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Abstract

Proof-of-work (PoW) based blockchain protocols, are protocols that organize data into

blocks, connected through the use of a hash function to form chains, and which make

use of PoW to reach agreement, i.e., proofs that require spending some amount of com-

putational power to be generated. This type of protocols rose into prominence with the

advent of Bitcoin, the first protocol that provably implements a distributed transac-

tion ledger against an adversary that controls less than half of the total computational

power in the network, in a setting where protocol participants join and leave dynam-

ically without the need for a registration service. Protocols in this class were also

the first to be shown sufficient to solve consensus under similar conditions, a problem

of fundamental importance in distributed computing. In this thesis, we explore foun-

dational issues of PoW-based blockchain protocols that mainly have to do with the

assumptions required to ensure their safe operation.

We start by examining whether a common random string that is shared at the start

of the protocol execution among the protocol participants is required to efficiently run

such protocols. Bitcoin’s security is based on the existence of such a string, called the

genesis block. On the other hand, protocols found in previous works that do not assume

such a setup are inefficient, in the sense that their round complexity strongly depends

on the number of protocol participants. Our first contribution is the construction of

efficient PoW-based blockchain protocols that provably implement a distributed ledger

and consensus without such setup.

Next, we turn our attention to the PoW primitive. All previous analyses model

PoW using a random oracle. While satisfactory as a sanity check, the random oracle

methodology has received significant criticism and shown not to be sound. We make

progress by introducing a non-idealized security model and appropriate computational

assumptions that are sufficient to implement a distributed ledger or consensus when

combined with the right PoW-based protocol.

Finally, we analyze GHOST, a recently proposed blockchain protocol, and prove its

security against a byzantine adversary under similar assumptions as Bitcoin. Previous

works only considered specific attacks.
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Chapter 1

Introduction

1.1 Motivation

Agreement among a number of geographically separated and distrustful entities is a

fundamental problem of human societies that goes back to the first methods devised

for voting. With the rise of computer networks, especially the Internet, the problem

has been reconsidered in a setting where communication is performed over an un-

trusted medium and parties use keys issued by a certification authority to establish the

authenticity of their messages. An important application of this paradigm is secure

electronic payments and in general e-commerce. However, the need for powerful cen-

tralized entities, such as the certification authority, has made this paradigm prone to

abuse as seen for example in the case of Wikileaks [LE10].

An alternative proposal was recently put forth with the release of the Bitcoin proto-

col. Bitcoin implements a distributed payment system, which in contrast to most pre-

viously known such systems, does not need a central authority to operate. Instead, it

relies on a distributed protocol to establish an ever-growing common history of transac-

tions. Most interestingly, it is the first such system that can operate in a permissionless

setting, where parties can join or leave dynamically without the need of a registra-

tion service.1 To do so, it neatly combines many older technologies in a entirely new

paradigm, including: digital signatures [DH76], Merkle trees [Mer87], proof-of-work

(PoW) [DN93], and hash chains [Dam89, Mer89].

The main idea behind the protocol is that transactions are organized in blocks, that

are connected though the use of a hash function to form chains, which parties stochas-

1In comparison, older protocols assumed that protocol participants were registered, e.g., through a
PKI. Note, that this is also the case for Proof-of-Stake based protocols [KRDO17, CM19].

1



Chapter 1. Introduction 2

tically try to extend by computing a PoW, i.e., a proof that they spent some amount of

computational power in a specific time interval. At any point, the history of accepted

transactions is decided by the blockchain that contains the most work. While there

may be some disagreement about which blockchain is that, due to network delay and

adversarial manipulation, it has been argued that if the majority of the computational

power is controlled by honest participants everyone will eventually agree on the same

history.

These arguments were formalized in a series of papers [GKL15, PSS17, GKL17,

ES14, ML14, BGM+18, BMTZ17], starting from the publication of the Bitcoin whitepa-

per [Nak09] in 2008. In addition, there has been significant work on many more PoW-

based blockchain protocols [AD15, SZ15, BKT+19, BCG+14, EGSvR15], i.e., pro-

tocols that organize data into hash chains and make use of PoW to reach agreement.

In particular, in [GKL15] a protocol in this class was the first to be shown sufficient

to solve consensus, a well-studied problem of central importance in the theory of dis-

tributed computing [PSL80, LSP82, DLS88, FLP85, Bor96], in the permissionless set-

ting.

In spite of all this progress, our understanding of the assumptions that this class

of protocols relies on to operate securely remains incomplete, including the following

issues:

• They either rely on the existence of a public trusted setup that becomes avail-

able to all parties at the start of the protocol execution, as Bitcoin, or are inef-

ficient [AD15], in the sense that the round complexity of the protocol strongly

depends on the number of protocol participants.

• They are analyzed in idealized computational models, thus obscuring the re-

quired computational assumptions regarding the underlying PoW primitive.

• Finally, while there have been proposals for different blockchain protocols, e.g., [SZ15],

it is unclear whether they offer any real advantage compared to Bitcoin, or if they

open up the space for new attacks.

In this thesis, we attempt to shed some light to these shortcomings, by analyzing exist-

ing protocols and proposing alternatives.
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1.2 Overview and Contributions

Next, we give an overview of each of the issues mentioned above and our respective

contributions. To aid understanding, we first give a summary of the results in [GKL15],

the first formal analysis of Bitcoin against a byzantine adversary, which serves as the

basis from which we develop our results.

Summary of [GKL15]. The core of the Bitcoin protocol, called the Bitcoin backbone,

is extracted and analyzed in a synchronous, permissionless and Byzantine setting,

where message delivery is provided by a “diffusion” mechanism that is guaranteed to

deliver all messages, without however preserving their order and allowing the adver-

sary to arbitrarily inject its own messages. The number of parties is assumed to be fixed

but unknown, and to take advantage of PoWs parties are assumed to have bounded ac-

cess to a hash function modeled in the Random Oracle Model (ROM) [BR93].

The analysis includes the formulation of fundamental properties of the underly-

ing blockchain data structure, which parties maintain and try to extend by generating

PoWs, called common prefix and chain quality. It is then shown how applications such

as consensus (aka Byzantine agreement) [PSL80, LSP82] and a robust public transac-

tion ledger, i.e., one that satisfies persistence of transactions entered in the ledger and

transaction liveness, can be built “on top” of such properties. All results are proven un-

der the assumption that: (i) the adversary controls strictly less than half of the hashing

power, (ii) the block generation rate is suitably bounded, and (iii) all parties—honest

and adversarial—“wake up” and start computing at the same time, or equivalently,

there exists a common random string, called the genesis block in the context of Bit-

coin, which is only made available at the exact time when the protocol execution is to

begin.

1.2.1 Trusted Setup

Bitcoin assumes the existence of “fresh” public trusted setup, in order to cope with

adversaries trying to precompute blocks long before the start of the protocol, and break

its security. While satisfactory in some cases, such a trusted setup might be unrealistic

in other PoW-based systems where details may have been released a lot earlier than the

actual time when the system starts to run. That’s from a practical point of view. At a

foundational level, one would in addition like to understand what kind of cryptographic

primitives can be realized without any trusted setup assumption and based on PoWs,

and whether that is in particular the case for the Bitcoin functionality and its enabling
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properties mentioned above.

The former question was previously considered by Andrychowicz and Dziem-

bowski [AD15], who, building on previous suggestions by Aspnes et al. [AJK05] of

using PoWs as an identity-assignment tool and constructions by Fitzi et al. [Fit03,

CFF+05] showing how to morph “graded” consistency into global consistency, showed

how to create a consistent PKI using PoWs and no other trusted setup (in the ROM),

which can then be used to run secure computation protocols (e.g., [Yao82, GMW87])

and realize any cryptographic functionality assuming that the majority of the compu-

tational power is controlled by honest parties.

While this in principle addresses the foundational concerns, it leaves open the ques-

tions of doing it in a scalable way—i.e., with round complexity independent of the

number of parties.

Contribution. In Chapter 3 we answer the question stated above in the affirmative.

First, we present a Bitcoin-like protocol that neither assumes a simultaneous start nor

the existence of an unpredictable genesis block, and has round complexity independent

of the number of participants, despite the adversary being allowed (polynomial in the

security parameter) precomputation time.

Second, we present applications of our bootstrapped construction, starting with its

original one: a distributed ledger, despite the potentially disruptive behavior of par-

ties harnessing less than 1/2 of the hashing power. Next, we consider the problem of

setting up a PKI in our unauthenticated network setting from scratch. As mentioned

above, the idea of using PoWs as an identity-assignment tool was put forth by Aspnes

et al. [AJK05]. Here we build on this idea as well as on the “2-for-1 PoWs” technique

from [GKL15] to use our bootstrapped protocol to assign identities to parties. The as-

signment relation will possibly assign more than one identity to the same party, while

guaranteeing that the majority of them is assigned to honest parties. Such an identity

infrastructure/“pseudonymous PKI” has numerous applications, including the boot-

strapping of a proof-of-stake protocol [KRDO17, KN12], and the election of honest-

majority “subcommittees,” which would enable the application of traditional Byzan-

tine fault-tolerant techniques for ledger creation and maintenance (cf. [ACC+17]) to

permissionless (as opposed to permissioned) networks.

Finally, applying the 2-for-1 PoWs technique we solve the consensus (aka Byzan-

tine agreement) problem [PSL80, LSP82] probabilistically and from scratch, even if

the adversary has almost the same hashing power as the honest parties2, and with round
2Thus marking a contrast with the 2

3 lower bound for consensus on the number of honest parties in
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complexity independent of the number of parties. Indeed, all our protocols have round

complexity linear in the security parameter, and enjoy simultaneous termination.

Subsequent Work: In an unpublished manuscript [EFL17], Eckey et al., show how

to achieve broadcast and consensus without trusted setup in the ROM and in a quasi-

constant expected number of communication rounds, assuming honest parties con-

trol the majority of the computational power and the non-parallelizability of repeated

squaring, thus improving on the round complexity of our protocol.

1.2.2 Proof-of-Work

Blockchain protocols are seen as a prominent application of the “proof of work” (PoW)

concept to the area of consensus protocol design. In more detail, a PoW scheme is typ-

ified by a “proving” and a “verification” algorithm, whose fundamental property is that

the proving algorithm allows for no significant shortcuts, i.e., it is hard to significantly

make it more expedient, and hence any verified solution implies an investment of com-

putational effort on behalf of the prover. The concept was introduced in the work of

Dwork and Naor [DN93] initially as a spam protection mechanism. Subsequently,

it found applications in other domains such as Sybil attack resilience [Dou02a] and

denial of service protection [JB99, Bac02], prior to its application to the domain of

distributed consensus hinted at early on by Aspnes et al. [AJK05].

Despite the evolution of our understanding of the PoW primitive, as exemplified

in [AT17, BRSV18, BGJ+16], there has been no definitive analysis of the primitive in

the context of blockchain protocol security. Intuitively, PoWs are useful for agreement

because they make message passing (moderately) hard and hence generate stochastic

opportunities for the parties running the protocol to unify their view of the current state

of the system. This fundamentally relies on an assumption about the aggregate com-

putational power of the honest parties, but not on their actual number, in relation to the

computational power of the parties that may deviate from the protocol (“Byzantine”)—

a hallmark of the permissionless setting where Bitcoin is designed for. Despite the

fact that the Bitcoin blockchain has been analyzed formally [GKL15, PSS17, GKL17,

BMTZ17], the required PoW properties have not been identified and the analysis has

been carried out in the Random Oracle Model [BR93]. The same is true for a wide

variety of other protocols in the space, including [AD15, KMS14, GKLP18].

We stress that although the RO model has been extensively used in the security

the traditional network setting with no setup [Bor96].
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analysis of practical protocols and primitives, it has also received significant criti-

cism [CGH04, Nie02, GK03, FS86], with the RO methodology shown not to be sound.

Therefore, it is critical to discover security arguments for PoW-based blockchain pro-

tocols that do not rely on the RO model.

Contribution. In Chapters 4 and 5 we make considerable progress in understand-

ing and formalizing the security of PoW schemes that are suitable for blockchain and

consensus protocols.

First, in Chapter 4, we note that all attempts to formalize a building block that is

sufficient for designing consensus protocols in this setting, rely on a very strong inde-

pendence assumption about adversarial accesses to the underlying computational re-

source. We relax this assumption by putting forth a primitive, which we call signatures

of work (SoW). Distinctive features of our new notion are moderate unforgeability—

producing a sequence of SoWs, for chosen messages, does not provide an advantage to

an adversary in terms of running time; and honest signing time independence—most

relevant in concurrent multi-party applications, as we show.

Then, we present a new security model, that is based on that of [GKL15], and al-

lows for a security analysis that does not rely on idealized assumptions, such as the

RO. Armed with SoW and the new security model, we present a new permission-

less consensus protocol which is secure assuming an honest majority of computational

power, thus improving on the known provably secure consensus protocols in this set-

ting, which rely on the strong independence property mentioned above in a fundamen-

tal way.

Next, in Chapter 5, we identify a new class of search problems, iterated search

problems (ISP), which are closely related to the design of secure blockchain protocols.

We prove that (i) the Bitcoin blockchain protocol implies a hard ISP problem, but ISP

hardness is not by itself sufficient to prove its security, and (ii) a suitably enhanced class

of ISPs is sufficient to imply, via construction, a blockchain protocol secure against an

adversary that controls up to 1/3 of the computational power in the common reference

string (CRS) model; for the latter we also assume the existence of a non-interactive

zero-knowledge (NIZK) proof system and a collision resistant hash family.

We then put forth a specific proposal for an enhanced ISP based on a cryptographic

hash function, whose hardness is closely related to that of Bitcoin’s hash-based ISP

construction for which no attacks have been discovered. As a corollary, we obtain

a blockchain protocol whose security reduces to the existence of a NIZK proof sys-

tem and simple properties of a hash function: collision resistance, the ISP hardness
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of the hash-based scheme and a weak computational randomness extraction property

of the hash function. Finally, we note that all hash properties are efficiently falsifi-

able [Nao03, GW11], i.e., they can be expressed as a game between an adversary and

a challenger, where the challenger can efficiently determine (and output) when the

adversary wins the game.

1.2.3 Alternative Blockchain Protocols

A fundamental open problem in the area of blockchain protocols is whether the Bitcoin

protocol is the optimal solution for building a secure transaction ledger. There are

many reasons to believe that this is not the case, e.g., the selfish mining attack against

fairness in [ES14], the attack against common prefix and chain quality for increased

block generation rates in [PSS17].

A recently proposed and widely considered alternative is the GHOST protocol [SZ15]

which, notably, was proposed to be at the core of Ethereum as well as other recent pro-

posals for improved Bitcoin-like systems. While the GHOST variant is touted as offering

superior performance compared to Bitcoin without a security loss, previous analyses

only consider security against specific attacks.

Contribution. In Chapter 6, we study the security of the GHOST protocol against

a byzantine adversary. We introduce a new formal framework for the analysis of

blockchain protocols that relies on trees (rather than chains) and we showcase the

power of the framework by providing a unified description of the GHOST and Bitcoin

protocols, the former of which we extract and formally describe. We then prove that

GHOST implements a “robust transaction ledger” under the same assumptions as Bit-

coin, and hence it is a provably secure alternative to it; moreover, our bound for the

liveness parameter is superior to that proven for the Bitcoin backbone in line with the

original expectation for GHOST. Our proof follows a novel methodology for establish-

ing that GHOST is a robust transaction ledger compared to previous works, which may

be of independent interest and can be applicable to other blockchain variants.

Subsequent work. In [KRs18], it is shown that GHOST satisfies consistency, a property

similar to common prefix, in a model where the adversary can delay messages for up

to ∆ rounds. On the negative side, an attack is presented that breaks consistency in the

short-term, for high block generation rates. As no asymptotic bounds are derived, it

remains unclear if the effects of the attack persist in the long-term. More generally,

designing high performance PoW-based blockchain protocols is an actively explored
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research direction, we point to [PS18, BKT+19] for some recent developments.

1.3 Roadmap

The thesis is organized as follows: First, in Chapter 2, we present the basic notation,

security model, and security definitions that are going to be used throughout the text. In

Chapters 3,4,5 and 6 we present our results. Each of these chapters contains a detailed

introduction of the specific problem addressed there as well as related work, limita-

tions and future directions. In more detail, in Chapter 3, a protocol that implements

an efficient ledger without trusted setup is presented and analyzed in the ROM. The

Signature-of-Work primitive and a non-idealized security model is presented in Chap-

ter 4, together with a protocol that implements consensus in this model. In Chapter 5,

the notion of a hard Iterated Search Problem (ISP) is introduced and is shown to be

necessary, but not sufficient, to prove that the Bitcoin protocol implements a transac-

tion ledger. A sufficient enhanced ISP security notion is also introduced in the same

chapter as well as a candidate instantiation based on Bitcoin’s underlying hash-based

PoW construction. Next, in Chapter 6, the GHOST protocol is analyzed against a byzan-

tine adversary in the ROM, and is shown to be secure under the same assumptions as

Bitcoin. Concluding, in Chapter 7 we present how some of the main ideas of this thesis

were developed. Finally, in Appendix A we present a number of mathematical facts

that are going to be used in the thesis, while in Appendix B we present the security

definitions of known cryptographic primitives that we are going to use.



Chapter 2

Preliminaries

2.1 Notation

We introduce basic notation and definitions that are used in the rest of this thesis. For

k ∈ N+, [k] denotes the set {1, . . . ,k}. For strings x,z, x||z is the concatenation of x

and z, and |x| denotes the length of x. We denote sequences by (ai)i∈I , where I is

the index set which will always be countable. For a set X , x← X denotes sampling a

uniform element from X . For a distribution U over a set X , x←U denotes sampling an

element of X according to U. By Um we denote the uniform distribution over {0,1}m.

We denote the statistical distance between two random variables X ,Z with range U by

∆[X ,Y ], i.e., ∆[X ,Z] = 1
2 ∑v∈U |Pr[X = v]−Pr[Z = v]|. For ε > 0, we say that X ,Y are

ε-close when ∆(X ,Y ) ≤ ε. We denote by H∞(X) = log(max{Pr[X = s]|s ∈U}−1) the

min-entropy of X .

We call a function ν : N→ R negligible, if for every c ∈ N, there exists a κ0, such

that for all κ > κ0: ν(κ) < 1/κc. We will sometimes denote that some function f

is negligible by f (κ) < negl(κ). It holds that for every negligible function ν(·), the

function ν(·) ◦ poly(·) is negligible; we use poly(·) for some fixed, but unspecified

polynomial.

A Probabilistic Polynomial Time (PPT) algorithm, is one that always halts after a

polynomial, in the length of the input, number of steps independently of its internal

coin tosses. By y← M(x), we denote the execution of randomized algorithm M on

input x, with output y. M(x;r) denotes the execution of M on input x with randomness

r. A non-uniform algorithm is a pair (M,(ai)i∈N), where M is an algorithm in some

computational model and (ai)i is an infinite sequence of strings where |ai| = poly(i).

For every x, the computation of M is on input (x,a|x|).

9
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An ensemble (Xi)i∈I , is a sequence of random variables indexed by I. Two en-

sembles X = (Xκ)κ∈N,Y = (Yκ)κ∈N are statistically indistinguishable if the function

µ(κ)
de f
= ∆[Xκ,Yκ] is negligible. X ,Y are computationally indistinguishable, if for every

non-uniform PPT algorithm 1 D, there exists a negligible function ν(·), such that for

all κ ∈ N:

|Pr[D(1κ,Xκ) = 1]−Pr[D(1κ,Yκ) = 1]|< ν(κ)

We use X ≈ Y and X
c≈ Y to denote statistical and computational indistinguishability,

respectively. We point to [Gol06] for more details about the notions of computational

indistinguishability, PPT and non-uniform algorithms.

A blockchain, or simply a chain is a sequence of blocks, where a block is a specif-

ically formated string that is going to be defined differently for the different protocols

presented. The rightmost block is the head of the chain, denoted head(C ). Note that

the empty string ε is also a chain; by convention we set head(ε) = ε. For some block

B and some chain C , we denote by CB the chain resulting by extending C by B, where

head(CB) = B. Consider a chain C of length m (len(C ) = m) and any nonnegative

integer k. We denote by C dk the chain resulting from the “pruning” of the k rightmost

blocks. Note that for k ≥ len(C ), C dk = ε. If C1 is a prefix of C2 we write C1 � C2.

2.2 Security Model

In this section, we describe the security model that we are going to use throughout most

of this work. Our model is a variant of the synchronous model presented in [GKL15]

for the analysis of the Bitcoin backbone protocol, which in turn is based on Canetti’s

formulation of “real world” execution for multi-party cryptographic protocols [Can00,

Can01].

Computational model. An execution of some protocol Π is defined with respect to

an “environment” program Z, a “control” program C, and an “adversary” program A .

At a high level, Z is responsible for providing inputs to and obtaining outputs from

different instances of Π, C is responsible for supervising the spawning and communi-

cation of all these programs, and A aims to disrupt the goals set by the protocol. All

these programs are formulated as “interactive Turing machines” (ITM) communicat-

ing through shared tapes. In this setting, “resource bounded computation” is captured

by requiring that the length of the execution of Z is “bounded” by some polynomial

1It will always be clear from the context the computational model under which D is specified.
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in the security parameter, and that C is polynomial time computable. Proposition 3 in

[Can01] guarantees that if these conditions are satisfied, the whole execution can be

simulated by a polynomial time Turing machine.

We will consider executions where the set of of parties {P1, ...,Pn} is fixed and

hardcoded to C. Moreover, we consider a “hybrid” model of computation [CF01],

where the adversary A as well as all parties in the execution can access a number of

“ideal” functionalities as subroutines; the functionalities are also modeled as ITMs and

will be presented later in detail. Initially Z is activated. Z can make special requests

that result in the spawning of different parties and A . In turn, A can corrupt different

parties by sending messages of the form (Corrupt, Pi) to C, with the limitation that the

total number of parties corrupted should be at most t; t is a parameter of the execution.

We assume an active or “byzantine” adversary that is activated in the place of corrupted

parties and is free to perform whatever actions it wants to.

Depending on the chapter, we will also explicitly specify whether we consider a

static adversary that chooses which parties to corrupt at the beginning of the execution,

or an adaptive one that chooses them dynamically throughout the execution.

Communication and Synchrony. We are going to assume a synchronous setting of

computation, where the current round is known to all parties, and messages sent at one

round are received at the beginning of the next one. In the classical (permissioned) set-

ting synchronous computation can be simulated assuming that there is a known upper

bound on network delays, and that the clocks of honest parties are loosely synchro-

nized, see [DLS88] for a fault-tolerant implementation. While there have been efforts

to do the same in the permissionless setting [BGK+19, FGKR18], we are not going to

explore this question further in this work.

The influence of the adversary in the network is going to be actively malicious, fol-

lowing the standard cryptographic modeling. Firstly, we assume that the adversary is

rushing, in the sense that it is immediately informed about the messages sent by honest

parties. Message transmission is handled by a “diffusion” functionality, that ensures

the integrity of the messages sent, but does not provide any guarantees about the trans-

mission order or the sender of each message, i.e., communication is not authenticated.2

Moreover, the adversary will also be allowed to send messages to subsets of the party

set, with the consequence that the view of honest parties is not guaranteed to be the

same.

All the above concerns are captured by the diffusion functionality FDIFF. The func-

2In practice, such a functionality is implemented through a gossiping protocol, e.g., see [FG10].
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tionality maintains a Receive string defined for each party Pi. A party is allowed at any

moment to fetch the messages sent to it at the previous round that are contained in its

personal Receive string. Moreover, when the functionality receives an instruction to

diffuse a message m from party Pi, it marks the party as complete for the current round,

and forwards the message to the adversary; note that m is allowed to be empty. At any

moment, the adversary A is allowed to specify the contents of the Receive tape for

each party Pi. The adversary has to specify when it is complete for the current round.

When all parties are complete for the current round, the functionality inspects the con-

tents of all Receive tapes and includes any messages that were diffused by the parties

in the current round but not contributed by the adversary to their Receive tapes. The

variable round is then incremented. In the protocol description we will use DIFFUSE

as the message transmission command.

Following [GKL15], we choose to have the network functionality also handle syn-

chrony. A more modular approach was followed in [BMTZ17], using both a network

and a clock functionality. We note, that all our results can be easily adapted to work in

that model.

Precomputation and Trusted Setup. In contrast to [GKL15], where all parties are

spawned at the first round, in our model the environment may choose to spawn all

parties later in the execution.3 This change allows us to capture adversarial precom-

putation since it permits the environment to activate the adversary an arbitrary number

of times (bounded by a polynomial in the security parameter κ of course) before the

honest parties get activated.

This distinction is not important for the analysis of Bitcoin, which anyway relies

on the existence of a genesis block [Bit], i.e., a “fresh” common reference string (CRS)

sampled from a high min-entropy distribution that is received by all parties to render

any adversarial precomputation useless. However, it becomes important in Chapter 3,

where we implement a transaction ledger without relying on a fresh CRS. In any case,

at each chapter we explicitly specify whether we assume a CRS or not.

Resource Restricted Computation. In order for the PoW mechanism to be useful,

we need to restrict the computational resources of the machines participating in the

computation, in an exact (compared to asymptotic) manner. Here we present one way

to do this in the Random Oracle Model (ROM), originally proposed in [GKL15]. Note,

3 We note that the diffusion functionality will not wait for honest parties to be marked as finished to
proceed to the next round before they are spawned. Thus, it is possible that the adversary will be the
only one activated for some rounds.
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that in Chapter 4 we propose an alternative way to formulate resource restricted com-

putation, without resorting to idealized models.

The adversary A and all parties have access to a Random Oracle functionality [BMTZ17].

The control program C limits the access to the functionality in the following manner:

Each honest party can make up to q queries per round, while the adversary can make

t ′ ·q queries, where t ′ is the number of parties it has corrupted and q is a parameter of

the execution. Unlike the adversary, honest parties are also allowed to perform verifi-

cation queries for free 4, i.e., queries that verify the hash value of some message. This

assumption is made to avoid trivial adversaries that perform Denial-of-Service attacks

by spamming honest parties with incorrect hash values. It is justified heuristically,

since this type of attacks is currently prevented in Bitcoin and relevant systems; we

point to [Section 3.4, [AD15]] for extensive discussion on this issue. This is called the

q-bounded ROM.

Based on the above, we denote by (VIEW
P,t,n
Π,A ,Z(z))z∈{0,1}∗ the random variable en-

semble that corresponds to the view of party P at the end of an execution where Z
takes z as input. We will consider stand-alone executions, hence z will always be of

the form 1κ, for κ ∈ N. For simplicity, we denote this random variable ensemble by

VIEW
P,t,n
Π,A ,Z . By VIEW

t,n
Π,A ,Z we denote the concatenation of the views of all parties.

The probability space where these random variables are defined depends on the coins

of all honest parties, A ,Z and the coins of any randomized functionality assumed, e.g.,

the RO functionality.

The statement we are going to prove about a property Q of the execution is of the

following form:

Definition 1. Given a predicate Q and bounds t,n∈N, with t < n, we say that protocol

Π satisfies property Q for n parties assuming the number of corruptions is bounded

by t in the q-bounded ROM, provided that for all PPT Z,A , the probability that

Q(VIEW
t,n
Π,A ,Z) is false is negligible in κ.

Other Modeling Considerations. In the literature, there have been a number of dif-

ferent modeling attempts trying to capture other aspects of the permissionless set-

ting. In [PSS17, AD15], the fully synchronous diffusion functionality, is replaced

with one which only guarantees delivery after ∆ rounds. In principle, our results can

be translated in this setting using ideas found in [Section 7,[GKL15]]. In another

4In [AD15], another way of dealing with the DoS problem is presented, by restricting the total
number of messages transmitted by the adversary per round.
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work [GKL17], the dynamic joining and leaving of new parties is considerer, and it is

shown that an adapted version of the Bitcoin Backbone implements a transaction ledger

in this setting, assuming that the rate at which the number of active parties changes is

bounded. A UC version of the permissionless model is presented in [BMTZ17], where

it is shown that Bitcoin can be used to implement an ideal ledger functionality. Finally,

a number of works investigate the rationality of Bitcoin and relevant protocols, e.g.,

see [BGM+18].

2.3 Security Definitions

In this section, we provide the main security definitions that we are going to use in

this thesis. We start with three security properties that have to do with the blockchain

data structure. Then, we present the notion of a public robust transaction ledger, which

captures the main application of the Bitcoin protocol. Finally, we recite the classical

consensus definition.

2.3.1 Blockchain Security

We recite a number of basic security properties that have to do with the blockchain data

structure, proposed in [GKL15, KP15, PSS17, GKLP18]. These properties concern

protocols that maintain a chain of blocks. We note that for the protocols presented in

the rest of this thesis, it will always be clear what is the chain that each honest party

maintains. Moreover, we call a block that is first diffused in the network by an honest

party, an honest block.

A definitional contribution of this thesis is the introduction of “initialization” pa-

rameters k0,r0 on the relevant properties. These parameters are used to signify that a

property holds after a certain condition is met, e.g., after r0 rounds have passed. They

are mainly used in Chapter 3, where the blockchain build there requires an initialization

phase before the basic blockchain security properties start to hold.

At a high level, the first property, called common prefix, has to do with the exis-

tence, as well as persistence in time, of a common prefix of blocks among the chains of

honest parties [GKL15]. Here we will consider a stronger variant of the property, pre-

sented in [PSS17], which allows for the black-box proof of application-level properties

(such as the persistence of transactions entered in a public transaction ledger built on

top of the Bitcoin backbone—cf. Section 2.3.2).
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Definition 2 ((Strong) Common Prefix Property). The strong common prefix property

Qcp with parameters k,r0 ∈ N states that the chains C1,C2 reported by two, not neces-

sarily distinct honest parties P1,P2, at rounds r1,r2, with r0 < r1 ≤ r2, satisfy C dk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some

honest party’s chain.

Definition 3 (Chain Quality Property). The chain quality property Qcq with parameters

µ ∈ R and k,k0 ∈ N states that for any honest party P with chain C in VIEW
t,n
Π,A ,Z , it

holds that for any k consecutive blocks of C , excluding the first k0 blocks, the ratio of

adversarial blocks is at most µ.

Further, in the derivations in [GKL15] an important lemma was established relating

to the rate at which the chains of honest parties were growing as the Bitcoin backbone

protocol was run. This was explicitly considered in [KP15] as a property under the

name chain growth. This property along with common prefix and chain quality were

shown sufficient for the black-box proof of application-level properties [PSS17] (in

this case, transaction ledger liveness; see Section 2.3.2).

Definition 4 (Chain Growth Property). The chain growth property Qcg with parameters

τ ∈ R (the “chain speed” coefficient) and s,r0 ∈ N states that for any round r > r0,

where honest party P has chain C1 at round r and chain C2 at round r+s in VIEW
t,n
Π,A ,Z ,

it holds that |C2|− |C1| ≥ τ · s.

Note, that whenever we omit mentioning r0 or k0, it is implied that they are both

equal to 0.

2.3.2 Robust Public Transaction Ledger

A robust public transaction ledger [GKL15], is defined with respect to a set of valid

ledgers L and a set of valid transactions T , each one possessing an efficient mem-

bership test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Each

transaction tx may be associated with one or more accounts. The position of transac-

tion tx j in ledger x = 〈x1, . . . ,xm〉, is (i, j), where xi = 〈tx1, . . . , txu〉 for j ≤ u. Ledgers

correspond to chains of transaction blocks in the protocols presented in this thesis.

Transaction ledgers are also defined with respect to an oracle Txgen, which controls

a set of accounts and generates transactions on their behalf. In an execution both the

environment Z and the parties will have access to Txgen. Two types of queries can be

issued to Txgen:
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GenAccount(1κ): It generates an account α.

IssueTrans(1κ, t̃x): It returns a transaction tx, provided that t̃x is a suitably formed

string, otherwise ⊥.

The definition is parameterized by a symmetric relation C : T ×T → {true, f alse},
which indicates whether two transactions are conflicting. Any sequence of non-conflicting

transactions constitutes a valid ledger in L . Oracle Txgen is called unambiguous, if it

holds that for any PPT A , the probability that ATxgen outputs two conflicting transac-

tions tx, tx′, where tx or tx′ were generated by Txgen, is negligible in κ. A transaction

is called neutral, if there does not exist any tx ∈ T that comes in conflict with it. For

convenience, we assume that strings of the form {0,1}κ, are neutral transactions.

Finally, we slightly generalize the definition of [GKL15], by assuming that in the

ledgers maintained by our protocols, transactions up to some position are flagged as

k-stable, for some k ∈ N. In Bitcoin, a transaction is k-stable if it is at least k blocks

deep in the chain. Other protocols may employ different stability rules. Further, we

assume that if a transaction in a ledger is k-stable, then all transactions that precede it

in the ledger are also k-stable. In our analyses parameter k will be related to the error

probability with which the different properties will hold.

We proceed to give the definition of a robust transactions ledger. The first property

of a robust ledger is persistence, which ensures that if a transaction is declared as stable

by some party, then all other parties will output this transaction at exactly the same

position in the ledger. Persistence implies that the order of stable transactions remains

unchanged. The second property, called liveness, guarantees that if a transaction is

neutral or is generated by the unambiguous oracle Txgen and is provided as input to

all honest parties for long enough, then everyone will declare this transaction as stable.

Definition 5. A protocol Π implements a robust public transaction ledger in the syn-

chronous setting, if after some round r0 the following two properties are satisfied:

Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain round

an honest party reports a ledger that contains a k-stable transaction tx, then tx will

always be reported in the same position in the ledger by any honest party from this

round on.

Liveness: Parameterized by u,k ∈ N (the “wait time” and “depth” parameters,

resp.), provided that a transaction either (i) issued by Txgen, or (ii) neutral, is given

as input to all honest parties continuously for u consecutive rounds, then all honest

parties will report this transaction as k-stable from the end of this round interval
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and on.

Closely related definitions of a robust transaction ledger have been explored in [PSS17,

BMTZ17]. An interesting open question is comparing these definitions with the ones

found in the study of state machine replication [Sch90], e.g., atomic broadcast [CBPS10,

DSU04].

2.3.3 Consensus

Next, we give the definition of the well-known consensus problem (a.k.a. Byzantine

agreement) [PSL80, LSP82]. Parties take an initial input x∈V (we assume V = {0,1}).

Definition 6. A protocol Π solves the consensus problem provided it satisfies the fol-

lowing properties:

Agreement. All honest parties output the same value, eventually.

Validity. If all honest parties have the same input, then they all output this value.

For a brief history of the problem, we refer the reader to the beginning of Sec-

tion 4.1.



Chapter 3

Bootstrapping the Blockchain

3.1 Introduction

As the first decentralized cryptocurrency, Bitcoin [Nak09] has ignited much excitment,

not only for its novel realization of a central bank-free financial instrument, but also

as an alternative approach to classical distributed computing problems, such as reach-

ing agreement distributedly in the presence of misbehaving parties. Formally captur-

ing such reach has been the intent of several recent works, notably [GKL15], where

the core of the Bitcoin protocol, called the Bitcoin backbone, is extracted and ana-

lyzed. The analysis includes the formulation of fundamental properties of its under-

lying blockchain data structure, which parties (“miners”) maintain and try to extend

by generating “proofs of work” (PoW, aka “cryptographic puzzle” [DN93, RSW96,

Bac97, JB99])1, called common prefix and chain quality. It is then shown in [GKL15]

how applications such as consensus (aka Byzantine agreement) [PSL80, LSP82] and a

robust public transaction ledger (i.e., Bitcoin) can be built “on top” of such properties,

assuming that the hashing power of an adversary controlling a fraction of the parties is

strictly less than 1/2.

Importantly, those properties hold assuming that all parties—honest and adversarial—

“wake up” and start computing at the same time, or, alternatively, that they compute

on a common random string only made available at the exact time when the protocol

execution is to begin (see further discussion under related work below). Indeed, the

coinbase parameter in Bitcoin’s “genesis” block, hardcoded into the software, contains

text from The Times 03/Jan/2009 issue [Bit], arguably unpredictable.

1In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash inequality based on
SHA-256.

18
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While satisfactory in some cases, such a trusted setup/behavioral assumption might

be unrealistic in other PoW-based systems where details may have been released a lot

earlier than the actual time when the system starts to run. A case in point is Ethereum,

which was discussed for over a year before the system officially kicked off. That’s

from a practical point of view. At a foundational level, one would in addition like to

understand what kind of cryptographic primitives can be realized without any trusted

setup assumption and based on PoWs, and whether that is in particular the case for the

Bitcoin backbone functionality and its enabling properties mentioned above.

The former question was recently considered by Andrychowicz and Dziembowski [AD15],

who, building on previous suggestions by Aspnes et al. [AJK05] of using PoWs as an

identity-assignment tool and constructions by Fitzi et al. [Fit03, CFF+05] showing

how to morph “graded” consistency into global consistency, showed how to create a

consistent PKI using PoWs and no other trusted setup, which can then be used to run

secure computation protocols (e.g., [Yao82, GMW87]) and realize any cryptographic

functionality assuming an honest majority among parties. While this in principle ad-

dresses the foundational concerns, it leaves open the questions of doing it in scalable

way—i.e., with round complexity independent of the number of parties, and in the con-

text of blockchain protocols in particular, designing one that is provably secure without

a trusted setup.

Our contributions. In this chapter we answer the above questions in the affirmative.

First, we present a Bitcoin-like protocol that neither assumes a simultaneous start nor

the existence of an unpredictable genesis block, and has round complexity essentially

independent of the number of participants 2. Effectively, the protocol, starting “from

scratch,” enables the coexistence of multiple genesis blocks with blockchains stem-

ming from them, eventually enabling the players to converge to a single blockchain.

This takes place despite the adversary being allowed (polynomial in the security pa-

rameter) pre-computation time. We work in the same model as [GKL15] and we as-

sume a 1/2 bound on adversarial hashing power. We call this protocol the bootstrapped

(Bitcoin) backbone protocol. A pictorial overview of the protocol’s phases, preceded

by a period of potential precomputation by the corrupt players, is given in Figure 3.1.

Second, we present applications of our bootstrapped construction, starting with its

original one: a distributed ledger, i.e., a public and permanent summary of all transac-

2“Essentially” because even though there will be a dependency of the round complexity of the setup
phase on the probability of computing PoWs, which in turn depends on the number of parties, this
dependency can be made small enough so as to be considered a constant. See Remark 2.
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Figure 3.1: Overview of the bootstrapped Bitcoin backbone protocol.

tions that honest parties can agree on as well as add their own, despite the potentially

disruptive behavior of parties harnessing less than 1/2 of the hashing power. This en-

tails proving that the ledger’s required security properties (Persistence and Liveness —

cf. [GKL15]) hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated network

setting from scratch. As mentioned above, the idea of using PoWs as an identity-

assignment tool was put forth by Aspnes et al. [AJK05]. Here we build on this idea

as well as on the “2-for-1 PoWs” technique from [GKL15] to use our bootstrapped

protocol to assign identities to parties. The assignment relation will possibly assign

more than one identity to the same party, while guaranteeing that the majority of

them is assigned to honest parties. Such an identity infrastructure/“pseudonymous

PKI” has numerous applications, including the bootstrapping of a proof-of-stake pro-

tocol [KRDO17, KN12], and the election of honest-majority “subcommittees,” which

would enable the application of traditional Byzantine fault-tolerant techniques for ledger

creation and maintenance (cf. [ACC+17]) to permissionless (as opposed to permis-

sioned) networks.

Finally, applying the 2-for-1 PoWs technique we also solve the consensus (aka

Byzantine agreement) problem [PSL80, LSP82] probabilistically and from scratch,

even if the adversary has almost the same hashing power as the honest parties3, and

with round complexity independent of the number of parties. Indeed, all our proto-

cols have round complexity linear in the security parameter, and enjoy simultaneous

termination.

Related work. Nakamoto [Nak08] proposed Bitcoin, the first decentralized currency

system based on PoWs while relaxing the anonymity property of a digital currency to

mere pseudonymity. This work was followed by a multitude of other related proposals

including Litecoin, Primecoin [Kin13], and Zerocash [BCG+14], and further analysis

improvements (e.g., [ES14, EGSvR15]), to mention a few.

3Thus marking a contrast with the 2
3 lower bound for consensus on the number of honest parties in

the traditional network setting with no setup [Bor96].
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As mentioned above, we work in a model that generalizes the model put forth

by Garay et al. [GKL15], who abstracted out and formalized the core of the Bitcoin

protocol—the Bitcoin backbone. As presented in [GKL15], however, the protocol con-

siders as valid any chain that extends the empty chain, which is not going to work in

our model. Indeed, if the adversary is allowed polynomial-time pre-computation, he

can prepare a very long, private chain; then, by revealing blocks of this chain at the

rate that honest players compute new blocks, he can break security. As also mentioned

above, to overcome this problem one can assume that at the time honest parties start the

computation, they have access to a fresh common random string (a “genesis” block).

Then, if we consider as valid only the chains that extend this block, all results proved

in [GKL15] follow, since the probability that the adversary can use blocks mined be-

fore honest players “woke up” is negligible in the security parameter. In this chapter

we show how to establish such genesis block directly, and in a number of rounds es-

sentially independent of the number of participants.

To our knowledge, the idea of using PoWs to distributedly agree on something

(specifically, a PKI) in an unauthenticated setting with no trusted setup was first put

forth by Aspnes et al. [AJK05]. There, it was suggested to use them as an identity-

assignment tool to combat Sybil attacks [Dou02b], by establishing that the number of

identities assigned to honest and adversarial parties is proportional to their computa-

tional power, respectively. In more detail, for one of the algorithms of [AJK05], if the

adversary controls less than half of the total computational power, it will also control

less than half of the total number of the generated identities. It is then proposed to

run this procedure as a pre-processing step of an authenticated broadcast algorithm.

However, these protocols require that the PKI is consistent, a property not explored

in [AJK05].

It is in [AD15], where Andrychowicz and Dziembowski address the more gen-

eral goal of secure computation in this setting based on PoWs, as mentioned ear-

lier; the PoWs are used to build a “graded” PKI, where keys have “ranks.” The

graded PKI is an instance of a “graded agreement,” or “partial consistency” prob-

lem [Fit03, CFF+05, GKKO07], where honest parties do not disagree “by much,”

according to some metric. In [Fit03], Fitzi calls this the b-set-neighboring problem

(“proxcast” in [CFF+05]), with b the number of possible “grades,” and shows how to

achieve global consistency by running the b-set-neighboring protocol multiple times.

In [AD15], the fact that unreliable broadcast is available among honest parties is used

to achieve the same—global consistency on a PKI, where the number of identities each
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party gets is proportional to its hashing power, as suggested in [AJK05].

The protocol in [AD15], however, suffers from a total running time that depends on

the number of parties, because of two factors: (1) the way in which it uses PoWs, and

(2) the use of the Dolev-Strong authenticated broadcast protocol (run multiple times in

parallel based on the graded PKI), which takes a linear number of rounds. Regarding

(1), and in more detail, in order to assign exactly one key per party, a low variance PoW

scheme is used. This implies that the time needed by an honest party to mine a PoW

is going to be proportional to the ratio of the adversarial hashing power to the hashing

power of the weakest honest party. Otherwise, the “rushing” adversary would be able

to compute more identities in the additional time she has due to the latency of the

communication infrastructure.4 Regarding (2), we note that potentially an expected-

constant-round protocol could be used instead of Dolev-Strong, although the parallel

composition of n instances would require more involved techniques [CCGZ16].

Furthermore, having a PKI allows parties to generate an unpredictable beacon (in

the random oracle model), which is then suggested in [AD15] as a genesis block-

generation method for a new cryptocurrency. Yet, no formal treatment of the security of

the resulting blockchain protocol is presented, and—as already mentioned—the round

complexity of the suggested genesis block generation procedure is linear in the number

of participants, both in contrast to our work.

As in [AD15], Katz et al. [KMS14] also consider achieving pseudonymous broad-

cast and secure computation from PoWs (“cryptographic puzzles”) and the existence

of digital signatures without prior PKI setup, but under the assumption of a fresh CRS.

Finally, Pass et al. [PSS17] consider a partially synchronous model of communication

where parties are not guaranteed to receive messages at the end of each round but rather

after a specified delay ∆ (cf. [DLS88]), and show that the backbone protocol can be

proven secure in this setting. In principle, our results about the bootstrapped backbone

protocol can be extended to their setting as shown in [GKL15].

Limitations and directions for future research. A practical limitation of the proto-

cols we present in this chapter, as well as of the protocol in [AD15], is the communica-

tion intensive challenge-exchange phase. We conclude Section 3.4 with an additional

modification to the protocol that somewhat addresses this concern, which among other

4On the flip side, the benefit of the approach in [AD15] is that when all honest parties have the same
hashing power, a PKI that maps each party to exactly one identity and preserves an honest majority
on the keys can be achieved. However, in today’s environments where even small devices (e.g., mo-
bile phones, smart watches) have powerful CPUs with different clock frequencies, this assumption is
arguably weak.
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makes parties generate a PoW for each of the challenges they send. Other interesting

directions are further minimizing the initialization cost, and designing a challenge-

exchange phase whose security does not rely in the ROM.

Organization of the chapter. The rest of the chapter is organized as follows. In Sec-

tion 3.2 we provide the details of the model. In Section 3.3 we present the bootstrapped

Bitcoin backbone protocol and its analysis. Applications are presented in Section 3.4:

a robust public transaction ledger, PKI generation and consensus without trusted setup

and with round complexity independent of the number of parties.

3.2 Preliminaries

We assume that we are in the synchronous q-bounded ROM setting and without a fresh

CRS, as defined in Section 2.2. We assume everywhere a static adversary.

3.3 The Bootstrapped Backbone Protocol

We begin this section by presenting the “bootstrapped” Bitcoin backbone protocol,

followed by its security analysis. In a nutshell, the protocol is a generalization of the

protocol in [GKL15], which is enhanced in two ways: (1) an initial challenge-exchange

phase, in which parties contribute random values, towards the establishment of an un-

predictable genesis block, despite the precomputation efforts of corrupt parties, and

(2) a ranking process and chain-validation predicate that, in addition to its basic func-

tion (checking the validity of a chain’s content), enables the identification of “fresh”

candidate genesis blocks. The ranking process yields a graded list of genesis blocks

and is inpired by the “key ranking” protocol in [AD15], where it is used to produce a

“graded” PKI, as mentioned in Section 3.1.

Before describing the bootstrapped backbone protocol in detail, we highlight its

unique features.

No trusted setup5 and individual genesis block mining. Parties start without any

prior coordination and enter an initial challenge-exchange phase, where they will

exchange random values that will be used to construct “freshness” proofs for can-

didate genesis blocks. The parties will run the initial challenge-exchange phase
5While the term “no trusted setup” was used in [AD15] to describe our setting, we note that the ran-

dom oracle can be used to agree on a non-fresh CRS. However, the term is not without any justification,
as in practice in the place of the random oracle we would use an unkeyed hash function, e.g., SHA-256,
and thus we wouldn’t assume any setup.



Chapter 3. Bootstrapping the Blockchain 24

for a small number of rounds, and subsequently will try to mine their own genesis

blocks individually. Once they mine or accept a genesis block from the network

they will engage in mining further blocks and exchanging blockchains as in Bit-

coin’s blockchain protocol. On occasion they might switch to a chain with a dif-

ferent genesis block. Nevertheless, as we will show, quite soon they will stabilize

in a common prefix and a single genesis block.

Freshness of genesis block impacts chains’ total weight. Chains rooted at a genesis

block will incorporate its weight in their total valuation. Genesis blocks can be

quite “heavy” compared to regular blocks and their total valuation will depend on

how fresh they are. Their weight in general might be as much as a linear number

of regular blocks in the security parameter. Furthermore, each regular block in a

chain accounts for 3 units in terms of the total weight of the chain, something that,

as we show, will be crucial to account for differences in terms of weight that are

assigned to the same genesis block by different parties running the protocol (cf.

Remark 1).

Personalized chain selection rule. Given the co-existence of multiple genesis blocks,

a ranking process is incorporated into the chain selection rule that, in addition to its

basic function (checking the validity of a chain’s content) and picking the longest

chain, it now also takes into account the freshness degree of a genesis block from

the perspective of each party running the protocol. The ranking process effectively

yields a graded list of genesis blocks and is inspired by the “key ranking” protocol

in [AD15], where it is used to produce a “graded” PKI (see further discussion

below). The weight value for each genesis block will be thus proportional to its

perceived “freshness” by each party running the protocol (the fresher the block

the higher its weight). It follows that honest parties use different chain selection

procedures since each predicate is “keyed” with the random coins that were con-

tributed by each party in the challenge-exchange phase (and thus guaranteed to be

fresh from the party’s perspective). This has the side effect that the same genesis

block might be weighed differently by different parties. Despite these differences,

we show that eventually all parties accept the same chains as valid and hence will

unify their chain selection rule in the course of the protocol.

Robustness is achieved after an initial period of protocol stabilization. All our

modifications integrate seamlessly with the Bitcoin backbone protocol [GKL15],

and we are able to show that our blockchain protocol is a robust transaction ledger,

in the sense of satisfying the properties of persistence and liveness. Nevertheless,
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contrary to [GKL15], the properties are satisfied only after an initial period of

rounds where persistence is uncertain and liveness might be slower; this is the

period where the parties still stabilize the genesis block and they might be more

susceptible to attacks. Despite this, a ledger built on top of our blockchain will

be available immediately after the challenges exchange phase. Furthermore, once

the stabilization period is over the robust transaction ledger behavior is guaranteed

with overwhelming probability (in the length of the security parameter).

3.3.1 Protocol Description

After an initial (“challenge”) phase, each party is to maintain a data structure called a

“blockchain”. Each party’s chain may be different, but, as we will prove, under certain

well-defined conditions, the chains of honest parties will share a large common prefix.

We proceed to give some more details about the structure of the blockchains in our

protocol, following [GKL15].

A block is any triple of the form B= 〈s,x,ctr〉where s∈{0,1}κ,x∈{0,1}∗,ctr∈N
are such that satisfy predicate validblockD

q (B) defined as

(H(ctr,G(s,x))< D)∧ (ctr ≤ q),

where H,G are cryptographic hash functions (e.g., SHA-256) modelled as random

oracles. The parameter D ∈ N is also called the block’s difficulty level. The parameter

q ∈ N is a bound that in the Bitcoin implementation determines the size of the register

ctr; in our treatment we allow this to be arbitrary, and use it to denote the maximum

allowed number of hash queries in a round. We do this for convenience and our analysis

applies in a straightforward manner to the case that ctr is restricted to the range 0 ≤
ctr < 232 and q is independent of ctr.

A chain C with head(C ) = 〈s′,x′,ctr′〉 can be extended to a longer chain by ap-

pending a valid block B = 〈s,x,ctr〉 that satisfies s = H(ctr′,G(s′,x′)). In case C = ε,

by convention any valid block of the form 〈s,x,ctr〉 may extend it. In either case we

have an extended chain Cnew = CB that satisfies head(Cnew) = B.

Following [GKL15], our protocol description intentionally avoids specifying the

type of values that parties try to insert in the chain, the type of chain validation they

perform (beyond checking for its structural properties with respect to the hash func-

tions G(·),H(·)), and the way they interpret the chain. In the protocol description, these
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actions are abstracted by the external functions V(·), I(·)6, R(·) which are specified by

the application that runs “on top” of the backbone protocol.

The protocol is specified as Algorithm 1. At a high level, the protocol first executes

a challenge-exchange phase for l +1 rounds (l will be determined later), followed by

the basic backbone functions, i.e., mining and broadcasting blocks; a crucial differ-

ence here with respect to the original backbone protocol is that the chain validation

process must also verify candidate genesis blocks, which in turn requires updating the

validation function as the protocol proceeds. (This, however, only happens in the next

l rounds after the challenge phase.) The protocol’s supporting algorithms are specified

next.
6We assume that no two invocations of I(·) performed by honest parties return the same result, as

formalized by the Input Entropy condition in [GKL15].
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Algorithm 1 The bootstrapped backbone protocol, parameterized by the input contri-

bution function I(·), the chain reading function R(·), and parameter l.

1: C ← ε

2: st← ε

3: round← 1 . Global variable round

4: Gen← /0 . Set of candidate genesis blocks

5: Rank← 〈ε〉 . Weights of candidate genesis blocks

6: (c,A,c)← exchangeChallenges(1κ)

7: while TRUE do
8: k← round− l−2 . At round `+2 no new genesis blocks are accepted.

9: MGen←{(〈s′,x′,ctr′〉,〈A′l+1, . . . ,A
′
l+2−k〉)} from RECEIVE()

10: MChain← chains C ′ found in RECEIVE()

11: (Gen,Rank)← updateValidate(c,A,MGen,Gen,Rank)

12: C̃ ←maxvalid(C ,MChain,Gen,Rank)

13: 〈st,x〉 ← I(st, C̃ ,round, INPUT(),RECEIVE())

14: Cnew← pow(x, C̃ ,c)

15: if C 6= Cnew then
16: if C = ε then . New genesis block has been produced

17: DIFFUSE( (Cnew,〈Al+1, . . . ,Al+2−(k+1)〉) )

18: C ← Cnew

19: DIFFUSE(C )

20: round← round +1

21: if INPUT() contains READ then
22: write R(xC ) to OUTPUT()

The challenge-exchange phase. In order to generate an unpredictable genesis block,

parties first execute a “challenge-exchange” phase, where they broadcast, for a given

number of rounds (l+1), randomly generated challenges that depend on the challenges

received in the previous rounds. The property that is assured is that an honest party’s

k-round challenge, 2≤ k≤ l+1, depends on the (k−1)-round challenges of all honest

parties. This dependence is made explicit through the random oracle. The code of the

challenge-exchange phase is shown in Algorithm 2.
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Algorithm 2 The challenge-exchange function. Note that variable round is global,

and originally set to 1.

1: function exchangeChallenges(1κ)

2: c1
R←{0,1}κ

3: DIFFUSE(c1)

4: round← round +1

5: while round ≤ l +1 do
6: Around ← κ-bit messages found in RECEIVE()

7: rround
R←{0,1}κ

8: Around ← Around||rround

9: cround ← H(Around) . Compute challenge

10: DIFFUSE(cround)

11: round← round +1

12: return (〈c1, . . .cl〉,〈A2, . . .Al+1〉,cl+1)

Validation predicate update. In the original backbone protocol [GKL15], the chain

validation function (called validate—see below) performs a validation of the structural

properties of a given chain C , and remains unchanged throughout the protocol. In our

case, however, where there is no initial fresh common random string, the function plays

the additional role of checking for valid genesis blocks, and parties have to update their

validation predicate as the protocol advances (for the first l rounds after the challenge

phase).

Indeed, using the challenges distributed in the challenge-exchange phase of the

protocol, parties are able to identify fresh candidate genesis blocks that have been

shared during that phase and are accompanied by a valid proof. In addition, the valid

genesis blocks are ranked with a negative dependence on the round they were received.

In order to help other parties to also identify the same genesis blocks, parties diffuse

the valid genesis blocks they have accepted together with the additional information

needed by the other parties for verification. The validation predicate update function

is shown in Algorithm 3. Gen is the set of candidate genesis blocks, while Rank is a

map that stores their weights.

Chain validation. A chain is considered valid if in addition to the checks performed
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Algorithm 3 The validation predicate update function.

1: function updateValidate(c,A,MGen,Gen,Rank)

2: k← round− l−2

3: if (k < 1)∨ (k ≥ l) then
4: return (Gen,Rank) . Updates happen during rounds {`+3, . . . ,2`+1}
5: for each (〈s,x,ctr〉,〈A′l+1, . . . ,A

′
l+2−k〉) in MGen do

6: if validblockD
q (〈s,x,ctr〉)∧〈s,x,ctr〉 6∈ Gen then

7: f lag← (H(A′l+1) = s)∧ (cl+1−k ∈ A′l+2−k)

8: for i = l +2− k to l do
9: if H(A′i) 6∈ A′i+1 then

10: f lag← FALSE

11: if f lag = TRUE then
12: Gen← Gen∪〈s,x,ctr〉
13: Rank[〈s,x,ctr〉]← l− k

14: DIFFUSE(〈s,x,ctr〉,〈A′l+1, . . . ,A
′
l+2−k,Al+1−k〉) . Augment A′

sequence with own A value.

15: return (Gen,Rank)

by the basic backbone protocol regarding the chain’s structural properties, its genesis

block is in the Gen list, which is updated by the updateValidate function (Algorithm 3).

The chain validation function is shown in Algorithm 4.

Chain selection. The objective of the next algorithm in Algorithm 1, called maxvalid,

is to find the “best possible” chain. The accepted genesis blocks have different weights

depending on when a party received them. It is possible that the same genesis block

is received by honest parties in two different rounds (as we show later, those rounds

have to be consecutive). In order to take into account the “slack” introduced by the

different views honest parties may have regarding the same block, as well as the differ-

ent weights different blocks may have, we let the weight of a chain C be equal to the

weight of its genesis block plus three times its length minus one. The chain selection

function is shown in Algorithm 5.
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Algorithm 4 The chain validation predicate, parameterized by q,D, the hash functions

G(·),H(·), and the content validation predicate V (·). The input is C .

1: function validate(C , Gen)

2: b←V (xC )∧ (C 6= ε)∧ (tail(C ) ∈ Gen)

3: if b = True then
4: 〈s,x,ctr〉 ← head(C )

5: s′← H(ctr,G(s,x))

6: repeat
7: 〈s,x,ctr〉 ← head(C )

8: if validblockD
q (〈s,x,ctr〉)∧ (H(ctr,G(s,x)) = s′) then

9: (s′,C )← (s,C d1) . Retain hash value and remove the head from C
10: else
11: b← False

12: until (C = ε)∨ (b = False)

13: return b

Algorithm 5 The function that finds the “best” chain. The input is a set of chains and

the list of genesis blocks.

1: function maxvalid(C , MChain, Gen, Rank)

2: temp← ε

3: maxweight← 0

4: for each C ′ in C ∪MChain do
5: if validate(C ′,Gen) then
6: weight← Rank(tail(C ′))+3(|C ′|−1)

7: if maxweight < weight then
8: maxweight← weight

9: temp← C ′

10: return temp

The proof-of-work function. Finally, we need to modify the proof-of-work function

in [GKL15], so that when a genesis block is mined, the challenge computed in the last

round of the challenge-exchange phase will be included in the block. This, is required
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so that other honest parties accept this block as valid and rank it accordingly. The code

is presented in Algorithm 6.

Algorithm 6 The proof of work function, parameterized by q, D and hash functions

H(·),G(·). The input is (x,C ,c).

1: function pow(x,C ,c)

2: if C = ε then
3: s← c . c is required to prove freshness

4: else
5: 〈s′,x′,ctr′〉 ← head(C )

6: s← H(ctr′,G(s′,x′))

7: ctr← 1

8: B← ε

9: h← G(s,x)

10: while (ctr ≤ q) do
11: if (H(ctr,h)< D) then . Proof of work found

12: B← 〈s,x,ctr〉
13: break
14: ctr← ctr+1

15: return CB . Extend chain

Figure 3.2 presents the overall structure (phases and corresponding rounds) of the

bootstrapped backbone protocol. Next, we turn to its analysis.

Remark 1. To understand some of our design choices we briefly give some examples of

simpler protocols that don’t work. For the first example, assume that we only have one

round of challenge exchange i.e. l equal to 1. With some non-negligible probability, the

adversary can send one block to half of the honest parties and another block to the other

half. By splitting the honest parties in two groups such that no one in the first group

will choose the chain of the second and vice versa, agreement becomes impossible.

Moreover, l must be large enough so that at least one honest party computes a genesis

block with overwhelming probability. Otherwise the adversary can choose to remain

silent and no genesis block will be mined with non-negligible probability.

For the second example assume that blocks weigh less than 3 units, as in the origi-

nal protocol. Also, assume that somehow the problem of the first example was avoided

and honest parties only adopted chains with genesis blocks that everyone had in their
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Figure 3.2: The different phases of the bootstrapped Bitcoin backbone protocol.

genesis block list. In this case, uniquely successful rounds would not imply agreement

on a single chain (see Figure 3.3) (an important fact of previous analyses of blockchain

protocols [GKL15, PSS17]), as the adversary would have been able to take advantage

of the different views that honest parties have regarding the weight of genesis blocks.

However, if we set the block weight to 3, this event becomes impossible and makes the

analysis a lot easier.

G1

G2

G1

G2

P1 P2

G1 6 5

G2 4 5

C1 10 9

C2 8 9

C ′2 10 11

C1

C2

C1

C ′2 +2

Figure 3.3: An example where blocks weigh 2 units. The weights of the respective

chains are depicted in the table. Initially party P1 has adopted chain C1 and party P2

chain C2. Then, a uniquely successful round occurs and C2 is extended to C ′2. Notice

that, P1 will not adopt C ′2 since it has the same weight as C1. If the new block weighted

3 units instead, all parties would have adopted chain C ′2.
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3.3.2 Analysis of the Bootstrapped Backbone Protocol

First, we provide some additional definitions that will become handy in the analysis.

We saw in the previous section that genesis blocks are assigned weights, and, further,

that a single genesis block may have different weights for different parties depending

on when they received it. We extend this notion to chains of blocks.

Definition 7. Let C be a valid chain and P be some party. If C 6= ε, and its genesis

block B was received until round 2l+1 by party P, who assigned it weight wP(B), then

we define the weight of C with respect to party P to be:

wP(C ) = wP(B)+3(|C |−1).

Otherwise, wP(C ) =−1.

In [GKL15], all parties assign the same weight to the same chain, i.e., the length of

the chain; thus, for all parties Pi,Pj we have that wPi(C ) = wPj(C ). In contrast, in our

case the genesis block of each chain may have different weight for different parties,

akin to some bounded amount of “noise” that is party-dependent being added to the

chain weights. We are going to show that if the amount of noise is at most 1, then by

letting each new block weigh 3 units our protocol satisfies the chain growth, common

prefix and chain quality properties.

Definition 8. Regarding chains and their weight:

Define hC = maxP∈P{wP(C )} and `C = minP∈P{wP(C )}, where P is the set of

honest parties.

Let C (B) denote the truncation of chain C after its block B.

For a block B of a chain C , define hC (B) = hC (B) and similarly for `C (B). (Some-

times we will abuse notation and write `(B) instead of `C (B).)

For chains C1 and C2, define C1∩C2 to be the chain formed by their common prefix.

The following are important concepts introduced in [GKL15], which we are also

going to use in our analysis:

Definition 9. Regarding blocks and rounds:

A block is called honest, if an honest party was the first to diffuse this block,

A round is called successful if at least one honest block was diffused for the first

time in this round;
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A round is called uniquely successful if exactly one honest block was diffused for

the first time in this round;

A block is called adversarial, if is not an honest block, and u.s. block, if it is an

honest block, and was first diffused in a uniquely successful round.

Recall that our model is “flat” in terms of computational power in the sense that

all honest parties are assumed to have the same computational power while the adver-

sary has computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control up to t of

them (honest parties do not know any of these parameters). Obtaining a new block is

achieved by finding a hash value that is smaller than the difficulty parameter D. Thus,

the success probability that a single hash query produces a solution is p = D
2κ , where κ

is the length of the hash.

For each round j, we define the Boolean random variables X j and Yj as follows. Let

X j = 1 iff j was a successful round, and let Yj = 1 iff j was a uniquely successful round.

With respect to a set of rounds S, let Z(S) denote the number of new PoWs obtained by

the adversary during the rounds in S (i.e., in qt|S| queries). Also, let X(S) = ∑ j∈S X j

and define Y (S) similarly.

We define α,β,γ, f , following the analysis of [GKL15], as follows:

pq(n− t)≥ E[Xi] = 1− (1− p)q(n−t) = α

E[Yi]≥ (n− t)pq(1− p)q(n−t)−1 = γ

pqt = β≥ E[Z({i})]
f = pq(n− t)+β = pqn≥ α+β

where i is some round of the execution. Note that γ|S| ≤ E[Y (S)] ≤ E[X(S)] and

E[Z(S)]≤ β|S|.
For the rest of our analysis, we are going to make certain assumptions about the

power of the adversary compared to that of the honest parties, as well as the protocol

parameters.

Assumption 1. For some δ ∈ (0,1), we assume that:

t < (1−δ)(n− t); (Honest majority)

3(1+δ) f ≤ δ2; (Bounded block generation rate)

l > (1−δ)κ/γ+3
1−3(1+δ) f (Challenge-exchange phase length)

Remark 2. The dependency of γ on n does not undermine the scalability of the round

complexity of our protocol which depends on l. This claim is argued on the basis that



Chapter 3. Bootstrapping the Blockchain 35

the difficulty level D can be set proportional to 1/(n− t), so that γ can be treated as a

constant and then l is in essence independent of n (note that both parameters would be

polynomials in κ). For example, if D = 2κ

18(n−t)q , then f < 1/9 and 1
γ
≤ 11.

Next, we show that our assumption implies that the expected number of uniquely

successful rounds is more than that of the adversarial blocks.

Lemma 10. Assume Assumption 1. It holds that γ≥ (1+δ)β.

Proof. We have that:

γ = (n− t)pq(1− p)q(n−t)−1 > (n− t)pq(1− (n− t)pq)≥ β

1−δ
(1− δ2

3
)≥ (1+δ)β

where the first inequality follows from the Bernoulli inequality, while the second in-

equality follows from the honest majority and bounded block generation rate assump-

tions.

Due to the previous lemma, and w.l.o.g, for the rest of the analysis we assume that

β = γ

1+δ
.

Next, we define a set of “bad” events related to the random oracle, which we later

show to occur only with negligible probability.

Definition 11. We say that a bad event happened for the RO in an execution iff either

of the following happens:

A collision is found;

the RO is queried with string m, that contains a substring m′ that is sampled later

from a distribution with min entropy at least ω(log(κ));

The above “bad” events not occurring, imply that the blockchains produced in an

execution satisfy certain structural properties, e.g., that no cycle exist. These properties

were captured at a higher level in [GKL15] under the following definition, which we

include for completeness. In any case, we note that if the events of Definition 11 do

not happen in some execution, it is implied that the events of Definition 12 also do not

occur.

Definition 12. An insertion occurs when, given a chain C with two consecutive blocks

B and B0, a block B∗ created after B0 is such that B,B∗, B0 form three consecutive

blocks of a valid chain. A copy occurs if the same block exists in two different posi-

tions. A prediction occurs when a block extends one honest block which was computed

at a later round.
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To simplify the probabilistic part of our analysis, we define a set of well-behaved

executions, which we call typical, and show that they occur with overwhelming prob-

ability.

Definition 13. An execution is typical, if, κ > 81
δ(1−δ) and for any set S of at least

(1−δ)δ2κ consecutive rounds, it holds that:

If min(S)≥ l +2, then (1−δ/8)α|S|< X(S) and max((1−δ/8)γ|S|,1)< Y (S);

Z(S)< (1+δ/9)β|S|, and Z(S)+X(S)≤ (1+δ) f |S|;
no bad events happen for the RO (Definition 11).

Theorem 14. Assume Assumption 1. An execution is typical with probability 1−
negl(κ).

Proof. We will show that the negation of each of the events described, happens only

with negligible probability in κ. Then, using the union bound we will argue that none

of them happen, again with negligible probability.

First, take some sequence of rounds S, which satisfies the conditions of Defini-

tion 13. For the first item, note that Pr[Y (S) = 0] ≤ (1− γ)(1−δ)δ2κ < e−(1−δ)δ2γκ. As

argued in Remark 2, difficulty D is chosen so that γ is lower bounded by a constant in

(0,1). Hence, Pr[Y (S) = 0] = negl(κ). For the second and third items we are going to

use the Chernoff bound. We have that:

Pr[Y (S)≤ (1− δ

8
)E[Y (S)]]≤ e−Ω(δ2γκ) , Pr[X(S)≤ (1− δ

8
)E[X(S)]]≤ e−Ω(δ2ακ)

and Pr[Z(S)≥(1+ δ

9
)β|S|]≤ e−Ω(δ2γκ).

All these events happen with negligible probability.

Next, we argue about the bad events for the RO. First, the probability that a collision

happens in a polynomially bounded execution, is easily bounded by
(L

2

)
2−κ = negl(κ),

where L is the length of the execution, and κ is the length of the hash. Regarding the

second event, it is equivalent to predicting the result of a high min-entropy source,

with only a polynomial number of guesses. This event happens only with negligible

probability.

To finish the proof, note that there is only a polynomial number of round intervals S,

and thus only a polynomial number of events, all happening with negligible probability

in κ. By an application of the union bound, the theorem follows.
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κ : security parameter

D : block difficulty parameter

n : number of parties

t : number of corrupted parties

q : number of queries to the RO per round per party

β : expected number of blocks computed by the adversary per round

α : lower bound on the rate of successful rounds

γ : lower bound on the rate of uniquely successful rounds

f : upper bound on the rate of computed blocks

δ : honest parties’ advantage from Assumption 1

l : length of challenge-exchange phase

Table 3.1: The parameters in our analysis. Parameters κ,n, t,D,q, l ∈ N, while

α,β,γ, f ,δ ∈ R.

Finally, we show that in a typical execution, the number of uniquely successful

rounds exceeds the number of blocks the adversary mines, in any large enough interval.

This result will be crucial in proving that honest parties converge on a single genesis

block. For a summary of our notation we refer to Table 3.1.

Lemma 15. Assume a typical execution and Assumption 1. For any set of consecutive

rounds S = {i, . . . , j}, where |S| ≥ (1−δ)κ, it holds that Y (S\{i})> (1+ 5δ

9 )Z(S).

Proof. We have that:

Y (S\{i})> (1− δ

8
)γ(|S|−1)≥ (1− δ

8
)(1+δ)β(|S|−1)

≥ (1+
5δ

9
)(1+

δ

9
)β|S|> (1+

5δ

9
)Z(S)

where the third inequality follows from the fact that (1− δ

8)(1+ δ) ≥ (1+ 5δ

9 )(1+
δ

9)(1+
δ

80).

Properties of the genesis block generation process. We now establish a number of

properties of the genesis block generation process.

Lemma 16 (Graded Consistency). If any honest party Pi accepts genesis block B with

wPi(B)> 1, then for any honest party Pj, wPj(B)≥ wPi(B)−1.

Proof. Let wPi(B) = k > 1. Since Pi accepted B with rank k at some round r, he must

have received a message of the form (B,El+1, ..,Ek+1), where
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B is a valid block that contains H(El+1);

Ek+1 contains ck and for k+2 < j ≤ l +1, E j contains H(E j−1); and

ck is the challenge computed by Pi at round k.

Since k> 0, according to Algorithm 3, Pi at the same round is going to diffuse (B,El+1, ..,Ek+1,Ak),

where H(Ak) = ck is contained in Ek+1 and Ak contains all the messages received by

Pi at round k. All honest-party challenges of round k−1 were received in this round;

therefore, all honest parties have accepted or will accept block B by the next round and

the lemma follows.

Lemma 17 (Validity). Genesis blocks computed by honest parties before round 2l+1,

will be accepted by all honest parties in the next round.

Proof. Suppose honest party Pi mined genesis block B at round m. According to Al-

gorithm 1, B contains the challenge he has computed at the last round of the challenge-

exchange phase. In addition, when the party diffuses it, it includes the message sets

Al+1, . . . ,Ar, where A j contains the messages received by Pi at round j and r = 2l +

2−m. Since Pi is honest, the following hold:

B is a valid block that contains H(Al+1);

for r+1 < j ≤ l +1, A j contains H(A j−1);

if cr is the challenge sent by some honest party at round r, then cr is contained in

Ar+1; and

all honest parties are going to receive the message.

Thus, all honest parties are going to accept B at round m+ 1 and the lemma follows.

Lemma 18 (Freshness). Assume a typical execution and let r ≤ l + 2. Then, every

block computed before round r cannot be part of some chain with genesis block B,

where wP(B)≥min(l,r−1) for some honest party P.

Proof. If l ≤ r− 1, note that l− 1 is the greatest rank that can be assigned by Algo-

rithm 3, hence it always holds that wP(B)< l. Next, we analyze the other case, where

r−1 < l.

We first look into the case where the block in the statement is a genesis block. For

the sake of contradiction, suppose the adversary mines some genesis block B before

round r, and this block is accepted by some honest party P with a value greater or equal

to r−1. In the worst case, that means that the adversary also created sets Al+1, . . . ,Ar+1

such that:
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B is a valid block that contains H(Al+1);

for r+1 < j ≤ l +1, A j contains H(A j−1); and

if cr is the r round challenge of P, cr is part of Ar+1.

Due to the random nonce honest parties add to their challenge at every round, the prob-

ability that the adversary can guess cr before round r is negligible in κ. Hence, to put it

more simply, the adversary must compute sets Al+1, . . . ,Ar+1 such that H(Al+1||H(. . .H(Ar+1) . . .))

is equal to c, where c is the value in some of the blocks he has precomputed before see-

ing cr, and cr ∈ Ar+1.

By the typicality of the execution we can show the following: First, since cr is sam-

pled from some high min-entropy distribution, the adversary will compute H(Ar+1),

for the first time, after seeing cr. This in turn, implies that it will compute H(Ar+2||H(Ar+1))

after computing H(Ar+1) for the first time, since H(Ar+1) is sampled from a uniform

distribution. Inductively, H(Al+1||H(. . .H(Ar+1) . . .)) must have been queried after cr

was sampled. This is a contradiction, since the RO was queried with a string contain-

ing c, which is equal to H(Al+1||H(. . .H(Ar+1) . . .)), before the later query happen for

the first time. Therefore, the adversary cannot create a genesis block that invalidates

the statement of our lemma.

Otherwise, suppose that there exists some non-genesis adversarial block B′, that

has been mined before round r and is part of a chain with genesis block B, where for

some honest party P, wp(B) ≥ r− 1. Again due to collision resistance, we can show

that with overwhelming probability B must have been mined before B′, and thus as

we proved for the first case, the probability that a genesis block with these properties

exists is negligible in κ. Hence, the lemma follows.

Weak chain growth. We now turn our attention to the weight of chains and prove a

weak chain-growth property. In the original Bitcoin backbone protocol [GKL15], it

was proved that chains grow at least at the rate of successful rounds, independently

of the adversary’s behavior. Here, at least initially, the chains of honest parties grow

in a “weak” manner, in the sense that the adversary is able to slow down this growth

by using his own blocks. Later on, we will show that after some specific round our

protocol also achieves optimal chain growth.

Lemma 19. Assume a typical execution and let rounds r,s be such that l+2≤ r≤ s <

2l+2, and let S = {r, . . . ,s−1},S′ = {2, . . . ,s−1}. Suppose that at round r an honest

party, say, P1 has7 a chain C such that wP1(C ) = d. Then, by round s, every honest

7We use the terminology “P has a chain at round r”, to denote the fact that P at the end of r−1 has
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party P will have received a chain C ′ of weight at least wP(C ′) = d− 2+ 3 ·Y (S)−
Z(S′).

Proof. We start by dealing with the case where s < 2l + 1. Let `(r′) = d iff d is the

minimum value of the set {`C |P is honest and at round r′ adopts chain C}. Observe

that if at round r, P1 has a chain C of weight wP1(C ) = d, then he broadcast C at an

earlier round. Due to Lemma 16, and by the fact that r ≤ s < 2l + 1, it follows that

every honest party P will receive C by round r, and wP(C ) ≥ d− 1. It is easy to see

that if each honest party P at some round r′ < 2l + 1 has received a chain C where

wP(C ) ≥ k, then for every round s′ : r′ ≤ s′ < 2l +1, it holds that `(s′) ≥ k−1. Thus

for every round s′ : r ≤ s′ < 2l +1 it holds that `(s′)≥ d−2.

Next, we prove that uniquely successful rounds increase the value of `.

Claim 1. Suppose round r is uniquely successful and `(r) = d. Then for any round

s : r < s < 2l+1 it holds that `(s)≥ d+2. Moreover, if the adversary has not diffused

by round s any chain C that contains an adversarial block B such that `C (B) = d+2, it

holds that `(s)≥ d +3.

Proof of Claim. The proof is quite straightforward. For the first part, since `(r) = d

and r is uniquely successful, an honest party will broadcast a chain C at round r where

`C ≥ d +3. Thus, at round r+1 all parties will receive a chain that has weight at least

d + 3 according to their view. This implies that, at worst, they may adopt a chain of

the same weight, hence in any case it holds that `(s)≥ d +2.

Next, for the sake of contradiction, suppose that there exists a round s > r, such

that the adversary has not broadcast any block B′ = head(C ′) such that `C ′(B′) = d+2

and C ′ is valid, and `(s) < d + 3. Since at round r+ 1 honest parties receive C , they

will all adopt a chain that weighs in their view at least d + 3. Otherwise, they would

adopt C . Moreover, they will never adopt a chain with smaller weight. Hence, the

only way `(r+1) = d+2 is if a chain that has weight d+2 for some honest party was

broadcast at some round. By our assumption, an honest party has mined the head of

this chain. Since `(r) = d, he must have done that before round r, otherwise the chain

would weigh at least d+3 for any honest party. However, if he mined this chain before

round r, at round r all honest parties would have received this chain and `(r) = d +2,

which is a contradiction. Hence, the claim follows. a

Now, note that from Lemma 18, the adversary can only use blocks he computed

after round 1 of the challenge exchange phase to slow down chain growth. We have

adopted this chain. Otherwise, we use the term “P has adopted a chain at round r”.
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two cases. In the first case, Y (S)≤ Z(S′). The claim above guarantees that every time

a uniquely successful round r′ happens, `(r′+ 1) ≥ `(r′) + 2. Thus, by repeatedly

applying this argument we immediately get that:

`(s)≥ d−2+2Y (S)≥ d−2+3Y (S)−Y (S)

≥ d−2+3Y (S)−Z(S′),

which implies that at round s all honest parties have received a chain that has sufficient

weight according to the lemma.

Otherwise, Y (S) > Z(S′). Note that for every uniquely successful round, in order

for the condition of the claim above to hold, the adversary must broadcast different

blocks that have weight at least `(r)+2 = d. Thus, for at least Y (S)−Z(S′) uniquely

successful rounds the condition of the claim will not hold and for any such round r′,

`(r′+1)≥ `(r′)+3. Thus,

`(s)≥ d−2+3(Y (S)−Z(S′))+2Z(S′)

≥ d−2+3Y (S)−Z(S′).

We can extend this result for the case where s = 2l + 1. If r = s, then we have

already argued that all parties will have chains that weigh at least d− 2 at round r.

Otherwise, if r < s, by our previous arguments we know that it holds that `(s− 1) ≥
d− 2+ 3Y (S \ {s− 1})− Z(S′ \ {s− 1}). If s− 1 is uniquely successful, it follows

that all parties will adopt chains that weigh at least d− 2+ 3Y (S)−Z(S′) ≥ d− 2+

3Y (S)−Z(S). Otherwise, the lemma is trivially satisfied.

Universal chain validity. A novelty of our construction is that the same genesis block

may have different weight for different parties. Unfortunately, it could be the case that

due to the adversary’s influence, a genesis block is valid for one party but invalid for

another. This could lead to disagreement, in the sense that some honest parties may

adopt a chain that others don’t because it is not valid for them. We will show that with

overwhelming probability such an event cannot occur for our protocol; as such, chain

validity is a “universal” property; if some honest party accepts a chain C as valid, then

C will also be valid for all other parties.

Notice, that in order to prove the following lemma we need l to be greater than a

value that depends on 1/γ, i.e. the expected time it takes for honest parties to mine

a block, and the security parameter κ (see also Remark 1). Intuitively l should be

large enough so that (i) honest parties mine at least one block at this time interval,
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and (ii) any adversarial chain that is based on a genesis block diffused at the end of

the bootstraping phase will never be adopted by honest parties (because such genesis

block will have too small weight in comparison).

Lemma 20. Assume a typical execution and Assumption 1, and that at round r an

honest party P has chain C . Then, C will also be valid for all other parties from this

round on.

Proof. For the sake of contradiction, suppose there exists some honest party P′ such

that P′ has received chain C at round r and it is not valid for him. The only reason this

may happen is that P′ has not accepted C ’s genesis block B. By Lemma 17 all honest

parties know the genesis blocks mined by other honest parties, thus B must have been

computed by the adversary. By Lemma 16, B was accepted by honest parties only at

round 2l + 1; no honest party accepts new genesis blocks after this round. We will

show that with overwhelming probability in κ, no honest party will ever accept a chain

based on B.

We start by showing this fact for the round r′ = 2l +1. Without loss of generality,

suppose that P is the first honest party that adopts a chain based on B at round r′. By

the typicality of the execution, it holds that honest parties mine at least one genesis

block before round l + 2+(1− δ)κ/γ, i.e., in (1− δ)κ/γ rounds, with weight at least

l− (1− δ)κ/γ. Hence, it follows from Lemma 19 that every honest party at round r′

will have a chain of weight at least l− (1− δ)κ/γ− 2+ 3(Y (S′)− 1)−Z1(S), where

S′ = {l +2, . . . ,r′−1},S = {2, . . . ,r′−1} and Z1(S) is the set of blocks the adversary

has broadcast to slow down chain growth during rounds in S.

On the other hand, since block B is adversarial, and chain C is accepted for the

first time by an honest party at round r′, all of its blocks must be adversarial; possibly

C contains just B. By definition block B weighs 1 for P. Thus, by Lemma 18 the

adversary can start extending C at round 2. However, the blocks that the adversary

uses to slow down chain growth cannot also be used for C , because they belong to

chains whose genesis block has been announced earlier. So let Z2(S) denote the blocks

mined by the adversary in S, that are not in Z1(S). In order for C to be accepted

by some honest party, it must hold that its weight is bigger than that of other chains

received:

1+3(Z2(S)−1)≥ l− (1−δ)κ/γ−2+3(Y (S′)−1)−Z1(S).

Since the blocks counted in Z1(S) and Z2(S) are different, and S′ ⊆ S, the above im-
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plies:

3Z(S)≥ l− (1−δ)κ/γ+3Y (S′)−3. (3.1)

Now, by the typicality of the execution, it holds that Z(S′) < Y (S′), since |S′| ≥ (1−
δ)κ, and Z(S \ S′) < (1+ δ)lβ, since |S \ S′| = l ≥ (1− δ)κ. Then, since by our as-

sumptions we have that

3(1+δ)lβ < l− (1−δ)κ/γ−3, (3.2)

it follows that inequality 3.1 cannot hold and thus no honest party will ever accept a

chain based on B at round r′. By exactly the same arguments for round r′+1, we can

show that no honest party will adopt a chain that starts with B.

Note now, that this would imply that Lemma 19 should hold for r,s≤ 2l+2. Then,

once again we can apply the same techniques as above for round r′+2, and show that

no honest party will adopt a chain starting with B. Inductively, it can be shown that

this fact holds for any r, and thus the lemma follows.

The complete version of the weak chain growth lemma follows from the argument

we’ve made above.

Corollary 21. Assume a typical execution and Assumption 1. Let rounds r,s be such

that l +2≤ r ≤ s, and let S = {r, . . . ,s−1},S′ = {2, . . . ,s−1}. Suppose that at round

r an honest party, say, P1 has a chain C such that wP1(C ) = d. Then, by round s, every

honest party P will have received a chain C ′ such that wP(C ′)≥ d−2+3 ·Y (S)−Z(S′).

A bound on adversarially precomputed blocks. The honest parties begin mining

right after the challenge-exchange phase. Note that it does not help the adversary to

precompute blocks before the challenge-exchange phase, except for the small proba-

bility of the event that some of his blocks happen to extend future blocks. We have

shown that the adversary cannot create a private chain that honest parties will adopt if

he starts mining at the first round of the challenge-exchange phase. It is though possi-

ble to start mining after the first round in order to gain some advantage over the honest

parties. The following lemma provides a bound on the number of blocks mined during

the challenge-exchange phase with sufficient weight so that they can be later used by

the adversary.
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Lemma 22 (Precomputed blocks). Assume a typical execution and Assumption 1. Let

R be the set that contains any adversarial block B mined before round l + 2, where

h(B)> l−1− (1−δ)δ2κ. Then, |R|< 5δ

9 κβ.

Proof. Let B = head(C ) be a block that is contained in R and B′ be the genesis block of

C . First, we are going to show that if B′ was computed before round l+1−2(1−δ)δ2κ,

then B must have been computed after round l+1− (1−δ)δ2κ. Suppose that block B′

was computed at round l +1− r∗ of the challenges phase, for r∗ > 2(1−δ)δ2κ; thus,

by Lemma 18 it holds that hC (B′)< l− r∗. In order for C to have the required weight,

the adversary must have mined at least

d((l−1− (1−δ)δ2
κ)− (l− r∗−1))/3e= d(r∗− (1−δ)δ2

κ)/3e

blocks, starting from round l + 1− r∗. Due to the typicality of the execution, it holds

that the adversary after r∗− (1−δ)δ2κ rounds has computed at most (1+δ)(r∗− (1−
δ)δ2κ)β blocks. By our assumptions, β < f/2 ≤ 1/6, and thus this number of blocks

is not sufficient to get a chain of the required weight, that is

(1+δ)(r∗− (1−δ)δ2
κ)β < d(r∗− (1−δ)δ2

κ)/3e.

Therefore, the adversary will start mining B after round l + 1− (1− δ)δ2κ, for any B

in R.

Next, we are going to bound the number of blocks the adversary can compute

in 2(1− δ)δ2κ rounds; recall that we are interested in blocks that were mined after

round l− 2(1− δ)δ2κ and before round l + 2. Due to typicality, the adversary mines

at most (1+ δ/9) · 2(1− δ)δ2κβ(< 5δ

9 κβ) blocks in 2(1− δ)δ2κ rounds. The lemma

follows.

We are now ready to prove the common prefix, chain quality and chain growth

properties.

Common Prefix. Every time a uniquely successful round happens all honest players

converge to one chain, unless the adversary diffuses some new block. This turns out to

be a very important fact and a consequence of it is described in the next lemma.

Lemma 23. Suppose block B in chain C is a u.s. block and consider a chain C ′ such

that B 6∈ C ′. If `C′ ≥ `C(B)−1≥ 0, then there exists a unique adversarial block B′ ∈ C ′

such that `C ′(B′) ∈ [`C (B)−1, `C (B)+1]. Moreover, if B is not a genesis block, then

B′ will also not be a genesis block.
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Proof. Assume block B was mined at some round r. If B is not a genesis block, then

for any honest block B′′ mined before round r it should hold that `(B′′) ≤ `(B)− 2.

Otherwise, at round r no honest party would choose the parent of B to mine new

blocks. If B is a genesis block, then no other honest party has mined a block in some

previous round. On the other hand, for any honest block B′′ mined after round r it must

hold that `(B′′)≥ `(B)−1+3 = `(B)+2, since honest parties will only extend chains

of length at least `(B)− 1 after this round. Thus, if a block with weight in the given

interval exists, it must be adversarial.

We next proceed to argue that such a block always exists. The only reason that such

a block may not exist, is if `C ′(tail(C ′))> `C (B)+1, which for the sake of contradic-

tion we assume. First, take the case where B is a genesis block. By our assumption, it is

implied that all honest parties receive tail(C ′) before B. Hence, no honest party would

compute another genesis block, which is a contradiction. For the other case, suppose

B is not a genesis block, and let B′′ be the parent of B. Then, hC (B′′) ≤ `C (B)− 2,

and thus hC (B′′)< `C ′(tail(C ′)). This implies than every honest party received tail(C ′)
before block B′′. But then, no honest party would mine on the parent of B, because it

would have lower weight than B′, which leads to a contradiction. Note, that the last

argument holds, even if without our initial assumption, i.e., by just assuming B′ is a

genesis block. Hence, the lemma follows.

We use Lemma 23 in order to show that the existence of a fork implies that the

adversary has mined blocks proportional in number to the time the fork started.

Theorem 24. Assume a typical execution and Assumption 1. Then, the strong common-

prefix property holds with parameters k ≥ 2κ f and r0 = 2`+2.

We first prove a weaker lemma, called common-prefix lemma in [GKL15]. After

proving this lemma for our own model, we can apply the same ideas as in [GKL15] to

get a proof for the theorem.

Lemma 25. Assume a typical execution and Assumption 1, and consider two chains

C1 and C2. If C1 is adopted by an honest party at a round after round 2l + 2, and C2

is either adopted by an honest party or diffused at the same round, and has weight

`C2 ≥ `C1 , then C dk1 � C2 and C dk2 � C1, for k ≥ 2κ f .

Proof. We first show that a fork between two chains implies that the adversary must

have mined a number of blocks proportional to the uniquely successful blocks associ-

ated with these chains.
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Claim 2. Let C1,C2 be two chains diffused at some point of the execution, and B′0, . . . ,B
′
k

be u.s. blocks in chains C ′0, . . . ,C ′k in increasing order of round mined. Then, if

`C1∩C2 < `(B′0)−1 and for all C ∈ {C1,C2}\C ′k: `(B′k)−1 ≤ `C , there exist different

adversarial blocks B0, . . . ,Bk such that for i ∈ {0, . . . ,k}: `(Bi)∈ [`(B′0)−1, `(B′k)+1]

and Bi ∈ {C ′0, . . . ,C ′k}∪{C1,C2}.

Proof of Claim. We iterate over U = {(B′0,C ′0), . . . ,(B′k,C ′k)} in the order of increasing

index. Note that by the Claim in Lemma 19, if (B,C ) and (B′,C ′) are two consecutive

elements of U , then

`C ′(B
′)− `C (B)≥ 2 (3.3)

Consider (B,C ) ∈U and suppose all the previous elements have been associated

with a distinct adversarial block. In particular, let (B̄, C̄ ) be the previous one associated

to (B̄′, C̄ ′). To choose the adversarial block (B′,C ′) to associate with (B,C ) we con-

sider the following cases (an example is presented in Figure 3.4 covering most of the

cases). In each case, we define what C ′ should be, and B′ is determined by Lemma 23;

our assumptions ensure that the preconditions of the lemma are always satisfied.

• If C /∈ {C1,C2} and C̄ ∈ {C1,C2}, then we have two cases. If B̄′ 6∈ C , then let

C ′ = {C1,C2} \ C̄ ′. Moreover, let B∗ in chain C ∗ = C be the block guaranteed

from Lemma 23 for block B̄ in chain C . This block will be used as a matching in

a subsequent step. Otherwise, B̄′ ∈ C . Then C ′ should be chosen appropriately

from {C1,C2}, so that in the next transition from a chain not in {C1,C2} to a

chain in {C1,C2}, the corresponding block from Lemma 23 does not intersect

with the previously chosen block. This is always possible since any of the two

chains can be selected.

• If C ∈ {C1,C2} and C̄ /∈ {C1,C2}, then C ′ ∈ {C1,C2}\C . If C ∗ is defined from

a previous application of the first rule, we match B with B∗.

• If C ∈ {C1,C2} and C̄ ∈ {C1,C2}, then let C ′ ∈ {C1,C2}\C .

• If C /∈ {C1,C2} and C̄ /∈ {C1,C2}, then let C ′ ∈ {C1,C2} \ C̄ ′. The adversarial

block guaranteed by Lemma 23 for C ′ is not common to C1,C2 due to `C1∩C2 <

l(B′0)−1.

• If B = B0, then if C ∈ {C1,C2}, C ′ ∈ {C1,C2}\C . Otherwise, as in the first case,

C ′ should be chosen appropriately from {C1,C2}.
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Figure 3.4: An example of the matching described in the claim in Lemma 25. B0, . . . ,B7

are u.s. blocks and the dashed triangles point to the places where according to

Lemma 23 there should exist an adversarial block. In this example we can use

Lemma 23 two times for block B5. The “extra” block is matched to B7.

We need to verify that the above procedure does not assign the same block to two

distinct elements of U , (Bu,Cu) and (Bv,Cv).

Note first that this is not possible if

|`Cu(Bu)− `Cv(Bv)| ≥ 3.

For example, by Equation (3.3), this is true if they are not consecutive in U . To see

this, observe that by Lemma 23,

`C ′u(B
′
u) ∈ [`Cu(Bu)−1, `Cu(Bu)+1],

while

`C ′v(B
′
v) ∈ [`Cv(Bv)−1, `Cv(Bv)+1].

Since these intervals are disjoint due to the inequality above, it follows that B′u 6= B′v.

Thus, we only need to consider the case

`Cu+1(Bu+1)− `Cu(Bu) = 2.

It is not hard to see that this situation cannot occur when Bu+1 is a descendant of Bu.

Moreover, when the blocks assigned are on different chains, it is guaranteed that they

are different. All cases are directly covered by these two observations, except one:

when the second rule is applied. We have two cases. In the first one, B∗ is not defined

(or used) by some earlier application of the first rule. Then, it follows that Bu−2, if

defined, is not in any of {C1,C2}, and thus B′u−1, the corresponding adversarial block,
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can be in any of {C1,C2}. Hence, B′u−1,Bu will be in different chains. Otherwise,

B∗ is matched to Bu, which never coincides with any other block in the matching, as

the previous adversarial block matched is never on the same chain. Hence, the claim

follows.

a

Now we can proceed to the core of the proof. The idea is that if a fork exists, we

will use the previous claim multiple times and get a matching between a sufficiently

large amount of uniquely successful blocks and adversarial blocks. Then, we will show

that it is impossible for the adversary to mine that number of blocks.

Let block B′0 ∈ C1∩C2 be the u.s. block mined the latest, where all subsequently

mined u.s. blocks are descendants of B′0. If no such block exists, assume there exists

a block B′0, mined in round 0, that is the parent of all genesis blocks, as in Figure 3.5,

but does not affect the weight of the chains it belongs too. Thus, in this case, whenever

we write for example C1 we mean C1 augmented with B′0. In any case, it holds that any

u.s. block mined after B′0 will be a descendant of B′0, and B′0 ∈C1∩C2.

B′0

C1

C2
B′1

B′2

B′3

C1

C2B′2

B′3B′1

B′0

G1

G2

Figure 3.5: An example of two scenarios for the matching described by Lemma 25.

Notice that in the second one an artificial block B′0 has been introduced to aid our

analysis.
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Now, if possible, let block B′1 6= B′0, the head of some chain C ′1, be the u.s. block

mined the latest, where (1) the last block in C1∩C ′1 is in C1∩C2 and (2) for any u.s.

block B′ that is the head of chain C ′, and B′ is mined after B′0, it holds that the last

block in C1 ∩ C ′1 is the same or an ancestor of the last block in C1 ∩ C ′. Note that

B′1 6∈ C1, otherwise it would satisfy the definition of B′0 which is a contradiction. Let

B′ be the first u.s. block mined after B′0 that is in some chain C′. B′ is a descendant of

the last block of C1∩C ′1. Otherwise, by the definition of B′1, it would be equal to the

last block of C1∩C′1, and would satisfy the definition of B′0 which is a contradiction. It

follows that `C1∩C ′1 ≤ `C ′(B′)−3 < `C ′(B′)−1. Additionally, since some honest party

has chain C1 at round r, it holds that `C1 ≥ `C ′(B′)−1. Thus, we can apply Claim 2 for

the chains C1 and C ′1 and for the u.s. blocks mined after B′0, and up to B′1.

We apply this process as many times as possible. B′2, the head of some chain C ′2,

is the most recently mined u.s. block where (1) the last block in C1∩C ′2 is in C1∩C2

and (2) for any u.s. block B′ in chain C ′ mined after B′1 it holds that the last block in

C1∩C ′2 is the same or an ancestor of the last block in C1∩C ′. Then we can again apply

Claim 2 for the chains C1 and C ′2, from the first honest block mined in a u.s. round

after B′1 and up to B′2.

We will argue that the adversarial blocks matched in the two applications of Claim 2

so far will be different. Let B′ be the next u.s. block mined after B′1. B′ will be a de-

scendant of the (real) genesis block of C1. Notice that in the worst case B′1 has been

matched to a block B′′ in C1. Hence, l(B′)− l(B′′) = 3d, for some d ∈ N, since they

share the same genesis block. If l(B′)− l(B′′) = 0, then if follows that l(B′)− l(B′1)< 2

which is impossible. Otherwise, l(B′)− l(B′′)≥ 3, and thus the block that is going to

be matched to B′ by Lemma 23 cannot be B′′. The same argument applies, for the rest

of the blocks matched with this process. The process ends when no block B′i, for some

positive i, with the desired properties exists. Notice that it may be the case that the

process ends for i = 0, no block matching the specification of B′1 exists.

So for any remaining u.s. block B that is the head of some chain C , mined after

B′i, it holds that the last block of C ∩C1 is not in C1∩C2. Moreover, since C1,C2 have

been adopted by honest parties up to round r, it holds that `C2 ≥ `C1 ≥ `(B)−1. Hence,

we can apply Claim 2 for chains C1,C2 and for all remaining u.s. blocks. Thus, there

exists a mapping between all u.s. blocks mined after B′0 and distinct adversarial blocks

that are descendants of B′0.

Now, for the sake of contradiction, assume that C1 diverges from C2 at some round

r′ ≤ r− κ, i.e., the last block of the their common prefix is computed before round
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r′. We have two cases. If B′0 actually exists, all adversarial blocks of the matching

must have been mined on and after the round B′0 was mined. Also, since B′0 ∈ C1 ∩
C2, it must have been mined before round r′. Therefore, there exists a set of rounds

S = {r0, . . . ,r′, . . . ,r} such that Z(S) ≥ Y (S \ {r0}) and |S| ≥ κ. This contradicts the

typicality of the execution.

In the second case, B′0 is not a real block, and the adversary may use blocks that

he has precomputed during the challenge-exchange phase. By the typicality of the

execution, the honest parties have computed at least one genesis block that weighs at

least l− (1− δ)δ2κ. Then, all adversarial blocks in the matching must weigh at least

l−(1−δ)δ2κ−1, and by Lemma 22 there are at most 5δ/9 ·βκ such blocks computed

during the challenge exchange phase. This implies that for S = {1, . . . ,r}, it holds that

Y (S) ≤ 5δ/9 · βκ+ Z(S). By Lemma 15, this is a contradiction. Hence, C1 and C2

diverge after round r−κ.

By the typicality of the execution, at most (1+δ)κ f (< 2κ f ≤ k) blocks have been

mined after round r−κ. Hence, the fork between C1 and C2 is less that k blocks long,

and the lemma follows.

Next, using the common-prefix lemma we can prove that our protocol satisfies the

strong common-prefix property.

Proof of Theorem 24. The proof is similar to that of [GKL15]. Essentially, we proved

the common-prefix lemma and now we want a proof for the common-prefix theorem

in their terms. We give a brief sketch of the proof, noting any differences that arise in

our model.

Assume that there exist chains C1,C2 adopted by parties P1,P2 at rounds r1,r2 such

that 2`+2 < r1 ≤ r2 and C dk1 6� C2. Let r ∈ [r1,r2] be the smallest round such that there

exists an honest party P′ that adopts a chain C ′2 such that C dk1 6� C ′2. If r = r1, then it

holds that either `C1 ≤ `C ′2 or `C ′2 ≤ `C1 , which is a contradiction to Lemma 25.

Otherwise, if r > r1, let C ′1 be the chain that party P′ adopted at round r−1. Then,

it holds that

(C ′2
dk � C ′1)∧ (C

dk
1 � C ′1)∧ (`(C ′2

dk
)≥ `(C dk1 )) =⇒ C dk1 � C ′2

dk

The first conjunct follows from the fact that C ′2 was diffused at round r− 1, and

Lemma 25. The second one follows by the definition of r. The last one follows from the

fact that P′ selected chain C ′2 despite knowing C1, hence it holds at least that hC ′2 > `C1 ,
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which in turn implies the third conjunct. The last implication follows from the fact

that C dk1 and C ′2
dk are part of the prefix of C ′1, and C1 is shorter or of equal length to C ′2

(remember that they both share the same genesis block). This is a contradiction, and

the theorem follows.

Chain Growth. We proved that after round 2l+1 the strong common-prefix property

is satisfied. This implies that all parties share a common genesis block after this round.

The next lemma shows that this is sufficient in order to get chain growth at the same

level as in the original Backbone protocol after this round.

Lemma 26. Assume a typical execution, and that at round r an honest party P1 has a

chain C of weight wP1(C ) = d, and all honest parties after round r− 1 adopt chains

that share the same genesis block B. Then, by round s ≥ r, every honest party P will

have received a chain C ′ such that wP(C ′)≥ d−1+3∑
s−1
i=r Xi.

Proof. Since all parties adopt chains with the same genesis block after round r−1, and

P1 has adopted a chain C of weight d, there are two cases: either (1) `C = d− 1 and

any chain that honest parties adopt after round r−1 has a weight that is congruent to

d or d−1 modulo 3, or (2) `C = d and the weight is congruent to d or d+1 modulo 3.

This observation is implied from the fact that each extra block adds 3 units of weight to

the chain and B can only have two different weights under the views of honest parties.

It is sufficient to study only one of the two cases so w.l.o.g. suppose that the weight

of the chains is congruent to d or d−1 modulo 3. The proof is by induction on s−r≥ 0.

For the basis (s = r), observe that if at round r P1 has a chain C of weight wP1(C ) = d,

then he broadcast C at an earlier round (than r). It follows that every honest party P

will receive C by round r and wP(C )≥ d−1.

For the inductive step, note that by the inductive hypothesis every honest party P

has received a chain C ′ of weight at least wP(C ′) = d′ ≥ d− 1+ 3∑
s−2
i=r Xi by round

s− 1. When Xs−1 = 0 the statement follows directly, so assume Xs−1 = 1. Observe

that every honest party queried the oracle with a chain of weight at least d′ at round

s−1. It follows that every honest party P successful at round s−1 broadcast a chain

C ′ of weight at least wP(C ′) = d′+3. For every other party P′ it holds that wP′(C ′)≥
d′+2≥ d−1+3∑

s−1
i=r Xi−1. However, no chain that an honest party adopts can have

length d′+ 2, because d′+ 2 is congruent to d− 2 modulo 3. Thus all honest parties

adopt chains that have length at least d′+3 and the lemma follows.
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It can be easily shown that Lemma 26 implies the chain growth property after round

2l +1.

Theorem 27. Assume a typical execution and Assumption 1. The bootstrapped Bitcoin

protocol satisfies the chain growth property for r0 = 2l +2, speed coefficient τ = (1−
δ)γ and s≥ κ.

Chain Quality. We first observe a consequence of Theorem 24.

Lemma 28. Assume a typical execution and Assumption 1. From round 2l + 2 and

onwards of the bootstrapped backbone protocol, the adversary never has a chain which

is more than k ≥ 2κ f blocks longer than the chain of some honest party in the next

round, and shares the same genesis block.

Proof. Given any execution and an adversary that at a round r has a chain C which is k

blocks longer than the chain C ′ of an honest party P, we can define an adversary such

that at round r + 1 the common-prefix property does not hold for parameter k. The

adversary simply sends C to P′ 6= P at round r.

Theorem 29. Assume a typical execution and Assumption 1. Suppose C belongs to an

honest party and consider any k ≥ 16κ f/γδ consecutive blocks of C computed after

round 2l +2 of the bootstrapped backbone protocol. Then, the adversary cannot have

contributed more than (1+ δ

2)
β

γ
· k ≤ (1− δ

4)k of these blocks.

Proof. The proof idea is as follows. Suppose that in a chain C a large number of

consecutive blocks exist, such that a large fraction of them were computed by the

adversary. Then it must be that the honest parties have contributed their blocks to other

chains. Since we are at a round sufficiently away from the beginning of the protocol

(at least 2l+2), we know (by Lemma 26) that the chains of the honest parties advance

analogously to their power. We obtain then a contradiction by setting up the parameters

so that C is shorter than what Lemma 26 implies.

Let us denote by Bi the i-th block of the chain C of an honest party P at some round

r and consider any k consecutive blocks Bu, . . . ,Bv. Define K as the least number of

consecutive blocks Bu, . . . ,Bw that include the k given ones (i.e., v ≤ w) and have the

property that there exists a round at which an honest party was trying to extend the

chain ending at block Bw. Observe that K is well defined since C belongs to an honest

party. Define also r1 as the round that Bu was created, r2 as the first round that an

honest party attempts to extend Bw, and let S = {r : r1 ≤ r < r2},S′ = S\{r1}.
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Now let x denote the number of blocks from honest parties that are included in the

k blocks and—towards a contradiction—assume that

x≤
[
1−
(

1+
δ

2

)
β

γ

]
k ≤

[
1−
(

1+
δ

2

)
β

γ

]
K.

Suppose first that all the K blocks {B j : u≤ j≤ w} have been computed during the

rounds in the set S. Then,

Z(S)≥ K− x≥
(

1+
δ

2

)
β

γ
K ≥

(
1+

δ

2

)
β

γ

(
X(S′)−2κ f

)
The first inequality comes from the fact that the adversary computed K− x of the K

blocks, since by the definition of Bw all blocks from Bv up to the last block before Bw

must be adversarial. The second one comes from the postulated relation between x and

K. To see the last inequality, assume X(S′)−2κ f > K. Note first, that by Lemma 28

all honest parties at round r1 have chains with weight at most 3 · 2κ f less than the

weight up to Bu. Next, note that by Theorem 24 after round r1 all honest parties have

chains starting with the same genesis block. Thus, assuming X(S′)− 2κ f > K, the

assumption that an honest party is on Bw at r2 contradicts Lemma 26.

To obtain the stated bound, note that if |S|< K/(1+δ) f , then, since f is bounded

away from 1 by a constant, by the typicality of the execution, in |S| rounds the total

number of solutions is less than K. Otherwise, |S| ≥ K/(1+δ) f ≥ k/2 f ≥ 8κ/γδ and

the bound follows from the typicality of the execution, since (using E[X(S)] ≥ γ|S|,
and (1+ δ

2)(1− δ

4)≥ (1+ δ

8))

Z(S)≥
(

1+
δ

2

)
β

γ

(
X(S′)−2κ f

)
> (1+

δ

2
)(1− δ

4
)β|S| ≥ (1+

δ

8
)β|S| ≥ Z(S).

To finish the proof we need to consider the case in which these K blocks contain

blocks that the adversary computed in rounds outside S. By the typicality of the exe-

cution, this event is impossible.

Corollary 30. Assume a typical execution and Assumption 1. The bootstrapped Bit-

coin protocol satisfies the chain-quality property with parameters µ = (1+ δ

2)
β

γ
, `0 =

2 f (1+δ)(l +1), and `≥ 16κ f/γδ.

Proof. By the typicality of the execution, both the honest parties and the adversary

have computed at most (1+ δ) f · 2(l + 1) blocks. The statement then follows from

Theorem 29.
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3.4 Applications of the Bootstrapped Backbone Proto-

col

In this section we present applications of our construction, starting with its primary/original

one: a distributed ledger, i.e., a public and permanent summary of all transactions that

honest parties can agree on as well as add their own, despite the potentially disruptive

behavior of parties harnessing less than 1/2 of the hashing power. This entails proving

that the ledger’s required security properties (Persistence and Liveness — cf. [GKL15])

hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated network

setting from scratch, i.e., without any trusted setup. As mentioned in Section 3.1,

the idea of using POWs as an identity-assignment tool was put forth by Aspnes et

al. [AJK05]. Here we build on this idea as well as on the “2-for-1 POWs” technique

from [GKL15] to use our bootstrapped protocol to assign identities to parties. The

assignment relation will possibly assign more than one identities to the same party,

while guaranteeing that the majority of them is assigned to honest parties.

Finally, applying the 2-for-1 POWs technique we can also solve the consensus (aka

Byzantine agreement) problem [PSL80, LSP82] without any trusted setup, even if the

adversary has almost the same hashing power as the honest parties, and in a number

of rounds independent of the number of parties. Indeed, all our protocols have round

complexity linear in the security parameter, and enjoy simultaneous termination.

Compared to other works, most notably [AD15], our approach is different in the

order in which it sets up a “bulletin board” and assigns identities to parties. We choose

to first establish the former—i.e., the ledger—and then assign the identities; in con-

trast, in [AD15] identities are established first in a graded manner, and then using that

infrastructure the parties can implement a broadcast channel. We now turn to the ap-

plications in detail.

Robust public transaction ledger. In order to turn the backbone protocol into a pro-

tocol realizing a public transaction ledger, suitable definitions were given for functions

V(·),R(·), I(·) in [GKL15], we recite them in Table 3.2. Namely, V(〈x1, . . . ,xm) is true

if its input is a valid ledger. Function R(C ) returns the contents of the chain if they con-

stitute a valid ledger, otherwise it is undefined. Finally, I(st,C ,round,INPUT(),RECEIVE())

returns the largest subsequence of transactions in the input and receive tapes that con-

stitute a valid ledger, with respect to the contents of the chain the party already has,

together with a randomly generated neutral transaction. We denote the instantiation of
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our protocol with these functions by ΠBoot
PL .

Content validation pre-

dicate V(·)
V(·) is true if its input 〈x1, . . . ,xm〉 is a valid ledger, i.e., it

is in L .

Chain reading function

R(·)
R(·) returns the contents of the chain if they constitute a

valid ledger, otherwise it is undefined.

Input contribution func-

tion I(·)
I(·) returns the largest subsequence of transactions in the

input and receive registers that constitute a valid ledger,

with respect to the contents of the chain the party already

has, preceded by a neutral random transaction.

Table 3.2: The instantiation of functions I(·),V(·),R(·) for ΠBoot
PL .

Chain quality, chain growth and the strong common prefix property were shown

in [KP15, PSS17] to be sufficient to implement a robust ledger in a black-box manner.

Our protocol satisfies all these properties after a specific condition is met. Chain quality

holds after the 2 f (1+δ)(l+1) block in the chain of any party, as Corollary 30 dictates,

and common prefix and chain growth hold after round 2l+2, according to Theorems 24

and 27. Due to chain growth, after at most (2(1+δ)(1−δ) f/γ+2)(l+1)≤ 14(l+1)

rounds all necessary conditions will have been met with overwhelming probability.

We omit the proofs of the following theorems, as they follow closely the ones found

in [GKL15].

Lemma 31 (Persistence). Assume a typical execution and Assumption 1. Then, proto-

col ΠBoot
PL satisfies Persistence after round 2l +2, for k ≥ 2κ f .

Lemma 32 (Liveness). Assume a typical execution and Assumption 1. Further, assume

oracle Txgen is unambiguous. Then, protocol ΠBoot
PL satisfies Liveness after round

14(l +1), with wait time u = 2k
(1−δ)γ rounds and depth parameter k ≥ 16κ f

γδ
.

Corollary 33. If Assumption 1 holds, then protocol ΠBoot
PL implements a robust trans-

action ledger with parameters r0 = 14(l + 1), u = 2k
(1−δ)γ , and k ≥ 16κ f

γδ
, with over-

whelming probability in κ.

Fast PKI setup. Next, we use the ledger to generate an honest majority PKI from

scratch in a number of rounds that is linear in the security parameter.

Eyal et al. in [ES14] presented the selfish mining attack and showed that under

adversarial influence the “main chain” blocks mined by honest parties may be less
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than their proportion of hashing power. On the other hand, for our applications we re-

quire proportional representation, e.g., if honest parties have a majority of the hashing

power, they should also have a majority of the keys of the PKI generated. To address

this limitation of the protocol, we make use of the 2-for-1 PoW technique described

in [GKL15].

At a high level, the technique allows to do combined mining for two PoW schemes

in the price of one. In more detail, we can add additional information in the queries

to the random oracle, and if the response to the query is less than some value D1, then

we consider it a valid PoW of type 1; if its reverse is greater than some value D2 we

consider it as a valid PoW of type 2. D1 and D2 should be appropriately chosen so

that the events of success in either of these PoWs are independent. The second PoW

is used to “mine” transactions, in the same way blocks are mined. This guarantees

that the number of transactions is proportional to the hashing power of each party. By

having parties broadcast their transactions on one hand, and making sure that at least

one honest block that contains these transactions is in the chain of all honest parties due

to liveness on the other hand, the protocol in [GKL15] manages to achieve consensus

assuming honest-majority of hashing power. Note, that still the selfish mining attack

applies, but it does not affect proportional representation on the transaction level.

In our case, transactions will contain the public keys, and in this way we will obtain

an honest-majority PKI. However, in contrast with [GKL15], we cannot let parties start

mining transactions from the beginning of the execution, since the adversary would

have some additional precomputation time. Instead, we are going to wait for the public

ledger to be established, and then use some of the blocks added by honest parties to

guarantee that all transactions where mined recently enough. In more detail, any PoW

will be represented by a triple 〈w,ctr, label〉. The verification procedure for “block

level” PoWs (“block PoWs” for short) will be of the form

H(ctr,〈G(w), label〉)< D1,

while the verification procedure for the “transaction level” PoWs will be of the form

[H(ctr,〈label,G(w)〉)]R < D2,

where [a]R denotes the reverse of the bitstring a. In w we are going to encode the

information needed for each application. For example, in block PoWs, w will con-

tain the transactions related to this block as well as the hash of the previous block.

Note that by making one hash query of the form H(ctr,〈G(w0),G(w1)〉) and only two
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comparisons, we will be mining PoWs of both types at the same time. Moreover, if

dlog(D1)e+ dlog(D2)e is less than κ, where κ is the size of the hash’s output, then the

events of succeeding in any of the two PoWs are independent, since they depend on

different bits of the hash which are sampled independently and uniformly at random

by the random oracle.

Next, we describe our protocol ΠPKI
PL for a party P. L1,L2 are constants such that

L1 < L2.

Initialization. P runs ΠBoot
PL , as described so far, until she receives a chain of length

at least L1. We choose L1 so that it is guaranteed that all security properties hold,

and about k new blocks have been inserted in the common-prefix of the chains of

all honest players.

2-for-1 mining. Let C be P’s chain at the end of the initialization phase. From now

on, she is going to do 2-for-1 PoW mining, and include in her transaction PoWs

(i) the hash of the (L1− k)-th block of C , and (ii) a randomly generated public

key for which she has stored the corresponding secret key. A new key must be

generated every time she starts mining a new transaction. Whenever P mines a

new transaction, she diffuses it to the network, and whenever she receives one, she

includes it in the transactions of the block she is mining.

The first time P receives a chain of length greater or equal to L2, she runs the

Key extraction procedure (below). The phase ends at round L2
(1−δ)γ , where P runs

the Termination procedure.

Key extraction. P extracts and stores a set of keys from her chain C ′ according to

the following rules: She stores any public key which belongs to a transaction that

(i) is in the first L2− k blocks of C ′, and (ii) the hash of the block contained in the

transaction matches the hash of the (L1− k)-th block in her chain.

Termination. P outputs the keys from the key extraction phase and terminates.

Next, we prove that a consistent PKI with an honest majority is generated at the

end of the execution of protocol ΠPKI
PL . Two properties are guaranteed: (1) honest

parties output the same set of keys and (2) more than half of these keys have been

generated by them. For the rest of this section let α2,β2, f2 be the corresponding

values of α,β, f for the difficulty level D2, e.g. f2 = nqD2
2κ . Moreover, for the rest of

this section, assume that an execution is typical, if in addition to Definition 13 similar

lower and upper bounds hold for random variables X2(S),Z2(S) that correspond to the

number of transaction that honest parties and the adversary compute in a round interval
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S, respectively. Note, that such a typical execution again happens with overwhelming

probability in κ.

Theorem 34. Assume a typical execution and Assumption 1. If dlog(D1)e+dlog(D2)e≤
κ, then for parameters L1 = 14(l + 1) · (1+ δ) f + 2k, L2 = L1 + 5k · (1+ 10

δ
), and

k ≥ 16κ f
γδ

, the following hold for protocol ΠPKI
PL :

All honest players output the same set of public keys;

the majority of the keys are generated by honest parties; and

ΠPKI
PL has round complexity linear in κ.

Proof. First, due to the assumption that dlog(D1)e+ dlog(D2)e ≤ κ we prove that the

events that a party succeeds in mining a PoW of any of the two types in a single query

are independent.

Claim 3. The events that a party succeeds in mining a PoW of any of the two types are

independent.

Proof. Let A,B be the events where a party succeeds in mining a PoW of type 1 and

2 respectively. Let U be the result of the combined mining oracle query. Event A

depends on the first dlog(D1)e bits of U , while event B depends on the last dlog(D2)e
bits. Since each bit of U is sampled independently and uniformly at random, and

dlog(D1)e+dlog(D2)e ≤ κ it follows that A,B do not depend on the same random bits,

and are thus independent.

Let chain C1,C2 be the chains that honest party P adopts at rounds r1,r2 when she

starts the 2-for-1 PoW mining phase and when she extracts the public keys respectively.

W.l.o.g, assume that all parties receive chains of length L1,L2 respectively, at the same

round.

Due to the typicality of the execution, and the fact that L2/(1− δ)γ ≥ κ, note that

all parties will receive a chain of length greater than L2, before round L2
(1−δ)γ . Hence,

the protocol terminates after parties receive a chain of length at least L2.

We first prove that all honest parties will output the same set of public keys. Due

to the common prefix property the chains of all honest parties will be the same up to

block L2− k at the round they extract the public keys. Hence, the set of public keys

they output is exactly the same. Moreover, all honest parties will compute transactions

based on the same L1− k-th block, and thus they will all be valid.

Next, we are going to prove that the majority of these keys have been generated by

honest parties. Since L1− 2k ≥ 4(l + 1), it follows that the last 2k blocks of C1 have
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been mined after round 14(l + 1), and thus the chain quality property holds for this

sequence of blocks. Hence, in the last k blocks of C dk1 there exists at least one honest

block. Moreover, this honest block must have been mined after round r1− 2k
(1+δ) f ,

otherwise more than 2k blocks would have been mined in less than 2k/(1+δ) f rounds,

which contradicts the typicality of the execution. This implies that the adversary cannot

have started mining transactions before this round, as otherwise he would be able to

predict the output of the hash function, and this event does not happen in a typical

execution.

Similarly, it holds that there exists at least one honest block in the last k blocks

of C dk2 , and this block must have been mined after round r2− 2k
(1+δ) f , otherwise P

could not have received a chain of length L2 at round r2. Hence, by the typicality

of the execution, honest parties mine at least Xtrans = (r2− r1− 2k
(1+δ) f )(1− δ

8)α2

transactions from round r1 up to round r2− 2k
(1+δ) f , while the adversary mines at most

Ztrans = (r2− r1 +
2k

(1+δ) f )(1+
δ

9)β2 transactions from round r1− 2k
(1+δ) f up to round

r2. Furthermore, using a similar argument as before, it holds that:

r2− r1 +
2k

(1+δ) f
≥ L2−L1 + k

(1+δ) f
⇔ r2− r1 ≥

2k
(1+δ) f

· (1+ 10
δ
) (3.4)

Hence, putting it all together:

Xtrans−Ztrans ≥ (r2− r1−
2k

(1+δ) f
)(1− δ

8
)α2− (r2− r1 +

2k
(1+δ) f

)(1+
δ

9
)β2

≥ (r2− r1)((1−
δ

8
)α2− (1+

δ

9
)β2)−

2k
(1+δ) f

((1− δ

8
)α2 +(1+

δ

9
)β2)

≥ 2k
(1+δ) f

· (1+ 10
δ
)((1− δ

8
)α2− (1+

δ

9
)β2)−

2k
(1+δ) f

((1− δ

8
)α2 +(1+

δ

9
)β2)

≥ 2k
(1+δ) f

· [(1+ 10
δ
)((1− δ

8
)α2− (1+

δ

9
)β2)− ((1− δ

8
)α2 +(1+

δ

9
)β2)]

>
2k

(1+δ) f
> 0

Where the forth inequality is implied by Inequality 3.4, and the 6th one by the fact that
10
δ
>

2(1+ δ

9 )β2

(1− δ

8 )α2−(1+ δ

9 )β2
, which can be derived by the inequalities from Lemma 15. The

theorem follows.

Note, that our protocol does not guarantee that all honest parties will get the same

number of keys, or even just one. This is the reason why we can only tolerate a static

adversary; if only a few keys are computed, an adaptive adversary can potentially

corrupt all honest parties that hold them. In principle, we can tolerate an adaptive
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adversary followings the ideas found in [PS17]; the difficulty of finding a transaction

D2 is set very low, and parameters L1,L2 are changed accordingly to ensure that all

parties compute approximately the same number of keys.

Consensus and other applications. Next, we describe how ΠPKI
PL can be used in

other contexts. First, a direct application of our protocol is in the context of proof

of stake protocols. In this type of protocols, blocks are mined by randomly selecting

stake holders with probability proportional to their stake. A typical requirement for

bootstrapping such protocols (e.g. [KRDO17, KN12]), is that in the initial state of

the economy the majority of the coins are controlled by honest parties. By assigning

one coin to each public key produced by our protocol, we can efficiently and securely

bootstrap a proof of stake protocol.

A more general application of ΠPKI
PL is in solving consensus (aka Byzantine agree-

ment) [PSL80, LSP82], with no trusted setup, and in a number of rounds independent

of the number of parties. If parties submit transactions containing their input instead

of public keys, it follows that by taking the majority of their output they are going

to achieve Byzantine agreement. That is, everyone will agree on the same value (the

Agreement property), and if all honest parties have the same input v, they are all going

to output v (Validity). Note, that unlike the case of setting a PKI, we conjecture that

this protocol can also tolerate adaptive attacks, as the adversary does not gain anything

by corrupting a party that has already computed a transaction.

Finally, our protocol for the establishment of an honest-majority PKI enables the

application of traditional Byzantine fault-tolerant techniques for ledger creation and

maintenance based on “subcommittees” as opposed to mining (cf. [ACC+17]) to per-

missionless networks. Instead of having arbitrary membership authorities, these com-

mittees can be elected using our protocol with the guarantee of an honest majority.

Note that by changing the difficulty of the transaction-level PoW we can force the

number of parties in the committee to be in a specific predefined interval.

Reducing the communication cost. While the round complexity of our protocol is

independent of the number of parties, this does not hold for its communication cost,

measured by the number of transmitted messages. The reason is that in the challenge-

exchange phase, all parties have to diffuse their random challenges, thus increasing the

communication cost of the protocol by an O(n) factor.

Next, we describe an alternative design for the challenge-exchange phase, for which

we conjecture that the number of different messages diffused8 by honest parties is in-
8Note, that each diffusion requires sending the same message at least O(n) times.
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dependent of their number, and only depends on the security parameter and the pre-

computation time available to the adversary. We do this in the following way: instead

of having all parties sent a random challenge in order to be sure that the genesis blocks

that are later mined are fresh, we demand that each random challenge be accompanied

by a PoW. This way, all honest parties will be sure that at least one honest challenge is

generated with high probability every O(κ) rounds. Moreover, honest parties will only

diffuse random challenges that are tied to a PoW. Thus, the total number of different

messages sent will be upper-bounded by the number of PoWs that the adversary and

the honest parties combined have generated. Also, again different honest parties will

have received the same block with at most one round difference. By combining the

above ideas, we can again create a graded-agreement-type procedure for the genesis

blocks and in the same way achieve consensus.
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Chapter 4

Consensus from Signatures of Work

4.1 Introduction

The consensus problem—reaching agreement distributedly in the presence of faults—

has been extensively studied in the literature starting with the seminal work of Shostak,

Pease and Lamport [PSL80, LSP82]. The problem formulation has a number of servers

(parties) starting with an individual input which should agree at the end to a joint

output that has to match the input in the case where all non-faulty servers happened to

have the same input value. One of the critical measures of effectiveness for consensus

protocols is maximizing their resilience to Byzantine faults, typically denoted by t. It

is known that t < n/2 is necessary to achieve consensus, where n is the total number of

parties, while protocols have been designed that reach that level of resilience assuming

synchrony and a way to authenticate messages using digital signatures [DS83]1 (or

“pseudosignatures” [PW92]). This result is known to be tight since lack of synchrony

would imply t < n/3 [DLS88], while lack of a message authentication mechanism has

a similar effect [Bor96].

Recently, with the advent of blockchain protocols like Bitcoin, the problem has

experienced renewed interest from a much wider community of researchers and has

seen its application expand to various novel settings, such as the so-called “permis-

sionless” setting, where participation in the protocol is both unrestricted and unau-

thenticated. In fact, this setting was initially studied in [Oku05a, Oku05b], where it

was shown that deterministic consensus algorithms are impossible for even a single

1Recall that the protocol in [DS83] tolerates an arbitrary number of Byzantine faults (n > t), but in
the version of the problem of a single sender (a.k.a. “Byzantine Generals,” or just broadcast); in the case
of consensus, t < n/2 is necessary regardless of the resources available to the parties in the protocol
execution (see, e.g., [Fit03, GK18]).

62
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failure but that probabilistic consensus is still feasible by suitably adapting the pro-

tocols of [Ben83, FM97]. Nevertheless, the resulting protocol required exponentially

many rounds in n.

The first efficient solutions for the consensus problem in the permissionless setting

were formally shown to be possible utilizing an abstraction of the Bitcoin blockchain

protocol in [GKL15], against adversaries controlling less than half of the computa-

tional power which, in a uniform configuration (meaning parties are endowed with the

same computational power), corresponds to a number of Byzantine faults t < n/2 in

the original setting. At a high level, these protocols (as well as the Bitcoin blockchain

protocol itself) rely on a concept known as proofs of work (PoW), which, intuitively,

enables one party to convince others that he has invested some computational effort

for solving a given task. While being formulated a while back [DN93] and used for

a variety of purposes—e,g, spam mitigation [DN93], sybil attacks [Dou02a], and de-

nial of service protection [JB99, Bac02]—their role in the design of permissionless

blockchain protocols [Nak08], is arguably their most impactful application.

In the context of permissionless blockchain protocols, the way a PoW-like primi-

tive helps is by slowing down message generation for all parties indiscriminately, thus

generating opportunities for honest parties to converge to a unique view under the as-

sumption that the aggregate computational power of honest parties sufficiently exceeds

that of the adversary. Now, while this intuition matches the more rigorous analyses

of the Bitcoin protocol that have been carried out so far [GKL15, PSS17, GKL17,

BMTZ17], these works have refrained from formally defining such enabling function-

ality as a stand-alone cryptographic primitive, and relied instead on the random ora-

cle (RO) model [BR93] or similar idealized assumptions (cf. the FTREE functionality

in [PSS17]) to prove directly the properties of the blockchain protocol. The same is true

for other provably secure PoW-based distributed protocols [AD15, KMS14, GKLP18].

The core of the hardness (or even impossibility [CGH04]) of implementing the as-

sumed idealized resources is that they satisfy a strong independence property: Each bit

output on a new query to the resource is independently sampled, even if the adversary

is the one who is accessing the resource. This is indeed a very strong property, as it

directly implies that the best way to compute a PoW for both an honest party and the

adversary is brute force. Moreover, the same property is explicitly used to argue the

security of the proposed consensus protocols in the PoW setting [GKL15, AD15], as

we explain in detail later.

In this work we make progress in relaxing this assumption, by putting forth a for-
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malization of a PoW-like primitive, which we call signatures of work (SoW). An SoW

can be implemented in the RO model or by using FTREE, but the adversarial SoW com-

putation process does not necessarily satisfy such strong guarantees as the ones men-

tioned above. Indeed, in contrast to previous approaches, only an upper bound on the

rate at which the adversary generates SoWs is assumed. We then present a new permis-

sionless consensus protocol based on SoWs that can be proven secure without relying

on the strong independence property. The protocol utilizes a SoW-based blockchain

and standard properties of the underlying hash function, and is secure assuming an

honest majority of computational power. As a result, this protocol can be seen as

an exemplar of how a permissionless signature-like primitive enables honest major-

ity consensus in the same way that classical digital signatures imply honest-majority

consensus protocols in the traditional setting.

Why signatures of work? We first provide some intuition behind the relevance of

SoW as a useful primitive for the design of permissionless distributed protocols. Recall

the main property of a digital signature in the design of classical consensus protocols: It

enables parties to communicate to each other their protocol view and inputs at a certain

stage of the protocol execution in a way that is transferable and non-repudiable. Indeed,

Bob, upon receiving Alice’s signed message, can show it to Charlie in a way that the

latter is unequivocally convinced of the message’s origin. It follows that Bob cannot

modify Alice’s messages, playing man-in-the-middle between Alice and Charlie, and

thus Alice can be held accountable in case she provides conflicting views to the two

parties. A SoW scheme provides a similar capability: Using a SoW, a party like Alice

can invest effort into a specific protocol view and inputs, so that when Bob is presented

with a SoW produced by Alice it will be infeasible for Alice to provide a conflicting

view and inputs to Charlie, unless she invests twice the effort. Moreover, the above

argument holds without establishing any set of identities among the parties, so for

example Bob does not need to know he talks to Alice per se but rather to an arbitrary

party that invested some effort with respect to a specific protocol view. Furthermore,

exactly like digital signatures, SoWs can be chained recursively, enabling the parties

to build on each other’s protocol view.

While the above functionalities hint to the usefulness of SoWs in the distributed

permissionless setting, formalizing and applying them properly is no simple task.

Firstly, in contrast with classical signatures, there is no secret key involved in this

primitive. This make sense, since in a permisionless setting signing messages using

some kind of secret information is meaningless, as parties do no have any secret setup
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to begin with. Hence, if they are to sign any message, they should use some other kind

of resource that only they have access to, such as their computational power. Secondly,

in classical signatures, the exact time when the verification key becomes available to

different parties is irrelevant; The key is only useful for verification, up to polynomial-

time differences. In the context of SoWs, however, this time is of great importance.

For example, allowing a party to learn the verification key, say, two days earlier than

other parties, means that this party will be able to compute two days worth of signa-

tures more than them. Hence, in contexts where counting the number of generated

signatures matters, as is the case in blockchain protocols, great care should be taken

on guaranteeing that the verification key is “fresh” enough for the relevant application.

Our results. Our contributions are are as follows:

1) Formalization of an SoW scheme. The syntax of an SoW scheme entails four

algorithms: Public parameter generation, key generation, signing and verification—

PPub,KeyGen, Sign and Verify, respectively. PPub is invoked on input 1λ, where λ

is the security parameter, and outputs public security parameters pp. KeyGen is in-

voked on input pp, and outputs a random verification key vk. Sign is invoked on input

(pp,vk,msg,h), where msg is the message to be signed, and h is the hardness level

of the signature generation. Expectedly, Verify is invoked on input (pp,vk,msg,h,σ),

where σ is (possibly) an output of Sign. We require a SoW scheme to be:

Correct: As in the case of classical signatures, we require that signatures produced

by Sign should be accepted by the Verify algorithm.

(t,α)-Successful: This property lower-bounds the probability that an honest signer

will successfully produce a SoW in a certain number of steps t; α is a function of

the hardness level h.

t-Verifiable: The verifier should be able to verify a SoW in t steps. (Typically, t is

a lot smaller than the time need to produce a signature.)

Moderately Unforgeable against Tampering and Chosen-Message Attacks ((β,ε)-
MU-TCMA): This property is akin to the property of existential unforgeability

under chosen-message attacks of digital signatures (EU-CMA). It captures the fact

that producing a sequence of SoWs, for chosen messages, does not provide an

advantage to an adversary in terms of running time. Specifically, the chances to

produce more than β · t SoWs in t steps (for any t) are less than ε.2 Further, this

2Note that, unlike previous unforgeability definitions (e.g, [BR96]), this definition is parameterized
by the rate β at which the adversary can produce signatures, instead of the number of steps it needs to
compute one. We feel that this formulation is more appropriate for the moderate unforgeability game
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should hold against an adversary able to tamper with the keys, and even in the

presence of a Sign oracle.

Run-time independent: This final property captures the setting where honest sign-

ers are potentially invoked on adversarial inputs and ensures that their running time

enjoys some degree of independence. Specifically, the random variables defined as

the running time of each Sign invocation is a set of almost independent random

variables (cf. [AGHP92]). We stress that the adversarial signing algorithm may

not satisfy this property.

As a “sanity check,” we show in Section 4.5 that a SoW scheme can be easily de-

signed and proven secure in the random oracle model (or by using FTREE), and hence

in practice can be instantiated by a cryptographic hash function such as SHA-256.

2) Consensus from SoW. Next, we design a consensus protocol for an honest majority

of computational power that can be reduced to the SoW primitive above. The core

idea behind our new protocol is as follows. First, the parties build a blockchain using

SoWs in a way reminiscent of the Bitcoin blockchain. Using SoWs we show how to

emulate the Bitcoin backbone protocol [GKL15] by having parties compute a SoW in

parallel, “on top” of the current view that incorporates the largest number of SoWs,

i.e., the longest chain. However, in contrast with the consensus protocol of [GKL15],

to generate a block, the parties include not only their input to the consensus protocol,

but also the headers of “orphan” blocks that exist in forks stemming off their main

chain and which have not been included so far, where the header of a block contains

the hash of the previous block in the chain, the signature, the input to the consensus

protocol, and a hash of the block’s contents.

Using this mechanism, as shown in Figure 4.1, we prove that it is possible to re-

construct the whole tree of block headers from the blockchain contents, and thus in

this way preserve all block headers produced by the honest parties. This ensures that

the resulting ledger will reflect the number of parties and hence a consensus protocol

may now be easily reduced to this blockchain protocol.

Our new consensus protocol relying on the SoW primitive in the setting where no

PKI is available, exemplifies the contrast with consensus in the classical setting, relying

on standard signatures and a PKI setup [DS83] (cf. [GK18]). It is worth noting that

the only known blockchain-based provably secure and optimally resilient consensus

protocol is given in [GKL15], using a technique called “2-for-1 PoW” where two PoW-

based protocols can be run concurrently and create a blockchain where the number of

where the adversary tries to produce multiple signatures. For further details, see Definition 38.
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Figure 4.1: The data structure maintained by the consensus protocol. Block F has

consensus input 1, and includes the headers of blocks D and G, with input 1 and 0,

respectively. Block D includes the headers of invalid blocks. This is not a problem,

since any chain that contains D will be invalid and not selected by any party, while D’s

consensus input is correctly counted as a valid block header.

honest-party contributions is proportional to their actual number, but which relies on

the strong independence property of the RO model, discussed earlier, in a fundamental

way. Indeed, in the RO model, each witness for a PoW can be rearranged in a certain

way so as to obtain a test for a witness for another PoW in a way that is independent

from the first solution. Our new protocol gets rid of this need. The only other (non-

blockchain) PoW-based consensus protocol [AD15] also relies on the RO model.

As intermediate steps in our analysis, we first introduce an appropriate adaptation

of the model of [GKL15] that allows for a standard model analysis and which may

be of independent interest. We then recall the three basic properties of the blockchain

data structure presented in [GKL15]: (strong) common prefix, chain quality and chain

growth, and show how our SoW-based blockchain protocol satisfies them assuming,

beyond the security of SoW, standard collision resistance from the underlying hash

function that is used to “glue” the blocks together. This is achieved as follows: We

first prove that using the MU-TCMA property and assuming the adversarial hashing

power is suitably bounded, it is unlikely in any sufficiently long time window for the

adversary to exceed the number of SoWs of the honest parties. Then, using the (t,α)-

Successful and (β,ε)-MU-TCMA properties in conjunction with run-time indepen-

dence, we establish that summations of running times of successive Sign invocations

have the variance needed to ensure that “uniquely successful rounds” (i.e., rounds

where exactly one of the honest parties produces a SoW) happen with high density in

any sufficiently long time window. Using these last two core results, and under suit-

able constraints for the basic SoW parameters α,β,ε,h and number of parties n, we
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prove that the security of the Bitcoin backbone protocol implements a robust trans-

action ledger [GKL15]. Further, and as a sanity check, in Section 4.5, we argue that

the results we get from our black-box analysis (and the RO-based SoW construction

mentioned earlier), are similar to those from the random-oracle analysis of [GKL15].

Prior and related work. We have already mentioned above relevant related work

regarding classical and blockchain-based consensus protocols. For a more exhaustive

recent survey, refer to [GK18]. We also note that the focus of this chapter is the original

consensus problem [PSL80, LSP82], and not so-called “ledger consensus” (sometimes

referred to as “Nakamoto consensus”), which is an instance of the state machine repli-

cation problem [Sch90]; see also [CBPS10] for an overview of such protocols. The

idea of referencing off-chain blocks has been considered early on in the ledger consen-

sus literature (see, e.g., [LSZ15, SZ15, SLZ16, BHMN17]) as a way to obtain fairness,

better throughput and faster confirmation times. Our novelty is that we leverage this

technique along with the new SoW notion to build a provably secure consensus proto-

col, which, unlike prior results, is not based on the “2-for-1 PoW” technique described

earlier.

There have been a number of attempts to formalize a proof of work (PoW) primitive

that it is also sufficient to imply the security of a blockchain protocol. Nevertheless,

such works were either informal [BCD+14, Poe], or they did not produce a correct-

ness proof for a blockchain or consensus protocol, focusing instead on other applica-

tions [BGJ+16, AT17, BBBF18, BRSV18, GKP19]. We proceed to give a partial list

of such considerations.

Dwork and Naor [DN93] first considered PoWs under the term “pricing functions,”

as a means of protection against spam e-mail. The main properties discussed in their

work are amortization resistance, “moderate hardness” and the existence of trapdoors

(“shortcuts” in their terms). Interestingly, among the three constructions described

there, one of them is a partially “broken” signature scheme, i.e., while it is hard for an

attacker to obtain the signing key, it is moderately hard to forge signatures.

In a different direction, Juels and Jacobsson [JJ99] and Back [Bac00, Bac02] use

PoWs to construct electronic payment systems. In [JJ99] the authors consider the fol-

lowing properties: Amortization resistance, fast verification, and some special compos-

ability property which states that generating a PoW for some scheme may help in gen-

erating a PoW for another scheme. As acknowledged by the authors themselves, the

definitions they provide are only sketches. In [Bac00, Bac02] another set of closely re-

lated properties is considered, including amortization and “trapdoor-freeness.” Amor-
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tization refers to the ability to combine PoWs of lesser difficulty in order to construct

PoWs of greater difficulty. “Trapdoor-freeness” dictates that the party which gener-

ates the initial parameters of the scheme should not be able to also generate a trapdoor

regarding these parameters. Again the approach is not rigorous.

Stebila et al. in [SKR+11], present PoW security definitions that capture amortiza-

tion resistance, both in an interactive and in a non-interactive manner. In addition, they

show that the Hashcash scheme satisfies their definition in the ROM. In contrast to out

work, the focus of the paper is Denial of Service prevention in a client-server setting,

and thus lacks many of the security properties we develop here, e.g., “honest prover”

properties, adversarial precomputation in the hardness experiment.

Bitansky et al. [BGJ+16] construct time-lock puzzles as well as PoW schemes from

randomized encodings. Since the focus of their work is time-lock puzzles, the proper-

ties of PoW schemes—amortization resistance, moderate hardness and fast verification—

are only briefly investigated, although they do instantiate a PoW scheme based on ran-

domized encodings and the existence of non-amortizing languages in the worst case.

Another interesting approach is that of Ball et al. [BRSV18], who construct a PoW

scheme from worst case assumptions. They base the security of their PoW on the worst

case hardness of classical complexity theory problems, e.g., the Orthogonal Vectors

problem. As the authors state, their focus is on PoW as a foundational cryptographic

primitive, and not on its application on blockchain protocols. In any case, the PoW

schemes they instantiate have non-negligible error, and thus cannot be directly used

our context.

In [AT17], Alwen and Tackmann study moderately hard functions (MoHF), pro-

viding simulation based definitions for what they call “non-interactive proofs of ef-

fort” (niPoE), which—as explicitly acknowledged by the authors—cannot be used to

analyze Bitcoin. The main impediment is that the adversary can only invoke the same

MoHF only once per protocol session, while for the Bitcoin protocol multiple invoca-

tions of the same MoHF should be allowed.

In [BCD+14] and [Poe], the concept of “dynamic membership multi-party signa-

tures” (DMMS) is proposed to describe the underlying primitive used in Bitcoin. The

author of the latter work also argues the security of Bitcoin, based on a DMMS scheme.

While the properties described there bear some similarities to our work, the treatment

is not formal.

More recently, an effort to formalize an intermediate PoW-like building block for

the Bitcoin protocol was made in [PSS17]. The proposed ideal functionality, F p
TREE,
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keeps track of a tree of messages, which both the honest parties and the adversary can

extend with probability p. The outcome of each such trial is independent of the others,

even if it is made by the adversary. F p
TREE satisfies the strong independence property

mentioned before, and hence it is not suitable for the goals of this chapter. Moreover,

we note that any protocol instantiating this functionality must necessarily be interac-

tive, as two parties can use F p
TREE to communicate at least one bit. Finally, in [PSS17],

it was shown how to implement a transaction ledger, but not how to achieve consen-

sus; the techniques introduced in this work can be adapted to implement a consensus

protocol using FTREE.

Limitations and directions for future research. Our analysis is carried out in the

synchronous setting. It is relatively straightforward to extend our results to the ∆-

synchronous setting of [PSS17], by using the same techniques as in [GKL14] (Section

7). We leave as an open question extending our results to the variable difficulty setting

of [GKL17]. The construction of an SoW based on better studied assumptions, e.g.,

the discrete logarithm or the RSA problem, or the collision resistance property of a

hash function, or the problems presented in [BRSV18], is also an exciting direction for

future research.

Organization of the paper. The basic computational model and definitions used by

our constructions are presented in Section 4.2. Formal definition of the SoW primitive

and its security properties are presented in Section 4.3. Section 4.4 is dedicated to

applications of SoW: First, we introduce an appropriate model for our applications

(Section 4.4.1). We then analyze the Bitcoin backbone protocol based on (and reducing

its security to) SoW (Section 4.4.2), followed by the new blockchain-based consensus

protocol (Section 4.4.3). Further, and as a “sanity check,” in Section 4.5 we show how

to implement SoW in the RO model, or using FTREE.

4.2 Preliminaries

In this chapter we will follow a more concrete (“exact”) approach [BR96, BDJR97,

GMPY11] to security evaluation rather than the asymptotic one. We will use functions

t,ε, whose ranges are N,R, respectively, and have possibly many different arguments,

to denote concrete bounds on the running time (number of steps) and probability of

adversarial success of an algorithm in some fixed computational model, respectively.

When we speak about running time this will include the execution time plus the length

of the code (cf. [BL13]; note also that we will be considering uniform machines). We
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will always assume that t is a polynomial in the security parameter λ, although we will

sometimes omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model of

distributed computation, we will use (interactive) RAMs. The reason is that we need

a model where subroutine access and simulation do not incur a significant overhead.

ITMs are not suitable for this purpose, since one needs to account for the additional

steps to go back-and-forth all the way to the place where the subroutine is stored. A

similar choice was made by Garay et al. [GMPY11]; refer to [GMPY11] for details

on using interactive RAMs in a UC-like framework, as well as to Section 4.4.1. Given

a RAM M, we will denote by StepsM(1λ,x) the random variable that corresponds to

the number of steps of M given as input the security parameter 1λ and x. We will say

that M is t-bounded if it holds that Pr[StepsM(1λ,x)≤ t(λ)] = 1.

Finally, to simplify our calculations, we remark that in our analyses there will

be asymptotic terms of the form negl(λ) and concrete terms; throughout this chapter,

we will assume that λ is large enough to render the asymptotic terms insignificant

compared to the concrete terms.

4.3 Signatures of Work

The main goal of this chapter is to implement consensus in the permissionless setting

without relying on the strong independence property of the underlying computational

resource. Towards that goal, in this section we introduce the signature of work (SoW)

primitive. At a high level, a SoW enables one party to convince others that she has

invested some computational power during some specific time interval and with re-

spect to a “message.” Next, we formalize this notion and present its desired security

properties.

SoW syntax. Given a security parameter λ, let PP be the public parameter space,

HP ⊆ N the hardness parameter space, K the key space, M the message space, and S

the signature space. With foresight, the role of the key is to provide “freshness” for

the signature computation, thus certifying that the signature was computed in the given

time interval.

Definition 35. A SoW scheme consists of four algorithms SoW = (PPub,KeyGen,

Sign,Verify), where:

PPub(1λ) is a randomized algorithm that takes as input the security parameter λ,
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and returns a set of public parameters pp ∈ PP.

KeyGen(pp) is a randomized algorithm that takes as input the public parameters

pp, and returns a key vk ∈ K. (See Remark 3 below on the role of keys in SoW

schemes.)

Sign(pp,vk,msg,h) is a randomized algorithm that takes as input public parameters

pp ∈ PP, a key vk ∈ K, a message msg ∈M and hardness parameter h ∈ HP, and

returns a signature (of work) σ ∈ S.

Verify(pp,vk,msg,h,σ) is a deterministic algorithm that takes as input public pa-

rameters pp∈PP, a key vk∈K, message msg∈M, hardness parameter h∈HP and

a signature σ ∈ S, and returns true or false to indicate the validity of the signature.

Remark 3. SoW schemes only have a public verification key. The role of this key is

to guarantee that the computational work spent in order to create a signature of work

is “fresh,” i.e., executed during a specific time interval (say, from the time the key

became known to the signer). In contrast, classical digital signatures also have a secret

key that serves as a trapdoor to compute signatures. In the applications we consider, the

existence of trapdoor information is not meaningful, and in fact may hurt the security

of the respective constructions.

Security properties. Next, we present a number of security properties that we will

require SoW schemes to satisfy. We start with the correctness property.

Definition 36. We say that a SoW scheme is correct if for every λ ∈ N, pp ∈ PP,vk ∈
K,h ∈ HP, and msg ∈M:

Pr
[
Verify(pp,vk,msg,h,Sign(pp,vk,msg,h)) = true

]
≥ 1−negl(λ).

Next, we require that the time to verify a signature be upper bounded.

Definition 37. We say that a SoW scheme is t-verifiable, if Verify takes time at most t

(on all inputs).

Next, we capture the case of a malicious signer (resp., verifier) in the context of

SoWs. In the first case, the adversary’s objective is to compute a number of signatures

a lot faster than an honest signer would, while in the second case it is to make the

honest signer take too much time to generate a signature.

We deal with malicious signers first. We put forth an attack that we will use to

express a class of adversaries that attempt to forge signatures faster than expected.

Intuitively, this constitutes an attack against an honest verifier that may be trying to
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gauge a certain measure using the number of signatures. The game defining the at-

tack is shown in Figure 4.2; we call the corresponding security property Moderate

Unforgeability against Tampering and Chosen Message Attack (MU-TCMA). As in

the security definitions of standard signatures (e.g., EU-CMA), we allow the adversary

to have access to a signing oracle S . Every time the oracle is queried, we assume that

it runs the Sign procedure with uniformly sampled randomness. A subtle point in the

modeling of security in the presence of such oracle is that S should also “leak” the

number of steps it took for a query to be processed. In an actual execution while in-

teracting with honest parties that are producing signatures, time is a side channel that

may influence the adversarial strategy; in order to preserve the dependency on this side

channel we will require from S to leak this information. We note that in the classical

signatures literature, timing attacks have also been a serious consideration [Koc96].

In addition, we require that the key used by the adversary to construct signatures

be fresh, i.e., we want to avoid situations where the adversary outputs signatures that

he has precomputed a long time ago. We model this by providing the fresh key after

the adversary has finished running his precomputation phase. Further, we allow the

adversary to tamper with the key by manipulating it via tampering functions belonging

to a family of functions F .

Looking ahead, the tampering function in our applications will be related to a keyed

hash function, where the key of the hash is part of a common random string (CRS).

Hence, we choose to model functions in F to have two inputs: Σ (the CRS) and vk.

Moreover, the output of the adversary is deemed invalid if he tampers vk with functions

f1, f2 in such a way that f1(Σ,vk) = f2(Σ,vk). Otherwise, the adversary could launch

a generic attack that is unrelated to the SoW scheme, and produce signatures at twice

the rate of an honest signer, as follows. The adversary first finds f1, f2 that have this

property, and then computes signatures using the tampered key f1(Σ,vk). The trick is

that each of them will also correspond to a signature with key f2(Σ,vk). Hence, he

effectively can double the rate at which he produces signatures.

Formally, the adversary will have access to S(·, ·), an SoW oracle that on input

(vk′,msg), where vk′ ∈ K and msg ∈M, returns the pair (σ, t) where σ is the output of

Sign(pp,vk′,msg,h) and t is the number of steps taken by the Sign algorithm on these

parameters. Function Asked(vk′,msg,σ) is true if σ was the response of S to some

query (vk′,msg).

We are now ready to formulate the security property of Moderate Unforgeability

against Tampering and Chosen Message Attacks (MU-TCMA). It has two parameters,
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ExpMU-TCMA
A ,F (1λ,h, `)

Σ←Uλ; pp← PPub(1λ); (Public parameters)

st← A1(1λ,Σ, pp); (Precomputation)

vk← KeyGen(pp); (Verification key)

( fi,msgi,σi)i∈[`]← AS(·,·)
2 (1λ,vk,st); (SoW computation)

return
∧`

i=1

Verify(pp, fi(Σ,vk),msgi,σi)∧¬Asked( fi(Σ,vk),msgi,σi)

∧ ( fi ∈ Fλ)∧ (∀ j ∈ [`] : fi(Σ,vk) = f j(Σ,vk)⇒ i = j)


Figure 4.2: The Moderate Unforgeability against Tampering and Chosen-Message At-

tack (MU-TCMA) experiment for a SoW scheme.

β and ε, and, informally, it states that no adversary A exists in the experiment of Fig-

ure 4.2 that takes at most t steps after receiving key vk and produces `≥ β · t signatures

with probability better than ε. Note that in total we allow A to take any polynomial

number of steps, i.e., the adversary is allowed to execute a precomputation stage that

permits it to obtain an arbitrary number of signatures before learning vk. In the defi-

nition below, we allow β to depend on the hardness level h, and ε on h, t and qS , the

number of queries the adversary makes to the signing oracle.

Definition 38. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0,1}λ×K→
K.3 A SoW scheme is (β,ε)-Moderately Unforgeable against Tampering and Chosen-

Message Attacks (MU-TCMA) with respect to tampering function class F , if for any

polynomially large t1, t2, any adversary A = (A1,A2), where A1 is t1-bounded and A2

is t2-bounded and makes at most qS queries to oracle S , for any λ∈N, and any h∈HP,

the probability of A winning in ExpMU-TCMA
A ,F (1λ,h,bβ(h) · t2c) (Figure 4.2) is less than

ε(h, t2,qS ).

Remark 4. As mentioned in Section 4.1, unlike previous unforgeability definitions

(e.g, [BR96]), Definition 38 is parameterized by the rate at which the adversary can

produce signatures, instead of the number of steps it needs to compute one, which is

more appropriate for the moderate unforgeability game where the adversary tries to

produce multiple signatures.

In the MU-TCMA definition we are going to consider tampering functions classes

that at the very least preserve the unpredictability of vk. Otherwise, the adversary can

generically attack any SoW scheme by predicting the tampered key and precomputing

3K is the key space of the SoW scheme.
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signatures. Formally, we will say that F is computationally unpredictable if the ad-

versary, given the CRS Σ, cannot guess a value y that he will be able to “hit” when he

gains access to vk through some f ∈ F .

Definition 39. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0,1}λ×K→
K. We say that F is computationally unpredictable with respect to a SoW scheme

SoW, if for any PPT RAM A = (A1,A2), and for any λ ∈ N, it holds that:

Pr
pp←PPub(1λ);

vk←KeyGen(pp);
Σ←Uλ

(st,y)← A1(1λ,Σ, pp); f ← A2(1λ,st,vk) :

f ∈ Fλ∧ f (Σ,vk) = y

≤ negl(λ).

Next, we consider the case of attacking an honest signer. Attacking an honest

signer amounts to finding a certain set of keys over which the honest signer algorithm

fails to produce SoWs sufficiently fast and regularly. We say that a SoW scheme is

(t,α)-successful when the probability that the signer computes a signature in t steps is

at least α.

Definition 40. We say that SoW scheme is (t,α)-successful if for any λ ∈ N and any

h ∈ HP, pp ∈ PP,vk ∈ K,msg ∈M, it holds that:

Pr
[
StepsSign(pp,vk,msg,h)≤ t

]
≥ α(h).

Finally, in the same corrupt-verifier setting, we will require the signing time of

honest signers to have some (limited) independence, which will be important for the

applications we have in mind. This property, in combination with the efficiency and

MU-TCMA properties, will prove crucial in ensuring that when multiple signers work

together, the distribution of the number of them who succeed in producing a signature

has some “good” variance and concentration properties.

Definition 41. We say that a SoW scheme has almost-independent runtime iff for any

polynomial p(·), any λ ∈ N, any h ∈ HP, there exists a set of identical and indepen-

dently distributed random variables {Yi}i∈[p(λ)] such that for any pp∈PP,((vki,mi))i∈[p(λ)] ∈
(K×M)p(λ) it holds that ∆[(StepsSign(pp,vki,mi,h))i,(Yi)i]≤ negl(λ).

Independence assumptions. As mentioned earlier, MU-TCMA does not enforce any

independence assumption, and only bounds the probability that the rate at which the

adversary computes SoWs is high. In contrast, the independent-runtime property does
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so, but only for honest signers. We remark that achieving such property is consider-

ably easier for the honest case, as we can be sure that signers will use independently

sampled coins if instructed; a guarantee that we cannot have for the adversary.

Parameters’ range. Let SoW be a scheme that is (tsign,α)-Successful. SoW triv-

ially satisfies the MU-TCMA property for β(h)> 1, since the adversary does not have

enough time to output the signatures it has computed. On the other hand, assuming

ε(h, t,qS ) is a negligible function of t, α(h) must be smaller than β(h) · tsign, other-

wise the expected number of SoWs computed by the Sign function would exceed that

allowed by the MU-TCMA property. Hence, for optimal security, it should hold that

α(h) is close to β(h) · tsign.

Next, we turn to applications of our SoW primitive.

4.4 Applications of Signatures of Work

In this section we showcase applications of SoWs, the first one being implementing ro-

bust transaction ledgers: Using our primitive and standard properties of the underlying

hash function, we establish the security of the Bitcoin backbone protocol [GKL15].

The second application is realizing consensus in the permissionless setting.

In both applications, we assume the existence of a SoW scheme with the security

properties defined bellow.

Assumption 2 (SoW Assumption). For parameters β,ε, t ′H ,α and tver we assume that

SoW = (PPub,KeyGen,Sign,Verify) is:

Correct;

(β,ε)-MU-TCMA with respect to any computationally unpredictable tampering

function class (cf. Definition 39);

(t ′H ,α)-successful;4

almost run-time independent; and

tver-verifiable,

where ε(h, t,qS ) ∈ negl(β(h) · t). Moreover, we assume that the parameter spaces

K,M,S of the scheme are equal to {0,1}log |K|,{0,1}∗,{0,1}log |S|, respectively.

We chose K,M,S as above due to the underlying hash-chain structure of the blockchain:

The hash of each block acts as a key of the SoW scheme, thus the range {0,1}λ of the

4Parameter t ′H corresponds to a lower bound on the running time of honest parties in our protocol
that we introduce in detail later.
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hash function should match the key space of the SoW. It is conceivable that poten-

tially different sets than {0,1}λ can be used, e.g, Z∗n, if the SoW key is an RSA group

element. The hash function we are going to use in our protocol is also related to the se-

lected SoW scheme by the fact that it is the basis of the computationally unpredictable

key tampering function family (see Definition 39) available to the adversary.

We start with some pertinent details about the model that the two applications men-

tioned above will be analyzed under.

4.4.1 The Permissionless Model, Revisited

All security models proposed for the analysis of PoW-based blockchain protocols [GKL15,

PSS17, BMTZ17] rely on bounding the number of queries to an idealized functional-

ity to model limited computational resources. In contrast, we do not wish to restrict

the way the adversary accesses the computational resource, and thus we model limited

computational resources in a more general manner, i.e., by limiting the exact number

of steps parties take. Next, we present a revised version of the model of Section 2.2

that captures our considerations.

For the reasons explained in Section 4.2, we substitute IRAMs for ITMs in the com-

putational model of Section 2.2. Everything else, except the part about the existence of

a q-bounded RO, is exactly the same, i.e., communication, synchrony, precomputation,

and trusted setup modeling.

Next, we consider the complications in the modeling due to the analysis of Bit-

coin in the concrete security setting. Both in [GKL15] and [PSS17] a modified version

of the standard simulation-based paradigm of [Can00] is followed, where there exist

both a malicious environment and a malicious adversary. In addition, the SoW scheme

(called PoW in [GKL15, PSS17]) is modeled in a non black-box way using a ran-

dom oracle (RO), and the computational power of the adversary is then bounded by

limiting the number of queries it can make to the RO per round. Since in this work

the SoW scheme is modeled in a black-box way, an alternative approach to bound the

adversary’s power is needed.

A naïve first approach is to only bound the computational power of A . Unfortu-

nately this will not work for several reasons. Firstly, nothing stops the environment

from aiding the adversary, i.e., computing signatures, and then communicating with

it through their communication channel or some other subliminal channel. Secondly,

even if we bound the total number of steps of A , it is not clear how to bound the steps
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it is taking per round in the model of [Can00], which we build on. Lastly, another

issue arising is that if the adversary is able to send, say, θ messages in each round, it

can force each honest party to take θ · tver extra steps per round. If we don’t bound θ,

then the adversary will be able to launch a DOS attack and make honest parties spend

all their resources.5

In order to address these considerations we are going to define a predicate on ex-

ecutions and prove our properties in disjunction with this predicate, i.e., either the

property holds or the execution is not good.

Definition 42. Let (tA ,θ)-good be a predicate defined on executions in the hybrid

setting described above. Then E is (tA ,θ)-good, where E is one such execution, if

the total number of steps taken by A and Z per round is no more than tA ;6

the adversary sends at most θ messages per round.

Definition 43. Given a predicate Q and bounds tA ,θ, t,n ∈ N, with t < n, we say that

protocol Π satisfies property Q for n parties assuming the number of corruptions is

bounded by t, provided that for all PPT Z,A , the probability that Q(VIEW
t,n
Π,A ,Z) is

false and the execution is (tA ,θ)-good is negligible in λ.

Finally, as per Section 2.2, we assume that we are in a setting with a fresh CRS and

against a static adversary.

4.4.2 Public Transaction Ledger

Next, we take a reduction approach to the underlying cryptographic primitive—SoW,

as defined in Section 4.3—to prove the security of the Bitcoin backbone protocol [GKL15].

We start with a description of the protocol based on SoW, and then continue with the

security proof.

The Bitcoin Backbone protocol. The Bitcoin backbone protocol [GKL15], parame-

terized by functions V(·),R(·), I(·), is an abstraction of the Bitcoin protocol. First, we

introduce some notation needed to understand the description of the algorithms, and

then cast the protocol making use of our SoW primitive.

We will use the terms block and chain to refer to tuples of the form 〈s,x,σ〉 and

sequences of such tuples, respectively. The rightmost (resp. leftmost) block of chain

5This problem is extensively discussed in [AD15], Section 3.4.
6The adversary cannot use the running time of honest parties that it has corrupted; it is activated

instead of them during their turn. Also, note that it is possible to compute this number by counting the
number of configurations that A or Z are activated per round.
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C is denoted by head(C ) (resp. tail(C )). Each block contains a seed, data, and a

signature denoted by s,x,σ, respectively. As mentioned, all parties have access to a

CRS at the beginning of the execution that contains: the public parameter pp of the

SoW scheme, a verification key vk generated by KeyGen(pp), and the key k of the

hash functions H,G used later. We will refer to 〈0λ, pp||vk||k,0λ〉 as the genesis block

BGen. A chain C = B1 . . .Bm is valid with respect to the CRS if and only if (i) B1 is the

genesis block, (ii) for any two consecutive blocks 〈si,xi,σi〉,〈si+1,xi+1,σi+1〉 it holds

that Hk(si||Gk(xi)||σi) = si+1, (iii) each block, besides BGen, contains a valid SoW, i.e.,

Verify(pp,si,xi,σi) = true, and (iv) the content validation predicate V(〈x1, . . . ,xm〉)
outputs true. We call Hk(si||Gk(xi)||σi) the hash of block Bi and denote it by Hk(Bi).

Moreover, we define H(C ) to be equal to the hash of the head of chain C .

At each round, each party chooses the longest valid chain amongst the ones it

has received and tries to extend it by computing (mining) another valid block. If it

succeeds, it diffuses the new block to the network. In more detail, each party will

run the Sign procedure, with the message parameter being determined by the input

contribution function I(·), and the key parameter being the hash of the last block. We

assume that the hardness parameter h is fixed for all executions. Finally, if the party is

queried by the environment, it outputs R(C ) where C is the chain selected by the party;

the chain reading function R(·) interprets C differently depending on the higher-level

application running on top of the backbone protocol. Each honest party runs for at

most tH steps per round.

Algorithm 7 The signature of work function, parameterized by pp,h and hash func-

tions H,G. The input is (x,C ).

1: function sow(x,C )

2: s← H(head(C ))

3: σ← Sign(pp,s,x,h) . Run the prover of the SoW scheme.

4: B← ε

5: if σ 6=⊥ then
6: B← 〈s,x,σ〉
7: C ← CB . Extend chain

8: return C

We summarize the modifications with respect to the original [GKL15] protocol:

In Algorithm 6 (signature of work function) the Sign function of the underlying SoW



Chapter 4. Consensus from Signatures of Work 80

Algorithm 8 The chain validation predicate, parameterized by pp,h,BGen, the hash

functions H,G, and the input validation predicate V (·). The input is C .

1: function validate(C )

2: b← V(xC )∧ (tail(C ) = BGen) . xC describes the contents of chain C .

3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′← H(head(C ))

5: while (C 6= BGen)∧ (b = true) do
6: 〈s,x,σ〉 ← head(C )

7: if (Verify(pp,s,x,h,σ) = true)∧ (H(head(C )) = s′) then
8: s′← s . Retain hash value

9: C ← C d1 . Remove the head from C
10: else
11: b← False

12: return b

scheme is invoked for a limited number of steps so that the total number of steps of

the invoking party does not exceed the tH bound per round; in Algorithm 4 (chain

validation predicate) the Verify predicate is replaced with a call to the Verify algorithm

of the SoW scheme; and in Algorithm 1 (backbone protocol) we assume that the honest

parties start the execution with a “genesis” block. We leave Algorithm 5 intact.

In order to turn the backbone protocol into a protocol realizing a public transaction

ledger suitable definitions were given for functions V(·),R(·), I(·) in [GKL15], also

presented in Table 3.2. We change these definitions slightly as shown in Table 4.1,

to ensure two things: Firstly, that the data contained in the hash chain is encoded

with a suffix-free code; this is important to ensure that no collisions occur [BJL17]

as we show later. And, secondly, to ensure that any block created by an honest party

contains sufficient entropy, thus the adversary will not be able to use blocks that it has

precomputed to extend this block. We call the resulting protocol ΠSoW
PL .

Security proof. We now prove that ΠSoW
PL implements a robust public transaction ledger

assuming the underlying SoW scheme satisfies Assumption 2 for appropriate parame-

ters related to the running time of honest parties and the adversary. First, we formalize

this relation.

Let tbb (bb for backbone) be an upper bound on the number of steps needed to run

the code of an honest party in one round, besides the Sign and Verify calls. By care-
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Algorithm 9 The Bitcoin backbone protocol, parameterized by the input contribution

function I(·) and the chain reading function R(·).

1: C ← BGen . Initialize C to the genesis block.

2: st← ε

3: round← 0

4: while TRUE do
5: C̃ ←maxvalid(C ,any chain C ′ found in RECEIVE())

6: 〈st,x〉 ← I(st, C̃ ,round, INPUT(),RECEIVE()) . Determine the x-value.

7: Cnew← sow(x, C̃ )

8: if C 6= Cnew then
9: C ← Cnew

10: DIFFUSE(C )

11: round← round +1

12: if INPUT() contains READ then
13: write R(xC ) to OUTPUT()

fully analyzing the backbone protocol one can extract an upper bound on this value.7

To aid our presentation, we will use t ′A and t ′H to denote: (i) the time needed by a RAM

machine to simulate one round in the execution of the Bitcoin protocol, without taking

into account calls made to the Sign routine by the honest parties, and (ii) the mini-

mum number of steps that an honest party takes running the Sign routine per round,

respectively.

t ′A = tA +n · tbb+θtver and t ′H = tH − tbb−θtver

It holds that at least n− t (non-corrupted) parties will run the Sign routine for at least

t ′H steps at every round.

In previous works [GKL15, GKLP18, PSS17], the security assumptions regarding

the computational power of the parties participating in the protocol were twofold: (1)

The total running time of honest parties per round should exceed that of the adversary,

and (2) the rate at which parties produce blocks at each round should be bounded.

More realistically, in our approach the running time of the adversary and the running

time of honest parties do not have the same quality, as the adversary may use a superior
7Note that tbb depends on the running time of three external functions: V(·), I(·) and R(·). For

example, in Bitcoin these functions include the verification of digital signatures, which would require
doing modular exponentiations. In any case tbb is at least linear in λ.
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Algorithm 10 The function that finds the “best” chain, parameterized by function

max(·). The input is {C1, . . . ,Ck}.

1: function maxvalid(C1, . . . ,Ck)

2: temp← ε

3: for i = 1 to k do
4: if validate(Ci) then
5: temp←max(C , temp)

6: return temp

Content validation pre-

dicate V(·)
V(·) is true if its input 〈x1, . . . ,xm〉 is a valid ledger, i.e., it

is in L , and each xi starts with a neutral transaction of the

form r||i, where r is a string of length log |K| and i is the

“height” of the respective block.

Chain reading function

R(·)
R(·) returns the contents of the chain if they constitute a

valid ledger, otherwise it is undefined.

Input contribution func-

tion I(·)
I(·) returns the largest subsequence of transactions in the

input and receive registers that constitute a valid ledger,

with respect to the contents of the chain C the party al-

ready has, preceded by a neutral transaction of the form

KeyGen(pp)|||C |.

Table 4.1: The instantiation of functions I(·),V(·),R(·) for protocol ΠSoW
PL .

signing algorithm. To take this into account, we additionally need to assume that the

efficiency of the adversarial signing algorithm, i.e., β, is close to that of the honest

parties. Finally, note that if SoW is close to optimal, i.e., α(h) ≈ βt ′H , and the block

generation rate is a lot less than 1, our assumption holds as long as the honest parties

control the majority of the computational power.

We now state the computational power assumption formally. The second and the

third conditions are similar to the ones already found in previous works, while the

first one is the new condition we introduce regarding the underlying computational

primitive.

Assumption 3. There exist δSoW,δSteps,δ∈ (0,1), such that for sufficiently large λ∈N,

there exists an h ∈ HP, such that:

α(h)≥ (1−δSoW)β(h)t ′H > negl(λ) (signatures generation rate gap)
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(n− t)t ′H (1−δSteps)≥ t ′A (steps gap)
δSteps−δSoW

2 ≥ δ > β(h)(t ′A +ntH ) (bounded block generation rate)

We will assume from now on, that the hardness parameter used in our protocols, is

one satisfying the above conditions.

Remark 5. The better the adversarial signing algorithm may be compared to the honest

one, the closer δSoW is to 0, while the closer the number of adversarial steps t ′A are

to that of the honest parties, the closer δSteps is to 0. Assumption 3 implies, in a

quantitative manner, that the better the adversarial signing algorithm, the smaller the

computational power of the adversary we can tolerate.

Next, we focus on the hash functions used by Bitcoin, and the necessary security

assumptions to avoid cycles in the blockchains. In previous chapters, this was avoided

by taking advantage of the unpredictability of the RO, see Definition 11. Instead, here

we want to avoid relying on idealized assumptions, and thus we are going to take

advantage of the collision resistance property of the underlying hash function. First,

note that in the actual implementation of Bitcoin an unkeyed hash function is used,

namely, a double invocation of SHA-256. In previous analyses of the protocol this was

modeled as a random oracle. We choose to model it in a strictly weaker way, as a keyed

hash function family H that is collision resistant (Definition 112); the CRS we have

already assumed will contain the key of our hash function. Given security parameter λ

and hash key k ∈ K′, we assume that the corresponding hash function is of the form:

Hk : {0,1}log |K|+λ+log |S|→{0,1}log |K|

where K,S are the key and signature sets of SoW. Moreover, as depicted in Figure 4.3,

the protocol makes use of another hash function G to compress the input x of each

block, which may be of arbitrary size. In our analysis we will require G to be colli-

sion resistant. It is well known (see, e.g., [Dam89, BJL17]) that given a fixed-length

collision-resistant hash function family, we can construct an arbitrary-length collision-

resistant hash function family. To aid readability, we will sometimes omit the keys

of both functions (as we already do in the description of the protocol). Furthermore,

observe that the hash structure of any blockchain (depicted in Figure 4.3) is similar to

the Merkle-Damgaard transform [Dam89]:

MDk(IV,(xi)i∈[m]) : z = IV ; for i = 1 to m do z = Hk(z||xi); return z,

where the fixed-length hash function family used is always assumed to be H . To show
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that the adversary cannot find distinct chains with the same hash, we are going to take

advantage of the following property of the MD transform.

Fact 1. For any non-empty valid chain C = B1, . . . ,Bm, where Bi = 〈si,xi,σi〉, it holds

that for any j ∈ [m]: Hk(head(C )) =MDk(Hk(B j),(Gk(xi)||σi)i∈{ j+1,...,m}).

s1

x1 σ1

G

H

s2

x2 σ2

G

H

s3

x3 σ3

G

H s4

Figure 4.3: The hash structure of the blocks in the Bitcoin protocol.

Lemma 44. Let H ,G be collision-resistant hash function families. The probability

that any PPT RAM A , given BGen, can find two distinct valid chains C1,C2 such that

H(C1) = H(C2), is negligible in λ.

Proof. Let C1 =BGen,B1, . . . ,B|C1|, C2 =BGen,B′1, . . . ,B
′
|C2|, m1 =(G(xi)||σi)i∈[|C1|] and

m2 = (G(x′i)||σ′i)i∈[|C2|], where xi,σi are the data and the signature of block Bi. For the

sake of contradiction, assume that the lemma does not hold and there exists an adver-

sary A that can find valid chains C1, C2 such that H(C1) = H(C2), with non-negligible

probability. By Fact 1, this implies that MD(H(BGen),m1) =MD(H(BGen),m2).

We will construct an adversary A ′ that breaks the collision resistance of H also

with non-negligible probability. We take two cases. In the first case, |C1| 6= |C2|.
Then, since the height of the chain is included in a fixed position in x|C1|,x

′
|C2| (cf.

Table 4.1), it follows that x|C1| 6= x′|C2| and with overwhelming probability G(x|C1|) 6=
G(x′|C2|), which in turn implies that B|C1| 6= B′|C2|. Since H(head(C1)) = H(head(C2)),

it follows that a collision in H has been found. In the second case, where |C1| =
|C2|, following the classical inductive argument for the MD transform, it can be shown

that there exists ` less or equal to |C1|, such that MD(H(Gen),((G(xi)||σi))i∈[`−1]) 6=
MD(H(Gen),((G(x′i)||σ′i))i∈[`−1]) or (G(x`),σ`) 6= (G(x′`),σ

′
`), and thus a collision has

been found. The lemma follows.

Lemma 44 implies that the insertion and copy properties [GKL15] (see Defini-

tion 12), that have to do with the way blocks are connected, do not occur with over-
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whelming probability in λ.8

Corollary 45. Let H ,G be collision-resistant hash function families. Then, for any

PPT A ,Z no insertions or copies occur in VIEW
t,n
ΠSoW
PL ,A ,Z with probability 1−negl(λ).

We proceed to the main part of the analysis. We follow the notation and definitions

of Section 3.3.2, for: successful and uniquely successful rounds, honest, adversarial

and u.s. blocks, random variables X(·),Y (·). Moreover, with respect to some block

B computed by an honest party P at some round r, let ZP
r (S) denote the number of

distinct blocks diffused by the adversary during S that have B as their ancestor; note

that honest parties compute at most one block per round. If P is corrupted or did not

compute any block at r, let ZP
r (S) = 0. Define XP

r (S) similarly.

Lower bounds on the expected rate of successful and uniquely successful rounds

are defined as follows:

γ = (n− t) ·α(h) · (1−βtH )n−1 and f = (1− (1−α(h))n−t)

We will formally show that this is the case later, in Lemma 49. As in previous chapters

we show that the rate of uniquely successful rounds outperforms the rate at which the

adversary produces signatures.

Lemma 46. Assume a SoW scheme that complies with Assumptions 2 and 3. It holds

that γ≥ (1+δ)βt ′A .

Proof. It holds that:

γ =(n− t) ·α(h) · (1−βtH )n−1 ≥ (n− t) ·α(h) · (1−βtH n)

≥(n− t) · (1−δSoW) ·βt ′H · (1−δ)≥ (1−δSoW)(1−δ)

(1−δSteps)
·βt ′A · ≥ (1+δ)βt ′A

where we have first used Bernouli’s inequality, and then the three conditions from

Assumption 3. The last inequality follows from the fact that δSteps−δSoW

2 ≥ δ.

Next, we prove that the adversary cannot mine blocks that extend an honest block

created recently at a very high rate with probability better than that of breaking the

MU-TCMA property. For a summary of our notation we refer to Table 4.2.

Lemma 47. Let H ,G be collision-resistant hash function families, and assume a SoW

scheme that complies with Assumptions 2 and 3. For any set of consecutive rounds S,

for any party P, and any round i ∈ S, the probability that ZP
i (S)≥ bβt ′A |S|c is at most

ε(h, t ′A · |S|,n · |S|).
8A third property, called “prediction,” also introduced in [GKL15], is not needed in our proof as it is

captured by the fact that SoW is MU-TCMA secure even in the presence of adversarial precomputation.
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λ : security parameter

n : number of parties

tH : number of steps per round per honest party

tA : total number of adversarial steps per round

t ′H : lower bound on number of Sign steps per round per honest party

t ′A : round simulation cost, excluding honest Sign calls

θ : upper bound on the number of messages sent by the adversary per round

β : upper bound on SoW computation rate per step

γ : lower bound on the rate of uniquely successful rounds

f : lower bound on the rate of successful rounds

δSoW : adversarial advantage in SoW computation rate

δSteps : honest advantage in number of steps per round

δ : lower bound on δSteps−δSoW, upper bound on block generation rate

Table 4.2: The parameters of our analysis. Parameters λ,n, tH , tA , t ′H , t ′A ,θ ∈ N, while

β,γ, f ,δSoW,δSteps,δ ∈ R.

Proof. W.l.o.g., assume that i is the first round of S = {i′|i ≤ i′ < i+ s} and party P

is honest and mined a block B at round i. Let E be the event where in VIEW
t,n
Π,A ,Z the

adversary has mined at least bβt ′Asc blocks until round i+ s that descend B. For the

sake of contradiction, assume that the lemma does not hold, and thus the probability

that E holds is greater than ε(h, t ′A · s,n · s). Using A , we will construct an adversary

A ′ that wins the MU-TCMA game with probability greater than that. A ′ is going to

run internally A and Z, while at the same time perfectly simulating the view of honest

parties using the signing oracle that he has in his disposal on the MU-TCMA game.

This way, the view of A ,Z will be indistinguishable both in the real and the simulated

runs, and thus the probability that E happens will be the same in both cases. A sketch

of the reduction is given at Figure 4.4.

We are going to describe the two stages of A ′ separately, i.e. before and after

obtaining vk. First, A ′1 creates the genesis block and sets the fixed length hash key and

the SoW public parameters to be Σ and pp, respectively. Then, he perfectly simulates

honest parties up to round i−1 and at the same time runs A and Z in a black-box way.

Finally, it outputs the contents of the registers of A and Z as variable st. He can do

this since he has polynomial time on λ on his disposal. Note, that up until this point in

the eyes of A and Z the simulated execution is indistinguishable compared to the real
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A′
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(1λ,Σ, pp)

((Bi))i∈[k]

vk

A′
1

A

Z

P1, ..,Pn

((fi(Σ, vk), xi, σi))i∈[k]

st

vk′,msg

σ, t

A

Z

P1, .., Pi, ..,Pn

vk||x0

Figure 4.4: The figure depicts a schematic of the reduction from the Bitcoin backbone

to the MU-TCMA game of Lemma 47.

one.

For the second stage, A ′2, is first going to use st to reset A and Z to the same state

that they were. We assume that this can be done efficiently, e.g., by having A and Z
read from the registers where st is stored whenever they perform some operation on

their registers. Moreover, A ′2 is again going to simulate honest parties behavior, from

round i until round i+ s, but in a different way. Instead of running the Sign algorithm

for each non-corrupted honest party at every round, it makes a query to the signing

oracle S with the respective parameters. Then, it checks if the honest party succeeded

in making a signature in this round by comparing the number of steps needed to make

this signature to the number of steps available to the party at this round. Hence, A ′2
has to do n queries to the signing oracle per round. The adversary can also send up

to θ messages per round to honest parties which they have to verify, thus inducing an

additional θ · tver overhead in the simulation. Note that A ′2 has to run the verification

procedure only once per message.

Continuing with the description of A ′2, as shown in Figure 4.4, it takes as input a

key vk generated from KeyGen(pp). We should somehow relate vk to the blocks the

internal adversary is going to produce. In our reduction, this is achieved by: (i) relating

the block B that party P generates at round i with vk through the input contribution

function I(·), and (ii) by the fact that the seed of all blocks that have B as an ancestor

is related to H(B). In more detail, at round i, A ′2 will use vk in the neutral transaction

included in I(·) for P; denote by vk||x0 the output of I for P at this round. If P is

successful at this round and mines a block B = 〈s0,vk||x0,σ0〉 (this can be simulated
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using S ), then any block B′ = 〈s,x,σ〉 descending B will be related to it as follows:

s =MD(HΣ(B),(GΣ(xi)||σi)i)

=MD(HΣ(s||GΣ(vk||x0)||σ0),(GΣ(xi)||σi)i)

def
= f(s,{xi,σi}i)(Σ,vk)

for some ((xi,σi))i due to Fact 1. Observe, that the seed of B′ is a function of Σ and

vk, as required by the MU-TCMA game. In fact the tampering function class we will

consider is going to be exactly the set of all these functions f . More formally, let C

be the set of sequences ((xi,σi))i that correspond to a valid chain in the way described

before. Then, a member of the tampering function class we will be considering is

defined as follows:

Fλ = { fs,a}s∈{0,1}λ,a∈C

We show next, as required by our assumption regarding the SoW scheme, that F is

computationally unpredictable.

Claim 4. F is computationally unpredictable.

Proof. For the sake of contradiction, assume that there exists a PPT adversary A =

(A1,A2) that breaks the computational unpredictability property of F . This implies

that

Pr
pp←PPub(1λ);

vk←KeyGen(pp);
Σ←Uλ;


(st,y)← A1(1λ,Σ, pp);

f ← A2(1λ,st,vk) :

f ∈ Fλ∧ f (Σ,vk) = y


is non-negligible. W.l.o.g, also assume that no PPT adversary can guess vk given pp,

as this easily implies that no function family F can be computationally unpredictable,

and the SoW scheme is trivially insecure as described in Section 4.3.

We are going to describe an adversary A ′ that uses A to break the collision resis-

tance property of H. Given Σ, A ′ first runs A1(Σ, pp) and obtains a prediction y and

state st. Next, A ′ randomly samples vk1,vk2 using KeyGen and runs A2 twice on inputs

st,vk1 and st,vk2 respectively. By an application of the splitting lemma we can show

that with non-negligible probability A2 will output (not necessarily different) func-

tions f1, f2 such that y = f1(Σ,vk1) = f2(Σ,vk2). As noted earlier, this corresponds to

equality of the hashes of two chains. Moreover, vk1 6= vk2 with overwhelming prob-

ability in λ, as otherwise the adversary would be able to guess vk by simply running

KeyGen(pp). Hence, due to the collision resistance of G, the two chains start with
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two different blocks with overwhelming probability. Using similar techniques as in

Lemma 44, we can show that A ′ can find a collision in H using f1, f2,vk1,vk2 with

non-negligible probability in λ, which is a contradiction. a

Since A and Z cannot distinguish between the bitcoin execution and the one we

described above, E will occur with probability at least ε(h, t ′As,ns), i.e. A will compute

at least bβt ′Asc blocks starting from round i and up to round i+ s that descend B. Note,

that these blocks are also valid signatures, whose keys are of the form f (Σ,vk), for

(possibly different) f ’s. Moreover, the event that the adversary outputs different fi, f j

such that fi(Σ,vk) = f j(Σ,vk), corresponds to finding chains C1,C2 such that H(C1) =

H(C2). By Lemma 44, this happens with negligible probability. Hence, A ′ will win the

MU-TCMA game with respect to tampering function class F with probability greater

than ε(h, t ′As,ns), while being s · (tA + θ · tver + tbb · n) = s · t ′A -bounded and having

made at most ns queries to the signing oracle, which is a contradiction to our initial

assumption.

Note that we can do exactly the same reduction without using the oracle to simulate

the signing procedure of the honest parties. Then, the total running time of the second

stage of A ′ is on the worst case s · (tA + ntH )-bounded and hence the probability it

can win is ε(h,s · (tA + ntH ),0). We derive the following bound on the total number

of blocks produced by both honest and malicious parties during a certain number of

rounds.

Corollary 48. Let H ,G be collision-resistant hash function families, and assume a

SoW scheme that complies with Assumptions 2 and 3. For any set of consecutive rounds

S, for any party P, and any round i ∈ S, the probability that ZP
i (S)+XP

i (S)≥ bβ(tA +

ntH ) · |S|c is less than ε(h, |S| · (tA +ntH ),0).

Next, we prove lower bounds on the rate of successful and uniquely successful

rounds in any big enough interval of rounds. Our proof crucially depends on the run-

time independence property of the SoW scheme. Specifically, the property implies that

for some set of rounds the sum of the Bernoulli random variables of the event that a

round is (resp. uniquely) successful concentrate around the mean. Moreover, using the

MU-TCMA and Successful properties we can compute a lower bound on this mean,

and thus lower-bound the rate of uniquely successful rounds with good probability.
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Lemma 49. Assume a SoW scheme that complies with Assumptions 2 and 3. For

any set of consecutive rounds S, with |S| ≥ λ

γδ2 , the following two events occur with

negligible probability in λ:

The number of uniquely successful rounds in S is less or equal to (1− δ

4)γ · |S|;
the number of successful rounds in S is less or equal to (1− δ

4) f · |S|.

Proof. W.l.o.g., let S = {1, . . . ,s}. Our proof strategy will be to first prove the results

of the lemma in an “ideal” execution where honest parties behavior is simulated using

the distribution defined in the runtime independence property. Due to the fact that the

random variables defined in this property are i.i.d., analyzing the distributions of suc-

cessful and uniquely successful rounds is a lot easier. We finish the proof by showing

that these two distributions are statistically indistinguishable in the “real” and “ideal”

executions.

More formally, we start by describing the two experiments. First, let {Li, j}(i, j)∈[s]×[n]
denote the set of i.i.d. random variables which are guaranteed to exist by the run-

time independence property. Let Ereal(1λ), Eideal(1λ) be two random experiments.

Ereal(1λ) simulates the protocol execution we have defined, and at the end of the

experiment the number of successful and uniquely successful rounds that happened

during S is output, while Eideal(1λ) is defined in the same way, except that whenever

it is the turn of an honest party Pi at round j ∈ S to run the Sign routine, it instead sam-

ples a value from Li, j. If this value is larger than the available number of steps it has to

run Sign, it acts as if it did not find a new signature in this round. Otherwise, it samples

a signature according to the distribution induced by the Sign routine for its parameters

pp,vk,m,h in this round, conditioned on the fact that the routine should take at most

the available number of steps; the sampling part may take many more steps than the

available steps the party has for this round.

We start our analysis by showing an upper and a lower bound for the random

variables in {Li, j}(i, j)∈[s]×[n]. By the runtime independence property, it holds that for

any i, j, pp,vk,m: ∆[Li, j,StepsSign(pp,vk,m,h)] ≤ negl(λ). Moreover, for any predi-

cate φ on the image of Li, j, it holds that |Pr[φ(Li, j)]−Pr[φ(StepsSign(pp,vk,m,h))]| ≤
negl(λ), as otherwise we would be able to use φ to distinguish between the two random

variables with non-negligible probability, which is a contradiction. For φ(x)
de f
= x≤ t ′H ,

and due to the Successful property, it follows that Pr[Li, j ≤ t ′H ]≥α(h)−negl(λ). Next,

we prove an upper bound on Pr[Li, j ≤ tH ].

Claim 5. For all (i, j) ∈ [s]× [n] : Pr[Li, j ≤ tH ]≤ βtH +negl(λ).
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Proof of Claim. Assume that the claim does not hold, and thus there exist some i, j

such that Pr[Li, j ≤ tH ]−βtH is non-negligible. From the discussion above, for every

pp,vk,m, random variable Li, j is indistinguishable from StepsSign(pp,vk,m,h), hence

Pr[StepsSign(pp,vk,m,h) ≤ tH ]− βtH is also non-negligible. We are going to show

that this cannot hold, as it would violate the MU-TCMA property.

Assume an attacker A that on input pp,vk,h, picks k = dλ/βe different mes-

sages m1, . . . ,mk and runs then Sign routine for each of the messages for tH steps.

Let random variable Wi be equal to 1, iff for the i-th invocation of Sign it holds that

StepsSign(pp,vk,mi,h) ≤ tH , and 0 otherwise. By the discussion above, it holds that

E[Wi]−βtH is non-negligible, and from the linearity of expectation E[∑k
i=1Wi]−kβtH

is also non-negligible. Note that ∑
k
i=1Wi corresponds to the number of SoWs that A

will compute in ktH steps. On the other hand, for any adversary that runs for ktH
steps, it holds that it computes less than bβktH c SoWs, with overwhelming probability

on βktH , thus also on λ. In turn this implies that on expectation any adversary will

compute less than bβktH c+negl(λ) SoWs. This contradicts the fact that for A it holds

that E[∑k
i=1Wi]− kβtH is non-negligible, and thus the claim follows. a

We proceed to analyze the probability of successful and uniquely successful rounds

occurring in Eideal(1λ). Let random variables X̂(·),Ŷ (·) be defined similarly to X(·),Y (·)
for Eideal(1λ). We define an additional two random variables X ′(·),Y ′(·) that will be

helpful in our analysis. X ′({i}) is equal to 1, where i is some round of the execution, if

there exists some party, among the first n− t honest parties that are activated at round

i, such that Li, j ≤ t ′H . Note that X ′({i}) = 1 implies that X̂({i}) = 1. Further, if we

define X ′(S) = ∑i∈S X ′({i}), it follows that X̂(S)≥ X ′(S). Next, let Y ′({i}) be equal to

1, if there exists a unique party, among the first n− t honest parties that are activated at

round i, such that Li, j ≤ t ′H , and for all other n−1 parties it holds that Li, j > tH . Again,

it holds that Ŷ (S) ≥ Y ′(S). Note that due to the way X ′(·),Y ′(·) are defined, and the

fact that {Li, j}(i, j)∈[s]×[n] are i.i.d random variables, these two random variables do not

depend on the behavior of the adversary and thus are easier to analyze. We proceed to

analyze their expectations.

Claim 6. For any i ∈ S, it holds that E[Y ′({i})]≥ γ and E[X ′({i})]≥ f .
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Proof of Claim.

E[Y ′({i})] =Pr[Y ′({i}) = 1]

=Pr[
∨

j∈[n−t]

(Li, j ≤ t ′H ∧
∧

m∈[n]\{ j}
Li,m > tH )]

= ∑
j∈[n−t]

Pr[Li, j ≤ t ′H ] · ∏
m∈[n]\{ j}

Pr[Li,m > tH ]

≥(n− t) ·α(h) · (1−βtH )n−1 = γ

where the second equality follows from the fact that the events are mutually exclusive,

and the last inequality follows from the bounds established earlier about Li, j.

E[X ′({i})] =Pr[X ′({i}) = 1] = Pr[
∨

j∈[n−t]

Li, j ≤ t ′H ]

=1−Pr[
∧

j∈[n−t]

Li, j > t ′H ]

=1− ∏
j∈[n−t]

Pr[Li, j > t ′H ]

≥1− (1−α(h))n−t = f

where the last inequality follows as before. a

By the linearity of expectation we have that E[Y ′(S)] ≥ γ|S| and E[X ′(S)] ≥ f |S|.
Moreover, it easy to see that {Y ′({i})}i∈S are independent, and thus we can apply the

Chernoff Bound:

Pr[Y ′(S)≤ (1− δ

4
)γ|S|]≤ Pr[Y ′(S)≤ (1− δ

4
)E[Y ′(S)]]≤ e−Ω(δ2γ|S|)

Similarly, we can show that Pr[X ′(S)≤ (1− δ

4) f |S|]≤ e−Ω(δ2 f |S|). Since X̂(S)≥ X ′(S)

and Ŷ (S)≥ Y ′(S), the same bounds hold for X̂(S),Ŷ (S).

We finish our proof by arguing that the two probabilistic inequalities we proved

should also hold for Ereal(1λ), and thus for our protocol execution, with negligible

difference in probability. We will argue by a hybrid argument that the outputs of ex-

periments Ereal(1λ),Eideal(1λ) are statistically indistinguishable.

Let experiment E1(1λ) be the same as Ereal(1λ), with the only difference that

party P1 at round 1 acts as in the Eideal(1λ) experiment, i.e., samples a value from L1,1

instead of actually running the Sign routine with parameters pp,vk1,1,m1,1,h to see

if it succeeded, and computes a signature accordingly. For the sake of contradiction,
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assume that the outputs of Ereal(1λ) and E1(1λ) are not statistically indistinguishable.9

Then, there exists an unbounded distinguisher D that can distinguish the output of the

two experiments with non-negligible probability, i.e.,

|Pr[D(E1(1λ)) = 1]−Pr[D(Ereal(1λ)) = 1]|> negl(λ)

where the probabilities are defined over the coins of the two experiments. Let random

variable R denote the partial execution up to the point that party P1 at round 1 is about

to run the Sign routine in either of the two experiments; partial executions are fully

specified by the value of the CRS and the coins used by A ,Z and all parties up to that

point. Note, that this random variable is well defined and is equal in both experiments.

By an averaging argument, it holds that:

|Pr[D(E1(1λ)) = 1]−Pr[D(Ereal(1λ)) = 1]|
= | ∑

R∈supp(R )

Pr[R← R ] · (Pr[D(E1(1λ)) = 1|R]−Pr[D(Ereal(1λ)) = 1|R])|

≤ max
R∈supp(R )

{|Pr[D(E1(1λ)) = 1|R]−Pr[D(Ereal(1λ)) = 1|R]|}

where supp(R ) is the support of R . Hence, there exists some specific partial ex-

ecution R such that the probability that D distinguishes between the two experiments

conditioned on R is non-negligible. Moreover, R determines a unique set of parameters

pp,vk1,1,m1,1 that party P1 is going to use in its invocation of the Sign routine.

We can then use D to construct another distinguisher D′ for the random variables

L1,1 and StepsSign(pp,vk1,1,m1,1,h). D′ takes as input some value x, and works as

follows: It simulates the real execution according to R up to the point where party

P1 at round 1 is going to run the Sign routine. Then, if x is larger that the available

time to run the Sign routine, it simulates the behavior of party P1 as if it failed to

find a signature for this round. Otherwise, it generates a signature as specified in the

ideal experiment. It continues by simulating the rest of the execution as in the real

experiment, computing the number of successful and uniquely successful rounds, and

running D on this input. D′ outputs the value returned from D. If x is distributed as

random variable L1,1 (resp. StepsSign(pp,vk1,1,m1,1,h)), then D′ outputs 1 with the

same probability that D outputs 1 on input from experiment E1(1λ) (resp. Ereal(1λ))

conditioned on R. Note, that while in the StepsSign(pp,vk1,1,m1,1,h) case the actions

of party P1 are performed in a different way than in experiment Ereal(1λ) (the Sign

9For simplicity, we say here that the random variables are statistically indistinguishable instead of
the random variable ensembles. The relevant ensembles can be easily deduced.
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routine is invoked more than once), the value input to D follows exactly the same

distribution as the output of experiment Ereal(1λ) conditioned on R. It follows that:

|Pr[D′(L1,1) = 1]−Pr[D′(StepsSign(pp,vk1,1,m1,1,h)) = 1]|
= |Pr[D(E1(1λ)) = 1|R]−Pr[D(Ereal(1λ)) = 1|R]|> negl(λ)

D′ succeeds with non-negligible probability in distinguishing the two random vari-

ables, which is a contradiction to the runtime independence property. Thus the outputs

of experiments Ereal(1λ), E1(1λ) should be statistically indistinguishable.

We define Ei(1λ) recursively, by letting it be the same as Ei−1(1λ), except that the

i-th honest invocation of Sign is simulated as in Eideal. Then, by a similar argument

as above we can show that Ei−1(1λ),Ei(1λ) are indistinguishable. Note now that it

holds that E|S|·n(1λ)≡ Eideal(1λ). Therefore, Ereal(1λ)≈ E1(1λ)≈ . . .≈ Eideal(1λ),

which by transitivity implies that Ereal(1λ)≈ Eideal(1λ). By our previous analysis of

X̂(S),Ŷ (S), the lemma follows with negligible difference in probability.

We are now ready to define the set of typical executions for this setting. How-

ever, here we will need to adapt the definition due to the difficulties associated with

performing a reduction to the security of the SoW scheme.

Definition 50. [Typical execution] An execution is typical if and only if λ ≥ 9/δ and

for any set S of consecutive rounds with |S| ≥ 2λ

γδ2 , the following hold:

1. Y (S)> (1− δ

4)γ|S| and X(S)> (1− δ

4) f |S|;

2. for any party P at any round i in S, ZP
i (S)<

γ

1+δ
· |S| and ZP

i (S)+XP
i (S)< β(tA +

ntH ) · |S| ; and

3. no insertions and no copies occurred.

Theorem 51. Let H ,G be collision-resistant hash function families, and assume a

SoW scheme that complies with Assumptions 2 and 3. An execution is typical with

overwhelming probability in λ.

Proof. In order for an execution to not be typical, one of the three points of Defi-

nition 50 must not hold with non-negligible probability for some big enough set of

rounds. Point 3 is implied by Corollary 45. For a specific set of rounds S, where

|S| ≥ 2λ

γδ2 , point 1 is implied by Lemma 49 with overwhelming probability in λ. Re-

garding point 2, by an application of Lemma 47 for t ′A = γ

(1+δ)β , it follows that ZP
i (S)<
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b γ

1+δ
· |S|c ≤ γ

1+δ
· |S| with probability negl(β · t ′A · |S|), where βt ′A · |S| ≥ β

γ

(1+δ)β · 2λ

γδ2 =

Ω(λ). Note, that due to Assumption 3 and Lemma 46, necessarily t ′A ≤
γ

(1+δ)β . Simi-

larly, Corollary 48 implies that ZP
i (S)+XP

i (S) < β(tA +ntH ) · |S| with overwhelming

probability in λ. The latter part follows from inequality βtH ≥ α argued in Lemma 49

and the definition of γ, since β(tA + ntH ) · 2λ

γδ2 ≥ 2λ

δ
= Ω(λ). Hence, point 2 also fol-

lows with overwhelming probability in λ. Finally, we can bound the probability that

an execution is not typical by applying the union bound on the negation of these events

over all sets of consecutive rounds of sufficiently large size, where the probability of

each event occurring is negligible in λ.

Next, taking advantage of the Assumption 3, we show that the rate at which the

adversary computes blocks in a typical execution, is bounded by the rate at which

uniquely successful rounds occur. With foresight, we note that this relation is going to

be at the core of our security proof.

Lemma 52. Assume a typical execution. For any set of consecutive rounds S =

{i, . . . , j}, where |S| ≥ 2λ

γδ2 , and for any party P and round r in S, it holds that (1−
δ

4)Y (S\{i})> ZP
r (S).

Proof. It holds that:

(1− δ

4
)Y (S\{i})> (1− δ

4
)2

γ(|S|−1)≥ γ|S|
1+δ

> ZP
r (S)

where, the first and last inequalities follow from the assumption that the execution is

typical, while the middle one follows from the fact that |S| ≥ 9/δ≥ (1− 1
(1−δ/4)2(1+δ)

)−1.

We can now use the machinery built in [GKL15] to prove the common prefix,

chain quality and chain growth properties, and eventually Persistence and Liveness,

with only minor changes.

Higher level properties. Next, we describe the minor changes one has to do after

proving the typical execution theorem with respect to the analysis of [GKL15], in order

to prove the security of the protocol in our model. We only give brief proof sketches

of lemmas or theorems from [GKL15] that are exactly the same for our own setting.

Lemma 53. (Chain-Growth Lemma). Suppose that at round r an honest party has a

chain of length `. Then, by round s ≥ r, every honest party has adopted a chain of

length at least `+X({r, . . . ,s−1}).
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Proof. The main idea of the proof of this lemma, is that after each successful round

at least one honest party will receive a chain that is at least one block longer than the

chain it had. Hence, from this round on all parties will mine chains that are at least that

long, and the lemma follows.

Theorem 54. (Chain-Growth). Assume a typical execution. The chain-growth prop-

erty holds with parameters τ = (1− δ

4) f and s≥ 2λ

γδ2 .

Proof. Let S be any set of at least s consecutive rounds. Then, since the execution is

typical: X(S) ≥ (1− δ

4) f · |S| ≥ τ · |S|. By Lemma 53, each honest player’s chain will

have grown by that amount of blocks at the end of this round interval. Hence, the chain

growth property follows.

Lemma 55. Assume a typical execution. Let B be some honest or the genesis block.

Any sequence of k ≥ 2λ

γδ
consecutive blocks in some chain C , where the first block in

the sequence directly descends B, have been computed in at least k/δ rounds, starting

from the round that B was computed.

Proof. W.l.o.g, let B be an honest block computed by party P at round i. First, note

that due to Assumption 3, it holds that β(tA +ntH )< δ. For the sake of contradiction,

assume that for some k≥ 2λ

γδ
, there is a set of rounds S′, such that |S′|< k/δ and at least

k blocks that descend block B have been computed during S′. This implies that there is

a set of rounds S, where |S| ≥ 2λ

γδ2 , such that XP
i (S)+ZP

i (S)≥ k≥ |S|δ> |S|β(tA +ntH ).

This contradicts the typicality of the execution, and the lemma follows.

Lemma 56. (Common-prefix Lemma). Assume a typical execution. Consider two

chains C1 and C2 such that len(C2) ≥ len(C1). If C1 is adopted by an honest party

at round r, and C2 is either adopted by an honest party or diffused at round r, then

C dk1 ≤ C2 and C dk2 ≤ C1, for k ≥ 2λ

γδ
.

Proof. In Lemma 47, instead of bounding the number of blocks mined by the adversary

in a set of rounds, we bound the number of blocks mined by the adversary with respect

to some specific honest block. Using also Lemma 55, the proof is exactly the same

as in [GKL15]. Note, that all adversarial blocks in the matching between uniquely

successful rounds and adversarial blocks are descendants of the last honest block in

the common prefix of C1 and C2.

Theorem 57. (Common-prefix). Assume a typical execution. The common-prefix prop-

erty holds with parameter k ≥ 2λ

γδ
.
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Proof. The main idea of the proof is that if there exists a deep enough fork between

two chains, then the previously proved lemma cannot hold.

Theorem 58. (Chain-Quality). Assume a typical execution. The chain-quality prop-

erty holds with parameter µ < 1−δ/4 and `≥ 2λ

γδ
.

Proof. The main idea of the proof is the following: If the theorem does not hold, and

due to the chain growth property, a large enough number of adversarial blocks will

have been mined in a set rounds that satisfies the properties of Definition 50. However,

the rate at which the adversary generates blocks is upper bounded, which leads to a

contradiction.

Finally, the Persistence and Liveness properties follow from the three basic prop-

erties, albeit with different parameters than in [GKL15].

Lemma 59. (Persistence). Assume a typical execution. It holds that ΠPL satisfies

Persistence for k ≥ 2λ

γδ
.

Proof. The main idea is that if persistence is violated, then the common-prefix property

will also be violated. Hence, if the execution is typical the lemma follows.

Lemma 60. (Liveness). Assume a typical execution. It holds that ΠPL satisfies Live-

ness with parameters u = 2k
(1− δ

4 ) f
rounds and k ≥ 2λ

γδ
.

Proof. The main idea here is that after u rounds at least 2k successful rounds will have

occurred. Thus, by the chain growth lemma the chain of each honest party will have

grown by 2k blocks, and by the chain quality property at least one of these blocks that

is deep enough in the chain, is honest.

Theorem 61. Assuming the existence of a collision-resistant hash function and a SoW

scheme that complies with Assumptions 2 and 3, protocol ΠSoW
PL implements a robust

public transaction ledger with parameters u= 2k
(1− δ

4 ) f
and k≥ 2λ

γδ
except with negligible

probability in λ.

As a “sanity check,” we show in Section 4.5 that the Bitcoin SoW scheme we

outline there is secure both in the random oracle and the FTREE model [PSS17] ac-

cording to our definitions; moreover, according to the security parameters we obtain

for the scheme, it is implied that the security guarantees we get from our black-box

analysis of the Bitcoin backbone based on this scheme are similar to those proved

in [GKL15, PSS17].
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4.4.3 Consensus

In this section we show how to achieve consensus (a.k.a. Byzantine agreement [PSL80,

LSP82]) under exactly the same assumptions used for proving the security of the Bit-

coin backbone protocol in Section 4.4.2.

As mentioned earlier, in [GKL15] consensus is achieved under the Honest Major-

ity Assumption by using a proof-of-work construction in a non-black-box way, through

a mining technique called “2-for-1 PoWs.” In more detail, the technique shows how

miners can compute proofs of work for two different PoW schemes at the cost of one,

while at the same time ensuring that their resources cannot be used in favor of one of

the two schemes. However, the security proof for the resulting protocol crucially relies

on the fact that each of the bits of the strings output by the random oracle are indepen-

dently sampled, and thus goes again our stated goal of designing a SoW scheme that

does not rely on such a strong independence assumption.

Here, we get rid of this requirement, by showing how blockchain-based consensus

can be achieved by only using the SoW security properties we have defined, directly,

and without the extra non-black-box machinery used in [GKL15]. The protocol is

based on the Bitcoin backbone protocol, and formally specified by providing adequate

definitions for the V,R, I functions presented in Section 4.4.2.

First, we define some additional notation and terminology that will be used in the

remainder of the section. We will use the terms “input” and “vote” interchangeably, re-

ferring to the parties’ input to the consensus problem. We will use header(〈s,x||vote,σ〉)
to denote the “compressed” version of block 〈s,x||vote,σ〉10, equal to 〈s,G(x)||vote,σ〉.
Note, that as defined, the header of any block is of a fixed size. We also extend the

definition of our hash function H as applied to headers of blocks. The hash of the

header of some block B will be equal to the hash of B, i.e., H((header(B)) = H(B) =

H(s,G(x)||vote,σ) (note that the header of B provides all the information needed to

calculate the hash of B).

We now present a high-level description of the protocol. The basic idea is that

during block mining, parties are going to include in their blocks not only their own

votes, but also headers of other blocks that they have seen and that are not part of their

chain. Then, after a predetermined number of rounds, the parties will count the votes

“referenced” in a prefix of their chain, including the votes found in the headers of the

blocks referenced. In this way, they can take advantage of the robust transaction ledger

10We augment the block content x with a vote bit. This does not change the results of the analysis of
the previous section.
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built in Section 4.4.2. The Persistence property implies that the honest parties will all

agree on which votes should be counted, while the Liveness property guarantees that

the majority of the counted votes come from honest parties.

The reader may wonder about the reason behind honest parties including in their

blocks also headers of other blocks that they have seen but that are not part of their

chain. It’s because, as shown in [GKL15], the adversary is able to add more blocks

in the main chain than his ratio of mining power (e.g., using a selfish-mining attack).

This does not hold if the honest parties are able to also count off-chain blocks as our

protocol does.

Algorithm 11 The content validation predicate. The input is the contents of the blocks

of some chain.

1: function V(〈x1, . . . ,xm〉)
2: D← new AVL() . Create a new (empty) AVL tree.

3: D.add(H(BGen)) . Add the hash of the genesis block on the tree.

4: for i = 1, ...,m do
5: queue← references(xi) . Add all block references in a queue.

6: 〈r||height〉 ← queue.top()

7: if height 6= i then
8: return False . Check for the correct block “height”.

9: while queue 6= /0 do
10: 〈s,G(x)||vote,w〉 ← queue.top()

11: if ((D.exists(s))∧Verify(s,G(x)||vote,h,w)) then
12: D.add(H(〈s,G(x)||vote,w〉)) . Add new entry on the tree.

13: queue.pop()

14: else
15: return False . If not, the chain is invalid.

16: return True

A main technical challenge is to be able to add the block references without mak-

ing the honest parties’ chains grow too large, and at the same time to ensure that

the number of honest votes exceeds the adversarial ones. To overcome this chal-

lenge, we modify the Sign algorithm so that it is run on the header of the block, i.e.,

Sign(pp,s,G(x)||vote,h) and Verify(pp,s,G(x)||vote,h,σ), respectively. This way we

are able to verify the validity of a block as a SoW and determine the block’s vote by
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only knowing its header. These are exactly the properties we need for the consensus

application.

Moreover, we should be able to tell whether the referenced blocks are “fresh”; that

is, the adversary should not be able to reference blocks that it has precomputed and

are not related to the genesis block. We achieve this by requiring blockchain contents

to have a special structure in order to be considered valid by the content validation

predicate V(·) (Algorithm 11). A chain will be valid when the referenced blocks on

every prefix of the chain form a tree that has the genesis block at its root. In order to

check this efficiently, we require that the block headers listed in each block are ordered,

so that each entry extends some block header found in previous entries of the same or

parent blocks.

In more detail, to efficiently check for membership in the hash tree, in line 2 of

Algorithm 11 we use an AVL tree. (Any other data structure supporting efficient updates

and search would also work.) In line 5, the referenced blocks are extracted and pushed

into a queue. We note that during this process it is checked that: (i) the contents of the

block have a correct format, i.e., a vote field and list of block headers, (ii) each header

in the list is a valid SoW and extends a chain starting from the genesis block, and (iii)

that the first reference includes a string r and the height of the block as required in the

security analysis of Section 4.4.2 and described in Table 4.1.

Content validation pre-

dicate V(·)
As defined in Algorithm 11.

Chain reading function

R(·)
R(·) outputs the majority of the votes found in the block

headers of the first M blocks of the selected chain.

Input contribution func-

tion I(·)
The input function I(·) maintains state of which blocks

have been received, and outputs an input value x that con-

tains (i) the headers of all valid blocks that extend the gen-

esis and are not mentioned in the chain C that the party is

currently extending, (ii) a neutral transaction of the form

KeyGen(pp)|||C |, and (iii) the party’s input (i.e., 0 or 1).

Table 4.3: The instantiation of functions I(·),V(·),R(·) for protocol ΠSoW
BA .

The algorithm runs for L rounds, after which it outputs the majority of the votes

found in a prefix of the selected chain, of a predetermined length M. We call the re-

sulting protocol ΠSoW
BA (“BA” for Byzantine agreement). A description of the consensus
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protocol (specifically, the V,R, I functions) is presented in Table 4.3, and also recall

the example in Figure 4.1. Note that all parties terminate the protocol simultaneously.

Theorem 62. Assuming the existence of a collision-resistant hash function and a SoW

scheme that complies with Assumptions 2 and 3. Protocol ΠSoW
BA solves consensus in

O( λ

γ3δ
) rounds with overwhelming probability in λ.

Proof. We are going to show that protocol ΠSoW
BA , parameterized with k = 2λ

γδ
, M =

k + 8k
γ

number of blocks, and L = M+k
(1− δ

4 )γ
number of rounds solves consensus with

overwhelming probability in λ. Our analysis uses many of the intermediate lemmas

established for the proof of Theorem 61.

We start, by proving that the Agreement property holds. First, note that our defini-

tion of V(·) guarantees that if an honest party accepts a chain as valid, all other parties

are also going to accept it as valid, since the validation predicate only depends on the

chain that is being validated. Assume that an execution is δ-typical. Since L ≥ 2λ

γδ
,

after L rounds: (i) due to chain growth the chains of all honest parties will have length

at least M+k blocks, and (ii) due to the common prefix property they will all agree on

the first M blocks of their chains. Hence, all honest parties will decide on their output

values based on the “votes” mentioned in the same blocks, and thus they will all agree

on the same value.

Regarding Validity, we are going to show that the majority of the counted “votes,”

i.e., from blocks and block headers found in blocks B1, . . . ,BM of the common prefix,

have been mined by honest parties. Due to the chain quality property at least one

block from BM−k, . . . ,BM is honest. Assume that the last honest block in this chain has

been diffused in the network at round r. Since M− k ≥ 8k
γ
≥ k, by an application of

Lemma 55 starting from the genesis block, it holds that r ≥ 8k
γδ

. Let r′ = r+ 2k
(1− δ

4 )γ
.

At round r′, by the chain growth property all parties will have chains of length at least

M + k, and by the common-prefix property all blocks up to the M-th position will be

fixed for the rest of the execution. Hence, the last adversarial block in B1, . . . ,BM must

have been computed before round r′.

It remains to show that for S1 = {1, . . . ,r} and S2 = {1, . . . ,r′} it holds that Z(S2)<

X(S1), where random variable Z(S2) corresponds to the number of blocks diffused by

the adversary during S2 that extend the genesis block.

Z(S2)<
1

1+δ
γr′ ≤ (1− δ

4
)(1− δ

4
)γr′ ≤ (1− δ

4
)γr < X(S1).

The first and the last inequalities hold due to the fact that the execution is typical. The
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fourth inequality follows by the size of r. The theorem follows since the majority of

the referenced blocks in the chain agreed upon, have been mined by honest parties.

Concluding, notice that the total size of any chain is bounded by the total number of

blocks mined, since each block’s header is mentioned at most once in a single chain.

Hence, in s rounds of a typical execution a chain has size in the order of O(s · δ · λ)
bits.

4.5 SoW Constructions from Idealized Assumptions

In this section, and as a sanity check, we outline a SoW scheme that is secure both in

the random oracle and the FTREE model [PSS17]. Moreover, according to the security

parameters we obtain for the scheme, the security guarantees we get from our black-

box analysis of the Bitcoin backbone are similar to those proved in [GKL15, PSS17].

SoW in the RO model. Our first step is to show that the SoW scheme used in the

Bitcoin protocol (call it BSOW) is secure in the random oracle model according to our

definitions.

In a nutshell, Bitcoin’s Sign algorithm tries to find a block header with a small

hash. The main components of the header are as follows: (i) the hash of the header

of the previous block, (ii) the hash of the root of the Merkle tree of the transactions

that are going to be added to Bitcoin’s ledger, including the randomly created coinbase

transaction, and (iii) a counter. The algorithm works by first fetching available transac-

tions from the network, then computing a random public key that will be used for the

coinbase transaction, and then iteratively incrementing the counter and calculating the

hash of the header of the block until a small value is found. Casting this in our terms,

the key is the hash of the previous block, which by itself depends on Bitcoin’s genesis

block, while the transactions received by the network, as well as the coinbase transac-

tion, constitute the message. It is important to note that it is not possible to consider

the key to be the coinbase transaction, as there is no guarantee it has any entropy when

produced by an adversarial signer. To abstract the randomized nature of the signing

procedure, which in the actual implementation is captured by the coinbase transaction,

we hash msg together with a randomly generated string. This should be part of the

signature in our SoW syntax since it is produced by the signing process and is neces-

sary for verification. Similarly, the counter is also part of the signature produced by

the signing process. BSOW, a simplified version of the scheme described above with the

transaction semantics omitted for simplicity, is presented in Figure 12.
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Remark 6. In the Bitcoin implementation, the hash of the root of the Merkle tree of

the transactions is not “salted.” This means that if we consider the adversary to be

non-uniform, she could get collisions for free in her advice string and use them to

compute two SoWs at the cost of one. This would be problematic for our MU-TCMA

security game. Thus, in order to strengthen the security of the scheme, we choose to

also include the key in the hash of the message.

Algorithm 12 Bitcoin’s SoW implementation on the ROM. H and G are modeled as

ROs.

1: function PPub(1λ)

2: return 1λ

3:

4: function KeyGen(pp = 1λ)

5: vk←Uλ

6: return vk

7:

8: function Sign(pp = 1λ,vk,msg,h)

9: while true do
10: σ1←Uλ

11: dig← G(vk,σ1,msg)

12: for σ2 = 0λ|2 to 1λ|2 do
13: if (H(vk,dig,σ2)< 2λ−h) then
14: return (σ1,σ2)

15:

16: function Verify(pp = 1λ,vk,msg,h,σ = (σ1,σ2))

17: return (H(vk,G(vk,σ1,msg),σ2)< 2λ−h)

We assume that H and G are idealized hash functions, i.e., our analysis is in the

random oracle model.

Theorem 63. If H,G are modeled as Random Oracles, then Algorithm 12 implements

a SoW scheme, with hardness space HP = [2λ−λ], that is:

correct;

O(λ)-verifiable;

(tsign,1−
(

h
2λ

)tsign
)-successful, for any polynomially large tsign;
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run-time independent;

((1+σ)(1− h
2λ
),e−

β(h)tσ2
6 +negl(λ))-MU-TCMA secure w.r.t. any computationally

unpredictable function family F , for any σ ∈ (0,1).

Proof. Let ph = 1− h
2λ

be the probability that a query to the random oracle returns a

value less than 2λ−h, and let qH be the number of queries the adversary makes to the

RO. We consider each property in turn.

Correct. The probability that the Sign algorithm cannot find any signature for the

given parameters is upper bounded by the probability that 2λ different queries to the

RO return a value greater or equal than 2λ−h. This probability is upper bounded by:

(
h
2λ

)λ2λ ≤ (
2λ−λ

2λ
)2λ ≤ (1− λ

2λ
)2λ ≤ e−λ

The correctness property follows.

MU-TCMA. Let ` = β(h)t. W.l.o.g., assume ` ≥ 1, since if ` < 1 there exists a trivial

adversary that wins with probability 1. First, we show that for any adversary A there

exists an adversary A ′ that succeeds in winning ExpMU-TCMA
A ′,F (Figure 4.2) with almost

the same time complexity and probability that A wins, without using the signing or-

acle S . A ′ is going to run A internally, and all calls made by A to S are going to be

simulated, i.e., assuming A queries S with values (k,msg), A ′ will respond with some

number t ′ sampled from the time distribution of S (t ′ can be efficiently sampled from a

geometric distribution, since queries are i.i.d Bernoulli trials) and some random signa-

ture σ = (σ1,σ2), where σ2 < t ′. Moreover, it will sample a uniformly random element

from [2λ− h− 1], and store all these information in some efficient data structure that

allows for search in logarithmic time. Any calls made by the adversary afterwards to

the RO that are related to (k,msg) will be answered accordingly: If A2 queries the RO

with some string k||G(k,σ1,msg)||σ′2, where σ′2 = σ2, then A ′ will respond with the

stored value for the related S query that is less than 2λ−h. Otherwise if σ′2 < σ2, if this

is the first time this query is performed he samples uniformly a value from [2λ−h,2λ],

store it, and return it to A to this and any subsequent identical query. Note, that since

σ1 is chosen at random and RO is unpredictable, the probability that A has queried the

RO with a string of this format before querying S is negligible. Hence, the view of

A in both experiments is computationally indistinguishable, and he will output ` valid

SoWs with respect to the simulated view with the same probability that he wins in the

real experiment.

We next have to show that A ′ can use the output of A to win in the real experiment.

The only case this will not happen, is if the output of A contains a SoW related to the
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queries asked to (the simulated) oracle S , and thus it does not correspond to a winning

output for A ′, i.e., A ′ has set the value of this SoW to be small enough, while this does

not necessarily hold for the actual RO. This implies, that there exists a SoW on the

output of A of the form 〈 f ,msg,(σ1,σ2)〉 and a query 〈(k,msg′),(σ′1,σ
′
2)〉 on S , such

that f (Σ,vk)||G( f (Σ,vk),σ1,msg)||σ2 = k||G(k,σ′1,msg′)||σ′2. In order for this to be

a winning output for A , it must not correspond to the asked query, and thus it should

hold that either msg 6= msg′ or σ1 6= σ′1. This implies that the adversary has found a

collision in G, which only happens with negligible probability in λ. Hence, A ′ will

win ExpMU-TCMA
A ′,F with the same probability (minus some negligible term in λ) as A .

Moreover, the overhead incurred to A ′’s running time will be only logarithmic on λ

i.e. A ′ can simulate the t steps taken by A2 in time t ′ = t · (1+Ω(log(λ))); he has to

maintain a heap of poly(λ) queries made to S and the RO. Importantly, note that in

any case A ′ queries the real RO at most t times.

Next, we analyze the probability that A ′ wins in the MU-TCMA experiment. Let

A` be the event where A ′ asks t queries the RO after receiving vk, and receives at

least ` responses that have value less than 2λ− h. Let random variable X be equal to

the number of these responses that are less than 2λ− h. Since the queries are i.i.d.

Bernoulli random variables with probability of success ph, we can use the Chernoff

bound to bound the probability of A`. For any σ ∈ (0,1), since `= βt ≥ (1+σ)pht, it

follows that:

Pr[A`] = Pr[X ≥ `]≤Pr[X ≥ (1+σ)pht]

=Pr[X ≥ (1+σ)E[X ]]≤ e−
E[X ]σ2

3 ≤ e−
(1+σ)phtσ2

6 .

Let B be the event where A ′2 outputs f ,m,σ such that f ∈Fλ and there exists a query

made to the random oracle by A ′1 of the form f (Σ,vk)||x||σ, for some x ∈ {0,1}∗.
We will show that B happens with only negligible probability in λ. For the sake of

contradiction, assume that B happens with non-negligible probability. Then, we can

use A ′ to break the computational unpredictability of F . Let A ′′ = (A ′′1 ,A ′′2 ) be the

attacker in the computational unpredictability game. A ′′1 on input (1λ,Σ, pp) will first

run A ′1(1λ,Σ, pp). It will output st ′ = st||y, where st is the output of A1, and y the

prefix of a random query that A ′1 made to the RO with length equal to the size of a

verification key. Then, A ′′2 on input (st ′,vk) will run A ′2(1λ,vk,st), until it halts and

possibly outputs a number of SoWs. Since A ′ is a PPT algorithm, the number of

queries made to the RO is at most polynomial in number. Hence, with non-negligible

probability B will occur and y will be the prefix of the RO query that matches the key
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of the SoW output by A ′. This violates the computational unpredictability property,

and hence B only occurs with negligible probability.

Let C be the event where the adversary wins and outputs two distinct SoWs that

correspond to the same query to the RO. This implies that the adversary can find a

collision on G. In time L = t ′+ tpre polynomial in λ, the probability that A ′ finds a

collision is
(L

2

)
2−λ+1 = e−Ω(λ) = negl(λ).

Finally, note that if A`,B,C do not occur, it is implied that A ′ will lose in the MU-

TCMA experiment. Thus:

Pr[ExpMU-TCMA
A ,F (1λ,h, `) = 1] = Pr[ExpMU-TCMA

A ′,F (1λ,h, `) = 1]

≤ Pr[A`∨B∨C]

≤ Pr[A`]+Pr[B]+Pr[C]

≤ Pr[A`]+negl(λ)

≤ e−
(1+σ)phtσ2

6 +negl(λ)

where we have used the union bound for the third inequality.

Now, by our initial argument, it follows that if there exists an adversary A that is t

bounded and breaks the MU-TCMA property with probability greater than e−
(1+σ)phtσ2

6 +

µ(λ), where µ(·) is a non-negligible function, then there exists an adversary A ′ that

makes at most t queries to the RO, and no queries to S , and breaks the MU-CMA

property with the same probability. This is a contradiction to the inequality proven

above, and the desired property follows.

Verifiability. Assuming H and G take constant time, verification takes time cverλ, for

some small constant cver which can be easily computed by careful inspection of the

verification protocol.

Successful. For any λ ∈ N, any polynomially large t ∈ N, pp ∈ PP, vk ∈ K, msg ∈M

and h ∈ HP, it follows that11:

Pr
[
StepsSign(pp,vk,msg,h)≤ t

]
≥ 1−Pr

[
StepsSign(pp,vk,msg,h)> t

]
≥ 1− (1− ph)

t

Independence. Fix some polynomial p′(·), λ, h, and some pp∈ PP,((vki,mi))i∈[p′(λ)] ∈
(K×M)p′(λ). Let {Yi}i∈[p′(λ)] be the same as {Xi}i∈[p′(λ)]= {StepsSign(pp,vki,mi,h)}i∈[p′(λ)]

11For simplicity, here we ignore the cost of computing σ1 and dig, which in any real application will
be a lot smaller than the cost of the main loop of Sign.
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with the only difference being that the random oracles H,G are replaced with the uni-

formly random sampling of an element in their range, i.e., every time Sign is called

and H or G are invoked, a random output is returned. Note, that {Yi}i does not depend

on pp,((vki,mi))i, and only depends on the coins of the sampler, as the independence

property requires. Moreover, the random variables in {Yi}i are mutually independent,

since their output only depends on their own local coins.

Regarding the second property, let E be the event that all σ1 sampled are different

among all the invocations of Sign, and that no collisions occurs in G. Note, that since

p′(·) is a polynomial, E happens with overwhelming probability in λ. Moreover, it

holds that Pr[{Xi}i = z|E] is equal to Pr[{Yi}i = z|E], for any z, since the random oracle

behaves exactly as the sampler we have replaced it with conditioned on E, as no query

is repeated. Therefore, it holds that for any z ∈ Np′(λ)

Pr[{Xi}i = z]−Pr[{Yi}i = z] =

=Pr[{Xi}i = z|E]Pr[E]+Pr[{Xi}i = z|¬E]Pr[¬E]

−Pr[{Yi}i = z|E]Pr[E]−Pr[{Yi}i = z|¬E]Pr[¬E]

=(Pr[{Xi}i = z|¬E]−Pr[{Yi}i = z|¬E])Pr[¬E]

It follows that the two distributions are negl(λ)-close, as shown next:

2∆[{Xi}i,{Yi}i] = ∑
z
|Pr[{Xi}i = z]−Pr[{Yi}i = z]|

≤∑
z
|(Pr[{Xi}i = z|¬E]−Pr[{Yi}i = z|¬E])Pr[¬E]|

≤Pr[¬E]∑
z
|(Pr[{Xi}i = z|¬E]−Pr[{Yi}i = z|¬E])|

≤negl(λ)(∑
z

Pr[{Xi}i = z|¬E]+∑
z

Pr[{Yi}i = z|¬E])≤ negl(λ)

The last inequality follows from the fact that each of the sums should be less or equal

to 1, as the events described are disjoint, and their union covers the entire sample

space.

SoW in the FTREE model. Next, we argue that we can use the F p
TREE functionality

from [PSS17] to realize a secure SoW scheme.

We start by reciting the F p
TREE description. F p

TREE is parametrized by some hard-

ness parameter p and keeps track of records on a tree. Initially, the tree contains ⊥.

On invocation of extend((m1, . . . ,m`−1),m), F p
TREE checks if (m1, . . . ,m`−1) is a valid

path on the tree, and if yes with probability p extends this path by m and returns 1.
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Otherwise, returns 0. On invocation of ver(m1, . . . ,m`), F p
TREE returns 1 if m1, . . . ,m`

is a valid path recorded earlier, and 0 otherwise. For simplicity, here we assume that

extend and ver take one computational step each.

The SoW protocol is constructed in a similar way as in the ROM; we only have

to replace the “H(. . .)< 2λ−h” checks in Sign and Verify, with invocations to extend

and ver on F (2λ−h)/2λ

TREE , respectively (see Algorithm 13). We consider a slightly stronger

version of FTREE, where the hardness parameter p is a parameter of the function calls;

SoW schemes allow for different hardness levels, while the original FTREE functionality

has a fixed hardness level.

Algorithm 13 Bitcoin’s SoW implementation based on functionality FTREE. We omit

functions PPub,KeyGen which are exactly the same as in Algorithm 12, while differ-

ences in Sign, Verify are depicted in red.

1: function Sign(pp = (1λ),vk,msg,h)

2: while true do
3: σ1←Uλ

4: for σ2 = 0λ|2 to 1λ|2 do
5: if (F (2λ−h)/2λ

TREE .extend(⊥,vk||σ1||msg||σ2) = 1) then
6: return (σ1,σ2)

7:

8: function Verify(pp = (1λ),vk,msg,h,σ = (σ1,σ2))

9: return F (2λ−h)/2λ

TREE .ver(⊥,vk||σ1||msg||σ2)

The proof that Algorithm 13 implements a secure SoW scheme follows the same

arguments as the proof of Theorem 63. We omit the details.

Corollary 64. If G is a collision resistant hash function family, and we are in the

FTREE-hybrid world, then Algorithm 13 implements a SoW scheme as in Theorem 63.

Comparison with the results of [GKL15]. Next, we argue that if BSOW is used to

instantiate the SoW scheme of Theorem 61, the resulting ledger will achieve similar

parameters to the ones obtained in the analysis of [GKL15]. In order to be able to use

this theorem, Assumptions 2 and 3 must be satisfied. Note, that we still have to assume

that honest parties collectively take more steps than the adversary at each round, as this

is an assumption that has to do mainly12 with our computational model, and not the
12Mainly, because t ′H and t ′A also depend on tbb,θ and tver.
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SoW scheme.

Theorem 65. Assume that (n− t)t ′H (1−δSteps)≥ t ′A , for some δSteps ∈ (0,1). If G,H

are modeled as a Random Oracle, then there exists an h ∈ HP = [2λ−λ], such that

Algorithm 12 (BSOW) satisfies Assumptions 2 and 3.

Proof. We have already proved in Theorem 63 that BSOW satisfies all properties de-

scribed in Assumption 2. It remains to argue about Assumption 3.

Set δ = δSteps/4 and δSoW = δSteps/2. It follows that δSteps−δSoW

2 ≥ δ. For simplic-

ity, assume that σ� 1 in the definition of β(h). Let ph = 1−h/2λ. It holds that:

α(h)≥ (1−δSoW)β(h)t ′H ⇔ 1− (1− ph)
t ′H ≥ (1−δSoW)pht ′H

⇔ (1− ph)
t ′H +(1−δSoW)pht ′H ≤ 1

⇐ e−pht ′H +(1−δSoW)pht ′H ≤ 1

Now, let f (u) = e−u +(1−δSoW)u. It holds that f (0) = 1, d f
du = −e−u +(1−δSoW),

d f
du (ln((1− δSoW)−1)) = 0, and d f

du is strictly increasing as u grows. Since ln((1−
δSoW)−1) > 0, it is implied that f is decreasing in (0, ln((1− δSoW)−1)], and thus for

any u < ln((1− δSoW)−1), f (u) < 1. Hence, for ph ≤ ln((1−δSoW)−1)
t ′H

, it follows that

α(h)≥ (1−δSoW)βt ′H , for any t ′H .

Hence, if we set ph ≤min{ ln((1−δSoW)−1)
t ′H

,δ/(t ′A +ntH )}, the preconditions of The-

orem 61 for BSOW are satisfied. Note, that we assume that λ is large enough so that (i)

λ > 9/δ, (ii) there exists an h ∈ HP so that ph satisfies the inequality above.

A second issue is that the analysis of Theorem 61 is performed under the assump-

tion that we are in the standard model, and thus the outputs of the routines of the

SoW scheme depend only on the parameters they are invoked with and the coins in-

dependently sampled by the routines. This condition is violated for BSOW, since its

outputs also depend on the shared random coins of the RO. To address this issue we

adopt slightly different versions of the SoW security definitions that are specific to

the idealized model used. In more detail, the idealized-model complete, successful

and almost-runtime independent properties should still hold if we fix any polynomial

number of entries of the RO to arbitrary values before the relevant experiments are

performed. These properties can be proven in the same way as in Theorem 63, since

the probability that an honestly performed RO query coincides with the fixed set of RO

entries is negligible. Hence, the following corollary is implied from Theorem 61.
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Corollary 66. Assume protocol ΠSoW
PL uses the SoW scheme of Algorithm 12, and that

(n− t)t ′H (1− δSteps) ≥ t ′A , for some δSteps ∈ (0,1). Then, there exists a hardness

parameter h, such that protocol ΠSoW
PL implements a robust public transaction ledger

with parameters u = 2k
(1− δ

4 ) f
and k≥ 2λ

γδ
in the ROM, except with negligible probability

in λ.

Next, we argue that the parameters obtained from this theorem are comparable to

those obtained in [GKL15]. We focus on the γ, f quantities introduced in the previous

subsection. These quantities are important since γ is related to the rate of uniquely

successful rounds, while f is related to how fast blocks are produced. Replacing with

the parameters proved for BPOW, for σ� 1, γ and f are equal to:

γ = (n− t) · (1−
(

h
2λ

)t ′H
) · (1− tH (1− h

2λ
))n−1, f = 1−

(
h
2λ

)t ′H (n−t)

Both γ and f appear in [GKL15] and are well approximated by our results. Hence,

ΠBSoW
PL implements a robust transaction ledger with overwhelming probability in λ and

with bounds comparable to those in [GKL15].



Chapter 5

Blockchain Security and Iterated

Search Problems

5.1 Introduction

Blockchain protocols, introduced by Nakamoto [Nak08], are seen as a prominent ap-

plication of the “proof of work” (PoW) concept to the area of consensus protocol de-

sign. PoWs were introduced in the work of Dwork and Naor [DN93] initially as a spam

protection mechanism, and subsequently found applications in other domains such as

Sybil attack resilience [Dou02a] and denial of service protection [JB99, Bac02], prior

to their application to the domain of distributed consensus hinted at early on by Aspnes

et al. [AJK05].

A PoW scheme is typified by a “proving” algorithm, that produces a solution given

an input instance, as well as a “verification” algorithm that verifies the correctness of

the witness with respect to the input. The fundamental property of a PoW scheme is

that the proving algorithm allows for no significant shortcuts, i.e., it is hard to signifi-

cantly make it more expedient, and hence any verified solution implies an investment

of computational effort on behalf of the prover. Nevertheless, this “moderate hardness”

property alone has been found to be insufficient for the utilization of PoWs in the con-

text of various applications and other properties have been put forth to complement it.

These include: (i) amortization resistance, which guarantees that the adversary cannot

speed up the computation when solving multiple PoW instances together, and (ii) fast

verification, which suggests a significant gap between the complexities of the proving

and verification algorithms.

Despite the evolution of our understanding of the PoW primitive, as exemplified

111
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in recent works (e.g., [AT17, BRSV18, BGJ+16]), there has been no definitive anal-

ysis of the primitive in the context of blockchain protocol security. Intuitively, PoWs

are useful in the consensus setting because they make message passing (moderately)

hard and hence generate stochastic opportunities for the parties running the proto-

col to unify their view of the current state of the system. This fundamentally relies

on an assumption about the aggregate computational power of the honest parties, but

not on their actual number, in relation to the computational power of the parties that

may deviate from the protocol (“Byzantine”)—a hallmark of the peer-to-peer setting

where Bitcoin is designed for. Despite the fact that the Bitcoin blockchain has been

analyzed formally [GKL15, PSS17, GKL17, BMTZ17], the required PoW properties

have not been identified and the analysis has been carried out in the random oracle

(RO) model [BR93]. The same is true for a wide variety of other protocols in the

space, including [AD15, KMS14, GKLP18].

We stress that despite the fact that the RO model has been widely used in the se-

curity analysis of practical protocols and primitives, it has also received significant

criticism. For instance, Canetti et al. [CGH04] showed that there exist implementa-

tions of signatures and encryption schemes that are secure in the RO model but insecure

for any implementation of the RO in the standard model; Nielsen [Nie02] proved that

efficient non-committing encryption has no instantiation in the standard model but a

straightforward implementation in the RO model, while Goldwasser and Kalai [GK03]

showed that the Fiat-Shamir heuristic [FS86] does not necessarily imply a secure digi-

tal signature, which is in contrast with the result by Pointcheval and Stern [PS96] in the

RO model. It follows that it is critical to discover security arguments for blockchain

protocols that do not rely on the RO model. Note that we are looking for arguments

as opposed to proofs since it is easy to observe that some computational assumption

would still be needed for deriving the security of a blockchain protocol (recall that

blockchain security cannot be inferred information theoretically as it fundamentally

requires at minimum the collision resistance of the underlying hash function). Fur-

ther, the formalization of non-idealized, concrete hash function assumptions sufficient

to prove security of Bitcoin and related protocols has been identified as an important

open question [CCRR18].

Towards identifying “good” cryptographic assumptions, Naor [Nao03] introduced

a framework for classifying cryptographic hardness assumptions and identified the no-

tion of a falsifiable assumption which was further studied by Gentry and Wichs [GW11].

In the latter formulation, a falsifiable assumption is one that can be expressed as a game
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between an adversary and a challenger, and where the challenger can efficiently deter-

mine (and output) when the adversary wins the game. As a main result they show

that succinct non-interactive arguments (SNARGs), which exist in the RO model, are

impossible to construct in the standard model under any falsifiable assumption. The

above highlights the main open question that motivates our work:

Is it possible to prove the security of blockchain protocols in the standard
model under falsifiable assumptions that can be simply expressed with re-
spect to a given concrete hash function?

Our results. In this chapter, we answer the above question in the positive, as fol-

lows. First, we put forth a new class of search problems, which we call iterated search

problems (ISP). An instance description of an iterated search problem is defined by a

problem statement set X , a witness set W and a relation R that determines when a wit-

ness satisfies the problem statement. Importantly, an ISP problem is equipped with a

successor algorithm that given a statement x and a witness w, can produce a successor

problem statement x′, and a solving algorithm that given an initial problem statement x

can find a sequence of witnesses, each corresponding to the next statement defined by

algorithm S on input the previous statement and witness, starting from x. At the same

time, if the solving algorithm takes t steps to solve k instances iteratively, no alterna-

tive algorithm can substantially speed this solving process up and produce k iterative

solutions with non-negligible probability. This is the iterated hardness property of

the ISP. We observe that it is easy to describe candidates for an ISP that are plausibly

iteratively hard by employing a cryptographic hash function. Moreover, the iterated

hardness property of the hash-based ISP is a falsifiable assumption.

Next, we prove that iterated hardness is necessary to implement a transaction ledger

in the blockchain setting, focusing on the Bitcoin blockchain protocol. We achieve

this by considering the natural ISP problem implied by any implementation of the

Bitcoin blockchain. The ISP problem is defined by the blockchain structure itself: The

instance is the hash of the previous block, the witness is the block content together with

the nonce that determines that the PoW has been solved, and the successor function

is the hash operation that creates the hash chain from which the chain structure of

the blockchain is inherited. We prove that any successful attack against the iterated

hardness of this ISP, results in a successful attack against the Bitcoin blockchain.

We then note that a related but distinct notion of hardness, sequential (i.e., non-

parallelizable) iterated hardness, implies the existence of a hard ISP. This notion has
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been considered as early as [RSW96], mainly in the domains of timed-release cryptog-

raphy [BN00] and protocol fairness [GMPY11], and recently formalized in [BBBF18]

under the term iterated sequential functions. In addition, a number of candidate hard

problems have been proposed, including squaring a group element of a composite

moduli [RSW96], hashing, and computing the modular square root of an element

on a prime order group [LW15]. Nevertheless, and importantily, we prove that the

blockchain protocol which is based on the ISP that results from the underlying iterated

sequential problem is insecure. The fundamental issue is that it does not allow for

parallelization, which, as our negative result shows, is crucial for proving the security

of any (Bitcoin-like) blockchain protocol. This also highlights that, even though nec-

essary, iterated hardness is by itself insufficient to prove the security of this type of

protocols.

Motivated by the above we identify a set of additional properties that epitomize

what we call an enhanced ISP, from which we can provably derive the security of a

blockchain protocol. The enhanced properties are as follows. First, an ISP is (t,α)-

successful when the number of steps of the solving algorithm is below t with proba-

bility at least α. The ISP is next-problem simulatable if the output of the successor

algorithm applied on a witness w corresponding to an instance x can be simulated in-

dependently of x and the same is the case for the running time of the solver. Finally,

an ISP is witness-malleable if, given a witness w for a problem instance x, it is pos-

sible to sample an alternative witness whose resulting distribution via the successor

algorithm is computationally indistinguishable to the output of the successor over a

random witness produced by the solving algorithm.

Armed with the above definitions we show a novel blockchain protocol whose

security can be reduced to the hardness of the underlying enhanced ISP. We note that

the main technical difficulty of our blockchain security proof is to construct a reduction

that breaks the underlying iterated hardness assumption given a common-prefix attack

to the blockchain protocol. This is achieved by taking advantage of zero-knowledge

proofs with efficient simulation and the ability of the reduction to efficiently extract

a sequence of iterated witnesses despite the fact that the attacker may not produce

consecutive blocks.

We perform our analysis in the static setting with synchronous rounds as in [GKL15],

and prove that our protocol can thwart adversaries and environments that roughly take

less than half the computational steps the honest parties collectively are allowed per

round. We conjecture that our results can be extended to the ∆-synchronous setting of
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[PSS17].

Finally, we put forth a new candidate construction for a hash-based ISP, for which

it is possible to derive all the extra properties of the enhanced ISP from a simple prop-

erty relating to the randomness extraction capability of the underlying cryptographic

hash function. Moreover, we prove that the hardness of this new hash-based ISP can be

derived from the hardness of the ISP that is implied by the actual Bitcoin blockchain

implementation. Putting everything together we prove our main theorem which estab-

lishes the existence of a secure blockchain protocol whose security can be reduced to

simple falsifiable assumptions regarding the underlying hash function—namely, colli-

sion resistance, weak computational randomness extraction and Bitcoin-ISP hardness.

Related work. The notion of “correlation intractability” (CI) [CCRR18] bears some

ressemblance to our ISP notion. There are, however, two main differences. First, CI

only bounds the success probability in solving a single challenge, while our notion

talks about (and fundamentally requires) multiple instances. Second, while CI talks

about any sparse relation, our definition talks about a single non-sparse relation. Ex-

ploring further connections between the two notions is an interesting direction.

In Chapter 4, the question we pose here is partially answered, as a set of suffi-

cient falsifiable conditions for implementing a ledger and the consensus problem in

the permissionless setting are presented. However, the only known implementation

of “signatures of work” (SoW), the concept introduced there as the basic underlying

assumption, is in the RO model. It is unknown (and an interesting open question)

whether SoWs can be realized under simpler falsifiable assumptions like the ones we

consider here.

Regarding our hash-based ISP construction, the concept of collision resistant ran-

domness extractors has been considered before: Dodis in [Dod05] proposes a construc-

tion of a (statistical) collision-resistant randomness extractor, assuming the existence

of claw-free permutations. In order for collision resistance to hold, it is required that

among different invocations of the extractor, the seed is fixed. Naturally, randomness

extraction is only guaranteed for sources which are independent of the seed. This is

problematic in our case, since the seed is part of the description of the hash function

and should be public. Thus, we cannot ensure that the adversarially influenced source

distribution will be independent of the seed, and cannot use this construction in our

setting.

Zero-knowledge proofs have been previously considered in the study of crypto-

currencies mainly to guarantee privacy [KKKZ18, BCG+14]. Here, we make use of
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NIZKs to hide block witnesses, i.e., in the consensus layer. A concern with NIZKs in

the permissionless setting is how to generate the trusted CRS needed for such proofs

without any party learning the simulator trapdoor guaranteed to exist by ZK secu-

rity [GKM+18, BSCG+15]. We consider strengthening the CRS generation procedure

with techniques developed in this line of work to be an interesting open question.

We remind the reader, that a list of previous attempts to define the security of PoW

schemes, as well as their inadequacy for our research question, is also presented in

Section 4.1.

Limitations and directions for future research. We leave as an open question the ex-

tension of our results to the dynamic setting of [GKL17], as well as matching the 50%

threshold on adversarial computational power of the Bitcoin blockchain which can be

shown in the RO model. As in Chapter 4, reducing the hardness of our hash-based ISP

construction to better studied assumptions remains an interesting open problem. An

equally important direction is the study of the ISP-hardness of our construction from a

cryptanalytic point of view.

Organization of the chapter. The basic computational model and definitions used by

our constructions are presented in Section 5.2. The formulation of iterated search prob-

lems, as well as proofs of necessity and by-itself insufficiency of the iterated hardness

property for proving the security of blockchain protocols are presented in Section 5.3.

The conditions that make an enhanced ISP and the provably secure blockchain proto-

col based on it, together with a candidate enhanced ISP construction, are presented in

Section 5.4.

5.2 Preliminaries

In this chapter we follow the concrete approach discussed in Section 4.2, and perform

our analysis in the revised permissionless model presented in Section 4.4.1. We let λ

denote the security parameter. We consider static adversaries, but we conjecture that

our results hold also for adaptive adversaries if we allow erasures.

Robust public transaction ledgers. We adopt a slightly stronger version of the Live-

ness property, introduced in [PSS17]. The main difference from Definition 5, is that

the transactions that are guaranteed to become stable after the u round interval, are the

ones provided to at least one of the honest parties at some round, as opposed to all of

the honest parties and every round.
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Definition 67. A protocol Π implements a robust public transaction ledger in the

synchronous setting, if after some round r0 the following two properties are satisfied:

Persistence: as in Definition 5.

Liveness: Parameterized by u,k ∈ N (the “wait time” and “depth” parameters,

resp.), for every u consecutive rounds, there exists a round and an honest party,

such that the transactions given as input to that party at this round that are either (i)

issued by Txgen, or (ii) are neutral, will be reported by all honest parties as k-stable

at the end of this round interval.

5.3 Necessary Conditions for PoW-based Blockchain

Protocols

In this section we study the necessary conditions for the security of PoW-based blockchain

protocols, focusing on (an abstraction of) Bitcoin. Our aim will be to distill what are

the necessary properties the underlying moderately hard problem should satisfy. In the

Bitcoin protocol this problem is related to a real-world hash function, namely, SHA-

256. We abstract the problem in Section 5.3.1, where we introduce the notion of hard

iterated search problems. Then, in Section 5.3.2 we describe a generalized Bitcoin-like

protocol based on such problems, and show that both the existence of such problems

is necessary to prove the security of Bitcoin, and yet it is not sufficient.

5.3.1 Iterated search problems

Next, we introduce a class of problems expressive enough to abstract Bitcoin’s under-

lying computational problem. The straightforward requirements are the ability to find

a witness for a problem statement, and to verify that a witness is correct, matching the

block mining and block verification procedures, respectively. In addition, we require

the ability to generate a new problem statement from a valid statement/witness pair.

This captures the fact that in Bitcoin the problem that a miner solves depends on a

previous block (i.e., a statement/witness pair). This concept has appeared before in

the study of iterated sequential functions, whose name we borrow from. Syntactically,

the key difference here is that in each iteration we are not evaluating a function, but

instead we are solving a search problem with possibly many witnesses. Moreover, we

will later argue that iterated sequential functions are not the correct abstractions for
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the underlying computational problem, as they allow for an attack against the protocol.

We proceed to give a formal definition.

An iterated search problem (ISP) I specifies a collection (Iλ)λ∈N of distributions.1

For every value of the security parameter λ ≥ 0, Iλ is a probability distribution of

instance descriptions. An instance description Λ specifies (1) finite, non-empty sets

X ,W , and (2) a binary relation R ⊂ X ×W . We write Λ[X ,W,R] to indicate that the

instance Λ specifies X ,W and R as above.

An ISP also provides several algorithms. For this purpose, we require that the

instance descriptions, as well as the elements of the sets X and W , can be uniquely

encoded as bit strings of length polynomial in λ, and that both X and (Iλ)λ have

polynomial-time samplers. The following are the algorithms provided by an ISP, all

parameterized by an instance description Λ[X ,W,R]:

Verification algorithm VΛ(x,w): A deterministic algorithm that takes as input a

problem statement x, and a witness w and outputs 1 if (x,w) ∈ R, and 0 otherwise.

Successor algorithm SΛ(x,w): A deterministic algorithm that takes as input a prob-

lem statement2 x, and a valid witness w and outputs a new instance x′ ∈ X .

Solving algorithm MΛ(x,k): A probabilistic algorithm that takes as input a problem

statement x, and a number k ∈ N+ and outputs a sequence of k witnesses (wi)i∈[k].

In the sequel, we will omit writing Λ as a parameter of V,S,M when it is clear from

the context. As an example, we present Bitcoin’s underlying computational problem

captured as an ISP.

Construction 1. Let T be a protocol parameter that has to do with how hard it is to

solve a problem instance.3 Then:

Iλ is the uniform distribution over functions H : {0,1}∗→ {0,1}λ in some family

of hash functions H , i.e., Λ = {H};
X = {x|x < T ∧ x ∈ {0,1}λ} and W = {0,1}∗×{0,1}λ;

R = {(x,w)|H(H(x||m)||ctr)< T, for w = m||ctr};
V (x,w) checks whether H(H(x||m)||ctr)< T , for w = m||ctr;

1Here we follow the notation used to define subset membership problems in [CS02]. We remark that
no other connection exists between the two works.

2We could formalize S more generally, to take as input a sequence of problem statements. However,
for our exposition the current formulation suffices. Note, that a more general definition would be needed
for the variable difficulty case [GKL17], which we do not study here, where the next block’s difficulty
depends on the whole chain.

3For simplicity, in our exposition the hardness parameter for each ISP is fixed, and we do not capture
it explicitly.
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S(x,w) = H(H(x||m)||ctr), and

M(x,1) tests whether V (x,(m,ctr)) is true, for different m,ctr pairs, until it finds

a solution. M(x,k) is defined inductively, by running M(x′,1) on the statement x′

produced by M(x,k−1). The output consists of all witnesses found.

To ease the presentation, we recursively extend the definitions of S and R to se-

quences of witnesses as follows:

S(x,(wi)i∈[k]) =

x, k = 0;

S(S(x,(wi)i∈[k−1]),wk), k ≥ 2.

(x,(wi)i∈[k]) ∈ R
de f⇔ ∧k

i=1(S(x,(w j) j∈[i−1]),wi) ∈ R.

We assume that M is correct, i.e., for (wi)i∈[k]←M(x,k) , it holds that (x,(wi)i∈[k])∈
R with overwhelming probability in λ.

Finally, in the same spirit as Boneh et al. [BBBF18]’s definition of an iterated

sequential function (cf. Definition 117), we define the notion of a hard iterated search

problem. Our definition is parameterized by t,δ and k0, all functions of λ which we

omit for brevity. Unlike the former definition, we take in account the total number of

steps instead of only the sequential ones, and we require the error probability to be

negligible after at least k0 witnesses have been found instead of one. In that sense, our

notion relaxes the strict convergence criterion of [BBBF18]. Finally, we note that is

possible to define the error probabilities concretely. For simplicity, we chose not to do

so, as the current formulation still suffices for our goals.

Definition 68. An ISP I = (V,M,S) is (t,δ,k0)-hard iff it holds that:

For λ ∈ N and for all polynomially large k ≥ k0:

Pr
Λ[X ,W,R]←Iλ;

x←X

(wi)i∈[k]←M(x,k) : (x,(wi)i) ∈ R

∧StepsM(x,k)≤ k · t

≥ 1−negl(λ), and

for any PPT RAM A , for λ ∈ N and for all polynomially large k ≥ k0:

Pr
Λ[X ,W,R]←Iλ;

x←X

(wi)i∈[k]← A(1λ,Λ,x) : (x,(wi)i) ∈ R

∧StepsA(1
λ,Λ,x)< (1−δ)k · t

≤ negl(λ).

Remark 7. While in this section we focus on the hardness of an ISP, later we are going

to require more properties for it to be useful, including fast verification and the ability

to parallelize the solver. If we did not require any extra properties, we could design

trivially hard ISPs, for example based on the hardness of outputting long sequences of

1 in the output register.
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5.3.2 An ISP-based Bitcoin protocol

Next, we describe an adaptation of the Bitcoin public ledger protocol [GKL15] with

respect to an ISP I = (M,V,S); we call the resulting protocol Π
isp
PL(I ). We give a high-

level overview of the protocol, mostly focusing on the points where it differs from that

in [GKL15]; we refer the reader to [GKL15] or Section 4.4.2 for a detailed exposition

of the original protocol.

At the start of the protocol, all parties have access to the CRS which contains a

randomly sampled instance description Λ[X ,W,R] and a randomly sampled statement

xGen ∈ X . We use the terms block and chain to refer to tuples of the form 〈x,w〉 ∈
X ×W , and sequences of such tuples, respectively. A block B = 〈x,w〉 is valid if

(x,w) ∈ R; a chain C = (〈xi,wi〉)i∈[k] is valid if (i) x1 = xGen, (ii) the i-th block is valid,

and (iii) xi+1 = S(xi,wi), for all i ∈ [k].

The protocol proceeds as follows: Each party tries to “extend” its chain of blocks

(initially just xGen) using M. In case it receives a valid chain C that is longer than

the chain that the party tries to extend, it adopts the longer chain, and runs M on

the new problem defined by this chain. If M finishes executing before receiving a

new chain, the party diffuses the newly found chain to the network, and stops for

this round. We assume that all honest parties take the same number of steps tH per

round. If the allowed steps do not suffice for M to finish in a specific round, the

program is interrupted until the next round. Finally, if queried by the environment, the

parties output the contents of the chain they have selected; the contents of any chain

are determined by the chain reading function R(·), which takes as input a chain and

outputs a transaction ledger.

Remark 8. In the ISP definition, we do not explicitly model the ability of the solver

M to encode information in the witnesses it computes. The reason for this is to better

highlight the hardness properties of the ISP, instead of its use as an encoding mecha-

nism. However, in order for Bitcoin to implement a transaction ledger, it is necessary

that M implements such a mechanism. Otherwise, honest parties will not be able to

add to the chain the transactions given to them by the environment, and the Liveness

property would not hold. Hence, to keep the ISP definition uncluttered, and still be able

to argue about the necessary hardness conditions it should satisfy, we opt for a weak

encoding property for I : We assume that M encodes a random neutral transaction on

the witness it outputs. More formally, we assume that for any input x ∈ X , the contents

of block 〈x,M(x,1)〉 extracted by R(·), are distributed uniformly on the neutral trans-
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action space (remember that this space is super-polynomial in size). This corresponds

to an execution of the Bitcoin backbone protocol where honest parties only generate

random transactions locally, e.g., coinbase transactions. This change is w.l.o.g., as the

necessary conditions derived for this restricted scenario should also hold in the general

case.

5.3.3 Iterated hardness is necessary

We now analyze the necessary conditions that Bitcoin’s underlying ISP should satisfy

in order for Bitcoin to implement a ledger. In particular, we show that the ISP used

in Bitcoin must be hard (Definition 68). In more detail, we prove that no adversary,

that is suitably computationally bounded, should be able to find witnesses at a rate

much higher than that of the honest parties. Other, somewhat secondary properties are

necessary to state our subsequent result. We start with those.

The first property has to do with the event that two different chains define the same

next problem statement to be solved. If such an event happens, it can lead to situations

where a chain contains a cycle, which the protocol cannot handle.

Definition 69. An ISP I = (V,M,S) is collision resistant iff for all PPT A and λ ∈ N,

it holds that

Pr
Λ[X ,W,R]←Iλ;

x←X

((wi)i,(w′j) j)← A(1λ,Λ,x) : S(x,(wi)i) = S(x,(w′j) j)

∧ (x,(wi)i) ∈ R∧ (x,(w′j) j) ∈ R

≤ negl(λ).

Additionally, we assume that there exists an upper bound tver on the time it takes

to evaluate the verification algorithm V , such that tver · θ is insignificant compared to

tH , where θ is the upper bound on the messages send per round and tH is the number

of steps each honest party takes per round. Intuitively, the time to verify that a witness

is valid, must be a lot smaller than the available time honest parties have to compute

one. Otherwise, the adversary can launch a denial of service attack by spamming

parties with “fake” witnesses, making them spend most of their computing power on

verifying them.

For the rest of this section we will assume that I encodes random neutral trans-

actions, is collision resistant, and tver ·θ is insignificant compared to tH . We are now

ready to state the necessary hardness condition regarding ISPs. The main idea is that

if I is not a hard-ISP for appropriate parameters, any adversary whose computational

power is a constant fraction of that of the honest parties can extend its private chain
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faster than the rate at which honest parties extend their own chains. Hence, it can create

a long enough fork and break Persistence.

Theorem 70. Let n, t, tH , tA such that tA = c ·(n−t)tH , for some c∈ ( 1
n−t ,1). If Π

isp
PL(I )

satisfies Persistence and Liveness with parameters u,k, where I = (V,M,S) is an ISP,

then there exists an ISP I ′ = (V,M′,S) that is (u
k · (n− t)tH ,1− c

2u ,2k+2)-hard.

Proof. Let M′ be a RAM, that takes as input (x′,k′), and performs the same compu-

tation as the n− t honest parties in the Bitcoin execution, i.e., it uses x′ as xGen and

runs the Bitcoin algorithm with no adversarial interference until a chain of length k′

is computed. Then, it outputs the witnesses of the chain as the hard-ISP experiment

dictates. We will show that I ′ = (V,M′,S) is a hard ISP.

Let δ = 1− c
2u , and, for the sake of contradiction, assume that I ′ is not (u

k · (n−
t)tH ,δ,2k+2)-hard. First, we will show that the first part of Definition 68 is satisfied.

Assume an adversary in the Bitcoin execution that stays inactive. Due to Liveness,

every u rounds honest parties add a new transaction k blocks deep in some chain. Re-

peating the same argument m
k times, and since honest parties extend always the longest

chain, it follows that after m
k · u rounds honest parties will have added m new blocks

to the blockchain with overwhelming probability on λ. Equivalently, M′ computes a

sequence of m consecutive blocks in m · u
k · (n− t)tH steps (m

k ·u rounds), for any poly-

nomially large m ≥ 2k+2. Hence, the first part of the hardness definition is satisfied.

From our assumption, it follows that the second part should not hold. This implies that

there exists an adversary A that for infinitely many λ and k1 ≥ 2k+2 computes more

blocks that the hardness definition allows, with non-negligible probability. We are go-

ing to use A to construct an adversary A ′ that creates a long enough chain privately,

and breaks Persistence.

A ′ takes as input the genesis block, and runs A on input (Λ,xGen). If it computes

k1 blocks before the honest parties, it waits until some honest party computes a chain

of length at least k1− k, and sends its own chain to a different party. We proceed to

analyze the probability that A ′ breaks Persistence.

First, we show that A ′ computes k1 blocks before the honest parties, with non-

negligible probability. It holds that

(1−δ) · k1 ·
u
k
· (n− t)tH ≤

c
2u

k1
u
k

tA
c
≤ tA ·

k1

2k
≤ tA · (

k1

k
−1)< tA · b

k1

k
c

Due to the hardness definition, this implies that A ′ will compute k1 blocks in less

than bk1
k c rounds with non-negligible probability. For the moment assume that with
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overwhelming probability no honest party computes more than k blocks in any single

round; we will prove this at the end. It follows that it takes honest parties at least

bk1
k c rounds to compute a chain of length k1 with overwhelming probability. Hence,

with non-negligible probability A ′ will compute a chain of length k1 before the honest

parties.

Next, we argue that the chain that A ′ diffuses to the network, is going to break Per-

sistence. We have already shown that due to Liveness, at some round an honest party

is going to compute and transmit a chain of size at least k1−k≥ k+2, consisting only

of honestly mined blocks. As discussed before, when the adversary sees that, it imme-

diately transmits its own longer chain to a different party; if all honest parties extend

their chains, it picks a random one. Now note, that the adversarial chain is the longest

one transmitted at this round. Otherwise, some honest party must have computed more

than k blocks in that round, which happens only with negligible probability. Moreover,

since the transactions in the honest blocks are distributed uniformly, and the output

of the adversary does not depend on them, with overwhelming probability the trans-

actions in the stable honest blocks are going to be different from those in the chain

crafted by the adversary. Therefore, two honest parties will have conflicting views,

and Persistence does not hold with parameter k with non-negligible probability.

Finally, we argue that with overwhelming probability no honest party computes

more than k blocks in any single round. Let E1 be exactly this event. Its negation ¬E1

says that there exists an honest party P and a round r, such that P at r computes more

than k blocks. W.l.o.g, assume that its chain is as long as the longest chain transmitted

by any honest party at this round. Now, for the sake of contradiction, assume ¬E1,

occurs with non-negligible probability ε. We will next describe an adversary A ′′ that

breaks Persistence. A ′′ picks a round r′ and a party P′ uniformly at random, and at

round r′ simulates exactly the behavior of P′ at that round (note that it only needs tH
steps to do that, which we assume it has, i.e., c≥ (n− t)−1). If it computes more than

k blocks, it picks an honest party that has a chain with smaller size (if it exists), and

transmits its chain to it.

We next proceed to analyze the probability that A ′′ breaks Persistence. Let EP,r
2

be the event that party P at round r computes more than k blocks, and its chain is as

long as the longest chain transmitted by any honest party at this round, and note that∨
(P,r)∈P×p(λ)EP,r

2 =¬E1, where P is the set of honest parties, and p(λ) is a polynomial

upper bound on the number of rounds. Such a bound always exists, since the execution

is driven by Z, which is a PPT RAM. Also, let EP,r
3 be the event that A ′′ has a chain at
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least as long as P at round r, and E4 be the event that A ′′ at round r′ has extended its

chain by more than k blocks, and its chain is as least as long as the chain of any honest

party. We are going to show that Pr[E4] is non-negligible. Let P′,r′ be the party and

the round that A ′′ chooses to simulate. It holds that

Pr[E4] = Pr
(P′,r′)←P×p(λ)

[EP′,r′
2 ∧EP′,r′

3 ] (total probability)

= ∑
(P′,r′)∈P×p(λ)

Pr[EP,r
2 ∧EP,r

3 ∧ (P,r) = (P′,r′)] (independence)

= ∑
(P′,r′)∈P×p(λ)

Pr[EP,r
2 ∧EP,r

3 ]Pr[(P,r) = (P′,r′)] (symmetry)

≥ ∑
(P′,r′)∈P×p(λ)

Pr[EP,r
2 ]

2
Pr[(P,r) = (P′,r′)] (union bound)

≥ 1
2n · p(λ) Pr[

∨
(P,r)∈P×p(λ)

EP,r
2 ] =

Pr[¬E1]

2n · p(λ) ≥
ε

2n · p(λ) > negl(λ)

It is easy to show now, that if E4 happens, Persistence breaks. We take two cases: In

the first one, there exists at least one honest party that has a smaller chain than the

one computed by A ′′. It follows that in the next round, that this party will receive the

chain of A ′′, it will declare a transaction that no other honest party has in its chain as

stable, which breaks Persistence. In the second case, all honest parties compute chains

of exactly the same size as A ′′. This implies, that if you take any two of them, they will

have declared transactions as stable, that are not part of the other party’s chain. Hence,

A ′′ breaks Persistence with non-negligible probability, which is a contradiction. The

theorem follows.

Note that as c approaches 1, the ISP should be secure against stronger adversaries.

This is in line with our intuition: The better the security of the resulting protocol

is, the harder the requirements from the ISP are. One reason that our bounds may

seem rather weak, is that the assumptions about the distribution of blocks produced

by honest parties are weak, e.g., some party may be able to compute multiple blocks

per round, with some non-negligible probability. If we further assume, that block

production is strongly concentrated, we can establish better bounds about the hardness

of the resulting ISP. We note that the ISP construction we propose in Section 5.4.3

satisfies this property. In any case, our theorem is sufficient to ensure at least the

existence of hard ISPs.
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With foresight, we conclude this subsection by stating a stronger hardness property

that allows the adversary some precomputation time. This will be useful in the next

section, where we present and prove secure a protocol based on an enhanced ISP. We

note, that a more convoluted version of this property, where the problem statement x is

sampled from a distribution that has to do with the solving algorithm M, can be proven

necessary in a similar way as Theorem 70; our results in Section 5.4 apply for both

definitions.

Definition 71. An ISP I = (V,M,S) is (t,δ,k0)-hard against precomputation iff I is

(t,δ,k0)-hard (Definition 68) and for any PPT RAM A = (A1,A2), λ ∈ N, and all

polynomially large k ≥ k0, it holds that

Pr
Λ[X ,W,R]←Iλ;

x←X

st← A1(1λ,Λ);(wi)i∈[k]← A2(1λ,st,x) :

(x,(wi)i) ∈ R∧StepsA2(st,x)< (1−δ)k · t

≤ negl(λ)

Remark 9. Our analysis, with minor differences, also applies to other well-known

PoW-based blockchain protocols. For example, in the GHOST protocol [SZ15] parties

choose their chain by successively picking the “heaviest” subtree of blocks, starting

from the genesis block. By similar arguments as above, it is implied that it is neces-

sary for the ISP to be hard with respect to an upper bound on the rate at which the

honest parties generate blocks (cf. the chain growth rate in Bitcoin). While this may

sound as an improvement, it opens up the space for other attacks against the ISP; for

example, if computing a new witness for a specific statement becomes easy after com-

puting the first one, the adversary can create a large enough “tree” of blocks and break

Persistence essentially at the cost of computing a single witness. This is not the case

for Bitcoin, that can withstand such an attack.

Remark 10. The notion of a hard-ISP is related to the MU-TCMA property of a SoW

scheme, as presented in Chapter 4. Specifically, assuming a SoW scheme that satisfies

Assumptions 2 and 3 with respect to the tampering class defined in Lemma 47, one can

define a hard-ISP. However, as we will discuss later in Section 5.4, the other direction

does not necessarily hold, as a hard-ISP may be malleable in the sense that despite

being hard for the adversary to compute a chain of witnesses, but may be easy to

compute several witnesses for a single problem statement if he already knows one.

5.3.4 Iterated sequential functions are not sufficient

In this section we explore the relation of iterated sequential functions (cf. Defini-

tion 117) to ISPs and the Bitcoin protocol. On the bright side, we show that iterated
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sequential functions imply the existence of hard ISPs. Then, we deal with the question

of whether Bitcoin can be solely based on such functions, and show that this is not the

case.

In more detail, we show that the existence of iterated sequential functions that can

be evaluated using a constant number of processors, implies that of hard ISPs, for ap-

propriate parameters. Most interestingly, if we assume the existence of a (t̂,negl(λ))-

ISF where the standard solver requires very small parallelization, as it is assumed for

SHA-256 [BBBF18], then the resulting ISP is (t̂,negl(λ),1)-hard, i.e., almost opti-

mally hard.

Lemma 72. If there exist a (t̂,δ)-iterated sequential function, which can be evaluated

in time t̂ ∈ poly(λ) using c = O(1) parallel processors, then there exists a (c · t̂,1−
1−δ

c ,1)-hard ISP.

Proof. Let { fλ : Xλ → Xλ}λ∈N be a (t̂,δ)-iterated sequential function. Let I be the

following ISP: Rλ(x,w) = {(x, fλ(x))|x ∈ Xλ}, Sλ is equal to the identity function, Iλ =

{[Xλ,Xλ,Rλ]}, and M is the standard solver of fλ. By the ISF definition, M on input x

computes fλ(x) in t̂ sequential steps with parallelization c, i.e, ct̂ steps in total. On the

other hand, for any k ≥ 1, the adversary takes at least (1− δ)kt̂ = (1− (1− 1−δ

c ))kct̂

(sequential) steps to compute f k
λ
(x). Hence, I is a (c · t̂,1− 1−δ

c ,1)-hard ISP.

The first problem we encounter when trying to base Bitcoin on the ISP implied

by an ISF, is that ISFs are functions, i.e., for a single problem statement there exists

only one possible witness. This in turn means that it is impossible to encode infor-

mation in the witness, which as argued in the previous section, is necessary to prove

security. This aspect, however, is not the only problem. Assume that an iterated se-

quential relation (ISR), the obvious generalization of ISFs to relations with similar

security guarantees exists (Definitions 73 and 74), and that it satisfies all the necessary

conditions described in the previous section—i.e., collision resistance, fast verification

and the ability to encode a random transaction to the witness. Even then, we can show

that if we base our protocol to an ISR, it will be insecure. The main reason being that

the solving algorithm must be parallelizable—exactly the opposite of what sequential

functions or relations guarantee.

Definition 73. R : X ×W is a (t,ε)-sequential relation for λ = O(log(|X |)), if the

following conditions hold:

1. There exists an algorithm that for all x ∈ X computes a witness for R in parallel

time t using poly(log(t),λ) processors.
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2. For all A that run in parallel time strictly less than (1− ε) · t with poly(t,λ) pro-

cessors:

Pr[(x,wA) ∈ R|wA ← A(λ,x),x← X ]< negl(λ).

Definition 74. Let G : X ×X be a relation that satisfies (t,ε)-sequentiality. A rela-

tion R : X ×Xk defined as (x0,(xi)i∈[k]) ∈ R iff
∧k

i=1(xi−1,xi) ∈ G is called an iterated

sequential relation (with round relation G), if for all k = 2o(λ), R is (kt,ε)-sequential.

Informally, the solving algorithm M must be parallelizable in the following sense:

Running multiple instances of M in parallel should result in finding a witness before a

single invocation of M that runs for about the same number of steps in total, with non-

negligible probability. This corresponds to the fact that in Bitcoin the computation

of blocks is distributed among several parties which work independently, while the

adversary is modeled as a single RAM. If M is not parallelizable, the adversary can

run a single instance of M for less steps than the honest parties in total, and extend its

chain as fast as them. This in turn means that it can create a deep enough fork and

break the security of the protocol. This is exactly the case for (ideal) perfectly secure

ISRs: An adversary that has the same power as approximately one honest party, needs

exactly the same time as all honest parties to run M and find a solution, no matter their

total computational power.

We show next, that under the assumption that all machines in our computational

model take sequential steps with approximately the same rate and have some small

amount of parallelization available, the (ideal) perfectly secure ISR-based Bitcoin pro-

tocol in insecure. Formally, similarly to [BBBF18], we slightly modify our model and

assume that the machines of honest parties in our execution are parallel RAMs that

have c processors, for c = O(1), while the adversary is free to choose the number of

processors its machine has, as long as the rate of sequential steps seqA it takes per

round, is close to that of honest parties seqH , i.e, seqA ≤ (1+ ε) · seqH , for some

ε ∈ [0,1). The total number of steps each party takes per round is the product of the

number of processor it uses times the number of sequential steps it takes. We call this

the (c,ε)-sequential model.

Theorem 75. Let R be an (t̂,0)-iterated sequential relation which can be evaluated in

time t̂ ∈ poly(λ) with c = O(1) parallel processors, and I be the implied ISP instance

as in Lemma 72. For tH , tA and any polynomial p(·), such that tA = tH (1+ 1
p(λ)),

Π
isp
PL(I ) does not satisfy Persistence for any polynomially large k in the (c, 1

p(λ))-

sequential model.
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Proof. Let M be the standard solver for R, and assume that Persistence holds for

some k. We will describe an adversary A that uses M to break Persistence with non-

negligible probability. By the sequentiality property of the ISR, it is implied that the

honest parties compute chains of length k′, after at least k′t̂ sequential steps with over-

whelming probability. On the other hand, the adversary, by running a single instance

of M iteratively, can also create a chain of length k′ in k′t̂ sequential steps.

We will assume now that A takes (1+ 1
p(λ))seqH sequential steps per round with

parallelization c. It can do this, since c(1+ 1
p(λ))seqH = tH (1+ 1

p(λ)) = tA . It fol-

lows that A needs d k′t̂
seqA
e rounds to compute the blocks, while the honest parties need

d k′t̂
seqH
e. Let k′ ≥max{k, 1

t̂ · (1+ p(λ)) · seqH }, then:

d k′t̂
seqA

e< k′t̂
seqA

+1≤ k′t̂
(1+ 1

p(λ))seqH
+1≤

k′t̂ +(1+ 1
p(λ))seqH

(1+ 1
p(λ))seqH

≤
k′t̂ + k′t̂ · 1

p(λ)

(1+ 1
p(λ))seqH

≤ k′t̂
seqH

≤ d k′t̂
seqH

e

Hence, the adversary with overwhelming probability computes a chain of k′ blocks

faster than the honest parties for some polynomially large k′. Note, that the adversary

can also tell exactly when the honest parties are going to compute a chain of the same

length, and thus break Persistence for any k as in Theorem 70. The theorem follows.

Another domain where our observation may be of great interest is that of “useful”

PoW blockchain protocol, i.e., protocols where parties create PoWs by solving real-

life problems. Namely, if all parties that run a Bitcoin-like blockchain try to solve the

same useful problem, and this problem is not amendable to parallelization, an attack

as above may be a real security threat.

5.4 Sufficient Conditions and a Provably Secure ISP-

based Blockchain

As we showed in the previous section, the existence of hard ISPs is necessary, but

not sufficient to prove Bitcoin secure. Here we first define an enhanced, “blockchain-

friendly” notion of security for ISPs, encompassing hardness, which we then show

to be sufficient to implement a provably secure blockchain via a new protocol. We
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conclude the section presenting a concrete ISP proposal that satisfies the extra security

properties and is plausibly hard.

5.4.1 Enhanced ISPs

First, we present a set of extra ISP properties, in addition to hardness, that are specific

to the use of an ISP in blockchain applications. We note that the properties’ specifics

are not necessary for the description of our protocol, hence the eager reader can directly

proceed to Section 5.4.2.

The first property, has to do with establishing an upper bound t on the running time

of the verification algorithm V , for the reasons explained in Section 5.3.

Definition 76. An ISP I = (V,M,S) is t-verifiable iff algorithm V takes time at most t

(on all inputs).

In general, attacking an honest solver amounts to finding a certain set of inputs

over which the honest solving algorithm fails to produce witnesses sufficiently fast. In

order to combat this attack, we introduce the following property: We say that an ISP

I is (t,α)-successful when the probability that M4 computes a witness in t steps is at

least α.

Definition 77. An ISP I = (V,M,S) is (t,α)-successful iff for λ ∈ N, Λ[X ,W,R] ∈ Iλ,

and for all x ∈ X it holds that:

Pr
[
StepsM(x)< t

]
≥ α.

The iterated hardness property, as formulated in the previous section, does not

give any guarantees regarding composition. In the Bitcoin setting, however, this is

necessary as many parties concurrently try to solve the same ISP. To address this issue,

we introduce the next property that ensures that learning how long it took for a witness

to be computed or what the next problem defined by such witness is, does not leak any

information that could help the adversary find a witness himself. More formally, there

exists an efficient simulator whose output is computationally indistinguishable from

the distribution of the time it takes to compute a witness w for some statement x and

the next statement S(x,w). Note that, crucially, the simulator does not depend on the

instance description Λ or the problem statement x, and that we consider a non-uniform

distinguisher.

4For brevity, we use M(x) instead of M(x,1) in this section.
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Definition 78. An ISP I = (V,M,S) is t-next-problem simulatable iff there exists a

t-bounded RAM Ψ such that for any PPT RAM D, any λ ∈ N, any z ∈ {0,1}poly(λ),

any Λ[X ,W,R] ∈ Iλ, and any x ∈ X , it holds that

|Pr[D(1λ,z,Λ,x,(S(x,M(x)),StepsM(x)))= 1]−Pr[D(1λ,z,Λ,x,Ψ(1λ))= 1]| ≤ negl(λ).

The next property has to do with a party’s ability to “cheaply” compute witnesses

for a statement, if it already knows one. This will be important to ensure that even if

the adversary has external help to produce some of the witnesses needed by the hard

ISP experiment, as is the case for blockchain protocols, still the overall process remains

hard with respect to the number of consecutive blocks the adversary actually produced.

We call this ISP property witness malleability.

Definition 79. An ISP I = (V,M,S) is t-witness malleable iff there exists a t-bounded

RAM Φ such that for any PPT RAM D, any λ∈N, any z∈{0,1}poly(λ), any Λ[X ,W,R]∈
Iλ, and any (x,w) ∈ R, it holds that (x,Φ(x,w)) ∈ R, and

|Pr[D(1λ,z,Λ,x,w,S(x,Φ(x,w)))= 1]−Pr[D(1λ,z,Λ,x,w,S(x,M(x)))= 1]| ≤ negl(λ).

Finally, we call a hard ISP that satisfies all the above properties enhanced.

Definition 80. An ISP I =(V,M,S) is (tver, tsucc,α, tnps, tmal, thard,δhard,khard)-enhanced

iff it is correct, tver-verifiable, (tsucc,α)-successful, tnps-next-problem simulatable, tmal-

witness malleable, and (thard,δhard,khard)-hard against precomputation.

Ranges of parameters. An ISP scheme with trivial parameters is of limited use in a

distributed environment; for example, if δhard � 1 or thard � tver. Here we describe

the parameters’ ranges that make for a non-trivial enhanced ISP. First off, and ignoring

negligible terms, one can show that α ≤ tsucc
(1−δhard)thard

(see Lemma 86). On the other

hand, the successful property always holds for α = 0. Therefore, for a non-trivial

ISP scheme it should hold that α is close to tsucc
(1−δhard)thard

. Moreover, in order to avoid

attacks as the one against sequentially secure primitives, described in Section 5.3.4,

and to ensure that our scheme is parallelizable, we will require α to be smaller than 1.

Next, and as already discussed in Section 5.3, to avoid denial of service attacks,

θ · tver must be sufficiently small compared to thard, the running time of the solving

algorithm M. Finally, tmal should be a lot smaller than thard, otherwise M can be used

as a trivial simulator. We note, that the security of the protocol that we present later

will rely on the fact that an enhanced ISP scheme with favorable parameters exists,

mainly reflected in Assumption 5 (Section 5.4.2).
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Comparison with SoW. The security properties we have discussed in this chapter bear

similarities with the ones we introduced in Chapter 4. Firstly, the verifiability and suc-

cessfulness properties are almost identical. Regarding almost-independent runtime,

the other honest prover property explored in Chapter 4, here we take a computational

approach and require that the runtime simulator in the next-problem simulatability

property is efficient, does not depend on the specific problem instance, and is com-

putationally indistinguishable from the honest prover runtime distribution. Finally,

regarding hardness, while the MU-TCMA property of Chapter 4 implies some kind

of hardness when problems are composed in a “chain” structure, as it is the case for

ISP hardness, it excludes the possibility of malleable witnesses/signatures, a critical

property of our ISP construction. On the other hand, the fact that ISP witnesses may

be malleable, implies that any implementation of an SoW scheme from an enhanced

ISP problem that retains malleability is going to be insecure.

Remark 11. Gentry and Wichs [GW11] define as falsifiable the cryptographic assump-

tions that can be expressed as a game between an efficient challenger and an adversary.

We note that all assumptions that constitute an enhanced ISP are falsifiable in this

sense, with two caveats: First, due to the concrete security approach our work takes,

the challenger should take as input the number of steps of the adversary. Second, in

most of the introduced properties, we quantify over all instance descriptions Λ and

statements x, which is not immediate to express in the framework of [GW11]. We

could instead first provide as input to the adversary randomly sampled Λ and x, and

then have him provide us a statement x′ and a sequence of witnesses (wi)i such that

S(x,(wi)i) = x′, for which the properties should hold. For simplicity, here we choose

the former version of the definitions. However, we note that the proof techniques we

use later can be easily adapted to handle the latter.

5.4.2 The provably secure ISP-based protocol

The main challenge that our protocol has to overcome, is that while its security is based

on iterated hardness (Definition 71), it operates in a setting where the adversary can

also take advantage of the work of honest parties. This includes, the adversary learning

the information leaked by the honestly produced blocks, as well as, honest parties

directly working on the chain it is extending. In contrast, the hard ISP experiment does

not directly provide any guarantees about these cases; the adversary does not receive

any externally computed witnesses.
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Towards this end, blocks in our protocol, instead of exposing the relevant wit-

ness computed, contain a proof of knowledge (PoK) of such a valid witness through

a non-interactive zero-knowledge (NIZK) proof. At first, the fact that we use NIZK

proofs for a language that is moderately hard may seem counter-intuitive, due to the

fact that a trivial simulator and extractor exist for the zero-knowledge and soundness

properties, since computing a new witness for a given statement takes polynomial time.

Instead, following our general approach, we make concrete assumptions regarding the

efficiency of both the simulator and the extractor. Informally, we require that the time

it takes to simulate a proof or extract a witness is a lot smaller than the time it takes for

honest parties to compute a witness (see Assumption 5).

In addition, to further reduce the security guarantees required by the ISP, in our

protocol the hash chain structure of blocks is decoupled from the underlying computa-

tional problem. Finally, the protocol adopts the longest-chain selection rule, which as

we will see later allows it to operate even if the witnesses of the ISP are malleable (cf.

Remark 9).

Protocol description. Next, we are going to describe our new protocol. Our proto-

col, Πnew
PL , uses as building blocks three cryptographic primitives: An enhanced ISP

I = (M,V,S), a collision-resistant hash function family H , and a robust NIZK (Defi-

nition 114) protocol ΠNIZK = (q,P,V,S= (S1,S2),E) for the language5

L = {(Λ[X ,W,R],x,x′)|∃w ∈W : (x,w) ∈ R∧S(x,w) == x′}

where Λ[X ,W,R] is an ISP instance of I . ΠNIZK also supports labels, which we

denote as a superscript on P and V. The initialization of these primitives happens

through the CRS all parties share at the start of the execution, which contains: An

instance description Λ[X ,W,R], a statement xGen, the description of a hash function

H : {0,1}∗→ {0,1}λ and the NIZK reference string Ω, each randomly sampled from

Iλ,X ,H ,{0,1}q(λ), respectively. Moreover, as in [GKL15], our protocol is parame-

terized by functions V(·),R(·), I(·) that capture higher-level applications (such as Bit-

coin).

Next, we introduce some notation needed to understand the description of the

algorithms (similarly to Section 5.3.2). We use the terms block and chain to re-

fer to tuples of the form 〈s,m,x,π〉 ∈ {0,1}λ × {0,1}∗ × X × {0,1}poly(λ), and se-

quences of such tuples, respectively. The rightmost (resp., leftmost) block of chain

C is denoted by head(C ) (resp., tail(C )). Each block contains the hash of the pre-

5We assume that both V and S are efficiently computable. Hence, L ∈ NP.
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vious block s, a message m, the next problem x to be solved, and a NIZK proof π.

We denote by BGen = 〈0λ,0λ,xGen,0λ〉 a special block called the genesis block. A

chain C = (〈si,mi,xi,πi〉)i∈[k] is valid if: (i) The first block of C is equal to BGen;

(ii) the contents of the chain mC = (m1, . . . ,mk) are valid according to the chain val-

idation predicate V, i.e., V(mC ) is true; (iii) si+1 = H(si,mi,xi, i)6 for all i ∈ [k],

and (iv) Vsi+1((Λ,xi−1,xi),πi) is true for all i ∈ [k] \ {1} (see Algorithm 14). We

call H(si,mi,xi, i) the hash of block Bi and denote it by H(Bi), and define H(C )
de f
=

H(head(C )). We will consider two valid blocks or chains as equal, if all their parts

match, except possibly the NIZK proofs.

Algorithm 14 The validate procedure, parameterized by BGen, the hash function H(·),
the chain validation predicate V (·), and the verification algorithm V of ΠNIZK. The

input is C .

1: function validate(C )

2: b← V(mC )∧ (tail(C ) = BGen) . mC describes the contents of chain C .

3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′← H(BGen) . Compute the hash of the genesis block.

5: x′← xGen
6: C ← C 1e . Remove the genesis from C
7: while (C 6= ε∧b = True) do
8: 〈s,m,x,π〉 ← tail(C )

9: s′′← H(tail(C ))

10: if (s = s′∧Vs′′(Ω,(Λ,x′,x),π)) then
11: s′← s′′ . Retain hash value

12: x′← x

13: C ← C 1e . Remove the tail from C
14: else
15: b← False

16: return (b)

At each round, each party chooses the longest valid chain among the ones it has

received (as in Algorithm 10) and tries to extend it by computing a new witness. If

it succeeds, it diffuses the new block to the network. In more detail, each party will
6We include a fixed length (λ-bit) encoding of the height of the block in the hash on purpose. This

way, the contents of the hash chain form a suffix-free code [BJL17], which in turn implies collision
resistance.
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run the solver M on the problem x defined in the last block 〈s,m,x,π〉 of the chosen

chain C . If it succeeds on finding a witness w, it will then compute a NIZK proof that

it knows a witness w such that (x,w) ∈ R and S(x,w) == x′, for some x′ ∈ X . The

proof should also have a label H(H(head(C )),m′,x′, |C |+ 1), where m′ is the output

of the input contribution function I(·); see Algorithm 15. Then, the party diffuses the

extended chain to the network. Finally, if the party is queried by the environment, it

outputs R(C ), where C is the chain selected by the party; the chain reading function

R(·) interprets C differently depending on the higher-level application running on top

of the backbone protocol. The main function of the protocol is the same as Algorithm 9

of Chapter 4, except instead of sow, procedure pow of Algorithm 15 is invoked when

a new block is to be mined. We assume that all honest parties take the same number of

steps tH per round.

Algorithm 15 The proof of work function. The input is (m′,C ).

1: function pow(m′,C )

2: 〈s,m,x,π〉 ← head(C )

3: w←M(x) . Run the honest solving algorithm of the ISP.

4: if w 6=⊥ then
5: x′← S(x,w) . Compute the next problem to be solved.

6: s′← H(s,m,x, |C |) . Compute the hash of the last block.

7: s′′← H(s′,m′,x′, |C |+1) . Compute the hash of the new block.

8: π′← Ps′′(Ω,(Λ,x,x′),w) . Compute the NIZK proof.

9: B← 〈s′,m′,x′,π′〉
10: C ← CB . Extend chain

11: return C

In order to turn the above protocol into a protocol realizing a public transaction

ledger, we define functions V(·),R(·), I(·) exactly as in [GKL15], see Table 3.2 at

Section 3.4. We denote the new public ledger protocol by Πnew
PL .

Security analysis. In this section, we prove that Πnew
PL implements a robust public

transaction ledger. The first assumption we are going to make is that the underlying

ISP I is enhanced, and that the runtimes of the procedures of the NIZK system are

suitably bounded.

Assumption 4 (ISP Assumption). For parameters tver, t ′H ,α, tnps, tmal, thard,δhard,khard, tP,

tV, tS, and tE we assume that:
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ISP I is (tver, t ′H ,α, tnps, tmal, thard,δhard,khard)-enhanced;7

running the prover (resp., verifier, simulator, extractor) of ΠNIZK takes tP (resp.

tV, tS, tE) steps.

Next, we introduce some additional notation necessary to formalize our second as-

sumption, that has to do with the computational power of the honest parties and the

adversary. For brevity, and to better connect our analysis to previous work [GKL15,

PSS17] and the previous chapters, we denote by β = 1
(1−δhard)·thard , the upper bound on

the rate at which the adversary can compute witnesses in the iterated hardness game.

As in Chapter 4, we introduce two variables, t ′H and t ′A , that have to do with the ef-

fectiveness of honest parties and any adversary against our protocol in producing wit-

nesses for I . t ′H is a lower bound on the number of steps each honest party takes per

round running M. It thus holds that in any round at least n− t parties will run M for at

least t ′H steps. t ′A denotes the maximum time needed by a RAM machine to simulate

the adversary, the environment and the honest parties in one round of the protocol exe-

cution, without taking into account calls made to M by the latter, and with the addition

of one invocation of the NIZK extractor. They amount to:

t ′A = tA +θ · tV+ tE+n(tbb+ tnps+ tmal+ tS) and t ′H = tH − tbb−θtV− tP,

where tbb (bb for backbone) is an upper bound on the number of steps needed to run

the code of an honest party in one round besides the calls to M,P,V.

We are now ready to state our main computational assumption regarding the honest

parties and the adversary. As in Chapter 4, besides assuming that the total number of

steps the honest parties take per round exceed those of the adversary, and that the total

block generation rate is bounded, we have to additionally assume that the efficiency of

the solving algorithm M used by honest parties is comparable to that of the adversary;

i.e, as explained earlier, α should be comparable to βt ′H . In our formalization, that we

present next, the first condition in our assumption corresponds to the observation we

just made, while the other two correspond to adaptations of the older assumptions. To

avoid confusion, we cast most of our analysis based on the δ parameter. Furthermore,

note that under optimal conditions – i.e., δISP close to 0 and tP, tV, tE, tS, tnps, tmal a lot

smaller than tH – our assumption allows for an adversary that controls up to 1/3 of the

total computational power available (vs. 1/2 in the RO model).

Assumption 5. There exist δISP,δSteps and δ ∈ (0,1), such that for sufficiently large

λ ∈ N:
7t ′H is related to our model and we formally define it in the next paragraph.
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λ : security parameter

n : number of parties

t : number of parties corrupted

tH : number of steps per round per honest party

tA : total number of adversarial steps per round

t ′H : lower bound on number of steps running M per round per honest party

t ′A : round simulation cost, excluding honest calls to M

θ : upper bound on the number of messages sent by the adversary per round

f : probability that at least one party computes a block in a round

γ : probability that exactly one party computes a block in a round

β : upper bound on the rate at which the adversary computes witnesses per step

δ : upper bound on the total block generation rate

δSteps : honest parties’ advantage on number of steps

δISP : adversary’s advantage on ISP witness computation rate

khard : convergence parameter of ISP hardness

Table 5.1: The parameters in our analysis: λ,n, t, tH , tA , t ′H , t ′A ,θ,khard are in N,

f ,γ,β,δ,δSteps,δISP are in R.

α≥ (1−δISP)βt ′H > negl(λ) (ISP generation gap)

(n− t)t ′H (1−δSteps)≥ 2 · t ′A (steps gap)
δSteps−δISP

2 ≥ δ > β(t ′A +ntH ) (bounded block generation rate)

Exactly as in Chapter 4, using a collision resistant hash function to connect sub-

sequent blocks in a chain, allows us to establish certain properties about its structure.

We provide only the relevant lemmas, as the analysis is the same as in the previous

chapter.

Lemma 81. Let H be a collision-resistant hash function family. The probability that

any PPT RAM A , given BGen, can find two distinct valid chains C1,C2 such that

H(C1) = H(C2), is negligible in λ.

Corollary 82. Let H be a collision-resistant hash function family. Then, for any PPT

A ,Z no insertions or copies (Definition 12) occur in VIEW
t,n
Πnew
PL ,A ,Z with probability

1−negl(λ).

We proceed to the main part of the analysis. We follow the notation and definitions

of Section 3.3.2, for: successful and uniquely successful rounds, honest, adversarial
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and u.s. blocks, random variables X(·),Y (·). Moreover, with respect to some block B

computed by an honest party P at some round r, let ZP
r (R) denote the maximum number

of distinct blocks diffused by the adversary during R that have B as their ancestor and

lie on the same chain; note that honest parties compute at most one block per round.

If P is corrupted or did not compute any block at r, let ZP
r (R) = 0. Define XP

r (R)

similarly.

Lower bounds on the expected rate of successful and uniquely successful rounds

are defined as in Chapter 4:

γ = (n− t) ·α · (1−βtH )n−1 and f = 1− (1−α)n−t

We will formally show that this is the case later, in Lemma 86. As in previous chapters

we show that the rate of uniquely successful rounds outperforms the rate at which the

adversary produces witnesses. Unlike previous analyses, we require γ to be sufficiently

bigger than two times β · t ′A , which follows from the fact that in Assumption 5 the

honest parties take at least double the steps the adversary takes per round.

Lemma 83. Assume an ISP that complies with Assumptions 4 and 5. It holds that

γ≥ 2(1+δ)βt ′A .

Proof. For γ it holds that:

γ =(n− t) ·α · (1−βtH )n−1 ≥ (n− t) ·α · (1−βtH n)

≥(n− t) · (1−δISP) ·βt ′H · (1−δ)≥ (1−δISP)(1−δ)

(1−δSteps)
·2 ·βt ′A ≥ 2(1+δ)βt ′A

where we have first used Bernouli’s inequality, and then the three conditions from

Assumption 5. The last inequality follows from the fact that δSteps−δISP

2 ≥ δ.

Next, we prove that the adversary cannot mine blocks extending a single chain,

with rate and probability better than that of breaking the iterative hardness property.

Lemma 84. For any set of consecutive rounds R, where |R| ≥ khard
βt ′A

, for any party P,

and any round i ∈ R, the probability that ZP
i (R)≥ βt ′A |R| is negl(λ).

Proof. W.l.o.g., let i be the first round of R = {i′|i ≤ i′ < i + s}, and let E be the

event where in VIEW
t,n
Πnew
PL ,A ,Z party P at round i mined a block B, and the adversary

mined at least βt ′As blocks until round i+ s that extend B and are part of a single chain.

For the sake of contradiction, assume that the lemma does not hold, and thus Pr[E]

is non-negligible. Using A , we will construct an adversary A ′ = (A ′1,A ′2) that breaks
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the iterative hardness against precomputation (Definition 71) of I with non-negligible

probability.

A ′ is going to run internally A and Z, while at the same time simulating the work

honest parties do using the NIZK proof simulator. Moreover, A ′ is also going to use

the witness malleability property, to trick A to produce blocks in a sequence, instead

of interleaved adversarial and (simulated) honest blocks. Finally, using the NIZK ex-

tractor, A ′ is going to extract the witnesses from the adversarial blocks, and win the

iterative hardness game. By a hybrid argument, we will show that the view of A ,Z is

indistinguishable both in the real and the simulated run, and thus the probability that E

happens will be the same in both cases.

Next, we describe the behavior of A ′ in more detail. We are going to describe

the two stages of A ′ separately, i.e. before and after obtaining x. First, A ′1(Λ) sets

(Λ,xGen,H,Ω) as the common input for A and Z, where Ω has been generated using

S1 and the rest of the inputs using the default samplers, and stores the NIZK trapdoor

tk. Then, it perfectly simulates honest parties up to round i− 1 and at the same time

runs A and Z in a black-box way. Finally, it outputs the contents of the registers

of A and Z and the NIZK trapdoor tk, as variable st. It can do all this, since in the

iterated hardness against precomputation experiment it has polynomial time on λ on his

disposal. Note, that up until this point in the eyes of A and Z the simulated execution

is perfectly indistinguishable compared to the real one.

For the second stage, A ′2(st,x), is first going to use st to reset A and Z to the same

state that they were. We assume that this can be done efficiently, e.g., by having A and

Z read from the registers where st is stored whenever they perform some operation

on their registers. It will also continue to simulate honest parties, this time in a more

efficient way.

A ′2 takes as input a problem statement x sampled from X , as in Definition 71. It

should somehow introduce x to the simulated protocol execution, without the adversary

noticing any difference that could help him distinguish from the real execution. Let

B0 = 〈s0,m0,x0,π0〉 be the head of chain C that party P is extending at round i, and

m1 the block input it produced for this round using the input contribution function I(·).
A ′2 is first going to run M on input x for the amount of steps available to P. If it is

successful and produces some witnesses w, it will diffuse the following block:

B1 = 〈H(B0),m1,S(x,w),S
H(H(B0),m1,S(x,w),|C |+1)
2 (Ω,(Λ,x0,S(x,w)), tk)〉

where the last component is a simulated NIZK proof for the statement (x0,S(x,w)).
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Note, that A ′2 does not know any witness for this statement, and it is possible that no

such witness exists. Later, we will argue that the output of the simulator on this input

should be indistinguishable from the output on the statement (x0,S(x0,M(x0))). Also,

note that due to the next-problem simulatability property, A2 will not be able to tell the

difference of P running M on x0 or x at this round.

B0

B2

B3

B1

B4

x0

x3 x′′

x2
Φ(x,w)

w′
Φ(x′, w′)

x′

w

x

Figure 5.1: A possible scenario according to Lemma 84. The blocks have been gen-

erated in order B0,B1,B2,B3,B4, with B3 being the only adversarial block. The cases

where a valid witness is either known or can be extracted, and a NIZK proof has either

been computed or simulated for the depicted transitions, correspond to the dotted and

normal arrows, respectively.

A ′2 will follow a more complex strategy to simulate the rest of the honest parties

invocations. For each honest party, it will run the next-problem simulator Ψ(1λ) and

check if the numbers of steps output is less than the number of steps available on

this invocation. If they are not, A ′2 will proceed by just updating the state of this

party for the round. Otherwise, it will simulate its behavior when being successful,

as follows: Let block B∗ = 〈s∗,m∗,x∗,π∗〉 be the head for the chain C ∗ the honest

party was trying to extend with message m′′ in this round. Let B j = 〈s j,m j,x j,π j〉
be the adversarial block that descends B1 and maximizes the number of adversarial

blocks between itself and B1. Let B′ = 〈s′,m′,x′,π′〉 be the parent of B j. If no such

adversarial block exists, assume that B j = B1 and B′ = 〈 /0,x,w, /0〉. A ′2 first runs the

NIZK extractor EH(B j)(Ω,((Λ,x′,x j),π j), tk) to obtain a witness w′ for x′. Then, it runs

Φ(x′,w′) and obtains a new witness w′′ for x′; let x′′ = S(x′,w′′). Finally, it is going to

make A2 believe that the block it has computed extends B∗, instead of B′, by simulating

a NIZK proof as follows: π′′ = S
H(H(B∗),m′′,x′′,|C ∗|+1)
2 (Ω,(Λ,x∗,S(x′,w′′)), tk). The new

block that A ′2 is going to diffuse is 〈H(B∗),m′′,x′′,π′′〉. We point to Figure 5.1 for an

example of the procedure described above. If A ′2 was not successful when it run M(x)

to extend B0, it is going to simulate honest parties work as follows: to extend block
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B̂ = 〈ŝ, m̂, x̂, π̂〉, it will first use Ψ to see if it succeeds and if yes generate the next

problem statement x̂′, and then use S as above to generate a NIZK proof π̂′ for block

〈H(B̂), m̂′, x̂′, π̂′〉.
In the following claim we argue that the view Hsim of the adversary in the simu-

lated run we just described is computationally indistinguishable from its view H0 in

VIEW
t,n
Πnew
PL ,A ,Z .

Claim 7. Hsim
c≈ H0.

Proof. We start by describing a sequence of hybrids:

Hybrid H0: The view of the adversary in VIEW
t,n
Πnew
PL ,A ,Z .

Hybrid H1: Same as H0, with the only difference being replacing honest parties’

calls to P by calls to S2, and Ω being generated by S1.

Hybrid H1,i to Hn,s: In hybrid Hu,v, we replace the next statement and the NIZK

in the block produced by party u at round v if successful, with a possibly wrong

statement and proof computed as described in the proof above.

By the zero knowledge property of the NIZK proof system (Definition 114) it easily

follows that H0 is indistinguishable from H1; H0 corresponds to the real execution,

while H1 to the simulated one.

Next, we will argue that Hu−1,v is indistinguishable from Hu,v, for some u ∈ [n],v ∈
R (let H0,i = H1), by contradiction . Assume Hu−1,v

c
6≈ Hu,v. There are two cases.

In the first case, u = P, v = i. The difference between the two executions, is that

in HP,i, instead of running M(x0) and computing S(x0,M(x0)), M(X ) is run and the

next problem computed is S(X ,M(X )), where by X we denote the uniform distribu-

tion over X . Assuming that the two hybrids are distinguishable, by an averaging ar-

gument there exists a PPT distinguisher D, some auxiliary register z, and Λ[X ,W, R̂] ∈
Iλ,x0,x1 ∈ X , t0≤ tH such that D distinguishes (Λ,x0,(S(x0,M(x0)),StepsM(x0)< t0))

from (Λ,x0,(S(x1,M(x1)),StepsM(x1) < t0)); z will be equal to the state of an execu-

tion where P has t0 steps to extend problem x0. This is a contradiction, since by the

next-problem simulatability property it follows that:8

(Λ,x0,(S(x0,M(x0)),StepsM(x0)))
c≈ (Λ,x0,Ψ(1λ))

c≈ (Λ,x0,(S(x1,M(x1)),StepsM(x1)))

where the last part follows from the fact that Ψ0(1λ) and x1 do not depend x0.

8For brevity, we abuse notation here and use the computational indistinguishability relation to ran-
dom variables, instead of random variable ensembles. The related random variable ensembles can be
easily deduced.
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For the second case, assume that either u 6= P or v 6= i. W.l.o.g., assume that

u is successful. Similarly, by an averaging argument we can show that there ex-

ists a PPT distinguisher D, some auxiliary register z, and Λ[X ,W, R̂] ∈ Iλ,x0,x1 ∈
X ,w1 ∈W, t0 ≤ tH such that D distinguishes (Λ,x0,(S(x0,M(x0)),StepsM(x0) < t0))

from (Λ,x0,(S(x1,Φ(x1,w1)),Ψ1(1λ) < t0)) and (x1,w1) ∈ R̂, where Ψ1(1λ) is the

steps component of Ψ(1λ). We arrive to a contradiction due to the witness malleability

property:

(Λ,x0,(S(x0,M(x0)),StepsM(x0)))
c≈ (Λ,x0,Ψ(1λ))

c≈ (Λ,x0,(S(x1,M(x1)),StepsM(x1)))
c≈ (Λ,x0,(S(x1,Φ(x1,w1)),Ψ1(1λ)))

If the second and third distributions are distinguishable, then we can construct a dis-

tinguisher for the next-problem simulatable property as before, while if the third and

the fourth distributions are distinguishable, we can construct a distinguisher for the

witness malleability property.

The claim follows by the fact that Hn,s is the same as Hsim. a

Since A and Z cannot distinguish between the real execution and the one we de-

scribed above, E will occur with non-negligible probability in Hsim, i.e. A will com-

pute at least βt ′As blocks starting from round i and up to round i+ s that descend B1

and lie on the same chain. By the way honest blocks are constructed, A ′2 knows the

witnesses of the honest blocks in this chain, and using the NIZK extractor it can extract

the witnesses of the adversarial ones. Now, note that each adversarial block includes

a witness to the problem statement defined by the previous block, while at the same

time each subsequent honest block defines a problem statement that lies in a sequence

starting from x and followed by at least as many witnesses as on the previous block.

It follows that A ′2 can extract a sequence of valid witnesses of length at least βt ′As+1,

where the plus one comes from the witness computed by P at round i, and win in the

iterative hardness game with non-negligible probability, since it takes at most

tH + s · (tA +θ · tV+ tE)+ s ·n(tbb+ tnps + tmal + tS)≤ s · t ′A + tH

steps. Hence, A ′2 has computed βt ′As+ 1 ≥ β(s · t ′A + tH ) ≥ khard blocks in s · t ′A +

tH = (1− δhard)thard · β(s · t ′A + tH ) steps with non-negligible probability. This is a

contradiction to our initial assumption that I is a (thard,δhard,khard)-hard ISP.

Note that we can do exactly the same reduction without simulating honest parties’

work. Then, the total running time of the second stage of A ′ is s · (t ′A +nt ′H )-bounded.
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Hence, we can derive the following bound on the longest chain that can be produced

by both honest and malicious parties during a certain number of rounds.

Corollary 85. For any set of consecutive rounds R, where |R| ≥ khard
β(t ′A+nt ′H )

, for any

party P, and any round i ∈ R, the probability that ZP
i (R)+XP

i (R)≥ β(t ′A+nt ′H ) · |R| is
negl(λ).

Next, we prove lower bounds on the rate of successful and uniquely successful

rounds. Our proof crucially depends on the next-problem simulatable property of I .

Specifically, the fact that the runtime simulator Ψ(1λ) does not depend on the problem

statement, implies that the steps honest parties take running M at each round will be

indistinguishable from a set of i.i.d random variables following the distribution defined

by Ψ(1λ). Hence, for some set of rounds the sum of the Bernoulli random variables

of the event that a round is successful or uniquely successful, which only depends on

the running time of M, will necessarily have good concentration properties. In turn,

this implies that we can lower-bound the rates of successful and uniquely successful

rounds with good probability.

Lemma 86. For any set of consecutive rounds R, with |R| ≥ λ

γδ2 , the following two

events occur with negligible probability in λ:

The number of uniquely successful rounds in R is less or equal to (1− δ

4)γ · |R|;
the number of successful rounds in R is less or equal to (1− δ

4) f · |R|.

Proof. We follow a similar strategy as in the proof of Lemma 49. The ideal experiment

this time, will be one where the honest parties behavior is simulated using the simu-

lators Ψ and S of the next-problem simulatable property and the NIZK proof system

similarly to Lemma 84; Ψ is used to determine whether a party is successful and the

next problem statement, and S is used to generate the required NIZK. Using similar

arguments we can show that the view of the adversary in the real execution and its view

on the ideal one are computationally indistinguishable.

Next, we analyze the probability of successful and uniquely successful rounds oc-

curring in the ideal execution. We start by deriving lower and upper bounds for Ψ(1λ).

First, from the Successful property it follows that Pr[Ψ(1λ)≤ t ′H ]≥ α−negl(λ). Oth-

erwise, we can construct a distinguisher for (Λ,x,Ψ(1λ)) and (Λ,x,StepsM(x)), for any

Λ,x, by checking whether the input to the distinguisher is smaller than t ′H . This violates

the next-problem simulatable property. Similarly, we can upper bound Pr[Ψ(1λ)≤ tH ].

Claim 8. Pr[Ψ(1λ)≤ tH ]≤ tH β+negl(λ).
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Proof. For the sake of contradiction, assume that the difference Pr[Ψ(1λ)≤ tH ]− tH β

is non-negligible. First, we will argue that there exists an x∈X , such that Pr[StepsM(x)≤
tH ]− tH β is negligible. For the sake of contradiction, assume that for all x ∈ X ,

Pr[StepsM(x) ≤ tH ]− tH β is non-negligible. By the iterated hardness property, we

have that for k ≥ khard, any k/β-bounded adversary will compute k or more witnesses

with negligible probability in λ (assume we pick a k that is a multiple of β). This

implies that the expected number of blocks any such adversary computes is at most

k+negl(λ). Let an adversary that is based on M work as follows: on some initial input

x, it runs M for at most tH steps. If, it succeeds on producing a witness, it computes

the next problem, and runs M again with the new input. If not, it runs M on the ini-

tial input. By our assumption and the linearity of expectation, the expected number of

blocks our adversary will mine on k/β steps, is greater than (βtH +ε) k
βtH
≥ k(1+ ε

βtH
),

where ε is a non-negligible function. This is a contradiction. Hence, there exists an

x0 ∈ X , such that Pr[StepsM(x0)]− tH β is negligible. This in turn implies that we can

construct a distinguisher for Ψ(1λ) and StepsM(x0), by checking whether the input of

the distinguisher is less or equal to tH . This is a contradiction to the next-problem

simulatable property. Therefore, the claim follows. a

Similarly to Lemma 49, we can now define random variables X̂(·),Ŷ (·),X ′(·),Y ′(·)
for the ideal execution. Due to the fact that different invocations of Ψ(1λ) are indepen-

dent, and from the lower and upper bounds we have already established, it follows that

for any i ∈ R : E[Y ′({i})] ≥ γ and E[X ′({i})] ≥ f . Moreover, by an application of the

Chernoff Bound it holds that: Pr[Y ′(R)≤ (1− δ

4)γ|R|]≤ Pr[Y ′(R)≤ (1− δ

4)E[Y
′(R)]]≤

e−Ω(δ2γ|R|) and similarly Pr[X ′(R) ≤ (1− δ

4) f |R|] ≤ e−Ω(δ2 f |R|). Since the conditions

of the above two events can be checked in polynomial time, it follows that they should

also hold for the real execution with negligible difference in probability. Otherwise,

a distinguisher would be able to use them to efficiently distinguish between the two

executions. The lemma follows.

Following the strategy of [GKL15], we are now ready to define the set of typical

executions for this setting.

Definition 87 (Typical execution). An execution is typical if and only if λ≥ 9/δ and

for any set R of consecutive rounds with |R| ≥ max{4khard,λ}
γδ2 , the following hold:

1. Y (R)> (1− δ

4)γ|R| and X(R)> (1− δ

4) f |R|;
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2. for any party P, any round i ∈ R: ZP
i (R) <

γ

2(1+δ) · |R| and ZP
i (R) + XP

i (R) <

β(t ′A +nt ′H ) · |R| ; and

3. no insertions and no copies occurred.

Theorem 88. An execution is typical with probability 1−negl(λ).

Proof. The proof of the theorem proceeds as in Theorem 51, with the only difference

that for Lemma 84 and Corollary 85, we assume an adversary with power t ′A = γ

β·2(1+δ) ,

so that khard
βt ′A
≤ 4khard

γδ2 ≤ |R| and khard
β(t ′A+nt ′H )

≤ 4khard
γ
≤ |R|.

Having established that typical rounds happen with overwhelming probability, the

rest of the proof follows closely that of Chapter 4, Section 4.4.2. The only difference is

that to prove the corresponding common-prefix lemma (cf. Lemma 56), although we

can match u.s. blocks to adversarial blocks in one of the two chains that constitute the

fork, the typicality of the execution only provides a bound on the maximum number of

blocks in a single chain. Hence, only half of the blocks matched must outnumber the

uniquely successful rounds in this interval, which is also the reason that our proof only

works with an adversary controlling up to 1/3 of the parties. Next, we state our main

theorem.

Theorem 89. Assuming the existence of a collision-resistant hash function family,

a one-way trapdoor permutation and a dense cryptosystem (for the NIZK), and an

enhanced ISP problem I that comply with Assumptions 4 and 5, protocol Πnew
PL im-

plements a robust public transaction ledger with parameters k = max{4khard,λ}
γδ

and

u = 2k
(1− δ

4 ) f
, except with negligible probability in λ.

5.4.3 An Enhanced ISP Construction

We now present an ISP problem that is plausibly hard against precomputation (Defi-

nition 71), and satisfies all other properties of an enhanced ISP (Definition 80). Our

construction is based on a fixed-length input hash function that satisfies the proper-

ties of a weak computational randomness extractor. As explained in [DSGKM12], this

assumptions is weaker than assuming a fixed-length input pseudorandom function fam-

ily (FI-PRF), a common assumption in the hash function literature [BCK96, DGH+04,
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Kra10]. Next, we give a formal definition of the property our hash function should

satisfy.9

Definition 90. Let H = {{Hk : {0,1}dλ→{0,1}λ}k∈K(λ)}λ∈N be a hash-function fam-

ily, for some d ∈ N+. H is a computational randomness extracting (CRE) hash fam-

ily if for some c ∈ N+, where c < d, the function family E = {Eλ : {0,1}(c+1)λ×
{0,1}(d−c−1)λ → {0,1}λ}λ, where Eλ(x, i)

de f
= Hk(x||i), is a (cλ)-computational ex-

tractor (Definition 113), for any key k ∈ K(λ).

We are now ready to describe our ISP construction.

Construction 2. Let H be a hash function family as in Definition 90. Let T ∈ {0,1}λ

be a hardness parameter. An instance of an enhanced ISP is as follows:

Iλ is the uniform distribution over K(λ), i.e., Λ = {k};
X = {0,1}λ,W = {0,1}2(d−1)λ;

R = {(x,w)|Hk(x||w1)< T for w = w1||w2};
M(x,1) iteratively samples w1 from U(d−1)λ, and tests whether Hk(x||w1) < T ,

until it finds a solution. It then samples a uniformly random w2 from U(d−1)λ, and

outputs w1||w2.

S(x,w) = Hk(Hk(x||w1)||w2), for w = w1||w2.

Construction 2 is similar to Bitcoin’s ISP construction (see Section 5.3.1, Construc-

tion 1), with the following differences:

1. In our construction Hk(x||w1) is required to be smaller than the hardness parameter

T , while in Bitcoin Hk(Hk(x||w1)||w2) is expected to be small, where w1 is the

hash of some message. This change allows a party who already knows a witness

(w1,w2) for some statement, to produce a new one by changing w2 arbitrarily.

2. Each time M tests a new possible witness, w1 is sampled randomly, instead of just

being increased by one, as in Bitcoin. This will help us later on to argue that each

test succeeds with probability proportional to T .

Obviously, if used in “native” Bitcoin this construction is totally insecure, as by the

time an honest party publishes a block, anyone can compute another valid block with

minimal effort. However, it is good enough for our new protocol, where the witnesses

are not exposed, and thus only a party who knows a witness can generate new witnesses

for free. Next, we argue the security of the construction.

9For simplicity we model a hash function family parameterized by security parameter λ ∈ N. We
note that our results can be easily casted in the fully concrete setting.
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Assuming H is a computational randomness extractor is sufficient for the security

properties that make up an enhanced ISP, besides hardness, to be satisfied. First, the

fact that Hk(x||w1) is computationally indistinguishable from uniform, for any x ∈ X ,

implies that the runtime and the output of M are computationally indistinguishable

from a process that sampled repeatedly a uniform value from {0,1}λ until it finds

one that is smaller than T . This in turn implies that the runtime distribution of M

is indistinguishable from the geometric distribution with parameter T/2λ, and thus

the successful ISP property is satisfied with parameters comparable to that proven in

Chapter 4 about the RO-based construction. Further, since w2 is also chosen uniformly

at random, we can show that a simulator that samples a random value from Uλ and the

geometric distribution, satisfies the next-problem simulatability property. Finally, by

resampling a new w2 uniformly at random, an admissible witness is produced, and the

witness malleability property follows. We are thus able to state:

Lemma 91. If H is a CRE hash family, then Construction 2 is O(λ)-next-problem sim-

ulatable, O(λ)-witness malleable, and (t,CT/2λ(O(t)))-successful for any t ∈ poly(λ),

where CT/2λ is the cumulative geometric distribution with parameter T/2λ.

Proof. We start by showing that even if the adversary chooses the problem statement

x maliciously, hashing it once together with a uniformly random string, will result in a

string that is computationally indistinguishable from a uniformly sampled string. Let

c,d be as in Definition 90. Fix some λ ∈ N, k ∈ K(λ) and x ∈ X . Let random variable

Z be equal to Hk(x||Ucλ||U(d−c−1)λ). By our assumption that E(x, i)
de f
= Hk(x||i) is a

(cλ)-computational extractor, and since x||Ucλ has cλ bits of min-entropy, it follows

that10 Z
c≈ Uλ, and since x is fixed that (x,Z)

c≈ (x,Uλ). Assume instead that x is

sampled from some efficiently samplable distribution X̂ , as it will be the case in the

actual execution, and let Ẑ = Hk(X̂ ||Ucλ||U(d−c−1)λ). For any PPT distinguisher D,

sufficiently large λ ∈ N, all z ∈ {0,1}poly(λ) it holds that:

|Pr[D(1λ,z, X̂ , Ẑ) = 1]−Pr[D(1λ,z, X̂ ,Uλ) = 1]|
= | ∑

x′∈X
Pr[x′ = X̂ ]

(
Pr[D(1λ,z,x′,Hk(x′||U(d−1)λ)) = 1]−Pr[D(1λ,z,x′,Uλ) = 1]

)
|

≤ ∑
x′∈X

Pr[x′ = X̂ ] · |Pr[D(1λ,z,x′,Hk(x′||U(d−1)λ)) = 1]−Pr[D(1λ,z,x′,Uλ) = 1]|

≤ ∑
x′∈X

Pr[x′ = X̂ ] ·negl(λ)≤ negl(λ)

10We abuse the notation and use the
c≈ relation with random variables, instead of random variable

ensembles. The relevant ensembles can be easily deduced.
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where the last inequality follows from the fact that (x,Z)
c≈ (x,Uλ) for any x ∈ X .

Hence, (X̂ , Ẑ)
c≈ (X̂ ,Uλ).

We next argue about the distribution of the running time of M. Algorithm M on

input x iteratively samples a uniformly random w1||w′1 from Ucλ×U(d−c−1)λ, and

tests whether Hk(x||w1||w′1) < T , until it finds a solution. For a moment, assume that

M instead tested whether a value sampled from Uλ is smaller than T . Then, its running

time would be distributed according to the geometric distribution Gp with parameter

p = T/2λ. Since Z
c≈Uλ, we can use a hybrid argument to show that the distribution

of StepsM(x) is computationally indistinguishable from c1 ·GT/2λ + c2, where c1 is a

constant related to the cost of sampling a random value for each test and evaluating

H, and c2 to the cost of sampling w2. The hybrid argument proceeds by replacing

a computation of H(x||U(d−1)λ) < T at some step of M, with Uλ < T . If between

any two hybrids the distributions of the runtime of the respective modified M is not

indistinguishable, then we can easily construct a distinguisher for H(x||U(d−1)λ) and

Uλ. Hence, StepsM(x) should be computationally indistinguishable from c1 ·GT/2λ +

c2. It follows that M must be (t,CT/2λ(O(t)))-successful, for any t ∈ poly(λ).

Next, note that M, after finding a small hash, hashes again the result with a fresh

randomly sampled string w2. Using the same hybrid argument as in the previous para-

graph we can show that (x,M(x),StepsM(x))
c≈ (x,Hk(W ||Uλ),c1 ·GT/2λ +c2), where

W is the uniform distribution over the hash images that are smaller than T . By our pre-

vious analysis it follows that (x,Hk(W ||Uλ),c1 ·GT/2λ +c2)
c≈ (x,Uλ,c1 ·GT/2λ +c2).

By the transitivity of computational indistinguishability it follows that the simulator Ψ

that outputs a randomly sampled pair from Uλ and c1 ·GT/2λ + c2 satisfies the next-

problem simulatability property. Note, that using the inverse transform technique, we

can sample from the geometric distribution (truncated to 2λ) in O(λ) steps.

Finally, the witness malleability property holds for Φ(x,(w1,w2)) that outputs the

witness (w1,w′2), where w′2 is sampled uniformly at random. Again, S(x,Φ(x,(w1,w2)))

will be indistinguishable from Uλ. The lemma follows.

Regarding the hard-ISP property, to our knowledge no reductions exist (yet) of

iterated hardness to weaker assumptions in the standard model, even for the more ex-

tensively studied iterated sequential functions mentioned earlier. We argue the plau-

sibility of our construction being hard against precomputation (Definition 71), by the

fact that Construction 2 is based on Bitcoin’s ISP construction (see Section 5.3.1 for
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a simplified version), for which no attacks are known. The main idea is that if there

exists an attacker against our Construction, then we can use it to break the hardness

of Construction 1. In more detail, given as input a statement x, the attacker runs the

attacker of our Construction with input H(x||w), where w is sampled at random. It

is easy to see that if ((w1,w′1), . . . ,(wm,w′m)) are the witnesses it is going to produce,

then ((w,w1),(w′1,w2), . . . ,(w′m−1,wm)) are valid witnesses for Construction 1. The

following lemma highlights this relation:

Lemma 92. If Construction 1 is based on a CRE hash family H and is (t,δ,k)-hard

against precomputation, then Construction 2, also based on H , is (t,δ,k)-hard against

precomputation.

Proof. As mentioned, Construction 2 is a mirror image of Construction 1, in the sense

that the first hash, instead of the second, is required to be smaller than T , and the other

one can have an arbitrary value. We make the following simplifying assumptions: H
is the same in both constructions, M in Construction 1 chooses ctr at random11 as in

Construction 2, and the size of W in Construction 1 is adapted accordingly. For the

sake of contradiction, assume that Construction 2 is not (t,δ,k)-hard against precom-

putation. Using similar arguments as in the analysis of Lemma 91, the distribution of

the runtime of the solvers of both ISPs is identical. Hence, it has to be the case that

there exists an attacker A = (A1,A2) that for infinitely many λ and some m≥ k breaks

the hardness of Construction 2. Using A , we are going to construct an attacker A ′ that

breaks the hardness of Construction 1.

Let A ′ work as follows: First, A ′1 runs A1 and forwards variable st to A ′2. Then,

A ′2 on input st and a randomly sampled problem statement x, runs A2 on input H(x||w),
where w is sampled at random. If A2 succeeds, it outputs witnesses ((w1,w′1), . . . ,(wm,w′m)).

Then, A ′2 outputs ((w,w1), . . . ,(w′m−1,wm)). Note, that in that case (w,w1) is a witness

for x, for the game A ′ is playing, since H(H(x||w)||w1)< T . Moreover, it should hold

that H(H(H(H(x||w)||w1)||w′1)||w2)< T . In turn, this implies that ((w,w1),(w′1,w2))

is a valid sequence of witnesses for A ′. Similarly, it follows that ((w,w1), . . . ,(w′m−1,wm))

is a valid sequence of m witnesses for the game A ′ is playing. Hence, whenever A wins,

A ′ also wins.

We proceed to analyze the winning probability of A ′. We have already argued

that whenever A wins, A ′ also wins. Moreover, we have assumed that A succeeds in
11We can avoid this simplification by further assuming that H is a FI-PRF, similarly to [Theorem

1, [Kra10]].
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producing m ≥ k witnesses with non-negligible probability. Due to the randomness

extraction property of H , the distribution of H(x,w) will be computationally indistin-

guishable from the uniform distribution over {0,1}λ. Hence, the probability that A
wins is negligibly close to the probability that it wins on a uniformly random input,

and thus A ′ wins also with non-negligible probability. This is a contradiction, and the

lemma follows.

Following similar techniques as in Theorem 65 of Chapter 4, and due to Theo-

rem 89 and the previous two lemmas, we can implement a ledger assuming the exis-

tence of a robust NIZK, a hash family that is collision-resistant, the ISP hardness of

Bitcoin’s ISP scheme (Construction 1) based on a CRE hash for appropriate parame-

ters, and that the adversary controls less than a third of the total computational power.

The following theorem holds:12

Theorem 93. Assuming the existence of a one-way trapdoor permutation and a dense

cryptosystem (for the NIZK), collision-resistant hash functions, that Construction 1

is a (thard,δhard,khard)-hard-ISP against precomputation based on a CRE hash family

H , and that for some δSteps ∈ (0,1), sufficiently large λ ∈ N, and T equal to b2λ ·
min{ ln((1−δ2

Steps/4)−1)

t ′H
,

δSteps/4
(t ′A+nt ′H )(1+δSteps/2)}c, it holds that:

β = ((1−δhard)thard)−1 ≤ (1+ δSteps

2 ) T
2λ

; and

2 · t ′A ≤ (n− t)t ′H (1−δSteps)

there exists a T ∈ N such that protocol Πnew
PL based on Construction 2 implements a

robust public transaction ledger, except with negligible probability in λ.

12For simplicity, we assume that the cost in computational steps of evaluating H, and the hidden
constant in the successful property of Lemma 91 are both 1. The theorem can be easily generalized for
arbitrary costs.



Chapter 6

Security Analysis of the GHOST

Protocol

6.1 Introduction

The popularity of Bitcoin [Nak08] has lead to a surge in the interest about its core pro-

tocol that maintains a distributed data structure called the “blockchain.” In [GKL15],

the core of the Bitcoin protocol was abstracted under the moniker “Bitcoin Backbone”

and it was demonstrated to be a powerful tool for solving consensus, [PSL80, LSP82],

in a synchronous, permissionless and Byzantine setting where (unreliable) broadcast

is the communication operation available to the participants, (a problem first consid-

ered in [AJK05, Oku05a]). In [GKL15], it was shown that the core protocol provably

guarantees two properties: (i) persistence: if a transaction is reported as stable by one

node, then it will be also reported as such by any other honest node of the system,

(ii) liveness: all honestly generated transactions that are broadcast, are eventually re-

ported as stable by all honest nodes. This provides a formal framework for proving

the security of systems like Bitcoin, since their security can be reduced to the persis-

tence and liveness of the underlying transaction ledger. Furthermore, it provides a way

to argue formally about transaction confirmation time since the liveness property is

equipped with a delay parameter that specifies the maximum transaction delay that can

be caused by an adversary.

Naturally, implementing a robust transaction ledger may be achieved in various

other ways, and it is a fundamental open question of the area whether the Bitcoin pro-

tocol itself is an “optimal” implementation of a robust transaction ledger, i.e. whether

the parameters of the persistence and liveness properties are optimal. Indeed, many

150
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researchers have challenged various aspects of the Bitcoin system and they have pro-

posed modifications in its core operation. Some of the modified systems maintain

the protocol structure but modify the hard-coded parameters (like the block genera-

tion rate) or the basic primitives, e.g., the way proof of work is performed (a number

of alternative proof of work implementations have been proposed using functions like

scrypt [Per09], lyra2 [SJAA+14] and others). However, more radical modifications are

possible that alter the actual operation of the protocol.

One of the most notable such variants is the GHOST protocol, which was suggested

by Sompolinsky and Zohar in [SZ15]. After the initial suggestion many cryptocur-

rencies using variants of the GHOST rule were proposed. The most popular among

them, Ethereum has received substantial research attention [KMS+16, KZZ16, Bon16,

PK15, JKS16, Omo14].1 Ethereum is essentially a Bitcoin-like system where trans-

action processing is Turing-complete and thus it can be used to implement any public

functionality in a distributed way. Bitcoin-NG [EGSvR15] is another popular Bitcoin-

like system relying on GHOST that separates blocks in two categories, namely key

blocks and microblocks, reflecting the fact that transaction serialization and leader

election may be separated.

Unfortunately, the security analysis of [SZ15] is not as general as [GKL15] (they

analyze security against a specific double-spending attack), while the analysis of [GKL15]

does not carry to the setting of GHOST. This is because the GHOST rule is a natural, albeit

radical, reformulation of how each miner determines the main chain. In GHOST, miners

adopt blocks in the structure of a tree. Note that in both Bitcoin and GHOST one can

consider parties collecting all mined blocks in a tree data structure. However, while in

Bitcoin the miners would choose the most difficult chain as the main chain, in GHOST,

they will determine the chain by greedily following the “heaviest observed subtree.”

This means that for the same subtree, a Bitcoin miner and a GHOST miner may choose

a completely different main chain. Furthermore, it means that the length of the main

chain of honest parties does not necessarily increase monotonically (it may decrease

at times) and thus a fundamental argument (namely that blockchains monotonically

increase) that made the analysis of [GKL15] possible, does not hold anymore.

Our Results. We propose a new analysis framework for blockchain protocols focusing

on trees of blocks as opposed to chains as in [GKL15]. Our framework enables us to

argue about random variables on the trees of blocks that are formed by the participants.

In our framework, we can express concepts like a node being d-dominant, which

1The GHOST proposal is currently abandoned by Ethereum.
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means that the block corresponding to that node would be preferred by a margin of d

compared to other sibling nodes according to a specified weight measure. This actually

enables us to unify the description of Bitcoin and GHOST by showing they obey the same

rule, but simply for a different weight measure.

Using our framework we then provide the first formal security analysis of GHOST

against byzantine adversaries. Unlike Bitcoin, a transaction in GHOST is k-stable when-

ever the block that the transaction belongs to is the root of a subtree of at least k blocks.

We prove that GHOST for this stability predicate implements a robust transaction ledger

with a probability of error which drops exponentially in the security parameter over all

executions of the protocol. We achieve this result, by a new methodology, that reduces

the properties of the robust transaction ledger to a single lemma, that we call the fresh

block lemma and is informally stated as follows.

Fresh Block Lemma. (Informally) At any point of the execution and for
any past sequence of s consecutive rounds, there exists an honest block
mined in these rounds, that is contained in the chain of any honest player
from this point on.

As we will demonstrate, the fresh block lemma is a powerful tool in the presence

of an adversary: we show easily that the properties of the robust transaction ledger

reduce to it in a black-box fashion.

In more detail, our proof strategy for persistence and liveness utilizes the fresh

block lemma in the following (black-box) manner. In the case of persistence, it is

sufficient to ensure that reporting the transaction as stable by any honest player implies

that a sufficient amount of time has passed so that the fresh block lemma is applicable

and has produced a block that is a descendant of the block that contains the transaction.

Using the moderate hardness of proofs of work (specifically that they are hard enough)

it is easy to translate from number of blocks in a subtree to actual running time in terms

of rounds. It follows that the fresh block lemma applies and all honest parties will be

mining on a subtree rooted at this fresh block for the remaining of the execution. As a

result, the transaction will always be reported at the same position, as it belongs to the

heaviest observed path for all of the honest parties.

In the case of liveness, we proceed in two steps. First, for our choice of u, in a

time window lasting Θ(k) rounds, it will be ensured that the fresh block lemma can

be applied once, implying that all honest parties will mine blocks in a subtree rooted

by a common block that includes the transaction. Then, after another Θ(k) rounds, the

honest parties will have accumulated enough honest blocks in this subtree to pronounce
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this transaction as stable. This latter statement requires again the moderate hardness of

proofs of work but from the opposite perspective, i.e., that they are easy enough.

The above strategy provides an alternative proof methodology for establishing the

properties of a robust transaction ledger compared to previous works that analyzed

blockchain protocols, [GKL15], [KP15] and [PSS17] who reduced the properties of

the robust transaction ledger to three other properties called common prefix, chain

quality and chain growth. As such, the proof strategy itself may be of independent

interest as it could be applicable to other blockchain variants, especially those that are

using trees of blocks instead of chains of blocks as in Bitcoin in their chain selection

rule.

Our results align with the original expectation that GHOST performs better than Bit-

coin in terms of liveness, since our proven liveness parameter is superior to the liveness

parameter for Bitcoin proven in [GKL15], under the same assumptions. However, we

were not able to verify the claims that the protocol remains secure, even when the block

generation rate increases considerably.

Limitations and directions for future research. Our analysis is in the standard

Byzantine model where parties fall into two categories, those that are honest (and fol-

low the protocol) and those that are dishonest and may deviate in an arbitrary (and

coordinated) fashion as dictated by the adversary. It is an interesting direction for fu-

ture work to consider the rational setting where all parties wish to optimize a certain

utility function. Designing suitable incentive mechanisms, for instance see [Ler14] for

a suggestion related to the GHOST protocol, is a related important consideration. In our

analysis we do not take into account the fact that the number of parties changes dynam-

ically and that the protocol calibrates the difficulty of the PoW instances to account for

that; we note that this may open the possibility for additional attacks, say [Bah13], and

we point to [GKL17] for a first analysis of Bitcoin in this setting. In principle, our

results can be extended in the semi-synchronous model of [PSS17].

Organization. In section 6.2 we overview our security model, as well as the nota-

tion that we use for expressing the protocol. In section 6.3 we provide a description

of the GHOST backbone protocol, introduce our new tree-based framework, and show

that it satisfies the fresh block lemma, mentioned earlier. Finally, in section 6.4 we

demonstrate that GHOST can be used to implement a robust transaction.
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6.2 Preliminaries

We assume that we are in the synchronous q-bounded ROM setting with a fresh CRS

and a static adversary, as defined in Section 2.2. We also use the same definitions about

the format of blocks and blockchains as in Section 3.2.

6.3 The GHOST Backbone protocol

6.3.1 Protocol Description

In order to study the properties of the core Bitcoin protocol, the term Backbone Proto-

col was introduced in [GKL15]. At this level of abstraction we are only interested in

properties of the blockchain, independently from the data stored inside the blocks. The

main idea of the Bitcoin Backbone is that honest parties, at every round, receive new

chains from the network and pick the longest valid one to mine. Then, if they obtain a

new block (by finding a small hash), they diffuse their chain at the end of the round.

The same level of abstraction can also be used to express the GHOST protocol (Al-

gorithm 16). The GHOST Backbone protocol, as presented in [SZ15], is based on the

principle that blocks that do not end up in the main chain, should also matter in the

chain selection process. In order to achieve this, parties store a tree of all mined blocks

they have received, and then using the greedy heaviest observed subtree (GHOST) rule

(Algorithm 17), they pick which chain to mine on.

At every round, parties update their tree by adding valid blocks sent by other par-

ties. The same principle as Bitcoin applies; for a block to be added to the tree, it

suffices to be a valid child of some other tree block. The adversary can add blocks any-

where he wants in the tree, as long as they are valid. Again, as in Bitcoin, parties try

to extend the chains they choose by one or more blocks. Finally, in the main function,

a tree of blocks is stored and updated at every round. If a party updates his tree, he

diffuses it to all other parties.

The protocol is parameterized by three external functions V(·), I(·),R(·) which are

called: the input validation predicate, the input contribution function, and the chain

reading function, respectively. V(·) dictates the structure of the information stored

in a valid chain, I(·) determines the data that parties put in the blocks they mine, R(·)
specifies how the data in the blocks should be interpreted depending on the application.

Next, for completeness we present the remaining procedures of the GHOST back-
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Algorithm 16 The GHOST backbone protocol, parameterized by the input contribution

function I(·) and the reading function R(·). xC is the vector of inputs of all block in

chain C .

1: T ← vroot . T is a tree. vroot is the genesis block.

2: state← ε

3: round← 0

4: while TRUE do
5: Tnew← update(T ,blocks found in RECEIVE())

6: C̃ ← GHOST(Tnew)

7: 〈state,x〉 ← I(state, C̃ ,round, INPUT(),RECEIVE())

8: Cnew← pow(x, C̃ )

9: if C̃ 6= Cnew or T 6= Tnew then
10: T ← update(Tnew,head(Cnew))

11: DIFFUSE(head(Cnew))

12: round← round +1

13: if INPUT() contains READ then
14: write R(xC ) to OUTPUT()

bone protocol. Function pow (see Algorithm 18), which has to do with block mining

and is the same as the one defined in the Bitcoin Backbone, and function update (see

Algorithm 19) which refers to the way the block tree is updated.

Finally, we assume that the CRS, denoted as vroot in Algorithm 16, is sampled from

a high-min entropy distribution. It follows that the adversary will not be able to use

any blocks that he computed before the round the honest parties were activated with

overwhelming probability in κ. Moreover, as in Chapter 3, we assume that no two

invocations of I(·) performed by honest parties return the same result, as formalized

by the Input Entropy condition in [GKL15].

6.3.2 A Unified Description of Bitcoin and GHOST

Next, we introduce our new analysis framework for backbone protocols that is focusing

on trees of blocks, and we show how the description of Bitcoin and GHOST can be

unified. We will use the term node and block interchangeably from now on.

In GHOST, every player stores all blocks he receives on a tree, starting from a pre-

shared block called the genesis block (or vroot). If we assume that the same information
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Algorithm 17 The chain selection algorithm. The input is a block tree T . The | ·
| operator corresponds to the number of nodes of a tree. By C1||C2 we denote the

concatenation of chains C1, C2.

1: function GHOST(T )

2: B← root(T )

3: if childrenT (B) = /0 then
4: return B

5: else
6: B← argmaxB′∈childrenT (B)|subtreeT (B′)|
7: return B||GHOST(subtreeT (B))

is stored by Bitcoin, both protocols can be described in a unified language. We first

define block trees (or just trees), that capture honest players’ knowledge about valid

blocks on different moments of some round.

Definition 94. We denote by T P
r (resp. Tr) the tree that is formed from the blocks that

player P (resp. at least one honest player) has received up to round r. Similarly, T̂r is

the tree that contains all blocks of Tr and all blocks mined by honest players at round

r. For any tree T and block B ∈ T , we denote by T (B) the subtree of T rooted on B.

Notice that, due to the fact that diffuses of honest players always succeed, blocks

in T̂r are always in T P
r+1. Thus, for every honest player P it holds that:

T P
r ⊆ Tr ⊆ T̂r ⊆ T P

r+1

Intuitively, heavier trees represent more proof of work. However, there is more

than one way to define the weight of a tree. For example, in Bitcoin the heaviest tree

is the longest one. On the other hand, for GHOST a heavy tree is one with many nodes.

We abstract this notion, by conditioning our definitions on a function w that assigns

weights on trees. Deciding which tree has more proof of work, and thus which tree is

favored by the chain selection rule, depends on w. Building on these ideas, we next

present the notion of a node being d-dominant in some block tree, i.e., being d units

heavier than its siblings on the tree.

Definition 95. Let w be a real-valued function defined on trees. For any tree T let

siblings(v) denote the set of nodes in T that share the same parent with node v. Node

v is d-dominant in T (denoted by DomT (v,d)) iff
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Algorithm 18 The proof of work function, parameterized by q, D and hash functions

H(·),G(·). The input is (x,C ).

1: function pow(x,C )

2: if C = ε then . Determine proof of work instance

3: s← 0

4: else
5: 〈s′,x′,ctr′〉 ← head(C )

6: s← H(ctr′,G(s′,x′))

7: ctr← 1

8: B← ε

9: h← G(s,x)

10: while (ctr ≤ q) do
11: if (H(ctr,h)< D) then
12: B← 〈s,x,ctr〉
13: break
14: ctr← ctr+1

15: C ← CB . Extend chain

16: return C

w(T (v))≥ d∧∀v′ ∈ siblings(v) : w(T (v))≥ w(T (v′))+d

Next, note that the chain selection rule in the Bitcoin protocol can be described

using the notion of the d-dominant node. Let w(T ) be the height of some tree T . At

round r, each player P starting from the root of his T P
r tree, greedily decides on which

block to add on his chain, by choosing one of its 0-dominant children and continu-

ing recursively2 (ties are broken based on time-stamp, or based on which block was

received first). Moreovoer, the GHOST selection rule can be described in exactly the

same way by setting w to be the number of nodes of the tree. Thus, we have a unified

way for describing the chain selection rule in both protocols. Looking forward, in both

protocols, a transaction will be k-stable if the weight of the subtree of the block that

contains it is at least k, for the respective definitions of norm w.

Building upon this formalism we can describe the paths that fully informed honest
2This is exactly algorithm 17 with a minor modification. At line 6 the subtree T that is chosen

maximizes w(T ).
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Algorithm 19 The tree update function, parameterized by q, D and hash functions

H(·),G(·). The inputs are a block tree T and an array of blocks.

1: function update(T ,B)

2: foreach 〈s,x,ctr〉 in T
3: foreach 〈s′,x′,ctr′〉 in B

4: if ((s′ = H(ctr,G(s,x)))∧ (H(ctr′,G(x′,ctr′))< D)) then
5: childrenT (〈s,x,ctr〉) = childrenT (〈s,x,ctr〉)∪〈s′,x′,ctr′〉 . Add to the

tree.

6: return T

players choose to mine at round r (denoted by HonestPaths(r)) in a quite robust way,

thus showcasing the power of our notation.

HonestPaths(r)= {p= vrootv1 . . .vk|p is a root-leaf path in r and ∀i∈ [k] : DomTr(vi,0)}

Next, we present two key properties that both the Bitcoin and GHOST backbones

satisfy. The first property states that by diffusing k blocks the adversary can decrease

the dominance of some block at most by k. Intuitively, if the adversary’s ability to

mine new blocks is limited, then his influence over the block tree is also limited. On

the other hand, the second property states that uniquely successful rounds increase the

dominance of the nodes on the path from the root to the new block.

Proposition 96. For the Bitcoin and GHOST backbone protocols it holds that:

• if the adversary diffuses k ≤ d new blocks at round r− 1, then for every block

B ∈ T̂r−1 it holds that DomT̂r−1
(B,d) implies DomTr(B,d− k).

• if exactly one honest party computes a block at round r, and the newly mined

block B extends a path in HonestPaths(r), then DomT̂r
(B,1) and for any block B′

in the path from vroot to B it holds that DomTr(B
′,d) implies DomT̂r

(B′,d +1).

We delay the proof of the proposition until the next subsection, where we present

our security assumptions.

6.3.3 Analysis of the GHOST Backbone Protocol

In this subsection, we prove that the GHOST backbone protocol satisfies the fresh block

lemma mentioned in Section 6.1. While for the rest of this section we assume that
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norm w(T ) is defined as the total number of nodes of tree T , all results hold also for

the Bitcoin norm.

We follow the notation and definitions of Section 3.3.2, for: successful and uniquely

successful rounds, honest, adversarial and u.s. blocks, quantities p,α,β,γ, f , random

variables X(·),Y (·),Z(·). Additionally, We define Z′(S) to be the number of new valid

adversarial blocks, diffused by the adversary during round interval S, i.e., adversarial

blocks that have not been diffused to any honest party before the first round of S.

Similarly to how Lemmas 10 and 15 follow from Assumption 1, the following

lemmas and theorem follow from Assumption 6. For a summary of our notation we

refer to Table 6.1.

Assumption 6. For δ ∈ (0,1), we assume that:

t < (1−δ)(n− t); (Honest majority)

3 f ≤ δ < 1; (Bounded block generation rate)

Lemma 97. Assume Assumption 6. It holds that γ≥ (1+ δ

2)β.

Definition 98. An execution is typical, if, κ > 7
δ

and for any set S of at least κ consec-

utive rounds, it holds that:

(1−δ/8)α|S|< X(S) and (1−δ/8)γ|S|< Y (S);

Z(S)< (1+δ/9)β|S|, and Z(S)+X(S)≤ (1+δ) f |S|;
no bad events happen for the RO.

Theorem 99. Assume Assumption 6. An execution is typical with probability 1−
negl(κ).

Lemma 100. Assume a typical execution and Assumption 6. For any set of consecutive

rounds S = i, . . . , j, where |S| ≥ κ, it holds that Y (S\{i})> Z(S).

Next, we show that proposition 96 holds in a typical execution.3

Proof of Proposition 96. The lemma follows from the fact that adding only one block

in the tree reduces or increases the dominance of some block by at most 1, for both the

Bitcoin and GHOST norms. For the first bullet, adding k blocks one by one on some tree,

implies that the dominance of any node will reduce or increase by at most k. Tr includes

T̂r−1 and the k nodes broadcast by the adversary at round r−1, hence the dominance

3We require the execution to be typical to exclude pathological cases where the adversary for exam-
ple creates cycles among blocks.
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κ : security parameter

D : block difficulty parameter

n : number of parties

t : number of corrupted parties

q : number of queries to the RO per round per party

β : expected number of blocks computed by the adversary per round

α : lower bound on the rate of successful rounds

γ : lower bound on the rate of uniquely successful rounds

f : upper bound on the rate of computed blocks

δ : honest parties’ advantage from Assumption 1

Table 6.1: The parameters in our analysis. Parameters κ,n, t,D,q ∈ N, while

α,β,γ, f ,δ ∈ R

of any node on T̂r−1 will decrease by at most k. Note, that nodes in Z′({1, . . . ,r−2})
are included in T̂r−1, since they have been received by honest parties, up to round r−1.

For the second bullet, notice that dominance increases only for blocks that get

heavier. The only blocks that get heavier in this case are the ones in the path from the

root to the newly mined block. Since these blocks are in HonestPaths(r), they are at

least 0-dominant and so their dominance will further increase. Furthermore, the newly

mined block is 1-dominant since it does not have any siblings.

In [GKL15], it was shown that the Bitcoin Backbone satisfies two main properties:

common prefix and chain quality. However, another fundamental property needed for

their proof, is that the chains of honest parties grow at least at the rate of successful

rounds. This does not hold for GHOST. The reason is that, if an honest party receives a

chain that is heavier than the one he currently has, he will select it, even if it is shorter.

To reflect these facts, we develop an argument that is a lot more involved and leads to

a power lemma that we call the “fresh block lemma”.

First, we introduce a new notion, that of a path that all of its nodes are dominant

up to a certain value. Intuitively, the more dominant a path is, the harder it gets for the

adversary to stop honest parties from choosing it.

Definition 101. For d > 0, pdom(r,d) is the longest path p = vrootv1 . . .vk in T̂r s.t.

p 6= vroot∧∀i ∈ [k] : DomT̂r
(vi,d)
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Figure 6.1: An example of the change in dominance after a uniquely successful round.

The only nodes which increase their dominance are the ones in the path from the root

to the newly mined block as stated in Proposition 96.

If no such path exists pdom(r,d) =⊥.

From the requirement that d > 0, it follows that the dominant path pdom(r,d), if it

is not ⊥, will be unique.

In the next lemma, we show that unless the number of new blocks the adversary

diffuses in a round interval is at least as big as the number of uniquely successful

rounds that have occurred, an honest block mined in one of these rounds will be deep

enough in the chains of honest parties. More specifically, for any sequence of m (not

necessarily consecutive) uniquely successful rounds starting at some round r′, no mat-

ter the strategy of the adversary, at round r there will be at least one honest block

in pdom(r,m− k) where k is the number of adversarial blocks that have been diffused

during rounds [r′−1,r−1].4

Lemma 102. Assume a typical execution. Let r1 < .. < rm be uniquely successful

rounds from round r′ until round r. If Z′([r′−1,r−1])< m, then there exists an honest

block B, mined in one of the u.s. rounds, such that B is in pdom(r,m−Z′([r′−1,r−1])).

Moreover, if the honest block mined at round r1 is in pdom(r1,1) and Z′([r1,r−1])<m,

then B is in pdom(r,m−Z′([r1,r−1]))
4We slightly abuse the notation, and use [a,b], for integers a≤ b, to denote the set {a, . . . ,b}.
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Proof. We are first going to prove two preliminary claims that show the effect of a

uniquely successful round to pdom. The first claim shows that if a uniquely successful

round s is not compensated accordingly by the adversary, a newly mined block will be

forced into pdom(s,1).

Claim 9. Let round s be a uniquely successful round and B be the honest block mined

at round s. If Z′({s−1}) = 0, then B ∈ pdom(s,1).

Proof of Claim. First, notice that since the adversary does not broadcast any new block

at round s− 1, it holds that Ts is equal to T P
s , for any honest player P. Therefore, all

nodes in the path from vroot to the parent of B are at least 0-dominant in Ts and thus this

path is in HonestPaths(s). Since s is uniquely successful, all conditions of the second

bullet of Proposition 96 are met, and thus it is implied that all nodes up to the newly

mined block in T̂s are 1-dominant. It follows that B ∈ pdom(s,1). a

The second claim shows the effect of a uniquely successful round s to an existing

pdom(s−1,d) path. Notice that if the adversary broadcasts less than d blocks, the same

nodes continue to be at least 1-dominant in the following round.

Claim 10. Let round s be a uniquely successful round, B be the corresponding u.s.

block, and pdom(s− 1,d) 6= ⊥, for some d > 0. If Z′({s− 1}) < d, then pdom(s−
1,d) ⊆ pdom(s,d + 1−Z′({s− 1})). If Z′({s− 1}) = d, then either B ∈ pdom(s,1) or

pdom(s−1,d)⊆ pdom(s,1) and B in T̂s is a descendant of the last node in pdom(s−1,d).

Proof of Claim. Let Z′({s− 1}) = k. For the first item, suppose the adversary broad-

casts k < d blocks. Then, according to the first bullet of Proposition 96, the adver-

sary can lower the dominance in Ts of nodes in pdom(s− 1,d) by at most k. Thus

pdom(s− 1,d) will be a prefix of all the chains in HonestPaths(s). Now, since s is a

uniquely successful round, the dominance in T̂s of all nodes in pdom(s− 1,d) will in-

crease by one. Therefore pdom(s−1,d)⊆ pdom(s,d+1−k) and B will be a descendant

of the last node in pdom(s−1,d).

For the second item, suppose the adversary broadcasts k = d blocks. If he does not

broadcast all of these blocks to reduce the dominance in Ts of some node in pdom(s−
1,d), then pdom(s− 1,d) will be a prefix of all the chains in HonestPaths(s) and as

in the previous case, pdom(s− 1,d) ⊆ pdom(s,d + 1− k) ⊆ pdom(s,1) and B will be a

descendant of the last node in pdom(s−1,d).

Otherwise the adversary will reduce the dominance in Ts of at least one node in

pdom(s− 1,d) to zero. If B is a descendant of the last node in pdom(s− 1,d), then
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again by Proposition 96 all nodes in pdom(s− 1,d) will be 1-dominant in T̂s and

pdom(s−1,d)⊆ pdom(s,1)= pdom(s,d+1−d). If B is not a descendant of the last node

in pdom(s−1,d), then for the player P that mined this block it holds that T P
s = Ts, he

would have not mined a chain that does not contain pdom(s−1,d) at round s otherwise.

Therefore, P at round s was mining a chain that belonged to HonestPaths(s,vroot) and

thus all nodes in the chain are at least 0-dominant in Ts. But because s is a uniquely

successful round, the dominance of all nodes in the chain that B belongs to, will in-

crease by one and thus B ∈ pdom(s,1). a

Let Bi denote the honest block mined at round ri. We are going to prove the lemma

using induction on the number of uniquely successful rounds m.

For the base case, suppose m = 1. Then, Z′([r′−1,r−1]) = 0, thus from the first

claim B1 ∈ pdom(r1,1). Moreover, all honest parties will mine new blocks on paths

containing B1 in the next rounds, hence B1 ∈ pdom(r,1). Thus, the base case is proved.

Suppose the lemma holds for a sequence of m−1 uniquely successful rounds. We

take two cases. In the first case, Z′([r′− 1,rm− 2]) = m− 1. Hence, the adversary

broadcasts no new blocks in the rest of the rounds. From the first claim for round rm,

it follows that Bm ∈ pdom(rm,1), and as before Bm ∈ pdom(r,1).

In the second case, Z′([r′−1,rm−2])<m−1, which from the induction hypothesis

implies that there exists some block B′ mined by an honest party at one of the uniquely

successful rounds in {ri}i∈[m−1], where B′ ∈ pdom(rm−1,m−1−Z′([r′−1,rm−2])).

By the second claim, if Z′([r′−1,rm−1]) =m−1, then either Bm ∈ pdom(rm,1) or B′ ∈
pdom(rm,1), and as before this condition extends to round r. Otherwise, Z′([r′−1,rm−
1]) < m− 1, and thus B′ ∈ pdom(rm,m−Z′([r′− 1,rm− 1])). By a simple application

of the second claim, it follows that B′ ∈ pdom(r,m−Z′([r′−1,r−1])).

For the second part of the lemma, note that the base hypothesis holds independently

of the number of new blocks the adversary diffused before round r1. Hence, exactly

by the same arguments the lemma follows.

The fresh block lemma is stated next. Informally, it states that in a typical execu-

tion, at any point in time, in any past sequence of s consecutive rounds, at least one

honest block was mined and is permanently inserted in the chain that every honest

party adopts.

Lemma 103. (Fresh Block Lemma) Assume a typical execution and Assumption 6.

For any rounds r,s of the execution where r ≥ s ≥ κ, it holds that there exists a block
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mined by an honest party after round r− s, that is contained in the chain which any

honest party adopts after round r.

Proof. The difficulty of proving this lemma comes from the fact that in GHOST, the

length of the chains of honest parties are not always strictly increasing. That is, honest

parties may switch from a longer to a shorter chain. Monotonicity, allows us to prove

many useful things; for example that the adversary cannot use very old blocks in order

to maintain a fork as in [GKL15].

To overcome this difficulty, we will show that in order for honest parties to adopt

a chain that is on a different branch than the one they currently are, the adversary

must broadcast as many blocks as the ones that where mined on uniquely successful

rounds on this branch. Hence, forcing honest parties to older branches will be costly,

as it would imply that the adversary must compute a number of blocks comparable to

the number of u.s. rounds. Moreover, after κ rounds, this will be impossible due to

Lemma 100. Finally, if all honest parties stay on one branch, using Lemma 102, we

can argue that at least one honest block will enter their chains.

We are first going to prove two preliminary claims. First, we show that as long

as from some round r and afterwards the adversary diffuses less blocks than the total

number of uniquely successful rounds, the chain that any honest party adopts after

round r extends pdom(r,Y ([r])−Z′([r−1])). Formally:

Claim 11. For some round s1, assume that for all rounds s2≥ s1 it holds that Z′([s2])<

Y ([s2]). Then, the chain that any honest party adopts after round s1 extends pdom(s1,Y ([s1])−
Z′([s1−1])).

Proof of Claim. Since Y ([s1])> Z′([s1−1]), from Lemma 102 it follows that

p = pdom(s1,Y ([s1])−Z′([s1−1])) 6=⊥

As long as the number of blocks that the adversary diffuses at some round i ≥ s1 are

less than the dominance of the nodes in p in T̂i, all honest parties at round i+ 1 will

adopt chains containing p. Thus, uniquely successful rounds will further increase the

dominance of these nodes. By our assumption, Z′([i]) < Y ([i]), for all i ≥ s1, hence

the nodes in p are at least 1-dominant in T P
i , where P is an honest party. The claim

follows. a

Next, we show that if successive u.s. rounds occur such that the blocks mined are on

different branches, then the adversary must broadcast an adequate number of blocks,

as specified below.
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Claim 12. Let s1 < s2 < ... < sm be u.s. rounds, such that for any k∈ [m−1], sk+1 is the

first u.s. round after sk, where the honest block mined at this round is not a descendant

of the honest block mined in round sk−1. It holds that either Z′([s1− 1,sm− 1]) >

Y ([s1,sm− 1]) or Z′([s1− 1,sm− 1]) = Y ([s1,sm− 1]) and the honest block mined at

round sm will be in pdom(sm,1).

Proof of Claim. Let B1, ..,Bm denote the honest blocks mined at rounds s1, ..,sm, re-

spectively. We are going to prove the claim using induction. For the base case,

suppose that m = 2. For the sake of contradiction, assume that the claim does not

hold, and thus Z′([s1−1,s2−1])≤Y ([s1,s2−1]), and Z′([s1−1,s2−1]) =Y ([s1,s2−
1]) implies that B2 6∈ pdom(s2,1). We take two cases. In the first one, assume that

Z′([s1− 1,s2− 1]) < Y ([s1,s2− 1]). By the definition of s2, the honest blocks mined

on all u.s. rounds up to round s2− 1 are descendants of B1. From Lemma 102 at

least one honest block B computed in one of the u.s. rounds in [s1,s2− 1] will be in

pdom(s2− 1,Y ([s1,s2− 1])−Z′([s1− 1,s2− 2])). From our hypothesis, the adversary

will broadcast less than Y ([s1,s2− 1])− Z′([s1− 1,s2− 2]) blocks at round s2− 1.

Hence, from Claim 10, it is impossible for B2 not to be a descendant of B, and thus of

B1, which is a contradiction.

For the second case, assume that Z′([s1 − 1,s2 − 1]) = Y ([s1,s2 − 1]) and B2 6∈
pdom(s2,1). If at round s2− 1 the adversary does not broadcast any new block, from

Claim 9 of Lemma 102 B2 will be in pdom(s2,1), which is a contradiction. Otherwise,

the adversary broadcasts exactly Y ([s1,s2−1])−Z′([s1−1,s2−2])> 0 blocks at round

s2− 1, and thus Y ([s1,s2− 1]) > Z′([s1− 1,s2− 2]). From Lemma 102, there exists

some block B mined at a u.s. round such that B ∈ pdom(s2−1,Y ([s1,s2−1])−Z′([s1−
1,s2− 2])). It follows that B2 will be a descendant of B, which is a contradiction.

Hence, the base case proven.

Next, suppose that the lemma holds until round sk. We are going to show that it also

holds for sk+1. We take three cases. In the first case, assume that Z′([s1−1,sk+1−1])>

Y ([s1,sk+1− 1]). The claim trivially holds. For the second one, assume that Z′([s1−
1,sk+1−1]) =Y ([s1,sk+1−1]). If the adversary does not broadcast any block at round

sk+1 − 1, then as before it follows that Bk+1 ∈ pdom(sk+1,1), as is required by the

claim. Otherwise, based on the inductive hypothesis we have two cases. In the first one,

Z′([s1−1,sk−1])>Y ([s1,sk−1]), which implies that Z′([sk,sk+1−2])<Y ([sk,sk+1−
1])−1. Hence, Z′([sk,sk+1−2])< Y ([sk +1,sk+1−1]), and by Lemma 102 it follows

that Bk+1 should be a descendant of Bk, which is a contradiction. For the second one,
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assume that Z′([s1− 1,sk − 1]) = Y ([s1,sk − 1]) and Bk ∈ pdom(sk,1). It is implied

that Z′([sk,sk+1−2])< Y ([sk,sk+1−1]), and again by Lemma 102 we reach the same

contradiction. Hence, it should hold that Bk+1 ∈ pdom(sk+1,1), as the claim states.

For the last case, assume that Z′([s1− 1,sk+1− 1]) < Y ([s1,sk+1− 1]). Again, by

the inductive hypothesis it follows that either Z′([sk,sk+1−1])<Y ([sk+1,sk+1−1]) or

Z′([sk,sk+1−1]) < Y ([sk,sk+1−1]) and Bk ∈ pdom(sk,1), which as before contradicts

the definition of sk+1. Hence, this case is impossible, and by induction the claim

follows.

a

Next, we observe that Lemma 102 as well as Claim 11 and 12 can be applied on

a subtree of the block tree, as long as all u.s. blocks mined after the round the root of

the subtree was mined are part of the subtree.

Observation 104. Let B be an honest block computed at round s1, that is in the chains

adopted by all honest parties after round s2. Also, assume that all u.s. blocks mined

after round s1 are descendants of B. Then the following hold:

1. Regarding applications of Lemma 102 and Claim 12 on the subtree of the block

tree rooted on B, we can ignore all blocks that the adversary has mined up to

round s1−1.

2. Regarding applications of Claim 11 after round s2, we can ignore all blocks that

the adversary has mined up to round s1−1.

To see why the observation holds consider the following. Firstly, the adversary

sees block B for the first time at round s1, hence all blocks that the adversary mines

before round s1 cannot be descendants of B. Moreover, blocks that are not descendants

of B do not affect the validity of Lemma 102 and Claim 12 on the subtree of the block

tree rooted on B, since they do not affect the dominance of the nodes of the subtree

rooted at B. Finally, regarding the second point, consider the dominant path at any

round s3 > s2 in the subtree that is rooted on B. This path can be extended up to the

root node, since, by our assumption, B is in the chains adopted by all honest parties

after round s2.

We are now ready to prove the lemma. We will use the convention that block Bi is

mined at round ri for the rest of this proof. For the sake of contradiction, assume that

the lemma does not hold, and no honest block mined after round r− s is contained in
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the chains of all honest parties on all rounds after r. Let B0 be the most recent honest

(or genesis) block that (i) is in the chains that all honest parties have adopted after

round r, and (ii) all u.s blocks mined after round r0 are descendants of B0. This block

is well defined, since in the worst case it is the genesis block. By our assumption, it

follows that r0 <= r− s.

For the rest of the proof, we are going to apply Lemma 102, and Claims 11 and

12 on the subtree rooted on B0, for which due to Observation 104, we can assume that

Z′([r0,r′])≤ Z([r0,r′]), for any r′ ≥ r. Moreover, since r−r0 ≥ s≥ κ, by the typicality

of the execution it holds that Z′([r0,r′]) < Y ([r0 + 1,r′]), for any r′ ≥ r. Hence, by

Lemma 102 and Claim 11 there exists at least one honest block B1, mined in a u.s.

round and contained in the chains of all honest parties after round r. W.l.o.g. let B1

be the block corresponding to the earlier such round. By the definition of B0, B1 is a

descendant of B0. It should hold that r1 ≤ r− s, otherwise B1 satisfies the conditions

of the lemma. Moreover, there should exist some u.s. block B2, mined after B1, that

is not a descendant of B1. Otherwise, B1 would satisfy the definition of B0, which is a

contradiction. Let B2 be the earliest mined such block.

Now, let block B′0, mined at round r′0, be the first u.s. block mined after round r0.

If B′0 6= B1, it necessarily holds that it is also not a descendant of B1. Hence, in this

case, there exists a sequence of u.s. rounds r′0 < .. . < r1 < r2, such that we can apply

Claim 12; note that no u.s. block exists between B0 and B1, by the definition of B1.

Hence, it follows that either Z′([r′0−1,r2−1])>Y ([r′0,r2−1]) or Z′([r′0−1,r2−1]) =

Y ([r′0,r2−1]) and B2 ∈ pdom(r2,1). Note also, that by the definition of r′0, it holds that

Y ([r′0,r2− 1]) = Y ([r1 + 1,r2− 1]). In the other case, where B′0 = B1, we get exactly

the same result by applying Claim 12 for the sequence r1,r2.

Next, we will show that we can apply the same argument repeatedly, until we reach

a contradiction. By what we have said previously, it follows that either Z′([r2,r′]) <

Y ([r2,r′])+ 1 or Z′([r2,r′]) < Y ([r2,r′]) and B2 ∈ pdom(r2,1), for any r′ ≥ r. Again,

by Lemma 102 and Claim 11, there exists at least one honest block B, mined in a u.s.

round after round r2, and contained in the chains of all honest parties on and after

round r. Obviously B is a descendant of B1, and is computed on or before round r− s,

otherwise if would refute our initial assumption. Let B3 be the first u.s. block in the

subchain from B1 to B, computed after round r2. This block is well defined by our

previous observation.

Again, in order for B3 to not satisfy the definition of B0, there must exist some u.s.

block B4 that is was mined after B3, and is not its descendant. We can apply Claim 12
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for the sequence of u.s. rounds starting from r′0, and ending at r4. Each time we repeat

this argument the round sequence for which we can apply Claim 12 increases. Hence,

after κ repetitions, it must be the case that the adversary computed more blocks that

the number of uniquely successful rounds, in a round interval of size at least κ. This

contradicts the typicality of the execution. Thus, there exists some honest block mined

after round r− s, that is in the chains of all honest parties after round r.

6.4 Implementing a Transaction Ledger

In this section, we show how we implement a robust public transaction ledger, using

the functions V,R, I defined in Table 3.2 of Section 3.4, on top of the GHOST backbone.

For our protocol, a transaction is considered k-stable if the subtree rooted at the block

containing the transaction is of size at least k. We call the resulting protocol, ΠGHOST
PL .

Having established, in the previous section, that every s rounds a fresh and honest

block is inserted permanently in the chains of all parties, we are in a position to prove

the main properties of a robust transaction ledger. Regarding liveness, we make the

following two observations: After κ rounds, from the time a transaction was issued,

an honest block that contains this transaction will permanently be part of the chain of

any party, and in about k/pq(n− t) rounds, honest parties mine k blocks. Hence, by

waiting for a total of κ+ k/pq(n− t) rounds, honest parties will mine enough blocks

so that this transaction becomes stable. For the rest of this section, we extend the

notion of a typical execution, to include the event where in s≥ κ rounds, honest parties

mine at least (1−δ) · s · pq(n− t) blocks. Typical executions continue to happen with

overwhelming probability, due to the Chernoff bound.

Lemma 105 (Liveness). Assume a typical execution and Assumption 6. Further, as-

sume oracle Txgen is unambiguous. Protocol ΠGHOST
PL satisfies Liveness with wait time

u = κ+ k
(1−δ)pq(n−t) rounds and depth parameter k, for k ≥ κ.

Proof. We prove that, assuming all honest parties receive as input the transaction tx for

at least u rounds, any honest party at round r with chain C will report tx as stable. By

Lemma 103, it follows that there exists an honest block mined during rounds [r−u,r−
u+ k], such that all honest parties have this block in the chains they mine from round

r− u+ k and onward. W.l.o.g., this block contains tx. All blocks that honest parties

mine during the remaining k
(1−δ)pq(n−t) rounds will be descendants of this block. Due
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to the typicality of the execution, the honest parties will mine at least k blocks in this

round interval, and thus the lemma follows with the desired probability.

The liveness property of the Bitcoin protocol in [GKL15] is proven in a similar way,

and under the same assumptions. First, it is shown that some honest block containing

the target transaction becomes part of the chains of all honest parties. Then, after k

successful rounds occur, we are sure that the transaction is stabilized. This line of

thought, implies that the liveness parameter there, depends on k/α, where α is the

expected rate of successful rounds, instead of k/pq(n− t). Remember now, that it

holds that α < pq(n− t), due to the distributed way at which honest parties compute

blocks. The difference between the two quantities grows as pq(n− t) increases, i.e., as

the block generation rate grows, it is more probable that two honest parties compute a

block at the same round. Hence, we conclude, that the liveness parameter proved for

GHOST here, is better than the one proved for Bitcoin in [GKL15].

Regarding the second property, Persistence, it is implied by the fact that when a

party reports a transaction as stable for the first time, due to the upper bound f on

the block production rate, more than κ rounds will have passed from the round the

block containing the transaction was mined. Thus, there exists another honest block

descending it, that has been permanently added to the chain of all honest parties, which

implies the desired property.

Lemma 106 (Persistence). Assume a typical execution and Assumption 6. Protocol

ΠGHOST
PL satisfies Persistence with parameter k, for k ≥ 2κ f .

Proof. Let B be the block that contains transaction tx, that the honest party P reported

in its chain C as stable at round r. We will argue that B must have been computed

before round r−k, and thus by Lemma 103 all honest parties will report it in the same

position in their chains.

For the sake of contradiction, assume that B was computed after round r− k
(1+δ) f .

The total number of blocks that descend B at round r, is at most X([r− k
(1+δ) f ,r−1])+

Z[r− k
(1+δ) f ,r−1], which is smaller than k

(1+δ) f (1+δ) f = k. Hence, it must be that B

was computed on or before round r− k
(1+δ) f . Note now, that k

(1+δ) f > κ, hence by an

application of Lemma 103, there exists an honest block B′ mined on and after round

r− k
(1+δ) f , that will be in the chains of all honest parties from round r and onward. B

must be an ancestor of B′, since they are both part of C , and it was mined at a later
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round. Hence, all honest parties will report B and tx at the same position as P from

round r and onward. Persistence follows.

Theorem 107. If Assumption 6 holds, then protocol ΠGHOST
PL implements a robust trans-

action ledger with wait time u = k+ k
(1−δ)α and depth parameter k, for k ≥ 2κ f , with

overwhelming probability in κ.

As a final note, Lemma 103 is sufficient to prove Persistence and Liveness in a

black-box way. Compared to the approach of [GKL15], that was further expanded

in [KP15] and [PSS17], only one property, instead of three, of the underlying “back-

bone” protocol suffices in order to get a robust public transaction ledger in a black-box

manner. On the other hand, the three properties described in these works, common-

prefix, chain quality and chain growth, also serve as metrics of the efficiency of the

underlying mechanism and provide more information than the fresh block lemma.



Chapter 7

Concluding Remarks

In this thesis a number of foundational issues of PoW-based blockchain protocols

were investigated, with the hope of a better understanding of this technology. Lim-

itations and future directions of this work were presented in the individual chapters.

We conclude by presenting how some of the most interesting ideas of the thesis were

developed, showcasing among others that scientific research is a non-linear process.

First, we focus on the creation of the Bootstrapped Bitcoin backbone protocol of

Chapter 3. Before even starting to think about the bootstrapping problem, we per-

formed the security analysis of the GHOST protocol, presented in Chapter 6, which led

to the formulation of Proposition 96; essentially, an abstracted view of a set of con-

ditions that allow for agreement in a probabilistically changing weighted block tree.

Later, when we tried to tackle the bootstrapping problem explored in Chapter 3, we

applied the same thinking by adjusting the weights of genesis and non-genesis blocks

to satisfy the conditions of Proposition 96. In the process of doing so, we understood

that the longest chain selection rule remains robust in the presence of bounded party-

dependent noise on chain weights.

Another important point of this thesis, is the use a computational randomness ex-

tractor in Construction 2 of Chapter 5. Initially, following a top-down approach, we

formulated the information theoretic runtime independence property in Chapter 4, in

order to ensure that the distribution of uniquely successful rounds is sufficiently con-

centrated. Later on, when we tried to reduce the security of our protocol to the hardness

of the ISP in Lemma 84 of Chapter 5, we noticed that we need to be able to efficiently

simulate the honest parties’ runtime distribution, thus leading to the formulation of the

(computational) next-problem simulatability property. After some time, we understood
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that this property was also sufficient to guarantee the strong concentration properties

we needed. Putting everything together, led us to the idea of using a computational

extractor in Construction 2, a fairly realistic hash function property.

Finally, we discuss the development of the idea of using a witness malleable con-

struction in Chapter 5. At some point in our research journey, we tried to implement

a transaction ledger assuming the existence of iterated sequential functions, such as

the one based on repeated squaring in a composite order group. This attempt was not

fruitful, and one of the problems we had was that our PoW construction was witness

malleable, thus allowing the adversary to generate witnesses quite cheaply. Later, when

we were developing Lemma 84 mentioned earlier, we faced the problem that the re-

duction should be able to generate some witnesses cheaply. Our previous experience,

made us realize that the problem could be solved if the ISP was witness malleable.

Finally, we though of an easy way to obtain this property in Construction 2, by re-

versing Bitcoin’s ISP construction and thus retaining some of its hardness properties

as described in Lemma 92.



Appendix A

Mathematical Background

A.1 Inequalities

Throughout this thesis we make use of the following well-known inequalities:

Proposition 108. (Bernoulli) ∀x ∈R∗,n ∈N : (x >−1)∧ (n > 1)⇒ 1+xn < (1+x)n

Proposition 109. ∀x ∈ R : 1− x≤ e−x

A.2 Probabilistic Inequalities

We remind the reader of some basic inequalities from probability theory that are used

in this thesis. We assume some level of familiarity with discrete probability theory,

e.g., see [Sho09].

Let Ω be a sample space, and P : Ω→ [0,1] a probability distribution defined on

Ω, that satisfies the property

∑
ω∈Ω

P(ω) = 1.

An event is defined as a subset E of Ω. It holds that the probability of event E is

Pr[E] := ∑
ω∈E

P(ω).

Let E1,E2 be events on Ω. We denote by E1∧E2 (resp. E1∨E2) the conjunction (resp.

disjunction) of these two events. It holds that:

Proposition 110. (Union Bound) Pr[E1∨E2]≤ Pr[E1]+Pr[E2]
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A random variable is defined as a function X : Ω→ S, where S is some set. For any

s ∈ S, the event “X is equal to s” is equivalent to the event {ω ∈Ω|X(ω) = s}. Hence:

Pr[X = s] := ∑
ω∈X−1(s)

P(ω).

If S⊆ R, the expected value E[X ] of X is defined as:

E[X ] := ∑
ω∈Ω

X(ω) ·P(ω).

We say that a finite set of random variables {Xi : Ω→ Si}i∈I is mutually independent

iff for every (si)i∈I , where si ∈ Si, and any J ⊆ I, it holds that:

Pr[
∧
i∈J

Xi = si] = ∏
i∈J

Pr[Xi = si].

We make extensive use of the Chernoff bound.

Proposition 111. (Chernoff bound) Let {X1, . . . ,Xk} be a family of i.i.d. random vari-

ables, where Pr[Xi = 0] = p and Pr[Xi = 1] = 1− p, for p ∈ (0,1). Let X = ∑
k
i=1 Xi.

Then, it holds that:

Pr[X ≥ (1+δ)E[X ]]≤ e−
δ2E[X ]

2+δ , for all δ > 0.

Pr[X ≤ (1−δ)E[X ]]≤ e−
δ2E[X ]

2 , for δ ∈ (0,1)



Appendix B

Cryptographic Primitives

In this section, we recite the definitions of cryptographic primitives that we are going

to use in this thesis.

Collision resistance. We make use of the following notion of security for crypto-

graphic hash functions [Dam87]:

Definition 112. Let H = {{Hk : M(λ)→ Y (λ)}k∈K(λ)}λ∈N be a hash-function family,

and A be a PPT adversary. Then H is collision resistant if and only if for any λ ∈ N
and corresponding {Hk}k∈K in H ,

Pr[k← K;(m,m′)← A(1λ,k);(m 6= m′)∧ (Hk(m) = Hk(m′))]≤ negl(λ).

Randomness extractors. We make use of the notion of weak computational random-

ness extractors, as formalized in [DSGKM12].

Definition 113. An extractor is a family of functions Ext= {Extλ : {0,1}n(λ)×{0,1}d(λ)→
{0,1}m(λ)}λ∈N, where n(·),d(·) and m(·) are polynomials. The extractor is called weak

k(·)-computational if Extλ is PPT, and for all efficiently samplable probability ensem-

bles {Xλ}λ with min-entropy k(λ):

(Extλ(Xλ,Ud(λ)))λ∈N
c≈ (Um(λ))λ∈N

Robust non-interactive zero-knowledge. We make use of the following composable

notion of non-interactive zero-knowledge, introduced in [SCO+01].

Definition 114. Given an NP relation R, let L= {x :∃w s.t. R(x,w)= 1}. Π=(q,P,V,S=

(S1,S2),E)) is a robust NIZK argument for L, if P,V,S,E ∈ PPT and q(·) is a polyno-

mial such that the following conditions hold:
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1. Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and all

Ω ∈ {0,1}q(λ), V(Ω,x,P(Ω,w,x))] = 1.

2. Multi-Theorem Zero-knowledge. For all PPT adversaries A , we have that REAL(λ)≈
SIM(λ), where

REAL(λ) = {Ω←{0,1}q(λ);out← AP(Ω,·,·)(Ω);Output out},

SIM(λ) = {(Ω, tk)← S1(1λ);out← AS′2(Ω,·,·,tk)(Ω);Output out},

and S′2(Ω,x,w, tk)
de f
= S2(Ω,x, tk) if (x,w)∈ R, and outputs failure if (x,w) 6∈ R.

3. Extractability. There exists a PPT algorithm E such that, for all PPT A ,

Pr

(Ω, tk)← S1(1λ);(x,π)← AS2(Ω,·,tk)(Ω);w← E(Ω,(x,π), tk) :

R(x,w) 6= 1∧ (x,π) 6∈ Q ∧V(Ω,x,π) = 1

≤ negl(λ)

where Q contains the successful pairs (xi,πi) that A has queried to S2.

As in [FMNV14], we also require that the proof system supports labels. That is, al-

gorithms P,V,S,E take as input a public label φ, and the completeness, zero-knowledge

and extractability properties are updated accordingly. This can be achieved by adding

the label φ to the statement x. In particular, we write Pφ(Ω,x,w) and Vφ(Ω,x,π) for

the prover and the verifier, and S
φ

2(Ω,x, tk) and Eφ(Ω,(x,π), tk) for the simulator and

the extractor.

Theorem 115 ([SCO+01]). Assuming trapdoor permutations and a dense cryptosys-

tem exist, robust NIZK arguments exist for all languages in N P .

Iterated sequential functions. We recite the hardness definition introduced in [BBBF18]:

Definition 116. f : X → Y is a (t,ε)-sequential function for λ = O(log(|X |)), if the

following conditions hold:

1. There exists an algorithm that for all x ∈ X evaluates f in parallel time t using

poly(log(t),λ) processors.

2. For all A that run in parallel time strictly less than (1− ε) · t with poly(t,λ) pro-

cessors:

Pr[yA = f (x)|yA ← A(λ,x),x← X ]< negl(λ).

Definition 117. Let g : X → X be a function which satisfies (t,ε)-sequentiality. A

function f : N×X→ X defined as f (k,x) = g(k)(x) = g◦g◦ . . .◦g is called an iterated

sequential function (with round function g), if for all k = 2o(λ), the function h : X → X

such that h(x) = f (k,x) is (kt,ε)-sequential.
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