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Abstract 

This work contains several developments in the area of numerical simulation of 

pathwise solutions to stochastic differential equations (SDE's). In the first chapter 

we define and motivate pathwise solutions and give a brief survey of numerical 

methods for approximating them. 

The main key to enlarging the scope of numerical methods for SDE's is a good 

representation of Brownian paths. A binary tree structure is an essential tool in 

Chapter Two, which presents a general method for solution of SDE's using variable 

time steps. 

In the case of a general SDE, improvement of the order of convergence com-

pared with standard methods, demands generation of the Levy area integrals. 

Chapter Three presents a method of random generation of the Levy area for a 

Brownian path in 1112.  The method is based on Marsaglia's rectangle-wedge-tail 

method for fast generation of normally distributed deviates. 

Since the solution of an SDE generally depends on an infinite sequence of 

iterated integrals of the driving noise, it makes sense to examine these integrals 

and the algebraic relations between them. In Chapter Four, it is shown how known 

facts about shuffle algebras can be used to get a better understanding of stochastic 

iterated integrals of Ito and Stratonovich type and obtain practical algebraic bases 

for these two sets. We use the algebra to calculate moments of stochastic integrals, 

needed when calculating moments of errors during numerical solution of SDE's. 

The work on the generation of area integrals, described in Chapter Three, gives 

rise to general questions about the generation of random deviates, some of which 

are addressed in the last two chapters. In Chapter Five, we present a polynomial-

time algorithm for finding the partition, into rectangles or triangles, of certain 

types of region in j112  that has the lowest entropy. When the area under a density 

is divided into simple pieces, the entropy of the partition provides a lower bound 

on the time taken to choose one piece randomly with probability proportionate to 

the area. 



Chapter Six explores the idea that Marsaglia's method for generation of ran-

dom deviates could lead to efficient "black box" algorithms. The main criticism of 

the rectangle-wedge-tail approach is that for each density, tables of constants have 

to be calculated, leading to hard work for the programmer and lengthy and com-

plicated code. Our idea is to write a program that, given any density from a wide 

class, can generate its own tables of constants dynamically, while simultaneously 

generating random deviates. 



Declaration 

This thesis is submitted for the degree of Doctor of Philosophy at the University 

of Edinburgh. None of the material has previously been submitted for any other 

degree or qualification. The thesis has been composed by myself and the work is 

my own except where I have explicitly stated otherwise. 



Aknowledgements 

I would like to thank my supervisor, T.J. Lyons, for his time, encouragement 

and helpful ideas, to which much of the work in this thesis owes its existence. 

I would also like to thank my husband, Sandy Davie, for his support, both 

moral and mathematical. 



TabRe of ciit 

Numerical Approximation of Pathwise Solutions to SDE's 	5 

1.1 Pathwise solutions: definition and motivation ............5 

	

1.2 	Notation .................................7 

1.3 Existence and uniqueness of pathwise solutions ............9 

1.4 Numerical methods for pathwise solutions ..............10 

1.5 Representation of Brownian paths ...................17 

Variable Step Size Control in the Numerical Solution of SDE's 19 

	

2.1 	Motivation ................................19 

2.2 Generation of Brownian paths .....................21 

2.2.1 Brownian paths generated as increments ...........21 

2.2.2 Brownian paths generated as increments and approximate 

Levy areas ............................23 

2.3 Variable step size control and accuracy criteria ............24 

	

2.3.1 	Estimation of the Local Error .................25 

2.3.2 Acceptance Criteria for the Local Error ............26 

	

2.3.3 	Outline of Method .......................29 

2.4 Convergence of variable step size algorithms and choice of discreti- 

sation schemes ..............................30 

1 



Table of Contents 

2.4.1 SDE's driven by a one-dimensional Brownian path or satis- 

fying the commutativity condition ...............30 

2.4.2 SDE's driven by a multi-dimensional Brownian path and not 

satisfying the commutativity condition ............32 

	

2.5 	Illustrative numerical applications ...................38 

2.5.1 	First example ..........................38 

2.5.2 	Second Example 	........................42 

2.5.3 	Third Example .........................46 

	

2.6 	Implementation .............................48 

Random Generation of Stochastic Area Integrals 	 51 

	

3.1 	Definition of the problem ........................51 

	

3.2 	Outline of the Method .........................54 

	

3.3 	The Boxes ................................56 

3.3.1 	The packing problem ......................56 

3.3.2 	The entropy problem ......................58 

3.3.3 	Programming details ......................60 

	

3.4 	The Wedges ...............................61 

	

3.5 	The Tail .................................63 

	

3.6 	Performance ...............................65 

	

3.7 	An example of application .......................65 

	

3.8 	The way forward 	............................69 

The Algebra of Iterated Stochastic Integrals 	 72 

	

4.1 	Motivation ................................72 

4.2 	Algebraic structure ...........................74 



Table of Contents 
	 3 

4.2.1 	Concatenation ..........................74 

4.2.2 	Shuffle products .........................75 

	

4.3 	Bases ...................................78 

4.3.1 	A basis for Stratonovich integrals ...............78 

4.3.2 	A basis for Ito integrals 	....................80 

4.3.3 	An example of application ...................81 

	

4.4 	Moments .................................82 

Partitions with Minimum Entropy of Regions in JR2 	 84 

	

5.1 	Motivation ................................84 

	

5.2 	Rectangular partitions .........................87 

5.2.1 	Notation .............................88 

5.2.2 	Optimal partition ........................89 

5.2.3 	Generating the Staircase ....................95 

5.2.4 Rectangular partitions of a general region in JR2  ....... 98 

	

5.3 	Triangular partitions ..........................100 

5.3.1 	Triangular partitions of a convex region ............100 

5.3.2 Triangular partitions of a concave region ...........103 

5.3.3 Triangular partitions of a general region ...........105 

	

5.4 	Conclusion ................................107 

Generation of a General Univariate Probability Density 	108 

	

6.1 	Introduction ...............................108 

	

6.2 	Placing the triangles ..........................109 

6.3 Using uniform random numbers ....................113 

6.4 	Using random bits 	...........................116 



Table of Contents 	 4 

A. Computer Programs 	 128 

A.1 Access and dynamic generation of a Brownian tree .........128 

A.2 Generation of Levy areas ........................133 

A.3 Mathematica: shuffle products and writing in terms of a Lyndon 

basis ...................................140 

A.4 Calculation of the partition with minimum entropy of a staircase. . 144 

A.5 Generation of univariate random deviates from a general density . . 145 



Chapter 1 

Numerical Approximation of Pathwise 

Solutions to SDE's 

Li Pathwse sohitons: definition and motiva-

tion 

We are interested in pathwise (or strong) solutions to a stochastic differential 

equation (SDE) where the driving noise w(t) is a standard d-dimensional Brownian 

motion. In Ito form, such an equation is given by 

d f dx t  = go (x,t)dt+g(x,t)dw 

X(0) = 

with x E IR 7  and g(i = 0,. . . , d) : JRTh —* JRTh. The equation may also be written 

in Stratonovich form as 

d 

dxt 	fo(x,t)dt+f(x,t)odw 
(1.2) 

X(0) = 

where 
dn  Dg k 
E

f(x,t) = g,(x ) t) - 
j=1 k=1 

and f(x,t) = g(x,t), Vi = 1,... ,d. 
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Superscripts, such as xk,  denote components of vectors. We will presume that 

the vector-valued functions g, (i = 0,. .. , d) are sufficiently smooth to guarantee 

existence and uniqueness of solutions to (1.1) (see Section 1.3 for details). We are 

mainly concerned with cases where the initial value, x 0 , is deterministic, but it 

could also be random as long as it is independent of (w(t)) and observable. 

When we choose or are given one particular Brownian path w(t), 0 < t < T, 

then by pathwise solution we mean the path x(t), 0 < t < T, unique solution 

of (1.1) for that realisation of w(t). This definition is in opposition to that of 

a weak solution, which is the expected value of the solution or of a function of 

the solution over all possible Brownian paths. We will only be concerned with 

numerical methods used to obtain approximations to pathwise solutions. 

There are several reasons why people should wish to obtain pathwise solutions 

to SDE's. Firstly, they may wish to examine the dependence of the solution on 

the initial condition or on the value of one or more parameters that appear in 

the functions defining the SDE. In this case one Brownian path is generated and 

then used repeatedly to obtain a set of solutions with varying initial conditions or 

parameter values. Secondly, there are situations, such as filtering problems, where 

the Brownian path or a noisy signal supposed to be a function of a Brownian 

path, is not generated by a computer, but obtained as a reading of a measuring 

instrument. In this case, the recorded signal is used to solve an SDE just once, 

with the aim of getting more information about the process generating the signal. 

It is the first kind of application that will interest us the most. Although the 

second kind is very important, the fact that the driving noise is not generated 

'at will' by the person performing the numerical solution puts limitations on the 

methods available. 
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12 Notation 

We will assume that the probability space underlying the SDE's (1.1) and (1.2) is 

the canonical filtered probability space (, .T, (.T), F), where f = C([O, T], 1R') 

is the set of continuous functions from [0, T] to 111d, is the a—field generated 

by (w(s), 0 < .s < t) and P is d—dimensional Wiener measure. 

Definition 1..1 The n-tuple 

J= (jl,j2,...,jn) 	withj 1  E {0,1,...,d}; 	Vi= 1,...,n 

is called a multi-index. The length of J, written I J I , is the number of indices in J 

and the order of J, denoted IIJII, is equal to the number of non-zero indices plus 

twice the number of zero indices. 

Let w(t) = ( WI (t), w 2 (t),. . . , wi(t)) be a d-dimensional Brownian motion. We 

will use the convention that 

WO (t) = t 

Using this convention, the SDE's (1.1) and (1.2) can be written as 

d 

dx t  = E g(x,t) dw 

X(0) = 

and 
d 

dxt = >f2(x,t)odw 

X(0) = 

We will use zw in general to refer to increments of the Brownian path, using 

either the notation 

w(s,t) = w(t) - w(s) 

or else using subscripts, such as 

= w(tk+1) - W(tk) 

whenever a sequence of times has been defined. 
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Definition 1.2.2 We define iterated stochastic Ito and Stratonovich integrals, 

I(s,t) and Sj(s,t) by 

Ij(s, t) = ijjj2 ... j(, t) = 
Jrn(s,t) 

dwi1  (ti)dw 32  (t2) ... dw 3 (t) 	(1.3) 

FITITA 

Sj(S, t) = S 1 	(s, t) 
= JEn(S,t) 

odw 31  (t 1 ) o dw 32  (t2)... 0 dw3 ' S  / t 	(1.4) 

where 	(8, t) is the n-simplex in 

We will write I(t) for Ij(O, t) and similarly for Stratonovich integrals. 

Definition 1.2.3 For use with ItO calculus, we define the operators L, j = 

O, ... ,dby 

1 	d 	 2 '9 

at k,l=1 j=1 g '9xkôxl 

and 

j=1,...,d 

The corresponding operators for Stratonovich calculus are 

fo  
k'9  

at k=1 

and 

j1,...,d 
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2.3 Existence and uniqueness of pathwise soliu 

fions 

K. Ito first proved ([23]) that under certain assumptions the SDE (1.1) admits a 

solution and that this solution is unique. 

Theorem 1.3. IL (Ito) Suppose that the coefficients gj, i = 0,.. . , d in (1.1) satisfy 

the Lipschitz condition 

g(x,t) —g(y,t) I < Kx - I (i = 0. . .,d) 	 (1.5) 

for some constant K < 00, Vt > 0 and Vx, y E IRn and suppose that there is some 

CT such that 
d 

CT 

for all t < T. Furthermore, let the initial value, xo , be such that 

E(x o J 2 ) < 00 

Then there is one and only one semi-martingale x satisfying equation (1.1). 

The constraint on the functions gj (x, t) in Theorem 1.3.1, can be weakened 

quite easily, but is not too prohibitive in the context of the current work. The 

global Lipschitz condition is prohibitive, but it can be replaced with the local 

Lipschitz condition 

g2 (x,t) - g(y,t) 	KNX - 

whenever IxI V jyj < N and 0 < t < N. 

Uniqueness and existence proofs have been given by Doléans-Dade [13] and 

Protter [49] for SDE's driven by a general semi-martingale. 
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1A NumeiricaR methods for pathwse soutons 

The standard method of obtaining numerical approximations to pathwise solutions 

of (1.1) is to discretise the equation. The approximate solution Y will be calculated 

at a set of times t0  = 0,ti = to  + h1,. . .,tk+1 = tk + hk+l,.. .,tN = T using a 

scheme of the type 

(t0 ) 	= x(to) 
(1.6) 

(tk+1) = 0 (tb, (tk), hk + l )  Wk+1), k = 0,...,N - ,.. .,N -  1 

where 

hk+l =  tk+1 - tk 

LWk+1 	w(tk+1) - w(tk) 

Definition 1.4.1 An approximate solution, fL, obtained using a discretisation scheme 

as in (1.6), is said to converge pathwise (or converge strongly) to x, the solution 

of the SDE (1. 1), if 

urn sup Ix(t) - t(t)j = 0 a.s. 

where 8 = maxk hk. 

The easiest method of obtaining discretisation schemes is to truncate the 

stochastic Taylor series expansion of the solution to the SDE (1.1), keeping only 

terms up to a chosen order. This method is due to Platen and Wagner [48] and 

Kloeden and Platen [25]. Azencott [1] showed the size of the remainder term and 

Ben Arous [2] examined the convergence of the stochastic Taylor series. 

Theorem 1.4.2 (Platen and Wagner, Azencott) Let r be the lifetime of the stochas-

tic process Xj, solution of (1. 1), and let g j  E C 1 , Vi = 0,. . . , d. For all 0 < t < 'r, 

define R +1 (t) by 

P 

 

X(t) = x 0  + E E I(t) gJ(x o ) + 	 (1.7) 
M=1 IIJII=m 

where for IJI > 1, the function gj is defined recursively by: 

= 
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Then 

	

urn 	P(IR+1(t)I > r) = 0 
t— >O,r— >oo 

Theorem 1.4.3 (Kloeden and Platen, Ben Arous) Let T be the lifetime of the 

stochastic process Xt, solution of (1.2), and let f2 E C' 1 , Vi = 0,. . . , d. For all 

o <t < r, define R 1 (t) by 

P 

 

X(t) = x o  + 	 S(t) fj(x o) + t' 1 ' 2R +1 (t) 	(1.8) 
m=1 IIJII=m 

where for IJI > 1, the function fj is defined recursively by: 

	

f. 	- f'31f .  
J3l32 ... 3m - A 	J32 ... 3m 

Then 

	

urn 	P(R +i (t)I > r) = 0 
t—>O,r—>oo 

Using these two theorems, it is possible to expand the solution using either 

Ito or Stratonovich calculus. We will use the ItO stochastic Taylor series as an 

illustration. The Stratonovich series is simpler to use. Initially we will take a 

Brownian path of dimension one. To avoid lengthy formulae, we will generally 

omit direct reference to the time variable from now and refer to the autonomous 

SDE 
d 

dx t  = go(x)dt+g1(x)dw 

X(0) = 

In many places no generality is actually lost. It is always possible to replace a 

non-autonomous SDE with an autonomous SDE, by including time in the state 

vector, thereby increasing the dimension of the system. 

For simplicity of notation, we write Xk = x(tk) and Tk = (tk). The solution 

to (1.9) at time tk+1  can be written as 

Ptk+1 	 tk+1 

	

Xk+1 = Xk + I 	go(x t ) dt + I 	gi (x t ) dw t 	(1.10) 
Jtk 

Using the Ito formula 

a(x t ) = a(xk) + L £ °a(x 8 )ds + 
it £

1 a(x) dw8  
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in equation (1.10), to expand both go (x t ) and gi ( x t ) around tk, we obtain 

Xk+1 - xj +go(xk)hk1 +g1(xk)/.wk1 

+J 	J Logo(x 3 ) ds dt+ 
it  	g(x s )gi ( x s ) dw 3  dt 	(1.12) 

ttk+j 	t 	 tk+1 	t

t 	t 	 k 	Jtk 

t  
+ 	/ £ogi(Xs) ds dw 	

t t k+j 
t  + / 	g1 (x s )gi(x s ) dw, dw t  Ik 	-'tk 	 Jtk 	Ik 

If the variance of any term in such a stochastic Taylor series is Ch,  we will 

say the term is of order O(h&).  Discarding the double integrals in (1.12), each of 

which is of order O(h) with a > 1, we obtain the Euler-Maruyama scheme 

Xk+1 = Xk + 90(k)hk1 + g1(±k)zwk1 
	

(1.13) 

This scheme, the simplest discretisation scheme for SDE's, is named after Maruyama, 

[39], one of the first to examine it. The multi-dimensional version is 

d 

	

Xk+1 = Xk +gO(Xk)hk-f-1 + >g(±k)Lw 1 	 (1.14) 

If we use (1.11) to expand g(x s )gi ( x s ) in (1.12) and discard all terms of order 

O(h) for a > 3/2, we obtain 

ftJç l pt 

Xk+i Xk +go(?iJk)hk+1 +g1(5k)Lwk1 +k)g1(k)j 	J dw, dw 

	

t/ç 	tk 

or 

Xk+1 = xk+90(Xk)hk1 +g1(k)wk+1  +gk)g1(k) ((Awk+l)2 - hk+l) (1.15) 

which is the Milshtein scheme, first proposed by Milshtein [43] for weak solutions. 

Most often we take hk = h = TIN, (k =1,. . . , N) in the above schemes, but 

they will both converge to the true solution for any set tk  of stopping times. With 

a constant time step h = TIN, a discretisation scheme is said to have order of 

pathwise convergence a if 

sup jXk - XkI --+ 0 a. s. 
k 

Newton ([441, [46]) and Faure ([14], [15]) proved that with a constant time step the 

Euler-Maruyama and the Milshtein schemes have pathwise order of convergence 
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1/2 - and 1 - c respectively, VE > 0, in the one-dimensional case and that 

the Euler-Maruyama scheme has the same order of pathwise convergence in the 

multi-dimensional case. 

If one tries to improve on the order of accuracy of the scheme, by keeping more 

terms from the Taylor series, then in general one will need to include multiple 

stochastic integrals in the scheme as well as increments of the Brownian path. For 

example, for a one-dimensional SDE, inclusion of terms of order 0(h312 ) will in 

general mean inclusion of the integrals 

ftk+1 I 'tJ 	dw 3 dt 
tk 	k 

These integrals have a normal distribution and it is therefore possible to generate 

them jointly with the increments L\wk+1. 

In higher dimensions the situation is even worse. In general the order of ac-

curacy of the Euler-Maruyama scheme is the best order obtainable without the 

generation of multiple integrals. The stochastic Taylor series development of 

in terms of xk,  for x E JR, w(t) E JR'1  is 

'1 	 n 	d 3gt. 
k+i = 	+ g(x)h,4-i + i: g(xk)/w 1  + >i: 	—jgq (x k )Ipq (k, k + 1) + R 

3=1 	 j=1 p,q=1 

(1.16) 

where 

tk+1 	t 

Ipq (k, k + 1) =  f dw dw
it,Jtk 

and R consists of terms of order 0(h) for a > 1. If 1 < p, q < d, p q, then 

integration by parts gives 

Ipq (k,k+ 1) +Iqp (k,k+ 1) = 	 = Bpq (k,k+ 1) 

Define 

A pq (k, k + 1) 	(Ipq (k, k + 1) - Iqp (k, k + 1)) 	(1.17) 
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In (1.16) we can substitute for the 'pq  in terms of Bpq  and A pq , to obtain 

= 	+ g(xk)hk1 + >g(xk)Lw l  

P 
d 

g(x) ((w+)2 - hk+l) 
:1=1 p=l 

n 	 i(ôgi 
j  

-i- E 
§1O<p<q<d 

i 	öxi) (xk)Bpq (k, k + 1) 
 

+ 	i 	
(agq  

j ôxi9 
- 	(xk)Apq (k, k + 1) + R 
 '

99P j) 

j=1 O<p<q<d 

IfVi=i,...,n,Vp,q=1,...,d 

('g l gp  q 	agp '\ 
- 	= 0 	 (1.19) yXj 

then the Apq  terms drop out of equation (1.18). Condition (1.19) is called the 

commutativity condition, since it can also be written as 

[gp,gq} = 0 

and is equivalent to saying that the vector fields (gp, p = 1,.. . , d) commute. 

When the commutativity condition is not satisfied, then the terms Apq , known as 

the Levy areas, need to be included in any discretisation scheme that is to attain 

an order of convergence greater than 1/2. For the proof see Clark and Cameron 

[9]. Clearly, by dropping the remainder term in (1.18), we obtain a discretisation 

scheme for general SDE's, of higher order than the Euler-Maruyama scheme, that 

involves generation of the Levy areas. 

Apart from discretisation schemes that can be obtained directly by truncation 

of a stochastic Taylor series expansion, there are Runge-Kutta type schemes, that 

avoid explicit calculation of derivatives. One very simple, and therefore very useful, 

Runge-Kutta type scheme is the Heun scheme, 

i 
Xk+1 = Xk -i- (fo(k) + fo(k))hk+l + >.(f() + f(k))w+1 

d 	
i=1 	 (1.20) 

Xk 	= Xk+fO(Xk)hk-I-1+fi(Xk)LWk+l 

which converges to the solution of the Stratonovich SDE (1.2) at the same rate 

as the Milshtein scheme converges to the solution of the Ito SDE (1.1). Details 
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of how to choose Runge-Kutta type schemes that converge to solutions of (1.1) or 

(1.2) can be found in Rümelin [54]. 

Although, using only increments of the Brownian path, we cannot obtain a 

better order of convergence than 0(h) for an SDE driven by a one-dimensional 

Brownian path or satisfying the commutativity condition or 0(\/) in the general 

case, it is possible to choose a method giving a lower variance for the errors than 

the Euler method. Among TN-measurable approximations, where TN  is the a-field 

generated by (Wh) for i = 1,.. . , N, and j = 1, . . . , d, there is a class of numerical 

schemes with optimal order of pathwise convergence that have the property of 

being asymptotically efficient in the L 2 -sense, as defined by Clark in [7]. An 

equivalent definition is the following: 

Definition 1.4.4 An approximate solution, 7, to the SDE (1.1) is asymptotically 

efficient of order & if 

E [ Kc, hck(XT - XN)) TN] + 1 
- 1 	 (1.21) 

(xT — E{xTTNu) 2  TN]+1 E[ Kc,  

for all c E JR, (where (y, z) denotes the scalar product of two vectors). 

Newton ([44] and [46]) has derived practical first order asymptotically efficient 

schemes. Both the Heun and Milshtein methods are asymptotically efficient in the 

case of an SDE driven by multi-dimensional Brownian motion and not satisfying 

the commutativity condition. 

As well as the stochastic Taylor series approach mentioned above, there is 

another way of approximating the solution to an SDE locally, that can also lead 

to numerical methods. Ben Arous, Castell and Hu ([2],[4],[21]) have shown that 

the solution can be expressed locally as an exponential Lie series and can therefore 

be approximated by the flow of an ODE. Let 

p- i 

= 	 c(t) X j,( 1.22) 
M=1 IIJII=m 

where 
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0 

J 	 (i) 
c(t)= 

rn—i UEUm 

m2 ( e() ) 

S0_(t),

or 

o Xj  denotes the Lie bracket [fil [. 1fJ_1 Jim] 

o Urn is the set of all permutations of {1, 2,. . . , m}, 

o e(a) is the number of errors in the ordering cr(1),.. . , o,  (m), that is the car-

dinality of the set {j E {1,... , m - i}/a(j) > o(j + 1)}, 

0 Jou - (jui), 

Then 

x(t) = exp(( 1'(t))(x o) + ti(t) 	 (1.23) 

and 14 is bounded in probability when t tends to 0. Here exp(((t))(x o ) de-

notes the solution at time 1 of the ordinary differential equation given by ((t), ie 

exp(P(t))(x) = u(i) where u is solution to 

{ du 
ds 	 (1.24) 
U(0) = 

Numerical methods can be obtained by choosing a value for p, (depending on 

the number of iterated integrals that can be generated), and solving the ODE 

(1.24) numerically using a suitable ODE solver. In [5], Castell and Gaines show 

that this exponential Lie series approach can also provide asymptotically efficient 

approximation schemes. 

Detailed surveys, that describe numerical methods for both pathwise and weak 

solutions to SDE's, can be found in [8], [19], [24], [26], [47], [56] 
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15 Representation of Brownian paths 

The stochastic Taylor expansions and resulting discretisation schemes shown in 

Section 1.4 suggest at least three possible ways that one might wish to represent a 

Brownian path when using it to approximate a pathwise solution to an SDE. The 

first and simplest representation is as a set of increments 

{1Wk+1 = w(tk+1) - W(tk), k = 1,.. . , N} 

Such a set can be used with the Euler-Maruyama scheme, say, in any number of 

dimensions. 

More complicated ways of viewing and generating Brownian paths consist of 

generating not only increments but also sets of integrals of the path. When the 

Brownian path is of dimension one, or when the vector fields defining the diffusion 

of the SDE commute, then it makes sense to generate the Brownian path as a set 

of increments and integrals against time, 

{/w k+l ,A o(k,k+1), k=1,...,N} 

where 

A 0(k, k + 1) = (I 0 (k, k + 1) - I0 (k, k + 1)) = 
it

k+1 
 it dw dt - L 	ds dw 

Since 	and A, o (/c, k + 1) have a joint normal distribution, this is perfectly 

feasible and practical. 

A third possibility, which one would like to realise in the case of a multi-

dimensional Brownian path, when the commutativity condition is not satisfied, 

is to generate at the same time increments of the Brownian path and Levy area 

integrals, A(k, k + 1), as defined in (1.17) above. In Chapter 3 we show how 

this can be done, in the case of a two-dimensional Brownian path at least. It can 

also sometimes make sense to approximate Levy areas by adding up increments 

generated over smaller time steps, as will be the case in Chapter 2. To get the 

same order of accuracy over bigger steps using approximate Levy areas as over 
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smaller steps using only increments of the Brownian path, one has to generate 

all the increments over the smaller steps any way, but the saving is in function 

evaluations, since the various functions of x needed in the discretisation scheme 

need only be evaluated at the beginning of each large time step. 



Variable Step Size Control in the 

Numerical Solution of SDE's 

21 Motivation 

In this chapter we describe a variable step size method for the numerical approx-

imation of strong solutions to the stochastic differential equation (1.1) 

d 

dx t  = go(x,t)dt+g2(x,t)dw 

X(0) = 

or (1.2) 
d 

dxt = fo(x,t)dt+>fj(x,t)odw 

X(0) = 

Although variable step size control is widely used in the numerical solution 

of ordinary differential equations, existing approaches to the solution of SDE's 

nearly always assume a fixed step size. (For exceptions see K. Bichteler [3] and 

N.J. Newton [45]) There is, however, a lack of discretisation methods guaranteeing 

accuracy to high powers of the step size. As mentioned in Chapter 1, in the general 

case of more than one dimension and without the commutativity condition (1.19), 

no numerical method, based only on an approximation of a Brownian path by 

19 
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its values at times separated by an interval h, can guarantee accuracy along the 

trajectory of a higher order than O(/h). Improvements involve the measurement 

or simulation of area and other iterated integrals. This forces the use of small step 

sizes, whatever the method used or the SDE to be solved. 

In some problems we have examined, the size of the time step giving acceptable 

accuracy is highly non-homogeneous, varying both along any given trajectory and 

also with the initial condition. In these cases use of a fixed step size implies the 

use of an unacceptable amount of both computer memory and computation time. 

It is this consideration which led us to the implementation of a variable step size 

method. 

Our method is very much dependent on a particular way of viewing and gen-

erating a Brownian path. It is standard practice to generate approximations to 

a Brownian path as a discrete set of points evenly spaced over the required time 

interval, with points that occur later in time always being generated after points 

that occur earlier. For our purposes such a method is not satisfactory. We wish to 

be able to test the accuracy of solutions by solving the same equation repeatedly 

using decreasing step sizes. Comparability of the consecutive trajectories implies 

using the same noise, ie. the same Brownian path, each time, but with more 

points available as the step size decreases. Another reason for requiring a different 

method of generating Brownian paths, is the fact that a variable step size method 

demands knowledge of the Brownian path at intermediate points in some subin-

tervals, up to an often unforeseeable number of subdivisions. Generating the path 

at all intermediate points up to a minimum step size would create a very large set 

of points, removing one of the advantages of using variable step sizes. 

We view, and generate, a Brownian path as a tree, to which branches can be 

added at any time. This allows knowledge of points on the path in as much detail 

as each particular application requires. Our main tool in the generation of this 

tree is Levy's construction [30]. This is a straightforward method that could be 

extended to other Markovian driving processes, providing that one had explicit 

forms for the transition densities. 

In the present chapter we are interested only in TN-measurable  approximations, 
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so iterated integrals, when used, will be approximated using increments of the 

Brownian path. 

The outline of the chapter is as follows. First we describe how we generate 

Brownian paths for use with variable step size methods. Then we describe our 

general variable step size method, which involves estimation of local errors and of 

their propagation and choice of which errors are acceptable at which stage. We 

follow this with proof that our methods converge under the right conditions. In 

Section 2.5 we illustrate our variable step size methods by applying them to a few 

particular SDE's. In the final section we give programming details for our method 

of generation of Brownian paths. 

22 Generation of Brownian paths 

2.2.1 Brownian paths generated as increments 

Let us describe the tree structure we have developed for both generation and 

storage of Brownian paths. The elements stored in the tree are not points on the 

Brownian path, but differences, /.w, across intervals of particular sizes. In this 

way, the SDE solving routine can be provided immediately with what it needs after 

at most one file access and without performing a subtraction. Since the equation 

(1.1) to be solved may involve a multidimensional Brownian path, the elements 

Aw are in general vectors. 

Let us refer to a Brownian path stored in a tree structure as a Brownian tree. 

The first level of the Brownian tree is generated by simulating differences across 

a chosen number, N, of unit time intervals: 

L.Wk,1 = w(k) - w(k - 1), 	k = 1,. . . , N 

Hence each Iw is simply a normally distributed random number with mean zero 

and unit variance. On the second and subsequent levels of the tree each previously 

generated difference can be used to generate two more, the differences across the 
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two subintervals created by introducing the midpoint. This method is due to Levy 

[30]. Thus on level J + 1 we have: 

= 	+ Yk,j+1 

= 	- Yk,j+1, 	j = 1,2,... 

where Yk,j  is normally distributed with zero mean and variance 2. The tree 

can continue down to any level, and apart from the initial level no level need be 

complete. See Figure 2-1 for an illustration of how a Brownian path can be built 

up using Levy's construction. 

Since, when constructing strong approximations, it is often desired to solve 

one equation with many different initial conditions or parameter values, using the 

same noise each time, we save time and effort by storing each Brownian path in 

a file as it is generated and re-using it. Each record in the file corresponds to a 

node in the tree. Each node is not a single difference Lw across a single interval, 

but is in fact a group of M differences across M consecutive intervals, where M 

is chosen so that any disc access time is comparable with the computational time 

required to analyse a given section of path. This is for reasons of economy both of 
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storage space in the file and of file access time when reading from it. Figure 2-2 

illustrates how the Brownian path is stored as a tree. 

Generation of the Brownian tree and solution of an SDE are performed in 

parallel. At each step along the trajectory elements of the Brownian path are 

required. These elements are either already present in the tree and need only be 

input, or else they belong to a node not yet created. In the latter case, the new 

node (plus any intermediate branches necessary for arriving at the desired node) 

is immediately generated from existing ones using new random numbers. All new 

path elements are stored in the file and the solution proceeds. 

The tree may never reach a final state, in that when it is used to solve the 

same equation from a different initial point or with a different parameter value, 

the areas where very small steps are needed may be different and therefore the 

tree will need to be developed further. 

More technical details of the data structure and algorithm that we have chosen 

for the dynamic generation and use of Brownian trees are given below in the section 

on implementation. 

2.2.2 Brownian paths generated as increments and approx-

imate Levy areas 

In the preceding section we have described a system of storage and dynamic gen-

eration for a Brownian path composed of a set of increments over steps of varying 

sizes. It is possible to generalise the data structure to include at each node of the 

tree not only increments of the Brownian path, but other path statistics, such as 

integrals against time or Levy area integrals. The higher order integrals could be 

generated jointly with the increments (as in Chapter 3). Although in this chapter 

we are limiting ourselves to representations of Brownian paths that do not include 

direct generation of higher order integrals, it is still possible to approximate inte-

grals of the Brownian path using increments. In Section 2.4, we will see that to 

guarantee convergence for variable step size methods in the case of a general SDE 

(with multi-dimensional noise and not satisfying the commutativity condition), it 
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is necessary to include in the discretisation scheme approximate Levy areas as well 

as increments of the Brownian path. We therefore need to generalise the Brownian 

tree presented in Section 2.2.1, to allow inclusion of approximate area integrals. 

The basic idea is as follows. At each node of the tree at level j, we will 

store both increments of the Brownian path over time steps of length 2 and 

approximate area integrals obtained using increments on a lower level, J+ k say. 

As before, the tree will grow as necessary. When new increments and areas are 

required at a certain level, the level of the numerical solution, new increments have 

to also be generated at lower levels and then used to approximate the required 

areas. 

Let a time interval [t, t + h] be subdivided into 2' equal subintervals and incre-

ments of the Brownian path Aw p , p = 1, . . , k be generated over the subintervals 

using Levy's construction, as described in Section 2.2.1. Then Aij , an approxima-

tion to the Levy area Aij t + h) (as defined in (1.17)) can be obtained using 

A ij =Aw,  Aw, Aw "Aw ,  
1<q<p<2' 	 1<p<q<2' 

23 Variable step size contro' and accuracy cri-

teria 

At first sight, the method we use resembles any standard step size control method 

for numerical integration of ODE's, with some simplifications, forced by the struc-

ture of the Brownian path. In particular, new step sizes are only derived from 

previous ones by halving or doubling. 

The step size control routine takes one step of the required size, using a suit-

able discretisation scheme, and then checks whether the error made is acceptable, 

according to a chosen accuracy criterion. If the chosen condition is not satisfied 

then the step size is halved and the process repeated. Once the desired accuracy 

is reached, the next step size to be tried is set equal to twice the last one used, 
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as long as the structure of the Brownian tree allows for an increase in step size at 

that point. 

The actual integration involved in "taking steps" can be performed using any 

discretisation method available, as long as convergence is guaranteed. (See Section 

2.4 for details of the conditions required for convergence.) This lends flexibility to 

the method. It will be seen, however, that a certain class of discretisation methods, 

namely those usually known as asymptotically efficient, is particularly suitable. 

The interesting question here is how to decide whether each step taken is accu-

rate enough. We need both a reliable method for estimating the error introduced 

in a single step and a criterion for judging when the error made is acceptable. 

2,3i1 Estimation of the Local Error 

Let xk be the true solution at time tk and let the approximate solution be 

Xk = cb(k_l,L.wk) 

A method of local error estimation often used for ODE's is the following. 

Starting at time tk_1 one step of the required size h, and again at tk_1, two steps 

of length h/2 are taken. Then the values obtained for x(tk) in the two cases, Tk 

and J4,  say, are compared, giving jk - xkI as an estimate of the local error. 

We have tried this method, but not found it very satisfactory. Although it does 

not yield a very bad error estimate, the total number of steps taken (including both 

those accepted and those rejected) is multiplied by at least one and a half. 

A method of estimation of the one step error that seems more useful consists of 

expanding the error using a stochastic Taylor series (see Chapter 1) and then calcu-

lating the mean and variance of the resulting terms, conditional on our knowledge 

of the Brownian path. The necessary calculations can be carried out particularly 

easily using a computer algebra package (such as Reduce, Mathematica or Maple). 

For any chosen integration method (such as Euler, Milshtein, Heun etc.) the 

procedure followed is roughly the same. First xk is expanded as a series of integrals. 
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If necessary Yk  is also expanded (this is the case for the explicit Heun method). 

Depending on whether the integration method being used converges to the solu-

tion of an Ito or a Stratonovich SDE, the expansion involves Ito or Stratonovich 

integrals. Then Yk  is subtracted from xk, to get the error terms. In general, the 

error terms include multiple stochastic integrals that cannot be calculated explic-

itly, so we do not immediately obtain an approximation to the error. However, we 

can calculate the mean and variance of the error conditional on the increments, 

LWk, of the Brownian path, (see Newton [44]). This gives us the best estimate 

of the error obtainable using the available information. Suitable estimates of the 

Pjv —conditional mean and variance are then obtained by retaining only the terms 

of lowest order. 

2.3.2 Acceptance Criteria for the Local Error 

Once the error introduced in one step has been estimated, the question remains as 

to what criterion to apply when accepting or rejecting the size of the error. Since 

our aim is to control the size of the final error, information is needed on the propa-

gation of each local error along the trajectory. Another important consideration is 

how much each local error should be made to contribute to the final global error. 

Error propagation 

If we assume that step sizes are small enough that propagation of the errors is 

linear, we can obtain an SDE representing the propagation of an infinitesimal 

error, y, along a particular trajectory. Replacing x in (1.1) with x + cy gives 

dx + cdy = [go (x) + Eg(x)y]dt + 	[gj(x) + fg(x)y]dw + o(c2 )(dw + dt) 

and hence as c tends to zero one obtains 

d 

dy = A(t)y di + E B3 (t)y dw 3 	 (2.1) 

where 

A(t) = g(x(t)) 
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B3  (t) =g(x(t)) 

We would like to know the size of the error that can be introduced at any 

given time 0 < t < T, in order to obtain a contribution to the final error of at 

most a given amount. One way to get this information is to solve equation (2.1) 

backwards in time, using a fixed time step, starting from a chosen value for the 

final error. However, to solve (2.1), we need to know the solution to (1.1), so 

we start by calculating a rough solution to (1.1) using a sufficiently small fixed 

step size h, then use the values calculated for Tk, k = 1,.... N while solving (2.1) 

backwards using the same step size. The final stage is then to solve the SDE (1.1) 

using variable time steps and using the information previously obtained to help 

choose tolerable errors at each step. The extra effort involved in the preliminary 

fixed time step solutions should be small compared with the computation time 

used subsequently to solve (1.1) accurately using variable time steps. 

For an SDE in one dimension (n = 1), preliminary simultaneous forward solu-

tion of (1.1) and (2.1) over fixed time steps and rescaling of the solution to (2.1) 

would provide the necessary information on propagation of local errors. However, 

in more than one dimension (n > 1), this would involve inversion of matrices at 

each step, which would be computationally expensive and also problematic, since 

the determinant of the matrix could become very small. 

Here we are supposing that the error is random and that the error at each step 

is independent of that at previous steps, something that can only be considered as 

an approximation to the truth when the step sizes and hence the errors are small 

enough. 

Optimal contribution of local errors to the global error 

At each time tk an error y(tk) is introduced, which, after propagation along the 

trajectory, will add a contribution of 

Y(tk) = y(tk)w(tk) 
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to the final error at time T. Here w(tk) is the factor by which the error is multiplied 

between the time tk and the final time, T. We need to choose the function Y(t) so 

as to minimise the global error. We claim that the optimal choice, if one wishes 

to minimise the sum of the absolute errors for a given number of steps, is to let 

each local error contribute equally to the final error. 

Sketch of proof: 

We will presume that all steps are small enough that finite sums can be ap-

proximated accurately by integrals . Let p(t) be the density of steps. Also suppose 

that the local error y(i) can be expressed as 

= 

We wish to minimise the total error 

J ?/(p)(t)p(t)dt 
0 

subject to 

J p(t)dt N 
0 

At the minimum we have 

J'(pV)(p))'h(t)Lu(t)dt = 0 

giving 
pT 

J b(p)w(t)h(t)dt = 0 
0 

for all h(t) with 

J h(t)dt = 0 
0 

Therefore 

O(p)w(t) = constant 

In the above we have chosen to minimise the sum of the absolute errors for a 

given number of steps. It is clear that the errors over individual steps may be of 

different signs and therefore cancelations may occur, so this is a kind of "worst 

case" solution. However, when estimating the local errors in Section 2.3.1, we 
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in fact estimated their TN—conditional means and variances. Variances, being 

positive, do all add up, so that the variance of the final error is indeed the sum of 

the contributions made by the variances of the errors over the different steps. What 

about the mean? Presumably we would like to minimise the mean of the global 

error as well as its variance, and, again, the one-step means can be of different 

signs. The way round this is to use a discretisation scheme for taking steps that 

reduces the TN —conditional mean of the error to a higher order than the standard 

deviation, thereby making the mean error negligible beside the standard deviation. 

The schemes known as asymptotically efficient schemes have this property. (See 

Chapter 1 and below for definition and references.) 

2.3.3 Outline of Method 

At this point a method for step size control has emerged. A maximum value C 

must be chosen for the contribution of each local error to the TN — conditional 

variance of the global error. C is a vector of dimension n, so this choice involves 

weighting the errors allowed for the different components of x.' Initially we cal-

culate a rough solution to the SDE (1.1) using a small enough fixed step size. 

Using this solution, we solve the linear SDE (2.1) backwards in time from the 

chosen final value of y(T) = C. (In the first two examples that follow, the SDE 

is simple enough that these initial stages can be replaced by analytical calcula-

tions, but this will not usually be the case.) This yields a set of permissible values 

y(tk, C) for the TN—conditional variance of errors introduced at points along the 

trajectory. In the final stage we proceed to solution of the original SDE using 

variable step size. To take steps we use any discretisation scheme that converges, 

that leads to local errors of the optimal order and using which the order of the 

square of the TN—conditional mean of the local error is higher than the order of 

the TN—conditional  variance. At each step the conditional variance of the local 

error is estimated and compared with the value required. The step size is halved 

and the step repeated until the local error is small enough. 
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24 Convergence of vaitiablie step size agorthms 

and choice of dscretsaton schemes 

In the preceding sections we have outlined an algorithm for numerical solution 

of SDE's using variable time steps. Naturally the question arises as to whether 

this algorithm converges to the true solution of each SDE. Various authors have 

already shown convergence of variable time step methods ([3], [45], [15], [26]), but 

in all cases the discretisation times have been stopping times. In this chapter the 

discretisation points are clearly not stopping times, since, on the one hand, the 

choice of acceptable errors is determined by prior investigation of an approximation 

of the whole trajectory and, on the other hand, it is only once a step has been taken 

and the error estimated that the decision is made to continue or to retreat and 

take a smaller time step. This leads us to look for general criteria that guarantee 

convergence of algorithms obtained by discretisation, to the solution of an SDE, 

whether the time steps are chosen deterministically or randomly, and, if randomly, 

whether the discretisation times are stopping times or not. 

In this section the representation of Brownian paths described in Section 2.2 

is crucial: the algorithms that we consider all represent a Brownian path as an 

infinite binary tree, so, however the time steps are chosen, the step size is equal 

to 2, for some n E iN. 

We will consider first the particular case of SDE's driven by a one-dimensional 

Brownian path, or satisfying the commutativity condition, and then go on to 

consider the general case of SDE's driven by a multi-dimensional Brownian path, 

where the commutativity condition is not satisfied. 

24.1 SUEs driven by a one-dimensional Brownian path 

or satisfying the commutativfity condition 

From [35] it follows that in the case of an SDE driven by a one-dimensional Brow- 

nian path, or an SDE satisfying the commutativity condition (1.19), in which 
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case the solution does not depend on Levy area integrals, we have the following 

theorem: 

Theorem 2.4.1 Let the SDE (1.2) have d = 1 or satisfy the commutativity con-

dition (1.19), then any variable step size algorithm that breaks [0, T] into disjoint 

intervals each of length 2' for some k E iN and on each interval [t 3 , t 1 ], with 

t3 +i = t3  + h +1, takes as approximate solution, (t), to (1.2) the solution for unit 

time of the ODE 
du d  

	

= fohi + 	f(u)1w 1 
dt  

	

i=1 	 , 	 (2.2) 

UM = 

will converge to the solution of (1.2), as long as 

maxh —*0 
3 

However, if we want an approximation that not only guarantees convergence of 

the variable step scheme, but also reduces the conditional mean of the local error 

sufficiently, then it would be sufficient to solve on each interval the ODE 

du 	 1= fo (u)h i  + >IL f(u)zw1 - 11 	f°(u) 	
(2.3) 

u(0) =Yj 

where f(tOi) = [
fi, [fo, ft]] shown in [5] to be a first-order asymptotically efficient 

approximation in the case of fixed step-sizes. Here we are using the notation [u, v], 

where u and v are vector fields in ll?, to denote the vector field 

	

n o 	ma 
[u, v] 

= 	

U2 	

- 
axi 

It is not necessary (or possible) to solve the ODE (2.3) perfectly. It is sufficient 

that over each step of the solution to the SDE, the discretisation scheme chosen 

produce a local error of 0(h312 ). Such accuracy can be obtained by solving the 

ODE (2.3) using the fourth order Runge-Kutta method (see [51). Equivalently, 

any of the first order asymptotically efficient schemes of Newton ([44], [461) could 

be used to solve the SDE (1.1) or (1.2) (depending on the scheme chosen) directly 

on each time interval. 
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24.2 SJDE 9s diriven by a mufti -dimensionaR Brownian path 

and not satisfying the commutativity condition 

When SDE's do not satisfy the commutativity condition, it is not enough to eval-

uate the Brownian path only at the points in time where the approximate solution 

is calculated. To guarantee convergence when using random time steps, it is nec-

essary to also generate increments of the Brownian path at intermediate points in 

time and to use the increments to approximate the Levy area integrals, as defined 

in (1.17). 

The following theorem is completely based on suggestions of T.J. Lyons. 

Theorem 2.4.2 Let A13 (k+1), be an approximation to the Le'vy area A(tk, tk+1), 

(i,j = 1,... ,d), obtained by subdividing the time interval [tk,tk+1], where tk+1 - 

tk = hk+l = 2, into 	equal subintervals and taking the area of the piecewise 

linear path obtained by generating the Brownian path at the ends of the subinter-

vals. If q(j) > Clog2 j, for C > 1, then any variable step size algorithm that 

breaks [0, T] into disjoint intervals each of length 2 for some j E iN and on each 

interval [tk, tk+11  takes as approximate solution, Xk+1,  to (1.2) at time tk+1 the 

solution for unit time of the ODE 

du 	 d 

= f0 (u)h 1  +f(u)Aw 1  + 	[f,f](u)A(k+ 1) 
di 	 i=1 	 1<i<j<d 	 (2.4) 

U(0) = Xk 

will converge to the solution of (1.2) as long as 

max hk .' 0 
k 

Proof. To simplify notation, we denote by A(tk, tk+1) and Ak +l the d by d matrices 

with entries A(tk, tk+1) and Aa(k + 1) respectively. From [35] it is clear that as 

long as 

IAk+l - A(tk,tk+1) I :~ o(hk+l) 	 (2.5) 

uniformly in the choice of partition of [0, T], then the approximate solution given 

by solving (2.4) for unit time on each interval [1k, tk +1I will converge to the solution 
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of (1.2) as 

maxhk - 4 0 
k 

Therefore we have to show that the approximate Levy area, Ak+l, obtained by 

splitting each [tk, tk +1I into equal pieces, will satisfy (2.5) when 

Clog2 j, with C> 1. 

We can express the Levy area as 

00 2_1 

	

A(tk,tk+1) 	= 	[zw(k,j ) i,p),zw(k,j,i,p + 1)] 	(2.6) 
1=1 p=l 

where we define 

	

/.w(k,j,i,p) 	w(t, + (2p - 1)h13) - W(tk + ( 2p - 2)h 3 ) 

	

zw(k,j,i,p+ 1) 	W(tk + 2ph23) - w(tk + (2p - 1)h 13 ) 

with 

I1•
• 
- -( i+j)

j3 -  

and the approximate area as 

(j) 
Ak +l = 	[zw(k,j,i,p),w(k,j,i,p+ 1)] 	 (2.7) 

i=1 p=l 

(See Figure 2-3.) Here we are using the convention 

[u, v] = u 0 v - v 0 u 

Therefore we wish to estimate the size of 

2t 1  

23 	[tw(k,)*, i,p), Aw(k,j, i,p + 1)] 
i>(j) p=l 

We will start by investigating the size of the ith term. It is clearly sufficient to 

estimate 

1P 	 > A2 3) 

where the j, ?7pj are all i.i.d. normal random variables with mean 0 and variance 

or, by scaling, 

(1 
ill—p77p >) 

P=1 
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Figure 2-3: building up an approximate Levy area 

where the ,, are all A1(O, 1) (standard normal) random variables. 

We have, for any a> 0, 

1 	oo poo 
1Ee C0 1) 

= 2i 1-001-00 

e 	2 : dxdy = 
	1 

2 

M T11] 
n 

ea 
fl1(p7p)

e" < 
P=1 

Therefore, using large deviation theory, 

	

onA '\ 	—on) 	cy'1  1 p TI
P  

'lj ( 	 p1p> 	= 	
) 	

e P=  

n  p=1 	
(2.8) I  

—csn\ b( 	
j 	I ..) 	 i 

e 	a) = V 
Since a is arbitrary in (2.8), we can take it so as to minimise the last expression. 

This is equivalent to minimising 

 —logV'l -- a2  - aA 

So we must solve 
a 

A 
 1—a2 

	

The positive root is 	 _______ 
1 	ii 
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which, using a Taylor series expansion, gives 

fun 	I 
JP

> ) 

<(e ° 	 (2.9) 

We now need a suitable choice of )(i), to ensure that , with our hypothesis on 

(2.5) will hold whenever 

2'- 

>[Lw(k,j, i,p), zw(k,j,i,p+ 1)] 
P=1 

Let A(i) = 2-i - with m> 1. Then im 

23Ak+1 - A(tk,ik+1)I 

which tends to 0 as j —* 00. 

2 
=  

Ii>(i) P=1  
2 1 _ 1  

~ 2 3 	E [w(k,j,i,p),w(k,j,i,p+ 1)] 
i>qS(j) 

1 	 1 
q(j)m_l 	(C 109 2 j)rn_l 

Finally, we can use a Borel-Cantelli lemma, to show that, for a given Brownian 

path, (2.5) holds on every subinterval of [0, T] with only finitely many excep-

tions. For each choice of j, there are 2 3 T possible subintervals of length 2. So, 

(remembering that the 6 p  and r are standard normal,) we need to show that 

00 	 I2 

	

23 T 	( 	 > -) <oc 	 (2.10)ZM  
j1 	i>j(3) 	

2z 
p=i 

with m > 1. We can rewrite the left hand side of (2.10) as 

00' 

T 	2( 	ll 	 >' 
i=1 	(j)<i 

) 

With (j) = Clog 2 j, for each i, there exists f such that 

	

i 	< 

By (2.9), 

> --\ [exp 	+ 0( \22 
p=1 	

jm) — 

Combining the last two expressions gives (2.10) for all m. 	 0 
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As mentioned in Section 2.3.2, when using variable time steps it makes life 

easier if we choose a discretisation scheme to approximate the solution with the 

property that the mean error over each step, conditional on the available informa-

tion about the Brownian path, is negligible beside the standard deviation. Then 

it is only the conditional variance that need be used as an accuracy criterion 

when choosing the length of the step. As seen above, for an SDE driven by a 

one-dimensional Brownian path, or satisfying the commutativity condition (1.19), 

there is a class of discretisation scheme available (those schemes known as first-

order asymptotically efficient) that have the required property and also assure 

convergence by satisfying the hypotheses of Theorem 2.4.1. When it comes to a 

general SDE, (for which no PN—conditional  approximation can assure a better or-

der of accuracy than O(/7)), we need to derive a numerical scheme that not only 

uses approximate Levy areas, in order to fulfill the requirements of Theorem 2.4.2, 

but also produces local errors with small enough conditional means. We show here 

that both the true solution to the ODE (2.4), and good enough approximations 

to that solution, do give rise to local errors with reduced conditional means. 

Since we have chosen to approximate Levy areas over the time-steps of the 

numerical solution, by generating increments of the Brownian path over sub-

intervals, the amount of information available at each time step, to be taken into 

account when examining conditional expectations of the local error, has increased. 

Whereas previously we have considered the filtration 

PN =o- (w(t k ),k=1,...,N), 

in this section we need to consider the augmented filtration 

PN = a(w(tk), {W(tk + mhk), m = 1,. . . 2}m = 1,. .. , N;), 

where hk = 	çb(j) is as defined in Theorem 2.4.2 and 

- 	hk 
hk = 2Y 
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If we expand the solution to the ODE (2.4) over a small time interval [tk, t 1 ], 

we obtain 

= x + f(xk)hk+1 + >f(xk) 1 w+l 
P 

j=1 P=1 

j=1 O<p<q<d 2 

j=1 O<p<q<d 2 

f(xk) ((zw+1)2 - hk +l) 

afq
(x k )Bpq (k, k +1)

afp  

Dxi P + Dxi qj 

(! 	
) 

- DfPfi\ (Xk)A pq (k, k +1) + R 
Dxi P Dx3 q 

for i = 1 ' ... , n, where the remainder, R, contains terms of order 0(h312 ) and 

higher. The expansion of the true solution of the SDE is identical as far as the 

remainder terms, except for containing the true Levy areas, A pq (k, k + 1), rather 

than the approximations, A pq (k, k + 1). 

The local error is therefore 

i- 	fi 
(X k )(A pq (k, k + 1) - A pq (k, k + 1)) + R (2.11) 

i10<p<q<d 	Dxi P 	Dxi qj 

Since the )5N —conditional mean of the Levy area A(k, k+ 1) is the approximate 

area A(k, k -1- 1), the TN—conditional  mean of the local error contains only terms 

of order 0(h312 ) and higher. The square of the conditional mean is therefore of 

order 0(h3 ). 

Now for the TN—conditional variance. Writing A pq  for A pq (k, k + 1)), we have 

I /(c) 	 2 	1 

E [(Apq 
- 

Apq)2 TN] = E [ 

	

A pq (i, (i + i)h)) TN] 

Since 

E [A pq (ii, (i + 1))Apq (j, (j + 1 ) 	TN] = 

for all i j, we have 

E [(A pq  A pq ) 2 N ] = 

2) 	 (2.12) 
E [Apq (ii, (i +)h)2 	

w(i (i + i))] 
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Using 

	

E(A q (t, + h)Iw(t, t + h)) = 	h(h + (w(t, t + h))2  + 	t + h)) 2 ),
12  

(2.12) becomes 

- 	
24(k) 

	

E [(Apq  - Apq) 
21 

PNj = h h + 	( wP(i, (i + 1))2  + 	( i + 1))2)], 

[ 	i=O 

which, when substituted into (2.11), gives the conditional variance of the local 

error as 
2 n 	J(ôgag;\ 

(xk) 
j=1 O<p<q<d 12 	—;-gp - ;;jgq ) 

I (2.1

24(k)  

h + 	( wP(i, (i + 1))2  + 	( i + 1))2)]  + R. 

3) 

25 ]Illusrati.ve numericaR applications 

2.5.1 First exampile 

For the first example we have chosen the one-dimensional equation 

dx = /3x o dw 	 (2.14) 

because the solution can be explicitly calculated as 

X(t) = x (0) e/t) 

When 0 is sufficiently large the solution becomes hard to approximate by pathwise 

integration. 

Since the drift term in (2.14) is zero and the Brownian path one-dimensional, 

the solution to this equation can be approximated as accurately as wished using 

7'N — measurable approximations. For such an equation the local error is always 

equal to its PN conditional mean and standard deviation. The asymptotically 

efficient approximation would be the discretisation scheme given by the infinite 

series 

00 

01 
Xk+i = Xk 

i=O 
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which is hardly a practical proposition. We will therefore choose a simple first-

order scheme for the purpose of comparing fixed and variable time steps. 

We will first estimate the one step error and then examine how errors propagate, 

hence deducing an accuracy criterion to be applied at each step. 

We will use the (explicit) Heun method (1.20): 

Xk+1 = Xk + 1/2(fo(k) + f0 (5))h + 112(f1(k) + f1(-i))Iwk+1 

where 

X = Xk + fo(k)h + f1(k)wk+1 

Expanding fi()  as a series around Yk  and setting fo (x) = 0, we can write 

(1.20) as 

Xk+1 = Xk + f1(k)zwk+1 + 

1 
+ 0((zwk+1) 4 ) 

The true value of Xj1 given Xk = xk is 

Xk+1 = Xk + fl(k)L\wk+1 + - f1(k)fk)(Lwk+1) 2  

+ [u1 k 2 f;' k + (f1(k)fk)) 2] (Wk+1) + 0((wk+1)) 

Then our error estimate is 

1 	i2 	2 
j-(2fifi - fi fi )(k)(Awk+1) 3  + 

With fi ( x) = /3x the error estimate is 

y(tk) = 0xk(Lwk+1) 

For this particular equation, the error as given by (2.1) is solution of the same 

SDE again: 

dy = /3y o dw 

Let y(t) be the error in x at an intermediate time t, 0 < t < T. Then that error 

will lead to a final error y(T) given by 

i3(w(T)—w(t)) - y(t)x(T) 
y(T) = y(t)e 	

- x(t) 
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If we wish the local error at each step to contribute equally to the final global 

error, we should require 
y(t)x(T) 

	

X (t) 	I < 

hence 

	

1 Y(01 
< 	x(t) 

Ix(T) 
The accuracy criterion is now 

I/xk(Lwk+1)I 
<

Xk 

or 
) 31  <C 

We give below in table form the results obtained for # = 5 and x(0) = 1 

along one particular Brownian path, using first fixed step sizes of various lengths 

(Table 2-1) and then variable step sizes with different accuracy constraints (Tables 

2-2-2-4). In all cases the discretisation method used is the Heun scheme. 

In order to compare the relative performance of the fixed and variable step size 

methods, we report the number of steps taken in each case. For the variable step 

size method two numbers are given: the number of steps performed successfully 

(ie. that meet the chosen accuracy criterion) and the total number of steps tried, 

including those that were too large for the required accuracy and so had to be 

repeated using a smaller step size. The first number gives an indication of any 

possible reduction in the number of steps required to reach a final point with a 

given accuracy, once all steps do not need to be of equal length. The second number 

indicates how much work the variable step size routine performs (ie the number 

of function evaluations etc.) and therefore gives an indication of the computing 

time involved as compared with the time used by the fixed step size routine. 

The accuracy criteria used with variable step sizes to produce the results in 

Tables 2-2, 2-3 and 2-4 below are, in order, 

	

lyk -  XkI < C 	 (2.15) 

Ixk - 	< Ck_l 	 (2.16) 

	

ILw 3 I < C 	 (2.17) 
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Table 2-1: Fixed step size 

Step size 	x(1) 

2 -7  34379.89 

2_8 34682.04 

2 -9  31709.06 

2- '0  22217.40 

2_it 20340.67 

2_12 19807.45 

2_13 19394.61 

No. steps Error (%) 

128 80 

256 81 

512 66 

1024 16 

2048 6 

4096 3.5 

8192 1.4 

Table 2-2: Variable step size using Ik - xkl <C 

C 	x(1) 	No. steps taken 	No. steps tried 	Error (%) 

	

10.0 31269.71 	 370 	 1680 	63 

	

1.0 27048.22 	 1505 	 6834 	41 

	

0.1 	21959.87 	 6072 	27303 	15 

Table 2-3: Variable Step Size using IXk - xkl <CIk_1 

C x(1) No. steps taken No. steps tried Error (%) 

0.1 31226.03 38 168 63 

0.01 31347.92 202 900 64 

0.001 20598.17 809 3615 7.6 

0.0007 19444.64 1078 4812 1.6 

For the path used w(1) = 1.971848, hence the true solution is x(1) = 19134.34. 

The final table for this example, Table 2-5, reports average figures over fifty 

different Brownian paths. The numbers of steps are the numbers needed to obtain 

at least 2% accuracy in x(1). The third row of the table compares the number of 

steps taken using variable step sizes with the number using a fixed step size. The 
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Table 2-4: Variable step size using Izw3 I < C 

C x(1) No. steps taken No. steps tried Error (%) 

0.1 6614.52 28 31 65 

0.01 25456.50 56 69 33 

0.001 20159.48 206 262 5.4 

0.0001 19518.13 958 1216 2.0 

0.00009 19353.70 1026 1302 1.1 

Table 2-5: Comparison of Methods 

Fixed VS (2.15) VS (2.16) VS (2.17) 

Steps taken: 16998 18024 6970 3101 

Steps tried: 16998 35864 15733 3956 

Steps taken/fixed: 1.00 2.11 0.93 0.23 

Taken/tried: 1.00 0.50 0.44 0.78 

last row shows the proportion of steps accepted as meeting the relevant accuracy 

criterion to the total number of steps tried. The third accuracy criterion, which is 

the one described in detail above, is clearly the most efficient. The total number 

of steps taken and the proportion of steps tried but rejected are both lower for 

this method than for any other method tried. 

2.5.2 Second Example 

The second example is similar to the first, but with n = 2 (and d = 1 again). We 

take the system of Stratonovich equations 

I du = 02vodw 
(2.18) 

dv = uodw 

with initial conditions 

I 	= 0 

v(0) = 2 
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(We have taken x = (x1 ,x 2 ) = (u, v), to simplify notation.) The solution can be 

calculated analytically as 

{

u(t) = 	 + 

v(t) = ew(t) + 

As in the first example, the solution can be approximated as accurately as 

desired using a PN approximation, so asymptotic efficiency is not really relevant. 

Let y and z be the errors made in u and v respectively. Then, replacing u and 

in (2.18) with u + y and v + cz and taking the limit as € tends to zero, we see 

that, as in the previous example, y and z satisfy the original system 

S dy = 02 zodw 

dz = yodw 

Hence 

{

y(i) = _/3Ae_t) + /3Bet) 

z(t) = Ae -OW + Bet) 

If we are interested in the contribution at time T of errors y(t) and z(t) introduced 

at time t, then we must take 

	

A 	
/3z(t) - Y(t)f3(t) = 

2/3 

	

B 	
/3z(t) + y(t) = 

2/3 

giving 

J y(T) = 

z(T) = 2 	20 

where 

	

El = 	-f3(w(T)-w(t)) + 

E2 = eT)_t - -/3(w(T)-w(t)) 

It can be shown straightforwardly that 

/9 2v(T)v(t) - u(T)u(t) 
E1= 	 2/32 

u(T)v(t) - v(T)u(t) 
E2 - 

2/3 
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Therefore errors introduced at time t lead to errors at time T given by 

	

J y(T) = 	[y(t)(/32v(T)v(t) - u(T)u(t)) + 132 z(t)(u(T)v(t) - v(T)u(t))] 402 

	

z(T) = 	[y(t)(u(T)v(t) - v(T)u(t)) + z(t)(/32v(T)v(t) - u(T)u(t))] 402 

For the Heun method our error estimate for x, i = 1,2 is 

- 

(2'fl

k
- axiaxkh1)

(xz(t))(Awk+1)3 + O((wk+1)4) 
2 ôfj1   

giving 

Y(t) = 16 

Z(t) = 

Since u is really only an intermediary variable and it is v that interests us, we 

only demand accuracy in v. Requiring as before that the local error at each step 

contribute equally to the final error, we obtain an accuracy criterion for each step 

of 

u(T)(wk+l) 3  [ 2v(t) 2  - U(t)2]1 <c 
24 

or 

31 2 V ( t )2 	1 (Lwk+l) 1 	- 
U ( t )2 

 j 1 < C 	 (2.20) 

We present below in table form the comparative results of solving the system 

(2.18) using fixed and variable time steps. As for the first example, the discretisa-

tion method used is that of Heim. We have taken 3 = 4. Tables 2-6 and 2-7 give 

detailed results using one particular Brownian path, for which w(1) = 0.080107, 

giving x 2 (1) = 2.10356. The last table, Table 2-8 again compares the efficiency of 

fixed and variable step sizes over fifty Brownian paths. 

Motivated by the results obtained in example 1, only one accuracy criterion 

has been used to control step size, the criterion (2.20) derived above. 
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Table 2-6: Fixed Step Size 

Step size 	x 2 (1) No. steps Error (%) 

2 -7  4.34977 128 107 

2_8 2.94662 256 40 

2 2.53534 512 21 

2- ' 0  2.28233 1024 8.5 

2.19512 2048 4.4 

2_12 2.14895 4096 2.2 

2_13 2.12498 8192 1.0 

Table 2-7: Variable Step Size 

c 	x 1 (1) No. steps taken No. steps tried Error (%) 

0.1 2.45227 192 246 17 

0.01 2.16454 684 867 2.9 

0.002 2.12298 1975 2529 0.9 

Table 2-8: Comparison of fixed and variable steps 

Fixed step size Variable step size (2.20) 

Steps taken: 5530 738 

Steps tried: 5530 927 

Prop of fixed: 1.00 0.17 

Taken/tried: 1.00 0.80 
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2.5.3 Third Examp'e 

For our final example we have chosen an SDE that is of one dimension in x but 

two dimensions in w (n = 1, d = 2), 

dO = cos(0)dw 1  + siri(0)dw2 
	

(2.21) 

This is the 'gradient flow' on the circle mentioned by Rogers and Williams [53]. It 

is easily verified that the Ito and Stratonovich forms of this equation are identical 

and that the equation does not satisfy the commutative property. 

We will use the method of solution suggested in Section 2.4.2, that involves 

approximating the Levy areas by generating increments of the Brownian motion 

over finer time steps than the steps of the numerical solution, and that reduces 

the order of the mean one step error. 

For this method, with d = 2, the variance of the local error generated in one 

step conditional on (all) the increments of the Brownian path is 

E[(xk+l - Xk+1)ILWk+1] 

- f(xk)f1(xk)) 2  [h + 	(( w ) 2  + (w)2)] 	
(2.22) 

i=1 

where K is the number of equal subintervals that the time step has been divided 

into for the purpose of approximating the area integrals and Aw i  denotes the 

increment of the Brownian path over the ith subinterval. The mean of the local 

error is 0(h312 ). 

In the case of the SDE (2.21) the local variance is 

1 	K 	 k 

Vk = - 
12 	i=1 

+ 	(/ w ) 2  + 	(w)2) 	 (2.23) 
i=1 	 i=1 

From (2.1), the propagation of the local error is given by 

2 dy = y(cos(0)dw - .szn(0)dw 1 ) 
	 (2.24) 

This equation cannot be solved analytically, so one way to proceed is to solve it 

numerically simultaneously to equation (2.21), giving the system 

dO = cos(0)dw1  + sin(0)dw2  

dy = y(cos(0)dw 2  - sin(0)dw1) 	
(2.25) 



Chapter 2. Variable Step Size Control in the Numerical Solution of SDE's 	47 

with y(0) chosen arbitrarily. If an error e(t) is introduced at time t, then this will 

lead to a contribution to the final error at time T of 

e(T) - y(T) 
e (t) 

- Y  

and the variance, v(t), of the local error will give a contribution to the variance of 

the final error of 
(T) 

2  
y 

v(T)=(()) v(t) 

which in this example becomes, from (2.23), 

1 	 2 	
K 	 K 

v(T) = 
	( Y( T ) )

y(t 	
(h + 	( w ) 2  + 1

i=1 	
i 

Hence we have an accuracy criterion of 

1 
(Y(T)) 2 

	

K 	 K 

y(t) 	
/i(h + 	(\w ) 2  + 	(w)2) <C 

i=1 	 i=1 

or 
K 	 K 

A 1 2 y(t) 2 h(h + 2(w) + 	(Lw)2) <C 	 (2.26) 
i=1 	 i=1 

There is a problem here: the accuracy criterion (2.26) includes Aw i , i = 

1,. .. , k, but an efficient routine to generate and access the Brownian path will 

only return the increment of the Brownian path and the approximate Levy area 

over each time step, not the increments over smaller steps used to approximate 

the integrals. The best way round this, seems to be to approximate the sums of 

(zwfl 2  by h. 

Let 

S = ( zwfl2 

The mean error, conditional on Lwk+1, made by replacing Sj with h is 

= E[S - hIwk+i] = ((wk+1)2 - h) 

and the conditional variance of the error can be shown to be 

E{(S - h - 

 

4h2 	h2  t, ) 2 	 4h  = - 
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Figure 2-4: error propagation 	Figure 2-5: step size against time 

Therefore, if we wish (2.26) to be satisfied with a certain probability, when ap-

proximating S, j = 1, 2, by h, we need to replace C in (2.26) with C - 

giving the final criterion 

y(t) 2 hh + a 	< C 	 (2.27) 

The choice of a e JR depends on the probability with which we want (2.26) to 

hold. 

As can be seen in Figure 2-4, the path followed by local errors suggests ex-

ponential decay. Using criterion (2.27) to control step size therefore results in 

initially large steps decreasing more or less exponentially in size with time. The 

time steps obtained for one particular Brownian path are shown in Figure 2-5. 

26 1[mpementation 

As mentioned above, we have chosen to generate approximations to Brownian 

paths using a tree-like structure and to store all parts of the tree generated in a 

data file. The file consists of a set of records, stored in the order in which they 

are generated. The first record in the file is unique and contains basic information 

about the whole file, such as the total number of records, the dimension of the /.w 
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vectors, the number M of vectors in each record, etc. Each of the other records 

consists of two blocks of data of fixed length and structure. The first block is a 

set of "labels", that define clearly the position in the tree of the set of Lw vectors 

contained in the record and that also specify where certain other nodes of the 

tree can be found, such as the parent node, the right and left children and the 

previous and next nodes on the same level of the tree. The labels are particularly 

important when it comes to the branches of the Brownian tree that are added as 

needed during the solution of the SDE, as these do not constitute full levels and 

therefore must be properly linked to the rest of the tree. There are several possible 

sets of labels that could be used, from a minimal set to much more extensive ones. 

Here a balance needs to be reached between the amount of data stored and the 

time needed for accessing data within the file. Although it might seem sensible 

not to store more in the file than necessary, much computing time could be lost 

searching through the file for the required record, when a label in the last record 

used could have given the location. 

The second block of data contained in each record is a set of M Lw vectors 

constituting a node in the Brownian tree. The parameter M is chosen suitably 

large, allowing enough of the Brownian path to be kept in working memory at any 

one time to minimise the number of file accesses required, but not so large that 

paging is forced when using virtual memory. 

At the beginning of the numerical solution, an area of working memory is ini-

tialised. A particular number of records is read from the file and stored in memory. 

Throughout the numerical integration the number of records kept in memory will 

remain unchanged. (This parameter must again be chosen, in conjunction with 

M, in such a way as to minimise access time.) The first record taken from the file 

is the one containing the /w vector needed initially by the integration process. 

The other records are all parents, grandparents etc. of the first one. In this way 

if, a bit later in the solution, the step size should increase, the necessary nodes 

will already be present in memory. 

After initialisation, each time that a path element is required, the first place 

to search for it is in memory. If the algorithm is tuned properly, then a large 
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proportion of the time the search will end there. When the required node is not 

in memory, then either the node is contained in the file, in which case the relevant 

record is read in and replaces another record already in memory, or else the node 

has not yet been generated and existing records are used to generate new nodes. 

In some instances, generation of one node demands generation of nodes on one or 

more higher levels. All newly generated nodes are placed in records along with the 

correct labels and appended to the file containing the Brownian tree.At the same 

time, in order to preserve the tree structure, other already existing records need 

to be updated. For example, parent records of newly generated records must be 

corrected to include pointers to their children. 

The rules we have chosen state that the nodes kept in memory must at any 

time all be from different levels of the tree and be direct descendants of the one on 

the highest level. Therefore, when any one record is replaced, other records may 

also need to be replaced. 

At the end of each step in the numerical integration, a decision is made as 

to whether in the next time interval the step size should be increased, decreased 

or remain unchanged. When accuracy tests suggest that the step size could be 

increased, it is not always possible to do so immediately. This is a question of data 

structure. An increase in step size can only be allowed when the current time is the 

initial point of a subinterval of length the larger (double) step size. For example, 

if an initial step of length 0.125 is taken at time t = 0, then the second step, taken 

at time t = 0.125 cannot be of length 0.25, since the Lw elements corresponding 

to steps of that length are only generated over the intervals [0, 0. 25],[0.25, 0.5] . 

The correct procedure at this point is to take another step of the previous size 

and to then increase the step size, if the situation still warrants it. On the other 

hand, step size can be decreased at any point in time. 

The computer program written in C, corresponding to the method described 

here, is given in Appendix A.I. 



Random Generation of Stochastic Area ID 

Integrals 

31 Definition of the proMem 

We have seen, in Chapter 1, that one way to obtain higher order approximations to 

strong solutions of the stochastic differential equation (1.1) or (1.2) is to simulate 

not only increments 

= 	- w t (tk) 	 (3.1) 

along the Brownian paths, but also stochastic integrals involving the Brownian 

motion. To obtain accuracy of order 0(h) it suffices to generate and include in 

the numerical scheme the area integrals, as defined in (1.17), 

itk+1 Js tk+1

A,(k,k+1) 
= k 	k 

dw 2 (r)dw3 (s)_J 	dw 3 (r)dw(s), 	i = 1,... ,n;j > 

	

tk 	tjç  

where, tk+1 - tk = h, k = 0,... , N - 1, 

This chapter describes a method of random generation of the integrals 

tk+1 I s
it, 

dw 2  (r)dw 1  (s) A 1 , 2 (k, k + 1) L 	k 

dw'(r)dw2(s) - 
j1tk+1 

k  

Use of these integrals allows first-order approximation of strong solutions to any 

SDE based on a two-dimensional Brownian path. This, although clear' 

51 
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beginning of the story, is a definite improvement. The work in this chapter has 

been published in [18]. 

Since the increments of the Brownian path, Lw j41  and Lw 1  are clearly not 

independent of the area integrals A 1 , 2 (k, k + 1), the increments and the areas 

have to be generated jointly. At first sight it seems that we are faced with the 

generation of a random vector in 1R3 , but in fact the problem can be reduced to 

the generation of a random vector in 1R2  and an independent uniformly distributed 

random variable, as shown by the following theorem. 

Theorem 3.1.1 (Levy) Let r2 (t) = Lw 1 (O,t) 2  + Lw 2 (O,t) 2 . The joint density 

function of r = r(1) and a = A1 , 2 (0, 1) is 

r 	x

(  —

rx ) 
f (r, a) = - 	 exp 	 cos 

	

Josinh(x) 	2tanh(x) 	
(ax)dx 	(3.2) 

Proof. 	We will follow the proof given by Levy in [31], where he obtains the 

density of the area integral. The essential ingredient is that w 1 (t) and W 2 (t) can 

be given by almost surely convergent Fourier series, as proved by Wiener in [57]. 

We can write 

1 	
00 	1 

	

(t) = 	 ( 3.3) 

 71 	00 	1 

	

w 2  (t) = 	+ 	i(cosnt — 1)+ 	sin nt] 	(3.4) 
n=1 

n 

where 	. . 	 . 	are all independent standard 

normal random variables. For convenience of calculation, we will derive the joint 

characteristic function of w 1 (27r),w 2 (27r),A 1 , 2 (0,27r). Let a = A1 , 2 (0,27r). By 

straightforward calculation we get 

w 1 (21r ) = 	 (3.5) 

W 2 (2) = 	 (3.6) 
00 1  

	

a 	 —v') - 	- M)] 	(3.7) 

Set 

(r(t))2 = (w'(t))2  + (w2(t))2 
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We will first consider the conditional characteristic function of a, given 	= a, 

= 6, that is given r 2 (2ir) = (a2  + f32 )7r. When c is standard normal 

1E( et) = 

so, if i is also standard normal, the characteristic function of (ij - 0) is 

1 	too 
/ 	[y—P2z2+y2J/2 dy 

= 	1 	_/ 2 z2 /(2(1+z2 )) 

/f+  z2  

and therefore the conditional characteristic function of 	- 3) 
- 	

- a) is 

1  
e —p2z2/(1+z2) 

1 + z 2  

where a2  + 92 = 2p2 . The conditional characteristic function of a is then 

2 	 r 

	

i 	 2  (zp ) =  II n 2 	
1 exp I —P 	4z /(n + 4 Z 2 ) 

I  ~n= loo

n 	 2 I 	2 	 2 

+4z2J 	L 	

'ç 

n=1 

which can be written 

2 	27rz 	 2 
p(zlp ) = 	 ex 

sinh(2irz) 	[p (1 - 2irzcoth(irz))/2] 

The density of a conditional on p 2  is 

2 	1 F e
2 

f(ap ) = 27r oo 
 q(zIp ) dz 

Since the density is real, we have 

	

- 2 	2 f(ap) 
= 

 100 

 cos(zã) 
sinh(27rz) 

 exp  [P2 (I
- 27rz coth(27rz))/2] dz 

Since p2  is the sum of the squares of 2 standard normal random variables, its 

density function is i exp( — p2 /2). The (unconditional) joint density of a and p2  is 

therefore 

f(a
-  2 	 ____________ , p ) = 

 TO 
cos(zã) 

.__ Z
exp [_p2 z coth(2irz)] dz 

 srnh(27rz) 

Replacing 27rz with x, the joint density of p and a becomes 

P 100 	xã 	x 	
ex 	2 cos(—) '' ,o) 

= 2r Jo 	27r sinh(x) p [ — p x coth(x)/2] dx 

The random variables p and r(1) have the same distribution, so p can be replaced 

with r(1) in the above expression, but a = A 1 , 2 (0, 27r) is distributed like 27ra, so it 

remains to replace a with 27ra to obtain the required joint density of a and r. 0 
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0.3 

0.2 
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0 

Figure 3-1: The graph of f (r, a) 

The problem has become that of generating the vector (r, a) with the distribu-

tion given in (3.2). It is then trivial to obtain correctly distributed Lw 1 (0, 1) and 

Lw2 (0, 1) by generating 0 uniformly distributed on [0, 27r] and taking 

Awl  (0,1) = r cos 0 

zw 2 (0,1) = rsin0 

See Figure 3-1 for the graph of f(r, a). 

Note that we can generate (r, a) over unit time steps in the first instance. 

Eventual scaling of a by h and r by /i suffices to produce a sequence of vectors 

(Lw 1 (t, t + h), w2(t,  t -- h), A1,2 (t, t+ h)) for any required time step h. 

Another obvious simplification consists of generating only the half of the dis-

tribution that corresponds to a> 0 and then giving a a random sign. 

32 Outline of the Method 

The integral in (3.2) can only be calculated numerically, so there is no 'quick and 

easy' method of generation available. The method we have chosen is based on 

Marsaglia's 'rectangle-wedge-tail' method, generalised to higher dimensions (see 

Marsaglia [38] and [37], or Knuth [29] for an outline of the method). 

In one dimension Marsaglia's method involves dividing an area in jR 2  into 

equal rectangles and setting up tables with an entry for each rectangle. With 



Chapter 3. Random Generation of Stochastic Area Integrals 	 55 

modern computers, the amount of memory used for storage of the tables is not 

large. However, once we are in three dimensions, and start dividing a region in 

JR3  into equal pieces, the number of table entries needed becomes prohibitive. 

We have therefore been forced to a slightly more sophisticated analysis of the 

method to reduce storage requirements while retaining benefits of speed. The 

final implementation enables one to generate the vector (a, b, c) in about 4.6 times 

the time it takes to generate a vector of 3 independent numbers from a normal 

distribution. 

Following Marsaglia's rectangle-wedge-tail method, the aim is to express the 

required density function f(r, a) as a combination of three other densities, 

f(r ) a) = pi fi (r,a) +p2f2(r,a) +p3f3(r,a) 	 (3.8) 

where P1,P2,P3  are probabilities that sum to 1, P1  is as close to 1 as possible and 

the time needed for generating numbers from the distribution corresponding to 

f, (r, a) is very small. The distributions corresponding to f2 (r, a) and f3 (r, a) may 

be hard to generate, but they will be used sufficiently seldom that the average 

running time for the whole routine will remain acceptably low. 

The volume 

V = {(r,a,z)Iz < f(r,a),O < r < TM,O < a < aM} 	(3.9) 

where TM and am  are chosen suitably large, is packed with as many parallelopipeds, 

B = {(r,a,z)Ir < r < < a < < z < z},i = 1 ... N,as feasible. 

These will be referred to as 'boxes'. (The boxes correspond to the rectangles in 

Marsaglia's method for generating a single random variable.) The volume under 

Mr, a) is defined to be the total volume occupied by all the boxes. The 'easy' 

density fi (r,a) is therefore a sum of uniform densities: 

	

fi ( r,a) = 	qjj(r,a) 

where qj is the density of points in B, qj is the probability of a point (r, a) lying 

in box B2  (so q, is twice the volume of B,) and N is the number of boxes used. 

The 'wedges' are then the pieces left above the surface f, (r, a) and below f(r, a). 

The 'tail' is the set of points T = {( T,a,z)Iz < f(r,a) and (r > TM or a> am)). 
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The densities f2 (r, a) and f3 (r, a) are the densities of points in the wedges and in 

the tail respectively. 

33 The Boxes 

Determining the density function fi (r, a) involves first packing the volume below 

the surface f(r, a) with boxes and then grouping the boxes in order to reduce both 

memory requirements and execution time of the code developed. 

3.3.1 The packing problem 

The problem is to pack the volume V, defined in (3.9), with boxes in such a way 

as to maximise the total volume occupied and satisfy the various accuracy and 

programming constraints imposed at later stages of the exercise. 

The first decision taken is to set r,j  = am = 4 in (3.9). This gives a volume 

for V of 0.49866, containing 99.732% of the distribution to be generated. 

The next decision is to divide the volume under f(r, a) into boxes in such a 

way that the dimensions of each box (length, width and height) are all integer 

multiples of a chosen 1 = 2. In this way the volume of each box and hence the 

probability of a point being in it, can be represented on the computer as a binary 

number using 3n bits, introducing no rounding errors at this stage. 

A computer program was written to generate the required boxes. The volume 

V was subdivided using an increasingly fine mesh. As a first step the r,a and z 

axes were divided into intervals Lr1 = 2r, La1 = 2 and Lz1 = 2. Each 

box defined by this mesh was tested for complete inclusion in V. The boxes found 

to be in V were labeled as being part of the chosen partition. In the next step the 

intervals were halved, giving Lr2  = -nr etc. and the testing repeated for all 

boxes not already accepted. This procedure was repeated, halving the intervals 

at each step, until such time as a large enough fraction of the volume had been 

used up or the number of boxes defined was as large as thought practical. The 
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Figure 3-2: The packing at step 3 

values of n, n, the volume occupied by boxes and the total number of boxes 

can be thought of as the parameters of the program. Another possible parameter, 

the origin of the mesh, was fixed at (0, 0, 0) for the sake of simplicity. After 

experimentation, the parameter values considered acceptable were n, = = 0, 

ri = 6, with a total of 13574 boxes making up 91.19% of the volume to be 

generated. This corresponds to P1 = 0.9119 in (3.8). The numbers of boxes for 

each mesh size are as follows: 

Step: 	 1 	2 

Ltr=L1a: 	 1 	1/2 

Lz : 	 1/64 1/128 

Number of boxes: 	3 	86 

	

3 	4 	5 

	

1/4 	1/8 	1/16 

1/256 1/512 1/1024 

	

519 	2431 	10535 

Since the dimensions used in the final mesh were Lr5 = La5 = 2 1  Lz5  = 2, 

17 bits are sufficient to identify each box. The 13574 boxes of various sizes can be 

broken up into 119519 boxes of the smallest size. 

Figure 3-2 shows all the boxes that have been allocated by the end of the third 

step, broken into boxes of size L\r3 by La3  by Lz3. 

Note that rather than using a decreasing sequence of meshes, we could simply 

use one mesh, that with the smallest mesh size. We would obtain the same density 

function fi (r,a). Using the parameter values specified above, fi ( r,a) would be 

expressed as the sum of the densities over the 119519 boxes of smallest size. The 
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reason for using the multi-step approach is that it facilitates the next part of the 

exercise, which involves grouping the boxes together to form larger ones. 

During this first part of the exercise, the first questions arose on the gener-

ation of multivariate random deviates using Marsaglia's method. If we fix the 

percentage of volume that we wish to fill with boxes, how is the number of boxes 

required related to the joint distribution function? Presumably the number of 

boxes increases with the surface area? 

3.3.2 The entropy pob1em 

The boxes packed under the surface f(r, a) need to be grouped and ordered in an 

efficient fashion. 

Whereas in a two-dimensional problem it is these days straightforward to sub-

divide the required area into identical small rectangles and keep a separate record 

in memory for each rectangle, in a three-dimensional setting the number of iden-

tical boxes is so large that the memory requirements would be prohibitive. In our 

example 119519 records would be required. We therefore decided to group boxes 

together in such a way that each subset of boxes itself formed a box. 

When grouping boxes an effort was made not only to reduce the number of 

boxes but also to reduce the entropy of the partition. If it were possible to use 

only boxes of equal volume, then a random number consisting of the right number 

of bits (17 in our application) would uniquely identify the correct box to use. 

However, once the boxes vary in volume, a set of tests is required to determine 

which box each point falls in and therefore which q j (r, a) density function to use. 

The tests form a binary decision tree, which can be constructed in an optimal 

(time minimising) way using Huffman's method (see [22] for the original paper or 

Knuth [28] for a description). This method guarantees an average number of tests 

performed no greater than one plus the entropy of the partition. The entropy 

was therefore taken into account when choosing a partition. The entropy can be 

written as 

—>q1log2(q) 
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where qj , the probability of a point being in box B, is the volume of the box 

divided by the total volume occupied by boxes. 

One possible way of grouping the boxes would be in columns, ie 

Bij = {( r,a,z)IiLr < r < ( Z'+ l)zr,ja < a < ( j + l)La,0 <z < 

i=0 ... rM/r,j=O ... aM/La 

where hij  is the total height of boxes piled up on the square 

{(r,a)izr < r < (i + 1)Zr,jAa < a < (j + 1)La} 

With Lr = LS.a = 1/16 and rM = am = 4 there would be 4096 such columns, 

but if only columns with non-zero height are considered the number goes down to 

2894. The entropy for this partition is however quite high, namely 10.13 for the 

chosen packing. 

Another method of grouping the boxes, the one that was eventually chosen, 

is the following. In the first instance generate boxes of several sizes, using the 

method outlined in Section 3.3.1 above. This is equivalent to replacing groups of 

small boxes with larger ones. Then in the second step group together any boxes 

of the same size that are piled up one on top of another. This creates pieces of 

columns, that are in general shorter than the columns described above, but many 

of which have larger cross sections. In this way we reduced the number of boxes 

from the 13574 in Section 3.3.1 to 2975, giving a partition with entropy 7.14 

Once the partition has been chosen, it remains to build the decision tree needed 

for choosing a box with the correct probability. A computer program was writ-

ten to input the partition and output the decision tree using Huffman's method. 

Further software details can be found in the next section. 

There is no reason to believe that, given the packing, the chosen partition has 

minimum entropy. Designing an algorithm to generate a partition with minimum 

or nearly minimum entropy demands a substantial amount of further work. We 

plan to attempt this some time in the future, and therefore to improve on the 

performance of the present software and perhaps extend it to higher dimensions. 
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We conjecture that the problem of devising a partition with minimum entropy in 

three or more dimensions may be NP-complete. Other questions arise for general 

multivariate distributions, such as asking what function of the distribution the 

minimal entropy is. 

3.3.3 Programming details 

The part of the routine that generates points in the boxes, that is points with the 

density fi (r,a), is only a few lines of executable code that relies on the data stored 

in one large binary tree. The tree, generated once and for all using Huffman's 

method, is stored in an array of records. The length of the array, equal to the 

number of nodes in the tree, is 2N - 1, where N is the number of boxes (2975). 

The extra N - 1 nodes correspond to the tests needed to determine which box to 

use 

Each record holds the following data: a probability, the record numbers of the 

left and right children, the r and a coordinates of a corner of the box and the width 

of the box. (Note that in our application the length of each box is equal to the 

width. If this were not the case, the box length would also need to be given.) The 

records corresponding to boxes are at the ends of branches. They hold the value 

—1 for the record numbers of their non-existent children. The other records, those 

corresponding to decisions, hold zeroes in place of box coordinates and widths. 

This uses some extraneous memory, but produces relatively simple and fast code. 

On a computer with little memory it would be possible to use two separate arrays 

for the decisions and the boxes. We would like to investigate the trade-off between 

time and memory involved. 

The 'probability' held at each node of the tree is cumulative and is expressed 

as an integer. It gives the numerator of a probability expressed as a fraction 

with denominator 2", where ii = 17 is the number of random bits being used to 

determine the position. 

The first step in the algorithm is to generate the n random bits, giving an 

integer p. If p is less than PB = 119519, where PB12"  is the total probability of 
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being in a box, then the point to be generated is in a box, otherwise it is in a 

wedge or in the tail. If the point is in a box, then the correct box must be chosen. 

The search for the correct box starts at the root of the tree. If p is less than 

the probability stored in the left son, then the left branch is taken, otherwise the 

right branch is taken. This step is repeated until arrival at a terminal node. 

The point (r, a) is then generated uniformly within the box, using the infor-

mation on the position and dimensions of the box held in the node. 

34 The Wedges 

The region in the volume V, defined in (3.9) above, and outside the union of all 

the boxes, can be thought of as a set of disjoint pieces W = {w 2 , i 1 . . . n} 

that, in parallel with the usage in two dimensions and for lack of a better word, 

we will call wedges. The density function of the set W, f2(r,  a), can therefore also 

be expressed in terms of nw  separate functions, one for each wedge. The wedges 

make up 8.55% of the whole distribution. 

The packing of V with cubes, as described in Section 3.3.1, divides the square 

{ (r, a, z)Iz = 0,0 < r < TM, 0 < a < am} into a number of identical rectangles, of 

sides /r and Aa. With the values chosen of TM = am = 4 and Lr = La = 1/16, 

we have 642 = 4096 base squares, upon each of which there sits a column of boxes 

of total height hij , i,j = 1 . . . 64. The piece we are calling wedge is the set of 

points remaining above any one column and below the surface f(r, a). There are 

therefore i2 = 4096 wedges. 

We chose to generate the wedges using a simple rejection method. Each wedge 

can be enclosed in a box 

Cij  = {(r, a, z)I(i - 1)r <r < ir, (J-  1)a < a <a, hij  <z < jj} 

where 

jj = max{f(r, a), (Z' -  1)tr < r < izr, (J-  1)ia < a < jLa} 
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Then, having first chosen a wedge with probability proportional to its volume, it 

is just a question of generating points uniformly distributed in the box containing 

the wedge and testing whether the point is under the surface f(r, a). In case of 

failure, another point is generated in the box, and this is repeated until the test 

succeeds. 

On average less than half the points generated in the boxes need to be rejected. 

However, if each test for acceptance of a point demanded evaluation by numerical 

integration of the function f(r, a), this would be extremely costly in execution 

time. We have therefore chosen easy to calculate upper and lower approximations, 

f, 3 (r,a) and f(r,a), for f(r,a) on each base squarer, < r r;+l,aj  <a aj+lZJ  
with r2  = iAr, aj  = jza, i,j = 1,... ,64. All points (r, a) below f 1 (r,a) can be 

accepted without having to evaluate f(r, a) and similarly all points above fu(r,  a) 

can be immediately rejected. This is the squeeze method, so named by Marsaglia 

in [36]. 

The approximations to f(r, a) are obtained by simple interpolation. Let fa  r, a) 

be defined by 

fia 	a) = (1 - t)(1 - u)f(r, a3 ) + t(1 - u)f(r+i, a) 

+tuf(r+i, a i ) -- (1 - t)uf(r, a 1 ) 

where 

t = (r - r)/(r+i - r 2 ) 

u = (a - a3 )/(a +i  - a3 ) 

Then we set 

(r, a) = f(r,a)+E 

f(r,a) = f(r,a) +62 

with 

= min{f(r,a) - f(r,a)Irj < r < r i+,, aj  < a < a+i} 	
(3.10) 

eij  = max{f(r,a) - fi' J (r, a) I ri  < r < ri+,, aj  < a < aj+i} 
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The data needed for generation of the wedges is stored in two arrays. The first 

array has a tree structure very similar to the data structure used for the generation 

of the boxes in Section 3.3.3 above. The tree is used when choosing which wedge 

should contain the point to be generated. The tree was again prepared once and 

for all using Huffman's method for reducing the average number of tests performed 

when finding the correct wedge. 

The second array contains the information necessary for the generation of the 

various uniform deviates. Each entry is a pair of numbers representing the base 

height hi,, and the upper bound f2,j for a wedge. The width, length and r and a 

coordinates of each box do not need to be stored, since the width, Lr, and length, 

La, are constant over all the boxes. The use of this second array avoids some of 

the unnecessary use of memory mentioned in Section 3.3.3. 

Two data sets are also needed for calculating the approximations f, j  and  f,. 

The first set consists of the function values f(r1 , a3 ) at the grid points, used in the 

interpolation. The other set contains the pairs of constants (C 1 as in (3.10), 

needed to ensure that the two approximations stay below and above f(r,a). 

35 The Tall 

The tail is the last, smallest, but most difficult part of the distribution. It consists 

of the set of points under the surface f(r, a) that have r > rM or a > am. With 

rM  = am = 4, the tail only accounts for 0.27% of the distribution. 

Yet again, the tail has been divided up into a number of pieces. In each 

piece, points are generated using the rejection method. This time, rather than 

generating points from a uniform density, various non-linear density functions have 

been chosen, as being reasonably good approximations to f(r, a) in the regions 

considered. In the table below details are given of the regions into which the tail 

has been divided and the density functions used. The rate reported in the last 

column indicates the average number of points generated in order to find one point 
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Figure 3-3: The regions in the tail 

in the relevant region. The points in the last region, which has probability less 

than one in a million, are not generated with the right distribution. 

Region r1  r2  a1  a 2  Probability Comparison function Rate 

R 1  4 12 0 4 2.98• 10 exp(—r 2 /2) 2.3 

4 8 4 8 3.65 	10 3/2exp(—r 2 /2 - 3a2 /2r2 ) 2.0 

R3  2 4 4 8 1.80• 

 
10 -3 exp(—a) 2.6 

0 0.5 4 6 1.61 . 10_ 6  15rexp(-7ra) 2.6 

0.5 1 4 6 1.96-10-5  15rexp(-2.8a) 2.8 

1 1.5 4 6 1.20 	10 25rexp(-2.6a) 3.0 

R 7  1.5 2 4 6 3.86 	10 25rexp(-2.4a) 3.2 

R8  1 2 6 8 6.57 	10_6  40rexp(-2.4a) 4.2 

R9  2 5 8 10 4.15 	10_6  0.7exp(—a) 2.4 

Remainder 3.81 . 10 

The various regions in the tail are depicted in Figure 3-3. 



Chapter 3. Random Generation of Stochastic Area Integrals 	 65 

36 Pceformance 

The results of time tests are laid out in the table below. The time taken to 

generate (Lw 1 ,Lw 2 ,A i , 2 ) triples is compared with the time taken to generate 

triples of uniform deviates and to generate triples of normally distributed random 

numbers using an application of Marsaglia's method. The same pseudo-random 

uniform number generator was used throughout. All the code was written in C 

and run on a Sun IPC Sparc workstation. 

	

Number of triples 	 Time taken 

Uniform deviates Normal deviates (w 1 , w 2 , a) 

	

10000 	 <is 	 <is 	3s 

	

100000 	 2s 	 6s 	28s 

	

1000000 	 15s 	iminis 	4min42s 

The generation of area integrals therefore takes between 4 and 5 times as long 

as the generation of increments along the Brownian path. If one were to obtain 

a strong solution of order 0(h) by subdividing the time steps and generating 

increments of the Brownian path over steps of length h' < h, the condition on 

the size of h' would be h' < h2 . For h < 1/4 we get h > 4h'. So for any 

reasonably small step size, h, it is much quicker to obtain a solution of order 0(h) 

by generation of the A 1 , 2 (k, k + 1) integrals than by generating Lw 1  and 

over smaller steps. 

37 An example of application 

As an illustration, we have used area integrals generated by our method in the 

numerical solution of the bilinear Ito SDE 

dx = Ax dw' + Bx dw 2 	 (3.11) 
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where A and B are constant 2 by 2 real matrices. The matrices A and B can be 

reduced to one of several canonical forms, in which case they depend on 4 real 

parameters. For example, we can take 

a0 be 
B = 

0 	—a c 	d 

This may be considered as a fundamental example, since locally any SDE can be 

thought of as linear. 

The ease of numerical solution of equation (3.11) depends on the stability of 

the system and hence on the parameters a, b, c, d. When the system is stable it is 

possible to obtain a good approximate solution with a discretisation scheme that 

does not involve the area integrals using quite large time steps. However when 

the system is unstable it can become impossible to obtain a good solution without 

including the area integrals in the discretisation scheme, unless extremely small 

time steps are used (sometimes too small to be feasible on a computer). 

We show what happens in a 'difficult' case. We have taken a = c = 2, b = 

d = 1 and compared the results using three different discretisation schemes. The 

approximate solutions given by these schemes all converge to the solution of the 

SDE (1.1) taken in the Ito sense, (and can only be used for a Stratonovich SDE 

if it is first converted into an Ito SDE). The first scheme, scheme A, is the Euler-

Maruyama scheme (1.13). The second scheme, scheme B, is 

1 n d 	
r- 1 

= + 	- 	 (x)g (xk)j h 
ôxr 

r=1 j=1 

+ g(ik)twi + 	> 
j1 	 r1 j,p1 

and scheme C, the Milshtein scheme (see [26]), is the same as the previous scheme 

with added terms involving the area integrals and is given by: 

	

d  ag 	r 	1 
= 	+ 	- 	 (xk) a (xk)] h 

r=1 j=i ôXr 

	

d 	 fl dagi 	
r +gik)/w 1  + 	 (xk)ga@k) (w +1 ) 2  

	

in 	ag; 

	

- (k)g(xk) 1w +iLw +1  - 	k + 1)] 
2 r=1i<p  oX,. 
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in 	a; 
-(xk)g(xk) [w ~ 1 zw +1  - 	 k + 1)] 

2 r=1 j> OXr 

The Euler-Maruyama scheme converges to the true solution with rate O(v"i) in 

the general multi-dimensional set up. Scheme B converges with the same rate, 

but is asymptotically efficient (see [44]), ie the leading coefficient of the variance 

of the error in each step is minimal. 

In the table below we present the approximate value obtained for x 1  at time 

t = 5 for one particular simulation of the Brownian path, using each of the three 

discretisation schemes and using a succession of step sizes ranging from h = 2-  

to h = 2_ 16 .  

1092(h) Scheme A 

	

4 	2.447207 

	

5 	-0.111236 

	

6 	0.008536 

	

7 	0.642300 

	

8 	1.096747 

	

9 	4.383487 

	

10 	5.292467 

	

ii 	4.034335 

	

12 	3.704273 

	

13 	2.879655 

	

14 	3.036604 

	

15 	3.330327 

	

16 	3.415980 

i(5) 

Scheme B 

-0.017475 

0.030939 

0.074882 

1.281455 

1.903669 

3.538671 

3.883448 

3.030876 

2.955552 

2.705867 

3.062775 

3.167863 

3.377057 

Scheme C 

1.251238 

3.066002 

4.243542 

4.759604 

3.751482 

3.430095 

3.430359 

3.483880 

3.460112 

3.428692 

3.431992 

3.425553 

3.424928 

When the time step is greater than about 2_8,  the results obtained without 

area integrals, that is using scheme A or B, are completely wrong after about 

t = 3. This is illustrated in the form of a graph in Figure 3-4, depicting the 
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Figure 3-4: Approximations with and without area integrals 

12 

7. 

2 

Figure 3-5: Differences between approximations and an accurate solution 

three approximate trajectories obtained for x 1  using a time step h = 2_6 and an 

accurate solution, obtained by using scheme C and h = 2_ 16 .  

It is only once the time step is small enough that it makes sense to measure 

the difference between the various approximations. In Figure 3-5 we show the 

differences between the approximate solutions for x 1  obtained using each of the 

three discretisation schemes with a time step of h = 2 — 'o  and the same accurate 

solution used previously. 

In order to obtain the same accuracy using scheme A or B as using scheme C, it 

is necessary to square the time step and therefore the number of time steps. If using 

scheme A, the Euler- Maruyama scheme, one wishes to obtain the same accuracy as 

with scheme C, using area integrals, with the step size h = 2 then one must take 

h = 2_16, hence multiplying the number of steps by 256. The computing time is 
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not increased by a factor of 256, since more function evaluations are performed per 

time step using scheme C than using scheme A. Timed simulations using equation 

(3.11) give a factor of 160. On a Sun Sparc station it took roughly 3 minutes to 

perform 1000 simulations with scheme C and h = 2_8 and 8 hours for the same 

number of simulations with scheme A and h = 2_ 16 .  

This shows that if all one wants is to perform one single simulation, then using 

a simple scheme and small time steps is not going to take a lot of computing 

time, but if one wishes to do many simulations, varying, say, the starting point 

or the parameter values, then the time factor will become very important. ( A 

million different simulations would take 50 hours or 8000 hours, to obtain the 

same accuracy with and without area integrals.) The time factor would clearly be 

increased further if scheme C were replaced by a Runge-Kutta type discretisation 

scheme, still using area integrals but not involving evaluation of derivatives at each 

time step. 

In the future we foresee that the use of area integrals when simulating strong 

solutions to SDE's will become as automatic as the use of random numbers from 

a normal distribution is today. After all, once a good routine has been developed 

and implemented in numerical libraries, the ordinary user will only need to call 

this routine from each program and will not need to be concerned with the details 

of how the routine works. 

38 The way forward 

This is of course just the tip of the iceberg. On the one hand, to obtain a strong 

nume:oal solution of order 0(h) to a stochastic differential equation dependent on 

a Brownian path of dimension n > 2, not just one set of integrals may be needed, 

but several, and the sets are all correlated. In the most general case, we would 

need to generate the n(n + 1)/2 correlated random variables 

w 2 (t, t + h), A 1 ,(t, t + h), i = 1,.. . , n; j <i 



0 A 1  0 0 ... 0 0 

—A 1  0 0 0 ... 0 0 

0 0 0 A 2  ... 0 0 

0 0 —A 2  0 ... 0 0 
th=I 

(1 

0 

0 
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It is theoretically possible to reduce the problem to the generation of n cor-

related random variables and one random element of O, which latter can be gener-

ated inn steps. Let Abe the matrix A2 = f f8 dwt(r)dw3(s)_J1  f dw3 (r)dw 2 (s). 

An orthogonal matrix S E O n  can be chosen so that, Sw = t2i and StAS = A 

with 

0 	0 0 0 ... 0 A n  

0 	0 0 0 ... Am  0 0 	) 

if n = 2m, or 

0 

0 

0 A 0 0 ... 	0 

—A 1  0 0 0 ... 	0 

0 0 0 A 2  0 

0 0 —A 2 0 ... 	0 

w=I 
	

A=l 

0 

0 

0 

0 

rn IV 	
0 	0 	0 	0... 	0 	Am  

0 	 0 	0 	0 	0... - A n  0 
m+1 	 0 	ü 	0 	0... 	0 	0 

if n = 2m + 1. Therefore, if we can obtain the joint distribution function of 

- 	 — 

v{w 
1 
 , ... , w ,A i ,...,Am } 

from the joint distribution of 

	

V = 1w 1 , . . 	A, A 131  . . . , A_ 1 ,1 

we can then generate the vector v and a random matrix S E O and simply recover 

w and A by setting w = StL' and A = SAS' . 
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We would also like to derive and implement the bridge that would allow us 

to generate sets of points (ZW'(tk, tk+1), Aw 2  (tk, tk+1), A1,2(tk, tk+1)) over steps of 

length h/2 given the corresponding set for step size h. All this will demand a lot 

more work and imagination. 

On the other hand, we would like to think that the research necessary to get us 

this far has uncovered various questions and suggested various techniques that are 

relevant to the random generation of deviates from multivariate distributions in 

general. (See Devroye [12] for a summary of work on multivariate distributions). 

By demonstrating that Marsaglia's method for speedy random number generation 

can be applied to multivariate distributions, we have raised general questions (see 

the end of Sections 3.3.1 and 3.3.2) on the time and memory constraints involved. 

The C routine we have written to generate area integrals can be found in 

Appendix A.2. 



The Algebra of Iterated Stochastic 

Integrals 

41 Mofivafirn 

In this chapter we will look at the algebra of Ito or Stratonovich iterated stochastic 

integrals of the type 

Ii  = 'j1j2 ... n =  JE ~ (O,t) 
dw i1  (t i )dwi2  (t 2 ). . . dw 3 (t) 

or 

Sj(t) = Sa1 a2  ... i 
=  Jr. (O, t ) 

odwul(t i ) o dw 32 (t 2 ) ...o dw 3 (t) 

introduced in Chapter 1. We will refer to the set of all integrals of type (1.3) as 

I = It = {I(t)} and to the set of all integrals of type (1.4) as S = St  = {S(t)}. 

Since integration will mainly be over the interval [0, t], we will write Ii  and Sj for 

I(t) and Sj (t). 

This study is motivated by the desire for a better understanding of the structure 

of solutions to stochastic differential equations needed for analysis and improve-

ment of numerical schemes for the approximation of solutions to SDE's. Consider 

again the SDE (1.2) 

d 

dx t  = fo(x,t)dt+f(x,t)odw 

X(0) = 

72 
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written in the Stratonovich sense, or the equivalent SDE, (1.1), written in the Ito 

sense 
d 

dx t  = go(x,t)dt+>g1(x,t)dw 

X(0) = 

As already stated in Chapter 1, in (1.7), (1.8) and (1.23), the solution to 

(1.2)can be approximated locally as a Stratonovich or Ito stochastic Taylor series, 

P 

 

X(t) = x0  + EE S(t) fj (xo) + t(2R +1(t) 
M=1 IIJII=m 

or 

P 

 

X(t) = x0  + 	 I..(t) gJ(xo) + 
m=1 IIJII=m 

or else as the exponential Lie series, 

x(t) = exp(( 1'(t))(x o) + t(t) 

where 
p — i no = E E c"(t) X, 
m=1 IIJII=m 

(See Section 1.4 for the relevant notation.) Both ways of expressing the solution 

involve the stochastic integrals in S or I defined above. 

We felt a need for further information about these iterated integrals for two 

distinct reasons. Firstly it is known (see [55] and [26]) that it is not necessary to 

generate all iterated integrals: some of the required integrals can be expressed as 

polynomials in the other integrals. We wished to examine the available bases (ie 

subsets of the set of iterated integrals that can be used to generate the whole set) 

and hoped to find a 'natural' basis. In [55] Sussmann obtains a basis by using 

a Philip Hall basis. Here we describe a basis using a particular Hall basis, the 

Lyndon basis, that turns out to be more suited to our purposes. 

Secondly we wished to calculate the mean and variance of the error produced 

when omitting the remainder term from (1.7), (1.8) or (1.23), such truncation being 

a natural way of generating discrete numerical schemes. Hence we wanted explicit 

formulae for the variances and covariances of the iterated stochastic integrals. 
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The variance and covariance of iterated Ito integrals was first given by Platen and 

Wagner in [48]. A simplified proof of the variance formula was given by Meyer in 

[42]. An explicit formula for the covariance of Stratonovich integrals would also 

be useful. 

The work in this chapter has been published in [17]. This work has led to 

computer algebra routines for use with Mathematica, some of which are given in 

Appendix A.3. 

42 Algebraic structure 

4.2.1 Concatenation 

Let 

A = { ao7 ai ,a27 . . 

be a set of d + 1 distinct elements known as letters, endowed with the ordering 

a0  < a1  < ... < ad, and let A*  be the free monoid generated by A, that is the set 

of all words formed with the letters in A. There is a one-to-one mapping of both 

sets of iterated integrals to A*,  given by 

: I ,' A*, 	O(1j)  = ( 	= a 1  a 2  .. . 

and 

: S ', A*, 	(S) = 	= a 1 a 2  . . . aj.  

As is usual, we denote the concatenation of two words u, v E A*  as 

W = 'LLV 

omitting any operation sign. Let the operation of concatenation be defined on I 

and S as the composition of operators: For J = 112 . . . j and K = k, k 2  . . . k,, , 

we write 
t 	tr; 

I(t) . IK(t) = f f .. •10 IJ(tl)dwk1(tl)dwk2(t2) . . . dw(t) 
tm+73 

= 
It f 	. . . jt2 dw 1 (t i )... dWj m (tm )dWk i (t m +l) ... dW(t mn ) = IL(t) 
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where L = J, . . . J, k, . . . k, and similarly 

SJ  o SK = SL 

The functions q and preserve the operations of concatenation 

q(Ij I) = 0(IJ)q5(IK ) = a, . . . aim aki  . . . akn  

and similarly for . Concatenation is clearly associative. 

Let Z(I) and Z(S) be the sets of finite linear combinations of integrals with 

integer coefficients. The operation of concatenation extends in a natural way to 

Z(I) and Z(S), hence: 

]Proposition 4.2.1 (Z(I),.) and (Z(S), o) are algebras over Z which are isomor-

phic to the free algebra Z(A) via 0 and . 

4.2.2 Shuffle products 

On Z(A) we can provide another operation, the well-known shuffle product (see 

[34],[41],[33] and others). This can be defined by 

1*1=1 

1*a=a*1=a 

ua * vb = (u * vb)a + (ua * v)b 

_I 	I 	A 	J Va, o E i-i, vu, v E i -i 
where 1 represents the 'empty' word formed of no letters. 

Inspired by the work on iterated path integrals of Chen [6], Ree [51] and, more 

recently, Fliess [16], we have the following proposition: 

Proposition 4.2.2 The product of two Stratonovich integrals is a shuffle product. 

Proof. The proof simply uses integration by parts. (The Stratonovich calcu-

lus follows the same rules as ordinary calculus.) We will use the symbol x for 

multiplication temporarily during the proof and then replace it with the shuffle 
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product symbol * once we have proved we can do so. Consider any two multi-

indices, J ji .. . .jrn-i and K = k, . . - k_ of length m - 1 and ii - 1 respec-

tively (m, n > 1). We can obtain two new multi-indices J' = j1 . . . j-ij and 

K' = ki  . . . by adding a new index to each of J and K. Then we have 

I JSj(s)  I 

 

SK (r) OdWj m (S) 
JOL 	Jo  

= j Si  ( s) a dwjm(s) j SK (s) o dwk(s) - f t [SK (s) f Si  (r) o dwim(r)]  o dwk(s) 

Hence 

SJ' x SKI = (Sj x SKI)  o S + (Sji x SK)  o Sk 

. 

Here is an example of using the shuffle product to find the pointwise product 

of two iterated Stratonovich integrals: 

512 * S34  = S1234  + S1324  + S1342  + S3124  + S3142  + 53412 

The consequence of Proposition 4.2.2 is that, as will be seen in Section 4.3, 

various nice results on the free shuffle algebra can be applied directly to the algebra 

of Stratonovich integrals with the shuffle product, (Z(S),*). 

In the product of two Ito integrals extra terms appear: 

Proposition 4.2.3 The product of two Ito integrals in 1(t) is a modified shuffle 

product, defined recursively by 

(iii) (u. I) * (v- I) = (u*(v .1)). I + ((u-I)*v) I +(u*v) - Ia 

Vu, vE I and Vi,j = 
where 

i=jO 
23 - 

0; otherwise 

1 

Proof. The proof is again based on integration by parts, with the difference that 

this time we are doing Ito calculus and Ito's formula must be used. Again let 
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J = J,. - m-i, K = k1  ... k_ 1 , J' = ii .. m-im and K' = k1  . . . k_ 1  k. We 

have 

ptr 
I Li(s) I IK(r)dwk(r) dW jm (S) 

Jo L 	Jo 

= 

I 
IJ(s)dw m 5) I IKs)dwk n )  _

j {IK(s) j IJ(r)dw m (r)] dwk(s) 
o 

— j
:
IJ(s)IK(s) <dWj m (S),dWK n (S)> 

 

so 

IJI xIx' = (IJ x 1K')•ijm +(I' X iK)Ik +5jm kn (IJ X IK)J0 

. 

As an example: 

112 * 113 = 211123 + 211132 + 11213 + 11312 + 1023 + 1032 

Note that the last two results generalize the results (5.2.3 and 5.2.10) of Kloe-

den and Platen in [26]. 

Using the Wick product on I rather than the usual product (see eg. [20], [32]), 

Proposition 4.2.3 becomes: 

Proposition 4.2.4 The Wick product of two Ito integrals is a shuffle product, 

defined recursively by 

11=1 

10h = Ii '01 = L 

(u- I)(v- I) = (uK(v- I)) . L + ((u I)v) - I 

Vu, vEI and Vi,j = 0,... ,d. 

We will define a shuffle to be a permutation of two tuples or multi-indices that 

results from shuffling, ie that preserves the order of the elements of each of the 

tuples. If we have I J I = p and I K I = q, then there are 

(ij -i- a! 

VaLlf 

ways of shuffling J with K, although not all the resulting shuffles will be distinct. 
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403 Bases 

4.3.1 A basis for Stratonovich integrals 

We give here a transcendence basis for the shuffle algebra Q(S, *) obtained directly 

from a transcendence basis of Q(A,*) via the isomorphism g defined in Section 

4.2.1. (This means that we will show that each iterated integral in S can be 

expressed as a polynomial with rational coefficients in the basis elements. The 

basis will be a subset of S.) 

Let the set A*  be totally ordered using the usual lexicographical ordering in-

duced by the ordering on A. If the word w E A* can be written as w = uv where 

both u and v are non-empty words, then v is a proper right factor of w. A word 

that is strictly less than any of its proper right factors is called a Lyndon word. 

Let L be the set of all Lyndon words in A*.  We will need the following theorem 

([33], Theorem 5.1.5): 

Theorem 4.3.1 (Lyndon) Any word w E A* can be uniquely written as the con-

catenation of a non-increasing sequence of Lyndon words, 

W = 1 1 12 ... In 	.,ln  EL; i i  > 
... > la ), 

the Lyndon factorisation of w. 

By a result of Radford [50] the set of Lyndon words, L, forms a transcendence 

basis of the shuffle algebra Q(A,*). We give here the theorem as stated and proved 

by Melançon and Reutenauer in [41], since their proof has the added benefit of 

providing an iterative method for rewriting words as sums of shuffle products of 

Lyndon words. 

Theorem 4.3.2 (Radford, Melan con and Reutenauer) Vw E A*, 

w=l  II I 
 2 ... i 	(l l > ... >lk;il,...,ik ~ 1), 
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w can be written as 

W= 	
1 	

,(li)t1 *.. . 	- 	au 
Zl! • . . 	 u<w 

where (l)i  is the shuffle product of i copies of 1 and a E Z. Hence L forms a 

transcendence basis of the shuffle algebra Q(A,*). 

Using Propositions 4.2.1 and 4.2.2, we have immediately: 

Corollary 4.3.3 The set of Stratonovich integrals defined by 

L s  = {SjlSj E S, (S) E L} 

is a transcendence basis for Q(S, *). 

As an illustration, let the dimension of the Brownian path d = 2. The elements 

Sj  of L5 for which J JJ <3 are: 

I SO, Sl,  S 2 , S01 , S02 , S12 , S001 , s002 , S011, s012, S0217  S0221  s112 , S1221 

For d = 1 the basis elements with J JJ < 5 are 

{ S0 , Si , S01 , S1, s011, S0001 , 80011,  S0111 , 500001, S00011 , s00101 1  500111, S01011 , S01111 } 

The rewriting rule given in Theorem 4.3.2 is of immediate practical use. Each 

u can be rewritten in the same way as the initial word w and, since u < w the 

procedure will terminate when all the words on the right-hand side are Lyndon 

For example, for the integral 84321  one obtains 

S4321  = 51 52 S3 S4 — 8354512 —5 1 54523-51S2534+512534+54S123+51 5234 -51234  

A theorem of Witt tells us how many basis elements there are of each length. 

(See [58] for the original paper or [52] for a recent proof.) Let r = d + 1. Then 

the number of basis elements of length n is 

M, (n) =I  E YWr 
n/k 

kin 

where i(k) is the Möbius function on Z defined by t(1) = 1 and for k = 
rn1 m2 m 3  

i1 p2 . . . p8  , where the p, are distinct primes, i(k) = 0 if any rn, > 1 and 

= (_1)8 otherwise. 
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4.3.2 A basis for Ito integrals 

It is clear that Lyndon words also provide the transcendence basis 

= jIjjIj E I,b(Ij) E L} 

for the algebra of Ito integrals with the Wick product Z(I, Ky). Moreover, more 

usefully, although ordinary multiplication of Ito integrals is not a shuffle product, 

we can show that the set L1  is also a transcendence basis for Q(I, *). 

We will need the fact that each Stratonovich integral in S can be expressed 

as a Q—linear combination of integrals in I. The conversion formula, given in [2], 

can be written recursively as: 

S=I2 - 	Vi =0,...,d 	
(4.1) 

SoS 2 oSi=SoS I3 +8,3SJ0  Vi, j=0,...,d;VJ 

Proposition 4.3.4 The set L, is a transcendence basis for the algebra Q(I, *). 

Proof. The conversion formula (4.1) provides a natural isomorphism between 

Q(I, *) and Q(S,*). L 1 , the image of the set L5 under this isomorphism must be 

a transcendence basis for Q(I, *). This basis is not a practical one, but we will 

show that each element of L 1  can be expressed as a polynomial in the elements of 

L1. The proof is by induction on the length of the elements of L. (The integral 

Sj is said to have length n if JJJ = ii.) The images of the Stratonovich integrals 

in LS  of length 1 are simply the Ito integrals of length one, each of which is in 

L 1 . Suppose that the images of the integrals in L5  of length n and less can all be 

expressed in terms of elements of L 1  of length n or less. This implies that each 

element of I of length at most n can be expressed using elements of L 1  of length 

at most n. Consider the image in L 1  of an element of LS  of length n + 1. Since 

each such polynomial is the sum of an element of L1 of lengft n + 1 and terms 

involving Ito integrals of shorter length, the proof is complete. 0 

In a recent paper, Melancon [40] has shown that the Lyndon basis used in 

Sections 4.3.1 and 4.3.2 is a special case of a Hall basis. Therefore there is a family 

of available bases, of which the Lyndon basis seems to be the most practical. 
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Reutenauer's recent book, [52], is a comprehensive guide to the algebra used 

in this chapter and gives many further references. 

4.3.3 An exampThe of appilicafion 

Consider the SDE 

(  
) dx = 

1
x(w 1 odw 2 —w2 odw 1 ) 

X (0) = 1 

The solution of this SDE is x(t) = exp(A(t)) where A(t) is the Levy area, A(t) = 

1/2(S12  - S21 ). 

Expanding the solution as a series using (1.8) gives 

x(t + h) = x(t) (8 + 4S12  - 4S21  +4S2 wi (t) +4Si22 w i (t) -48221 wi (t) 

+2S22 wi (t) + S222 w 1 (t) 3  —4Si w2 (t) —4S112 w2 (t)+4S211 w2 (t) 

—2512 W1 (t) W2 (t) - 2 S21  W1 (t) W2 (t) - 5122 W1 (t)2 w2(t) - 5212 W1 
(t)2 

 W2 (t) 

—8221 
WI(t)2 w 2 (t) + 2S11  W2 (t)2 

+ 8112 W1 (t) 
W2 (t)2 

+ 8121 W1 (t) W2 (t)
2  

+8211 W1 (t) W2 (t)2 - Siii W2 
(t)3)  + R 4 (t + h) 

but, when this expression is rewritten in terms of the Lyndon basis we obtain 

x(t + h) = 	x(t) (48 - 248182 + 48812  + 2452 w1 (t) - 12Si Swi (t)
48  

+24S2 S12 w1 (t) + 6Swi (t) 2  + Sw i (t) 3  - 2451 w2 (t) + 12SS2 w2 (t) 

—24Sf  812w2(t) - 12Sf 8 2 w1  (t)w2 (t) - 3Si 5wi (t) 2 w2 (t) 

+6Sw2 (t) 2  + 3SS2 wi (t)w2 (t) 2  - Sw 2 (t) 3 ) + R4 (t + h) 

involving no integrals other than 81, 82, and 812,  as expected. 
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404 Moments 

The propositions in Section 4.2.2 show precisely how the product of any two iter-

ated integrals can be expressed as a sum of iterated integrals. Since it is straight-

forward to calculate the mean of integrals in I and S, the variance and covariance 

of such integrals can then be calculated exactly. However the number of terms 

in the product grows very quickly with the length of the integral and it is com-

putationally quicker to have explicit formulae for the variances and covariances. 

Platen and Wagner prove a formula for th6 covariance of iterated Ito integrals in 

[48] (Proposition 2). (See also [26] Lemma 5.7.2.) Using shuffle products it is 

possible to give an alternative proof of this result with a combinatorial flavour. 

(This proof is a bit similar to Meyer's proof for the variance in [42].) 

Theorem 4.4.1 The covariance of two Ito integrals I(t) and IK(t) is given by 

fo ;  
E (I j (t) X IK(t)) = 

lj

1(JK) Ifl (pi + qj)! 	
otherwise 

l(J,K)! 	pj !qj ! 

where, for any two multi-indices J and K, l(J, K) is the total number of zeroes 

in J and K plus half the total number of non-zero indices, and I is the multi-

index obtained by leaving out the zeroes in J. For J and K as given, p, and q j  

are defined to be the number of zeroes in J and K respectively, positioned between 

indices (i - 1) and (i) of I, respectively R. 

Proof. 	The only integrals in I with non-zero mean are integrals I(t) with 

J = (0,0,. . . ,0), JJJ = n, the mean being t'/n!. To calculate the covariance of 

two elements of I it is therefore sufficient to calculate the terms in the product 

Ij * 'K that have multi-indices consisting entirely of zeroes. The formula given in 

Proposition 4.2.3 (iii) shows that the multi-indices of terms in the product either 

contain a shuffle of the indices in J and K or else contain the same indices with 

some pairs of non-zero indices replaced by zeroes. The replacement by zeroes only 

occurs when a non-zero index in J is through shuffling brought next to an identical 
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non-zero index in K. Therefore the only way to obtain all-zero multi-indices is to 

bring every non-zero index in J next to an identical non-zero in K and vice-versa. 

Since shuffling preserves the order within J and K, this can only be done if J 

and K contain the same non-zero indices in the same order. Hence if J K, 

E(Ij  x IK) = 0. 

It is now clear that the only all-zero multi-index occurring in the product of Ii  

and 'K  will have length l(J, K) and therefore mean 
l(J,K) 

 It remains to calculate 

the coefficient of the term containing the all-zero index , ie to count the number 

of ways in which this multi-index can be produced. The need to pair all indices 

in J with the indices in k restricts the number of shuffles. The only freedom is 

in shuffling the zero indices, and even here the possibilities are restricted in that 

any zeroes between index (i - 1) and index (i) of J can only be shuffled with the 

zeroes between the same indices of R'. The lengths of these two blocks of zeroes 

being pi  and qj , the number of such shuffles is and we are done. 0 

Example: Li = 1101 and 'K = 11001 

Ii * 'K = 3I 0000  + 61000011 + 3I0000  + 1001001 + 21 0000l  + '100100 + 

+ 21oololl  + 211001101 + 611010011 + 311010101 + 211011001 + 1211100011 

+611100101 + 211101001 

E(Ij * IK) = 3E(100000) = - 
40 

Here P2 = 1, q2  = 2 and all other p, q 2  = 0. 

Using similar arguments, it should be possible to obtain a formula for the 

covariance of two Stratonovich integrals S j  and SK,  but we have not yet succeeded 

in calculating it. Note that as well as calculating the covariance of S j  and SK by 

using the shuffle product, it is also possible to convert each of the integrals into a 

linear combination of Ito integrals using (4.1) and then apply the above theorem. 

Thanks are due to Devlin ([11]) for pointing out the relevant work on deter-

ministic path integrals. 

Vlad Bally has proved independently in unpublished work that the product of 

Stratonovich iterated integrals is a shuffle product. 



Partitions with Minimum Entropy of 

Regions in 1R2  

51 Motivation 

In this chapter, we present a polynomial time algorithm for choosing, among a 

set of rectangular or triangular partitions of the interior of a polygon in 1R 2 , the 

partition with the minimum entropy. We were led to look for such an algorithm 

by our work, presented in Chapter 3, with the generation of random variates using 

patchwork methods. Since Marsaglia et al. ([38], [37]) first invented the technique 

in 1964, it has been known that the fastest method for generating random deviates 

from a normal distribution, and from most other continuous univariate probability 

distributions, is the 'rectangle-wedge-tail' method, more recently known as the 

patchwork method. This method, described in Chapter 3, involves partitioning 

an area in JR2  into rectangles, or other simple pieces such that generating points 

uniformly distributed in each piece is straightforward. Our use of the patchwork 

method for generating a bivariate density has shown us that entropy is a major 

consideration when choosing how to partition an area in IRd .  

In Chapter 3 we described a method of generation of Levy area integrals jointly 

with the increments along a two-dimensional Brownian path, based on an extension 

of Marsaglia's 'rectangle-wedge-tail' method to a two-dimensional distribution. 

21 



Chapter 5. Partitions with Minimum Entropy of Regions in 1R 2 	 85 

The joint density function in question was so complicated, indeed it was in the 

form of an improper integral that could only be calculated numerically, that no 

other method was feasible. Previously it has been considered that, since patchwork 

methods demand a lot of programming time and result in lengthy code, they are 

only suitable for use when speed is very important (see [12]). Our experience shows 

that there are densities for which patchwork methods seem to be the only option. 

Generalisation of the patchwork method to higher dimensions brought to light 

several questions that had not arisen in the case of a one-dimensional distribution 

and that deserve further exploration. One of these questions was how to choose a 

partition with low, if not minimum, entropy. 

The part of Marsaglia's method with which we are concerned here, is the 

'rectangle' part. Marsaglia et al. divide an area A C JR2  under the graph of f(x) 

into equal rectangles, each with area 2` for some n E iN, and set up tables with 

an entry for each rectangle. A uniform random number consisting of n bits is 

then sufficient to choose a table entry with the correct probability. For a one-

dimensional distribution the amount of memory used for storage of the tables 

is acceptable, but for a two-dimensional distribution the number of table entries 

needed becomes prohibitive. In Chapter 3, we decided to regroup many of the 

boxes into larger ones. This while reducing memory requirements, increases the 

computing time, because once the boxes vary in area, a set of tests is required to 

determine which box each point falls in. The tests form a binary decision tree, 

which can be constructed in an optimal (time minimising) way using Huffman's 

method (see [22] for the original paper or Knuth [28] for a description). Huffman's 

method guarantees an average number of tests performed no greater than one plus 

the entropy of the partition. The entropy must therefore be taken into account 

when choosing a partition. The entropy can be written as 

- 	r i  1092(r) 

where r, the probability of a point in a rectangle being in rectangle R, is the area 

of R1  divided by the total area occupied by rectangles. 

In three or more dimensions the question of finding the partition into boxes 

of a given region that minimises the entropy seems to be a very hard one, so we 
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have chosen to start by considering what happens in two dimensions. Despite the 

fact explained above, that it is not necessary when generating a random deviate 

from a one dimensional distribution, to take rectangles of varying sizes and, there-

fore, not necessary to worry about the entropy of the partition, our hope is that a 

better understanding of the entropy of partitions in 1112  will lead to a better un-

derstanding of the situation in higher dimensions, where entropy really becomes a 

consideration. 

We will consider not only rectangular partitions, but also partitions into tri-

angles. Triangles yield a much closer fit to a smooth curve than rectangles, so 

not nearly so many of them are required to fill the area under it. In [12], De-

vroye mentions that triangles can be used for patchwork methods and describes 

how to generate points uniformly distributed in a general triangle by linear trans-

formation of points generated uniformly in the basic triangle ((0, 0), (1, 0), (0, 1)). 

It should be possible, when desired, to generate the whole of some distributions 

using triangles, to within the accuracy of a computer, so removing the need for 

wedges and tails, thereby both simplifying the programming and shortening the 

computation time. Optimal rectangular partitions remain of particular interest 

when considering the generation of discrete random variates. 

The problem we have set ourselves is a complicated optimisation problem. 

Given a density function f : 111 - JR we wish to maximise the area under the 

graph of y = f(x) covered by rectangles or triangles and at the same time both 

minimise the number of rectangles or triangles used and minimise the entropy of 

the partition. The first aim clearly conflicts with the other two: the larger the 

area covered, the more rectangles or triangles will be needed, and the higher the 

entropy will become. Since we can see no way to obtain a fully optimal solution, 

we have chosen to separate the problem into stages and optimise one variable at 

each stage. 

In the first instance we fix an area that we wish to cover with rectangles or 

triangles. If we wish to follow tradition and use other generation methods, such as 

rejection, for areas not contained within the rectangles, then covering say 90% or 

99% of the area under f(x) is suitable. If, however, we aim to cover the whole area 
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to within the accuracy of a particular computer, then the target area would be 

something like 99.9999%. Having chosen a target area, we want to fill in a region 

containing that area using as few rectangles or triangles as possible. In the second 

stage, we take as given the polygonal region formed by the union of the rectangles 

or triangles, and re-partition the region, keeping the total number of pieces fixed, 

in such a way as to minimise the entropy of the partition. There are, of course, 

other ways in which such a partial optimisation could be done, but we have been 

unable to come up with anything more practical. 

The remainder of the chapter is structured as follows: in Section 5.2 we consider 

rectangular partitions of areas under a density curve. Initially we only consider 

monotone increasing or decreasing densities. After introducing the necessary nota-

tion in Section 5.2.1, we detail the two stages of optimisation: finding the partition 

with minimal entropy in Section 5.2.2 and minimisation of the number of rectan-

gles in Section 5.2.3. The main theorem, presenting a polynomial time algorithm 

for finding the partition with minimum entropy, is in Section 5.2.2. In Section 

5.2.4, we generalise to unimodal densities. In Section 5.3, we show how results 

obtained for rectangular partitions can be extended to triangular partitions. We 

have to consider convex and concave polygonal regions separately. Throughout, we 

illustrate results with applications to well-known distributions, such as the normal 

distribution. 

52 Rectangular partitions 

Let y = f(x) be a continuous monotone decreasing or increasing density function 

defined on an interval [a, b]. (The interval could be [a, oo) for a decreasing function 

or (oo, b] in the case of an increasing function.) We wish to pack the region 

{(x,y)Iy <f(x),a < x < b} with rectangles in a way that minimises the number 

of rectangles, maximises the total area covered with rectangles and minimises the 

entropy of the partition. These aims are conflicting. For example, it is clearly 

impossible to cover more than a certain area with any fixed number of rectangles. 
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We will therefore split the task into two parts. First we will fix a total area that 

we wish the rectangles to cover and try to find a way of covering that area using 

the smallest number of rectangles. Secondly, we will take as given a region made 

up of the union of a number of rectangles and try to find the rectangular partition 

of that region with the lowest entropy. 

If, instead of a continuous density function, we are considering the generation 

of a random variate from a discrete distribution, then clearly only the second stage 

of the method is needed. 

5.2.1 Notation 

Definition 5.2.1 A staircase is the interior of a closed piecewise linear curve, 

obtained by joining linearly a set of points 

{ (x o , yo),  (x0 , Yi),  (x1,  yr),  (x1) y2),.. . , (Xi-1, y), (x i , y), (x i , yi+i), 

,(Xn,yn),(Xn,yo),(Xo, YO) } 

where x, 1  > x, i = 0,...,n - 1, 1/1+1 < y2 , i = 1,.. .,n - 1 and Yo < y (a 

descending staircase) or else x21  < x, i = 0,. . . , n - 1, Yi+1 < y, i = 1,.. . , fl - 1 

and Yo < y (an ascending staircase). n is the number of steps in the staircase. 

The point (x o ,y o ) is the root of the staircase. 

Any staircase S with n steps can be identified uniquely by giving the set of 

n + 1 points {P = (x i , yj),  i = 0,. . . , n}. For simplicity, we will often stretch 

notation and write S = {P = (x i , ye),  i = 0,. . . , n}. Figure 5-1 shows a descending 

staircase. 

Definition 5.2.2 A rectangular partition, 2, of a staircase, 5, is a set of disjoint 

rectangles with sides parallel to the x and y axes, the union of which is S. 

A rectangle R = {(x, y)x 1  < x <x 2 , Yi  <y <y2} can be uniquely identified by 

giving the two points P1 = (x 1 , Yi)  and P2  = (x2, y2),  so we will write R = (P1 , P2). 
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PO 

Figure 5-1: A staircase 

Since we will mainly be considering rectangular partitions of a staircase S with 

n steps that contain precisely n rectangles, we will often write 'rectangular parti-

tion of S' for 'rectangular partition of S containing n rectangles'. A rectangular 

partition can be identified by listing the rectangles it contains: 

Definition 5.2.3 Given a staircase S = (P0 ,P1 ,. . , P,), a basic rectangle of S 

is a rectangle R2  = ( F0 , P2 ) for any 1 <i <n. 

Definition 5.2.4 A sub-staircase of a staircase S = (F0 , F1 ,. . . , P,), is a staircase 

S' C S where 5' = (Qo, Qi,. . . , Qm) and  Q, E {F1 , F2 ,. . . , P,}, 1 	i 	in. 

5.22 Optimal partition 

We are now interested in choosing, from all rectangular partitions of a staircase 

where the number of rectangles in the partition is equal to the number of steps 

(see Figure 5-2), the partition with minimum entropy. 
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Figure 5-2: A rectangular partition of a staircase 

Proposition 5.2.5 Given a staircase S with n steps, the number of different par-

titions into exactly n rectangles of S is the Catalan number 

an  = 1 
7 2n 

n+1 
 

Proof. Each partition into n rectangles necessarily includes precisely one basic 

rectangle. This observation divides the partitions of the whole region into n dis-

joint sets, according to the choice of the basic rectangle (F0 , F2 ). (This argument 

will also be essential further on.) 

Consider all possible partitions that include the basic rectangle (P0 , F2 ), for a 

fixed 0 < i < n. Removal of the rectangle (F0 , F2 ) leaves two sub-regions, one of 

which may be empty, to be divided into i - 1 and n - i rectangles respectively. 

The number of different partitions of each of these two regions is a2 _ 1  and a_2 . 

Therefore the number of partitions that include the rectangle (P0 , F2 ) is 

and hence the total number of possible partitions is 

an  := E aian-i-I  

where we let a0  = 1. From this expression, it is clear that an  is the well-known 

Catalan number. (See eg. [10] for a proof that an  satisfies (5.1)). 

D 
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Note that we have 
2(2n + 1) 

a+i = 
	
an  

n+2 

and therefore 
• 	a+i 

=4 
an  

Proposition 5.2.5 tells us that finding the partition with minimum entropy 

of a staircase by simply going through all possible partitions one at a time and 

calculating the entropy of each, takes time exponential in the number of steps. 

When programmed, this method only yielded an answer within a reasonable length 

of time for very small numbers of steps (less than 10, say). However it was pointed 

out to me by Mark Jerrum, that it is easy to turn this algorithm into a polynomial 

time algorithm, simply by storing the entropy of all sub-partitions as they are 

calculated. To prove this, we will need some simple results. 

Let E(P) denote the entropy of a rectangular partition P = { R 1  . . . R,}. So 

N 

E(P) = —r2 log2 (r1 ) 

where ri  = A/A, A, is the area of rectangle J1, i = 1,. . . , n and A is the total 

area 

A = Ai  

Proposition 5.2.6 Using the above notation, for any rectangular partition P = 

{ Ri . . . R,j of a staircase S define 

E(P) = — 1 A1ogA 

Then, the rectangular partition of S with minimum entropy is also the partition P 

for which E(P) is minimum. 

Proof. The entropy can be expressed as 

1 
(E(P)+logA) 

log 2 

therefore, since A is constant. E(P) and E(P) have the same minimum. 	0 
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Figure 5-3: Removing a rectangle to leave two smaller staircases 

Proposition 5.2.7 Given a staircase S = (P0 , F1 ,. . . , P) the rectangular par-

tition of S into ri rectangles with the minimum entropy can be found by, for 

each i = 11 .. . , n, removing the basic rectangle R 2  = ( F0 , F1 ) and finding the 

partition, P, with the lowest entropy of the remaining region S - R. Then 

the partition with minimum entropy is P = {R 3 } U Pj  where Pj  is such that 

E(P) = minE({R 2 } U Ps ). 

Proof. 	As shown in Proposition 5.2.5, the set of all rectangular partitions of 

S into n rectangles can be divided into n disjoint subsets, according to which 

basic rectangle they contain. Therefore the partition with minimum entropy can 

be found by choosing the optimal partition from each of the ii subsets and then 

taking the optimal partition from among those n. It remains to note that 

E({R 1 ,. . . , R 1 ,.. . , R}) = E({R 1 }) + E({R 1 ,... , R1_, R1 1 ,... , R}) 

so, applying Proposition 5.2.6, the optimal partition in each subset can be found by 

discarding the rectangle R 1  and calculating the entropy of each possible partition 

of the remaining region. 	 11 
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Theorem 5.2.8 Let S be a staircase with n steps. There is an algorithm for 

finding the partition into n rectangles of S that has minimum entropy, that takes 

time polynomial in n. 

Proof. We will give details of the algorithm and show that the time is indeed 

polynomial in n. The algorithm is recursive. 

Let S = (P0 , F1 ,. . . , P,) and consider what happens when the basic rectangle 

= (P0 , Ps ), 0 <i <n is removed from S. If 1 < i < n, we are left with two dis-

joint sub-staircases, S1 = (Q 1 ,P1 ,P2 ,. . 	and S2 = (Q2,P2+1,P2+2,. . 

where Qi = (x 0 , y 1 ), Q2 = (xi , yo).  (This is illustrated in Figure 5-3.) If i = 1, 

then Si is the empty set, and if i = n, then S2  is the empty set. So removing a 

basic rectangle from a staircase always leaves one or two sub-staircases. 

Proposition 5.2.7 can now be applied recursively, first to the original staircase 

5, then to each of the sub-staircases created by removing a basic rectangle, etc. 

It is clear that, on the one hand, if we know the entropy of every sub-staircase 

contained in S we have enough information to find the partition of S with minimal 

entropy, and on the other hand, some sub-staircases of S are going to turn up more 

than once during the recursion. We claim that if we calculate and store the optimal 

partition and its entropy for each sub-staircase the first time that we need it, then 

simply retrieve the stored information on each subsequent occasion that we need 

it, the recursive algorithm will take time polynomial in n. To show this we simply 

need to count the number of sub-staircases that arise. 

As seen above, it is only a certain type of sub-staircase that can be obtained 

by removing a basic rectangle from a staircase. Apart from the root, all the points 

defining the sub-staircase are a consecutive subset of the set of points defining the 

staircase taken as an ordered set. The root is uniquely determined by the other 

points defining the sub-staircase. Therefore, the number of sub-staircases with m 

steps of the staircase 5, is the number of subsets of rn consecutive points of the 

ordered set {P1 ,P27  . .. , P}, which is clearly n - m + 1. So in total we need to 

find the optimal partition of 
n 	 n(n-1) 

(n—rn+1)— 	
2 m=2 
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Figure 5-4: a random partition 	Figure 5-5: the optimal partition 

staircases. The memory storage required by the algorithm is therefore quadratic in 

the size of the staircase. Given a sub-staircase with in steps, choosing the partition 

with minimum entropy amounts to comparing the previously calculated optimal 

entropies of each of the in sub-sets obtained by removing a basic rectangle. The 

amount of time involved for that one sub-staircase is therefore linear in m. The 

total amount of time needed to find the optimal partition of the staircase S is then 

proportional to 

rn(n - m + 1) = -n(n - 1)(n +4) 
m=2 

So the computation time is cubic in n. 	 a 

In Figures 5-4 and 5-5, we show two different partitions of the staircase illus-

trated in Figure 5-6. In the first picture, the partition has been chosen randomly, 

(by choosing a basic rectangle randomly and then repeating recursively on the 

two remaining sub-staircases). The entropy of the partition is 2.83. The partition 

in the second picture is the optimal partition, calculated using the algorithm of 

Theorem 5.2.8 and has an entropy of 2.32. The entropy goes up to 3.27, for the 

partition obtained by dividing the staircase into vertical strips (columns). 

In Table 5-1, we give the computation time used to find the partition with 

minimum entropy of staircases of various sizes using an implementation of the 

algorithm given in Theorem 5.2.8. We programmed the algorithm in C and ran 
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Table 5-1: Computation time for optimal partition 

No. steps 100 200 300 400 1 500 600 1 	700 800 900 1000 

Time (s) 5 34 116 275 569 919 1464 2201 3120 4237 

it on a Sun Sparc workstation. A copy of the main part of the program can be 

found in Appendix A.4. 

5.2.3 Generating the Staircase 

Having shown how to partition a staircase in such a way as to minimise the entropy 

of the partition, in this section we suggest a way in which a suitable staircase could 

be placed under a density function. Let f(x) : JR -* JR be a monotone increasing 

or decreasing density function on [0, oo]. The area under f is  f° f(x)dx = 1. We 

are interested in finding a staircase S that contains a chosen large percentage q 

of the area under f, where the number of steps, n, is as small as possible, and 

such that when the staircase is divided into n rectangles, all the rectangles have 

areas that are integer multiples of a unit area equal to 2-m  for some m E JlV (The 

constraint on the areas allows us to work with bits and therefore with integers on 

a computer, so avoiding loss of accuracy.) The numerical examples at the end of 

this section will show that, as long as the staircase contains an area at least q and 

very close to q, the choice of the initial staircase does not change the minimum 

entropy significantly. We suggest the following method. 

First choose large values m 1 , rn2  E iN, and cover the quadrant {(x, y)Ix>  0, y > 

0) with a rectangular grid with mesh size Lx = ,Ly = 2_12. For simplicity 

we will assume that the origin is a grid point. Shade in all the rectangles that lie 

completely under f. The boundary of the shaded region is a staircase S o  lying 

under f. At this stage the area contained by So  should be larger than the desired 

value q and So  should have a number of steps, N, several times larger than the 

number of steps envisaged for the final staircase S. (If this is not so, then choose 

larger values for rn1  and M2  and repeat.) Let So  have root P0  and steps with 
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corners at F2 , i = 1,... , N, so So = (F0 , Pi , P2 .... FN)  We will now define an 

iterative procedure which removes one step at each stage until at stage K the 

resulting staircase S = SK has area at least q and the staircase SK+1 does not 

have this property. For staircase S j  = (F0 , Qi) Q2,... , QN-j), obtained at stage 

j, define Sil  = (F0 , Qi, Q2,... Qz-17 Q+i-• . , Qjv-j), the staircase obtained by 

removing step i from S. At step j + 1, from all possible S, i = 1,... , N -J, 

choose the one that includes the greatest area and call this one Si+.  Repeat this 

process, removing at each stage the step that reduces the area by the smallest 

amount, until at stage K it is no longer possible to remove a step and still retain 

an area at least as big as q. The total number of comparisons needed up to stage 

Kis 

K 
N-j+1 

j=1 

so, in the worst case, when K = N, the computation time is quadratic in the 

initial number of points, N. The relevant areas could be stored at the outset, 

simply removing one and up-dating two others at each stage. 

This algorithm is illustrated in Figure 5-6. We have used the positive half 

of the normal density and a mesh size of 2 -4  by 2-7 . The aim was to produce 

a staircase with few steps containing at least 90% of the area under the curve. 

The outer staircase is So  and the inner one the staircase S, obtained from So  by 

removing steps. There are 13 steps in S. 

Tables 5-2 and 5-3 show how, for a fixed target area, the entropy of the optimal 

partition varies with the number of equal pieces into which the relevant interval 

on the x-axis is initially divided. The columns N1 , Area 1, and N2 , Area 2, show 

the numbers of rectangles and the total area covered when the interval is first 

divided into equal sub-intervals and then after as many points have been removed 

as possible without going below the target area. The notation Eopiimai  denotes 

the entropy of the optimal partition of the resulting staircase and Ecoiumn  denotes 

the entropy of the partition of the same staircase into columns, for the sake of 

comparison. 
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Figure 5-6: Fitting a staircase under a curve 

Table 5-2: Standard normal distribution 
Interval Target 	N1  Area 1 N2  Area 2 Eoptimai Ecoiumn  

[0,5] 90% 	50 .460000 15 .450000 2.386157 3.501112 

100 .479062 13 .452813 2.350116 3.299084 

200 .489687 12 .451541 2.302467 3.189303 

500 .495650 11 .450138 2.263739 3.052353 

1000 .497762 12 .453328 2.308525 3.165404 

2000 .498838 12 .452621 2.300580 3.238747 

[0, 5] 95% 	100 .479062 32 .475313 2.702003 4.494936 

200 .489687 27 .475703 2.652975 4.239397 

500 .495650 24 .475113 2.621831 4.158726 

1000 .497762 25 .475825 2.635692 4.226906 

[0, 5] 99% 	500 .495650 175 .495012 3.008597 6.919783 

1000 .497762 136 .495019 2.997530 6.577358 

2000 .498838 128 .495036 2.995460 6.444160 

5000 .499525 125 .495009 2.992606 6.417679 
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Table 5-3: Cauchy distribution 

Interval Target 	Ni  Area 1 N2  Area 2 Eoptima i Eco iumn  

[0,10] 90% 	500 .452850 64 .450100 3.542023 5.775558 

1000 .460338 50 .450150 3.511929 5.407273 

2000 .464422 47 .450084 3.493660 5.300923 

[0,20] 95% 	3000 .475144 295 .475006 3.873419 7.946205 

5000 .478354 145 .475036 3.856674 6.548353 

10000 .481294 118 .475044 3.843877 6.548353 

52.4 Rectangu'ar partitions of a genera' region in JR2  

We have so far only considered monotone increasing or decreasing density func-

tions. Naturally we would wish to extend our results to a general density on JR. 

Let f(x) : JR -* JR be a unimodal density function, increasing on (-, a] and 

decreasing on [a, oo). 

If f is symmetric, we would naturally choose to generate points x > a, using 

the right half of the distribution only, and then with probability 1/2 take a - x 

instead of x. This reduces the problem to partitioning a descending staircase. 

However, if f is not symmetric, we need a way to generalise the previous section 

to a staircase that is first ascending and then descending. 

Definition 5.2.9 An f-staircase is the interior of a closed piecewise linear curve, 

obtained by joining linearly a set of points 

{(x0, yo), (x0, f(xo)), (x1, f(xo)), (x1, f(xi)),. 

(xk, f(xk)), (xk, f(xk+1)), (xk+1, f(xk+1)),..., 

(x_1, f(x)), (x, f(x)), (x, yo), (x0, yo)} 

where x 1  > x, (i =0,...,n— 1), f(x 1 ) > Yo, (i = 0,...,n), x, <a < x1 and 

f(x) = 
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Naturally, if f is defined only on a subset of 11?, then the x (i = 0,. . . , n), in the 

above definition, must be taken in that subset. For simplicity, we will assume that 

for i j we only have f(x) = f(x 3 ) when i = p and j = p+l (or j = p, i = p+ 1), 

i.e. no two steps are of the same height. This time there is no root, but there is a 

line (x 0 , 
yo), 

 (x, 
 yo) 

 which can be called the base of the staircase. 

Theorem 5.2.8 is dependent on the concept of similarity that leads to recursion: 

each time a basic rectangle is removed from a staircase, we are left with one or 

two pieces that are again staircases and give identical, but smaller, optimisation 

problems to the original one. If the staircase is to be allowed to ascend and then 

descend, we need a satisfactory new definition of a basic rectangle, ie. a piece 

that serves to classify the partition and when removed leaves one or more general 

staircases with fewer steps. It can be shown that the following definition meets 

these criteria: 

Definition 5.2. 10 Given an f-staircase S = (P0 ,.. . , 	 a basic rectangle of S 

is a rectangle Ri = ((i, yo), (xi,  f()) for one 0 < i < n, where 

I xo; f(xo)<f(x n ) 

x,; f(x Th ) <f(xo) 

If i > 1 and i < n, then removal of the basic rectangle Ri  leaves a single region 

that is not an f-staircase. However, if removal of Ri  is accompanied by splitting 

the remaining region vertically along the line x = x, then the region is subdi-

vided into two staircases, as required. This splitting is validated by the fact that 

any rectangular partition of the remaining region not including the line segment 

[(x, Yo)  ,(x,f(x))], would necessarily contain more than n rectangles. Further-

more, any partition of a staircase contains one and only one basic rectangle. 

It is ow clear that the number of rectangular partitions of an f-staircase with 

n steps, as defined in Definition 5.2.9, is again given by the formula in Proposition 

5.2.5 and that a polynomial-time algorithm for finding the partition with minimum 

entropy exists and is essentially the same as that given in Theorem 5.2.8. The main 

difference is that, using the new definition of basic rectangle, the number of subsets 

of the region for which the optimal partition needs to be calculated and stored, in 
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order to find the optimal partition of the whole region, is no longer quadratic in 

the number of steps, n, but cubic. Therefore the algorithm becomes quartic in n. 

If the density f is not unimodal, the best option seems to be to split the density 

into unimodal pieces and partition each piece separately. Perhaps this is worth 

further study. 

503 TriangWar partitions 

Rather than partitioning an area in JR2  into rectangles, it could be preferable to 

partition it into triangles. The great advantage is that the number of triangles 

needed to cover a given percentage of the area under a curve will generally be of 

the order the square root of the number of rectangles. The drawbacks are that the 

areas will no longer be multiples of a given area and that the operations involved 

are more complex. 

5.3.1 Tirianguilar partitions of a convex region 

Let f(x) : JR -* JR be positive and concave on an interval [a, b]. Since the area 

under f is finite, it does not really matter whether the area is 1 or not. Note that 

for this section f(x) need not be monotone. Consider the area enclosed between 

f(x) and the chord AB, where A = (a,f(a)), B = (b,f(b)). We aim to divide 

this area into triangles in an efficient way. (The remaining area under f(x) and 

above [a, b] is a trapezium and can be cut into 2 triangles or a rectangle and a 

right-angled triangle.) 

The placing of points on the curve can be carried out in a similar fashion to 

the division into rectangles of the region under a decreasing function described 

in Section 5.2.3. Furthermore, a similar result to Theorem 5.2.8 can be given 

concerning the partition with the minimum entropy. 

Whereas for rectangular partitions we only considered rectangles with sides 

parallel to the coordinate axes, we will not insist that triangles have any side par- 
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allel to an axis. However, we will put a constraint on the positioning of triangles: 

each triangle in the partition must have all three vertices on the curve f(x). As 

before, we will only look at partitions where the number of pieces is minimal. In 

other words, there will be the same number of triangles as intermediate points 

between A and B. This leads to the following definitions: 

Definition 5.3.1 A convex f-polygon is the interior of the closed piecewise linear 

curve, obtained by joining linearly a set of n points 

{ (x i , f(x i )), (x 2 , f(x 2 )),.. . , ( x i , f(x 1 )), (x+1, f(x+i)),. . . , (x, f(x))} 

where a < x1 , x, < b, the function f is concave on the interval [a, b] and x1 > x, 

n. The points P1  = ( x 1 , f(x i )) and P = (x, f(x)) are the extreme 

points of the f-polygon. 

We will often write polygon for f-polygon. 

Definition 5.3.2 Given a convex f-polygon S = (P 1 , F2 ,.. . , P,), a basic triangle 

of S is a triangle T = (P1 , Pi , P) for any 1 <i <n. 

The definition of sub-polygon can be deduced from that of sub-staircase. 

In Figure 5-7 we give an example of such a triangularisation of an f-polygon. 

All the propositions in Section 5.2 can be proved in this set up. For example: 

Proposition 5.3.3 (Catalan) Given a convex polygon S with n + 2 vertices the 

number of different partitions into exactly ri triangles of S is 

1 (2n 

a— n+1 	ri 

Proof. The proof is identical to that of Proposition 5.2.5, with triangle substituted 

for rectangle throughout and replacing basic rectangle (P0 , P) with basic triangle 

(P1 , F2 , P 2 ). This is actually the original enumeration problem of Catalan. 	0 
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0. 

0. 

0. 

0. 

0. 

0. 

Figure 5-7: partition of a convex Figure 5-8: Optimal partition of 

region into triangles 	 a convex region into triangles 

The theorem is then the following: 

Theorem 5.3.4 Let S be a convex f-polygon with n + 2 vertices. There is a 

polynomial time algorithm for finding the partition into n triangles of S that has 

minimum entropy. 

Proof. The proof is completely parallel to that of Theorem 5.2.8. The algorithm 

consists in removing each basic triangle in turn, finding, by recursion, the optimal 

partition into triangles of each of the remaining sub-polygons and then choosing 

from the n resulting partitions that with the least entropy. Li 

In Figure 5-8, we show the optimal triangular partition of a convex f-polygon 

covering 99% of the area under the positive half of the curve (2/7r)/1 - x 2 . There 

are only 6 triangles in the partition and the entropy is 1.29. The mean entropy 

over 100 random triangular partitions of the same area is 1.74. 

When using triangles, the method used for placing the points on the curve, so 

determining the polygon to be partitioned, could be the method suggested above 

for placing a staircase under a curve: start with many points and then discard 

those points that reduce the area by the least, until a target area is covered. 

Experiments with particular densities show that, as long as the desired area is 
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Target N1  

99% 12 

15 

50 

100 

99.9% 55 

100 

200 

500 

Area 1 

.991018 

.991570 

.998942 

.999626 

.999083 

.999626 

.999868 

.999967 

Table 5-4: Ci 

N2  Area 2 

11 .990238 

9 .990141 

8 .990473 

9 .992651 

38 .999000 

25 .999014 

23 .999016 

23 .999073 

rcular distribution 

Eoptima i 

1.303015 

1.293016 

1.291973 

1.341921 

1.485578 

1.483400 

1.482014 

1.483102 

covered, the particular placing of the vertices of the polygon has little effect on the 

optimal entropy, but the number of triangles used can be decreased significantly. 

In Table 5-4, the density considered is f(s) = J7- X2 on the the interval 

[0,2/ \/F], and the notation is that used in Table 5-2. 

5.32 Triangular partitions of a concave region 

Let f(s) : 111 - JR be positive, convex and differentiable on an interval [a, b], 

where a or b may be +00, and let the area f26  f(x)dx be finite. Consider the area 

bounded by f(s), 5 E [a, b] and the tangents to f(s) at x = a and x = b. If b = 00 

or f(a) is undefined, but limx .a  f(s) is defined, then one or both of the tangents 

will be asymptotes. Let the point Qo  be the intersection of the two boundary 

tangents or asymptotes. 

The triangles we will consider this time are triangles that have one side tangent 

to the curve f(s). They are more complicated to construct, and involve knowledge 

of the derivative f'(x). 

Definition 5.3.5 Given a set of n points 

{(XI , f(xi)), (x 2 , f(x2)),. . . , ( x i , f(x)), (x+, f(x+1)),. . . , (x, f(x))} 

where a < X1, s < b, the function f is convex on [a, b] and 	> x2 , i = 1,. . . , n, 

define the line £ i  to be the tangent to f(s) at x = xi and let Q j  = f i  fl £j+1, for 
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0. 

0. 

0. 

0. 

Figure 5-9: Optimal partition of a concave region into triangles 

n - 1 and Qo = L fl L. Then the interior of the closed piecewise linear 

curve, obtained by joining linearly the set of n points {Qo, Qi, Q2,... , Q-l} is a 

concave f-polygon. 

Definition 5.3.6 Given a concave f-polygon S = (Qo, Qi, Q2,.. . , Qm), a basic 

triangle of S is a triangle Ti = (As , Qo,  B) for any 1 < i < rn, where the points 

A 2  and B2  are defined by A 2  = QoQi fl  QQ+1, B2  = QQ+i fl QoQrn. 

All the results proved for partition of the area under a decreasing curve into 

rectangles and for partition of the area under a concave curve into triangles can 

also be obtained in this third case. 

As an illustration of the triangularisation of a concave region, we show the 

exponential density in Figure 5-9. The area covered by triangles is 99% of the 

total area under the curve. There are 11 triangles and for the partition shown, 

which is the optimal partition of the polygon, the entropy is 1.38. 

Again, we can study the effect on the optimal entropy and on the number of 

triangles in the partition, of the choice of polygonal approximation. Using the 

exponential density, we have obtained the numbers given in Table 5-5, employing 

the same method and notation as in Section 5.3.1. This time the number of 

triangles has hardly been reduced by starting with a finer partition. 
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Table 5-5: Exponential distribution 

Interval Target 	N1  Area 1 N2  Area 2 Eoptimai 

[0,5] 99% 	20 .994052 11 .990010 1.376467 

50 .996217 11 .990516 1.382802 

100 .996528 11 .990150 1.378803 

300 .996620 11 .990258 1.384259 

[0,8] 99.9% 	75 .999009 37 .999041 1.467915 

100 .999565 36 .999009 1.467333 

250 .999789 36 .999013 1.468156 

5.3.3 Triangular partitions of a general region 

There does not seem to be any straightforward way of placing triangles under a 

curve f(s) in an interval where f is sometimes concave and sometimes convex. 

The two methods for fitting triangles described in Sections 5.3.1 and 5.3.2 are so 

different that a hybrid of the two is hardly possible. The simplest idea is just 

to divide the whole interval on which f(s) is defined into sub-intervals, on each 

of which f is only concave or only convex and to then place triangles separately 

under each piece of the curve. This amounts to insisting that all inflection points 

(points where f"(s) = 0) be used as points in the partition. Each convex region 

will be bounded by the curve f(s) and a chord [(XI, f(si)), (x 2 , f(s2))],  while each 

concave region will be bounded by the curve and two tangents, (one of which may 

be the tangent at infinity, in which case it is quite likely to be the x—axis). There 

may be some large pieces left over after removing these regions, which can easily 

be divided into a few rectangles or triangles. 

The positive half of the normal density, for example, has a single inflection 

point at s = 1, so triangles should be fitted in two separate regions. The convex 

region is between the chord [(0, f(0)), (1, f(1))] and the curve between s = 0 and 

s = 1. The concave region is between the curve, f(s),s > 1, the line s = 1 and 

the x—axis. Apart from these regions, there is a polygon that can be divided into 

a large rectangle and a right-angled triangle, which already contain between them 

more than 63% of the probability. 
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0. 

0. 

0. 

0. 

Figure 5-10: triangular partition of the normal distribution 

In Figure 5-10 we show how the region under the normal density might be 

divided up into triangles. Since the density is symmetric about x = 0, it is of 

course sensible to generate points from the positive half and then assign a random 

sign to them. The partition illustrated covers 99.5% of the area under the curve 

and has an entropy of 1.97331. The convex part contains 4 triangles and the 

concave part 7, giving a total of 12 triangles and one rectangle. The partitions 

of both the convex and the concave parts have minimum entropy given the set 

of points on the curve to be used as vertices in the convex case and points of 

tangency in the concave case. This partition contains the same number of pieces 

as the rectangular partition in Figure 5-5, but has a lower entropy and covers 

much more of the distribution, showing clearly the advantage of using triangles. 

All the well-known probability densities have a small number of inflection 

points, so breaking up the curve in this fashion is perfectly feasible. The problem 

comes when trying to generalise to higher dimensions: most pieces of surface are 

neither convex nor concave. 
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504 Concuso 

The work described above is a detailed description of improvements to the set 

up phase of the patchwork method for generating random deviates. Traditionally 

this phase is separate from the actual generation of random numbers and, since it 

needs to be performed only once for each distribution, it is worth taking time and 

effort to get it right. 

In Chapter 6, we will present a method in which the set up phase is carried 

out in parallel to the random number generation. Rather than choosing a fixed 

area to fill with rectangles or triangles before starting, we will add in a new piece 

whenever it is needed, so that the number of pieces placed increases with the 

number of random deviates generated, thereby allowing for flexible accuracy. 



Generation of a General Univariate 

Probability Density 

61 lEntroduction 

Our aim in this chapter is to describe a method for generation of random deviates 

that is fast, as accurate as required and may be used for a wide class of continuous 

distributions, so could be called a black box method. 

Our starting point is again the rectangle-wedge-tail method devised by Marsaglia 

et al. ([38], [371), initially for generation of normal deviates, the fastest method 

available for generation of continuous random deviates. Speed is paid for by the 

use of lengthy look-up tables. On modern computers the memory requirements 

are no longer a problem, but the programming time and complexity is consider-

able. For each distribution, the programmer has to calculate in advance all the 

necessary constants. 

We chose to design a similar method that, given any distribution, from as large 

a class as possible, could calculate its own constants as it went along, building 

up tables dynamically. In order, on the one hand, to simplify the structure of 

the program and, on the other hand, to handle as many different distributions as 

possible, we decided to throw away the wedges and the tail, keeping only triangles. 



Chapter 6. Generation of a General Univariate Probability Density 	109 

The reason for choosing triangles, not rectangles, was that, given that we wished 

to use the same method of generation everywhere, we had to cover not just 99% 

or 99.9% of the region under the density curve, but the whole region to within 

a certain accuracy, and were therefore forced to minimise the number of pieces 

required. The number of triangles needed to cover a given area under a smooth 

curve is of the order the square root of the number of rectangles required. 

Accuracy was another essential consideration: our work with numerical solu-

tion of stochastic differential equations (SDE's) has convinced us of the need for a 

source of random deviates accurate to a desired number of bits, where the precise 

number of bits should be allowed to vary from application to application. When 

taking large time steps to approximate the solution of an SDE, it makes no sense 

to require extremely accurate random deviates, but as the time steps get smaller, 

in an attempt to increase the accuracy of the approximation, the random deviates 

used should get more accurate if the desired accuracy is to really be obtained. 

The general idea is to place triangles under the density curve as needed, writing 

the necessary table entries for each triangle at the time it is placed. Most of the 

time points will be generated in already positioned triangles. 

62 Pkdng the triang'es 

Let f : JR -* JR be a continuous density function with a continuous derivative 

f'(x) and second derivative f"(x). Let the set of points F = {xlf"(x) = 0} be 

finite and small. By 'small', we mean that we can handle 0, 1 or 2 inflection points 

easily, but that the more there are, the more complicated the program becomes. 

We can therefore split JR into a few intervals, on each of which f(x) is either 

concave or convex. 

We wish to build an algorithm for returning random deviates with density f(x), 

using as few inputs as possible. The necessary inputs are as follows: the interval 

[a, b] on which the function f(x) is defined, if this is not the whole of JR, the set 

F and either one or two black box functions (subroutines). The first function, 
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which must always be supplied, will, when given a value of x, return 1(x). The 

second black box function, only needed if 1(x) is convex on any interval, returns 

the derivative f'(x). By black box function, we mean that the calling program 

will know only the name of the function, that the only input will be the point at 

which the function is to be evaluated, the only output the function value, and no 

knowledge of how the value is calculated is available to other program units. Note 

that the second derivative is not needed, only the information, given by F, about 

where it is zero. 

If f(x) is symmetric about x = c, then this information can also be supplied, 

and F need only contain the inflection points for x > c. In this case, the routine 

will generate, in the first instance, points x > c and then return either x or c - 

with probability 1/2 each way. 

It is not important if the function evaluations 1(x) and f'(x) take a long time, 

since these functions will only be called when a new triangle is placed under f(x), 

an event that does not happen very often. 

The method used for placing triangles varies according to whether the triangle 

is in a convex or concave region. For a convex region, triangles are placed with all 

3 vertices on the curve f(x), whereas in a concave region triangles are placed with 

all 3 sides tangent to f(x), as described in Chapter 5. No triangle must be allowed 

to be partly in a convex region and partly in a concave region. The easiest way 

of ensuring this is to use all the points of F as vertices and points of tangency of 

the first few triangles placed, as in Figure 5-10. 

An immediate question is how we choose the points on the curve f(x) that 

determine the placing of triangles. The method suggested in Chapter 5 cannot be 

used, because it involves placing all points once and for all, in order to cover a 

c tain chosen percentage of the region under f(x), whereas we now wish to place 

new points one at a time, leaving open how much of the region will eventually 

be covered. When only a few points are required from the distribution, only a 

few triangles will be needed, but the greater the number of points to be gener-

ated sequentially (as one sample, or as a set of independent samples all required 

together), the closer the region covered by triangles will get to being the whole 
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region. To choose a point on the curve, it naturally suffices to choose a point x 

from the interval [a, b], since the second coordinate is then given by f(x). The 

first points chosen can be the ends of the interval [a, b], if a or b or both are finite 

(or [c, b] in the symmetric case), and the points in F. Further points will then be 

chosen between these, in order, ie if in the first round points have been placed at 

1X1, x 2 ,. . . , x,}, then in the second round they will be placed between x 1  and x 2 , 

between x 2  and x3  and so on. The term 'round' is used here to show that there is a 

hierarchy among the points placed on the curve and therefore among the triangles 

placed in the region under the curve. The first points are placed along the curve 

in order from left to right. Whenever the algorithm has to return to the left end 

of the interval, in order to place points between those previously placed, then a 

new round starts and a new set of triangles will be added. 

What happens at the ends of the interval depends on whether f(x) is defined 

on a finite or an infinite interval. If the interval is finite at any end, then that 

end of the interval will be used to place a point on f(x) in the first round and 

subsequent points will be placed further in. This is the easy case. If, however, the 

interval is infinite in any direction, on the right say, which can only happen if f(x) 

is convex at that end of the interval, it will never be possible to place a rightmost 

point. At each round there will be a temporary rightmost point, but in the next 

round another point must be placed further to the right of that one. 

We are now faced with two important and difficult questions. Firstly, if points 

have already been placed at x 1  and x2  and it is time to place a new point between 

them, where do we put it? Secondly, if f(x) is defined on [a, oc) and is therefore 

convex on [b,00) (b >= a), and x 1  > b is the rightmost point placed so far, where 

do we put the next point x 2  > x 1 ? We will refer to this second problem as the 

problem of placing a new tail triangle. We would wish to answer these questions 

in such a way that all the triangles placed in one round have areas that are very 

close to each other in size, and all the triangles added in the next round have much 

smaller areas. When placing a new tail triangle, we would like to cover about half 

of the remaining area under the tail. 

We will first concentrate on the question of where to place new points on an 



Chapter 6. Generation of a General Univariate Probability Density 	112 

interval where f(s) is concave. Ideally we would like to place a new point between 

two old ones in such a way that the two wedges left between the new triangle and 

the curve have equal areas. Even if we allow integration of f(s), which does not 

seem a desirable option, it is still not easy to satisfy this demand. In practice, it 

is often satisfactory when placing a point on the curve f(s), between points with 

abscissas x  and 2,  to simply take the point with abscissa (s i  + x2)12. 

However this method is very unsatisfactory in the case of a purely concave 

curve on an interval [a, b] with an infinite derivative at a or b. For an arc of a 

circle, it is easy to place a new point so that the areas of the wedges will be equal, 

by choosing equal angles from the centre of the circle, therefore subdividing the 

arc XIX2  into two arcs of equal length. For an ellipse, it suffices to subdivide the 

arc of the circle with same centre as the ellipse and with radius equal to the axis 

of the ellipse in the x direction, and then to project down from the circle on to the 

ellipse, parallel to the y-axis, as illustrated in Figure 6-1. We therefore propose 

this method for placing a point ± between xi  and  X2  in [0, b] on a density curve 

f(s) concave on [0, b], when the value of the derivative is zero at 0 and infinity 

at b: project parallel to the y-axis the arc of f(s) for x e [Si, X21 onto the circle 

of centre (0,0) and radius b, divide the obtained arc of the circle into two equal 

pieces and project back down onto f(s). 

Using polar coordinates for the circle, we haves 1  = b cos (0i ), X2=  bcos(0 2 ) and 

we wish to take ± = bcos((0 i  + 02)12). Simple development using trigonometric 

identities yields 

X = 	 [b2  + 12 - /(b2 - xfl(b 2  - s)] 

so no angles need to be calculated explicitly. The class of densities for which 

this method is appropriate (with a translation of the origin where necessary), 

naturally includes those purely concave densities which are symmetric about some 

point x = c and have infinite derivatives at the ends of the interval on which they 

are defined. 
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EM 

Figure 6-1: 

63 Using uniform random numbers 

So far, we have only discussed how to choose the vertices of new triangles to be 

placed under the curve f(x). We have not said when new triangles should be added 

or how we choose the triangle in which to generate a point each time. Nor have we 

yet mentioned the data structures used to store information about the triangles as 

they are put in. We have implemented two different methods, one that relies on 

a generator of uniform random numbers from the interval [0, 1] and another that 

relies on a supply of random bits. We will describe these two methods in detail, 

answering all the remaining questions for each method in turn. There are other 

possible ways of proceeding, including hybrids of the two methods we are going 

to describe. After reading the description of the two methods, the reader will be 

able to imagine how to make mixtures of the two. 

The first method, that based on a uniform random number generator, is simple 

to program and to describe. It is more realistic, since everyone should be able to 
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Table 6-1: Inversion by sequential search 

Generate a uniform [0, 1] random variate U. 

Set n - 0. 

While U> S, do 

fl - n + 1; 

if triangle T has not been placed then 

place a new triangle T; 

S - S,_ 1 + area of T 

Generate the x-coordinate of a point uniformly distributed in T. 

obtain a good 'cheap' source of uniform random numbers, whereas a good fast 

generator of random bits is harder to come by (if it exists at all). When using a 

high level programming language, such as C or Fortran, it is more natural to work 

with floating-point numbers than with bits. However, as will be seen below, the 

random bit model has various optimal features, making it a much more interesting 

model theoretically. 

The method based on uniform random numbers is essentially the method for 

generation of a discrete random variate called 'inversion by sequential search' by 

Devroye [12]. The method is outlined in Table 6-1. 

It is well-known that the expected number of iterations is bounded by the 

entropy of the discrete distribution, in this case by the entropy of the areas of 

the triangles. Theoretically the number of triangles is infinite, but the size of the 

triangles should decrease fast enough that the entropy stays finite and quite small. 

The accuracy of this method depends on the accuracy of the uniform random 

number generator. However many decimal places or bits of accuracy are ensured 

by the random number generator, the rest of the calculations should be designed 

to give results to at least the same accuracy. Using any source of uniform deviates, 

there will always be a largest number Urn < 1 that can be generated. However 

many random numbers are generated with density f(x), the number of triangles 
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used will never go beyond the number necessary to cover a region with total area 

Urn. Therefore, the only way to increase the overall accuracy, is to replace the 

uniform random number generator with a more accurate one, that will necessarily 

possess a larger maximum value Urn. 

The storage requirements imposed by this method are an array to contain the 

x-coordinates of the vertices of the triangles (the y-coordinates are not necessary), 

an array, 8, of partial sums of probabilities and a linked list of (x-coordinates of) 

points placed on the curve f(x). So for each triangle inserted, there will be a total 

of 5 floating-point numbers and one pointer stored. All three lists of data need 

to be of maximum length equal to the maximum number of triangles that could 

be inserted using a particular random number generator. It is helpful to choose 

a programming language, such as C, that allows dynamic allocation of memory, 

since, whenever a new density f is used, it is impossible to know in advance how 

many triangles will be needed. 

It is possible to write versions of this method that use separate data tables for 

convex and concave regions, and that first choose a convex or a concave interval 

with the right probability, before selecting a triangle within the chosen region. 

Such a version can be more efficient, but needs to be given the areas of each of the 

convex and concave regions as well as the basic inputs described at the beginning 

of Section 6.2. In any case, when placing a new triangle, the program must know 

whether the triangle is being placed under a convex or a concave part of the curve. 

A detail that should be mentioned, is how points are generated uniformly 

in triangles. We have used the method of linear transformation mentioned by 

Devroye [12]. Points generated uniformly in the basic triangle ((0, 0), (1, 0), (0, 1)) 

are linearly transformed to place them in the triangle with vertices having x-

coordinates x1, x2, x 3 . We only need the x-coordinate of the random point. The 

algorithm is given in Table 6-2. 

Clearly generation of one random number from the distribution given by f(x) 

using this method uses a total of 3 uniform random deviates: one to choose a 

triangle and two to generate a point within the triangle. It is possible to do as 

Marsaglia ([38], [37]) does for the fast generation of normal deviates, use some of 
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Table 6-2: Generation of a point in a triangle 

Generate uniform [0, 1] random variates U, V. 

If U> V then U V. 

Return Ux 1  + (V - U)x 2  + ( 1 - V)x 3  

the bits from a uniform random number for choosing the triangle and the remaining 

bits for placing a point in the triangle. However, whereas all the rectangles used 

by Marsaglia have areas that are integer multiples of a given area, so that there is 

a definite number of bits needed to choose a rectangle with perfect accuracy, the 

triangles we use do not have such a property. It only makes sense though to use 

as much accuracy when choosing a triangle as the accuracy with which the area 

has been calculated and stored. 

64 Using irandom bits 

The second method we have implemented uses random bits for choosing a triangle 

with the correct probability and is very much based on work of Knuth and Yao [27]. 

For this part, we have to presume the existence of a perfect random bit generator. 

Knuth and Yao prove the existence of and describe how to build optimal discrete 

distribution generating trees (DDG-trees). 

Given a discrete density P(X = i) = p, i = I.... , oo, a DDG-tree for that 

density is a binary tree that, traversed while reading a sequence of random bits, 

returns a value n with probability p. Starting at the root of the tree, the left 

or right branch is followed according to whether the first bit generated is 0 or 1. 

Either a terminal node is reached, or a node with 2 branches. In the latter case 

the process is repeated with subsequent bits until such time as a terminal node is 

reached. Each terminal node is labeled with a number ii, indicating that the value 

n is to be returned. An optimal DDG-tree is one that, for a given distribution, 

minimises the expected number of bits needed to return each number. Following 
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Knuth and Yao, we shall use Borel's functions 

fk(x) = L2 . xj mod 2 

to specify the coefficient of 2" in the binary representation of x. Knuth and Yao 

show that an optimal DDG-tree is a DDG-tree with the property that level k of 

the tree contains one (and no more than one) terminal node with the label n if and 

only if €k(N) = 1. We will call this property the 'DDG-tree optimality condition'. 

The most useful part for our purposes is that Knuth and Yao also describe 

how, starting with an optimal DDG-tree for a discrete density p, i = 1,. . . , n, 

it is possible to extend the tree to obtain an optimal DDG-tree for the density 

Pi,• ,Pn—i,Pn,Pn+1 with j3,, = p. This allows us to build up dynamically, 

as the triangles are inserted, an optimal DDG tree for the density given by the 

triangles under the curve f(x). 

We start with a tree consisting only of the root node. At any stage, when we 

have a number n of triangles already positioned, we can write 

Epi 

where p,  i > 1, is the area of triangle i and by Po  we denote the total area under 

the curve f not yet covered by triangles. We use a DDG-tree where every node 

is labeled with an integer from the set {-1, 0, 1,2,3,.. .}. Each node with a label 

i > 0 is a terminal node and points to triangle i. A node with the label —1 is an 

interior node (whose right and left children may or may not have been added to 

the tree yet) and a node labeled 0 is a terminal node, that may later become an 

interior node, pointing to the area under the curve outside the existing triangles. 

If q is a node of the tree, let L(q) denote the label stored at that node. The 

outline of the algorithm used to choose a triangle is given in Table 6-3. Two 

parts of the algorithm need to be described in detail: extension of the tree and 

refinement of the tree. These two tasks must be carried out in such a way as to 

ensure that the DDG-tree optimality condition always holds. 

This is how we extend the tree: When an interior node without children is 

reached on level k - 1 of the tree, the children of that node must be added to level 
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Table 6-3: Choosing a triangle using a DDG-tree 

Set decided - false, q f— root; 

Repeat 

Generate a random bit, b. 

If node q has no children then extend the tree at q; 

If b = 0 then q +- left child of q; 

else q *— right child of q; 

While L(q) = 0 refine the tree; 

If L(q) > 0 then 

n - 

decided - true 

Until decided. 

Generate the x-coordinate of a point uniformly distributed in triangle T. 

k. If fk(Pi) = 1 for some 0 < i < ii and if there is as yet no terminal node, q, on 

level k, with L(q) = i, then we should create such nodes. We have to consider the 

p, for inclusion in a clearly defined order, so we choose the order 1, 2,. . . , n, 0. An 

'accounting' array, M, with one element for each level of the tree, keeps track of 

which probability we should next examine at level k. So we examine probability 

PMk , to see if Ek(pMk) = 1. If it does, we add a terminal node with label Mk. 

Then we examine the next probability, until either two terminal nodes have been 

added or else we have examined all probabilities, including po,  and still have one 

or two children to add. Any remaining children are then interior nodes. Unlike 

the other probabilities, P0  changes every time a new triangle is added. Therefore 

the accounting for Po  is more complicated and we use a separate array, Z, again 

with an element for each level of the tree, to keep track of whether Po  has been 

examined when adding nodes to each level. The outline of the extension algorithm 

is given in Table 6-4. 

By refinement of the tree, we mean the addition of a new triangle and the 

updating operations involved. If a terminal node with label 0 is reached when 
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traversing the tree, a new triangle, with area Pn+i,  must be inserted and po  must 

be decreased accordingly. Whereas extension is a local operation, carried out at 

one node of the tree only, refinement involves the whole tree generated so far. 

When the value of Po  changes, all terminal nodes labeled 0 need to be updated. 

Each such node, at level k, may only retain the label 0 if the new value of po 

contains the digit 1 in the kth binary place and if there is no probability p 2 , 

n + 1 > i > Mk, with k(pi) = 1. If such a p1  exists, the label is changed to i, 

otherwise, if Ek(po) = 0, the label becomes —1 and the node therefore changes 

from a terminal node to an interior node. The refinement is done recursively, node 

by node. Starting with the root, each node is examined in turn. If the node is 

labeled zero, it is updated, if not, the right and left children are examined, if they 

exist. The basic routine to refine the tree when a new triangle is added is outlined 

in Table 6-5. 

This routine calls the routine refine(q, Ic), which updates the sub-tree with root 

at node q on level k. The routine is given in Table 6-6. 

An example of a computer program written using the above methods is given 

in Appendix A.5. 
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Table 6-4: Extension of the DDG-tree 

Allocate storage for 2 new nodes, qi and q2. 

Set q1i,qlr,q2:,q2r - NULL; 

i4—Mk; 

While i<n and Ek(pI)=Odoi4—i+1; 

If i < r 

then 

L(ql) - 

Mk4—i+1; 

else 

If Zk = 0 and fk(po) = 1 

then 

L(ql) - 0; 

else L(ql) f-  — 1 

While i < n and fk(Pi) = 0 do i - i + 1; 

If i < n 

then 

L(q2) - 

Mk+—i+1; 

else 

If Z k =O and f k (po )= 1 

then 

L(q2) - 0; 

else L(q2) 4- —1; 

Left child of q - ql 

Right child ofq - q2 
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Table 6-5: Refinement of the DDG-tree 

n - n + 1; 

place triangle T; 

P0 - Po —  area of T; 

refine(root, 0); 

Table 6-6: Routine refine(q,k) 

If L(q) = 0 

then 

While Z' <n and k(p1)=0doi4—i+1; 

If i < n 

then 

Mkf-i+1; 

else 

If ck(po) = 1 

then Zk +— 1; 

else L(q) - — 1; 

else 

if q has a left child, q, then refine(q 1 , k + 1); 

if q has a right child, q,., then refine(qr , k + 1); 
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Computer Programs 

All the code in this appendix is written in C, except for Section A.3. 

A01 Access and dynamic generation of a Brow-

nian tree 

#define K 5 

typedef struct{ mt recno,level,prerec,nexrec,parent; 
mt lson,rson,spare[7]; 
float tO,tp;} record; 

typedef struct{ mt np,nw,nlevels,nll,seed,nrecsl,nrecs2; 
mt spare[7]; 
float sp[21;1 header; 

getdw(nw,dw,level ,t ,h,func, idum,cangoup) 
mt nw ,level , idum , *cangoup; 
float *dw,t,h,(*func)Q; 
/* Routine to read and return elements from a Brownian 
tree stored in a file, also to add elements to the tree 
when necessary. 
The external variables wfile and in, that may be used 
by other program units, are pointers to the file 
containing the Brownian tree and to the jo-unit 
connected to the file. 
The routine keeps several (K) records in memory at all times, 
so that file accesses are not performed during 
most calls to the routine. 
getdw presumes that it is being used to help solve an sde 
forwards through time, ie it presumes that the next call 
to getdw will be at the same period or the next one. 
*/ 
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{extern char wfile; 
extern FILE in; 
static float **w; 
static record r[K]; 
static header head; 
static mt 1,np,recsize,initO; 
static long size; 
float **array3O,hh,tt,sd,**w2,**matrixO; 
mt i,j,k,tag; 
record r2; 
if(init==011idum<O) / Initialize by reading in K records, such that 

the last is on given level and the others are 
all parents. *1 

{in=fopen(wfile,"r+"); 
if(in==NULL) {printf (" Can't open file in getdw\n); exit(1);} 
recsize=sizeof (record); 
fread((char ')&head,recsize,1,in); 
if(nw!head.nw) {printf(' Noise vector wrong size in %s.\n",wfile); 

printf(" nw=%d head.nw=%d\n" ,nw,head.nw); 
exit (1) ;} 

np=head . np; 
if (head .nlevels<level) 
{printf(" Not enough levels in initial brownian path\n"); 
exit(1) ;} 

if(init==O) w=array3(0,K-1,0,np-1,0,nw-1); 
size=recsize+np*nw*sizeof(float); 
fseek(in,size,O); 
readw(w[O] ,np,nw,r,in); 
while(r[O] .level<level-K+lIIt<r[O] .tO) readw(w[O],np,nw,r,in); 
for(i1 ; i<K; j++) 
{fseek(in,size*r[i-1] .lson,O); 
readw(w[i] ,np,nw,r+i,in); 

} 

llevel; 
initl; 

} 

while(level>l) /* Go down one or more levels */ 
{ for(i0;i<K-1 ; 

{ r[i]r[i+1] 
for(j0;j<np;j++) for(k=O;k<nw;k++) w[i]Cj][k]w[i+1][j][k]; 

} 

if (r [K-i] .lson>O) 
{fseek(in,size*r[K-i] .lson,O); 
readw(w[K-11 ,np,nw,r+K-i,in); 

} 

else /* Create new noise elements */ 

hhi.O/i; 
sdsqrt(hh*0.5); 
w2matrix(O,np-1,0,nw-1); 
brownchunk(w[K-2] ,np,nw,w[K-i] ,w2,sd,func); 
r[K-i] .recno=head.nrecsi++;head.nrecs2++; 
l++; r[K-1] .levell; 
r[K-1] .nexrec=r[K-1] .recno+i; 
r[K-1] .parent=r[K-2] .recno;r[K-i] .lsonr[K-i] .rson(-1); 
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r[K-1] .prerec(-1); 
r[K- 2] .lson=r[K-1] .recno; 
r[K-1] .tO=r[K-2] AO; 
r[K-i] .tp=r[K-1] .tO+np*hh; 
fclose(in); 
in=fopen(wfile,"a+"); 
i=savew(w[K-11 ,np,nw,r+K-1,in); 
fclose(in); 
in=f open (wfile,"r+"); 
r2 . recno=head . nrecsl++ ;head . nrecs2++ ; r2 . level=l; 
r2 . prerecr2 . recno-1; 
r2.parentr[K-1] .parent;r2.lsonr2.rson=(-1); 
r2.nexrec(-1); 
r [K-2] . rsonr2 . recno; 
r2.tO=r[K-1].tp;r2.tp=r2.tO+np*hh; 
fclose(in); 
in=fopen(wfile,a+"); 
i=savew(w2 , np , nw,&r2 ,in); 
f close (in); 
in=fopen(wf ile, 
free_matrix(w2 ,O,np-1,O,nw-1); 
/* Rewrite header */ 
fwrite((char *)&head,recsize,i,in); 
1* Rewrite record(K-2) to update lson,rson */ 
fseek(in,r[K-21 .recno*size,O); 
savew(wEK-2] ,np,nw,r+K-2,in); 

} 

} 

while(1-K+1>level) 1* Go up one or more levels *1 
{ for(iK-1;i>O;i--) 

{ r[i]r[i - 11; 
for(j=O;j<np;j+-f) for(k0;k<nw;k++) w[i][j][k]=w[i - 1][j][k]; 

} 

fseek(in,size*r[1] .parent,O); 
readw(w[O] ,np,nw,r,in); 
1--; 

if(t<r[0].tO) {printf(" Error: t<tO in getw.\n"); exit(1);} 
/* Get correct level */ 
for(i0;i<K;i++) if(r[i] .level1evel) {tag=i; break;} 

while(t>=r[tag].tp) 1* Get correct time interval *1 
{ 1* Move tag down to K-i *1 
r[K-i]r [tag]; 
for(j=O;j<np;j++) for(k0;k<nw;k++) w[K - i][j][k]=w[tag][j][k]; 
tag=K-1; 1=level; 
if(r[tag] .nexrec>O) 
{fseek(in,r[tag] .nexrec*size,O); 
readw(w[tag],np,nw,r+tag,in); 

} 

else 
{r[O]r[tag] 
initstack() 
while(r[O] .nexrec<O) 
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{push(r[O] .recno); 
fseek(in,r[O] .parent*size,O); 
readw(w[O] ,np,nw,r,in); 

} 

fseek(in,r[O].nexrec*size,O); 
readw(w[O] ,np,nw,r,in); 
while(r[O].level<level) /* Create more tree */ 
{ 

/ Rewrite parent *1 
fseek(in,r[O] .recno*size,O); 
r[O] .lsonhead.nrecsl;r[O] .rsonhead.nrecsl+1; 

fwrite((char *)r,recsize,1,in); 
hhl .O/(1<<r[O] .level); 
sd = sqrt(O.5*hh); 
brownchunk(w[O] ,np,nw,w[1] ,w[2] ,sd,func); 
r[1]r[O] 
ni] .recnohead.nrecsl++;head.nrecs2++; 
r[i] .parentr[O] .recno; 
ru] .prerecpopO; printf (" popping %d\n" ,r[1] .prerec); 
r[1] .level++;r[1] .nexrecr[1] .recno+1; 
r[1] .lsonr[i] .rson(-1); 

.tpr[O] .tO+np*hh; 
tellprerec(r[1].prerec,r[1] .recno,recsize,size,in); 
fclose(in); 
infopen(wfi1e,"a+); 
savew(w[1] ,np,nw,r+i,in); 
fclose(in); 
in=fopen(wfile,"r+"); 
r[2]=r[1] ;head.nrecsl++;head.nrecs2++; 

.recno++;r[2] .prerecr[2] .recno-1; 
r[2] .nexrec(-1); 
r[2] .tOr[2] .tp;r[2] .tp+np*hh; 
fclose(in); 
in=f open (wfile,"a+"); 
savew(w[21 ,np,nw,r+2,in); 
fclose(in); 
in=f open (wfile,"r+"); 
for(k0;k<np;k++) for(i0;i<nw;i++) 
w[O] [k] [i]w[1] [k] [i] 
r[O]r[1] 
/* Rewrite header */ 
fwrite((char *)&head,recsize,i,in); 

} 

r[K-1]r[O] 
for(j0;j<np;j++) for(k0;k<nw;k++) w[K- i][j][k]w[O][j][k]; 
freestackO; 

} 

/*Fij.. in w and r 
for(i=K-2; i>0; i -- ) 
{fseek(in,r[i+i] .parent*size,O) 
readw(w[i] ,np,nw,r+i, in) ; 

} 

} 

1* Return correct dw */ 
tt=r [tag] .tO; i0; 
while(tt<t) { i++; ttr[tag].tO+i*h;} 
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if(i>np-1) {printf(" Error in time.\n " ); exit(1);} 
for(j0;j<nw;j++) dw[j]=w[tagJ Ci] [j]; 
/' Check if possible to go up a level 

next time. It is only possible when the 
current time index = 3 mod 4. *1 

*cangoup=((i%4==3&&level>5)?1 :0); 
} 

tellprerec(prerec,nexrec,recsize,size, in) 
mt prerec,nexrec,recsize; 
long size; 
FILE *in; 
1* Updates the record prerec so that the pointer 
to the next record points to nexrec. 
*1 
{ record r; 

f seek ( in ,prerec*size , 0) 
fread((char *)&r,recsize,1,in); 
r . nexrecnexrec; 
fseek(in, (long) (-recsize) , 1); 
fwrite((char *)&r,recsize,1,in); 

} 

mt *sp; 

initstack() 
/* Initialises a stack, pointed to by sp *1 
-Cextern mt *sp; 
unsigned stacksize20; 1* Max. no of levels *1 
sp=(int *)malloc(stacksize*sizeof(int)); 
if(!sp) {printf(1t  allocation failure in initstack\nu);  exit(1);} 

} 

freestack() 
1* Releases the memory used by the stack 
pointed to by sp *1 
{extern mt *sp; 
free((char *)Sp); 

} 

push(n) mt n; 
1* Adds the integer n to the stack *1 
{extern mt *sp; 
* (sp++)n; 

} 

mt popO 
1* Gets an integer from the top of the stack *1 
-Cextern mt *sp; 
return (*(--sp)); 

} 
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A02 Generation of Levy areas 

The tables of constants used by this routine are much too long to be included here, 

so we have given only the first two and the last elements of each array. The code 

is otherwise complete. 

*define NCUBE 2975 1* Number of blocks easy part is broken into*/ 
define DIMP 5949 	/* Dimension of tree: 2*NCUBE-1 */ 
define SCUBE 119519 /* Total number of blocks when all blocks are 

broken down into smallest size blocks */ 
*define NW 4096 	1* Number of wedges *1 
#define NWEDGE 4095 / Number of wedges - 1 *1 
#define DIMW 8191 	/* Dimension of utree: 2*NWEDGE+1 */ 

#define NT 9 	1* Number of parts of tail - 1 *1 
#define DIMT 19 	/* Dimension of tailtree: 2*NT-1 */ 
/' Dimension of square matrix z (of function values) *1 
Udefine DIMZ 65 

1* Volume of easy part + volume of wedges *1 
*define PR1 0.99732406024821951 
*define DL 0.0625 
*define MAXRAN 4.294967296e9 
#define H 0.298023225e-7 
#define EPS 1.0e-4 

typedef struct 
{unsigned long p;  short mt rson,lson; float r,a,h;} node; 

static node tree [DIMP] 
{ 

{119519,2,1,0.0,0.0,0.0}, 
{69003,4,3,0.0,0.0,0.0}, 

{1o7595,-1,-1,1.O,o.O,1.O} 

typedef struct {double p;  short mt rson,lson;} wedge; 
static wedge wtree[DIMW] 
{ 

{9.973240602482193e-01,2,11, 
{9 . 611933921062400e-01 ,4,3}, 

361841639166600e-01 , -1, -1} 

typedef struct {double h,dh,base;} triple; 
static triple W[NW]= 
{ 

{0.0,0.048896637226827,0.0}, 
{0.0,0.048430181086172,0.0}, 
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{0 .0,0 .000068025297515,0. 000053038700553} 

typedef struct {double p; short mt rson,lson,no;} tailstruct; 
static tailstruct tailtree[DIMT] 
{ 

11.000000000000000e+00,1,16,01, 
{1.000000000000000e+00,12,2,01, 

994249898245016e-01 ,-i,-i, i} 

static double z[DIMZ] [DIMZ] 
-C{0.0,0.0,0.0,0.0,0.0, 

0 :000055417724037,0. 000053038700553} 

typedef struct {double 1,h;} pair; 
static pair epsilon[NW] 

{{0 .0,0.000 149092954277}, 
f-0.0,0.0001404552556771, 

f-0.000000282727450,0.01 

double fQ,f1Q,f20,f30,f40,f50,f60,f70,f80,f9Q,flOQ; 

gen_ra(r, a,func, eps) 
float *r,*a, (*func)() ,eps; 
{float u,v,w; 
double xx; 
short mt 	lson,rson,i,sign; 
unsigned long bits,p; 

w(*func)(1); 
bit s=w*MAXRAN; 
sign=(bits & 0X80000000)>>31; 
p=(bits & OX7FFFC000)>>14; 

if (p<SCUBE) 
{lsontree[01 .lson; 
rson=tree [0] . rson; 
while (lson>0) 
{if(p<tree[lson] .p) 

{ilson; lsontree[i] .lson; 
else 
{irson; lsontree[i] .lson; 

} 

u(*func) (1); 
v(*func) (1); 
*rtree[i] .r+tree[i] .h*u; 
*atree[i] .a+tree[i] .h*v; 

} 

else 
{xx ((bit s&OX7FFFFFCO) >>6) *H; 

rson=tree[i] .rson;} 

rson=tree Li] . rson; } 
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if (xx<PRj.) 
{i=choose_wedge2 (xx); 
wedge_ra(i,func,r,a,eps); 

} 

else 
tail_ra(xx,func,r,a); 

} 

if (sign) *a(-(*a)); 
} 
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choose_wedge2(x) double x; 
{int i,rson,lson; 
lsonwtree[0] .lson; 
rsonwtree[O] .rson; 
while (lson>0) 
{if(x<wtree[lson] .p) 

{ilson; lsonwtree[i] .lson; 
else 
{i=rson; lsonwtree[i] .lson; 

rson=wtree [i] . rson; } 

rsonwtree[i] .rson;} 

 

} 

if(i<NWEDGE) {printf(" Mistake in choose_wedge2: i=%d\n",i); 
exit (1) 

} 

/ in wtree the wedges are in the 2nd half 
and in reverse order */ 

i=DIMW-1-i; 
return i; 

} 

wedge_ra(k,func, r, a, eps) 
mt k; float (*func)O,*r,*a,eps; 
{ double z,zz,interpolateO; 

mt i,j ,countO,rejected; 
ik/64; 
j=k-i*64; 
do 
{*rDL*(i+(*func) (1)); 
*aDL*(j+(*func) (1)); 
zW[k] .h+W[k] .dh*(*func) (1); 
if(z<W[k] .base) rejectedO; 
else 
{zz=interpolate(*r,*a,i,j); 
if(z<zz+epsilon[k] .l-eps) 	rejectedo; 
else 
{if(z>zz+epsilon[k] .h-feps) rejected=1; 
else 
{if(z<f(*r,*a)) rejectedo; 
else 	 rejectedl; 

} 

} 

} 

} while(rejected&&count<100); 
if (count>= 100) 
printf("wedge %d, 100 numbers rejected: r=%f a= °hf\n",k,*r,*a); 

} 
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double interpolate(r,a,i,j) 
double r,a; 
mt 	i,j; 

{double t,u,rl,r2,ai,a2; 
r1iDL; 
r2(i+1)*DL; 
alj*DL; 
a2(j+1)*DL; 
t=(r-rl)/(r27rl); 
u=(a-al)/(a.2-al); 
return 
(1-t)*(1-u)'z[i][j] + t*(1-u)*z[i+1][j] + 
tu*z[i+1] [j+1] + (1-t)*uz[i] [j+1] 

} 
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tail_ra(x ,func ,r, a) 
double x; 
float (*func)Q,r,*a; 
-(double z; 
mt i,rson,lson,tailno; 
lsontailtree[O] .lson; 
rsontailtree [0] . rson; 
while (lson>0) 
{if (x<tailtree[lson] .p) 

{ilson; lson=tailtree[i] .lson; 
else 
{i=rson; lsontailtree[i] .lson; 

rsontailtree[i] . rson; } 

rsontailtrée[i] .rson;} 
} 

if(i<NT) {printf(" Mistake in choosing tail: i%d\n",i); 
exit (1) 

} 

itailtree[i] .no; 
do 
-Cswitch(i) 

{ case 1: gl(r,a,&z,func); break; 
case 2: g2(r,a,&z,func); break; 
case 3: g3(r,a,&z,func); break; 
case 4: g4(r,a,&z,func); break; 
case 5: g5(r,a,&z,func); break; 
case 6: g6(r,a,&z,func); break; 
case 7: g7(r,a,&z,func); break; 
case 8: g8(r,a,&z,func); break; 
case 9: g9(r,a,&z,func); break; 
case 10: glO(r,a,&z,func); break; 

} 

)- 

 

while (z>f(*r,*a)); 
} 

double pisq20.04774648292756860073; 1* h/2/Pi *1 
float 	slownorm() ,randexpQ; 

double f(r,a) 
float a,r; 
-(static double 1im31.0,h0.3; 
double x,r2,aa,sum0.0; 
mt i=0; 
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aa= (double) a; 
5)*r*r; 

x(-lim); 
while (x<lim) 
{xi*h-lim; 
sum+ xlsinh(x) *exp(r2*x/tanh(x) )*cos(aa*x) 

} 

return pisq2*r*suin; 

/* 4<r<12 0<a<4 */ 
gl(r,a,z,func) float (*func)() ,*r,*a; double *z; 
{*a4.0*(*func)(1); 
do{ 

*r=4.0+8.0*(*func)(1); 
*z=0.00034*(*func)(1); 

} while(*z>fl(*r,*a)); 

double fl(r,a) float a,r; 
{return exp(-0.5*r*r) ;} 

/* 4<r<8 4<a<8 */ 
g2(r,a,z,func) float (*func)Q,*r,*a; double *z; 

do{ 
*r4.0+4.0*(*func) (1); 
*a=4 . 0+4 . 0* (*func) ( 1) 
*z=O . 00012*(*func)(1); 

} while(*z>f2(*r,*a)); 
} 

double f2(r,a) float a,r; 
{static double c1.5,lam1.5; 
double rr; 
rr=r*r; 
return c*exp  (-0 . 5*rr-lain*a*a/rr); 

} 

/* 2<r<4 4<a<8 */ 
g3(r,a,z,func) float (*func)Q,*r,*a; double *z; 
{static float laxn0.5*(M_PI); 
*r2 . 0+2 . 0* (*func) ( 1) 
do{*a4.0+randexp(laxn,func);} while(*a>8.0); 
*z=f3(*r,*a)*(*func)(1); 

} 

double f3(r,a) float a,r; 
{static float lam0.5*(M_PI); 
return exp(-lam*a); 

/* 0<r<0.5 4<a<6 */ 
g4(r,a,z,func) float (*func)O,*r,*a; double *z; 
{static float laxn=(M_PI); 
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float x,y; 
x=O.5*(func)(1); 
y=O.5*(*func)(1); 
*r(x>y?x:y); 
do{*a4.0+randexp(lam,func) ;} while(*a>6.0); 
*z=(*func)(1)*f4(r,*a); 

} 

double f4(r,a) float a,r; 
{static double lam=(M_PI),c=15.0; 
return c*r*exp(-lain*a); 

} 

/* 0.5<r<1 4<a<6 / 
g5(r,a,z,func) float (*func)O,*r,*a;  double *z; 
{static float 1am2.8; 
float x,y; 
x0 . 5+0 . 5* (func) ( 1) 
y0.5+0.5*(*func)(1); 
*r=(x>y?x:y); 
do{a=4.0+randexp(lam,func);} while('a>6.0); 
z=(*func)(1)*f5(*r,*a); 

} 

double f5(r,a) float a,r; 
{static double lain2.8,c15.0; 
return c*r*exp(-lama); 

} 

/* 1<r<1.5 4<a<6 */ 
g6(r,a,z,func) float (*func)Q,*r,*a; double *z; 
{static float 1am2.6; 
float x,y; 
x1. 0+0 . 5* (*func) ( 1) 
y=l .0+0. 5*(*func)(1); 
r=(x>y?x:y); 

do{*a=4.0+randexp(lam,func);} while(*a>6.0); 
*z(*func) (1)*f6(*r,*a); 

} 

double f6(r,a) float a,r; 
{static double lam2.6,c25.0; 
return c*r*exp(-lam*a); 

} 

/* 1.5<r<2 4<a<6 */ 
g7(r,a,z,func) float (*func)Q,*r,*a; double *z; 
-jatic float 1am2.4; 
float x,y; 
x1 .5+0. 5*(*func)(1); 
y=l .5+0. 5*(*func)(1); 
*r(x>y?x:y); 
do{*a4.0+randexp(lam,func) ;} while(*a>6.0); 
z(*func) (1)*f7(*r,*a); 

} 
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double f7(r,a) float a,r; 
{static double lam=2.4,c=25.0; 
return c*rexp(-lama); 

} 

/* 1<r<2 6<a<8 */ 
g8(r,a,z,func) float (*func)Q,*r,*a; double *z; 
{static float lam=2.4; 
float x,y; 
x= 1 .O+(*func)(1); 
yl .O+(*func) (1); 

do{a=6.0+randexp(1ain,func) ;} while(*a>8.0); 
*z(func)(1)*f8(*r,*a); 

} 

double f8(r,a) float a,r; 
{static double lam=2.4,c=40.0; 
return c*r*exp(-lam*a); 

} 

/ 2<r<5 8<a<10 */ 
g9(r,a,z,func) float (*func)O,*r,a; double *z; 
-Cstatic float 1am0.5(M_PI); 
*r=2.0+3. 0* (*func) ( 1) 
do{*a8.0+randexp(lam,func);} while(*a>10.0); 
*z=(*func)(1)*f9(*r,*a); 

} 

double f9(r,a) float a,r; 
{static double lam0.5*(M_PI),c0.7; 
return c*exp(-lam*a); 

} 

/* remainder */ 
glO(r,a,z,func) float (*func)Q,*r,*a; double *z; 
{static float lam(M_PI); 
do{*r=fabs(slownorm(0.0,10.0,func)); 

*a=randexp(0 . 1,func); 
}while( (*a<6&&*r<8) 	I I 

(*a<4&&*r<12) 	I I 
(*r>1&&*a<8&&*r<8) I I 
(*r>2&&*r<5&&*a<10) 	); 

*z=0.0; 
} 

double flO(r,a) float a,r; 
{static double laxn(M_PI),c1.0; 
return 0.0; 

} 
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A03 Mathematca: shuffle products and writing 

in terms of a Lyndon basis 

The routines included here form part of a larger package, that performs algebraic 

manipulations of iterated Stratonovich and Ito integrals. This subset is however 

complete, in that it could be used without the rest of the package. 

(* Calculates the shuffle product 
of Stratonovich multiple integrals 
and the modified shuffle product 
of Ito multiple integrals 

Format [S [x_]] : =Subscripted [S [x]] 
Format [Itolnt [x_]] =Subscripted [Itolnt [x]] 

Mult [x_+y_,z_] :Mult EX, z]+Mult [Y'  Z] 
Mult [x_ ,y_+z_] :Mult [x,y]+Mult [x,z] 
Mult [n_Integer*x_,y_] :Expand[n*Mult [x,y]] 
Mult [x_,n_Integer*y_] :=Expand[n*Mult [x,y]] 
Mult[n_Rational*x_,y_] :=Expand[n*Mult[x,y]] 
Mult[x_,n_Rational*yj :=Expand[n*Mult[x,y]] 

pushinStrat [list_ ,x_] Module[ 
{i,j,l,m,result{},yl,y2,y3,elt,head}, 
lLength[list] 
For[i=1 ,i<=l,i++, 
eltLast [Part [list, i]]; 
headDrop [Part [list,i] , - 1]; 
mLength [elt] +1; 
For[j1,j<m,j++, 
y3=head; 
y1=Take[elt,j-1] 
y2Take[elt,j-m]; 
AppendTo[yl,x]; 
AppendTo[y3,yl]; 
Appendlo[y3,y2]; 
AppendTo [result ,y3] 

result 
I 

shuffleStrat[listl_,list2_] :Module[ 
{ i ,1,answer,ans={}}, 
l=Length[listl]; 
answer{{list2}}; 
For[i1,i<l,i++,answerpushinStrat[answer,Part[listl,i]]]; 
1=Length[answer]; 
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For [i1,i<=1,i++,AppendTo[a.ns, Flatten [Part [answer,i]]]]; 
ans 

Mult[S[11_],S[12_]] :Module[ 
{list , I ,1,answer=O}, 
list=shuffleStrat [11,12]; 
lLength[list]; 
For[i=1,i<=1,i++,answer+=S[Part[list,i]]]; 
answer 

] 

Mult [Itolnt[11_] , Itolnt [12_]] Module[ 
{list , I ,1,answerO}, 
list=stretch[rshufflelto [11,12]]; 
1=Length[list]; 
For[i=1,i<=l,i++,answer+=Itolnt[Part[list,i]]]; 
answer 

] 

rshufflelto[11_,12_] :Module[ 
{answer , qi , q2 , a, b, i}, 
If [11=={},12, 

If [12=={} ,11, 
qlDrop [11, 1] 
q2Drop[12,1] 
a=First [11]; 
bFirst [12]; 
answer{MyPrepend [rshufflelto [qi ,12] , a], 
MyPrepend [rshufflelt o [11 , q2] , b] }; 

If [ab&&a ! =0, 
AppendTo[answer,MyPrepend[rshufflelto[ql ,q2] ,0]] 

answer 

] 

] 

MyPrepend [list-, x_] :=Module [  
{ans,1,i}, 
If[list=={}I IAtomQ [list [[1]]] 

ansPrepend [list , x] , 
lLength [list]; 
ans{}; 
For[i=1,i<=l,i++,AppendTo[ans,MyPrepend[list[[i]] ,x]]] 

an s 
] 

stretch [list_] : Module [ 
{1, I, j ,part , answer={} , count=0}, 
lLength [list]; 
For[i1,i<1,i++, 

partlist[[i]] 
If[AtomQ[part[[1]]] ,count++;AppendTo[answer,part], 

For [j1 ,j<Length[part] ,j++, 
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AppendTo [answer ,part [ [j]]] 
] 

]; 

If [count<l ,stretch [answer] ,answer] 
] 

(* Routines for rewriting linear combinations of iterated 
integrals using an algebraic basis 

Lyndon [list_I Module[ 
{i , 1, lyndon=True ,word}, 
word=StringJoin [Map [ToString, list, 1]]; 
l=StringLength[word]; 
For[i=l-1 ,i>O ,i - , 

If[OrderedQ [{StringDrop[word, i] ,word}]==True,lyndon=False] 
I; 

lyndon 

LyndonSet[set_,n_] :Block[ 
{ i ,list ,answer,word}, 
answer={}; 
list=pick[set,n]; 
For[i1 , i<=Length [list] ,i++, 

wordjoin [list [[i]]]; 
If [Lyndon [word] ==True, 

AppendTo [answer ,word] 

]; 

answer 
I 

pick [set_,n_] :Block[ 
{i,j,k,l,answer,list}, 
lLength [set]; 
answerTable[{set[[i]]},{i,1,l}] 
list{}; 
For [i=2 , i<n, i++, 

For[y1 ,j<Length[answer] ,j++, 
For[k1 ,k<1,k++, 

AppendTo[list, Append [answer [[j]], set [[k]]]] 

I; 
answer=list; 
list{} 

]; 

answer 
] 

LyndonBasis[set_ ,nJ :Block[ 
{ i , an, 
answer{}; 
For[i=1,i<n,i++,answer=Join[answer,LyndonSet[set,j]]]; 
answer 
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LyndonFactor [list_i :=Module [  
(* Breaks a word w into wuv, 

where v is the longest right Lyndon factor of w. 
Returns {u,v}. 

{word, srf}, 
word=StringJoin [Map [ToString, list, 1]]; 
srf=First [Sort [Table [StringTake [word, i], 

{i, 1 StringLength [word] - 1}]]]; 
srf=Map[ToExpression,Characters[srf] , 1]; 
{Drop ,-Length [srf]] , srf} 

LyndonProduct [list_] :=Module [  
{wordl , answer}, 
wordl=list; 
answer={list}; 
While [Lyndon [wordi] ==False, 

answer=Join[LyndonFactor[wordl] ,Drop [answer, 1]]; 
wordlFirst [answer] 

]; 
answer 

] 

Rewrite [S [J_]] :Module[ 
{list , i ,n=1 ,c=1 ,p,pre,word,w,r}, 
If [Lyndon [J] True ,Return [S [J]]]; 
listLyndonProduct [J]; 
prelist[[1]] 
p=S[pre]; 
For [i=2 , i<Length[list] , 

wlist[[i]] 
If[wpre,n++,c=cln! ;n=1;pre=w]; 
pExpand [Mult [S [w] ,p]] 

]; 

p*=c; 
r=p-S [.3]; 
Expand[c*Product[S[list[[i]]] ,{i, 1,Length[list]}] -r] 

] 

Rewrite [Itolnt [J_]] Module [ 
{list,i,n1,c=1,p,pre,word,w,r}, 
If [Lyndon [3] ==True , Return[Itolnt [3]]]; 
list =LyndonProduct [3]; 
pre.-iist[[1]]; 
pltolnt[pre]; 
For [i=2, i<Length [list] , 

wlist[[i]] 
If[wpre,n++,c=c/n! ;n=1;pre=w]; 
p=Expand [Mult [Ito mt [w] ,p]] 

]; 
cc/n!; 
p*c; 
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r=p- Itolnt[J]; 
Expand [c*Product [Itolnt [list [[i]]] , {i, 1 , 	[list] }] -r] 

rwl [x_] : Rewrite [S [x]] 
rw2 [x_] : =Rewrite [Ito mt [x]] 

Writ eUsingStratBasis [x_] :=Expand [x// . S->rwl] 
WriteUsingltoBasis[x_] : =Expand [x//. Itolnt->rw2] 

A04 Cacuafion of the partition with minimum 

entropy of a staircase 

This is a recursive routine that needs to be called by another piece of code, that 

first sets up the necessary data structures. We have not included the calling 

program here. We have written a similar routine for triangular partitions. 

float opt iinal_p(root,nl,l) point root; mt nl,l; 
{int n2,i,j,jmin,11,12; 
float a,e,min; 
point rootl,root2; 

n2n1+l-1; 

1* Look up answer in table E, if already calculated *1 
if(E[l] [nil .i>0) return E[l] [nil .e; 
else 1* calculate minimum entropy *1 
{ 

if(l==1) 1* only one rectangle no minimisation necessary *1 
{a=(S[nl].x-root.x)*(S[nl] .y-root.y); 
e=-a*log(a); 
E[l] [nil .inl; E[l] [nil .e=e; 
return (e); 

} 

else 1* at least 2 rectangles */ 

/* loop over number of steps *1 
min1000 .0; 
for(i0;i<l;i++) 
{jnl+i; 
/* remove rectangle (S[j],root) leaving 1 or 2 sub-regions *1 
1* area of rectangle removed */ 
a(S[j] .x-root.x)*(S[j] .y-root.y); 
e-a*log(a); 
rootl.xroot.x; root2.yroot.y; 
root2.xS[j] .x; rootl.y=S[j] .y; 
11=j-nl; 12n2-j; 
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if(11>0) e+optimal_p(rootl,nl,ll); 
if(12>0) e+=optimal_p(root2,j+1,l2); 
if(e<min) {min=e; jminj;} 

} 

/* store new info */ 
E[l] [nh .i=jmin; E[l] [ni] .e=min; 
return (mm); 

} 

} 

} 
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A05 Generation of unvarate random deviates 

from a genera' density 

We give below a general routine for generating random deviates from any density, 

where the second derivative is zero at precisely one point, or from any symmetric 

density with two such points. It is clear how to modify the routine to handle fewer 

or more inflexion points. We also include the calling program, in order to show 

precisely what information about each density is needed and how this is passed to 

the subroutine which performs the generation. 

#include <stdio . h> 
*include <math.h> 
*include <string .h> 
*include <malloc . h> 

1* Version with optimal DDG-tree for choosing triangles. *1 

1* User supplied main program and subroutines defining density *1 

mamn(argc, argv) 
mt 	argc; 
char 	**argv; 

{int i,N,seed-3; 
double x,x2 ,mean0 .0 ,var=0 .0 ,m30 .0 ,m40 .0 ,xinfc ,xinfn; 
float y,ran3O; 
double trigenO; 
double fnQ,dfnO,fcO,dfcO; 
FILE *out; 

if(argc>1) outfopenw(argv[h]); 

get int(&N, "N"); 
ran3(seed); 
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1* inflection point for 0,1 cauchy distribution *1 
xinfc=0 .5773502691896259; 
/ inflection point for normal distribution *1 
xinfn=1 .0; 

for(i1; i<N; i++) 
{ 

xtrigen(fc,dfc,xinfc,i); 
fprintf (out, "Y,,17. 15f\n", x); 

} 

trigen(fc,dfc,xinfc,-1); 
} 

define C 0.3989422804014327 

double fc(x) double x; 
/ Cauchy density '/ 
{ return ((M_1_PI)/(x*x+1.0)); } 

1* 1/sqrt(2*Pi) */ 

double dfc(x) double x; 
/' Derivative of Cauchy density *1 
{ double d; 

dx*x+1 .0; 
return ((M_1_PI)*(-2.0*x)/(d*d)); 

} 

double fn(x) double x; 
1* Normal density *1 
{ return C*exp(-0.5*x*x); } 

double dfn(x) double x; 
/' Derivative of normal density *1 
{ return -C*x*exp(-0.5*x*x); } 

1* General purpose part *1 

#define FAC32 4.294967296e9 	/* 232 */ 
#define MAXB 32 	 /* Max. no. of bits */ 

struct pointnode{double x,y; mt next;} 
typedef struct pointnode pnode; 
typedef struct {double xl,x2,x3;1 triangle; 

struct tnode{int n; struct tnode *left,*right;} 
typedef struct tnode node; 
mt nodesize; 
nie *root; 
mt marker[MAXB] ,zmarker[MAXB]; 

double ran_triO ,tri_areaO ,gO; 
mt 	ran-bit O,pO; 
unsigned long *5; 
pnode *v; 
pnode ql,q2; 
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triangle *t; 
mt 	runax,pnodesize,trisize,next; 
double pn; 

double trigen(f,df,xmnf,init) double (*f)Q,(*df)Q,xinf; mt mit ;  
{ 

1* Routine to generate random deviates with density f *1 
1* df is the derivative of the density *1 
1* xinf is the (only) point where the second derivative is 0 *1 

static mt first=1; 
float ran30; 
double x,y,sum,ent; 
static double xc; 
mt n,i,lb,undecided,bit; 
node 

if(init<0 II firstl) 
{printf("Initialising trigen\n"); 
if (nmax>0) 
{prmntf("Freeing allocated memory\n"); 
freetree (root); 
f ree ( (char*) t) ; 
free((char *)s); 
free((char)v); 
return (0.0); 

} 

/* initialisation of constants 
first0; 
pnodesize=sizeof(pnode); 
trisize=sizeof (triangle); 
nodesize=sizeof (node); 
for(i1; i<MAXB; j++) 
{marker[i]=i; zmarker [i] =0; } 
1* base length of right angled 
xc-(*f)(xinf)/(*df) (xinf); 

*1 

triangle under concave part *1 

1* Initialisation of convex part *1 
root=(node *)malloc(nodesize); 
root->n=-1; 
root->left=root->right=NULL; 

1* Initialisation of arrays *1 
s=(unsigned long *)malloc((unsigned)4*sizeof(unsigned long)); 
t=(triangle *)malloc(4*trisize); 
x=2 . 0*xinf*(*f) (xinf); 
pn=x; 
1* p of being in rectangle {{0,0}{xinf,f(xinf)}} */ 
s[1]FAC32*x; 
xxinf*((*f)(0.0)-(*f)(xmnf)); 
pn+x; 
s[2]FAC32*x; 1* p  of being in triangle 

{{0 ,f(xinf)},{xinf,f(xinf)} ,{0 ,f(0)}} */ 
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.xl=O.O; t[2] .x20.O; t[2] .x3=xinf; 
x=xc(cf) (xinf); 
pn+=x; printf("p1+p2+p3=°he\n,pn); 
s[3]FAC32'x; 1* p  of being in triangle 

{{xinf,O)},{xinf,f(xinf)},{xinf+xc,O}} *1 
.xl=xinf; t[3] .x2=xinf; t[3] .x3=xinf+xc; 

s[0]=FAC32*(1.0-pn); 
v=(pnode*)malloc(2*pnodesize); 
v[0].x0.0; v[O].y=(*f)(O.0); 
v[O] .nextl; 
v[1] .xxinf; vEil .y=(*f)(xinf); 
vEil .next=(-1); 
qlvEO]; 
nmax=3; 

} 

undecidedl; 
1b0; 
q=root; 
while (undecided) 
{lb++; 
bit=ran...bit(i); 
if(q->leftNULL) extend_tree(q,lb); 
if (bitO) q=q->left; 
else 	qq->right; 
while(q->n==O) ref ine_tree(f,df,xinf); 
if(q->n>O) {nq->n; undecidedO;} 

} 

if(n1) x=xinf*ran3(1); 1* random point in rectangle *1 
else xran_tri(tEn] .xi,t[n] .x2,t[n] .x3); 
if (ran-bit(l)==l) x=-x; 
return x; 

} 

static mt jjO; 

mt p(n,b) mt n,b; 
-C /* returns bit b of p(n) *1 
if(n>nmax){printf("Error in p: n>nmax\n"); exit(i) ;} 
if(b>MAXB) {printf(b%d>MAXB\n" ,b); exit(1) ;} 
return (s[n]>>(32 -b))&1; 

} 

make_tril (f) double (*f)O; 
1* Adds a triangle i: a convex region *1 
{double x,y,ta; 
qlv[jj]; 
q2=v [qi . next]; 
x0.5*(ql.x+q2.x); 
y(*f) (x); 
ta=tri_area(ql .x,qi y,x,y,q2.x,q2.y); 
nmax++; 
if((v(pnode*)realloc(v, (unsigned) (nxnax-1)*pnodesize))==NULL) 
{printf(" Out of memory 1.\n"); exit(1);} 

v[nmax-2] .xx; vEnmax-2] .yy; vEnmax-2] .nextql.next; 
v[jj] .nextmnax-2; 
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if((s=(unsigned long *)realloc(s, 
(unsigned) (nmax+1) *sizeof (unsigned long)))NULL) 

{printf(" Out of memory 3.\n"); exit(1);} 
pn+ta; 
[01=FAC32*(1. 0-pn) 

s [nmax] FAC32*ta; 
if((t(triangle *)realloc(t,(unsigned)(nmax+1)*trisize))NULL) 
{printf(" Out of memory 4.\n"); exit(1);} 
t[nmax] .xlql.x; 
t[nmax] .x2x; 
tEnmax] .x3q2.x; 

jjql .next; 
} 

malce_tri2(f,df) double (*f)() , (*df) 0; 
1* Adds a triangle in concave region *1 
{extern pnode *v; 
double x,y,xl,yl,xu,yu,xl,yl,x2,y2,x3,y3; 
double dfx,dfxl ,dfxu,ta; 
ql=v[jj]; 
xl=ql .x; yl=(*f)(xl); dfxl(*df) (xl); 
if(ql.next<O) 1* will add tail triangle *1 
x=xl+O 5*xl; 
else 
{q2v[ql.next]; 
xu=q2 .x; yu=(*f) (xu); dfxu=(*df) (xu); 
x0 5*  (xl+xu); 

} 

y(*f)(x); 
dfx(*df)(x); 
xl=(dfxl*xl-dfx*x+y-yl)/(dfxl-dfx); 
yldfx*(xl-x)+y; 
if (ql.next>O) 
{x2 (dfxu*xu-dfx*x+y-yu) / (dfxu-dfx); 
y2dfx* (x2-x)+y; 
x3= (dfxu*xu-dfxl*xl+yl-yu) / (dfxu-dfxl); 
y3dfxl*(x3-xl)+yl; 

} 

else 1* ql.next(-1): new tail triangle *1 
{x2=x-y/dfx; 
y2O.O; 
x3xl-yl/dfxl; 
y3=O.O; 

} 

ta=tri_area(xl,yl,x2,y2,x3,y3); 
nmax++; 
if((v(pnode*)realloc(v,(unsigned)(nmax-1)*pnodesize))NULL) 
{printf(" Out of memory 1.\n); exit(1);} 

v[nmax-2] .xx; v[nmax-2] .yy; v[nmax-2] .nextql .next; 
v[jj] .nextmnax-2; 
if((s(unsigned long *)realloc(s, 

(unsigned) (nmax+1)*sizeof (unsigned long)))NULL) 
{printf(" Out of memory 3.\n"); exit(1);} 
pn+ta; 
s[O]FAC32*(1.O-pn); 
s [nmax] FAC32*ta; 
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if((t=(triangle *)realloc(t,(unsigned)(nmax+1)*trisize))==NULL) 
{printf(" Out of memory 4.\n); exit(1);} 
t[nmax] .xl=xl; 
t[nmax] .x2x3; 
t[nmax] .x3=x2; 
if(ql.next==(-1)) jjO; 
else 	 jj=ql.next; 

} 

double tri.area(xl,yl,x2,y2,x3,y3) double xl,x2,x3,yl,y2,y3; 
{/' returns twice area of triangle : for even distributions */ 
return fabs(x2*y1-x1*y2+x3*y2-x2y3-x3*y1+x1*y3); 

} 

double ran_tri(xl,x2,x3) double xl,x2,x3; 
'(double u,v,temp; 
float ran3Q; 
uran3(1); 
v=ran3(1); 
if(u>v) {tempv; vu; utemp;} 
return ux1+ (v-u) *x2+ (1 . O-v) *x3; 

} 

mt ran_bit(i) mt I; 
{ static mt count7,initO; 

static unsigned long v; 
float 	ran3O; 
mt bit; 

if(count7) 
{vran3 (1) *FAC32; 
count3l; 

} 

bit=(v>>count)&1; 
count--; 
return bit; 

} 

double g(x) double x; 
'(return (-x*log(x)) ;} 

extend_tree(q,l) node *q; mt 1; 
1* gives interior node q on level 1 two children *1 
'(node *ql,*q2; 
mt i; 
q->left=q1(node *)malloc(nodesize); 
q->rightq2(node *)malloc(nodesize); 
1->left=q1->right=q2->leftq2->right=NULL; 

imarker[1]; 
while(i<nmax && p(i,l)==O) i++; 
if(i<=nmax) {ql->ni; marker[l]=i+1;} 
else 
if (zmarker Ell O && p(O,1)==1) 
{ql->n0; zmarker [11=1; } 

else 	ql->n-1; 
} 
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imarker[1]; 
while(i<=nmax && p(i,1)0) i++; 
if(i<nmax) {q2->n=i; marker[l]=i+1;} 
else 
-[if (zmarker[1]==O Sc& p(O,i)i) 

{q2->n=0; zmarker[l] =1; } 
else 	q2->n=-1; 

} 

} 

refine_tree(f,df,xinf) double (*f)Q,(*df)Q,xinf; 
{ 

if(v[jj] .x<xinf) make_tril(f); 
else 	 make...tri2(f,df); 
ref ine(root,0); 

} 

refine (q,l) node *q; mt 1; 
1* Updates all 0 nodes on level 1 and higher 

to take into account the inclusion of p(nmax). 
*1 
{ 

mt i; 
if(q->n0) 1* refine *1 
{zmarker [1] =0; 
i=marker[1]; 
while(i<nmax && p(i,l)==0) i++; 
if (i<ninax) {q->ni; marker [1] i+1 ; } 
else 
{if(p(0,1)==1) zmarker[1]1; 
else q->n-1; 1* change to interior node *1 

} 

} 

else 
{if (q->left !=NULL) ref ine(q->left,l+1); 
if (q->right =NULL) ref ine(q->right ,l+1); 

} 

} 

freetree(p) 
node *p; 
-[node *q; 
if (p! NULL) 

{freetree(p->left); 
qp->right; 
free((char *)p); 
freetree(q); 

} 
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