analyses 

where the test statistic was significant at the 5% and 1% significance levels of a x2 

distribution with 3 degrees of freedom.

Model mean standard deviation 5% 1%

Fixed heritability

Add1

Add2

Dom

Rare

Estimated
Add1
Add2
Dom
Rare

12.800

7.012

47.278

12.043

heritability
5.093

4.338

41.129

6.478

6.838

4.855

14.719

7.244

3.711

3.523

12.893

4.512

75

36

100

65

20

15

100

33

59

16

100

41

7

5

100

13

Based on 100 simulations of each genetic model. 
The genetic models are described in section 4.4.1.
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Parameter estimates
If the estimates from the analyses are unbiassed, the mean parameter estimates 

over the 100 simulations should give good estimates of the population parameters, i.e. 
those used to simulate the data. Table 4.7 gives the expected parameter values for the 
four mixed models simulated. Table 4.8 gives the average results for the major gene 
parameters, with the higher of the two homozygote means estimated defined as AA. The 
variance component estimates, residual variance only when the polygenic heritability is 
assumed to be known and both residual and sire when the heritability is estimated, are 
given in table 4.9. In general the parameter estimates were in good agreement with the 
expected values. Using a t-test the mean parameter estimates were tested against the 
expected values and significant tests are indicated in the tables. However, this test 
assumes that the true value is known without error which is not correct in this case 
because, in each simulation the realised value of the parameter will be different to the 
expected value due to sampling. Hence the estimated standard error of the difference 
between the 'true' and estimated value will be larger than that used in the test and the 
test will give more significant values than it should. The difference between the Irue' and 
estimated parameter for each analysis will also differ from that used but could either 
increase or decrease in size. However, using this test, the mean estimate for the effect of 
the high scoring homozygote, when the heritability was fixed, was significantly under 
estimated for the three additive models and in the model containing a rare major gene the 
frequency of the high scoring allele was significantly over estimated. This frequency was 
also over estimated when the polygenic heritability was estimated. When the data 
contained a dominant or rare major gene the residual variance was significantly under 
estimated, both when the heritability was fixed and estimated, and the contribution of 
the major gene was over estimated by a similar amount. When estimated, the mean sire 
variance component was not significantly different from the expected value for the four 
models. For all of the models some of the analyses (20 for Add1, 7 for Add2, 8 for Dom 
and 9 for Rare) went to a model with the genetic component being determined by a 
major gene only, the sire variance being equal to zero. None of the analyses gave a 
polygenic model.
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Table 4.7 Expected parameter values.

Model

Add1

Add2

Dom

Rare

PfA)

0.5

0.5

0.5

0.2

20

20

20

20

— liAa —

10

10

20

10

(T2

5

10

5

5

cr2

95

90

95

95

Table 4.8 Mean (and standard deviation) of major gene parameter estimates.

Model DfA) u. A A u. A-

Fixed heritability

Add1

Add 2

Dom

Rare

Estimated

Add1

Add2

Dom

Rare

0

0

0

0

heritability

0

0

0

0

.495

.486

.504

.265

.495

.480

.505

.256

(0

(0

(0

(0

(0

(0

(0

(0

.129)

.162)

.048)

.172)**

.164)

.160)

.049)

.167)**

18

18

20

17

19

19

20

18

.747

.855

.694

.911

.240

.309

.493

.721

(4

(5

(3

(7

(6

(5

(3

(8

.645)**

.507)**

.793)

.682)**

.133)

.444)

.881)

.143)

9

9

20

9

9

9

20

10

.105

.521

.150

.866

.130

.755

.292

.833

(5.162)

(5.152)

(1.751)

(4.566)

(6.621)

(5.332)

(1.918)

(8.030)

significantly different from expected value at 5% level 

significantly different from expected value at 1% level

Although the expected values of the variance components are the same for each 

data set, the realised values will differ because of sampling. Values for the residual and 

sire variance components were obtained by analysis of variance on the simulated 

phenotypes with the effect of the major genotype removed. Table 4.9 gives the 

relationship between these parameter estimates and the estimates obtained from 

segregation analyses for the same set of data. Although the effect of the major gene is 

the same for each simulation, some variation in the allele frequency is expected, hence
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also in table 4.9 the major gene variance has been estimated for each data set, using the 
formula:

<4j = P(A) 2 M.&A + 2p(A)p(a) uJU - (p(A)2 UAA + 2 p(A)p(a) uAa ) 2 [4.5]

and compared with that estimated from the segregation analysis using the same formula. 
With fixed heritability, the estimates of the residual and major gene variance components 

have a positive association with the values estimated in the simulation. The slopes of the 
regressions are close to one for the residual variance, although the correlations are low. 
The major gene variance estimated with Herm has a fairly low correlation with the value 
estimated in the simulation for the same data set, and except for the data containing a 
major gene of dominant effect, the slopes of the regressions are higher than one. As 
expected, there is a very low or negative association between the sire variance obtained 
from Herm and the value estimated from the simulation. This is because this variance is 
not being estimated directly, but as a fixed proportion of the residual variance. In each 
data set the ratio of these two variances is not the same but will differ because of 
sampling, and as there is more information on the residual variance this is estimated fairly 

well at the expense of the sire variance. With the heritability estimated, the sire variance 
is now being estimated directly and, generally, the correlation with, and the regression on 
the values estimated from the simulation are closer to one than for the other variances. 
The residual variance for all genetic models, except for the data containing a gene of 
dominant effect, is less well estimated than when the heritability was fixed.

Genotyping sires at the major locus
The probability of each sire being each genotype was calculated using equation 

[4.6]. Considering the true genotype for each sire, the probability of the sire being this 

genotype was grouped into one of three classifications. The first, if the probability of 

being the correct genotype was greater than 0.9, the second greater than 0.75 and the 

third greater than 0.5. For each analysis the percentage of correctly ge no typed sires was 

calculated for each genotype and the total percentage correctly genotyped over all 
genotypes. The results are given in table 4.10 as the mean percentage correctly 

genotyped over the 100 simulations.

Over all genotypes, when the major gene was additive with a rare allele, at a 

probability of 0.9, the highest number of sires were correctly genotyped. This is because 

of the high proportion of the common genotype, aa, sires which were correctly 
identified. If the criterion for allocating a genotype to sires was that the conditional 

probability for that genotype had to be greater than 0.5, the highest number of sires 

were correctly genotyped when the simulated major gene had an allele with a dominant 

effect. Fewest sires were correctly genotyped for the additive major gene segregating in
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a polygenic background with high herrtability (0.4). Using 0.9 as the minimum value for 
the conditional probability for a sire to be allocated that genotype, for all models, a 

higher proportion of homozygous sires were correctly genotyped than heterozygous 
sires.

Figure 4.4 gives the relationship between the probability of the sire being each 
genotype and the mean of his offspring for one of the simulations with a major gene 
with additive effect and polygenic heritability of 0.2 (Add1). As expected, the sires 

whose progeny have the lowest mean have the highest probability of being genotype aa, 
and the sires with a high progeny mean have the highest probability of being genotype 
AA. At intermediate values of the progeny mean the sire could be any genotype. Figure 
4.4 indicates that the conditional probability is dependent not only on the mean but that 
information about the distribution of phenotypes within families is taken into account.

Figure 4.4 Probability of the sire being each genotype, against the mean performance of 

the progeny of the sire.

.o
03n 
2
Q.

15 
o 
T3 
oo

-505

Progeny mean

91



4.4.5 Discussion

The results given above are based on a single analysis of each data set. No attempt 
has been made to verify that the likelihood value obtained was the global maximum, and 
hence that the estimates were the ML estimates. However from previous investigation 
using this model (see section 4.3.2), at least with heritability fixed, the global maximum 
seemed relatively easy to obtain and starting from the expected estimates should mean 
that the maximum is near.

When the polygenic heritability was assumed to be known and fixed at the 
expected value, the ability of the method to detect a major gene depended on the 
proportion of the genetic variance which was explained by the major gene. The simulated 
major gene with dominant (Dom) effect accounted for 79% of the genetic variance and a 
major gene was detected in these data most frequently, whereas the additive major gene 
segregating in Add2 explained only 56% of the genetic variance and a major gene was 
detected in only 36 of the analyses (at the 5% significance level). When the heritability 
was estimated a major gene was detected more often when the simulated additive major 
gene had a rare allele than when a gene with alleles of the same effect as for the rare 
case but at equal frequency was simulated. One explanation for this is that although the 
gene with a rare allele contributes less to the genetic variance it causes the distribution of 
phenotypes to be skewed. The mean skewness of the 100 data sets containing the rare 
allele was 0.1185 and for the allele at a frequency of 0.5 was 0.0026 This skewed 
distribution can not be explained by the polygenic model and hence the mixed model is 
inferred. With the heritability fixed the skewness of the distribution appears to have less 
effect. The high detection rate for the major gene with dominant effect might also be 
partly explained by the data being skewed (mean skewness for the 100 data sets was 
-0.3171)

Le Roy ef a/. (1989) and Elsen and Le Roy (1989) give the percentage of analyses
in which evidence for a major gene was found for models equivalent to Add1 and Dom 
(case 2 or h 12 and case 1 or h^ respectively). The model for analysis, as explained

previously, estimated the sire genotype frequencies and the dam allele frequency. Le Roy 
et al. (1989) compare the test statistic with 5% quantiles obtained by analysis of data 
simulated under a polygenic model. With fixed heritability the quantile decreases with 
decreasing number of sires and hence with few sires less evidence is required to detect a 
major gene. However with few sires and few offspring per sire the power of detection of 
a major gene was tow. With 20 offspring from each of 20 sires the 5% quantile used was 
11.25, which is similar to the value from a x 2 distribution with five degrees of freedom.
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When the simulated major gene had a dominant effect a major gene was detected in 90% 
of the analyses, and when the effect was additive a major gene was detected in 25% of 
the analyses, using the empirical quantile. When the polygenic heritability is estimated, for 
20 half-sibs from each of 20 sires, the test statistic was compared with an estimated 5% 
quantile of 10.88 (Elsen and Le Roy, 1989). A major gene was detected in 81% of the 
analyses when the simulated data contained a dominant major gene segregating against a 
polygenic background with a heritability of 0.2 and in 86% of analyses when the 
simulated background heritability was 0.6. For the major gene simulated under an additive 
model, a major gene was detected in only 10% and 13% of the analyses with polygenic 
heritability of 0.2 and 0.6 respectively. The results reported here detect the major gene 
more often in the equivalent situations, which is probably due to the increased number of 
sires in the data. Elsen and Le Roy (1989) report an increase in the significant test 
statistics when the polygenic heritability was increased from 0.2 to 0.6. This is surprising, 
as the major gene will be explaining a lower proportion of the genetic variance with the 
high heritability. In agreement with the results presented here, Elsen and Le Roy (1989) 
find that estimating the heritability decreased the number of significant test statistics.

Analysing mixed model data with the polygenic heritability fixed at the value 
simulated, the polygenic likelihood is much less than the mixed model likelihood. This 
occurs in part because the fixed polygenic heritability poorly explains the total genetic 
variation, both major gene and polygenic. When the polygenic heritability is estimated, 
the difference between the polygenic and mixed model likelihoods is reduced, because an 
increased heritability in the polygenic model can explain some of the major gene variance. 
Thus the ratio of likelihoods when the heritability is estimated is smaller and this results in 
the major gene being detected less frequently. A corollary to this is that, if an 
underestimate of the polygenic heritability was used in the analyses with fixed heritability, 
a mixed model might be inferred, simply because the major gene can explain the additional 
polygenic variance.

As explained, the t-test is a poor criterion to judge the accuracy of the parameter 
estimates and is likely to give more significant results than it should. However, it gives an 
indication of any weakness in the estimation procedure. In general the mean parameter 
estimates were good. For the rare allele, on average, its frequency was over estimated 
and its effect under estimated, although there was a large variance in the estimates. On 
average, the major gene variance was over estimated and the residual was under 
estimated, both when the heritability was estimated and when ft was assumed to be 
known. When analysing real data, there is, of course only one set of data and hence the 
accuracy of the estimates is important, not just a knowledge of bias. Hence we are 
interested in the estimates for each analysis and how these compare with the true
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parameter values. For the means, the variance of the estimates were large, and if just a
A

single data set had been considered the estimate might have been some way from the 

correct value. When the residual and sire variance estimates were compared with the 

values obtained by analysis of variance on the polygenic and environmental contributions 

to the phenotypes for the same data set, there was a positive linear relationship, but the 
correlation between the ML estimates and the values estimated directly from the data 
was low. Hence an individual analysis may give misleading results. The parameter 

estimates of the major gene with an allele of dominant effect were closest to the true 
values with a low variance.

When estimated, the heritability was, on average (of the 100 analyses), very close 
to the expected value, although the variance of the estimates was high. This is in 
contrast to the results of Elsen and Le Roy (1989) who found that the heritability was 

under estimated. In some of the analyses presented here, a major gene model was 
obtained with the polygenic heritability equal to zero. This suggests that there is a 
problem in distinguishing the two sources of genetic variation. However the major gene 
model obtained gave a good indication as to the effect and frequency of the simulated 
gene.

The percentage of sires correctly genotyped was tow if the criterion for classifying 
animals to a genotype was based on the conditional probability of that genotype being 
greater than 0.9. If a probability of 0.5 was required to genotype a sire, then all the 
models had greater than 50% of the sires correctly genotyped. However, at this 
probability, more sires will be incorrectly assigned to a genotype class.

4.4.6 Incorrect estimate for the heritability.

In the analyses above it was found that a major gene was easier to detect if the 

polygenic heritability was fixed. In effect the major gene was being suggested to explain 
the extra genetic variance not explicable by the polygenic heritability. This gives concern 

that the method will not be robust to the assumed value of the polygenic heritability.
To investigate this, the polygenic data simulated with an heritability of 0.4 were 

reanalysed, this time fixing the heritability at 0.2. The analyses were the same as those 

carried out to confirm the test statistic distribution (section 4.4.3).
Figure 4.5 shows the test statistic distribution obtained. The mean of this 

distribution is 8.499 and the variance 35.77. Obviously these are much larger than 

expected for a x 2 distribution with three degrees of freedom. Also 47 of the 100 

simulations gave test statistics significant at the 5% level of a x 2 distribution with three 

degrees of freedom and 28 significant at a 1% level. When the expected and observed
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frequencies falling within ten equal groups of the x 2 distribution were compared, the x2 
value (x2 (9 d.f.)=295.2) was extremely significant, caused by the large number of high 

test statistic values.

Figure 4.5 Distribution of the test statistic from analysis of polygenic data with an 

expected heritability 0.4, analysed with a fixed value of 0.2.
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With the polygenic heritability assumed to be known the proportion of genetic to 
residual variance is fixed. If, as in this case, this is not the correct proportion, but an 
underestimate, then the mixed model is more likely than the polygenic, even though the 
data is in fact simulated under a polygenic model, because the major gene can explain 
some of the genetic variance which cannot be explained by the polygenic variance.

However this is an extreme case with the polygenic heritability estimate only 
explaining about one hatf of the genetic variance. Of more interest is the sensitivity of 
the method to small discrepancies in the value of the heritability used compared with the 
true polygenic heritability of the data. For the polygenic data simulated with a heritability 
of 0.4, although the expected value for each data set is 0.4 the true value will vary due to 
sampling. Figure 4.6 shows the relationship between the test statistic and the polygenic 
heritability of the data estimated by analysis of variance of the simulated polygenic plus 

environmental effects. There is a correlation of 0.23, hence, as the difference between
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the heritability of the data and the assumed value increases a major gene is more likely to 
be inferred.

Figure 4.6 The test statistic from analyses of polygenic data with an expected heritability 

of 0.4, and fixed in the analyses, plotted against the heritability of the data estimated by 
analysis of variance.
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Finally the effect of the heritability estimate on the parameter estimates was 
investigated for data simulated under a mixed model. A sample of the data sets simulated 
with model Add1 were analysed with the heritability fixed at values from zero to one. The 
remaining parameters were estimated.

In the results, when possible the total variance, i.e. the sum of the major gene 
variance, the polygenic variance and the residual variance, was approximately equal to the 
total variance of the data. Hence as the polygenic heritability increased the resulting 
model was polygenic and as the heritability decreased the major gene effect became 
larger. Intermediate values gave mixed models. With high heritability estimates the total 
variance was over estimated, because the residual variance estimate was reasonable and 
the polygenic variance was calculated as a fixed proportion of the residual variance.

96



Figure 4.7 shows the mixed model likelihood with the polygenic likelihood (obtained 
when estimating the heritability) subtracted, for four simulations, plotted against the 
polygenic heritability assumed. The polygenic (hp) and total heritability (I\)o1 the data are

marked, along with the ML estimate (h). Although simulated under the same model, the 
surfaces are very different. In all of these examples the maximum obtained when 
estimating the polygenic heritability agrees with the maximum when a grid of fixed values 
for the heritability were used. Hence, the maximisation process has been successful in 
obtaining the global maximum, although, in one of these simulations, more than one 
mode exists, see figure a). When the difference between the mixed and polygenic model 
likelihoods is greater than zero then the incorporation of a major gene is an improvement 
over the polygenic model. Where this difference is greater than 3.5, then this becomes a 
significant improvement at the 5% level. When the polygenic heritability is fixed at zero a 
major gene model will result. In figure b) the major gene model is the most likely, however, 
if the polygenic heritability had been fixed at 0.1 a significant mixed model would result, 
however the major gene parameters in these two models are not very different. A 
significant mixed model was obtained in example c). Here, the estimated polygenic 
heritability is higher than the total heritability of the data. In figure d) the likelihood of the 
data under the mixed model is an improvement over the polygenic model for all 
heritability values except when the polygenic heritability is set at one, but never a 
significant improvement. In general, it would seem that the ability of the method to 
correctly estimate the polygenic heritability is poor.

Figure 4.8 shows the test statistic obtained analysing the mixed model data with 
an additive major gene segregating and a polygenic heritability of 0.4 against the true 
polygenic heritability of the data, both a) for the analyses with fixed heritability and b) 
with the heritability estimated. There is a positive correlation between the test statistic 
and the true heritability when the heritability was assumed to be known in the analyses 
(r=0.475), which disappears when the heritability is estimated (r=0.000). Evidence for a 
major gene is greater when the assumed value for the polygenic heritability is an 
underestimate.
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Figure 4.7 Improvement of the mixed model over the polygenic likelihood for values of the 

heritability of 0.0 to 1.0 for four different Add1 data sets.
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Figure 4.7 (continued) 
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Where: h is the estimated polygenic heritability from the segregation analysis. 
hp and ty are the estimated polygenic and total heritability from the simulation.
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Figure 4.8 The test statistic from the analysis of mixed model data (Add2) with expected 

heritability of 0.4 against the polygenic heritability of the data estimated using analysis of 

variance of the simulated polygenic plus environmental values.
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4.5 DISCUSSION

Segregation analysis has been suggested as a suitable method to detect major 
genes segregating within farm animal populations. The use of Hermite integration in an 
approximation of the mixed model likelihood makes the method feasible and with a high 
number of summations the approximation gives virtually the same results as the exact 
method, and in this study it has been used in this way. The results of the simulation study 
show that segregation analysis is capable of detecting a major gene and obtaining good 
estimates of its effect, even with the simple pedigree structure used. However, the major 
genes simulated had fairly large effects and further investigation is required to see how 
well a gene of smaller effect is detected.

In most animal breeding situations the observations on the animals would also 
include effects of, for example, season or herd, and these would have to be efficiently 
removed from the data. These could be estimated prior to the use of segregation analysis 
using a simple fixed effects model or, perhaps, a polygenic model. In theory, estimation 
of these effects at the same time as the major gene parameters should be the best 
method to separate the fixed and genetic effects. In this case, the computation required 
to estimate the extra effects might become prohibitive, although with the continual 
improvement in computing technology and the development of new algorithms it might 
become feasible. Also, the inclusion of a more complex pedigree, although providing more 
information on the segregation of the major gene, would increase the time taken for each 
likelihood evaluation.

A reduction in the number of summations may decrease the computing time without 
too much loss of accuracy. Using the quasi-Newton algorithm for maximisation, the 
likelihood has to be calculated many times and the time taken for each evaluation of the 
likelihood is a function of the number of summations. Another way of reducing the 
number of summations required might be to have a different location parameter for each 
genotype of each sire. With the polygenic model, good choice of location parameter 
reduced the number of summations required. For the mixed model, given his progeny 
phenotypes, a sire would be expected to have a different transmitting ability under the 
three major genotypes. Hence, rather than using a single estimate for each sire in the 
mixed model approximation, using one for each major genotype of each sire should 
decrease the summations required, although estimates of these might be difficult to 

obtain.
Ideally, to make decisions for selection, animal breeders require both the polygenic 

genotype and the major genotype of each animal. Neither of these are obtained 
immediately in the analysis and have to be estimated after maximisation. For the sire
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model it is relatively easy to obtain the probabilities of each major gene for each individual 

using the ML parameter estimates. However, for a more complex pedigree, many 

likelihood calculations would be involved as the genotype of an individual is dependent on 

the genotype of other individuals and the major genotype for all individuals should be 

assigned simultaneously to be the most likely combination. In the simulation study 

presented here, classifying sires according to their major genotype was successful for, on 

average, only 50% of the sires in one of the models investigated. Further investigation is 

required to see how useful this information could be. Obtaining an estimate of the 

polygenic contribution of each sire to his offspring has not been considered here. If, 

after segregation analysis each individual was assigned a major genotype, these could be 

fitted as fixed effects in a classical mixed model analysis (Henderson, 1973) and the 

polygenic contribution from the sire estimated or the data adjusted for these fixed 

effects using the estimates from Herm and just the random effects estimated.

When the polygenic heritability was assumed to be known and fixed in the 

analyses, a major gene was detected more frequently. The problem will be obtaining an 

estimate that is suitable for the data to be analysed. The method has been shown to be 

sensitive to the heritability estimate and if the polygenic heritability in the data is greater 

than the value assumed in the analysis a major gene is more likely to be inferred, if the 

value is smaller then that assumed a polygenic model will result.
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Appendix 2

A2.1 Simulation program

Simulated data were required in order to test the abilities of the different 
approximations. A Fortran program was designed to simulate a population under a 
genetic model which allows the effect and frequency of the genes involved to be 
specified.

Most computers store information as a series of words each containing a vector of 
fixed length of binary bits and, generally, there are functions available which perform 
Boolean operations on these binary vectors. Integers are stored in binary, each in a word 
and hence each has a unique vector. This representation of information can be utilised for 
genetic simulations (Fraser and Bumell, 1970).

The genetic component of each individual is composed of two words, representing 
homologous chromosomes and the allele at each locus is given by the vector of binary 
bits. Therefore at each locus there is a choice of two alleles represented by '0' or T. The 
maximum number of loci depends on the number of bits in a word, although an individual 
can be composed of more than two words. Hence, the genotype of each individual can 
be described by two integers.

Figure A2.1 illustrates the basic structure of the program and a brief description of 
the various stages is given below.

Figure A2.1 A flow diagram illustrating the basic structure of the simulation program.

Generation of 
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1
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parents

I
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A2.1.1 Founders

To generate the founders the number of loci has to be supplied, in this case 
restricted to a maximum of 32. At each locus there are two alleles segregating. The allele 
frequency and the effect of a homozygous and the heterozygous genotype at each locus 
is required, the remaining homozygous genotype is set to zero. The phenotype is 
obtained by the accumulation of the eflects of the relevant genotype at each locus and 
the addition of a random component obtained from a normal distribution. The variance of 
this distribution is supplied and the mean set to zero. More complicated environmental 
effects can be included, for example the effect of sex, herd or year. Although for the 
study presented here these were ignored. The number of founders to be simulated is 
required along with the proportion of these to be male. Sex is attributed randomly. All 
individuals are simulated independent of the others.

A2.1.2 Selection of parents
Parents are selected initially from the founder population and at later generations 

from the offspring population, so that generations are discrete. The design is balanced 
and hierarchical with a given number of dams per sire and given number of offspring per 
mating. For this study parents were required to be randomly selected.

A2.1.3 Gametogenesis
The two homologous chromosomes are combined into a single gamete representing 

the effects of meiosis. This is achieved by a process called random walking (Fraser and 
Burnell, 1970). The recombination frequency between each adjacent loci is required. Each 
locus is considered in turn and depending on the recombination frequency supplied the 
allele from one of the two homologues is randomly chosen. This process has to be 
repeated on the homologues of each parent for each offspring.

A2.1.4 Production of offspring
The genotype of the offspring is specified by two gametes, one coming from the 

sire and the other from the dam, each gamete was represented by a word. The effect of 
the genotypes can be calculated in the same way as for the founders. The phenotype is 
obtained by the addition of any environmental effects. In this study an individual random 
effect simulated from a normal distribution, with the variance as specified for the 
founders, was the only environmental component used. Other effects as described for 
founders could be included. Sex was randomly allocated assuming a 50% probability of 

being male.
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CHAPTER 5

APPROXIMATION 3 - MODAL ESTIMATION

5.1 INTRODUCTION

Animal breeders are interested in having estimates of the genetic merit of animals 
so that they are able to make selection decisions. For the polygenic model, methods 
enabling this have been investigated and are used as the standard procedure in analysis 
of animal breeding data. These methods also enable the simultaneous estimation of fixed 

effects and possible extension to include additional random effects. The use of Hermite 
integration (chapter 4), although having reasonable power and providing good estimates 
of the parameters involved in the mixed model, cannot easily be extended to include 
more complicated models or pedigrees. Extensions of methods for the polygenic model, 
to include parameters describing a major gene, have been proposed by Hoeschele (1988a 
and b) and Le Roy et a/. (1989). An approximation to the mixed model likelihood based 
on these methods will be described and the operational characteristics investigated.

5.2 LIKELIHOODS 

5.2.1 Polygenic model

Using the model described in section 2.3:
y = 1u, + Zu + e 

it can be shown that for a polygenic model the following equality holds:

exp = exp 1 
2o?

u'u exp 1 (y-1u-Zu)'(y-1u-Zu)
w [5.1]

Where: 0 is a vector of length s containing the mode of the transmitting ability 

distribution for each sire.
Hence, the polygenic likelihood [2.1] can be rewritten:

L(poly) = 1 exp 1 
2of

u'u exp
2a

•(y-1u-Zu)'(y-1u-Zu)
w
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which in the non-matrix terms introduced in section 2.3 is:

M

with h(0j) and kgtyjjfii.Uj.aJ,) as defined previously, with Uj replaced by the mode of the 
distribution (Oj).

The integration over all possible values of each sire's transmitting ability has been 

replaced and a single evaluation of the probabilities at the mode of the distribution is 
used, with the function suitably weighted. This is the situation considered with Hermite 
integration in case 2 of table 4.1.

5.2.2 Mixed model

In the same way the mixed model likelihood [2.3] can be rewritten, using equality

[5.1]:

L(MM) =
,_ ,11/c.i..
(2*) I V

exp
2^

nm m

0=1

1 
2of

Where: O^p is the mode of the distribution of transmitting ability for sire I, when he 

has major genotype c and the combination of major genotypes for his offspring is D.

The mode of the distribution has to be calculated for each possible combination of 
major genotypes for the sire and offspring, i.e. with n offspring 2n+ 1 +3n sire effects are 

required. This becomes impracticable even with only a small number of offspring per sire, 
for example, with 5 offspring (n=5), 307 effects for each sire would have to be 

calculated and with 10 offspring, 61097 effects. Therefore an approximation to this 
likelihood is suggested, where a single estimate of the mode of each sire's transmitting 

ability distribution is calculated taking into account the possible major genotypes for the 

sire and offspring. The following expression is obtained for the mixed model likelihood, 

which will be denoted ME1 :
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m n m

TrrrJ h(u,)Xp(c) nXtrans(d c)k^(y
t=1 01

Where: Gj is the mode of the transmitting ability distribution for sire i.

This is equivalent to Hermite integration with a single summation for each sire 
performed at an estimate for his polygenic breeding value.

5.3 MAXIMISATION 

5.3.1 Algorithm

The likelihood has to be maximised and estimates obtained of the parameters 
involved. The likelihood could be maximised explicitly, using, for example, the quasi- 
Newton routine described in section 4.3. However, the number of parameters to be 
estimated has increased, and now includes an effect for each sire. As the number of 
evaluations of the likelihood in the quasi-Newton algorithm is a function of the number of 
parameters to be estimated, the process will be stow. An alternative, that makes use of 
well documented computing strategies, would be to obtain the partial derivatives of the 
log likelihood with respect to each parameter to be estimated. At a maximum the first 
derivatives are equal to zero, and hence by equating them to zero a series of equations is 
obtained which can be solved to give the maximum likelihood (ML) estimates. The 
equations obtained from the mixed model likelihood are given in Appendix 3.

For the polygenic model, if fixed effects are included, the familiar mixed model (i.e. 
fixed and random effects) equations are obtained (Henderson, 1973). These can be 
arranged into matrix form and for a given heritability solved directly. Using the following 
general polygenic model:

y = Xp + Zu + e
With the parameters described in 2.3 and replacing the overall mean with xp. 
Where: X is the incidence matrix for fixed effects 

p is the vector of fixed effects

The first differential equations can be written, after rearrangement and simplification, as 

follows:

f
I

X'X X'Z T B 1 f X'y 1
z-x '-i [52)

107



Where: A contains the additive genetic relationship between the sires, assumed here 
to be I.

For the mixed model, even with fixed heritability, the equations have to be solved 
iteratively. The equation for each parameter contains the conditional genotype 
probabilities for each sire (qi(c)) and for each offspring (qjj(djc)) (see Appendix 3) which 

are functions of the parameters to be estimated. However an EM (Expectation 
Maximisation) algorithm (Dempster et al., 1977) can be used that involves estimating (E) 
the unknown parameters and then maximising (M) the likelihood of the data given these 
estimates. In the mixed model the unknown parameters are the conditional probabilities, 
values for which can be obtained using given values for the major genotype means, 
population genotype frequencies, sire effects and residual variance. For the maximisation 
step, these conditional probabilities can be incorporated into the equations, which can be 
rearranged to give matrices similar to those used for the polygenic model. With the 
incorporation of fixed effects these can be written as follows:

DW Q[a]'X 
X'Q[aj XX 
Z'Q(a] ZX

Q [a]'Y 
XZ

Z'Z+A' 1 X
xy
Z'y

[5.3]

Where: D[a]'s an mxm matrixcontaining: Diag
s m n

c=1

m

is an m x sn matrixcontaining: / ,
c=1

[a] refers to the iteration number, i.e. qj(c)jaj is obtained using parameter 

estimates from iteration a.

However, additional parameters are required to obtain new values for the 
conditional probabilities: the population genotype frequencies and the residual variance. 
Equations for these are obtained in the same way, and can be solved using the values for 
the conditional probabilities calculated with the given parameter estimates.

The process continues, obtaining the ML parameter estimates for the given 
conditional probabilities, then recalculating the probabilities given the new parameter 
estimates, until there is virtually no change in the parameter estimates from one iteration 

to the next.
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Information about the frequencies of the major genotypes is contained in the 

population frequency (p(c)) for sires and in the transmission probabilities for dams. 

Assuming that the population is in Hardy-Weinberg equilibrium with respect to the major 

genotype, information can be combined from both of these sources to obtain an 

equation for the allele frequency in the population (Appendix 3). Alternatively, Hoeschele 

(1988b) suggests estimating a frequency for each major genotype, in which case 

estimates can simply be calculated by taking the diagonals of D and dividing by the total 
number of progeny in the data. This assumes that the offspring are in the same 
frequencies as the parents but not necessarily in Hardy-Weinberg equilibrium. Le Roy et 

al. (1989) suggest allowing for a different frequency in the sire population compared with 
the dam's. Genotype frequencies are estimated for the sires by accumulating the 

conditional probabilities for each sire. For the dams, because of the use of a half-sib 
structure, information is only available on the allele frequency. Equations are given in 

Appendix 3.
Variance equations can also be obtained under different assumptions. If a 

reasonable estimate of the polygenic heritability is available (for example, from a previous 

analysis in a similar population before the incorporation of a major gene) then methods 
analogous to best linear unbiased prediction (BLUP) can be used. In this situation X is 
known although, unlike BLUP, the residual variance component is required each iteration 
in order to estimate the conditional probabilities. Alternatively both the sire and residual 
variance components could be estimated. Equations are given in Appendix 3.

5.3.2 Initial parameter estimates

As explained above, for the EM algorithm initial estimates of the parameters are 

required to obtain values for the conditional probabilities. With the algorithm described, 

there is no guarantee that the maximum reached is the global maximum and not merely a 

local maximum with a more likely end point elsewhere. Hence, to reduce the chance of 

ending at a local maximum the initial estimates for the parameters need to be near the 

global maximum.
Obtaining suitable initial estimates for the sire effects is a problem. One option 

would be to start them from zero, this produces reasonable results when the heritability 
is fixed, but not if an estimate for the sire variance is required. The initial estimates have a 

variance of zero and the maximisation procedure has difficulties departing from this 

value. This could be overcome, either by supplying non-zero estimates for the sire effects 

or by fixing the heritability in the first few iterations of the analysis. Supplying 

appropriate non-zero estimates is difficult, as, of course, the progeny mean and the
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transmitting abilities obtained assuming a polygenic model will also contain the major gene 

effect of the individuals. Hence, all the difference between sires is being explained by the 

polygenic component, whereas some of it is due to the major gene. A high progeny mean 
could be caused by a high frequency of the high scoring allele in the sibship or a high 
polygenic contribution from the sire.

The data described in 4.3.2 was reanalysed to determine how sensitive the ME1 
approximation was to the initial parameter estimates used to start the maximisation 
process. The five starting models used previously (4.3.2) were used and two alternatives 
for the initial sire transmitting ability estimates, one with the sire effects equal to zero 
was used for all the models and the second, for models 1 and 4, with the initial
transmitting abilities equal to half the difference between the sib ship mean and the mean

P~' ~ v \ 
'• "I When estimating a population allele frequency, all the

analyses started from the polygenic model resulted in a polygenic model. For one of the 
data sets all the mixed model starting places resulted in the same mixed model at 
convergence, and for another data set model 3 resulted in a mixed model with the other 
initial models giving a polygenic end point. The remaining analyses all resulted in a 
polygenic model. With genotype frequencies being estimated for the sire and an allele 
frequency for the dams more analyses resulted in mixed models. Starting with non-zero 
estimates for the transmitting abilities did not alter the final model attained. However
different models could be obtained with similar likelihood values (see table 5.1) and

e, 
frequently models were obtained that made little sense gentically with, for example, the

A

heterozygote being absent in the sires. Also, models were obtained that looked different, 
in that different effects for the major genotypes were suggested but on closer inspection 
the models are describing the same distribution, for example analysis 1 in table 5.1.

When estimating genotype frequencies for the sire and an allele frequency for the 
dams, the maximisation process is sensitive to the initial estimates supplied. With the 
major genotype means, frequencies, the sire and residual variance components fixed at 
their ML estimates, considering a single sire the likelihood of the phenotypes of his 
offspring can be calculated assuming different values for the sire's transmitting ability. 
Figure 5.1 shows the likelihood surface for one sire, with data simulated under a mixed 
model with the major gene being additive with two within major genotype standard 
deviations between the homozygotes. It was found that the surface could have three 
modes. The conditional probabilities were calculated at each value for the transmitting 
ability, and these three modes were found to correspond to the sire having a high 
probability of being one of the major genotypes. Obviously, given the data of his 
offspring, if the hypothesis of the sire being each major genotype was considered
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separately the same estimate for the polygenic contribution of the sire to his offspring 
would not be obtained for each genotype. This leads to multimodality of the likelihood 
surface. Hence problems can be encountered when maximising the likelihood, with the 
sire estimate ending at the closest mode to the initial value and not necessarily at the 
global maximum.

Figure 5.1 Likelihood for one sire for different values of his transmitting ability with the 
other parameters fixed at their ML estimates.
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5.4 SIMULATION STUDY

In order to investigate the ability of the ME1 approximation to detect a major gene 
and correctly estimate its effect and frequency in the population, the simulated data 
described in 4.4.1 were reanalysed.
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5.4.1 Analyses

In the analysis, the mean effect of the low scoring homozygous genotype (fi) at 
the major tocus and the deviation from this mean of the other two major genotype means 
(u,AA and u,Aa) were estimated. The population was assumed to be in Hardy-Weinberg

equilibrium, and an allele frequency (p(A)) estimated. Also, as for Hermite integration 
(Herm), two different situations regarding the variance estimates were considered. For 
the first analysis it was assumed that the polygenic heritability was known and the 
residual variance estimated and for the second both the within and between sire variance 
components were estimated.

Initial parameter estimates
As described above, initial parameter estimates are required from which the 

maximisation process can start. As for the analyses using Herm these estimates will be 
the values used to simulate the data. The method is known to be sensitive to the initial 
parameter estimates provided, therefore an additional starting value was used. This 
alternative model explained the expected total mean and variance of the data but 
contained a different major gene model. For the additive models with equal allele 
frequency the alternative major gene explains a larger proportion of the total variance 
(52% compared with 33% in the simulation), for the rare gene the alternative starting 
point assumed the same allele effect but equal allele frequencies and for the dominant 
gene an additive model was assumed with the same difference between the 
homozygotes. For each sire the initial estimate of his transmitting ability was zero, and 
hence when estimating the sire variance component the heritability was fixed at its 
expected value until the convergence criterion (given in A3.2) was less than 0.05.

Genotyping at the major locus
As for the approximation using Hermite integration, the ability of the method to 

genotype individuals at the major locus is of interest. Hence the probability of each 
genotype for each sire is calculated. The equation [2.5] can be rewritten replacing the 
integration with a single estimate of the mode of the distribution:

n m

d=1
m

H d=i [5 4]
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However, the use of the EM algorithm means that this probability is already 
calculated each iteration and hence the values from the final iteration can be used.

5.4.2 Test statistic

For segregation analysis the test statistic used to test evidence for a major gene 
segregating along with polygenes is the likelihood ratio, i.e. twice the natural logarithm of 
the ratio of the likelihood of the data maximised under a mixed model to the likelihood 
maximised under the polygenic model. For data simulated under the poly genie model, the 
distribution of test statistics obtained is expected asymptotically to follow a x 2 
distribution with degrees of freedom equal to the number of parameters fixed in the 
polygenic model but estimated in the mixed model. It is not known whether this 
distribution holds for the ME1 approximate likelihood.

Method
To investigate the distribution of the test statistic [2.4] the data described in 4.4.3 

were analysed using the ME1 approximate likelihood. As before each data set was 
analysed both assuming that the polygenic heritability was known and estimating the 
heritability. For the mixed models two sets of initial parameter estimates were used, with 
the major gene, additive with equal allele frequencies, explaining different proportions 
(50% and 13%) of the total variance in the data. The MLs of the data under the 
polygenic and mixed models were obtained and the test statistic calculated.

Results
The results given are based on the mixed model analysis for each data set that 

resulted in the highest likelihood, without reference to the parameter estimates at this 
maximum. For some of the analyses the test statistic obtained was negative for the ML 
obtained from both initial estimates, i.e. the mixed model obtained was less likely than the 
polygenic model, and these test statistics have been set to zero. The mean and variance 
of the observed test statistic distribution for the 100 analyses are given in table 5.2. 
Figure 5.2 shows the distribution of test statistics for the data simulated with an 
expected polygenic heritability of 0.2 which was estimated in the analyses. Although 43 
of the analyses gave a zero test statistic, the extreme tail of the distribution appears to 
be similar to a x2 distribution with three degrees of freedom (see figure 4.3 for the 
expected distribution). This observed distribution was compared to a x2 distribution by 
comparing the expected and observed number of test statistics in ten equal parts of the
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X 2 distribution with two, three and four degrees of freedom. The x 2 (9 d.f.) values 

obtained from this test were 146.0, 155.2 and 201.2 respectively. The high values being 

caused by the large proportion of analyses giving virtually zero test statistics. The other 

models resulted in zero test statistics for nearly all the analyses.

Table 5.2 Mean and variance of the test statistic and the number of analyses where the 

test statistic was significant at the 5% and 1% significance levels of a %2 distribution with 

3 degrees of freedom, for data simulated under a polygenic model.

Model

Expected
h2=0.2

h2=0.2

h2=0.4

h2=0.4

(X 2 3 d.f.)
fixed

estimated

fixed

estimated

Mean

3

0.157

2.069

0.007

0.208

Variance

0.581

7.387

0.004

1.294

no. zero

0

95

43

99

94

5%

5

0

4

0

1

1%

1

0

1

0

0

Figure 5.2 Distribution of the test statistic from analyses of polygenic data with an 

expected heritability of 0.2, estimated in the analyses.

6 8 10 
Test statistic

12 14
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Discussion

The test statistic distributions obtained from the 100 analyses of each model do 

not follow a x 2 distribution with three degrees of freedom as expected from exact 

segregation analysis and supported by the results from Herm (4.4.3). It is expected that 

a more general model will have a higher likelihood than one in which fewer parameters are 

estimated, and hence that the test statistic will be greater than zero. However in this 

case the mixed model often ended at a polygenic model giving a test statistic of zero.

A more thorough search of the likelihood surface may locate a maximum with a 

likelihood greater than the polygenic likelihood, however, the test statistic obtained is 

unlikely to be large and hence will not have much effect on the distribution. Also the test 

statistics for ME1 were nearly always less than or equal to (when, with the heritability 

estimated, they both ended at the same major gene model) the test statistic for Herm on 

the same set of data.
Although the observed test statistic distributions are not x 2 distributions, it is 

possible that the x2 distribution could provide suitable values against which the test 

statistic can be compared when searching for a major gene. If there is not much evidence 

for a major gene in the data, a polygenic model (with a test statistic of zero) results 

rather than a mixed model with a small value for the test statistic. Whereas, if much 

evidence for a major gene is present, then the test statistic follows the expected 

distribution. However, as the test statistic is less than the value obtained using Herm, a 

major gene is less likely to be detected using this approximation if the same criterion for 

significance is used.
Le Roy et al. (1989) and Elsen and Le Roy (1989) look at the test statistic 

distribution for this approximation (denoted ME1 and MU1 respectively). With a fixed 

heritability of 0.2, based on 1000 analyses, Le Roy et al. (1989) found that, rather than 

the test statistic distribution asymptoting to a x2 distribution as the number of sires and 

the number of half-sibs per sire increased, the mean of the test statistic distribution 

continually decreased. With 20 sires each with 20 offspring, the largest data set 

analysed, the mean of the distribution was 1.27 with standard deviation 2.11. The 

analyses estimated the major genotype frequencies for the sires and the allele frequency 

for the dams and hence these values are much tower than expected from the relevant x2 

distribution (five degrees of freedom). The 5% and 1% quantiles of this distribution were 

estimated at 5.82 and 9.46 respectively, again much lower than expected. When 

estimating the heritability, for 154 analyses where the expected polygenic heritability was 

0.2, a mean test statistic of 4.61 was obtained, with the estimated 5% and 1% quantiles 

being 11.52 and 15.83. With an expected heritability of 0.6, based on 245 simulations 

the mean was 3.36 and the quantiles 11.42 and 13.14. These results are in agreement
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with the results presented here, i.e. that estimating the heritably provides a distribution 

more like a x2 distribution and increasing the polygenic heritability of the data decreases 

the mean and variance of the test statistic distribution.

5.4.4 Simulation Results

Power

The results for the test statistics obtained from the analyses of the mixed model 

data are summarised in table 5.3. Compared with the results from Herm (table 4.5) the 

mean test statistic is always lower for ME1, mainly because of the high proportion of 

analyses resulting in a zero test statistic. With the heritability estimated the number of 

zero test statistics was reduced and hence the means are higher. A negative test statistic 

indicates that a local maximum has been reached in both analyses of the data set and a 

polygenic model would not be rejected. A major gene was detected most frequently when 

a major gene with a dominant allele was simulated. Unlike in the Herm analyses, with fixed 

heritability, when the data contained an additive major gene with a rare allele, a major 

gene was detected more often than when the simulated gene had alleles of the same 

effect but at equal frequency. With estimated heritability, fewer analyses ended at a 

polygenic model with zero test statistic, but a greater proportion resulted in a negative 

test statistic, having gone to a local maximum.
Also in table 5.3 are the correlations of the ME1 test statistic with, and the 

regressions on, the Herm test statistics for the same set of data, this time including the 

negative test statistics although excluding those that gave a zero test statistic. 

Although, generally there is a good linear relationship of the ME1 test statistic with the 

Herm test statistic the ME1 statistic is always lower. This is illustrated in figure 5.3 for 

the data simulated containing an additive major gene with equal allele frequencies 

segregating in a polygenic background with a heritability of 0.2. Hence, when the test 

statistics are compared with a x2 distribution with three degrees of freedom, fewer ME1 

than Herm tests are significant, especially when the polygenic heritability is fixed for the 

additive major genes. This is supported by the test statistic distribution obtained under 

the null hypothesis which would suggest that the 5% and 1% quantiles from the 

observed distribution are lower than those used to test for significance. With the 

heritability estimated the correlations with the Herm test statistics were tower although 

the slope of the regression lines were closer to one.
K

The likelihood surface for one set of data simulated with an additive major gene, with 

equal allele frequencies and a polygenic heritability of 0.2 (Add1) and which produced a 

negative ME1 test statistic is shown in figure 5.4. This was obtained by fixing the
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Figure 5.3 The test statistic obtained under ME1 compared with the test statistic obtained 

with He/m for the same set of data, for Add1 with fixed heritably.
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Figure 5.4 The likelihood surface for one set of data simulated under Add1.
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residual variance over a range of values and maximising the likelihood for the remaining 

parameters. It can be seen that the ME1 method has a local maximum at a residual 

variance of about 90 and a global maximum at 147, the latter being a polygenic model. 

The Herm method has a global maximum at about 95.

Parameter estimates
The mean parameter estimates for the analyses with non-zero test statistics are 

given in table 5.4. Although the results, on average, give a reasonable indication as to 

the nature of the major gene segregating they are not as close to the expected values as 

the results using Herm (tables 4.8 and 4.9). The high number of analyses giving a zero 

test statistic means that some of the results are based on rather few observations. For 

the analyses with non-zero test statistic the regression on, and correlation with, the 

Herm parameters for the same set of data are also given in table 5.4. Assuming that 

Herm gives the ML estimates for the exact mixed model likelihood then these are the 

'best' estimates which the ME1 approximation can obtain. Table 5.5 gives the mean 

estimates for the variance components (with the major gene variance estimated using 

[4.5]) and the regression on, and correlation with, the values estimated in the simulation 

(by analysis of variance on the phenotypes minus the effect of the major gene for the 

residual and sire variance components and using [4.5] for the major gene variance) for 

the same set of data. The analyses giving zero test statistics and hence polygenic 

parameter estimates could not be included in the comparisons as the correlation of these 

with the Herm values will be zero. However, the mean major gene parameter estimates 

for Herm for those analyses that gave a zero ME1 test statistic and the mean for those 

that gave a non-zero ME1 test statistic are given in table 5.6.

With the heritability fixed, ME1 always over estimates the residual variance in 

comparison with Herm, as shown in figure 5.5, and as a consequence there is a 

consistent under estimation of the effects of the major gene compared to the Herm 

results for the same set of data. However, those simulations which resulted in a non-zero 

test statistic for ME1 tended to be those which had largest test statistics and produced 

the largest major gene estimates in Herm (table 5.6) and hence the mean major genotype 

means estimated using ME1 tend to be larger than the mean Herm estimates for all 

analyses.
When the heritability was estimated most of the analyses went to either a major gene 

model or polygenic model. For the data containing a dominant major gene 9 of the 

analyses resulted in a mixed model and for the additive gene with a rare allele only 1 

analysis gave a mixed model, all the remaining non-zero test statistics were caused by a 

major gene model. Hence, the mean of the sire variance component for those analyses
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Figure 5.5 The residual variance estimated with ME1 compared with that estimated with 

Herm, for Add1 with fixed heritability.
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Figure 5.6 Transmitting abilities estimated for sires from one Add1 analysis that resulted in 

a mixed model when analysed with fixed polygenic heritability.
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Table 5.7 Mean correlation (and standard deviation) of the true sire polygenic effect and 

the estimated effect using ME1, ignoring those that went to a major gene model.

Model

Add1

Add2

Dom

Rare

fixed heritability 
non-zero t.s. zero t.s.

0.469 (0.109)

0.409 (0.057)

0.555 (0.102)

0.525 (0.104)

0.433 (0.107)

0.598 (0.100)

0.503 (0.000)

0.503 (0.127)

estimated heritability 

non-zero t.s. zero t.s.
. a

. a

0.450 (0.215)

0.556 (0.045)

0.406 (0.092)

0.591 (0,090)
-

0.541 (0.112)

t.s. - test statistic

a - resulted in major gene models only.

with non-zero test statistic is under estimated and the major gene parameters over 

estimated. The residual variance is also under estimated.

The ME1 analyses also estimated the polygenic transmitting ability of each sire and 

this can be compared with the true value from the simulation. The results are given in 

table 5.7. When the analyses resulted in a test statistic of zero, the transmitting abilities 

obtained are the estimates that would be obtained if a polygenic model was assumed. 

Hence, the effect of the major gene component is also included in these estimates. When 

a mixed model was obtained the major gene component should be removed from the sire 

effect and the correlation with the true value increased. This is supported by the results 

in table 5.7: when a non-zero test statistic (a mixed model) was obtained the correlations 

were on average higher for most models than when a zero test statistic (polygenic 

model) was obtained. With the heritability estimated most of the analyses where a non 

zero test statistic was obtained gave major gene models with the transmitting abilities 

equal to zero for all sires. Figure 5.6 shows the relationship between the estimated 

transmitting ability and the progeny mean of sires from one Add1 data set that resulted 

in a mixed model. The slope indicates the transmitting abilities that would be estimated 

assuming the same fixed heritability but ignoring the major gene.

Genotyplng the sires at the major locus

The probability of each sire being each genotype was calculated using equation 

[5.4]. For each sire, the probability of being the correct genotype was grouped into one 

of three classifications. The first, if the probability of being the correct genotype was 

greater than 0.9, the second greater than 0.75 and the third greater than 0.5. For each
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analysis the percentage of correctly genotyped sires was calculated for each genotype 
and the total percentage correctly genotyped over all genotypes. The results are given in 
table 5.8 as the mean percentage correctly genotyped over the analyses that resulted in a 
non-polygenic model.

The results are similar to those obtained from Herm. Over all genotypes when the 
heritability was assumed to be known, If the criterion for a sire being assigned to a 
particular genotype was that his conditional probability for that genotype was greater 
than 0.9, the highest number of sires were correctly genotyped for the additive major 
gene with rare allele. If 0.5 was taken as the criterion for classification the highest 
number of sires were correctly genotyped when the major gene had a dominant effect. 
The results from the additive model with a polygenic heritability of 0.4 are based on very 
few analyses, in which, presumably, evidence for the major gene was large and the sires 
relatively easy to genotype. The conditional probabilities are more extreme, nearer to one 
or zero, than those calculated using Herm, which results in more sires being correctly 
genotyped at probabilities of 0.75 and 0.9. However, using a criterion of 0.5 the 
proportion correctly genotyped is similar to the proportion correct with Herm.

Figure 5.7 shows the probability of the sire being each genotype plotted against 
the mean of his progeny (a) and against his estimated transmitting ability (b) for one of 
the simulations with a major gene with additive effect and polygenic heritability of 0.2 
(Add1) that resulted in a mixed model. Few sires have intermediate probabilities for a 
genotype, as suggested previously. Otherwise the distribution, when plotted against the 
progeny mean, is similar to that obtained from Herm, with sires whose progeny have a 
high mean having a high probability of being genotype AA and those with low means 
having a high probability of being genotype aa. The transmitting ability of the sire and his 
major genotype are assumed to be independent in the analysis. However, both the 
conditional probabilities and the transmitting ability estimate are functions of the progeny 
data, figure 5.7b illustrates a relationship between them.

5.4.5 Discussion

Using the ME1 approximation to the mixed model there is obviously a problem in 
correctly identifying a major gene, in that the test statistic obtained when the data 
contains a major gene is much lower than expected. Hence, comparing the test statistic 
to the relevant x2 distribution gives very few analyses where evidence for a major gene is 
suggested, except when the simulated major gene had a dominant allele. In this dominant 
case the power of the approximation was similar to the power using Herm although the 
mean test statistic was lower. Considering the additive major genes simulated, when one
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Figure 5.7 Probability of a sire being each genotype, for sires from an Add1 analysis, 

with fixed hehtability that resulted in a mixed model.

a) plotted against the mean performance of the progeny of the sire.
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of the alleles was rare, evidence for a major gene was found in more analyses than when 
both alleles were at equal frequency. The resulting distribution of phenotypes for the 

major gene with a rare allele is skewed and this appears to have a greater influence on the 
detection of a major gene than the proportion of the genetic variance explained by the 
major gene, which is lower in this case than for the equal allele frequency situation. 
Reducing the value of the test statistic required to provide evidence for a major gene 
might increase the power without increasing the number of genes detected in data that 
does not contain a major gene. However, the high proportion of analyses that resulted in 
a polygenic model suggests that the power will never be very high. Also reasonable 
mixed model parameter estimates can be obtained and yet give a negative test statistic 
with the polygenic model being more likely.

Using an assumed value for the polygenic heritability might bias the results. If the 
value used was an underestimate of the true polygenic heritability in the data, a major 
gene may be inferred in order to explain the additional genetic variance that cannot be 
accounted for by the (fixed) polygenic heritability, even if it is polygenic in origin. 
Analysing the polygenic data simulated with an heritability of 0.4 but assuming a value of 
0.2, increased the number of analyses resulting in a non-zero test statistic, and one 
became significant at the 5% level.

When a major gene was detected, the parameter results estimated, on average, 
gave a reasonable indication of the character of the major gene present in the data.

When estimating the heritability, both major gene and polygenic variation are no 
longer required to explain the proportion of genetic to environmental variation in the 
data. The ME1 approximation has difficulty distinguishing the two sources of genetic 
variation and suggests a model containing either all major gene or all polygenic variation. 
The parameter results obtained from these analyses that resulted in a major gene model, 
in general, gave a good indication as to the effect of the gene, whether it was additive or 
dominant, and the frequency of the allele in the population. The effect of the major gene 
was over estimated, as would be expected because of the inclusion of some of the 
polygenic component in this estimate.

Elsen and Le Roy (1989) give the percentage of analyses in which evidence for a 
major gene was found for models equivalent to Add1 and Dom (h 12 and h 1 1

respectively). The models for analysis estimate the sire genotype frequencies and the dam 
allele frequency. They compare the test statistics obtained from analysis of mixed model 
data with 5% quantiles obtained from the distribution of test statistics from analysis of 
polygenic data. With fixed polygenic heritability and 20 sires each with 20 half-sibs, this 
quantile (estimated at 5.82), is much lower than expected. Based on 100 simulations, 
using this criterion 80% of the analyses of data containing a dominant major gene gave
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significant test statistics and 21% with an additive major gene. The increased frequency 

of detection of the additive major gene, compared with the results presented here, is 

presumably because of the lower quantile used. The fewer significant results from the 

data containing the dominant gene could be because of the decreased sample size. With 

heritability estimated, the test statistics were compared with an estimated 5% quantile of 

10.78, much closer to the expected value from a x2 distribution with five degrees of 
freedom. A major gene was detected in 77% of the analyses when a major gene with 
dominant effect was segregating in a polygenic background with heritability of 0.2 and in 

67% when the polygenic heritability was 0.6. For the simulated additive major gene, a 
major gene was detected in 8% and 7% of analyses when the polygenic heritability was 
0.2 and 0.6, respectively. These results of Elsen and Le Roy (1989) are in agreement 
with those presented here. A dominant major gene is easier to find than an additive gene 

that was simulated with the same difference in effect between the homozygous 

genotypes and increasing the polygenic heritability decreases the number of significant 
test statistics. The effect of estimating the polygenic heritability is difficult to ascertain in 
the study of Elsen and Le Roy (1989), as the criterion used for determining a significant 
test statistic when the heritability is estimated is not the same as when the heritability is 

assumed to be known.
Hoeschele (1988b) and Elsen and Le Roy (1989) consider the ability of the 

approximation to obtain reasonable parameter estimates. Hoeschele reported that the 
inclusion of the probabilities of transmission of the major gene from sires to offspring 

caused convergence to be slow or not attained. Hence, she suggests ignoring these and, 
in effect, making genotypes fixed effects, with each offspring having a probability of 

being each genotype. This probability is based on the probability of the phenotype given 
the major gene effect and the population major genotype frequencies, the sire's 
transmitting ability and any fixed effects . The inheritance of the polygenic component is 
as usual. Results are given based on data simulated under two different additive models 

both with a rare allele. An unbalanced sire model was used with 2500 records from 200 
sires and 200 herd-year-seasons. Hoeschele found that the mean results based on 10 

replicates of the simulations gave good estimates of the genotype frequencies and 

effects. However, she only estimated the variance components for one model which had 

an expected heritability of 0.1 and, using equations equivalent to the REML equations 

given in Appendix 3, found that the sire variance was, on average, twice the expected 

value and the major gene variance was under estimated. This result is in contrast to the 

results of Elsen and Le Roy (1989) who found that the major genotype means could be 
well estimated when the heritability was estimated, but the heritability was always under 

estimated and in many analyses became fixed at zero. In the results presented here, the
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sire variance is given as the average from those analyses which resulted in a non- 
polygenic model, and hence was under estimated because of the high number of analyses 
giving a major gene model. However the inclusion of all the results into the mean will 
result in an increase in the heritability, and a decrease in the major gene estimates. 
Hoeschele (1988b) does not report obtaining polygenic models when maximising the 
variance components for mixed model.

In the analyses of mixed model data, two different sets of estimates were used to 
start the maximisation process (see section 5.4.1). If the two analyses of the same data 
resulted in different maxima, the results of the analysis giving the highest likelihood were 
used. With fixed polygenic heritability, the analyses were not very sensitive to the initial 
model used, the worst case being for the data containing the major gene simulated with a 
rare allele. In 13 of the 100 analyses of this data, one of the initial models resulted in a 
polygenic model and the other a mixed model. When the polygenic heritability was 
estimated, the analyses were more sensitive, especially for the simulated additive major 
gene in a polygenic background with an heritability of 0.4 (Add2) and the one with a rare 
allele (Rare). In 41 of the analyses of Add2 data, starting with the expected parameter 
values resulted in a polygenic model and the alternative parameter values, which explained 
a larger proportion of the genetic variance, resulted in a major gene model.

5.5 COMPARISON OF ME1 AND EXACT LIKELIHOODS

The potential advantages of ME1 over Herm in rts computation and its ease of 
extension to include, for example, fixed effects, suggest that further investigation of this 
method is merited. For this purpose the genetic model has been simplified. The polygenic 
component is derived as usual, half from the sire and half from the dam. However there 
are only two genotypes at the major locus in the offspring and the genotype of an 
individual depends entirely upon the major genotype of the sire, as if, for example, AA 
and aa sires were mated to AA females. This gives the following transmission 
probabilities:

Offspring genotype
AA Aa

Sire AA 1 0 
Genotype a a 0 1
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In this case, the exact mixed model likelihood can be written estimating the mode 
ot the transmitting ability distribution for each major genotype of each sire. This is 
because, given the sire's major genotype, there is only one possible combination of major 

genotypes for his offspring, hence, in total, for each half-sib family there are only two 
possible combinations, giving two sire estimates, one for each major genotype for the 
sire. The exact and ME1 likelihoods can be written as follows:

Exact mixed model likelihood:

j=i H

Where the two genotypes are denoted 1 and 2, and u\-\ and Oj2 are the sire estimates for 

sire i, given that he has genotype 1 or 2.

ME1 mixed model likelihood:

L(MM) =
M

s j7~ 2=n\/ {-^r
i—1 » H H

5.5.1 Parameter estimates

In the same way as for the three genotype model, equations for the ML estimates 
of the parameters can be obtained by partially differentiating the log likelihood with 
respect to each parameter.

Transmitting abilities
After simplification, the two estimates of the transmitting abilities for each sire 

from the exact likelihood can be written as follows:
n n

HI H

Hence it can be easily shown that with this model there is a constant difference between 

the sire effect for each genotype, this difference being a function of the difference 

between the major genotype effects. This is because there is no segregation of the major 

gene within each half-sib family with this model.
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Calling this difference A the exact likelihood can be written in terms of Oji and A, where 
u i2=u i1 -«-A.

It can be seen that when A is fixed at zero this gives the ME1 likelihood. With this 
condition the following sire estimate is obtained:

Where: UJQ is the sire estimate when A is equal to zero.
q,o(c) is the conditional probability that sire i has genotype c calculated when

A is equal to zero.

If qjo(2) is close to zero, i.e. the sire has a high probability of being genotype AA,

the sire effect estimated under ME1 is close to the estimate obtained under the exact 
model assuming that the sire is genotype AA. When qj0(2) is close to one, i.e. the sire has

a high probability of being genotype aa, the sire estimate approaches the one estimated 
under the assumption of that genotype in the exact model. Otherwise the sire estimate 
pools the two exact estimates according to the relative probabilities of the genotypes, 
obtained under ME1.

Variance estimates
Assuming a fixed polygenic heritability, the following expression for the residual 

variance can be obtained from the exact mixed model likelihood:

s m

M H

which, under this model, can be simplified to:
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Where: p 1 = ———, an estimate ofp(1)

i.e. the variance is composed of the within sire sum of squares and, because the 
heritability is fixed, a proportion of the between sire sum of squares and major gene 
variance, as expected.

For the ME1 likelihood, the following equation is obtained:

s m

M M c=1

which can be rewritten as:

s n s

' s
n2

(n+X) , . ,*='

This equation contains an extra component is a function of the discrepancies^
between the conditional genotype probabilities for each sire and the population 
frequency and an additional proportion of the major gene variance. If the major gene 

means and population genotype frequencies are the same in the two likelihoods, the ME1

likelihood will over estimate the residual variance compared with the estimate obtained
s

from the exact likelihood when ]£(qjo(1)-Pi)2 is larger than sp1 p2 , . This will depend on
1=1

the value of the genotype frequencies in the population. For example, if p^ = p2 = 0.5 

then the value of the additional component can at most (theoretically) be zero and will, in 
fact, always be negative and the variance under estimated compared with the value from 
the exact likelihood. Whereas if p-| is closer to one or zero the expression is likely to be

positive and the ME1 variance over estimated.
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5.5.2 Likelihoods

Using a three genotype model, even when a major gene was identified and the 
parameter results were reasonable, the likelihood for ME1 was under estimated compared 
with the exact.

Data were simulated with 50 unrelated sires each with 20 half-sib offspring. The
polygenic heritability was 0.2 and there were two major genotypes each with a frequency

2 of 0.5 and with about T- phenotypic standard deviations between the means. The major

genotype means (^ and |i2 ), population genotype frequency (p(1)) and the residual 
variance (a£) were fixed at their ML estimates for the exact likelihood. For each method 
the sire effects (u^ and A or Uj) were estimated using an EM algorithm based on 1st

derivatives as described previously (5.3.1), which results in iterating using the following 
equations:

n+X

IliW
M

q s (2) 

0

1

M

n n

M

n

H

n

M
[5.5]

When maximised under these conditions the two methods give different log 
likelihoods, with the data being more likely when maximised under the exact model than 
when maximised under ME1. The difference between the likelihoods can be explained in 
terms of the sire effects, A and the conditional sire genotype probabilities (qj(c)) which

are different in the two methods as a consequence of the other changes.
Figure 5.8 gives the difference between the exact and ME1 tog likelihoods for each 

sire plotted against his conditional probability of being genotype 2 using the ME1 
likelihood (qjo(2))- When qj0 (2) is equal to one or zero the exact and approximate models

give the same likelihood value, as then, effectively, the genotype of the sire is known. 
Otherwise the approximation always under estimates the likelihood. The largest difference 
between the likelihoods is when qj0 (2) is equal to 0.5 as then the sire estimate under
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ME1 is half-way between the two estimates under the exact model. Investigation is 
required to see what is causing the difference.

Figure 5.8 The difference between the exact and the ME1 tog likelihoods for each sire 

plotted against his conditional probability.

0.4-i

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Conditional probability of genotype 2 under ME1

Explaining the difference between the likelihoods
One way of considering this would be to see what would have to be added to the 

ME1 likelihood in order for ft to equal the exact. Using a Taylor expansion it is possible to 
approximate the exact likelihood in terms of the ME1 likelihood. A first approximation 
would be to assume that the difference can be explained in terms of A. Ignoring terms 
beyond a quadratic the following equation is obtained.

[5.6]

Where: InL(A) is the exact In likelihood.
InL(O) is the ME1 In likelihood.

A is the ML estimate for A obtained from the exact likelihood.
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Approximation 1. Initially the partial 2nd derivatives of the ME1 likelihood with respect to
A and Uj can be approximated by assuming that the conditional sire probabilities are

dqi(c) 
constant, i.e. that ^ is equal to zero. The model can then be considered as linear and

hence the matrix of 2nd derivatives is equal to minus the coefficient matrix from equation 

[5.5]. Absorbing the sire effects gives a value for n 2• taking account of the change

in Uj caused by the change in A. Incorporating this and the 1st derivative into equation 

[5.6] gives the following approximation for the exact likelihood:

In L(A)« In L(0)+-^j- A2 2^(1) qio< 2 )
2<Tw M

Figure 5.9 shows how well this approximation (approx. 1) explains the difference 
between the exact and the ME1 likelihood. When qj 0 ( 2 ) is equal to one or zero the

approximation adds nothing to the ME1 likelihood and hence it still has the same value as 
the exact likelihood. When qj0(2) «s equal to 0.5 the difference between the likelihoods 
can be totally explained by the approximation. At all other values of qj 0 (2 ) the 

approximation under estimates the difference.

Approximation 2. Alternatively, it might be easier to consider the difference between the 

likelihoods by expanding about the exact likelihood to obtain an expression for the 
approximate likelihood. Making the same approximation for the 2nd differentials as for 
approximation 1, the following equation is obtained:

s

In L(0) - In L(A)--^- A 2 / q^d) qiA(2) 
2<Tw M

This is similar to approximation 1 except that the conditional genotype probabilities are 

obtained from the maximum of the exact likelihood rather than the ME1 likelihood. This 

approximation is shown in figure 5.9 as approx. 2. It can be seen that for all sires, 
except when their conditional probability is equal to 1, 0.5 or 0, the approximation over 

estimates the difference between the likelihoods. The conditional probabilities estimated 
under the ME1 likelihood are more extreme (closer to one or zero) than those estimated 

using the exact likelihood with the same estimates for the major gene effect and variance 
components. Hence, qjoCOQiof2 ) 's less inan cliA( 2 ) cliA( 2) anc^ tne approximated value of 

the difference between the likelihoods is smaller for approximation 1 than approximation 

2.
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Figure 5.9 Five approximations of the difference between the exact and approximate 

mixed model likelihood.

0.8-1

— lnl_(exact)-lnL(ME1)
— approx. 1
•- approx. 2
-. approx. 3 

approx. 4
• - approx. 5

0.0
0.0 0.2 0.4 0.6 0.8 1.0 

Conditional probability of genotype 2 under ME1

See text for explanations of the approximations.
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It is not clear from these equations what assumption has been made about the 

change in the sire effects that occurs with the change in A. Rather than absorbing the 

sire equations a Taylor expansion for more than one variable can be used. For example

expanding about InL(O): 'ainL(A)' 

dA
9lnL(A)

InL(A) «lnL(0) + [ A 8^ ... 5us ]

[

ainL(A)
dus -J

32LnL(A) 32LnL(A) 
3 A2

32 lnL(A) 92 lnL(A)

32LnL(A) 
, 3us3A

32 LnL(A) 
3A3uc

32 LnL(A) 
3us2 J

L6uJ

[5.7]

It can be shown that absorbing the sire part of the matrix of 2nd derivatives is 

equivalent to using - (d !"Lj°h' 1 f^ ln^°^ for the change in the sire effect which
, I I oUjdA J

accompanies a change in A. Hence, in the above situations, where the 2nd derivatives 
have been approximated, absorbing sires has been equivalent to using q io (2)A, in 

approximation 1, and qjA(2)A, in approximation 2. Figure 5.10 shows the change in the

estimate of the sire's transmitting ability caused by a change in A for three sires who 

have a conditional probability of being genotype 1, calculated under ME1, of 

approximately 1.00, 0.75 and 0.50. When the conditional probability is equal to 0.5 the 
change in Uj is linear because the conditional probability is constant over all values of A.

Hence, with this conditional probability, the approximattons can explain the difference 

between the exact and ME1 likelihoods because the correct change in the sire's 

transmitting ability with a change in A can be used. Also at extreme conditional 

probabilities, there is little change in the value of the probabilities with a change in A. 

However, with intermediate values the change in the transmitting ability is not linear with 

a linear change in A because the conditional probability is not constant, but becomes 

nearer to zero or one as A decreases. Figure 5.11 illustrates the assumptions about
tV"lC*change in the transmitting ability of a sire with a change in A for a sire with a high

N
probability of being genotype 1 .
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Approximation 3. It can be easily shown that the total change in Uj when A is fixed at 
zero compared with when it is estimated is equal to qj 0 (2)A. This has been used when

expanding about the ME1 likelihood but not for the exact likelihood. An approximation 
for the ME1 likelihood in terms of the exact using q io (2)A as the change in sire estimates

and approximating the 2nd derivatives as before is as follows:

w M

This is shown as approx. 3 in figure 5.9. For most values of qjo(2) this approximation 

over estimates the difference between the exact and the ME1 likelihoods to a larger 

extent than approximation 2.

As the conditional probabilities are functions of the other parameters and hence, 
the model not linear, an improvement in the approximations might be achieved by using 
the true 2nd derivatives, i.e. including the derivatives of these probabilities with respect 
to A and Uj. The matrix of 2nd derivatives is given in figure 5.12. Under the exact model,

incorporating the additional derivative of the conditional probabilities with respect to A 
and Uj into the 2nd differentials causes no change. This is because under this model the 
equations for Uj and A can be simplified so as not to incorporate q ( (c).

Approximation 4. Incorporating the true 2nd derivatives into the approximation for the 
exact likelihood in terms of the ME1 likelihood [5.7] and using the observed change in 
the sire estimates (qj0 (2)A) gives the following approximation:

Which is shown as approx. 4 in figure 5.9. This approximation over estimates the 
difference between the exact and ME1 likelihoods and is worse than previous 
approximations, especially for values of qj0(2) around 0.25 and 0.75 .

Approximation 5. Alternatively the 2nd derivatives could be used for the change in the 
transmitting ability. Absorbing the sire effects is equivalent to using -
/32 lnL(0)vi /a2 lnL(0)\ §A wh|ch gjyes the fo ||Owing equation for the change in Uj: 
I 3Uj2 )
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This should give a better estimate of the change in Uj near A equals 0 but will not 
give the correct total change in Uj. It is indicated by a dashed line in figure 5.11. When 
this equation for the change in Uj is incorporated into [5.7] the following approximation 

for the exact likelihood is obtained:
8 ( 

InUAifc)- InUO.Ujo)* ^L A 2]Tqio(2J 2qio(1)+ll^A2qJO(1) 3 -1
2O\v : 1 ( OH.

(n+X) 
Ow

(n+X)^ ( '< 1 - —3— WV
°w

1- (n+X) ^;
°w

Which is approx. 5 in figure 5.9.

Discussion
Attempting to refine the approximation for the difference between the exact and 

ME1 likelihood by including the true second differentials did not improve it. 
Approximating the change in the sire effect with the second derivatives caused the 
difference between the likelihoods to be over estimated to a large extent at conditional 
genotype probabilities of around 0.25 and 0.75. This could be because in some situations 
(see fig 5.11) using the 2nd derivatives actually suggests a change in u, in the wrong

direction, i.e. increasing the estimate with an increase in A, whereas the estimated value 
of Uj when A is equal to A is lower than when A is zero. The best approximations were

obtained using the approximate 2nd derivatives and absorbing sire effects.
To obtain the exact difference between the likelihoods the estimate for Uj and the

2nd derivatives would have to be continually updated as A changed from zero to A. This 
is not feasible as at each stage new estimates of the conditional sire probabilities would 

have to be obtained.
From the above approximations, it can be seen that fixing A at zero causes a term 

to be excluded from the log likelihood. A large component of this term (present in all the 
above equations) is a function of the difference between the major gene means (A) and 

the conditional sire probabilities.
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Using this model with two genotypes, but assuming that we have prior knowledge 
that the difference between means is zero, or, more precisely that the difference follows 
a normal distribution with mean zero and with variance a£ would give the following tog

likelihood:

InL(prior) = InL(A) -

It can be shown that the ME1 likelihood can be written in a similar form. A is a 
function of the difference between the two major genotype means and hence A divided 
by its variance can be rewritten in terms of the major genotype means and the variance 
of the difference between them.

The inverse of the matrix of 2nd derivatives can be used to give the variance of 
the parameter estimates. For A, using the 2nd differentials from the exact model the 
variance is:

Var(A) = (
M

Therefore:

A 2 (n+X)
vai(A)

Which is the equation given for the difference between the exact and ME1 likelihoods. 
Also:

(n+X)

Therefore, it is suggested that estimating a single sire effect is similar to using the 
exact likelihood with prior knowledge that the difference between the means is zero. If 
there is a tot of evidence in the data to suggest that this is not the case, the major gene 
parameters will be estimated and the mixed model likelihood will be more likely than the 
polygenic model. However with less evidence for a difference between the means, the 
prior knowledge that there is no difference will outweigh the data evidence and a
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polygenic model will be suggested. From the results of the simulation study already 
presented, it seems that the evidence from the data has to be very strong before a non- 
polygenic model is obtained.

5.6 DISCUSSION

If the genotypes of all the individuals in the pedigree were known the ME1 
approximation would be the same as the exact mixed model likelihood. Otherwise, the 
approximation pools the information on major genotypes to obtain an estimate of the 
sire's transmitting ability. The likelihood can then be calculated assuming independence of 
the offspring given the sire's genotype. The exact likelihood effectively calculates the 
likelihood of all combinations of major genotype and weights them according to the 
frequency of the alleles at the major locus in the population.

When a major gene was detected the estimates obtained for its effect and 
frequency were reasonable, but the very low power of detection suggests that the 
method will not be very useful. The ability of the method to estimate the polygenic 
heritability was tow, the estimate being zero in the majority of analyses.

There are several advantages of this method. It can easily be extended, in theory, 
to include fixed effects and more complicated relationships. Hoeschele (1988b) suggests 
the extension of the animal model to include major gene effects. This would allow the use 
of more generations and take account of selection, although may be infeasible for large 
data sets. Also, as the effect of the major gene increases, or as data allowing more 
precise genotyping accumulates, the ME1 likelihood becomes exact. Therefore other 
pedigree structures, such as an animal model, might improve the approximation.

Estimates of the polygenic transmitting ability for each sire are obtained 
immediately from the analysis and the conditional probability of the animals to be each 
major genotype. This information is useful to select the required animals and optimise 
genetic improvement. However, the transmitting ability is a pooled estimate including 
information from all three genotypes for the sire. Whereas, in reality, of course, the sire 
has only one major genotype. Pooling information over the three possible major 
genotypes for the sire seems to be equivalent to assuming that there is prior information 
that a gene with large effect is not segregating in the population.
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Appendix 3 

A3.1 EM algorithm for maximisation

The tog of the ME1 approximation to the mixed model likelihood can be written as 
follows:

lnL =
v•I- x m n m

In

This can be differentiated with respect to each of the parameters to be estimated. 
At a maximum the 1st derivatives will be equal to zero and hence by equating the 
derivatives for each parameter to zero and solving them for the unknown parameters, 
the maximum likelihood (ML) estimates are obtained.

After rearrangement and simplification the following equations are obtained from 
the 1st derivatives:

Major genotype means
s m

s m

o=1 j=1

Polygenic transmitting ability for sires

m n m

H d=1____ 

n+X
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Genotype frequencies

Assuming that the population is in Hardy-Weinberg equilibrium the following 
equation is obtained for the allele frequency in both the sire and dam population:

s m

P = M c=1 )=1 H

sn- 2S
H

Where would be the estimate for the allele frequency based on

information from the sire and the remaining information is from the dam.
However, if this assumption is relaxed and genotype frequencies estimated in the 

sires and an allele frequency in the dams, the following equations are obtained:

freq(c) (sires) =

0s-
p(dams) =

m

sn-
M

H

Variance components
If the polygenic heritability is assumed to be known, then the following equation 

for the residual variance is obtained:

m

c=1

n m

sn
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Otherwise equations for both the residual and sire variance components are as follows:

s m n m

'.qjjWlcHyjj
0=1 f=\ 6=1

n+X

s
•

2

--
n+X

The equations have been written as functions of qj(c) and qjj(d|c), where: 
qj(c) is the conditional probability of genotype c for sire i.

n m

p(c) 1
, . H 6=1Qj(c)=-

m

') |trans(d I c')
d=1

qjj(d]c) is the conditional probability that offspring j from sire i has genotype d given 

that his sire has genotype c.

. trans(d I c

trans(d I c

These equations cannot be solved directly as qj(c) and qjj(d|c) are functions of the 

parameters to be maximised. However an iterative algorithm for maximisation can be 
obtained, where the conditional probabilities are calculated using the parameter estimates 
obtained in the previous iteration. These values for qj(c) and qy(d|c) can be substituted

into the equations given above to give new estimates for the parameters. Using the new 
estimates for the major genotype means and frequencies, the sire transmitting abilities 
and the residual variance the conditional probabilities can be recalculated. The process 
continues until there is virtually no change in the parameter estimates from one iteration 

to the next.
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The equations for the major genotype means (u^) and sire transmitting abilities (u,) 

(and fixed effects, if included) can be solved simultaneously by rearranging them into 
matrix form. Matrices are obtained which are similar to those for the classical mixed 
model for a polygenic model with fixed and random effects but extended to include the 
major gene component. They are given in equation [5.31- Th® frequencies are functions of 
the conditional probabilities only and hence can be calculated immediately. The variances 
can then be estimated using the new estimates for the means and transmitting abilities, 
and the conditional probabilities based on the parameters from the previous iteration.

Obviously to start the maximisation process initial parameter estimates are 
required to calculate the conditional probabilities and hence to set up the matrices and 
estimate the parameters. The likelihood cannot be assumed to have a single maximum and 
so starting values close to the global maximum are required. Hoeschele (1988a) suggests 
a method based on quantile-quantile plots to obtain initial estimates.

Convergence is attained when there is no change in the parameter estimates 
obtained in iteration [a] compared with those obtained from iteration [a-1]. The parameter 
estimates in iteration [a] are the maximum likelihood estimates, and the likelihood 
calculated using these parameters is the maximum likelihood. Convergence is assumed

V ( 0rarera-1l)'(0rarera-1l) c —l-J— H-m/ei —— < 10'5 , where 9 is a vector of parameter

estimates of dimension dim(6). 

A3.2 RE ML variance estimates

The ML equations for the variance components are biassed as they do not take 
account of the degrees of freedom lost due to the use of the data to estimate fixed 
effects. With a large number of observations and no fixed effects, except the mean, in 
the data the bias will be small and reasonable results will be obtained. However if fixed 
effects are also being estimated the degrees of freedom by which the relevant sums of 
squares are divided should be reduced to take account of this. Hence methods such as 
REML (restricted ML) and Marginal ML (which reduces to REML under the assumption 
of normality) have been suggested.

For the polygenic model, the taking account of this reduction in the degrees of 
freedom can be achieved by incorporating additional terms. One is the determinant of 
the variance-covariance matrix for the estimates of the fixed effects in the likelihood. 
This variance matrix is the inverse of the coefficient matrix from [5.2] after absorption of 
the sire effects. Another additional term is the determinant of the matrix X'X, which is 
consant for a given fixed effect structure, and lastly the constant in terms of n is
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reduced by a function of the rank of X'X. Using the model described in 5.3.1, the 
following equation is obtained:

InL(poly) = - ,n(2jc) . ,n (|V|) . |n(|X'V-lX|) + ln(|X'X|) - (y -

Where: variance (y) = V = ZAZ'a§ + la£

Differentiating this likelihood with respect to the variance components and 
equating the derivatives to zero gives the REML variance component equations, which 
can be written as follows:

(y- X{3- Zu)'(y- Xfl- Zu) 
~ sn-s-t '

U'A~ 1 U

w

Where: C zz is the s x s part of the inverted coefficient matrix of [5.2] referring to u. 

t is the dimension of X'X.

For the mixed model, equations can be derived analogously to those for the 
polygenic model. When the major genotypes of ail the individuals is known, the model 
becomes linear and the ME1 approximation gives the exact likelihood. With this 
restriction the genotype effects can be fitted as fixed effects and the matrix D can be 
considered in the form X'X. Where X is an sn x m design matrix containing a 1 when for 
the genotype of each individual and a zero otherwisre. Hence, the denominators, which 
are obtained from the derivatives of ln|V| + ln|X'V' 1 X|, will be the same expressions as 
for the polygenic model although the rank of the matrix will have increased because of 
the additional fixed effects. The inverse of the coefficient matrix will contain additional 
terms for the major genotypes. The numerators are obtained from the derivative of the 
rest of the likelihood with respect to the relevant variance component. For the residual 
variance, this will contain a summation over the major genotype for each individual, with 
each summation weighted by the probability of that genotype. As the sire effects are not 
conditional on the major genotype the conditional probabilities disappear and the
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equation for the sire variance component looks the same as that obtained from the 
polygenic model. Assuming that sires are unrelated the following equations are obtained:

s m n m

1=1 &=1___f=l cM___
sn- s-m-»-1 +

o?.-

s

2X1=1
u s-Xtr(C,Jzz'

Where: C zz is the s x s part of the inverted coefficient matrix of [5.3] referring to u.

Additional fixed effects can be incorporated in the same way as the major gene means, 
reducing the denominator by the rank of the matrix X'X and adjusting the phenotypes 
for the relevant effects.

151



CHAPTER 6

APPROXIMATION 4 - ESTIMATING A SIRE EFFECT 
FOR EACH MAJOR GENOTYPE

6.1 INTRODUCTION

The performance of the ME1 approximation was poor, especially in its detection of 
a major gene. However, the method has some advantages over Herm, such as speed of 
computation, ease of incorporation of fixed effects and immediate estimation of 
polygenic transmitting abilities. The ME1 likelihood is exact if the genotype of all 
individuals is known. Otherwise, when estimating the mode of each sire's transmitting 
ability distribution, information is pooled from all possible major genotypes of the sire and 
of his offspring. It has been suggested that this is equivalent to assuming that there is 
prior information that a major gene is not present, and this contributes to the poor 
performance of the approximation.

Given the phenotypes of his offspring, a sire would be expected to have 
contributed different polygenic effects depending on the major genotype being 
suggested for the sire. Hence, an approximation is proposed where the transmitting 
ability for each sire is estimated for each major genotype. As described before, the exact 
mixed model likelihood involves estimating a sire effect for each combination of major 
genotypes for the offspring and sire. Therefore this approximation is exact if the major 
genotype of all offspring is known as the uncertainty of the major genotype of the sire is 
accounted for correctly but not for the offspring. If the offspring genotypes are 
unknown, rather than considering all possible combinations of major genotype for the 
half-sibs, information about the genotypes for each individual given the sire's genotype is 
pooled. This approximation has been suggested independently by Elsen and Le Roy 

(1989).

6.2 LIKELIHOODS

Estimating the mode of each sire's transmitting ability distribution under the 
hypotheses of each major genotype for the sire, so that three estimates are obtained 
gives the following approximation to the mixed model likelihood (ME3) for the same half- 
sib family structure described previously in section 2.3:
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m n m

^p(c) hCu^^Q^transCd 
H 6=1c=1 [6.1]

Where: Ci^ is the mode of sire i's transmitting ability distribution given that he has 

genotype c.
h(u ic ) and MVijI^MtJ Ac-0?/) are as defined before but now the transmitting 

ability of the relevant genotype (c) is used.

6.3 MAXIMISATION

Algorithm

The ME3 likelihood is a function of the major genotype means and frequencies and 

polygenic and environmental variance components, as are the Herm and ME1 likelihoods, 

and also each sire's transmitting ability under the three hypotheses of the sire being each 

genotype. This means that an extra 3s (3(number of sires)) parameters are required to be 

estimated compared with Herm. Hence the quasi-Newton algorithm described in 4.3 

would be slow, as the number of likelihood evaluations required depends on the number 

of parameters to be estimated. However the EM algorithm described in 5.3 for ME1 can 

easily be extended to include the extra sire effects. The partial 1st derivatives of the log 

likelihood with respect to each parameter to be estimated are derived and, by equating 

these to zero a series of equations can be obtained. These can be solved iteratively to 

yield the maximum likelihood (ML) estimates. Equations for the parameters are given in 

Appendix 4.
For the sire effects and major genotype means matrices can be set up similar to 

those used in ME1 to solve the equations.

m
Q3[a]'Z

c=1
m

X'Zq 1[a] X'Z<l3[a]
c=1 

Z'Ql[a]

<l3[a]
Z 'X

<?3[<

M-d[a+1]
c=1

Xy

<i3[a]z 'y
[6.2]
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Where: Djgjisanmx mmatrixcontaining: Diag
s m n

YYZ/ j/ j/ i
M c=1 >=1

is an m x sn matri x co n taining :

is an s x s matrix containing: Diagf q^c) |

Equations for the frequencies can be obtained under the different assumptions 

described in 5.3, and these equations are discussed in Appendix 4. Likewise the variance 
equations can be obtained under the two different assumptions considered previously, 
either assuming prior knowledge of the polygenic herttability or estimating this along with 
the major gene parameters. The ML equations are given in the Appendix 4. If fixed 
effects are also being estimated, the variance estimates need to take account of the 
degrees of freedom used to estimate these effects from the data. However, problems are 

encountered when obtaining REML estimates because the sire part of the coefficient 
matrix is repeated for each major genotype of the sire and hence the same information 
reused for different sire estimates. The derivation of REML variance estimates is given in 
Appendix 4.

Initial parameter estimates
Initial estimates for the parameters are required so that the conditional probabilities 

can be calculated and the matrices [6.2] set up. As for ME1 there is no guarantee that a 

global maximum is attained and hence the initial estimates need to be near the global 

maximum.
By estimating three sire effects, one for each major genotype, multimodality of the 

likelihood surface, as observed with ME1 (figure 5.1), should no longer be a problem. 

Hence the final estimates should be less sensitive to the initial values used. When 
estimating the polygenic heritabilrty non-zero estimates for the sires are required, which 
can be obtained by fixing the herrtability for the first iteration, as described for ME1.

6.4 SIMULATION STUDY

In order to investigate the ME3 approximation, to observe its ability to detect a 

major gene and estimate its effect and frequency in the population, the simulated data 

described in 4.4.1 were reanalysed.
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6.4.1 Analyses

The analysis was the same as that for the Herm and ME1 approximations, that is, 
the mean effect of the low scoring homozygote at the major tocus (u.) was estimated, 
along with the deviation of the other two major genotype means from this mean (ji(AA) 
and u,(Aa)). The population was assumed to be in Hardy-Weinberg equilibrium and an allele 
frequency (p(A)) was estimated. First, each data set was analysed assuming that the 
polygenic heritability was known and fixing It at the expected value so that only the 
residual variance is estimated and then repeated estimating the polygenic heritability from 
the data. As before ML variance estimates were calculated.

The initial parameter estimates were the same as those described in 5.4.1, with the 
initial sire effects for all three genotypes being zero and the heritability fixed initially when 
estimating both variance components.

Genotyping at the major locus
The probability of each sire being each genotype, based on his offspring's 

phenotypes, is calculated to see how good the method is at allocating sires to a genotype 
class. The equation [2.5] can now be written as:

n m

p(c) h(u ic) M V trans(d I c

d=1

As for ME1, these probabilities are calculated each iteration as part of the 
maximisation process and the values from the final iteration can be used.

6.4.2 Test statistic

It has been shown that the test statistic distribution obtained by analysis of 
polygenic data with the ME1 approximation does not follow a x2 distribution (see 
section 5.4.2). Investigation is required to see whether the test statistic obtained using 
the ME3 mixed model approximation follows this expected distribution.
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Method
To investigate the test statistic distribution the data described in 4.4.3 were 

analysed using the ME3 approximation to the mixed model. The analyses were the same 
as those described in 5.4.2, with the test statistic being calculated as given in [2.4] using 
the ME3 mixed model likelihood.

Results

Figures 6.1 and 6.2 show the distribution of the test statistic for the 100 
simulations with the expected heritability equal to 0.2 and 0.4 respectively. If the two 
sets of starting values gave different results, the highest likelihood has been used. The 
mean and variance of these observed distributions are given in table 6.1 along with the 
number of simulations giving a significant value at the 5% and 1% significance levels 
when tested against a x2 distribution with three degrees of freedom. All negative test 
statistics have been set to zero.

Compared with the results using the ME1 approximation fewer analyses 
converged to a polygenic model, as shown by the decreased number of zero test 
statistics. Hence, the mean of the test statistic distribution is higher than observed for 
ME1, although lower than expected for a x2 distribution with three degrees of freedom. 
The distribution most resembles a x2 distribution when the heritability is estimated, 
although all of the observed distributions are significantly different from a x2 distribution 
with two, three or four degrees of freedom. With a heritabtlity of 0.2, estimated in the 
analyses, the distribution is closest to that expected. However, even in this case when 
comparing the observed and expected number of test statistics falling in ten equal parts 
of the x2 distribution with two, three and four degrees of freedom the x2 (9 d.f.) values 
obtained were 38.0, 42.9 and 73.6 respectively. The high values being caused by the 
large proportion of zero test statistics.

Table 6.1. Mean and variance of the test statistic and the number significant when 
compared with a jf distribution with 3 degrees of freedom.

Model

Expected
h2=0.2
h2=0.2
h2=0.4
h2=0.4

(X2 3 d.f.)

fixed
estimated

fixed
estimated

Mean

3
0.414

2.657

0.300

1.107

Variance

1.313

7.616

2.375

8.072

no. zero

0

78

20

89

79

5%

5

0

4

1

6

1%

1

0

1

1

3
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Figure 6.1 Distribution of the test statistic from analyses of polygenic data with an 

expected herilability of 0.2.

a) With the polygenic heritably assumed to be known in the analyses.
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b) With the polygenic heritability estimated in the analyses.
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Figure 6.2 Distribution of the test statistic from analyses of polygenic data with an 
expected heritability of 0.4.

a) With the polygenic heritability assumed to be known in the analyses.
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b) With the polygenic heritability estimated in the analyses.
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Discussion

The test statistic distributions obtained from the 100 analyses of each model do 
not follow a x2 distribution with three degrees of freedom. However, the observed 
distributions have fewer zero values than obtained using ME1. When testing for the 
presence of a major gene the extreme tail of the distribution is of interest, that is, a value 
is required against which the test statistic can be compared that would incorrectly 
suggest a major gene in just 5% or 1% of analyses. With the heritability estimated the x2 
distribution appears to provide a reasonable criterion.

These results are in agreement with those given by Elsen and Le Roy (1989) for 
this approximation, denoted MU3 in their notation. In their analyses five more 
parameters were estimated in the mixed model than in the polygenic model, as genotype 
frequencies for the sire population and an allele frequency for the dam population were 
estimated. Considering the situation with the polygenic heritability estimated in the 
analyses, based on 318 analyses with an expected heritability of 0.2 the mean test 
statistic was 3.91 (standard deviation 3.30) and when the expected heritability was 0.6 
the mean test statistic from 244 analyses was 3.44 (standard deviation 3.75). Both of 
these are tower than expected from a x2 distribution with five degrees of freedom. They 
also estimated the 5% and 1% quantiles for these two distributions and obtained 
estimates of 10.61 and 15.11, respectively, when the heritability was 0.2 and 11.08 and 
17.11 when the heritability was 0.6. With a heritability of 0.2 these estimates are similar 
to the values that would be obtained from a x2 distribution with five degrees of freedom 
(11.07 and 15.09). With a higher expected heritability the 1% quantile was over 
estimated. As found here, a x2 distribution might provide a suitable criterion when the 
expected heritability is tow (0.2). With a higher heritability, the results of Elsen and Le 
Roy (1989) suggest that too many spurious major genes will be detected.

6.4.4 Simulation results

The results are based on the analysis of each data set that gave the highest 
likelihood.

Power
The results for the test statistic obtained from the analyses of mixed model data 

are summarised in table 6.2. Also given are the regression on and the correlation with 
Herm results for the same set of data, including the negative test statistics but ignoring 
those that went to zero. The mean test statistic is always tower than the mean Herm 
value, however it was higher than that obtained using the ME1 approximation especially
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when the heritability was fixed because of the decrease in the number of zero test 

statistics. Fewer analyses resulted in negative test statistics than with ME1, suggesting 

that convergence to local maxima is less of a problem. The likelihood surface for the same 

set of data illustrated in figure 5.4, which produced a negative test statistic for ME1, is 

shown in figure 6.3. It can be seen that the local maximum, present when analysing with 

the ME1 approximation is no longer present when using the ME3 approximation.

A major gene was easiest to detect when the simulated data contained a major 

gene with an allele of dominant effect. Evidence for Its existence was found in 99 of the 

analyses both when an assumed value for the heritability was used and when the 

heritability was estimated. Considering the three additive major genes simulated, a major 

gene was detected in the highest number of analyses when one of the alleles was rare. 

When estimating the heritability the test statistic decreased, as observed using Herm but 

not ME1, and hence the number of analyses giving a significant test statistic decreased. 

Also when the heritability was estimated the improvement of the ME3 approximation 

over ME1 was reduced. This is because many of the non-zero test statistics resulted 

from analyses ending at major gene models which are the same for the two methods.

When comparing the results from the same data sets the ME3 likelihood is always 

less than the Herm likelihood when a mixed model is obtained using Herm. Hence when 

compared with a x2 distribution fewer are significant. However there is a good linear 

relationship with the Herm results, with both the slope of the regression and the 

correlation being close to one. This is illustrated in figure 6.4 for the data simulated under 

Add1, which also shows the improvement of the ME3 over the ME1 likelihood. When a 

mixed model is obtained for ME3 the likelihood is always greater than that obtained using 

ME1.

Parameter estimates
Table 6.3 gives the mean parameter estimates for those analyses that gave a non 

zero test statistic for the four mixed models simulated. The highest scoring homozygote 

at the major locus was defined as being genotype AA. Also given are the regression of 

the estimates on, and their correlation with the Herm estimates for the same set of data. 

The mean estimates for the variance components (with the major gene variance 

estimated using [4.5]) and their regression on, and correlation with the values from the 

simulation (estimated by analysis of variance on the polygenic plus environmental effects 

for the residual and sire variance components and using equation [4.5] for the major gene 

variance) for the same set of data for those analyses giving non-zero test statistics are 

given in table 6.4.

161



Figure 6.3 The likelihood surface for one set of data simulated under Addt
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Figure 6.4 The test statistic obtained under ME3 and ME1 compared with the test statistic 

obtained with Herm for the same set of data, for Add1 with fixed heritability.

30-i

.o 
to.22 20
«
to

S3 io
s
l
LU 0-

-10

O ME3 
x ME1

10 20 30 
Herm test statistic

40

162



O
5 

O

th
e 

sa
m

e 
se

t o
f d

at
a.

M
od

el

Ad
d 

1 
m

ea
n

sd slo
pe

r

Ad
d 2

 
m

ea
n

sd slo
pe

r

D
om

 
m

ea
n

sd sl
op

e
r

Ra
re

 
m

ea
n

sd slo
pe

r

Fi
xe

d 
he

rit
ab

ilit
y

P
(A

) 
U

A
A

 
U

A
« 

O
?.

 
D

(A
)

0
.4

9

0.
18

1.
14

0.
82

0.
48

0.
26

1.
62

0.
81

0.
51

0.
04

0.
66

0.
82

0.
21

0.
15

0.
70

0.
81

* 
"
 *

16
.2

2

3.
68

0.
65

0.
70

16
.0

2

5.
84

0.
49

0.
28

20
.2

4

2.
50

0.
61

0.
93

18
.3

8

6.
90

0.
80

0.
86

8.
03

3.
66

0.
60

0.
78

7.
08

5.
00

0.
71

0.
50

19
.8

0

1.
63

0.
90

0.
97

8.
48

4.
05

0.
59

0.
64

10
8.

99

11
.8

8

0.
86

0.
83

11
1.

03

11
.9

9

0.
58

0.
48

95
.2

6

8.
10

0.
95

0.
95

10
0.

52

10
.2

4

0.
81

0.
84

0.
51

0.
10

0.
50

0.
70

0.
50

0.
12

0.
78

0.
86

0.
51

0.
05

0.
93

0.
86

0.
28

0.
15

0.
49

0.
47

Es
tim

at
ed

 h
er

ita
bi

lit
y

21
.8

6

2.
46

0.
27

0.
55

23
.1

6

2.
39

0.
46

0.
66

22
.7

2

3.
75

0.
70

0.
73

20
.9

3

4.
98

0.
44

0.
67

* 
*

10
.8

2

2.
18

0.
27

0.
67

11
.7

9

3.
63

0.
58

0.
78

19
.2

6

1.
65

0.
67

0.
79

9.
24

3.
65

0.
39

0.
48

90
.3

0

11
.1

8

0.
63

0.
71

82
.2

2

9.
21

0.
94

0.
96

93
.0

6

13
.4

4

0.
78

0.
74

90
.4

0

10
.7

9

0.
66

0.
65

0.
25

1.
69

0.
07

0.
17

0.
76

4.
58

0.
62

0.
73

0.
80

9.
21

0.
34

0.
60

2.
03

4.
15

0.
84

0.
71



Ta
bl

e 
6.

4 
Va

ria
nc

e 
es

tim
at

es
 a

nd
 th

e 
co

rre
la

tio
n 

wi
th

, a
nd

 re
gr

es
sio

n 
on

, t
he

 v
al

ue
s 

es
tim

at
ed

 in
 th

e 
si

m
ul

at
io

n 
fo

r t
he

 s
am

e 
da

ta
 s

et
.

o>

M
od

el

Ad
d1

 
m

ea
n

sd slo
pe

r
Ad

d 2
 

m
ea

n
sd slo

pe
r

Do
m

 
m

ea
n

sd slo
pe

r
Ra

re
 

m
ea

n

sd slo
pe

r

a2
—

—
—

—
—

—
—

 \L
ff —

—
—

—

10
8.

99
0

11
.8

82

0.
91

5

0.
32

8

11
1.

02
7

11
.9

88

0.
65

5

0.
22

0

95
.2

57

8.
09

6

0.
87

3

0.
52

6

10
0.

52
0

10
.2

41

1.
52

7

0.
63

4

Fi
xe

d 
he

rit
ab

ilit
y 

o2
 

a 2
-

5.
73

6

-0
.0

94

-0
.2

79

12
.3

36

-0
.2

01

-0
.4

34

5.
01

4

0.
00

6

0.
03

3

5.
29

1

-0
.0

45

-0
.1

74

33
.3

03

13
.8

10

2.
14

2

0.
23

3

22
.9

02

16
.1

44

-0
.1

29

-0
.0

40

74
.7

90

11
.0

60

0.
95

5

0.
45

4

22
.4

41

10
.5

27

0.
94

2

0.
25

2

Es
tim

at
ed

 h
er

ita
bi

lit
y 

a2
 

o2
 

CT
!~

90
.2

98

11
.1

83

0.
65

7

0.
25

7

82
.2

19

9.
21

2

0.
62

5

0.
27

7

93
.0

61

13
.4

37

0.
91

8

0.
48

6

90
.3

96

10
.7

94

0.
81

7

0.
30

6

0.
24

9

1.
69

2

0.
12

0

0.
12

8

0.
76

4

4.
58

1

0.
10

5

0.
05

4

0.
80

1

9.
20

9

0.
52

0

0.
51

3

2.
02

5

4.
15

2

0.
58

1

0.
27

3

59
.8

36

14
.1

10

3.
15

9

0.
32

9

66
.1

07

14
.9

26

2.
66

0.
36

0

81
.8

15

11
.8

98

0.
87

6

0.
38

8

37
.5

27

15
.6

67

1.
60

8

0.
29

6



With fixed heritability the residual variance is always over estimated by ME3 in 
comparison with the estimate from Herm, and hence there is a consistent underestimate 
of the effect of the major gene. However, in general there is a good linear relationship 
between the estimates from both methods. This is shown in figure 6.5 which also shows 
that although, on average, ME3 gives a higher estimate of the residual variance 
compared with ME1, considering the analyses individually the ME3 estimate is sometimes 
higher and sometimes tower. The estimates obtained from the analyses of data containing 
the major gene with dominant effect are very close to the expected values, with the 
residual variance estimate closer than when using Herm. When the residual variance and 
major gene variance estimates are compared with the estimates from the simulation for 
each set of data there is a positive linear relationship. The correlations were high for 
both variances when the simulated major gene had a dominant effect, and for the 
residual variance when the simulated gene had a rare allele. There is a poor relationship 
between the sire variance component estimated in the segregation analysis and estimated 
from the simulation because this is not being estimated directly in the analyses but as a 
fixed proportion of the residual variance.

When the polygenic heritability is estimated, in general, the residual variance is 
under estimated and the major gene effect over estimated compared with the expected 
values. This is because of the large number of analyses resulting in a major gene model, 
with the sire variance equal to zero. However this still results in an overestimate of the 
residual variance compared with the Herm estimate for the data containing a gene with 
dominant effect and about the same estimate when a rare, additive gene is present. Only 
2 of the Add1 analyses, 1 of the Add2, 4 of the Dom and 21 of the Rare analyses 
resulted in a mixed model, the remainder of the non-zero test statistics being caused by a 
major gene model. In general, when the estimates are compared with the expected values 
for the same data set, the slope of the regression and the correlation is lower than that 
obtained with fixed heritability. The sire variance component, which is now being 
estimated directly, has a positive linear relationship with the estimate from the simulation 
for the same set of data.

Table 6.5 gives the mean Herm major gene estimates for those simulations which 
gave a non-zero ME3 test statistic and for those that gave a zero ME3 test statistic. 
The analyses that gave a zero test statistic when analysing with ME3 were those with a 
low test statistic from Herm, which, on average, were not significant. These analyses also 
resulted in lower estimates for the major genotype means when using Herm than those 
which ended at a non-polygenic model in ME3. The allele frequencies using Herm are 
generally less well estimated for the ME3 zero test statistic group and have a larger 

variance.
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6,5 The residual variance estimated with ME3 compared with that estimated with

Herm for Add1 data analysed with fixed heritably.
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Figure 6.6 Comparison of the transmitting abilities estimated using ME1 and using ME3 

against the progeny mean for a data set simulated under Add1 analysed with fixed 

heritability.
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Figure 6.6 shows the relationship between the transmitting abilities estimated 
under ME1 and those estimated under the hypothesis of each major genotype. When the 
progeny mean is tow the sire has a high conditional probability of being genotype aa (see 
figure 5.7), and hence the ME1 estimate equals the estimates obtained using ME3 under 
the hypothesis of that major genotype. Likewise, with a high progeny mean the ME1 
estimate approaches that estimated under ME3 assuming that the sire has major 
genotype AA. At intermediate progeny means, when the conditional probability from the 
ME1 analyses for the heterozygote is high the ME1 estimates are the same as the 
heterozygote from the ME3 analyses and otherwise they are pooled estimates of the 
ME3 transmitting abilities depending on the conditional genotype probabilities.

Genotyplng sires at the major locus
The probability of each sire being each major genotype was calculated using [5.3]. 

Considering the correct genotype for each sire, the probability of being that genotype 
was grouped into three classifications. The first, if the probability was greater than 0.9, 
the second greater than 0.75 and the third greater than 0.5. For each analysis the 
percentage of correctly genotyped sires of each genotype was calculated and the total 
percentage correctly genotyped over ail genotypes. The results are given in table 6.6 as 
the mean percentage correctly genotyped over the analyses that resulted in a non- 
polygenic model.

The results are similar to those obtained using Herm (see table 4.9). Over all 
genotypes, if the criterion for a sire to be assigned to a particular genotype was that his 
conditional probability for that genotype was greater than 0.9, the highest proportion of 
sires was correctly genotyped for the additive major gene with rare allele. If 0.5 was 
taken as the criterion, the highest number of sires correctly genotyped occurred when 
the major gene had a dominant effect. With fixed polygenic heritability the ME3 analyses 
correctly identified the genotype of a similar or lower proportion of sires compared with 
Herm for each situation, except for the common genotype of the analyses containing a 
rare major allele. Also using the ME3 approximation a tower proportion were correctly 
identified than with ME1, this could be because the ME1 results are based on fewer 
analyses, in which the evidence for a major gene was large and hence the sires easier to 
genotype. The conditional probabilities for ME1 tend to be more extreme than those 
estimated using ME3. This is shown in figure 6.7 where the conditional probability of a 
sire being the high scoring genotype estimated using ME1 and ME3 are plotted against 
the probability estimated using Herm for data simulated under Add1 analysed with fixed 
heritability. For the probability of being heterozygous the ME1 distribution is even more 

extreme.
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When the heritability is estimated the results from ME3 are similar to those from 
ME1, because of the high proportion of analyses that resulted in the same major gene 
model. In general a higher proportion of sires were correctly genotyped than using Herm 
especially at high probabilities (0.9 and 0.75).

Figure 6.7 The conditional probability for a sire being genotype AA (qrfAA)) estimated using

ME1 and ME3 plotted against the estimates using Herm for Add1 data with fixed 
heritability.
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6.4.5 Discussion

Considering the ability of the methods to detect a major gene, the ME3 
approximation to the mixed model likelihood is an improvement over the ME1 
approximation. With fixed heritability, using ME3, major genes were detected in more 
analyses than with ME1 and there was less of a problem with negative and zero test 
statistics. However, the mixed model likelihood was lower than that calculated with 
Herm, which results in a lower test statistic and, hence, fewer analyses giving significant 
results. When the polygenic heritability was estimated in the analyses, the difference
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between the polygenic and mixed model likelihoods decreased compared with the 

situation when the heritability was fixed and, hence, a major gene was detected less 

frequently. This is because an increased heritability in the polygenic model can explain 

some of the major gene variance which cannot be explained when the heritability is fixed 

at the expected value for the polygenic component. This was observed for the analyses 
with Herm. It suggests that if an underestimate of the polygenic heritability was used in 
the analyses with fixed heritability, a mixed model might be inferred, simply because the 

major gene can explain some of the additional polygenic variance. Analyses of the 

polygenic data with an expected heritability of 0.4 were repeated, this time assuming a 
value of 0.2 for the heritability. The number of analyses in which evidence for a major 
gene was found increased to 19 at the 5% significance level and 7 at the 1% level. The 
mean of the test statistic distribution is 4.48, higher than expected with three degrees of 
freedom.

The ability of the method to detect a major gene seemed to be more dependent on 
the distribution of the data than the proportion of the genetic variance it explained. 

When the data contained an additive major gene with a rare allele, which caused the data 
to be skewed, a major gene was detected more frequently than when the equivalent gene 
with equal allele frequencies was simulated. A major gene was detected most frequently, in 
99% of the analyses, when the simulated gene had a dominant effect. This gene both 
explained the largest proportion of the variance and caused the data to be skewed.

Elsen and Le Roy (1989) give the percentage of analyses in which evidence for a 
major gene was found for models equivalent to Add1 and Dom (h 12 and h 11 ,

respectively) with the polygenic heritability estimated. The model for analysis, as 
explained previously, estimated the sire genotype frequencies and the dam allele 

frequency. They compare the test statistic with a 5% quantile obtained by analysis of data 
simulated under a polygenic model. The value of the quantile used was 10.82 which is 
similar to the expected value from a x2 distribution with five degrees of freedom (11.07). 
From 100 analyses of data containing 20 half-sibs from each of 20 sires, a major gene 

was detected in 9 analyses when the simulated gene was additive and 77 when It had a 

dominant effect. These are lower than the results reported here, especially for the gene 

with dominant effect, which could be due to the tower number of individuals simulated. 

When the background heritability was increased (to 0.6) Elsen and Le Roy (1989) found 

that the number of significant analyses decreased (to 3 and 67 for the additive and the 

dominant major gene, respectively) as reported here.
On average, most of the parameter results obtained using the ME3 mixed model 

likelihood were in reasonable agreement with the expected values when those analyses 

resulting in a polygenic model were ignored. The variance of the estimates was large and
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hence individual analyses might give misleading results. With the heritably fixed the 

residual variance was over estimated and the effect of the major gene under estimated. 

When the heritability was estimated most of the non-zero test statistics were the result 

of a major gene model with the polygenic heritability at zero.

Each analysis was repeated, using the expected parameter estimates to start the 

maximisation process and using alternative values where the major gene explained a 
higher proportion of the variance. The results reported are based on the analysis giving 

the highest likelihood. With fixed heritability, the analyses were not very sensitive to the 

initial parameter values used. In only 5 of the 400 analyses were different final models 
obtained, and in each case two different mixed models were obtained, which might be 
caused by convergence not being attained. When the heritability was estimated, the 
analyses were more sensitive, the worst case being for the simulated major gene with a 
rare allele (Rare), where 22 of the 100 analyses resulted in a different model. Some of 

these were caused by parameters going to bounds in the analyses and one giving, for 
example, a major gene model and the other a mixed model. Other differences were 

caused by different parameter estimates for mixed or major gene models. The highest 
likelihood could result from either starting model. For Add2 18 of the 100 analyses gave 

two different models, with the expected parameter estimates giving a polygenic model 
and the alternative values giving a mixed model.

6.5 USE OF REML VARIANCE EQUATIONS

The ML equations for the variance estimates used in the simulation study are 

biassed, because they do not take account of the degrees of freedom lost through 

estimation of the fixed effects. For the mixed model although fixed effects have not 

been estimated in the analysis, the major genotype means have been estimated and this 
has not been taken into account in the variance equation. REML equations have been 
derived in Appendix 4 treating these major genotype means as fixed effects.

Using the ML equations, when the heritability was estimated, the mixed model 

analyses often resulted in a model with the genetic component composed of only a major 
gene or only polygenes. A mixed model was rarely obtained. When a major gene model 
results the sire variance has converged to zero. REML takes account of the estimation of 

the major genotype means and, hence, of some of the uncertainty caused by not 

knowing the major genotype of the individuals. It was hoped that this might improve the 

ability of the approximation to determine the correct model of inheritance. However, as 

stated in section 2.3.3, the mixed model and polygenic likelihoods obtained with REML 

are not directly comparable within a statistical framework.
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To consider the effects of using the REML equations some of the data were 
reanalysed and the resulting parameter estimates from ML and REML compared. Several 
different situations were considered: five data sets simulated with a dominant major gene 
that resulted in a mixed model using ML and five that resulted in a major gene model with 
ML, and five, simulated with an additive model, that resulted in a polygenic model with 
ML.

Table 6.7 gives the mean results from the analyses of each situation for ML and 
REML. The use of REML did not alter the resulting model, analyses which ended in a 
major gene model with ML also resulted in a major gene model with REML. The estimates 
of the variance components increased which caused slight changes in the other 
parameters.

Without fixed effects, the use of the REML equations has little effect on the 
results. However, these REML equations were obtained assuming that the major 
genotype of the offspring were known, whereas, in fact, there is uncertainty in the 
classification of animals to genotype classes. Some of this uncertainty is accounted for in 
the trace of the inverse of the coefficient matrix, however, the equations might be 
improved by taking further account of this additional variance.

6.6 INCORPORATION OF 2ND DERIVATIVES

The EM algorithms for ML described for both the ME1 and ME3 methods (see 
section 5.3, Appendix 3, section 6.3 and Appendix 4) can be obtained from the 1st 
partial derivatives of the log likelihood with respect to each of the parameters to be 
estimated. For a linear set of equations the algorithm given is equivalent to the Newton- 
Raphson algorithm (shown in equation [4.5]) because the coefficient matrix from the 
mixed model equations obtained using 1st derivatives [5.2] is equal to minus the matrix of 
2nd partial derivatives (called the observed information matrix). For example, with the 
following simple model:

The tog likelihood of y given p is:
In L = const

and the first derivative of this with respect to p is:

which can be written as before:
(X'V 1 X) p = X'V 1 y
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n L) _ Y ,V . 1~ A y
the 2nd derivative is:

which is minus the coefficient matrix given above. Hence the Newton-Raphson algorithm 
can be written as:

P a = - (-X'V-1X)-1(X'V-1y - X V ^X p^) +p a .-,

= (XV 1 X)-1X'V-1y -Pa-i+Pa-1

= (X'V- 1 X)- 1 X'V 1 y 

Which is the 1 st derivative equation used so far.
However, the mixed model likelihood does not give a series of linear equations and 

hence incorporation of the 2nd derivatives with respect to these parameters into the 
maximisation routine might improve the rate of convergence. The EM algorithm 
described is equivalent, for the major genotype means and sire transmitting abilities, to a 
Newton-Raphson routine assuming that the conditional probabilities for the sire and 
offspring are fixed and not functions of these parameters.

6.6.1 2nd derivatives

Differentiating the vector of 1st partial derivatives with respect to each parameter 
gives the matrix of 2nd derivatives. For the major genotype means and sire effects these 
can be written in the series of matrices shown in figure 6.8.

6.6.2 Maximisation

The first and second partial derivatives with respect to the sire transmitting 
abilities and the major genotype means can be incorporated into the Newton-Raphson 
algorithm. Here the Newton-Raphson algorithm will be used only for the major genotype 
means and sire transmitting abilities and the equations obtained from the EM algorithm 
will be used for the variances and the allele frequency.

The Newton-Raphson algorithm takes account of the slope and shape of the 
likelihood surface and hence, in some situations will converge faster than the EM 
algorithm. Everitt (1984) illustrated this when estimating the parameters for a mixture of 
two normal distributions. For a single parameter, the effect of the algorithm is that each 
iteration provides the point at which the tangent to the likelihood curve at the previous 
point cuts the x-axis and if the likelihood surface is parabolic the maximum will be reached 
in a single iteration. In regions of negative curvature the algorithm will successfully 
converge to the maximum of this region. At a point of inflection the second derivative
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Figure 68 Partial second derivatives with respect to the major genotype means and the 
transmitting abilities for sires for the ME3 likelihood.
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will be zero and therefore the correction to the previous estimate will be infinite, near a 
point of inflection the second derivative will be very small leading to new estimates wildly 
out. Beyond the turning point in a region of positive curvature the process will lead away 
from the maximum. Hence, the process is sensitive to the initial parameters used to 
initiate the maximisation process. To improve this rt may be worthwhile transforming to a 
new parameter which gives a likelihood curve that is more nearly parabolic (Edwards, 
1972).

For the ME3 likelihood the surface is not continuously convex and hence problems 
are encountered when attempting to maximise the likelihood using the Newton-Raphson 
algorithm. Even when the expected values from the simulation were used as the initial 
parameter estimates, convergence was not, generally, attained. One means of 
overcoming this problem is to use the equations based on the 1st derivatives (EM 
algorithm) and then include the 2nd derivatives when a region of negative curvature 
around the maximum has been attained.

To see the effect of combining the two maximisation routines the algorithm 
described above with Newton-Raphson for the means and transmitting abilities and EM 
for the frequency and variance and the EM algorithm for all the parameters were used. 
The polygenic heritability was fixed at the expected value. The data contained an additive 
major gene and was known to converge to a mixed model with the EM algorithm. 
Different numbers of iterations with the first derivatives were tried before incorporation 
of the second derivatives. The results are given in table 6.8, with the convergence

criterion given after the last EM iteration and measured as:

where 6 is a vector of parameter estimates for the major genotype means and sire 
transmission probabilities of dimension dim(9) and [a] is the iteration number and the time 
for convergence to be attained when the criterion was less than 10'5 .

It can be seen that the EM algorithm converges fast initially but then slows down 
and, using this convergence criterion, the criterion increases before finally reaching 
convergence. Even using just two EM iterations enabled the maximum to be found with 
the Newton-Raphson algorithm. The use of the second derivatives decreases the number 
of iteration required, from 1164 to 949, the lowest in this sample. However, each 
iteration is more complicated and hence, in this example, there was no benefit in terms of 
the time taken to reach convergence.
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Table 6.8 Number of iterations required for convergence to be attained, using a 
combination of EM and Newton-Raphson algorithms.

Number of iterations Convergence 
EM Newton-Raohson criterion

2

10

50

100

200

500

700

1000

1164

952

939

910

871

786

537

384

151

0

0.2643

0.0165

0.0042

0.0009

0.0007

0.0012

0.0014

0.0003
-

No. sees.

3517

3501

3479

3435

3310

3054

2970

2738

2537

Where the convergence criterion is the value of the criterion after 1st derivative 
iterations and the time is the number of seconds taken for convergence to be attained.

Incorporation of the partial second derivatives with respect to the residual 
variance and allele frequency have not been investigated, but might reduce the number of 
iterations further. However, each Iteration would become even more complex and take 
longer to compute and, hence, the time taken to reach convergence might not be 

improved.

6.6.3 Standard errors of the estimates

Estimates of the standard errors of the estimates can be obtained from the 
inverse of minus the matrix of 2nd derivatives or the inverse of the observed

information matrix.
var(u - d ) = Czz o§, 

and var (6 ) = Cxx aj,

where C is the inverse of minus the matrix of 2nd derivatives. 

Alternatively the expected second derivatives can be used.
For a linear model the inverse of the coefficient matrix from the first derivative 

equations can be used. In general it is not computationally feasible to invert this matrix
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and methods of approximating the error variances have been used. Often, the surface is 

assumed to be quadratic around the ML estimate and the prediction error variances 

calculated form the second derivatives of this curve (Smith and Graser, 1986). For a 

non-linear model the advantage of the Newton-Raphson algorithm is that the second 

derivatives are calculated and can be used to obtain the variances and covariances of the 
estimates of the parameters.

For the mixed model the prediction error variances from the second derivatives will 

be taking account of the change in the conditional probabilities, rather than assuming 
them to be fixed.

6.6.4 Use of the 2nd derivatives In the variance equations

Using a Bayesian argument Foulley et al. (1987) suggest the use of the 2nd 

derivatives in the variance equations. They consider a situation where the sire of some 

individuals in the sample is unknown. Information from genotyping using, for example, 

major histocompatibilty markers or from knowledge of management procedures enables 

sires to be suggested as the true sire each with an associated probability. Hence, this is a 

similar problem to allocating major genotypes to individuals. The major genotypes can be 

considered as fixed effects which are assigned to each individual with a probability, 

dependent on the genotype frequencies of the parents and the transmission 

probabilities. In this case the uncertainty is connected to the fixed effects rather than 

the random effects. Also, the data has been used to estimate the frequency of the major 

genotypes whereas for the sires the prior probability of paternity has come from external 

sources.
Foulley et al. (1987) take the expected value of the sums of squares assuming that 

the posterior probability of being the sire of any individual is a constant and not 

dependent on the parameter estimates. The expression for which the expectation is

required contains a quadratic in 9 and hence as the expectation is taken with respect to 
the conditional distribution f(0|af a§, y) the variance of (G|y) is required. This can be

approximated by the inverse of the matrix of 2nd derivatives, which will be taking 

account of the uncertainty of which offspring belongs to which sire.

A similar idea could be pursued incorporating the uncertainty of the major 

genotypes of the offspring by using the 2nd derivatives.
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6.7 DISCUSSION

The likelihood calculated using the ME3 approximation is exact if the genotypes of 
all the offspring are known. Otherwise the approximation pools the information from the 

major genotypes of the offspring conditional on the sire major genotype to obtain an 
estimate of the transmitting ability of the sire for each major genotype. The likelihood can 
then easily be calculated as the offspring genotypes are independent given the genotype 
of the sire.

The ME3 approximation is an improvement over ME1, in that evidence for a major 
gene is found more frequently when a major gene exists in the data. It is not as powerful 
as Herm. When a major gene was detected the parameter results were in good agreement 
with the expected values although the ability of the method to correctly estimate the 
polygenic heritability was tow, the estimate being zero in the majority of cases.

When the polygenic heritability was assumed to be known and fixed in the analyses 
a major gene was detected more frequently. However, as observed with Herm, the 
method is not robust to the value of the heritability assumed and if this assumed value is 
an underestimate of the true polygenic heritability in the data a major gene is more likely 
to be inferred.

Estimates of the transmitting abilities for each sire are obtained under the 
hypothesis of each major genotype. To make use of this information, and the major gene 
information, the major genotype of the sire is required. The relevant polygenic 
component could then be assumed for the sire. Alternatively, if the sire cannot be 
allocated a major genotype (because the conditional probabilities of being each genotype 
are similar) these transmitting abilities could be combined, weighted by the probability of 
the major genotype. This would give estimates equivalent to those obtained from ME1. In 
the worst case, on average, only 40% of the sires were correctly genotyped when the 
criterion for allocation to a major genotype was that the conditional probability of being 

that genotype was greater than 0.5.
Although the power of ME3 was lower than Herm it has some advantages, in 

particular the faster speed of computation and the ease of inclusion of fixed effects, 
without increasing the time for convergence to a great extent. However, the extension 
of ME3 to more complicated pedigrees, for example including relationships between the 
parents would increase the complexity of calculation significantly. For example, the 
inclusion of full-sibs but ignoring any further relationships between progeny, would mean 
that the breeding value of both the sire and dam under the different major genotypes 
would have to be considered at the same time, giving nine estimates of the contribution 

of the parental polygenes to the offspring instead of the three being considered

180



presently. In general all combinations of major genotype for related individuals which are 
parents in the pedigree would have to be considered and with each combination the 

breeding value of the individuals calculated. Depending on the species concerned, this 
might reduce the calculations significantly compared with the exact likelihood, where all 
combinations of major genotype for all related individuals is required. However, the 
computation required might still be prohibitive for large pedigrees.
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Appendix 4

A4.1 EM Algorithm for maximisation

The tog of the ME3 approximation to the mixed model likelihood can be written as 
follows:

**-I- In
m n m

d=1

Differentiating this with respect to each parameter to be estimated and equating 

the derivatives to zero gives the following equations for the parameters:

Major genotype means
s m

M 0=1
s m

M c=1

Polygenic transmitting ability for each major genotype for sires
n m

Ujc =
qj(c) (n+X)

Genotype frequencies

An equation can be obtained for the allele frequency in both the sire and dam 

population assuming that the population is in Hardy-Weinberg equilibrium. Alternatively 

this assumption can be relaxed and genotype frequencies estimated in the sires and an 

allele frequency in the dams. The equations obtained, under the different assumptions, are 

identical to those given for the ME1 approximation in Appendix 3.
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Variance components

If the polygenic heritability is assumed to be known, then the following equation 
for the residual variance is obtained:

s m

a(0
M c=1

n m

c) <
H 6=1

sn

Otherwise, equations for the residual and sire variance components are as follows:

s m n m

M c=1 d=1

n+X

s m

2°= ^1 0=1

n+X

As for ME1 the equations have been written as functions of q,(c) and qjj(d|c),

where:
q-,(c) is the conditional probability of genotype c for sire i.

n m

p(c) 10 k^jj
H

m

qjj(d|c) is the conditional probability that offspring j from sire i has genotype d

given that the sire has genotype c.

(d|c)=- m
^Mrans(d'

The maximisation process is the same as described in Appendix 3. The equations 
for the major genotype means (u^j) and transmitting abilities for each major genotype
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(Ujc) (and fixed effects if included) can be solved simultaneously by arranging them into 

matrix form. The matrices are similar to those for ME1, although now the sire part of the 
matrix is larger with three lines for each sire, one for each genotype. The matrices are 
given in equation [6.2].

A4.2 REML variance estimates

The ML equations described above give biassed estimates of the true variances as 
they do not take account of the degrees of freedom tost through estimation of the fixed 
effects. REML has been developed for the polygenic model as described in section 2.3.3.

The ME3 approximation to the mixed model likelihood is exact for the sire model
when the major genotypes of all the offspring are known. With this assumption and 
assuming a general model with different design matrix (Z ic) and variance-covariance 
matrix (V ic) for each genotype of each sire the likelihood can be written as, using the

notation defined in section 2.2:

w

lnL(MM)= -IIl|n(2jc)+]r In

m

Voi ic
exp

Assuming that sires are unrelated the coefficient matrix from the first derivatives is:

qj(1)WD7M qj(2)W D'Z i2 qj(3)W D'Z i3

qi(1)Zji'WD q i(1)(Z M 'Zi1 -hX) 0 0

qi(2)Zi2'W D 0 qj(2)(Z i2 'Zj2+X) 0

L qi(3)Zi3'WD 0 0 qj(3)(Zj37j3+X) J

Assuming that the posterior probability of each genotype for each sire is not a function 
of the parameters but fixed, the variance-covariance matrix can be obtained from the 
first derivatives. Absorption of the sire effects gives the following matrix:

s m

WD'W D- 2,2-^(c) W D7jC(qj(c)(Zic'ZiC + X)) Zte'W^c)
M c=1 w

which will be denoted: WD 'V-JW D
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The mixed model likelihood can be written:

InUMM) = - ln(2jt) -i In | Wc/NT.1 WD I +1 In IWD -WD

In
s m

^ M c=1

Differentiating this with respect to the two variance components, CT§, and o§, again 

assuming that the conditional frequencies for each sire are constants and not functions 
of the variances, and equating the derivatives to zero gives the following equations for 
the variance components:

s m n m

2 °w= M c=1 H d=1
n m

sn-s-m+1
c=1

s m

2° = M c=1

1j(c) XtrfClc]-Xtrf(Zic'Zic +xr]
M c=1

Where: C ic is the element of the inverse of the coefficient matrix for sire i with

genotype c. 
(Z jc 'Zjc + X) is a scalar with the value n+X, hence trKZ^'Z^ + X)* 1 ] is (n+X)' 1 .

Generally Zi1 = Zi2 = Zi3 = Zj and V J1 = V J2 = Vi3 = V s and the equations

can be simplified.
Fixed effects can be included in the same way as the major genotype means, reducing the 
denominator by the matrix X'X (see section 2.3.3) and adjusting the phenotypes for the 
relevant effects.
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CHAPTER 7

SUMMARY AND CONCLUDING REMARKS 

7.1 SUMMARY

Most traits of economic importance in animal breeding are quantitative, that is they 
are controlled by a number of loci which cannot be identified and manipulated 
independently by classical animal breeding techniques. The aim of this work has been to 
develop statistical methods to identify the existence of genes of large effect that 
contribute variation to the trait of interest.

Work carried out on human populations indicated that segregation analysis was the 
most appropriate method, being more powerful than other methods suggested, giving 
parameter estimates and having a fairiy wide application. However, the likelihood of the 
general model (i.e. the mixed model, which allows both polygenic and major genetic 
variance) cannot be calculated in a reasonable length of time, even for pedigrees of 
moderate size, and hence approximations to this likelihood have been considered.

The use of Hermite integration to replace exact integration gives a value for the 
likelihood that is a very good approximation, and in the work presented here this method 
has been used as a baseline against which the other approximations have been 
compared. Two other approximations have been considered that are extensions of 
methods already used in animal breeding theory, ME1 and ME3. PAP, an approximation 
used by human geneticists, was investigated but not compared with the others because it 
was thought to be too difficult to extend to be suitable for animal breeding situations.

Simulated data has been used to compare the approximations. Two different 

situations have been considered. The first assumed that an accurate estimate of the 

polygenic heritability for the trait in question was already available, for example from 

previous analyses of data from populations in which a major gene was not segregating. 
In the second situation, the polygenic heritability was estimated. The distribution of the 

test statistic (i.e. twice the difference in the natural logarithms of the MLs of the two 
models being compared) obtained from analysis of polygenic data was investigated. In 

comparisons of the mixed and polygenic models, with a single altele frequency to describe 
the genotype frequencies, the test statistic distribution is expected asymptotically to 

follow a x2 distribution with three degrees of freedom. Using Hermite integration the 

distribution of test statistics was not significantly different from this expected 

distribution both with fixed and estimated polygenic heritability. The distributions 

obtained with ME1 and ME3 were significantly different from a x 2 distribution because
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of the high number of zero test statistics. However, when the polygenic heritably was 
estimated the ME3 approximation gave about the correct number of significant results at 
the 5% and 1% levels, hence the x2 distribution might provide a reasonable criterion to 

test for a major gene in this situation.
Assuming a well estimated polygenic heritability, the methods were more powerful 

and the parameter estimates closer to the expected values than when the heritability was 
estimated in the analyses. With the polygenic heritability fixed, however, there is a 
problem that a major gene may be suggested to explain any additional genetic variance 
that is not already accounted for, even if it is polygenic in origin. Segregation analysis 
may not be robust even to small deviations from the true value. Hence the polygenic 
heritability needs to reflect the true polygenic heritability in the sample being analysed.

An important comparison of the three approximations is the power, i.e. whether a 
major gene, when it is present and segregating, can be detected. For the genetic models 
considered here, both when the heritability was estimated and when it was assumed to 
be known in the analyses, Herm was the most powerful approximation. The largest 
differences between the results from Herm and the other approximations were for the 
simulated additive major genes when a value for the polygenic heritability was assumed. 
Also in this situation the improvement in the power of the ME3 approximation over that 
of ME1 was greatest. For example, when the simulated data contained a gene with equal 
allele frequencies explaining 71% of the genetic variance with a polygenic heritability of 
0.2 (Add1), Herm detected a major gene in 75 of the 100 analyses, ME3 in 33 and ME1 
in only 4. Using Herm, a major gene was detected least frequently when the simulated 
major gene was additive and explained only 56% of the genetic variance, with a polygenic 
heritability of 0.4 (Add2). In this case, when the heritability was estimated, in only 15 of 
the 100 analyses was there significant evidence for a major gene. When the major gene 
explained the largest proportion of the genetic variance (79% in Dom), the three 
approximations gave similar results in terms of the number of significant analyses (almost 
100% of analyses) both for the analyses with fixed and for those with estimated 
heritability. However, the mean test statistic for ME3 was lower than that with Herm 
and the mean ME1 test statistic was even lower. The ability of the methods to identify a 
major gene is also affected by distribution of the data. When the heritability was 
estimated, evidence for a major gene was found more frequently when the distribution of 
phenotypes was skewed. This is because a polygenic model cannot explain a non-normal 
distribution of phenotypes but the addition of a major gene can account for the

skewness.
The parameter estimates obtained from the methods are also of interest, and are 

required to determine the best use of the major gene. On average, the parameter
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estimates obtained using Herm were in good agreement with the expected values. There 
was a weak, positive correlation between the variance components estimated in the 
analyses and the estimates of the variances actually generated in the simulation. The 
highest correlations were obtained for the estimated sire variance when the simulated 
major gene had an allele with dominant effect (Dom; r«0.57) and when the major gene 
was additive with a rare allele (Rare; r=0.56). The estimates of all parameters had greater 
genetic variance over the 100 analyses when the polygenic heritability was estimated. In 
the two models where the major gene caused a skewed distribution (i.e. Rare and Dom), 
its contribution to the variance, was, on average, over estimated using Herm and the 
residual variance under estimated to a similar extent. When the heritability was fixed, the 
ME1 and ME3 analyses, on average, over estimated the residual variance and 
consequently under estimated the effect of the major gene compared with the results 
from Herm. When the heritability was estimated, there were problems distinguishing the 
simulated major gene and polygenic variation using ME1 and ME3, and these analyses 
usually resulted in a major gene model. However, in this case, the parameters describing 
the major gene gave a good indication as to the action and frequency of the simulated 
major gene, although, on average, over estimated its effect. When a model involving a 
major gene was suggested, in all situations there was a strong linear relationship between 
the parameter estimates under Herm and those from ME1 and ME3.

The use of major genes, once identified, depends on the ability to genotype 
individuals at the major locus. In this work, sires were allocated genotypes dependent on 
the phenotypes of their offspring. When a mixed model resulted the three 
approximations were similar in their ability to correctly genotype the sires and, on 
average, at least 50% of the sires could be correctly genotyped when the criterion for 
allocation to a genotype was that the conditional probability of being that genotype was 
greater than 0.5. However, unfortunately the number of sires incorrectly genotyped at 
this probability is not known. The offspring have not been genotyped at the major locus, 
but, in general, the genotyping would be much less accurate then for the sires. The 
benefit of knowing the major genotype of just a proportion of animals, including some 
incorrectly genotyped has not been investigated, however, obviously the requirement is 
for a high number of sires correctly genotyped with few incorrect.

For selection to be efficient the major genotype and polygenic genotype of each 
individual is required. The polygenic merit of the sires is obtained directly from ME1, 
although the estimate involves pooling over the three possible major genotypes for the 
sire. ME3 gives an estimate for the transmitting ability for each major genotype of each 
sire. If the sire can be accurately genotyped at the major locus, then the transmitting 
ability estimated under that genotype would be the required value, otherwise the
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estimates would have to be pooled depending on the conditional probability of each 

genotype, resulting in the same equation as used in ME1. Herm does not estimate the 

transmitting ability as the likelihood is calculated as a summation over many different 

values for this parameter. However, some indication of the transmitting ability could be 

obtained from the likelihood of the half-sib family for each of the values used in the 

summation. Alternatively, the transmitting abilities could be estimated after maximisation 

using the ML parameter estimates, although the same problem will exist as for ME3; that 

is which major genotype to consider for each sire, or whether to pool the estimate over 

all genotypes.

An important consideration is the time taken for the analyses. The time taken can 

be broken into two components, the time for each iteration or function evaluation, and 

the number of iterations required for convergence to be attained. A single iteration of 

the EM algorithm for ME3 takes about 50% more time than an iteration for ME1. The 

number of iterations was extremely variable depending on the simulated genetic model 

and whether a mixed or polygenic model was attained at convergence. On average, ME3 

required more iterations (about 460) than ME1 (about 200) to reach convergence. With 

the heritability fixed, ME3 took much longer to converge than when the heritably was 

estimated, except when the simulated major gene had an allele with dominant effect 

(Dom). With this dominant model nearly all the analyses resulted in a major gene and the 

ME3 approximation took fewer iterations than ME1. Herm has been programmed using a 

quasi-Newton routine with a different convergence criterion to that used for the EM 

algorithm, and, hence, is not directly comparable with the results from ME1 and ME3. 

Each function evaluation takes about 15 times as long as an iteration for ME1. However, 

the number of function evaluations required for convergence was much less (about 170) 

than the number of iterations for ME1 and ME3, with much less variation over the 100 

analyses for each situation.
In the analyses, the expected values for the parameters were known and these 

could be used as the initial values from which the maximisation process starts. Hence, the 

analyses are likely to be starting near the expected global maximum. When analysing real 

data the true values of the parameters are unknown and several starting values should be 

tried. Using an allele frequency, Herm was not very sensitive to the initial starting values. 

In the main simulation study two different starting values were used for ME1 and ME3. 

ME3 resulted in the same model from these starting values more often than ME1. With 

fixed polygenic heritability the methods were not very sensitive, the worst case being for 

ME1 when the simulated major gene was additive with a rare allele (Rare), when in 13 of 

the 100 analyses different final models were obtained, one of these models being 

polygenic and the other a mixed model. With the heritability estimated the methods were
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more sensitive, especially for the models where the major gene explained a lower 

proportion of the genetic variance. In the worst case, for the major gene segregating in 

a polygenic background with heritability of 0.4 (Add2), 41 of the ME1 analyses resulted 

in two different end models, the expected parameter values always giving the polygenic 

model and the alternative starting values a major gene model.

7.2 FUTURE CONSIDERATIONS

7.2.1 Segregation analysis.
The work presented here has used a sire model, however, the use of a more 

complex model, especially an animal model incorporating all genetic relationships, might 

be advantageous. For a polygenic model, incorporating relationships can account for the 

effects of selection. In the case of the mixed model, selection affects not only the 

polygenic component, but also the frequency of the major genotypes. The sire model 

assumes that the major genotype frequency is constant over time. Indicating 

relationships between parents will allow for a change in the major genotype frequency, 

the frequency estimated being the frequency in the base population. Selection might also 

create a relationship between the poiygenic and major genotypes, which are assumed to 

be independent in the base population. Of the approximations examined here, the ME1 

likelihood is the easiest to extend to an animal model making use of algorithms already 

used for the polygenic model. Herm and ME3 likelihoods become much more 

computationally demanding even with only simple additions to the pedigree structure. For 

example, including full-sibs, means that both the sires and dams have to be considered 

simultaneously, therefore, rather than summing over the three genotype options for a 

sire, there has to be a summation over the nine combinations for the sire and dam and 

for ME3 the breeding values for the sires and dams have to be calculated in these nine 

different situations. Further investigation is required, for example it might be possible to 

include the weighted mean for spouse when considering the three genotype frequencies 

for one of the parents. Incorporating more individuals for ME1 might improve the 

approximation because there will be more information to correctly genotype the animals 

and if the genotype of all individuals is known, the approximation becomes exact.

Fixed effects have been ignored in this comparison of the approximations, 

however, generally these are required in animal breeding data and it would be better if 

they could be estimated simultaneously with the effects of the major genotypes. The ME1 

and ME3 approximations can easily be extended to incorporate these effects in theory, 

as shown in equations [5.3] and [6.2J, respectively. Using the quasi-Newton algorithm 

for maximisation for the Herm approximation means that the incorporation of fixed
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effects would significantly reduce the speed of computation. If fixed effects are 

incorporated the variance estimates ought to take account of this and the associated 
degrees of freedom adjusted accordingly. REML has been developed for this reason, 
although the resulting mixed model likelihood is not directly comparable with the 
polygenic likelihood.

Unlike the other approximations considered, PAP is able to make use of the 
complete pedigree. This makes it comparatively stow for the two generation model. The 
complexity of the approximation as programmed makes it difficult to extend, although 
similar approximations could be considered.

Further problems that have not yet been addressed include the use of repeat 
records, which might improve the separation of genetic and environmental effects, the 
effect of non-normality caused by non-genetic effects and the best policy to use when 
analysing non-normal data and the analysis of threshold or meristic traits, such as litter 
size. The inclusion of additional random effects, for example, an effect for common 
environment, in the model also requires study.

7.2.2 Use of linked markers.
Recently, there has been much interest in creating genome maps of farm animals 

using markers. If these maps become a reality then the use of markers linked to loci 
affecting quantitative traits would be useful for the genetic improvement of these animals 
(Geldermann, 1975). When this project was started, it was thought that it would be 
some time before there would be enough markers mapped in farm animal species and 
even longer before animals were automatically typed for these marker genotypes. 
Recently, however, interest in this area has increased, and with proposed collaboration 
between laboratories (for example, Haley ef al. 1990) the idea of complete genome maps 

becomes feasible.
The use of markers to detect genes of large effect (often termed quantitative trait 

loci or QTLs in this situation) is of great potential value, because it allows easy 
manipulation of the major gene once found (marker assisted selection (MAS), for 
example, So Her and Beckmann, 1982) and provides a possible route to its isolation using 
reverse genetics (for example, Orkin, 1986). To make use of markers, the existence of 
linkage between a locus controlling a quantitative trait of interest and a locus at which it 
is easy to determine the genotype is required. Segregation must be occurring at both loci 
and then genotypes at the marker locus can be associated with phenotypes or genotypes 

at the QTL.
The idea of using markers linked to a trait of interest is not new, however, initially 

the marker loci used were blood groups or controlled coat cotour (Neimann-Sorensen

191



and Robertson, 1961). To be useful a marker needs to be polymorphic, preferably with 

multiple alleles as matings are most informative when the parents are heterozygous, each 

with different alleles. In this situation, the parent transmitting each allele in the offspring 

can be identified and the offspring will be segregating within the family, so that the 

alleles can be associated with an effect.

Molecular markers now give access to abundant genetic polymorphisms, some of 

which are ideally suited to be genetic markers. Restriction fragment length 

polymorphisms (RFLPs) are often caused by the toss or addition of a cleavage site for a 

specific restriction enzyme. When the DMA is digested with this enzyme, fragments of 

different length will be obtained depending on the restriction sites present. These RFLPs 

suffer from the disadvantage that they are diallelic, because they are scored as a 

presence or absence of the restriction site, and hence show, at most, 50% 

heterozygosity. However, to improve the information contained in these markers, 

multiple site polymorphisms could be considered, where several markers which are located 

very close to each other are treated as a haptotype (Georges et at. 1990). The practical 

manipulations required, however, possibly become cumbersome, with the use of many 

restriction enzymes.

More recently a second type of possible marker has been identified which have 

been termed, variable number of tandem repeat loci (VNTRs; Nakamura, 1987). Some 

sequences of DMA are highly repetitive and polymorphism exists in the number of 

sequence repeats. This variation can be observed when digesting with a restriction 

enzyme that cuts at a site located to either side of the series of repeats. A large number 

of alleles exist, each allele having a different number of copies of the repeat sequence and 

hence a different fragment length. These can be observed by hybridisation on a gel using 

the repeat sequence as a probe. One type of VNTR are known as minisatellites (Jeffreys, 

1985). Under reduced stringency conditions the probe hybridises to several or many toci 

containing the repeat (or very similar repeat). The large number of alleles found at these 

loci means that the different sites are unlikely to have the same number of repeats and 

hence many bands will be found along the length of the gel. Although providing a lot of 

information, these DMA fingerprints are difficult to analyse because of the difficulties in 

determining allelism. Site-specific VNTR loci, obtained by using a unique sequence located 

to one side of one set of the repeats as a probe, are more amenable to analysis.

Microsatellites are VNTRs with a short repeat sequence, usually two bases, for 

example, TG. Such sequences seem to be distributed throughout the genome and are 

very common (Weber and May, 1989). They can be located initially using a two base pair 

repeat as a probe and then a unique sequence to both ends of the repeats can be 

obtained to use as a primer for the polymerase chain reaction (PCR) for DNA synthesis
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followed by polyacrylamide gel electrophoresis to determine allele sizes. Like minisatellites 

they can have many alleles and thus be very heterozygous and their ubiquity and ease of 

use means that they are rapidly becoming the marker of choice for mapping studies.

In order for any markers to be of use they need to be associated with loci which 

control traits of interest. Initially the markers can be placed on a genetic map using 

linkage studies. There are many computer programs written to enable this, and methods 

now exist that consider several marker toci at one time rather than just two (for example, 

Lathrop et a/., 1984). Much work has already been carried out in humans and the mouse 

has been fairly well mapped. The high synteny between humans, mice and farm animals 

means that information already obtained from these genomes should be useful for farm 

animals. Measurements on traits of interest can be obtained on the same animals as the 

marker genotypes and these can be analysed to see if there is an association between 

any of the markers and the trait, if so these trait loci can also be mapped and the effect 

of such loci estimated. There have been several theoretical studies recently, looking at 

alternative methods of identifying linkage of a marker with a QTL and estimating the 

position and effect of the QTL, for example, Weller (1986), Luo and Kearsey (1989) and 

Lander and Botstein (1989). All of these authors suggest using ML methods or 

approximations to them. The first two methods are based on crosses between inbred 

lines, however, they might also be suitable for situations in animal breeding when crosses 

between different lines are considered, where the initial parents could be assumed to be 

homozygous for different alleles at the loci concerned. Lander and Botstein (1989) 

introduced interval mapping, where f/anking markers are considered, which should 

improve the ability to detect QTLs.

The information and markers found from these methods can be used in a similar 

way to major genes found using segregation analysis, except that further information is 

available. For example, using the markers, it is now possible to follow the progression of 

the QTL and select only those individuals with the desired altete (or more precisely, select 

only those individuals with the relevant marker genotypes, which are associated with the 

quantitative trait of interest) (Seller and Beckmann, 1982). Using microsatellites enough 

DNA can be obtained from embryos to type them for their marker genotype. This could 

be used to distinguish superior animals from their sibs at birth, which, by classical 

methods would have the same predicted merit because they have the same ancestral 

information (Kashi et a/., 1990). It is also possible to introgress genes into another breed 

by following the markers and excluding all unwanted background effects while selecting 

the genotype required. In animals, work has mainly concentrated on selection within 

families. Being natural out breeders there is much variation between families and hence 

there is a problem of establishing the phase of the linkage between the marker and QTL,
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which will differ between families. Each generation, recombination can occurs between 

the marker and the locus of interest and there is a gradual breakdown of linkage 

disequilibrium. With tight linkage recombination between the loci of interest will occur less 

frequently and hence the phase of linkage does not have to be reassessed each 
generation.

A few studies using linked markers to detect QTLs have been carried out in animal 
populations. Paterson et ai (1988) used RFLPs to identify QTLs effecting three traits, 
which jointly determine the yield of tomato paste, using interval mapping (Lander and 
Botstein, 1989). They found evidence for regions of large effect on four to six 

chromosomes for each trait. However, these regions could be composed of a single gene 
or several linked genes effecting the same trait and further rounds of recombination 

would be necessary to distinguish these. Georges et ai (1990) used DMA fingerprints in 
cattle and found a candidate for a marker linked to the bovine muscular hypertrophy 
gene.

Segregation analysis requires only the pedigree and phenotypes for the individuals 
for the trait of interest. Making use of linked markers requires more work initially to 

create the genome map and then to use this information animals have to be typed for 
their marker genotype as well as for their phenotype. Also, the phase of linkage within 
each family might have to be confirmed subsequent generations. However, the use of 

linked markers to detect major genes should be more powerful, as there is more 
information available because use is made of mean differences between marker genotypes 
and not only the second and higher order statistics used by segregation analysis. This 
also means that the method should be less sensitive to the distribution of phenotypes 
and thus to departures from normality. At present, there have been a limited number of 

studies investigating the use of markers to detect genes in animal populations, especially 

when there are several genes effecting the trait or, as used in this study, a single gene 

with large effect segregating against a background of many small genes. Also there has 

been little work looking at the parameter estimates obtained and the accuracy of the 
predicted positions of the genes found. The use of markers has been more thoroughly 

investigated in plants, although here there is the advantage of easy manipulation to 

produce, for example, inbred lines. Some of the findings of plant breeders will be 

transferable to animals but in addition further work is required to examine the application 

of the methodology to animals in more detail.
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7.3 CONCLUSIONS

To summarise the results obtained here, segregation analysis is capable of detecting 
a major gene and successfully estimating Its effect and frequency in the population, even 
with the simple pedigree structure considered here. Approximations to the mixed model 
are required to make computation of the likelihood practicable. The use of classical animal 
breeding techniques, as used in ME3, allows the easy extension to include fixed effects, 
the estimation of breeding values and the addition of extra random effects. Using an 
estimate for the polygenic heritability, although if accurate gives a more powerful analysis, 
can give misleading results, suggesting spurious major genes to explain polygenic 
variation not explained by the fixed heritability. When the polygenic heritability was 
estimated, the genetic component of the resulting models was often composed only of a 
major gene, the polygenic heritability estimate being zero. In general, Hermite integration 
gives the best results and as computers improve the use of this method for more 
complex models would become feasible. However, as genetic marker maps are developed, 
and genotyping of individuals for markers becomes progressively easier, it is likely that 
segregation analysis methods based on the phenotype alone will be superseded by 
methods incorporating more information.
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Summary - In livestock improvement it is common to design a progeny test of sires in 
order to estimate their breeding values. The data recorded for these estimate are useful 
for the detection of major genes. They are the n.m performances Y^ of m progeny j of n 
sires i. These data need to be corrected for the polygenic influence of the sire on its progeny 
(sire i effect £/,-). Four statistical tests of the segregation of a major gene are compared. 
The first (/SA for "segregation analysis") is the classical ratio of the likelihoods under 
HQ (no major gene) and HI (a major gene is segregating). The parameters describing the 
population (means and standard deviations within genotype) are estimated by maximizing 
the marginal likelihood of the YtJ . The other statistics studied are approximations of this 
/SA statistic where the sire i effect (Ui) is considered as a fixed effect (/FE statistic) 
or, following Elsen et al. (1988) and Hoschele (1988), where the parameters, and (/$, 
are estimated maximizing the joint likelihood of Ui and Yij (/MEI and /ME2 statistics). 
Simulation studies were done in order to describe the distribution of these statistics. It is 
shown that /SA anQl ^MEi are tne most powerful test, followed by /ME2i whose relative loss 
of power ranged between 20 and 40%, depending on the HI case studied, when 400 progeny 
are measured (n = m = 20). The segregation analysis, based on direct maximization of 
the likelihood, required 30 times more computation time than the /ME test using an EM 
algorithm.
major gene — segregation analysis — statistical test

Resume — Comparaison de quatre methodes statistiques pour la detection d'un 
gene majeur dans un test sur descendance. // est frequent, en selection, de tester 
sur descendance, des males, afin d'estimer leur valeur genetique. Les donnees recueillies 
dans ce but peuvent etre utilisees afin de mettre en evidence un gene majeur. Elles sont 
constitutes des n.m performances YJJ de m descendants j de n males i. Ces donnees 
doivent etre corrigees pour I'effet polygenique du pert (\]\) sur ses descendants. Quatre 
tests statistiques de mise en evidence d'un tel gene majeur sont compares. Le premier 
(IsA P°ur "segregation analysis") est le rapport classique des vraisemblances sous HO (pas 
de gene majeur) et sous HI (existence d'un gene majeur). Les parametres caracteristiques 
de la population (moyennes et ecarts types intragenotype) sont estimes en maximisant la 
vraisemblance marginale des Yy. Les autres statistiques de tests sont des approximations 
de ISA Pour lesquelles, soit I'effet pert Uj est considere comme un effet fixe (test IFE^ 
soit, comme propose par Elsen et al. (1988) et Hoschele (1988), les parametres, et Uj, 
sont obtenus en maximisant la vraisemblance conjointe des YJJ et des Uj (test IMEI
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^ 1.ME2/ Nous avons realise des simulations a/in de decnre les distributions de ces tests. 
ISA zt IMEI sont les tests les plus puissants, suivi par 1ME2) aon ^ ^a perie relative de 
puissance vane entre 20 et 40% selon I'hypothese HI etudiees, quand 400 descendants 
sont mesures (n = m =20). L'analyse de segregation, realisee par maximisation directe 
de la vraisemblance, demande 30 fois plus de temps de calcul que les tests IME realists 
/'aide d'tm algoritkme EM.

gene majeur - analyse de segregation - test statistique

INTRODUCTION

In recent years, several genes having major effects on commercial traits have 
been identified. The dwarf gene in poultry (Merat & Ricard, 1974), the halothane 
sensitivity gene in pigs (Ollivier, 1980), the Booroola gene in sheep (Piper &: Bindon, 
1982), or the double muscling gene in cattle (Menissier, 1982) are notable examples.

These discoveries, as well as improvement of transgenic techniques, have stim 
ulated interest in new techniques for detection of single genes. Various tests have 
been described concerning livestock (Kanset, 1982). Their general principle is that 
the within family distribution of the trait depends on the parents' genotypes, and 
therefore varies from one family to another. These methods involve simple computa 
tions but are not powerful. Concurrently, segregation analysis in complex pedigrees 
was developed in human genetics (Elston & Stewart, 1971) by comparing the like 
lihoods of the data under different trait transmission models. These methods are 
much more powerful than the previous ones, but involve much computation. They 
require numerical simplification to deal with the population structure of farm an 
imals. Additionally, the known properties of the test statistics, a likelihood ratio 
test, are only asymptotic, which raises the question of their validity when applied 
to samples of limited size.

In livestock improvement it is common to use progeny tests where males are 
mated to large numbers of females. Concentrating on this simple family structure 
the present paper tries to give some elements of a solution to the problems of 
simplification and validity. Four methods are compared on simulated data.

METHODS

The four methods considered rely upon the same information structure and the 
same type of test statistics.

Experimental design

The data are simulated according to a hierarchical and balanced family structure: 
one sample consists of n sire families (i = 1, ...n) with m mates per sire (j = 1, ...m) 
and one offspring per dam. Sires and dams are assumed to be unrelated. Only 
offspring are measured, with one Y^ datum per animal.



Detection of major gene 343 

Models and notations

Models

The Yij performances are considered under the two following models: 

General hypothesis (Hi): "mixed inheritance"

In this model a monogenic component is added to the assumed polygenic variation. 
When two alleles A and a are segregating at a major locus, three genotypes 

are possible (AA, Aa> aa) which we shall respectively denote 1, 2, 3. Sires are of 
genotype s(s = 1,2,3) with probability Ps . Dams transmit to their offspring allele 
A with a probability q and allele a with a probability 1 — q. Conditional on its 
genotype t(t = 1,2,3), the ijth progeny has the performance Yfj, The following 
linear model can be formulated.

Yfj = tit + Ui + Eij
Where M* is the mean value of the performances of genotype t progeny.

Ui is the sire i random effect, assumed to be independent of the genotype t 
and normally distributed with a mean 0 and a variance a\. 
Eij is the residual random effect, assumed to be independent of the genotype 
t and normally distribued with a mean 0 and a variance cr2 . 
Ui and E^ are assumed to be independent.

Concerning production traits of livestock, the proportion of variance explained 
by polygenic effects has been generally estimated in many populations. Thus, we 
shall assume known a priori the heritability of the trait, ft2 , defined as:

ft2 = 4<72U I (<T* + «r»)
so that sires are assumed to be unselected. 

The model thus defined on seven parameters:
Ml> M2, MS, ^e, 9, Pi, P2 (PZ = 1 -Pi -P2)

This hypothesis (H0 ): "polygenic inheritance".

Null subhypothesis, to be tested against the general model, is fixed by Mi = /x2 = 
Ms = Mo:

Y^ = MO + Ui + E^
Where Mo is tne general mean of the performances. Ui and E^ have the same 
definition as under H\.

Matrix notation

Let S be the vector of the genotypes of the n males S = (Si, . . ., 5T , . . ., Sn ) and 
s = (s\ , . . . Si, ... sn ) one realization of S.
YJ be the vector of the m performances of the ith sire's progeny: Y, = 
(Yn, ... Tij, ...^im), and yi the vector of realizations of Yt .
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Tj the vector of order m of the genotypes at the major locus of the ith sire's 
progeny: T 2 = (Ttl , ... TtJ , ... Tim ). Three realizations being possible for Ti; , 3 m 
different realizations t t of T t are possible. Prob (Tz = t l \s l ) is the probability of 
the realization of the genotypes vector t l = (^/, ... t t; , ... t lrn ) when sire i is of 
genotype S{.
\L the vector of genotype means:

Given En the vector of order m of residuals, the vector Yt can be written under 
Ho:

YJ = X./i0 + Z.C/j + Et
where X and Z are two matrices of order m x 1, whose elements all equal 1, 

under H\:
Yt = Xttt .|t + Z.Ui + Et

where Xltj is the m x 3 incidence matrix for the fixed effects of the model, when 
the realization of the genotypes of the sire i progeny is t,-.

The Vj covariance matrix for the performances F^ of the sire i family is:

\
_ ~2

u

= V=Z.D.Z'+R

with D = a\ and R the diagonal m x m matrix R= a~ Im .

General expression of the likelihood ratio test (LR test)

The test statistic is based on the ratio of the likelihoods under HQ(MQ) and under 
Hi(Mi), or an estimate of this ratio. In practice the test statistic considered is: 
/ = -2.log (Mo /Mi). With our notation, and given the preceding hypothesis, M0
s:

n

with

/o(y.) =

and A/i is:

- 
2

exp -- yi - ' V- 1 (y,-

n
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with

t. v/27Tm |V|

The four proposed methods are all based on the two following equalities:

•00

exp

I
2

(1)

and:

eip - - (2)

Where Ui is the mode of the distribution of Ut given Y^ and the genotypes tj. 
Formula (2) results from the equality of mode and expectation for symetrical 
distributions.

Definition and interests of the four proposed methods

The differences between the four methods concern the sire effects.

First method: SA

In the SA method ("segregation analysis", Elston 1980), we consider without 
simplification the model and the test statistic as they were defined above. The 
likelihoods under H\ and HQ are calculated using equality (1) and taking account 
of:

m

Prob(Ti = tt Prob(TtJ =

Then:
n >oo m= n n
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with:

with:
/ . / — Mn — Ui

The well known asymptotic properties of the LR test under HQ are the main 
advantage of this method. If some regularity conditions hold, the test statistic / is 
asymptotically distributed according to a central x2 with d degrees of freedom, d 
being the number of parameters with fixed value under HQ (Wilks, 1938). However, 
in the particular context of testing a number of components in a mixture, the 
regularity conditions are not satisfied since the mixing proportions p\ and p^ have 
the value zero under HQ, which defines the boundary of the parameter space.

Studying mixtures of m-normal distributions, Wolfe (1971) suggested that the 
distribution of the LR test is proportional to a x2 distribution with 2d degrees of 
freedom. The proportionality coefficient c should be c = (n- 1 -m — l/2<?2 )/7i where 
n represents the sample size, and gi the number of components in the mixture under 
HI , If these results hold in our case, when the number or sires is very large, ISA 
should have a x2 distribution with 4 degrees of freedom.

The problem with this method is that it requires heavy computation: a complex 
function of the Yij must be integrated n times for each estimation of ISA-

Second and third methods: ME

These methods ("modal estimation" of the sire effect Ui), use the equation (2). 
Under HQ, the likelihood may be written as follows:

i n rn— n *PW n Ma, i so (3)
• m | V | *=i j=i 

Under HI, the equality (2) leads to
n=n

ti
-i rn

uiti )
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However, the sums over the vectors t % for each sire make this computation 
practically impossible as soon as m is larger than a few units (35 = 243, 3 10 = 
59049).

Thus, following Elsen et ai (1988) we suggest the approximation
n 3 - m 3

'=1 s. = l -
(4)

Where u, is the distribution mode of Ui conditional on Vi, whatever the genotypes 
Si and t{ are. The statistic /MEI = — 21og(MoMEi/AfiMEi) is no longer an LR test 
but an approximation lacking the asymptotic properties described above. However 
we hope that this statistic which requires much less computation will nonetheless 
retain the power of the first proposed.

An alternative to this second method is to estimate the likelihood MQSA 
directly by:

n m

A/OME2 = TT k(ut ) FT ko(yij \ Ui) (5)
*A» ^ A. JL
i=l j=l
n 3 m 3

n « > xv i r "i > XK \
£—^ ' A.JL ^—^ J J '} j

1=1 S, = l j = l ti,' = l

where u; is defined as above.
As stated by Hoschele (1988) this "approximation will be close to ISA only if the 

likelihood is very peaked (m —* oo) with most of its probability mass concentrated 
over a small region about the ML estimates".

Fourth method: FE

The method (fixed effect of the sires), does not consider the a priori information 
contained in the heritability of the trait. The u^ sire effects are assumed to be fixed, 
and become supplementary parameters which need to be estimated. The likelihood 
ratio may be written:

A/iFE
with:

n m=n n *°fotf i ut=i j=i
and:

n 3 m

A/iFE = II 51 Ps > n
t=l «,- = ! j = l t tj = l

This method has the advantage of its computational simplicity, while retaining 
the well known asymptotic properties of the LR test. However, there may be an 
important loss of power, due to the loss of information on the polygenic variation.
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The comparisons

Three problems were studied:

Distributions of the statistics under HQ

We have just mentioned uncertainties concerning the asymptotic distributions 
with 4 degrees of freedom for ISA and /FE if Wolfe's (1971) approximation is valid, no 
known property for /ME)- Furthermore these distributions are unknown in samples 
of limited size. In order to estimate these distributions, samples were simulated 
under HQ (500 samples for SA, 1 000 for FE and ME) with different numbers of 
sires (n = 5, 10, 20) and of progeny per sire (m = 5, 10, 20). The test statistics /SA, 
/MEI, /ME2 and /FE were calculated for each sample. The estimated distributions 
obtained were used to test the convergences to x2 distributions. They also helped 
determine boundaries for critical regions in samples of a limited size. We used 
the Harrel and Davis (1982) method to estimate quantiles at 5 and 1% and their 
jackknife variance as defined by Miller (1974). These simulations were based on a 
heritability of 0.2.

Comparisons of the powers

By using the table of the critical regions thus obtained for each family structure, 
we have been able to compare the powers of the tests. These powers depend not 
only on the number and size of the families in the sample but also on the values of 
the parameters (/x, cre , pi, p%, q) which characterize the major gene segregating in 
the population.

For each of the 9 family structures described above, three HI hypotheses were 
considered, each with a simulation of 100 samples. All these populations are 
assumed to follow the Hardy Weinberg law. The differences between the three HI 
hypotheses lie in the mean effects of the genotypes (expressed in standard deviation 
units) and the frequency of the allele A. 
Case 1: complete dominance and equal allele frequencies

— 1*2 — 0, A*3 = 2 and q = 0.5. 

Case 2: additivity, equal allele frequencies

Mi =0, ^2 = 1, Ma = 2, and q = 0.5 

Case 3: Complete dominance, recessive allele rare

Mi = M2 = 0, Ms = 2 and q — 0.9 

The power of the tests was measured by the percentage of HQ rejection.

Algorithms and cost of calculations

The methods must also be compared on the basis of how much computation they 
require. The calculations described above were made using the quadrature and
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optimization subroutines of the NAG fortran library. In order to maximize the 
likelihoods of the sample we used a Quasi-Newton algorithm in which the derivatives 
are estimated by finite differences.

The same algorithm was used for the four methods, giving results of a similar 
degree of precision. However, various algorithms can be used to estimate the 
maximum likelihood of the parameters. In the ME and FE tests, the first derivatives 
have a simple algebraic form and the maximum likelihood solutions are reached by 
zeroing the first derivatives (with respect to each of the parameters) of the logarithm 
of the likelihood. Under HI the corresponding system of equations can be solved 
iteratively, but not directly, by using for instance the EM algorithm defined by 
Dempster et al. (1977): see appendix.

This is the algorithm we used for the ME2 test in order to obtain more extensive 
information on critical region: 5,10, 20, and 40 sires, 5,10, 20 and 40 progenies/sire, 
heritability of 0, 0.2, 0.4.

RESULTS AND DISCUSSION

Comparison of the four methods

Tables I to IV show the main characteristics of the distributions of the 4 test 
statistics: mean, standard deviation, 5% and 1% empirical quantiles and percentage 
of replicates beyond the 5% and 1% quantiles of a \i- Table V shows their powers.

First, we can note that for the number of progeny increases, the mean distribu 
tions as the four test statistics decrease (except ISA between m = 5 and m = 10 for 
n = 5).

The fact that I statistics distributions converge toward a x2 with 4 degrees of 
freedom cannot be confirmed since all the distributions of /, but one (segregation 
analysis with 5 sires and 5 progenies/sire), are significantly different from a x2 using 
a x2 test of fit. Moreover, the scaled statistics (2E(/)/var (/)). / are also significantly 
different from ax2 - It must be emphasized that the samples studied are far from 
the conditions of validity of Wolfe's approximation which requires that n > lO.ra 
(Everitt, 1981). The ISA statistics show a notable stability as the family size varies, 
whereas for /FE the statistics only reaches an asymptote as m, the number of progeny 
per sire increases. As regards the /ME statistics, the results are totally different.

The mean and standard deviation of the /MEI statistic decreases when the 
number of sires or progeny per sire increases. It appeared that the distribution 
of this /MEI statistic becomes very peaked near zero. It must be noticed that this 
pattern is close to the asymptotic distribution of the LR test of a mixture of 2 
known distributions in unknown proportion studied by Titterington et al. (1985). 
These authors found that, under HQ (only one component) the LR test "is 0 with 
a probability 0.5 and, with the same probability, is distributed as a x2 wi*h one 
degree of freedom". On the other hand, for a given number of progeny, the mean 
of the /ME2 distribution increases with the number of sires. The fewer the progeny, 
the greater the increase.

The calculation of the power (Table V) shows some important facts: very low 
power of the four statistics for low number of sires and/or progeny, clear superiority 
of the segregation analysis and first of the modal estimation method whatever
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ble I. Hesults of the simulations under HQ for the ISA statistic: means (/*), standard 
deviations (a), 5% (s5 ) and 1% (si) empirical quantiles (their standard deviations between
brackets), and percentages of replicates beyond the 5% (r5 ) and 1% (ri) quantiles of a

Number of 
sires progeny 
M (m)

5

5 10

20

5

10 10

20

5

20 10

20

V

4.42

4.48

4.44

4.71

4.47

4.36

4.74

4.42

4.14

a

2.92

3.00

3.17

3.16

3.20

3.15

3.36

3.25

3.45

55

9.74
(0.44)
9.99

(0.33)
10.64
(0.45)
10.86
(0.19)
10.50
(0.32)
10.50
(0.46)
11.10
(0.27)
10.75
(0.55)
11.25
(0.51)

si

14.91
(1.87)
14.30
(0.69)
14.36
(0.49)
14.69
(0.27)
14.26
(0.61)
14.31
(1.16)
15.51
(0.74)
15.15
(0.83)
15.65
(1.21)

**5

5.71

6.04

7.59

8.36

7.62

7.39

8.87

7.38

7.89

n

0.98

1.59

1.86

1.91

1.66

1.14

1.94

1.75

2.17

Table II. Results of the simulations under HQ for the /MEI statistic: means (/x), standard 
deviations (a), 5% (55) and 1% (s\) empirical quantiles (their standard deviations between
brackets), and percentages of replicates beyond the 5% (rs) and 1% (ri) quantiles of a

Number of 
sires progeny 
(n) (m)

5

5 10

20

5

10 10

20

5

20 10

20

/*

4.61

3.65

2.92

3.83

2.77

2.10

2.75

1.81

1.27

a

3.52

3.09

2.95

3.20

2.94

2.63

3.04

2.52

2.11

55

11.01
(0.39)
9.51

(0.29)
8.47

(0.39)
10.31
(0.20)
8.71

(0.25)
7.36

(0.32)
8.55

(0.31)
6.97

(0.29)
5.82

(0.34)

si

15.96
(0.83)
14.54
(0.74)
12.86
(0.74)
15.69
(1.20)
12.59
(0.58)
12.80
(1.39)
14.14
(1.09)
11.14
(0.80)
9.46

(0.46)

rs

8.8

4.8

3.5

7.6

3.6

1.9

3.2

1.7

0.9

ri

2.4

1.4

0.8

1.5

0.7

1.1

1.2

0.4

0.0
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Table III. Results of the simulations under HQ for the /\j£2 statistic: means (/i), standard 
deviations (a), 5% (s5 ) and 1% (si) empirical quantiles (their standard deviations between 
brackets), and percentages of replicates beyond the 5% (r5 ) and 1% (n) quantiles of a \l-

Number of 
sires progeny 
(n) (m)

5

5 10

20

5

10 10

20

5

20 10

20

M

12.28

9.71

7.60

17.28

13.52

9.36

26.47

19.56

12.17

a

4.41

4.09

4.14

5.27

5.11

4.85

6.66

6.49

5.94

s$

20.27
(0.13)
16.90
(0.20)
15.61
(0.30)
26.81
(0.32)
22.94
(0.25)
18.54
(0.31)
38.24
(0.41)
31.15
(0.36)
23.02
(0.41)

s\

25.03
(0.32)
21.69
(0.59)
19.79
(0.36)
32.90
(0.54)
27.36
(0.51)
23.51
(0.49)
44.63
(0.78)
37.21
(0.86)
29.30
(0.58)

7*5

71.4

48.5

27.9

95.4

78.0

43.8

99.9

96.7

63.4

n

35.5

17.5

10.1

77.2

48.0

19.0

99.1

82.9

36.8

Table IV. Results of the simulations under HQ for the /FE statistic: means (/*), standard 
deviations (a], 5% (55) and 1% (s\) empirical quantiles (their standard deviations between
brackets), and percentages of replicates beyond the 5% (rs) and 1% (7*1) quantiles of a ^4-

Number of 
sires progeny 
(n) (m)

5

5 10

20

5

10 10

20

5

20 10

20

H

9.62

6.26

4.64

12.27

7.19

4.22

16.20

7.86

3.69

a

5.13

4.28

3.86

6.68

5.40

3.99

9.61

6.82

3.84

«5

18.93
(0.19)
14.30
(0.23)
12.33
(0.28)
24.03
(0.30)
17.31
(0.31)
12.17
(0.30)
32.79
(0.47)
20.72
(0.25)
11.35
(0.36)

s\

24.42
(0.47)
19.13
(0.54)
16.72
(0.53)
30.89
(1-27)
22.41
(0.59)
17.68
(0.89)
42.90
(1.22)
28.55
(1.00)
16.29
(0.58)

r*>

46.0

20.5

11.3

63.2

30.3

10.5

73.2

34.8

9.15

ri

21.3

6.87

3.85

39.6

13.9

3.50

59.8

20.6

2.81
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these numbers, with respectively a 90% and a 80% power in the best case (though 
involving only 400 animals), very poor performance of the /FE statistic, intermediate 
power for /ME2 .

Thus knowledge of heritability is a substantial advantage and gives a reason 
to prefer the /ME statistics against the /FE? which requires similar amounts of 
computation.

T^ble V. Results of the simulations under HI powers of the 4 tests for a 5% first type 
error (percentage of HQ rejection) and their 5% confidence intervals between brackets. 
Comparisons of different family structures and parameters values.

CASE 1 CASE 2 CASE 3Number oj 
sires progeny 
(n) (m) SA ME1 ME2 FE SA MEl ME2 FE SA MEl ME2 FE

5

10

20

5

10

20

5

10

20

5

10

20

9 
(6-14)

17 
(12-24)

24 
(17-39)

17 
(12-24)

27 
(21-23)

54 
(45-63)

26 
(19-34)

51 
(42-61)

90 
(83-94)

5
(2-11)

14 
(9-22)

30 
(22-40)

14 
(9-22)

41 
(32-51)

60 
(50-69)

27 
(19-36)

48 
(38-58)

80
(71-87)

7 
(4-11)

9 
(5-16)

18 
(12-27)

12 
(7-20)

16 
(11-21)

38
(29-48)

18 
(12-26)

27 
(19-36)

72 
(62-80)

2 
(1-5)

8 
(4-15)

16 
(10-25)

7 
(3-14)

9 
(5-14)

24 
(17-33)

i 
(3-13)

7 
(3-13)

56 
(46-65)

363
(1-8) (3-12) (1-8)

11 5 8 
(6-19) (2-11) (4-15)

998 
(5-16) (5-16) (4-15)

767 
(3-14) (3-12) (3-14)

8 11 3 
(4-16) (6-19) (1-9)

15 16 5 
(10-22) (10-24) (2-10)

9 11 6 
(5-16) (6-19) (3-13)

21 18 7 
(14-30) (12-27) (4-14)

25 21 15 
(19-33) (14-30) (9-24)

3
(1-9)

3
d-9)

1 
(0-6)

2 
(1-8)

1 
(0-6)

1 
(0-5)

2 
(1-6)

7 
(3-14)

9
(5-16)

9 
(4-18)

7 
(3-15)

19 
(12-29)

5 
(2-12)

19 
(12-28)

34
(25-43)

15 
(10-22)

33
(25-42)

48 
(38-57)

5
(2-11)

5 
(2-11)

21 
(14-30)

8 
(4-15)

18 
(12-27)

30 
(22-40)

18 
(12-27)

37
(28-47)

62
(52-71)

7 
(3-15)

6 
(3-13)

14 
(8-23)

3
(1-9)

7 
(3-14)

16 
(10-25)

4 
(2-9)

13
(8-20)

34 
(26-43)

4 
(1-12)

6 
(2-14)

7 
(3-15)

2 
(0-9)

1 
(0-7)

11 
(6-20)

1 
(0-6)

8 
(4-16)

31
(23-41)

The comparison of powers in hypothesis H\ is also interesting: it is much more 
difficult to detect an additive major gene (case 2) than a dominant one (case 1) 
even with the segregation analysis which is 3 to 4 times less powerful in case 2 than 
in case 1. In comparison with the isofrequent case, the third case shows a 50% loss 
of power: with measurements made on a small population, very few individuals if 
any, belong to the high mean distribution.

The computation requirements have been estimated, on a 3083 IBM computer, 
by the CPU time needed for the evaluation of the statistics under HQ. Ten replicates 
of a sample of 10 sires and 10 progenies per sire used 640 s for the ISA statistic, 
142 s for the /FE statistic and 48 s for the /ME statistics. Using the EM algorithm 
instead of the direct maximization of /ME with the NAG subroutines decreases the
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time requirements to 20 s only. Thus, the proposed simplified tests IME are 30 times 
as fast as the segregation analysis.

Tables of quantiles

Although theoretical works are still needed in order to describe the asymptotic 
behaviour of the /SA> JMEI and /FE tests, one can use, as a first approach, the 
quantiles given in our tables for larger populations since this will produce an 
overestimation of the first type error. On the contrary, some more calculations 
are needed for the /M E2 test.

The 5 and 1% points for this statistic are given in figures 1 to 3 depending on 
the heritability (0.0, 0.2, 0.4). Each figure gives these points for varying numbers 
of sires and progeny per sire.

Note that when the heritability is 0., the sire effect is not defined and, thus, that 
the Ui [a 4-1] terms disappear from the equations given in the appendix.

The results of Table III are confirmed: the quantile estimates increase with the 
number of sires n (for a given number of progeny per sire, m) and decrease when 
the number of progeny per sire increases. Two other results must be noticed: 
- given n and m, the lower the heritability, the greater the quantiles.

(!>:. m=5)

(R.ITF10)

n

Fig. 1. 5% and 1% quantiles of the /ME2 test statistic for varying family structures 
(h? = 0).

- on the variation range studied for m, the number of progeny per sire, the 
increase of the quantiles is nearly linear with n (number of sires) allowing some 
extrapolations for higher values of this number.
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-x-

m.m=20)

*. m=40)

0 n

Fig. 2. 5% and 1% quantiles of the /ME2 test statistic for varying family structures 
(h? = 0.2).

-X-

(1%. ffl=10) 

(5*,m=10)

n

Fig. 3. 5% and 1% quantiles of the /ME2 test statistic for varying family structures
(/r = 0.4).
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Finally, the jackknife standard deviation of the estimated quantile varies, for the 
5% case, between 0.23 and 0.89, with a mean value of 0.52 and, for the 1% case, 
between 0.39 and 1.65 with a mean value of 0.92. These errors could explain the 
observed deviations of the plotted curves from smoothness.

CONCLUSIONS

On the four statistical tests studied, the "segregation analysis" method is, as 
expected, the most powerful. Applied on a large scale, this test requires a great 
deal for computation. The "modal effect" method requires much less computation 
than the segregation analysis and shows practically no loss of power for the first 
version and a limited loss of power (diminishing as soon as the sample size is 
sufficient) for the second version. Unfortunately, the asymptotic distribution of this 
last statistic is unknown. The tables of quantiles we obtained by simulation permit 
the utilization of this test for typical sample sizes and for various heritability values.
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APPENDIX

Application of the EM algorithm to the estimation of the test statistic 
JME under HI

The EM algorithm is an iterative procedure. Each of its iterations consists of 
two steps E (Expectation) and M (Maximization). In our calculations we have 
considered that convergence is obtsined when, a being the iteration number, the 
following inequality is satisfied:

Step E of the ath iteration consists of estimating posterior probabilities 
of the observations

= Prob(Si = s t \ Y,, Ui[a

= Prob(TtJ = t^ | Yi,

These probabilities are estimated using the ath iteration values of <re [a], q[a], 
Ui [a] (i = l,...,n), //t[a] (t = 1,2,3) and p^[a] (s = 1,2,3). The following quantities 
are calculated successively:

exp\ --

f 11 = I «.')l« + J

f2*ae [a] \ 2 \ <72 [a]

+ 1])
vt,pTob(Tij = %. I ajfct, .(yy I Via + 1])
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tj , Si)ktlJ (ytJ \ut [a + 1]))
= ttj | s'jkt^yij \ u t [a + 1]))

*MEi[a -I-1] is calculated as in (3) and (4), and /ME2[a + 1] is calculated as in (5) 
and (6).

Step M of the ath iteration

Given the previous posterior probabilities, the distribution parameters are obtained 
by annulling the derivatives of JME[& + 1] with respect to these parameters. We then 
get:

for t = 1,2,3

S,- Sj g,j(t)[a + 1] . (yjj - Uj[g])
E l-E. 

for t = 1, ...,n

'2 E,- tt?[o
71771

the denominator being n(m + 1) for the /ME2 test.

+ i] =
n

a + 1] + S t fo(3)[a + 1] . ^9^(213)^ + 1]) 
nm - Xi(qi(2)[a + 1] . Ej^(2|2)[a -h 1])




