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Abstract

Existing photomask metrology is struggling to keep pace with the rapid reduction of
IC dimensions as traditional measurement techniques are being stretched to their
limits. This thesis examines the use of on-mask probable electrical test structures
and measurement techniques to meet this challenge and to accurately characterise
the imaging capabilities of advanced binary and phase-shifting chrome-on-quartz
photomasks. On-mask, electrical and optical linewidth measurement techniques have
highlighted that the use of more than one measurement method, complementing each
other, can prove valuable when characterising an advanced photomask process.

Industry standard optical metrology test patterns have been adapted for the direct
electrical equivalent measurement and the structures used to characterise different
feature arrangements fabricated on standard and advanced photomasks with proximity
correction techniques. The electrical measurements were compared to measurements
from an optical mask metrology and verification tool and a state-of-the-art CD-AFM
system and the results have demonstrated the capability and strengths of the on-mask
electrical measurement. For example, electrical and AFM measurements on submicron
features agreed within 10nm of each other while optical measurements were offset by
up to 90nm. Hence, electrical techniques can prove valuable in providing feedback to
the large number of metrology tools already supporting photomask manufacture, which
in turn will help to develop CD standards for maskmaking.

Electrical test structures have also been designed to enable the characterisation of
optical proximity correction to characterise right angled corners in conducting tracks
using a prototype design for both on-mask and wafer characterisation. Measurement
results from the on-mask structures have shown that the electrical technique is sensitive
enough to detect the effect of OPC on inner corners and to identify any defects in the
fabricated features. For example less than 10Ω (5%) change in the expected resistance
data trends indicated a deformed OPC feature. Results from on-wafer structures have
shown that the correction technique has an impact on the final printed features and
the measured resistance can be used to characterise the effects of different levels of
correction. Overall the structures have shown their capability to characterise this type
of optical proximity correction on both mask and wafer level.

Test structures have also been designed for the characterisation of the dimensional
mismatch between closely spaced photomask features. A number of photomasks
were fabricated with these structures and the results from electrical measurements
have been analysed to obtain information about the capability of the mask making
process. The electrical test structures have demonstrated the capability of measuring
tool and process induced dimensional mismatches in the nanometer range on masks
which would otherwise prove difficult with standard optical metrology techniques. For
example, electrical measurements detected mismatches of less than 15nm on 500nm
wide features.
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Chapter 1
Introduction

1.1 Background

The invention of the point-contact transistor at the Bell Telephone Laboratories

by Bardeen and Brattain in 1947 signalled the beginning of the revolution in

microelectronics technology. Around the same time Shockley developed the theory

behind the bipolar junction transistor (BJT) as part of an effort to replace vacuum

tubes with solid states devices [1]. In 1951 the first bipolar transistor was fabricated

and by 1954 it was an essential component of the telephone system. The first

commercial device to make use of the transistor was a hearing aid and soon after the

first transistor radio was put on the market. Although small in size and low in power

consumption, transistors were not small enough for some applications which required

whole miniaturised circuits. The drive for miniaturisation was the impetus for the

work which led to the invention of the integrated circuit (IC).

The concept of the integrated circuit was first conceived by radar scientist Dummer

in 1952, who was however unsuccessful in building such a circuit in 1956. The

first integrated circuits were manufactured independently by two scientists who were

unaware of each other’s activities. Kilby of Texas Instruments filed a patent for a “Solid

Circuit” made of germanium in 1959, however it was Noyce of Fairchild Semiconductor

who was first awarded a patent for a more complex “unitary circuit” made of silicon

in 1961 [2]. While Kilby’s idea to make all circuit components out of the same

semiconductor material was groundbreaking, Noyce’s circuit solved several practical

problems that Kilby’s concept had, mainly the problem of interconnecting all the parts

on the chip. This made ICs more suitable for mass production. The first integrated

circuits were oscillators and simple digital flip-flops using a few active devices along

with the passive elements. By 1971 IC technology had advanced to the stage that the

first microprocessor, the 4-bit Intel 4004, was fabricated with 2300 transistors [3].

Over the last 50 years ICs have evolved in terms of complexity and thus are often
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classified by the number of transistors they contain. The first integrated circuits, called

Small Scale Integration (SSI), were developed in the 1960s and contained only a

few transistors numbering in the tens. SSI circuits were crucial to early aerospace

projects. The next step in the development of ICs took place in the late 1960s and

introduced devices which contained hundreds of transistors. Medium Scale Integration

(MSI) circuits were attractive economically, as their fabrication cost was little more

than SSI devices, but allowed more complex systems to be produced. Economic factors

led to further development and Large Scale Integration (LSI) in the mid 1970s, with

tens of thousands of transistors per chip. In the early 1980s circuits with hundreds of

thousands of transistors were manufactured and the term Very Large Scale Integration

(VLSI) was introduced. To reflect further growth of complexity the term Ultra Large

Scale Integration (ULSI) was proposed for chips with more than 1 million transistors.

The growth of complexity of integrated circuits has been following a trend called

“Moore’s Law” which was described by Moore of Intel in 1965 and predicted that the

number of devices in an integrated circuit would double each year [4]. In 1975 Moore

amended the law to state that the numbers of transistors in an IC would double every

18 months [5]. Although Moore’s law was initially made in the form of an observation

and prediction, as it became more widely accepted, the more it served as a goal for an

entire industry. This prediction has been successfully followed for the last 40 years and

on average, the numbers of transistors in a state-of-the-art chip has doubled every 18

months.

Since the late 1960s, when circuits had linewidths of 5µm, to now, where 65nm

devices are in mass production, optical lithography has been a key technology for the

advancement of IC fabrication and performance. Optical projection lithography is the

process used to transfer the patterns that define integrated circuits through a mask onto

semiconductor wafers. It is the first choice for mass production in the IC industry as

no other technology has approached the same levels of cost-effectiveness and wafer

throughput capability [6]. A lithographic system includes an exposure tool, masks,

resist, and all of the processing steps required to accomplish pattern transfer.

Continued improvements have enabled the printing of ever finer features which in turn

has allowed the industry to produce faster and more powerful semiconductor devices.

The drive for smaller feature sizes has pushed optical lithography to its very limits. IBM
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has recently fabricated distinct and uniformly spaced, high quality line patterns only

29.9nm wide [7] and this is one of the many examples of recent advances. This is less

than half the size of the 65nm features now in mass production and below the 32nm

that the industry consensus held as the limit for photolithography techniques.

The continuous increase in IC performance has been achieved by the introduction of

reduced exposure wavelengths and modern resolution enhancement techniques (RETs),

which allow the printing of features much smaller than the wavelength of the exposure

light [8]. The resolution of a photolithographic system can be enhanced by methods

such as off-axis illumination (OAI) [9], pupil filtering [10, 11] and as devices in the

45nm technology node move from development into production, techniques such as

immersion lithography [12–14] and double patterning (DPT) [15] become essential.

Of significant importance is the manufacture of photomasks that are capable of perfectly

replicating the artwork generated by the IC designer. To enable the latest technologies

to be resolved on wafer, advances in photomask resolution enhancement technologies

such as optical proximity correction (OPC) and the various types of phase-shifting

masks (PSMs) [16, 17], have been introduced into mask making. In addition the

manufacturing process has to result in zero defects and this is a significant challenge

with tremendous pricing pressures. This is reflected in the cost of a set of leading-edge

mask plates, which is now considerably more than $1M [18, 19]. Therefore, it comes

as no surprise that the ability to accurately test and characterise advanced photomasks,

for the purposes of process verification and control, is becoming increasingly important.

The increases in complexity and cost have placed a premium on mask metrology, which

now has to keep up with the strict requirements introduced by the IC industry.

Mask metrology is a challenging issue for the semiconductor industry and an absolute

key if the industry is to successfully follow the requirements for future technologies,

as charted by the International Technology Roadmap for Semiconductors (ITRS) [20].

It is an industrial process worth over $2.5B worldwide that underpins the >$200B

integrated circuit industry, which is solely becoming an area of significant economic

and social consequence.

Traditional methods for mask metrology and verification use optical [21, 22], critical

dimension scanning electron microscopy (CD-SEM) [23–25] and atomic force
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microscope (AFM) measurement systems [26–29]. The progress made in optics

fabrication could not have been achieved with out access to appropriate metrology

tools. However, in addition to the challenges involved in fabricating advanced masks,

the manufacturers are now struggling to characterise them. The established techniques

not only require expensive equipment well in the region of $1.5M, but as dimensions

continue to rapidly reduce, they are being stretched to their limits and are unable

to meet the requirements for accurate and repeatable results. Optical distortions

can confound optical measurements, while charging on fused silica photomasks can

adversely affect CD-SEM results. In addition, both of these techniques are effectively

subjective and require careful calibration of the measurement tool for meaningful

results. On the other hand a high resolution CD-AFM can be an excellent means for CD

calibration but it suffers from low throughput which makes it unsuitable for a process

inspection environment.

Much of the work in this thesis addresses the challenges involved with the

measurement and characterisation of advanced photomasks. These challenges

have provided the incentives for the development of alternative measurement

approaches. The thesis investigates a novel application of electrical test structures and

measurement techniques which are adapted for on-mask metrology. Test structures

and measurements techniques were originally developed to characterise the IC

manufacturing process and their integration onto advanced masks can take full

advantage of the considerable developments of the last 30 years.

While enhancement techniques such as phase-shifting masks are essential to achieve

the sub-wavelength dimensions required in advanced CMOS (Complementary Metal

Oxide Semiconductor) technologies, approximately 85% [30–33] of all masks currently

manufactured are binary and binary masks typically form up to 85-90% of the mask set

used in an advanced process. Obviously the electrical measurement approach requires a

conductive film such as the chrome used in standard binary photomasks or for example

PSMs with the alternating design. The most commonly used form of phase-related,

reticle enhancement technology used at present, the attenuated phase-shift [34], or

chromeless type masks are not suitable for direct electrical probing. However, the

process used to create these masks typically uses a chrome layer as a hard mask

during patterning and etching of the phase-shifting features and it should be possible to
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measure them before the chrome layer is removed. Therefore, the proposed electrical

techniques are ideally suited for process control measurements on the most widely used

photomask types.

A problem with the inclusion of electrical test structures is that they take up valuable

space on a mask which could be occupied by the design of the product. For the

purposes of photomask characterisation, the full area of a mask plate can be covered

by test patterns, as the development engineers attempt to characterise the fabrication

process. A major attraction to this is that similar structures can be printed and

measured on-wafer using the same electrical techniques for the characterisation

of the photolithographic process. However, in a mature/production process the

photomask will include only the minimum number of structures required for the

purposes of process verification. The test sites can be located outside the circuit

area with the alignment marks, the maskmakers identification marks and other

process control/inspection structures. One other issue associated with the adoption

of electrical test structures for mask metrology is the perception that the photomask

could be damaged during probing in the measurement. In comparison to aluminium,

the chromium light blocking film on a standard photomask is extremely scratch

resistant and robust, so the probe pads are left unmarked after probing. Delicate ICs on

expensive wafers are routinely probe tested as a standard part of the IC manufacturing

process and so there is little doubt that masks, which are much less susceptible to

probe damage, can be characterised electrically without damage.

Electrical test structures are connected to the test equipment through metal probe pads

(normally 80-120µm square) which are typically arranged in a 2×N array where the

pitch of the pads is twice their width. The probe pads can be contacted either with

manual probe needles controlled by micro-manipulators or through a probe card. Probe

cards are generally used with a probe station which can step the probe tips between

test structures. This is integrated with computer controlled measurement equipment to

create a complete test system.

Electrical dimensional metrology has the potential to meet the requirements set by

the photomask industry whilst it remains a highly repeatable, fast, cost-effective

and robust technique. The proposed technique not only can provide an alternative

measurement approach, but will also act as a reference point with which to compare
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traditional measurement methods. In addition, it can provide feedback to help

create better calibrations for the large number of metrology tools already supporting

photomask manufacture and underpin the requirements for developing CD standards

for maskmaking. Finally, the same measurement techniques can be applied equally to

on-mask and on-chip features, providing a transferable metrology from mask to wafer.

1.2 Thesis Structure

This section presents a description of the thesis structure and briefly outlines the

contents of the chapters which follow.

Chapter 2: Background. The fundamentals of optical lithography and resolution

enhancement techniques are presented. Special attention is being paid to the

operating principles, the correction and enhancement procedures of photomasks. The

measurement of sheet resistance and linewidth is described. Traditional linewidth

measurement methods are presented, but the main focus is on electrical techniques.

Examples from the literature of electrical test structures for the measurement of other

important maskmaking parameters are examined.

Chapter 3: Linewidth Measurement Techniques for the Characterisation of Binary

and Alternating Aperture Phase-Shifting Masks. This chapter briefly describes the

earlier work done on electrical test structures for the measurement of photomasks.

It then presents the on-mask structure design, fabrication and measurement results

from electrical and optical techniques on binary and alternating aperture phase-shifting

masks. The advantages and limitations of these mask characterisation techniques are

shown.

Chapter 4: Development of Electrical On-Mask CD Test Structures Based On

Optical Metrology Features. The first part of this chapter investigates the adaptation

of standard optical metrology features to electrical equivalents. A prototype mask

with the electrical designs is fabricated and the features are electrically and optically

measured to investigate the fabrication process and compare the metrology techniques.

The second part examines potential electrical on-mask test structures through 2-D and

3-D computer simulations for the characterisation of other important parameters.
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Chapter 5: Comparison of Metrology Techniques for the Characterisation of

Advanced Photomask Processes. The first section of this chapter describes the design

and fabrication of binary on-mask test structures on a plate written using an e-beam

proximity correction technique. Results from electrical and optical measurements

made on the structures examine the effectiveness of the correction method and further

evaluate the performance of the metrology techniques. The second section presents a

comparison of CD-AFM measurements made with a state-of-the-art tool, fully calibrated

to a reference standard, with electrical and optical metrology results. An analysis of the

uncertainties involved in the different measurement techniques is also presented.

Chapter 6: Electrical Test Structures for the Characterisation of Optical Proximity

Correction. This chapter begins by examining the use of an on-mask resistive test

structure for the characterisation of a corner type of optical proximity correction, using

simulations and measurements on a prototype photomask. The photomask is then used

to print structures on wafer. Simulations and measurements at wafer level are also

performed and a comparison between the two is presented.

Chapter 7: Matching Resistor Test Structures for the Characterisation of the

Photomask Fabrication Process. This chapter presents the design and fabrication of

electrical on-mask test structures for the characterisation of the dimensional mismatch

between closely spaced photomask features. A number of photomasks were patterned

with these structures and the results have been analysed to obtain information about

the capability of the mask making process.

Chapter 8: Conclusions and Future Work. In this chapter the conclusions drawn from

the work reported in the preceding chapters are reviewed. Suggestions for future work

on the topics covered in this thesis are also made.
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Chapter 2
Background

2.1 Optical Lithography Fundamentals

Optical lithography has been the key technology for semiconductor patterning since

the early days of integrated circuit production. Although predictions of its demise

have been made on many occasions, new techniques have pushed optical lithography

beyond the generally accepted theoretical resolution limits. These enhancements have

significantly extended the manufacturing capabilities of the IC industry. However,

optical lithography does have real physical and economic barriers and an accurate

estimation of these limitations is essential for extending its life and preparing for the

transition to next generation lithography (NGL) techniques in the future.

Optical lithography is essentially a photographic process by which a light-sensitive

polymer called photoresist is exposed through a master pattern called photomask and

developed to form 2D patterns on a substrate [35]. A schematic of an optical projection

tool where an image of the photomask is projected onto the substrate is presented in

figure 2.1.

The resolution limit in optical lithography differs depending on the type of feature

being printed. The two types of resolution that are used by the IC industry are the

minimum printable pitch and feature size (see figure 2.2 [36]). Although related, they

have different limits defined by the physics of lithography and different implications in

terms of device performance [35]. Feature size resolution determines the characteristics

and performance of a transistor. Pitch resolution (the smallest printable linewidth and

spacewidth pair) determines how closely transistors can be packed in a chip.

The imaging performance of a photolithographic system is determined by the Rayleigh

resolution criterion, developed more than 100 years ago by Lord Rayleigh to describe

the diffraction limits of telescopes. It describes the ability of an imaging system to

resolve two closely spaced objects and in optical lithography this essentially defines the
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Light

System
Optical

Condenser
Lens

Projection
Lens

Wafer

Mask

Source

System
Optical

Figure 2.1: Diagram of an optical projection lithography “stepper” tool used for exposing
semiconductor wafers.

Pitch

Spacewidth

Feature size
     (CD)

Figure 2.2: Diagram of a line and space pattern.

smallest printable half-pitch (HP). According to Rayleigh’s criterion the resolution (R)

of an optical projection lithography system can be obtained by

R = k1
λ

NA
(2.1)

where (λ) is the wavelength of the imaging light and (NA) is the numerical aperture of

the imagining lens system used in the lithographic process (NA = sinθ is the maximum

diffraction angle that a projection lens can capture and use for image formation). The

Rayleigh factor (k1) is a constant which depends on the details of the imaging process,

such as the configuration of the illumination system and the optical parameters of
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the photoresist. Ultimately k1 can be as low as 0.25 (the fundamental limit) but this

requires tremendous effort and is not achievable with conventional lithography.

Equation 2.1 offers two physical quantities for the reduction of the printable half-pitch.

This can be achieved by decreasing λ or increasing NA. As resolution is increased

through the use of higher-NA tools and lower wavelengths, another limitation is

presented with the reduction of the second fundamental lithography parameter. The

depth of focus (DOF) is defined as the range of focus over which adequate feature

fidelity is maintained within specifications (linewidth, sidewall angle, resist loss and

exposure latitude). It is expressed by

DOF = k2
λ

NA2
(2.2)

where (k2) is a constant which also depends on the lithographic process. A greater DOF

indicates a more tolerant lithographic process, while a poor value of DOF will introduce

the need for high process specifications such as tight wafer flatness and highly uniform

resist thickness.

2.2 Photomask Basics

Although photomasks have always been an integral component in the photolithographic

process of semiconductor manufacturing, they are now more than a stencil that maps

the design of an IC for projecting onto wafers. Driven by the demand for faster

and cheaper devices, photomasks are rendered as a critical and enabling technology

in optical lithography. Photomasks which are at the forefront of miniaturisation

require complex mathematical algorithms to design and sophisticated manufacturing

techniques [37].

A photomask is usually a transparent high purity quartz (fused silica - SiO2) or glass

substrate containing precision images of ICs, defined through a light absorbing chrome

(Cr) layer covering one side of the mask. The chrome is covered with an anti-reflective

coating (ARC)1 and a photosensitive resist. The complete layout of an unprocessed

mask can be seen in figure 2.3. The optical ARC applied to a photomask, alters the

1A common ARC material used on chrome photomasks is chromium oxynitride (CrON)
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refractive index in to order to minimise reflections of specific wavelengths of light, but

also acts as a protection to the chrome layer. The photoresist layer is a light sensitive

material used in a mask making process, to form a temporary patterned coating on the

mask surface.

ARC

Photoresist

Quartz

Chrome

Figure 2.3: Layout on an unprocessed photomask (also known as a blank).

The current generation of semiconductors has 30 or more layers, each requiring a

unique photomask. In a mass production environment the image of the mask is

projected several times side by side on the wafer surface. This is achieved by steppers

with reduction optics and the masks used for such process are known as reticles.

There are a number of process steps involved with the production of a photomask.

Firstly the electronic data of the IC design is formatted for the lithography tool. This

includes translating the data in a language the write tool can understand (fracturing)

and making a jobdeck (the instructions for placing all patterns on the mask). Binary

intensity masks (BIMs) are the most common type of photomasks produced (85% of

total masks currently produced are binary) [30–33]. The fabrication process of a binary

mask is presented below.

1. The pattern is generated on the plate by exposing the resist with an electron beam

or laser tool (see figure 2.4(a)). This alters the chemical composition of the resist

in the exposed areas (a MEBES 5500 e-beam writer was used for this work).

2. The exposed resist is removed to develop a temporary pattern to serve as a mask

for etching (see figure 2.4(b)).

3. A permanent pattern is defined in chrome by etching the ARC and chrome,

wherever the resist has been removed (see figure 2.4(c)). The areas where

the chrome and ARC have been removed are referred to as clear (or glass),

while areas where the chrome and ARC have remained, are referred as dark (or

chrome).
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4. The temporary masking layer is then removed by stripping all the remaining resist

from the mask (see figure 2.4(d)).

Exposure Energy

(a)

Quartz

Quartz

Chrome
ARC
Resist

(c)

(b)

Quartz

Chrome
ARC
Resist

(d)

Quartz

Figure 2.4: Fabrication process steps for a binary photomask (a) Pattern generation (b)
Photoresist development (c) Chrome etch (d) Photoresist strip.

A complete industrial fabrication process will also include steps for critical dimension

(CD) measurements, surface clean, defect inspection, repair and pellicle application.

A pellicle is a dust proof membrane applied to protect the mask surface from

contamination.

2.3 Improving Resolution in Optical Lithography

Assuming that Moore’s law continues to hold into the future and is financially

justifiable, optical lithography will be pushed to its very limits. As lithography gets

harder and is expected that there will be no revolution that can change this, it is

now more important than ever to predict its limitations. This can be achieved by

examining the resolution drivers which effectively also set the practical limits, for

optical lithography. This section introduces the methods used by the lithography

industry to improve resolution. The progress made so far and the limits for each

method are presented. Particular attention is being paid to the techniques involved

with the advancement of photomasks. These are presented in detail, as they have to

be fully understood before characterising an advanced photomask.
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2.3.1 Introduction

Two approaches offering resolution improvement (pitch and feature) can be identified

from Rayleigh’s criterion. The first involves reducing the exposure wavelength. Since

the 1970’s the industry has been steadily changing to shorter wavelengths of light,

however each change has progressively become more expensive and the light source

more complex. Initially the light source was a mercury lamp filtered for g- (436nm)

and h-lines (405nm). The wavelength has further decreased in 1984 to 365 nm (i-line

of mercury), to 248nm in 1989 (KrF laser) and from 1999 onwards to 193nm (ArF

excimer laser). Reducing the wavelength is desirable, however it is practically limited

by the ability to engineer materials with the required optical properties, but mostly by

the initial lack of maturity of the photoresist [36]. In addition only few light sources

can deliver adequate power to expose wafers at cost-effective throughput rates. It is

quite likely that 193nm will be the last mainstream wavelength in lithography, as the

transition to 157nm (F2 laser) has been abandoned for other methods of resolution

enhancement. A reason for this is that the atmosphere attenuates light significantly at

wavelengths below 193nm, requiring an oxygen and water free environment.

In addition, Rayleigh’s criterion offers resolution improvement by increasing the

numerical aperture of the imaging lens. As NA is the sine of an angle, its physical

limit for exposure systems using air as a medium between the lens and the wafer, is

1. At this point the imaging system captures light rays propagating in all directions.

However its practical limit is around 0.9 as the cost to benefit trade-off for higher

values is not very promising. Although increasing NA improves resolution it adversely

impacts the depth of focus. Despite this optical designers have been vigorously

developing systems with higher numerical apertures and from a typical value of 0.4

in the mid 1980s conventional (dry) scanners have now reached NAs higher than

0.9. Recently immersion lithography [12–14] has enabled numerical apertures higher

than 1. Immersion fluids will push the theoretical limits of the highest possible NA to

that of the refractive index value (e.g. 1.44 for pure water), but will also slow down

the exponential rise in cost and complexity that comes with approaching the current

physical limits of NA [36]. In addition with the use of immersion lithography comes

an improvement in DOF of at least the immersion index.
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2.3.2 Binary and Phase-Shifting Masks

Phase-shifting masks (PSMs) take advantage of the interference effect in a coherent (or

partially coherent) imaging system, to reduce the spatial frequency and enhance the

edge contrast of an object [17]. This improves the resolution of the system without loss

of DOF.

The phase-shifting elements are created by changing the thickness of the mask

substrate. This can be seen in figure 2.5 [17] and is accomplished either by adding

an extra layer of transmissive material on the mask, or by etching the mask substrate.

As the light propagates through the mask substrate and the phase-shifting layer, its

wavelength is reduced (from that in air) by the refractive index of the substrate and

the PS layer. The difference between the optical path with the phase-shifting layer and

the path without it is (n - 1) × d , where (n) is the refractive index of the extra layer

(or substrate material) and (d) is the layer thickness or the etch depth. The phase

difference (θ) is calculated using

θ = 2π
d

λ
(n− 1) (2.3)

where (λ) is the wavelength of the light. Normally a phase difference of 180◦ is

desirable. The layer thickness or etch depth required to give 180◦ phase shift is

calculated by

d =
λ

2(n− 1)
(2.4)

To illustrate the improvement in resolution with a PSM scheme figure 2.6 [16] compares

the imaging process for a binary and an alternating aperture phase-shifting mask

(Alt-PSM). The alternating aperture phase-shifting mask design was first introduced

by Levenson et al. [16] and is characterised by phase-shifting every other element in a

close packed array.

For a binary mask the (normalized) amplitude of the electric field (E-field) at the mask

is either +1 or 0. When light passes through two adjacent apertures it spreads due

to diffraction. The E-field amplitudes at the wafer overlap and interfere constructively.

The light-intensity (which is proportional to the square of the electric field amplitude)

is high everywhere, therefore blurring individual features together.
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Mask Substrate

d

Phase Shifter

Propagation

Direction of Light
(a)

Mask Substrate

(b)

d

Phase Shifter

Electric Field

Electric Field

Figure 2.5: A phase-shifting layer which is created either by (a) adding an extra layer
of transmissive material or by (b) etching the mask substrate introduces a
difference of λ / 2 (in this case) in the optical path.

For an Alt-PSM the electric field amplitude is -1 for features with a phase-shift and +1

for features with no phase-shift. Again light passing through each aperture spreads

and because one component is phase-shifted, there is destructive interference between

the electric-field amplitudes. Hence the net amplitude of the imaging light between

adjacent apertures becomes zero (or dark). This minimises the intensity in this region

and therefore resolution of these features is enhanced.

There are many approaches for introducing the phase-shifting elements to the

mask pattern, each with different configurations and working principles [38].

Subresolution-assisted phase-shifting masks (SA-PSM) provide phase-shifting to circuit

layouts with isolated openings, such as holes which are far from adjacent patterns.

Rim phase-shifting masks (Rim-PSM) can be used for an arbitrary mask layout and

unlike the PS schemes presented so far can provide phase-shifting for opaque patterns.

Attenuated phase-shifting masks (Att-PSM) can also be applied to an arbitrary layout
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Figure 2.6: Comparison of imaging process for (a) a conventional binary mask and (b)
an alternating aperture phase-shifting mask.

and can be implemented for transmissive or reflective materials. Unattenuated

phase-shifting masks (Utt-PSM) use transparent phase-shifters and can improve the

optical image without the use of a mask absorber.

2.3.3 Proximity Correction Techniques

Proximity effects are variations in width or shape of a printed feature due to the

proximity of nearby features. Proximity effects were first observed with electron beam

lithography, where it was found that the dose that a feature receives is affected by

backscattered electrons from nearby features [39]. An example of the proximity effect

is the iso-dense bias. This is the difference in printed linewidth between isolated
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and dense line patterns and is a feature size dependent effect. Proximity effects also

manifest as deformations of the fabricated features compared to their designed pattern.

These may arise in the form of corner rounding and line-end shortening.

One of the major RETs, optical proximity correction, is applied to a photomask in order

to compensate for the distorting optical effects introduced by the exposure pattern

environment and density. OPC was first considered for microlithography with imaging

systems in the early 1980’s [40], although it was not until the 1990’s that commercial

application of this technique for chip fabrication became available [41]. Throughout

the development of OPC, its primary purpose has been to correct the shape printed

upon the wafer to replicate the original mask feature design as closely as possible. This

requires very well-defined corrections to pattern feature sizes and/or the addition of

sub-resolution assist features to homogenise the aerial image density of the exposed

field [42, 43]. In order to build the correction models for application of OPC, as well

as to verify the corrected pattern, it is vital to know exactly what is being rendered

on the mask by the image generation process. However, mask pattern density also

affects the way the mask image is created and effects such as etch micro-loading and

mask writer proximity effects will alter the nominal linewidth. This must be considered

prior to applying any OPC to correct for the optical transfer process. In addition to

biasing of CDs to correct for local pattern density, OPC is also used to alter the mask

pattern at corners and line ends. For two dimensional corners, complex structures are

used, incorporating either additive or subtractive OPC serif-type features to produce the

desired shape. Figure 2.7 shows an example of a simple design with no correction and

the corresponding design after a set of OPC rules has been applied [35].

(a) (b)

Figure 2.7: Section of design (a) with no OPC (b) with OPC.

All this has resulted in OPC application and verification being performed using
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increasingly complicated optical models [44]. In addition, the shapes appearing on

masks are becoming more and more abstract when compared to the final desired

pattern. This has resulted in masks being drawn on small grid sizes, requiring high

overhead in data handling, long write times, difficult inspections, and increasingly

high prices. Throughout the progression of OPC technology, uncertainty has remained

regarding how close to the originally drawn shape the printed features must be to

enable the circuit to function correctly. While this is likely to vary from one circuit to

another, if the specific circuit functionality can be maintained while the pattern on the

wafer is not ideal, then there is the potential to reduce mask costs significantly.

E-beam lithography is very common technique of mask patterning and a number of

different schemes have been devised to minimise proximity effects [45]. Multilayer

resists reduce the proximity effect, at the cost of an increase in process complexity.

One common correction technique is dose modulation, where each point in a pattern

is assigned a dose parameter such as the pattern shape prints at its correct size.

Unfortunately, the calculations needed to evaluate the dose corrections, can be

computationally very time consuming. A similar technique to dose modulation

is pattern biasing. In this approach, the size of the dense patterns is reduced

to compensate for the extra dose they receive. Another technique for proximity

correction, GHOST [46], works by equalising the background dose caused by electron

scattering in a pattern.

2.3.4 Other Resolution Enhancement Techniques

Other techniques have been introduced to push optical lithography even further and

although they are not involved with enhancements applied on photomasks, it is useful

to have a complete picture of all major technologies which have extended the useful

life of optical lithography.

The third major RET that reduces k1 to improve resolution, is off-axis

illumination [9, 47, 48]. The concept of OAI was introduced in 1991 and is

now a widespread technology in the IC industry [49, 50]. Its low added cost has

allowed all modern scanners to be equipped with illuminators allowing several types

of off-axis illumination. The OAI approach changes the angle at which light passes

through the mask by inserting special holographic elements into the illumination
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system. These elements shape the light in to a particular geometric pattern that

significantly reduces the on-axis component of the illumination (the light striking

the mask at near normal incidence). By tilting the illumination away from normal

incidence, the diffraction pattern of the mask is shifted within the objective lens.

Typical illumination shapes are shown in figure 2.8 [35]. The quadruple shape

offers illumination with four main incident angles and provides strong resolution

enhancement and DOF increase. However its image performance is pattern dependent

and although it works well with densely packed features, it has limited applicability on

isolated features. The annular shape overcomes this limitation as it has a less pattern

dependent image performance, however it is also far less powerful.

Conventional QuadrupoleDipoleAnnular

Figure 2.8: Examples of light source shapes for the off-axis illumination technique. Note
that the grey areas are opaque and the white areas are transparent.

2.4 Photomask Metrology and Requirements

Many of the issues challenging on-wafer dimensional metrology are usually reduced by

a factor of 4 or 5 with on-mask metrology. However, this is rapidly changing and in

particular where advanced masks are used for the latest circuit generations. Smaller

photomask feature sizes, highly dense patterns, and resolution enhancements such as

phase-shifting and OPC technologies, are challenging to traditional mask metrology

techniques. Photomask metrology must now be examined in the context of design,

specification, manufacture, and application [51]. The drive towards reducing critical

dimensions requires that the maskmaking industry produces high quality photomasks.

To do so, the maskmakers have to fully understand the photomask process. Therefore,

the goal of metrology is not only to accurately measure a feature, but to accurately

describe and quantify it. Measurements are required for each process step of the

photomask and the total number of measurements that is needed to understand the

effects of the photomask fabrication process is large [52].
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In the manufacturing environment, the most pervasive tools for mask metrology

are optical and scanning electron microscopes. Atomic force microscopes and other

profiling technologies typically function as reference metrology tools. Inter-method

comparisons and cross-method calibrations do involve significant challenges. In

addition to the inherent uncertainties of each measurement, care must be taken to

understand the implicit measurement definitions of each method in order to compare

equivalent quantities [29]. Electrical measurement methods on photomask features

can prove valuable, providing reference metrology to traditional techniques which

continue to be challenged. Performance and repeatability of a metrology tool remain

the most critical factors to maskmakers. However, as the quantity of measurements

required to characterise an advanced mask continues to grow, throughput and cost

effectiveness of a tool become important [22].

The next part of this chapter presents the operating principles of electrical and

traditional critical dimension measurement techniques. Examples of test structures

from the literature, which can be adapted for photomask metrology are also reviewed.

2.5 Sheet Resistance Measurement

2.5.1 Resistivity

Resistivity (ρ) is a fundamental physical parameter for any conductor or semiconductor

material, which describes how well a material inhibits current flow. It is expressed in

units of ohm-meter (Ω-m). Figure 2.9 shows a bar of conducting material with uniform

resistivity. The resistance (R) between two electrodes can be expressed as

R =
ρl

wd
(2.5)

where (l) is the length of the conducting bar, (w) is the width, (d) is the thickness and

(ρ) is the resistivity of the conducting material.

The four-point probe (FPP) technique [53] is one of the most common methods used

to measure resistivity. It was originally proposed by Wenner [54] in 1916 to measure

the earth’s resistivity. It involves bringing four electrically conducting pins in contact

with the surface of the material being measured. The probe tips are generally arranged
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Figure 2.9: Diagram demonstrating the dimensions of a bar of conducting material.

in-line with equal probe spacing (s) (i.e. collinear) and such an arrangement is shown

in figure 2.10. However other configurations are possible.

∆VI I

sss

Figure 2.10: Setup of four-point probe measurement technique.

A current (I) is forced between the two outer probes and the potential difference (∆V)

between the two inner probes is measured. If the length, width and thickness of the

sample being measured, are much greater than the probe spacing, then the resistivity

of the semi-infinite sample can be calculated by [55]

ρ = 2πs

(
∆V

I

)
(2.6)

This technique however is most commonly used to measure samples which are not

semi-infinite (e.g. semiconductor wafers). Therefore, for finite geometries equation 2.6

must be corrected by adding a correction factor (F) that depends on the sample

geometry. F is usually a product of several independent correction factors, which

correct for probe placement near sample edges, sample thickness, diameter and

temperature [53,56,57].
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2.5.2 Sheet Resistance

In microelectronics, the FPP technique would normally be used for the characterisation

of a conducting material whose thickness (t) is significantly smaller than the spacing

between the measurement probes (t � s). A quartz mask coated with a thin chrome

layer, or a wafer coated with a thin film of aluminium are such examples and in this

case the equation for resistivity becomes

ρ =
πt

ln 2
∆V

I
(2.7)

Measuring the thickness of thin conducting films can be difficult, therefore they are

often characterised by their sheet resistance (RS), which represents the resistance of a

square area of the film. It is expressed in units of ohms per square (Ω/�) and can be

calculated from the FPP measurement as

RS =
ρ

t
=

π

ln (2)
∆V

I
(2.8)

For a non semi-infinite sample the equation for the sheet resistance is given by

RS = k
∆V

I
(2.9)

where k is a correction factor which depends on the shape of the sample and the

position of the measurement probes [57].

FPP measurements are typically useful with large uniform samples where the

correction factors are known for each measurement and large non-patterned areas

are available. This may be undesirable in a microfabrication process, however

reference [58] demonstrates that it is possible to extract the sheet resistance from

a small area of silicon film, by reconciling electrical measurements with results of

computer simulations on similar geometries.

2.5.3 Van der Pauw Structure

When a thin conducting sample is too small to be measured with the FPP method,

its sheet resistance can be extracted with a four-terminal van der Pauw test structure.
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Van der Pauw developed a technique for measuring the resistivity of a thin film sample

with arbitrary shape [59, 60]. The method requires that the following conditions are

satisfied:

• The contacts are at the circumference of the sample and sufficiently small, tending

towards point contacts.

• The sample material is homogeneous in thickness and resistivity, with a singly

connected surface (i.e. does not contain any isolated holes).

For a flat sample of conducting material with successive contacts A, B, C and D as

illustrated in figure 2.11, the resistance R(AB,CD) is defined as

IAB IAB

VC
V

V
VD

C

A

D

B

Figure 2.11: Van der Pauw test structure of arbitrary shape and contact location, used to
measure the resistivity.

R(AB,CD) =
VD − VC

IAB
(2.10)

That is the potential difference between D and C per unit current forced from A to B. If

R(BC,DA) is defined similarly then the general van der Pauw formula

exp
(
−R(AB,CD)

πt

ρ

)
+ exp

(
−R(BC,DA)

πt

ρ

)
= 1 (2.11)

can be solved numerically to find ρ. If the sample has a 90◦ symmetry and the

contacts are equally spaced around its circumference, then R(AB,CD) = R(BC,DA) and

equation (2.11) becomes
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ρ =
πt

ln (2)
R(AB,CD) (2.12)

Using equation (2.12) the general van der Pauw formula (2.11) can be rewritten to

ρ =
πt

ln (2)
R(AB,CD) + R(BC,DA)

2
f (2.13)

where (f) is a correction factor which is a function of the ratio r = R(AB,CD) / R(BC,DA)

and satisfies the relation

cosh
(

r − 1
r + 1

ln (2)
f

)
=

1
2

exp
(

ln (2)
f

)
(2.14)

One of the main sources of error introduced on the measurements of van der Pauw

structures, is when the contacts are of finite size and not at the circumference of the

sample. However, van der Pauw found that a “clover shaped” sample could significantly

reduce the influence of the contacts.

2.5.4 Greek Cross Structure

The measurement techniques and structures described so far were developed for

resistivity measurements on large discrete samples of semiconductor material.

The next step on this field were structures, which are easy to layout and define

photolithographically, and on the the same scale as microelectronic devices, in order

to measure the sheet resistance of thin films or diffused layers. The Greek cross sheet

resistor [61–63] shown in figure (2.12) is a refinement of the four-terminal van der

Pauw test structure. The sheet resistance is extracted at the heart of the cross and an

accuracy of better than 0.1% can be achieved in practise [64]. The assumptions made

by the van der Pauw method also apply for the Greek cross. However, the current

forced and the voltage measured are not at an infinitesimally small point. This is not a

problem provided that length of the arm (L) is greater than or equal to twice the arm

width (W), in which case the sheet resistance error will be less than 1% [61,65,66].

For an ideal structure a single resistance measurement would be sufficient in order to
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A B

D C

L

W

Figure 2.12: Layout of four terminal Greek cross sheet resistance test structure.

extract the sheet resistance, however in practise four measurements are required. Two

are measured at a static, “zero-degree” (0◦) orientation

R0(+I) =
VD − VC

IAB
(2.15)

R0(−I) =
VC − VD

IBA
(2.16)

and two at a “ninety-degree” (90◦) orientation

R90(+I) =
VC − VB

IDA
(2.17)

R90(−I) =
VB − VC

IAD
(2.18)

The four measurement results are averaged to give a single resistance value

R(±I) =
R0(±I) + R90(±I)

2
(2.19)
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which is used to calculate the sheet resistance with

RS = f

(
πR(±I)
ln (2)

)
(2.20)

The correction factor (f) which accounts for asymmetry in the structure is calculated

using equation (2.14) where

r =
R0(+I) + R0(−I)

R90(+I) + R90(−I)
(2.21)

The asymmetry of a structure is quantified in reference [62] through the asymmetry

factor (FA) which can be calculated from r using

FA = 2
r − 1
r + 1

(2.22)

The paper also compares values between the asymmetry and correction factors and

shows that when FA ≤ 10.74% (0.1074), the correction factor f is approaching unity.

In this case the correction required (1 - f) will be less than 0.1% of the uncorrected

value, which effectively reduces the equation for the sheet resistance to

RS =
πR

ln (2)
(2.23)

It should be noted that for all sheet resistance measurements made for the work

presented in this thesis, the asymmetry factors of the Greek cross structures were also

calculated. These values were found to be well below 10.74% and so no correction for

asymmetry was needed.

Measurements at forward and reverse currents at each orientation will highlight any

offsets in the test equipment. The zero-offset factor (F0) is defined as

F0 =
(|R0(+I)−R0(−I)| − |R90(+I)−R90(−I)|)

2R(±I)
(2.24)

and a small value indicates that the measurement is not greatly affected by voltage
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offsets in the test system.

2.6 Linewidth Measurement

Linewidth or Critical Dimension (CD) measurements are essential for the

characterisation and control of the lithographic and photomask processes, however

they become increasingly difficult as device dimensions reduce. The main methods for

measuring linewidth are optical, scanning electron or probe microscopy and electrical

techniques. Unfortunately, there is no single metrology that can deliver all needed

information. This section will discuss each technique but will primarily focus on

electrical measurements which form a large part of the body of work presented in this

thesis.

2.6.1 Optical Metrology

Optical techniques are capable of CD measurements of both conducting and insulating

features. However, as dimensions reduce they become limited by the wavelength of

light being used. There are a number of techniques for measuring CD optically [55].

In a video scanning system an image of the feature being measured is obtained using a

video camera connected to a microscope. This image is manipulated to provide a light

intensity profile across the feature from which a value of the linewidth can be extracted.

To produce a profile in a slit scanning system the sample is illuminated through a narrow

slit which is stepped across the feature. The reflected light intensity is measured by a

photodetector and plotted against the slit position.

Figure 2.13 illustrates how an optical critical dimension (OCD) measurement is

performed on a photomask feature. Firstly the image of the feature is captured and the

data processed to generate an intensity profile for the area of interest. The linewidth

is measured by applying a set threshold that determines the edges of the feature from

the points at which the intensity crosses the threshold. Finally the feature width is

calculated as the difference between the edge positions.

Although CD metrology using optical microscopy has traditionally used threshold

algorithms for calculating the edge position, they are usually non-linear in linewidth
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Figure 2.13: Optical CD measurement by applying a threshold to a light intensity profile.

(in particular for small features) and suffer from optical proximity effects (OPE).

For this reason correction offsets have to be applied to compensate for the errors

introduced with the optical measurement. These errors are corrected with the use

of multi-point calibration techniques, each appropriate to the type, density and

dimension of the feature being measured. These corrections are usually determined

from measurements made on reference test sites, which unfortunately can become

complicated and impractical.

Laser scanning is another method for optical CD measurement where the beam from a

laser is scanned across the sample and scatters off the line edges producing an intensity

signal in a photodetector mounted alongside the microscope objective. This system

produces an intensity profile with two peaks at the line edges.

Although limited in resolution and thus becoming less useful as feature sizes reduce,

optical microscopy is still the first choice for metrology on large features. It remains

the primary inspection method in photomask fabrication environments where features

sizes are normally four times larger than as printed, although phase shift and optical

proximity correction features are roughly half the size of the printed structures. In

addition there have been advancements with deep ultra-violet (DUV) sources, near-field

and immersion microscopy, which allow imaging for sub-micron process control [20].
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2.6.2 Critical Dimension Scanning Electron Microscopy (CD-SEM)

CD-SEM metrology has advanced significantly in the last 20 years and is now an

industry standard inspection technique for high-volume wafer manufacturing. A

scanning electron microscope uses a focused electron beam (e-beam) to produce

an image of a surface [67]. It is made up of a series of subsystems and the first is

the electron gun. This consists of an electrode source (cathode) and two electrodes

(grid and anode) which extract and accelerate the electrons. The first SEMs used

thermionic emission sources [45, 68], unlike modern systems which use field emission

sources [45]. The beam then goes through one or two sets of lens and apertures, which

condense the beam and control the incident beam current. Finally a set of scan coils

deflects the beam to raster scan it across the sample and a final objective lens focuses

the electrons to a point on the sample surface. The layout of a typical SEM column is

shown in figure 2.14.

Cathode

Anode

Lens 1

Lens 2

Grid

Aperture

Variable Aperture

Scan Coils

Objective Lens

Sample

Figure 2.14: Cross-sectional schematic of a standard SEM.

When the beam hits the surface of the sample it produces secondary electrons (SE) and

back scattered electrons (BSE). Secondary electrons can be collected by means of a grid
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placed on one side of the specimen, while high energy back scattered electrons require

detectors be mounted with a large solid angle of collection [67]. These signals are used

to produce the image of the surface and a different image will be obtained depending

on the signal being used to produce it.

For the measurement of linewidth with an SEM, an intensity profile from the image

of the feature being measured is extracted and a threshold is then applied, in a

similar manner to the optical technique. Given the differences in origin between

backscattered and secondary electrons it should come as no surprise that there will

be CD measurement variations between the two detection modes [23]. In addition an

SEM measurement is considerably complicated because the image contrast is not only

dependent on the material being scanned but also on the topography of the surface.

Charging of the specimen is a problem for SEM metrology. Non-conductive samples

accumulate charge when exposed to an e-beam, which can distort the image and even

possibly damage the specimen. A chrome-on-quartz mask is an example of a sample

charging in an SEM chamber, therefore producing images with poor contrast which

is undesirable when attempting to make accurate CD measurements [69]. However,

high-pressure SEM instrumentation in conjunction with large chamber and sample

transfer capabilities can be potentially used for charge neutralisation. The methodology

employs a gaseous environment to help compensate for the charge build-up that occurs

under irradiation with the e-beam.

2.6.3 Scanning Probe Microscopy (SPM) and the Atomic Force Microscope

(AFM)

Scanning probe microscopy uses a probe to scan a specimen and form an image of a

surface. The most common type of SPM is the atomic force microscope and unlike its

precursor, the scanning tunneling microscope (STM), it can image both conducting

and insulating surfaces [26, 27]. The AFM consists of a probe tip mounted on a

cantilever and a system which detects the vertical position of the tip. When the tip

is in close proximity to the sample surface it experiences van der Waals forces. The

surface information can be recorded by monitoring the deflection of the cantilever

when the sample is scanned beneath the tip. An AFM can operate in several imaging

modes. In contact mode the tip is brought close to the surface and the overall force is
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repulsive, while in non-contact mode the separation is greater and the tip is attracted

to the surface. In tapping or intermittent-contact mode the cantilever is driven to

oscillate up and down at near its resonance frequency and the probe tip is tapped

across the surface. This mode is less likely to damage the surface than contact AFM

because it eliminates lateral forces between the tip and the sample. In addition it is

more effective than non-contact mode when imaging surfaces with greater variation in

sample topography [70].

Linewidth characterisation with an AFM is very sensitive to the interactions between

probe tip and sample. The surface profile returned by the AFM will be affected by

the shape of the probe tip as is shown in figure 2.15 [55]. Since the probe scan will

depend on the probe shape, an error will be introduced in the measured linewidth and

line shape, which can be corrected if the probe geometry is known. A high resolution

AFM system can reach the atomic scale. However, it is very slow at performing

measurements. Although it is not routinely used when large numbers of measurements

are required, such as a process inspection environment, it is an excellent means for CD

calibration [28,71].

Sample

Surface

AFM Profile

Probe Tip

Cantilever

Figure 2.15: Schematic illustrating an AFM scan and the resulting surface profile as
affected by the tip shape.

2.6.4 Electrical Test Structures and Measurement Techniques

2.6.4.1 Cross-Bridge Test Structure

The electrical critical dimension (ECD) or linewidth measurement differs from all other

measurement techniques presented so far, in that the characteristic being measured

is the conducting width of a feature, rather than the physical width. The standard

technique for measuring ECD uses the cross-bridge test structure which is a combination
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of a Greek cross and a four-terminal bridge resistor [72, 73]. A schematic of such a

structure is shown in figure 2.16.

B

B F

D C E

L

WB

A

Figure 2.16: Diagram of cross-bridge electrical test structure for sheet resistance and
linewidth measurement.

The electrical width (Wb) of the bridge section between the voltage terminals B and F

is calculated with

Wb =
RSLb

Rb
(2.25)

where (Lb) is the length of the bridge as shown in figure (2.16) and (RS) is the sheet

resistance of the material and is extracted from the Greek cross section as in 2.5.4. The

value of Wb from equation (2.25) is the average value of the conductive width of the

bridge section. To measure the bridge resistance (Rb) two measurements are made and

the average resistance is calculated. Firstly a current IDE is forced between terminals

D and E and the voltage VBF between terminals B and F is measured. The resistance is

given by

Rb(+I) =
VBF

IDE
(2.26)

The measurement is repeated with the current reversed and the resistance is once again

determined

Rb(−I) =
VFB

IED
(2.27)
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The average bridge resistance is then calculated using

Rb =
(VBF + VFB)
(IDE + IED)

(2.28)

There are two assumptions made in the calculation of the electrical width. Firstly it is

assumed that the sheet resistance is uniform, so the value extracted at the Greek cross

section applies to the whole of the structure. Any error in the sheet resistance will be

directly translated to an error in the calculation of the linewidth in equation (2.25).

Therefore it is necessary that the accuracy of the sheet resistance measurements is

the same or better than that required for the linewidth measurement. Errors may

be introduced by limits in the resolution of the voltmeter used in the Greek cross

measurement or by non-uniformities in the thickness of the material.

The second assumption is that the length Lb of the bridge section is the designed length

between the centres of the voltage taps. However this is complicated by the effect of

the taps which effectively widen the bridge and lead to an over-estimation of the value

of linewidth [74, 75]. This tap induced error can be minimised so that no correction

is required by using the following design rules for the dimensions of the structure of

figure 2.17 [65,66]:

• Lb > 150µm

• Lb > Wb

• Wb ≥ Wt

Wt WB

LB

Figure 2.17: Schematic of bridge section showing which dimensions need to follow the
design rules.

Reference [76] suggests that greater attention must be given to the design of

cross-bridge structures with sub-micron geometries and presents additional guidelines

for their design. In some processes it may be undesirable to follow the design given
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above due to limitations in the structure layout. For example the length of the bridge

may have to be shorter than the design rules and reference [75] describes a modified

test structure which can measure the effect of the voltage taps and correct for them in

the measurement of a short bridge section.

2.6.4.2 Split-Cross-Bridge Test Structure

A variation to the cross-bridge structure is the split-cross-bridge resistor [74] which can

be used to measure the spacing between lines in addition to measuring sheet resistance

and linewidth. The layout of the structure can be seen in figure (2.18). It consists of

three sections; a Greek cross, a bridge resistor of length (LB) and a split-bridge resistor

of length (LS).

A B

CD

F G

HE

LB

WB LS

S W

Figure 2.18: Split-cross-bridge test structure used to measure sheet resistance, linewidth
and line-spacing.

The bridge resistor has a single conducting track of width WB = 2W+S. The split-bridge

section has two conducting channels, each of width (W) so that the effective width is

WS = 2W. Once the sheet resistance of the conducting material has been extracted, the

linewidth of both the bridge sections can be measured electrically. The width of the

split-bridge resistor is calculated in a similar manner to the bridge resistor from

WS =
RSLS

R′
S

(2.29)

where (R′
S) is the resistance of the split bridge. The line spacing (S) can then be

determined by subtracting WS from WB and is calculated with S = WB - 2W. Finally
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the pitch of the split bridge tracks can be calculated as P = W + S.

The design of the split-cross-bridge resistor follows from four geometrical design rules.

If these rules are applied the equations presented can be used directly to obtain results

that are accurate within 1%.

• The length (L) of the arm of the Greek cross must be at least twice the arm width

(W).

• The width (Wt) of the voltage taps must be designed at the minimum width

allowed. The distances, LB and LS , between the voltage taps must be large

enough to minimise the error in measuring the linewidth, which is caused by

disturbances in the channel current flow at the voltage taps.

• The length (Lt) of the voltage taps from the current carrying line must be at least

twice the width of the voltage taps.

• The distances (HB) and (HS) from the edge of the voltage taps to a change in the

linewidth must be at least twice the width of the channel.

2.7 Other Electrical Test Structures

Other electrical test structure designs have been presented in a number of publications,

which could be adapted for the characterisation of photomasks. This section will briefly

describe them and explain their use.

2.7.1 Alignment Test Structures

Overlay describes the positional accuracy with which a lithographic pattern is printed

on top of an existing pattern on wafer [35]. Overlay control is a vital part of lithographic

quality and like CD control it is essential for producing high-yield and high-performance

semiconductor devices. There is a wide range of electrical test structures which can

be used to measure errors in the alignment between successive layers in a process.

References [77, 78] propose a van der Pauw sheet resistance structure which can

be used to extract the misregistration between two masking layers, in both X and

Y directions simultaneously. The differential linewidth bridge is another structure,
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which is fabricated in a single conducting film and measures the overlay between

two mask layouts [79, 80]. The voltage-dividing potentiometer and its derivatives

are widely used for the measurement of alignment [81, 82]. Other test structures

for the measurement of misalignment include the triangular transistor [83,84], digital

alignment verniers [85,86] and the modified Wheatstone bridge structure [87].

For masks, pattern placement errors normally describe the deviation of the position

of a printed feature from a designed coordinate grid. However, for chrome-on-quartz

phase-shifting masks the measurement of chrome/phase registration is also very

important. The phase-shifters are fabricated by etching into the quartz substrate and

the required depth depends on the wavelength (λ) of the light intended to be used

with the mask and the refractive index (n) of the substrate material. The etch depth

required to give 180◦ phase-shift is calculated using [16]

d =
λ

2(n− 1)
(2.30)

The removal of the quartz changes the effective capacitance between two chrome

tracks on the mask and this effect can be used in a test structure to investigate the

misalignment between the two mask layers. An interdigitated on-mask capacitor test

structure [88–90] has been proposed for the measurement of the overlay between

the chrome and phase-shifting elements on phase-shifting masks. The layout of the

proposed interdigitated capacitor can be seen in figure 2.19 with part of the structure

expanded to show the interdigitated fingers and the phase-shifting regions. The

structure contains 2001 electrode fingers, giving a total of 2000 lateral capacitor

elements, with each being 1000µm long. A progressional offset technique (POT) [91,

92] has been used to extract the degree of alignment error between the metal and the

phase-shifter elements.

A photomask was fabricated with sets of POT arrays to measure X and Y-offsets. Each

array consists of test structures with different amounts of in built misalignments.

The test structure with the lowest capacitance will indicate the actual misalignment.

The prototype mask was exposed with a deliberate misalignment in X direction,

to help verify the suitability of the technique. Initial results exhibit a minimum

capacitance value, which confirms that the structures have the required sensitivity for
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Chrome Phase Shifter

Figure 2.19: Schematic layout of an interdigitated capacitor alignment test structure.

the measurement of the misalignment.

Similar interdigitated capacitor structures could be used to measure the depth of the

phase-shifting trenches, which is a very important parameter for phase-shifting masks.

The test structure would detect the change in the fringing field as a function of the

quartz etch depth. If the mask is intended for use with 193nm illumination and

nquartz=1.56 then the phase-shifter depth should be 172.3nm. Simulations at this

target depth on simple capacitive structures using the 2-D solver for interconnect

analysis Raphael [93], suggest that the depth sensitivity of a capacitor structure with

an electrode spacing of 400nm is ∼ 2 × 10−20 Fµm−1 per nm of offset. Therefore a test

structure with 2000 capacitive elements, each 2000µm long would have a sensitivity of

∼ 0.1pF per nm offset. Hence it may be possible to monitor the depth of phase-shifting

trenches using this method.

2.7.2 Electrical Test Structure for the Measurement of Contact Holes

A technique to electrically measure isolated features such as the size and area of contact

holes has been been proposed by B.J. Lin et al. [94]. The proposed test structure

consists of two 4-terminal bridge resistors for the extraction of the ECD and two

modified ones as shown in figure (2.12). A Greek cross sheet resistance monitor is

also included. The modified structures contain a large number of isolated holes in the

lines running in the X and Y direction. Because of the contact holes, the electrical

linewidth of the modified lines is reduced. Subtracting the reduced linewidth from that

of the solid reference line running in the same direction, will provide the information
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required to extract the size of the contact holes. Both the horizontal and vertical line

pairs are required to detect subtle hole dimension changes in the X and Y directions.

Contact Contact Contact Contact

WL

WC

LB

Dmin

Wt

Wt/2

Figure 2.20: Partial layout of bridge resistor test structures for the measurement of
contact holes.

The relationship between the hole size and the perturbed linewidth is taken from Hall’s

work [95]. This gives the resistance of a bar with one small round hole, as

R = RS [
LB

Wref
+

π

2
ε2 +

π2

24
ε4... (2.31)

where (LB) and (Wref ) are the length and the width of the reference bar respectively

(LB is also the length of the hollow bar). ε is the ratio of the hole diameter (WC) to

Wref . For a bar with many holes well separated from each other (isolated), so that the

current flow pattern near each hole is not disturbed by the presence of the others, the

total resistance of the line is evaluated by multiplying the second and higher order terms

in equation (2.31) by N (N is the total number of identical holes in the test structure).

Hence

R = RS [
L

Wref
+

Nπ

2
ε2 +

Nπ2

24
ε4 + ...] (2.32)

The expression in equation (2.32) can used to solve for the hole size with a given pair

of measured hollow and solid lines. By using
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Wref = RS
L

Rref
(2.33)

where (Rref ) is the resistance of the reference bar and

WL = RS
L

R
(2.34)

where (WL) is the width of the hollow bar, equation 2.32 can be rewritten to solve for

WC .

2.7.3 Matching Test Structures

Closely spaced IC devices which are identically designed form a matching pair.

By definition such devices are manufactured at the same time, and with the same

equipment and processing conditions. However, mismatches or offsets can always be

observed and when a large group of matched pairs is measured, the mismatch varies

from pair to pair. Measuring, quantifying and understanding the mismatch fluctuations

of IC components is very important. The knowledge gained from such studies improves

the performance of mismatch sensitive ICs, which leads to better electronic circuit

performances and higher product yields.

Early studies on parametric mismatch fluctuations for IC components, by McCreary [96]

and Shyu et al. [97], dealt with matching issues for Metal Oxide Semiconductor

(MOS) technology and switched capacitor applications. Significant work on electrical

measurement methods and characterisation techniques for matched IC components

has been made by Tuinhout [98]. There is a great number of matching related

papers in the literature. Examples which contributed to a wider understanding

include [99] which presented requirements for matching test structures focusing on

matched BJT pairs. In [100, 101] the systematic mismatch between MOSFET (Metal

Oxide Semiconductor Field-Effect Transistor) pairs was investigated. Reference [102]

employed a new resistor test structure approach and data analysis procedure to

identify mismatch effects associated with mask writing artefacts. A technique that

uses DC parametric measurement systems for measuring capacitor mismatch is

reported in [103]. Finally [101, 102, 104, 105] investigated the importance of robust
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measurement and analysis techniques.

2.8 Conclusions

Continuing advances have allowed optical lithography to remain the technology of

choice for semiconductor patterning. Although, photomasks have been an integral

component in the lithographic process, they are now more than a master pattern that

maps the IC design onto wafers. An introduction to the operation and fabrication

of photomasks has been made and some methods that offer resolution improvement

have been briefly described. In addition, the operating principles of resolution

enhancement techniques such as phase-shifting masks and off-axis illumination have

been presented. The effects of proximity and proximity correction techniques have

also been discussed. The advancement in photomask technologies has challenged

significantly the traditional photomask measurement and verification techniques,

which have to be able to fully characterise an advanced photomask process.

This chapter has also presented methods for the extraction of the sheet resistance of

thin conducting layers. The four-point probe is useful for un-patterned films. The

four-terminal van der Pauw method can be used to extract the sheet resistance of small,

arbitrarily shaped, samples of uniform thickness and resistivity. The Greek cross is a

special case of the van der Pauw structure with finite contacts and a scalable geometry

which makes it ideal for use as an on-mask test structure. In addition, it is a critical

component for the measurement of the electrical linewidth.

Critical dimension measurements are very important for the characterisation of the

photomask and the lithographic process. The operation and limitations of optical,

CD-SEM and AFM measurement techniques have been presented. OCD and CD-SEM

metrologies require a subjective decision to determine the feature edges, which can

lead to errors. AFM metrology is very sensitive, but is also slow and requires that the

tip shape is known for accurate measurements. Electrical linewidth measurements are

typically performed using a four-terminal Kelvin bridge resistor in combination with a

Greek cross sheet resistance structure. Although limited to conducting features, it is

a highly repeatable and cost effective technique. Furthermore, the basic cross-bridge

test structure can be adapted to measure many different parameters such as pitch,

40



Background

line-spacing or the diameter of contact holes.

Chapter 2 has also briefly reported a range of different test structures used to

measure the overlay between successive lithographic layers. A test structure for the

measurement of the misalignment between the chrome patterns and the phase-shifting

layers on a photomask was described. A similar test structure could be used for the

measuring the depth of the phase-shifting trenches on masks. Finally, matching test

structures and their measurement techniques were introduced. These could be adapted

for on-mask mismatch measurements.
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Chapter 3
Linewidth Measurement

Techniques for the Characterisation
of Binary and Alternating Aperture

Phase-Shifting Masks

3.1 Introduction and Early Work Background

Modern photolithographic enhancement techniques such as off-axis illumination,

immersion lithography, optical proximity correction and the use of phase-shifting

masks have driven advances in microelectronics in recent years. It is now possible,

through a combination of these technologies, to produce CMOS transistors with a gate

length that is less than half the wavelength of the light used in the photolithographic

system. Advanced photomasks using OPC or phase-shifting technologies are extremely

complex and expensive to manufacture and so the ability to test and characterise

them is becoming increasingly important. Traditionally, metrology and verification of

photomasks is performed using either optical or critical dimension scanning electron

microscopy, both of which require expensive equipment. Electrical measurements,

made with relatively inexpensive equipment, have the potential to be both faster and

more repeatable than both these methods.

Electrical linewidth measurement test structures have been designed in the past by

Lin et al. [106], to investigate binary and phase-shifting masks. Different photomask

schemes were used to print the structures on wafer, in order to examine exposure

latitude, depth of focus and proximity effects. Smith et al. [69, 107] at the University

of Edinburgh took this concept a step further by patterning the structures so they can

be electrically measured on the mask. Cross-bridge [72] test structures which were

originally developed to investigate metal damascene interconnect processes [108],

were modified for use on a prototype mask with the alternating aperture phase-shifting
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design [16] (Alt-PSM). The test structures were designed for measuring the sheet

resistance of the light blocking chrome material and the electrical critical dimension

of the on-mask features. Initial electrical measurement attempts showed that it is

extremely hard to probe through the chrome oxynitride anti-reflective coating (ARC)

covering the chromium layer. Therefore to achieve good electrical contact between

the probes and the chrome pads, the mask had to undergo further processing which

removed the ARC.

Further electrical measurements were made and the results compared very favourably

with measurements made on the same structures using a CD-SEM. In fact the CD-SEM

measurements proved difficult to make, as charging of the mask in the SEM chamber

led to images with poor contrast and long measurement times. This lowered the

measurement repeatability of the CD-SEM to a level which was significantly worse

than the ECD method. The initial work on references [69, 107] raised a number

of issues, so additional measurements, including AFM scans [88–90], were made to

further explain the results. The AFM scans confirmed that the process of removing the

ARC partially etched the chromium underneath in a way that lead to errors in some

of the sheet resistance and ECD measurements. The narrowest Greek cross structures

became very asymmetrical and did not have a constant thickness required by a van der

Pauw structure. Nevertheless the ECD technique was more repeatable than the CD-SEM

extraction, which was affected by the phase-shifting regions.

An enhanced test structure design for Alt-PSMs, that overcame the problems

encountered with the prototype mask, was fabricated and initial results were reported

in reference [109]. The new mask (PSM3920) was designed so that the ARC over

the probe pads would be exposed and removed during the phase-shift etch process.

However, the fabrication process was still under development, and the phase-shifting

elements did not get etched to the full depth required for an 180◦ phase difference.

Therefore the ARC was not completely removed over the pads and during electrical

measurements the probe tips accumulated ARC residue after a few probing cycles. A

secondary layout was prepared to selectively etch the ARC over the probe pads without

affecting the test structures themselves and this allowed the electrical measurement

of a full set of structures. The results from sheet resistance measurements showed

little or no variation with feature size and therefore no significant asymmetries from
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uneven chrome etching. This facilitated the extraction of the sheet resistance required

for the ECD measurement from a structure adjacent to where the ECD measurement is

performed. Using a local RS value reduces the possibility of errors being introduced by

variations in the chrome layer thickness. Nevertheless sheet resistance measurements

on the masks under investigation showed a chrome thickness variation of ≈1% across

100mm. This indicates that the uniformity of the chromium film is very good, as would

be expected from the specifications on advanced photomask plates. Typically the

thickness of the chrome layer is 70nm, while the ARC material covering the chrome

film is 30nm thick.

The work on this chapter continues from this point to further investigate PSM3290. A

second mask (PSM3926) was also designed and fabricated, with the same layout but

with the correct phase-shifter etch depth. This mask could be measured electrically

without any further processing required and the CD results were compared to those

from the prototype mask. The two masks were also measured optically with an industry

standard optical mask metrology tool and the complete sets of results were analysed to

investigate the capability of the two measurement techniques [110,111].

3.2 Test Structures and Photomask Layout

PSM3920 and PSM3926 consist of on-mask electrical cross-bridge test structures

and their design is illustrated in figure 3.1(a). Each structure is partitioned into a

four-terminal, 600µm long, Kelvin bridge resistor [65, 66, 72] and a Greek cross Van

der Pauw component [59, 60, 62] and their layouts are presented in figures 3.1(b)

and 3.1(c). The measurement procedures for these structures to extract the RS and

ECD are detailed in Chapter 2. In most structures the electrically measured lines are

surrounded by dummy features. These provide the layout needed to apply the phase

shift and are designed in a similar way to the Alt-PSM test sites described in [106].

As seen in figure 3.1(b) the chrome lines are surrounded by un-etched (white areas)

and phase-shifted etched quartz (gray areas) in an alternating nature. In addition the

Greek cross section uses the “L-Type” design described in [69, 107], where the dummy

unmeasured features follow the shape of the cross.

Both masks consist of a binary and a phase shifted section, each with 12 identical blocks
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Bridge Section see (b)

Greek Cross
Section 
see (c)

Probe Pads (ARC Etched)

(a) Schematic layout of Cross-bridge resistor
with on-mask pads.

Figure 3.1: Layout and close up view of Cross-bridge on-mask electrical test structure.

of on-mask test structures. The complete mask layout can be seen in figure 3.2(a). Each

block of structures has 126 cross-bridge pairs, split into 18 sets with on-mask feature

dimensions of 240, 260, 280, 300, 320, 340, 360, 380, 400, 500, 600, 700, 800, 900,

1000, 1100, 1200 and 1500nm (see figure 3.2(b)). Each set (see figure 3.2(c)) has

an isolated structure with no dummy features and six dense line structures with line

to space ratios (LSR) of 1:1, 1:1.5, 1:2, 1:3, 1:5 and 1:10. An LSR of 1:1 means that

the design line-spacing is equal to the linewidth while an LSR of 1:10 means that the

spacing is 10 times the linewidth. For example if the nominal CD of the chrome line is

500nm, then the space between the lines will vary from 500nm (1:1) to 5000nm (1:10).

For reference purposes the isolated lines, without any phase shift, are also included in

the phase-shifted block.
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(b) Expanded view of phase-shifted Kelvin bridge section.
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Measure
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(c) Expanded view of phase-shifted Greek cross section.

Figure 3.1: Layout and close up view of Cross-bridge on-mask electrical test structure
(continued).
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Binary On-Mask Test Structures
1 2 3 4 5 6 7 8 9 10 11 12

Phase Shifted 
On-Mask Test Structures

see
(b)

Printable
Test Structures

(a)

see (c)

(b)

1:1 1:1.5 1:2 1:3 1:5 1:10 Isolated

(c)

Figure 3.2: (a) Layout of alternating aperture phase-shifting masks PSM3920 and
PSM3926 (b) Block of on-mask test structures (c) Set of on-mask structures
for one feature dimension.

In addition to the on-mask test structures there are layouts of printable versions, which

can be used to pattern the structures on wafer when exposed by a 4X photolithography

system. Although the dimensions of the wafer-level features will be four times smaller

than the on-mask dimensions, the printable pads have been designed so that the wafer

structures can be probed with the standard 2×4 probe card used for the on-mask

measurements.

3.3 Electrical and Optical CD Measurements

Electrical and optical CD measurements were performed on blocks of binary and

phase-shifted structures, for both masks PSM3920 and PSM3926. The electrical

measurements were performed using an HP4062B Semiconductor Parametric Test

System [112] and a high resolution Solartron 7065 voltmeter [113]. To extract the
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optical CD values a MueTec <M5k> mask metrology system [22, 114, 115] using

248nm DUV illumination was used. The optical measurement procedure has been

described in Chapter 2. In practice, the process of extracting an accurate optical

CD can be complicated. The intensity profile is affected by the feature size and the

proximity of other features and calibration offsets are applied to correct for these

effects. These corrections are determined from measurements of reference artefacts

and are especially complicated when the feature sizes approach the wavelength of

light used to obtain the image. At present, the optical inspection tools used in mask

verification are often a generation behind the lithography systems so that 365nm i-line

light may be used to measure DUV masks. This problem is reduced because the mask

features are four times larger than the printed dimensions and for this work a mask

metrology system with DUV illumination is used. Nevertheless, the range of structures

measured was limited to nominal dimensions between 320nm and 1500nm, due to

the quality of the photomask image as the resolution limits of the metrology tool are

approached.

Plotting the CD results against the nominal dimensions is unhelpful as the wide range

of values tends to hide small changes and offsets in feature size, making it difficult

to observe any trends in the data. Therefore, the measured CD values are subtracted

from the nominal dimensions. This means that a positive value indicates a measured

width that is narrower than the designed dimension, while a negative value means

that the line appears wider than it should. The full electrical and optical results of the

measurements can be seen in figures 3.3 - 3.4 for PSM3920 and 3.5 - 3.6 for PSM3926.

1:1

Isolated

1:1.5

1:2

1:3

1:5

1:10

0 200 400 600 800 1000 1200 1400
-140

-120

-100
-80

0

20

80

140

Designed Width (nm)

D
es

ig
ne

d 
W

id
th

 –
M

ea
su

re
d 

C
D

 (
nm

)

-60
-40

-20

40
60

120

100

(a) Binary structures

1:1

Isolated

1:1.5

1:2

1:3

1:5

1:10

0 200 400 600 800 1000 1200 1400
-140

-120

-100
-80

0

20

80

140

Designed Width (nm)

D
es

ig
ne

d 
W

id
th

 –
M

ea
su

re
d 

C
D

 (
nm

)

-60
-40

-20

40
60

120

100

(b) Phase-shifted structures

Figure 3.3: Electrical CD measurement results from mask PSM3920 for a range of line to
space ratios.
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(a) Binary structures

1:1

Isolated

1:1.5

1:2

1:3

1:5

1:10

0 200 400 600 800 1000 1200 1400
-140

-120

-100
-80

0

20

80

140

Designed Width (nm)

D
es

ig
ne

d 
W

id
th

 –
M

ea
su

re
d 

C
D

 (
nm

)

-60
-40

-20

40
60

120

100

(b) Phase-shifted structures

Figure 3.4: Optical CD measurement results from mask PSM3920 for a range of line to
space ratios.
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(a) Binary structures
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(b) Phase-shifted structures

Figure 3.5: Electrical CD measurement results from mask PSM3926 for a range of line to
space ratios.
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(a) Binary structures
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(b) Phase-shifted structures

Figure 3.6: Optical CD measurement results from mask PSM3926 for a range of line to
space ratios.
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It is clear that the alternating phase-shifting elements have a significant effect on the

optical measurement, leading to an offset between the binary and phase-shifted results

for mask PSM3920. This is highlighted in the results of figure 3.4(b) from the block of

phase-shifted structures where the isolated reference lines, without phase-shift, appear

to be narrower than the structures with 1:10 LSR. This offset is not present in the

electrical measurement results from the same same structures, in figure 3.3(b). This

effect is similar to that observed with CD-SEM measurements on earlier on-mask test

structure work, where phase-shifted features appeared wider than binary lines [69,88,

90]. The electrical results from mask PSM3926 show similar patterns to PSM3920

for both binary and phase-shifted structures. This is also the case for the optical

results from the binary structures but the phase-shifted structures are quite different.

At nominal linewidths below 600nm, the optical measurement fails and the lines

appear significantly wider than expected. This indicates a serious issue with the optical

measurement of narrow phase-shifted features on PSM3926.

The electrical and optical results also show a change in the measurement offset with

proximity. While the isolated and widely spaced lines show a relatively small variation

with feature size, the most densely packed lines are measured as being significantly

wider and this effect increases as the dimensions are reduced. This can be seen in

figure 3.7, which compares electrical and optical results from structures with a 1:1 line

to space ratio.
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Figure 3.7: Comparison of electrical and optical measurement results from binary and
phase-shifted structures with 1:1 line to space ratio.

Although there is clearly a significant offset between results obtained by different

measurement methods, the trends of both sets of curves are similar for both masks,
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apart from the phase-shifted lines below 600nm on PSM3926. As the electrical results

reflect the actual physical structure, this suggests that the calibration of the optical

measurements of dense features is reasonably accurate but that an offset is required to

correct the phase-shifted results. This is not the case for more isolated features as is

shown in figure 3.8, which compares results from structures with a 1:10 line to space

ratio.
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Figure 3.8: Comparison of electrical and optical measurement results from binary and
phase-shifted structures with 1:10 line to space ratio.

For nominal feature sizes between 1500nm and 800nm, the results track each other

well with a constant offset between optical and electrical measurements. However,

below this value the electrical measurements indicate a reduction in feature size

while the optical CDs tend to increase. This finding is similar to results presented

in reference [116], where an optical tool was found to overestimate the dimensions of

isolated features smaller than 700nm when compared to AFM reference measurements.

The electrical measurements cannot be directly affected by the proximity of other

features, and represent the way in which proximity effects alter the dimensions during

fabrication of the mask. The optical measurements, on the other hand, depend on the

ability to obtain accurate images of the features, relevant to the calibration used. The

results suggest that this is difficult in the case of the narrowest isolated features, despite

them being resolvable by the microscope optics. The phase-shifted OCD results from

PSM3926 again show a significant error for structures with a designed linewidth below

600nm.

One possible reason for the observed effect is that the intensity does not reach a true

zero value under the narrow isolated features. However, the percentage intensity
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threshold for the CD measurement is still applied as if the full contrast was achieved.

This means that the threshold, and therefore the measurement point, is pushed up the

intensity curve to a different level, making the line appear wider. In the more dense

structures the maximum intensity in the image taken by the measurement system is

typically reduced, which balances the previous effect so that the threshold is more

representative of the true CD. These effects are illustrated in figure 3.9.
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Figure 3.9: Illustration of possible sources of errors with optical CD measurements.

The explanations offered so far for some of the issues with the optical measurements

do not explain the problem with the optical CD measurements on the narrowest

phase-shifted structures of mask PSM3926. Figure 3.10 shows a correlation plot of

the phase-shifted OCD against the binary OCD for the same designed width, for both

masks. Results from PSM3920 are well correlated with a small offset from the ideal,

probably caused by the sidewalls of the phase-shifting trenches. PSM3926 shows a

similar correlation down to a binary linewidth of about 600nm. Below this value the

apparent optical CD of the phase-shifted features becomes almost constant at around

680nm. A significant difference between the two masks is the depth of the quartz etch

used to create the phase-shifting trenches. The trench depths, measured optically on

standard test features, and the effective phase angle with 248nm DUV illumination are

presented in table 3.1 along with the target values.
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Figure 3.10: Correlation plot of phase-shifted against binary optical CD measurements.

Parameter Target PSM3920 PSM3926

Trench Depth 243nm 180nm 260nm

Phase Angle 180◦ 135◦ 195◦

Table 3.1: Measured and target phase-shift trench depths and phase angles.

In published on-mask test structure work [69,110] it was found that the phase-shifting

trenches can affect traditional optical CD and CD-SEM metrology methods. However,

the results from PSM3926 show that a much more extreme error can be introduced

into the optical measurement, which is most likely caused by the the presence of the

phase-shifting trench. This error is illustrated in figure 3.11, which shows two images

captured from structures on PSM3926 using the MueTec mask metrology system. The

nominal linewidth in each case is 400nm.

All of the lines shown in figure 3.11 should have the same width, but there appear

to be two different widths in the images obtained from the metrology tool. The

optically measured line is marked in each case and the extracted CDs are 682.6nm

for figure 3.11(a) and 681.3nm for figure 3.11(b). This “thick/thin” line effect can

be interpreted as the result of an error introduced by the phase-shifting elements,

as it is not observed with the binary structures on this mask. Comparisons between

electrical and optical measurements (see figures 3.7(b) and 3.8(b)) suggest that this is

an optical effect related to the phase-shifting elements as only these results are affected.

Figure 3.12 shows an image from a 400nm nominally wide phase-shifted structure

with an LSR of 1:3 on mask PSM3920. The image was captured using the MueTec
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Measured Line

(a) Line to space ratio 1:3

Measured Line

(b) Line to space ratio 1:5

Figure 3.11: MueTec (M5k) images of phase-shifted structures from mask PSM3926.

tool, however, all the lines in the structure appear to have the same width and the

phase-shifters do not cause the optical effect seen with PSM3926.

Measured Line

Figure 3.12: MueTec (M5k) image of phase-shifted structure with 1:3 line to space ratio
from mask PSM3920.

To further investigate this effect high resolution images were obtained with a Focused

Ion Beam (FIB) mask repair tool. Figure 3.13 shows images of the two structures from

mask PSM3926, captured with a Seiko Instruments SIR 500 [117] repair system. It

should be noted that for the purposes of this investigation the contrast of the images

has been enhanced using the image processing software ImageJ. The high resolution

images indicate that there is an artefact coinciding with the side of the chrome feature

which is affected by the phase-shifter for the lines that were found to be optically

wider. However, the images confirm that the “thick/thin” line effect is not a physical

fabrication problem with the chrome tracks. The electrical technique is measuring the
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conducting width of the chrome lines correctly and so the artefact visible in the FIB

images, which also causes the optical effect, should be related to the etched quartz

forming the phase-shifters.

Artefact coinciding with wider line

(a) Line to space ratio 1:3 (b) Line to space ratio 1:5

Figure 3.13: FIB images of phase-shifted structures from mask PSM3926.

The phase-shifting mask is fabricated in a two stage process. First, the chrome layer

is patterned to form the light blocking features and then the phase-shifting areas

are etched into the quartz substrate. A possible reason for the effects seen is an

overlay error between the chrome layout and the phase-shifting layer. The ideal

phase-shifting design and a design with misalignment between the two layers can be

seen in figure 3.14. Measurements were made to check the misalignment of the 2nd

layer processing and the mean offset taken from five targets was found to be +80nm in

X and +280nm in Y. This offset in the Y-axis is large enough to give an overlap in the

trench of the structures and this effect should be worse for the narrowest tracks.

On an SEM the intensity of a signal is dependent on the number of electrons

scattered towards the detector by the sample surface. Metal surfaces and the edges

of features scatter more of the electron beam and so these appear brighter in the

image. Reference [90] shows an example where an SEM misinterprets the width of an

on-mask phase-shifted structure. In the image captured by the SEM the sidewall of the

etched phase-shifted element gives a stronger signal than the edge of a chrome feature

and this makes the phase-shifted line to appear wider. In a FIB system the surface of a

sample is imaged in a similar way to an electron beam, where the generated secondary
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Figure 3.14: Schematic diagrams of phase-shifted structures showing no misalignment or
with misaligned chrome and phase-shifting layers.

electrons or ions are collected and analyzed as signals to form an image. Therefore

the artefacts observed on the FIB images in figures 3.13(a) and 3.13(b) most likely

represent a stronger signal by the edge of the sidewall in the misaligned phase-shifter.

To explain the optically wider lines of figures 3.11(a) and 3.11(b) the effect of the

etched quartz step off the side of a chrome line should be considered (as shown

in figure 3.14(b)). For a perfectly etched phase-shifter trench the transition from

un-etched to etched quartz will result in a very narrow dark (practically zero intensity)

line during exposure. In fact these features are known to print into resist when using

etched-quartz PSMs. In the case of PSM3926 the positioning is off-target and the etched

sidewall is probably sloping to some extent. This would blur the line caused by this

edge but it would still represent a drop in optical intensity along the edge of the shifter

trench. This drop in intensity will have the effect of moving the right edge of the

adjacent left chrome line, as perceived by the optical metrology tool, further to the

right thereby making the line appear wider. Compensating for a random misalignment

via specialised calibration strategies would be practically impossible.

This is another indication of the usefulness of electrical measurements of CD on

advanced photomasks where resolution enhancement features can have a negative

effect on traditional metrology techniques. It is also possible that the effects seen are

more of a problem when measuring CDs using an optical measurement tool operating

at the wavelength for which the PSM was designed.
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3.4 Conclusions

A key result from this comparison of electrical and optical CD metrology is that the ECD

results from both binary and phase-shifted features track each other very closely. The

optical measurements from mask PSM3920 also track each other, but with a significant

offset between the binary and phase-shifted structures. This highlights the subjective

nature of optical metrology where a measurement is made of an image of the structure

rather than of the structure itself. The optical results from PSM3926 also show an

offset between binary and phase-shifted structures for wider features but where the

designed CD is less than 600nm the measurement fails and the phase-shifted lines

appear significantly wider than indicated by the electrical tests.

Another issue with the optical measurements is the difference between the results from

dense and isolated binary structures. While the optical and electrical measurements of

the dense structures with a 1:1 LSR track each other with a reasonably constant offset,

the same cannot be said for the more isolated lines with a 1:10 LSR. For dimensions

below 800nm the optical and electrical results do not follow the same trend and, as

the ECD measurements are not affected by proximity in the measurement, this suggests

that the optical system using a single calibration reference is struggling to measure

these features accurately. This indicates the need for optical tools to have a series of

calibrations, each appropriate to the type and density of feature being measured. The

electrical characterisation of linewidth behaviour can be seen as a means of identifying

limitations in optical metrology. This will help to better understand and manage the

range of calibrations that are required to support the use of optical metrology tools.

The issue with the optical measurement of the narrowest phase-shifted structures on

PSM3926 is more complex. It may be that the “thick/thin” effect of the misaligned

phase-shifters is more severe with optical metrology using illumination at or near

the wavelength that the mask is designed. However, this study showed that it is the

combination of different types of measurement methods which helped identify the

misalignment between the mask layers. In the case of the electrical technique the

width of the affected chrome lines could be measured accurately but the results could

not suggest a fabrication problem with the non conducting phase-shifting material.

The error introduced in the optical measurement was not the result of incorrectly

resolved lines, as the ECD method verified, but this lead to further investigation. The
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work presented, has shown that the use of more than one measurement technique,

complementing each other, can prove valuable when characterising an advanced

photomask process.
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Chapter 4
Development of Electrical On-Mask

CD Test Structures Based On
Optical Metrology Features

4.1 Introduction

Industry standard inspection of feature size and shape is usually performed at the

wafer level using an SEM. This provides the manufacturer with information about the

deviations between the final fabricated product and the CAD layout. However, with the

rapid miniaturisation that has been seen over the past few years the CAD layout must be

modified to produce the desired final pattern on the wafer. This modification is known

as Optical Proximity Correction (OPC) and a highly sophisticated technology has grown

up around it. The correction applied addresses two major error sources, these being the

errors generated at the time of mask manufacture and those from the imaging system

that reproduced the mask pattern on the wafer. The standard approach to generate

the data for automated proximity correction requires a set of patterned features to be

measured using an optical tool or a CD-SEM.

The work presented in Chapter 4 proposes electrical test structures to characterise

the photomask thereby decoupling the two error sources to produce a more accurate

and reproducable final pattern. The test structures are electrical equivalents to a set

of industry standard optical test sites and perform the same task with a number of

advantages. These measurements are designed to extract information about proximity

effects in the mask making process and to generate rules or models for the correction

of the mask designs.

The first part of this chapter presents a number of structures which have been

designed and fabricated on a mask plate without any correction for e-beam proximity

effects [118]. The electrical test structures are based on the Kelvin bridge resistor to
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measure the widths of isolated and densely packed lines and spaces. Electrical results

from the test mask are presented and compared with optical measurements of the

same structures made with an industry standard mask metrology tool. The second

part investigates the feasibility of adapting optical patterns to electrically measure the

separation between abutting ends of lines, spaces and corners and the diameter of

contacts and holes. Simulations are performed to examine the sensitivity of capacitive

and resistive structures to feature dimension variations and structure designs are

proposed for on-mask metrology.

4.2 Test Structures and Photomask Layout

4.2.1 Optical Test Structures

The starting point for this work is a set of industry standard on-wafer metrology test

patterns (version 11) provided by Mentor Graphics (MG) [119]. The isolated and

densely packed line arrangements, presented in figure 4.1, are used for investigating

proximity distortion effects, which in turn helps to determine the rules and calculate the

parameters required for proximity correction schemes. In addition experimental data

taken from measurements on such patterns are used to optimise optical lithography

process simulation models. By adapting the test set for photomask metrology similar

information can extracted for the mask making process. Furthermore real reference

data can be used at the mask step of the lithographic models, which typically do not

take in to account mask effects but assume nominal dimensions and conditions for the

mask as defined in the CAD data.

Measurement
Site

Isolated Line Padded Line Dense Line Inverse Isolated Line
(isolated space)

Inverse Dense Line
(dense space)

Figure 4.1: Layouts of the Mentor Graphics optical test features.
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4.2.2 Electrical Test Structures

A prototype binary mask (MSN5757) was fabricated to investigate the proposed

measurement test sites. It includes on-mask, electrical test structures based on the well

understood cross-bridge resistor [72] and an extension of it, termed the split-cross

bridge resistor [74]. The test structures are patterned into the conductive chrome

layer of the photomask and their layouts are illustrated in figures 4.2 and 4.3. The

photomask also includes an anti-reflective coating (ARC) of insulating chromium

oxynitride and so a second level of patterning is required to remove the ARC over the

pads so that good electrical contacts can be made. The nominal linewidth of a bridge is

(WB), the spacing between two lines is (S) and the width of the two half lines in a split

bridge is (W). The measurement techniques for these structures have been presented

in Chapter 2. To provide clear and unambiguous information about the capability of

the fundamental mask making process, this mask has been written without any of the

correction strategies usually applied for manufacture.

Probe Pad Openings

(a) Dense cross-bridge resistor

Probe Pad Openings

(b) Isolated split-bridge resistor

Figure 4.2: Schematic layouts of the on-mask test structures.

The mask layout (see figure 4.4(a)) contains 9 blocks of identical test structures (A1-C3)

and two blocks of large pad printable test structures designed to be measured when

reduced by a 4X photolithography system. Each block (see figure 4.4(b)) consists of

108 structures which are split into 9 sets of 12 structures designed to characterise the

feature arrangements presented in figure 4.1. Seven sets consist of isolated and dense

cross-bridge resistors with nominal widths (WB) ranging from 480 to 4800nm. The two
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Bridge Length = 400µm

WB

Voltage TapsContact Contact Contact

Contact

Contact Contact

Greek Cross 
Section

(a) Dense cross-bridge section

Greek Cross 
Section Bridge Length = 400µm

Split Bridge Length = 400µm

WB W S

(b) Isolated split-bridge section

Figure 4.3: Expanded views of the on-mask test structures.

remaining sets consist of isolated and dense split-cross-bridge structures with nominal

line-spacings (S) ranging from 480 to 4800nm. The dimensions of the on-mask features

are four times larger than those in the Mentor test set, which are defined for on-wafer

metrology. The complete range of designed dimensions for the on-mask features is

listed bellow.

• Isolated set, WB (nm): 480, 520, 560, 600, 680, 720, 880, 1120, 1480, 2120,

3120, 4800.

• Dense set, Constant WB = 480nm, S (nm): 560, 600, 640, 680, 720, 800, 960,

1160, 1560, 2200, 3200, 4840.

• Dense set, Constant WB = 520nm, S (nm): 520, 560, 600, 640, 680, 720, 760,

800, 840, 920, 960, 1040, 1120, 1240, 1360, 1560, 1720, 1960, 2240, 2600,

3000, 3520, 4080, 4800.

• Dense set, Constant WB = 560nm, S (nm): 480, 520, 560, 600, 680, 720, 880,

1120, 1480, 2120, 3120, 4760.

• Dense set, Constant WB = 600nm, S (nm): 440, 480, 520, 560, 600, 680, 840,

1080, 1440, 2080, 3080, 4720.
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A2A1

B3B2B1

C3C2C1

Printable

Test

Structures

A3

On Mask Test Structures

(a) Layout of binary mask (MSN5757) (b) Expanded view of a block of
on-mask test structures

Figure 4.4: Layout of binary mask (MSN5757) with a close up view of one block of
on-mask test structures.

• Inverse Isolated set, Constant W = 520nm, S (nm): 480, 520, 560, 600, 640,

720, 880, 1120, 1480, 2120, 3120, 4800.

• Inverse Dense set, Constant S = 520nm, W (nm): 520, 560, 600, 640, 680, 800,

920, 1120, 1520, 2160, 3160, 4800.

4.3 Measurements and Results

Electrical measurements on mask MSN5757 were made using an HP4062B

Semiconductor Parametric Test System [112] and a high resolution Solartron 7065

voltmeter [113], which has been connected to the 4062B system. The HP4062B

consists of an HP4141B DC source monitor tool with four source monitor units

(SMUs), an HP4280A capacitance meter, and an HP4085A switching matrix. The

system is programmed and controlled from an HP9000 series 300 workstation running

HP-BASIC 5.1. The current source for the resistance measurement is one of the SMUs

on the HP4141B, while the voltage is measured with the Solartron voltmeter. The

Solartron has a 1µV sensitivity on a range of ±10mV, which is within the voltage

sensing resolution requirements of this work. In addition the accuracy of the tool

is within ±0.001% of the measured voltage. The current through the structure is

measured with another SMU on the HP4141B, in voltage source mode, which is set to
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0V. The range of force currents available from one of the SMU runs from ±100mA to

±1000pA with a four digit resolution.

Optical measurements were made with a 248nm DUV (MueTec <M5k>) dedicated

photomask CD metrology system [22, 114, 115]. This tool has been extensively

characterised in a reticle production environment and demonstrated the ability to

resolve sub-100nm chrome lines, with a usable measurable line and space resolution

down to 200nm [22].

4.3.1 Short and Long-Term CD Measurement Repeatability

To test the repeatability of the electrical measurement technique with forced current,

the ECDs of isolated lines were measured ten times, with the test structures being

reprobed for each measurement. A current of 500µA was chosen as this gave the lowest

short term standard deviation (σ), for currents between 10µA and 1mA. This is less than

0.4nm or a 0.05% variation, for structures with nominal CD values between 480nm and

4800nm. For long-term stability testing the electrical CDs were sequentially measured

ten times each day for five consecutive days, with the structures being reprobed each

day. This gave a σECD <0.8nm, i.e. less than 0.08% variation. The purpose of

longer-term repeatability testing is to observe variations which may be the result of

changes in the temperature of the measurement environment or due to instrumentation

drift. Whilst five days have been deemed a long-term period for the purposes of this

work, repeatability verification in an industrial production environment would normally

require many weeks of testing, with many measurement cycles performed each day.

Optical CD measurements were repeated three times on the same structures and

gave a short-term σOCD <0.5nm for all dimensions, i.e. a variation below 0.1%

for all measured linewidths. Although optical long-term repeatability testing was

not performed using mask MSN5757, reference [22] reports a 3σOCD <0.5nm for

sub-micron isolated lines on a binary chrome-on-glass mask measured with the same

<M5k> tool.
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4.3.2 Linewidth Measurements on Isolated and Dense Features

Electrical and optical CDs have been measured from one set (part of block B2) of

isolated structures. The measured linewidths have been subtracted from the designed

dimensions and the results are presented in figure 4.5. All of the isolated lines appear

narrower than the designed CDs, but the optical and electrical results do not show the

same trends. ECD results suggest that for sub-micron dimensions the fabricated lines

become significantly narrower from the nominal as their design width decreases. This

could be attributed to the exposure of the resist or the etching of the chrome being

feature size dependent. On the other hand for nominal widths <720nm the optical

results indicate an increase in feature size as the design width decreases.
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Figure 4.5: Comparison of ECD and optical results from isolated structures for a range of
dimensions.

The optical measurements depend on the ability to obtain accurate images from which

to extract the width of the features. The results suggest that this is not the case for the

narrowest features, although they can be clearly resolved. One possible reason for this

is that for narrow isolated features the light intensity range is reduced, however the

percentage threshold is still applied. This shifts the threshold upwards in the intensity

curve to a level that positions the edges of the feature at a greater distance between

them making the line appear wider.

Although a multi-point calibration for isolated features has been applied to the optical

tool used for these measurements, the reference mask used only allows the calibration

of linewidths ≥700nm and this is directly reflected in the results. The electrical CD
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offset is almost constant for dimensions wider than 1.5µm, while the optical offset

increases with the designed width. This again suggests that the optical tool requires

better calibration.

The electrical and optical linewidths for one set of 600nm wide dense line structures

were extracted and the results are shown in figure 4.6. For line-spacings >1.5µm,

the ECD and optical results track each other well with a nearly constant offset (<2nm

variation for both types of measurements). The proximity of neighbouring features

which are separated by over 1.5µm does not appear to affect the CD and so dense line

formations at such distances can be considered isolated.
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Figure 4.6: Comparison of ECD and optical results from 600nm wide dense structures for
a range of line to space ratios.

For structures with line-spacings <1.5µm the CD offset decreases as the line-spacing

decreases up to the point where lines appear wider than the nominal width. This

is an indication that the proximity of the neighbouring features is having an effect

on the CD. In addition, it can be observed that the offset between the optical and

electrical measurements does not remain constant when the spacing is below 800nm.

The electrical measurements indicate how proximity effects alter the dimensions of the

features during the mask fabrication process, while for the optical technique this effect

is also compounded with the optical measurement itself. In particular proximity effects

caused by the convolution of the intensity profiles of adjacent lines introduce errors in

the determination of the line edge location and thus the measured OCD, as reported in

reference [120].

66



Development of Electrical On-Mask CD Test Structures Based On Optical Metrology
Features

Calibration offsets have to be applied to the optical tool to correct for these effects. It

should be noted that in this case the calibration reference plate used does not contain

any dense features and so should be considered raw data. The ECD results show that

the measured lines are wider than their design width when the line-spacing is less than

the nominal width of the lines. In other words when the line to space ratio of the dense

pattern is greater than unity, the measured lines are electrically wider than designed. It

can also be observed that with optical measurements dense lines with spacings below

∼1µm appear to be wider than the nominal CD.

4.3.3 Line-Spacing Measurements on Isolated and Dense Features

The line-spacing in the split bridge structures can be measured directly with the optical

tool. The electrical measurement is more complicated and both the solid bridge width

(Wb) and the widths of the two half lines (W ) are required. The line-spacing S is then

Wb − 2W . Optical and electrical line-spacing results from one set of inverse isolated

structures are presented in figure 4.7.
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Figure 4.7: Comparison of electrical and optical line-spacing results.

For nominal line-spacing larger than 880nm the measured values appear wider than

designed for both measurement methods. Furthermore, for spacing dimensions

>1.5µm the offset is almost constant. For nominal spacing values <880nm there is

a rapid change in the offset as dimensions reduce, but the difference between the

optical and electrical measurements remains constant. For both results the extracted

spacings get narrower as dimensions reduce. This is due to proximity effects between
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the internal sides of the abutting tracks forming the spacing. This effectively increases

the fabricated width of the lines but decreases their line-spacing. One interesting thing

to note is that both techniques detect a change in the trends of the curves between

520nm and 560nm spacings. This is most clear in the electrical results and most likely

represents a real effect on the mask.

The inverse dense set consists of dense line features with varying linewidths. The

nominal line-spacing between the split-lines (and between the surrounding dummy

lines) is 520nm for all structures. The split-lines are the two abutting half-lines of

each structure defining the line-spacing under investigation. Optical and electrical

line-spacing results from one set of inverse dense structures (that of block B2) are

presented in figure 4.8.
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Figure 4.8: Comparison of electrical and optical line-spacing results from dense structures.

Both measurement techniques show the measured line-spacing to be narrower than the

nominal value; however, the offset between the two methods is not constant except

for a small range of split-linewidths. It can be seen that for sub-micron split-lines

the offset between the measured line-spacing and the design target decreases as the

width of the split-lines decreases. Since the nominal line-spacing remains constant

for all structures, the split-line to space ratio decreases as the width of the split-line

decreases. Split-lines with smaller split-line to space ratio appear more narrow (from

the nominal) than the lines with a higher ratio. This in turn makes the measured

line-spacing appear wider, causing the decrease in the offset observed in figure 4.8. The

unexpected change in the trend between 680nm and 640nm tracks is most likely caused

by a local effect on the mask and not a measurement error, as it has been detected by
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both measurement techniques. In addition, for sub-micron split-lines the line-spacing

offset between the two measurement techniques is not constant, but increases as the

split-lines get wider. This effect is similar to the CD offset variations observed with

the dense lines of section 4.3.2. For the optical measurement the determination of the

location of the edges of a line or space feature and consequently the measured OCD, is

affected by the proximity of adjacent feature edges.

It is only for linewidths between 920nm and 2160nm that the curves of figure 4.8 track

each other reasonably well and with a nearly constant offset. For split-lines wider than

2160nm the optical line-spacing offset seems to level to a nearly constant value (<2nm

variation). This is expected since the split-lines have become wide enough that further

increases in their linewidth does not alter the effect they have on the dimensions of

the spacing between them. This is not the case for the electrical results, where the

offset reduces significantly. This effect is almost certainly caused by the isolated bridge

which has been used as a reference for the electrical calculation of the line-spacing.

The calculation assumes that the outer width of the split-lines is the same as that of the

solid bridge line. This is not the case here as the split-lines are surrounded by dummy

features. There are proximity effects on the inner and outer edges of the split-lines

although the line-spacing calculation should only depend on the inner sides of the

split-lines which become wider. The proximity of the outer edges of the split-lines with

the dummy features alters the outer width of the fabricated split-lines in a different

manner to that of the reference bridge line. Therefore, the trend of the electrical

line-spacing is masked by the above effect for these dimensions and the optical results

can be trusted more confidently. This design error was modified for the next mask,

which includes proximity corrections and initial results suggest that the two techniques

track each other. A detailed analysis of these results are presented in the next chapter.

4.4 Investigation of Resistive and Capacitive Test Structures

for the Characterisation of Optical Features

The complete Mentor Graphics test set includes patterns for measuring the separation

between line and corner ends, as well as measuring the dimensions of contacts and

holes. Distortion effects such as line-end shortening and corner rounding contribute
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to the loss of pattern fidelity of features, which is critical for device functionality. This

section proposes electrical test structures and their limitations, for characterising these

features. This has been performed using simulations which investigate the effects of

altering the critical feature dimensions.

4.4.1 Line End and Corner Patterns

The line-end and corner MG patterns presented in figure 4.9 are used to measure the

separation between ends of line and corner features. The line-end test pattern consists

of two adjacent lines separated by a gap (G). The proposed set of dimensions includes

features with linewidths (WL) ranging from 0.52 to 2.40µm and gaps ranging from

0.44 to 2.40µm. The dense line-end pattern consists of six sets of line pairs, each

separated by a line-spacing (SL). For each pair there is a gap G between the abutting

line ends. The are two sets of lines with different widths and line-spacings and each

set has a number of structures with different gaps between the line-ends. The range

of the gaps is from 0.44 to 2.40µm for WL, SL = 0.52µm and from 0.64 to 2.40µm

for WL, SL = 0.72µm. The corner pattern consists of two lines with triangular shaped

line-ends (corners) which are separated by a gap. The range of dimensions includes

two sets of lines with different widths and each set has a number of structures with

different corner gaps. The range of the corner gaps is from 0.52 to 4.80µm for WL =

0.52µm and from 0.72 to 4.80µm for WL = 0.72µm. Simulations for chrome-on-quartz

capacitive structures have been performed to investigate the use of test structures to

measure the gap between the two ends of the features. The software used was the

three-dimensional (3D) solver of the interconnect analysis software, Raphael [93].

(a) Line-end test pattern. (b) Dense line-end test pattern. (c) Corner test pattern.

Figure 4.9: Mentor Graphics optical test patterns.

For line-end patterns the simulated structure consists of two tracks on a substrate
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with a gap between them. The two electrodes are connected to 1V (E1) and 0V (E2)

respectively and so a single capacitance is estimated. The simulation area for such a

structure is presented in figure 4.10.

1µm

1µm
WL

Air

Quartz

E1

E2

Gap

100nm

Figure 4.10: Three dimensional simulation environment used to model an on-mask
capacitor test structure for the measurement of the gap between two
line-ends.

A number of simulations for different linewidths and gaps have been performed and

the results are presented in figure 4.11. These indicate that a variation of 1nm from the

nominal gap between the lines will change the capacitance between the two electrodes

by ≈10−20F. An HP 4280A 1MHZ C-Meter/CV Plotter [121] with a 0.1% accuracy on

a 1fF - 1.9nF range can be used for such measurement. However, it will not detect

any changes in the capacitance which are less than 1fF. Therefore, an on-mask test

structure designed as indicated in figure 4.10 will not be sensitive to this magnitude of

gap variation between the lines.
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Figure 4.11: Simulated capacitance against line-end gap for a range of linewidths.

A test structure with 100,000 isolated line-end pairs as shown in figure 4.12 will have
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the necessary sensitivity for the proposed measurement. For the features to be isolated,

the spacing (S) between the adjacent pairs must be 1.5µm or greater. A structure

consisting of the widest lines will be 390mm long, so in order to achieve a measurable

change in the capacitance a narrow and long structure is required. However, the area

of the standard mask plate is 152×152mm and so the required dimensions make the

fabrication of this structure not feasible.

E1

E2

S

Gap
WL

Probe
Pads

Figure 4.12: Schematic layout of proposed capacitive test structure for measuring the gap
between isolated line-end pairs.

Similar simulations were performed for the dense line-end pattern. The simulated

structure consisted of six sets of line pairs on a quartz substrate with a gap between

the line-ends of each pair. The two electrodes for each line pair are connected to 1V

(T1) and 0V (T2) respectively and so there are effectively six lateral capacitances. The

simulation area for such a structure is presented in figure 4.13.

Simulations for different gaps have been performed and the capacitance results suggest

that a variation of 1nm in the gap between the line-ends of each pair will alter the

overall capacitance of the simulated structure by ≈5×10−20F. If the proposed design

was to be implemented, the on-mask structure would again not have the required

sensitivity. To achieve the required sensitivity, the test structure should consist of

a minimum of 130,000 dense-line sets. For the largest dimensions, the proposed

test structure will be 187.2mm wide and therefore, as before there is a dimensional

constraint preventing its fabrication on a standard mask plate.

Finally capacitive simulations were performed to investigate the use of a structure for

the measurement of the gap between corners. The simulated structure consists of two

tracks with triangular shaped abutting ends, on a quartz substrate with a gap between
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1µm

1µm SL

WL

T1

T2
Air

Quartz
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Figure 4.13: Three dimensional simulation environment used to model an on-mask
capacitor test structure for the measurement of the gap between pairs of
line-ends.

them. The two electrodes are connected to 1V (E1) and 0V (E2) respectively and so the

capacitance between two tracks is derived. The simulation area for such a structure is

presented in figure 4.14.

Air

Quartz

1µm

1µm
WL

Gap

100nm
E1

E2

Figure 4.14: Three dimensional simulation environment used to model an on-mask
capacitor test structure for the measurement of the gap between two corners.

Simulations for different gaps have been performed and the capacitance results indicate

that a variation of 1nm in the nominal gap between the corners of the lines will alter

the capacitance of the structure by ≈5×10−21F. An on-mask test structure with 100,000

corner pairs will provide the sensitivity required for the measurement of the corner

gaps. A variation of 1nm in the nominal gap between each corner pair, will result in

73



Development of Electrical On-Mask CD Test Structures Based On Optical Metrology
Features

a 1fF change in the overall capacitance of the test structure. This design presents the

same challenge as before, since the capacitive structures can be up to 222mm wide.

Therefore in order to reach a measurable change in the capacitance, the size of the test

structures will have to be larger, than what would be feasible for a standard mask plate.

Due to dimensional requirements, it would not be possible to pattern the simple

capacitive structures presented so far on a standard six inch mask. The inter-digitated

capacitor shown in figure 4.15, could minimise the required dimensions of the test

structures. Two capacitor fingers, each having a number of lines with a spacing between

them, can form line-end and corner arrangements. A large number of capacitor fingers

will provide the required sensitivity for the capacitance measurements and avoid the

size constraints.

Probe Pads

E1

E2

En

Gap

Line-end Pair

Figure 4.15: Schematic layout of an inter-digitated capacitor test structure for measuring
the gap between line-ends, for the line-end, dense line-end and corner test
patterns.

4.4.2 Inverse Line End Structure

The inverse line-end test pattern consists of a 16×16µm patch with two sections

removed to form inverse lines. The pattern which measures the separation between

the ends of abutting spaces can be seen in figure 4.16. The proposed set of dimensions

includes features sizes, with line spaces between 0.52 and 2.40µm and inverse gaps
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between 0.44 and 2.40µm. To investigate the use of a resistive test structure which will

enable the measurement of the inverse gap, simulations have been performed using the

two-dimensional (2D) solver of Raphael.

Figure 4.16: Mentor Graphics inverse line-end optical test pattern.

The simulated structure consists of the 16×16µm patch where two probe pads have

been placed at the top and bottom edges of the patch and are connected to 1V (E1) and

0V (E2) respectively. The simulation area for such a structure is presented in figure 4.17.

The sheet resistance of the conducting material has been set to RS = 1Ω/� and the

current distribution and resistance of the simulated structure are calculated.

16µm

16µm

E1

E2

Air

Inverse Gap

Line Space

Figure 4.17: 2D simulation area used to model an on-mask resistor test structure for the
measurement of the gap between the ends of line-spaces.

Simulations for different inverse gap and line space dimensions have been performed

and the resistance results are presented in figure 4.18. The simulation results suggest

that a variation in the nominal inverse gap of a structure will cause the resistance to

change and this rate of change increases as the line space of the structure increases.

For example a 1nm variation in the inverse gap of the structure will cause a change of

0.559mΩ in the resistance of a structure with a 0.52µm line space and 1.588mΩ for one
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with a 2.40µm line space. The non-linear behaviour of the results indicate that this rate

of change is higher for structures with narrower inverse gaps. A method of determining

whether the change in the resistance is caused by a variation in the inverse gap or the

line space (length of the resistor) is required.
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Figure 4.18: Simulated resistance against inverse gap for a number of different line space
dimensions.

4.4.3 Contact and Inverse Contact Structures

The shape of contact holes laid out by IC designers is not faithfully transferred to

the wafer. This is well known in wafer fabrication environments and is partly due

to the inability of the lithographic process to resolve the corners of contacts, which

as a consequence become rounded. In addition the mask pattern shape is not an

ideal representation of the design data and contacts suffer from corner rounding which

affects the printed wafer. These effects are not too significant at large geometries but

as dimensions reduce, the corner effect becomes more dominant and the contact starts

to take on a circular shape. For this reason the measurement of contact size can be very

important.

The contact test pattern consists of an isolated square post as shown in figure 4.19(a),

while the inverse contact presented in figure 4.19(b) consists of a 16x16µm patch with

a square hole at the center of it. The proposed set of dimensions includes contacts and

holes with widths ranging from 0.76 to 4.80µm.

Simulations of capacitive structures have been performed using the 2D solver of

Raphael, to investigate the use of an inter-digitated capacitor test structure for
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(a) Contact test pattern. (b) Inverse contact (hole) test pattern.

Figure 4.19: Mentor Graphics optical test patterns.

measuring the width of isolated chrome contacts. The simulated structure consists

of two electrodes on a quartz substrate, with a rectangular post placed between the

capacitor fingers. By taking advantage of the reflective boundary condition which

is applied in the simulation window, the two electrodes are reduced to half of their

size. The symmetry on the structure can then be exploited to accurately estimate the

lateral capacitance between two interior elements, of a structure with a large number

of electrode fingers. The simulation area for such structure is presented in figure 4.20.

The two chrome electrodes are connected to 1V (E1) and 0V (E2) respectively and so a

single lateral capacitance is estimated. The dimensions of interest are the width (WC)

of the square posts and the distance (Dmin) from the edges of a contact to the edges

of any other nearby features (Dmin represents the minimum distance required for a

feature to be considered isolated).

Quartz

Air

E1 E2
WC

Dmin

1µm

1µm
1µm

Figure 4.20: 2D simulation area used to model an inter-digitated capacitor test structure
for the measurement of the contact width.

A number of simulations for different contact widths and distances have been

performed and the capacitance results presented in figure 4.21. These suggest that the
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smallest capacitance change (which depends on the nominal WC and Dmin) caused by

1nm variation in the nominal contact width is 10−21F.
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Figure 4.21: Simulated capacitance against contact width for a number of different
distance (Dmin) dimensions.

Therefore, to achieve the required sensitivity, the actual on-mask test structures should

consist of 2000 capacitor elements (2001 electrode fingers) and the length (LE) of

each finger should be 2000µm. The layout of an inter-digitated capacitor test structure

can be seen in figure 4.22. For the largest proposed feature dimension the structures

will be 17.6mm wide, which is a feasible size to fabricate on a typical mask plate.

The simulated data can be used to estimate the actual capacitance of the suggested

test structures. To achieve this, the results of the simulations should be multiplied by

2000 to take in to account the number of capacitor elements and by 2000 to take in

to account the length of the fingers. It should be noted that these simulations are 2D

and therefore are for a structure consisting of 3 parallel conducting tracks. This is an

approximation to the actual inter-digitated capacitor which proposes that a number of

isolated square posts are placed between two capacitor fingers, instead of the simulated

single continuous track.

Test structures have been proposed in a number of publications to electrically measure

contact size. Freeman et al. [122] presented a digital vernier in a 2 by 12 pad array

using three masking layers, that could measure the contact width. Walton et al.

proposed methods of modelling the area of contact together with suggested techniques

for measuring the required dimensions [123].

The technique proposed by B.J. Lin et al. in reference [94] can be used to adapt

the inverse contact test pattern to an electrical equivalent. The test structure and
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Figure 4.22: Schematic layout of an inter-digitated capacitor test structure for measuring
the contact width.

measurement technique have been presented in Chapter 2, section 2.7.2 and measures

the diameter and area of isolated contact holes. The theoretical base for the relationship

between hole size and linewidth is taken from Hall’s work [95]. The equation for

measuring the resistance of a bar with holes has to be modified to correctly interpret

the electrical linewidths. An empirical modification is taken by calibrating the measured

perturbed linewidth with physical measurements. Therefore for a new test pattern or a

different imaging system the coefficients would have to be recalibrated. When the hole

size increases, the shape deviates from that of a circle and resembles the square shape

which is constantly changing as a function of size. At this point it is not possible to

derive an analytical expression and this could be the case for on-mask features which

are normally 4 or 5× larger than on wafer. However, as dimensions continue to reduce

the on-mask holes will also resemble the shape of a circle and the technique could be

applied.

4.5 Conclusions

In the first part of this chapter, a set of optical/SEM metrology reference test sites

provided by Mentor Graphics formed the basis for the design and fabrication of direct
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on-mask electrical equivalents to allow the measurement of linewidth and line-spacing

on these features. A prototype binary mask was fabricated with cross-bridge and

split-cross-bridge test structures to measure isolated and dense patterns. Electrical and

optical measurements were made and the ECD results have been shown to outperform

industry standard optical mask metrology and verification methods, especially for deep

sub-micron dimensions. The results suggest that the electrical technique is not affected

by the type, dimension, density or the proximity of the features, unlike the optical

technique where proximity effects are compounded with the measurement itself. This

is very important as effects seen when electrically characterising a feature can be more

confidently attributed to the mask fabrication process and not to the measurement

technique. Information which is unaffected by the ambiguities that may arise with

traditional light measurement techniques, can then be used to determine the rules and

calculate the parameters of one dimensional proximity effect models for the correction

or biasing of feature sizes.

The second part of this chapter investigated the feasibility of adapting other optical

measurement patterns to electrical equivalents, which could measure the separation

between line, space and corner ends, as well as the dimensions of contacts and holes.

2-D and 3-D simulations were performed to examine the sensitivity of capacitive

and resistive structures to feature dimension variations. It was found that for most

test patterns, an interdigitated capacitor design could have the sensitivity required

for detecting any variations in feature dimensions. This test structure has a smaller

footprint than the simulated capacitive equivalents, which in order to achieve a

measurable change, will be too large to be fabricated on a standard photomask. In

addition, a resistive structure has been proposed to detect variations in the separation

between line-space ends. Finally, a test structure which is a combination of cross-bridge

and modified cross-bridges structures could be used for measuring the diameter and

area of contact holes.
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Chapter 5
Comparison of Metrology

Techniques for the Characterisation
of Advanced Photomask Processes

5.1 Introduction

The use of direct electrical measurement of critical dimension on advanced photomask

plates has been presented in earlier chapters of the thesis and in a number of

publications [69, 88, 107, 110, 111, 118]. These have described the design, fabrication,

and testing of sheet resistance, electrical linewidth and pitch test structures

capable of being electrically probed on-mask. In addition to the on-mask electrical

measurements, more traditional metrology techniques such as CD scanning electron

microscopy [69, 88, 107] and optical CD [110, 111, 118] measurements have been

evaluated. The results have demonstrated that there are serious issues with the

extraction of linewidth from SEM or optical images of photomask features. This

is especially true for alternating aperture phase-shifting masks, and where optical

proximity effects dominate imaging.

Regardless of these results, persuading the mask-making community to integrate

on-mask electrical measurements into their manufacturing process has proved to be

difficult. One problem is the issue of probe needles coming into contact with the mask

surface, even though the electrical structures would be located outside the exposure

area, and the fact that delicate ICs are routinely probed during test. Another concern

is the nonphysical nature of the electrical measurement, which could mean that effects

observed do not transfer to dimensions of features on wafer. Finally, it should be

noted that although a traceable standard for photomask linewidth is available from

NIST [124] it is not employed throughout the industry and maskshops tend to still

carry out individual correlation exercises with each customer.

This chapter demonstrates the strength of on-mask electrical measurements to
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characterise advanced photomasks and compares the measurement results with

state-of-the-art metrology tools. The first section picks up from the work presented in

Chapter 4, which adapted industry standard optical metrology patterns into electrically

measured, on-mask test structures. A binary plate (MSN5757 - No PEC), written

without any corrections for e-beam proximity effects, was electrically and optically

measured, to investigate a fundamental photomask fabrication process. This section

describes the design and fabrication of binary, on-mask electrical test structures on

a chrome-on-quartz plate that was written using the GHOST proximity correction

technique [46]. Results from the electrical and optical measurements made on the

test structures, have been used to examine the effectiveness of this method of e-beam

proximity correction and to further evaluate the performance of the electrical and

optical metrology methods.

A subset of the electrically adapted structures were then measured using one of the few

CD atomic force microscope tools in the world that is fully calibrated to a CD reference

standard [125]. The second part of this chapter presents a comparison of CD-AFM

measurements with electrical and optical metrology results [126, 127]. In addition,

an analysis of the uncertainties involved in the different measurement techniques is

presented in order to aid comparison of the measurements. This analysis is based on the

methods described in reference [128], which compared different metrology techniques

used to measure submicrometre, single crystal silicon features.

5.2 CD Measurement Techniques for the Characterisation of

GHOST Proximity Corrected Features

5.2.1 Test Structures and Photomask Fabrication

A GHOSTed binary mask (MSN6659 - GHOST) was fabricated, in an attempt to

correct the proximity effects normally introduced in a standard e-beam lithography

exposure [118]. The GHOST technique works by performing a second exposure where

the inverse of the main pattern is written with a defocused electron beam of lower dose.

The beam conditions for the correction exposure are adjusted to mimic the shape of the

backscatter energy distribution produced by the design pattern exposure [46]. The

backscattered electron energy dose received by all points in the pattern is equalised,
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resulting in a pattern that will have an energy distribution within the resist that is

roughly uniform. A schematic of GHOST is shown in figure 5.1. This is intended to

produce features which are largely free from proximity induced CD variations.
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Figure 5.1: Schematic showing how GHOST can be used for proximity effect correction.

Mask MSN6659 [129] includes 9 identical blocks (A1-C3) of on-mask, electrical test

structures and two blocks of printable versions. Figure 5.2(a) is an image of the mask,

which also includes mismatch resistor structures [130], while the layout of a block of

on-mask structures is presented in figure 5.2(b). This design consists of 120 structures

split into 10 sets of 12 structures. Nine of the sets consist of isolated and dense, dark

and clear line combinations, which are identical to the test structure designs on mask

MSN5757 [118] presented in Chapter 4. The design of the cross-bridge [72] and

split-cross-bridge resistors [74] has been adapted from isolated and dense, line and

space optical test sites supplied by Mentor Graphics. These are normally used by the

mask making industry to investigate proximity effects or other fabrication artifacts, to

improve the current proximity correction models and thus increase the dimensional

agreement between rendered and designed features. A full description of these optical

test features can be found in Chapter 4 [118].

However, unlike MSN5757 each set of split-bridge structures on MSN6659 is confined

within a single row to minimise any CD variation due to the position of the test structure

on the mask. As these structures are used to characterise fabrication effects that are
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(a) Layout of MSN6659 (b) Block of on-mask test structures

Figure 5.2: Layout of the binary mask with a close up view of one block of on-mask test
structures.

proximity or dimension dependent, it is consequently very important to minimise any

other CD variations, which may be introduced during the writing process. Hence,

another alteration from the original design is that on MSN6659 the width of the bridge

voltage taps (Wt) is always equal to the minimum CD (480nm for this mask). This

was not the case for MSN5757 where Wt = WB (i.e., the designed linewidth of the

measured line). By keeping the width of the voltage taps at the smallest possible

dimension the electrical measurement error caused by current shunting at the taps

is minimised [66].

5.2.2 Linewidth Measurements on Isolated and Dense Features

Electrical and optical measurements were performed using the same tools as those

used in Chapter 4. Detailed information on the procedures employed to measure the

cross-bridge and split-bridge structures can be found in Chapter 2.

The linewidths for a set of isolated structures were measured electrically and optically.

The measured widths have been subtracted from the nominal widths and the results

are presented in figure 5.3. The electrical results from similar structures on MSN5757

are also included for reference and the two measurement techniques track each other

well for nominal CDs >1500nm. These results show that the fabrication process is

independent of the feature dimension. For linewidths <1500nm both measurement

techniques suggest that the lines appear wider as dimensions reduce. However, the
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optical method indicates that lines become wider at a much faster rate. This again

shows how ambiguities in the optical measurement may affect the interpretation of the

capability of the mask making process.
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Figure 5.3: Comparison of ECD and optical results for a set of isolated cross-bridge
structures (GHOSTed MSN6659) with reference ECD measurements from a
standard exposure mask (MSN5757).

For CDs >1500nm the ECD results from the GHOSTed lines and those on MSN5757

track each other well. The offset between them indicates that fabrication process

parameters, such as resist development time, need to be changed to accommodate

the GHOST exposure. For linewidths <1500nm, and in particular for sub-micron

features, the fabricated dimensions become non-linear. On MSN5757 forward and

backward electron scattering through the resist causes narrow sub-micron lines located

between large clear areas to receive more electrons (i.e. a greater dose is delivered

to the resist by the e-beam tool) and thus become overexposed. For isolated lines

the inverse image in the GHOST process is an isolated space. Narrow isolated space

features would normally lose most of their electron energy due to scattering and will

develop incompletely. Therefore, superimposing the correction exposure on the pattern

exposure will result in a reduced energy dose and incomplete development. This effect

appears to be causing sub-micron isolated lines on MSN6659 to become wider as the

nominal dimensions reduce.

Measurements were made on dense line structures and the results from the set of

520nm wide lines are presented in figure 5.4. For all features the nominal width of
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the measured line is 520nm, while the line-spacing (S) between the measured and

surrounding dummy lines varies. For reference purposes the electrical results from the

same structures on MSN5757 are included.
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Figure 5.4: Comparison of ECD and optical results for a set of 520nm wide
dense cross-bridge structures (GHOSTed MSN6659) with reference ECD
measurements from a standard exposure mask (MSN5757).

While for S < 1500nm proximity has a very clear effect on the fabricated lines of

MSN5757, the results from MSN6659 indicate that the GHOST correction appears to

be effective, particularly above one micron. For sub-micron S, although there are still

proximity related effects with the GHOSTed results, the CD range of the fabricated

lines has reduced significantly from that of MSN5757. The effect seen on the lines of

MSN6659 is most likely related to the secondary exposure of the GHOST technique.

The inverse of a dense line pattern is a dense space pattern that produces an energy

distribution approximating that caused by backscattering on the primary pattern. The

sum of the exposures would ideally result in a constant energy distribution across the

dense pattern. However, there is obviously a dimensional variation for the narrowest

spaces which appears to be density dependent. The measurement results for other CDs

presented in figure 5.5 show that there is also a clear dependance on design linewidth.

One explanation for this is that the total energy dose delivered to the resist is above or

below the ideal uniform dose and this is dependent on the nominal linewidth and line

spacing.

The dense set consists of four groups of structures, each with features of equal design
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Figure 5.5: Comparison of ECD and optical results for three sets of dense cross-bridge
structures (GHOSTed MSN6659) with reference ECD measurements from a
standard exposure mask (MSN5757).

widths and varying line-to-space ratios. A correlation plot between electrical and optical

measurement results can be used to visualise the data from all groups of structures. This

is presented in figure 5.6(a) for MSN6659 and suggests that the variation of the ECD

measurement results is smaller than the variation of the OCD results. To confirm this,

the standard deviations (σ) of the measured CDs for each group of dimensions have

been calculated for the electrical and optical measurements and the results are plotted

in figure 5.6(b).

It would be expected that the linewidth variability and therefore the standard deviation

values would remain nearly the same for both measurement techniques. However the

standard deviation for each group of OCD measurements is higher, by over 1nm, than

that of the ECD measurements. This suggests that there is an error associated with the

OCD measurement, which is caused by optical proximity effects between the measured

and surrounding dummy patterns of the dense feature. Although the GHOST correction

scheme reduces proximity effects significantly, it cannot yield ideal features and the
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Figure 5.6: Comparison of electrical and optical measurement results for four groups of
dense features with similarly sized CDs on different duty cycles, on MSN6659.

fabrication process will be characterised by a proximity based non-linear CD transfer.

This can be seen in figure 5.6(a) as linewidth variations between dense features of

nominally equal widths and different design densities. However the fabricated range of

dimensions for each base CD is reduced with GHOST when compared to the correlation

plot for MSN5757 presented in figure 5.7.
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Figure 5.7: Correlation plot between ECD and OCD measurement results (MSN5757).

5.2.3 Line-Spacing Measurements on Isolated and Dense Features

In order to electrically measure the line-spacing associated with a split-bridge structure,

firstly the widths of the solid line (WB) and the split-line (WS) have to be measured.

The line-spacing is then S = WB −WS . Figure 5.8(a) shows the measurement results
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of the, nominally 16µm wide, solid line sections of an inverse isolated line (i.e. isolated

space) set on MSN6659; reference ECD results from a similar set on MSN5757 are also

presented. The designed solid bridge width is equal for all structures, so the results are

plotted against the on-mask position of each structure, as illustrated in figure 5.8(b).

It can be seen that the ECD variation between each set is significantly reduced for the

corrected mask with σ = 2.3nm on MSN6659 compared with 6.6nm on MSN5757.

Unlike MSN5757 there is also no change in the measured CD with position. These

effects are most likely related to the fact that the structures on MSN6659 are located in

a single row, while those on MSN5757 are located across two rows. Finally, the width of

the taps has been reduced from 16µm on MSN5757, to the minimum feature dimension

on the GHOSTed mask. This is at least part of the reason that the lines on MSN5757

appear electrically wider than those on MSN6659.
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Figure 5.8: Comparison of ECD and optical results for the solid bridge section from a set of
inverse isolated (space) structures (GHOSTed MSN6659) with reference ECD
measurements from a standard exposure mask (MSN5757).

Figure 5.9 presents the ECD results from measurements made on the split-line sections

of the same two sets of inverse isolated structures. Note that as the design CD of the

split-lines increases, the line-spacing between them decreases. The results from the

non-GHOSTed lines show that due to proximity effects there is an increase in the ECD

of the split-lines whose nominal width is >14.5µm (i.e. S < 1500nm). The GHOSTed

results show that the lines appear to have been corrected for proximity induced effects

and this is the case for split-lines up to 15µm. Hence, when S is greater than 1000nm,

the GHOST technique is at its most effective and the width of the fabricated lines is

similar to features which are largely free from proximity induced CD variations.
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Figure 5.9: Comparison of ECD and optical results for the split-bridge section from a set of
inverse isolated (space) structures (GHOSTed MSN6659) with reference ECD
measurements from a standard exposure mask (MSN5757).

For sub-micron line-spacings the rate of change of ECD on the uncorrected lines

increases significantly as S reduces. In addition, for the GHOSTed lines the correction

exposure has partially compensated for proximity. However, the linewidth variation

across these features is greatly reduced. The inverse pattern of a two-line and space

combination (i.e. an isolated split-bridge) is an isolated line. For the dimensions

discussed here the inverse pattern consists of narrow sub-micron lines which suffer

from scattering effects and receive a higher energy dose than the ideal. Therefore the

total energy dissipated in the patterns is still not uniform. However, this is a better

approximation to the nominal than the uncorrected version.

Once the two bridge sections have been measured, the electrical line-spacing can be

calculated. Figure 5.10 shows the line-spacing results for the structures on MSN6659

and the reference electrical results from MSN5757. The results from MSN5757

illustrate that for two closely spaced lines (nominal S < 1500nm) the space between

them is underexposed and appears narrower than normal. Although these spaces are

approaching their design target this is misleading as they are actually moving away

from the mean fabrication process target. To investigate the dimensional offset from

design targets in a fabrication process, features that do not suffer from proximity

effects should be considered. In this case the wider line-spacings (>1500nm), which

also appear to have the highest offset, should be the point for comparison.
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Figure 5.10: Comparison of electrical and optical line-spacing results from a set of
inverse isolated (space) structures (GHOSTed MSN6659) with reference ECD
measurements from a standard exposure mask (MSN5757).

The line-spacing results from MSN6659 show that GHOSTing is most effective for

spaces >1000nm. These dimensions are normally affected by proximity, although not

as severely as narrower dimensions. In this case the correction process can achieve

a relatively uniform energy distribution across the pattern. Although the technique

has not completely corrected the features for sub-micron dimensions, the range of

line-spacing results is greatly reduced. The trend of the data in the sub-micron region

is most likely related to a feature size dependent energy distribution achieved from

the combination of the primary and inverse exposures. That is, the sum of the two

exposures produces an overall energy dose that is either below or above the nominal

distribution.

Figure 5.11(a) presents the results from electrical measurements made on the bridge

sections of an inverse dense (space) set (reference results from a similar set on

MSN5757 are also included). Although the structures on both masks investigate dense

spaces, their solid bridge sections not only differ in their fabrication process but also

at their design level. The features on MSN5757 are isolated lines. However, as this

was a design error the bridges on the new mask are all dense, with a 520nm nominal

spacing between them. The lines on MSN5757 show a decrease in the offset between

design and measured ECD, which appears to be feature size dependent and this would

be expected for narrower dimensions. However, for dimensions >1µm the CD offset

should remain nearly constant. This is most likely related to the design width of the
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bridge voltage taps which are wide enough to cause a line to appear electrically wider

than is the case. For the dense lines on MSN6659 the tap effect has been eliminated,

but the trend of the curve suggests that the width of the fabricated lines depends on

their base CD and line-spacing. Due to GHOSTing the widths of these lines also depend

on the inverse pattern exposure, which in this case is narrow (520nm) lines with wide

spaces between them. Figure 5.11(b) shows the ECD results from measurements made

on the split-lines of the same sets of structures.
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Figure 5.11: Comparison of ECD results from a set of inverse dense (space) structures on
a GHOSTed (MSN6659) and a standard exposure mask (MSN5757).

For design linewidths >2240nm, the ECD offset between the two sets remains nearly

constant. Although there are proximity related effects for these split-lines, their design

CD is sufficiently wide to keep this effect minimal. By design, when the CD increases so

does the line to space ratio. When the line to space ratio increases the lines get wider,

which is also the case here although at a very slow rate. For a base CD <1600nm

the results from the two masks do not agree. The uncorrected split-lines appear

narrower as their design width decreases. In addition, line to space proximity reduces

significantly for narrow dimensions making the effects more apparent. This means that

the fabricated split-lines get narrower at a faster rate, the line-spacing between them

becomes also wider at a faster rate. This effect is reversed for the split-line results on

MSN6659 where the lines become wider when their nominal CD decreases. Again this

is related to GHOST and the exposure of the inverse pattern, which is used to equalise

the energy distribution across the pattern. The inverse pattern of a dense split-bridge is

a dense space pattern and superimposing this inverse exposure on the main exposure

appears to result in an energy distribution which resembles that of the inverse pattern.

Therefore the results of the GHOSTed split-lines are similar to the line-spacing results
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for the uncorrected fabrication process.

Figure 5.12 compares the electrical and optical results from measurements on the

spacings between the split-lines on MSN6659 and similar structures on MSN5757. The

first thing to notice, is that due to the design error with the structures on MSN5757

the assumption that the outer widths of the bridge and split-bridge sections are equal

was not valid. This led to errors and misleading trends with the electrical line-spacing

offset for the widest split-lines, which has been corrected for the GHOSTed mask. For

split-line CDs >2240nm the results of the spacing curves track each other well with

a constant offset (both measurement techniques and fabrication processes with the

exception of the electrical results on MSN5757). This is expected since the split-lines

are wide enough that any further increase in their linewidth does not alter the proximity

effects they have on the dimensions of the spacing between them.
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Figure 5.12: Comparison of electrical line-spacing results from inverse dense structures on
masks MSN5757 (optical results included for reference) and MSN6659.

For split linewidths <1840nm the line-spacing results of the two masks exhibit different

trends. On MSN5757 the measured spacing gets wider as the nominal width of the

split lines decreases. Since the nominal line-spacing (520nm) remains constant for

all structures, the split-line to space ratio decreases as the width of the split-line

decreases. Split-lines with smaller split-line to space ratios appear more narrow (from

the nominal) than the lines with a higher ratio and this causes the spacing between

them to appear wider. On the other hand the line-spacing results from MSN6659 appear

to get narrower as the design CD of the split-lines is reduced. In fact this is the same
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trend that the split-line results of the uncorrected mask follow (see figure 5.11(b)).

In addition a split-line is the inverse pattern of the spacings under investigation. This

suggests that when the energy dose from the inverse pattern exposure is superimposed

with that of the main pattern exposure it does not create a uniform energy distribution

across the pattern. Instead it creates an energy signature that resembles that of the

inverse pattern. Finally the range of CD and spacing offset for the proximity affected

results has only been reduced by a small fraction. This suggests that the GHOST

technique has encountered problems with the correction of the dense features in the

inverse dense set.

5.3 Comparison of Measurement Techniques for Sub-micron

Linewidth Photomask Metrology

5.3.1 Test Structures

The photomasks used for the work presented in this section are MSN6659 and

MSN5757. Both masks have the same test structures and are from similar mask blanks

but the fabricated linewidths are slightly different due to the GHOST processing on

MSN6659. The on-mask electrical test structures are based on optical/SEM metrology

features used to measure iso-dense proximity effects and examine proximity correction

techniques on binary photomasks [118, 119, 129]. The basic electrical structure is the

cross-bridge resistor [72] and the measured features are isolated lines with nominal

CDs of: 480, 520, 560, 600, 680 and 720nm.

5.3.2 Electrical Measurements

The sheet resistance (RS) of the chrome layer of the mask is measured using the Greek

cross structure and the method is described in Chapter 2. For this work the sheet

resistance measurement procedure is repeated five times with a force current of 500µA

and the results averaged. The average standard deviation over the five measurements

was determined from a set of 200 measurements with a 10 minute delay between each

group of five. This was found to be about 2.8mΩ/� for an average sheet resistance of

22.47Ω/�. The overall variability for that set of the measurements (3σ) was 22mΩ/�
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or about 0.1%.

The cross-bridge resistor is used to measure the resistance RB of the 400µm long

bridge section on these structures. The complete measurement method can be found

in Chapter 2. A similar set of 200 measurements of the bridge resistor showed a

3σ variability of 2.6Ω for an average resistance of 22102Ω (IForced = 500µA). The

repeatability figures for sheet resistance and bridge resistance measurements translate

into linewidth uncertainties of 0.4 and 0.05nm, respectively, for an average ECD of

406.7nm (nominal CD = 480nm). It should be noted that the measurements of

repeatability were performed on mask MSN5757.

5.3.3 Optical Measurements

Optical CD measurements have been made using a MueTec <M5k> mask metrology

system with 248nm ultraviolet illumination. This captures an image of a feature on the

mask, always in transmission at 248 nm, and determines the CD [22,114,115]. This is a

subjective measurement requiring careful calibration and it has been demonstrated that

this technique has problems when measuring phase-shifted masks [110,111] or isolated

features below 700 nm [118], as a consequence of the calibration methodology used in

these references.

5.3.4 CD-AFM Measurements

CD-AFM measurements were performed using a Veeco SXM320 at the National Institute

of Standards and Technology (NIST). This tool is effectively a three-dimensional (3D)

AFM where the deflection of the tip can be measured in-plane as well as out of plane.

The tip itself does not come to a point like a standard AFM tip but instead is wider

at the bottom, which enables it to directly measure the shape of features with vertical

or re-entrant sidewalls. This is shown in figure 5.13. The tip width of this instrument

is calibrated using a single crystal, critical dimension reference material (SCCDRM),

which was developed at NIST and has atomically flat side walls making it easy to extract

the shape of the AFM tip. This calibration enables the CD-AFM tool to perform linewidth

measurements with expanded uncertainties as low as 1.5nm (k = 2) [125,131].

The AFM measurements were obtained near the center of the bridge resistor. However,
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(a) Image of an AFM tip shape designed
for CD metrology

Standard
Tip

CD-AFM
TipTip

Path
Tip

Path

(b) Schematic showing how the tip shape
affects the profile of the measured feature

Figure 5.13: Comparison between standard and CD-AFM probe tips.

this positioning is only approximate due to the length of the structures and the absence

of nearby navigation markers. Twenty AFM scan lines are taken over a 1µm length

of track and the average width is calculated. An example of a scan can be seen in

figure 5.14. The first stage in the measurement is to subtract the tip shape which is

found by scanning the reference feature after each measurement. This also helps to

evaluate the uncertainty associated with the wear on the AFM tip. Next the width is

measured at the top (TW), middle (MW) and bottom (BW) of the line and an average

linewidth is extracted. The results from a 480nm bridge are presented in table 5.1; the

average width is 373.97nm and the average standard deviation (σ) is 5.31nm.

Figure 5.14: A 2µm by 1µm AFM scan area.

The typical standard deviation of the 20 measurements is 5-7nm. The expanded

uncertainties of the values as measured by the AFM ranged between 1.7 and 3.8nm,

with tip wear driving the larger uncertainties. However, it should be noted that these
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Top (nm) Middle (nm) Bottom (nm)
Average 379.21 377.28 365.43

Standard Deviation 4.79 5.65 5.5

Table 5.1: Measured linewidths at the top, middle and bottom of a feature.

estimates do not include the uncertainty resulting from linewidth roughness (LWR).

In order to investigate any longer range changes in linewidth one of the structures was

remeasured at five different positions, about 70µm apart, along the length of the bridge.

5.3.5 Results

Due to the length of time required for CD-AFM measurements these results only cover

the narrowest of the isolated linewidth structures. There are also difficulties with the

measurement of dense features using the CD-AFM due to the shape of the tip. As a

result, there are measurements from six isolated cross bridge structures with designed

linewidths between 480 and 720nm. These results are plotted along with ECD and

OCD results in figure 5.15. It should be noted that this graph shows the measured CD

subtracted from the designed linewidth.
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Figure 5.15: Comparison of optical, electrical and AFM metrology.

The results show excellent agreement between the CD-AFM and ECD measurements,

but a significant offset between them and the optical CD results. The level of agreement

between the electrical and standards calibrated CD-AFM results is surprisingly good. It

is expected that there would be a systematic offset between any two measurement

97



Comparison of Metrology Techniques for the Characterisation of Advanced Photomask
Processes

techniques, associated with the type of measurement used [132–134]. The variation of

the AFM results away from the smooth trend of the ECD measurement can be explained

by noting that the AFM measurement is looking at a relatively short (1µm) length of

the bridge while the electrical results give the average width of a 400µm long line.

In order to investigate this, further measurements were made at five different positions

along a bridge structure with a nominal width of 520nm. This is the second point for

the CD-AFM in 5.15 with a measured width of 403.5nm. These measurements were

made using an AFM tip with significant wear so they should be considered as indicative

of the variation of width along the line rather than of absolute CD. The results have

been normalized to the value for the center of the line given above (i.e., 403.5nm) and

are presented in table 5.2, along with the standard deviation of the twenty individual

measurements made at each position. Note that the column labeled “Distance” gives

the approximate position of the AFM measurement along the measured line. These

results suggest that the variation of linewidth at this long range is very small and is of

a similar scale to the standard deviation of the individual measurements at each point.

Distance (µm) Width (nm) Standard Deviation (nm)
60 404.92 7.95

130 402.15 5.92
200 403.51 7.88
270 400.55 7.22
340 400.28 4.96

Table 5.2: CD-AFM measurements made at five different positions.

Figure 5.16 is a more direct comparison of the three different measurement methods.

It shows the differences between the measurement results plotted against the CD

measured with the NIST CD-AFM. The offset between the ECD and AFM results is less

than 10 nm for each of the test structures and does not display an obvious dependence

on the width. This is not the case for the optical results where the offset is significantly

larger and also seems to reduce as the dimensions increase.

5.3.6 Analysis of Electrical Measurement Uncertainties

Electrical linewidth repeatability measurements of structures on mask MSN5757 were

made using a Hewlett Packard, HP4062UX [135]. This is a production semiconductor
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Figure 5.16: Linewidth measurement offsets for isolated structures.

characterization system consisting of an HP4142B modular source monitor tool [136],

an HP4280A capacitance meter, and an HP4085B switching matrix. The system

is programmed and controlled from an HP745i workstation running HP-UX and

HP-BASIC. The current source for the resistance measurement is an HP41421B

source monitor unit (SMU), while the voltage is measured with an HP3457A digital

multimeter [137], which has been added to the 4062UX system. The current through

the structure is measured with another HP41421B SMU, in voltage source mode,

which is set to 0 V. The current measurement accuracy at 500 µA is ±2µA, which

is equivalent to a possible systematic offset of up to ±1.6nm in both the Greek cross

and the bridge measurements. However, these are likely to be in the same direction

for both measurements and as such will cancel out. The standard deviation of the

current measurement is ∼50nA taken over 500 measurements at 500µA. This is

equivalent to a change in linewidth of less than 0.05nm when applied to the Greek

cross measurements and 0.09nm for the bridge resistance measurements.

The voltmeter typically measures around 2.5mV for the Greek cross with a force current

of 500µA. The accuracy of the meter in this range is ±3.75µV, which is equivalent to

a change in linewidth of about ±0.6nm. The measured voltage for the 480nm bridge

structures at 500µA is around 11V (RB ≈ 22.1kΩ) with an accuracy of ±0.4mV, which

is equivalent to a change in linewidth of less than ±0.02nm. These will not cancel out

in the same way as the effects of any inaccuracy in the current measurement and so

there is the possibility of a systematic linewidth offset due to the voltage measurement.
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The repeatability of the voltage measurements on the Greek cross is less than 0.5µV,

which equates to a linewidth uncertainty of 0.08nm. Similarly for the bridge, the

voltage repeatability for 500 measurements is about 0.1mV or less than 0.005nm.

The combined statistical uncertainty derived from this analysis is
√∑

σ2
i = 0.13nm

with a possible systematic offset of 0.62nm if the effects of inaccuracies in the voltage

measurements are additive.

The analysis of electrical linewidth metrology described in reference [128] suggests a

number of possible sources of uncertainty. For example, any uncertainty in the length

of the bridge resistor will affect the calculation of the ECD. The estimate of the possible

misplacement of the voltage taps is 60nm (3σ) which, for a bridge with a nominal

length of 400µm, is equivalent to an uncertainty of about 0.06nm in linewidth. The

uncertainty caused by the tap shortening effect is difficult to determine for these test

structures but it is likely to be extremely small as the bridge length is approximately

800 × the tap width. There are a number of factors, such as line edge roughness,

sidewall angle, and oxidation, which might be expected to cause a systematic offset in

the electrical measurement of linewidth. It is not clear how much of a contribution

to the measurement uncertainty these will cause; oxidation is likely to be less of a

problem than for the silicon structures in [128] but the contributions from roughness

and sidewall angle could well be larger. Another assumption is that the sheet resistance

measured at a certain measurement current is relevant to the bridge measurement.

Figure 5.17 shows the extracted sheet resistance from Greek crosses with two different

nominal widths. This indicates the extracted sheet resistance is a function of the level

of the force current with both structures showing a similar dependence.

The results in figure 5.17 are averages of the first five results from a set of 500

measurements, as this best reflects the protocol used for the ECD measurements of

mask MSN6659 that have been compared with the other metrology techniques. The

full sheet resistance results from a Greek cross with a nominal arm width of 480nm can

be seen in figure 5.18. It shows that the apparent sheet resistance changes more for the

low current measurements. This effect is caused by changes in the measured voltage

as the current does not vary significantly with measurement number. The fact that this

has a larger effect on the low current measurements, where the measured voltage is

small, suggests that it is caused by a voltage offset that is not corrected for by reversing
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Figure 5.17: Sheet resistance plotted against force current for two different Greek crosses.
This shows a variation of around 1% over the range of currents used.

the measurement current and furthermore has a thermoelectric component, which

accounts for the initial increase in the offset before leveling off in thermal equilibrium.

If this was caused by Joule heating of the device under test it might be expected that

the effect on resistance would be greater for the higher measurement currents, which

is not the case. The measured voltage at a current of 50µA is around 250µV and at

that level the accuracy of the voltmeter is 3.7µV. This could result in a measured sheet

resistance of up to 23Ω/�, which is near to what is observed in figure 5.18.
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Figure 5.18: Sheet resistance variation over 500 measurements for different measurement
currents.

The electrical linewidth results derived from the sheet resistance measurements in
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figure 5.17 are shown in figure 5.19. The variation of the linewidth is dominated by the

sheet resistance measurements. For the 480nm nominal lines the range is about 2nm,

while it is larger at nearly 5nm for the wider lines. The effect is greater for the wider

lines because when calculating the electrical CD the sheet resistance is divided by the

bridge resistance. Therefore, the effects of sheet resistance errors are exaggerated for

wider lines, which have a lower resistance. It is possible to explain some of this variation

of linewidth with current by referring to the accuracy of the voltage measurements, but

it seems likely from the variation with time that there is an additional voltage offset that

is affected by heating when measurements are repeated. However, it does suggest that

the measurements made at higher currents, where small voltage offsets are swamped,

are more reliable.
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Figure 5.19: Electrical linewidth plotted against force current for two different test
structures.

The overall uncertainty of the electrical linewidth measurements, made at a current of

500µA for both the Greek cross and bridge resistors, is less than 0.5nm (k = 2) but there

is the possibility of larger systematic errors due to the voltage measurement accuracy

and the choice of force current used, perhaps as much as 1% of the measured linewidth

or ∼5nm for the narrowest structure. It may be that it was simply fortuitous that the

measured ECDs are so close to the AFM results with no apparent systematic offset. On

the other hand, the analysis predicts larger systematic errors for wider features but no

divergence between the ECD and AFM results can be observed in figure 5.16 over the

range of dimensions measured.

Measurements of a 10Ω resistor in an Agilent 16346B Calibration Module suggest that

the analysis above is correct as they show an overestimation of the resistance at low

current values due to an offset in the voltage measurement. A current of 500µA or
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above was required in order to achieve resistance measurements that are within the

quoted uncertainty (±0.07%) of the resistor calibration. These measurements were

performed with a protocol that is as close as possible to that used for the sheet resistance

extraction from the on-mask test structures.

5.3.7 Analysis of Optical Measurement Uncertainties

The repeatability performance of the MueTec <M5k> has been rigorously evaluated

via a formal Equipment Assessment activity [22] to verify the suitability of the tool to

support the 90nm manufacturing node of the 2001 International Technology Roadmap

for Semiconductors (ITRS) within a typical production environment. A methodology

was developed to characterize the tool performance that consisted of measuring a range

of clear and opaque feature sizes (200-1000nm) sequentially over 30 loops each day

for three consecutive days.

This study showed that, for isolated chrome lines, the tool was able to sustain a

short-term measurement repeatability (i.e., precision) of ≤0.5nm (3σ) against a

target tool specification of 1.0nm (3σ). In fact, the three day long-term repeatability,

which represented accuracy against the calibration that the tool was using, could be

sustained at a similar level against a specification of 1.5nm (3σ). Full details of similar

measurements made on isolated spaces and dense lines and spaces can be found

in [22].

5.3.8 Analysis of CD-AFM Measurement Uncertainties

The CD-AFM measurements were performed using a Veeco SXM320 with tip calibration

being performed before each measurement [125]. A detailed description of the

methodology and the analysis used to determine the uncertainty of the CD-AFM

measurements made on photomasks can be found in [29]. In summary, the major

contributions to the uncertainty of the CD-AFM measurement are from the tip shape

calibration, around 1nm using the SCCDRM, and tip wear, which is more difficult to

assess. Other contributions come from the repeatability of the measurement, which

can be strongly affected by the linewidth roughness of the feature being measured.

The standard deviation over the 1µm measurement length is typically around 6nm, as
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mentioned previously.

5.4 Conclusions and Further Work

On-mask, electrical test structures based on industry standard OPC layouts have

been designed and fabricated on a photomask using the GHOST proximity correction

technique. These structures are direct electrical equivalents of optical metrology

patterns, which are specifically designed to characterise OPC. Both electrical and

optical measurements have been performed to evaluate the effectiveness of the GHOST

correction strategy and to further examine the capability of two different metrology

techniques. The analysis, presented in the first section of this chapter, has shown that

GHOST correction has a significant, and positive, effect on the mask manufacturing

process. However, the test structures have highlighted that there are limitations

associated with the procedure which depend on the density and dimensions of the

features being fabricated. The conditions for the correction exposure must be carefully

considered, or the CD trends of the fabricated features may resemble those of their

uncorrected inverse pattern and in some cases exhibit unexpected CD variations across

a range of dimensions.

Future work should concentrate on fabricating proximity corrected photomasks, which

are designed for a 90nm (360nm 4X) lithography process. These will be used to print

test structures and will therefore allow comparison between dimensions at the mask

and wafer level. This will provide a great deal of information on how the e-beam mask

writer and photolithographic tools behave when they are operating near the limit of

their capabilities.

In the second part of this chapter, three different techniques, electrical, optical and

CD-AFM, have been used to measure the linewidths of metal features on a standard

chrome on quartz photomask. ECD measurements are made by direct probing onto the

mask, while optical measurements are made using a mask metrology and verification

tool. The CD-AFM measurements are made using a state-of-the-art system, which is

calibrated using a traceable reference standard and has an uncertainty of less than

4nm.

Measurements of isolated cross-bridge linewidth structures with nominal widths
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between 480 and 720nm show good agreement between ECD and CD-AFM

measurements. The offset is less than ±10nm and shows no obvious dependence

upon nominal size over the range of dimensions measured. This is not the case for

the optical measurements which are offset by 60 to 90nm from the electrical and AFM

measurements. The optical results also show a dependence on the nominal width with

the offset reducing as dimensions increase. The AFM measurement is taken over a very

short (1µm) distance while the ECD is an average over the length of a 400µm line. For

this reason, further AFM measurements were taken at ∼70µm steps along a bridge

structure. These demonstrated a surprisingly small variation in width of less than 5nm.

Overall, the ECD and CD-AFM measurements show very good agreement with no

obvious systematic offset while the optical measurements overestimate the width of

these narrow isolated features by as much as 90nm. These results demonstrate the

capability of the on-mask electrical measurement technique, especially when compared

to the optical tool. However, it should be recognized that the accuracy performance of

the optical tool is governed by the calibration artefact used to establish the calibration

within the manufacturing environment, and this artefact is not traceable to the NIST

standards. The closeness between the independent electrical measurements and

calibrated CD-AFM measurements does show that we are approaching a situation

where an absolute linewidth standard for binary photomasks may be definable, as

we are now directly probing the physical material that composes the measurement

feature. This, in turn, will provide feedback to help create better calibration artefacts

for the large number of optical metrology tools that are already in place supporting

photomask manufacture.
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Chapter 6
Electrical Test Structures for the

Characterisation of Optical
Proximity Correction

6.1 Introduction

The introduction of resolution enhancement techniques has allowed photolithographic

systems to image features with dimensions lower than the exposure wavelength of

the tool. A significant issue with printing sub-wavelength features however, is that

patterns become distorted because of optical or process proximity effects [8,138–141].

These distortions which can be seen in figure 6.1(a), arise in the form of shortening

of the ends of lines and rounding of corner features. Optical proximity correction [43]

was developed in the early 1970’s as a means of addressing lithographic distortions in

semiconductor manufacturing. It applies systematic changes to photomask geometries

to compensate for non-linear effects, as an attempt to make the final printed feature

match more closely the desired layout. A mask incorporating OPC is thus a system that

attempts to negate undesirable distortion effects during pattern transfer.

To compensate for line-end shortening, the line is extended using a hammerhead shape,

which results in a line that is much closer to the original layout. To compensate for

corner rounding, serif shapes are added to external corners and opaque material is

removed from internal corners. A typical mask with OPC features and the desired

printed feature is presented in figure 6.1(b). Printed features however do not have

simple relationships to reticle dimensions and this makes it difficult to manually layout

a photomask that will produce the desired features on wafer, as the optimal type, size

and symmetry is very complex and depends on neighbouring geometries and process

parameters.

The work presented in this chapter extends electrical measurement techniques to

two-dimensional OPC features [43], in particular the characterisation of corner serifs.
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Figure 6.1: (a) Layout of feature printed with a mask without OPC. (b) Layout of feature
printed with a mask with OPC; the feature matches more closely the desired
layout (dashed line).

The corner serif is found with increasing frequency on advanced mask designs and

presents a particular challenge to conventional metrology techniques [142]. This is

even more relevant where less than ideal image rendering and over-aggressive design

may lead to serif features becoming “pinched off” from the main corner feature.

Electrical techniques should be suited to detecting these abnormalities, particularly on

inner corner serifs [143], and it should be possible to relate these measurements to serif

area as a means of process control of the mask making process.

Chapter six begins by examining the use of an on-mask resistive test structure for the

characterisation of corner OPC using simulations and measurements on a prototype

photomask. The photomask is then used to print the structures on wafer. Simulations

and measurements at wafer level are also performed and a comparison between the

two is presented.

6.2 Test Structure Design and Photomask Layout

The test structure designed for this work is a Kelvin connected resistor consisting of

a short section of metal track turning through a right angled corner, as shown in

figure 6.2(a). In order to measure the resistance of the track a current is forced between

pads B and D while the resulting potential difference is measured at pads A and C. The

resistance of the section of track between the voltage taps is then
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R =
VAC

IBD
(6.1)

The effect of OPC is examined by altering the layout of the right angled corner of the

structure. Specifically, a square of metal is added to the outside of the corner while a

square is subtracted from the inside. This is illustrated in figure 6.2(b). The degree

of OPC is altered by changing the size of the square (Wi and Wo) and the amount by

which it overlaps with or protrudes from the original layout (Di and Do).

Voltage
Measure

A

C D

Force Current

B

(a) Kelvin connected resistor structure

Wo
Do

Wi

Di

(b) Expanded view of the structure

Figure 6.2: Layout of Kelvin test structure and closeup showing parameters of OPC
features.

The photomask design has test structures with 3 different base values of CD: 1.6µm,

2.0µm and 2.4µm. These correspond to printed dimensions of 320nm, 400nm and

480nm when imaged with a 5X projection lithography tool. The dimensions of the OPC

elements are defined as fractions of the base CD: 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5.

Subsequently, the value of Di/Do is then defined as some fraction of Wi/Wo: 0.25, 0.5

or 0.75. The design has the full range of OPC dimensions for the 1.6µm structures and

a reduced set for the other CDs with only the Di/Do values defined as half of Wi/Wo.

A prototype mask (MSN6754) was fabricated with this design, which includes one

block of printable (see figure 6.3(a)) and two blocks of on-mask test structures (see

figure 6.3(b)). The large pad test structures have been designed in such a way that

when printed on wafer with a 5X photolithography system, they can be probed with the

same card used for the on-mask structures.
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Figure 6.3: (a) Complete photomask layout (b) Expanded view of block of on-mask test
structures.

6.3 Simulations

The two-dimensional (2D) solver for interconnect analysis (Raphael) [93] was used to

model the resistance of test structures with different levels of OPC applied either to

the inner or the outer corner. Having the mask design as a starting point, simulations

were performed on structures with OPC features in either or both the inside and outside

corners. A sheet resistance of 22.5Ω/� was chosen for the material of the simulated

structures, as this represents a typical value of the chrome layer, measured on similar

masks. The layout of the structure used for the simulations can be seen in figure 6.4.

For each simulation, a current is forced between terminals T1 and T2. T1 is grounded

and T2 has a voltage applied to it so that a current flows between them. The voltage is

then measured between T3 and T4 and these two measurements are used to calculate

the resistance (R = V/I) between terminals T3 and T4.

The results of simulations for test structures with a base CD of 1600nm and serifs

removed from the inner corners are presented in figure 6.5(a), while those for

structures with serifs added to the outer corners can be seen in figure 6.5(b). The

results show that when the correction is applied to the inner corner there is a

significant resistance change with respect to the dimensions of the OPC feature. In
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Figure 6.4: Test structure used for simulating different degrees of corner OPC.

particular, it appears that the resistance strongly depends on the area of the material

removed to form the serif in the structure. This behaviour is to be expected as most

of the current flow in the structure is concentrated around the region of the inner

corner. This is illustrated in figure 6.6 which shows a contour plot of the current

density around the corner of a 1600nm wide structure with inner and outer serifs. On

the other hand there is little variation of resistance when the area of the outer serif

changes and this is to be expected as there is minimal current flow in this region of

the structure. Any resistance variation caused by altering the dimensions of the outer

serif will be swamped by real mask effects (such as RS and CD variations) that are not

present in the simulations.
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(b) Results of Changing Wo and Do

Figure 6.5: Simulation results showing the effects of changing the dimensions of the OPC
features.

Finally, simulation results from 1600nm wide test structures with OPC features on both
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Figure 6.6: Current density scalar contour plot for a simulated corner structure with inner
and outer serifs.

the inside and the outside corners are presented. Figure 6.7(a) shows the resistance

values for structures where the inner serif dimensions vary while the the outer serif

feature remains the same (Wo = 0.25 × CD and Do = 0.25 × Wo). Similarly,

figure 6.7(b) shows the results for structures with varying outer serif dimensions and

the same inner serif feature (Wi = 0.25 × CD and Di = 0.25 × Wi). It can be seen

that the addition of an outer OPC feature has little effect, certainly smaller than any

resistance change associated with varying the inner serif dimensions. In contrast the

addition of an inner serif changes the resistance of a structure far more than any

resistance variation caused by the alteration of the outer serif area.
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(a) Results of changing Wi and Di, with
constant outer serifs
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Figure 6.7: Simulation results showing the effects of changing the dimensions of the OPC
features for structures with both inner and outer serifs.
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6.4 On-Mask Measurements and Results

6.4.1 Electrical Measurements

On-mask electrical measurements on structures that match the simulations have been

made on mask MSN6754. Figures 6.8(a) and 6.8(b) show both the measured and

simulated results for 2000nm and 2400nm wide structures with inner corner serifs and

Di = 0.5×Wi. These are part of the reduced sets, which have wider corner structures

with larger OPC feature dimensions. The electrical measurements and simulation

results are very similar, though the offset in resistance is obvious. This offset is most

probably due to differences in the sheet resistance or CD. While the simulated structures

use the designed CD, for on-mask features there is usually a non-linear transfer between

fabricated and nominal width. In fact the trend in the offset between measured and

simulated resistance changes from positive to negative as the nominal CD increases,

which suggests just that. In addition the simulations use a constant RS value, while

in reality there will be RS variations from structure to structure (albeit small). Finally,

there are differences between the slopes of the measured and simulated results which is

likely to be caused by inconsistencies, such as corner rounding, between the geometry

of the structures on the mask and the designed structure used in the simulations.
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(b) Corner structures with CD=2400nm

Figure 6.8: Comparison of simulation results and on-mask measurements.

In any case, the presence of OPC shows the expected strong effect on the resistance

of a conducting track when applied to the inside of a right angled corner but little

effect when applied to the outside. The rate of change of measured resistance with

inner corner serif size is sufficient to make an unambiguous relationship between the
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two parameters. This can be seen more clearly in figures 6.9(a) and 6.9(b), which

present the results for 1600nm wide structures with OPC applied either to the inside or

outside corner. As it was stated previously the electrical technique would be suited for

detecting abnormalities on the fabricated serif features, particularly on inner corners.

The resistance results of figure 6.9(a) follow the anticipated trends except for the

structure with Di = 0.75 ×Wi and Wi = 400nm, where the resistance is smaller than

normally expected. This is not a local mask effect as it can be seen in every structure

with these inner serif dimensions, independent to their position on the mask and to the

presence or absence of an outer serif. Therefore this is an indication that there is excess

chrome at the area where a square of material should have been removed to form the

inner serif. The deformed serif is most likely caused by the bridging of its two abutting

corners, which would nominally be in close proximity.
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Figure 6.9: Electrical measurement results obtained from binary mask (MSN6754).

6.4.2 Optical Inspection

In order to visually investigate this effect a high-resolution Reichert Jung Polyvar optical

microscope [144] with Nomarski differential interference contrast optics was used to

capture reflected light images of corner structures with and without the over-aggressive

design dimensions. Figures 6.10(a) and 6.10(b) show the images of corner structures

where Wi = 400m, while Di = 0.25 ×Wi and Di = 0.75 ×Wi respectively. For Di =

0.75×Wi it appears that no chrome material has been removed from the area that forms

the inner serif. For Di = 0.25×Wi although the design area that defines the inner serif

is smaller than that of figure 6.10(b), it appears that the material has been removed. It
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is clear however, that the resolution of the images is inadequate and the optical tool is

struggling to resolve the OPC features and thus clearly identify any difference between

the structures. This confirms the problem of characterising advanced mask designs with

OPC features, on conventional optical tools. Although mask features are usually four or

five times larger than the printed dimensions, the OPC features are far smaller, similar

to typical features on wafer level.

Di = 0.25 Wi

(a) Inner serif: Di = 0.25×Wi, Wi = 400nm

Di = 0.75 Wi

(b) Inner serif: Di = 0.75×Wi, Wi = 400nm

Figure 6.10: Optical images for corner structures with inner OPC features only.

Further optical images were obtained in transmitted light for the Wi = 400nm features

using a MueTec <M5k> mask metrology system [22, 114, 115] operating with 248nm

DUV illumination. These can be seen in figure 6.11 where (a) and (b) respectively

show that inner corner serifs are defined for the Di = 0.25 × Wi and Di = 0.5 × Wi

structures. Figure 6.11(c) reveals that there is no apparent modification to the Di =

0.75×Wi corner at all, consistent with an improperly formed (or missing) corner serif

at this aggressive placement level. Other imaging techniques with better resolution are

required in order to better understand the nature of the serif defect.

6.4.3 Atomic Force Microscope Inspection

A Digital Instruments D5000 Atomic Force Microscope [145] with superior resolution

than the optical tools, was used to further investigate the reason for the change in
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(a) Di = 0.5 × Wi, Wi =
400nm

(b) Di = 0.25 × Wi, Wi =
400nm

(c) Di = 0.75 × Wi, Wi =
400nm

Figure 6.11: Optical images for structures with inner corner serifs.

resistance. The AFM scans cover the area surrounding the corner where the OPC

features are located. The images of 1600nm wide structures with Di = 0.75 × Wi,

Wi = 0.25 × CD = 400nm and Di = 0.75 ×Wi, Wi = 0.5 × CD = 800nm can be seen

in figures 6.12(a) and 6.12(b) respectively. Although there are outer OPC features also

in these structures, the resistance values are similar to structures with no outer serifs.

Differences in the resistance between structures with and without outer corner serifs

are more likely to be caused by RS , CD and inner corner rounding variations, rather

than the actual presence or absence of an outer serif.

Bridging between
inner serif corners

(a) Inner serif: Di = 0.75×Wi, Wi = 400nm

No bridging

(b) Inner serif: Di = 0.75×Wi, Wi = 800nm

Figure 6.12: 5µm×5µm AFM scans of corner structures with inner and outer OPC
features.

Figure 6.12(a) confirms that there is a problem with the fabrication of the inner serif
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for the specified dimensions. It appears that the spacing between the two neighbouring

corners of the inner serif is too narrow to be resolved during fabrication. This causes

the bridging of the two corners, which results in a very small partially processed area

instead of a well defined inner serif. As this area is smaller than the diameter of the

AFM tip, it is not possible to probe down to the surface of the quartz and assess properly

the extent of the partial processing. Figure 6.12(b) shows the scan for an inner serif

which retains the designed shape. Although the dimensions of this structure are larger,

this is the desired effect as it will yield a well defined corner on the wafer.

6.4.4 Focused Ion Beam (FIB) Images

Another way of obtaining high resolution images is from a FIB mask repair tool.

Figure 6.13 shows images of three progressively more aggressive corner serif offsets

captured by a Seiko Instruments SIR 500 repair system [117], with the defective serif

structure imaged in 6.13(c). This high resolution image indicates that the Cr layer

is continuous at the serif location - the degree of offset is essentially too extreme for

a feature of this size and the serif has detached itself from the line edge into a spot

unresolvable by the lithography process. The electrical behaviour of such a corner is

more like that of an uncorrected one, albeit with a thinning of the Cr layer at the corner

point. This is consistent with the measured resistance behaviour seen in figure 6.9(a).

(a) Di = 0.25 × Wi, Wi =
400nm

(b) Di = 0.5 × Wi, Wi =
400nm

(c) Di = 0.75 × Wi, Wi =
400nm

Figure 6.13: FIB images for structures with inner corner serifs.
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6.5 On-Wafer Test Structures

The mask that was electrically measured was used to print test structures for on-wafer

characterisation [146]. The printed structures and electrical measurement methods

applied so far, could form a valuable tool for investigating the quality of the lithographic

transfer and for optimising the corner serif structures.

6.5.1 Fabrication

On-wafer test structures were fabricated in a 300nm thick layer of doped polysilicon

deposited on a 0.5µm thick layer of thermal silicon dioxide on 200mm silicon

substrates. The wafers were spin coated with Ultra-i 123 i-line photoresist and printed

using a 5× Nikon NSR-2005i9C i-line step and repeat lithography tool with an NA

of 0.50. After development the polysilicon was etched in a reactive ion etch (RIE)

tool before passivation with a 0.5µm thick layer of plasma-enhanced chemical vapor

deposition (PECVD) silicon oxide. Holes in the oxide were then etched over the probe

pads before deposition of a 0.5µm thick layer of sputtered aluminium. The final step

was to pattern the aluminium to create contacts suitable for probing. A schematic of

the test structure fabrication process is shown in figure 6.14.

Si

Si02 Polysilicon

PECVD
Al

Figure 6.14: Fabrication process steps for on-wafer test structures.

6.5.2 On-Wafer Electrical Measurements

Three sets of 320nm wide on-wafer structures with varying nominal OPC feature

dimensions were measured electrically and the results are presented in figure 6.15. One

set consists of structures with inner corner OPC serifs only, one with outer corner serifs

only and one with both. The resistance results of figure 6.15(a) suggest an upward
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trend in resistance as Wi increases, as would be expected.
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Figure 6.15: Resistance measurements for on-wafer structures with inner and outer corner
OPC arrangements.

However, the nature of the results suggest that other factors also affect the resistance

of the structure. The reason behind this could be related to fabrication artifacts such

as non-uniform lithography or etching, which tends to mask the data trends because

the resistance changes are not only due to the OPC features. Another factor that

could strongly affect the results is any variability in the localised sheet resistance of

the polysilicon layer. This could introduce some of the structure-to-structure variations

shown in the resistance results. Reference [147] examines the effect that the geometry

of a structure has upon the value of resistivity extracted from Greek crosses. The sheet

resistance of a polysilicon film is a function of the size and distribution of the grains

and [147] identifies how the grain structure increases the variability of RS measured

using Greek crosses with narrow arm widths. Unfortunately there are no structures such

as these on the wafer to confirm whether this is the cause of the variability observed in

the measured results. A wafer map of the measured sheet resistance of the polysilicon

layer on a wafer from the same batch as the test structures is presented in figure 6.16.
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This was made using a four-point probe system which unfortunately does not have

sufficient resolution to identify very localised sheet resistance variations that might

cause the observed variation in the resistor test structures.

Figure 6.15(b) indicates that the presence of OPC has little or no effect on the resistance

of the conductive track when applied to the outside of the right angled corner. This

behaviour is to be expected as most of the current flow in the structure is concentrated

around the region of the inner corner. This is illustrated in figure 6.15(c) which shows

results from structures with both inner and outer corner serifs. It is clear that the

dominant effect in the measured resistance is from the inner corner section, as a similar

trend is observed for structures with only inner corner serifs. These results are obviously

also affected by significant resistance variation. Unfortunately only small numbers of

the test structures have been tested and the inter-die variation has not been determined.

Figure 6.16: Sheet resistance variation across one wafer with corner OPC electrical test
structures.

6.5.3 Scanning Electron Microscope Inspection

In order to visually investigate the effects, a Philips XL40 SEM was used to capture

images of the structures which were measured electrically. Imaging software was then

used to invert the SEM images and filter out their background. Figure 6.17(a) shows a

structure with no OPC, while figures 6.17(b) and 6.17(c) show structures with the most
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aggressive inner and outer corner serif dimensions respectively. The images suggest

that when OPC is applied to the inner or the outer corner of a structure the shape of

the corner changes and in particular the level of corner rounding.

1µm

(a) Image for a structure with no OPC

1µm

(b) Image for a structure with inner corner
OPC

1µm

(c) Image for a structure with outer corner
OPC

Figure 6.17: SEM images of structures with different OPC arrangements.

To help compare the structures an edge detection filter in the Gnu Image Manipulation

Program (GIMP) was applied to the images which are subsequently overlaid on one

another. Comparisons of the structure with no OPC with the structures with the most

aggressive OPC on the inner and outer corners are presented in figure 6.18. These

confirm that when OPC is applied the shape of the inner and outer corners changes

with respect to an uncorrected corner. Therefore, for inner corners OPC does have an

effect and is likely to be the cause of the observed trends in electrical measurement

results. On the other hand while OPC does affect the rounding of the outer corner it

has no effect on the measured resistance and could be omitted from designs in many

cases.
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No OPC

Inner Corner OPC

(a) Shapes of structures with inner corner OPC
or no OPC

No OPC

Outer Corner OPC

(b) Shapes of structures with outer corner OPC
or no OPC

Figure 6.18: Overlaid shapes of structures with different OPC arrangements.

6.5.4 Simulations

The Raphael software was used to model the resistance of printed test structures with

different levels of corner rounding applied to the inner or outer corner. The simulations

provide a wider range of corner rounding dimensions than the fabricated features,

which were estimated to be between 275-330nm for inner corners and 190-300nm

for outer corners. A sheet resistance of 97Ω/� was chosen for the material of the

simulated structures, as this represents a typical value for the polysilicon taken from

the four point probe results shown in figure 6.16. The layout of the structure, which

records the simulated resistance as described in section 6.3, can be seen in figure 6.19.

The radii of the two circles define the level of inner and outer corner rounding.

The results of the simulations for test structures with inner corner rounding are

presented in figure 6.20(a), while those for structures with outer corner rounding can

be seen in figure 6.20(b). The results of figure 6.20(a) show that there is a significant

resistance change with respect to the inner corner rounding. In particular, it appears

that the resistance strongly depends on the radius of the corner rounding and thus the

area of the material added to the structure. This behaviour is to be expected as most of

the current flow in the structure is concentrated around the region of the inner corner.

This confirms that for the inner corner measurement results of figure 6.15(a), OPC has

an effect on the fabricated corner of the printed structure, which is dependent to the

dimensions of the OPC square.
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Inner Corner 
Rounding

Outer Corner 
Rounding

Polysilicon

ContactT1

T2

T3

T4

Figure 6.19: Layout of structure used to simulate the effect of inner and outer corner
rounding.

The simulations for outer corner rounding on figure 6.20(b) confirm that there is

little variation of resistance when the area of the outer corner changes and this is to

be expected as there is little or no current flow in this region of the structure. Any

resistance variation caused by altering the dimensions of the radius of the outer corner

rounding will be minimal compared to other fabrication effects on wafer. This can be

seen on the results of figure 6.15(b) which appear noisy and show no trend with respect

to dimensions.

700

720

740

760

780

800

0 50 100 150 200 250 300 350 400

Inner Corner Rounding Radius (nm)

S
im

u
la

te
d

 R
es

is
ta

n
ce

 (
Ω

)

(a) Simulated resistance against inner corner
rounding dimensions

700

720

740

760

780

800

0 50 100 150 200 250 300 350 400

Outer Corner Rounding Radius (nm)

S
im

u
la

te
d

 R
es

is
ta

n
ce

 (
Ω

)

(b) Simulated resistance against outer corner
rounding dimensions

Figure 6.20: Simulated resistance for structures with inner and outer corner OPC
arrangements.
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6.6 Conclusions and Further Work

This chapter has demonstrated the feasibility of extending electrical measurement

techniques to the characterisation of two-dimensional OPC serif structures. Whilst

restricted in practical application to inner corner serifs, it should be highlighted that

it is this circuit feature that is most relevant to achieving the desired device electrical

performance (and is indeed why it is sensitive to the described measurement technique

in the first place). Inner corner serif structures are also the most notoriously difficult to

manufacture and quantify using conventional optical metrology techniques.

The results from this work have clearly shown that electrical techniques are sensitive

enough to measure the effects of small inner corner structures reliably and in good

agreement with theoretical predictions. Any departures from the simulated results

have been found to be attributable to defects in the serif structure. The agreement

with simulation is a good indicator that it is the material physically present on the

mask which is being characterised, removing some of the ambiguity inherent when

interpreting indirectly acquired images of the mask pattern.

Corner test structures were also designed to investigate the impact they have on printed

features. Results of electrical measurements of polysilicon test structures printed

using the measured photomask suggest that OPC applied to the inner corner has a

significantly greater effect on the resistance than outer corner serifs. SEM imaging

of the test structure geometries confirmed that OPC does alter the shape of corner

rounding. Therefore, it is primarily the inner corner OPC that affects the resistance of a

measured structure, while outer corner OPC has little or no effect on the measurement.

However, it appears that, unlike measurements on the mask, the effects of OPC are

confounded by other fabrication artefacts when printed with i-line technology. Local

variations cannot be explained by dimensional effects and the most likely explanation

is the grain structure of the polysilicon, which is a well known cause of sheet resistance

variation.

Further measurements should be made on polysilicon test structures to extend the

analysis of the results presented in this chapter. Two papers have been recently prepared

(see section A.2), which present new data on the variation of the resistance of the

printed features with respect to the levels of OPC applied. In addition it would be

123



Electrical Test Structures for the Characterisation of Optical Proximity Correction

useful to determine if the observed effects are maintained when the size of the features

is reduced, or when the material of the structures is a metal with much lower resistance.

Further work should focus on correlating the measured resistance with actual mask serif

or wafer corner rounding area. In addition an investigation should be made on how the

offset between theoretical and measured values can be related to area loss arising from

pattern fidelity of the rendered serif features.
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Chapter 7
Matching Resistor Test Structures

for the Characterisation of the
Photomask Fabrication Process

7.1 Introduction

The differences between identically designed integrated circuit components are

commonly referred to with the terms matching or mismatch. Electrical test structures,

measurement methods and characterisation techniques, for evaluating mismatch

fluctuations of IC components, have been studied extensively in the past [98]. The

knowledge gained from this work helps improve IC technologies and leads to better

electronic circuit performances.

This chapter investigates the use of on-mask, electrical, mismatch test structures

and measurement techniques to characterise the capability of the mask making

process [130, 148, 149]. Results from the literature [150], which looked at similar

structures fabricated on-wafer as diffused resistors in a CMOS process, have shown

effects related to spin processing of photoresist during photolithography. In the mask

making process an additional, important source of dimensional systematic mismatch

is the exposure tool itself. As errors on the mask directly affect the dimensions on the

wafer the characterisation and control of these issues is fundamental.

The first section of Chapter 7 describes the design and fabrication of the matching

structures, on protype masks, which also include other types of test structures for

the work presented in previous chapters [118, 129]. The results from electrical

measurements on the structures are analysed to obtain information about the capability

of the photomask fabrication process. The second part of this chapter describes the

fabrication of matching structures on a new set of advanced photomasks. This design

takes advantage of the full mask area and consists of a regular array of structures,

which provides a greater volume of data. Results from on-masks measurements are
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analysed to further investigate the dimensional systematic mismatch due to tool or

process induced effects.

7.2 Electrical Measurement of Prototype Photomasks

7.2.1 Test Structures

The matching resistor test structure design consists of pairs of ostensibly identical Kelvin

connected bridge resistors as shown in figure 7.1, which are suitable for direct on-mask

electrical measurements. The bridge sections are 600µm long with a designed linewidth

of 500nm and a separation of 30µm between each pair. The layout of the structures

is defined so that each pair is identical in design and orientation. Both resistors in

a pair are connected using the same interconnect frame and contacted with identical

probe pad frames. This consistency helps avoid systematic mismatches caused by the

asymmetry in the placement of the devices or unequal device orientation [99].

There are two different arrangements with resistors running either horizontally or

vertically, which means that offsets can be measured along two axes. Figure 7.1 also

shows the probe pad openings created by a second lithography and etch process after

the test structures have been patterned. This exposes the chromium under the ARC

layer allowing good electrical contact to the test structures.

R1

R2
R1 R2

Probe Pads

Figure 7.1: Layout of mismatch bride resistor test structures.

There are a total of 54 instances of the mismatch resistor cell in the prototype test mask

design, which also includes test structure patterns for the work presented in Chapters

4 and 5. Figure 7.2 shows a test mask and indicates the position of a number of the

sets of mismatch resistors. Two photomasks have been prepared using this design. The

126



Matching Resistor Test Structures for the Characterisation of the Photomask
Fabrication Process

first (MSN5757 - No PEC) was fabricated without any attempt to correct for proximity

effects. The second plate (MSN6659 - GHOST) was fabricated using the GHOST

technique [46] which attempts to correct proximity effects in e-beam lithography by

equalisation of background dose.

Matching
Structures

Figure 7.2: Layout of a photomask with the matching structures highlighted.

7.2.2 Measurement Technique

The resistor structures are measured by forcing a current (I) between the two outer

pads and measuring the voltage (V) between the taps connected to the inner pads,

as shown in figure 7.3. The current is then reversed, the measurement is repeated

and the resistance (R = V/I) of each line is calculated. The resistors are measured

in pairs and the measurement is repeated five times for each structure. A current of

10µA was chosen as this gave the lowest short term standard deviation (σ) over the

five measurements. This is less than 1Ω for a typical resistance of 31kΩ, i.e. less than

0.003% variation.

The estimation of the electrical width of a feature requires a value for the sheet

resistance (RS) of the chrome layer. The chrome sheet resistance will vary across the

mask but a short range variation is likely to be significantly lower and two closely spaced

lines are likely to be fabricated from material with the same sheet resistivity. In addition

the long 600µm bridge resistor will also serve to average out any small variations or
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V

I

Figure 7.3: Measurement of a Kelvin bridge resistor forming the half section of a
horizontal matching structure.

non-uniformities. Therefore, any significant resistance mismatch is most likely to be

caused by a difference in CD between the two resistors. The length of the bridge will

also tend to average out effects such as defects or line edge roughness and an actual

CD bias between the two lines is more likely to be observed. The sheet resistance is

normally derived from the measurement of a Van der Pauw structure located close

to the bridge structure, but this is not available for the matching pairs. However,

measurements of RS obtained from cross-bridge structures on the two chrome masks

have shown a less than 1% variation across the mask with an average value of 22.5Ω/�.

The CD mismatch between the two resistors R1 and R2 is the difference between

the widths WR1 and WR2 divided by the average width, or ∆W/W, expressed as a

percentage. It should be noted that any errors introduced by the estimation of the

sheet resistance will be cancelled out.

7.2.3 Measurement Results and Analysis

The CD mismatch has been calculated for each of the horizontal and vertical resistor

pairs on the two masks and the results are plotted as histograms in figures 7.4 and 7.5

for MSN5757 and MSN6659 respectively. A normal distribution has been fitted to each

set of results and the mean (µ) and standard deviation (σ) have been calculated.

The histograms indicate that what is observed is more than a random statistical

variation of resistance. The results from MSN5757 show a small systematic mismatch

which is less than the standard deviation. Results from MSN6659 show a mean ∆W/W

of more than 3% for both horizontal and vertical lines and an increase in the spread
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Figure 7.4: Histograms of CD mismatch results for MSN5757 (No PEC).
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Figure 7.5: Histograms of CD mismatch results for MSN6659 (GHOST).

of the data as well. Examination of the write data revealed a difference in grid size

between data in the primary and GHOST exposure such that the features in the GHOST

pattern overlap the main pattern by 10nm in X and Y. This offset is applied to the

right hand and upper edges of the features as can be seen in figure 7.6. However, the

average values of CD mismatch are greater than the GHOST pattern error at 14.32nm

for vertical lines and -14.92nm for horizontal lines. In addition the GHOST pattern

offset should be the same for both lines in a pair so it is certainly not clear that the

GHOST exposure is the source of the systematic offset. The fact that this large constant

mismatch is only observed on the GHOSTed mask is suggestive of this conclusion.

References [150, 151] have shown that spin processing during lithography can

introduce a CD mismatch between adjacent features, which varies with the position

on the wafer. In order to investigate this the data from both masks have been plotted

against the position of the structure, in X or Y directions, on the mask in figure 7.7. The

results in figure 7.7(a) do not vary significantly from one side of the mask to the other.
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GHOST pattern overlap

Figure 7.6: Schematic showing the pattern overlap caused by the difference in the grid
size between the two exposures.

Any variation with position is much less than the spread of the data. Figure 7.7(b)

shows there is a downward trend in ∆W/W going from the bottom to the top of the

mask. This is true for both the vertical and horizontal lines, and has a similar slope for

both masks. Although this suggests some additional systematic source of mismatch,

it is unlikely to be caused by spin process effects, as a difference in trend would be

expected between the vertical and horizontal lines. The absence of a significant trend

in the results plotted against horizontal position on the mask also suggests that this is

not the source of the observed mismatch.

The un-normalised CD mismatch values ∆Wh and ∆Wv can be turned into a CD bias

vector for each set of test structures on the masks. These are plotted in figures 7.8(a)

and 7.8(b) to show the linewidth mismatch and its dependence on position. An arrow

pointing up indicates that the upper line in the horizontal pair is wider while an arrow

pointing left indicates that the leftmost line in the vertical pair is wider.

The vector plot for MSN5757 shows a systematic matching offset behaviour that cannot

be attributed to the signature expected from the processing steps used to manufacture

the mask. This suggests that we are observing some form of footprint being introduced

by the electron beam lithography tool used to write the basic mask pattern. Any similar

effect in the results from MSN6659 is swamped by the large systematic mismatch. In

order to compare the two masks the average value of horizontal, or vertical CD bias is

subtracted from the result to leave the underlying variation. These results are plotted

for both masks in figure 7.9.
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Figure 7.7: CD mismatch ∆W/W against mask position for masks MSN5757 (No PEC)
and MSN6659 (GHOST).

The results from the two masks are in agreement in the direction of the offset for many

of the measurement positions but the magnitude of the vector is generally larger for

mask MSN6659. The source of the observed systematic errors is thought most likely

to be stage position/travel or pattern segment butting issues from the lithography tool.

The mask data is written by the e-beam tool in segments which are 655.36µm high

and 20971.52µm wide. The electron beam is scanned vertically while the stage moves

horizontally. Vertical boundaries between segments indicate the point at which the tool

loads a new block of pattern data from memory. The electron beam scans always from

left to right across the whole mask before moving to the next row, while the stage
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Figure 7.8: Vector plots showing CD biases.

travels horizontally from right to left. This is illustrated in figure 7.10.

The boundaries between the write segments are potential sources for the observed

mismatch, either through butting errors between the blocks or issues with timing of

the electron beam and stage. All the structures in a row will have the same horizontal

segment boundaries while structures in the same column should have the same vertical

segment boundaries. It seems likely that the horizontal boundaries will have a greater

effect on horizontal lines, for example if the segment boundary falls between the two

lines. A similar effect would be expected for the vertical lines and vertical segment

boundaries. From figure 7.9 it can be seen that structures in the same row tend to

have approximately the same matching values, both vertical and horizontal, and this is

especially true if the mismatch is quite large. However, there is no obvious agreement

between structures in the same column. For example the CD bias vectors for the

structures above and below the middle row are in almost the opposite directions. This

perhaps suggests that the vertical segment boundaries have little effect on any of the

matching structures and that instead the arrangement of the horizontal edges affects

both pairs of structures. This result is perhaps not surprising due to the longer elapsed

time and greater stage travel associated with writing segments that neighbour across

the horizontal boundary.

From the write data and the positions of the centre points of the matching structure
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Figure 7.9: Vector plot comparing CD biases on masks MSN5757 (No PEC) and MSN6659
(GHOST).

20971.52µm

655.36µm
E-Beam
Scan
Direction

Stage Travel

Figure 7.10: Diagram illustrating the e-beam writing method.

sets on the masks it is possible to determine the distance from the centre point to the

closest vertical or horizontal segment boundary. If the vertical boundary is between

450µm and 510µm right of the centre point then it will lie between a pair of vertical

lines. Similarly, if the horizontal boundary is within ±15µm of the centre then it will

lie between the horizontal lines. The boundary positions relative to each column and

row of structures have been calculated and are presented in tables 7.1 and 7.2.

Table 7.1 suggests a reason for the lack of a systematic mismatch between structures

which are in the same column. The closest that any vertical segment boundary gets

to a matching structure set is 1281.13µm. This places it several hundred microns

133



Matching Resistor Test Structures for the Characterisation of the Photomask
Fabrication Process

Column Number X Position (µm) Boundary Distance (µm)
1 28200 7208.87
2 40200 -1739.55
3 52200 10229.55
4 64200 1281.13
5 76200 -7667.29
6 88200 4301.81
7 100200 -4646.6
8 112200 7322.5
9 124200 -1625.92

Table 7.1: Distances of vertical segment boundaries from the centres of matching
structures sets.

Row Number Y Position (µm) Boundary Distance (µm)
1 10624 137.24
2 20624 306.84
3 28200 18.52
4 36412 -289.16
5 52200 -229.8
6 67987 -171.44
7 76200 177.24
8 84412 -130.44
9 100200 -71.08
10 115987 -12.72
11 124200 -319.4
12 131775 46.64
13 124200 216.24

Table 7.2: Distances of horizontal segment boundaries from the centres of matching
structures sets.

away from the test structures and it is unlikely that it will have any significant effect.

Table 7.2 shows only one row where the horizontal segment boundary is between

the two measured lines. This is row 10, and on mask MSN5757 this row shows the

largest mismatch between horizontal lines. However, this is not the case for mask

MSN6659 which should have the same segment boundaries. Most of the other rows

have horizontal boundaries which intersect with the measured part of the vertical lines.

There is no obvious reason, however, why this should lead to a mismatch.

Although the source of the observed mismatch is unclear the electrical structures have

demonstrated their usefulness in providing information about the capability of the

mask making process. In addition, the electrical measurements have proved to be
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extremely sensitive and repeatable. Measurements made several months apart on the

same on-mask structure show variations in the measured resistances, in ∆R and ∆W/W

of less than 1%. Table 7.3 shows the results of measuring a single pair of resistors at

three different times, in a lab with no environmental control. The observed variation

may be the result of changes in ambient temperature in the lab or instrument drift.

Measurement Time R1 (Ω) R2 (Ω) ∆R (Ω) ∆W/W (%)
April 30617.5 30449.0 168.5 -0.552
June 30771.2 30602.3 168.9 -0.55

October 30801.0 30632.2 168.8 -0.55

Table 7.3: Variation of resistance measurement with time.

7.2.4 Conclusions

On-mask electrical test structures consisting of pairs of Kelvin connected resistors

have been designed to examine the capability of an advanced mask making process to

produce identical isolated lines. Results from the prototype masks show systematic

differences between adjacent resistor structures but the observed pattern of the

mismatch data across the mask does not suggest an obvious process related source.

The suggestion is that the data is a result of errors introduced by the electron-beam

lithography tool used to print the features.

The electrical measurements have shown to be extremely repeatable and capable of

revealing detailed information about the process capability. The requirement now

is to further investigate the sources of the mismatch. This is done by analysis and

redesign of the matching structure locations to more strategically probe the segment

boundary positions. A number of plates have been fabricated with the new design,

which is presented in the next section, with the the expectation that this may lead to

improvements in the mask making process.
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7.3 Electrical Characterisation for an Improved Photomask

Design

7.3.1 Test Structures and Photomasks

New photomasks have been fabricated in order to further investigate the effects

described in section 7.2.3. The primary plate used for this work (MSN7520 - NoPEC)

can be seen in figure 7.11. This design takes advantage of the full available mask area

and consists of an array of matching structures with a pitch of 6mm. The array of

357 sets of mismatch structures provides a volume of data which is larger than all of

the masks presented earlier in this chapter and is without spatial gaps caused by the

inclusion of other types of test structures. Each set of structures has a horizontal and a

vertical pair of resistors, with the same dimensions as those described in section 7.2.1.

17x21 Array of Matching Structures

Figure 7.11: Layout of photomask MSN7520.

Mask MSN7520 was fabricated without any standard proximity correction techniques.

A second photomask (MSN7544 - GHOST) was fabricated using the GHOST

process [46] which attempts to correct for iso-dense bias effects. A problem with a

low exposure dose meant that the mask was unsuitable for measurements. However,

this turned out to be useful as the underexposed plate clearly shows the boundaries

between the e-beam patterning segments. These boundaries were a possible source

for the observed pattern of misalignment of section 7.2.3. As mask MSN7544 was
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fabricated using the same lithography job file with MSN7520 it provides an opportunity

for further investigation.

7.3.2 Measurements and Results

The measurement technique for the matching structures has been described in

section 7.2.2. ∆W/W has been calculated for each pair of resistors on MSN7520

and the results from the horizontal and vertical lines are plotted as histograms in

figures 7.12(a) and 7.12(b) respectively, which also show the mean (µ) and standard

deviation (σ). The range of mismatch values for this mask is less than ±2% for the

horizontal lines and less than ±3% for the vertical lines. This is comparable with the

the results from the unGHOSTed mask MSN5757 in section 7.2.3.
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Figure 7.12: Histograms of CD mismatch results for MSN7520 (No PEC).
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To determine if there are any trends in the measurement results which are related to

the position of the structures on the mask the CD matching values are plotted against

their horizontal or vertical position in figures 7.13 and 7.14. Figure 7.13(b) shows that

the results for the horizontal lines are strongly grouped by row or vertical position.

However there is no clear pattern to this or agreement between rows. The results from

the vertical lines show a much more random distribution but there is a suggestion of a

downward trend in ∆W/W from the bottom to the top of the mask. This is highlighted

in figure 7.14(b) where a linear fit to the data has been made. However, this trend

is relatively small compared to the range of variation in the data and so may not be

significant.
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Figure 7.13: CD mismatch as a function of position for horizontal lines on MSN7520 (No
PEC).
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Figure 7.14: CD mismatch as a function of position for vertical lines on MSN7520 (No
PEC).

Figure 7.15 is a vector plot showing the linewidth offset (∆W) in X and Y for each block

of matching structures. Due to the fact that the linewidth values are calculated from an
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assumed value of sheet resistance these results should be considered as indicative rather

than showing absolute values of linewidth offset. This plot shows good agreement in

the vertical component, taken from the horizontal lines, within each row. However, it

also suggests there is some sort of pattern to the horizontal component that was masked

by the way the data was represented in figure 7.14.
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Figure 7.15: Vector plot showing CD bias on MSN7520 (No PEC).

Earlier in the chapter it was suggested that a possible source for the mismatch patterns

observed on masks MSN5757 and MSN6659 was the position of the boundaries

between the data segments in the mask writing tool. The data is sent to the mask

writing tool in segments which are 20971.52µm wide by 655.36µm high and the

patterns are written by moving the mask horizontally while the e-beam is scanned

vertically. At the end of each segment a new set of data is loaded into the tool and the

next segment in the row is written. When the edge of the plate is reached the mask is

moved back to the start of the next row. This suggests that if there are any issues with

differences between adjacent segments they are more likely to occur at the horizontal

boundaries and will therefore affect horizontal lines more than vertical lines. It was

suggested that this could be the source of the characteristic agreement within a row

for horizontal lines as shown in 7.13(b). The highest and lowest values of mismatch

are highlighted in this graph and are from rows 4 and 9.
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To highlight the physical positions of the write boundaries microscope images were

taken from the underexposed mask MSN7544 presented in section 7.3.1. Figure 7.16

shows images with the write segment boundaries running through horizontal structures

located in rows 4 and 9. It is clear from these images that the height of the write

segments is not as defined (i.e. 655.36µm) and is in fact approximately 160µm. The

height is the distance between two horizontal write segment boundaries as measured

from the microscope images. The control system for the mask writing tool sends the

data to a rasterising engine, which re-segments them to optimise the write operation.

Although it is possible to define the dimensions of the data segments in the file sent to

this system it is, unfortunately, practically impossible to determine exactly how this will

be finally written by the lithography tool following rasterisation.

Boundaries between write segments

(a) Structure on row 4

Boundaries between write segments

(b) Structure on row 9

Figure 7.16: Images of underexposed mask MSN7544 showing write segment boundaries.

Both rows 4 and 9 have a horizontal segment boundary between the two horizontal

lines and, in the case of row 4, it is within a few microns of one of the lines.

Consequently it could be concluded that this might be the cause of the observed

mismatch. However, images from rows 1 and 17 in figure 7.17 show that they also

have a segment boundary which runs between the horizontal test structures and they

have a mean mismatch which is close to zero. Similar images were taken of vertical

test structures in each column of the array but only column 9 was observed to have a

boundary running between the lines. There is no obvious consequence of this in the

data in figure 7.14.
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Boundaries between write segments

(a) Structure on row 1

Boundaries between write segments

(b) Structure on row 17

Figure 7.17: Images of underexposed mask MSN7544 showing write segment boundaries.

7.3.3 GHOST Proximity Corrected Photomasks

Two more masks were fabricated using the GHOST proximity correction technique [46]

and the same regular array design of MSN7520. Mask (MSN7553 - GHOST) used the

standard GHOST process where the secondary pattern was written with a larger grid

size to speed up the process. In order to identify the source of the observed dimensional

offsets, mask (MSN7864 - Slow GHOST) was fabricated using a process with the grid

size kept the same on both exposures.

7.3.4 Results and Analysis

The full sets of horizontal and vertical matching structures have been measured on both

MSN7553 and MSN7864 and the results are presented as histograms in figures 7.18

and 7.19 respectively. These graphs also show the mean values (µ) and standard

deviations (σ).

It can be observed that the systematic offsets observed on previous GHOSTed masks

are also present on the MSN7553 using the standard GHOST process while the results

from the Slow GHOST mask MSN7864 have mean values closer to zero. Table 7.4

summarises these results and includes data from the no PEC mask MSN7520.

The slow GHOST process reduces the mean mismatch to a similar level to that seen on

the no PEC photomask MSN7520. However, it also appears to greatly increase the range
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Figure 7.18: Histograms of CD mismatch results for MSN7553 (GHOST).
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Figure 7.19: Histograms of CD mismatch results for MSN7864 (Slow GHOST).

of the results from the horizontal lines. It is clear that the results from the horizontal

lines do not show a random, statistical variation. Therefore, the standard deviations

given in figures 7.18(a) and 7.19(a) cannot be used to predict the distribution of

∆W/W. It is for that reason that the range value, representing the difference between

maximum and minimum mismatch, is provided in table 7.4. The results presented

earlier for horizontal structures on MSN7520 plotted against the vertical position on

the mask show good agreement between structures in the same row. Similar results

have been obtained for the two GHOSTed masks and can be seen in figure 7.20.

These results show a similar pattern to that observed for MSN7520, in particular with

the maximum mismatch occurring in row 4 of the mask and the minimum in row 9. A

possible reason for this was the fact that there is an e-beam pattern boundary which

runs between the two horizontal lines on these rows. However, as previously noted
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Mask MSN Horizontal ∆W/W (%) Vertical ∆W/W (%)

µ σ Range µ σ Range

7520 (No PEC) -0.37 0.58 3.01 0.1 0.79 4.48

7553 (GHOST) -3.7 0.91 4.77 3.46 0.89 5.05

7864 (Slow GHOST) -0.25 1.82 7.96 0.23 0.69 4.19

Table 7.4: Comparison of matching results from three different masks.
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Figure 7.20: CD mismatch as a function of vertical position for horizontal lines.

there are also similar pattern boundary conditions on rows 1 and 17 which do not

lead to large mismatches. The similarity between the results from the three masks

for horizontal mismatch structures can be seen more clearly in figure 7.21 which plots

the average mismatch for each row. The error bars, where visible, give the standard

deviation of the mismatch across the 17 sets of structures in each row.

The data in figure 7.21 has been normalised in each case by subtracting the mean

mismatch figure for the whole mask and it is clear that all three masks show the

same overall pattern. However, the slow GHOST mask, MSN7864, shows much

greater variation. One possible reason for this observed effect is interaction between

the primary and secondary exposures in the GHOST process. These results confirm

the suspicion that the systematic offset of around ±3.5% observed in the standard

GHOSTed mask MSN7553 results are due to the fact that the secondary GHOST

exposure is performed at a lower resolution. This means that the GHOST pattern

overlaps the main pattern by 10nm on one side of each of the bridge resistors. However

it is unclear how this leads to a systematic offset between the resistors in a pair as
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Figure 7.21: Comparison of matching data for horizontal structures from three different
photomasks.

both should have similar secondary exposure patterns. In the slow GHOST mask the

resolution of the secondary pattern is the same as the main pattern but the increased

write time means that offsets between the two patterns are more likely. This obviously

has a significant, adverse effect on the horizontal lines, increasing the mismatch range

to more than ±3%, equivalent to linewidth offsets of more than ±15nm.

The vertical lines on MSN7864 do show the elimination of the systematic offset when

compared with MSN7553 but they do not show an increase in the range of the mismatch

results. As was noted earlier the pattern is split into write segments which are around

160µm high. This means that the vertical lines are split between several write segments

while the horizontal lines are contained within a single segment. The result of this

may be an averaging of adverse effects associated with the high resolution GHOST

pattern. Although the mismatch results from the vertical lines appear to be randomly

distributed in figures 7.18(b) and 7.19(b) this is not actually the case as can be seen in

the contour plots of the mismatch from the vertical structures (figures 7.22(b), 7.23(b)

and 7.24(b)). Similarly, clear patterns of horizontal bands can be seen in contour plots

of results from the horizontal lines (figures 7.22(a), 7.23(a) and 7.24(a)).
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Figure 7.22: Contour plots of CD mismatch data from MSN7520 (No PEC).
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Figure 7.23: Contour plots of CD mismatch data from MSN7553 (GHOST).
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Figure 7.24: Contour plots of CD mismatch data from MSN7864 (Slow GHOST).

7.3.5 Conclusions

Electrical measurement results from mismatch resistor structures patterned as regular

arrays on standard chrome-on-quartz photomask plates have been presented. The

masks have nominally identical features but have been processed differently. Mask

MSN7520 (No PEC), was processed without any correction for process or pattern

dependent biases. MSN7553 (GHOST) has been prepared using a standard GHOST

process commonly used to remove pattern dependent biases in electron-beam

lithography. Finally, MSN7864 (Slow GHOST) used an adaption of this process in an

attempt to identify the source of systematic dimensional offsets observed in results

from mismatch test structures described in section 7.2.3. It was believed that the

systematic mismatch observed in GHOSTed structures was due to the fact that the

secondary GHOST pattern was printed with a lower resolution than the primary

pattern. The slow GHOST process uses the same resolution for the secondary exposure,

increasing the write time but removing any systematic offset between the patterns.

The effect of the slow GHOST process on both horizontal and vertical lines was to

remove the overall systematic bias as expected. However, it also had the effect of

significantly increasing the overall range of the mismatch results for horizontal lines. It
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is likely that the increased write times involved in the slow GHOST process exacerbate

the tool induced pattern seen in figure 7.21. Contour plots of mismatch data from the

three masks show a clear, row by row, pattern in the mismatch data from horizontal

lines which is similar for each mask. However, the range of the mismatch variation

increases from mask to mask as the write time gets progressively longer for the no

PEC, GHOST and slow GHOST write strategies. This suggests that the increased write

time could be compromising the re-registration performance of the write tool in some

way, perhaps by a mechanism such as thermal drift within the mask writing chamber.

Although the mismatch data from the vertical lines appears at first to be more randomly

distributed, a clear pattern emerges in the contour plots. However, unlike the results

for the horizontal structures the pattern is significantly different in each case. Overall,

the application of either GHOST process has little effect on the range of the results from

the vertical structures and only affects the mean value. GHOST processing has a much

more significant effect on the horizontal structures, with the slow GHOST process in

particular leading to mismatches of as much as ±4% or ±20nm. This is understandable

since for the vertical structures the variation in registration of the scanned beam will

tend to contribute to the line edge roughness rather than shifting the whole edge

as would be the case for the horizontal lines. This effect would explain the lower

measured range for the vertical features. Vertical lines will have their width governed

by the electron beam being blanked on or off rather than its scanned position and will

therefore be less prone to linewidth variation from registration drifts.

147



Chapter 8
Conclusions and Further Work

This thesis has presented the results of investigations of applications of electrical

test structures and measurement techniques for the characterisation of advanced

photomasks. This final chapter begins by briefly covering the important conclusions

made in each of the preceding chapters. The chapter ends with describing some areas

for future investigation that have been suggested by this work.

8.1 Conclusions

8.1.1 Linewidth Measurement Techniques for the Characterisation of

Binary and Alternating Aperture Phase-Shifting Masks

The use of electrical linewidth test structures for binary and alternating phase-shifting

mask metrology was investigated in Chapter 3. Two photomasks were fabricated

featuring a large number of on-mask test structures with a range of different linewidths

and line to space ratios. Some of the structures were binary and some phase-shifted.

The masks are capable of being used to print test structures on-wafer which can also

be electrically tested. The linewidths of one complete set of binary and one set of

phase-shifted structures were measured electrically and optically on both masks.

The ECD results from both binary and phase-shifted features track each other

very closely. For most features, the optical measurements also track each other,

but the alternating phase-shifting elements have a significant effect on the optical

measurement, leading to an offset between the binary and phase-shifted results.

Another issue with the optical measurements is the difference between the results from

dense and isolated binary structures. While the optical and electrical measurements of

the most dense structures track each other with a reasonably constant offset, the same

cannot be said for the more isolated lines with dimensions below 800nm. The optical

and electrical results do not agree and, as the ECD measurements are not affected by
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proximity, this suggests that the optical system is struggling to measure these features

accurately.

Finally for one of the photomasks where the designed CD for the phase-shifting features

is less than 600nm, the optical measurement fails and the phase-shifted lines appear

significantly wider than indicated by the electrical tests. This optical effect was found to

be caused by the misalignment between the two masking layers. However, in this study

it is the combination of different types of inspection methods which helped identify the

misalignment between the mask layers. This is clearly the case where the use of more

than one measurement technique, complementing each other, can prove valuable when

characterising an advanced photomask process.

8.1.2 Development of Electrical On-Mask CD Test Structures Based On

Optical Metrology Features

The work presented in Chapter 4 proposed test structures which are electrical

equivalents to a set of industry standard optical/SEM test sites, normally used for

investigating proximity distortion effects.

In section 4.2, part of the Mentor Graphics metrology reference test set formed the

basis for the design and fabrication of direct on-mask electrical structures to allow

the measurement of linewidth and line-spacing on these features. A prototype binary

mask was fabricated with cross-bridge and split-cross-bridge test structures to measure

isolated and dense patterns. Electrical and optical measurements were made on

these structures and the ECD results of section 4.3 have been shown to outperform

industry standard optical mask metrology and verification methods, especially for deep

sub-micron dimensions. The results suggested that the electrical technique is not

affected by the type, dimension, density or the proximity of the features, unlike the

optical technique where proximity effects are compounded with the measurement itself.

This is very important as effects seen when electrically characterising a feature can be

more confidently attributed to the mask fabrication process and not to the measurement

technique.

Section 4.4 investigated the feasibility of adapting optical measurement patterns to

electrical equivalent structures, which measure the separation between line, space
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and corner ends, as well as the dimensions of contacts and holes. Simulations were

performed to examine the sensitivity of capacitive and resistive structures to feature

dimension variations. It was found that for most test patterns, an interdigitated

capacitor design could have the sensitivity required for detecting any changes in feature

dimensions. This test structure has a smaller footprint than the simple capacitive

equivalents, which would be too large to be fabricated on a standard photomask. In

addition, two resistive structures were proposed, one of which is a modified cross-bridge

structure.

8.1.3 Comparison of Metrology Techniques for the Characterisation of

Advanced Photomask Processes

Chapter 5 demonstrates the strength of on-mask electrical measurements to

characterise advanced photomasks and compares the measurement results with

state-of-the-art metrology tools. Section 5.2 described the design and fabrication

of binary, on-mask electrical test structures on a chrome-on-quartz plate that was

written using the GHOST proximity correction technique. Both electrical and optical

measurements have been performed on isolated and dense line/space features and

the analysis has shown that GHOST correction has a significant, and positive, effect

on the mask manufacturing process. However, the test structures have highlighted

that there are limitations associated with the procedure, which depends on the

density and dimensions of the features being fabricated. Furthermore, comparisons

between electrical and optical measurements showed how ambiguities in the optical

measurement may affect the interpretation of the capability of the mask making

process.

Section 5.3 presented a comparison between electrical, optical and CD-AFM

measurements. These different techniques were used to measure the linewidths

of submicron isolated chrome features. The CD-AFM measurements were made

with a system, which is calibrated using a traceable standard and showed excellent

agreement with the ECD measurements. The offset was less than ±10nm and showed

no systematic dependence upon nominal size over the range of dimensions measured.

This was not the case with the optical measurements which overestimated the width

of these features by as much as 90nm. The optical results also showed a dependence
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on the nominal width with the offset reducing as dimensions increase. An initial

analysis of the measurement uncertainties for each technique was also made. The good

agreement between the independent electrical and calibrated CD-AFM measurements

suggests that a CD standard for binary masks may be definable.

8.1.4 Electrical Test Structures for the Characterisation of Optical

Proximity Correction

In Chapter 6, a Kelvin connected resistor structure was used to demonstrate the

feasibility of extending electrical measurement techniques to the characterisation of

corner serif OPC features. A prototype photomask was fabricated which contained

arrays of on-mask and printable corner test structures, with different levels of OPC

aggressiveness. The results from the work in sections 6.3 and 6.4 have shown that

the electrical technique is sensitive enough to measure the effects of inner corner

structures reliably and in good agreement with theoretical predictions. This agreement

is a good indication that it is the material physically present on the mask which is

being characterised. Any departures from the simulated results have been found to

be attributable to defects in the serif structure. Furthermore, an optical microscope, a

dedicated optical mask metrology system, an AFM scanner and finally a FIB system,

were used to characterise the effects observed electrically. Overall, the electrical

measurements were able to observe the degree of aggressiveness of the OPC and could

potentially be employed for monitoring the OPC pattern transfer process onto masks.

Section 6.5 investigated the impact of the corner features on structures printed

on-wafer. Results of electrical measurements of polysilicon test structures printed

using the previously measured photomask suggest that OPC applied to the inner

corner has a significantly greater effect on the resistance than outer corner serifs. SEM

imaging of the test structure geometries confirmed that OPC does alter the shape of

corner rounding on both the inner and outer corners. However, it appears that, unlike

measurements on the mask, the effects of OPC are confounded by other fabrication

artefacts. Whilst the measurement technique is restricted in practical application to

inner corner serifs, it is this circuit feature that is most relevant to achieving the desired

device electrical performance.
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8.1.5 Matching Resistor Test Structures for the Characterisation of the

Photomask Fabrication Process

Chapter 7 investigated the use of on-mask, electrical, mismatch test structures and

measurement techniques to characterise the capability of an advanced mask making

process. The test structures consist of pairs of identically designed Kelvin connected

bridge resistors that can be measured simultaneously. Results from the prototype

masks showed systematic differences between adjacent resistor structures. However,

the observed pattern of the mismatch data across the mask did not suggest an

obvious process related source but a result of errors introduced by the electron-beam

lithography tool used to print the features. The larger systematic mismatch observed

on the GHOST proximity corrected mask, was believed to be due to a difference in

resolution between primary and secondary exposures, that caused an overlap between

the primary and GHOST patterns.

Section 7.3 described the fabrication and measurement analysis of matching structures

on a set of advanced photomasks, which have nominally identical features but have

been processed differently. This design takes advantage of the full mask area and

consists of a regular array of structures, which provides a greater volume of data.

A modified GHOST process was used on one mask, to confirm that the systematic

mismatch observed in GHOSTed structures was due to the fact that the secondary

GHOST pattern was printed with a lower resolution than the primary pattern. The slow

GHOST processed mask, used the same resolution for the secondary exposure, which

removed the overall systematic bias at a cost of an increased write time. In addition,

it was found that the range of the mismatch variation increased from mask to mask as

the write time got progressively longer.

Overall, the electrical measurements have shown to be extremely repeatable and

capable of revealing tool and process induced dimensional mismatches in the

nanometer range on masks, which could otherwise prove difficult with standard optical

metrology techniques.

152



Conclusions and Further Work

8.2 Further Work

A number of suggestions for further work have arisen from the work presented in this

thesis. One of the major attractions of the mask metrology method, is that similar

structures can be printed with the test masks and measured on-wafer using the same

electrical techniques. The photomasks used in Chapters 3-5 contain structures with

probe pads scaled appropriately for reduction lithography but the same dimensions

for the measured features as the on-mask structures. Measurements of structures in

silicon will be compared with those from the mask and the offsets or non-linearities

determined. This will provide information about the Mask Error Enhancement Factor

(MEEF) of the photolithographic process. On-mask CD values can be obtained by using

electrical measurements techniques, but a very important issue is how this actually

relates to the on-wafer printed features. Finally, printable versions of the matching test

structures described in Chapter 7, can also be designed to examine the capability of a

photolithographic process to produce identical features.

Further work arises from the investigation on phase-shifting mask metrology in Chapter

3. At present, the most commonly used form of phase-shifting technology is attenuated

PSM, where the chrome blocking features are replaced by a semi-transparent material.

A common material is molybdenum silicide oxynitride, which unfortunately is

unsuitable for direct probing. However, the fabrication process of these masks uses a

chrome layer during patterning and it should be possible to apply the test structures

and electrical measurement methods before the Cr is removed. The attenuated

photomasks can then be used to print structures in order investigate pattern transfer.

In Chapter 4, simulations were used to investigate the feasibility of adapting optical

measurement patterns to electrical equivalents. There is plenty of scope for further

investigation examining the issues with the measurement of these features. The next

step would be to correlate capacitance and resistance measurements to the actual

feature dimension that is being investigated. The proposed test structures should

be designed and fabricated on-mask in an attempt to confirm that the measurement

methodologies drawn from the simulation results are valid.

Further on-wafer measurements were made on corner OPC polysilicon test structures,

as part of the work presented in Chapter 6. The data suggest that OPC on the outside
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corner has little impact upon the performance of a simple circuit, but care should be

taken with OPC on the inner corners, particularly with regard to the size of the OPC

serifs used. The level of corner rounding is dependent upon the dimensions of the

serifs employed and the measured resistance can be used to characterise the effects of

different levels of OPC applied to the inner corners. Two papers have been prepared

with this recent work (see section A.2), one submitted to the IEEE Transactions on

Semiconductor Manufacturing and one presented at the SPIE Photomask Technology

2009 [152].

The initial work was completed at a lithographic k1 value of 0.5. Further work using

lower k1 factors and narrower lines would be useful to verify if the effect is the same,

or indeed more critical, as the width of the polysilicon line narrows. It would also be

useful to determine if this relationship is maintained when the conducting material is a

metal with much lower resistance. This knowledge would be relevant as technology is

moving forward into the realm where metal rather than polysilicon transistor gates are

used. The same structures have been recently patterned in a thin layer of aluminium

and a paper with the initial results of this work will be submitted to IEEE Conference of

Microelectronic Test Structures 2010 (see section A.2).

8.3 Final Conclusions

The work presented in this thesis has shown a novel application of electrical test

structures and measurement techniques to characterise advanced photomasks. It

is a transferable metrology from mask to wafer, which can provide the ultimate

measurement, to confirm that a photomask pattern can be transfered onto the wafer.

Traditionally, optical and CD-SEM metrology have been the verification methods

in photomask fabrication environments. However, as these techniques continue to

be challenged, the development of new technologies is critical. Although electrical

techniques require a conducting layer, this is not a problem for the most widely used

photomask types. In addition, as this work has demonstrated, they do have the high

repeatability and accuracy required for metrology in the future. Some of the structures

are of the earliest to be reported in the field, and have been able to benefit of all

developments that have been made over time. These electrical techniques still have

important applications today and will almost certainly remain as important in the
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future.

According to the International Technology Roadmap for Semiconductors [20], by 2015

CD measurement techniques have to be capable of measuring linewidths of 10nm with

an uncertainty of 1nm. Mask feature dimensions are normally 4× or 5× larger than

wafer. However, even these requirements are a challenge to existing measurement

capabilities. This thesis has presented and analysed test structures and measurement

techniques for the electrical charecterisation of photomasks, providing a greater insight

into their operation. The results of this study will help to develop the appropriate

metrology for current and future mask technologies.
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ABSTRACT 

Today's Optical Proximity Correction (OPC) is becoming increasingly complex and necessitates using smaller and smaller 

grid sizes to produce the fine patterns required.  These small grids lead to very high overhead in data handling, as well as for 

the tools that will write and inspect the mask; which together make masks extremely expensive.  For two dimensional 

structures such as corners, we use complex structures incorporating either additive or subtractive OPC features to produce the 

desired shape.  It is unclear though, how precisely the final structures must match the original design to perform their 

intended electrical functions. In this work we have created a number of corner type electrical test structures and applied 

different degrees of OPC to both the outer and inner corners of the structures. These features were then printed on doped 

polysilicon wafers, and the wafers were etched and electrically tested. The electrical effect of OPC on the outer corner was 

found to be minimal, whereas the inner corner shape had a significant effect upon the electrical resistance of the circuit 

feature. The data suggests that OPC on the outside corner has little impact upon a simple circuit’s performance, but care 

should be taken with OPC on the inner corners, particularly with regard to the size of the OPC serifs used. 

 

Keywords: OPC, corner rounding, electrical test structure 

 

1. INTRODUCTION

OPC was first considered for microlithography with imaging systems in the early 1980’s [1] although the technique was 

proposed many years before then [2]; however, it was not until the 1990’s that commercial application of this technique for 

chip fabrication became available [3]. Throughout the development of OPC, its primary purpose has been to correct the 

shape printed upon the wafer to replicate the original mask feature design as closely as possible. This has resulted in OPC 

application and verification being performed using increasingly complicated optical models [4]. In addition, the shapes 

appearing on masks are becoming more and more abstract when compared to the final desired pattern. This has resulted in 

masks being drawn on small grid squares requiring long write times, difficult inspections, and increasingly high prices. 

Throughout the progression of OPC technology though, uncertainty has remained regarding how close to the originally 

drawn shape that the printed circuit features on the wafer must be to enable the circuit to function correctly.  While this is 

likely to vary from one circuit to another, if specific circuits’ functionality can be maintained while the pattern on the wafer 

is not ‘ideal’, then there is the potential to reduce mask costs significantly.  

 

2. METHOD

In this paper we studied two dimensional corner structures which typically have serif-type OPC added [5]. Structures that can 

be tested electrically were built using Kelvin connected resistors consisting of a short section of track turning through a right 

Figure A.1: Reprint of paper presented at the SPIE Photomask Technology 2009, page 1.
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angled corner, as shown in figure 1. To measure the resistance of the track, a current is forced between pads B and D and the 

resulting potential difference is measured at pads A and C. The resistance of the section of track between the voltage taps is 

then calculated with: 

I

V

BD

R
AC

       (1) 

 

 

 
Figure 1. The Kelvin connected resistor structures 

 

The effect of OPC was investigated by altering the layout of the right angled corner of the structure. This was achieved by 

adding a square serif pattern to the outside of the corner, whilst a square is removed from the inside, as illustrated in figure 2. 

The size of the squares for the inner and outer corner (Wi or Wo), together with the amount by which it overlaps with, or 

protrudes from, the original layout (Di or Do) were varied. The Wi/Wo variation is defined as fractions of the base CD: 0.25, 

0.3, 0.35, 0.4, 0.45 and 0.5. Subsequently, the value of Di or Do is then defined as some fraction of Wi or Wo: 0.25, 0.5 or 

0.75. These were arranged in a 19 x 19 array in which each column has a different value of Wi and Di, while each row has a 

different value of Wo and Do. 

 

 

 

 

 

 

 

 

 

 Wo Do

Di

Wi

Wo Do

Di

Wi

Figure 2.Diagram of the corner structure showing positions of the varied parameters. 

 

The test structures were written on a chrome binary mask at 5X nominal using a MEBES 5500 e-beam lithography system 

using GHOST, processed on a Steag Hamatech ASE 5000 and then dry etched using a Unaxis Versalock 700 Mask Etcher. 

Nominal CD measurements were made optically using a MueTec <M5k> system.  

 

Wafers were then prepared for printing. 200mm wafers had 500nm of oxide grown, then 300nm of polysilicon was deposited 

and doped using ion implantation to deliver a sheet resistance of 95-98 ohm/square (measured by four point probe.) Wafer 

printing was then performed using Rohm and Haas Ultra-i 123 resist on a Nikon NSR-2005i9C stepper with a numerical 

aperture (NA) of 0.5. After development, the polysilicon was etched in a reactive ion etch tool before passivation with a 

Figure A.2: Reprint of paper presented at the SPIE Photomask Technology 2009, page 2.
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0.5 m thick layer of PECVD silicon oxide. Holes in the oxide were then etched over the probe pads prior to deposition of a 

500nm thick layer of sputtered aluminium. The final step was then to pattern the aluminium to create contacts suitable for 

probing. An image of the final structure can be seen in figure 3.  

 
Figure 3. Optical Lithograph of the final test structure. 

 

Electrical testing of the features utilised a semi-automatic prober using an HP-4062UX test system and a force current of 

500 A.  

 

3. RESULTS

The 320nm (at the wafer scale) features, corresponding to a k1 of 0.44, were used for electrical resistance measurement.  

Imaging at such a low k1 factor requires OPC; therefore these features were considered representative of typical OPC usage. 

The electrical measurements taken were analysed for each of the different OPC conditions, i.e. for both inner and outer 

corner OPC with the following conditions: 

i) by varying the size of each corner serif (W) for different overlap positions (D) 

ii) by varying the amount of overlap (D) for each size of OPC (W) 

For easier interpretation, the data has been graphed and is shown in the figures below. The notation used is such that the 

letter “i” is added after the W or D for inner corner and the letter “o” for outer corner. The number following is a ratio against 

the nominal CD used, in this case 320nm. As such, Di0.25 is an overlap of 80nm (0.25 x 320nm) on the inner corner, and 

Wo0.5 is a 160nm serif (0.5 x 320nm) on the outer corner. 

 

3.1. Variation of OPC on the inner corner 

Figure 4 shows the variation of the size of the inner serif (Wi), for the smallest (Di=0.25) and largest (Di=0.75) overlaps, for 

each of the smallest (Wo=0.25) and largest outer (Wo=0.50) serifs. A clear trend of increasing electrical resistance is 

observed as the serif size gets larger and lesser amounts of material are present on the inner corner. 

 

Figure 5 shows variation of the position of the inner serif (Di) (also referred to as the overlap) for the smallest (0.25) and 

largest (0.5) inner serifs (Wi), for each of the smallest and largest outer serifs (Wo). In the case of the smallest overlap, there 

is no clear dependence of the electrical resistance on the size of the serif. However, in the case of the largest overlap, some 

weak dependence appears to exist.   

 

Figure A.3: Reprint of paper presented at the SPIE Photomask Technology 2009, page 3.
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Figure 4. Variation of the size of the inner serif (Wi), for the 0.25 and 0.75 overlaps (Di), for each of the smallest and largest 

outer serifs (Wo). 
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Figure 5. Varying the overlap of the inner serif (Di) for the smallest (0.25) and largest (0.5) inner serifs (Wi), for each of the 

smallest and largest outer serifs (Wo). 

Figure A.4: Reprint of paper presented at the SPIE Photomask Technology 2009, page 4.
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3.2. Variation of OPC on the outer corner 

Figure 6 shows the variation of the size of the outer serif (Wo), for the smallest (Do=0.25) and largest (Do=0.75) overlaps, 

for each of the smallest and largest inner serifs (Wi). No clear relationship can be observed. 

Figure 7 shows variation of the position/overlap of the outer serif (Do) for the smallest (0.25) and largest (0.5) outer serifs 

(Wo) for each of the smallest and largest inner serifs (Wi). Once again no dependence can be seen. 

 

Do 0.25

650

670

690

710

730

750

770

0.25 0.3 0.35 0.4 0.45 0.5

Wo

Wi0.25 Di0.25

Wi0.3 Di0.25

Wi0.35 Di0.25

Wi0.4 Di0.25

Wi0.45 Di0.25

Wi0.5 Do0.25

 

Do 0.25

580

600

620

640

660

680

700

720

0.25 0.3 0.35 0.4 0.45 0.5

Wo

Wi0.25 Do0.25

Wi0.25 Di0.5

Wi0.25 Do0.75

 

Do 0.75

620

640

660

680

700

720

740

760

0.25 0.3 0.35 0.4 0.45 0.5

Wo

Wi0.25 Di0.25

Wi0.3 Di0.25

Wi0.35 Di0.25

Wi0.4 Di0.25

Wi0.45 Di0.25

Wi0.5 Di 0.25

 

Do 0.75

640

650

660

670

680

690

700

710

720

0.25 0.3 0.35 0.4 0.45 0.5

Wo

Wi0.25 Di0.25

Wi0.25 Di0.5

Wi0.25 Di0.75

 
Figure 6. Variation of the size of the outer serif (Wo) for the smallest and largest overlaps (Do) for each of the smallest and 

largest inner serifs (Wi). 

 

 

 

 

Figure A.5: Reprint of paper presented at the SPIE Photomask Technology 2009, page 5.
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Figure 7. Variation of the size of the overlap of the outer serif (Do), also referred to as its position, for the smallest (0.25) and 

largest (0.5) outer serifs (Wo) for each of the smallest and largest inner serifs (Wi). 

 

4. DISCUSSION 

 

The graphs above show that the inner serif has a far greater effect upon the overall electrical resistance of the poly lines. 

Enlarging the size of the inner serif, i.e. reducing the amount of conducting material in the inner corner, has a clear increasing 

effect (which is almost linear) upon the resistance of the line for all positions of the serif. If the position of the inner serif is 

changed, it is only for the largest of these serifs that any relationship can be noted, and the rate of change is more gradual and 

the effect less pronounced than that resulting from altering the serif size. In contrast, changing the size and position of the 

outer serif has no clear discernable relationship with the overall resistance of the line being tested.  

 

As a result of this finding some electrical simulations of the structure were run using Raphael interconnect simulation 

software. Figure 8 shows a simulation of the corner and as can be seen there is a much higher current density in the inner 

corner of structure than at the outer. This clearly explains why there is much more effect from the inner corner than the outer. 

An explanation for why the resistance is more sensitive to size of the serif than its position is not entirely clear; however, it is 

thought that this is likely to be due to the cases studied here where a (relatively speaking) less ‘rounded corner’ was present 

when the size of the inner serif was increased rather than when its position was changed. An attempt was made to verify this 

via SEM inspection using a Philips XL40 SEM and image analysis with ImageJ software, but the SEM resolution was found 

to be insufficient to accurately test and verify this. 

 

Figure A.6: Reprint of paper presented at the SPIE Photomask Technology 2009, page 6.
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Figure 8. Simulation using Raphael showing the high current density at the corner where the inner serif is located and the 

lack of current at the outer corner. 

 

5. CONCLUSION 

 

This work attempted to investigate the accuracy requirements for corner structures using serif type OPC. This study 

highlighted that in the case of the doped polysilicon lines used, the OPC applied to the outer corner had very little effect upon 

the electrical characteristics of the circuit feature. However, the OPC applied to the inner corner, and in particular the size of 

the OPC, had a great effect upon electrical resistance. This initial work was completed at a lithographic k1 value of 0.5, 

further work using lower k1 factors and narrower lines would be useful to verify if the effect is the same, or indeed more 

critical, as the width of the polysilicon line narrows. It would also be useful to determine if this relationship is maintained 

when the conducting material is a metal with much lower resistance.  This learning would be relevant as technology moves 

forward into the realm where metal rather than polysilicon transistor gates will be used. 

 

6. REFERENCES 

 

[1] B.E.A. Saley, S.I. Sayegh, “Reduction of errors of microlithographic reproductions by optimal corrections of original 

masks”, Optical Engineering Vol 20(5), pp. 781-784, 1981. 

[2] “Techniques of microphotography: precision photography at extreme reductions”, Eastman Kodak Industrial Data Book 

No. P-52, pp.4-14, 1963 

[3] J.P. Stirnimam, M.L. Rieger, “Fast proximity correction with zone sampling”, SPIE 2197, pp.294-301, 1994. 

[4] J. Kim, M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study 

with aerial image simulation”, SPIE 5256, pp. 919-925, 2003 

[5] Wong, A.K.K. Resolution Enhancement Techniques in Optical Lithography. SPIE Press, Bellingham, WA, 2001. 

 

 

  

Figure A.7: Reprint of paper presented at the SPIE Photomask Technology 2009, page 7.

165



Publications

Electrical Test Structures for the

Characterisation of Optical Proximity

Correction

A. Tsiamis, Student Member, IEEE, S. Smith, Member, IEEE,

M. McCallum, A.C. Hourd, J.T.M. Stevenson, A.J. Walton, Member, IEEE

Abstract

Resistive electrical test structures have been designed to enable the characterisation of optical

proximity correction (OPC) applied to a right angled corner in a conducting track. The OPC consists

of square serifs which are either added to the outside corner or subtracted from the inner corner.

Varying degrees of OPC can be applied by changing the size of the square serif or by changing the

amount by which it encroaches on or protrudes from the corner. A prototype test mask has been

fabricated which contains test structures suitable for on-mask electrical measurement. The same

mask was used to print the test pattern in polysilicon using an i-line lithography tool and results

from these structures clearly show that OPC has an impact on the resistance of the final printed

features. In particular, the level of corner rounding is dependent upon the dimensions of the serifs

employed and the measured resistance can be used to characterise the effects of different levels of

OPC applied to the inner corners.
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Electrical Test Structures for the

Characterisation of Optical Proximity

Correction

I. INTRODUCTION

The work presented in this paper is part of an ongoing project which is focused on

developing techniques for the characterisation of advanced photomasks, and photolithographic

processes, using electrical test structures. Previous publications have demonstrated that on-

mask test structures are capable of fast and repeatable sheet resistance and critical dimension

(CD) measurements on binary and alternating aperture phase shifting masks (Alt-PSMs) [1]–

[4]. More recently, industry standard optical metrology patterns have been adapted into

electrical equivalents for the characterisation binary mask fabrication processes. These have

been used to investigate iso-dense proximity effects [5], to characterise the GHOST e-

beam proximity correction technique [6] and to compare different metrology methods [7]. In

addition, novel test structures have been developed to characterise the dimensional mismatch

variation between closely spaced chrome features [8]. Results from masks fabricated using this

pattern have revealed previously unseen variations and have isolated one source of systematic

mismatch caused by the GHOST process [9].

One of the most common forms of optical proximity correction is the two-dimensional

corner serif feature [10]. This is an attempt to make a printed feature more closely resemble

the design by adding serifs to outer corners or subtracting them from inner corners as

illustrated in Fig. 1.

This style of proximity correction is frequently used in advanced photomask designs and

it presents a challenge to conventional metrology techniques [11]. Electrical test structures

have been designed which enable the effects of applying serifs to right angled corners to be

investigated. Initial results were obtained from a prototype binary mask (MSN6754) and these

demonstrated that it is feasible to electrically characterise this method of OPC [12] on mask.

Although practically restricted to inner corner serifs, this is not considered a problem, as it is

this feature that is most relevant to achieving low resistance in an interconnect. Furthermore,

inner corner serif structures are the most difficult to manufacture and characterise using

July 10, 2009 DRAFT

Figure A.9: Reprint of paper submitted for publication to the IEEE Transactions on
Semiconductor Manufacturing, page 2.
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conventional optical metrology techniques.

On-mask, corner serif test structures enable the characterisation of the mask making process

in terms of the reproduction of the OPC features but, to actually assess their impact on the

photolithographic process, measurements at the wafer level are also required. The mask with

electrical test structures has been used to print similar structures on-wafer and initial results

have been published [13]. This is the first time that a mask including on-mask, electrical test

structures has been used to print comparable features for on-wafer, electrical measurement.

This paper extends the analysis of the results published in [13] and presents new data on the

variation of the resistance of the printed features with respect to the levels of OPC applied.

II. TEST STRUCTURES AND FABRICATION

The OPC test structure is a Kelvin connected resistor consisting of a short section of metal

track turning through a right angled corner, as shown in Fig. 2(a). To measure the resistance

of the track a current is forced between pads B and D and the resulting potential difference

is measured at pads A and C. The resistance of the section of track between the voltage taps

is then calculated with

R =

VAC

IBD

(1)

The effect of OPC is investigated by altering the layout of the right angled corner of the

structure. Specifically, a square of metal is added to the outside of the corner while a square

is removed from the inside. This is illustrated in Fig. 2(b). The OPC aggressiveness is altered

by changing the size of the square (Wi or Wo) and the amount by which it overlaps with,

or protrudes from, the original layout (Di or Do).

The test mask design has test structures with 3 different base values of CD: 1.6µm, 2.0µm

and 2.4µm. These correspond to printed dimensions of 320nm, 400nm and 480nm when

imaged with the 5× projection lithography tool used for this work. The dimensions of the

OPC elements are defined as fractions of the base CD: 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5.

Subsequently, the value of Di or Do is then defined as some fraction of Wi or Wo: 0.25,

0.5 or 0.75. The test mask has the full range of OPC dimensions for the 1.6µm (320nm

on-wafer) structures and a reduced set for the other CDs with test structures where Di and

Do are equal to half of Wi and Wo.

In addition to the test structures which are probeable on-mask, the test mask also includes a

full set of structures where the probe pads are 5 times larger. This means that the same probe

July 10, 2009 DRAFT

Figure A.10: Reprint of paper submitted for publication to the IEEE Transactions on
Semiconductor Manufacturing, page 3.
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card can be used to contact the printed structures as is used for the on-mask measurements.

On-wafer test structures were fabricated in a 300nm thick layer of doped polysilicon deposited

on a 0.5µm thick layer of thermal silicon dioxide on 200mm silicon substrates. The wafers

were spin coated with Ultra-i 123 i-line photoresist and printed using a 5× Nikon i-line

step and repeat lithography tool. After development the polysilicon was etched in a reactive

ion etch tool before passivation with a 0.5µm thick layer of PECVD silicon oxide. Holes in

the oxide were then etched over the probe pads before deposition of a 0.5µm thick layer of

sputtered aluminium. The final step was to pattern the aluminium to create contacts suitable

for probing. The final structure can be seen in Fig. 3

III. MEASUREMENTS AND RESULTS

A. Electrical Measurements

The results from the on-mask test structures show that the electrical technique is sensitive

enough to measure the effects of inner corner structures reliably [12]. In addition there is good

agreement between the the on-mask results (Fig. 4) and simulations based on the designed

dimensions (Fig. 5). These results are for structures with no outer serif and varied dimensions

of inner serif, varying the serif on the outer corner has no significant effect on the resistance

for the dimensions used in these test structures.

This strongly suggests that it is the chrome material present on the mask which is being

characterised, removing some of the ambiguities inherent when interpreting indirectly ac-

quired images of the mask pattern. Any departures from the simulations have been found to

be attributable to defects in the serif structure. This can be seen in Fig. 5 as a measurement

point which deviates from the anticipated trend of the curves. It is now hoped that the printed

structures and the electrical measurement methods applied so far, will form a valuable tool for

investigating the quality of lithographic transfer and for optimising the corner serif structures.

Each die on the wafer printed using the test mask contains a full set of corner serif

structures with a nominal linewidth of 320nm. These are arranged in a 19×19 array where

each column has a different value of Wi and Di while each row has a different value of

Wo and Do. Measurements have been made of one complete set of structures using a force

current of 500µA. The first row of structures have no serifs on the outer corner and the results

are plotted against the inner corner serif dimension in Fig. 6. Similarly, the first column of

structures have no serifs on the inner corner and the results can be seen in Fig. 7.
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Fig. 6 suggests an upward trend in resistance as Wi increases, as would be expected.

However, the nature of the results suggest that other factors also affect the resistance of the

structure. The reason behind this could be related to fabrication artifacts such as non-uniform

lithography or etching, which conceal the data trends because the resistance changes are not

only due to the OPC features. Another factor that could strongly affect the results is any

variability in the localised sheet resistance of the polysilicon layer. This could introduce

some of the structure-to-structure variations shown in the resistance results. The effect that

the geometry and grain structure has upon the value of resistivity extracted from a Greek

cross structure has been reported in [14]. This work identifies that the sheet resistance (RS)

measured using such a structure is a function of the size and distribution of the grains in the

conducting material. Furthermore, the effect of the grain structure on the variability of RS is

greater in Greek crosses with very narrow arm widths. Unfortunately, there are no structures

such as these on the wafer to confirm whether this is the cause of the variability observed in

the measured results. A wafer map of the sheet resistance of the polysilicon layer, measured

using a four point probe system on a wafer from the same batch as the test structures, is

presented in Fig. 8. Unfortunately, this measurement does not have sufficient resolution to

identify local sheet resistance variations that might cause the observed variation in the resistor

test structures. It seems likely though that in these narrow polysilicon structures, where the

current flow is concentrated around the inner corner, the position of the grain boundaries in

the polysilicon, relative to the edges of the patterned structures, will have a significant effect

on the variability of the measured resistance.

Fig. 7 confirms that the presence of OPC has little or no effect on the resistance of the

conductive track when applied to the outside of the right angled corner. This behaviour is to

be expected as most of the current flow in the structure is concentrated around the region of

the inner corner, as confirmed by simulations.

More useful results can be obtained by taking the average value of resistance for all the

structures in each column of the array. As the size of the outer corner serif is expected to

have little effect on the resistance any variation within the column is likely to be due to

the variability of the polysilicon resistivity. Fig. 9 plots the average resistance of the 19 test

structures in each column against the inner corner serif dimension. The error bars show the

standard deviation of the set of 19 results as a measure of the variability of the resistance.

The upward trend in resistance with serif size demonstrates that applying OPC to the

inner corner has an effect on the printed structure. However, there is no significant difference

July 10, 2009 DRAFT
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between different values of Di, unlike the on-mask results, which is probably related to the

OPC structure dimensions approaching the resolution limits of the i-line lithography that was

employed. The resistance variation at each point is significant and accounts for the variability

observed in the results from a single row of structures shown in Fig. 6. The rate of increase

of resistance with Wi observed for each set of data in Fig. 9 is similar to that seen only

where Di = 0.75×Wi on mask. This is an interesting result and suggests a proximity effect

in the photolithographic process which amplifies the effect of increasing Wi while reducing

the effect of changing Di.

Fig. 10 shows the average value from each row of the array of test structures, which

represents a single value of Wo and Do, plotted against the size of the outer corner serif.

There is no obvious trend in the data as should be expected but there is significant variation

as shown by the large error bars, which again indicate the standard deviation of resistance for

the 19 structures in each row. The larger standard deviation in this case is due more to the

effect of changing the inner corner serif rather than variations in the polysilicon resistivity.

B. Scanning Electron Microscope (SEM) Inspection

In order to visually investigate the effects, a Philips XL40 SEM was used to capture images

of the structures which were measured electrically. Fig. 11(a) shows a structure with no OPC,

while Fig. 11(b) and 11(c) show structures with the most aggressive inner and outer corner

serif dimensions respectively. The images suggest that when OPC is applied to the inner or

the outer corner of a structure the shape of the corner changes and in particular the level of

corner rounding.

To help compare the structures an edge detection filter in the GNU Image Manipulation

Program (GIMP) was applied to the images which are subsequently overlaid on one another.

Comparisons of the structure with no OPC with the structures with the most aggressive OPC

on the inner and outer corners are presented in Fig. 12. These confirm that when OPC is

applied the shape of the inner and outer corners changes with respect to a uncorrected corner.

Therefore, for inner corners OPC does have an effect and is likely to be the cause of the

observed trends in electrical measurement results. On the other hand while OPC does affect

the rounding of the outer corner it has no effect on the measured resistance and could be

omitted from designs in many cases.

July 10, 2009 DRAFT
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TABLE I

ANALYSIS OF CORNER ROUNDING ON INNER CORNERS

Serif Size (Wi)
Serif Position (Di)

0.25×Wi 0.5×Wi 0.75×Wi

0 nm 340 nm

80 nm 330 nm 325 nm 320 nm

160 nm 280 nm 260 nm 240 nm

TABLE II

ANALYSIS OF CORNER ROUNDING ON OUTER CORNERS

Serif Size (Wo)
Serif Position (Do)

0.25×Wo 0.5×Wo 0.75×Wo

0 nm 310 nm

160 nm 250 nm 230 nm 210 nm

IV. CORNER ROUNDING SIMULATIONS

The effects of applying corner serif OPC to these structures can be approximated as

a change of the amount of corner rounding. Analysis of the SEM images described in

section III-B has enabled the estimation of the radius of curvature of the inner and outer

corners affected by the OPC. The results for inner and outer corners are summarised in

tables I and II respectively. It should be noted that these are rough estimations of the radius

of curvature which have been rounded to the nearest 10nm.

These results can be compared with simulations of the resistance of test structures with

various levels of corner rounding applied to the inner or outer corner, which have been per-

formed using the two-dimensional (2D) solver of the interconnect analysis software Raphael.

A sheet resistance of 97Ω/� was chosen for the material of the simulated structures, as this

represents a typical value for the polysilicon taken from the four point probe results shown

in Fig. 8.

Simulation results for test structures with inner corner rounding are presented in Fig. 13(a),

while those for structures with outer corner rounding can be seen in Fig. 13(b). The results of

Fig. 13(a) show that there is a significant resistance change with respect to the inner corner

rounding. In particular, it appears that the resistance strongly depends on the radius of the

July 10, 2009 DRAFT

Figure A.14: Reprint of paper submitted for publication to the IEEE Transactions on
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corner rounding and thus the area of the material added to the structure. This behaviour is to

be expected as most of the current flow in the structure is concentrated around the region of

the inner corner. However, the change in resistance seen in the fabricated test structures as the

corner rounding changes is significantly greater than is suggested when examining Fig. 13(a).

For example, changing the corner rounding in the simulated structure from 340nm to 240nm

leads to an increase in the resistance of about 20Ω. However, in Fig 9 the resistance increases

by as much as 90Ω for structures with similar levels of corner rounding. The reasons for

this are unclear but one possibility is non-uniform resistivity in the polysilicon such that the

material at the edges of the features are more resistive. As the corner rounding decreases

the current flow is more concentrated closer to the edge of the structure where the resistivity

may be higher. Another possibility is that the sidewall angle of the etched polysilicon feature

is not 90°, which could again lead to larger than expected resistances as the corner rounding

is reduced.

The simulation results for outer corner rounding in Fig. 13(b) confirm that there is little

variation of resistance when the area of the outer corner changes and this is to be expected as

there is minimal current flow in this region of the structure. Any resistance variation caused

by altering the dimensions of the radius of the outer corner rounding will be minor compared

to other fabrication effects on wafer. This can be seen in the results of Fig. 7 which appear

noisy and show no significant trend with respect to dimensions.

CONCLUSIONS

Electrical test structures have been designed to characterise OPC in the form of corner

serifs and to investigate the impact they have on printed features at the wafer level. Results

from on-mask structures have shown that the electrical measurement technique is sensitive

enough to detect the effects of OPC on inner corners and also to identify any abnormalities

in the fabricated features. In addition the presence of OPC has little effect on the measured

resistance when applied to the outside of the corner structure.

Results of electrical measurements of polysilicon test structures printed using this pho-

tomask suggest that OPC applied to the inner corner has a significantly greater effect on

the resistance than outer corner serifs. However, there is also significant variability between

structures with the same dimensions of inner corner serif, and this is thought to be most

likely due to local variations in the resistivity of the polysilicon caused by the grain structure

of the material and conduction related edge effects. The size of the inner corner serif (Wi)
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has a significantly greater effect on the resistance of the structure than its position (Di) which

is not the case for the on-mask test structures. This can probably be explained as an artifact

of the imaging process and is certainly an interesting result.

SEM imaging of the test structure geometries confirms that OPC does alter the shape of

corner rounding on both the inner and outer corners. It is clear from this result that the inner

corner OPC has a significant effect on the resistance of the printed structure, while outer

corner OPC has little or no effect. Analysis of the SEM images has allowed the estimation

of the radius of the rounded corners for structures with and without OPC applied. Simulations

of test structures with similar levels of inner corner rounding do not show the same change

in resistance as is observed in the measured structures. This could be due to non-uniform

sheet resistance in the fabricated structures, which gives a larger increase in resistance than

is predicted by simulation as the inner corners become less rounded. Simulations of rounding

on the outer corner show little variation in resistance, which is as expected.

If the only concern in applying OPC to the corners of features like these was the resistance

of the resulting printed structure then these results would suggest that there is no return for

the extra time and expense involved in preparing the corrected design. However, there are

other reasons for performing proximity correction, for example to make sure that printed

structures meet design rules for interlayer overlay or for capacitance. These structures have

certainly shown their capability to enable the characterisation of certain OPC features at

both mask and wafer level. This is the first time that on-mask electrical test structures have

been used to print features with an i-line lithography system so that electrical measurements

can also be made on-wafer. The next step is to take this forward employ more advanced

photolithography for the production of features with dimensions closer to the state of the

art. OPC, and other resolution enhancement techniques, are even more essential at those

dimensions and the ability to characterise both masks and the printed features becomes ever

more important for good process control and development.
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Fig. 1. (a) Schematic showing mask layout without OPC and the resulting printed feature with corner rounding and line

shortening. (b) Layout with OPC applied which more closely fits the designed pattern (dashed line)
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Fig. 2. (a) Layout of Kelvin connected OPC test structure showing electrical measurement scheme. (b) Expanded view of

central part of the test structure showing the parameters of the OPC features.
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Fig. 3. Photomicrograph of an OPC test structure fabricated in polysilicon
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Fig. 4. On-mask resistance simulations from structures with inner corner OPC features.
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Fig. 5. On-mask electrical measurement results from structures with inner corner OPC features.
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Fig. 6. On-wafer electrical measurements of structures with inner corner OPC features.
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Fig. 7. On-wafer electrical measurements of structures with outer corner OPC features.

Fig. 8. Sheet resistance variation across one wafer with corner OPC electrical test structures.
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Fig. 9. Average measured resistance versus inner corner serif dimensions
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Fig. 10. Average measured resistance versus outer corner serif dimensions
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(a)

(b)

(c)

Fig. 11. SEM images of structures with different OPC arrangements: (a) No OPC; (b) Maximum inner corner OPC; (c)

Maximum outer corner OPC.
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Fig. 12. Overlaid shapes of structures with different OPC arrangements: (a) Inner corner OPC; (b) Outer corner OPC.
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Fig. 13. Simulation results for polysilicon test structures with varying levels of corner rounding applied to (a) the inner

corner or (b) the outer corner.
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Abstract

Electrical test structures for the characterisation of Optical Proximity Correction (OPC) have been fabricated using i-line

lithography in aluminium film patterned with a reactive ion etch process. Initial electrical measurements are presented which

show an increase in the resistance of a right angled section of Al track as the level of OPC on the inside corner is increased.

Structures with OPC applied to the outer corner do not show the same change in resistance. SEM images of similar Al test

structures clearly show the effects of applying OPC and suggest that inner corner serif OPC leads to a narrowing of the

conducting track.
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I. INTRODUCTION

Optical Proximity Correction is a method of resolution

enhancement in microlithography where a sub-resolution pat-

tern is added to the mask design. As today’s OPC becomes

ever more complex it requires the use of smaller and smaller

feature sizes and ever more expensive processing to produce

the patterns on the photomasks. This also impacts on data

preparation for designs and adds to the already high costs for

masks used in advanced semiconductor processes. The present

work is a continuation of an investigation into the application

of OPC through the use of resistive electrical test structures.

It is specifically concerned with determining the need for

aggressive OPC in interconnect patterning where it may be

that the circuit performance could be adversely affected by

attempting to replicate the ideal drawn design rather than

simply producing a functional pattern. This study has grown

out of an ongoing collaboration concerned with test structures

for the characterisation of advanced photomasks [1], [2]. The

test structures were originally measured on-mask [3] where

the reproduction of the OPC pattern could be determined

through electrical probing. Subsequently the test structures

were printed in doped polysilicon using i-line reduction lithog-

raphy [4], [5]. This identified issues with the variability of

the measurements and the present work investigates if this

can be addressed by printing the same structures in a thin

layer of aluminium. The rationale behind this was that there

would be less variability resulting from the grain structure, and

from short range variation of resistivity, in a more conductive

metal film. This paper presents the initial results from these

aluminium test structures.

II. TEST STRUCTURES

The basic test structure used in this study is a right angled,

Kelvin connected, section of conducting track as shown in

figure 1. The test chip design consists of an array of these

structures which have varying levels of OPC applied to the

inner and outer corners by adding or subtracting squares of

different dimensions, as shown in figure 2. There are two

variables which determine the level of OPC, the size of the

serif (Wi or Wo) and the amount by which it encroaches on

or protrudes from the corner of the structure (Di or Do).

Obviously the “i” refers to the inner corner and “o” to the

outer. In each case the serif size, Wi or Wo, is defined as a

fraction of the nominal feature size ranging between 0.25 and

0.5. Similarly, the position, Di or Do, is some fraction of the

serif size, either 0.25, 0.5 or 0.75.

The test chip design includes two sets of test structures, one

set which is designed to be electrically measured by probing

the photomask directly as described in [3]. The other set of

structures has probe pads which are 5 times larger than the

on-mask structures so they can be successfully probed on-

wafer when printed with a 5X step-and-repeat lithography tool.

The nominal on-mask feature size is 1.6µm meaning that the

printed dimension is 320nm. Initial results from test structures

printed using the test mask to pattern doped polysilicon were

presented in [4] and [5]. These showed significant short range

Voltage
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A

C D
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B

Fig. 1. Schematic layout of Kelvin connected corner structure

Wo
Do

Wi

Di

Fig. 2. Closeup of the corner showing the variables associated with OPC
serifs

variability in the resistivity of the polysilicon and it was

suggested that this was due to the grain structure of the

material. In order to investigate this affect further the structures

were printed in a thin layer of aluminium in the expectation

that this would improve their performance.

III. PROCESSING

The test structures were fabricated on 200mm (8”) silicon

wafers coated with a 0.5µm layer of thermal silicon dioxide. A

300nm thick layer of aluminium was deposited on the device

side using a Plasmalab 400 sputter coating system from Oxford

Plasma Technology. The wafers were then spin coated with

a 900nm layer of Ultra 123i i-line photoresist from Rohm

and Haas and soft baked. The wafers were printed using

a Nikon NSR-2005i9C step-and-repeat tool with an NA of

0.50. One major advantage of printing the structures directly

into aluminium was that no subsequent lithography steps were

required to make probeable metal pads as was the case with

the polysilicon structures. The photoresist was developed using

a standard process and the aluminium was then etched using

an STS Multiplex reactive ion etch tool with a SiCl4 and Ar

plasma. After the resist was removed in an oxygen plasma

barrel asher the test structures were ready to be measured

electrically. Figure 3 shows one of the printed test structures.

Figure A.27: Reprint of four page abstract to be submitted to the IEEE International
Conference on Microelectronics Test Structures 2010, page 2.
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Fig. 3. Microscope image of an aluminium OPC test structure with inset
showing magnification of the centre of the structure

IV. MEASUREMENTS AND RESULTS

A. Electrical Measurements

The on-wafer electrical measurements were made using a

SÜSS MicroTec PA200 semi-automatic prober controlled by

an HP-UX workstation with an HP4062UX semiconductor

parameter analysis system. Current was forced between pads

B and D (see figure 1) using an HP4142B DC source/monitor

unit and the resulting voltage between pads A and C measured

with an HP3457A digital multimeter. In order to determine

the optimal current for these measurements one structure

was subjected to a range of force currents between 10µA

and 10mA. The measurement was made 10 times at each

voltage and the average and standard deviation calculated. The

lowest value of measurement variability occurs at the highest

current used (10mA) but the average resistance at this point is

slightly higher than for a current of 5mA. This suggests Joule

heating with a potential to damage the structure and so all of

the subsequent measurements were made at the lower force

current of 5mA. At this current level the standard deviation

of 10 measurements is around 0.1% of the average measured

resistance.

A complete set of test structures consists of a 19×19 array

where each column contains structures with a defined value

of Wi and Di while each row contains those with a particular

combination of Wo and Do. In addition the first row has

structures without any OPC on the outer corner and the first

column has structures without any OPC applied to the inner

corner. Figures 4 and 5 show the results of measuring the

full set of structures plotted against the inner and outer corner

dimensions respectively. Each point in the graph represents

the average from one complete column of structures for inner

corner OPC and one complete row for outer corner OPC.

The error bars show the standard deviation of the resistances

measured for each row or column.

The results for the inner corner OPC show a definite

increase in resistance as the size of the serif on the mask

increases. However, unlike the results from the on-mask mea-

surements previously presented in [3] there is no significant

dependence on the position (Di). There is significant variability
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Fig. 4. Resistance measurement results for inner corner OPC
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Fig. 5. Resistance measurement results for outer corner OPC

around each average value which was expected to be reduced

when compared to the polysilicon structures. Further investi-

gation is required to determine the source of this variability.

The results for the outer corner OPC do show some reduction

in resistance with increasing serif size but this is not significant

compared to the variation for each value of Wo. This is

expected from previous results as the current flow during the

measurement is concentrated around the inner corner.

B. SEM Measurements

Scanning Electron Microscope (SEM) imaging was per-

formed on a selection of aluminium test structures and the

results are presented in figure 6.

The effects of applying OPC to the inner and outer corners

is clear from these images. The outer corner becomes much

less rounded and more square while the effect of inner corner

OPC has a less obvious effect on the rounding of the corner. In

fact, it actually appears to make the line significantly narrower

around the right angled bend. This could explain the significant

(between 15 and 20%) increase in resistance between the

structures with no OPC on the inner corners and those with

the largest values of Wi and Di.

In previous papers [4], [5] SEM images of polysilicon

structures were used to estimate the radius of curvature of the

corners affected by the applied OPC. These values were then

used in simulations of test structures with similar dimensions.

Figure A.28: Reprint of four page abstract to be submitted to the IEEE International
Conference on Microelectronics Test Structures 2010, page 3.
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(a) No OPC

(b) Wi=160nm

(c) Wo=160nm

(d) Wi and Wo=160nm

Fig. 6. SEM images of OPC test structures

The results suggested that the change in resistance observed

in the printed structures, as the inner corner rounding was

reduced by more aggressive OPC, was greater than would be

expected from the simulations. For example, the simulations

would predict a change in resistance of no more than 3% for

the same change in corner rounding that is observed between

figures 6(a) and (b). It seems likely that there is a further effect

of applying OPC to the inner corner which narrows the line

significantly and causes the observed change in resistance.

The SEM images also reveal significant line edge roughness

in these structures which may be the source of the variability

between test structures that is represented by the error bars in

figure 4.

V. CONCLUSIONS AND FUTURE WORK

Corner serif test structures for the measurement of OPC

have been successfully fabricated in a thin aluminium layer

which is suitable for direct electrical probing. The results

show a significant increase in resistance as more aggressive

correction is applied to the inside of a right angled corner

while applying OPC to an outside corner has little effect. The

measurements also demonstrate significant variability in the

resistance between structures which should be very similar,

such as in structures where it is only the OPC on the outer

corner that is changing. This was expected to be improved

when compared with the polysilicon structures investigated

previously. The reason for the variability may be revealed

by SEM images which show significant line edge roughness

but further investigation is required. The same SEM images

clearly show the effects of applying OPC to the inner and outer

corners and may explain some discrepancies between electrical

and simulation results that were previously presented. Further

electrical measurements will be made in order to present

results from a full 200mm wafer. These will provide an

increased data set for the determination of the variability of

the measurement and the relevance of the observed changes

in resistance with OPC.
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