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ABSTRACT

An extension of Jacobian Adaptation (JA) of HMMs for degraded
speech recognition is presented in which appropriate set of ini-
tial models is selected from a number of initial-model sets de-
signed for different noise environments. Based on the first order
Taylor series approximation in the acoustic feature domain, JA
adapts the acoustic model parameters trained in the initial noise
environment A to the new environment B much faster than PMC
that creates the acoustic models for the target environment from
scratch. Despite the advantage of JA to PMC, JA has a theoretical
limitation that the change of acoustic parameters from the envi-
ronment A to B should be small in order that the linear approxi-
mation holds. To extend the coverage of JA, the ideas of multiple
sets of initial models and their automatic selection scheme are
discussed. Speaker-dependent isolated-word recognition experi-
ments are carried out to evaluate the proposed method.

1. INTRODUCTION

Acoustic models show poor recognition performance when they
were trained in a different environment from the recognition en-
vironment. Since such mismatch often occurs in degraded speech
recognition, adapting the model parameters to the target environ-
ment is indispensable to achieve high recognition performance.
Furthermore, in case of telephone speech recognition including
the one in mobile environment, both noise and channel charac-
teristics change every moment so that fast online adaptation is
necessary.

Although HMM composition method such as Parallel Model
Combination (PMC) [1] and NOVO [2] successfully makes
HMMs for any degraded speech from both clean speech and noise
HMMs, the algorithm is not suitable for the online adaptation due
to its inefficiency in computational complexity and large amount
of adaptation data. On the other hand, Jacobian Adaptation (JA)
[3, 4] requires adaptation data of very short period of time (0.5
seconds for example) and it needs much less computational cost
than that of PMC. This advantage of JA to PMC comes from two
reasons. One is that JA adapts the model parameters in the same
domain with the model parameters such as cepstrum coefficients
by using a linear approximation based on the Taylor series expan-
sion, while PMC does most of its computation in the linear-scale
power spectrum domain. The second reason, though it has not

been confirmed yet, comes from the fact that JA adapts the model
parameters that have been trained sufficiently in the initial envi-
ronment (env-A) to the target recognition environment (env-B)
hopefully similar to env-A. Therefore small amount of adaptation
data is enough for the adaptation. On the other hand, PMC com-
poses the acoustic models for env-B from both the clean-speech
models and the noise model of env-B. Since the clean-speech
models are usually far from those for env-B, PMC needs large
amount of adaptation data of env-B to compose HMMs for env-
B.

Since JA employs a linear approximation based on the 1st order
Taylor series of a non-linear function around the points of the
model parameters for env-A, the approximation accuracy deteri-
orates as the target env-B becomes far from env-A. Such ill situ-
ation can be avoided by setting up multiple sets of initial models
trained in the various noise environments and choosing the most
appropriate set based on a similarity criterion.

2. JACOBIAN ADAPTATION

We at first assume that the clean speech is degraded by a addi-
tive noise and corrupted through a transfer channel as is shown in
Fig. 11. In the power spectrum domain, assuming that the speech
and noise are statistically independent each other, the power spec-
trum of the observed degraded speechSY (ω) is expressed by

SY (ω) = SH(ω)(SS(ω) + SN (ω)) (1)

where SH(ω), SS(ω), SN (ω) denote the power spectrum of
the channel transfer function, the clean speech, and the ad-
ditive noise, respectively. Discretizing the radial frequency,
let SY , SH , SN be the vectors inRn corresponding to
SY (ω), SH(ω), SN (ω).

The relationship between a vectorS in the power spectrum do-
main and its corresponding vectorC in the cepstrum domain is
expressed by

S = exp(FC) (2)

1One can assume another different observation modeling where the
clean speech is transfered through a channel at first and the noise is added
afterward. JA can be applied even in such a situation with small modifi-
cation to the mathematical formulations described in this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429723572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


noise

channel

Hclean speech observed speech

Figure. 1: observation model

whereF denotes the Fourier transform matrix, andexp repre-
sents the exponential operation on each vector element. The ex-
pression of (1) is now rewritten in the cepstrum domain by

CY = F−1[log{exp(FCS) + exp(FCN )}] + CH . (3)

One can see from the expression thatCY (the observed speech
in the cepstrum domain) is given as a non-linear function ofCS ,
CN andCH .

In case that the observation condition changes sufficiently small
and we can assume small changes of bothCS , CN andCH , the
new observed speech̃Cnew

Y is approximated by the first order
Taylor series as

C̃new
Y = CY + ∆CY (4)

= CY +
∂CY

∂CS
∆CS +

∂CY

∂CN
∆CN + ∆CH . (5)

As a result, the non-linearity disappears andCY is expressed as a
linear function ofCS , CN andCH .

To simplify the problem, we assume that bothCH andCS remain
unchanged and only theCN changes so that the relationship is
denoted by

C̃new
Y = CY +

∂CY

∂CN
∆CN (6)

where∂CY /∂CN is the Jacobian matrix and denoted byJN here.

The Jacobian matrixJN is calculated by

JN ≡ ∂CY

∂CN

=
∂CY

∂ log SY

∂ log SY

∂SY

∂SY

∂SN

∂SN

∂ log SN

∂ log SN

∂CN
. (7)

The(i, j) element ofJN is given by

(JN )ij =
X

k

(F−1)ik
(SN )k

(SS)k + (SN )k
(F )kj . (8)

It should be noted that calculatingJN does not require any infor-
mation about the new environment but it needs justSS andSN ,
both of which are provided in the initial environment.

Though there is a preceding work [5] that also utilizes the Taylor
series approximation, JA [6] was proposed independently with it,
and its formulation and the approach to degraded speech recogni-
tion are different.

2.1. Jacobian Adaption of HMM

The former discussion on the Jacobian Adaptation deals with
the point-to-point relationship of vectors in both the linear spec-
trum domain and cepstrum domain (Fig. 2). Special considera-
tion should be given when one applies JA to the adaptation of
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Figure. 2: Non-linear effect of the noise fluctuation on the
cepstrum feature vectors of the degraded speech, and its
linear approximation by the Taylor series expansion.

the HMM’s stochastic parameters. For that, we assume that the
variance of the distribution ofCY is sufficiently small and stays
within the effective rage of linear (Jacobian) approximation.

Although not only the mean vector of each distributions of HMMs
but also the variance and those for delta-cepstrum can be adapted
to the new environment, only the adaptation of the mean vector
of CY is considered in this paper. This is because the adaptation
of other parameters did not show significant improvement in the
recognition performance in our previous report [3].

Denoting the mean vector of a distribution of HMMs by
Mean[CY ], each mean vector of distributions of HMMs trained
in env-A can be adapted to env-B by

Mean[CB
Y ] = Mean[CA

Y ] + JA
N∆Mean[CN ] (9)

where the superscript denotes the environment.

In the framework of Jacobian Adaptation of HMMs, HMMs are
firstly trained with the enough amount of data in the initial envi-
ronment A (env-A), then adaptation to the recognition environ-
ment B (env-B) is done by observing a noise of very short period
of time. We will describe below the three major processing phases
of JA; training, adaptation, and recognition phase.

Training phase: (setting up the initial models)

Step 1 Train a noise HMM with the noise data in env-A.

Step 2 Train the acoustic HMMs with the degraded speech
where noise is added to the clean speech in env-A. (Al-
though PMC was used for this purpose in this research, the
models can be trained directly with the degraded speech.)

Step 3 Calculate the Jacobian matrixJA
N for each distribution of

all the acoustic HMMs.

Adaptation phase:

Step 4 Observe small amount of noise signal in the testing en-
vironment (env-B) just before the utterance, and train the
noise HMM to obtain Mean[CB

N ].

Step 5 Calculate the change of noise by

∆Mean[CN ] = Mean[CB
N ] −Mean[CA

N ]. (10)
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Figure. 3: JA based speech recognition using the multiple
sets of initial models

Step 6 Adapts each mean vector of all the distributions using the
expression (9).

Recognition phase:

Step 7 Using the adapted models, carry out speech recognition
on the test speech data in env-B .

2.2. Multiple Sets of Initial Models and
Model Selection

Since JA assumes that the background noise changes small
enough to adapt the model parameters by means of linear approx-
imation given by (6), the accuracy of the approximation deterio-
rates when the the linearity assumption does not hold due to the
dissimilarity between the two environments. As a result, the cov-
erage of adaptation of a single set of initial models against the
possible noise fluctuation may be small. In order to make the
coverage of the adaptation wider, we can set up multiple sets of
initial models trained in the various noise conditions and choose
the most fitting model for the recognition environment (Fig. 3).

As a distance measure for selecting the initial-model set among
the multiple sets of initial models, we employed the Bhat-
tacharyya distance between the noises of the environment A and
B, of which formulation is given by,

DAB =
1

8
(µB − µA)t

�
ΣB + ΣA

2

�−1

(µB − µA)

+
1

2
ln
|(ΣB + ΣA)/2|
|ΣB | 12 |ΣA| 12

. (11)

whereµ andΣ represent the mean vector and the covariance ma-
trix, respectively, and the superscript denotes the environment.

3. EXPERIMENTS

3.1. Experimental conditions

We conducted speaker-dependent isolated word speech recogni-
tion experiments in the following manner.

Initial model training speaker-dependent phone HMMs (3-
states, 4-mixtures, context-independent HMM) for the ini-
tial noise environment A was composed using the PMC
method [1]. For that, a set of clean-speech phone HMMs
for each of 4 speakers (2-males, 2-females) was trained with
the 2620 words speech data of ATR A-set database, and the
noise HMM (1-state, single Gaussian) was trained with each
of the 4 different noise sources (car, exhibition-hall, inter-
section, crowd) of 60 seconds of its duration. The clean-
speech HMMs and the noise HMM were blended at 4 dif-
ferent SNRs, 0, 10, 20, 30dB, hence 16 different sets of
degraded speech HMMs (4 noises * 4 SNRs) were prepared
in all. Then the Jacobian matrix for each mean vector of
distributions of HMM is calculated.

Testing data preparation The testing data for recognition ex-
periment was made by computationally adding the noise
signal ( 4 noise sources * 4 SNRs) to the clean speech sig-
nal of 655 words. The noise data comes from the same noise
sources but different instances with the above.

Adaptation Before the recognition of each word in the target en-
vironment B, preceding noise of 0.5 seconds is observed to
train the noise HMM and the difference between the mean
vectors of the noise HMMs for both the env-A and env-B.
Then each mean vector of all the Gaussian distributions of
the initial HMMs is adapted to the env-B by the JA method.

Recognition Word recognition experiment was carried out for
each of 4 speakers. In each test for a certain noise source
and SNR, those initial-model sets of which noise source are
the same with that of testing environment are excluded. As
a result, 12 sets (3 noise sources * 4 SNRs = 12) of initial
models were used for the initial-model selection.

3.2. Experimental results and discussion

Before discussing the results of the proposed method, Fig. 4
demonstrates the limitation of JA when only a single set of ini-
tial models was used. Each folded-line shows word recognition
rates of the adapted HMMs that were trained at a certain SNR. We
can see from the figure that a single set of adapted HMMs shows
the highest recognition performance when the SNR of the initial
environment coincides with the one of the testing environment in
this case. But the performance decreases rapidly as the difference
between the two SNRs becomes larger.

Fig. 5 shows recognition performance by the multiple sets of ini-
tial models (denoted by JA(12) in the figure), where the testing
environment is the same with Fig. 4. Besides the performance by
the proposed method, results by PMC and the average recognition
rates by the single initial-model JA (denoted by JA(1)) with dif-
ferent training conditions (3 noise sources * 4 SNRs) are shown in
the figure as well. Each vertical bar denotes the highest and low-
est recognition rates among those by JA(1). Comparing with the
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Figure. 4: Limitation of JA using a single set of initial
models. (The initial environment: exhibition hall, the test-
ing environment: car)
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Figure. 5: Word recognition performance by the multiple
sets of initial models. (testing environment: car)

former result by a single initial-model set, the proposed method
dramatically improved the recognition performance that is almost
equal to that of PMC.

The error reduction rates from the clean speech HMMs for the
four different methods, JA(1), selection(12), proposed and PMC,
are shown in Fig. 6, where the reduction rates denote the average
rates of all the possible 12 conditions, “selection(12)” represents
the case that only the initial model selection among the 12 initial
sets was employed without adaptation. We can see that the pro-
posed method achieved the comparable recognition performance
with PMC when PMC used the 60 seconds noise data for adap-
tation while the proposed methods used only 0.5 seconds noise
data.

4. CONCLUSION

In this paper, one of the theoretical limitations of Jacobian Adap-
tation of acoustic HMMs for degraded speech recognition has
been relaxed by implementing the multiple sets of initial models
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Figure. 6: Error reduction rates for ”JA(1)”: single initial-
model set, ”selection(12)”: model selection without adap-
tation, ”JA(12)”: the proposed JA with multiple sets of ini-
tial models. The number in the parentheses denotes the
number of initial-model sets

for various noise environments. The proposed approach demon-
strated much robustness against the change of noise conditions
compared with the original JA that has a single set of initial mod-
els.

The framework of Jacobian Adaptation can be extended further to
the case where convolutive noise such as transfer channel changes
as well as the additive noise dealt in this paper. The formulation
for such complex environment will be presented in the next op-
portunity.
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