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Summary 

The character table of a finite group G is constructed 

by computing the eigenvectors of matrix equations determined 

by the centre of the group algebra. The numerical character 

values are expressed in algebraic form. A variant using a 

certain sub-algebra of the centre of the group algebra is 

used to ease problems associated with determining the 

conjugacy classes of elements of G. The simple group of 

order 50,232,960 and its subgroups PSL(2,1'7) and PSL(2,19) 

are constructed using general techniques. 

A combination of hand and machine calculation gives the 

character tables of the known simple groups of order < 106 

excepting Sp(4,4) and PSL(2,q). The characters of the non- 

Abelian 2-groups of order < 26 are computed. 

Miscellaneous computations involving the symmetric 

group Sn are given. 
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Chapter 1 

Introduction 

'I believe that progress in group theory 
depends primarily on an intimate knowledge 
of a large number of special groups.' 

G. Higman 
Mathematical Reviews 1958. 

Methods for investigating the structure of finite 

groups with a digital computer are described here. This 

thesis is not concerned with specific groups except in so 

much as they provide examples for computational techniques. 

The initial motivation of a major part of this study has 

been the problem of producing character tables of groups 

but methods of general use in working with finite groups 

have been developed in pursuing this end. Experience shows 

that no single method is likely to be efficient for invest- 

igating groups of widely differing structures, orders, and 

presentations. 

The field covered by this work - the fief of comput- 

ational algebra - has been remarkably neglected until 

recently. This is in some ways surprising because of the 

susceptibility of finite groups to computational ideas and 

the interest in these groups and their representations by 

solid-state physicists, chemists and crystallographers. 



This neglect may be accounted for in part by the immediate 

post-war development of the digital computer as a tool in 

the hands of applied mathematicians who wished to solve 

systems of differential equations numerically and in doing 

so developed the now well-established methods of comput- 

ational numerical analysis. Because of this historical 

accident the mathematical use of computers has become 

associated by many almost exclusively with applied math- 

ematics. The major reference to computing in algebra is 

Leech [ L1 1. 

Although the methods described here are not new in 

concept, they do differ significantly in approach from the 

methods of classical pure mathematics. There are two main 

differences: for a method to be suitable for use on a 

computer it should (with qualifications concerning heuristic 

methods to be illustrated later) be constructive, whereas 

many proofs in text books are existential in nature; 

secondly, even if the method is constructive other con- 

straints must be imposed if the method is to be a practical 
one. To illustrate the difference between the existential 

and the constructive outlook, the definition of a finite 

group in terms of a set of generators and defining relations, 
although often adequate for many purposes for the pure 

mathematician, tells us little directly about how to 

explicitly construct the distinct elements of the group. 

Two conflicting restrictions in applying computers to 

2 



groups are those of time and space - for the sake of 

concreteness it is assumed that the time available for 

computation does not exceed 10 hours and that the method is 

suitable for a computer having no more than 100K words of 

fast store and an arbitrary amount of backing store with its 

appropriate slow access time. A feasible computation is 

defined as one lying within these limits. These two 

practical restrictions are severe and often a compromise 

has to be sought between them. It is clearly not enough to 

have an algorithm to solve the problem, it must also be 

feasible. What is not feasible now may become so by means 

of a new mathematical technique or an improvement in comput- 

ing power. To give an extreme but illustrative example of 

feasibility: consider the problem of deciding whether two 

groups of order g, say, are isomorphic. This can be 

decided by setting up, or attempting to set up, a 1-1 

correspondence between individual elements of the two groups. 

There are at most g! mappings to be examined. Even if the 

strong assumption that the groups are sufficiently small 

for all their elements to be directly accessible is made, 

it is not practical to examine all 1-1 mappings between the 

groups for any small order, say, greater than 8, and so 

methods must be found for paring down the problem by finding 

pairs of sets of elements - one set from each group - which 

must be mapped set-wise into each other. Thus if G and G2 

can both be partitioned into sets of si elements (i = 1,2, 
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k 
...,k) then it is necessary to examine at most only II si! 

i=1 
k 

mappings where si = g, instead of g!. This constitutes 
i-1 

a substantial improvement in many cases although the 

improvement may be slight for certain p-groups. An attempt 

may then be made to find a method particularly suited for 

p-groups. 

Investigating the structure of finite groups with a 

computer may be regarded in two lights. It may be seen as 

an academic exercise providing mechanical methods of 

solution for problems which would not have arisen other 

than from a wish to use the machine. Alternatively, it 

may be regarded pragmatically as a useful practical tool in 

the hands of a pure mathematician. If the second attitude 

is alopted it is no longer necessary to expect the problem 

to be solved entirely by computer; it is sufficient that 

the mathematician can be materially helped. I feel 

strongly that motivation for computing should come from 

genuine problems in mathematics. This motivation provides 

a forcing ground for new computational techniques. The 

more difficult the problem, the greater the need to develop 

more powerful techniques. I envisage interaction between 

the mathematician and the computer. For example, in find- 

ing the set of defining relations for a simple group 

presented in terms of an explicit set of generators (say 

permutations or matrices over some field) a heuristic 
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approach could be adopted as follows: 

Using an on-line console, relations between elements 

are derived with a utility program for manipulating permut- 

ations or matrices. When it is thought that sufficient 
relations have been found and words generating a subgroup 

have been decided upon, then an attempt at coset enumer- 

ation is carried out. If this fails, further relations 
may be sought and the attempt repeated until the enumer- 

ation succeeds. For reasons of time this approach can be 

carried out efficiently only by using an interactive 
technique with the machine. 

It seems likely that within the next decade the 

computer will be used for exhaustively examining groups of 

low order, for examples or counter-examples of conjectures, 

and in investigating large groups by means of special 

programs. In the near future pure mathematicians will be 

stimulated into using machines as a common place aid to 

their work through immediate access to large computers 

using consoles in their own rooms. 

The main part of this thesis contains the description 
of algorithms for determining character tables of finite 
groups by computer by constructing the class algebra of the 

group. This approach is critically dependent upon the 

construction of a function mapping the elements of G into 
their conjugacy classes. This map is difficult to compute 

for permutation groups if there are non-conjugate elements 
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which generate the same cyclic subgroup. The use of the 

rational class algebra lessensthis problem but the exist- 

ence of an outer automorphism of G which interchanges 

rational classes makes it difficult to distinguish even 

these classes. Conditions favouring the computation of 

characters via the class algebra are (i) the construction 

of a map from elements to their classes which is fast to 
compute and (ii) the existence of a class Ci with the prop- 

erty that many of the values of Xsi/ds 
are distinct. A 

weakness of the method is that it does not use facts usual- 

ly available such as the existence of subgroups of small 

index. 

Burnside [ B5 ] in 1911 gives a specimen calculation 

of the characters of the dihedral group of order 10 from 

its class algebra. The first description of the comput- 

ation of characters with electronic computers in mind is a 

typescript by Hayes ( H7 ] written in 1963. His method is 

essentially to compute the roots of minimal polynomials 

satisfied by each of the class sums. He is unable to 

prove that the method does not generate spurious solutions 

and there is no indication that it has been programmed. 

For the September 1966 IBM Blaricum conference I described 

[M6 ] methods which are basically those given here for 

character calculations. Dixon [ D2 ] in 1967 published a 

paper on high speed computation of group characters. He 

states that his method is practical for groups of order up 
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to 1000 or so and considers the calculations of the eigen- 

vectors to be the most difficult part of the computation. 

For large groups the difficulty does not lie here but in 

the earlier steps of computing the classes and the class 

algebra. Dixon does not discuss this. - The importance of 

his paper lies in his transposition of the eigenvalue 

problem from the field of complex numbers into the field of 

integers modulo a certain prime p. This transposition 

ensures that the arithmetic can be performed exactly. A 

weakness of this method is that p may be very large. In 

my view such difficulties as there are in computing eigen- 

vectors are to major extent overcome by making them ortho- 

gonal, (see Chapter 7). The determination of the classes 

and the computation of the class algebra take an order of 

magnitude more time than the determination of the eigen- 

vectors. 

Character tables of the 311 non-Abelian 2-groups of 

order <, 26 have been computed from Hall and Senior [ H2 ]. 

It is inconvenient to give all the character tables so a 

single one of order 64 (which is the Sylow 2-subgroup of 

Suzuki's simple group of order 29,120) is given. From 

the charactertables a list of those 2-groups for which the 

number of irrationalities in the rows and in the columns is 
distinct has been compiled. 

The character tables of the known simple groups of 

6 order < 10 excluding Sp(4,4) and PSL(2,q), are given. 
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Few of the tables are new although some have not been given 

explicitly before. 

Techniques for searching for permutation characters 

are given and a method for exhibiting certain subgroups is 

described. These techniques are used in the construction, 

with G. Higman r H9 ], of Janko's group of order 50,232,960. 

Independently and at the same time, Conway and Guy proved 

the existence of this group by coset enumeration. 

Some computations involving the symmetric group are 

given including the computation of the character tables and 

tabulation of the largest degrees of irreducible represent- 

ations of Sn for n < 75. 

Examination of character tables leads to the observ- 

ation that the number m(G) of irreducible characters of odd 

degree in a known simple group G of order < 106 is a power 

of 2. This seems true for the symmetric and alternating 

groups also. 
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Chapter 2 

Representations, characters, 

and the group algebra 

For completeness, a brief introduction is given to that 

part of the representation theory of finite groups which is 

needed later. A comprehensive account is given in Curtis 

]. and Reiner [ 05 

Throughout, unless explicitly stated to the contrary, 

G is a finite group of order g having conjugacy classes Ci 

(C1 = {el) of order hi (i = 1,2,...,r) and Ci, is the class 

[XI x-1sCiI. 

A representation R of a group G over a field F is a 

homomorphism of G into a group of non-singular linear 

transformations of a finite dimensional vector space IT, 

called the representation space of H, over F. The dim- 

ension of the space V is the degree of R. A representation 

is faithful if it is an isomorphism. Representations R1 

and 
R2 

are equivalent if they have the same representation 

space in which there exists a constant non-singular linear 

transformation T such that R1 (x) = T-1:R2(x)T for all xcG. 

R1 and 
R2 

are said to be inequivalent if they are not 

equivalent. 

An algebra A(F) over a field F is a ring with an iden- 

tity which is also a vector space over F. Multiplication 
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by scalars in the vector space and rind; multiplication 

satisfy 

a(xy) = (ax) y = x((Xy), asF, x,ysA(F). (2.1) 

A subring of A(F) which is also an F-space of A(F) is a 

subalgebra of A(F). The group algebra A(G,F) of a group 

G over a field. F is the ring of all formal sums 

which satisfy 

axsF, xsG (2.2) 

axx + (axx = (ax + Px)x, (2.5) 
x x x 

( Faxx)(F, y) = EyZz, 
x y z 

(2.4) 
with y = ax . 

Z xy=z y 

The identity element of A(G,F) is the element 1Fe where 

1F is the identity of F and e is the identity of G. 

There is an isomorphism of G into A(G,F) defined by 

the mapping x - 1Fx, xsG. By identifying x with its 
image in A(G,F), G is viewed as naturally embedded in A(G,F). 

A representation R' of the group algebra I(G,F) with 

representation space V over F is an algebra homomorphism 

from A(G,F) into the set of linear transformations of V 

into itself, that is, 

R' (x + y) = R' (x) + R' (y) (2.5) 

R ' (xy) = R'(x) R ' (y) (2.6) 
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R'(ax) = aR'(x), R'(e) = 1 (2.7) 

acF. 

Let R be a representation of G as defined above, then 

there is a unique way of extending R by linearity to a 

representation R' of A(G,F) over the same representation 
space V, namely by defining 

R'( E axx) _ E axR(x), axsF, xcG (2.8) 
x x 

and conversely, any representation of A(G,F) yields a 

representation of G by restriction. 
The group of non-singular linear transformations of 

an n-dimensional representation space V over a field F is 
isomorphic to the group, GL(n,F), of non-singular n x n 

matrices with coefficients in F. So a representation of 

G of degree n over F can be regarded as a homomorphism of 

G into GL(n,F). A matrix representation M afforded by R 

is the homomorphism M: x--- M(x) where M(x)cGL(n,F). 

Matrix representations M1 and M2 are equivalent if they 

have the same degree n and there is a constant non-singular 

matrix T such that 

1 2 (2.9) M(x) = T-1M(x)T for all xcG 

The transformation M(x) can be represented uniquely by a 

matrix of degree n with entries in F once a basis for V 

has been chosen. Representations are equivalent whenever 

the matrix representations afforded by them are equivalent. 
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An invariant; subspace of the representation space V 

is a subspace W of V such that WR(x) c W for all xcG. If 

W 4 (03, R defines representations R1 and R2 of G with re- 

presentation spaces W and V-W. These representations are 

called the constituents of R. A representation of G over 

F is j.=Ldp (over F) if V has no invariant subspaces 

other than itself and (01. The representation R is 

reducible (over F) if it is not irreducible (over F); it 

is com etelyreducible (over F) if V is the direct sum of 

irreducible invariant- subspaces of V. 

Alternatively, in terms of matrix representations, 
the matrix representation R of G over F is reducible over 

F if and only if there exists a constant non-singular ma- 

trix T with entries in F such that 

R1 (x) U(x) 

T-1R(x)T 

0 R2(x) 

(2.10) 

for all xcG, where R1 and R2are constituents of R. 

R is completely reducible over F if and only if there 

exists a constant matrix T as above such that 

T-1R(x)T = 

R1 (x) 0 

0 x) 

for all xcG and each R. 
i 

irreducible over F. 

(2.11) 
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A theorem due to Maschke F C5 1 states that every 

representation of a group G over a field F is completely 

reducible if char(F) does not divide g. A representation 

of G over F such that char(F) divides g is known as a 

modular representation of G. 

A representation of G over F may be considered as a 

representation over some extension field of F. A repre- 

sentation of G over F is absolutely irreducible if it 

remains irreducible over every extension field of F. 

Henceforth, except where explicitly stated to the 

contrary, all representations are taken over C, the field 

of complex numbers. Consequences of this are that irreduci- 

bility implies absolute irreducibility and that every repre- 

sentation of G is completely reducible. Further, the 

matrices R(x), xsG are diagonalizable. 

Let M(x) be a matrix representation of G afforded by 

the representation R. Define the character of R by the 

map cp: G--> C given by .p: x --> trace (M(x)) and say R 

affords T. An irreducible character is a character 

afforded by an irreducible representation. The character 

is well-defined since equivalent representations afford the 

same character because equivalent matrices have the same 

trace. From this fact it is deduced that the character 

is a class function, that is, cp(y-1xy) = (p(x), x,ycG. If 
R = R R2 then the character afforded by R is the sum of 

the characters afforded by R1 and 11 2. If R affords (p 



then 9(1) is the degree of R. It is proved in [ C5 ] that 
the number of inequivalent irreducible representations of a 

finite group G is the number of conjugacy classes of G. 

Let x1(=1),x2, ..., xr be the characters of G afforded 

by the inequivalent irreducible representations of G. Let 

xjcCj, (j = 1,112,...,r), then the r x r matrix X with entries 

xij =-X 
i 
(x (i,j = 1,2,...,r) is the character table of G. 

The importance of the characters lies in the existence of 

an inner product of characters satisfying fundamental ortho- 

gonality relations on the rows and columns. These ortho- 

gonality relations are as follows: 

1 

r 
-- (2.12) 

EGX1(x)X j (x) _ ig Ehkx ikx jk _ bi j on the 
k=1 

rows, and on the columns 

r r 
F x (x ) xi (x) = 

1 E h x x = b (2.13) i s t g sisit st 
i=1 

i-1 

where denotes complex conjugate and 6ij = 0, ipj, oii=1. 

The orthogonality relations are equivalent to the statement 
h 

that the matrix U with (i,j)th entry uij gJ)'x ij, (i,j = 

1,2,...,x), is unitary, that is UU* = I where U* is the 

complex conjugate transpose of U. 

For an element xcG of period k, the character cp(x) 

afforded by the representation R is a sum of kth roots of 

unity and T(x1) = cp(x),. since if t is an eigenvalue of R(x) 
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then -1 = i is the corresponding eigenvalue of R(x-1). 

The fundamental Schur's lemma [ 05 1 states that if T 

is a constant non-zero transformation and R1, R2 are 

irreducible representations of G and TR1(x) = R2(x)T for 
all xcG then T is 
valent). 

non-singular (and R1 and R2 are equi- 

1he centre C(A) of an 

defined by C (A) = [ z 
I 

zx = 

define the class sum ci by 

algebra A is the subalgebra 

xz, for all xsA}. In A(G,C) 

ci = E x, 
xcci 

i = 1,2,...,r. 

The class sums form a basis for the centre of A(G,C) known 

also as the class algebra of G over C since 

(i) the class sums lie in the class algebra, for 

x-1cx = E x-1yx c.; 
1 ycCi 1 

(ii) the ci, i = 1,2,...,r are linearly independent 

since they consist of sums of disjoint elements 

of G; and 

(iii) if x = 1L x, L cC, xcG, lies in the class 
x 

algebra then F ,xx= z = y-1 zy = 
x 

txy-1 

XY 
x 

and hence, by comparing coefficients, 

1'X 1yx = t x for all ycG, thus tx = t y whenever 

x and y are conjugate in G so z is a C-linear 

combination of the class sums. 
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The structure of the class algebra is given by the 

fundamental system of equations 

r 
cic = k ai 

kck' 
i,j = 1,2,...,r. (2.14) 

These equations will be referred to as the class equations 

and the non-negative integer constants aijk as the structure 

constants of the class algebra. 

By taking an irreducible representation Rs of degree 

ds of both sides of the equation xci = c i x for all xcG, 

it is found that 

Rs(x)Rs(ci) = R5(ci)Rs(x) for all xcG, (2.15) 

and so, by Schur's lemma, either Rs(ci) is the ds x ds zero 

matrix or Rs(ci) is non-singular. In the latter case, let 
msi be an eigenvalue of Rs(ci). The matrix [Rs(ci)-msil1 

is singular and commutes with Rs(x) for all xcG. Thus, 

Rs(ci) = msiI, by applying Schur's lemma again. 

By applying these results to the class equations (2.14) 

and comparing coefficients of the identity on both sides 

it is found that 
r 

msimsj = k1 aijkmsk' i,j = 1,2,...,r. (2.16) 

Finally, these may be written as the set of r matrix equat- 

ions 

Aims = 
msims, 1,s (2.17) 



where Al is the r x r matrix with (j,k)th entry 
aijk' 

ms1 

ms2 

ms 
. 

11 

11 

m sr 

i,j,k,s = 1,2,...,r. 

Theorem: The set of r x r matrix equations 

A1x = µix, i = 1,2,...,r 

has the unique (to within non-zero scalar multiples) 

(2.18) 

complete set of eigenvectors ms, s = 1,2,...,r, and the 

eigenvalue of Al corresponding to the eigenvector ms is 
msi, i,s = 1,2,...,r. 
Proof: Recall that Rs is a homomorphism and therefore 
maps the identity of the class algebra into the identity 
matrix. But Rs(1) = ms1I, so ms1 = 1 and the vectors ms, 

s = 1,2,...,r, are non-zero. It follows from the equations 

(2.17) that det (A' - msiI } = 0. This shows that msi are 

eigenvalues of Al and that ms, s = 1 , 2, ... , r, are a set of 

common eigenvectors of Al for all i = 1,2,...,r. More 

knowledge of the eigenvalues msi is needed to prove that 

the eigenvectors ms, s = 1,2,...,r, are a unique complete 

set. The character of 
i 

afforded by Rs determines msi: 

trace(Rs(ci)) = trace( F, Rs(x)) = E trace(Rs(x)) = hiXs1. 
xcCi xcCi 
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But, 

trace(Rs(ci)) = trace(msil) 

and so 
h 

ms1 
id Xsi where ds 

= 
X 

s1 s 
(2.19) 

The row orthogonality relations may be written in matrix 

notation as MX = D where the (i,j)th entry of M is mij, 

i,j 1,2,...,r, and D is the diagonal matrix with entries 

dii = i Since D is non-singular, M is of rank r and the 

space in which M acts is spanned by the basis vectors ms, 

s = 1,2,...,r, so the eigenvectors ms, s = 1,2,...,r form 

a complete set. Finally the set ms, s = 1,2,...,r is 
uniquely determined (to within constant non-zero scalar 

multiples) for suppose that x is a common eigenvector of A1, 

i = 1,2,...,r, with eigenvalue ii for each A1, then 

= lliXl i = 1,2,...,r, an x j 0. (2.20) 

The set ms, s = 1,2,...,r, forms a basis for the space of 

right eigenvectors of the A1, i = 1,2,...,r, so 

x = T, atmt for some at not all zero. (2.21) 
t=1 

Suppose that as/0 then 

r r 
A1( mt, m atmt) = E a (2.22) ti t 

t=1 t=1 

i = 1,2,...,r 

18 



but 

AI'x 
= j'ix = F at1limt 

and so 

t t 
atmtim = E atj'im 

i = 1,2,...,r, 

i = 1,2,...,r. 

(2.23) 

(2.24) 

Comparison of the coefficients of as(G0) on both sides of 
(2.24) gives 

Ili = msi' i = 1,2,...,r, (2.25) 

and substitution of msi for 11i in (2.24) and rearranging 

gives 
r t 
F1 at(mti - msi)m 0, i = 1,2,...,r, 

and since the mt are linearly independent 

at(mt - ms) = 0 t = 1,2,..,r. 

Finally at= 0 for all t, s. Thus 

x = asmsI (as0). 

(2.26) 

(2.27) 

(2.28) 
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Chapter 3 

The construction of the group 

It is useful when discussing methods for investigating 

groups to distinguish between those methods for manipulating 

elements which are independent of the representation used, 

for example, methods for working with abstract words in gen- 

erators, and those methods which depend in some way on the 

properties of a particular representation, for example, the 

classification of elements by their disjoint cycle structure 

which can be associated only with monomial or permutation 

representations. 

Representation-independent methods are more general as 

representation matrices can be substituted after these 

methods have been used but there are some problems which 

are more easily solved when a faithful representation is 

used. An example is the word problem of deciding when two 

elements of a group are identical. This is because the 

representation matrix for each element is unique whereas 

the representation of an element as a word in a set of gen- 

erators is not. To solve the word problem using a faithful 

representation it is necessary only to identify two matrices 

or permuations. 

A representation-independent method is given for gen- 

erating G which, in addition, gives a very economical way 

of storing elements. Janko's simple groups of order 1'/5,5E?O 
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the relations systematically the table is eventually filled 
up. Mendelsohn [ M8 ] has proved that this table is event- 

ually filled and the process terminates if and only if the 

index [G:H] is finite. 

Generation of the 

An element of G may be written as the product hicp. 

where h 
i 
EH and (p. is a coset representative of H in G. The 

representation of an element in this form in unique once the 

coset representatives have been chosen. To construct the 

coset representatives the following lemma is needed. 

Lemma: For each i (i1) the equation Hxigk = Hxj, where 

j is less than i and 
gk 

is a generator of G (or its inverse), 

can be satisfied when the cosets are ordered as derived in 

the coset enumeration outlined above. 

Proof : Consider the way in which the coset table is built 

up: a new coset is introduced only when the result of pre- 

or post-multiplying an adjacent coset by a generator or its 

inverse is not already in the coset table. The new coset 

(i1) will be defined later than any previously defined coset 

so i > j, if necessary by inverting the generator gk. The 

effect of coset collapse during the enumeration can only 

reduce the index of those cosets appearing adjacent to the 

new one. 

Let (pi denote a coset representative for Hx Choose 

cp1 to be the identity and define inductively .pi = cpjgk-1 

where i > j and Hxigk = Hxj. Thus all the coset represent- 

22 



atives of H in G can be constructed. 

Each element of G is renresenced as a product of two 

elements - one taken from H and the other from the set of 

coset representatives. These may be stored as ordered 

pairs,-of integers. Let the elements of H be ordered by 

the process of generation then (i,j) represents the element 

hicpj of G. This effects a large saving in the storage 

requirements to hold the group at the expense of a single 

multiplication of elements to generate each element of G. 

Further storage savings can be made if coset enumeration 

can be applied to H. More generally, it is necessary to 

obtain a chain of subgroups G(=H0) D H1 3 H2 3 ... 3 Hs 

such that the cosets of Hi in Hi-1, i = 1,2,...,s, can be 

enumerated and Hs can be generated. Common candidates for 
Hs are the identity and the cyclic groups. Hs can be 

chosen to be any group for which,a canonical word for each 

element is known. 

The linear fractional _groups PSL2_,pj 

The linear fractional group PSL(2,p) of order p(p2-1) 

2 x 2 matrices over a Galois field of p (an odd prime) 

elements is such a group. It is isomorphic to the group 

of transformations 

z/ <_ cz-+ b with a,b,c,d s GF(p) and ad-be = 1. 

It is generated by a,R and y where a: z F--z+1, 
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: z E-- p,2 z and y: z <-- -z-1 
, and p, is a primitive clement 

of GF(p),in terms of which there are *p(p-1) elements of 

the form ai2i and 2p2 (p-1) elements of the form a13Yak 

Note that it is in general necessary to have a represent- 

ation-independent method for generating Hs or to be able to 

extend the representation of Hs to a representation of each 

of the subgroups in the chain and eventually to G itself. 
To use the above method in its full generality, a 

solution to the following problem is needed; 

Let H. be defined by the relations Ri1i (g1,g2,...,gn) = 1. 

By what relations in g1,g2,..,gn is Hi+1 defined? 

Mendelsohn [ M9 ] has contributed a solution to this general 

problem. Fortunately it is frequently possible to generate 

G by using knowledge of G without having a general solution. 

In particular since a simple group has no proper non-trivial 
homomorphic images any non-trivial se'h of generators satis- 
fying a set of relations for a simple group must generate 

that group. 

TheHall-Janko__group_o order604800 

Let G be the Hall-Janko simple group of order 604,800. 

I' has been given by N. Hall as the group generated by 

three permutations on 00 to 99: 

a = (00)(01)(02 03 04 05 06 07 08)(09 10 11 12 13 14 15) 

(16 17 18 19 20 21 22)(23 24 25 26 27 28 29) 

(30 31 32 33 34 35 36)(37 38 39 40 41 42 43) 
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in G are the 100 permutations taking 00 to i, i = 00,01, 

...,g°. Similarly, thoseof PSL(2,7) in SU(3,32) are found 

to be the 36 elements 1 and bla i = 1,2,3,4,6, and j = 0, 

1,...,6. Coset 26 is fixed by x = b4 and 
y-1 

= ab3 which 

satisfy x2 = y7 = (xy)3 = [x,y]4 = 1 which are known to be 

relations for the simple group PSL(2,7). Since PSL(2,7) 

is simple, <x,y> = PSL(2,7). It is further found that 

<x,u> = S4 where x2 = (xu)3 = u4 = 1 and u = yxy3. Here 

it is necessary to show that x and u do not generate a 

factor group of S4. It is found by coset enumeration that 

[<x,y> : <x,u>] = 7 so <x,u> = S4. A chain of subgroups 

for G is 
G D SU(3,32) D PSL(2,7) D S4 D C4 

index 100 36 7 6 

where C4 = <u>. 

The full chain is not used. The elements of PSL(2,7) 

are generated from their canonical form and then multiplied 

by coset representatives to give SU(3,32) and then by the 

cosec representatives of SU(3,32) in G to give the full group. 

Generation of a group using a chain of s subgroups such 

that [Hi-1: Hi] = ni, i = 1,2,...,s requires a nested set of 

s loops of which the outer most has length ns and the inner- 

most has length n1. The total number of multiplications is 

n1n2...ns + n2n3...ns + ... + ns-1ns + ns. The order of G 

is n1n2n3...ns and so the average number of multiplications 

per element of G is 
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1 + 
(n1)-1 

+ (n1n2)-1 + ... + (n1n2...ns)-10 

The index n1 = fG:H1] of the largest proper subgroup in the 

chain is the important factor in estimating computing time 

and it should be as large as possible. For the above 

group generated from the canonical elements of P3L(2,7) it 

is necessary to store only 3 + 36 + 100 group elements, 

using only 139 x 100 = 13,900 words of store. It takes 

80 minutes to generate G on the Atlas computer. 

TheJanko_grouo__oforder 12.2-60 

The simple group of order 175,560 described by Janko 

[ J2 ] in 1966 is generated by the following method. The 

computation was carried out on an English .electric KDF9 

computer with 16K words of fast store of which 4K were used 

to contain the proram. 
Two facts concerning J1 both of which are due to 

G. Higman are used: 

(1) - The definition of J1 in terms of the canonical 

generators a, b and c of PSL(2,11) and the involution d is 

J1 = <a,b,c,d> 

where 

2 (ab)2 = b5 a = 1, 

b-1cbc2 = (ac)3 = c11 

d2 = dbdb-1(cd)2 = (ad)6 = (ac2d)5 = 1. 

The subgroup PSL(2,11) of order 660 is generated directly 

in terms of its natural projective representation over a 
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centre of order 2 as a group of 2 x 2 matrices of unit 

determinant and entries over GF(11) with its centre factored 

out, i.e. each matrix is identified with its negative. 

(2) - A symmetric tensor representation of degree 7 

faithful on PSL(2,11) is derived from this representation. 

The derived representation extends to a representation of 

J1. 
The extension is made by taking the transformations 

x F-- ax+by and y E- cx+dy to act in the space of homogeneous 

polynomials of degree 6 in x and y. In this space 
x6-ryr , (ax+by)6-r(cx+dy)r, 

r = 0,1,...,6. 

By choosing matrices of simple form for a,ccPSL(2,11) 

correspondingly simple forms for b = c4ac3ac4a and d. are 

found. 

The matrices 0 1 , 1 

1 are chosen to represent 
C O 0] CO 1 

a and c in the natural representation of PSL(2,11). Since 

b = c4ac3ac4a, the matrix 4 0 is derived as the 
10 3 

representation of b. In the tensor representation these 

extend to 

0 0 0 0 0 0 1 4 0 0 0 0 0 0 

0 0 0 0 010 0 0 3 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 5 0 0 0 0 

A= 0 0 0 10 0 0 0 B= 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 9 0 0 

0 10 0 0 0 0 0 0 0 0 0 0 4 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 3 
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1. 6 4 9 4 6 1 

0 1 5 10 10 5 1 

0 0 1 4 6 4 

c= 0 0 0 1 3 3 1 

0 0 0 0 1 2.. 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

where capitals indicate the representing matrices for the 

corresponding small letter elements of J1. The represent- 

ing matrix for d is computed using the relation that b 

commutes with d so Dij = 0 unless i = j or Bii = Bjj (iA.j). 

This simplifies the form of D to that of a diagonal matrix 

augmented by possible non-zero entries in the (1,6), (6,1), 

(2,7) and (7,2) positions. It is noted that 
C--1 has 

entries (-1)j 
-1Cij. 

The matrices CD and DC-1 are compared 

and from the first row and entries (2,2) and (3,7) the form 

of D is derived as 

x 0 0 0 0-6w 0 

0 -x 0 0 0 0 w 

0 0 x 0 0 0 0 

D 0 0 0 -x 0 0 0 

0 0 0 0 x 0 0 

0 0 0 0 0 -x 0 

0 0 0 0 0 0 x 

but d2 = 1 hence x = ±1. By comparison of (AD)3 with 
(AD)-3 

= (DA)3, it is found from the (2,1) entry on each 

side that -wx2 = 2w3. Hence w = 0 or 2w2 _ -1 yielding 
w = 0, 4 or 7. Finally, the unique solution w = 7 and 
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x = -1 is obtained from the relation (AC2D)5 = 1. It is 

thus shown that Janko's group has a modular representation 

of degree 7 over GF(11). 

The above matrix computations were performed with an 

on-line program for matrix multiplication for use on a 

console to a PDP8 computer. 

The cosecs of P6L(2,11) in J1 are enumerated from the 

presentation given. A set of 660 cosec representatives of 

the centre of SL(2,11) in SL(2,11) is stored as 2 x 2 

matrices. The 266 cose; representatives of PSL(2,11) are 

stored as 7 x 7 matrices, one third of which is kept in 

the fast store at any one time. Each 7 x 7 matrix re- 
presenting an element of PSL(2,11) is generated from the 

parameters a, b, c, d of a 2 x 2 matrix and then multiplied 

by those of the 266 coset representatives which are in the 

fast store. 
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Chapter 4 

Generation of the conjugacy classes 

Determination of the conjugacy classes of a group is 

a critical step in computing its character table whatever 

method is used. It appears necessary to be able to 

generate a conjugacy class element by element and to know 

to which class a given element belongs. 

Definition: The centralizer of xcG is the set Z(x) _ 

{zI zx = xz, zcG}. 

Computing the centralizes of an element 

For many groups it is feasible to pick a set of 

elements generating non-conjugate cyclic subgroups and to 

generate the group element by element and count the number 

of elements of G commuting with each representative element. 

An alternative method which gives a set of generators for 
Z(x) when the group is given in terms of generators and 

relations is as follows. 

Let Zi be the subgroup of G generated by the words 

wo(= x),wl, ... ,wi, where wj (j < i) is a non-trivial 

coset representative in G of Zj, which commutes with x. 

For sufficiently large i no non-trivial coset representatives 

of Zi commute with x, thus Zi = Z(x). The computation of 

Z(x) is done by repeated coset enumeration on the cosecs of 
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successive Zj. The method can often be used even though 

the index of <x> in G is too large for coset enumeration. 

Cosets are enumerated until the store is full and an exam- 

ination is made on the coset representatives suggested by 

the incomplete enumeration. Even though these may 

actually not be coset representatives, they prove a good 

source for elements commuting with x (provided that 

<x> Z(x)). 

Generating the classes 

From the above, the class containing x consists of the 

conjugates of x by the coset representatives of Z(x). For 

small groups it has been found faster to generate the whole 

group by enumerating the cosets of the identity and forming 

the elements as faithful permutations. The cycle structure 

of each permutation is found and the permutations are then 

sorted according to their cycle structure. This is done 

by mapping the partitions of the degree of the permutations 

into the integers and then sorting on the integers as keys 

C M4 1. The conjugacy class of x is found by conjugating 

x by successive elements y of G and counting the number n 

of distinct elements xy and the maximum number m of times 

any single element has been formed: n and m are bounded by 

the order of the class containing x and IZ(x)I respectively. 

The conjugacy class is complete when nm = g. The order of 

the class is then found as follows. 
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Let [fi) be the ordered set of increasing factors of g 

and let m' and n' be the current incomplete values of m and 

n respectively. if fi-1 < m' < fi and fj,,.1 < n' < f j 
for some i and j and fi. f j = g, then m = fi and n = f. 
Let n' be the number of elements known to be conjugate to x 

out of a set of S(x) possible candidates and let 

fk-1 < n' < fk < S(x) < fk+1 1 
then n = fk. 

Let x be of period n, which may be computed. as the 

l.c.m. of the cycle lengths for the permutation representing 

x and let (k,n) = 1 then 

Lemma: The set of elements xk forms a complete conjugacy 

class with the same cycle type as that of x. 

Proof.. Denoting conjugacy by -1 x x2 implies k 
.., 

x2k 

and x1 k ,,, x 2 
k implies x1 ak+bn x2ak+bn and a and b may be 

chosen so that ak+bn = 1 because (k,n) = 1. Now a power 

of x, if of different cycle type from x, will have more 
a 

cycles but there is an a such that (xk) = x so the cycle 

types of x and xk are the same. 

There are cp(n) such values k. A check is made to see 

whether x 1cCx and if so, then the [cp(n)/2] values are 

checked since xk and x-k belong to the same class; if not, 

then each of the values of k is checked. 

CoUuting_theclass of_agiven element 

Besides computing classes, it is necessary to find a. 
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easily computable function on the representation of the 

elements which characterizes the classes. More precisely, 

Definition: A. function f on G is a class function if f (x) 

f(y"1xy) for all x,ycG. 

A class function induces a partition of the elements 

of G into equivalence classes. An easily computable 

function f, such that the equivalence classes induced by f 

are the conjugacy classes of G, is needed. There appear 

to be two possibilities. 

A local property of a representation of x such as the 

trace, cycle structure, or even the number of cycles, may 

be used. There are several groups with representations 

for which local properties determining conjugacy are well- 

known. For example, two elements of the symmetric group 

on n symbols are conjugate if and only if the cycle 

structures of their natural permutation representations 
coincide; the general linear group GL(n,q) presents no 

difficulties since elements are conjugate if and only if 

they are similar in their natural matrix representations. 
Care must be taken in the case of modular representations 

because unlike ordinary representations the matrices 

representing elements are not necessarily diagonalizable. 

For example, the matrices 1 0 
and f 

1 with 
0 1 ] r0 

1 C L 

entries in GF(p) have the same characteristic equations but 

are clearly not conjugate. 
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An alternative to the above is to search the conjugacy 

classes for the element whose class is required. The 

function then consists of a subroutine. 

A combination of both approaches is useful: local 
properties are found to restrict the :bhoice of possible 

classes then a search is made on these classes. The 

critical factor in computing the class of an element is the 

speed with which it can be done. The fastest method may 

use invariants from more than one representation. 

Examples 

In Janko's group of order 175,560 the traces of the 

representation of degree 7 characterize 7 classes and the 

first two coefficients of the characteristic polynomial 

distinguish a further 6 classes. The remaining two 

classes include the identity and so may be separated by 

inspection. The trace of the square of the matrix is 

computed instead of the second coefficient of the character- 

istic polynomial. 

In the :hall-Janko group of order 604,800 the cyclic 

subgroups of each order are conjugate except for two classes 

of subgroups of order 5. One of these is distinguished by 

being centralized by an element of period 3. When an ele- 

ment of period 5 is generated it is necessary to check 

whether it commutes with an element of period 3. 
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The rational conju.6Lqy_plasses 

The determination of the classes is the most difficult 

part of a program for computing group structure, in part- 
icular the character table of a group. This problem can- 

not be said to have been solved for larger groups. The 

reason for this is the difficulty in distinguishing between 

elements in distinct classes which generate the same conjug- 

acy class of cyclic subgroups. To this end it is useful 

to introduce the rational conjugacy classes . 

Definition: The rational conjugacy classes of G are the 

sets of those elements which generate conjugate cyclic sub- 

groups. 

In particular, x and x ' are rationally conjugate elements 

whenever (k, l<x>J) = 1. 

The utility of rational classes is that frequently 

they are distinguished in permutation representations by 

the cycle types of elements in them. They are discussed 

further in connection with the class algebra. 
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Chapter 5 

Construction of the normal subgroup lattice 

The normal subgroup lattice of G is constructed from 

the class structure constants. The construction requires 

that the lattice satisfies the Jordan-Dedekind chain cond- 

ition. To explain this some definitions are first given. 

Definition: The least_uer_bound of X and Y, X a G, 

Y i G, is the complex XY =-[xy# xcX, ycY} which is normal 

in G. 

Definition: The greatest_iQwer_bgun.d of K and Y, X a G, 

Y a G, is the set-theoretic intersection x n Y which is 

also seen to be normal in G. 

Definition: A basic normal subgroup Bi, i 

is the normal closure of an element xisCi, that is, Bi = <C >1 

i = 1,2,..0,r. 

It may be that Bi = G as will be the case, for example, 

for all non-trivial basic normal subgroups when G is simple. 

Since normal subgroups are unions of conjugacy classes of 

G, the set of basic normal subgroups will contain amongst 

its members the minimal normal subgroups of G. 

Definition: is chain is a partially ordered set S of 

elements such that either x > y or y > x for all x,ycS. 

Definition: A maximal chain between x and y is a chain 

x=xo>x1 >... >xm=y where x>ymeansthat x>a>y 
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implies that a = x or a =_y. The length of the chain is in. 

Definition: The Jordan-Dedekind chain condition states that 

all maximal chains between two elements have the same length. 

Definition: A principal series is a maximal chain of sub- 

groups of G: G = Hop H1 c> ... P. HM such that Hi a G, 

i = 1,2,...,m. 

A better-known stronger result, which implies the 

Jordan-Dedekind chain condition, is contained in the Jordan- 

Holder theorem, which states in part that all principal 

series for G have the same length (for a proof see r C5 ]). 

Definition: The level of a normal subgroup N is the length 

of a maximal chain N to I. 
The normal subgroup lattice is built up level by level, 

the existence of each level being guaranteed by the Jordan- 

Dedekind chain condition. The number of levels is the 

number of terms in a principal series for G. 

Lemma: A normal subgroup of level n+1 is either a basic 

normal subgroup or is the product of two normal subgroups 

of level n. 

Proof: What has to be shown is that a normal subgroup of 

level n+1 which is not basic can be expressed as a product 

of two level n normal subgroups, for the Jordan-Dedekind 

chain condition ensures that it is the product of level n 

normal subgroups. Let the level n+1 normal subgroup be 

N = N1N2...Nk where the Ni, i = 1,2,...,k are level n 

normal subgroups. The normal subgroup NiNi, i X j = 1,2, 
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...,k, is contained in N but NiNj is a level n+1 normal 

subgroup hence N = N1Nj, i jp j = 1121...,k. 

g2gpLating_the_normal_sub9rouD lattice 

The basic normal subgroups are computed from the 

rational class algebra by forming the union of successive 

powers of a single rational conjugacy class until the 

union becomes closed under multiplication by that class (or 

until the number of elements in the union is greater than 

kg). It is necessary to know only whether the class 

structure constants are zero or not. 

The computation follows the inductive scheme: 

let n1 d G, 

M. = [nil, n12, ... , nit); 

n. .6E. +1 
if and only if ni j D nik for some k, 

otherwise n..cLi' 

Mi+1 = (nijnik I n. .,nik ;Lij j < k} U 'i+1 

To start take 
M1 

= [B2, B3, ... , Br} and proceed until 

leis = [G). 

The complex ninj = njn1, where n1 contains not more 

conjugacy classes than nj, is computed by forming the set- 

theoretic union of the classes of n1 and nj then forming 

the closure under multiplication by each of the classes in 

ni and nj, or until the order of the set is larger than 
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I G! in which case it is the full group by Lagrange's 

theorem. 

The normal subgroups are output as sets of conjugacy 

classes. 
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Chapter 6 

Construction of the centre of 

the group algebra 

The class algebra is determined by the structure 

constants aiOk where 

r 
c1c - aijkck, 170 = 1,2,...,r. (6.1) 

A method for computing these constants is described here. 

The constant aijk is seen to be the number of ways a 

fixed element zsCk can be written as a product xy of 

elements xcC1 and ycCj. Taking conjugates shows that aijk 

is independent of which zsCk is chosen. 

Theorem The structure constants satisfy twelve basic 

symmetries. 

Proof Consider the ordered triples (x,y,z), xsC1, ycC 

and zsCk such that xyz = 1 or rearranging, such that 

xy = z-1. This number is aijk,hk, but classes commute so 

the suffixes i,j, and k may be permuted. Further, the 

number of triples such that xyz = 1 is also the number such 

that z-1y-1x-1 = 1 hence the three classes can also be 

simultaneously inverted giving an invariance group of order 

12 acting on the structure constants. 

Let ra be a representative element of Ca and compute 
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bijk as the number of products xr.CCk. Then bijk is the 

number of solutions of x-1z = rj with xcCi, zcCk but this 

is ai ,k j , hence bijk 
= ai lk j ' The number of products that 

it is necessary to compute to determine the r2 integers 

aijk for fixed i is not greater thanrJCi! =rhi. 

It is necessary to compute only those aijk for which 

j Z i since aijk ` ajik' Suppose that hi, i = 1,2,...,r 

are known then by suitable ordering of the class represent- 

atives the amount of computation needed can be minimised. 

To compute the aijk it is necessary to compute xrj, xcCi, 

for j > i. 
Using this procedure,.and assuming x runs through G,it 

is found that the number of products to be computed to 

determine all aijk is a minimum when the representatives 

yjcCj are chosen so that hj < hj+1, j = 1,2,...,r-1. The 

number of products in computing Ciyj is hi(r-j+1), so the 

total number is E hi(r-j+1). To minimise this sum the 
i<j 

following theorem is needed. 

Theorem: Let p1 > P2 > " ' > pr > 0 and let 0 < h1 < h2 < 

r 
... < hr be sets of integers then h 

i 
p 
t 

(where ti, 
i=1 i 

i = 1,2,...,r, is a permutation of 1,2,...,r) attains its 

minimum when ti = i. 

proof: Suppose that the minimum is attained by 
hipti 
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where tk k and is s for all s > k. Then pt < pk and 
k 

pk pt for some i > k. Interchanging pt and pk decreases 
k 

the supposed minimum by (pt k-pk)(hk-hi) > 0 which is a 

contradiction unless hk = hi which gives the same valued 

minimum. 

Taking pi = r-i+1, i = 1,2,...,r, it is necessary to 

r_ 
compute hi(r-i+1) products where hi < hi+1, i = 1,2, 

i=1 

...,r-1, in order to be able to compute all the aijk' A 

further minor improvement is obtained by noting that 

F aijk = hi since aijk is the number of ordered pairs 

of solutions (x,y) to xy = z where xcCi, yEG, and zECk is a 

fixed element. With this improvement the number of 
r 

products to be computed is reduced to F hi(r- ,). 
i=1 

The above approach is useful when the classes of G 

cannot be generated one at a time and it is necessary to 

generate all the group, multiplying each element by class 

representatives. 

For each distinct (i.e. not multiple) eigenvalue of 

A(1) the corresponding eigenvector of A(') is uniquely 

determined (to within a non-zero scalar factor). When 

classes are generated one at a time this fact is used. 

The eigenvalues of A(1) are computed and if there are no 

repeated eigenvalues then the eigenvectors are found, else 

a new matrix A(j) is computed and the eigenvalues of 
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TliA(i), + T jAU are found where {qi} is a set of random real 
k 

numbers. New matrices are computed until k 71iA(i) has 
i=1 

distinct eigenvalues. The eigenvectors are then computed. 

It is noted that only one of the class matrices correspond- 

ing to the classes of x and xk, (k,g) = 1, is needed since 

the eigenvalues of these matrices are algebraic conjugates. 

When the available class functions are insufficient to 

separate the classes of G, as happens with permutation 

representations it may be convenient to compute the 

rational class algebra. 

`1'hg_rational class algebra 

The maps cps:.. x -- xs, xeG, (s,g) = 1, are 1-1 maps 

onto the conjugacy classes and so permute the conjugacy 

classes. Let K1(_C1), K2, ..., K t to be the sets of trans- 
itivity under the maps cpk. The Ki are disjoint and any 

union of conjugacy classes invariant under the cps is a 

union of these sets. The Ki, i = 1,2,...,t are called the 

rational classes of G. From the above remarks they form 

a basis for a subalgebra of the class algebra called the 

rational class algebra. 

Theorem: If t 
KuKv = E duvwKw 

then 

(6.2) 

duvw = F ai k' ck6K., (6.3) i,j 
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with summation over all i,j such that cisKu, cjsKv. 

Proof 

cicj = F aijkck 

Kuc. - F ai kck summed over i such that cicKu 
ilk 

KuKv - aijkck summed over j such that cjsKv 
i,j,k 

The left-hand side, KuKv, is invariant under the maps cps 

therefore so is the right-hand side hence 

ai k*' i, 
if ck and ckl lie in the same rational class. 

Taking an irreducible representation Rs of both sides 

of (6.2) and comparing coefficients gives 

t 

msumsv 
- 

duvwmsw 

where 

msu 
_ 

c EK mSi 

(6.4) 

As before, this is a commutative associative algebra 

and the eigenvalues and eigenvectors can be computed. 

In conclusion, this method of computing the character 

table by computing the rational class algebra. is practical 

for groups having representations such that: 
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(1) rational class representatives can be found, and 

(2) the rational class map can be computed. 

These requirements are weaker than those needed for 

computation of the class algebra. 

It is possible for groups to have isomorphic rational 

class algebras but distinct class algebras. This occurs 

with the two groups of order 16 designated by F 
3 
a 

1 

and F3a2 

in [ H2 1 
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Chapter 7 

Numerical Techniques 

In practice, rather than use the basic matrix equations 

Aix l,ix, 

derived from the class equations 

cicj = E aijkck, 
k 

i,j = 1,2,...,r 

it is convenient for reasons of numerical accuracy to 

(7.1) 

(7.2) 

compute a set of orthogonal eigenvectors. To do this, msi 
I 

is replaced by wsi = msi/hi* to obtain from (7.2) 

aijkhk9wsk' hi wsihjo-wsj 
k=1 

and so 

r 
wsiwsj = 

k=1 
eijkwsk' 

where 

i,j,s = 1,2, 

i,j,s = 1121...,r (7.4) 

The eigenvectors ws, s = 1,2,...,r of the matrix equations 

E1x = 71ix i = 1,2,...,r 

where [E1]jk = eijk, 
are orthogonal since 

Ws'Wt 
g°st/(dsdt)> s,t = 1,2,..,r 

,r '(7.3) 

(7.6) 

(7.7) 
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i 

from the row orthogonality relations. 

The degree ds is computed from the normalized (wS1. 1) 

eigenvectors as 

d w- -- s ws (7.8) 

The use of orthogonal eigenvectors gives an accuracy 

of more than six decimal places to the values of the char- 

acters of the groups computed. Using the original matrix 

equations (7.1) there were occasions when eigenvectors were 

computed inaccurately. On examination it was seen that 

this occurred when there were two real eigenvectors which 

differed from each other in only two components. 

The eigenvalue of the matrix B = aiE1 corresponding 
1 

to the normalized eigenvector ws is Z aiwsi. For distinct 
1 

eigenvalues it is necessary that 

aiwsi aiwsi' 

that is, 

s - t 

(_t)0, 0, s t 

(7.9) 

(7.10) 

The random variables ai are chosen from a uniform distribut- 
ion in [0,1]. An unsuccessful attempt has been made at an 

error analysis of the equations 

la(ws - wt)l > s, sit, s,t = 1,2,...,r (7.11) 

where s is a constant dependent on the word-length of the 
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computer. 

The set of r-tuples (aiI for which (7.10) does not 

hold has measure zero in the set of all r-tuples tx1), 

0 < xi < 1, i = 1,2,...,r. This in itself is not of 

rigorous practical interest when computing, as, for example 

only finitely many numbers can be represented exactly in a 

computer. More importantly, there have been no coincident- 

al eigenvalues deriving from an unfortunate choice of the 

{ai}. 
This has been borne out by several hundred computat- 

ions with many groups. 

The program used for computing eigenvalues is Head's. 

[ H8 ] Atlas Autocode version of Francis' [ F3 ] QR 

algorithm. The basic algorithm is given by the scheme 

Ai = QiRi' Ai+1 = Qi* AiQi = 
Qi"Qi.RiQi 

= RiQi (7.12) 

where denotes complex conjugate transpose, Qi is a unitary 

matrix, and Ri is upper triangular with real positive 

elements on the diagonal. 

Before using the QR algorithm the matrix is reduced to 

upper Hessenberg form by elementary transformations using 

dirhesse [ M1 ]. 
Inverse iteration is used to compute the eigenvectors. 

The iteration scheme is 

LUxi+1 
= yi 

Zi+1 = !i+1/11 Xi+1 11, (7.13) 
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where LU is a decomposition of A-I.01, L is lower triangular 

with unit diagonal and U is upper triangular. The approx- 

imation p,o to the eigenvalue p. of A is calculated by the QR 

algorithm. Iteration starts with the components of the 

initial vector yo all unity and continues until 

I+ Xi+1 J 

> 1010/(100r) then one more step is performed. 

Danilevski'smethod forthe characteristic polynomial 

This method is used for obtaining the characteristic 

polynomial of a matrix and takes O(n3) operations. 

Let A be an n x n matrix. Suppose an,n-1 0. Row 

n is reduced to zero except in column (n-1) where it is 1, 

by post-multiplying by the matrix Mn_1 which is the identity 

matrix In with the (n-1,j) entry replaced by -anj/ann-1' 

j n-1, and 1/an 
n-1 

for j = n-1. The matrix Mn1 is 

found to be the identity with row (n-1) replaced by row n 

of the matrix A. The method consists of the iteration 

1 q- 

k-1 = 
Mk-1 _k-1 

with An = A. 

k = n,n-1,...,1 (7.14) 

The final matrix A 
1 

is in the form of the 

companion matrix: 

a1 a2 ... an_1an 

1 0 ... 0 0 

0 1 ... 0 0 (7.15) 

0 0 ... 1 0 
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It has been assumed throughout that at the application of 

M 
k-1' ak,k-1 

0; if this is not so at any stage the, 

provided that ak,j 0 for some j < k-1, columns (k-1) and 

j and rows (k-1) and j are interchanged to make ak,k-1 X 0. 

A further possibility arises if akjj = 0 for all j < k. If 

so, then A has been reduced to the form 

A 
x Y 

B 
(7.16) 

Now P(A) = P(X)P(B), where P(A) is the characteristic 

polynomial of A, so that the characteristic polynomial of A 

can be computed from those of X and B without reference to 

Y. 

It seems that it should be possible to modify this 

method to obtain the rational canonical form of a matrix 

but attempts to do this have not so far been successful. 

Danilevski's method has not received much attention by 

numerical analysts as it is numerically unstable [ W1 ]. 

When working over finite fields, however, the computation is 

exact and instability is no problem. 

Computing with finite fields 

To do arithmetic in a finite field of q = pn elements 

on a computer the fastest method seems to be to use a table 

look-up for multiplication and addition although if multi- 

plicative notation is used only the addition table is 
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needed. This occupies q2 words of store which may be 

impractical for large q. An alternative is to represent 

the powers 
x1 

of a primitive element x of GF(q) by i and to 

store the elements xi = 1 + x1. A special convention is 

used for zero. For GF(q) this uses only q words of store. 

Multiplication is given by 

addition by 

and subtraction by 

x 1 x j _ x1+j 

x + X i 
= x1(1+xjr1), i < j) 

x1-xj xi+xj +* (q_ 1 ) 

(7.17) 

(7.18) 

(7.19) 

(in a field of odd characteristic). Irreducible poly- 

nomials defining GF(q) as an extension of GF(p) are given, 

for example in Dickson [ D1 ]. The table of values of 

1+x1 is worked out by hand. 

Computational linear algebra over finite fields is 

distinguished from linear algebra over the complex field or 

the reals in several respects. There are no problems of 

stability since computation is exact. Any direct methods 

using only rational operations in the field can be mimicked 

for finite fields. Root extraction in the finite case may 

require a field extension. Since the field is a finite set 

there is no concept in finite fields corresponding to that 

of convergence so iterative techniques cannot be applied. 

Trial and error methods may be efficient and can be used, 
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for example, to find the roots of a polynomial by searching 

for zeros in successive extension fields. 
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Chapter 8 

Subgroups and permutation characters 

Checkinthecharacter t able 

It has been found necessary to check character tables 

for consistency before using them as data for programs. 

Two tests are used: checks of orthogonality and checks of 

compatibility with the class algebra. The orthogonality 

test is carried out first and if satisfactory is followed 

by the compatibility tests. Tables can be orthogonal but 

inconsistent with the class algebra. 

To check the character table the orthogonality relat- 

ions are used in the form 

U'.'U UU* I (8.1) 

a. 

where [U] ij = uij = (hj/g)2xij and denotes complex con- 

jugate transpose. It is convenient to work with unitary 
matrices to avoid unnecessary difficulties with overflow. 

A single orthogonality error in entry (i,j) of the 

character table shows up in the row orthogonality matrix 

UU* which will differ from I in row i and column i. Sim- 

ilarly, the column orthogonality matrix U*U will differ 
from I in row j and column j. When there are several 

orthogonality errors, the pattern of zeros in the incorrect 

rows and columns is a guide to the position of the errors. 
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If the (i,j) character entry is in error then the column 

positions of the zeros in row i of the row orthogonality 

matrix indicate the zero entries in column j of the char- 

acter table. If it is assumed that i is known then j can 

often be found. A similar property holds for the column 

orthogonality matrix. This program was used to correct 

the character table of Lyons' possible new simple group. 

It is of interest to see why the original orthogonal 

character table for Janko's simple group of order 50,232,960 

failed to give the correct value for a certain structure 

constant. In the group there are three classes of elements 

of period 9; their characters differ only on three represent- 

ations of degree 1920. 

is given as 

The incorrect portion of the table 

91 92 93 91 92 93 

1920 3 -3 0 1920 cp1 
(P2 `P3 

1920 -3 0 3 instead of 1920 
(P2 

cp3 (P1 

1920 0 3 -3 1920 Y3 cp1 ('2 

where Ti = 
-x2.41 64.41 

+ 65.41 - 
67.41 

and 
s9 = 1. 

In the first instance the entries are the roots of x3-9x = 0 

whereas in the second they are the roots of x3-9x-9 = 0. 

The symmetric polynomials of degree two or less in x1, x2 

and x3 take the same values in both cases so the two sets 

of entries have the same orthogonality properties. Comput- 
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ation of the structure constants aijk involves a cubic 

expression in the characters and in particular the constant 

a0 
19293 

involves the product of (p1 , cp2 and 
Y3 

and this 

gives differing answers in the two cases. 

An independent check to the orthogonality check is to 

compute the structure constants aijk of the class algebra 

cicj 
k1 

aijkck, 

by means of the equations 

i,j = 1121...,r 

gh h r u u u 
a13k -hk s=1 ds 

for i,j,k = 1,2,...,r. 

(8.2) 

(8.3) 

The structure constants are non-negative rational 
integers and satisfy the matrix equations 

S 
S i(1)It1 = , 

where 

[A(1)]jk = aijk 
and 

i,s = 1,2,...,r 

ms = (msl,ms2,...,msr)t . 

(8.4) 

(8.5) 
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Theorem: If the above checks are satisfied then there is 

a commutative associative algebra associated with the 
aijk 

as defined by the equations (8.2). 

Proof: From (8.4) the A(1), i = 1,2,...,r are diagonal- 

izable by a common set of :eigenvectors ms 

FA(i)A(j)lst 
= 

FA(j)A(i)lst' 

or 

and so commute, i.e. 

i,j,s,t = 112,. (8.6) 

r r 
k aiskajkt = E1 ajskaikt' l,i, s,t = 1 ,2, ...,r (8.7) 

but from (8.3) 

so 

ajkt = akjt and ajsk = asjk 

r 
aiskakjt = E1 asjkaikt' 

1 

(8.8) 

i,j,s,t = 1,2,...,r (8.9) 

and this is the condition that the algebra with structure 
constants aijk is associative. It is commutative by (8.8). 

A useful check on character irrationalities is that 
(x2(x) ± x (x2)) are both values of characters if X (x) is. 

This follows from the decomposition with respect to the 

general linear group of the Kronecker product of X with 

itself into its symmetric and skew-symmetric parts. 

Permutation characters 

To each subgroup H C G there occurs a transitive permut- 

ation character cp of G on the cosets of H. Necessary cond- 
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itions for such a character to exist are given below ( L5 I. 

It will be seen that they are most ea.ily tested when [G:H] 

is small and H is a large subgroup of G. 

(a) y(1)Ig, 
r 

(b) (p(x) = 1 + ai i(x) 
i_2 

0 < ai < min(xi(1),cp(1)/xi(1)), 
(c) Y(x) > 0 is a rational integer, 

(d) hjcp(x)/cp(1) is a rational integer if xsCj, 

(e) cp(xk) > y(x) for integers k > 0, and 

(f) if y(x) > 0 then (I kx>I . p(x)) J g. 

The only condition requiring comment is (d). The number 

of cosets of H fixed by x is cp(x), thus Hxix = Hxi for tp(x) 

distinct cosets Hxi. The number n of distinct conjugates 

of x in H is given by 

n I H! ._.(x? 
10G(x)I 

(8.10) 

Techniques for searching for a character cp of G with 

the above properties use the rational representation table 

of G. Since cp assumes only rational integral values, it 

will contain all algebraic conjugates of an irrational re- 

ducible character with the same multiplicity. Each charac- 

ter is replaced by the sum of its algebraic conjugates. 

After removing duplicate rows and columns a table is obtain- 

ed with columns indexed by classes of conjugate cyclic sub- 
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groups and rows indexed by rationally irreducible 

representations. Let t be the number of these represent- 

ations. 
(1) A table of factors of g is prepared by generating the 

factors from the prime decomposition of g and sorting them 

into increasing order of magnitude. These factors are, by 

(a), the only candidates for the degree (p(1) of cp. The 

necessary conditions given for cp to be a transitive permut- 

ation character may be checked in full generality for 
increasing values of the degree. In this way an upper 

bound to the order of any proper subgroup of G and candid- 

ates for permutation characters are obtained. 

(2) The multiplicities ai are bounded above by k and all 

(k+1 )t-1 choices for suitable cp are examined. By taking 
k = 1 the multiplicity-free characters are obtained. Al- 

though it is, in general, not true that permutation char- 

acters on the cosets of maximal subgroups are multiplicity- 

free, it appears reasonable to hope for this property to 

hold for at least one maximal subgroup of a simple group. 

(3) A. search is made for candidates by the number r of 

distinct rationally irreducible characters occurring as 

constituents of cp. Searching for multiplicity-free char- 
acters means examining 

r-1 
characters. 

The above methods are all bounded in utility by the 

time they take. For a group with many (say > 50) large 

rationally irreducible characters, only the third method 
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seems feasible. There is a method suggested by S. Lin 

[ L3 ] which proves useful in computing multiplicity-free 

characters. This method is bounded not by time but by 

storage considerations. It consists of constructing a 

table of t rows and n columns where n is the degree of the 

largest permutation character being sought. Each entry is 

either a zero or a one and so can be stored as a bit in the 

computer. Row i is associated with a rationally irreduc- 

ible character of degree di, and di < di+1 ' i = 1 , 2, ... , t-1 . 

The only non-zero entry in the first row is a 1 in the 

first column. The other rows are given entries according 

to the scheme 

->(di - di-1 ) --> di (8.11) 
rowi = rowi-1 U row 

i-11 
i=20ioeeit 

where ---> denotes athift of k columns to the right. Degrees 

of the largest constituents of a character of degree j (<n) 

will be found from the rows in which there is a 1 in column 

j. To each constituent there will correspond one or more 

decompositions. The set of next largest constituent 

degrees is found from the rows containing 1 in column j-d 

where di is the largest constituent, and so on. 

If it is assumed that a candidate for the character cp 

has been obtained such that it satisfies (a) to (f), then 

from (8.10) the distribution in H of the elements of G is 
found. Sometimes a counting argument will eliminate cp at 
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this stage. If p(1) is sufficiently small onecean attempt 

to construct, by restriction to H, the character table of H. 

If a faithful representauion of G is available an attempt 

may be made to construct H. This has been done for the 

simple subgroups PSL(2,p) = 17, 19 of the large Janko group 

J3 of order 50,252,960 = 2735 5-17-19 which will be used as 

an illustration of the method. 
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Chapter 9 

The simple group of order 50,232,960 

and its subgroups 

In 1967 Z. Janko [ J3 ] made the announcements: 

Let G be a finite non-abelian simple group with the 

property 

(i) that the centralizer of an involution is an 

extension of an extra-special group of order 

32 by SL(2,4), 

then either 

(ii) all the involutions are conjugate and G is a 

new simple group of order 50,232,960 = 

27355.17.19 

or, 

(iii) there are two classes of involutions and G is 

a new simple group of order 604,800 = 2733527. 

There followed a list of further properties of G and char- 

acter tables. Nowhere was the existence of G established. 

The existence and uniqueness of the group of order 604,800 

of case(iii) has since been demonstrated by M. Hall and 

D. Wales [ H3 ]. 
This chapter is concerned with case (ii). By working 

from the character table, possible permutation characters 
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which suggest the existence of certain large subgroups are 

computed. One of these subgroups is SL 
38 

(2,16), an extension 

of SL(2,16) by an automorphism of order 2. The existence 

of this subgroup was assumed by G. Higman who deduced gen- 

erators and defining relations for G. Coset enumeration 

yielded a permutation group on the cosets of this subgroup. 

Subsequently J.G. Thompson has shown that the assumption of 

existence of the subgroup SL'(2,16) is justified as it can 

be deduced from the character table. S.K. Wong r W2 a has 

proved that a simple group of order 50,232,960 necessarily 

has property (i). 

These results, together with the construction given 

here, prove the uniqueness to within isomorphism of a simple 

group of order 50,232,960. 

The search for the_permuta ioncharacterg 

A search is made for possible permutation characters. 

The group has 14 rationally irreducible characters. It 

takes six seconds to test the 213 multiplicity-free char- 

acters. Besides the principal character, there are three 

characters which appear to be permutation characters of 

degrees 6156, 19380 and 20520. A further possible perm- 

utation character of degree 14688 is found when multiplicity- 

two is permitted. This computation t .yes 7 minutes and gen- 

erates several more characters rah :ch either correspond to 

subgroups known to be present, such as centralizers and 
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normalizers of elements, or to subgroups of whose presence 

there is initially some doubt. The possible permutation 

characters and their values are given here; cpn denotes a 

character of degree n and is expressed in terms of its 

irreducible constituent degrees. .prime denotes an 

algebraic conjugate character. 

'P6156 = 1 
+ 324 + 323+323' + 1140 + 1615 + 1215+1215' 

19380 = 1 + 324 + 646+646' + 2754 + 816 + 3078 + 1140 + 

1215+1215' + 1615 + 85+85' + 1920+1920'+1920" 

'P20520 = 1 
+ 324 + 2754 + 816 + 3078 + 2432 + 1140 + 1615 + 

12.15+1215' + 85+85' + 1920+1920'+1920" 

14688 " 1 
+ 85+85' + 2x1140 + 1615 + 1215+1215' + 2432 + 

1920+19201+1920" 

(P12.312 ` T6156 
+ 2x1140 + 1938+1938' 

The last character is found in the course of an exhaustive 

search in which the factors of G are examined in increasing 

order of magnitude with no restrictions on the multiplicities 
except the natural onethat the multiplicity of a (complex) 

irreducible character should not exceed the minimum of its 
degree d and n/d where n is the index of the subgroup sought, 

The fact that there is only one rationally irreducible char- 

acter of odd degree (1615) besides the principal character 

is of assistance. This search has been taken up to index 
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--------- Element- 

Order 1 2 4 8 6 12 5 10 15 17 19 3 3 9 ----------------- -------- 
-------(CG(X)E IGJ 1920 96 8 24 12 30 10 15 17 19 1080 243 27 --- --------------------------------------------- - 

6156 76 12 0 4 0 1 1 1 2 0 36 0 0 

19380 20 12 0 2 0 0 0 0 0 0 30 21 6 

20520 40 8 0 4 2 0 0 0 1 0 0 27 3 

14688 96 0 0 0 0 3 1 0 0 1 0 27 3 

12312 120 0 0 0 0 2 0 2 4 0 72 0 0 

Table T-1 

Values of possible permutation characters of Janko's 

simple group of order 50,232,960. 
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17442 during which two possible new degrees emerge including 

that of degree 12312 which presumably corresponds to a sub- 

group of index two in the subgroup of order 8160. The 

characters take the values shown in Table T-1. 

The evidence of the characters above suggests the 

presence of subgroups SL(2,16), a group SL*(2,16) containing 

SL(2,16) as a subgroup of index two, PSL(2,17), PSL(2,19) 

and a solvable group of order 2592. Counts of the number 

of elements of each period as suggested by the characters 

are consistent with the presence of the named subgroups 

above. In particular, the subgroups T'SL(2,17) and PSL(2,19) 

are constructed. No attempt has been made to check the 

existence of the solvable group of order 

Coset enumeration 

On the evidence of the possible permutation character 

G. Higman assumes the existence of a subgroup Se (2,16) and 

is able to deduce a set of relations for G, namely:- 

Let GF(16) consist of 0 and al, i = 0,1,...,14 where 

1+a = a 12. The elements of SL(2,16) are the matrices 

a bl 
c dJ 

a,b,c,dsGF(16), and ad-be = 1; 

its automorphism group is < SL(2,16),u > where u4 1, and 

1 

a b rat b2 

u c d] u = 2 a 2 
C U. J 
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Let H = < SL(2,16),u2 >. If Janko's group exists and 

contains Ii then it is generated by H and an element t where 

2 t 

t t 

1 a6 1 a t 
10 1 1t 0 

_5 t a 0 t [-5 05] 

0 a Lo a 

-6] 
a6 aa 

6 0 

tut = U3 

) 

4 
2 u 

1 

t 1 a3 
a3 0 

1 

t t 

In order to be able to use coset enumeration it is 
necessary to replace the matrices representing elements of 
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SL(2116) by words in a set of generators of SL(2,16). By 

choosing the natural set of generators 

a: 1 1 b: a 0 c: 0 1 

0. 1 0 a 1 1 0. 
I 

it is found that a sufficient set of relations for SL(2,16) 

is 
a2 _ c2 _ b15 _ (ac)3 = (bc)2 abab^4ab3 = 1 

Relations for G may now be written: 

a2=b15=c2=e2= t2= (te)2= (t a)2= (bc)2 (ea)2= 

(ec)2 1, 

(ac)3 == 
b4eb-1 

e = baeb-l abeb-l a = (tbe)3 = (tc)4e = 

(b2tbctc)2 = 1, 

b3ab3tbab^lt = (b3t)3 = 

bab-1 ctaeb 1 eb-1 ab-1 ctb-1 ab-2 actactb- i ab"2ct = 1 

where e = u2 and t is the extending involution. 

These relations yield the 6156 cosets expected. Goset 

enumeration on the cosets of the subgroup generated by ate 

and b shows that these two elements already generate G. 

Further examination by hand enables the original generators 

to be expressed in terms of these two, namely: 

b-5xb5x l b-5 = a, a l x l axax 1 t, (ax) 4= e 
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where x = atc. 

Construction of the subgroups_PSL2,1.12andPSL(2_,jqj 

Once a non-trivial permutation is found for the gen- 

erators of G, necessarily faithful since G is simple, this 
representation can be used in a search for elements of G 

which generate subgroups given by certain defining relations. 

Two subgroups whose existence is suggested by the possible 

permutation characters are PSL(2,17) and PSL(2,19). If 
these subgroups exist they are certainly maximal subgroups 

of G since no possible permutation characters for degrees 

dividing 20520 or 14688 other than the principal character 

are found. 

Mennicke and Behr [ B2 I have given generators and 

defining relations for PSL(2,p), p an odd prime: 

PSL(2,p) = <t,u> 

t2 = u3 = (tu)p = {tutu(ut)T(P+1)}3 - 1. 

For p > 5 non-trivial elements satisfying these relat- 
ions must generate PSL(2,p) since it is simple and has no 

proper factor groups. From the defining property (ii) the 

class in G to which the involution t must belong if the 

subgroup exists is known. In G there are two classes of 

elements of period 3 but from the permutation characters it 
is seen that the subgroups of index 20520 and 14688 contain 

only the class of elements of period 3 which has no fixed 
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points in the representation on the 6156 cosets of SL*(2,16). 

Representative elements of the classes in G to which t and 

u must belong are found and then by conjugating at random 

the relations are examined to see whether they are satisfied. 

A preliminary analysis is useful in order to determine 

whether the computation is unlikely to succeed within a 

reasonable time. The probability of finding elements xsCi 

and ysCj such that their product xycCk can be estimated as 

follows. There are hihj ordered pairs (x,y), xsCi, YcCj 

with products xy of which aijkhk lie in Ck. The probabil- 

ity that a pair (x,y), xsCi, ycCj chosen at random from 

their classes so that xy(=z)cCk is given by p.k = aidk'k hh 

Alternatively elements could be chosen at random to satisfy 
zy-1 = x or x 1 z = Y. The three probabilities are pijk, 

pkj'i and pi'kj' Provided that aijk 0, there is some 

choice to maximize the probability. The symmetry relations 
satisfied by the structure constants show that the numer- 

ators of these three probabilities have the same value and 

so (provided that aijk 0) the classes can be chosen to 

maximize the probability by minimizing the denominator. 

Let this denominator be hihj. In G there is a unique class 

C. i of involutions and these have a centralizer of order 

1920. There are two clas:;es of elements of period 3 but 

examination of permutation characters on the cosets of the 

two subgroups reveals the class Cj to be that of elements 
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centralized by the Sylow 3-subgroup of G of order 243. 

Elements of order i7 and 19 are self-centralizing. From 

computed class structure constants it is found that there 

are 1i9 ordered pairs (x,y), xcCi, ysCj such that xy is a 

fixed element of period 17. For a product of period 19 

the corresponding figure is 95. The probability of a 

random pair (x,y), xcCi, ysCj being chosen such that xy has 

period 17 is found to be 3 and for period 19 it is 30 
These probabilities take into account that for both periods 

17 and 19 there are two classes of elements, an element not 

being conjugate to its inverse. 

The probabilities are upper bounds on the probability 

of generating the subgroups since further relations have 

to be checked and it may be that theLwhole group is gener- 

ated and the further relations are never satisfied. Since 

the subgroups sought are simple it is sufficient to find 

elements satisfying the further relations; in more general 

cases it would be necessary to show that the elements do 

not generate a factor group of the group given by the 

defining relations. 

The products xy are generated at random using the 

permutation representation of degree 6156. The cycle 

structure of each product is examined to see whether it 

contains a cycle of length 17 or 19 in which case it has 

that period since there are no elements whose periods are 

multiples of 17 or 19. If a cycle of length 17 or 19 
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occurs the final relation is checked and since the groups 

are simple, they have been constructed if the final relation 

is satisfied. If not, the compi..tation is repeated with a 

new random product. After two minutes of computation the 

generators for both subgroups were found. Using Behr and 

Mennicke's relations and the generators given above, it is 

found that 
PSL(2,17) = < t,[t,biX > 

and 

PSL(2,19) = < t,[t,b]z > 

where [t,b] = tb tb 1 , x = atcb , z = (b atcb )3. 

A random element should strictly be defined as one 

chosen from a uniform probability distribution on the 

elements of G. It is assumed that the method given below 

gives an approximation to sich a distribution although the 

only property that is used is that a large number of dist- 
inct elements are generated. 

A random element is computed by forming the word wi+.1 

from the word wi (wo=1) by multiplying it by one of the two 

generators of G chosen at random with equal probability. 
Since the periods of the two elements are 12 and 15 it is 
to be expected that there are few repetitions in the initial 
sequence generated. In fact, it is not the product xy 

which is chosen at random. One of the elements x or y can 

be conjugated at random with the same effect. For if a 
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and b are independent random elements of G then a`Ixab 1yb 

and xab`lyba 
1 

are conjugate and the transforming element 

ba-1 is a random element of G. 
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Chapter 10, 

Conversion of numerical values of characters 

to their algebraic form 

Approximate numerical values for the irreducible char- 

acters are computed from the components of eigenvectors. 

These approximations, although useful, are not easily trans- 

formed by eye into sums of roots of unity. An efficient 

method for doing this is given here. 

Let x be an element of period n and let X(x) be an 

irreducible character of degree d to which N(x) is a num- 
d k. 

erical approximation. Let-x(x) y w 0 < k. < n, 
i=1 1 

where w is a primitive nth root of unity. The problem is 

to determine a set {kiI fromX N(x). The terms of the sum 

may be arranged so that k1 < k2 < ... < kd. Each of the 

d+n- 

d 
such possible sets yielding sums St could be gener- 

ated starting from 0,0,... ,0 and ending at n-1,n-1,...,n-1 

and a sum chosen for which ISt-X,N(x)I is a minimum. This 

method can be improved. The problem may be visualised in 

the complex plane by representing each term in the sum by a 

unit vector which lies at an angle which is a multiple of 

27c/n to the horizontal. The sum itself is represented by 

a set of vectors joined up end to end from the origin to 

X(x). The terms are generated as described above but 
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after choosing the first s terms a check is made to see 

whether the distance from the sum of the first s terms to 

Xr(x) is less than d-s; if not the exponent of w in the sth 

term is altered. Even with this improvement the algebraic 

form of the character of an element such that n and d are 

both greater than 10 (say) could be very time-consuming to 

determine. In cases such as are presented by the rep- 

resentations of some large simple groups, e.g. Janko's 

simple group of order 50,232,960 which has irrational 

irreducible characters for which d = 1920 and n = 9, it is 

quite unrealistic to use this method. 

Instead of trying to fit d terms in the sum, d-k terms 
s 

are fitted where k = E aipi, ai > 0 and pi, i=1,2,...,s 
i=1 

are distinct prime factors of n. If such a set of d-k 

terms can be found then a further k terms which contribute 

s 
fpi-1 td 

i zero to the sum can be added, namely a E w 
i=1 1 t=0 

where n = pidi. (The converse statement, namely, if 

n n s 
P(w) o cm = 0 and c. > 0 then Y' c. _ ap 

i=0 1 1 i=0 1 i.=1 i i 
for some ai > 0 appears open. No counter-examples have 

been found. If the converse is not satisfied for some 

character then the method will still work but may take more 

time.) 

If n has only one prime factor p1 then k takes only 
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those values which are multiples of p1 but if n has more 

prime factors then there is a useful expression for the 

values k may take. A lemma from number theory is needed 

[H6]. 
Lemma: If p1 and p2 are co-prime positive integers then 

a1p1 + a2p2, (a1,a2 > 0) takes all values not less than 

k = (p 1_1)(P2_1)' 

Let p1 and p2 be the two smallest prime divisors of n. 

Besides the values not less than k, it may also be necessary 

to use those other exceptional values of aipi (ai> 0) 

which are less than k. If k < d then the number of terms 

used starts at 0 and increases to d-k and if no fit has 

been found the number of terms is increased to those values 

corresponding to the exceptional values of k. If still 

no fit has been made the numerical value of the character 

is output. In practice this has indicated a fault. 

If the value of a character is numerically an integer 

then the term fitting is not done since certain integral 

values, e.g. -1 can be time-consuming to fit. 

To show that the sum of terms found to fit closely to 
the numerical approximation to the character is algebraic- 

ally correct it is necessary to show that no other character 

of degree d or less has value within the error disc for the 

numerical value of the character which has been computed 

from a component of an eigenvector. In the absence of 
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further knowledge concerning the character, such as the 

character being that of a subgroup and therefore of lesser 

degree, this requires finding a lower bound to the non-zero 

minimum of cp(w) cuk1 - E wm1 over the set (mi . 

Theorem: 

d-k k. d M. 

Let (p (w) = A E w 1 - w Then 
i=1 i=1 

cp(w) > 
(2d-k)1-fin 

where cpn is Euler's totient function. 

Yn 
Proof: Let N(w) = (P (W i ) where w i runs over the set of 

i=1 

(pn algebraic conjugates of ,,) . N(w) is a norm of w and is 
> 1 in absolute value since the norm of a non-zero algebraic 

integer is,a non-zero rational integer. 

d-k k d M. 

(P (w,i) < 
I Iw 11 + 1w 
i=1 i=1 

so, 

Now 

2d-k 

n 1-p 
(w 

j)-1 > (2d-k ) ! cp (w i) ? ( 
j=1 

.i 

The theorem is proved by taking wi = 
W. 

Charactertable_output 

The output routine for printing out the characters in 

algebraic form takes for input the output of the routine 
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which computes the character value on an element of period 

n-1 
n as a sum of nth roots of unity. The expression E akw k 

k=0 

is stored in an array b with bk= ak, ak > 0, k = 0,1,...,n-1. 

The number of non-zero entries in b is minimized by repeat- 

edly subtracting 1 from all entries and noting which gives 

the minimum number of non-zero entries. Subtracting 1 is 
n-1 

equivalent to subtracting 1 = 0. The integer term is 
i=0 

output first followed by cosines and exponentials. For 

example, if n - 9 and b contains 

1 2 3 4 5 f 8 
0 1 1 1 3 then it is changed to 

0 2 3 4 5 6' 8 
-1 -1 1 0 0 0 2 and printed out as the 

expression 2+2c1-e2-e3+e4+e8. When n=2t, the integer term 

is bo- bt. 
The character tables are aligned and divided into 

pages of the correct size by the output program. 

The output routines are sophisticated and they depend 

greatly on the flexibility of the Atlas Autocode alphabetic 

handling facilities for output. 

A pair of permutations can be input to output the, 

tables with the classes and representations in any specified 

order. This has been done to make it easier to compare 

versions of the same table differing by permutations of the 
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rows and columns. 
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Chapter 11 

Computations with the symmetric group 

The character table of-the-symmetric-group Sn 

Because of the ease with which calculations on the 

symmetric group can be made and also because of the interest 
of physicists in the Epoup, the symmetric group was the first 
group whose character table was computed automatically. 

This was published by Bivins, Metropolis, Stein and Wells 

[ B3 1 in 1954. Their work was contemporary with that of 

Comet [ C1 The characters of the symmetric group occur 

naturally in applications in genetics f J1 ], card shuffling 
[ H5 ], sorting [ B1 ], physics [ H4 1 and symmetric funct- 
ions f M2 ] besides being of interest in their own right in 
the theory of finite groups. 

Definition: A partition of n is an unordered set of 

positive integers (a) =-(a1,a2,...,ak) such that i = n. 

The a. are called the parts of a. Conventionally ai > ai+1 

i = 1,2,...,k-1. 
The partition a of n is associated with its Ferrers- 

Sylvester diagram. For example, the diagram 

represents the partition (4,3,2) of 9. 
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Definition: The conjugate partition to (4,3,2) is obtained 

by interchanging the rows and columns of the diagram, 

deriving the partition (3,3,2,1). The conjugate partition 

to [a} is denoted by [a}. 

Let [a} and [b} be distinct partitions of n. They are 

naturally ordered so that [a} precedes [b} whenever al = bi, 

i = 1,2,...,k, and ak+1 > 
bk+1' 

Each representation and each class of the symmetric 

group 8n may be associated with a partition of n. If X ab 

is the character of the symmetric group associated with the 

representation [a} and the class (b) then 

X ab sbXab (11'2) 

where 
Eb 

= Ti according to whether the partition [b} has an 

odd or even number of even parts. 

The interest in the program [ M3 ] for computing 

symmetric group characters lies in two facts. It uses a 

new technique [ M4 ] whereby a partition is stored in the 

computer by a single non-negative integer not greater than 

the number p(n) of partitions of n thus ensuring a 

considerable saving of space at the expense of storing an 

auxiliary table of 
n2 

entries. The algorithms are the, 

first published for the symmetric group in a high-level 

language. The algorithm is written with applications to 

symmetric polynomial problems in mind [ M2 ] and generates 

one character on each entry to the routine but requires 

very minor modification to generate a full character table 
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efficiently. The method used is the standard recursive 

algorithm of Murnaghan and is described in Littlewood [ L5 ]. 

Rules_for_compuLing_the_symmetric_group_characters 

Rules for computing xab where [a} = (a1,a2,...,as), 
{bi = (b1,b2,...,bt) and ai > ai+1, i = 1,2,...,s-1, 

bj > bj+1' j - 1,2,...,t-1, are: 

1. xab =-E Xa,bl where fall = (a1,a2,...,ai-b1'ai+1'... 

,as) and {b'} = (b2,b31..91bt) and the summation is 

over i = 1,2,...,s. 

2. (i) (a1,a2,...,ai-1'ai'ai+1,...a,) 

3. 

- (a1,a2,...,ai-1,ai-1+1,ai+1,...,as), and 

(ii) in particular, if for any i, ai+1 = ai+1 

then (a1,a2,...,as) = 0. 

(a1,a2,...,as) = 0 if as < 0. 

4. (a1,a2,...,as) = (a1,a2,...,as-1) if as = 0. 

5. (0) = 1. 

mexample 

Writing (4,3,1)(4,2,2) for X then 
(4,301)(41212) 

(4,3,1)(4,2,2) _ (0,3,1)(2,2)+(4,-1,1)(2,2)+(4,3,-3)(2,2) 

-(2,1,1)(2,2) - (4,0,0)(2,2) + 0 

-(0,1,1)(2) - (2,-1,1)(2) - (2)(2) 
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= o + (2,0,0)(2) - (2)(2) 

(0) - (0) 

= 0. 

`P2_degrees_oftheirreducible characters-of Sn 

A question has been raised by Bivixis and others [ B3 

namely:- 

For what partitions of n does the degree of an irreducible 

character of S attain its maximum value and how does this 
n 

maximum behave for large n? 

This was apparently motivated by the practical consider- 
atio-4s of number overflow in the computer. It is of 

interest to be able to estimate the largest value either as 

a function of n or as a recursively defined function whose 

arguments form a partition associated with a particular 

irreducible representation of the symmetric group. 

To try to throw light on this question it seems 

necessary to be able to compute the largest degree and a 

partition for which it occurs. Such a program was written 

for a 4000 word 12 bit store FBP8 computer. The degree 

of the character associated with the class {a} _ (a1,a2,..., 

k 
ak) where ai > ai+1, i = 1,2,...,k-1 and ai n, is 

i=1 

given by [ B3 

da = 

n! -a (b. -b .) 
--id-1------ 

II (bi!) 
i 

where bi =- ai+k-i (11.3) 
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Lemma: da<V`nI . 

Proof: By using the column orthogonality relations on the 

degrees, the sum of the squares of the degrees of the 

irreducible characters of Sn is n!. 

To minimise the amount of computing with large numbers 

the computation is performed by working with the exponents 

of the prime factors occurring in the expression for da. 

This is described in [ M5 ]. The prime factors of, all 

numbers not greater than n are kept in the store for direct 

use in building up the set of exponents of the primes. To 

evaluate the magnitude of da, an expandible multilength 

number is repeatedly multiplied by a single-length number. 

The degree is computed only for those partitions (a) 

which precede or coincide with their conjugates (see 11.2). 

This has the advantage of economy by using the partition 

with the smaller number of parts. 

The maximal degrees of table T-2a have been printed in 

decimal using Lunnon's [ L4 ] multiple-length arithmetic 

package for atlas. 

The tables do not appear to reveal any simple 

recurrence relation between the partitions associated with 

the maximal degrees for Sn and those for Sk (k < n). It is 

notable, however, taat frequently the partition for the 

maximal degree for Sn differs from that for the maximal 

degree for Sn-1 in only a single part. 
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d -max n 

2 3 

3 4 

6 5 

16 6 

35 7 

90 8 

216 9 

768 10 

2310 11 

7700 12 

21450 13 

69498 14 

2192864 15 

1 1153152 16 

48!73050 17 

163,36320 18 
1 

646164600 19 

2494120600 20 

11189,39184 21 

54628165408 22 

28 5421158568 23 

11174870179424 24 

547591590000 25 

Table T-2a 
Maximal irreducible degree of Sn 
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Table T-2a(continued) d 'ax n 

54862456282689907 291351 
3602717344007809066611628632 7600 52 

241632801797883 590706221223561800 53 

16032089198265876501244987648140000 54 

11233294008001480735123185b047731500 55 

'78092418237443448960749414471680000 56 
1w p 

559492688586530968032605948341040000 57 
1 I I 

392042285432517105673428107991024Oo0u0 58 

284360991016399770894957040134389760000 59 

2321999844171845578871179664651452416000 60 

19896436084338134974427586952682903961600 61 

148493270650299093215991941843059928 64000 62 

112808481547149092377523878318899 891011200 63 

I I I I I I! 1 

822908186443940221238147870263'13C) 
1 

68681 13280 64 
1 

64744511815906042071122906423545868111061519360 65 

4926488872069257784272444878608702089690 7200 66 

40255712513547488533010840I14788823689834654000 67 
1 1 1 1 1 1 1 1 

30473167912125109106974726128840645867371520000 68 

23441791164300698794-867839350095583550 166016000 69 
1 1 

1 1 1 1 

178c361125j6865994434412754238970697084213760ooooo 70 

14061179814863415100 28457529846541203122400080000 71 

130752274327952315389897609524063885285350440960c:.o 72 
I 

1 10994183391429756654810097830638454,754345185280000 73 

9338142977280073464.6622546665628282244030499904000 74 

1 1 1 
1 1 1 

75591730449481189068765207148175917862445398493000000 75 

87 



n a.10b 

a b 

2..45 

4.90 

1.10 
2.68 

7.10 

2.01 

6.02 

1.90 

6.32 

2.19 

7.89 

2.95 

1.14 
4.57 

1.89 

8.00 

3.49 

0 

0 

1 

1 

1 

2 

1.56 9 

7.15 9 

3.35 10 

1.61 11 

7.88 11 

3.94 12 

dmax/1fn! 

0.816 

0.612 

0.548 

0.596 

0.493 

0.448 

0.359 

0.403 

0.366 

0.352 

0.272 
0.235 

0.256 

0.252 

0.258 

0.204 

0.185 

0.160 

0.157 

0.163 

0.178 

0.149 

0.139 

3,12 

Partition 

3,2,1 

4,2,1 

41291 
2 

49391 2 

4,3,2,1 

5,3,2,1 
513,2112 

5,4,2,12 

6,4,2,12 

5,4,3,2,1 

6,4,3,2,1 

6,4,3,2,12 
7,4,3,2,12 

795939291 
2 

7959392 
2,1 

7,59392 
2,12 

7,5,4,3,2,1 
7,5,4,3,2,12 

8,5,4,3,2,12 

8,6,4,3,2,12 

Table T-2b 
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n 1"n! 

a 
a.10b 

b 

dmax/Vn! Partition 

26 2.01 13 0.123 816,413,2713 
27 1.04 14 0.122 8,6,4,3,22 i12 

28 5.52 14 0.104 816,513,22112 
29 2.97 15 0.099 8,6,5,4,3,2,1 
30 1.63 16 0.115 8,6,5,4,3,2,12 

31 9.07 16 0.102 9161514131211 2 

32 5.13 17 0.098 
9,7,5,4,3,2,12 

33 2.95 18 0.091 9,7,5,4,372,13 

34 1.72 19 0.092 
9,7,5,4,3,22'712 

35 1.02 20 0.077 9,7,6,4,3,22,12 
36 6.10 20 0.067 917,61413 2 1211 

2 

37 3.71 21 G060 10,8,6,4,3,22,12 

38 2.29 22 0.070 91716,514,312,12 

39 1.43 23 0.065 10,7,6,5,4,3,2,12 

40 9.03 23 0.065 10,8,6,5,4,3,2,12 
41 5.78 24 0.063 10,8,6,5,4,3,2,13 

42 3.75 25 0.066 10,8,6,5,4,3,22,12 

43 2.46 26 0.057 111c"116,514,312 2 12 

44 1.63 27 0.051 11,8,6,5,4,3,22,13 

45 1.09 28 0.046 11,9,7,5141312?S32 

46 7.42 28 0.042 11,9,7,5,4,3,22,13 

47 5.09 29 0.040 10,8,7,6,5,4,3,2,12 

48 3.52 30 0.039 11,8,7,6,5,4,3,2112 

( 49 2.47 31 0.041 11,9, 7,6,5,4,3,2,12 

50 1.74 32 0.041 111917161-'51413121 13 

Table T-2b(continued) 
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n TnFl a.10b dmax /1(n! Partition 
a b 

51 1.25 33 

52 8.98 33 

53 6.54 34 

54 4.80 35 

55 3.56 36 

56 2.67 37 

57 2.01 38 

58 1.53 39 

59 1.18 40 
60 9.12 40 

61 7.12 41 

62 5.61 42 

63 4.45 43 

64 3.56 44 

65 2.87 45 

66 2.33 46 

67 1.91 47 

68 1.57 48 

69 1.31 49 

70 1.09 50 

71 9.22 50 

72 7.83 51 

73 6.69 52 

74 5.75 53 

75 4.98 54 

0.044 

0.040 

0.037 

0.033 

0.032 

0.029 

0.029 

0.026 

0.024 

0.025 

0.028 

0.026 

0.025 

0.026 

0.023 

0.021 
0.021 

0.019 

0.018 

0.016 

0.015 
0.017 

0.016 

0.016 

0.015 

11,9,7,6,5,4,3,22,1. 

12,9,716,5141312 2 
11 

12,9,7,6,5,4,3,22113 
12,10,816,514,3122,12 

12,10,8,6,5,4,3,22,1 

12,10,816,51413 2 72713 

12,10,816,51413 2 ,22 , 12 

12,10,8,7,514,3 2 ,22 ,12 

12,10,8,7,6,5,4,3,2,12 

12,10,8,7,6,5,4,3,2,13 

12,10,8,776,5,4,3,22,12 
13,10,8,7,6,5,4,3,22,12 

13,10,8,7,6,5,4,3,22113 

1 3, 10, 9, r, 6, 5,4, 3, 22 11 3 13,11,9,/7,6,5,4,3,22?13 

13,11,9,7,6,5,4,32,2?13 

13,11,9,7,6,5,4,2,22,j2 

14,11,9,7,6,5,4,32,22,1p- 
14,11,9,7161514,3212 2 ,13 

14,11,9,8,6,5,4,32,22,13 
14,11,9,8,6,5,42,3,22,13 
13,11,9,8,7,6,5,4,3,22,12 
14,11,9,8,7,6,5,4,3,22,12 

14,11,9,8,7,6,5,4,3,22,13 

14,11,10,8,7,6,5,4,3,22,13 

Table T-2b(continued) 
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The number of characters of odd degree 

The observation that the number of irreducible char- 

acters of odd degree is a power of 2 for the known simple 

groups of order < 106 leads to an examination of the number 

of characters of odd degree in Sn and An Tables T-3 and 

T-5 contain the results. 
The degrees of Sn need not be computed since all that 

is needed is whether the degree is even or odd. For each 

n, the power of 2 dividing n! is computed using the well- 

known relation for the power 

k = [n/2] + [n/2a] + . 

Partitions are generated in their natural order and the 

power, d, of 2 in the denominator of (11.3) is computed. 

If d < k then the degree is even. If not, then the power 

of 2 in the numerator is evaluated. It takes a minute to 

generate the number m(Sn) of characters of odd degree for 

the symmetric group Sn, n < 26 and a further minute for the 

values for n z 27, 28. This is typical of computations 

involving partition generation which take a time exceeding 

0(np(n)) for each n. The values of m(An) were found by 

hand working out the partitions of n into odd unequal parts 

then converting these to self-conjugate partitions and 

evaluating the power of 2 in the corresponding degrees of 

Sn (see Chapter 12, p. 94). If m(Sn) = 2t then m(An) = 

t + 2s where s is the number of self-conjugate partitions of 

n for which the representation of Sn has 2 x odd degree. 
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n m(n) m(Sn) 

4 4 4 

5 4 4 
6 4 8 

7 
4 8 

8 8 8 
9 8 8 

10 8 16 

11 8 16 

12 16 32 

13 16 32 

14 32 64 

15 32 64 

16 16 16 

17 16 16 

18 16 32 

19 16 32 

20 32 64 

21 32 64 

22 64 128 

23 64 128 

24 64 128 

25 64 128 

26 128 256 

27 128 256 
28 256 512 

Table T-3 

Tabulation of in(G) for the alternating groups 

and symmetric groups 
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Chapter 12 

The character tables 

A brief statement of three techniques useful in comput- 

ing character tables is given. 

Brauer's_theory [ B4 ]: 

Let g be the order of a simple group and let p, a 

prime, divide g to the first power only, then 

g = pgw(1+kp), qt = p-1 (12.1) 

The normaliser of a Sylow p-subgroup has order pqw and its 
centralizer has order pw. By Burnside [ B5 1 q > 1. There 

are q ordinary characters Xi, i = 1,2,...,q, of degree di, 
i = 1,2,...,q, and t exceptional p-conjugate characters all 
of the same degree do. For the ordinary characters 

eidi = 1(mod p) and for the exceptional characters 

sodo = -q(mod p) where ci = ±1. Further, the degree equation 

is 
q 

1 + cidi + sodo 

and dilq(1+kp). 

Induction from asubgroup: 

= 0 (12.2) 

The method is due to Frobenius (' F4 1. Let H c G. 

For each character X of H define X' on G by x ' (x) = x. (x) if 
xcH otherwise X'(x) = 0. Then the induced character X*(x) 
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of G is given by 

(x) = 
1 l 

E '(Y-1xY) (12.3) H 

The program described on page 54-is used to compute norms of 

characters induced from (and restricted to) subgroups. 

Trivial intersection sets [ S3 1: 

A subset S of G is a trivial intersection set (T.I. set) 

if for xsG, either x-1 Sx f1 S c 1 or x-1 Sx - S. 

A generalized character is a sum of irreducible char- 

acters with integer coefficients. 
Let S be a T.I. set such that 

S C NG(S) = N C G. (12.4) 

If oc,R are generalized characters of N which vanish on N-S 

and a(1) 0 then 

c (x) = a(x) for xcS (12.5) 

(a, R)N = 
(a ., 

(12.6) 

where (c,13) a(x) Zx3 and a" is the generalized G (G xcG 

character of G induced by a. 

Thealternating_groups 

The characters of these groups are easily determined 

from those of the symmetric group. By Frobenits [ F5 1 

the characters of Sn associated with a self-conjugate 
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partition {r) split in An 
into two irreducible characters 

the values of which are half those on Sn except for one 

class tc} on which the value in Sn is +1. This class 

splits into two classes in An. 

There is a 1-1 correspondence between self-conjugate 

partitions of n and partitions of n into unequal odd parts 

e.g. tr1 = (5,32,12) is associated with Lc} _ (9,3,1) thus: 

(r 

From the representation (r} this correspondence gives 

the class tc} which splits in the alternating group. if 

[ci = (c1,c2,...,cs) then the characters into which tr} 

splits in An 
take the values 

(-1) (-1 ) + 'C 

1he_simp1egroups 

S 

where t = fl ci (12.8) 
i=1 

The character tables for the groups SL(3,3), SU(3,32), 

and M11 are computed by treating the groups as permutation 

groups on 13, 28, and 11 letters respectively. The groups 

are generated as cosecs of the stabiliser of a point and 
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are stored. No backing store is needed. Character 

computations f or all larger groups use individual programs 

which contain many common subroutines. 

PSL(3,4) is represented on 21 projective points. The 

character table on a stabiliser of a point is computed. By 

Steinberg [ Si ] there is a character of degree 64 in 

PSL(3,4) which is the character of largest degree. This 

together with the orders of the centralizers of elements, 

is sufficient to complete the table. 

SU(4,22) is the group of 27 lines on a cubic surface 

C4,] and is constructed as a permutation group storing 

the conjugacy classes on backing store, 

Sz(8) is constructed using the doubly transitive 

representation on 65 letters and the rational class algebra 

is computed. The table is completed using Brauer's theory. 

M12 has been obtained a a transitive extension of 

degree 12 of M11. 

The computation for Janko's group of order 175,560 has 

already been described. This computation is believed to 

be the first construction of the character table of a large 

group by computer. 

SL(3,5) is computed by inducing up the characters of 

the stabiliser of a point in the representation of the 31 

projective points. Brauer theory is helpful here. 

M22 is obtained by inducing up the characters of M21 

which is isomorphic to PSL(3,4). Again Brauer theory is 
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helpful. 

PSXJ(3,52) is a difficult table to compute because it 

is represented on 126 letters and also because of the 

existence of an outer automorphism exchanging the three 

rational classes of elements of period 5. Brauer's theory 

tells us little since it is applicable only to the prime ?. 

Recourse is made to Frame [ F1 ]. Once the character of 

degree 20 is established the others can be constructed by 

splitting this character. 

The rational character table of the Janko group of 

order 604,800 is computed as a permutation group on 100 

letters by computing those structure constants duyw for 
which K is a class of involutions in the centre of a 

u 

Sylow 2-subgroup having 20 fixed points, or a class of 

elements of period 3 having 10 fixed points. The full 

character table can be computed from the rational table 

and induction from SU(3,32). The computation took over 21 

hours and may be regarded as beyond the limit of a feasible 
computation. 

The character table of Sp(4,4) has been computed by 

hand by Duncan [ D3 ] and Hall [ Hi ] and these have been 

checked on the computer. 

SU(3,42) is computed on 65 letters. The rational 
class algebra is computed and this together with Brauer's 

theory for primes p=3 and 13 gives sufficient information 

to fill up the table degrees and classes. Recourse is 
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made to the theory of T.I. sets in inducing up a fragment 

of the table from the centralizer of order 300 of an 

element of order 5 to obtain the irrationalities. 

2-groups 

The book of Hall and Senior [ H2 ] provides a basis 

for the computation of the character tables of 2-groups of 

order < 64. The permutations given in the book were 

punched on to flexowriter paper tape using the same format 

as printed in the book. A sample of the input is given 

in table T-6. 

The characters are computed using a standard program 

and no use has been made of the special structure of the 

groups. This is in contrast to the work of Ruud and Keown 

[ R1 ] whose program is especially developed for 2-groups. 

Their work is not yet completed at the time of writing. 

As there are 311 non-abelian 2-groups whose character 

tables have been computed a single sample is given in the 

Appendix. 
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Number of Number of Irrational Irrational 
Order Name Columns Rows Order Name Columns Rows 

32 F3b 6 4 64 F14b2 8 12 

32 F3c1 6 8 64 F14d1 12 8 

32 F3c2 6 8 64 F14d2 12 8 

32 F3f 10 8 64 F15d1 6 4 

64 F3b 12 8 64 F15d2 6 4 

64 c F 12 16 64 1' 
e 

8 6 1 3 
15 1 

64 F3c2 12 16 64 F15e2 8 6 

64 F3f 20 16 64 F15e3 8 6 

64 F 
3 
h 20 16 64 F15e4 8 6 

64 F3j 20 18 64 F15f1 10 8 

64 F3k 16 20 64 F15f2 10 8 

64 F3n1 20 22 64 F17a1 8 12 

64 F3n2 20 22 64 Fi7a2 8 12 

64 F3q 24 22 64 F17a3 8 12-- 

64 F 
8 

b 14 12. 64 F17b 10 12 

64 F8c1 14 16 64 F17b2 10 12 

64 F8c2 14 16 64 F21a1 8 10 

64 F8f 18 16 64 F21a2 8 10 

64 F 14b 1 8 12 64 F21 a3 8 10 

Table T-4 

The 2-groups of order < 26 with differing numbers of 

irrationalities in the rows and columns of their 

character tables. 
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m(G) 

A5 22 

A6 22 

A7 22 

SL(313) 22 

SU(3,32) 23 

M11 2 
2 

PSL(3,4) 23 

A8 2 3 

SU(4,22) 23 

Sz(8) 23 

SU(3,42) 24 

M 3 2 12 

PSU(3,52) 22 

4 
23 

A9 23 

SL(3,5) 
23 

3 
2 M22 

H-J 23 

Sp(4,4) 
24 

PSL(2,q) q odd 22 

PSL(2,q) q = 
2n 2n 

Table T-5 

The number m(G) of irreducible characters 
of odd degree for the known simple groups 
of order < 106. 
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F27A2 

'it 16 

al=ac,bd,eg,fh,ik,J1,so,np,AC.RD.RG.FR.IK.JL,Mo,Np. 
a2&dcb,ehgf,ilkj,mpon,ADCB.RHGF,ILKJ.mpON. 
a3=aebfcgdh,im3nkolp,ARBFCGDH.IMJNKOLP. 
a4=anhjdmgicpflboek,ANHJDMGICPFLBOEK. 
a5=aAileRmMbBjJfFuNcCkKgGoOdD1Lhfpp. 
a6=bd,eh,fg,1P,Jo,kn,lm,AN.BM.CP.DO.EJ.FI.GL.HK. 

F27A1 
64 
16 16 
a1=ac,bd,eg,fh,ik,31,MO,np,AC.13D.RG.FB.IK.JL.mo.Np, 
a2=adcb,ehgf,ilkj,mpon,ADCB.EHGF.ILKJ.MPON. 
a3=aebfcgdh,imjnkolp,AEBFCGDB.IMJNKOLP. 
a4 aphldogkcnfjbmei,APHLDOGKCNFJBMEI. 
a5=aA3LleEmMbBjJfFnNoCkKgGoOdDlLhHpP. 
a6=bd,eh,fg,iP,Jo,kn,lm,AP.BO.CN.DM.EL,FK.GT.HI. 
* 

F26A4 
64 

a61=ac,bd,eg,fh,ik,jl,mo,np, 
a2=ik,Jl,mo,np, 
a3=abcd,efgh,ijkl,mnop, 
a4=ijkl,mnop, 
a =aecg,badf,zmko,jpln, 
ab=ai,bj,ck,dl,em,fn,go,hp, 
* 

F26A3 
64 

a16=ac,bd,eg,fh,ik,jl,mo,np, 
a2=ac, bd, eg, fh, 
a3=abcd,ehgf,ijkl,mpon, 
a4=eg,fh,ilkj,mpon, 
a5=aecg,bfdh,ipkn,jmlo, 
a6=ai,b3,ck,dl,ep,fm,gn,ho, 
* 

F226A2 
6 
1b 
a1=ac,bd,eg,fh,ik,jl,mo,np, 
a2=ac, bd, eg, fh, 
a3=abcd,ehgf,1jkl,mpon, 
a4=eg,fh,ilkj,mpon, 
a5=ae, bf , ag, dh, im, 3n, ko,1P, 
a6=ai, b j, ck, dl, em, fn, go, hp, 
* 

F26A1 

84 

al=ac, bd, eg, fh, 
a2=eg,fh, 
a3=abcd,efgh, 
a4=efgh, 
a bd,fh, 
a e,bf,cg,dh, 
* 

Table T-6 

Sample Input 
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Appendix A 



The construction of the character table of a finite 
group from generators and relations 

JOHN McKAY 

Introduction. There are six problems in determining the character table 
from the generators and defining relations for a finite group. They are 

(a) derivation of a faithful representation, 
(b) generation of the group elements, 
(c) determination of the mapping of an element into its conjugacy class, 
(d) derivation of the structure constants of the class algebra, 
(e) determination of the numerical values of the characters from the 

structure constants, and 
(f) derivation of the algebraic from the numerical values. 

Use of the methods is illustrated by the construction of the character 
table of the simple group J1, of order 175,560, which is given in the 
Appendix in the form output by the computer. 

G denotes a finite group of order g having r conjugacy classes C, of 
order h,, i = 1, ... , r. C,- is the class inverse to C1. A(G, C) denotes the 
group algebra of G over the complex field C. 

Derivation of a faithful representation. Enumeration of the cosets of a 
subgroup H of G gives rise to a permutation representation on the genera- 
tors and their inverses. The representation so formed is a faithful represen- 
tation of the factor group GIN, where N= fl x-'Hx, known as the "core" of 

xEG 
H in G. The representation will be a faithful representation of G whenever 
H contains no non-trivial normal subgroup of G. There are three require- 
ments in particular for representations to be useful for computing pur- 
poses. Firstly, the representation of an element should be unique; secondly, 
it should be representable within the computer sufficiently economically to 
cause no storage problem; and thirdly, it should be such that the product 
of two elements can be derived quickly. For the smaller groups these require- 
ments may be relaxed, but for large groups they are essential. 

Both permutation representations and faithful irreducible representa- 
tions of minimal degree are suitable for computer work. Multiplication of 
permutations is fast but it is often easier to find a matrix representation 
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more economical in space. Frame's work [1] on extracting the common 
irreducible constituents of two permutation representations appears to be 
promising as a basis of a method for doing this. 

Generation of the group elements. One method for generating all elements 
of a group G is to compute the Cayley table. This method is quite satisfac- 
tory for groups of very small order but it is clearly of little use when work- 
ing with large groups because the computation increases, at best, with g2. 

A method with computation time linear in g is called for. 
Let 

G (= H 1 : 3 .. Ht be a chain of subgroups, 

and let 
Hi = Hi+lxlu H,+lxzu ... u H,+lx 

be a coset decomposition of H!. 
Hi can be generated systematically from Hj+i provided a faithful repre- 

sentation on the coset representatives and the generators of Ht is known 
and H;+1 itself can be generated systematically using this representation. 
Repeated coset enumeration will give G from the subgroup H1. A solution 
to the following problem is required, see [2]: 

given 

and 

Hi: rk(gl, g2, ..., g5) = 1, k = 1, 2, ..., mr 

Hi+1: {iVJ(gl, g2, ..., 9,) )9 J = 1, 2, ..., nt, 

derive a presentation of Hi+1: rk(g1, g2, . . ., g3) = 1, k = 1, 2, .. ., 1?11+1. 

There are two special cases of this technique which prove very useful. By 
taking just the identity subgroup of G, we may enumerate the cosets of the 
identity which are just the elements of G. This is a satisfactory method for 
generating all the elements of a group of moderate order. The other special 
case is when G z) H and the elements of Hca' be generated directly as matri- 
ces compatible with the representing matrices of G. This last case is illus- 
trated by the generation of J1 by taking H = PSL (2, 11) (see Appendix). 

To find the coset representatives, we use 

LEMMA. There exists for each index i (# 1) a coset Hxk with k - i such that 
either (i) Hxi = Hxkgj 1 or (ii) Hxj = Hxkgj for some generator gj of G. 

All new cosets, except the first, are introduced in the middle of a relation. 
There is therefore a coset of lower index adjacent to the new one. Coset col- 
lapse will affect these adjacent cosets by possibly reducing their index. 
A coset of lower index to the right gives rise to situation (i) and to the left 
yields (ii). 

We can generate the representing matrices on the coset representatives 
from those on the generators of G by seeking the coset Hxk for increasing 
1 = 2, 3,.. ., n and forming 4i = ¢kgF1 or 0l = ¢kgi where ¢k is a coset 
representative of Hxk. 



Construction of characters of a finite group 91 

The mapping of an clement into Its conjugacy class. A function f on G is a 
class function if 

f(v) =f(y-'xy), .v, y E G. 

f induces an equivalence relation on the elements of G. We seek a function f 
such that the equivalence classes induced by f are the conjugacy classes of G. 
In order to avoid searching, we seek a local property of x such as the trace, 
determinant, or period. There are several groups with representations for 
which this local property is easily obtained. By taking the natural permuta- 
tion representation of degree it of the symmetric group of n symbols we sec 
that two elements are conjugate if and only if the partitions of their disjoint 
cycle lengths coincide. The general linear group of all invertible nXn ma- 
trices with entries over a field K presents no difficulties since two elements are 
conjugate if and only if their representing matrices are similar. We know 
that the transforming matrix belongs to the group since it is the group of all 
invertible n X n matrices. 

From a practical view point, a good set of local invariants that may be 
computed easily is the set of coefficients of the characteristic (or minimal) 
polynomial. The computation time is O(n3) for a matrix of order n. 

If the number of conjugacy classes of G is known, it may be adequate to 
examine the characteristic polynomials of a random sample of the group to 
attempt to find a representative element of each class and to see which 
classes can be separated by their traces alone. The likelihood of success 
of the search is dependent on the size of the smallest non-trivial conjugacy 
classes. The characteristic polynomial of an element x also gives (by 
reversing the coefficients) the characteristic polynomial of x`1. 

It is a necessary condition that a representative element of period p shall 
have been found for each prime factor p of g. For sufficiency, let Z(x) be the 
centralizer of x in G, then a representative of every class has been found if 

g= Y, g/ I Z(x) I, X E C; , 
X 

where the summation is over the representatives of all putative conjugacy 
classes C; of G. 

If so, we shall have obtained a representative for each conjugacy class. 
For groups of small order, when it is feasible to store all the elements, one 
may alternatively compute the conjugacy class of x directly, forming all 
elements y-1 xy, y E G. Proceeding in this fashion, the elements may be 
arranged so that conjugacy classes are stored as sets of adjacent elements. 
The function f then consists of a subroutine which searches for the element 
whose class is determined by its position. 

Derivation of the centre of the group algebra. Throughout the rest of 
this paper, denotes summation from I to r unless stated to the contrary. 
The relations 

cjci = Z aiJkck, l i, j r, (1) 
k 
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defining multiplication of the class sums, c, = Ix, summed over all x E C1, 

are sufficient to determine the centre of the group algebra since the class 
sums form a basis for the centre. 

The structure constants auk may be interpreted in two ways: first, in the 
manner in which they occur in (1), and second, auk may be regarded as the 
number of ways z may be formed as a product such that 

xy = z, xECj, ),ECM 

with z a fixed element of Ck. 
The latter interpretation is the one used for the computation of the auk. 

For each clement y representative of Cj, and for all x E C,, the number k 
such that xy E Ck is found. Let the number of products xy in Ck be Puk; 

/ 
then GLUk = 

h 
'i P1jk- 

The r3 ajk satisfy symmetry relations most succinctly expressed by the 
relations satisfied by yfuk = (/:r/T)'ia,k. The yuk are invariant under any per- 
mutation of the suffixes and also under the simultaneous inversion of all 
three suffixes. 

Construction of the normal subgroup lattice. We define, for each conjugacy 
class, a basic normal subgroup B, of G to be the normal closure of an ele- 
ment belonging to C1. Such a basic normal subgroup is obtainable from the 
class algebra by forming the union of successive powers of C, until no new 
class is introduced. 

The minimal normal subgroups of G are included among the basic nor- 
mal subgroups. We use the fact that the lattice of normal subgroups is mod- 
ular and therefore satisfies the Jordan-Dedekind chain condition which 
enables us to build the lattice level by level. The first (and bottom) level is 
the identity subgroup and the last is the whole group. The number of levels 
is the length of a principal series for G. We shall denote the ith level of nor- 
mal subgroups by L1. The identity subgroup is taken as Lo. 

Let nr denote a normal subgroup. The computation follows the inductive 
scheme: 

Mr = (nil, ..., nit); 

flu E Er+i -+ nrj n/k for some k, otherwise nU E Lt; 

Mr+1 = {nr/nrkl n1/, nrk ELI) UEr+1; 

and proceeds until M, = (G). To start we take Ml = (B2, ..., B,). 

The numerical characters from the structure constants. Let R be an irre- 
ducible matrix representation of the group algebra A(G, Q. From (1) we 
find 

R'(ctcl) = R'(cj)R'(cj) _ al/kR'(Ck), 1 < i, j < r. (2) 
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Now R'(cr) commutes with every R'(x), x E A(G, C), and since R' is irre- 
ducible we may use Schur's lemma, hence 

R'(cr) = mild, (3) 

where d (=d,) is the dimension of R', and mflis a scalar. 
Substituting (3) in (2) and comparing the coefficients of both sides, we 

obtain 
mjnf = E arjkmk, I c i, j (4) 

k 
which may be written 

Arm' = mjm', [AI]1k = ar/k, 1 s i, j, k r. (5) 

This collection of r sets of matrix equations is fundamental to the computa- 
tion of the characters. We shall show that the matrices A', 1 i s r, have a 
unique common set of r eigenvectors, 

First we find the eigenvalues of A'. Recall that R' is a homomorphism of 
G into a group of dXd matrices. The identity of G maps into the identity 
matrix Id. From (3) we deduce mi = 1. But mi is the first component of the 
vector m' and so (5) has a non-trivial solution. Therefore 

det (A'-mr1) = 0, 1 .e i -z r. (6) 

This is true for all s = 1, 2, ..., r, hence the eigenvalues of A' are ml, 
1--s--r. 

We use the row orthogonality properties of the characters to prove the 
m', 1 s r, to be a linearly independent set of vectors. First, we need the 
relation between the components of these vectors and the characters. 

Take traces of both sides of (3) to derive 

hrx; = m;d, 
hence 

hr, (7) mr= 
d, 

The row orthogonality relations are: 

ht,'rxt=gb,,, 1.6 s,t -cr. (8) 

Defining the rXr matrices M and X by 

, ..., dr ma = m;, X,r = Xf, then MX* = diaK dl, dZ9 
9 

where * denotes complex conjugate transpose. The diagonal entries g/drare 
all non-zero, hence the rank of M is r. 

Let x be a vector such that Ax -- mlx for all i = 1, 2, ..., r, then 
x = arm'. Suppose a, o 0. Then 

Earmrm' armlm', i = 1, 2, ... , r, 
r r 
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hence 
arm' arm`, 

r r 

and so x = a,m,. 

We have the following situation. 
The entries in the ith column of M are the eigenvalues of A' and the 

rows of Al correspond to the common eigenvectors normalized so that 
in' = 1. If the entries in the column of Al corresponding to the eigenvalues 
of A' are all distinct then the whole matrix M can be determined from the 
matrix A' alone. This, however, is not usually the case. An extreme case 

occurs when G = Z2XZ2X ... XZ2, the direct product of n copies of the 
cyclic group Z2. Here each column of M (except the first) has entries ± 1 

each sign occurring 2"'1 times. 
A method is described to overcome the difficulty inherent in multiple 

eigenvalues. 
The idea of the method is that if a matrix has distinct eigenvalues, then 

the eigenvectors are determinate (each to within a scalar multiple). 
Let u;, i = 1, 2, ..., r, be indeterminates and consider the matrix 

0 uiA' which has eigenvalues u,mi, 1 -G s s r. 

By choosing suitable values for the indeterminates we can arrange that the 
eigenvalues are distinct; if so, the eigenvectors of fi are just m', 1 s -Q r. 

For computational purposes we replace the indeterminates by random 
numbers. We may then associate a probability to the numerical separabil- 
ity of the eigenvalues. 

We require that for each p 4 q (= 1, 2, . . ., r) the eigenvalues corre- 
sponding to mP and 1 q should be separable, i.e. 

O,rnf- O,rny >- e(t) for all p +_ q = 1, 2, ..., 

where the O1 are chosen from some suitable normalized distribution and 
e(t) is a small number dependent on the accuracy of the computer. 

The largest eigenvalue of A' is 1. We introduce a normalizing factor of 
r'1 and choose 0, to be the coordinates of a point on an n-dimensional 
hyperellipsoid of semi-axes hj 112 so that 01 h112 are points distributed on 
the surface of an n-dimensional sphere. 

A detailed error analysis is hindered because of lack of adequate prior 
knowledge of the mP. 

The numerical method for solving the eigenvalue problem is the acceler- 
ated QR method [3]. The eigenvectors are found by inverse iteration. 

Derivation of the algebraic form from the numerical. By normalizing 
the solution vectors of 0 so that the first component is unity, we have the 
numerical values of mi. To find the dimension of the representation we 
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use the relation, derivable from the row orthogonality relations 

11 I1n,l2-1 
1 d 

9 h, 

By multiplying nn; by d, and dividing by h, we find the numerical charac- 
ters. As decimal numbers, these are of little interest; we would prefer them 
in an algebraic form. 

For a representation of degree d over the complex field and an element 
of period p, 

d 
x(x) _ E cu<<, 0 . t, -4 p-1, 

lel 

where w is a primitive pth root of unity. Let XN(x) be a numerical approxi- 
mation to x(x). We may rearrange the terms so that tr 12 6 ... td. () 
There are 

d+p- 1 

` d 
such sequences. We could generate the sequence sys- 

tematically starting at 0, 0, ..., 0 and ending atp- 1, p-1, ..., p-1, and 
examine the value of the cyclic sum each yields. We can improve on this. 
The problem may be visualized geometrically in the complex plane as 

follows: 
Each root of unity may be represented by a unit vector which lies 

at an angle which is a multiple of 2n/p to the horizontal. We form a sum of 
these vectors by joining them up, end to end. We seek such a sum starting 
from the origin and reaching to x(x). We generate the sequences described 
above but check to see whether, after fixing the first s vectors, the dis- 
tance from the sum of first s terms to XN(x) is less than d-s; if not, we 
alter t,. 

Even with the above improvement, the algebraic form of the character 
of an element of period pin a representation of degree d such that p, d > 10 

would be very time-consuming to determine, and in cases such as presented 
by the representations of J1, this is out of the question. The following 
fact may be used: among the terms of the sequences computed may be 
some whose sum contribution to the total is nil. Each such subsequence 
may be decomposed into disjoint subsequences each containing a prime 
number of terms. These correspond to regular p, gons for prime p1. From a 
computational viewpoint this implies that, provided u 0, we can attempt 

k 
to fit XN(x) with only u = d- c4p1 (c1 0) terms where p, are prime 

1-,x 
divisors of p. We now compute the values that E c1p1 can take. 

If p has only one prime factor, the values assumed are multiples of 
that factor. 

Let pi, p2 be the smallest two distinct prime factors ofp. All integers not 
less than (p1--1) (p2--1) are representable as cipi+c2p2 (el, c2 a 0). In 
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cases when (pi-1) (pa-1) -- d, values not greater than u are computed 
directly. 

All integer valued characters are extracted before attempting to match 
terms because certain values, e.g. -1, arc time-consuming to fit, 

The above discussion has not taken into account that only an approxi- 
mation to the numerical value of x(x) is the starting point, If two distinct 
values of sums of roots of unity differ by less thane in modulus, where a 

is the accuracy of computation of the value of ZN(x), then the results of the 
above algorithm will not necessarily be correct. A lower bound is required 
for the non-zero values of 

d d 
= 

i X Wki - Z cu'"' 0 r- k1, m1. p- 1. 

By forming the product of the conjugates of P(a) we obtain a lower bound: 

I P(w) I a (2d)2-P. 

Results. Character tables have been computed for all non-abelian groups 
of order less than 32 from definitions in Coxeter and Moser [4] and for 
the non-abelian groups of order 2" (n 6) from definitions in Hall and 
Senior [5]. The character table of J, has been computed as described in 
the Appendix. 

APPENDIX 

A brief description of the determination of the character table of 
Janko's first new simple group J1, of order 11(113-1)(11+1) = 175,560, 
is given, see [6]. The work has been carried out on a KDF 9 computer 
with 16K words of fast store, of which 4K were used to contain the pro- 
gram. 

Throughout, the capital letters A, B, C, D denote matrices representing 
a, b, c, d respectively. 

We take as a definition, due to G. Higman, of Jl: 
a2 = (ab)2 = bs = 1, b-1cbc2 = (ac)3 = c1l = I, 

d2 = dbdb-1 = (cd)2 = (ad)' = (ac2d)s = 1. 

We. note that {a, b, c} generate a subgroup H isomorphic to PSL (2, 11), 
which is the group of 2X2 matrices of unit determinant over GF(II) 
with the centre factored out, i.e. each matrix is identified with its negative. 
The 660 matrices of PSL(2, 11) are generated systematically. 

This representation is extended to a tensor representation of dimension 
7 by treating the transformations x + ax+by and y -- cx+dy as acting 
in the space of homogeneous polynomials of degree 6 in x and y. In this 
space x°-'y' -- (ax+by)e-'(cx+dy)'. This representation extends to a 
faithful representation of Jl. 
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By choosing matrices of simple form for A and C E PSL (2, 11), we find 
correspondingly simple forms for B (= C'AC'AC°A) and D. 

We take A = 1'10 
01, C 

= 110 

11, 
deriving B = 

10 

40 
In the tensor 

representation these extend to JJ 

0 0 0 0 0 0 1 4000000' 1 6 4 9 4 6 1 

0 0 0 0 0 10 0 0300000 0 1 5 10 10 5 1 

0 0 0 0 1 0 ( 0050000 0 0 1 4 6 4 1 

0 0 0 10 0 0 0 , B 0 0 0 1 0 0 0 C- 0 0 0 1 3 3 1 

0 0 1 0 0 0 0 0000900 0 0 0 0 1 2 1 

0 10 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 00000031 0 0 0 0 0 0 1 

We now need the representing matrix for d. d commutes with b, hence 
djj = 0 except when i = j or bj; = bjj (i I j). This simplifies the possible 
form of D to that of a diagonal matrix augmented by non-zero entries in 
the (1, 6), (6, 1), (2, 7), (7, 2) positions. We compare CD and DC-l. C-' 
has entries (-1)t-'ct. From the first row and entries (2, 2) and (3, 7) we 
derive the form 

x 0 0 0 0 -6w 0 
0 -x 0 0 0 0 w 
0 0 x 0 0 0 0 

D= 0 0 0 -x 0 0 0 
0 0 0 0 x 0 0 
0 0 0 0 0 -x 0) 
0 0 0 0 0 0 x1 

butd2= 1, hence x 1. 

Comparing (AD)' and (DA)3 = (AD)-', we obtain from the (2, 1) entry - wx2 = 2w3, hence w = 0 or 2w2 = -1 giving it, = 0, 4, or 7. 
Finally checking (AC2D)5 = 1 gives the unique solution w = 7, x 

These matrices were manipulated using a matrix multiplication program 
for use with an on-line console to a PDP 8 computer. 

The cosets of H in Ji are enumerated and the 266 coset representatives 
found. By examining the characteristic polynomials of a random sample 
of the group representation (elements of the form hjxj where hi E H and xj 
is a coset representative) we can distinguish 15 conjugacy classes. Of these, 
7 may be distinguished by their traces and 6 by the first two coefficients. 
The two remaining classes include the identity and so may be separated 
by examination. The trace of the square of the matrix is computed instead 
of the second coefficient. 

The rest of the computation follows the method described in the paper. 
Approximately 1,800,000 matrix multiplications are required, each matrix 
being of degree 7 over GF (11). The computation of the class algebra took 
eight hours and the construction of the final character table from the class 
algebra took less than two minutes. 
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In the table, c indicates the cosine of a multiple of 2n/period. For example, 
2+4c2, occurring in the second row of the table as the character of an 
clement of period 5 in the fourth conjugacy class, is an abbreviation for 
2+4 cos (2X2n/5). 

REFERENCES 
U_W_ 
1. J. S. FRAME: The constructive rcduction of finite group representations. Proc. Symp. 

Pure Maths. (AMS) 6 (1962), 89-99. 
2. N. S. MENDELSOHN: Defining relations for subgroups of finite index of groups with a 

finite presentation. These Proccedings, pp. 43-44. 
3. J. G. F. FRANCIS: The QR transformation. Pts. I & 2. Computer Journal 4 (1961- 

1962), 265-271, 332-345. 
4. H. S. M. COxETER and W. O. J. MOSER: Generators and Relations for Discrete Groups. 

Ergcbnisse der Mathematik NF 14 (Springer, Berlin 1965). 
5. M. HALL and J. K. SENIOR: Groups of Order 2" (n.,Q6) (MacMillan, New York, 1964). 
6. Z. JANKO: A new finite simple group with Abelian Sylow 2-subgroups and its char- 

acterization. J. of Algebra, 3 (1966), 147-186. 



ALGORITHM 262 

NUMBER OF RESTRICTED PARTITIONS OF N 
[Al] 

J K S McKAY (Recd 7 Dec 1964 and 9 Mar 1965) 
Computer Unit, University of Edinburgh, Scotland 

procedure set (p, N), integer N, integer array p, 
comment The number of partitions of n with parts less than 

or equal to m is set in p[n, m] for all n, m such that N > n > 
m>0 

REFERENCES 

1 GUPTA, H , GWYTHER, C E , AND MILLER, J C P Tables of 
partitions In Royal Society Mathematical Tables, vol 4, 
Cambridge U Press, 1958 

2 HURDY, G H AND WRIGHT E M The Theory of lumbers 
Ch 19, 4th ed Clarendon Press, Oxford 1960, 

begin integer m, n, 
p[0 0] = 1, 
for n = 1 step 1 until N do 
begin p[n, 01 = 0, 

for m = 1 step 1 until n do 
p[n, ml = p[n, m-1] + 

p[n-m, if n-m<m then n-m else m] 
end 

end set 

ALGORITHM 263 
PARTITION GENERATOR [AI] 
J K S McKAY (Recd 7 Dec 1964 and 9 Mar 1965) 

Computer Unit, University of Edinburgh, Scotland 

procedure generate (p, N, position, ptn, length), 
integer array p, pin, integer N, length, position, 

comment The partitions of N may be mapped in their natural 
order, 1 - 1, onto the consecutive integers from 0 to P(N)-1 
where P(N) (= p[N, NJ) is the number of unrestricted partitions 
of N The array p is set by the procedure set [Algorithm 262, 
Number of Restricted Partitions of N, Comm ACM 8 (Aug 
1965), 4931 On entry position contains the integer into which 

the partition is mapped On exit length contains the number of 
parts and ptn[1 length] contains the parts of the partition in 
descending order 

REFERENCE 
1 LITTLEWOOD, D E The Theory of Group Characters Ch 

2nd ed Clarendon Press, Oxford, 1958, 
begin integer m, n, psn, 

n = N, psn = position, length = 0, 
A length = length + 1, m = 1, 
B if p[n, m] < psn then begin in = in + 1, go to B end else 

if p[n, m] > psn then 
C begin 

ptn[length] = m, psn = psn - p[n, m-11, n = n - m, 
ifnF5 OthengotoA, gotoD 

end 
else m = m + 1, go to C, 

D end generate 

ALGORITHM 264 

MAP OF PARTITIONS INTO INTEGERS [All 
J K S McKAY (Recd 7 Dec 1964 and 9 Mar 1965) 

Computer Unit, University of Edinburgh, Scotland 

integer procedure place(p, n, ptn), value n, 
integer array p, ptn, integer n, 

comment place is the inverse of the procedure generate [Al 
gorithm 263, Partition Generator, Comm ACM 8 (Aug 1965), 
4931 The array p is set by the procedure set [Algorithm 262, 
Number of Restricted Partitions of N, Comm ACM 8 (Aug 
1965), 4931 The procedure produces the integer into which 
the partition of n, stored in descending order of parts in ptn[l] 
onwards, is mapped, 

begin integer , d, 
d =0 
if n = 0 then go to B, 

2 =0, 
A 9 =I +1, d =p[n, 

ifn56 0 then go to A; 
B place = d 
end place 

ptn[3]-11 + d, n = n - ptnt3l, 

Volume 8 / Number 8 / August, 1965 Communications of the ACM 493 



ALGORITHM 371 
PARTITIONS IN NATURAL ORDER [All 
J. K. S. McKAY (Reed. 28 Apr. 1967) 
California Institute of Technology, Mathematics Division, 

Pasadena, CA 91109. 

KEY WORDS AND PHRASES: partitions, number theory 
CR CATEGORIES: 5.39 

procedure partition (p, k, last); integer n, k; 
integer array p; Boolean last; 

comment Partition may be used to generate partitions in their 
natural (reverse lexicographical) order. On entry the first k 
elements of the global integer array p[l :n] should contain a parti- 
tion, p[1) > p[2] > . . > p[k], of n into k parts. In order to ini- 
tialize m, the first entry must be made with last set true: this will 
result in p[1], p[2], , p[k] and k remaining unaltered and last 
set false on exit. On all subsequent entries with last false, k is 
updated and p[ll, p[2], , p[k] will be found to contain the 
next partition of n with parts in descending order. On returning 
with the last partition, p[l] = p[21 = . . . = p[n], last is set 
true. To generate all partitions of n, p[l], k, last should be set 
to n, 1, true, respectively for the initial call: these variables 
must not be altered between successive calls for partition; 

52 Communications of the ACM 

begin 
own integer m; integer t; 
if last then 
begin 

last := false; 
for m := 1 step 1 until k do 

if p[m] = 1 then go to c; 
m:=k; gotoc 

end; tk-m; km; 
p[m] := p[m] - 1; 

a: if p[k] > t then go to b; 
t t - p[k]; 
k:=k+1; 
p[k] := p[k-11 
go to a; 

b: kk+1; 
p[k] := t + 1; 
if p[m] 0 1 then m := k; 

c: if p[m] = 1 then m := m - 1; 
if m = 0 then last := true; 

end partition 

Copyright © 1970, Asscciation for Computing Machinery, Inc. 

Volume 13 / Number 1 / January, 1970 



REMARK ON ALGORITHM 307 [All 
SYMMETRIC GROUP CHARACTERS 

[J. K. S. McKAY, Comm. ACM 10 (July 1967), 4511 
J. K. S. McKAY (Recd. 13 Sept. 1967) 
Dept. of Computer Science, University of Edinburgh, 

Edinburgh, Scotland 

Three corrections are noted. 
(1) Line 39: 

own integer array p[O:n,O:nl; 
should be moved to the line after the begin in line 32. 

(2) At E the line should read 
E: if rep[j21 > (if j2=k then 0 else rep[j2+1J) 

then go to F; 
(3) Three lines, later 

should read 
coeff :_ -1 coe ; 

coeff :_ -coeff; 
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ALGORITHM 307 
SYMMETRIC GROUP CHARACTERS [Al] 
J K S MCKAY (Recd 23 Sept 1966, 15 Feb 1967, and 

10 Max 1967) 

Department of Computer Science, University of 
Edinburgh, Edinburgh, Scotland 

integer procedure character (n, rep, longr, class, longc, first), 
value is rep, longr, class, longc, 
integer n, longr, longc, Boolean first, 
integer array rep, rlass, 

comment character produces the irreducible character of the 
symmetric group corresponding to the partitions of the repre 
sentation and the class of the group S stored with parts in 
descending order in arrays rep[l longrl and class[1 longc], re 
spectively Both arrays are preserved The method is similar 
to that described by Bivins et al [1] Comet describes a later 
method 

On first entry to character first should be set true in order to 
initialize the own array p[0 n, 0 n] This single initialization is 
sufficient for all symmetric groups of degree less than or equal 
to is character is intended for computing individual characters 
If a substantial part of the character table is required it is sug 
gested that procedure generate [Algorithm 263, Comm ACM 
8 (Aug 1965), 493)] be used to produce the partitions prior to 
use of character If this is done, then the own array p should be 
replaced by a suitable global array, and first should be set false 
to avoid unwanted initialization character uses procedures set, 
generate, and place [Algorithms 262, 263 264, Comm ACM 8 

(Aug 1965), 493] 
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begin 
integer procedure degree (n rep, length) value is length 

integer n, length, integer array rep 
comment degree gives the degree of the representation of the 

symmetric group on is symbols defined by the partition 
rep[1 length] with parts in descending order, 

begin 
own integer array p[0 n, 0 n] 

integer array q[1 length], integers 3, deg 

integer procedure fac(n), value n, integer n, 
fac = if is = 1 then 1 else is X fac(n-1), 
for z = 1 step 1 until length do 

q[z] = rep[s] + length - i 
deg = fac(n) 

for z = 1 step 1 until length do 
for j = 2 + 1 step 1 until length do 

deg = deg X (q[2]-qb]), 
for z = 1 step 1 until length do 

deg = deg - fac(q[z]), 
degree = deg 

end degree, 

if first then 
begin set (p, n), first = false end, 

begin 
integer array pr[1 n], r[0 1, 0 p[n, n]-1], 
integer length, in, t old, new, index, z, char, k, coeff, u, pos, 

31, 32, 

m = longc, 
new = n, 
index = 1, 

for i = 0 step 1 until p[n, n] - 1 do 
r[index, z] = 0, 

r[zndex, place(p, n, rep)] = 1, 
for t = 1 step 1 until in do 
begin if class[t] = 1 then go to identity, 

index = 1 - index, old = new, new = new - elass[t], 
for i = 0 step 1 until p[new new] - 1 do 

r[index i] = 0, 
for u = p[old, old] - 1 step - 1 until 0 do 
begin if r[1 - index, u] = 0 then go to B, 

generate (p old, u, pr, length), 
k = length, 31 = 1 

G 12 = 31, coeff = r[1-index, u], 
for z = 1 step 1 until k do rep[s] = pr[z], 
if rep[1] = old then go to H, 
rep[32] = repL 2] - class[t], 
if rep[32] + k - 32 < 0 then go to B, 

E if rep[32] > if (32 = k then O else repD2+1]) then go to F, 
if rep[j2+1]= repb2] + 1 then go to J, 
i = repb2+1], rep[12+1] = repU21 + 1, 
rep[j2] = i - 1, coeff = - 1 coeff, 32 = f2 + 1, 

go to E, 
H rep[1] = rep[1] - class[t] 
F pos = place(p, new, rep) 

r[index pos] = r[index, pos] + coeff, 
J 31 = 31 + 1, if 31 < k then go to G, 
B 

end 
end 

A char = riinctex 0], go to Z, 
identity char = 0, 

for u = p[new,new] - 1 step - 1 until 0 do 
begin if r[index, u] = 0 then go to BB, 

generate(p new, u, pr, length), 
char = char + r[2ndex u] X degree (new, pr, length), 

BB 
end 

Z character = char 
end 

end character 
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On the Evaluation of Multiplicative 
Combinatorial Expressions 

Key Words and Phrases: combinatorial expressions 
CR Categories: 5.30 

EDITOR: 
Evaluating multiplicative arithmetic expressions that arise in 

combinatorial theory (multinomial coefficients, probabilities, and 
coupling coefficients) by straightforward computation can lead to 
difficulties with overflow even when the magnitude of the final 
result is representable. The method suggested here is fast and does 
not cause unnecessary overflow. It can be used in formulae in- 
volving integer factors not greater than some given N (a typical 
value of 52 occurs in problems concerning the distribution of 
playing cards). 

Three arrays are declared-ex, hfac, lfac[2:N]. ex[n] contains 
the exponent of n in the result For all n, hfac[n] contains the 
largest prime factor of n and lfac[n] contains n - hfac[n]. 

To begin, zero the array ex and set up the factors in lfac and 
hfac. Evaluate the expression by modifying the exponents in ex. 

For example, to divide by k!: 

for i := 2 step 1 until k do ex[z] := ex[i] - 1; 

When the result is complete, decompose the composite integer 
factors in decreasing order of magnitude into their prime factors. 
The final numerical result may then be obtained. The result is an 
integer if the exponents are all nonnegative (and no division will 
be required) otherwise the result is a rational fraction reduced to 
primitive form. 
comment if den is 1 the result is num, otherwise the result is 

a rational fraction = num/den; 
num := 1; 
den := 1; 

fork := N step -1 until 2 do begin if ex[k] O 
then begin 

if -Vac[k] > I then 
begin 

ex[hfae[k]] ex[hfac[k]] + ex[k]; 
ex[lfac[k]] ex[lfac[k]] + ex[k]; 
ex[k] := 0; goto A; 

end; 
if ex[k] > 0 then num := num X kT ex[k]; 
if ex[k] < 0 then den := denXkT (-ex[k]) 

end else A:end 
I wish to thank the referee for his helpful suggestions and the 

ALGOL example 
J. K. S. MCKAY, 
Atlas Computer Laboratory 
Science Research Council, Chilton 
Dideot, Berkshire, England 
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On the Representation of 

Symmetric Polynomials 

J. K. S. McKAY 
University of Edinburgh, Scotland 

Relations are given between certain symmetric polynomials 
in the light of the theory of the symmetric group. Such an ap- 
proach unifies earlier work and lends insight to previously 
published work by Aaron Booker. A generalization of Graeffe's 
root-squaring technique for the determination of the roots of a 

polynomial is suggested. 

1. Introduction 

Relations between certain symmetric polynomials are 
given in [1] without reference to the characters of the 
symmetric group or the Schur functions related to them. 
Details of the group theory involved may be found in 
[2] and [3]. The algebra is developed further in [4]. 

A knowledge of the characters of the symmetric group 
is required for the evaluation of the coefficients occurring 
in the relations. Tables connecting various symmetric 
functions are found in [5], by David, Kendall, and Barton; 
these tables are for statistical use and contain no reference 
to the symmetric group. Symmetric group character 
tables are found in [2] for degrees up to 10, in [8] refer- 
ences are given for tables of degree less than or equal to 

20. An ALGOL algorithm is given which produces charac- 

ters of the symmetric group subject to storage limitations 
only. 

2. Explicit Formulas for Certain Relations 

The coefficients expressing the unitary symmetric poly- 

nomials (ln) (Booker's Es) in terms of products of the 

symmetric power sums (n,) (Booker's As) may be com- 

puted directly. 
We may characterize each product of power sums occur- 

ring in the expression for (ln) by a partition of n, p = pi , 

p2 , p3 , , p,,, , where pk is associated with Ak thus, 
e.g., A12A3 is associated with the partition 3, 1, 1 (or 3, 12) 

of 5. Each partition may be identified with a conjugacy 
class of the symmetric group. 

Let the number of elements of the conjugacy class CA 

in the symmetric group on n symbols be hp. Then 

h = 
n! 

(1) 
P 1°a ! 2001 ... q1w ! 

where p = 1", 20, , q". 
Let Xp = +1 if p has an even number of even parts 

and let Xp = -1 if p has an odd number of even parts; 
i.e., Xp is the alternating character of the symmetric 

group. Then 

(1n 

) 
1 F_ hp Xp A p n1 

p 

(2) 

where Ap is the product of the power sums (pa)- This is a 

special case, X = ln, of the definition of the Schur function 

(X } as (1/n!) Ep hpxp)'Ap . 

428 Communications of the ACM Volume 10 / Number 7 / July, 1967 



The orthogonality relations noted by Booker are con- 
sequences of the fact that the rows of his table are the 
permutation characters of the coset representation in- 
duced on S5 by the direct product of the symmetric groups 
given by the powers occurring in the typical expression of 

degree 5 for that row, e.g., from the second row and fourth 
column of Booker's table we can see that two left (right) 
cosets of S4 X Si are left invariant on pre-(post-) multi- 
plication by any element of S5 with cycle structure 3,1,1. 
The alternating representation will be included when the 
direct product is contained in the alternating group. This 
will occur only when the subgroup is the identity; i.e., 
the last row of the table. 

Knowledge of the character table and the compound 
characters mentioned above is adequate to determine 
many relations between the symmetric polynomials. 

The compound character may be found directly as in 
[2] giving 

V'px 
a! 0! 

ai ta2 ! ... 01 ! (321 ... 

y! W! 

(3) 

yi 172 ! ... w1 ! 
W2 

! ... 

the summation being over all separations of p satisfying 

aj + 20, + 3y, -}- ... ` A 

7a, = a, EO, = 0, Fy, = Y, w2 = w 

where p = 1a, 20, 3' , q" and X = AI , X2 , , X, 

are partitions of n. -Op' is the number of times expressions 
of the form xilxz2 xP' occur in A, . Let us take as an 
example S3, the symmetric group on 3 symbols. In 
general, for degree n we have relations involving mat- 
rices of order p(n), the number of partitions of n, since 
each suffix corresponds to a partition of n. 

The suffices i, j are the ordinal numbers of the parti- 
tions when taken in natural order. 

All 1 2 1][131 1 where the entries are the 
A2 Al 1 0 -1 {2, i} simple characters (4) 
As 1 1 1 {i xti' of S2. 

This may be inverted to obtain: 

({3} 

J 

[21 3 -2][Ai' 
L 3 {2, 11 0 2 A2A1 with entries h,X,'. (5) 

{1a} 1 -3 2 As 

By computing.0,' we obtain 

CA,' 

J 

1 3 6 x10 

A2A1 1 1 0 57 x12x2 with entries ¢,;. (6) 

As 1 0 0 [57 xi x2 xa 

From (4) and (6) we may derive the other equations by 
inversion and multiplication. An alternative approach is 

to derive (8) from the algorithm [11] given here. r x10 l r0 0 6 A1a 

31 L57 x12x2 

J 
= 

C0 

6 -6 A2A11 (7) 

57 X1 x2 xa 1 -3 2 Aa JCJ 

hence by multiplication of (7) by (4) 

xla r1 -1 1 {3} 

I 57 x12xz = 
C0 

1 -2 12, (8) 

57 x1x2x2 0 0 1]{la} ] 
and multiplying (5) by (6) 

r{3} 

= 

r1 1 1 x,a 
3!L{2, 1} L0 1 2 rxzxi 

J 
(9) 

{13} 0 0 1JLLx1x2xa 

where the entries are the multiplicities of the irreducible 
characters X' in .0'. 

3. Algorithms and Possible Applications 

Two algorithms [10, 11] are given which, together, 
enable the tables given above to be computed. 

The first algorithm computes the character x,X from 
the partitions X and p; the second is written in such a way 
as to express [xilx22 xm" in terms of the Schur func- 
tions and then 

. 
express these as determinants in the 

coefficients of the monk polynomial with roots x2. By 
this means the coefficients of the polynomial having as 
roots the kth powers of the roots of a given polynomial 
may be deduced. The method is found in [2]. This is a 
generalization of root-squaring. An analysis, which may 
be easily generalized, of Graeffe's method is found in [9]. 

Further work on root-powering is found in Kostovskii's 
thesis, Lvov University, and in [6] and [7]. 
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