
Topics in the Numerical Simulation of Pathwise

Solutions to Stochastic Differential Equations

Jessica Gabrielle Gaines

Presented for the Degree of Doctor of Philosophy in Mathematics

University of Edinburgh

1995

Abstract

This work contains several developments in the area of numerical simulation of

pathwise solutions to stochastic differential equations (SDE's). In the first chapter

we define and motivate pathwise solutions and give a brief survey of numerical

methods for approximating them.

The main key to enlarging the scope of numerical methods for SDE's is a good

representation of Brownian paths. A binary tree structure is an essential tool in

Chapter Two, which presents a general method for solution of SDE's using variable

time steps.

In the case of a general SDE, improvement of the order of convergence com-

pared with standard methods, demands generation of the Levy area integrals.

Chapter Three presents a method of random generation of the Levy area for a

Brownian path in 1112. The method is based on Marsaglia's rectangle-wedge-tail

method for fast generation of normally distributed deviates.

Since the solution of an SDE generally depends on an infinite sequence of

iterated integrals of the driving noise, it makes sense to examine these integrals

and the algebraic relations between them. In Chapter Four, it is shown how known

facts about shuffle algebras can be used to get a better understanding of stochastic

iterated integrals of Ito and Stratonovich type and obtain practical algebraic bases

for these two sets. We use the algebra to calculate moments of stochastic integrals,

needed when calculating moments of errors during numerical solution of SDE's.

The work on the generation of area integrals, described in Chapter Three, gives

rise to general questions about the generation of random deviates, some of which

are addressed in the last two chapters. In Chapter Five, we present a polynomial-

time algorithm for finding the partition, into rectangles or triangles, of certain

types of region in j112 that has the lowest entropy. When the area under a density

is divided into simple pieces, the entropy of the partition provides a lower bound

on the time taken to choose one piece randomly with probability proportionate to

the area.

Chapter Six explores the idea that Marsaglia's method for generation of ran-

dom deviates could lead to efficient "black box" algorithms. The main criticism of

the rectangle-wedge-tail approach is that for each density, tables of constants have

to be calculated, leading to hard work for the programmer and lengthy and com-

plicated code. Our idea is to write a program that, given any density from a wide

class, can generate its own tables of constants dynamically, while simultaneously

generating random deviates.

Declaration

This thesis is submitted for the degree of Doctor of Philosophy at the University

of Edinburgh. None of the material has previously been submitted for any other

degree or qualification. The thesis has been composed by myself and the work is

my own except where I have explicitly stated otherwise.

Aknowledgements

I would like to thank my supervisor, T.J. Lyons, for his time, encouragement

and helpful ideas, to which much of the work in this thesis owes its existence.

I would also like to thank my husband, Sandy Davie, for his support, both

moral and mathematical.

TabRe of ciit

Numerical Approximation of Pathwise Solutions to SDE's 	5

1.1 Pathwise solutions: definition and motivation5

	

1.2 	Notation7

1.3 Existence and uniqueness of pathwise solutions9

1.4 Numerical methods for pathwise solutions10

1.5 Representation of Brownian paths17

Variable Step Size Control in the Numerical Solution of SDE's 19

	

2.1 	Motivation19

2.2 Generation of Brownian paths21

2.2.1 Brownian paths generated as increments21

2.2.2 Brownian paths generated as increments and approximate

Levy areas23

2.3 Variable step size control and accuracy criteria24

	

2.3.1 	Estimation of the Local Error25

2.3.2 Acceptance Criteria for the Local Error26

	

2.3.3 	Outline of Method29

2.4 Convergence of variable step size algorithms and choice of discreti-

sation schemes30

1

Table of Contents

2.4.1 SDE's driven by a one-dimensional Brownian path or satis-

fying the commutativity condition30

2.4.2 SDE's driven by a multi-dimensional Brownian path and not

satisfying the commutativity condition32

	

2.5 	Illustrative numerical applications38

2.5.1 	First example38

2.5.2 	Second Example 42

2.5.3 	Third Example46

	

2.6 	Implementation48

Random Generation of Stochastic Area Integrals 	 51

	

3.1 	Definition of the problem51

	

3.2 	Outline of the Method54

	

3.3 	The Boxes56

3.3.1 	The packing problem56

3.3.2 	The entropy problem58

3.3.3 	Programming details60

	

3.4 	The Wedges61

	

3.5 	The Tail63

	

3.6 	Performance65

	

3.7 	An example of application65

	

3.8 	The way forward 69

The Algebra of Iterated Stochastic Integrals 	 72

	

4.1 	Motivation72

4.2 	Algebraic structure74

Table of Contents
	 3

4.2.1 	Concatenation74

4.2.2 	Shuffle products75

	

4.3 	Bases78

4.3.1 	A basis for Stratonovich integrals78

4.3.2 	A basis for Ito integrals 80

4.3.3 	An example of application81

	

4.4 	Moments82

Partitions with Minimum Entropy of Regions in JR2 	 84

	

5.1 	Motivation84

	

5.2 	Rectangular partitions87

5.2.1 	Notation88

5.2.2 	Optimal partition89

5.2.3 	Generating the Staircase95

5.2.4 Rectangular partitions of a general region in JR2 98

	

5.3 	Triangular partitions100

5.3.1 	Triangular partitions of a convex region100

5.3.2 Triangular partitions of a concave region103

5.3.3 Triangular partitions of a general region105

	

5.4 	Conclusion107

Generation of a General Univariate Probability Density 	108

	

6.1 	Introduction108

	

6.2 	Placing the triangles109

6.3 Using uniform random numbers113

6.4 	Using random bits 116

Table of Contents 	 4

A. Computer Programs 	 128

A.1 Access and dynamic generation of a Brownian tree128

A.2 Generation of Levy areas133

A.3 Mathematica: shuffle products and writing in terms of a Lyndon

basis140

A.4 Calculation of the partition with minimum entropy of a staircase. . 144

A.5 Generation of univariate random deviates from a general density . . 145

Chapter 1

Numerical Approximation of Pathwise

Solutions to SDE's

Li Pathwse sohitons: definition and motiva-

tion

We are interested in pathwise (or strong) solutions to a stochastic differential

equation (SDE) where the driving noise w(t) is a standard d-dimensional Brownian

motion. In Ito form, such an equation is given by

d f dx t = go (x,t)dt+g(x,t)dw

X(0) =

with x E IR 7 and g(i = 0,. . . , d) : JRTh —* JRTh. The equation may also be written

in Stratonovich form as

d

dxt 	fo(x,t)dt+f(x,t)odw
(1.2)

X(0) =

where
dn Dg k
E

f(x,t) = g,(x) t) -
j=1 k=1

and f(x,t) = g(x,t), Vi = 1,... ,d.

5

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	6

Superscripts, such as xk, denote components of vectors. We will presume that

the vector-valued functions g, (i = 0,. .. , d) are sufficiently smooth to guarantee

existence and uniqueness of solutions to (1.1) (see Section 1.3 for details). We are

mainly concerned with cases where the initial value, x 0 , is deterministic, but it

could also be random as long as it is independent of (w(t)) and observable.

When we choose or are given one particular Brownian path w(t), 0 < t < T,

then by pathwise solution we mean the path x(t), 0 < t < T, unique solution

of (1.1) for that realisation of w(t). This definition is in opposition to that of

a weak solution, which is the expected value of the solution or of a function of

the solution over all possible Brownian paths. We will only be concerned with

numerical methods used to obtain approximations to pathwise solutions.

There are several reasons why people should wish to obtain pathwise solutions

to SDE's. Firstly, they may wish to examine the dependence of the solution on

the initial condition or on the value of one or more parameters that appear in

the functions defining the SDE. In this case one Brownian path is generated and

then used repeatedly to obtain a set of solutions with varying initial conditions or

parameter values. Secondly, there are situations, such as filtering problems, where

the Brownian path or a noisy signal supposed to be a function of a Brownian

path, is not generated by a computer, but obtained as a reading of a measuring

instrument. In this case, the recorded signal is used to solve an SDE just once,

with the aim of getting more information about the process generating the signal.

It is the first kind of application that will interest us the most. Although the

second kind is very important, the fact that the driving noise is not generated

'at will' by the person performing the numerical solution puts limitations on the

methods available.

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	7

12 Notation

We will assume that the probability space underlying the SDE's (1.1) and (1.2) is

the canonical filtered probability space (, .T, (.T), F), where f = C([O, T], 1R')

is the set of continuous functions from [0, T] to 111d, is the a—field generated

by (w(s), 0 < .s < t) and P is d—dimensional Wiener measure.

Definition 1..1 The n-tuple

J= (jl,j2,...,jn) 	withj 1 E {0,1,...,d}; 	Vi= 1,...,n

is called a multi-index. The length of J, written I J I , is the number of indices in J

and the order of J, denoted IIJII, is equal to the number of non-zero indices plus

twice the number of zero indices.

Let w(t) = (WI (t), w 2 (t),. . . , wi(t)) be a d-dimensional Brownian motion. We

will use the convention that

WO (t) = t

Using this convention, the SDE's (1.1) and (1.2) can be written as

d

dx t = E g(x,t) dw

X(0) =

and
d

dxt = >f2(x,t)odw

X(0) =

We will use zw in general to refer to increments of the Brownian path, using

either the notation

w(s,t) = w(t) - w(s)

or else using subscripts, such as

= w(tk+1) - W(tk)

whenever a sequence of times has been defined.

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	8

Definition 1.2.2 We define iterated stochastic Ito and Stratonovich integrals,

I(s,t) and Sj(s,t) by

Ij(s, t) = ijjj2 ... j(, t) =
Jrn(s,t)

dwi1 (ti)dw 32 (t2) ... dw 3 (t) 	(1.3)

FITITA

Sj(S, t) = S 1 	(s, t)
= JEn(S,t)

odw 31 (t 1) o dw 32 (t2)... 0 dw3 ' S / t 	(1.4)

where 	(8, t) is the n-simplex in

We will write I(t) for Ij(O, t) and similarly for Stratonovich integrals.

Definition 1.2.3 For use with ItO calculus, we define the operators L, j =

O, ... ,dby

1 	d 	 2 '9

at k,l=1 j=1 g '9xkôxl

and

j=1,...,d

The corresponding operators for Stratonovich calculus are

fo
k'9

at k=1

and

j1,...,d

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	9

2.3 Existence and uniqueness of pathwise soliu

fions

K. Ito first proved ([23]) that under certain assumptions the SDE (1.1) admits a

solution and that this solution is unique.

Theorem 1.3. IL (Ito) Suppose that the coefficients gj, i = 0,.. . , d in (1.1) satisfy

the Lipschitz condition

g(x,t) —g(y,t) I < Kx - I (i = 0. . .,d) 	 (1.5)

for some constant K < 00, Vt > 0 and Vx, y E IRn and suppose that there is some

CT such that
d

CT

for all t < T. Furthermore, let the initial value, xo , be such that

E(x o J 2) < 00

Then there is one and only one semi-martingale x satisfying equation (1.1).

The constraint on the functions gj (x, t) in Theorem 1.3.1, can be weakened

quite easily, but is not too prohibitive in the context of the current work. The

global Lipschitz condition is prohibitive, but it can be replaced with the local

Lipschitz condition

g2 (x,t) - g(y,t) 	KNX -

whenever IxI V jyj < N and 0 < t < N.

Uniqueness and existence proofs have been given by Doléans-Dade [13] and

Protter [49] for SDE's driven by a general semi-martingale.

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	10

1A NumeiricaR methods for pathwse soutons

The standard method of obtaining numerical approximations to pathwise solutions

of (1.1) is to discretise the equation. The approximate solution Y will be calculated

at a set of times t0 = 0,ti = to + h1,. . .,tk+1 = tk + hk+l,.. .,tN = T using a

scheme of the type

(t0) 	= x(to)
(1.6)

(tk+1) = 0 (tb, (tk), hk + l) Wk+1), k = 0,...,N - ,.. .,N - 1

where

hk+l = tk+1 - tk

LWk+1 	w(tk+1) - w(tk)

Definition 1.4.1 An approximate solution, fL, obtained using a discretisation scheme

as in (1.6), is said to converge pathwise (or converge strongly) to x, the solution

of the SDE (1. 1), if

urn sup Ix(t) - t(t)j = 0 a.s.

where 8 = maxk hk.

The easiest method of obtaining discretisation schemes is to truncate the

stochastic Taylor series expansion of the solution to the SDE (1.1), keeping only

terms up to a chosen order. This method is due to Platen and Wagner [48] and

Kloeden and Platen [25]. Azencott [1] showed the size of the remainder term and

Ben Arous [2] examined the convergence of the stochastic Taylor series.

Theorem 1.4.2 (Platen and Wagner, Azencott) Let r be the lifetime of the stochas-

tic process Xj, solution of (1. 1), and let g j E C 1 , Vi = 0,. . . , d. For all 0 < t < 'r,

define R +1 (t) by

P

X(t) = x 0 + E E I(t) gJ(x o) + 	 (1.7)
M=1 IIJII=m

where for IJI > 1, the function gj is defined recursively by:

=

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	11

Then

	

urn 	P(IR+1(t)I > r) = 0
t— >O,r— >oo

Theorem 1.4.3 (Kloeden and Platen, Ben Arous) Let T be the lifetime of the

stochastic process Xt, solution of (1.2), and let f2 E C' 1 , Vi = 0,. . . , d. For all

o <t < r, define R 1 (t) by

P

X(t) = x o + 	 S(t) fj(x o) + t' 1 ' 2R +1 (t) 	(1.8)
m=1 IIJII=m

where for IJI > 1, the function fj is defined recursively by:

	

f. 	- f'31f .
J3l32 ... 3m - A 	J32 ... 3m

Then

	

urn 	P(R +i (t)I > r) = 0
t—>O,r—>oo

Using these two theorems, it is possible to expand the solution using either

Ito or Stratonovich calculus. We will use the ItO stochastic Taylor series as an

illustration. The Stratonovich series is simpler to use. Initially we will take a

Brownian path of dimension one. To avoid lengthy formulae, we will generally

omit direct reference to the time variable from now and refer to the autonomous

SDE
d

dx t = go(x)dt+g1(x)dw

X(0) =

In many places no generality is actually lost. It is always possible to replace a

non-autonomous SDE with an autonomous SDE, by including time in the state

vector, thereby increasing the dimension of the system.

For simplicity of notation, we write Xk = x(tk) and Tk = (tk). The solution

to (1.9) at time tk+1 can be written as

Ptk+1 	 tk+1

	

Xk+1 = Xk + I 	go(x t) dt + I 	gi (x t) dw t 	(1.10)
Jtk

Using the Ito formula

a(x t) = a(xk) + L £ °a(x 8)ds +
it £

1 a(x) dw8

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	12

in equation (1.10), to expand both go (x t) and gi (x t) around tk, we obtain

Xk+1 - xj +go(xk)hk1 +g1(xk)/.wk1

+J 	J Logo(x 3) ds dt+
it 	g(x s)gi (x s) dw 3 dt 	(1.12)

ttk+j 	t 	 tk+1 	t

t 	t 	 k 	Jtk

t
+ 	/ £ogi(Xs) ds dw 	

t t k+j
t + / 	g1 (x s)gi(x s) dw, dw t Ik 	-'tk 	 Jtk 	Ik

If the variance of any term in such a stochastic Taylor series is Ch, we will

say the term is of order O(h&). Discarding the double integrals in (1.12), each of

which is of order O(h) with a > 1, we obtain the Euler-Maruyama scheme

Xk+1 = Xk + 90(k)hk1 + g1(±k)zwk1
	

(1.13)

This scheme, the simplest discretisation scheme for SDE's, is named after Maruyama,

[39], one of the first to examine it. The multi-dimensional version is

d

	

Xk+1 = Xk +gO(Xk)hk-f-1 + >g(±k)Lw 1 	 (1.14)

If we use (1.11) to expand g(x s)gi (x s) in (1.12) and discard all terms of order

O(h) for a > 3/2, we obtain

ftJç l pt

Xk+i Xk +go(?iJk)hk+1 +g1(5k)Lwk1 +k)g1(k)j 	J dw, dw

	

t/ç 	tk

or

Xk+1 = xk+90(Xk)hk1 +g1(k)wk+1 +gk)g1(k) ((Awk+l)2 - hk+l) (1.15)

which is the Milshtein scheme, first proposed by Milshtein [43] for weak solutions.

Most often we take hk = h = TIN, (k =1,. . . , N) in the above schemes, but

they will both converge to the true solution for any set tk of stopping times. With

a constant time step h = TIN, a discretisation scheme is said to have order of

pathwise convergence a if

sup jXk - XkI --+ 0 a. s.
k

Newton ([441, [46]) and Faure ([14], [15]) proved that with a constant time step the

Euler-Maruyama and the Milshtein schemes have pathwise order of convergence

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	13

1/2 - and 1 - c respectively, VE > 0, in the one-dimensional case and that

the Euler-Maruyama scheme has the same order of pathwise convergence in the

multi-dimensional case.

If one tries to improve on the order of accuracy of the scheme, by keeping more

terms from the Taylor series, then in general one will need to include multiple

stochastic integrals in the scheme as well as increments of the Brownian path. For

example, for a one-dimensional SDE, inclusion of terms of order 0(h312) will in

general mean inclusion of the integrals

ftk+1 I 'tJ 	dw 3 dt
tk 	k

These integrals have a normal distribution and it is therefore possible to generate

them jointly with the increments L\wk+1.

In higher dimensions the situation is even worse. In general the order of ac-

curacy of the Euler-Maruyama scheme is the best order obtainable without the

generation of multiple integrals. The stochastic Taylor series development of

in terms of xk, for x E JR, w(t) E JR'1 is

'1 	 n 	d 3gt.
k+i = 	+ g(x)h,4-i + i: g(xk)/w 1 + >i: 	—jgq (x k)Ipq (k, k + 1) + R

3=1 	 j=1 p,q=1

(1.16)

where

tk+1 	t

Ipq (k, k + 1) = f dw dw
it,Jtk

and R consists of terms of order 0(h) for a > 1. If 1 < p, q < d, p q, then

integration by parts gives

Ipq (k,k+ 1) +Iqp (k,k+ 1) = 	 = Bpq (k,k+ 1)

Define

A pq (k, k + 1) 	(Ipq (k, k + 1) - Iqp (k, k + 1)) 	(1.17)

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	14

In (1.16) we can substitute for the 'pq in terms of Bpq and A pq , to obtain

= 	+ g(xk)hk1 + >g(xk)Lw l

P
d

g(x) ((w+)2 - hk+l)
:1=1 p=l

n 	 i(ôgi
j

-i- E
§1O<p<q<d

i 	öxi) (xk)Bpq (k, k + 1)

+ 	i 	
(agq

j ôxi9
- 	(xk)Apq (k, k + 1) + R
 '

99P j)

j=1 O<p<q<d

IfVi=i,...,n,Vp,q=1,...,d

('g l gp q 	agp '\
- 	= 0 	 (1.19) yXj

then the Apq terms drop out of equation (1.18). Condition (1.19) is called the

commutativity condition, since it can also be written as

[gp,gq} = 0

and is equivalent to saying that the vector fields (gp, p = 1,.. . , d) commute.

When the commutativity condition is not satisfied, then the terms Apq , known as

the Levy areas, need to be included in any discretisation scheme that is to attain

an order of convergence greater than 1/2. For the proof see Clark and Cameron

[9]. Clearly, by dropping the remainder term in (1.18), we obtain a discretisation

scheme for general SDE's, of higher order than the Euler-Maruyama scheme, that

involves generation of the Levy areas.

Apart from discretisation schemes that can be obtained directly by truncation

of a stochastic Taylor series expansion, there are Runge-Kutta type schemes, that

avoid explicit calculation of derivatives. One very simple, and therefore very useful,

Runge-Kutta type scheme is the Heun scheme,

i
Xk+1 = Xk -i- (fo(k) + fo(k))hk+l + >.(f() + f(k))w+1

d 	
i=1 	 (1.20)

Xk 	= Xk+fO(Xk)hk-I-1+fi(Xk)LWk+l

which converges to the solution of the Stratonovich SDE (1.2) at the same rate

as the Milshtein scheme converges to the solution of the Ito SDE (1.1). Details

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	15

of how to choose Runge-Kutta type schemes that converge to solutions of (1.1) or

(1.2) can be found in Rümelin [54].

Although, using only increments of the Brownian path, we cannot obtain a

better order of convergence than 0(h) for an SDE driven by a one-dimensional

Brownian path or satisfying the commutativity condition or 0(\/) in the general

case, it is possible to choose a method giving a lower variance for the errors than

the Euler method. Among TN-measurable approximations, where TN is the a-field

generated by (Wh) for i = 1,.. . , N, and j = 1, . . . , d, there is a class of numerical

schemes with optimal order of pathwise convergence that have the property of

being asymptotically efficient in the L 2 -sense, as defined by Clark in [7]. An

equivalent definition is the following:

Definition 1.4.4 An approximate solution, 7, to the SDE (1.1) is asymptotically

efficient of order & if

E [Kc, hck(XT - XN)) TN] + 1
- 1 	 (1.21)

(xT — E{xTTNu) 2 TN]+1 E[Kc,

for all c E JR, (where (y, z) denotes the scalar product of two vectors).

Newton ([44] and [46]) has derived practical first order asymptotically efficient

schemes. Both the Heun and Milshtein methods are asymptotically efficient in the

case of an SDE driven by multi-dimensional Brownian motion and not satisfying

the commutativity condition.

As well as the stochastic Taylor series approach mentioned above, there is

another way of approximating the solution to an SDE locally, that can also lead

to numerical methods. Ben Arous, Castell and Hu ([2],[4],[21]) have shown that

the solution can be expressed locally as an exponential Lie series and can therefore

be approximated by the flow of an ODE. Let

p- i

= 	 c(t) X j,(1.22)
M=1 IIJII=m

where

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	16

0

J 	 (i)
c(t)=

rn—i UEUm

m2 (e())

S0_(t),

or

o Xj denotes the Lie bracket [fil [. 1fJ_1 Jim]

o Urn is the set of all permutations of {1, 2,. . . , m},

o e(a) is the number of errors in the ordering cr(1),.. . , o, (m), that is the car-

dinality of the set {j E {1,... , m - i}/a(j) > o(j + 1)},

0 Jou - (jui),

Then

x(t) = exp((1'(t))(x o) + ti(t) 	 (1.23)

and 14 is bounded in probability when t tends to 0. Here exp(((t))(x o) de-

notes the solution at time 1 of the ordinary differential equation given by ((t), ie

exp(P(t))(x) = u(i) where u is solution to

{ du
ds 	 (1.24)
U(0) =

Numerical methods can be obtained by choosing a value for p, (depending on

the number of iterated integrals that can be generated), and solving the ODE

(1.24) numerically using a suitable ODE solver. In [5], Castell and Gaines show

that this exponential Lie series approach can also provide asymptotically efficient

approximation schemes.

Detailed surveys, that describe numerical methods for both pathwise and weak

solutions to SDE's, can be found in [8], [19], [24], [26], [47], [56]

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	17

15 Representation of Brownian paths

The stochastic Taylor expansions and resulting discretisation schemes shown in

Section 1.4 suggest at least three possible ways that one might wish to represent a

Brownian path when using it to approximate a pathwise solution to an SDE. The

first and simplest representation is as a set of increments

{1Wk+1 = w(tk+1) - W(tk), k = 1,.. . , N}

Such a set can be used with the Euler-Maruyama scheme, say, in any number of

dimensions.

More complicated ways of viewing and generating Brownian paths consist of

generating not only increments but also sets of integrals of the path. When the

Brownian path is of dimension one, or when the vector fields defining the diffusion

of the SDE commute, then it makes sense to generate the Brownian path as a set

of increments and integrals against time,

{/w k+l ,A o(k,k+1), k=1,...,N}

where

A 0(k, k + 1) = (I 0 (k, k + 1) - I0 (k, k + 1)) =
it

k+1
 it dw dt - L 	ds dw

Since 	and A, o (/c, k + 1) have a joint normal distribution, this is perfectly

feasible and practical.

A third possibility, which one would like to realise in the case of a multi-

dimensional Brownian path, when the commutativity condition is not satisfied,

is to generate at the same time increments of the Brownian path and Levy area

integrals, A(k, k + 1), as defined in (1.17) above. In Chapter 3 we show how

this can be done, in the case of a two-dimensional Brownian path at least. It can

also sometimes make sense to approximate Levy areas by adding up increments

generated over smaller time steps, as will be the case in Chapter 2. To get the

same order of accuracy over bigger steps using approximate Levy areas as over

Chapter 1. Numerical Approximation of Pathwise Solutions to SDE's 	18

smaller steps using only increments of the Brownian path, one has to generate

all the increments over the smaller steps any way, but the saving is in function

evaluations, since the various functions of x needed in the discretisation scheme

need only be evaluated at the beginning of each large time step.

Variable Step Size Control in the

Numerical Solution of SDE's

21 Motivation

In this chapter we describe a variable step size method for the numerical approx-

imation of strong solutions to the stochastic differential equation (1.1)

d

dx t = go(x,t)dt+g2(x,t)dw

X(0) =

or (1.2)
d

dxt = fo(x,t)dt+>fj(x,t)odw

X(0) =

Although variable step size control is widely used in the numerical solution

of ordinary differential equations, existing approaches to the solution of SDE's

nearly always assume a fixed step size. (For exceptions see K. Bichteler [3] and

N.J. Newton [45]) There is, however, a lack of discretisation methods guaranteeing

accuracy to high powers of the step size. As mentioned in Chapter 1, in the general

case of more than one dimension and without the commutativity condition (1.19),

no numerical method, based only on an approximation of a Brownian path by

19

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	20

its values at times separated by an interval h, can guarantee accuracy along the

trajectory of a higher order than O(/h). Improvements involve the measurement

or simulation of area and other iterated integrals. This forces the use of small step

sizes, whatever the method used or the SDE to be solved.

In some problems we have examined, the size of the time step giving acceptable

accuracy is highly non-homogeneous, varying both along any given trajectory and

also with the initial condition. In these cases use of a fixed step size implies the

use of an unacceptable amount of both computer memory and computation time.

It is this consideration which led us to the implementation of a variable step size

method.

Our method is very much dependent on a particular way of viewing and gen-

erating a Brownian path. It is standard practice to generate approximations to

a Brownian path as a discrete set of points evenly spaced over the required time

interval, with points that occur later in time always being generated after points

that occur earlier. For our purposes such a method is not satisfactory. We wish to

be able to test the accuracy of solutions by solving the same equation repeatedly

using decreasing step sizes. Comparability of the consecutive trajectories implies

using the same noise, ie. the same Brownian path, each time, but with more

points available as the step size decreases. Another reason for requiring a different

method of generating Brownian paths, is the fact that a variable step size method

demands knowledge of the Brownian path at intermediate points in some subin-

tervals, up to an often unforeseeable number of subdivisions. Generating the path

at all intermediate points up to a minimum step size would create a very large set

of points, removing one of the advantages of using variable step sizes.

We view, and generate, a Brownian path as a tree, to which branches can be

added at any time. This allows knowledge of points on the path in as much detail

as each particular application requires. Our main tool in the generation of this

tree is Levy's construction [30]. This is a straightforward method that could be

extended to other Markovian driving processes, providing that one had explicit

forms for the transition densities.

In the present chapter we are interested only in TN-measurable approximations,

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	21

so iterated integrals, when used, will be approximated using increments of the

Brownian path.

The outline of the chapter is as follows. First we describe how we generate

Brownian paths for use with variable step size methods. Then we describe our

general variable step size method, which involves estimation of local errors and of

their propagation and choice of which errors are acceptable at which stage. We

follow this with proof that our methods converge under the right conditions. In

Section 2.5 we illustrate our variable step size methods by applying them to a few

particular SDE's. In the final section we give programming details for our method

of generation of Brownian paths.

22 Generation of Brownian paths

2.2.1 Brownian paths generated as increments

Let us describe the tree structure we have developed for both generation and

storage of Brownian paths. The elements stored in the tree are not points on the

Brownian path, but differences, /.w, across intervals of particular sizes. In this

way, the SDE solving routine can be provided immediately with what it needs after

at most one file access and without performing a subtraction. Since the equation

(1.1) to be solved may involve a multidimensional Brownian path, the elements

Aw are in general vectors.

Let us refer to a Brownian path stored in a tree structure as a Brownian tree.

The first level of the Brownian tree is generated by simulating differences across

a chosen number, N, of unit time intervals:

L.Wk,1 = w(k) - w(k - 1), 	k = 1,. . . , N

Hence each Iw is simply a normally distributed random number with mean zero

and unit variance. On the second and subsequent levels of the tree each previously

generated difference can be used to generate two more, the differences across the

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	07,

h), w(2h),...... w(Nh)

1.2 	 t

0.8

0.6

0.4

0.2

0.05 	0.1 	0.15

Figure 2-1:

bI2). w(Nh12) 	I 	I w((N+l)ht2)...... w(Nh)

w(il4). w(Nh/4) 	w((N+l)W4),..,w(Nh/2)

ZN
(2N+l)W8) 	ov(3N+l)h/8),

ZN_
0.25

Figure 2-2:

two subintervals created by introducing the midpoint. This method is due to Levy

[30]. Thus on level J + 1 we have:

= 	+ Yk,j+1

= 	- Yk,j+1, 	j = 1,2,...

where Yk,j is normally distributed with zero mean and variance 2. The tree

can continue down to any level, and apart from the initial level no level need be

complete. See Figure 2-1 for an illustration of how a Brownian path can be built

up using Levy's construction.

Since, when constructing strong approximations, it is often desired to solve

one equation with many different initial conditions or parameter values, using the

same noise each time, we save time and effort by storing each Brownian path in

a file as it is generated and re-using it. Each record in the file corresponds to a

node in the tree. Each node is not a single difference Lw across a single interval,

but is in fact a group of M differences across M consecutive intervals, where M

is chosen so that any disc access time is comparable with the computational time

required to analyse a given section of path. This is for reasons of economy both of

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	23

storage space in the file and of file access time when reading from it. Figure 2-2

illustrates how the Brownian path is stored as a tree.

Generation of the Brownian tree and solution of an SDE are performed in

parallel. At each step along the trajectory elements of the Brownian path are

required. These elements are either already present in the tree and need only be

input, or else they belong to a node not yet created. In the latter case, the new

node (plus any intermediate branches necessary for arriving at the desired node)

is immediately generated from existing ones using new random numbers. All new

path elements are stored in the file and the solution proceeds.

The tree may never reach a final state, in that when it is used to solve the

same equation from a different initial point or with a different parameter value,

the areas where very small steps are needed may be different and therefore the

tree will need to be developed further.

More technical details of the data structure and algorithm that we have chosen

for the dynamic generation and use of Brownian trees are given below in the section

on implementation.

2.2.2 Brownian paths generated as increments and approx-

imate Levy areas

In the preceding section we have described a system of storage and dynamic gen-

eration for a Brownian path composed of a set of increments over steps of varying

sizes. It is possible to generalise the data structure to include at each node of the

tree not only increments of the Brownian path, but other path statistics, such as

integrals against time or Levy area integrals. The higher order integrals could be

generated jointly with the increments (as in Chapter 3). Although in this chapter

we are limiting ourselves to representations of Brownian paths that do not include

direct generation of higher order integrals, it is still possible to approximate inte-

grals of the Brownian path using increments. In Section 2.4, we will see that to

guarantee convergence for variable step size methods in the case of a general SDE

(with multi-dimensional noise and not satisfying the commutativity condition), it

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	24

is necessary to include in the discretisation scheme approximate Levy areas as well

as increments of the Brownian path. We therefore need to generalise the Brownian

tree presented in Section 2.2.1, to allow inclusion of approximate area integrals.

The basic idea is as follows. At each node of the tree at level j, we will

store both increments of the Brownian path over time steps of length 2 and

approximate area integrals obtained using increments on a lower level, J+ k say.

As before, the tree will grow as necessary. When new increments and areas are

required at a certain level, the level of the numerical solution, new increments have

to also be generated at lower levels and then used to approximate the required

areas.

Let a time interval [t, t + h] be subdivided into 2' equal subintervals and incre-

ments of the Brownian path Aw p , p = 1, . . , k be generated over the subintervals

using Levy's construction, as described in Section 2.2.1. Then Aij , an approxima-

tion to the Levy area Aij t + h) (as defined in (1.17)) can be obtained using

A ij =Aw, Aw, Aw "Aw ,
1<q<p<2' 	 1<p<q<2'

23 Variable step size contro' and accuracy cri-

teria

At first sight, the method we use resembles any standard step size control method

for numerical integration of ODE's, with some simplifications, forced by the struc-

ture of the Brownian path. In particular, new step sizes are only derived from

previous ones by halving or doubling.

The step size control routine takes one step of the required size, using a suit-

able discretisation scheme, and then checks whether the error made is acceptable,

according to a chosen accuracy criterion. If the chosen condition is not satisfied

then the step size is halved and the process repeated. Once the desired accuracy

is reached, the next step size to be tried is set equal to twice the last one used,

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	25

as long as the structure of the Brownian tree allows for an increase in step size at

that point.

The actual integration involved in "taking steps" can be performed using any

discretisation method available, as long as convergence is guaranteed. (See Section

2.4 for details of the conditions required for convergence.) This lends flexibility to

the method. It will be seen, however, that a certain class of discretisation methods,

namely those usually known as asymptotically efficient, is particularly suitable.

The interesting question here is how to decide whether each step taken is accu-

rate enough. We need both a reliable method for estimating the error introduced

in a single step and a criterion for judging when the error made is acceptable.

2,3i1 Estimation of the Local Error

Let xk be the true solution at time tk and let the approximate solution be

Xk = cb(k_l,L.wk)

A method of local error estimation often used for ODE's is the following.

Starting at time tk_1 one step of the required size h, and again at tk_1, two steps

of length h/2 are taken. Then the values obtained for x(tk) in the two cases, Tk

and J4, say, are compared, giving jk - xkI as an estimate of the local error.

We have tried this method, but not found it very satisfactory. Although it does

not yield a very bad error estimate, the total number of steps taken (including both

those accepted and those rejected) is multiplied by at least one and a half.

A method of estimation of the one step error that seems more useful consists of

expanding the error using a stochastic Taylor series (see Chapter 1) and then calcu-

lating the mean and variance of the resulting terms, conditional on our knowledge

of the Brownian path. The necessary calculations can be carried out particularly

easily using a computer algebra package (such as Reduce, Mathematica or Maple).

For any chosen integration method (such as Euler, Milshtein, Heun etc.) the

procedure followed is roughly the same. First xk is expanded as a series of integrals.

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	26

If necessary Yk is also expanded (this is the case for the explicit Heun method).

Depending on whether the integration method being used converges to the solu-

tion of an Ito or a Stratonovich SDE, the expansion involves Ito or Stratonovich

integrals. Then Yk is subtracted from xk, to get the error terms. In general, the

error terms include multiple stochastic integrals that cannot be calculated explic-

itly, so we do not immediately obtain an approximation to the error. However, we

can calculate the mean and variance of the error conditional on the increments,

LWk, of the Brownian path, (see Newton [44]). This gives us the best estimate

of the error obtainable using the available information. Suitable estimates of the

Pjv —conditional mean and variance are then obtained by retaining only the terms

of lowest order.

2.3.2 Acceptance Criteria for the Local Error

Once the error introduced in one step has been estimated, the question remains as

to what criterion to apply when accepting or rejecting the size of the error. Since

our aim is to control the size of the final error, information is needed on the propa-

gation of each local error along the trajectory. Another important consideration is

how much each local error should be made to contribute to the final global error.

Error propagation

If we assume that step sizes are small enough that propagation of the errors is

linear, we can obtain an SDE representing the propagation of an infinitesimal

error, y, along a particular trajectory. Replacing x in (1.1) with x + cy gives

dx + cdy = [go (x) + Eg(x)y]dt + 	[gj(x) + fg(x)y]dw + o(c2)(dw + dt)

and hence as c tends to zero one obtains

d

dy = A(t)y di + E B3 (t)y dw 3 	 (2.1)

where

A(t) = g(x(t))

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	27

B3 (t) =g(x(t))

We would like to know the size of the error that can be introduced at any

given time 0 < t < T, in order to obtain a contribution to the final error of at

most a given amount. One way to get this information is to solve equation (2.1)

backwards in time, using a fixed time step, starting from a chosen value for the

final error. However, to solve (2.1), we need to know the solution to (1.1), so

we start by calculating a rough solution to (1.1) using a sufficiently small fixed

step size h, then use the values calculated for Tk, k = 1,.... N while solving (2.1)

backwards using the same step size. The final stage is then to solve the SDE (1.1)

using variable time steps and using the information previously obtained to help

choose tolerable errors at each step. The extra effort involved in the preliminary

fixed time step solutions should be small compared with the computation time

used subsequently to solve (1.1) accurately using variable time steps.

For an SDE in one dimension (n = 1), preliminary simultaneous forward solu-

tion of (1.1) and (2.1) over fixed time steps and rescaling of the solution to (2.1)

would provide the necessary information on propagation of local errors. However,

in more than one dimension (n > 1), this would involve inversion of matrices at

each step, which would be computationally expensive and also problematic, since

the determinant of the matrix could become very small.

Here we are supposing that the error is random and that the error at each step

is independent of that at previous steps, something that can only be considered as

an approximation to the truth when the step sizes and hence the errors are small

enough.

Optimal contribution of local errors to the global error

At each time tk an error y(tk) is introduced, which, after propagation along the

trajectory, will add a contribution of

Y(tk) = y(tk)w(tk)

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	28

to the final error at time T. Here w(tk) is the factor by which the error is multiplied

between the time tk and the final time, T. We need to choose the function Y(t) so

as to minimise the global error. We claim that the optimal choice, if one wishes

to minimise the sum of the absolute errors for a given number of steps, is to let

each local error contribute equally to the final error.

Sketch of proof:

We will presume that all steps are small enough that finite sums can be ap-

proximated accurately by integrals . Let p(t) be the density of steps. Also suppose

that the local error y(i) can be expressed as

=

We wish to minimise the total error

J ?/(p)(t)p(t)dt
0

subject to

J p(t)dt N
0

At the minimum we have

J'(pV)(p))'h(t)Lu(t)dt = 0

giving
pT

J b(p)w(t)h(t)dt = 0
0

for all h(t) with

J h(t)dt = 0
0

Therefore

O(p)w(t) = constant

In the above we have chosen to minimise the sum of the absolute errors for a

given number of steps. It is clear that the errors over individual steps may be of

different signs and therefore cancelations may occur, so this is a kind of "worst

case" solution. However, when estimating the local errors in Section 2.3.1, we

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	29

in fact estimated their TN—conditional means and variances. Variances, being

positive, do all add up, so that the variance of the final error is indeed the sum of

the contributions made by the variances of the errors over the different steps. What

about the mean? Presumably we would like to minimise the mean of the global

error as well as its variance, and, again, the one-step means can be of different

signs. The way round this is to use a discretisation scheme for taking steps that

reduces the TN —conditional mean of the error to a higher order than the standard

deviation, thereby making the mean error negligible beside the standard deviation.

The schemes known as asymptotically efficient schemes have this property. (See

Chapter 1 and below for definition and references.)

2.3.3 Outline of Method

At this point a method for step size control has emerged. A maximum value C

must be chosen for the contribution of each local error to the TN — conditional

variance of the global error. C is a vector of dimension n, so this choice involves

weighting the errors allowed for the different components of x.' Initially we cal-

culate a rough solution to the SDE (1.1) using a small enough fixed step size.

Using this solution, we solve the linear SDE (2.1) backwards in time from the

chosen final value of y(T) = C. (In the first two examples that follow, the SDE

is simple enough that these initial stages can be replaced by analytical calcula-

tions, but this will not usually be the case.) This yields a set of permissible values

y(tk, C) for the TN—conditional variance of errors introduced at points along the

trajectory. In the final stage we proceed to solution of the original SDE using

variable step size. To take steps we use any discretisation scheme that converges,

that leads to local errors of the optimal order and using which the order of the

square of the TN—conditional mean of the local error is higher than the order of

the TN—conditional variance. At each step the conditional variance of the local

error is estimated and compared with the value required. The step size is halved

and the step repeated until the local error is small enough.

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	30

24 Convergence of vaitiablie step size agorthms

and choice of dscretsaton schemes

In the preceding sections we have outlined an algorithm for numerical solution

of SDE's using variable time steps. Naturally the question arises as to whether

this algorithm converges to the true solution of each SDE. Various authors have

already shown convergence of variable time step methods ([3], [45], [15], [26]), but

in all cases the discretisation times have been stopping times. In this chapter the

discretisation points are clearly not stopping times, since, on the one hand, the

choice of acceptable errors is determined by prior investigation of an approximation

of the whole trajectory and, on the other hand, it is only once a step has been taken

and the error estimated that the decision is made to continue or to retreat and

take a smaller time step. This leads us to look for general criteria that guarantee

convergence of algorithms obtained by discretisation, to the solution of an SDE,

whether the time steps are chosen deterministically or randomly, and, if randomly,

whether the discretisation times are stopping times or not.

In this section the representation of Brownian paths described in Section 2.2

is crucial: the algorithms that we consider all represent a Brownian path as an

infinite binary tree, so, however the time steps are chosen, the step size is equal

to 2, for some n E iN.

We will consider first the particular case of SDE's driven by a one-dimensional

Brownian path, or satisfying the commutativity condition, and then go on to

consider the general case of SDE's driven by a multi-dimensional Brownian path,

where the commutativity condition is not satisfied.

24.1 SUEs driven by a one-dimensional Brownian path

or satisfying the commutativfity condition

From [35] it follows that in the case of an SDE driven by a one-dimensional Brow-

nian path, or an SDE satisfying the commutativity condition (1.19), in which

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	31

case the solution does not depend on Levy area integrals, we have the following

theorem:

Theorem 2.4.1 Let the SDE (1.2) have d = 1 or satisfy the commutativity con-

dition (1.19), then any variable step size algorithm that breaks [0, T] into disjoint

intervals each of length 2' for some k E iN and on each interval [t 3 , t 1], with

t3 +i = t3 + h +1, takes as approximate solution, (t), to (1.2) the solution for unit

time of the ODE
du d

	

= fohi + 	f(u)1w 1
dt

	

i=1 	 , 	 (2.2)

UM =

will converge to the solution of (1.2), as long as

maxh —*0
3

However, if we want an approximation that not only guarantees convergence of

the variable step scheme, but also reduces the conditional mean of the local error

sufficiently, then it would be sufficient to solve on each interval the ODE

du 	 1= fo (u)h i + >IL f(u)zw1 - 11 	f°(u) 	
(2.3)

u(0) =Yj

where f(tOi) = [
fi, [fo, ft]] shown in [5] to be a first-order asymptotically efficient

approximation in the case of fixed step-sizes. Here we are using the notation [u, v],

where u and v are vector fields in ll?, to denote the vector field

	

n o 	ma
[u, v]

= 	

U2 	

-
axi

It is not necessary (or possible) to solve the ODE (2.3) perfectly. It is sufficient

that over each step of the solution to the SDE, the discretisation scheme chosen

produce a local error of 0(h312). Such accuracy can be obtained by solving the

ODE (2.3) using the fourth order Runge-Kutta method (see [51). Equivalently,

any of the first order asymptotically efficient schemes of Newton ([44], [461) could

be used to solve the SDE (1.1) or (1.2) (depending on the scheme chosen) directly

on each time interval.

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	32

24.2 SJDE 9s diriven by a mufti -dimensionaR Brownian path

and not satisfying the commutativity condition

When SDE's do not satisfy the commutativity condition, it is not enough to eval-

uate the Brownian path only at the points in time where the approximate solution

is calculated. To guarantee convergence when using random time steps, it is nec-

essary to also generate increments of the Brownian path at intermediate points in

time and to use the increments to approximate the Levy area integrals, as defined

in (1.17).

The following theorem is completely based on suggestions of T.J. Lyons.

Theorem 2.4.2 Let A13 (k+1), be an approximation to the Le'vy area A(tk, tk+1),

(i,j = 1,... ,d), obtained by subdividing the time interval [tk,tk+1], where tk+1 -

tk = hk+l = 2, into 	equal subintervals and taking the area of the piecewise

linear path obtained by generating the Brownian path at the ends of the subinter-

vals. If q(j) > Clog2 j, for C > 1, then any variable step size algorithm that

breaks [0, T] into disjoint intervals each of length 2 for some j E iN and on each

interval [tk, tk+11 takes as approximate solution, Xk+1, to (1.2) at time tk+1 the

solution for unit time of the ODE

du 	 d

= f0 (u)h 1 +f(u)Aw 1 + 	[f,f](u)A(k+ 1)
di 	 i=1 	 1<i<j<d 	 (2.4)

U(0) = Xk

will converge to the solution of (1.2) as long as

max hk .' 0
k

Proof. To simplify notation, we denote by A(tk, tk+1) and Ak +l the d by d matrices

with entries A(tk, tk+1) and Aa(k + 1) respectively. From [35] it is clear that as

long as

IAk+l - A(tk,tk+1) I :~ o(hk+l) 	 (2.5)

uniformly in the choice of partition of [0, T], then the approximate solution given

by solving (2.4) for unit time on each interval [1k, tk +1I will converge to the solution

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	33

of (1.2) as

maxhk - 4 0
k

Therefore we have to show that the approximate Levy area, Ak+l, obtained by

splitting each [tk, tk +1I into equal pieces, will satisfy (2.5) when

Clog2 j, with C> 1.

We can express the Levy area as

00 2_1

	

A(tk,tk+1) 	= 	[zw(k,j) i,p),zw(k,j,i,p + 1)] 	(2.6)
1=1 p=l

where we define

	

/.w(k,j,i,p) 	w(t, + (2p - 1)h13) - W(tk + (2p - 2)h 3)

	

zw(k,j,i,p+ 1) 	W(tk + 2ph23) - w(tk + (2p - 1)h 13)

with

I1•
•
- -(i+j)

j3 -

and the approximate area as

(j)
Ak +l = 	[zw(k,j,i,p),w(k,j,i,p+ 1)] 	 (2.7)

i=1 p=l

(See Figure 2-3.) Here we are using the convention

[u, v] = u 0 v - v 0 u

Therefore we wish to estimate the size of

2t 1

23 	[tw(k,)*, i,p), Aw(k,j, i,p + 1)]
i>(j) p=l

We will start by investigating the size of the ith term. It is clearly sufficient to

estimate

1P 	 > A2 3)

where the j, ?7pj are all i.i.d. normal random variables with mean 0 and variance

or, by scaling,

(1
ill—p77p >)

P=1

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	34

W
2

0.8

0.6

0.4

0.2

0

-0.2

-0.4

W

0 	 0.5 	 1 	 1.5 	 2

Figure 2-3: building up an approximate Levy area

where the ,, are all A1(O, 1) (standard normal) random variables.

We have, for any a> 0,

1 	oo poo
1Ee C0 1)

= 2i 1-001-00

e 	2 : dxdy =
	1

2

M T11]
n

ea
fl1(p7p)

e" <
P=1

Therefore, using large deviation theory,

	

onA '\ 	—on) 	cy'1 1 p TI
P

'lj (p1p> 	= 	
) 	

e P=

n p=1 	
(2.8) I

—csn\ b(
j 	I ..) 	 i

e 	a) = V
Since a is arbitrary in (2.8), we can take it so as to minimise the last expression.

This is equivalent to minimising

 —logV'l -- a2 - aA

So we must solve
a

A
 1—a2

	

The positive root is 	 _______
1 	ii

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	35

which, using a Taylor series expansion, gives

fun 	I
JP

>)

<(e ° 	 (2.9)

We now need a suitable choice of)(i), to ensure that , with our hypothesis on

(2.5) will hold whenever

2'-

>[Lw(k,j, i,p), zw(k,j,i,p+ 1)]
P=1

Let A(i) = 2-i - with m> 1. Then im

23Ak+1 - A(tk,ik+1)I

which tends to 0 as j —* 00.

2
=

Ii>(i) P=1
2 1 _ 1

~ 2 3 	E [w(k,j,i,p),w(k,j,i,p+ 1)]
i>qS(j)

1 	 1
q(j)m_l 	(C 109 2 j)rn_l

Finally, we can use a Borel-Cantelli lemma, to show that, for a given Brownian

path, (2.5) holds on every subinterval of [0, T] with only finitely many excep-

tions. For each choice of j, there are 2 3 T possible subintervals of length 2. So,

(remembering that the 6 p and r are standard normal,) we need to show that

00 	 I2

	

23 T 	(> -) <oc 	 (2.10)ZM
j1 	i>j(3) 	

2z
p=i

with m > 1. We can rewrite the left hand side of (2.10) as

00'

T 	2(ll 	 >'
i=1 	(j)<i

)

With (j) = Clog 2 j, for each i, there exists f such that

	

i 	<

By (2.9),

> --\ [exp 	+ 0(\22
p=1 	

jm) —

Combining the last two expressions gives (2.10) for all m. 	 0

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	36

As mentioned in Section 2.3.2, when using variable time steps it makes life

easier if we choose a discretisation scheme to approximate the solution with the

property that the mean error over each step, conditional on the available informa-

tion about the Brownian path, is negligible beside the standard deviation. Then

it is only the conditional variance that need be used as an accuracy criterion

when choosing the length of the step. As seen above, for an SDE driven by a

one-dimensional Brownian path, or satisfying the commutativity condition (1.19),

there is a class of discretisation scheme available (those schemes known as first-

order asymptotically efficient) that have the required property and also assure

convergence by satisfying the hypotheses of Theorem 2.4.1. When it comes to a

general SDE, (for which no PN—conditional approximation can assure a better or-

der of accuracy than O(/7)), we need to derive a numerical scheme that not only

uses approximate Levy areas, in order to fulfill the requirements of Theorem 2.4.2,

but also produces local errors with small enough conditional means. We show here

that both the true solution to the ODE (2.4), and good enough approximations

to that solution, do give rise to local errors with reduced conditional means.

Since we have chosen to approximate Levy areas over the time-steps of the

numerical solution, by generating increments of the Brownian path over sub-

intervals, the amount of information available at each time step, to be taken into

account when examining conditional expectations of the local error, has increased.

Whereas previously we have considered the filtration

PN =o- (w(t k),k=1,...,N),

in this section we need to consider the augmented filtration

PN = a(w(tk), {W(tk + mhk), m = 1,. . . 2}m = 1,. .. , N;),

where hk = 	çb(j) is as defined in Theorem 2.4.2 and

- 	hk
hk = 2Y

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	37

If we expand the solution to the ODE (2.4) over a small time interval [tk, t 1],

we obtain

= x + f(xk)hk+1 + >f(xk) 1 w+l
P

j=1 P=1

j=1 O<p<q<d 2

j=1 O<p<q<d 2

f(xk) ((zw+1)2 - hk +l)

afq
(x k)Bpq (k, k +1)

afp

Dxi P + Dxi qj

(! 	
)

- DfPfi\ (Xk)A pq (k, k +1) + R
Dxi P Dx3 q

for i = 1 ' ... , n, where the remainder, R, contains terms of order 0(h312) and

higher. The expansion of the true solution of the SDE is identical as far as the

remainder terms, except for containing the true Levy areas, A pq (k, k + 1), rather

than the approximations, A pq (k, k + 1).

The local error is therefore

i- 	fi
(X k)(A pq (k, k + 1) - A pq (k, k + 1)) + R (2.11)

i10<p<q<d 	Dxi P 	Dxi qj

Since the)5N —conditional mean of the Levy area A(k, k+ 1) is the approximate

area A(k, k -1- 1), the TN—conditional mean of the local error contains only terms

of order 0(h312) and higher. The square of the conditional mean is therefore of

order 0(h3).

Now for the TN—conditional variance. Writing A pq for A pq (k, k + 1)), we have

I /(c) 	 2 	1

E [(Apq
-

Apq)2 TN] = E [

	

A pq (i, (i + i)h)) TN]

Since

E [A pq (ii, (i + 1))Apq (j, (j + 1) 	TN] =

for all i j, we have

E [(A pq A pq) 2 N] =

2) 	 (2.12)
E [Apq (ii, (i +)h)2 	

w(i (i + i))]

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	38

Using

	

E(A q (t, + h)Iw(t, t + h)) = 	h(h + (w(t, t + h))2 + 	t + h)) 2),
12

(2.12) becomes

- 	
24(k)

	

E [(Apq - Apq)
21

PNj = h h + 	(wP(i, (i + 1))2 + 	(i + 1))2)],

[i=O

which, when substituted into (2.11), gives the conditional variance of the local

error as
2 n 	J(ôgag;\

(xk)
j=1 O<p<q<d 12 	—;-gp - ;;jgq)

I (2.1

24(k)

h + 	(wP(i, (i + 1))2 + 	(i + 1))2)] + R.

3)

25]Illusrati.ve numericaR applications

2.5.1 First exampile

For the first example we have chosen the one-dimensional equation

dx = /3x o dw 	 (2.14)

because the solution can be explicitly calculated as

X(t) = x (0) e/t)

When 0 is sufficiently large the solution becomes hard to approximate by pathwise

integration.

Since the drift term in (2.14) is zero and the Brownian path one-dimensional,

the solution to this equation can be approximated as accurately as wished using

7'N — measurable approximations. For such an equation the local error is always

equal to its PN conditional mean and standard deviation. The asymptotically

efficient approximation would be the discretisation scheme given by the infinite

series

00

01
Xk+i = Xk

i=O

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	39

which is hardly a practical proposition. We will therefore choose a simple first-

order scheme for the purpose of comparing fixed and variable time steps.

We will first estimate the one step error and then examine how errors propagate,

hence deducing an accuracy criterion to be applied at each step.

We will use the (explicit) Heun method (1.20):

Xk+1 = Xk + 1/2(fo(k) + f0 (5))h + 112(f1(k) + f1(-i))Iwk+1

where

X = Xk + fo(k)h + f1(k)wk+1

Expanding fi() as a series around Yk and setting fo (x) = 0, we can write

(1.20) as

Xk+1 = Xk + f1(k)zwk+1 +

1
+ 0((zwk+1) 4)

The true value of Xj1 given Xk = xk is

Xk+1 = Xk + fl(k)L\wk+1 + - f1(k)fk)(Lwk+1) 2

+ [u1 k 2 f;' k + (f1(k)fk)) 2] (Wk+1) + 0((wk+1))

Then our error estimate is

1 	i2 	2
j-(2fifi - fi fi)(k)(Awk+1) 3 +

With fi (x) = /3x the error estimate is

y(tk) = 0xk(Lwk+1)

For this particular equation, the error as given by (2.1) is solution of the same

SDE again:

dy = /3y o dw

Let y(t) be the error in x at an intermediate time t, 0 < t < T. Then that error

will lead to a final error y(T) given by

i3(w(T)—w(t)) - y(t)x(T)
y(T) = y(t)e 	

- x(t)

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	40

If we wish the local error at each step to contribute equally to the final global

error, we should require
y(t)x(T)

	

X (t) 	I <

hence

	

1 Y(01
< 	x(t)

Ix(T)
The accuracy criterion is now

I/xk(Lwk+1)I
<

Xk

or
) 31 <C

We give below in table form the results obtained for # = 5 and x(0) = 1

along one particular Brownian path, using first fixed step sizes of various lengths

(Table 2-1) and then variable step sizes with different accuracy constraints (Tables

2-2-2-4). In all cases the discretisation method used is the Heun scheme.

In order to compare the relative performance of the fixed and variable step size

methods, we report the number of steps taken in each case. For the variable step

size method two numbers are given: the number of steps performed successfully

(ie. that meet the chosen accuracy criterion) and the total number of steps tried,

including those that were too large for the required accuracy and so had to be

repeated using a smaller step size. The first number gives an indication of any

possible reduction in the number of steps required to reach a final point with a

given accuracy, once all steps do not need to be of equal length. The second number

indicates how much work the variable step size routine performs (ie the number

of function evaluations etc.) and therefore gives an indication of the computing

time involved as compared with the time used by the fixed step size routine.

The accuracy criteria used with variable step sizes to produce the results in

Tables 2-2, 2-3 and 2-4 below are, in order,

	

lyk - XkI < C 	 (2.15)

Ixk - 	< Ck_l 	 (2.16)

	

ILw 3 I < C 	 (2.17)

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	41

Table 2-1: Fixed step size

Step size 	x(1)

2 -7 34379.89

2_8 34682.04

2 -9 31709.06

2- '0 22217.40

2_it 20340.67

2_12 19807.45

2_13 19394.61

No. steps Error (%)

128 80

256 81

512 66

1024 16

2048 6

4096 3.5

8192 1.4

Table 2-2: Variable step size using Ik - xkl <C

C 	x(1) 	No. steps taken 	No. steps tried 	Error (%)

	

10.0 31269.71 	 370 	 1680 	63

	

1.0 27048.22 	 1505 	 6834 	41

	

0.1 	21959.87 	 6072 	27303 	15

Table 2-3: Variable Step Size using IXk - xkl <CIk_1

C x(1) No. steps taken No. steps tried Error (%)

0.1 31226.03 38 168 63

0.01 31347.92 202 900 64

0.001 20598.17 809 3615 7.6

0.0007 19444.64 1078 4812 1.6

For the path used w(1) = 1.971848, hence the true solution is x(1) = 19134.34.

The final table for this example, Table 2-5, reports average figures over fifty

different Brownian paths. The numbers of steps are the numbers needed to obtain

at least 2% accuracy in x(1). The third row of the table compares the number of

steps taken using variable step sizes with the number using a fixed step size. The

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	42

Table 2-4: Variable step size using Izw3 I < C

C x(1) No. steps taken No. steps tried Error (%)

0.1 6614.52 28 31 65

0.01 25456.50 56 69 33

0.001 20159.48 206 262 5.4

0.0001 19518.13 958 1216 2.0

0.00009 19353.70 1026 1302 1.1

Table 2-5: Comparison of Methods

Fixed VS (2.15) VS (2.16) VS (2.17)

Steps taken: 16998 18024 6970 3101

Steps tried: 16998 35864 15733 3956

Steps taken/fixed: 1.00 2.11 0.93 0.23

Taken/tried: 1.00 0.50 0.44 0.78

last row shows the proportion of steps accepted as meeting the relevant accuracy

criterion to the total number of steps tried. The third accuracy criterion, which is

the one described in detail above, is clearly the most efficient. The total number

of steps taken and the proportion of steps tried but rejected are both lower for

this method than for any other method tried.

2.5.2 Second Example

The second example is similar to the first, but with n = 2 (and d = 1 again). We

take the system of Stratonovich equations

I du = 02vodw
(2.18)

dv = uodw

with initial conditions

I 	= 0

v(0) = 2

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	43

(We have taken x = (x1 ,x 2) = (u, v), to simplify notation.) The solution can be

calculated analytically as

{

u(t) = 	 +

v(t) = ew(t) +

As in the first example, the solution can be approximated as accurately as

desired using a PN approximation, so asymptotic efficiency is not really relevant.

Let y and z be the errors made in u and v respectively. Then, replacing u and

in (2.18) with u + y and v + cz and taking the limit as € tends to zero, we see

that, as in the previous example, y and z satisfy the original system

S dy = 02 zodw

dz = yodw

Hence

{

y(i) = _/3Ae_t) + /3Bet)

z(t) = Ae -OW + Bet)

If we are interested in the contribution at time T of errors y(t) and z(t) introduced

at time t, then we must take

	

A 	
/3z(t) - Y(t)f3(t) =

2/3

	

B 	
/3z(t) + y(t) =

2/3

giving

J y(T) =

z(T) = 2 	20

where

	

El = 	-f3(w(T)-w(t)) +

E2 = eT)_t - -/3(w(T)-w(t))

It can be shown straightforwardly that

/9 2v(T)v(t) - u(T)u(t)
E1= 	 2/32

u(T)v(t) - v(T)u(t)
E2 -

2/3

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	44

Therefore errors introduced at time t lead to errors at time T given by

	

J y(T) = 	[y(t)(/32v(T)v(t) - u(T)u(t)) + 132 z(t)(u(T)v(t) - v(T)u(t))] 402

	

z(T) = 	[y(t)(u(T)v(t) - v(T)u(t)) + z(t)(/32v(T)v(t) - u(T)u(t))] 402

For the Heun method our error estimate for x, i = 1,2 is

-

(2'fl

k
- axiaxkh1)

(xz(t))(Awk+1)3 + O((wk+1)4)
2 ôfj1

giving

Y(t) = 16

Z(t) =

Since u is really only an intermediary variable and it is v that interests us, we

only demand accuracy in v. Requiring as before that the local error at each step

contribute equally to the final error, we obtain an accuracy criterion for each step

of

u(T)(wk+l) 3 [2v(t) 2 - U(t)2]1 <c
24

or

31 2 V (t)2 	1 (Lwk+l) 1 	-
U (t)2

 j 1 < C 	 (2.20)

We present below in table form the comparative results of solving the system

(2.18) using fixed and variable time steps. As for the first example, the discretisa-

tion method used is that of Heim. We have taken 3 = 4. Tables 2-6 and 2-7 give

detailed results using one particular Brownian path, for which w(1) = 0.080107,

giving x 2 (1) = 2.10356. The last table, Table 2-8 again compares the efficiency of

fixed and variable step sizes over fifty Brownian paths.

Motivated by the results obtained in example 1, only one accuracy criterion

has been used to control step size, the criterion (2.20) derived above.

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	45

Table 2-6: Fixed Step Size

Step size 	x 2 (1) No. steps Error (%)

2 -7 4.34977 128 107

2_8 2.94662 256 40

2 2.53534 512 21

2- ' 0 2.28233 1024 8.5

2.19512 2048 4.4

2_12 2.14895 4096 2.2

2_13 2.12498 8192 1.0

Table 2-7: Variable Step Size

c 	x 1 (1) No. steps taken No. steps tried Error (%)

0.1 2.45227 192 246 17

0.01 2.16454 684 867 2.9

0.002 2.12298 1975 2529 0.9

Table 2-8: Comparison of fixed and variable steps

Fixed step size Variable step size (2.20)

Steps taken: 5530 738

Steps tried: 5530 927

Prop of fixed: 1.00 0.17

Taken/tried: 1.00 0.80

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	46

2.5.3 Third Examp'e

For our final example we have chosen an SDE that is of one dimension in x but

two dimensions in w (n = 1, d = 2),

dO = cos(0)dw 1 + siri(0)dw2
	

(2.21)

This is the 'gradient flow' on the circle mentioned by Rogers and Williams [53]. It

is easily verified that the Ito and Stratonovich forms of this equation are identical

and that the equation does not satisfy the commutative property.

We will use the method of solution suggested in Section 2.4.2, that involves

approximating the Levy areas by generating increments of the Brownian motion

over finer time steps than the steps of the numerical solution, and that reduces

the order of the mean one step error.

For this method, with d = 2, the variance of the local error generated in one

step conditional on (all) the increments of the Brownian path is

E[(xk+l - Xk+1)ILWk+1]

- f(xk)f1(xk)) 2 [h + 	((w) 2 + (w)2)] 	
(2.22)

i=1

where K is the number of equal subintervals that the time step has been divided

into for the purpose of approximating the area integrals and Aw i denotes the

increment of the Brownian path over the ith subinterval. The mean of the local

error is 0(h312).

In the case of the SDE (2.21) the local variance is

1 	K 	 k

Vk = -
12 	i=1

+ 	(/ w) 2 + 	(w)2) 	 (2.23)
i=1 	 i=1

From (2.1), the propagation of the local error is given by

2 dy = y(cos(0)dw - .szn(0)dw 1)
	 (2.24)

This equation cannot be solved analytically, so one way to proceed is to solve it

numerically simultaneously to equation (2.21), giving the system

dO = cos(0)dw1 + sin(0)dw2

dy = y(cos(0)dw 2 - sin(0)dw1) 	
(2.25)

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	47

with y(0) chosen arbitrarily. If an error e(t) is introduced at time t, then this will

lead to a contribution to the final error at time T of

e(T) - y(T)
e (t)

- Y

and the variance, v(t), of the local error will give a contribution to the variance of

the final error of
(T)

2
y

v(T)=(()) v(t)

which in this example becomes, from (2.23),

1 	 2 	
K 	 K

v(T) =
	(Y(T))

y(t 	
(h + 	(w) 2 + 1

i=1 	
i

Hence we have an accuracy criterion of

1
(Y(T)) 2

	

K 	 K

y(t) 	
/i(h + 	(\w) 2 + 	(w)2) <C

i=1 	 i=1

or
K 	 K

A 1 2 y(t) 2 h(h + 2(w) + 	(Lw)2) <C 	 (2.26)
i=1 	 i=1

There is a problem here: the accuracy criterion (2.26) includes Aw i , i =

1,. .. , k, but an efficient routine to generate and access the Brownian path will

only return the increment of the Brownian path and the approximate Levy area

over each time step, not the increments over smaller steps used to approximate

the integrals. The best way round this, seems to be to approximate the sums of

(zwfl 2 by h.

Let

S = (zwfl2

The mean error, conditional on Lwk+1, made by replacing Sj with h is

= E[S - hIwk+i] = ((wk+1)2 - h)

and the conditional variance of the error can be shown to be

E{(S - h -

4h2 	h2 t,) 2 	 4h = -

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	48

0.

0.

0.

0.

0.

0.

0.

0.

0.

Figure 2-4: error propagation 	Figure 2-5: step size against time

Therefore, if we wish (2.26) to be satisfied with a certain probability, when ap-

proximating S, j = 1, 2, by h, we need to replace C in (2.26) with C -

giving the final criterion

y(t) 2 hh + a 	< C 	 (2.27)

The choice of a e JR depends on the probability with which we want (2.26) to

hold.

As can be seen in Figure 2-4, the path followed by local errors suggests ex-

ponential decay. Using criterion (2.27) to control step size therefore results in

initially large steps decreasing more or less exponentially in size with time. The

time steps obtained for one particular Brownian path are shown in Figure 2-5.

26 1[mpementation

As mentioned above, we have chosen to generate approximations to Brownian

paths using a tree-like structure and to store all parts of the tree generated in a

data file. The file consists of a set of records, stored in the order in which they

are generated. The first record in the file is unique and contains basic information

about the whole file, such as the total number of records, the dimension of the /.w

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	49

vectors, the number M of vectors in each record, etc. Each of the other records

consists of two blocks of data of fixed length and structure. The first block is a

set of "labels", that define clearly the position in the tree of the set of Lw vectors

contained in the record and that also specify where certain other nodes of the

tree can be found, such as the parent node, the right and left children and the

previous and next nodes on the same level of the tree. The labels are particularly

important when it comes to the branches of the Brownian tree that are added as

needed during the solution of the SDE, as these do not constitute full levels and

therefore must be properly linked to the rest of the tree. There are several possible

sets of labels that could be used, from a minimal set to much more extensive ones.

Here a balance needs to be reached between the amount of data stored and the

time needed for accessing data within the file. Although it might seem sensible

not to store more in the file than necessary, much computing time could be lost

searching through the file for the required record, when a label in the last record

used could have given the location.

The second block of data contained in each record is a set of M Lw vectors

constituting a node in the Brownian tree. The parameter M is chosen suitably

large, allowing enough of the Brownian path to be kept in working memory at any

one time to minimise the number of file accesses required, but not so large that

paging is forced when using virtual memory.

At the beginning of the numerical solution, an area of working memory is ini-

tialised. A particular number of records is read from the file and stored in memory.

Throughout the numerical integration the number of records kept in memory will

remain unchanged. (This parameter must again be chosen, in conjunction with

M, in such a way as to minimise access time.) The first record taken from the file

is the one containing the /w vector needed initially by the integration process.

The other records are all parents, grandparents etc. of the first one. In this way

if, a bit later in the solution, the step size should increase, the necessary nodes

will already be present in memory.

After initialisation, each time that a path element is required, the first place

to search for it is in memory. If the algorithm is tuned properly, then a large

Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	50

proportion of the time the search will end there. When the required node is not

in memory, then either the node is contained in the file, in which case the relevant

record is read in and replaces another record already in memory, or else the node

has not yet been generated and existing records are used to generate new nodes.

In some instances, generation of one node demands generation of nodes on one or

more higher levels. All newly generated nodes are placed in records along with the

correct labels and appended to the file containing the Brownian tree.At the same

time, in order to preserve the tree structure, other already existing records need

to be updated. For example, parent records of newly generated records must be

corrected to include pointers to their children.

The rules we have chosen state that the nodes kept in memory must at any

time all be from different levels of the tree and be direct descendants of the one on

the highest level. Therefore, when any one record is replaced, other records may

also need to be replaced.

At the end of each step in the numerical integration, a decision is made as

to whether in the next time interval the step size should be increased, decreased

or remain unchanged. When accuracy tests suggest that the step size could be

increased, it is not always possible to do so immediately. This is a question of data

structure. An increase in step size can only be allowed when the current time is the

initial point of a subinterval of length the larger (double) step size. For example,

if an initial step of length 0.125 is taken at time t = 0, then the second step, taken

at time t = 0.125 cannot be of length 0.25, since the Lw elements corresponding

to steps of that length are only generated over the intervals [0, 0. 25],[0.25, 0.5] .

The correct procedure at this point is to take another step of the previous size

and to then increase the step size, if the situation still warrants it. On the other

hand, step size can be decreased at any point in time.

The computer program written in C, corresponding to the method described

here, is given in Appendix A.I.

Random Generation of Stochastic Area ID

Integrals

31 Definition of the proMem

We have seen, in Chapter 1, that one way to obtain higher order approximations to

strong solutions of the stochastic differential equation (1.1) or (1.2) is to simulate

not only increments

= 	- w t (tk) 	 (3.1)

along the Brownian paths, but also stochastic integrals involving the Brownian

motion. To obtain accuracy of order 0(h) it suffices to generate and include in

the numerical scheme the area integrals, as defined in (1.17),

itk+1 Js tk+1

A,(k,k+1)
= k 	k

dw 2 (r)dw3 (s)_J 	dw 3 (r)dw(s), 	i = 1,... ,n;j >

	

tk 	tjç

where, tk+1 - tk = h, k = 0,... , N - 1,

This chapter describes a method of random generation of the integrals

tk+1 I s
it,

dw 2 (r)dw 1 (s) A 1 , 2 (k, k + 1) L 	k

dw'(r)dw2(s) -
j1tk+1

k

Use of these integrals allows first-order approximation of strong solutions to any

SDE based on a two-dimensional Brownian path. This, although clear'

51

Chapter 3. Random Generation of Stochastic Area Integrals 	 52

beginning of the story, is a definite improvement. The work in this chapter has

been published in [18].

Since the increments of the Brownian path, Lw j41 and Lw 1 are clearly not

independent of the area integrals A 1 , 2 (k, k + 1), the increments and the areas

have to be generated jointly. At first sight it seems that we are faced with the

generation of a random vector in 1R3 , but in fact the problem can be reduced to

the generation of a random vector in 1R2 and an independent uniformly distributed

random variable, as shown by the following theorem.

Theorem 3.1.1 (Levy) Let r2 (t) = Lw 1 (O,t) 2 + Lw 2 (O,t) 2 . The joint density

function of r = r(1) and a = A1 , 2 (0, 1) is

r 	x

(—

rx)
f (r, a) = - 	 exp 	 cos

	

Josinh(x) 	2tanh(x) 	
(ax)dx 	(3.2)

Proof. 	We will follow the proof given by Levy in [31], where he obtains the

density of the area integral. The essential ingredient is that w 1 (t) and W 2 (t) can

be given by almost surely convergent Fourier series, as proved by Wiener in [57].

We can write

1 	
00 	1

	

(t) = 	 (3.3)

 71 	00 	1

	

w 2 (t) = 	+ 	i(cosnt — 1)+ 	sin nt] 	(3.4)
n=1

n

where 	. . 	 . 	are all independent standard

normal random variables. For convenience of calculation, we will derive the joint

characteristic function of w 1 (27r),w 2 (27r),A 1 , 2 (0,27r). Let a = A1 , 2 (0,27r). By

straightforward calculation we get

w 1 (21r) = 	 (3.5)

W 2 (2) = 	 (3.6)
00 1

	

a 	 —v') - 	- M)] 	(3.7)

Set

(r(t))2 = (w'(t))2 + (w2(t))2

Chapter 3. Random Generation of Stochastic Area Integrals 	 53

We will first consider the conditional characteristic function of a, given 	= a,

= 6, that is given r 2 (2ir) = (a2 + f32)7r. When c is standard normal

1E(et) =

so, if i is also standard normal, the characteristic function of (ij - 0) is

1 	too
/ 	[y—P2z2+y2J/2 dy

= 	1 	_/ 2 z2 /(2(1+z2))

/f+ z2

and therefore the conditional characteristic function of 	- 3)
- 	

- a) is

1
e —p2z2/(1+z2)

1 + z 2

where a2 + 92 = 2p2 . The conditional characteristic function of a is then

2 	 r

	

i 	 2 (zp) = II n 2 	
1 exp I —P 	4z /(n + 4 Z 2)

I ~n= loo

n 	 2 I 	2 	 2

+4z2J 	L 	

'ç

n=1

which can be written

2 	27rz 	 2
p(zlp) = 	 ex

sinh(2irz) 	[p (1 - 2irzcoth(irz))/2]

The density of a conditional on p 2 is

2 	1 F e
2

f(ap) = 27r oo
 q(zIp) dz

Since the density is real, we have

	

- 2 	2 f(ap)
=

 100

 cos(zã)
sinh(27rz)

 exp [P2 (I
- 27rz coth(27rz))/2] dz

Since p2 is the sum of the squares of 2 standard normal random variables, its

density function is i exp(— p2 /2). The (unconditional) joint density of a and p2 is

therefore

f(a
- 2 	 ____________ , p) =

 TO
cos(zã)

.__ Z
exp [_p2 z coth(2irz)] dz

 srnh(27rz)

Replacing 27rz with x, the joint density of p and a becomes

P 100 	xã 	x 	
ex 	2 cos(—) '' ,o)

= 2r Jo 	27r sinh(x) p [— p x coth(x)/2] dx

The random variables p and r(1) have the same distribution, so p can be replaced

with r(1) in the above expression, but a = A 1 , 2 (0, 27r) is distributed like 27ra, so it

remains to replace a with 27ra to obtain the required joint density of a and r. 0

Chapter 3. Random Generation of Stochastic Area Integrals 	 54

0.3

0.2

0.1

0

Figure 3-1: The graph of f (r, a)

The problem has become that of generating the vector (r, a) with the distribu-

tion given in (3.2). It is then trivial to obtain correctly distributed Lw 1 (0, 1) and

Lw2 (0, 1) by generating 0 uniformly distributed on [0, 27r] and taking

Awl (0,1) = r cos 0

zw 2 (0,1) = rsin0

See Figure 3-1 for the graph of f(r, a).

Note that we can generate (r, a) over unit time steps in the first instance.

Eventual scaling of a by h and r by /i suffices to produce a sequence of vectors

(Lw 1 (t, t + h), w2(t, t -- h), A1,2 (t, t+ h)) for any required time step h.

Another obvious simplification consists of generating only the half of the dis-

tribution that corresponds to a> 0 and then giving a a random sign.

32 Outline of the Method

The integral in (3.2) can only be calculated numerically, so there is no 'quick and

easy' method of generation available. The method we have chosen is based on

Marsaglia's 'rectangle-wedge-tail' method, generalised to higher dimensions (see

Marsaglia [38] and [37], or Knuth [29] for an outline of the method).

In one dimension Marsaglia's method involves dividing an area in jR 2 into

equal rectangles and setting up tables with an entry for each rectangle. With

Chapter 3. Random Generation of Stochastic Area Integrals 	 55

modern computers, the amount of memory used for storage of the tables is not

large. However, once we are in three dimensions, and start dividing a region in

JR3 into equal pieces, the number of table entries needed becomes prohibitive.

We have therefore been forced to a slightly more sophisticated analysis of the

method to reduce storage requirements while retaining benefits of speed. The

final implementation enables one to generate the vector (a, b, c) in about 4.6 times

the time it takes to generate a vector of 3 independent numbers from a normal

distribution.

Following Marsaglia's rectangle-wedge-tail method, the aim is to express the

required density function f(r, a) as a combination of three other densities,

f(r) a) = pi fi (r,a) +p2f2(r,a) +p3f3(r,a) 	 (3.8)

where P1,P2,P3 are probabilities that sum to 1, P1 is as close to 1 as possible and

the time needed for generating numbers from the distribution corresponding to

f, (r, a) is very small. The distributions corresponding to f2 (r, a) and f3 (r, a) may

be hard to generate, but they will be used sufficiently seldom that the average

running time for the whole routine will remain acceptably low.

The volume

V = {(r,a,z)Iz < f(r,a),O < r < TM,O < a < aM} 	(3.9)

where TM and am are chosen suitably large, is packed with as many parallelopipeds,

B = {(r,a,z)Ir < r < < a < < z < z},i = 1 ... N,as feasible.

These will be referred to as 'boxes'. (The boxes correspond to the rectangles in

Marsaglia's method for generating a single random variable.) The volume under

Mr, a) is defined to be the total volume occupied by all the boxes. The 'easy'

density fi (r,a) is therefore a sum of uniform densities:

	

fi (r,a) = 	qjj(r,a)

where qj is the density of points in B, qj is the probability of a point (r, a) lying

in box B2 (so q, is twice the volume of B,) and N is the number of boxes used.

The 'wedges' are then the pieces left above the surface f, (r, a) and below f(r, a).

The 'tail' is the set of points T = {(T,a,z)Iz < f(r,a) and (r > TM or a> am)).

Chapter 3. Random Generation of Stochastic Area Integrals 	 56

The densities f2 (r, a) and f3 (r, a) are the densities of points in the wedges and in

the tail respectively.

33 The Boxes

Determining the density function fi (r, a) involves first packing the volume below

the surface f(r, a) with boxes and then grouping the boxes in order to reduce both

memory requirements and execution time of the code developed.

3.3.1 The packing problem

The problem is to pack the volume V, defined in (3.9), with boxes in such a way

as to maximise the total volume occupied and satisfy the various accuracy and

programming constraints imposed at later stages of the exercise.

The first decision taken is to set r,j = am = 4 in (3.9). This gives a volume

for V of 0.49866, containing 99.732% of the distribution to be generated.

The next decision is to divide the volume under f(r, a) into boxes in such a

way that the dimensions of each box (length, width and height) are all integer

multiples of a chosen 1 = 2. In this way the volume of each box and hence the

probability of a point being in it, can be represented on the computer as a binary

number using 3n bits, introducing no rounding errors at this stage.

A computer program was written to generate the required boxes. The volume

V was subdivided using an increasingly fine mesh. As a first step the r,a and z

axes were divided into intervals Lr1 = 2r, La1 = 2 and Lz1 = 2. Each

box defined by this mesh was tested for complete inclusion in V. The boxes found

to be in V were labeled as being part of the chosen partition. In the next step the

intervals were halved, giving Lr2 = -nr etc. and the testing repeated for all

boxes not already accepted. This procedure was repeated, halving the intervals

at each step, until such time as a large enough fraction of the volume had been

used up or the number of boxes defined was as large as thought practical. The

Chapter 3. Random Generation of Stochastic Area Integrals
	

57

Figure 3-2: The packing at step 3

values of n, n, the volume occupied by boxes and the total number of boxes

can be thought of as the parameters of the program. Another possible parameter,

the origin of the mesh, was fixed at (0, 0, 0) for the sake of simplicity. After

experimentation, the parameter values considered acceptable were n, = = 0,

ri = 6, with a total of 13574 boxes making up 91.19% of the volume to be

generated. This corresponds to P1 = 0.9119 in (3.8). The numbers of boxes for

each mesh size are as follows:

Step: 	 1 	2

Ltr=L1a: 	 1 	1/2

Lz : 	 1/64 1/128

Number of boxes: 	3 	86

	

3 	4 	5

	

1/4 	1/8 	1/16

1/256 1/512 1/1024

	

519 	2431 	10535

Since the dimensions used in the final mesh were Lr5 = La5 = 2 1 Lz5 = 2,

17 bits are sufficient to identify each box. The 13574 boxes of various sizes can be

broken up into 119519 boxes of the smallest size.

Figure 3-2 shows all the boxes that have been allocated by the end of the third

step, broken into boxes of size L\r3 by La3 by Lz3.

Note that rather than using a decreasing sequence of meshes, we could simply

use one mesh, that with the smallest mesh size. We would obtain the same density

function fi (r,a). Using the parameter values specified above, fi (r,a) would be

expressed as the sum of the densities over the 119519 boxes of smallest size. The

Chapter 3. Random Generation of Stochastic Area Integrals 	 58

reason for using the multi-step approach is that it facilitates the next part of the

exercise, which involves grouping the boxes together to form larger ones.

During this first part of the exercise, the first questions arose on the gener-

ation of multivariate random deviates using Marsaglia's method. If we fix the

percentage of volume that we wish to fill with boxes, how is the number of boxes

required related to the joint distribution function? Presumably the number of

boxes increases with the surface area?

3.3.2 The entropy pob1em

The boxes packed under the surface f(r, a) need to be grouped and ordered in an

efficient fashion.

Whereas in a two-dimensional problem it is these days straightforward to sub-

divide the required area into identical small rectangles and keep a separate record

in memory for each rectangle, in a three-dimensional setting the number of iden-

tical boxes is so large that the memory requirements would be prohibitive. In our

example 119519 records would be required. We therefore decided to group boxes

together in such a way that each subset of boxes itself formed a box.

When grouping boxes an effort was made not only to reduce the number of

boxes but also to reduce the entropy of the partition. If it were possible to use

only boxes of equal volume, then a random number consisting of the right number

of bits (17 in our application) would uniquely identify the correct box to use.

However, once the boxes vary in volume, a set of tests is required to determine

which box each point falls in and therefore which q j (r, a) density function to use.

The tests form a binary decision tree, which can be constructed in an optimal

(time minimising) way using Huffman's method (see [22] for the original paper or

Knuth [28] for a description). This method guarantees an average number of tests

performed no greater than one plus the entropy of the partition. The entropy

was therefore taken into account when choosing a partition. The entropy can be

written as

—>q1log2(q)

Chapter 3. Random Generation of Stochastic Area Integrals 	 59

where qj , the probability of a point being in box B, is the volume of the box

divided by the total volume occupied by boxes.

One possible way of grouping the boxes would be in columns, ie

Bij = {(r,a,z)IiLr < r < (Z'+ l)zr,ja < a < (j + l)La,0 <z <

i=0 ... rM/r,j=O ... aM/La

where hij is the total height of boxes piled up on the square

{(r,a)izr < r < (i + 1)Zr,jAa < a < (j + 1)La}

With Lr = LS.a = 1/16 and rM = am = 4 there would be 4096 such columns,

but if only columns with non-zero height are considered the number goes down to

2894. The entropy for this partition is however quite high, namely 10.13 for the

chosen packing.

Another method of grouping the boxes, the one that was eventually chosen,

is the following. In the first instance generate boxes of several sizes, using the

method outlined in Section 3.3.1 above. This is equivalent to replacing groups of

small boxes with larger ones. Then in the second step group together any boxes

of the same size that are piled up one on top of another. This creates pieces of

columns, that are in general shorter than the columns described above, but many

of which have larger cross sections. In this way we reduced the number of boxes

from the 13574 in Section 3.3.1 to 2975, giving a partition with entropy 7.14

Once the partition has been chosen, it remains to build the decision tree needed

for choosing a box with the correct probability. A computer program was writ-

ten to input the partition and output the decision tree using Huffman's method.

Further software details can be found in the next section.

There is no reason to believe that, given the packing, the chosen partition has

minimum entropy. Designing an algorithm to generate a partition with minimum

or nearly minimum entropy demands a substantial amount of further work. We

plan to attempt this some time in the future, and therefore to improve on the

performance of the present software and perhaps extend it to higher dimensions.

Chapter 3. Random Generation of Stochastic Area Integrals 	 60

We conjecture that the problem of devising a partition with minimum entropy in

three or more dimensions may be NP-complete. Other questions arise for general

multivariate distributions, such as asking what function of the distribution the

minimal entropy is.

3.3.3 Programming details

The part of the routine that generates points in the boxes, that is points with the

density fi (r,a), is only a few lines of executable code that relies on the data stored

in one large binary tree. The tree, generated once and for all using Huffman's

method, is stored in an array of records. The length of the array, equal to the

number of nodes in the tree, is 2N - 1, where N is the number of boxes (2975).

The extra N - 1 nodes correspond to the tests needed to determine which box to

use

Each record holds the following data: a probability, the record numbers of the

left and right children, the r and a coordinates of a corner of the box and the width

of the box. (Note that in our application the length of each box is equal to the

width. If this were not the case, the box length would also need to be given.) The

records corresponding to boxes are at the ends of branches. They hold the value

—1 for the record numbers of their non-existent children. The other records, those

corresponding to decisions, hold zeroes in place of box coordinates and widths.

This uses some extraneous memory, but produces relatively simple and fast code.

On a computer with little memory it would be possible to use two separate arrays

for the decisions and the boxes. We would like to investigate the trade-off between

time and memory involved.

The 'probability' held at each node of the tree is cumulative and is expressed

as an integer. It gives the numerator of a probability expressed as a fraction

with denominator 2", where ii = 17 is the number of random bits being used to

determine the position.

The first step in the algorithm is to generate the n random bits, giving an

integer p. If p is less than PB = 119519, where PB12" is the total probability of

Chapter 3. Random Generation of Stochastic Area Integrals 	 61

being in a box, then the point to be generated is in a box, otherwise it is in a

wedge or in the tail. If the point is in a box, then the correct box must be chosen.

The search for the correct box starts at the root of the tree. If p is less than

the probability stored in the left son, then the left branch is taken, otherwise the

right branch is taken. This step is repeated until arrival at a terminal node.

The point (r, a) is then generated uniformly within the box, using the infor-

mation on the position and dimensions of the box held in the node.

34 The Wedges

The region in the volume V, defined in (3.9) above, and outside the union of all

the boxes, can be thought of as a set of disjoint pieces W = {w 2 , i 1 . . . n}

that, in parallel with the usage in two dimensions and for lack of a better word,

we will call wedges. The density function of the set W, f2(r, a), can therefore also

be expressed in terms of nw separate functions, one for each wedge. The wedges

make up 8.55% of the whole distribution.

The packing of V with cubes, as described in Section 3.3.1, divides the square

{ (r, a, z)Iz = 0,0 < r < TM, 0 < a < am} into a number of identical rectangles, of

sides /r and Aa. With the values chosen of TM = am = 4 and Lr = La = 1/16,

we have 642 = 4096 base squares, upon each of which there sits a column of boxes

of total height hij , i,j = 1 . . . 64. The piece we are calling wedge is the set of

points remaining above any one column and below the surface f(r, a). There are

therefore i2 = 4096 wedges.

We chose to generate the wedges using a simple rejection method. Each wedge

can be enclosed in a box

Cij = {(r, a, z)I(i - 1)r <r < ir, (J- 1)a < a <a, hij <z < jj}

where

jj = max{f(r, a), (Z' - 1)tr < r < izr, (J- 1)ia < a < jLa}

Chapter 3. Random Generation of Stochastic Area Integrals 	 62

Then, having first chosen a wedge with probability proportional to its volume, it

is just a question of generating points uniformly distributed in the box containing

the wedge and testing whether the point is under the surface f(r, a). In case of

failure, another point is generated in the box, and this is repeated until the test

succeeds.

On average less than half the points generated in the boxes need to be rejected.

However, if each test for acceptance of a point demanded evaluation by numerical

integration of the function f(r, a), this would be extremely costly in execution

time. We have therefore chosen easy to calculate upper and lower approximations,

f, 3 (r,a) and f(r,a), for f(r,a) on each base squarer, < r r;+l,aj <a aj+lZJ
with r2 = iAr, aj = jza, i,j = 1,... ,64. All points (r, a) below f 1 (r,a) can be

accepted without having to evaluate f(r, a) and similarly all points above fu(r, a)

can be immediately rejected. This is the squeeze method, so named by Marsaglia

in [36].

The approximations to f(r, a) are obtained by simple interpolation. Let fa r, a)

be defined by

fia 	a) = (1 - t)(1 - u)f(r, a3) + t(1 - u)f(r+i, a)

+tuf(r+i, a i) -- (1 - t)uf(r, a 1)

where

t = (r - r)/(r+i - r 2)

u = (a - a3)/(a +i - a3)

Then we set

(r, a) = f(r,a)+E

f(r,a) = f(r,a) +62

with

= min{f(r,a) - f(r,a)Irj < r < r i+,, aj < a < a+i} 	
(3.10)

eij = max{f(r,a) - fi' J (r, a) I ri < r < ri+,, aj < a < aj+i}

Chapter 3. Random Generation of Stochastic Area Integrals 	 63

The data needed for generation of the wedges is stored in two arrays. The first

array has a tree structure very similar to the data structure used for the generation

of the boxes in Section 3.3.3 above. The tree is used when choosing which wedge

should contain the point to be generated. The tree was again prepared once and

for all using Huffman's method for reducing the average number of tests performed

when finding the correct wedge.

The second array contains the information necessary for the generation of the

various uniform deviates. Each entry is a pair of numbers representing the base

height hi,, and the upper bound f2,j for a wedge. The width, length and r and a

coordinates of each box do not need to be stored, since the width, Lr, and length,

La, are constant over all the boxes. The use of this second array avoids some of

the unnecessary use of memory mentioned in Section 3.3.3.

Two data sets are also needed for calculating the approximations f, j and f,.

The first set consists of the function values f(r1 , a3) at the grid points, used in the

interpolation. The other set contains the pairs of constants (C 1 as in (3.10),

needed to ensure that the two approximations stay below and above f(r,a).

35 The Tall

The tail is the last, smallest, but most difficult part of the distribution. It consists

of the set of points under the surface f(r, a) that have r > rM or a > am. With

rM = am = 4, the tail only accounts for 0.27% of the distribution.

Yet again, the tail has been divided up into a number of pieces. In each

piece, points are generated using the rejection method. This time, rather than

generating points from a uniform density, various non-linear density functions have

been chosen, as being reasonably good approximations to f(r, a) in the regions

considered. In the table below details are given of the regions into which the tail

has been divided and the density functions used. The rate reported in the last

column indicates the average number of points generated in order to find one point

12

8

4

a

Chapter 3. Random Generation of Stochastic Area Integrals
r

64

I) 	 4 	 8 	 12

Figure 3-3: The regions in the tail

in the relevant region. The points in the last region, which has probability less

than one in a million, are not generated with the right distribution.

Region r1 r2 a1 a 2 Probability Comparison function Rate

R 1 4 12 0 4 2.98• 10 exp(—r 2 /2) 2.3

4 8 4 8 3.65 	10 3/2exp(—r 2 /2 - 3a2 /2r2) 2.0

R3 2 4 4 8 1.80•

10 -3 exp(—a) 2.6

0 0.5 4 6 1.61 . 10_ 6 15rexp(-7ra) 2.6

0.5 1 4 6 1.96-10-5 15rexp(-2.8a) 2.8

1 1.5 4 6 1.20 	10 25rexp(-2.6a) 3.0

R 7 1.5 2 4 6 3.86 	10 25rexp(-2.4a) 3.2

R8 1 2 6 8 6.57 	10_6 40rexp(-2.4a) 4.2

R9 2 5 8 10 4.15 	10_6 0.7exp(—a) 2.4

Remainder 3.81 . 10

The various regions in the tail are depicted in Figure 3-3.

Chapter 3. Random Generation of Stochastic Area Integrals 	 65

36 Pceformance

The results of time tests are laid out in the table below. The time taken to

generate (Lw 1 ,Lw 2 ,A i , 2) triples is compared with the time taken to generate

triples of uniform deviates and to generate triples of normally distributed random

numbers using an application of Marsaglia's method. The same pseudo-random

uniform number generator was used throughout. All the code was written in C

and run on a Sun IPC Sparc workstation.

	

Number of triples 	 Time taken

Uniform deviates Normal deviates (w 1 , w 2 , a)

	

10000 	 <is 	 <is 	3s

	

100000 	 2s 	 6s 	28s

	

1000000 	 15s 	iminis 	4min42s

The generation of area integrals therefore takes between 4 and 5 times as long

as the generation of increments along the Brownian path. If one were to obtain

a strong solution of order 0(h) by subdividing the time steps and generating

increments of the Brownian path over steps of length h' < h, the condition on

the size of h' would be h' < h2 . For h < 1/4 we get h > 4h'. So for any

reasonably small step size, h, it is much quicker to obtain a solution of order 0(h)

by generation of the A 1 , 2 (k, k + 1) integrals than by generating Lw 1 and

over smaller steps.

37 An example of application

As an illustration, we have used area integrals generated by our method in the

numerical solution of the bilinear Ito SDE

dx = Ax dw' + Bx dw 2 	 (3.11)

Chapter 3. Random Generation of Stochastic Area Integrals 	 66

where A and B are constant 2 by 2 real matrices. The matrices A and B can be

reduced to one of several canonical forms, in which case they depend on 4 real

parameters. For example, we can take

a0 be
B =

0 	—a c 	d

This may be considered as a fundamental example, since locally any SDE can be

thought of as linear.

The ease of numerical solution of equation (3.11) depends on the stability of

the system and hence on the parameters a, b, c, d. When the system is stable it is

possible to obtain a good approximate solution with a discretisation scheme that

does not involve the area integrals using quite large time steps. However when

the system is unstable it can become impossible to obtain a good solution without

including the area integrals in the discretisation scheme, unless extremely small

time steps are used (sometimes too small to be feasible on a computer).

We show what happens in a 'difficult' case. We have taken a = c = 2, b =

d = 1 and compared the results using three different discretisation schemes. The

approximate solutions given by these schemes all converge to the solution of the

SDE (1.1) taken in the Ito sense, (and can only be used for a Stratonovich SDE

if it is first converted into an Ito SDE). The first scheme, scheme A, is the Euler-

Maruyama scheme (1.13). The second scheme, scheme B, is

1 n d 	
r- 1

= + 	- 	 (x)g (xk)j h
ôxr

r=1 j=1

+ g(ik)twi + 	>
j1 	 r1 j,p1

and scheme C, the Milshtein scheme (see [26]), is the same as the previous scheme

with added terms involving the area integrals and is given by:

	

d ag 	r 	1
= 	+ 	- 	 (xk) a (xk)] h

r=1 j=i ôXr

	

d 	 fl dagi 	
r +gik)/w 1 + 	 (xk)ga@k) (w +1) 2

	

in 	ag;

	

- (k)g(xk) 1w +iLw +1 - 	k + 1)]
2 r=1i<p oX,.

Chapter 3. Random Generation of Stochastic Area Integrals 	 67

in 	a;
-(xk)g(xk) [w ~ 1 zw +1 - 	 k + 1)]

2 r=1 j> OXr

The Euler-Maruyama scheme converges to the true solution with rate O(v"i) in

the general multi-dimensional set up. Scheme B converges with the same rate,

but is asymptotically efficient (see [44]), ie the leading coefficient of the variance

of the error in each step is minimal.

In the table below we present the approximate value obtained for x 1 at time

t = 5 for one particular simulation of the Brownian path, using each of the three

discretisation schemes and using a succession of step sizes ranging from h = 2-

to h = 2_ 16 .

1092(h) Scheme A

	

4 	2.447207

	

5 	-0.111236

	

6 	0.008536

	

7 	0.642300

	

8 	1.096747

	

9 	4.383487

	

10 	5.292467

	

ii 	4.034335

	

12 	3.704273

	

13 	2.879655

	

14 	3.036604

	

15 	3.330327

	

16 	3.415980

i(5)

Scheme B

-0.017475

0.030939

0.074882

1.281455

1.903669

3.538671

3.883448

3.030876

2.955552

2.705867

3.062775

3.167863

3.377057

Scheme C

1.251238

3.066002

4.243542

4.759604

3.751482

3.430095

3.430359

3.483880

3.460112

3.428692

3.431992

3.425553

3.424928

When the time step is greater than about 2_8, the results obtained without

area integrals, that is using scheme A or B, are completely wrong after about

t = 3. This is illustrated in the form of a graph in Figure 3-4, depicting the

Chapter 3. Random Generation of Stochastic Area Integrals 	 68

Figure 3-4: Approximations with and without area integrals

12

7.

2

Figure 3-5: Differences between approximations and an accurate solution

three approximate trajectories obtained for x 1 using a time step h = 2_6 and an

accurate solution, obtained by using scheme C and h = 2_ 16 .

It is only once the time step is small enough that it makes sense to measure

the difference between the various approximations. In Figure 3-5 we show the

differences between the approximate solutions for x 1 obtained using each of the

three discretisation schemes with a time step of h = 2 — 'o and the same accurate

solution used previously.

In order to obtain the same accuracy using scheme A or B as using scheme C, it

is necessary to square the time step and therefore the number of time steps. If using

scheme A, the Euler- Maruyama scheme, one wishes to obtain the same accuracy as

with scheme C, using area integrals, with the step size h = 2 then one must take

h = 2_16, hence multiplying the number of steps by 256. The computing time is

Chapter 3. Random Generation of Stochastic Area Integrals 	 69

not increased by a factor of 256, since more function evaluations are performed per

time step using scheme C than using scheme A. Timed simulations using equation

(3.11) give a factor of 160. On a Sun Sparc station it took roughly 3 minutes to

perform 1000 simulations with scheme C and h = 2_8 and 8 hours for the same

number of simulations with scheme A and h = 2_ 16 .

This shows that if all one wants is to perform one single simulation, then using

a simple scheme and small time steps is not going to take a lot of computing

time, but if one wishes to do many simulations, varying, say, the starting point

or the parameter values, then the time factor will become very important. (A

million different simulations would take 50 hours or 8000 hours, to obtain the

same accuracy with and without area integrals.) The time factor would clearly be

increased further if scheme C were replaced by a Runge-Kutta type discretisation

scheme, still using area integrals but not involving evaluation of derivatives at each

time step.

In the future we foresee that the use of area integrals when simulating strong

solutions to SDE's will become as automatic as the use of random numbers from

a normal distribution is today. After all, once a good routine has been developed

and implemented in numerical libraries, the ordinary user will only need to call

this routine from each program and will not need to be concerned with the details

of how the routine works.

38 The way forward

This is of course just the tip of the iceberg. On the one hand, to obtain a strong

nume:oal solution of order 0(h) to a stochastic differential equation dependent on

a Brownian path of dimension n > 2, not just one set of integrals may be needed,

but several, and the sets are all correlated. In the most general case, we would

need to generate the n(n + 1)/2 correlated random variables

w 2 (t, t + h), A 1 ,(t, t + h), i = 1,.. . , n; j <i

0 A 1 0 0 ... 0 0

—A 1 0 0 0 ... 0 0

0 0 0 A 2 ... 0 0

0 0 —A 2 0 ... 0 0
th=I

(1

0

0

Chapter 3. Random Generation of Stochastic Area Integrals 	 70

It is theoretically possible to reduce the problem to the generation of n cor-

related random variables and one random element of O, which latter can be gener-

ated inn steps. Let Abe the matrix A2 = f f8 dwt(r)dw3(s)_J1 f dw3 (r)dw 2 (s).

An orthogonal matrix S E O n can be chosen so that, Sw = t2i and StAS = A

with

0 	0 0 0 ... 0 A n

0 	0 0 0 ... Am 0 0)

if n = 2m, or

0

0

0 A 0 0 ... 	0

—A 1 0 0 0 ... 	0

0 0 0 A 2 0

0 0 —A 2 0 ... 	0

w=I
	

A=l

0

0

0

0

rn IV 	
0 	0 	0 	0... 	0 	Am

0 	 0 	0 	0 	0... - A n 0
m+1 	 0 	ü 	0 	0... 	0 	0

if n = 2m + 1. Therefore, if we can obtain the joint distribution function of

- 	 —

v{w
1
 , ... , w ,A i ,...,Am }

from the joint distribution of

	

V = 1w 1 , . . 	A, A 131 . . . , A_ 1 ,1

we can then generate the vector v and a random matrix S E O and simply recover

w and A by setting w = StL' and A = SAS' .

Chapter 3. Random Generation of Stochastic Area Integrals 	 71

We would also like to derive and implement the bridge that would allow us

to generate sets of points (ZW'(tk, tk+1), Aw 2 (tk, tk+1), A1,2(tk, tk+1)) over steps of

length h/2 given the corresponding set for step size h. All this will demand a lot

more work and imagination.

On the other hand, we would like to think that the research necessary to get us

this far has uncovered various questions and suggested various techniques that are

relevant to the random generation of deviates from multivariate distributions in

general. (See Devroye [12] for a summary of work on multivariate distributions).

By demonstrating that Marsaglia's method for speedy random number generation

can be applied to multivariate distributions, we have raised general questions (see

the end of Sections 3.3.1 and 3.3.2) on the time and memory constraints involved.

The C routine we have written to generate area integrals can be found in

Appendix A.2.

The Algebra of Iterated Stochastic

Integrals

41 Mofivafirn

In this chapter we will look at the algebra of Ito or Stratonovich iterated stochastic

integrals of the type

Ii = 'j1j2 ... n = JE ~ (O,t)
dw i1 (t i)dwi2 (t 2). . . dw 3 (t)

or

Sj(t) = Sa1 a2 ... i
= Jr. (O, t)

odwul(t i) o dw 32 (t 2) ...o dw 3 (t)

introduced in Chapter 1. We will refer to the set of all integrals of type (1.3) as

I = It = {I(t)} and to the set of all integrals of type (1.4) as S = St = {S(t)}.

Since integration will mainly be over the interval [0, t], we will write Ii and Sj for

I(t) and Sj (t).

This study is motivated by the desire for a better understanding of the structure

of solutions to stochastic differential equations needed for analysis and improve-

ment of numerical schemes for the approximation of solutions to SDE's. Consider

again the SDE (1.2)

d

dx t = fo(x,t)dt+f(x,t)odw

X(0) =

72

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 73

written in the Stratonovich sense, or the equivalent SDE, (1.1), written in the Ito

sense
d

dx t = go(x,t)dt+>g1(x,t)dw

X(0) =

As already stated in Chapter 1, in (1.7), (1.8) and (1.23), the solution to

(1.2)can be approximated locally as a Stratonovich or Ito stochastic Taylor series,

P

X(t) = x0 + EE S(t) fj (xo) + t(2R +1(t)
M=1 IIJII=m

or

P

X(t) = x0 + 	 I..(t) gJ(xo) +
m=1 IIJII=m

or else as the exponential Lie series,

x(t) = exp((1'(t))(x o) + t(t)

where
p — i no = E E c"(t) X,
m=1 IIJII=m

(See Section 1.4 for the relevant notation.) Both ways of expressing the solution

involve the stochastic integrals in S or I defined above.

We felt a need for further information about these iterated integrals for two

distinct reasons. Firstly it is known (see [55] and [26]) that it is not necessary to

generate all iterated integrals: some of the required integrals can be expressed as

polynomials in the other integrals. We wished to examine the available bases (ie

subsets of the set of iterated integrals that can be used to generate the whole set)

and hoped to find a 'natural' basis. In [55] Sussmann obtains a basis by using

a Philip Hall basis. Here we describe a basis using a particular Hall basis, the

Lyndon basis, that turns out to be more suited to our purposes.

Secondly we wished to calculate the mean and variance of the error produced

when omitting the remainder term from (1.7), (1.8) or (1.23), such truncation being

a natural way of generating discrete numerical schemes. Hence we wanted explicit

formulae for the variances and covariances of the iterated stochastic integrals.

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 74

The variance and covariance of iterated Ito integrals was first given by Platen and

Wagner in [48]. A simplified proof of the variance formula was given by Meyer in

[42]. An explicit formula for the covariance of Stratonovich integrals would also

be useful.

The work in this chapter has been published in [17]. This work has led to

computer algebra routines for use with Mathematica, some of which are given in

Appendix A.3.

42 Algebraic structure

4.2.1 Concatenation

Let

A = { ao7 ai ,a27 . .

be a set of d + 1 distinct elements known as letters, endowed with the ordering

a0 < a1 < ... < ad, and let A* be the free monoid generated by A, that is the set

of all words formed with the letters in A. There is a one-to-one mapping of both

sets of iterated integrals to A*, given by

: I ,' A*, 	O(1j) = (= a 1 a 2 .. .

and

: S ', A*, 	(S) = 	= a 1 a 2 . . . aj.

As is usual, we denote the concatenation of two words u, v E A* as

W = 'LLV

omitting any operation sign. Let the operation of concatenation be defined on I

and S as the composition of operators: For J = 112 . . . j and K = k, k 2 . . . k,, ,

we write
t 	tr;

I(t) . IK(t) = f f .. •10 IJ(tl)dwk1(tl)dwk2(t2) . . . dw(t)
tm+73

=
It f 	. . . jt2 dw 1 (t i)... dWj m (tm)dWk i (t m +l) ... dW(t mn) = IL(t)

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 75

where L = J, . . . J, k, . . . k, and similarly

SJ o SK = SL

The functions q and preserve the operations of concatenation

q(Ij I) = 0(IJ)q5(IK) = a, . . . aim aki . . . akn

and similarly for . Concatenation is clearly associative.

Let Z(I) and Z(S) be the sets of finite linear combinations of integrals with

integer coefficients. The operation of concatenation extends in a natural way to

Z(I) and Z(S), hence:

]Proposition 4.2.1 (Z(I),.) and (Z(S), o) are algebras over Z which are isomor-

phic to the free algebra Z(A) via 0 and .

4.2.2 Shuffle products

On Z(A) we can provide another operation, the well-known shuffle product (see

[34],[41],[33] and others). This can be defined by

1*1=1

1*a=a*1=a

ua * vb = (u * vb)a + (ua * v)b

_I 	I 	A 	J Va, o E i-i, vu, v E i -i
where 1 represents the 'empty' word formed of no letters.

Inspired by the work on iterated path integrals of Chen [6], Ree [51] and, more

recently, Fliess [16], we have the following proposition:

Proposition 4.2.2 The product of two Stratonovich integrals is a shuffle product.

Proof. The proof simply uses integration by parts. (The Stratonovich calcu-

lus follows the same rules as ordinary calculus.) We will use the symbol x for

multiplication temporarily during the proof and then replace it with the shuffle

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 76

product symbol * once we have proved we can do so. Consider any two multi-

indices, J jijrn-i and K = k, . . - k_ of length m - 1 and ii - 1 respec-

tively (m, n > 1). We can obtain two new multi-indices J' = j1 . . . j-ij and

K' = ki . . . by adding a new index to each of J and K. Then we have

I JSj(s) I

SK (r) OdWj m (S)
JOL 	Jo

= j Si (s) a dwjm(s) j SK (s) o dwk(s) - f t [SK (s) f Si (r) o dwim(r)] o dwk(s)

Hence

SJ' x SKI = (Sj x SKI) o S + (Sji x SK) o Sk

.

Here is an example of using the shuffle product to find the pointwise product

of two iterated Stratonovich integrals:

512 * S34 = S1234 + S1324 + S1342 + S3124 + S3142 + 53412

The consequence of Proposition 4.2.2 is that, as will be seen in Section 4.3,

various nice results on the free shuffle algebra can be applied directly to the algebra

of Stratonovich integrals with the shuffle product, (Z(S),*).

In the product of two Ito integrals extra terms appear:

Proposition 4.2.3 The product of two Ito integrals in 1(t) is a modified shuffle

product, defined recursively by

(iii) (u. I) * (v- I) = (u*(v .1)). I + ((u-I)*v) I +(u*v) - Ia

Vu, vE I and Vi,j =
where

i=jO
23 -

0; otherwise

1

Proof. The proof is again based on integration by parts, with the difference that

this time we are doing Ito calculus and Ito's formula must be used. Again let

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 77

J = J,. - m-i, K = k1 ... k_ 1 , J' = ii .. m-im and K' = k1 . . . k_ 1 k. We

have

ptr
I Li(s) I IK(r)dwk(r) dW jm (S)

Jo L 	Jo

=

I
IJ(s)dw m 5) I IKs)dwk n) _

j {IK(s) j IJ(r)dw m (r)] dwk(s)
o

— j
:
IJ(s)IK(s) <dWj m (S),dWK n (S)>

so

IJI xIx' = (IJ x 1K')•ijm +(I' X iK)Ik +5jm kn (IJ X IK)J0

.

As an example:

112 * 113 = 211123 + 211132 + 11213 + 11312 + 1023 + 1032

Note that the last two results generalize the results (5.2.3 and 5.2.10) of Kloe-

den and Platen in [26].

Using the Wick product on I rather than the usual product (see eg. [20], [32]),

Proposition 4.2.3 becomes:

Proposition 4.2.4 The Wick product of two Ito integrals is a shuffle product,

defined recursively by

11=1

10h = Ii '01 = L

(u- I)(v- I) = (uK(v- I)) . L + ((u I)v) - I

Vu, vEI and Vi,j = 0,... ,d.

We will define a shuffle to be a permutation of two tuples or multi-indices that

results from shuffling, ie that preserves the order of the elements of each of the

tuples. If we have I J I = p and I K I = q, then there are

(ij -i- a!

VaLlf

ways of shuffling J with K, although not all the resulting shuffles will be distinct.

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 78

403 Bases

4.3.1 A basis for Stratonovich integrals

We give here a transcendence basis for the shuffle algebra Q(S, *) obtained directly

from a transcendence basis of Q(A,*) via the isomorphism g defined in Section

4.2.1. (This means that we will show that each iterated integral in S can be

expressed as a polynomial with rational coefficients in the basis elements. The

basis will be a subset of S.)

Let the set A* be totally ordered using the usual lexicographical ordering in-

duced by the ordering on A. If the word w E A* can be written as w = uv where

both u and v are non-empty words, then v is a proper right factor of w. A word

that is strictly less than any of its proper right factors is called a Lyndon word.

Let L be the set of all Lyndon words in A*. We will need the following theorem

([33], Theorem 5.1.5):

Theorem 4.3.1 (Lyndon) Any word w E A* can be uniquely written as the con-

catenation of a non-increasing sequence of Lyndon words,

W = 1 1 12 ... In 	.,ln EL; i i >
... > la),

the Lyndon factorisation of w.

By a result of Radford [50] the set of Lyndon words, L, forms a transcendence

basis of the shuffle algebra Q(A,*). We give here the theorem as stated and proved

by Melançon and Reutenauer in [41], since their proof has the added benefit of

providing an iterative method for rewriting words as sums of shuffle products of

Lyndon words.

Theorem 4.3.2 (Radford, Melan con and Reutenauer) Vw E A*,

w=l II I
 2 ... i 	(l l > ... >lk;il,...,ik ~ 1),

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 79

w can be written as

W= 	
1 	

,(li)t1 *.. . 	- 	au
Zl! • . . 	 u<w

where (l)i is the shuffle product of i copies of 1 and a E Z. Hence L forms a

transcendence basis of the shuffle algebra Q(A,*).

Using Propositions 4.2.1 and 4.2.2, we have immediately:

Corollary 4.3.3 The set of Stratonovich integrals defined by

L s = {SjlSj E S, (S) E L}

is a transcendence basis for Q(S, *).

As an illustration, let the dimension of the Brownian path d = 2. The elements

Sj of L5 for which J JJ <3 are:

I SO, Sl, S 2 , S01 , S02 , S12 , S001 , s002 , S011, s012, S0217 S0221 s112 , S1221

For d = 1 the basis elements with J JJ < 5 are

{ S0 , Si , S01 , S1, s011, S0001 , 80011, S0111 , 500001, S00011 , s00101 1 500111, S01011 , S01111 }

The rewriting rule given in Theorem 4.3.2 is of immediate practical use. Each

u can be rewritten in the same way as the initial word w and, since u < w the

procedure will terminate when all the words on the right-hand side are Lyndon

For example, for the integral 84321 one obtains

S4321 = 51 52 S3 S4 — 8354512 —5 1 54523-51S2534+512534+54S123+51 5234 -51234

A theorem of Witt tells us how many basis elements there are of each length.

(See [58] for the original paper or [52] for a recent proof.) Let r = d + 1. Then

the number of basis elements of length n is

M, (n) =I E YWr
n/k

kin

where i(k) is the Möbius function on Z defined by t(1) = 1 and for k =
rn1 m2 m 3

i1 p2 . . . p8 , where the p, are distinct primes, i(k) = 0 if any rn, > 1 and

= (_1)8 otherwise.

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 80

4.3.2 A basis for Ito integrals

It is clear that Lyndon words also provide the transcendence basis

= jIjjIj E I,b(Ij) E L}

for the algebra of Ito integrals with the Wick product Z(I, Ky). Moreover, more

usefully, although ordinary multiplication of Ito integrals is not a shuffle product,

we can show that the set L1 is also a transcendence basis for Q(I, *).

We will need the fact that each Stratonovich integral in S can be expressed

as a Q—linear combination of integrals in I. The conversion formula, given in [2],

can be written recursively as:

S=I2 - 	Vi =0,...,d 	
(4.1)

SoS 2 oSi=SoS I3 +8,3SJ0 Vi, j=0,...,d;VJ

Proposition 4.3.4 The set L, is a transcendence basis for the algebra Q(I, *).

Proof. The conversion formula (4.1) provides a natural isomorphism between

Q(I, *) and Q(S,*). L 1 , the image of the set L5 under this isomorphism must be

a transcendence basis for Q(I, *). This basis is not a practical one, but we will

show that each element of L 1 can be expressed as a polynomial in the elements of

L1. The proof is by induction on the length of the elements of L. (The integral

Sj is said to have length n if JJJ = ii.) The images of the Stratonovich integrals

in LS of length 1 are simply the Ito integrals of length one, each of which is in

L 1 . Suppose that the images of the integrals in L5 of length n and less can all be

expressed in terms of elements of L 1 of length n or less. This implies that each

element of I of length at most n can be expressed using elements of L 1 of length

at most n. Consider the image in L 1 of an element of LS of length n + 1. Since

each such polynomial is the sum of an element of L1 of lengft n + 1 and terms

involving Ito integrals of shorter length, the proof is complete. 0

In a recent paper, Melancon [40] has shown that the Lyndon basis used in

Sections 4.3.1 and 4.3.2 is a special case of a Hall basis. Therefore there is a family

of available bases, of which the Lyndon basis seems to be the most practical.

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 81

Reutenauer's recent book, [52], is a comprehensive guide to the algebra used

in this chapter and gives many further references.

4.3.3 An exampThe of appilicafion

Consider the SDE

(
) dx =

1
x(w 1 odw 2 —w2 odw 1)

X (0) = 1

The solution of this SDE is x(t) = exp(A(t)) where A(t) is the Levy area, A(t) =

1/2(S12 - S21).

Expanding the solution as a series using (1.8) gives

x(t + h) = x(t) (8 + 4S12 - 4S21 +4S2 wi (t) +4Si22 w i (t) -48221 wi (t)

+2S22 wi (t) + S222 w 1 (t) 3 —4Si w2 (t) —4S112 w2 (t)+4S211 w2 (t)

—2512 W1 (t) W2 (t) - 2 S21 W1 (t) W2 (t) - 5122 W1 (t)2 w2(t) - 5212 W1
(t)2

 W2 (t)

—8221
WI(t)2 w 2 (t) + 2S11 W2 (t)2

+ 8112 W1 (t)
W2 (t)2

+ 8121 W1 (t) W2 (t)
2

+8211 W1 (t) W2 (t)2 - Siii W2
(t)3) + R 4 (t + h)

but, when this expression is rewritten in terms of the Lyndon basis we obtain

x(t + h) = 	x(t) (48 - 248182 + 48812 + 2452 w1 (t) - 12Si Swi (t)
48

+24S2 S12 w1 (t) + 6Swi (t) 2 + Sw i (t) 3 - 2451 w2 (t) + 12SS2 w2 (t)

—24Sf 812w2(t) - 12Sf 8 2 w1 (t)w2 (t) - 3Si 5wi (t) 2 w2 (t)

+6Sw2 (t) 2 + 3SS2 wi (t)w2 (t) 2 - Sw 2 (t) 3) + R4 (t + h)

involving no integrals other than 81, 82, and 812, as expected.

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 82

404 Moments

The propositions in Section 4.2.2 show precisely how the product of any two iter-

ated integrals can be expressed as a sum of iterated integrals. Since it is straight-

forward to calculate the mean of integrals in I and S, the variance and covariance

of such integrals can then be calculated exactly. However the number of terms

in the product grows very quickly with the length of the integral and it is com-

putationally quicker to have explicit formulae for the variances and covariances.

Platen and Wagner prove a formula for th6 covariance of iterated Ito integrals in

[48] (Proposition 2). (See also [26] Lemma 5.7.2.) Using shuffle products it is

possible to give an alternative proof of this result with a combinatorial flavour.

(This proof is a bit similar to Meyer's proof for the variance in [42].)

Theorem 4.4.1 The covariance of two Ito integrals I(t) and IK(t) is given by

fo ;
E (I j (t) X IK(t)) =

lj

1(JK) Ifl (pi + qj)! 	
otherwise

l(J,K)! 	pj !qj !

where, for any two multi-indices J and K, l(J, K) is the total number of zeroes

in J and K plus half the total number of non-zero indices, and I is the multi-

index obtained by leaving out the zeroes in J. For J and K as given, p, and q j

are defined to be the number of zeroes in J and K respectively, positioned between

indices (i - 1) and (i) of I, respectively R.

Proof. 	The only integrals in I with non-zero mean are integrals I(t) with

J = (0,0,. . . ,0), JJJ = n, the mean being t'/n!. To calculate the covariance of

two elements of I it is therefore sufficient to calculate the terms in the product

Ij * 'K that have multi-indices consisting entirely of zeroes. The formula given in

Proposition 4.2.3 (iii) shows that the multi-indices of terms in the product either

contain a shuffle of the indices in J and K or else contain the same indices with

some pairs of non-zero indices replaced by zeroes. The replacement by zeroes only

occurs when a non-zero index in J is through shuffling brought next to an identical

Chapter 4. The Algebra of Iterated Stochastic Integrals 	 83

non-zero index in K. Therefore the only way to obtain all-zero multi-indices is to

bring every non-zero index in J next to an identical non-zero in K and vice-versa.

Since shuffling preserves the order within J and K, this can only be done if J

and K contain the same non-zero indices in the same order. Hence if J K,

E(Ij x IK) = 0.

It is now clear that the only all-zero multi-index occurring in the product of Ii

and 'K will have length l(J, K) and therefore mean
l(J,K)

 It remains to calculate

the coefficient of the term containing the all-zero index , ie to count the number

of ways in which this multi-index can be produced. The need to pair all indices

in J with the indices in k restricts the number of shuffles. The only freedom is

in shuffling the zero indices, and even here the possibilities are restricted in that

any zeroes between index (i - 1) and index (i) of J can only be shuffled with the

zeroes between the same indices of R'. The lengths of these two blocks of zeroes

being pi and qj , the number of such shuffles is and we are done. 0

Example: Li = 1101 and 'K = 11001

Ii * 'K = 3I 0000 + 61000011 + 3I0000 + 1001001 + 21 0000l + '100100 +

+ 21oololl + 211001101 + 611010011 + 311010101 + 211011001 + 1211100011

+611100101 + 211101001

E(Ij * IK) = 3E(100000) = -
40

Here P2 = 1, q2 = 2 and all other p, q 2 = 0.

Using similar arguments, it should be possible to obtain a formula for the

covariance of two Stratonovich integrals S j and SK, but we have not yet succeeded

in calculating it. Note that as well as calculating the covariance of S j and SK by

using the shuffle product, it is also possible to convert each of the integrals into a

linear combination of Ito integrals using (4.1) and then apply the above theorem.

Thanks are due to Devlin ([11]) for pointing out the relevant work on deter-

ministic path integrals.

Vlad Bally has proved independently in unpublished work that the product of

Stratonovich iterated integrals is a shuffle product.

Partitions with Minimum Entropy of

Regions in 1R2

51 Motivation

In this chapter, we present a polynomial time algorithm for choosing, among a

set of rectangular or triangular partitions of the interior of a polygon in 1R 2 , the

partition with the minimum entropy. We were led to look for such an algorithm

by our work, presented in Chapter 3, with the generation of random variates using

patchwork methods. Since Marsaglia et al. ([38], [37]) first invented the technique

in 1964, it has been known that the fastest method for generating random deviates

from a normal distribution, and from most other continuous univariate probability

distributions, is the 'rectangle-wedge-tail' method, more recently known as the

patchwork method. This method, described in Chapter 3, involves partitioning

an area in JR2 into rectangles, or other simple pieces such that generating points

uniformly distributed in each piece is straightforward. Our use of the patchwork

method for generating a bivariate density has shown us that entropy is a major

consideration when choosing how to partition an area in IRd .

In Chapter 3 we described a method of generation of Levy area integrals jointly

with the increments along a two-dimensional Brownian path, based on an extension

of Marsaglia's 'rectangle-wedge-tail' method to a two-dimensional distribution.

21

Chapter 5. Partitions with Minimum Entropy of Regions in 1R 2 	 85

The joint density function in question was so complicated, indeed it was in the

form of an improper integral that could only be calculated numerically, that no

other method was feasible. Previously it has been considered that, since patchwork

methods demand a lot of programming time and result in lengthy code, they are

only suitable for use when speed is very important (see [12]). Our experience shows

that there are densities for which patchwork methods seem to be the only option.

Generalisation of the patchwork method to higher dimensions brought to light

several questions that had not arisen in the case of a one-dimensional distribution

and that deserve further exploration. One of these questions was how to choose a

partition with low, if not minimum, entropy.

The part of Marsaglia's method with which we are concerned here, is the

'rectangle' part. Marsaglia et al. divide an area A C JR2 under the graph of f(x)

into equal rectangles, each with area 2` for some n E iN, and set up tables with

an entry for each rectangle. A uniform random number consisting of n bits is

then sufficient to choose a table entry with the correct probability. For a one-

dimensional distribution the amount of memory used for storage of the tables

is acceptable, but for a two-dimensional distribution the number of table entries

needed becomes prohibitive. In Chapter 3, we decided to regroup many of the

boxes into larger ones. This while reducing memory requirements, increases the

computing time, because once the boxes vary in area, a set of tests is required to

determine which box each point falls in. The tests form a binary decision tree,

which can be constructed in an optimal (time minimising) way using Huffman's

method (see [22] for the original paper or Knuth [28] for a description). Huffman's

method guarantees an average number of tests performed no greater than one plus

the entropy of the partition. The entropy must therefore be taken into account

when choosing a partition. The entropy can be written as

- 	r i 1092(r)

where r, the probability of a point in a rectangle being in rectangle R, is the area

of R1 divided by the total area occupied by rectangles.

In three or more dimensions the question of finding the partition into boxes

of a given region that minimises the entropy seems to be a very hard one, so we

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 86

have chosen to start by considering what happens in two dimensions. Despite the

fact explained above, that it is not necessary when generating a random deviate

from a one dimensional distribution, to take rectangles of varying sizes and, there-

fore, not necessary to worry about the entropy of the partition, our hope is that a

better understanding of the entropy of partitions in 1112 will lead to a better un-

derstanding of the situation in higher dimensions, where entropy really becomes a

consideration.

We will consider not only rectangular partitions, but also partitions into tri-

angles. Triangles yield a much closer fit to a smooth curve than rectangles, so

not nearly so many of them are required to fill the area under it. In [12], De-

vroye mentions that triangles can be used for patchwork methods and describes

how to generate points uniformly distributed in a general triangle by linear trans-

formation of points generated uniformly in the basic triangle ((0, 0), (1, 0), (0, 1)).

It should be possible, when desired, to generate the whole of some distributions

using triangles, to within the accuracy of a computer, so removing the need for

wedges and tails, thereby both simplifying the programming and shortening the

computation time. Optimal rectangular partitions remain of particular interest

when considering the generation of discrete random variates.

The problem we have set ourselves is a complicated optimisation problem.

Given a density function f : 111 - JR we wish to maximise the area under the

graph of y = f(x) covered by rectangles or triangles and at the same time both

minimise the number of rectangles or triangles used and minimise the entropy of

the partition. The first aim clearly conflicts with the other two: the larger the

area covered, the more rectangles or triangles will be needed, and the higher the

entropy will become. Since we can see no way to obtain a fully optimal solution,

we have chosen to separate the problem into stages and optimise one variable at

each stage.

In the first instance we fix an area that we wish to cover with rectangles or

triangles. If we wish to follow tradition and use other generation methods, such as

rejection, for areas not contained within the rectangles, then covering say 90% or

99% of the area under f(x) is suitable. If, however, we aim to cover the whole area

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 87

to within the accuracy of a particular computer, then the target area would be

something like 99.9999%. Having chosen a target area, we want to fill in a region

containing that area using as few rectangles or triangles as possible. In the second

stage, we take as given the polygonal region formed by the union of the rectangles

or triangles, and re-partition the region, keeping the total number of pieces fixed,

in such a way as to minimise the entropy of the partition. There are, of course,

other ways in which such a partial optimisation could be done, but we have been

unable to come up with anything more practical.

The remainder of the chapter is structured as follows: in Section 5.2 we consider

rectangular partitions of areas under a density curve. Initially we only consider

monotone increasing or decreasing densities. After introducing the necessary nota-

tion in Section 5.2.1, we detail the two stages of optimisation: finding the partition

with minimal entropy in Section 5.2.2 and minimisation of the number of rectan-

gles in Section 5.2.3. The main theorem, presenting a polynomial time algorithm

for finding the partition with minimum entropy, is in Section 5.2.2. In Section

5.2.4, we generalise to unimodal densities. In Section 5.3, we show how results

obtained for rectangular partitions can be extended to triangular partitions. We

have to consider convex and concave polygonal regions separately. Throughout, we

illustrate results with applications to well-known distributions, such as the normal

distribution.

52 Rectangular partitions

Let y = f(x) be a continuous monotone decreasing or increasing density function

defined on an interval [a, b]. (The interval could be [a, oo) for a decreasing function

or (oo, b] in the case of an increasing function.) We wish to pack the region

{(x,y)Iy <f(x),a < x < b} with rectangles in a way that minimises the number

of rectangles, maximises the total area covered with rectangles and minimises the

entropy of the partition. These aims are conflicting. For example, it is clearly

impossible to cover more than a certain area with any fixed number of rectangles.

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 88

We will therefore split the task into two parts. First we will fix a total area that

we wish the rectangles to cover and try to find a way of covering that area using

the smallest number of rectangles. Secondly, we will take as given a region made

up of the union of a number of rectangles and try to find the rectangular partition

of that region with the lowest entropy.

If, instead of a continuous density function, we are considering the generation

of a random variate from a discrete distribution, then clearly only the second stage

of the method is needed.

5.2.1 Notation

Definition 5.2.1 A staircase is the interior of a closed piecewise linear curve,

obtained by joining linearly a set of points

{ (x o , yo), (x0 , Yi), (x1, yr), (x1) y2),.. . , (Xi-1, y), (x i , y), (x i , yi+i),

,(Xn,yn),(Xn,yo),(Xo, YO) }

where x, 1 > x, i = 0,...,n - 1, 1/1+1 < y2 , i = 1,.. .,n - 1 and Yo < y (a

descending staircase) or else x21 < x, i = 0,. . . , n - 1, Yi+1 < y, i = 1,.. . , fl - 1

and Yo < y (an ascending staircase). n is the number of steps in the staircase.

The point (x o ,y o) is the root of the staircase.

Any staircase S with n steps can be identified uniquely by giving the set of

n + 1 points {P = (x i , yj), i = 0,. . . , n}. For simplicity, we will often stretch

notation and write S = {P = (x i , ye), i = 0,. . . , n}. Figure 5-1 shows a descending

staircase.

Definition 5.2.2 A rectangular partition, 2, of a staircase, 5, is a set of disjoint

rectangles with sides parallel to the x and y axes, the union of which is S.

A rectangle R = {(x, y)x 1 < x <x 2 , Yi <y <y2} can be uniquely identified by

giving the two points P1 = (x 1 , Yi) and P2 = (x2, y2), so we will write R = (P1 , P2).

Chapter 5 Partitions with Minimum Entropy of Regions in 1112

PO

Figure 5-1: A staircase

Since we will mainly be considering rectangular partitions of a staircase S with

n steps that contain precisely n rectangles, we will often write 'rectangular parti-

tion of S' for 'rectangular partition of S containing n rectangles'. A rectangular

partition can be identified by listing the rectangles it contains:

Definition 5.2.3 Given a staircase S = (P0 ,P1 ,. . , P,), a basic rectangle of S

is a rectangle R2 = (F0 , P2) for any 1 <i <n.

Definition 5.2.4 A sub-staircase of a staircase S = (F0 , F1 ,. . . , P,), is a staircase

S' C S where 5' = (Qo, Qi,. . . , Qm) and Q, E {F1 , F2 ,. . . , P,}, 1 	i 	in.

5.22 Optimal partition

We are now interested in choosing, from all rectangular partitions of a staircase

where the number of rectangles in the partition is equal to the number of steps

(see Figure 5-2), the partition with minimum entropy.

Chapter 5. Partitions with Minimum Entropy of Regions in JR2 	 90
P.

PO

Figure 5-2: A rectangular partition of a staircase

Proposition 5.2.5 Given a staircase S with n steps, the number of different par-

titions into exactly n rectangles of S is the Catalan number

an = 1
7 2n

n+1

Proof. Each partition into n rectangles necessarily includes precisely one basic

rectangle. This observation divides the partitions of the whole region into n dis-

joint sets, according to the choice of the basic rectangle (F0 , F2). (This argument

will also be essential further on.)

Consider all possible partitions that include the basic rectangle (P0 , F2), for a

fixed 0 < i < n. Removal of the rectangle (F0 , F2) leaves two sub-regions, one of

which may be empty, to be divided into i - 1 and n - i rectangles respectively.

The number of different partitions of each of these two regions is a2 _ 1 and a_2 .

Therefore the number of partitions that include the rectangle (P0 , F2) is

and hence the total number of possible partitions is

an := E aian-i-I

where we let a0 = 1. From this expression, it is clear that an is the well-known

Catalan number. (See eg. [10] for a proof that an satisfies (5.1)).

D

Chapter 5. Partitions with Minimum Entropy of Regions in 1R2 	 91

Note that we have
2(2n + 1)

a+i =
	
an

n+2

and therefore
• 	a+i

=4
an

Proposition 5.2.5 tells us that finding the partition with minimum entropy

of a staircase by simply going through all possible partitions one at a time and

calculating the entropy of each, takes time exponential in the number of steps.

When programmed, this method only yielded an answer within a reasonable length

of time for very small numbers of steps (less than 10, say). However it was pointed

out to me by Mark Jerrum, that it is easy to turn this algorithm into a polynomial

time algorithm, simply by storing the entropy of all sub-partitions as they are

calculated. To prove this, we will need some simple results.

Let E(P) denote the entropy of a rectangular partition P = { R 1 . . . R,}. So

N

E(P) = —r2 log2 (r1)

where ri = A/A, A, is the area of rectangle J1, i = 1,. . . , n and A is the total

area

A = Ai

Proposition 5.2.6 Using the above notation, for any rectangular partition P =

{ Ri . . . R,j of a staircase S define

E(P) = — 1 A1ogA

Then, the rectangular partition of S with minimum entropy is also the partition P

for which E(P) is minimum.

Proof. The entropy can be expressed as

1
(E(P)+logA)

log 2

therefore, since A is constant. E(P) and E(P) have the same minimum. 	0

Chapter 5. Partitions with Minimum Entropy of Regions in ll?2 	 92

P.

19

P0

Pr'

Figure 5-3: Removing a rectangle to leave two smaller staircases

Proposition 5.2.7 Given a staircase S = (P0 , F1 ,. . . , P) the rectangular par-

tition of S into ri rectangles with the minimum entropy can be found by, for

each i = 11 .. . , n, removing the basic rectangle R 2 = (F0 , F1) and finding the

partition, P, with the lowest entropy of the remaining region S - R. Then

the partition with minimum entropy is P = {R 3 } U Pj where Pj is such that

E(P) = minE({R 2 } U Ps).

Proof. 	As shown in Proposition 5.2.5, the set of all rectangular partitions of

S into n rectangles can be divided into n disjoint subsets, according to which

basic rectangle they contain. Therefore the partition with minimum entropy can

be found by choosing the optimal partition from each of the ii subsets and then

taking the optimal partition from among those n. It remains to note that

E({R 1 ,. . . , R 1 ,.. . , R}) = E({R 1 }) + E({R 1 ,... , R1_, R1 1 ,... , R})

so, applying Proposition 5.2.6, the optimal partition in each subset can be found by

discarding the rectangle R 1 and calculating the entropy of each possible partition

of the remaining region. 	 11

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 93

Theorem 5.2.8 Let S be a staircase with n steps. There is an algorithm for

finding the partition into n rectangles of S that has minimum entropy, that takes

time polynomial in n.

Proof. We will give details of the algorithm and show that the time is indeed

polynomial in n. The algorithm is recursive.

Let S = (P0 , F1 ,. . . , P,) and consider what happens when the basic rectangle

= (P0 , Ps), 0 <i <n is removed from S. If 1 < i < n, we are left with two dis-

joint sub-staircases, S1 = (Q 1 ,P1 ,P2 ,. . 	and S2 = (Q2,P2+1,P2+2,. .

where Qi = (x 0 , y 1), Q2 = (xi , yo). (This is illustrated in Figure 5-3.) If i = 1,

then Si is the empty set, and if i = n, then S2 is the empty set. So removing a

basic rectangle from a staircase always leaves one or two sub-staircases.

Proposition 5.2.7 can now be applied recursively, first to the original staircase

5, then to each of the sub-staircases created by removing a basic rectangle, etc.

It is clear that, on the one hand, if we know the entropy of every sub-staircase

contained in S we have enough information to find the partition of S with minimal

entropy, and on the other hand, some sub-staircases of S are going to turn up more

than once during the recursion. We claim that if we calculate and store the optimal

partition and its entropy for each sub-staircase the first time that we need it, then

simply retrieve the stored information on each subsequent occasion that we need

it, the recursive algorithm will take time polynomial in n. To show this we simply

need to count the number of sub-staircases that arise.

As seen above, it is only a certain type of sub-staircase that can be obtained

by removing a basic rectangle from a staircase. Apart from the root, all the points

defining the sub-staircase are a consecutive subset of the set of points defining the

staircase taken as an ordered set. The root is uniquely determined by the other

points defining the sub-staircase. Therefore, the number of sub-staircases with m

steps of the staircase 5, is the number of subsets of rn consecutive points of the

ordered set {P1 ,P27 . .. , P}, which is clearly n - m + 1. So in total we need to

find the optimal partition of
n 	 n(n-1)

(n—rn+1)— 	
2 m=2

NNI

OF

0.12

EN

MF

Chapter 5. Partitions with Minimum Entropy of Regions in JR2 	 94

Figure 5-4: a random partition 	Figure 5-5: the optimal partition

staircases. The memory storage required by the algorithm is therefore quadratic in

the size of the staircase. Given a sub-staircase with in steps, choosing the partition

with minimum entropy amounts to comparing the previously calculated optimal

entropies of each of the in sub-sets obtained by removing a basic rectangle. The

amount of time involved for that one sub-staircase is therefore linear in m. The

total amount of time needed to find the optimal partition of the staircase S is then

proportional to

rn(n - m + 1) = -n(n - 1)(n +4)
m=2

So the computation time is cubic in n. 	 a

In Figures 5-4 and 5-5, we show two different partitions of the staircase illus-

trated in Figure 5-6. In the first picture, the partition has been chosen randomly,

(by choosing a basic rectangle randomly and then repeating recursively on the

two remaining sub-staircases). The entropy of the partition is 2.83. The partition

in the second picture is the optimal partition, calculated using the algorithm of

Theorem 5.2.8 and has an entropy of 2.32. The entropy goes up to 3.27, for the

partition obtained by dividing the staircase into vertical strips (columns).

In Table 5-1, we give the computation time used to find the partition with

minimum entropy of staircases of various sizes using an implementation of the

algorithm given in Theorem 5.2.8. We programmed the algorithm in C and ran

Chapter 5. Partitions with Minimum Entropy of Regions in 1112 	 95

Table 5-1: Computation time for optimal partition

No. steps 100 200 300 400 1 500 600 1 	700 800 900 1000

Time (s) 5 34 116 275 569 919 1464 2201 3120 4237

it on a Sun Sparc workstation. A copy of the main part of the program can be

found in Appendix A.4.

5.2.3 Generating the Staircase

Having shown how to partition a staircase in such a way as to minimise the entropy

of the partition, in this section we suggest a way in which a suitable staircase could

be placed under a density function. Let f(x) : JR -* JR be a monotone increasing

or decreasing density function on [0, oo]. The area under f is f° f(x)dx = 1. We

are interested in finding a staircase S that contains a chosen large percentage q

of the area under f, where the number of steps, n, is as small as possible, and

such that when the staircase is divided into n rectangles, all the rectangles have

areas that are integer multiples of a unit area equal to 2-m for some m E JlV (The

constraint on the areas allows us to work with bits and therefore with integers on

a computer, so avoiding loss of accuracy.) The numerical examples at the end of

this section will show that, as long as the staircase contains an area at least q and

very close to q, the choice of the initial staircase does not change the minimum

entropy significantly. We suggest the following method.

First choose large values m 1 , rn2 E iN, and cover the quadrant {(x, y)Ix> 0, y >

0) with a rectangular grid with mesh size Lx = ,Ly = 2_12. For simplicity

we will assume that the origin is a grid point. Shade in all the rectangles that lie

completely under f. The boundary of the shaded region is a staircase S o lying

under f. At this stage the area contained by So should be larger than the desired

value q and So should have a number of steps, N, several times larger than the

number of steps envisaged for the final staircase S. (If this is not so, then choose

larger values for rn1 and M2 and repeat.) Let So have root P0 and steps with

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 96

corners at F2 , i = 1,... , N, so So = (F0 , Pi , P2 FN) We will now define an

iterative procedure which removes one step at each stage until at stage K the

resulting staircase S = SK has area at least q and the staircase SK+1 does not

have this property. For staircase S j = (F0 , Qi) Q2,... , QN-j), obtained at stage

j, define Sil = (F0 , Qi, Q2,... Qz-17 Q+i-• . , Qjv-j), the staircase obtained by

removing step i from S. At step j + 1, from all possible S, i = 1,... , N -J,

choose the one that includes the greatest area and call this one Si+. Repeat this

process, removing at each stage the step that reduces the area by the smallest

amount, until at stage K it is no longer possible to remove a step and still retain

an area at least as big as q. The total number of comparisons needed up to stage

Kis

K
N-j+1

j=1

so, in the worst case, when K = N, the computation time is quadratic in the

initial number of points, N. The relevant areas could be stored at the outset,

simply removing one and up-dating two others at each stage.

This algorithm is illustrated in Figure 5-6. We have used the positive half

of the normal density and a mesh size of 2 -4 by 2-7 . The aim was to produce

a staircase with few steps containing at least 90% of the area under the curve.

The outer staircase is So and the inner one the staircase S, obtained from So by

removing steps. There are 13 steps in S.

Tables 5-2 and 5-3 show how, for a fixed target area, the entropy of the optimal

partition varies with the number of equal pieces into which the relevant interval

on the x-axis is initially divided. The columns N1 , Area 1, and N2 , Area 2, show

the numbers of rectangles and the total area covered when the interval is first

divided into equal sub-intervals and then after as many points have been removed

as possible without going below the target area. The notation Eopiimai denotes

the entropy of the optimal partition of the resulting staircase and Ecoiumn denotes

the entropy of the partition of the same staircase into columns, for the sake of

comparison.

Chapter 5. Partitions with Minimum Entropy of Regions in 1R 2 	 97

0.

0.;

0.1;

Figure 5-6: Fitting a staircase under a curve

Table 5-2: Standard normal distribution
Interval Target 	N1 Area 1 N2 Area 2 Eoptimai Ecoiumn

[0,5] 90% 	50 .460000 15 .450000 2.386157 3.501112

100 .479062 13 .452813 2.350116 3.299084

200 .489687 12 .451541 2.302467 3.189303

500 .495650 11 .450138 2.263739 3.052353

1000 .497762 12 .453328 2.308525 3.165404

2000 .498838 12 .452621 2.300580 3.238747

[0, 5] 95% 	100 .479062 32 .475313 2.702003 4.494936

200 .489687 27 .475703 2.652975 4.239397

500 .495650 24 .475113 2.621831 4.158726

1000 .497762 25 .475825 2.635692 4.226906

[0, 5] 99% 	500 .495650 175 .495012 3.008597 6.919783

1000 .497762 136 .495019 2.997530 6.577358

2000 .498838 128 .495036 2.995460 6.444160

5000 .499525 125 .495009 2.992606 6.417679

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 98

Table 5-3: Cauchy distribution

Interval Target 	Ni Area 1 N2 Area 2 Eoptima i Eco iumn

[0,10] 90% 	500 .452850 64 .450100 3.542023 5.775558

1000 .460338 50 .450150 3.511929 5.407273

2000 .464422 47 .450084 3.493660 5.300923

[0,20] 95% 	3000 .475144 295 .475006 3.873419 7.946205

5000 .478354 145 .475036 3.856674 6.548353

10000 .481294 118 .475044 3.843877 6.548353

52.4 Rectangu'ar partitions of a genera' region in JR2

We have so far only considered monotone increasing or decreasing density func-

tions. Naturally we would wish to extend our results to a general density on JR.

Let f(x) : JR -* JR be a unimodal density function, increasing on (-, a] and

decreasing on [a, oo).

If f is symmetric, we would naturally choose to generate points x > a, using

the right half of the distribution only, and then with probability 1/2 take a - x

instead of x. This reduces the problem to partitioning a descending staircase.

However, if f is not symmetric, we need a way to generalise the previous section

to a staircase that is first ascending and then descending.

Definition 5.2.9 An f-staircase is the interior of a closed piecewise linear curve,

obtained by joining linearly a set of points

{(x0, yo), (x0, f(xo)), (x1, f(xo)), (x1, f(xi)),.

(xk, f(xk)), (xk, f(xk+1)), (xk+1, f(xk+1)),...,

(x_1, f(x)), (x, f(x)), (x, yo), (x0, yo)}

where x 1 > x, (i =0,...,n— 1), f(x 1) > Yo, (i = 0,...,n), x, <a < x1 and

f(x) =

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 99

Naturally, if f is defined only on a subset of 11?, then the x (i = 0,. . . , n), in the

above definition, must be taken in that subset. For simplicity, we will assume that

for i j we only have f(x) = f(x 3) when i = p and j = p+l (or j = p, i = p+ 1),

i.e. no two steps are of the same height. This time there is no root, but there is a

line (x 0 ,
yo),

 (x,
 yo)

 which can be called the base of the staircase.

Theorem 5.2.8 is dependent on the concept of similarity that leads to recursion:

each time a basic rectangle is removed from a staircase, we are left with one or

two pieces that are again staircases and give identical, but smaller, optimisation

problems to the original one. If the staircase is to be allowed to ascend and then

descend, we need a satisfactory new definition of a basic rectangle, ie. a piece

that serves to classify the partition and when removed leaves one or more general

staircases with fewer steps. It can be shown that the following definition meets

these criteria:

Definition 5.2. 10 Given an f-staircase S = (P0 ,.. . , 	 a basic rectangle of S

is a rectangle Ri = ((i, yo), (xi, f()) for one 0 < i < n, where

I xo; f(xo)<f(x n)

x,; f(x Th) <f(xo)

If i > 1 and i < n, then removal of the basic rectangle Ri leaves a single region

that is not an f-staircase. However, if removal of Ri is accompanied by splitting

the remaining region vertically along the line x = x, then the region is subdi-

vided into two staircases, as required. This splitting is validated by the fact that

any rectangular partition of the remaining region not including the line segment

[(x, Yo) ,(x,f(x))], would necessarily contain more than n rectangles. Further-

more, any partition of a staircase contains one and only one basic rectangle.

It is ow clear that the number of rectangular partitions of an f-staircase with

n steps, as defined in Definition 5.2.9, is again given by the formula in Proposition

5.2.5 and that a polynomial-time algorithm for finding the partition with minimum

entropy exists and is essentially the same as that given in Theorem 5.2.8. The main

difference is that, using the new definition of basic rectangle, the number of subsets

of the region for which the optimal partition needs to be calculated and stored, in

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 100

order to find the optimal partition of the whole region, is no longer quadratic in

the number of steps, n, but cubic. Therefore the algorithm becomes quartic in n.

If the density f is not unimodal, the best option seems to be to split the density

into unimodal pieces and partition each piece separately. Perhaps this is worth

further study.

503 TriangWar partitions

Rather than partitioning an area in JR2 into rectangles, it could be preferable to

partition it into triangles. The great advantage is that the number of triangles

needed to cover a given percentage of the area under a curve will generally be of

the order the square root of the number of rectangles. The drawbacks are that the

areas will no longer be multiples of a given area and that the operations involved

are more complex.

5.3.1 Tirianguilar partitions of a convex region

Let f(x) : JR -* JR be positive and concave on an interval [a, b]. Since the area

under f is finite, it does not really matter whether the area is 1 or not. Note that

for this section f(x) need not be monotone. Consider the area enclosed between

f(x) and the chord AB, where A = (a,f(a)), B = (b,f(b)). We aim to divide

this area into triangles in an efficient way. (The remaining area under f(x) and

above [a, b] is a trapezium and can be cut into 2 triangles or a rectangle and a

right-angled triangle.)

The placing of points on the curve can be carried out in a similar fashion to

the division into rectangles of the region under a decreasing function described

in Section 5.2.3. Furthermore, a similar result to Theorem 5.2.8 can be given

concerning the partition with the minimum entropy.

Whereas for rectangular partitions we only considered rectangles with sides

parallel to the coordinate axes, we will not insist that triangles have any side par-

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 101

allel to an axis. However, we will put a constraint on the positioning of triangles:

each triangle in the partition must have all three vertices on the curve f(x). As

before, we will only look at partitions where the number of pieces is minimal. In

other words, there will be the same number of triangles as intermediate points

between A and B. This leads to the following definitions:

Definition 5.3.1 A convex f-polygon is the interior of the closed piecewise linear

curve, obtained by joining linearly a set of n points

{ (x i , f(x i)), (x 2 , f(x 2)),.. . , (x i , f(x 1)), (x+1, f(x+i)),. . . , (x, f(x))}

where a < x1 , x, < b, the function f is concave on the interval [a, b] and x1 > x,

n. The points P1 = (x 1 , f(x i)) and P = (x, f(x)) are the extreme

points of the f-polygon.

We will often write polygon for f-polygon.

Definition 5.3.2 Given a convex f-polygon S = (P 1 , F2 ,.. . , P,), a basic triangle

of S is a triangle T = (P1 , Pi , P) for any 1 <i <n.

The definition of sub-polygon can be deduced from that of sub-staircase.

In Figure 5-7 we give an example of such a triangularisation of an f-polygon.

All the propositions in Section 5.2 can be proved in this set up. For example:

Proposition 5.3.3 (Catalan) Given a convex polygon S with n + 2 vertices the

number of different partitions into exactly ri triangles of S is

1 (2n

a— n+1 	ri

Proof. The proof is identical to that of Proposition 5.2.5, with triangle substituted

for rectangle throughout and replacing basic rectangle (P0 , P) with basic triangle

(P1 , F2 , P 2). This is actually the original enumeration problem of Catalan. 	0

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 102

0.

0.

0.

0.

0.

0.

Figure 5-7: partition of a convex Figure 5-8: Optimal partition of

region into triangles 	 a convex region into triangles

The theorem is then the following:

Theorem 5.3.4 Let S be a convex f-polygon with n + 2 vertices. There is a

polynomial time algorithm for finding the partition into n triangles of S that has

minimum entropy.

Proof. The proof is completely parallel to that of Theorem 5.2.8. The algorithm

consists in removing each basic triangle in turn, finding, by recursion, the optimal

partition into triangles of each of the remaining sub-polygons and then choosing

from the n resulting partitions that with the least entropy. Li

In Figure 5-8, we show the optimal triangular partition of a convex f-polygon

covering 99% of the area under the positive half of the curve (2/7r)/1 - x 2 . There

are only 6 triangles in the partition and the entropy is 1.29. The mean entropy

over 100 random triangular partitions of the same area is 1.74.

When using triangles, the method used for placing the points on the curve, so

determining the polygon to be partitioned, could be the method suggested above

for placing a staircase under a curve: start with many points and then discard

those points that reduce the area by the least, until a target area is covered.

Experiments with particular densities show that, as long as the desired area is

Chapter 5. Partitions with Minimum Entropy of Regions in JR2 	 103

Target N1

99% 12

15

50

100

99.9% 55

100

200

500

Area 1

.991018

.991570

.998942

.999626

.999083

.999626

.999868

.999967

Table 5-4: Ci

N2 Area 2

11 .990238

9 .990141

8 .990473

9 .992651

38 .999000

25 .999014

23 .999016

23 .999073

rcular distribution

Eoptima i

1.303015

1.293016

1.291973

1.341921

1.485578

1.483400

1.482014

1.483102

covered, the particular placing of the vertices of the polygon has little effect on the

optimal entropy, but the number of triangles used can be decreased significantly.

In Table 5-4, the density considered is f(s) = J7- X2 on the the interval

[0,2/ \/F], and the notation is that used in Table 5-2.

5.32 Triangular partitions of a concave region

Let f(s) : 111 - JR be positive, convex and differentiable on an interval [a, b],

where a or b may be +00, and let the area f26 f(x)dx be finite. Consider the area

bounded by f(s), 5 E [a, b] and the tangents to f(s) at x = a and x = b. If b = 00

or f(a) is undefined, but limx .a f(s) is defined, then one or both of the tangents

will be asymptotes. Let the point Qo be the intersection of the two boundary

tangents or asymptotes.

The triangles we will consider this time are triangles that have one side tangent

to the curve f(s). They are more complicated to construct, and involve knowledge

of the derivative f'(x).

Definition 5.3.5 Given a set of n points

{(XI , f(xi)), (x 2 , f(x2)),. . . , (x i , f(x)), (x+, f(x+1)),. . . , (x, f(x))}

where a < X1, s < b, the function f is convex on [a, b] and 	> x2 , i = 1,. . . , n,

define the line £ i to be the tangent to f(s) at x = xi and let Q j = f i fl £j+1, for

Chapter 5. Partitions with Minimum Entropy of Regions in 1R 2 	 104

0.

0.

0.

0.

Figure 5-9: Optimal partition of a concave region into triangles

n - 1 and Qo = L fl L. Then the interior of the closed piecewise linear

curve, obtained by joining linearly the set of n points {Qo, Qi, Q2,... , Q-l} is a

concave f-polygon.

Definition 5.3.6 Given a concave f-polygon S = (Qo, Qi, Q2,.. . , Qm), a basic

triangle of S is a triangle Ti = (As , Qo, B) for any 1 < i < rn, where the points

A 2 and B2 are defined by A 2 = QoQi fl QQ+1, B2 = QQ+i fl QoQrn.

All the results proved for partition of the area under a decreasing curve into

rectangles and for partition of the area under a concave curve into triangles can

also be obtained in this third case.

As an illustration of the triangularisation of a concave region, we show the

exponential density in Figure 5-9. The area covered by triangles is 99% of the

total area under the curve. There are 11 triangles and for the partition shown,

which is the optimal partition of the polygon, the entropy is 1.38.

Again, we can study the effect on the optimal entropy and on the number of

triangles in the partition, of the choice of polygonal approximation. Using the

exponential density, we have obtained the numbers given in Table 5-5, employing

the same method and notation as in Section 5.3.1. This time the number of

triangles has hardly been reduced by starting with a finer partition.

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 105

Table 5-5: Exponential distribution

Interval Target 	N1 Area 1 N2 Area 2 Eoptimai

[0,5] 99% 	20 .994052 11 .990010 1.376467

50 .996217 11 .990516 1.382802

100 .996528 11 .990150 1.378803

300 .996620 11 .990258 1.384259

[0,8] 99.9% 	75 .999009 37 .999041 1.467915

100 .999565 36 .999009 1.467333

250 .999789 36 .999013 1.468156

5.3.3 Triangular partitions of a general region

There does not seem to be any straightforward way of placing triangles under a

curve f(s) in an interval where f is sometimes concave and sometimes convex.

The two methods for fitting triangles described in Sections 5.3.1 and 5.3.2 are so

different that a hybrid of the two is hardly possible. The simplest idea is just

to divide the whole interval on which f(s) is defined into sub-intervals, on each

of which f is only concave or only convex and to then place triangles separately

under each piece of the curve. This amounts to insisting that all inflection points

(points where f"(s) = 0) be used as points in the partition. Each convex region

will be bounded by the curve f(s) and a chord [(XI, f(si)), (x 2 , f(s2))], while each

concave region will be bounded by the curve and two tangents, (one of which may

be the tangent at infinity, in which case it is quite likely to be the x—axis). There

may be some large pieces left over after removing these regions, which can easily

be divided into a few rectangles or triangles.

The positive half of the normal density, for example, has a single inflection

point at s = 1, so triangles should be fitted in two separate regions. The convex

region is between the chord [(0, f(0)), (1, f(1))] and the curve between s = 0 and

s = 1. The concave region is between the curve, f(s),s > 1, the line s = 1 and

the x—axis. Apart from these regions, there is a polygon that can be divided into

a large rectangle and a right-angled triangle, which already contain between them

more than 63% of the probability.

Chapter 5. Partitions with Minimum Entropy of Regions in 1112 	 106

0.

0.

0.

0.

Figure 5-10: triangular partition of the normal distribution

In Figure 5-10 we show how the region under the normal density might be

divided up into triangles. Since the density is symmetric about x = 0, it is of

course sensible to generate points from the positive half and then assign a random

sign to them. The partition illustrated covers 99.5% of the area under the curve

and has an entropy of 1.97331. The convex part contains 4 triangles and the

concave part 7, giving a total of 12 triangles and one rectangle. The partitions

of both the convex and the concave parts have minimum entropy given the set

of points on the curve to be used as vertices in the convex case and points of

tangency in the concave case. This partition contains the same number of pieces

as the rectangular partition in Figure 5-5, but has a lower entropy and covers

much more of the distribution, showing clearly the advantage of using triangles.

All the well-known probability densities have a small number of inflection

points, so breaking up the curve in this fashion is perfectly feasible. The problem

comes when trying to generalise to higher dimensions: most pieces of surface are

neither convex nor concave.

Chapter 5. Partitions with Minimum Entropy of Regions in JR 2 	 107

504 Concuso

The work described above is a detailed description of improvements to the set

up phase of the patchwork method for generating random deviates. Traditionally

this phase is separate from the actual generation of random numbers and, since it

needs to be performed only once for each distribution, it is worth taking time and

effort to get it right.

In Chapter 6, we will present a method in which the set up phase is carried

out in parallel to the random number generation. Rather than choosing a fixed

area to fill with rectangles or triangles before starting, we will add in a new piece

whenever it is needed, so that the number of pieces placed increases with the

number of random deviates generated, thereby allowing for flexible accuracy.

Generation of a General Univariate

Probability Density

61 lEntroduction

Our aim in this chapter is to describe a method for generation of random deviates

that is fast, as accurate as required and may be used for a wide class of continuous

distributions, so could be called a black box method.

Our starting point is again the rectangle-wedge-tail method devised by Marsaglia

et al. ([38], [371), initially for generation of normal deviates, the fastest method

available for generation of continuous random deviates. Speed is paid for by the

use of lengthy look-up tables. On modern computers the memory requirements

are no longer a problem, but the programming time and complexity is consider-

able. For each distribution, the programmer has to calculate in advance all the

necessary constants.

We chose to design a similar method that, given any distribution, from as large

a class as possible, could calculate its own constants as it went along, building

up tables dynamically. In order, on the one hand, to simplify the structure of

the program and, on the other hand, to handle as many different distributions as

possible, we decided to throw away the wedges and the tail, keeping only triangles.

Chapter 6. Generation of a General Univariate Probability Density 	109

The reason for choosing triangles, not rectangles, was that, given that we wished

to use the same method of generation everywhere, we had to cover not just 99%

or 99.9% of the region under the density curve, but the whole region to within

a certain accuracy, and were therefore forced to minimise the number of pieces

required. The number of triangles needed to cover a given area under a smooth

curve is of the order the square root of the number of rectangles required.

Accuracy was another essential consideration: our work with numerical solu-

tion of stochastic differential equations (SDE's) has convinced us of the need for a

source of random deviates accurate to a desired number of bits, where the precise

number of bits should be allowed to vary from application to application. When

taking large time steps to approximate the solution of an SDE, it makes no sense

to require extremely accurate random deviates, but as the time steps get smaller,

in an attempt to increase the accuracy of the approximation, the random deviates

used should get more accurate if the desired accuracy is to really be obtained.

The general idea is to place triangles under the density curve as needed, writing

the necessary table entries for each triangle at the time it is placed. Most of the

time points will be generated in already positioned triangles.

62 Pkdng the triang'es

Let f : JR -* JR be a continuous density function with a continuous derivative

f'(x) and second derivative f"(x). Let the set of points F = {xlf"(x) = 0} be

finite and small. By 'small', we mean that we can handle 0, 1 or 2 inflection points

easily, but that the more there are, the more complicated the program becomes.

We can therefore split JR into a few intervals, on each of which f(x) is either

concave or convex.

We wish to build an algorithm for returning random deviates with density f(x),

using as few inputs as possible. The necessary inputs are as follows: the interval

[a, b] on which the function f(x) is defined, if this is not the whole of JR, the set

F and either one or two black box functions (subroutines). The first function,

Chapter 6. Generation of a General Univariate Probability Density 	110

which must always be supplied, will, when given a value of x, return 1(x). The

second black box function, only needed if 1(x) is convex on any interval, returns

the derivative f'(x). By black box function, we mean that the calling program

will know only the name of the function, that the only input will be the point at

which the function is to be evaluated, the only output the function value, and no

knowledge of how the value is calculated is available to other program units. Note

that the second derivative is not needed, only the information, given by F, about

where it is zero.

If f(x) is symmetric about x = c, then this information can also be supplied,

and F need only contain the inflection points for x > c. In this case, the routine

will generate, in the first instance, points x > c and then return either x or c -

with probability 1/2 each way.

It is not important if the function evaluations 1(x) and f'(x) take a long time,

since these functions will only be called when a new triangle is placed under f(x),

an event that does not happen very often.

The method used for placing triangles varies according to whether the triangle

is in a convex or concave region. For a convex region, triangles are placed with all

3 vertices on the curve f(x), whereas in a concave region triangles are placed with

all 3 sides tangent to f(x), as described in Chapter 5. No triangle must be allowed

to be partly in a convex region and partly in a concave region. The easiest way

of ensuring this is to use all the points of F as vertices and points of tangency of

the first few triangles placed, as in Figure 5-10.

An immediate question is how we choose the points on the curve f(x) that

determine the placing of triangles. The method suggested in Chapter 5 cannot be

used, because it involves placing all points once and for all, in order to cover a

c tain chosen percentage of the region under f(x), whereas we now wish to place

new points one at a time, leaving open how much of the region will eventually

be covered. When only a few points are required from the distribution, only a

few triangles will be needed, but the greater the number of points to be gener-

ated sequentially (as one sample, or as a set of independent samples all required

together), the closer the region covered by triangles will get to being the whole

Chapter 6. Generation of a General Univariate Probability Density 	111

region. To choose a point on the curve, it naturally suffices to choose a point x

from the interval [a, b], since the second coordinate is then given by f(x). The

first points chosen can be the ends of the interval [a, b], if a or b or both are finite

(or [c, b] in the symmetric case), and the points in F. Further points will then be

chosen between these, in order, ie if in the first round points have been placed at

1X1, x 2 ,. . . , x,}, then in the second round they will be placed between x 1 and x 2 ,

between x 2 and x3 and so on. The term 'round' is used here to show that there is a

hierarchy among the points placed on the curve and therefore among the triangles

placed in the region under the curve. The first points are placed along the curve

in order from left to right. Whenever the algorithm has to return to the left end

of the interval, in order to place points between those previously placed, then a

new round starts and a new set of triangles will be added.

What happens at the ends of the interval depends on whether f(x) is defined

on a finite or an infinite interval. If the interval is finite at any end, then that

end of the interval will be used to place a point on f(x) in the first round and

subsequent points will be placed further in. This is the easy case. If, however, the

interval is infinite in any direction, on the right say, which can only happen if f(x)

is convex at that end of the interval, it will never be possible to place a rightmost

point. At each round there will be a temporary rightmost point, but in the next

round another point must be placed further to the right of that one.

We are now faced with two important and difficult questions. Firstly, if points

have already been placed at x 1 and x2 and it is time to place a new point between

them, where do we put it? Secondly, if f(x) is defined on [a, oc) and is therefore

convex on [b,00) (b >= a), and x 1 > b is the rightmost point placed so far, where

do we put the next point x 2 > x 1 ? We will refer to this second problem as the

problem of placing a new tail triangle. We would wish to answer these questions

in such a way that all the triangles placed in one round have areas that are very

close to each other in size, and all the triangles added in the next round have much

smaller areas. When placing a new tail triangle, we would like to cover about half

of the remaining area under the tail.

We will first concentrate on the question of where to place new points on an

Chapter 6. Generation of a General Univariate Probability Density 	112

interval where f(s) is concave. Ideally we would like to place a new point between

two old ones in such a way that the two wedges left between the new triangle and

the curve have equal areas. Even if we allow integration of f(s), which does not

seem a desirable option, it is still not easy to satisfy this demand. In practice, it

is often satisfactory when placing a point on the curve f(s), between points with

abscissas x and 2, to simply take the point with abscissa (s i + x2)12.

However this method is very unsatisfactory in the case of a purely concave

curve on an interval [a, b] with an infinite derivative at a or b. For an arc of a

circle, it is easy to place a new point so that the areas of the wedges will be equal,

by choosing equal angles from the centre of the circle, therefore subdividing the

arc XIX2 into two arcs of equal length. For an ellipse, it suffices to subdivide the

arc of the circle with same centre as the ellipse and with radius equal to the axis

of the ellipse in the x direction, and then to project down from the circle on to the

ellipse, parallel to the y-axis, as illustrated in Figure 6-1. We therefore propose

this method for placing a point ± between xi and X2 in [0, b] on a density curve

f(s) concave on [0, b], when the value of the derivative is zero at 0 and infinity

at b: project parallel to the y-axis the arc of f(s) for x e [Si, X21 onto the circle

of centre (0,0) and radius b, divide the obtained arc of the circle into two equal

pieces and project back down onto f(s).

Using polar coordinates for the circle, we haves 1 = b cos (0i), X2= bcos(0 2) and

we wish to take ± = bcos((0 i + 02)12). Simple development using trigonometric

identities yields

X = 	 [b2 + 12 - /(b2 - xfl(b 2 - s)]

so no angles need to be calculated explicitly. The class of densities for which

this method is appropriate (with a translation of the origin where necessary),

naturally includes those purely concave densities which are symmetric about some

point x = c and have infinite derivatives at the ends of the interval on which they

are defined.

Chapter 6. Generation of a General Univariate Probability Density 	113

EM

Figure 6-1:

63 Using uniform random numbers

So far, we have only discussed how to choose the vertices of new triangles to be

placed under the curve f(x). We have not said when new triangles should be added

or how we choose the triangle in which to generate a point each time. Nor have we

yet mentioned the data structures used to store information about the triangles as

they are put in. We have implemented two different methods, one that relies on

a generator of uniform random numbers from the interval [0, 1] and another that

relies on a supply of random bits. We will describe these two methods in detail,

answering all the remaining questions for each method in turn. There are other

possible ways of proceeding, including hybrids of the two methods we are going

to describe. After reading the description of the two methods, the reader will be

able to imagine how to make mixtures of the two.

The first method, that based on a uniform random number generator, is simple

to program and to describe. It is more realistic, since everyone should be able to

Chapter 6. Generation of a General Univariate Probability Density 	114

Table 6-1: Inversion by sequential search

Generate a uniform [0, 1] random variate U.

Set n - 0.

While U> S, do

fl - n + 1;

if triangle T has not been placed then

place a new triangle T;

S - S,_ 1 + area of T

Generate the x-coordinate of a point uniformly distributed in T.

obtain a good 'cheap' source of uniform random numbers, whereas a good fast

generator of random bits is harder to come by (if it exists at all). When using a

high level programming language, such as C or Fortran, it is more natural to work

with floating-point numbers than with bits. However, as will be seen below, the

random bit model has various optimal features, making it a much more interesting

model theoretically.

The method based on uniform random numbers is essentially the method for

generation of a discrete random variate called 'inversion by sequential search' by

Devroye [12]. The method is outlined in Table 6-1.

It is well-known that the expected number of iterations is bounded by the

entropy of the discrete distribution, in this case by the entropy of the areas of

the triangles. Theoretically the number of triangles is infinite, but the size of the

triangles should decrease fast enough that the entropy stays finite and quite small.

The accuracy of this method depends on the accuracy of the uniform random

number generator. However many decimal places or bits of accuracy are ensured

by the random number generator, the rest of the calculations should be designed

to give results to at least the same accuracy. Using any source of uniform deviates,

there will always be a largest number Urn < 1 that can be generated. However

many random numbers are generated with density f(x), the number of triangles

Chapter 6. Generation of a General Univariate Probability Density 	115

used will never go beyond the number necessary to cover a region with total area

Urn. Therefore, the only way to increase the overall accuracy, is to replace the

uniform random number generator with a more accurate one, that will necessarily

possess a larger maximum value Urn.

The storage requirements imposed by this method are an array to contain the

x-coordinates of the vertices of the triangles (the y-coordinates are not necessary),

an array, 8, of partial sums of probabilities and a linked list of (x-coordinates of)

points placed on the curve f(x). So for each triangle inserted, there will be a total

of 5 floating-point numbers and one pointer stored. All three lists of data need

to be of maximum length equal to the maximum number of triangles that could

be inserted using a particular random number generator. It is helpful to choose

a programming language, such as C, that allows dynamic allocation of memory,

since, whenever a new density f is used, it is impossible to know in advance how

many triangles will be needed.

It is possible to write versions of this method that use separate data tables for

convex and concave regions, and that first choose a convex or a concave interval

with the right probability, before selecting a triangle within the chosen region.

Such a version can be more efficient, but needs to be given the areas of each of the

convex and concave regions as well as the basic inputs described at the beginning

of Section 6.2. In any case, when placing a new triangle, the program must know

whether the triangle is being placed under a convex or a concave part of the curve.

A detail that should be mentioned, is how points are generated uniformly

in triangles. We have used the method of linear transformation mentioned by

Devroye [12]. Points generated uniformly in the basic triangle ((0, 0), (1, 0), (0, 1))

are linearly transformed to place them in the triangle with vertices having x-

coordinates x1, x2, x 3 . We only need the x-coordinate of the random point. The

algorithm is given in Table 6-2.

Clearly generation of one random number from the distribution given by f(x)

using this method uses a total of 3 uniform random deviates: one to choose a

triangle and two to generate a point within the triangle. It is possible to do as

Marsaglia ([38], [37]) does for the fast generation of normal deviates, use some of

Chapter 6. Generation of a General Univariate Probability Density 	116

Table 6-2: Generation of a point in a triangle

Generate uniform [0, 1] random variates U, V.

If U> V then U V.

Return Ux 1 + (V - U)x 2 + (1 - V)x 3

the bits from a uniform random number for choosing the triangle and the remaining

bits for placing a point in the triangle. However, whereas all the rectangles used

by Marsaglia have areas that are integer multiples of a given area, so that there is

a definite number of bits needed to choose a rectangle with perfect accuracy, the

triangles we use do not have such a property. It only makes sense though to use

as much accuracy when choosing a triangle as the accuracy with which the area

has been calculated and stored.

64 Using irandom bits

The second method we have implemented uses random bits for choosing a triangle

with the correct probability and is very much based on work of Knuth and Yao [27].

For this part, we have to presume the existence of a perfect random bit generator.

Knuth and Yao prove the existence of and describe how to build optimal discrete

distribution generating trees (DDG-trees).

Given a discrete density P(X = i) = p, i = I.... , oo, a DDG-tree for that

density is a binary tree that, traversed while reading a sequence of random bits,

returns a value n with probability p. Starting at the root of the tree, the left

or right branch is followed according to whether the first bit generated is 0 or 1.

Either a terminal node is reached, or a node with 2 branches. In the latter case

the process is repeated with subsequent bits until such time as a terminal node is

reached. Each terminal node is labeled with a number ii, indicating that the value

n is to be returned. An optimal DDG-tree is one that, for a given distribution,

minimises the expected number of bits needed to return each number. Following

Chapter 6. Generation of a General Univariate Probability Density 	117

Knuth and Yao, we shall use Borel's functions

fk(x) = L2 . xj mod 2

to specify the coefficient of 2" in the binary representation of x. Knuth and Yao

show that an optimal DDG-tree is a DDG-tree with the property that level k of

the tree contains one (and no more than one) terminal node with the label n if and

only if €k(N) = 1. We will call this property the 'DDG-tree optimality condition'.

The most useful part for our purposes is that Knuth and Yao also describe

how, starting with an optimal DDG-tree for a discrete density p, i = 1,. . . , n,

it is possible to extend the tree to obtain an optimal DDG-tree for the density

Pi,• ,Pn—i,Pn,Pn+1 with j3,, = p. This allows us to build up dynamically,

as the triangles are inserted, an optimal DDG tree for the density given by the

triangles under the curve f(x).

We start with a tree consisting only of the root node. At any stage, when we

have a number n of triangles already positioned, we can write

Epi

where p, i > 1, is the area of triangle i and by Po we denote the total area under

the curve f not yet covered by triangles. We use a DDG-tree where every node

is labeled with an integer from the set {-1, 0, 1,2,3,.. .}. Each node with a label

i > 0 is a terminal node and points to triangle i. A node with the label —1 is an

interior node (whose right and left children may or may not have been added to

the tree yet) and a node labeled 0 is a terminal node, that may later become an

interior node, pointing to the area under the curve outside the existing triangles.

If q is a node of the tree, let L(q) denote the label stored at that node. The

outline of the algorithm used to choose a triangle is given in Table 6-3. Two

parts of the algorithm need to be described in detail: extension of the tree and

refinement of the tree. These two tasks must be carried out in such a way as to

ensure that the DDG-tree optimality condition always holds.

This is how we extend the tree: When an interior node without children is

reached on level k - 1 of the tree, the children of that node must be added to level

Chapter 6. Generation of a General Univariate Probability Density 	118

Table 6-3: Choosing a triangle using a DDG-tree

Set decided - false, q f— root;

Repeat

Generate a random bit, b.

If node q has no children then extend the tree at q;

If b = 0 then q +- left child of q;

else q *— right child of q;

While L(q) = 0 refine the tree;

If L(q) > 0 then

n -

decided - true

Until decided.

Generate the x-coordinate of a point uniformly distributed in triangle T.

k. If fk(Pi) = 1 for some 0 < i < ii and if there is as yet no terminal node, q, on

level k, with L(q) = i, then we should create such nodes. We have to consider the

p, for inclusion in a clearly defined order, so we choose the order 1, 2,. . . , n, 0. An

'accounting' array, M, with one element for each level of the tree, keeps track of

which probability we should next examine at level k. So we examine probability

PMk , to see if Ek(pMk) = 1. If it does, we add a terminal node with label Mk.

Then we examine the next probability, until either two terminal nodes have been

added or else we have examined all probabilities, including po, and still have one

or two children to add. Any remaining children are then interior nodes. Unlike

the other probabilities, P0 changes every time a new triangle is added. Therefore

the accounting for Po is more complicated and we use a separate array, Z, again

with an element for each level of the tree, to keep track of whether Po has been

examined when adding nodes to each level. The outline of the extension algorithm

is given in Table 6-4.

By refinement of the tree, we mean the addition of a new triangle and the

updating operations involved. If a terminal node with label 0 is reached when

Chapter 6. Generation of a General Univariate Probability Density 	119

traversing the tree, a new triangle, with area Pn+i, must be inserted and po must

be decreased accordingly. Whereas extension is a local operation, carried out at

one node of the tree only, refinement involves the whole tree generated so far.

When the value of Po changes, all terminal nodes labeled 0 need to be updated.

Each such node, at level k, may only retain the label 0 if the new value of po

contains the digit 1 in the kth binary place and if there is no probability p 2 ,

n + 1 > i > Mk, with k(pi) = 1. If such a p1 exists, the label is changed to i,

otherwise, if Ek(po) = 0, the label becomes —1 and the node therefore changes

from a terminal node to an interior node. The refinement is done recursively, node

by node. Starting with the root, each node is examined in turn. If the node is

labeled zero, it is updated, if not, the right and left children are examined, if they

exist. The basic routine to refine the tree when a new triangle is added is outlined

in Table 6-5.

This routine calls the routine refine(q, Ic), which updates the sub-tree with root

at node q on level k. The routine is given in Table 6-6.

An example of a computer program written using the above methods is given

in Appendix A.5.

Chapter 6. Generation of a General Uni van ate Probability Density 	120

Table 6-4: Extension of the DDG-tree

Allocate storage for 2 new nodes, qi and q2.

Set q1i,qlr,q2:,q2r - NULL;

i4—Mk;

While i<n and Ek(pI)=Odoi4—i+1;

If i < r

then

L(ql) -

Mk4—i+1;

else

If Zk = 0 and fk(po) = 1

then

L(ql) - 0;

else L(ql) f- — 1

While i < n and fk(Pi) = 0 do i - i + 1;

If i < n

then

L(q2) -

Mk+—i+1;

else

If Z k =O and f k (po)= 1

then

L(q2) - 0;

else L(q2) 4- —1;

Left child of q - ql

Right child ofq - q2

Chapter 6. Generation of a. General Univariate Probability Density 	121

Table 6-5: Refinement of the DDG-tree

n - n + 1;

place triangle T;

P0 - Po — area of T;

refine(root, 0);

Table 6-6: Routine refine(q,k)

If L(q) = 0

then

While Z' <n and k(p1)=0doi4—i+1;

If i < n

then

Mkf-i+1;

else

If ck(po) = 1

then Zk +— 1;

else L(q) - — 1;

else

if q has a left child, q, then refine(q 1 , k + 1);

if q has a right child, q,., then refine(qr , k + 1);

R. Azencott. Formule de taylor stochastique et developpement asymp-

totique d'intégrales de feynmann. 	In Se'minaire de Probabilite's XVI,

Sup ple'ment: Ge'ometrie differentielle stochastique, pages 237-284. Springer-

Verlag, 1980/81.

G. Ben Arous. Flots et series de Taylor stochastiques. Probab. Theory Related

Fields, 81:29-77, 1989.

K. Bichteler. Stochastic integration and l' theory of semimartingales. Ann.

of Prob., 9(1):49-89, 1981.

F. Castell. Asymptotic expansion of stochastic flows. Probab. Theory Related

Fields, 96(2):225-239, 1993.

F. Castell and J. G. Gaines. The ordinary differential equation approach to

asymptotically efficient schemes for solution of stochastic differential equa-

tions. To appear in Annales de 1'I.H.P.

K.-T. Chen. Integration of paths, geometric invariants and a generalized

Baker-Hausdorif formula. Ann. of Math., 65(l):163-178, 1957.

J. M. C. Clark. An efficient approximation for a class of stochastic differen-

tial equations. In W. H. Fleming and L. G. Gorostiza, editors, Advances in

filtering and optimal stochastic control, Proceedings of IFIP- WG711 Working

Conference, Cocoyoc, Mexico, 1982, number 42 in Lecture Notes in Control

and Information Sciences. Springer-Verlag, Berlin, 1982.

122

Bibliography 	 123

J. M. C. Clark. The discretization of stochastic differential equations: A

primer. In H. Neunzert, editor, Road Vehicle Systems and Related Math-

ematics, Proc. Second Workshop Turino. Series Mathematical Methods in

Technology, 1987.

J. M. C. Clark and R. J. Cameron. The maximum rate of convergence of

discrete approximations for stochastic differential equations. In B. Grigelionis,

editor, Stochastic Differential Systems, number 25 in Lecture Notes in Control

and Information Sciences. Springer-Verlag, Berlin, 1980.

L. Comtet. Analyse Combinatoire, Tome Premier. Number 4 in Le

Mathématicien. Presses Universitaires de France, Paris, 1970.

J. Devlin. Word problems related to periodic solutions of a non-autonomous

system. Math. Proc. Cambridge Philos. Soc., 108:127-151, 1990.

Luc Devroye. Non Uniform Random Variate Generation. Springer-Verlag,

100 on

C. Doléans-Dade. On the existence and unicity of solutions of stochastic

integral equations. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 36:93-101,

1976.

0. Faure. Numerical pathwise approximation of stochastic differential equa-

tions. Technical report, CERMA-ENPC, 1990.

0. Faure. Simulation du mouvement brownien et des diffusions. PhD thesis,

Ecole Nationale des Ponts et Chaussées , CERMA-ENPC, 1991.

M. Fliess. 	Fonctionnelles causales non-linéaires et indéterminées non-

commutatives. Bull. Soc. Math. France, 109:3-40, 1981.

J. G. Gaines. The algebra of iterated stochastic integrals. Stochastics and

Stochastic Reports, 49:169-179, 1994.

Bibliography 	 124

J. G. Gaines and T. J. Lyons. Random generation of stochastic area integrals.

SIAM J. of Applied Math., 54(4):1132-1146, 1994.

T. C. Gard. Introduction to Stochastic Differential Equations. Monographs

and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New

York and Basel, 1988.

H. Gjessing, H. Holden, T. Lindstrom, B. øksendal, J. Ubøe, and T.-S. Zhang.

The Wick product. In A. Melnikov, editor, Frontiers in Pure and Applied

Probability, Vol. I. TVP Science Publishers, Moscow, 1993.

Y. Z. Hu. Serie de Taylor stochastique et formule de Campbell-Haussdorff,

d'apres Ben Arous. In J. Azema, P. A. Meyer, and M. Yor, editors, Séminaire

de Probabilite's XXV, number 1485 in Lecture Notes in Mathematics, pages

579-586. Springer-Verlag, 1991/92.

D. A. Huffman. A method for the construction of minimum redundancy

codes. Proc. IRE, 40:1098-1101, 1952.

K. Ito. Stochastic differential equations in a differentiable manifold. Nagoya

Math. Journ., 1:35-47, 1950.

P. E. Kloeden and E. Platen. A survey of numerical methods for stochastic

differential equations. Journal of Stochastic Hydrology and Hydraulics, 3:155-

178, 1989.

P. E. Kloeden and E. Platen. Stratonovich and Ito stochastic Taylor expan-

sions. Math. Nachr., 151:33-50, 1991.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential

Equations, volume 23 of Applications of Mathematics. Springer-Verlag, 1992.

D. E. Knuth and A. C. Yao. The complexity of nonuniform random number

generation. In J. E. Traub, editor, Algorithms and compexity: new directions

and recent results, pages 357-428, New York, N.Y., 1976. Academic Press.

Bibliography 	 125

Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer

Programming. Addison-Wesley, Reading, MA., 1973.

Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-

puter Programming. Addison-Wesley, Reading, MA, 1973.

P. Levy. Processus Stochastiques et Mouvement Brownien. Monographies des

Probabilités. Gauthier-Villars, Paris, 1948.

Paul Levy. Wiener's random function, and other Laplacian random functions.

In J. Neyman, editor, Second Berkeley Symposium on Mathematical Statistics

and Probability, 1951.

T. Lindstrom, B. øksendal, and J. Ubøe. Stochastic differential equations in-

volving positive noise. In M. T. Barlow and N. H. Bingham, editors, Stochas-

tic Analysis, pages 261-303. Cambridge Univ. Press, 1991.

M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics and its

Applications. Addison-Wesley, Reading, Mass., 1983.

R. C. Lyndon. On Burnside problem I. Trans. Amer. Math. Soc., 77:202-215,

1954.

T.J. Lyons. The interpretation and solution of ordinary differential equations

driven by rough signals. Maths. Research Letters I, pages 451-464, 1994.

G. Marsaglia. The squeeze method for generating gamma variates. Comput.

Math. Appi., 3:321-325, 1977.

G. Marsaglia, K. Anantharayanan, and N. J. Paul. Improvements on fast

methods for generating normal random variables. Inform. Process. Lett.,

5(2):27-30, 1976.

G. Marsaglia, M. D. MacLaren, and T. A. Bray. A fast procedure for gener-

ating normal random variables. Comm. ACM, 7:4-10, 1964.

Bibliography 	 126

Maruyama. Continuous Markov processes and stochastic equations. Corn

Rend. Circ. Mat. Palermo, 4:48-90, 1955.

G. Melancon. Combinatorics of Hall trees and Hall words. J. Cornbin. Theory

Ser. A, 59(2):285-308, 1992.

G. Melançon and C. Reutenauer. Lyndon words, free algebras and shuffles.

Canad. J. Math., 41(4):577-591, 1989.

P.-A. Meyer. Sur deux estimations d'intégrales multiples. In J. Azéma, P. A.

Meyer, and M. Yor, editors, Se'rninaire de Probabilite's XXV, pages 425-426.

Springer-Verlag, 1991.

G. N. Milshtein. Approximate integration of stochastic differential equations.

Th. Prob. Appi., 19, 1974.

N. J. Newton. An asymptotically efficient difference formula for solving

stochastic differential equations. Stochastics, 19:175-206, 1986.

N. J. Newton. An efficient approximation for stochastic differential equations

on the partition of symmetrical first passage times. Stochastics and Stochastic

Reports, 29:227-258, 1989.

N. J. Newton. Asymptotically efficient Runge-Kutta methods for a class of

Ito and Stratanovich equations. SIAM J. of Applied Mathematics, 51(2):542-

567, 1991.

E. Pardoux and D. Talay. Discretization and simulation of stochastic differ-

ential equations. Acta Appl. Math., 3:23-47, 1985.

E. Platen and W. Wagner. On a taylor formula for a class of Ito processes.

Prob. and Math. Stats., 3:37-51, 1982.

P. Protter. On the existence, uniqueness, convergence and explosions of so-

lutions of systems of stochastic differential equations. Ann. Prob., 5:243-261,

1977.

Bibliography 	 127

D. E. Radford. A natural ring basis for the shuffle algebra and an application

to group schemes. J. Algebra, 58:432-453, 1979.

R. Ree. Lie elements and an algebra associated with shuffles. Ann. of Math.,

68:210-220, 1958.

C. Reutenauer. Free Lie Algebras. London Mathematical Society Mono-

graphs, New Series 7. Oxford Science Publications, Oxford, 1993.

L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martin-

gales 2, Ito Calculus. John Wiley and Sons, 1987.

W. Rümelin. Numerical treatment of stochastic differential equations. SIAM

J. Numer. Anal., 19(3), 1982.

H. J. Sussmann. Product expansions of exponential Lie series and the dis-

cretization of stochastic differential equations. In W. Fleming and P. L. Lions,

editors, Stochastic Differential Systems, Stochastic Control Theory and Appli-

cations, volume 10 of The IMA volumes in Mathematics and its Applications.

Springer-Verlag, 1988.

D. Talay. Simulation and numerical analysis of stochastic differential systems:

A review. Technical Report 1313, INRIA, 1990.

N. Wiener. Un problème de probabilités dénombrables. Bull. Soc. Math.

France, 52:569-578, 1924.

E. Witt. Treue Darstellung Liescher Ringe. Journal fur die Reine und Ange-

wandte Mathematik, 177:152-160, 1937.

Computer Programs

All the code in this appendix is written in C, except for Section A.3.

A01 Access and dynamic generation of a Brow-

nian tree

#define K 5

typedef struct{ mt recno,level,prerec,nexrec,parent;
mt lson,rson,spare[7];
float tO,tp;} record;

typedef struct{ mt np,nw,nlevels,nll,seed,nrecsl,nrecs2;
mt spare[7];
float sp[21;1 header;

getdw(nw,dw,level ,t ,h,func, idum,cangoup)
mt nw ,level , idum , *cangoup;
float *dw,t,h,(*func)Q;
/* Routine to read and return elements from a Brownian
tree stored in a file, also to add elements to the tree
when necessary.
The external variables wfile and in, that may be used
by other program units, are pointers to the file
containing the Brownian tree and to the jo-unit
connected to the file.
The routine keeps several (K) records in memory at all times,
so that file accesses are not performed during
most calls to the routine.
getdw presumes that it is being used to help solve an sde
forwards through time, ie it presumes that the next call
to getdw will be at the same period or the next one.
*/

128

Appendix A. Computer Programs 	 129

{extern char wfile;
extern FILE in;
static float **w;
static record r[K];
static header head;
static mt 1,np,recsize,initO;
static long size;
float **array3O,hh,tt,sd,**w2,**matrixO;
mt i,j,k,tag;
record r2;
if(init==011idum<O) / Initialize by reading in K records, such that

the last is on given level and the others are
all parents. *1

{in=fopen(wfile,"r+");
if(in==NULL) {printf (" Can't open file in getdw\n); exit(1);}
recsize=sizeof (record);
fread((char ')&head,recsize,1,in);
if(nw!head.nw) {printf(' Noise vector wrong size in %s.\n",wfile);

printf(" nw=%d head.nw=%d\n" ,nw,head.nw);
exit (1) ;}

np=head . np;
if (head .nlevels<level)
{printf(" Not enough levels in initial brownian path\n");
exit(1) ;}

if(init==O) w=array3(0,K-1,0,np-1,0,nw-1);
size=recsize+np*nw*sizeof(float);
fseek(in,size,O);
readw(w[O] ,np,nw,r,in);
while(r[O] .level<level-K+lIIt<r[O] .tO) readw(w[O],np,nw,r,in);
for(i1 ; i<K; j++)
{fseek(in,size*r[i-1] .lson,O);
readw(w[i] ,np,nw,r+i,in);

}

llevel;
initl;

}

while(level>l) /* Go down one or more levels */
{ for(i0;i<K-1 ;

{ r[i]r[i+1]
for(j0;j<np;j++) for(k=O;k<nw;k++) w[i]Cj][k]w[i+1][j][k];

}

if (r [K-i] .lson>O)
{fseek(in,size*r[K-i] .lson,O);
readw(w[K-11 ,np,nw,r+K-i,in);

}

else /* Create new noise elements */

hhi.O/i;
sdsqrt(hh*0.5);
w2matrix(O,np-1,0,nw-1);
brownchunk(w[K-2] ,np,nw,w[K-i] ,w2,sd,func);
r[K-i] .recno=head.nrecsi++;head.nrecs2++;
l++; r[K-1] .levell;
r[K-1] .nexrec=r[K-1] .recno+i;
r[K-1] .parent=r[K-2] .recno;r[K-i] .lsonr[K-i] .rson(-1);

Appendix A. Computer Programs 	 130

r[K-1] .prerec(-1);
r[K- 2] .lson=r[K-1] .recno;
r[K-1] .tO=r[K-2] AO;
r[K-i] .tp=r[K-1] .tO+np*hh;
fclose(in);
in=fopen(wfile,"a+");
i=savew(w[K-11 ,np,nw,r+K-1,in);
fclose(in);
in=f open (wfile,"r+");
r2 . recno=head . nrecsl++ ;head . nrecs2++ ; r2 . level=l;
r2 . prerecr2 . recno-1;
r2.parentr[K-1] .parent;r2.lsonr2.rson=(-1);
r2.nexrec(-1);
r [K-2] . rsonr2 . recno;
r2.tO=r[K-1].tp;r2.tp=r2.tO+np*hh;
fclose(in);
in=fopen(wfile,a+");
i=savew(w2 , np , nw,&r2 ,in);
f close (in);
in=fopen(wf ile,
free_matrix(w2 ,O,np-1,O,nw-1);
/* Rewrite header */
fwrite((char *)&head,recsize,i,in);
1* Rewrite record(K-2) to update lson,rson */
fseek(in,r[K-21 .recno*size,O);
savew(wEK-2] ,np,nw,r+K-2,in);

}

}

while(1-K+1>level) 1* Go up one or more levels *1
{ for(iK-1;i>O;i--)

{ r[i]r[i - 11;
for(j=O;j<np;j+-f) for(k0;k<nw;k++) w[i][j][k]=w[i - 1][j][k];

}

fseek(in,size*r[1] .parent,O);
readw(w[O] ,np,nw,r,in);
1--;

if(t<r[0].tO) {printf(" Error: t<tO in getw.\n"); exit(1);}
/* Get correct level */
for(i0;i<K;i++) if(r[i] .level1evel) {tag=i; break;}

while(t>=r[tag].tp) 1* Get correct time interval *1
{ 1* Move tag down to K-i *1
r[K-i]r [tag];
for(j=O;j<np;j++) for(k0;k<nw;k++) w[K - i][j][k]=w[tag][j][k];
tag=K-1; 1=level;
if(r[tag] .nexrec>O)
{fseek(in,r[tag] .nexrec*size,O);
readw(w[tag],np,nw,r+tag,in);

}

else
{r[O]r[tag]
initstack()
while(r[O] .nexrec<O)

Appendix A. Computer Programs
	

131

{push(r[O] .recno);
fseek(in,r[O] .parent*size,O);
readw(w[O] ,np,nw,r,in);

}

fseek(in,r[O].nexrec*size,O);
readw(w[O] ,np,nw,r,in);
while(r[O].level<level) /* Create more tree */
{

/ Rewrite parent *1
fseek(in,r[O] .recno*size,O);
r[O] .lsonhead.nrecsl;r[O] .rsonhead.nrecsl+1;

fwrite((char *)r,recsize,1,in);
hhl .O/(1<<r[O] .level);
sd = sqrt(O.5*hh);
brownchunk(w[O] ,np,nw,w[1] ,w[2] ,sd,func);
r[1]r[O]
ni] .recnohead.nrecsl++;head.nrecs2++;
r[i] .parentr[O] .recno;
ru] .prerecpopO; printf (" popping %d\n" ,r[1] .prerec);
r[1] .level++;r[1] .nexrecr[1] .recno+1;
r[1] .lsonr[i] .rson(-1);

.tpr[O] .tO+np*hh;
tellprerec(r[1].prerec,r[1] .recno,recsize,size,in);
fclose(in);
infopen(wfi1e,"a+);
savew(w[1] ,np,nw,r+i,in);
fclose(in);
in=fopen(wfile,"r+");
r[2]=r[1] ;head.nrecsl++;head.nrecs2++;

.recno++;r[2] .prerecr[2] .recno-1;
r[2] .nexrec(-1);
r[2] .tOr[2] .tp;r[2] .tp+np*hh;
fclose(in);
in=f open (wfile,"a+");
savew(w[21 ,np,nw,r+2,in);
fclose(in);
in=f open (wfile,"r+");
for(k0;k<np;k++) for(i0;i<nw;i++)
w[O] [k] [i]w[1] [k] [i]
r[O]r[1]
/* Rewrite header */
fwrite((char *)&head,recsize,i,in);

}

r[K-1]r[O]
for(j0;j<np;j++) for(k0;k<nw;k++) w[K- i][j][k]w[O][j][k];
freestackO;

}

/*Fij.. in w and r
for(i=K-2; i>0; i --)
{fseek(in,r[i+i] .parent*size,O)
readw(w[i] ,np,nw,r+i, in) ;

}

}

1* Return correct dw */
tt=r [tag] .tO; i0;
while(tt<t) { i++; ttr[tag].tO+i*h;}

Appendix A. Computer Programs 	 132

if(i>np-1) {printf(" Error in time.\n "); exit(1);}
for(j0;j<nw;j++) dw[j]=w[tagJ Ci] [j];
/' Check if possible to go up a level

next time. It is only possible when the
current time index = 3 mod 4. *1

*cangoup=((i%4==3&&level>5)?1 :0);
}

tellprerec(prerec,nexrec,recsize,size, in)
mt prerec,nexrec,recsize;
long size;
FILE *in;
1* Updates the record prerec so that the pointer
to the next record points to nexrec.
*1
{ record r;

f seek (in ,prerec*size , 0)
fread((char *)&r,recsize,1,in);
r . nexrecnexrec;
fseek(in, (long) (-recsize) , 1);
fwrite((char *)&r,recsize,1,in);

}

mt *sp;

initstack()
/* Initialises a stack, pointed to by sp *1
-Cextern mt *sp;
unsigned stacksize20; 1* Max. no of levels *1
sp=(int *)malloc(stacksize*sizeof(int));
if(!sp) {printf(1t allocation failure in initstack\nu); exit(1);}

}

freestack()
1* Releases the memory used by the stack
pointed to by sp *1
{extern mt *sp;
free((char *)Sp);

}

push(n) mt n;
1* Adds the integer n to the stack *1
{extern mt *sp;
* (sp++)n;

}

mt popO
1* Gets an integer from the top of the stack *1
-Cextern mt *sp;
return (*(--sp));

}

Appendix A. Computer Programs 	 133

A02 Generation of Levy areas

The tables of constants used by this routine are much too long to be included here,

so we have given only the first two and the last elements of each array. The code

is otherwise complete.

define NCUBE 2975 1 Number of blocks easy part is broken into*/
define DIMP 5949 	/* Dimension of tree: 2*NCUBE-1 */
define SCUBE 119519 /* Total number of blocks when all blocks are

broken down into smallest size blocks */
define NW 4096 	1 Number of wedges *1
#define NWEDGE 4095 / Number of wedges - 1 *1
#define DIMW 8191 	/* Dimension of utree: 2*NWEDGE+1 */

#define NT 9 	1* Number of parts of tail - 1 *1
#define DIMT 19 	/* Dimension of tailtree: 2*NT-1 */
/' Dimension of square matrix z (of function values) *1
Udefine DIMZ 65

1* Volume of easy part + volume of wedges *1
*define PR1 0.99732406024821951
*define DL 0.0625
*define MAXRAN 4.294967296e9
#define H 0.298023225e-7
#define EPS 1.0e-4

typedef struct
{unsigned long p; short mt rson,lson; float r,a,h;} node;

static node tree [DIMP]
{

{119519,2,1,0.0,0.0,0.0},
{69003,4,3,0.0,0.0,0.0},

{1o7595,-1,-1,1.O,o.O,1.O}

typedef struct {double p; short mt rson,lson;} wedge;
static wedge wtree[DIMW]
{

{9.973240602482193e-01,2,11,
{9 . 611933921062400e-01 ,4,3},

361841639166600e-01 , -1, -1}

typedef struct {double h,dh,base;} triple;
static triple W[NW]=
{

{0.0,0.048896637226827,0.0},
{0.0,0.048430181086172,0.0},

Appendix A. Computer Programs 	 134

{0 .0,0 .000068025297515,0. 000053038700553}

typedef struct {double p; short mt rson,lson,no;} tailstruct;
static tailstruct tailtree[DIMT]
{

11.000000000000000e+00,1,16,01,
{1.000000000000000e+00,12,2,01,

994249898245016e-01 ,-i,-i, i}

static double z[DIMZ] [DIMZ]
-C{0.0,0.0,0.0,0.0,0.0,

0 :000055417724037,0. 000053038700553}

typedef struct {double 1,h;} pair;
static pair epsilon[NW]

{{0 .0,0.000 149092954277},
f-0.0,0.0001404552556771,

f-0.000000282727450,0.01

double fQ,f1Q,f20,f30,f40,f50,f60,f70,f80,f9Q,flOQ;

gen_ra(r, a,func, eps)
float *r,*a, (*func)() ,eps;
{float u,v,w;
double xx;
short mt 	lson,rson,i,sign;
unsigned long bits,p;

w(*func)(1);
bit s=w*MAXRAN;
sign=(bits & 0X80000000)>>31;
p=(bits & OX7FFFC000)>>14;

if (p<SCUBE)
{lsontree[01 .lson;
rson=tree [0] . rson;
while (lson>0)
{if(p<tree[lson] .p)

{ilson; lsontree[i] .lson;
else
{irson; lsontree[i] .lson;

}

u(*func) (1);
v(*func) (1);
*rtree[i] .r+tree[i] .h*u;
*atree[i] .a+tree[i] .h*v;

}

else
{xx ((bit s&OX7FFFFFCO) >>6) *H;

rson=tree[i] .rson;}

rson=tree Li] . rson; }

Appendix A. Computer Programs

if (xx<PRj.)
{i=choose_wedge2 (xx);
wedge_ra(i,func,r,a,eps);

}

else
tail_ra(xx,func,r,a);

}

if (sign) *a(-(*a));
}

135

choose_wedge2(x) double x;
{int i,rson,lson;
lsonwtree[0] .lson;
rsonwtree[O] .rson;
while (lson>0)
{if(x<wtree[lson] .p)

{ilson; lsonwtree[i] .lson;
else
{i=rson; lsonwtree[i] .lson;

rson=wtree [i] . rson; }

rsonwtree[i] .rson;}

}

if(i<NWEDGE) {printf(" Mistake in choose_wedge2: i=%d\n",i);
exit (1)

}

/ in wtree the wedges are in the 2nd half
and in reverse order */

i=DIMW-1-i;
return i;

}

wedge_ra(k,func, r, a, eps)
mt k; float (*func)O,*r,*a,eps;
{ double z,zz,interpolateO;

mt i,j ,countO,rejected;
ik/64;
j=k-i*64;
do
{*rDL*(i+(*func) (1));
aDL(j+(*func) (1));
zW[k] .h+W[k] .dh*(*func) (1);
if(z<W[k] .base) rejectedO;
else
{zz=interpolate(*r,*a,i,j);
if(z<zz+epsilon[k] .l-eps) 	rejectedo;
else
{if(z>zz+epsilon[k] .h-feps) rejected=1;
else
{if(z<f(*r,*a)) rejectedo;
else 	 rejectedl;

}

}

}

} while(rejected&&count<100);
if (count>= 100)
printf("wedge %d, 100 numbers rejected: r=%f a= °hf\n",k,*r,*a);

}

Appendix A. Computer Programs

double interpolate(r,a,i,j)
double r,a;
mt 	i,j;

{double t,u,rl,r2,ai,a2;
r1iDL;
r2(i+1)*DL;
alj*DL;
a2(j+1)*DL;
t=(r-rl)/(r27rl);
u=(a-al)/(a.2-al);
return
(1-t)*(1-u)'z[i][j] + t*(1-u)*z[i+1][j] +
tu*z[i+1] [j+1] + (1-t)*uz[i] [j+1]

}

136

tail_ra(x ,func ,r, a)
double x;
float (*func)Q,r,*a;
-(double z;
mt i,rson,lson,tailno;
lsontailtree[O] .lson;
rsontailtree [0] . rson;
while (lson>0)
{if (x<tailtree[lson] .p)

{ilson; lson=tailtree[i] .lson;
else
{i=rson; lsontailtree[i] .lson;

rsontailtree[i] . rson; }

rsontailtrée[i] .rson;}
}

if(i<NT) {printf(" Mistake in choosing tail: i%d\n",i);
exit (1)

}

itailtree[i] .no;
do
-Cswitch(i)

{ case 1: gl(r,a,&z,func); break;
case 2: g2(r,a,&z,func); break;
case 3: g3(r,a,&z,func); break;
case 4: g4(r,a,&z,func); break;
case 5: g5(r,a,&z,func); break;
case 6: g6(r,a,&z,func); break;
case 7: g7(r,a,&z,func); break;
case 8: g8(r,a,&z,func); break;
case 9: g9(r,a,&z,func); break;
case 10: glO(r,a,&z,func); break;

}

)-

while (z>f(*r,*a));
}

double pisq20.04774648292756860073; 1* h/2/Pi *1
float 	slownorm() ,randexpQ;

double f(r,a)
float a,r;
-(static double 1im31.0,h0.3;
double x,r2,aa,sum0.0;
mt i=0;

Appendix A. Computer Programs 	 137

aa= (double) a;
5)*r*r;

x(-lim);
while (x<lim)
{xi*h-lim;
sum+ xlsinh(x) *exp(r2*x/tanh(x))*cos(aa*x)

}

return pisq2*r*suin;

/* 4<r<12 0<a<4 */
gl(r,a,z,func) float (*func)() ,*r,*a; double *z;
{*a4.0*(*func)(1);
do{

r=4.0+8.0(*func)(1);
z=0.00034(*func)(1);

} while(*z>fl(*r,*a));

double fl(r,a) float a,r;
{return exp(-0.5*r*r) ;}

/* 4<r<8 4<a<8 */
g2(r,a,z,func) float (*func)Q,*r,*a; double *z;

do{
r4.0+4.0(*func) (1);
a=4 . 0+4 . 0 (*func) (1)
z=O . 00012(*func)(1);

} while(*z>f2(*r,*a));
}

double f2(r,a) float a,r;
{static double c1.5,lam1.5;
double rr;
rr=r*r;
return c*exp (-0 . 5*rr-lain*a*a/rr);

}

/* 2<r<4 4<a<8 */
g3(r,a,z,func) float (*func)Q,*r,*a; double *z;
{static float laxn0.5*(M_PI);
r2 . 0+2 . 0 (*func) (1)
do{*a4.0+randexp(laxn,func);} while(*a>8.0);
*z=f3(*r,*a)*(*func)(1);

}

double f3(r,a) float a,r;
{static float lam0.5*(M_PI);
return exp(-lam*a);

/* 0<r<0.5 4<a<6 */
g4(r,a,z,func) float (*func)O,*r,*a; double *z;
{static float laxn=(M_PI);

Appendix A. Computer Programs 	 I1Z1

float x,y;
x=O.5*(func)(1);
y=O.5*(*func)(1);
*r(x>y?x:y);
do{*a4.0+randexp(lam,func) ;} while(*a>6.0);
*z=(*func)(1)*f4(r,*a);

}

double f4(r,a) float a,r;
{static double lam=(M_PI),c=15.0;
return c*r*exp(-lain*a);

}

/* 0.5<r<1 4<a<6 /
g5(r,a,z,func) float (*func)O,*r,*a; double *z;
{static float 1am2.8;
float x,y;
x0 . 5+0 . 5* (func) (1)
y0.5+0.5*(*func)(1);
*r=(x>y?x:y);
do{a=4.0+randexp(lam,func);} while('a>6.0);
z=(*func)(1)*f5(*r,*a);

}

double f5(r,a) float a,r;
{static double lain2.8,c15.0;
return c*r*exp(-lama);

}

/* 1<r<1.5 4<a<6 */
g6(r,a,z,func) float (*func)Q,*r,*a; double *z;
{static float 1am2.6;
float x,y;
x1. 0+0 . 5* (*func) (1)
y=l .0+0. 5*(*func)(1);
r=(x>y?x:y);

do{*a=4.0+randexp(lam,func);} while(*a>6.0);
*z(*func) (1)*f6(*r,*a);

}

double f6(r,a) float a,r;
{static double lam2.6,c25.0;
return c*r*exp(-lam*a);

}

/* 1.5<r<2 4<a<6 */
g7(r,a,z,func) float (*func)Q,*r,*a; double *z;
-jatic float 1am2.4;
float x,y;
x1 .5+0. 5*(*func)(1);
y=l .5+0. 5*(*func)(1);
*r(x>y?x:y);
do{*a4.0+randexp(lam,func) ;} while(*a>6.0);
z(*func) (1)*f7(*r,*a);

}

Appendix A. Computer Programs
	 139

double f7(r,a) float a,r;
{static double lam=2.4,c=25.0;
return c*rexp(-lama);

}

/* 1<r<2 6<a<8 */
g8(r,a,z,func) float (*func)Q,*r,*a; double *z;
{static float lam=2.4;
float x,y;
x= 1 .O+(*func)(1);
yl .O+(*func) (1);

do{a=6.0+randexp(1ain,func) ;} while(*a>8.0);
*z(func)(1)*f8(*r,*a);

}

double f8(r,a) float a,r;
{static double lam=2.4,c=40.0;
return c*r*exp(-lam*a);

}

/ 2<r<5 8<a<10 */
g9(r,a,z,func) float (*func)O,*r,a; double *z;
-Cstatic float 1am0.5(M_PI);
r=2.0+3. 0 (*func) (1)
do{*a8.0+randexp(lam,func);} while(*a>10.0);
*z=(*func)(1)*f9(*r,*a);

}

double f9(r,a) float a,r;
{static double lam0.5*(M_PI),c0.7;
return c*exp(-lam*a);

}

/* remainder */
glO(r,a,z,func) float (*func)Q,*r,*a; double *z;
{static float lam(M_PI);
do{*r=fabs(slownorm(0.0,10.0,func));

*a=randexp(0 . 1,func);
}while((*a<6&&*r<8) 	I I

(*a<4&&*r<12) 	I I
(*r>1&&*a<8&&*r<8) I I
(*r>2&&*r<5&&*a<10));

*z=0.0;
}

double flO(r,a) float a,r;
{static double laxn(M_PI),c1.0;
return 0.0;

}

Appendix A. Computer Programs 	 140

A03 Mathematca: shuffle products and writing

in terms of a Lyndon basis

The routines included here form part of a larger package, that performs algebraic

manipulations of iterated Stratonovich and Ito integrals. This subset is however

complete, in that it could be used without the rest of the package.

(* Calculates the shuffle product
of Stratonovich multiple integrals
and the modified shuffle product
of Ito multiple integrals

Format [S [x_]] : =Subscripted [S [x]]
Format [Itolnt [x_]] =Subscripted [Itolnt [x]]

Mult [x_+y_,z_] :Mult EX, z]+Mult [Y' Z]
Mult [x_ ,y_+z_] :Mult [x,y]+Mult [x,z]
Mult [n_Integer*x_,y_] :Expand[n*Mult [x,y]]
Mult [x_,n_Integer*y_] :=Expand[n*Mult [x,y]]
Mult[n_Rational*x_,y_] :=Expand[n*Mult[x,y]]
Mult[x_,n_Rational*yj :=Expand[n*Mult[x,y]]

pushinStrat [list_ ,x_] Module[
{i,j,l,m,result{},yl,y2,y3,elt,head},
lLength[list]
For[i=1 ,i<=l,i++,
eltLast [Part [list, i]];
headDrop [Part [list,i] , - 1];
mLength [elt] +1;
For[j1,j<m,j++,
y3=head;
y1=Take[elt,j-1]
y2Take[elt,j-m];
AppendTo[yl,x];
AppendTo[y3,yl];
Appendlo[y3,y2];
AppendTo [result ,y3]

result
I

shuffleStrat[listl_,list2_] :Module[
{ i ,1,answer,ans={}},
l=Length[listl];
answer{{list2}};
For[i1,i<l,i++,answerpushinStrat[answer,Part[listl,i]]];
1=Length[answer];

Appendix A. Computer Programs

For [i1,i<=1,i++,AppendTo[a.ns, Flatten [Part [answer,i]]]];
ans

Mult[S[11_],S[12_]] :Module[
{list , I ,1,answer=O},
list=shuffleStrat [11,12];
lLength[list];
For[i=1,i<=1,i++,answer+=S[Part[list,i]]];
answer

]

Mult [Itolnt[11_] , Itolnt [12_]] Module[
{list , I ,1,answerO},
list=stretch[rshufflelto [11,12]];
1=Length[list];
For[i=1,i<=l,i++,answer+=Itolnt[Part[list,i]]];
answer

]

rshufflelto[11_,12_] :Module[
{answer , qi , q2 , a, b, i},
If [11=={},12,

If [12=={} ,11,
qlDrop [11, 1]
q2Drop[12,1]
a=First [11];
bFirst [12];
answer{MyPrepend [rshufflelto [qi ,12] , a],
MyPrepend [rshufflelt o [11 , q2] , b] };

If [ab&&a ! =0,
AppendTo[answer,MyPrepend[rshufflelto[ql ,q2] ,0]]

answer

]

]

MyPrepend [list-, x_] :=Module [
{ans,1,i},
If[list=={}I IAtomQ [list [[1]]]

ansPrepend [list , x] ,
lLength [list];
ans{};
For[i=1,i<=l,i++,AppendTo[ans,MyPrepend[list[[i]] ,x]]]

an s
]

stretch [list_] : Module [
{1, I, j ,part , answer={} , count=0},
lLength [list];
For[i1,i<1,i++,

partlist[[i]]
If[AtomQ[part[[1]]] ,count++;AppendTo[answer,part],

For [j1 ,j<Length[part] ,j++,

141

Appendix A. Computer Programs

AppendTo [answer ,part [[j]]]
]

];

If [count<l ,stretch [answer] ,answer]
]

(* Routines for rewriting linear combinations of iterated
integrals using an algebraic basis

Lyndon [list_I Module[
{i , 1, lyndon=True ,word},
word=StringJoin [Map [ToString, list, 1]];
l=StringLength[word];
For[i=l-1 ,i>O ,i - ,

If[OrderedQ [{StringDrop[word, i] ,word}]==True,lyndon=False]
I;

lyndon

LyndonSet[set_,n_] :Block[
{ i ,list ,answer,word},
answer={};
list=pick[set,n];
For[i1 , i<=Length [list] ,i++,

wordjoin [list [[i]]];
If [Lyndon [word] ==True,

AppendTo [answer ,word]

];

answer
I

pick [set_,n_] :Block[
{i,j,k,l,answer,list},
lLength [set];
answerTable[{set[[i]]},{i,1,l}]
list{};
For [i=2 , i<n, i++,

For[y1 ,j<Length[answer] ,j++,
For[k1 ,k<1,k++,

AppendTo[list, Append [answer [[j]], set [[k]]]]

I;
answer=list;
list{}

];

answer
]

LyndonBasis[set_ ,nJ :Block[
{ i , an,
answer{};
For[i=1,i<n,i++,answer=Join[answer,LyndonSet[set,j]]];
answer

142

Appendix A. Computer Programs

LyndonFactor [list_i :=Module [
(* Breaks a word w into wuv,

where v is the longest right Lyndon factor of w.
Returns {u,v}.

{word, srf},
word=StringJoin [Map [ToString, list, 1]];
srf=First [Sort [Table [StringTake [word, i],

{i, 1 StringLength [word] - 1}]]];
srf=Map[ToExpression,Characters[srf] , 1];
{Drop ,-Length [srf]] , srf}

LyndonProduct [list_] :=Module [
{wordl , answer},
wordl=list;
answer={list};
While [Lyndon [wordi] ==False,

answer=Join[LyndonFactor[wordl] ,Drop [answer, 1]];
wordlFirst [answer]

];
answer

]

Rewrite [S [J_]] :Module[
{list , i ,n=1 ,c=1 ,p,pre,word,w,r},
If [Lyndon [J] True ,Return [S [J]]];
listLyndonProduct [J];
prelist[[1]]
p=S[pre];
For [i=2 , i<Length[list] ,

wlist[[i]]
If[wpre,n++,c=cln! ;n=1;pre=w];
pExpand [Mult [S [w] ,p]]

];

p*=c;
r=p-S [.3];
Expand[c*Product[S[list[[i]]] ,{i, 1,Length[list]}] -r]

]

Rewrite [Itolnt [J_]] Module [
{list,i,n1,c=1,p,pre,word,w,r},
If [Lyndon [3] ==True , Return[Itolnt [3]]];
list =LyndonProduct [3];
pre.-iist[[1]];
pltolnt[pre];
For [i=2, i<Length [list] ,

wlist[[i]]
If[wpre,n++,c=c/n! ;n=1;pre=w];
p=Expand [Mult [Ito mt [w] ,p]]

];
cc/n!;
p*c;

143

Appendix A. Computer Programs 	 144

r=p- Itolnt[J];
Expand [c*Product [Itolnt [list [[i]]] , {i, 1 , 	[list] }] -r]

rwl [x_] : Rewrite [S [x]]
rw2 [x_] : =Rewrite [Ito mt [x]]

Writ eUsingStratBasis [x_] :=Expand [x// . S->rwl]
WriteUsingltoBasis[x_] : =Expand [x//. Itolnt->rw2]

A04 Cacuafion of the partition with minimum

entropy of a staircase

This is a recursive routine that needs to be called by another piece of code, that

first sets up the necessary data structures. We have not included the calling

program here. We have written a similar routine for triangular partitions.

float opt iinal_p(root,nl,l) point root; mt nl,l;
{int n2,i,j,jmin,11,12;
float a,e,min;
point rootl,root2;

n2n1+l-1;

1* Look up answer in table E, if already calculated *1
if(E[l] [nil .i>0) return E[l] [nil .e;
else 1* calculate minimum entropy *1
{

if(l==1) 1* only one rectangle no minimisation necessary *1
{a=(S[nl].x-root.x)*(S[nl] .y-root.y);
e=-a*log(a);
E[l] [nil .inl; E[l] [nil .e=e;
return (e);

}

else 1* at least 2 rectangles */

/* loop over number of steps *1
min1000 .0;
for(i0;i<l;i++)
{jnl+i;
/* remove rectangle (S[j],root) leaving 1 or 2 sub-regions *1
1* area of rectangle removed */
a(S[j] .x-root.x)*(S[j] .y-root.y);
e-a*log(a);
rootl.xroot.x; root2.yroot.y;
root2.xS[j] .x; rootl.y=S[j] .y;
11=j-nl; 12n2-j;

Appendix A. Computer Programs

if(11>0) e+optimal_p(rootl,nl,ll);
if(12>0) e+=optimal_p(root2,j+1,l2);
if(e<min) {min=e; jminj;}

}

/* store new info */
E[l] [nh .i=jmin; E[l] [ni] .e=min;
return (mm);

}

}

}

145

A05 Generation of unvarate random deviates

from a genera' density

We give below a general routine for generating random deviates from any density,

where the second derivative is zero at precisely one point, or from any symmetric

density with two such points. It is clear how to modify the routine to handle fewer

or more inflexion points. We also include the calling program, in order to show

precisely what information about each density is needed and how this is passed to

the subroutine which performs the generation.

#include <stdio . h>
*include <math.h>
*include <string .h>
*include <malloc . h>

1* Version with optimal DDG-tree for choosing triangles. *1

1* User supplied main program and subroutines defining density *1

mamn(argc, argv)
mt 	argc;
char 	**argv;

{int i,N,seed-3;
double x,x2 ,mean0 .0 ,var=0 .0 ,m30 .0 ,m40 .0 ,xinfc ,xinfn;
float y,ran3O;
double trigenO;
double fnQ,dfnO,fcO,dfcO;
FILE *out;

if(argc>1) outfopenw(argv[h]);

get int(&N, "N");
ran3(seed);

Appendix A. Computer Programs 	 146

1* inflection point for 0,1 cauchy distribution *1
xinfc=0 .5773502691896259;
/ inflection point for normal distribution *1
xinfn=1 .0;

for(i1; i<N; i++)
{

xtrigen(fc,dfc,xinfc,i);
fprintf (out, "Y,,17. 15f\n", x);

}

trigen(fc,dfc,xinfc,-1);
}

define C 0.3989422804014327

double fc(x) double x;
/ Cauchy density '/
{ return ((M_1_PI)/(x*x+1.0)); }

1* 1/sqrt(2*Pi) */

double dfc(x) double x;
/' Derivative of Cauchy density *1
{ double d;

dx*x+1 .0;
return ((M_1_PI)*(-2.0*x)/(d*d));

}

double fn(x) double x;
1* Normal density *1
{ return C*exp(-0.5*x*x); }

double dfn(x) double x;
/' Derivative of normal density *1
{ return -C*x*exp(-0.5*x*x); }

1* General purpose part *1

#define FAC32 4.294967296e9 	/* 232 */
#define MAXB 32 	 /* Max. no. of bits */

struct pointnode{double x,y; mt next;}
typedef struct pointnode pnode;
typedef struct {double xl,x2,x3;1 triangle;

struct tnode{int n; struct tnode *left,*right;}
typedef struct tnode node;
mt nodesize;
nie *root;
mt marker[MAXB] ,zmarker[MAXB];

double ran_triO ,tri_areaO ,gO;
mt 	ran-bit O,pO;
unsigned long *5;
pnode *v;
pnode ql,q2;

Appendix A. Computer Programs 	 147

triangle *t;
mt 	runax,pnodesize,trisize,next;
double pn;

double trigen(f,df,xmnf,init) double (*f)Q,(*df)Q,xinf; mt mit ;
{

1* Routine to generate random deviates with density f *1
1* df is the derivative of the density *1
1* xinf is the (only) point where the second derivative is 0 *1

static mt first=1;
float ran30;
double x,y,sum,ent;
static double xc;
mt n,i,lb,undecided,bit;
node

if(init<0 II firstl)
{printf("Initialising trigen\n");
if (nmax>0)
{prmntf("Freeing allocated memory\n");
freetree (root);
f ree ((char*) t) ;
free((char *)s);
free((char)v);
return (0.0);

}

/* initialisation of constants
first0;
pnodesize=sizeof(pnode);
trisize=sizeof (triangle);
nodesize=sizeof (node);
for(i1; i<MAXB; j++)
{marker[i]=i; zmarker [i] =0; }
1* base length of right angled
xc-(*f)(xinf)/(*df) (xinf);

*1

triangle under concave part *1

1* Initialisation of convex part *1
root=(node *)malloc(nodesize);
root->n=-1;
root->left=root->right=NULL;

1* Initialisation of arrays *1
s=(unsigned long *)malloc((unsigned)4*sizeof(unsigned long));
t=(triangle *)malloc(4*trisize);
x=2 . 0*xinf*(*f) (xinf);
pn=x;
1* p of being in rectangle {{0,0}{xinf,f(xinf)}} */
s[1]FAC32*x;
xxinf*((*f)(0.0)-(*f)(xmnf));
pn+x;
s[2]FAC32*x; 1* p of being in triangle

{{0 ,f(xinf)},{xinf,f(xinf)} ,{0 ,f(0)}} */

Appendix A. Computer Programs

.xl=O.O; t[2] .x20.O; t[2] .x3=xinf;
x=xc(cf) (xinf);
pn+=x; printf("p1+p2+p3=°he\n,pn);
s[3]FAC32'x; 1* p of being in triangle

{{xinf,O)},{xinf,f(xinf)},{xinf+xc,O}} *1
.xl=xinf; t[3] .x2=xinf; t[3] .x3=xinf+xc;

s[0]=FAC32*(1.0-pn);
v=(pnode*)malloc(2*pnodesize);
v[0].x0.0; v[O].y=(*f)(O.0);
v[O] .nextl;
v[1] .xxinf; vEil .y=(*f)(xinf);
vEil .next=(-1);
qlvEO];
nmax=3;

}

undecidedl;
1b0;
q=root;
while (undecided)
{lb++;
bit=ran...bit(i);
if(q->leftNULL) extend_tree(q,lb);
if (bitO) q=q->left;
else 	qq->right;
while(q->n==O) ref ine_tree(f,df,xinf);
if(q->n>O) {nq->n; undecidedO;}

}

if(n1) x=xinf*ran3(1); 1* random point in rectangle *1
else xran_tri(tEn] .xi,t[n] .x2,t[n] .x3);
if (ran-bit(l)==l) x=-x;
return x;

}

static mt jjO;

mt p(n,b) mt n,b;
-C /* returns bit b of p(n) *1
if(n>nmax){printf("Error in p: n>nmax\n"); exit(i) ;}
if(b>MAXB) {printf(b%d>MAXB\n" ,b); exit(1) ;}
return (s[n]>>(32 -b))&1;

}

make_tril (f) double (*f)O;
1* Adds a triangle i: a convex region *1
{double x,y,ta;
qlv[jj];
q2=v [qi . next];
x0.5*(ql.x+q2.x);
y(*f) (x);
ta=tri_area(ql .x,qi y,x,y,q2.x,q2.y);
nmax++;
if((v(pnode*)realloc(v, (unsigned) (nxnax-1)*pnodesize))==NULL)
{printf(" Out of memory 1.\n"); exit(1);}

v[nmax-2] .xx; vEnmax-2] .yy; vEnmax-2] .nextql.next;
v[jj] .nextmnax-2;

148

Appendix A. Computer Programs
	

149

if((s=(unsigned long *)realloc(s,
(unsigned) (nmax+1) *sizeof (unsigned long)))NULL)

{printf(" Out of memory 3.\n"); exit(1);}
pn+ta;
[01=FAC32*(1. 0-pn)

s [nmax] FAC32*ta;
if((t(triangle *)realloc(t,(unsigned)(nmax+1)*trisize))NULL)
{printf(" Out of memory 4.\n"); exit(1);}
t[nmax] .xlql.x;
t[nmax] .x2x;
tEnmax] .x3q2.x;

jjql .next;
}

malce_tri2(f,df) double (*f)() , (*df) 0;
1* Adds a triangle in concave region *1
{extern pnode *v;
double x,y,xl,yl,xu,yu,xl,yl,x2,y2,x3,y3;
double dfx,dfxl ,dfxu,ta;
ql=v[jj];
xl=ql .x; yl=(*f)(xl); dfxl(*df) (xl);
if(ql.next<O) 1* will add tail triangle *1
x=xl+O 5*xl;
else
{q2v[ql.next];
xu=q2 .x; yu=(*f) (xu); dfxu=(*df) (xu);
x0 5* (xl+xu);

}

y(*f)(x);
dfx(*df)(x);
xl=(dfxl*xl-dfx*x+y-yl)/(dfxl-dfx);
yldfx*(xl-x)+y;
if (ql.next>O)
{x2 (dfxu*xu-dfx*x+y-yu) / (dfxu-dfx);
y2dfx* (x2-x)+y;
x3= (dfxu*xu-dfxl*xl+yl-yu) / (dfxu-dfxl);
y3dfxl*(x3-xl)+yl;

}

else 1* ql.next(-1): new tail triangle *1
{x2=x-y/dfx;
y2O.O;
x3xl-yl/dfxl;
y3=O.O;

}

ta=tri_area(xl,yl,x2,y2,x3,y3);
nmax++;
if((v(pnode*)realloc(v,(unsigned)(nmax-1)*pnodesize))NULL)
{printf(" Out of memory 1.\n); exit(1);}

v[nmax-2] .xx; v[nmax-2] .yy; v[nmax-2] .nextql .next;
v[jj] .nextmnax-2;
if((s(unsigned long *)realloc(s,

(unsigned) (nmax+1)*sizeof (unsigned long)))NULL)
{printf(" Out of memory 3.\n"); exit(1);}
pn+ta;
s[O]FAC32*(1.O-pn);
s [nmax] FAC32*ta;

Appendix A. Computer Programs
	 150

if((t=(triangle *)realloc(t,(unsigned)(nmax+1)*trisize))==NULL)
{printf(" Out of memory 4.\n); exit(1);}
t[nmax] .xl=xl;
t[nmax] .x2x3;
t[nmax] .x3=x2;
if(ql.next==(-1)) jjO;
else 	 jj=ql.next;

}

double tri.area(xl,yl,x2,y2,x3,y3) double xl,x2,x3,yl,y2,y3;
{/' returns twice area of triangle : for even distributions */
return fabs(x2*y1-x1*y2+x3*y2-x2y3-x3*y1+x1*y3);

}

double ran_tri(xl,x2,x3) double xl,x2,x3;
'(double u,v,temp;
float ran3Q;
uran3(1);
v=ran3(1);
if(u>v) {tempv; vu; utemp;}
return ux1+ (v-u) *x2+ (1 . O-v) *x3;

}

mt ran_bit(i) mt I;
{ static mt count7,initO;

static unsigned long v;
float 	ran3O;
mt bit;

if(count7)
{vran3 (1) *FAC32;
count3l;

}

bit=(v>>count)&1;
count--;
return bit;

}

double g(x) double x;
'(return (-x*log(x)) ;}

extend_tree(q,l) node *q; mt 1;
1* gives interior node q on level 1 two children *1
'(node *ql,*q2;
mt i;
q->left=q1(node *)malloc(nodesize);
q->rightq2(node *)malloc(nodesize);
1->left=q1->right=q2->leftq2->right=NULL;

imarker[1];
while(i<nmax && p(i,l)==O) i++;
if(i<=nmax) {ql->ni; marker[l]=i+1;}
else
if (zmarker Ell O && p(O,1)==1)
{ql->n0; zmarker [11=1; }

else 	ql->n-1;
}

Appendix A. Computer Programs

imarker[1];
while(i<=nmax && p(i,1)0) i++;
if(i<nmax) {q2->n=i; marker[l]=i+1;}
else
-[if (zmarker[1]==O Sc& p(O,i)i)

{q2->n=0; zmarker[l] =1; }
else 	q2->n=-1;

}

}

refine_tree(f,df,xinf) double (*f)Q,(*df)Q,xinf;
{

if(v[jj] .x<xinf) make_tril(f);
else 	 make...tri2(f,df);
ref ine(root,0);

}

refine (q,l) node *q; mt 1;
1* Updates all 0 nodes on level 1 and higher

to take into account the inclusion of p(nmax).
*1
{

mt i;
if(q->n0) 1* refine *1
{zmarker [1] =0;
i=marker[1];
while(i<nmax && p(i,l)==0) i++;
if (i<ninax) {q->ni; marker [1] i+1 ; }
else
{if(p(0,1)==1) zmarker[1]1;
else q->n-1; 1* change to interior node *1

}

}

else
{if (q->left !=NULL) ref ine(q->left,l+1);
if (q->right =NULL) ref ine(q->right ,l+1);

}

}

freetree(p)
node *p;
-[node *q;
if (p! NULL)

{freetree(p->left);
qp->right;
free((char *)p);
freetree(q);

}

151

