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Abstract

Concentration oscillations are a ubiquitous characteristic of intracellular dynamics. The

period of these oscillations can vary from few seconds to many hours, well known exam-

ples being calcium oscillations (seconds to minutes), glycolytic oscillations (minutes)

and circadian rhythms (1 day). Considerable advances into understanding the mech-

anisms and functionality of concentration oscillations have been made since glycolytic

oscillations were observed in the late 1950s, and mathematical methods have been an

essential part of this process. With increasing ability to experimentally measure oscil-

lations in single cells as well as in cell ensembles, the gold standard of modelling is to

provide tools that can elucidate how the system-wide dynamics in complex organisms

emerge from a system of single cells. Both abstract and detailed mechanistic models

are complementary in the insight they can bring, and for networks of coupled cells

considerations such as intrinsic intracellular noise, cellular heterogeneity and coupling

strength are all expected to play a part.

Here, we investigate separately the potential roles played by intrinsic noise arising

from finite numbers of interacting molecules and by coupling among cellular oscillators.

Regarding the former, it is well known that internal or molecular noise induces con-

centration oscillations in chemical systems whose deterministic models exhibit damped

oscillations. We show, using the linear-noise approximation of the chemical master
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equation, that noise can also induce oscillations in biochemical systems whose deter-

ministic descriptions admit no damped oscillations, i.e., systems with a stable node.

This non-intuitive phenomenon is remarkable since, unlike noise-induced oscillations

in systems with damped deterministic oscillations, it cannot be explained by noise

excitation of the deterministic resonant frequency of the system. We here prove the

following general properties of stable-node noise-induced oscillations for systems with

two species: (i) the upper bound of their frequency is given by the geometric mean of

the real eigenvalues of the Jacobian of the system, (ii) the upper bound of the Q-factor

of the oscillations is inversely proportional to the distance between the real eigenvalues

of the Jacobian, and (iii) these oscillations are not necessarily exhibited by all inter-

acting chemical species in the system. The existence and properties of stable-node

oscillations are verified by stochastic simulations of the Brusselator, a cascade Brusse-

lator reaction system, and two other simple chemical systems involving autocatalysis

and trimerization. We also show that external noise induces stable node oscillations

with di↵erent properties than those stimulated by internal noise.

Having demonstrated and explored this non-intuitive e↵ect of noise, we extend the

work to investigate the phenomenon of noise induced oscillations in cellular reaction

systems characterised by the ‘bursty’ production of one or more species. Experiments

have shown that proteins are typically translated in sharp bursts and similar bursty

phenomena have been observed for protein import into subcellular compartments. We

investigate the e↵ect of such burstiness on the stochastic properties of downstream

pathways by considering two identical systems with equal mean input rates, except

in one system molecules (e.g., proteins) are input one at a time and in the other

molecules are input in bursts according to some probability distribution. We find

that the stochastic behaviour falls in three categories: (i) both systems display or do
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not display noise-induced oscillations; (ii) the non-bursty input system displays noise-

induced oscillations whereas the bursty input system does not; (iii) the reverse of (ii).

We derive necessary conditions for these three cases to classify pathways involving

autocatalysis, trimerization and genetic feedback loops. Our results suggest that single

cell rhythms can be controlled by regulation of burstiness in protein production.

We go on to investigate roles played by intercellular coupling in whole organ-level os-

cillations with an experimental analysis of circadian rhythms in Arabidopsis thaliana†.

Circadian clocks in animals are known to be tightly coupled among the cells of some

tissues, and this coupling profoundly a↵ects cellular rhythmicity. However, research on

the clock in plant cells has largely ignored intercellular coupling. Our research group

used luciferase reporter gene imaging to monitor circadian rhythms in leaves of Ara-

bidopsis thaliana plants, with both a lower resolution, high throughput method and

a high-resolution (cellular level), lower throughput method. Leaves were grown and

imaged in a variety of light conditions to test the relative importance of intercellu-

lar coupling and cellular coupling to the environmental signal. We analysed the high

throughput data and described the circadian phase by the timing of peak expression.

Leaves grown for three weeks without entrainment reproducibly showed spatio-temporal

waves of gene expression, consistent with intercellular coupling. A range of patterns

was observed among the leaves, rather than a unique spatio-temporal pattern, although

some patterns were more often observed. All of the measured leaves exposed to light-

dark entrainment cycles had fully synchronised rhythms, which could desynchronise

rather quickly when placed in a non-entraining environment (i.e., constant light condi-

tions). After four days in constant light some of these leaves were as desynchronised as

leaves grown without any rhythmic input, as described by the phase coherence across

the leaf. The same fast transition was observed in the reverse experimental scenario,

vii



i.e., applying light-dark cycles to leaves grown in constant light resulted in full syn-

chronisation within two to four days. From these results we conclude that single-cell

circadian oscillators were coupled far more strongly to external light-dark cycles than

to the other cellular oscillators. Leaves did not spontaneously completely desynchro-

nise, which is consistent with a presence of intercellular coupling among heterogeneous

clocks. We also developed a methodology, based on the notion of two functional spatial

scales of expression across the leaf, to analyse the high-resolution microscope data and

determine whether there is a di↵erence in the phase of circadian expression between

vein cells and mesophyll cells in the leaf. The result from a single leaf suggests that the

global phase wave dominates the phase behaviour but that there are small delays in

the veins compared to their nearby mesophyll cells. This result can be validated by ap-

plying the methodology developed here to new microscope leaf data which is currently

being collected in the research group.

† This work was performed as a collaboration between David Toner (DT) and Bene-

dicte Wenden (BW). BW designed and carried out the experiments, DT performed the

data analysis and led on data visualisation.
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Chapter 1

Introduction

1.1 Biochemical Oscillations

Concentration oscillations are a ubiquitous characteristic of intracellular dynamics [1].

The period of these oscillations can vary from few seconds to many hours, well known

examples being calcium oscillations (seconds to minutes) [2], glycolytic oscillations

(minutes) [3] and circadian rhythms (1 day) [4]. The molecular basis and function-

ality of the oscillations have fascinated both cell biologists and mathematicians for

decades, and since the 1960s a close interplay between the two disciplines has driven

forward understanding of the common and unique features of di↵erent oscillators [1].

The need for interdisciplinary research into biological rhythms is now well appreci-

ated; researchers of systems and synthetic biology continue to make fast progress in

unravelling the mysterious of rhythmicity across taxa, with an increasing focus on the

ways in which organism-level oscillations arise from the interaction of noisy single cell

mechanisms.

In this introductory chapter we consider the progress made in understanding sin-

gle cell oscillations in the context of two very di↵erent types of oscillations; periodic
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behaviour of glycolysis intermediates in yeast and the circadian expression of genes in

mammals. Along the way we explain some of the di↵erent modelling methodologies

which have been used and which feature in this thesis. To reflect the interdisciplinary

nature of research into cellular oscillations we describe experimental observations and

modelling approaches alongside one another.

1.2 Rhythmic Yeast - Glycolytic Oscillations

Glycolysis is the process which converts glucose to pyruvate by the concerted behaviour

of a number of allosterically regulated enzymes, and has been studied extensively in

yeast [5]. Concentration oscillations in this process were first observed in 1957, when

Duysens and Amesz reported quickly damped oscillations of reduced nicotinamide din-

ucleotides in a suspension of intact yeast cells [6]. Later studies showed that the oscil-

lations could be sustained over a greater number of cycles, with sustained oscillations

being observed for more than 100 cycles when using cell-free extracts (Fig. 1.1, [7, 8]).

Quickly, mathematical models were devised to reflect this phenomenon, one of the first

being Sel’kov’s simplistic model based on autocatalytic regulation [9]. Based on the

observation that the enzyme phosphofructokinase (PFK) plays a crucial role in the os-

cillation, Sel’kov’s approach was to use an ordinary di↵erential equation (ODE) model

for the concentrations of three biochemical species; the enzyme PFK, its substrate

adenosine triphosphate (ATP) and its product adenosine diphosphate (ADP). Auto-

catalysis in the model is in the form of product activation of the enzyme. Goldbeter

recognised a failing of the model to capture a key feature of the experiments, namely

that the sustained oscillations should only occur when substrate input rate is within a

certain critical range [1], which led to that author’s more detailed model for glycolysis
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based on allosteric regulation. While more complicated, this model was able to capture

the experimentally observed dependency on substrate input rate [10, 11].

Even in this short sequence of events there are four key points to note regarding

methodologies in biochemical oscillation research. Firstly, the construction of a math-

ematical model based on experimental data [9], followed by later critique and refining

of the model [10], is central to the way in which biochemical oscillations are studied

today. Secondly, we note the type of model used by Sel’kov - an ODE model for con-

centrations of the interacting species. This approach has been a standard approach for

the many years of modelling biochemical oscillations since; we refer to this here and

throughout as the rate equation approach. The construction of rate equations, and the

requirements for oscillations are introduced below. Thirdly, the recognised presence

of autocatalysis in glycolysis is also an important mechanism in other types of bio-

chemical oscillations, and the mathematical reason underpinning this for two-species

systems is well understood, as we shall show. Fourthly, the early glycolysis models were

constructed to describe experimental results from continuously stirred yeast extracts,

i.e., a biochemical scenario in which a vast number of interacting molecules interact in

a spatially homogeneous environment. The validity of extrapolating modelling conclu-

sions from such an experimental setup to the normal intracellular operation in single

cells is a key point of this thesis, and we discuss its implications for understanding

glycolysis below.

1.2.1 Construction of Rate Equation Models

Sel’kov’s work in the late 1960’s was certainly not the first example of quantitative

approaches for investigating chemical reactions; rather these have been used from as

early as the mid 19th century [12]. Wilhelmy [13] discovered in 1850 that the rate of
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Figure 1.1: Reproduced from [8], the clearly sustained oscillations of diphosphopyridine
nucleotide (DPNH) in a yeast cell-free extract.

change of sucrose concentration in the conversion of sucrose to glucose and fructose in an

aqueous acidic solution was well described by an ODE, or rate equation. Constructing

a rate equation model is straightforward; consider a general reaction system containing

N distinct chemical species Xi which react according to R distinct reactions in a vessel

of volume ⌦. A particular reaction j can be written in the general form [14]:

NX

i=1

sijXi
fj�!

NX

i=1

rijXi, (1.1)

where the sij and rij are the stoichiometric coe�cients. (According to this formulation,

if species Xi is not involved in reaction j as a reactant (product) then sij (rij) is simply

set to zero.) By considering the combined e↵ect of all R reactions of the above type

on a particular species, Xi, one can construct the rate equation describing the rate of

change of that species’ concentration, �i [14]:

d�i

dt
=

JX

j

Sij fj(~�) , (1.2)

where we have introduced the net stoichiometric coe�cient, Sij = (rij � sij), i.e., the

net gain of species i due to reaction j, and the macroscopic rate function fj(~�). To

describe multivariate systems one can write the set of rate equations for the vector of
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concentrations, ~�, in the matrix form;

d

dt
~� = S ~f(~�), (1.3)

where ~� is the concentration vector, S is the stoichiometric matrix with elements Sij

and ~f is the vector of macroscopic rate functions.

For ‘elementary’ reaction mechanisms such as unimolecular degradation or a bi-

molecular binding reaction, the forms of the rate functions fj(~�) were empirically found,

by Wilhelmy and in a series of works from 1864 by Guldberg and Waage [15], to be of a

particularly simple form, where the rate of the reaction is proportional to the product

of reactant concentrations, each raised to an integer power denoting its ‘molecularity’

or stoichiometry in the reaction. This type of rate law is commonly referred to as mass

action kinetics, and for the general reaction scheme above is written:

d�i

dt
= ~g(~�) =

JX

j

Sij kj

NY

l

�
rlj
l

| {z }
fj(~�)

, (1.4)

where kj is the reaction rate constant. Sel’kov’s model was of such a description; a rate

equation model with simple mass action kinetics. Goldbeter’s full allosteric model [10]

is a a partial di↵erential equation model describing both glycolytic reactions as well as

di↵usion of metabolites, allowing for spatial as well as temporal description of the be-

haviour [16] but reduces to an ODE model [10, 11] when the authors eliminate di↵usion

by arguing that the equations become unstable with respect to spatially homogeneous

perturbations before they become unstable with respect to di↵usion.
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1.2.2 Oscillations from Rate Equations - Limit Cycles and Hopf Bi-

furcations

Given the constructed rate equation models, the question of interest is ‘under what

intracellular conditions are oscillations observed?’. Answering this question requires a

definition of what is and what is not an oscillation and various possibilities for defining

what constitutes an oscillation have been put forward [17]. However, for the ODE

approach it is generally the case that existence of oscillations are synonymous with

existence of a stable limit cycle solution of the rate equations [1, 18, 19]. Unlike a

stable ‘fixed point’ solution of the rate equations, where all trajectories in the phase

space converge in time to constant steady-state values, the stable limit cycle describes

a closed orbit in phase space to which all trajectories converge in the limit of long

times. This reflects the phenomenon of a perfectly undamped oscillation, and the

regular period of oscillation corresponds to the time taken to traverse the orbit. For

the system of rate equations in Eq. 1.3, it can easily be shown that systems with two

species or more are required for autonomous oscillations [18, 20]. The proof is that for

the one-variable system d�
dt = y(�) to have any sort of oscillatory behaviour it must

have a solution curve �(t) with an increasing part followed by a decreasing part (or

vice versa), separated by a turning point. However, at any prospective turning point

d�
dt = y(�) = 0; at that point the fixed point is reached and so �(t) does not in fact

alter trajectory but rather remains constant in time [20]. For two or more species

the system dynamics are far more complex, and determining the existence of limit

cycle solutions in a general high-dimensional system is typically only possible through

numerical methods. The standard strategy is to perform linear stability analysis, by

which one derives an equation for the time evolution of a small perturbation about the
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steady state of the system. The Jacobian matrix, J, describes this linear stability, and

can be constructed directly from the rate equations, with its elements given by [21]:

Jij =
@

@�j

RX

r=1

Sirfr. (1.5)

The eigenvalues, ↵i, of J evaluated at the steady state, contain vital information into

the behaviour of the system. For a stable system all eigenvalues must have negative real

parts, and a damped oscillatory return to the steady state is characterized by a pair of

complex conjugate eigenvalues ↵1,2 = �a± ib, where a and b are positive valued. One

of the main techniques for determining the presence of limit cycles is provided by the

Hopf bifurcation theorem [18]. This says that as a pair of complex conjugate eigenvalues

↵1,2 = a± ib cross the imaginary axis, i.e., a goes positive due to the alteration of some

system parameter, �, the steady state loses stability in such a way that the system

passes through a supercritical Hopf bifurcation and a limit cycle is created (Fig. 1.2).

This notion pervades the literature of di↵erential equation modelling of glycolysis (e.g.,

[22]).

Figure 1.2: Reproduced from [18]. As the control parameter � increases, the dynamical

system transitions from monostable behaviour to limit cycle behaviour through the

supercritical Hopf bifurcation.
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For a two species system, Bendixson’s negative criterion for a limit cycle is partic-

ularly useful. The leading diagonal entries dg1(~�)
d�1

, dg2(
~�)

d�2
of the 2 ⇥ 2 Jacobian matrix

are typically negative in biochemical reactions, simply because reactions generally tend

to consume the substrate. However, Bendixson’s criterion states that if dg1(~�)
d�1

+ dg2(~�)
d�2

is of a constant sign in some region of the phase space then there can be no periodic

solution in that region; what is required is that one of the terms dg(~�)
d�i

be positive. This

can only be brought about by an autocatalytic reaction mechanism. Goldbeter [1] and

Tyson [18] point out that such mechanisms are generally rare in biology, but that their

presence in di↵erent biochemical oscillations is notable.

In larger systems without autocatalysis, a key component of oscillations is the pres-

ence of negative feedback [18], and this formed the basis of the famous Goodwin os-

cillator [23]. More recently, the general principles underlying limit cycle behaviour in

biochemical oscillations were collated [19], pointing at conditions which are achieved

when the system possesses a negative feedback mechanism with su�cient memory, suf-

ficient nonlinearity in the reaction rates, and a proper balancing of the timescales of

species involved in the feedback loop. It has been shown that the minimal truly realistic

chemical system, i.e., that composed of a set of unimolecular and bimolecular reactions,

which satisfies these properties involves the interaction of three species [24].

1.2.3 The Validity of Glycolysis Rate Equation Models for Single Cell

Behaviour

The models described above [11, 9], based on the oscillatory properties of cell-free

yeast extracts, describe a spatially homogeneous macroscopic ‘soup’ of the important

biochemical species in glycolysis. This quantitative modelling was important for un-

derstanding the autocatalytic process in glycolysis (autocatalytic because two ATP
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molecules are ‘invested’ in the reaction and four ATP molecules produced [5]). How-

ever, the experimental setup is not the same as either a population of intact cells or the

dynamics of a single yeast cell in isolation (essentially the natural scenario for yeast)

[22]. For a suspension of intact yeast cells, obtaining a sustained macroscopic oscil-

lation was found to be highly dependent on the growth phase [25] as well as on the

density of cells in the suspension [26]. In experiments on single cells, it was found that

after macroscopic oscillations had died out, the oscillation remained in some cells [26].

The picture of macroscopic oscillations in yeast glycolysis was then concluded to be a

result of synchrony between single cell oscillators, and the coupling species concluded

to be acetaldehyde [27]. It has been suggested that such behaviour could have been

the result of evolutionary tendency from unicellular to multicellular behaviour of yeast

[22].

Despite the progress made in understanding single cell and macroscopic oscillatory

behaviour, the extent to which oscillatory behaviour is determined by intracellular and

extracellular cell mechanisms continues to be questioned [5, 28, 29]. It was recently

highlighted that an open research question remains as to how common sustained oscil-

lations are in single cells [5]. Very recently, Gustavsson and coworkers used microfluidic

approaches to probe the question of whether single cell behaviour was captured well by

the population’s mean behaviour [29]. They found that sustained oscillations can be

observed in single cells in isolation, but notably that the oscillations are heterogeneous,

(Fig. 1.3). Intriguingly, the mathematical model built to describe the experimental

result was again an ODE model, with heterogeneity between cells introduced by way

of varying the activity of one of the enzymes (the authors concede that the variability

could come from other sources). Since a deterministic model was used, the experimen-

tally observed oscillations in some single cells (Fig. 1.3) was described as ‘limit cycle’
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type oscillations. The notion that clear, sustained, heterogeneous oscillations among

isolated cells requires a limit cycle in the mathematical model is, however, known not to

be true [30]. To understand this point first requires a discussion on the circumstances

in which we can expect an ODE model to faithfully describe the reaction mechanisms

inside a single cell, which has been an area of increasing research in recent years. A key

point from our perspective is that ODE models are deterministic, i.e., given the same

initial conditions, the model always gives the same solution. The implications for mod-

elling of single cells is that two uncoupled cells starting in the same conditions would be

predicted by an ODE model to behave in exactly the same way over time. Since this is

not the case in the experiments of Gustavsson et al [29], they circumvent this problem

by an ad hoc addition of variability, or noise, into the di↵erential equations. However,

there is an alternative to such an approach for modelling cellular heterogeneity, founded

on rigorous physical principles, namely the approach of stochastic chemical kinetics.
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Figure 1.3: Reproduced from [29]. Heterogeneous single cell oscillations of Nicoti-

namide adenine dinucleotide (NADH) in yeast cells (Saccharomyces cerevisiae X2180),

as measured by fluorescence in a microfluidic device.

1.3 Stochastic Chemical Kinetics

Whether trying to understand the motion of a cannonball, the dynamics of a weather

system, the flow of electricity in a circuit or the motion of pollen grains suspended in

water, physicists have sought to find an appropriate scale, or level of abstraction, within

which to frame their thinking. In the early 20th century Einstein [31] and, separately,

Smoluchowski [32], were only able to make progress on understanding the erratic Brow-

nian motion by working at a new and ingeniously pragmatic scale. A deterministic,

macroscopic equation of motion for a pollen grain was obviously inappropriate, given

Brown’s ‘failure’ after great e↵orts to prevent the pollen grains moving erratically. A
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deterministic microscopic model, comprising equations of velocity and momentum for

each solvent molecule, along with a vast array of initial condition combinations, would

have firstly required unavailable computational power and secondly given an output

so complex that a useful interpretation might be lost. Instead, Einstein reduced the

enormous complexity of the motion of all of the solvent molecules to a probabilistic sys-

tem of extremely frequent, independent collisions [33], and thus began an intermediate

scale of physical modelling, the mesoscopic scale, which describes macroscopic vari-

ables as stochastic (random) functions of time by the careful elimination of microscopic

variables [14].

Arguably the first significant use of stochastic modelling concepts from Brownian

motion in the field of chemical kinetics was Kramers’ escape problem [34]. Another

important early work is Delbrück’s investigation of a stochastic model of autocatalysis

[35], where he found that the molecule number fluctuations in his simplified first order

reaction were of the order of the square root of the number of reactant molecules.

Just a few years later, in his classic essay ‘What is Life?’, Schrodinger was to refer to

this as the ‘so-called
p
n law’ which describes ‘the degree of inaccuracy to be expected

in any physical law’ [36]. For a Poisson process, the
p
n scaling can be shown to

be exact [14]. Apart from these early studies, the stochastic approach in chemical

kinetics really only gained significant application in the 1950s and 1960s [37, 38, 39]

when researchers realized that reactions which had exhibited large fluctuations and

had been seemingly ‘irreproducible’ - a word which hints at the same experimental

frustrations experienced by Brown in the 1800s - could be quantitatively modelled

with a stochastic approach [38]. Indeed by the early 1960s Bartholomay was able to

confidently summarize the importance of the stochastic approach, when he stated that

the ‘basic tenet’ of stochastic modelling of chemical kinetics is that ‘all reactions are,
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to some extent, irreproducible’ [40].

Essentially for us, among the observations made in this period was the prediction

that one of the major areas of application for the stochastic approach was for mod-

elling biochemical reactions in intracellular regions [39]. Understanding this deduction,

i.e., that chemical reactions in test tubes and in single cells should be treated with a

fundamentally di↵erent approach, all comes down to a simple matter of scale. In a test

tube volume containing reactants with molar concentrations, the number of discrete

molecules are of the order of 1023, and as such may be very well approximated as a

continuum. In this case fluctuations in concentrations caused by individual molecu-

lar events are negligible, and the mass action rate equation formalism is appropriate.

By this basis, ODE modelling of macroscopic oscillations in yeast cell free extracts is

well justified. However, for typical concentrations of biochemical reactants within fem-

tolitre volumes of single cells, the number of copies of reacting species can be of the

order of tens to thousands [41, 42], or even down to single molecules in gene expres-

sion models. Here, the continuum assumption is invalid - the unpredictable nature of

collisions between discrete molecules has a large e↵ect on the concentrations and can

thus not be ignored. In such instances deterministic approaches may agree well with

the stochastic approach [43], but this cannot be assumed a priori and must generally

be investigated on a model-by-model basis. It is important to note that the stochastic

chemical kinetics approach is not an alternative to deterministic modelling, but rather

that it ‘contains’ the macroscopic deterministic approach, in the sense that in the ther-

modynamic limit the two agree [44]. For this reason, stochastic modelling can be seen

to be the more rigorous and detailed methodology. One of the most concrete arguments

for considering stochasticity is that in some cases the ‘details’ do not only contribute

small, predictable e↵ects to deterministic conclusions, but rather that the qualitative
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result from the stochastic model is completely di↵erent.

1.3.1 Assumptions of Spatial Homogeneity and ‘Well-Mixedness’

Both of the approaches - deterministic and stochastic - assume that the reaction vol-

ume is ‘well-stirred’ and spatially homogeneous. The stirring could either be a direct,

convective mechanism of stirring, such as in the experiments on yeast cell free extracts,

or rather by natural di↵usive stirring of the reaction volume inside cells. In the latter

case, the requirement for well stirred reactions can be made more formal by considering

a length scale of di↵usion for a molecule in its lifetime, sometimes called the Kuramoto

length [42, 14], which must be much larger than the length scale of the compartment

volume. Framed di↵erently, the di↵usive stirring requires that the number of non re-

active collisions between particles must be much greater than the number of collisions

which result in reactions [45]. It has been noted that when the homogeneity assump-

tion does not hold, one could take the approach of subdividing the reaction volume

into smaller volume elements of length �L until it does. Interestingly, by making such

a modification the applicability of continuity within the small volume element is even

more questionable [42] or, put di↵erently, ensuring homogeneity ‘comes at the expense

of the first assumption [continuity]’ [46].

A further complication for spatial homogeneity is due to the fact that cells are highly

organised spaces, with di↵erent cellular compartments performing di↵erent roles. More-

over, cells are thought to be crowded environments which limits the free di↵usion of

molecules [47, 48, 49]. Some ODE models have attempted to consider compartmen-

tation, for example in models of circadian rhythms transport between nucleus and

cytosol often features to introduce a necessary delay for the rhythm [50, 51, 19], but

here the compartmentation amounts to simply labelling species di↵erently in di↵erent
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compartments, and does not consider the sizes of compartment volumes. Stochastic

compartment models do require to account for volumes of compartments, and some

work has recently been done on this [52]. Far less has been done regarding the com-

bined e↵ects of macromolecular crowding and reaction stochasticity. The work in this

thesis does not consider either compartmentation nor macromolecular crowding, and

yet even without these contributions to the system complexity we find non-intuitive

roles of stochasticity in oscillations in well-mixed cells.

1.4 Oscillations in Stochastic Systems

1.4.1 Describing Stochastic Processes

The solution of an ODE model describes the deterministic (certain) variation in time

of concentration of one or more biochemical species, say Xd(t), where the d denotes

deterministic. In contrast, the solution of a stochastic model represents the stochas-

tic (uncertain) variation in time of the species, X(t). Particularly, the full repre-

sentation of the stochastic process X(t) requires the joint probability distribution of

{X(t1), X(t2), X(t3) . . . X(tm)} for all choices ofm and all possible values of t1, t2, . . . , tm

[53]. It is immediately apparent that determining the properties of stochastic processes

in practice could be a formidable challenge, but the problem is greatly simplified by

considering a special class of stochastic processes which are stationary, ergodic and

Markovian. Stationarity means that the statistical properties of the process do not

vary in time; for example the distribution of the random variable X(t) is equal to the

distribution of X(t + t0), moreover the joint distribution of {X(t), X(t + ⌧)} is equal

to the joint distribution of {X(t + t0), X(t + t0 + ⌧)}. What this means on a practi-

cal level is that the mean hXi, the variance hhX2ii and higher moments do not vary
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in time, but more than this that the autocorrelation hX(t + t0)X(t + t0 + ⌧)i is time

invariant. Markov processes are often described as being ‘memoryless’ in that transi-

tion probabilities from one state to another do not depend on the full history of the

process but only on the current state. Formally, the conditional probability of being

in the state nm at time tm given the history {n0, t0;n1, t1;n2, t2, ...nm�1, tm�1}, i.e.

P (nm, tm|{n0, t0;n1, t1;n2, t2, ...nm�1, tm�1}), can be expressed as simply

P (nm, tm|nm�1, tm�1) [14]. Ergodicity is concerned with the extent to which one can

equate ensemble averages of a stochastic process with time averages, and the ergodic

theorem is a powerful result enabling inference of the properties of stochastic process

from real experimental data. Consider that we are interested in finding the mean,

hX(t)i, of a stationary process. We could collect L samples or ‘realizations’ of this

process, xl, and estimate the average from hX(t)i = 1
L

P
xl(t). For this to yield a

good estimate L must be su�ciently large, but sometimes only a single sample of a

process is available. For stationary processes, the ergodic theorem states that as long

as the autocorrelation hX(0), X(⌧)i tends to zero as ⌧ ! 1 then ensemble averages

and time averages coincide; this means that one can instead calculate moments using

time averages, e.g., hX(t)i = limT!1
1
T

R T
0 X(t)dt [33, 54].

1.4.2 The Fluctuation Power Spectrum

The natural starting point of identifying presence of oscillatory behaviour in a deter-

ministic process is by way of the Fourier transform. This is also the foundation of

identifying oscillations in stationary stochastic processes, as the use of Fourier trans-

forms allows a description of how the variance hhX2ii is distributed with frequency [55].

16



This is the so called fluctuation power spectrum, and is defined by Gardiner [56] as

S(!) = lim
T!1

1

2⇡T

���X̃(!)
���
2
, (1.6)

where

X̃(!) =

Z T

0
X(t)e�i!t dt. (1.7)

Although succinct, these equations gloss over important subtleties, and raise interesting

questions. Why is the truncated Fourier transform used? How does one integrate the

stochastic process? We believe that it is enlightening and helpful at this point to present

Priestley’s simple development of the spectrum [53]. As well as providing intuition as to

the meaning of the power spectrum, the methodology also naturally connects with our

method of generating numerical power spectra using the stochastic simulation algorithm

later.

Priestley considers a single sample path, or ‘realization’, x(t) of the process. Fourier

transforming this sample path over all time is not possible because x(t), being a sample

from a stationary process, does not decay at infinite times and is therefore not absolutely

integrable. A new sample path xT (t) is defined, which is identical to x(t) over the

interval [�T
2 ,

T
2 ] and zero everywhere else; this xT (t) is absolutely integrable, and one

can define the Fourier transform pair

xT (t) =
1p
2⇡

Z 1

1
x̃T (!) e

i!t d!, (1.8)

x̃T (!) =
1p
2⇡

Z 1

1
xT (t)e

�i!t dt. (1.9)

With this definition, |x̃T (!)|2 d! describes the proportion of the total (finite) energy

of the signal xT (t) in the frequency interval (!,!+ d!). However, we are interested in
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describing the frequency content of the full signal x(t). It is not sensible at this point

to take a limit of T ! 1, because the limit limT!1 |x̃T (!)|2 ! 1, i.e., the energy

of x(t), is not finite. Rather, the power of the signal in the time window, i.e., |x̃T (!)|2
T

is the natural candidate for describing the process in the limit T ! 1. In this case,

limT!1
|x̃T (!)|2

T d! describes the proportion of the total power of x(t) in the frequency

interval (!,!+d!). Just as x(t) is a sample realisation in time of the stochastic process,

this new quantity is a sample spectrum of the process in frequency [55], and so Priestley

finally defines the spectrum, or power spectral density, as

S(!) = lim
T!1


1

T

D
|x̃T (!)|2

E�
, (1.10)

which is interpreted such that S(!)d! is the average, over all possible realisations of

X(t), of the proportion of total power of x(t) within (!,! + d!).

Priestley’s and Gardiner’s spectrum equation have the same meaning, and are sim-

ilar in their presentation. Notable di↵erences between the two final results are the

di↵erence by a factor of 2⇡ in the denominator, due to the customary di↵erence among

authors of factors of 2⇡, and the explicit averaging shown in Priestley’s equation, em-

phasising that the fluctuation power spectrum is a statistical quantity which describes

the expected spectrum of an individual realization of the process.

The Meaning of Di↵erent Shapes of Spectra

Examining the fluctuation power spectra of stochastic processes is a field known widely

as spectral analysis, and has been for decades in disciplines as diverse as astronomy

and meteorology [57], oceanography [58] and economics [59]. To consider the meaning

which can be extracted from spectral analysis, we consider four qualitatively di↵erent
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types of spectrum.

• The spectrum which is perfectly flat in frequency represents white noise, a stochas-

tic process which contains all frequencies with equal power. White noise is a

mathematically useful tool but a physically unrealisable concept, as it requires

that a value taken by a measurable fluctuating quantity at time t has no simi-

larity whatsoever with its value at t+ �t even when �t is vanishingly small. Put

di↵erently, the autocorrelation time of the process is precisely zero.

• A spectrum which decays monotonically with ! can describe real processes, and

the speed with which the spectrum decays in frequency is directly relatable to

the autocorrelation time of the process. Very fast decay of S(!), i.e., a spectrum

with most of its power at very low frequencies, corresponds to a process with

very long autocorrelation time, whereas slow decay of S(!) corresponds to short

autocorrelation times.

• Most relevant for discussion of oscillations in stochastic processes is the presence

of one or more peaks in the power spectrum at a positive value of !. A spectrum

with a single delta spike at !1 represents a perfect (deterministic) oscillation at

that frequency, with no amplitude or phase modulation.

• More probable than a delta spike for a stochastic process is a spectrum with a

smooth peak centred at !1. This is taken to represent quasi-periodic behaviour

[55, 57] with a characteristic frequency of !1; a sharp peak corresponds to a situ-

ation in which there is an oscillation with well-defined period and little variability

in the phase [60] and amplitude.
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1.4.3 The Connection between the Fluctuation Power Spectrum and

Single Cell Dynamics

When noise is non-negligible each realization of the stochastic process provides the

behaviour of a particular cell in the ensemble [61] and the power spectrum thus provides

information of the rhythmicity present at the single-cell level. Individual realizations

of the process are, of course, independent and so the power spectrum represents the

expected rhythmicity in a single cell operating either in isolation or within an ensemble

of dynamically uncoupled cells.

1.5 Chemical Master Equations

Assuming well-mixed conditions, the state of the mesoscopic system at any time t

is completely described by the vector of the number of molecules of each species,

~n = (n1, n2, ..., nN ). At random times, one of the R reactions (say reaction j) occurs

somewhere in the volume ⌦ and the state vector changes from some (n1, n2, ..., nN ) to

(n1 + S1j , n2 + S2j , ..., nN + SNj) where Sij = rij � sij . Whereas rate equations fully

describe the macroscopic behaviour in the thermodynamic limit, the statistical prop-

erties of the stochastic process are completely described by chemical master equations

[14, 62], which are di↵erential-di↵erence equations for the probability of being in state

~n at time t, conditioned on the probability P ( ~n0, t0).

@P (~n, t| ~n0, t0)

@t
=

RX

j=1

 
NY

i=1

E
�Sij

i � 1

!
aj (~n) P (~n, t| ~n0, t0). (1.11)

P (~n, t| ~n0, t0) is the probability of the system being in state ~n at time t given that the

system was in state ~n0 at time t0, dt aj(~n,⌦) is the probability that a single jth reaction
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occurs in the next time interval [t+dt) and Ex
i is a step operator whose action on some

function of ni is to change it to a function of ni + x [14]. The term aj is a transition

probability per unit time [14], and is often referred to as a propensity function [62].

An example of a chemical master equation for the simple reaction Ø ! A,A ! Ø is

given in Appendix A.1. Master equations describing the simplest biochemical reactions

schemes, i.e., those involving only linear (unimolecular) reactions, can be solved exactly

using moment generating functions and the method of characteristics [14]. For more

realistic reaction schemes it is important to consider bimolecular reactions, and in these

cases exact solutions are not possible for all but the simplest of schemes (e.g. [63]).

The reactions investigated by researchers such as McQuarrie were dictated to a large

extent by those that were solvable. Indeed, Gillespie criticised the work in that period

for its focus on solving the master equations rather than on the physical meaning of

the constructed master equations [64], principally, what is the correct form for the

propensity functions? A critical development for the application of stochastic chemical

kinetics was Gillespie’s seminal work in 1976 [45], which both elegantly described how

the propensities aj of bimolecular reactions can be motivated from physical arguments

and provided a method of simulating exact realizations from the stochastic process

[45, 65] - exact in the sense that at each time t one obtains a ‘stochastically unbiased

state of the chemical system’ [45]. (Indeed, this exactness is in contrast to numerical

methods for ODEs.)

Gillespie used arguments based on thermodynamics and Newtonian physics to moti-

vate a form of the propensity function which he writes as aj = hj cj , where the reaction

parameter cj (also referred to as the stochastic rate constant [65]) is defined such that

cj dt is the ‘average’ probability (to first order in dt) that a particular combination of

the reactant molecules in reaction j will react in the next time interval. hj is simply
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the number of di↵erent possible combinations of reactant molecules. Gillespie claims

that the requirement that we can find a physically meaningful cj is the fundamental

hypothesis of a valid formulation of stochastic chemical kinetics, and uses simple physi-

cal and thermodynamical arguments to show how cj for a bimolecular reaction depends

on the radii of the interacting molecules and their average relative velocity (which is a

function of temperature and molecular masses). Because these quantities are physically

measurable, the propensity functions can in principle be accurately determined.

1.5.1 Dealing with the Intractability of the Chemical Master Equa-

tion

These master equations are typically unsolvable except in special cases (see for example

[66]) or for the case where all processing reactions are first-order [67], a very restric-

tive assumption given that most interactions inside a cell involve the binding of two

molecules. The most common approach is to use Gillespie’s Stochastic Simulation Al-

gorithm [45], a method which draws exact sample paths from the underlying stochastic

process. Monte Carlo sampling generates the random numbers ⌧ and j described by

the equation:

p(⌧, j|~n, t) = aj(~n) e
�

PJ
j aj(~n) ⌧ , (1.12)

which is the probability, given the system is in state ~n at time t, that reaction j will

occur (immediately and instantaneously) after a waiting time of ⌧ [62].

This method is incredibly useful, due to the ability to draw unbiased trajectories

from the underlying distribution, but su↵ers the following drawbacks:

1. A simulation study can be very computationally expensive, because many realiza-

tions are usually required to appreciate the nature of the underlying probability
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distribution. This becomes especially relevant when conducting parameter scans

of models.

2. It can be di�cult to formally relate the model structure and parameters to the

simulation output - analysis is more useful than simulation for this.

Alternative to stochastic simulation are approximate analytical methods, which

have the principal advantages of both a↵ording greater insight into the stochastic pro-

cess and not requiring high computational expense. Some methods of approximation

including replacing the CME by a Fokker-Planck equation [14], others use moment

closure techniques such as derivative matching [68] or the so-called 2MA equations

[69]. However, Van Kampen [14] cited the “unreliable and contradictory” results ob-

tained by ad hoc moment closure methods and formulated his famous and widely used

[30, 70, 71, 72] System Size Expansion.

1.5.2 The System Size Expansion - a Systematic Approximation Method

for Analysis of CMEs

The principle problem with the determination of the power spectrum from the CME

lies in the fact that one cannot generally derive a closed form equation for the auto-

correlation (and more generally for the moments) using the chemical master equation

and hence an approximation method is needed. One means to circumvent this inherent

analytical intractability is a technique popularly referred to as the system-size expan-

sion [14]. We summarize below the calculation of the fluctuation power spectrum to the

lowest order of approximation, i.e., the linear noise approximation. This approximation

is valid for an arbitrarily complex monostable reaction system provided the fluctuations

about the mean concentrations are quite small.
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dp(~n, t)

dt
= ⌦

JX

j=1

 
LY

l=1

E�Slj

l � 1

!
aj (~n,⌦) p(~n, t). (1.13)

This System Size Expansion is a systematic and consistent expansion of the chemical

master equation (Eq. (1.13)) as a series in powers of the inverse square root of the

system size, ⌦. For chemical master equations, ⌦ is taken to represent the volume of

the reaction compartment. This approximation method uses the rationale that as the

number of reactant species increases, the fluctuations in the system can be expected to

become relatively small.

The fundamental ansatz is that we can make the transformation of variables:

~n = ⌦~�(t) + ⌦
1
2 ~⇠, (1.14)

which says that we expect the number of molecules in the system to be approximately

equal to the macroscopic value ⌦�(t) as obtained from rate equations plus a fluctuation

term which scales approximately with the root of the system size. This rule can be

rationalised by considering a Poisson process, for which the standard deviation of the

fluctuations exactly matches
p
n [14]. Note that while ⌦ represents the reaction volume,

it is used a control parameter for the system size in the sense that an increase in ⌦ is

made with the concentration held constant, so that the number of molecules n increases.

The fluctuation variable ~⇠(t) = ⌦1/2(~n(t)⌦ � ~�) describes the stochasticity in the system.

Our full explanation of the System Size Expansion is given in A.2. There, we show

that to the first order of approximation, known as the Linear Noise Approximation, the

System Size Expansion converts the mathematically intractable CME (Eq. (1.13)) in
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discrete space to the approximating linear Fokker-Planck equation in continuous space:

@⇢(~⇠, t)

@t
=
X

i,j

Jij
@(⇠j⇢)

@⇠i
+

1

2

X

i,j

Dij
@2⇢

@⇠i@⇠j
, (1.15)

where ⇢(~⇠, t) is the probability of the system being in state ~⇠ at time t (again, con-

ditioned on the system being in some state state ~⇠0 at time t0), Jij are the elements

of the Jacobian matrix of the macroscopic system of equations, J , and Dij are the

elements of the di↵usion matrix D. The linear Fokker-Planck equation is equivalently

represented as the Langevin stochastic di↵erential equation:

d~⇠(t) = J~⇠(t) dt+B d ~W (t), (1.16)

where d ~W (t) is an N -dimensional Wiener process. The matrices J and D = BBT

are the same Jacobian and di↵usion matrices as in Eq. (1.15). These matrices can be

constructed directly from the rate equations and from the stoichiometric matrix; their

elements are given by [21]:

Jij =
@

@�j

RX

r=1

Sirfr, (1.17)

Dij =
RX

r=1

SirSjrfr. (1.18)

1.5.3 Information from the Linear Noise Approximation

The solution of the linear Fokker-Planck equation is a multidimensional Gaussian dis-

tribution, so it su�ces to determine the time evolution of the first and second moments.

The procedure for producing these equations is straightforward: for example, to find
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the rate of change of the mean of ⇠i we use:

d h⇠ii
dt

=

Z
⇠i
@⇢(~⇠, t)

@t
d~⇠ (1.19)

and for the covariance between variables ⇠i and ⇠j we use:

d h⇠i⇠ji
dt

=

Z
⇠i⇠j

@⇢(~⇠, t)

@t
d~⇠. (1.20)

By substituting the Fokker-Planck equation (1.15) into Eqs. (1.19) and (1.20) it

is found that the means h⇠ii follow the same dynamics as the linearized system of

macroscopic variables, and tend to zero at the stationary state. The implication is

that to the linear noise approximation order, i.e., in the limit of large volumes, the

time-evolution equations for the mean concentrations predicted by the chemical master

equation are the same as the conventional rate equations:

d

dt
~� = S ~f(~�), (1.21)

where ~� = h~ni/⌦ is the mean concentration vector, S is the stoichiometric matrix with

elements Sij and ~f = lim⌦!1
~̂f(h~ni,⌦). The second moment equations are slightly

more complicated, and tend towards the stationary values of variance and covariance.

The fact that the means follow linear equations of motion means that the form of the

time correlation matrix is particularly simple [56]; we provide Gardiner’s derivation of

this time correlation matrix in Appendix A.3.

As highlighted above, the fluctuation power spectrum is the most suitable descrip-

tion for oscillations in stochastic systems. Fortunately, there is a simple result which

connects the autocorrelation function in the time domain to the fluctuation power
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spectrum in the frequency domain, namely the Wiener-Khinchin theorem. By the

Wiener-Khinchin theorem [56], the one-sided power spectrum of the fluctuations in the

number of molecules of species i at stationary state is given by the Fourier Transform

of the autocorrelation of the number fluctuations in this species:

Si(!) =
1

⇡

Z 1

�1
e�i!⌧ h[ni(t)� hniiss][ni(t+ ⌧)� hniiss]id⌧, (1.22)

where the angled brackets denote the statistical average, t is any time for which steady-

state conditions have been achieved and hniiss is the steady-state number of molecules

of species i . A power spectrum peak at some frequency, ! = !̂ (the peak frequency),

indicates the presence of oscillations in the number of molecules at this particular

frequency.

The utility of the linear noise approximation lies in the fact that the linearity of the

Fokker-Planck equation (or equivalent Langevin equation) enables one to write down

a closed form solution for the autocorrelation function, h⇠i(t)⇠i(t+ ⌧)i in terms of the

elements of the Jacobian and di↵usion matrices. The quantity ⌦h⇠i(t)⇠i(t + ⌧)i is the

linear-noise approximation estimate of the correlator h[ni(t)�hniiss][ni(t+ ⌧)�hniiss]i

which appears in the spectrum definition, Eq. (1.22). The result is an approximate

closed-form equation for the power spectrum of the number fluctuations [56]:

Si(!) =
⌦

⇡


[�J+ Ii!]�1D

⇥
(�J)T � Ii!

⇤�1
�

ii

, (1.23)

where J and D are the Jacobian and di↵usion matrices shown in Eq. (1.17) and

Eq. (1.18).

This methodology for deriving an approximation to the fluctuation power spectrum
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is used in Chapters 2 and 3.

1.6 Stochastic Oscillations in Biology

Stochastic models of biochemical oscillators have become more common in the past

decade [73, 43, 74, 75], their dynamics being explored principally by means of the

stochastic simulation algorithm. To a lesser extent, the problem has also received the-

oretical attention by analysis of the chemical master equation [76, 30, 77]. Noise has

often considered to be an inconvenient disturbance for the timing and regularity of

oscillations, and techniques have been developed to quantify this robustness [78, 79].

However, noise can also play a constructive role for oscillations, in that when deter-

ministic models predict a stable steady state, the noise serves to sustain the oscillation

[30]. We refer to this phenomenon as a noise-induced oscillation.

There has been much research in the physics literature into the phenomenon of

stochastic resonance and coherence resonance [80, 81]. The late 1990s saw a drive to

apply the methods to real chemical and biochemical models, although the introduction

of stochasticity to the models was at first rather ad hoc. Later, researchers showed that

intrinsic fluctuations in a circadian model cause a smoothed transition to oscillatory be-

haviour near the Hopf bifurcation by using a Chemical Langevin Equation description

of the stochastic kinetics [76] (Fig. 1.4). Because the signal to noise ratio of the oscil-

lations exhibited a maximum at an intermediate system size, these authors identified

the behaviour of the model with that of coherence resonance (alternatively known as

autonomous stochastic resonance [82] or stochastic resonance without periodic forcing

[80]). The phenomenon of ‘noisy precursors’ to bifurcations was known before Hou’s

work in the literature on stochastic and coherence resonance in physics [83].
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Figure 1.4: Reproduced from [76]. Using the Chemical Langevin Equation approach
stochastic oscillations in a circadian model were observed outside of the deterministic
limit cycle regime. In this sense the noise is seen to blur the transition from non-
oscillatory to oscillatory behaviour.

The presence of a Hopf bifurcation is, in fact, not necessary for inducing oscilla-

tory behaviour in stochastic biochemical systems. Davis and Roussel explored a simple

enzyme kinetic model featuring competitive inhibition [84], reporting peaks in the fluc-

tuation power spectra and pronounced stochastic oscillations, yet no Hopf bifurcation

is possible for any choice of parameters. Rather, the noise is deemed to induce oscilla-

tions because the linear stability of the deterministic model features one or more pairs

of complex conjugate eigenvalues [84, 77]. Instead of a numerical simulation approach,

McKane et al [30] used van Kampen’s linear noise approximation to generate the fluc-

tuation power spectra for a genetic regulation model and Sel’kov’s glycolysis model;

the peaks at positive frequency which they observed were also explained in terms of

the complex eigenvalues. The explanation which they provide is that the resonant

frequency in the system is given approximately by the imaginary part of the eigen-

value and intrinsic noise in the system, being white (in time), unselectively amplifies

oscillations which would otherwise die out in time [30]. The analysis was extended
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by researchers in the same group to an autocatalytic reaction system with more than

one pair of complex eigenvalues, and they demonstrated presence of two peaks in the

spectrum. The peak frequencies were expected to be close to the imaginary parts of

the di↵erent pairs of eigenvalues when the real parts of the eigenvalues are small.

This led to the important insight that stochasticity is not necessarily detrimental to

the production of sustained oscillations but rather that it can promote oscillations. In

particular, using the linear-noise approximation [14] of the chemical master equation,

it was shown that internal noise induces sustained oscillations in biochemical networks

whose deterministic rate equations predict stable foci, i.e., those whose perturbations

decay in an oscillatory manner [30, 77]. The intuitive reason for this phenomenon is

that the “underlying stochasticity has a flat spectrum in frequency space (i.e., white

noise), and this automatically excites the resonant frequencies of the system” [30], i.e.,

the frequency of the damped oscillations in the deterministic model. Similar conclusions

were reached by means of multiple-scale analysis in the context of oscillating numbers

of infected individuals in a population [85] and by analysis of the Q-matrix in simple

models of biochemical reactions [86].

1.7 Stochasticity and Coupling in Single Cell Circadian

Rhythms

As most habitats are characterized by 24-h day-night cycles and seasonal changes,

endogenous circadian rhythms are important for organisms to anticipate and adapt

to their environment. Like models of glycolysis, circadian rhythms in unicellular and

multicellular organisms have principally been investigated within the rate equation for-

malism [50, 51, 87], and these models have identified transcription-translation feedback
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loops (TTFLs) as a central clock mechanism. Other recent research has showed that

circadian rhythms can arise from non TTFL mechanisms [88]. However, in recent years

there has been considerable interest in the mammalian clock literature [89, 90, 91] con-

cerning the relationship between observed experimental behaviour in an ensemble of

cells and the circadian mechanism within single cells. There is growing interest, too, in

the plant systems biology community [92]. Imaging assays of rhythmic LUCIFERASE

(LUC) reporter genes allowed noninvasive measurements with spatial resolution [93],

showing that individual cells support autonomous circadian oscillators [94, 95]. Further

studies such as that by Welsh and coworkers [90] changed perceptions of how the clock

functions in peripheral mammalian cells by demonstrating that the damped oscilla-

tions in an ensemble of cells reflected not single-cell damping, but a loss of synchrony

amongst oscillating cells (see Figure 1.5). This was an exemplar experimental observa-

tion that the implicit assumption of behaviour inside each individual cell approximately

matching that of the population average may be incorrect.

This heterogeneity is similar to that observed by Gustavsson in glycolysis (Fig.

1.3), and there the modellers described such heterogeneity between cells by allowing

variation in a parameter. However, it is not unreasonable to think the heterogeneity

is due to internal noise, since some key genes and proteins in circadian clock pathways

are present in small copy numbers [96, 74]. More recent investigations of the data

from single fibroblasts and SCN neuron cells have probed the question of whether

clocks can be thought to operate essentially as limit cycle oscillators, to which noise

plays a destructive, desynchronising role, or essentially as damped oscillators with

noise sustaining the oscillation [97, 98]. By comparing with simple stochastic models,

these papers are in agreement that the result is inconclusive as cell dynamics are best

described as operating close to the Hopf bifurcation, but there is some evidence that
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Figure 1.5: Damped population rhythms resultant from single cell sustained oscillations
(reproduced from [90]). Bioluminescence from two individual fibroblasts (mPer2::LUC-
SV40 knockin mice) are shown in the top two subplots; we begin to see the damping
e↵ect through loss of synchrony in the sum of luminescence of 25 cells in the third
subplot.
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noise plays a constructive role [98].

In a follow-on study from [90], Liu et al [91] showed that understanding of single-

cell behaviour versus tissue-level behaviour yielded profound insights into the nature of

intercellular coupling. They found that the rhythmic gene expression of the clock gene

Per2 in Per1 - or Cry1 -deficient mice was severely disrupted in individual suprachias-

matic nuclei (SCN) neurons and individual fibroblasts. Remarkably, however, rhythms

were still observed in an SCN slice while peripheral tissue explants exhibited the severe

rhythmic disruption expected from an ensemble of rhythmically compromised cells.

This implies that the nature of intercellular coupling in terms of its ability to maintain

correct clock functioning is quite di↵erent in the SCN and in peripheral tissues. The

coupling of clocks among cells is now a topic of intense interest, because dynamical sys-

tems theory shows that such coupling can profoundly alter the period and entrainment

behaviour of multioscillator systems [99, 100]. The mammalian suprachiasmatic nu-

cleus (SCN) has been most studied and tight coupling by synaptic transmission among

SCN neurons is crucial to sustain rhythmicity [100, 101]. Heterogeneity among indi-

vidual neurons leads to spatiotemporal waves of rhythmic gene expression in SCN slice

cultures [102, 103, 104].

1.8 Outline of Thesis

In this thesis we study separately the e↵ects of intracellular noise and intercellular

coupling on oscillatory dynamics in biochemical systems. Regarding noise, in Chapter

2 we use the linear noise approximation analysis to investigate the minimal conditions

for any type of oscillation in the presence of intracellular noise (in contrast to the limit

cycle requirement of deterministic approach) and explore an intriguing new regime in
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which noise can play a constructive role for oscillations. We extend the results in

Chapter 3 to investigate the e↵ect of burstiness in the production of proteins on the

oscillatory properties of downstream pathways.

Regarding coupling, by investigating experimental data we find that weak local

coupling between Arabidopsis cells in the leaf limits desynchronisation in constant

conditions and generates well defined spatiotemporal patterns, but that the patterns are

di↵erent between di↵erent leaves. We also present investigations into high resolution

microscope data, and show that using the combination of phase at di↵erent spatial

scales we can confirm the earlier hypothesis that the phase lags in the veins, and that

coupling between mesophyll cells appears to bypass the veins in some instances.
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Chapter 2

Mesoscopic Concentration

Oscillations in Biochemical

Systems with Stable Node

Steady States
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2.1 Introduction

It is now well known that internal noise induces sustained oscillations in biochemi-

cal networks whose deterministic rate equations predict stable foci, i.e., those whose

perturbations decay in an oscillatory manner [30, 77]. In this chapter, we show that

internal noise induces oscillations even in biochemical systems whose deterministic rate

equation models predict a stable node. This is remarkable since it cannot be explained

by the intuitive reasoning used for noise-induced oscillations (NIO) associated with

stable foci. In particular stable nodes are not characterized by a damped oscillatory

return to steady state and hence there does not exist a resonant frequency which white

noise can excite. We also show that external noise (noise whose origin lies outside

the chemical system under consideration [105]) can as well lead to NIO in stable node

systems, albeit these having di↵erent properties than NIO produced by internal noise.

The chapter is divided as follows. In Section 2.2 we use the linear noise approxima-

tion theory to show that NIO can be observed for systems with a stable node. General

properties of these NIO such as their frequency and quality and the fundamental reason

for their origin are studied in Section 2.3. The existence of these new types of NIO are

verified by means of stochastic simulations of three simple chemical systems involving

the interaction of two species in Section 2.4. Therein we also study the relationship be-

tween the quality of the NIO and the distance from the node-focus borderline in phase

space, as well as the robustness of the linear-noise approximation results for small

molecule numbers. In Section 2.5 we show that in some cases, the quality of stable

node NIO improves dramatically with the number of interacting species thus lending

evidence of their possible importance in large biochemical networks. In Section 2.6

we show that external noise generates stable node NIO with properties di↵ering from
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those produced by internal noise. Section 2.7 describes some minimal requirements for

a stable node NIO biological motif, as well as o↵ering an interpretation of the physical

meaning of oscillations in only one of two interacting species. Finally we conclude with

a discussion in Section 2.8.

2.2 A Classification of NIO for Two Species Systems

In this section we restrict ourselves to chemical reaction schemes involving two species

and use the linear-noise approximation result of section 1.5.3 to explore the intimate

relationship between the existence of NIO and the type of steady state (stable node or

stable focus) in the deterministic equations.

For systems with only two interacting species, the resultant functional form of the

spectrum equation, Eq. (1.23), for species Xi is:

Si(!) =
⌦

⇡

↵i(J,D) + �i(D)!2

p(J) + q(J)!2 + !4
, (2.1)

where the parameteric dependencies on the Jacobian and di↵usion matrices are

explicitly shown. In particular, the functions p and q are equal to �2
1�

2
2 and �2

1 + �2
2

respectively, where the �’s are the eigenvalues of the Jacobian matrix, J (see Appendix

A.4.1). For a stable node, the eigenvalues are real and negative while for a stable focus,

the eigenvalues are a complex pair, �1,2 = �µ± i!̃ where both µ and !̃ are positive real

numbers. Hence it follows that generally p 2 R>0, and q 2 R. The parameter �i = Dii

and hence by Eq. (1.18) one can deduce that �i 2 R>0. Lastly the parameter ↵i has

to be a positive real-valued number since ↵i = (⇡/⌦)pSi(0).

We now decompose the spectrum Eq. (2.1) for a single species into two sub-spectra,
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S↵
i (!) and S�

i (!):

Si(!) =
⌦

⇡

�
S↵
i (!) + S�

i (!)
�
, (2.2)

S↵
i (!) =

↵i

p+ q !2 + !4
, S�

i (!) =
�i !2

p+ q !2 + !4
. (2.3)

In the large ! limit, Si(!) monotonically decreases as !�2. In the opposite limit of

small !, we have:

Si(!) =
1

p
↵i +

1

p

✓
�i �

↵i q

p

◆
!2 +O

�
!4
�
.

A peak in the power spectrum will then exist if the spectrum increases for small !,

i.e., if the !2 term above is positive. As shown above, the parameters p, ↵i and �i are

positive so when q < 0 the !2 term is positive and hence a peak always exists. When

q � 0 a peak only exists if �i > ↵iq/p. Further understanding of this is gleaned by

considering the sub-spectra S↵
i and S�

i . If both sub-spectra have a peak, so too will the

total spectrum. S�
i always has a single peak (

dS�
i

d! = 0 at ! = p
1
4 ). S↵

i is only peaked

when q < 0. We summarise this as follows:

• Stability Dominated NIO: The parameter q < 0 and hence both sub-spectra

have a peak, guaranteeing a peak in Si(!).

• Noise Dependent NIO: The parameter q � 0 such that only the sub-spectrum

S�
i has a peak, but the magnitude of �i relative to ↵i is su�ciently large that a

peak exists in Si(!). The exact criterion in this case is �i > ↵iq/p.

For both cases, it can be further shown that the peak power in Si(!) occurs at

a frequency lying between the peak frequencies of the two sub-spectra. The proof is

38



as follows. Let the S↵
i and S�

i subspectra have peaks at the frequencies !̂S↵ and !̂S�

respectively (note that we include the possibility that !̂S↵ = 0) . By Taylor expansion

of Si(!) at these two frequencies, one finds that the slope of Si(!) at ! = !̂S↵ is > 0,

and the slope at ! = !̂S� is < 0. Since there can only be a single peak in the spectrum

of a two species system (see Appendix A.4.2), it follows that the peak power in Si(!)

is in the range (!̂S↵ , !̂S� ).

The first case is termed Stability Dominated NIO because the existence of the NIO

solely rests on the sign of q which is a function of the eigenvalues of the Jacobian and

hence of the type of steady state. The second case is termed Noise Dependent NIO

because �i, being a function of the di↵usion matrix, is a measure of the strength of

the noise and this needs to be larger than a critical threshold for NIO to exist. Note

the important implication that for the Stability Dominated NIO case, NIO present

in one species dictates that NIO are present in the other species, however this is not

necessarily true for Noise Dependent NIO since the ↵i and �i are species dependent.

Consider the case of Stability Dominated NIO. If we have a stable focus then the

eigenvalues can be denoted as �1,2 = �µ ± i!̃ where both µ and !̃ are positive real

numbers. The condition q < 0 is then fulfilled if µ < !̃, in other words if the timescale

of decay of the amplitude of the damped oscillations in the deterministic model is larger

than the period of the same oscillations.

Now we consider the case of Noise Dependent NIO. The condition q � 0 is satisfied

for stable foci with µ � !̃ and also for stable nodes, i.e., those steady states character-

ized by two real and negative eigenvalues. Hence these type of steady states can also

be expected to give rise to NIO, this condition being dictated by the magnitude of the

elements of the di↵usion matrix.

Hence in summary it is clear that not only stable foci can give rise to NIO but
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that stable nodes can do as well. In the rest of this chapter we focus on studying the

existence and properties of the latter type of NIO, which we refer to as stable node

NIO.

(a) Stability Dominated NIO (b) Noise Dependent NIO

Figure 2.1: Plots of the spectrum (2.2) along with the sub-spectra (2.3) showing the
two possible ways in which a peak in the power spectrum can arise: (a) The parameters
p and q are such that both sub-spectra have a peak (p = 1, q = �1) and a peak in
Si(!) is guaranteed; (b) The parameters p and q are such that only the sub-spectrum

S�
i has a peak (p = 5, q = 1), but the magnitude of �i is su�ciently large that a peak

exists in Si(!).

2.3 General Properties of Stable Node NIO

2.3.1 Frequency of the Oscillations

While one would expect that the frequency of stable foci NIO is close to the frequency

of damped oscillations in the deterministic model, it is not at all clear what should

be the frequency of stable node NIO. A simple expression for this can be deduced by

di↵erentiating Si(!) in Eq. (2.1), setting the resulting equation to zero and solving for

the roots of the quartic in !. Using the fact that q > 0 for a node, one finds that the

only positive (and hence admissible) solution for the peak frequency of NIO in species
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i is:

!̂i =

✓
[p(p+ q2xi(xi � 1))]1/2 � p

qxi

◆1/2

, (2.4)

where xi = �ip/↵iq. Note that the criterion for a peak for a Noise Dependent NIO (see

Section 2.2) implies xi > 1. From the above equation we can see that !̂i varies with xi

between 0 and a maximum value of p1/4 =
p
�1�2. Hence the frequency of NIO in the

node case is bounded from above by the geometric mean of the two decay timescales

of non-oscillatory transients in the deterministic model.

Furthermore, one can deduce that the peak frequency increases monotonically with

xi, meaning that this frequency increases with the fraction of power contributed by the

sub-spectrum S�
i (!) to the total power spectrum Si(!). It is also easy to show that

the maximum peak frequency value of p1/4 =
p
�1�2 for Si(!) is equal to the peak

frequency of the S�
i (!) sub-spectrum. These observations are intuitively clear since for

a Noise Dependent NIO (of which a stable node NIO is a special case) only the S�
i (!)

has a peak and hence its size relative to the peakless S↵
i (!) sub-spectrum crucially

dictates the spectral properties of the NIO.

2.3.2 Quality of the Oscillations

Next we discuss the quality of the stable node NIO. Some researchers have described

the strength of noise-induced oscillations using the ratio of heights Si(!̂)/Si(0) [30],

while others have multiplied the traditional quality factor with the peak height of the

spectrum to form a signal to noise ratio (SNR) [80]. One of the main reasons for using

the SNR is to show a resonance of the SNR with noise in the system. In our models,

noise magnitude is quantified by the system size parameter ⌦. Analysis of the number

fluctuation spectrum to linear approximation (1.23) shows that the volume only a↵ects
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the magnitude of the spectrum, and further that this is through a linear scaling of

power in ⌦. The linear noise approximation therefore fails to capture any resonance

of SNR with volume. Hence, we focus exclusively on the time properties of the signal

and not its magnitude, and therefore on the signal’s quality. The well-known classical

measure of oscillation quality is the Q-factor, defined as:

Q =
!̂

�!
, (2.5)

where the bandwidth �! is the di↵erence of the two frequencies at which the power

takes its half-maximum value. To make connection with later developments, we denote

this conventional Q-factor as Q50%.

The Q50% of the spectrum Si(!) can be written as a function of two parameters,

R✏ = �1/�2 which is the ratio of the two real eigenvalues, and RH↵� which is the relative

weighting of the ↵ and � subspectra, as quantified by the ratio of their maximum heights

(see Fig. 2.2(a) for a contour plot). This choice of parameters is convenient because

R✏ is a parameter which is dictated solely by deterministic stability considerations

whereas RH↵� is a parameter which is determined by the properties of the internal

noise. Note that our R✏ is limited to the interval (0, 1] by specifiying that |�1| < |�2|.

The quality of the NIO increases with increasing R✏ and with decreasing RH↵� and

reaches a maximum of Q50% = 1/2 when R✏ = 1 and RH↵� = 0.

The first observation can be explained as follows. As R✏ approaches its maximum of

one, it approaches the case of a stable degenerate node. Such a steady state lies at the

node-focus borderline and is characterized in phase space by deterministic trajectories

which approach the origin tangent to the single linearly independent eigenvector1; the

1Note that a degenerate node could be of the star node type whereby the Jacobian has two indepen-
dent eigenvectors and there is no curvature in the phase space trajectories. This is, however, a special
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deterministic trajectories in this case display a degree of curvature, in a sense trying

to wind around in a spiral but not quite making it. The stochastic trajectories will

follow to some extent the curvature of the deterministic trajectories and for some cases,

the noise will cause the trajectory to close on itself hence leading to a noise-induced

oscillation (see Fig. 2.2(b) for an illustration). Hence as one approaches the node-

focus borderline, i.e., as R✏ ! 1, one expects the quality of NIO to increase since the

stochastic trajectories can sample increasingly curved deterministic trajectories.

The observation that the quality increases with decreasing RH↵� is intuitively obvi-

ous when one considers that out of the two sub-spectra composing the total spectrum,

only the S�
i (!) sub-spectrum has a peak, and hence its increased contribution to the

total spectrum necessarily improves the quality. The same argument hints that the

maximum Q50% = 1/2 for the total spectrum Si(!) equals the Q50% of the S�
i (!)

sub-spectrum. This is indeed the case. The latter is given by the remarkably simple

expression:

Q50%
S� =

p
R✏

R✏ + 1
, (2.6)

which maximizes at a value of 1/2 when the eigenvalues become equal.

In Fig. 2.2(a), it is observed that there is a large region of parameter space for

which NIO exist but the shape of the power spectrum is such that it does not fall to its

half-maximum value on the low frequency side of the peak and hence a Q50% cannot

be defined (this is the area between the thick blue and grey lines in the figure). To

allow a measure of quality over a greater range of the parameter space, we introduce a

more general version of the conventional Q-factor in Eq. (2.5): Qf% = !̂/�!f%, where

case appearing when the Jacobian is diagonal and hence when the two species are non-interacting; the
power spectrum Eq. (2.1) does not display a maximum in frequency for this case and hence no NIO ei-
ther. Thus the only degenerate node case where NIO appear is where the Jacobian is not diagonal, i.e.,
the case of one independent eigenvector which is also characterized by curved trajectories, as discussed
in the main text.
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Figure 2.2: (a) The quality of stable node oscillations, as described by the conventional
quality factor, Q50%. Contours of Q50% (blue) are shown as a function of the two
parameters R✏ and RH↵� (see text for definitions). The thick grey line demarks the
parameter regions in which NIO are/are not observed and the thick dark blue line
demarks the regions in which the peak is strong enough to obtain its half-maximum
value on the low frequency side of the peak (i.e., Q50% is defined). It is clear that Q50%

is not a suitable measure for describing the quality of weak stable node NIO as it is only
defined for a small region of the full parameter space in which NIO is observed. (b)
Illustration of an example noisy evolution of the fluctuation variables ⇠1, ⇠2 in a system
with degenerate node stability, i.e., R✏ = 1, corresponding to the maximum Q50% case.
Red curves are deterministic trajectories, the blue curve is the stochastic trajectory
and the black line is the single linearly independent eigenvector of the Jacobian.

f 2 (0, 100) and �!f% is the di↵erence of the frequencies at which the spectrum takes

f % of its maximum value. We choose to use the Q-factor Q99% in order to describe

the vast majority of the region which cannot be captured by the Q50% measure, i.e. the

region between the thick blue and thick grey lines in Fig. 2.2(a), as confirmed by Fig.

2.3.

This measure, while more complicated analytically than Q50%, is also a function of

only R✏ for S�
i (!) and a function of R✏ and RH↵� for Si(!), and shows very similar

behaviour to the Q50% measure over the parameter regions in which Q50% is defined

(compare the blue contours in Figs. 2.2(a) and 2.3)). It can be shown that the max-

imum possible value of Q99% is 3
p
11/2 ' 5. The Q99% measure only uses spectrum
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information very close to the peak frequency; it is a very localized measure which di-

rectly captures the high curvature at the peak. However, we note that the measure

successfully captures the behaviour of the spectrum over wider frequency ranges. As

an example, a large amplification value Si(!̂)
Si(0)

(ratio of the power at the peak frequency

to the power at zero frequency) has been highlighted as being an important parameter

in describing pronounced stochastic oscillations [30]. In Fig. 2.3 this amplification

factor is also shown (lighter green contours represent higher amplification), and it is

observed that it is not possible to obtain a very high Q99% value without an associated

high amplification value. We provide further validation of the Q99% measure in section

2.4.4, following the investigation of exemplar biochemical models.

4.0 3.5

10 5 1

3.0 2.5

1.5

4.5

1.0

2.0

1.252

Figure 2.3: The quality of stable node oscillations, as described by Q99%. Contours
of Q99% (blue) are shown as a function of the two parameters R✏ and RH↵� . Green

filled contours show the variation of the amplification factor Si(!̂)
Si(0)

, with selected contour

values shown. The thick grey line demarks the parameter regions in which NIO are/are
not observed.

We note that it is di�cult to further develop the general theory of stable node NIO

for biochemical systems with internal noise because generally the J and D matrices

are both dependent on the rate constants in the system as well as the steady-state

values of concentrations of the rate equations (see Eqs. (1.17) and (1.18)). This places
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important constraints on the values that can be taken by the parameters ↵i(J,D) and

�i(D) and hence constraints on the region of parameter space where stable node NIO

exist. Hence the rest of the chapter is devoted to understanding stable node NIO in

the context of specific biochemical systems.

2.4 Two Species Biochemical Systems with Stable Node

NIO

In this section we use the linear-noise approximation to study the relationship between

the type of steady state and the existence of NIO for three biochemical systems involving

the interaction of two species. These numerical classifications are listed in Table 2.1

(pg. 47). For selected points in parameter space where stable node NIO are predicted to

exist, we use the periodogram method to numerically estimate the power spectra from

stochastic simulations using the stochastic simulation algorithm (see Appendix A.5) and

compare these with the theoretical spectra predicted by the linear-noise approximation.

In all cases we find good agreement with the two spectra, and hence verify that a

peak in the power spectrum of number fluctuations does indeed exist for certain stable

node steady states in real chemical systems. We shall also investigate the relationship

between the Q99% quality factor of stable NIO and the distance of the node from

the node-focus borderline in phase space, as well as the robustness of the linear-noise

approximation predictions for small molecule numbers.

2.4.1 Example 1: The Brusselator

The Brusselator is the only known chemical scheme involving just two interacting

species and whose deterministic equations admit limit cycle oscillations [106, 107, 108,
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109]:

Ø
k0�! A, 2A+B

k1�! 3A, A
k2�! B, A

k3�! Ø. (2.7)

The autocatalytic step 2A + B ! 3A is not an elementary reaction but rather an

e↵ective reaction composed of simpler reaction steps (more on this later). The possible

biological relevance of this reaction scheme stems from the fact that the autocatalytic

step can be produced by a series of enzyme-catalyzed reactions [108].

We start by defining two dimensionless parameters:

⇤1 =
k20 k1
k33

, ⇤2 =
k2
k3

. (2.8)

The stoichiometric matrix and the macroscopic rate function vector for this system are:

S =

0

BB@
1 1 �1 �1

0 �1 1 0

1

CCA , (2.9)

~f = {k0, k1[A]2[B], k2[A], k3[A]}T , (2.10)

where [A] and [B] are the macroscopic concentrations of species A and B. The rate

equations are then given by {@t[A], @t[B]}T = S~f . Linear stability analysis of these

equations reveals that the regions in ⇤1-⇤2 space which characterize a stable node and

a stable focus respectively are:

⇤1 > ⇤2 � 1, 1 + (⇤1 � ⇤2)
2 � 2(⇤1 + ⇤2) � 0, (2.11)

⇤1 > ⇤2 � 1, 1 + (⇤1 � ⇤2)
2 � 2(⇤1 + ⇤2) < 0. (2.12)

Now we use the linear-noise approximation to deduce the conditions for the existence
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of NIO. Substituting the stoichiometric matrix and rate function vector into Eqs. (1.17)

and (1.18) we obtain the Jacobian and di↵usion matrices. Finally substituting the latter

in Eq. (1.23) we obtain equations for S1(!), the power spectrum of species A, and for

S2(!), the power spectrum of species B. The latter equations are of the form given

by Eq. (2.1) with global parameters p = k43⇤
2
1, q = k23(1 + (⇤1 � ⇤2)2 � 2⇤2) and

species-specific parameters given by:

↵1 = 2k0k
2
3⇤

2
1, (2.13)

�1 = 2k0(1 + ⇤2), (2.14)

↵2 = 2k0k
2
3⇤2(1 + ⇤2), (2.15)

�2 = 2k0⇤2. (2.16)

Di↵erentiating the expressions for S1(!) and S2(!) with respect to !, one finds the

conditions for the peak in the power spectrum and hence for the existence of NIO in

the number fluctuations of species A and of species B respectively are:

(⇤1 � ⇤2)
2 � 3⇤2 < 0, (2.17)

⇤2(1 + 2⇤1 + ⇤2 � (⇤1 � ⇤2)
2)� 1 > 0. (2.18)

In Fig. 2.4(a) we plot in ⇤1-⇤2 space the inequalities Eqs. (2.11)-(2.12) which

determine the type of steady state (solid black line), together with the inequalities

Eqs. (2.17)-(2.18) which determine the existence of NIO (red and blue lines). The

intersection of the regions defined by these inequalities are numbered according to the

classification set forth in Table 2.1. A large region of the space, i.e., region 6, exhibits

NIO in both species and the steady state is a focus. This is the conventionally studied
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case. However one can also see that there is a region, namely region 1, wherein the

steady state is a node but there are NIO for species A. Interestingly there is no region

where there are NIO in species B and the steady state is a node. We shall return to

this point in Section 2.6.

Numerical ID
Classification

NIO Stability of Steady State

0 None Unstable
1 Species A Node
2 Species A Focus
3 Species B Node
4 Species B Focus
5 A and B Node
6 A and B Focus
7 None Node
8 None Focus

Table 2.1: Existence of NIO and linear stability classifications as used in Figures 2.4,
2.7 and 2.12.

In Fig. 2.4(b) we plot the Q99% quality factor for region 1 in Fig. 2.4(a). This shows

that, broadly speaking, the quality of the stable node NIO increases with decreasing

distance from the node-focus boundary. This relationship is only approximate however,

the reason being that the quality is also significantly influenced by the properties of

internal noise which are not single handedly captured by the Jacobian of the rate

equations. In Fig. 2.5 we show the spectra obtained from the linear-noise approximation

and from stochastic simulations for the three points marked by white circles in Fig.

2.4(b). A comparison of cases (a) and (b) in this figure shows the large di↵erence in

quality factor even though the location of the nodes in ⇤1-⇤2 space puts both of them

approximately the same distance from the node-focus border (see Fig. 2.4(b)). In all

cases we find good agreement between theory and simulations confirming the existence
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Figure 2.4: (a) NIO existence and stability classification for the Brusselator in ⇤1-
⇤2 space. Number classifications are as in Table 2.1. Red (blue) circles are used to
emphasise the existence of NIO in the number fluctuations of species A (B); the dotted
region corresponds to the stable focus regime; white regions correspond to the stable
node regimes and the grey region is where the fixed point is unstable (limit cycle).
(b) Contour plot of the variation of the Q factor Q99% with ⇤1, ⇤2 in the stable node
regime ( 1� in Figure 2.4(a)). The black contour lines, labelled with red numbers,
represent Q99% values from 0.5 to 4.5 in 0.5 increments. White circles indicated on the
Q99% (⇤1,⇤2) surface correspond to the three power spectra in Figure 2.5.

of stable node NIO.

Finite volume e↵ects and elementary reaction versions of the Brusselator

We used stochastic simulations to explore two further questions: (i) given that the

linear-noise approximation theory is valid in the limit of large volumes / large molecule

numbers, how well do its results for stable node NIO hold when one has small volume /

small molecule numbers? (ii) the Brusselator is composed of one trimolecular reaction,

a reaction which in practice occurs very rarely due to the unlikely event of three colliding

molecules [110]. Thus in many instances such a reaction approximately models a set of

underlying (fast) elementary (unimolecular and bimolecular) reactions. Is it the case
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(a) ⇤1 = 0.04,⇤2 = 0.6: Q99% =
4.38.
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(b) ⇤1 = 0.35,⇤2 = 0.15: Q99% =
2.63

0 50 100
1.5

2

2.5

3

3.5

4

4.5

ω
S
(ω
)

(c) ⇤1 = 0.04,⇤2 = 0.04: Q99% =
1.06

Figure 2.5: Power spectrum plots of the number fluctuations in species A in the Brus-
selator reaction system for three di↵erent sets of dimensionless parameters for which
a stable node steady state exists. Solid lines show the analytical spectrum from the
linear-noise approximation; open circles show the numerical spectrum calculated by
averaging the periodograms of 2500 realizations of the stochastic simulation algorithm.
The constants are ⌦ = 1⇥ 10�15l, k0 = 1⇥ 10�4M s�1, and k3 = 100s�1. In addition
k1 and k2 take values of 4⇥1012M�2s�1 and 60s�1 for case (a), 3.5⇥1013M�2s�1 and
15s�1 for case (b) and 4⇥ 1012M�2 s�1 and 4s�1 for case (c). Note that the units for
concentration, time and frequency ! are Molar (M), second (s) and radians per second
(rad s�1) respectively.

that stable node NIO can also be predicted from elementary reaction models of the

Brusselator?

The first question is important since molecule numbers of many species inside cells

are quite small, typically in the range of few tens to few thousands [41, 42]. In Fig.

2.6 we show the results of stochastic simulations investigating how the power spectra

for the parameter sets (a) and (b) used in Fig. 2.5 change with decreasing volume and

a corresponding decrease in the mean molecule numbers of species A. The linear-noise

approximation result is shown as a solid line. Note that in both cases the linear-noise
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theory is accurate for mean molecule numbers of the order of a thousand molecules. For

parameter set (b) the theory remains remarkably accurate for mean molecule numbers

less than that of a single molecule while for parameter set (a) considerable deviations

from the theory are evident for mean molecule numbers below a hundred molecules. In

particular one observes a clear deterioration of quality with decreasing mean molecule

numbers, which we quantified as follows. For each of the numerical power spectra

SSSA from the stochastic simulation algorithm shown in Fig. 2.6(a), the Q50% was

determined by fitting the numerical power spectra using a function of the form:

Sfit =
↵+ �!2

p+ q!2 + !4
.

We then used the parameterized function to find !̂ (the frequency at which the power

maximizes) and �! (the di↵erence of the two frequencies at which the power is half

maximum) analytically, from which we finally obtain Q50% = !̂/�!. To determine the

parameters of Sfit, the MATLAB optimization toolbox function fminsearch was used

to perform an unconstrained parameter search which minimized the Euclidean norm

between the data and the fitted function, i.e., C =

r
PL/2

k=1

⇣
Sfit
k � SSSA

k

⌘2
. The fitted

functions are shown in Fig. A.1 in Appendix A.6 for reference.

These results show that stable node NIO can exist for molecule numbers typical of

those inside cells and suggest that the quality of the spectra predicted by the linear-

noise approximation provides an upper bound for the quality of spectra at finite mean

molecule numbers (finite volumes). The reason that the linear noise approximation

performs less well for the parameters in (a) than in (b) is not well understood, but the

excellent performance of the linear approximation in Fig. 2.6(b) even for a very low

mean number of nA molecules is an example of performance well beyond that which
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would be reasonably expected of an approximation best suited to infinite volumes.

The importance of the second question stems from the fact that the linear-noise

approximation can generally give di↵erent results for e↵ective models and their ele-

mentary versions [111, 112] and hence there exists the possibility that the stable node

NIO is an artifact of modeling a trimolecular reaction. We simulated an elementary

reaction version of the Brusselator put forward by Cook et al [113] where the trimolec-

ular reaction 2A + B ! 3A is broken down into the pair of bimolecular reactions:

A+A ⌦ X,X +B ! X +A (this is labeled Scheme III in the aforementioned paper).

The system displayed stable node NIO with similar quality which hence verifies that

such oscillations are not an artifact of the non-elementary reaction in the Brusselator.

Further support to this conjecture will be evident in the next subsections where we

study two systems composed of purely elementary reactions and in both cases we find

stable node NIO.
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Figure 2.6: Normalised power spectrum plots of the number fluctuations in species A in
the Brusselator reaction system for parameter sets (a) and (b) in Fig. 2.5, as a function
of compartment volume ⌦. Solid lines show the analytical spectrum (normalised by
the total power) from the linear-noise approximation; open circles show the normalised
numerical spectrum for each reaction volume, calculated by averaging the periodograms
of 2500 realizations of the stochastic simulation algorithm and then normalizing by the
total power (sum of all spectrum values ⇥ frequency resolution). In the figure legends,
compartment volumes ⌦ are shown in units of litres, hnAi is the steady-state mean
number of molecules of A and Q50% is the quality factor calculated from the numerical
power spectrum (see text for details). The unit for frequency ! is rad s�1.
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2.4.2 Example 2: A Simpler Autocatalytic Reaction

We now consider another autocatalytic reaction scheme in which two distinct species

are input to a reaction volume wherein they are involved in a bimolecular autocatalytic

reaction, before the product species is exported from the reaction volume:

Ø
k0�! A, Ø

k1�! B, A+B
k2�! 2B, B

k3�! Ø (2.19)

This reaction is simpler than the Brusselator and indeed more realistic in the sense

that it is composed of at most bimolecular (and hence elementary) reactions. It is also

the case that such autocatalytic reactions appear in various biological contexts such as

the autocatalytic conversion of normal prion protein to its pathogenic form [114], and

the activation of MPF complex in the cell division cycle [115].

Its analysis proceeds as for the previous example. We define two non-dimensional

parameters:

⇤1 =
k1
k0

, ⇤2 =
k0k2
k23

. (2.20)

The stoichiometric matrix and the macroscopic rate function vector for this system are:

S =

0

BB@
1 0 �1 0

0 1 1 �1

1

CCA , (2.21)

~f = {k0, k1, k2[A][B], k3[B]}T , (2.22)

from which we obtain the deterministic rate equations {@t[A], @t[B]}T = S~f . Note

that in contrast with the Brusselator, this system’s deterministic rate equations do not

exhibit limit cycle behaviour. Linear stability analysis of the rate equations shows that
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its steady state is a node if the condition:

(⇤1 + (1 + ⇤1)
2⇤2)

2 � 4(1 + ⇤1)
3⇤2 � 0, (2.23)

is satisfied; otherwise the steady state is a focus. The linear-noise analysis proceeds as

before, namely one uses Eqs. (1.17) and (1.18) to construct the Jacobian and di↵usion

matrices from S and ~f and then substitutes these into Eq. (1.23) to obtain the spectra

equations: S1(!) for species A, and S2(!), for species B. The latter equations are of

the form given by Eq. (2.1) with global parameters p = k43(1 + ⇤1)2⇤2
2, q = k23(⇤

2
1 �

2(1 + ⇤1)2⇤2 + (1 + ⇤1)4⇤2
2)/(1 + ⇤1)2 and species-specific parameters given by:

↵1 = 2k0k
2
3, (2.24)

�1 = 2k0, (2.25)

↵2 = 2k0k
2
3⇤

2
2(1 + ⇤1)

3, (2.26)

�2 = 2k0(1 + ⇤1). (2.27)

Maxima of the power spectra at non-zero frequencies (and hence NIO) for species A

and B respectively occur when the conditions:

2(1 + ⇤1)
2⇤2 � ⇤2

1 > 0, (2.28)

1 + 2⇤1 + (1 + ⇤1)
2⇤2(2� (1 + ⇤1)

2⇤2) > 0, (2.29)

are satisfied. From the inequalities Eq. (2.23), (2.28) and (2.29) we obtain the complete

phase space plot of the system’s deterministic and NIO behaviour (see Fig. 2.7(a)).

Note that unlike for the Brusselator, stable node NIO are possible for both species, i.e.,
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regions 1 and 3. However, note that it is not possible to simultaneously have stable

node NIO in both species; this situation is only achievable for stable focus NIO (region

6, Figure 2.7(a)). We postpone discussion of the meaning of an oscillation in only one

variable to the conclusions section of this chapter. In Fig. 2.7(b) we show the Q99%

quality measure of stable node NIO in both species (hues of red indicate the strength

of NIO in A and hues of blue indicate the strength of NIO in B). Note that as for the

case of the Brusselator, there is an inverse relationship between the quality and the

distance from the node-focus borderline in phase space (darker hues of red and blue

approaching the node-focus borderline). It is also found that the quality of NIO in

species B are better than those in species A.
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Figure 2.7: (a) NIO existence and stability classification for a simple autocatalytic
reaction system in ⇤1-⇤2 space. Number classifications are as in Table 2.1. Red (blue)
circles are used to emphasise the existence of a peak in the power spectrum of species A
(B); the dotted region corresponds to the stable focus regime; white regions correspond
to the stable node regimes. (b) Contour plot of the variation of the Q factor Q99% with
⇤1,⇤2 in the stable node regimes ( 1� and 3� in Figure 2.7(a)). The black contour lines,
labelled with red (for species A) and blue numbers (for species B), represent Q99%

from 0.5 to 4.5 in 0.5 increments. Open circles indicated on the Q99% (⇤1,⇤2) surface
correspond to the ⇤ values of the five power spectra in Figs. 2.8 and 2.9.
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(a) ⇤1 = 2.5 ⇥ 10�2,⇤2 = 4:
Q99% = 3.21
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(b) ⇤1 = 2,⇤2 = 1.5: Q99% =
1.43

Figure 2.8: Power spectrum plots of number fluctuations in species A in the autocataly-
sis reaction system for two di↵erent sets of dimensionless parameters for which a stable
node steady state exists. Solid lines show the analytical spectrum from the linear-noise
approximation; open circles show the numerical spectrum calculated by averaging the
periodograms of 5000 realizations of the stochastic simulation algorithm. The parame-
ters common to both cases are: ⌦ = 1⇥ 10�15l, k0 = 1⇥ 10�6M s�1, k3 = 10s�1. The
case specific rate constants are: (a) k1 = 2.5 ⇥ 10�8M s�1, k2 = 4 ⇥ 108M�1 s�1 and
(b) k1 = 2⇥ 10�6M s�1, k2 = 1.5⇥ 108M�1 s�1. The unit for frequency ! is rad s�1.

We again present the power spectra from the linear-noise approximation alongside

simulation results for the simple autocatalytic system for selected parameter sets (see

Figs. 2.8 and 2.9). The locations of these parameter sets in phase space are shown as

white circles in Fig. 2.7(b). In all cases the linear-noise approximation and simulation

results agree very well, confirming the existence of stable node NIO in a chemical

system which does not admit limit cycle behaviour. It is also noteworthy that the

Q99% measure corresponds well with the more visually pronounced, sharp peaks in the

power spectra, which indicates its general usefulness in quantifying the quality of NIO

of all types.

Are oscillations evident in individual time series?

As mentioned in Section 2.3, the maximum Q99% of a stable node which can be ob-

served in a two species system is ⇡ 5. The simple autocatalytic reaction can give rise

to NIO with quality approaching this maximum (see Fig. 2.9(a)). However, stochastic
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(a) ⇤1 = 0.25,⇤2 = 7.5 ⇥ 10�3:
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(c) ⇤1 = 20,⇤2 = 2 ⇥ 10�3:
Q99% = 1.02

Figure 2.9: Power spectrum plots of number fluctuations in species B in the autocataly-
sis reaction system for three di↵erent sets of dimensionless parameters for which a stable
node steady state exists. Solid lines show the analytical spectrum from the linear-noise
approximation; open circles show the numerical spectrum calculated by averaging the
periodograms of 5000 realizations of the stochastic simulation algorithm. The parame-
ters common to both cases are: ⌦ = 1⇥ 10�15l, k0 = 1⇥ 10�6M s�1, k3 = 100s�1. The
case specific rate constants are: (a) k1 = 2.5 ⇥ 10�7M s�1, k2 = 7.5 ⇥ 107M�1 s�1;
(b) k1 = 2.5 ⇥ 10�6M s�1, k2 = 1 ⇥ 108M�1 s�1; (c) k1 = 2 ⇥ 10�5M s�1, k2 =
2⇥ 107M�1 s�1. The unit for frequency ! is rad s�1.

trajectories of these near-maximum quality NIO, as produced by the stochastic sim-

ulation algorithm, give rise to oscillations in the time series data which are generally

not easily discernible by the naked eye. An example of the most visually observable

NIO that can be expected using the parameters for the high and low Q99% cases of Fig.

2.9(a) and Fig. 2.9(c), respectively, are presented in Fig. 2.10. An approximation of

the visually observable underlying oscillation is represented by a running time average

of the data (dotted line). As well as aiding the reader in visualising the shape and

regularity of the NIO, we note that this running time average provides a simple mea-

sure of the proportion of the variance in the data which is attributable to the visually
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discernible oscillatory behaviour. For the high Q99% and low Q99% parameters, the

oscillation obtained from time averaging accounts for 54% and 22% of the variance of

the non-time averaged data respectively. This again supports the quality measure used

to describe the weak NIO in this thesis.
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Figure 2.10: Time series plots of the number of B molecules in the autocatalysis reaction
system for (a) the kinetic parameters of the high Q case in Fig. 2.9(a); (b) the kinetic
parameters of the low Q case in Fig. 2.9(c). For each case 100 realizations of the
stochastic simulation algorithm were obtained and the time series with the most visually
observable oscillation is here shown. To allow fair comparison, volumes were chosen in
each case to give a mean number of B molecules hnBi = 500. Based on the characteristic
period T found from the peak frequencies of the linear noise approximation spectra in
Figs. 2.9(a) and 2.9(c), four period-lengths of data were recorded at time intervals
�t = 1

50T . In each figure, the solid line is the simulated data and the dotted line is a
running average of the data over 13 points (approximately one quarter of a period).

It is interesting to compare the time series from these stable-node oscillations with

other types of noisy oscillation. Fig. 2.11(a) shows the strong noise-induced oscillations

generated by the Autocatalysis model for a particular set of parameters within the

stable focus regime. These are virtually as coherent in terms of their regularity in

period and amplitude as the ‘noise-a↵ected oscillations’ generated by the Brusselator in

the deterministic limit cycle regime (Fig. 2.11(b)). The similarity of behaviour of these

noisy oscillations is notable given that they result from rather di↵erent phenomena,

i.e., noise induces the oscillations in Fig. 2.11(a) but is deleterious for the regularity of
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the wave form in Fig. 2.11(c). Fig. 2.11(c) shows four period-lengths of the time series

from the Autocatalysis model when parameters are chosen such that the eigenvalues

are complex (stable focus regime) and the resultant Q99% value for the spectrum of

species nB matches that of the stable node oscillations in Fig. 2.10(a). Again, there is

a hint of a visually observable oscillation but it is clearly not easily discernible by the

naked eye.

We have identified our weak oscillations by the peaked shape of the fluctuation

spectrum at some intrinsic frequency and it is apparent that this definition does not

necessarily lead to clearly visible oscillations in the time series. However, we go on

in Section 2.5 to show two main points; firstly, that low quality oscillation ‘modules’

with an intrinsic frequency, such as our stable node oscillators, can work in harmony

to create a clearly visible and regular oscillation at that frequency, and secondly that

these clearly visible oscillations are indeed possible within the stable node regime.

2.4.3 Example 3: Trimerization Reaction

We now study a simple reaction scheme which describes a trimerization process:

Ø
k0�! A, 2A

k1�! B, A+B
k2�! Ø (2.30)

In this scheme the monomer A is produced, binds to another A to form the dimer B,

and finally both monomer and dimer bind to form a trimer. The trimer is not explicitly

represented in this two-species model; independent of whether it accumulates, decays,

or simply exits from the reaction volume, no e↵ect is observed on the behaviour of A

or B since the last reaction step is irreversible. This simple reaction is of relevance

to various biological situations such as the trimerization of receptor proteins and of
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(c) ⇤1 = 5 ⇥ 10�1,⇤2 = 1.823 ⇥ 10�1:
Q99% = 4.55

Figure 2.11: Time series plots showing (a) clearly visible noise-induced oscillations in
the number of B molecules for parameters in the stable focus regime of the autocatalysis
model (b) clearly visible noise-a↵ected oscillations in the number of A molecules for
parameters in the limit cycle regime of the Brusselator model and (c) four period
lengths of non-visibly clear oscillations in the number ofB molecules in the autocatalysis
reaction system for kinetic parameters in the stable focus regime giving Q99% = 4.55,
i.e., matching that of the stable node case in Fig. 2.10(a). Volumes were chosen in each
case to give a mean number of molecules hni = 500.

heat-shock factors [116, 117].

As we shall see the behaviour of this system can be quantified by means of a single

non-dimensional parameter:

⇤ =
k1
k2

. (2.31)
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Figure 2.12: (a) NIO existence and stability classification for the trimerization system

with the parameter ⇤. Number classifications are as in Table 2.1. Blue circles are used

to emphasise the existence of a peak in the power spectrum of variable B; the dotted

region corresponds to the stable focus regime whereas white regions correspond to the

stable node regimes. (b) Variation of the Q factor Q99% with ⇤ (regions 3� and 4�

in Figure 2.12(a)). Open circles indicated on the Q99% (⇤) curve correspond to the ⇤

values of the three power spectra in Fig. 2.13.

.

As before from the stoichiometric and macroscopic rate function vector one obtains

both the type of steady state and the linear-noise approximation. We here just state

the relevant results. The condition for a stable node is:

1 + ⇤(25⇤� 14) � 0. (2.32)

A stable focus is obtained otherwise; similar to the simple autocatalysis scheme previ-

ously studied, there is no Hopf bifurcation in the system and hence no deterministic

oscillations are possible. The linear-noise analysis gives power spectra of the form
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Figure 2.13: Power spectrum plots of number fluctuations in species B in the trimer-
ization reaction system for three di↵erent sets of dimensionless parameters for which
a stable node steady state exists. Solid lines show the analytical spectrum from the
linear-noise approximation; open circles show the numerical spectrum calculated by
averaging the periodograms of 2500 realizations of the stochastic simulation algorithm.
The parameters common to both cases are: ⌦ = 1⇥ 10�15l, k0 = 1⇥ 10�6M s�1, k2 =
1.204⇥ 108M�1 s�1. The case specific rate constant is: (a) k1 = 6.022⇥ 105M�1 s�1;
(b) k1 = 6.339⇥ 106M�1 s�1; (c) k1 = 1.566⇥ 107M�1 s�1. The unit for frequency !
is rad s�1.

given by Eq. (2.1) with global parameters p = 4k20k
2
2, q = k0k2(1 + ⇤(25⇤ � 2))/3⇤

and species-specific parameters given by:

↵1 = 4k20k2/3⇤, (2.33)

�1 = 8k0/3, (2.34)

↵2 = 16k20k2⇤/3, (2.35)

�2 = 2k0/3. (2.36)

From these we deduce that the conditions for the existence of NIO in species A and B
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are:

(⇤� 1)2 < 0, (2.37)

1 + 4⇤� 50⇤2 > 0. (2.38)

Note that the first of these two conditions cannot be met and hence there are no NIO

in species A; however NIO is possible for species B. Plotting the inequalities Eqs.

(2.32) and (2.38) we obtain the phase space diagram for the existence of species B

NIO in stable node and focus regions (see Fig. 2.12(a)). The theoretical quality factor

of the stable node and stable focus NIO (regions 3 and 4) are shown in Fig. 2.12(b).

The maximum quality of this extremely simple system is limited (Q99% = 2.67) in

comparison to the simple autocatalysis and Brusselator schemes. A comparison of

linear-noise approximation and simulation derived power spectra at three ⇤ values

(whose position in phase space is marked by open circles in Fig. 2.12(b)) are shown

in Fig. 2.13; the spectra are in good agreement and as for previous cases confirm

the existence of stable node NIO. The simulations also confirm that optimal quality is

obtained in the stable node regime, and not in the stable focus regime. This is intriguing

given that one would expect noise to generate the largest oscillations by exciting the

resonant frequencies of the damped oscillations in the focus regime; furthermore this

clearly shows that the quality is not always inversely proportional to the distance

from the node-focus borderline. In Fig. 2.12(b) the change in Q99% from the node-

focus transition point (i.e., ⇤ ⇡ 0.084) to the maximum quality point (⇤ ⇡ 0.053) is

approximately 9.4%. Both the peak frequency and the 99% bandwidth increase due to

this small move away from the node-focus transition point, but the percentage increase

in peak frequency (13.6%) outweighs the percentage increase in the bandwidth (3.8%),
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yielding the quality increase. Validation of the increase in quality when moving away

from the node-focus transition point is given by inspection of the ratio of maximum

power to zero-frequency power, i.e., SB(b!)
SB(0) ; this measure also increases by 8.7% when ⇤

changes from ⇤ ⇡ 0.084 to ⇤ ⇡ 0.053.

2.4.4 Validation of the Q99% Measure for Stable Node NIO in Bio-

chemical Systems

(a) (b)

Figure 2.14: From LTI filter theory, the filtering action of the band-pass filter H on
an input stationary process with spectrum SU (!) results in an output stationary pro-
cess with spectrum SV (!). (a) Band-pass filter Hbp1 with white noise input, (b) A
di↵erent band-pass filter Hbp2 whose input process has a spectrum which matches that
of a selected variable in one of the parameterized biochemical models. For an output
spectrum SV (!) with the same quality in (a) and (b), the required band-pass filter
parameter Qbp2 < Qbp1, i.e., the filter in (b) requires less filtering to achieve an optimal
output than the filter in (a) since the input to the filter in (b) is of higher quality than
the input to the filter in (a).

We validate the Q99% measure as follows. Consider a filter whose input signal has

the same power spectrum as a selected variable in one of the three biochemical models

studied here. Now say that the output of the filter should be such that its power

spectrum has some chosen optimal quality factor. It then follows that the lower the

quality of the input signal, the larger the degree of filtering needed to be performed by

the filter. Hence if the Q99% measure is reliable then we expect an inverse relationship

between it and the degree of filtering. In what follows we now flesh out these ideas

using the theory of linear time invariant (LTI) filters.
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If a stable LTI system with gain function H takes as its input (U) a stationary

process with spectrum SU (!), the output V is also a stationary process with power

spectrum given by [118]:

SV (!) = [H(!)]2SU (!).

Fig. 2.14(a) shows an illustrative example where the input is stationary white noise

and H is the gain function of a simple band-pass filter, given by:

Hbp1(!) =

�����
!̂bp1 !

�Qbp1 !2 + i !̂bp1 ! + !̂2
bp1Qbp1

����� .

With this system, the output spectrum SV (!) has a peak at ! = !̂bp1 and (con-

ventional) Q-factor given by Q50%
V = Qbp1. Note that this Q-factor is a measure of the

degree of filtering that the filter performs.

We validated the Q99% quality measure of stable node oscillations by considering

another LTI band-pass filter system in which the spectrum of the input process is the

fluctuation spectrum of a particular species in one of the biochemical models (Fig.

2.14(b)). Specifically, for each of the three biochemical systems evaluated at the pa-

rameters in Figs. 2.5, 2.8, 2.9 and 2.13, we considered the problem of obtaining an

output quality Q50%
V = 1 by selecting an appropriate value of Qbp2 for a band-pass filter

described by:

Hbp2(!) =

����
!̂U !

�Qbp2 !2 + i !̂U ! + !̂2
U Qbp2

���� .

Note that here we tune the parameter !̂bp2 to the value of the peak frequency

of the particular input fluctuation spectrum, !̂U , so that the band-pass filter works

constructively with the input to create a higher quality output. If the Q99% measure is

valid then we would expect that for input spectra with high Q99% values, lower values
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of Qbp2 would be required to obtain Q50%
V = 1. This was indeed found to be the case,

as shown in Fig. 2.15, which validates the use of Q99%.

Figure 2.15: With the setup as shown in Fig. 2.14(b) and inputs with spectra from the
parameterized biochemical models (Figs. 2.5, 2.8, 2.9, 2.13), the required additional
filter quality Qbp2 was determined for a ‘system’ (output) quality of Q50%

V = 1. The
figure shows that a biochemical species whose spectrum has a low value of Q99% (here
the input (model) Q99%) requires a greater degree of filtering (larger Qbp2 value) for an
output Q50%

V = 1. This inverse relationship validates the use of Q99%.

2.5 Stable Node NIO in Cascade Chemical Reaction Sys-

tems

As mentioned in Section 2.3, the maximum Q99% of a stable node which can be observed

in a two species system is ⇡ 5. In Section 2.4, we saw how both the Brusselator and

the simpler autocatalytic reaction can give rise to NIO with quality approaching this

maximum (see Fig. 2.5(a) and Fig. 2.9(a)). However stochastic trajectories of these

near-maximum quality NIO, as produced by the stochastic simulation algorithm, give

rise to oscillations in the time series data which are not easily discernible by the naked

eye. In other words, even though the oscillation is present, the noise is so large that it

masks the former. In this section we show that for certain classes of chemical systems,

67



the quality of stable node NIO considerably improves with the number of interacting

species, eventually leading to pronounced oscillations in the time series data.

Consider the following reaction scheme:

Ø
k0�! A1,

2A1 +B1
k1�! 3A1, A1

k2�! B1,

A1
k3�! A2,

2A2 +B2
k1�! 3A2, A2

k2�! B2,

A2
k3�! A3,

......

2AN +BN
k1�! 3AN , AN

k2�! BN ,

AN
k3�! Ø. (2.39)

This describes a chain of N downstream-connected Brusselator modules, and was

first introduced by Shibata [119] and further investigated by Ramaswamy et al. [120]

(a similar model has been studied by means of deterministic rate equations by Tyson

and coworkers [108]) .

The cascade is composed of a chain of similar modules connected by an irreversible

reaction. Steady-state conditions imply that the influx into a given module equals the

outflux from this module to the next. Hence we have the condition k3[Ai]⇤ = k0 for

i 2 {1, N}, where [Ai]⇤ is the steady-state concentration of species Ai. At all stages,

the steady-state concentrations are the same, i.e., [Ai]⇤ = [A1]⇤; [Bi]⇤ = [B1]⇤ for all i.

However the dynamics of the fluctuations at each stage are very di↵erent; for example,

Ramaswamy et al. reported a downstream amplification of stable focus NIO [120].
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Here we investigate whether this process also leads to a downstream improvement of

the quality of stable node NIO.
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Figure 2.16: Normalised power spectrum plots of the number fluctuations in species A
(a) and in species B (b) involved in the cascade Brusselator reaction system illustrated
in scheme (2.39) with N = 15. The parameters are ⇤1 = 0.15 and ⇤2 = 0.35, as defined
in Eq. (2.8). For selected stages along the cascade reaction, solid lines show the ana-
lytical spectrum from the linear-noise approximation (normalised by the total power)
and open circles show the normalised numerical spectrum calculated by averaging the
periodograms of 750 realizations of the stochastic simulation algorithm and then nor-
malizing by the total power (sum of all spectrum values ⇥ frequency resolution). The
inset shows a realization of a time series of the number of A/B molecules at the first
stage (n = 1, red) and last stage (n = 15, black) of the cascade reaction, as obtained
from the stochastic simulation algorithm. The unit for frequency ! is rad s�1.

Fig. 2.16 shows the variation in the normalised power spectra (from the stochastic

simulation algorithm and the linear-noise approximation) of A and B molecule fluc-

tuations at di↵erent stages along a cascade chain of N = 15 Brusselators. At every

stage of the cascade, the eigenvalues of the Jacobian of the deterministic rate equations

describing this system are �30 and �50 (in units of s�1) and hence the steady state is

a stable node. Note how the quality of the stable node NIO improves as it is processed

by successive stages, finally leading to remarkably large NIO (insets). Because each

stage of the cascade is identical in the rate constants, the dramatic increase in the NIO
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quality seen along the cascade can be understood as a resonance resulting from the

action of a weak oscillator feeding back its output spectrum to itself, which therefore

further excites the natural frequency. The agreement between the spectra obtained

from simulations and the linear-noise approximation is generally good, although some

deviations can be discerned in the final stage. The drastic improvement in quality is

evident for both species (see insets of Fig. 2.16; in Fig. 2.17 we also show a plot of

the quality of the NIO in species A versus the cascade stage); this improvement in

NIO quality is particularly spectacular for species B since in this case in the first stage

there is not even a stable node NIO and yet pronounced stable node NIO ensues at the

final stage. Hence it is clear by this example that certain systems with more than 2

interacting species can lead to very high quality stable node NIO.
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Figure 2.17: Plot of the quality of the spectrum of the number fluctuations of species A
versus the stage of the cascade Brusselator reaction system. The quality is calculated
using the theoretical linear noise approximation spectra shown in Fig. 2.16(a). Note
that the quality of the NIO increases as the noisy oscillatory signal makes its way
downstream through the cascade.

Further understanding of the cascade oscillation is obtained by examination of the

autocorrelation functions at di↵erent stages. In Fig. 2.18 we show that for variable B,

which develops a peaked power spectrum along the stages of the cascade, its autocor-

relation function has the form of monotonic decay at Stage 1 (expected due to the lack
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of peak in the power spectrum) but at further stages (for which we have seen in Fig.

2.16 that the spectrum for variable B becomes peaked) we note that the autocorrela-

tion function also develops a signature akin to damped oscillations. We suggest that

this feature of the autocorrelation function may be useful for identifying these stronger

types of oscillation in which oscillatory behaviour is visually clear in the time series

(Fig. 2.16).

(a) Stage 1 (b) Stage 7

(c) Stage 12

Figure 2.18: Autocorrelation functions R(⌧) for species B at di↵erent stages along the
cascade Brusselator reaction. The signature akin to damped oscillations for later stages
supports the observation of clear oscillations in the time series.
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2.6 External versus Internal Noise Induced Stable Node

Oscillations

In our investigation of internal noise NIO in exemplary biochemical systems, we ob-

served two counter-intuitive properties: (i) for all of the reaction schemes, it was not

possible to have NIO in both species within the stable node region, indicating an un-

usual type of oscillatory behaviour that we discuss further in Section 2.7.2; (ii) for the

trimerization reaction, the maximum quality is attained at a point in parameter space

within the stable node region and not the stable focus region. Since in section 2.2

we established that stable node NIO are of the noise dependent type, it is a natural

step to question whether the particular constraints placed on the di↵usion matrix are

fundamental in generating these counter-intuitive properties.

For a two-species system, the di↵usion matrix D (describing either internal or ex-

ternal noise) can be written in the form:

D =

0

BBB@

c1 c2

c2 c3

1

CCCA
= �m

0

BBB@

��1/2
r �c

�c �1/2
r

1

CCCA
,

where �m =
p
c1c3,�r =

c3
c1
,�c =

c2p
c1c3

. The parameter �m only scales the fluctuation

spectrum in power (y-axis) and has no e↵ect on the frequency composition of the

spectrum. The other parameters satisfy the positive semi-definite requirement of D

when �r 2 (0,1) and �c 2 [�1, 1].

In biochemical systems with internal noise, as described by the linear noise approx-

imation, the di↵usion and Jacobian matrices are in general intimately and non-trivially

linked by their dependence on the rate constants (see Eqs. (1.17) and (1.18)). This
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coupling means that it is impossible to vary the parameters �r and �c independently

of the underlying form of system stability. However, it is possible to uncouple these

matrices and therefore directly study the importance of the precise form of the noise

by reframing the biochemical model as one in which internal noise is negligible but

external noise is significant.

2.6.1 External Noise Trimerizor Details

Below we provide the details of an approach for introducing external noise for the

trimerization reaction. The starting point is to assume that external noise sources

introduce stochasticity in the rate constants, i.e., eki(t) = ki(1 + ✏ e⌘i(t)), where e⌘i(t) is

Gaussian white noise and ✏ is a small parameter such that ✏ ⇥ std(e⌘i) << 1. This

results in an alternative linear stochastic di↵erential equation for the concentration

fluctuations (c.f. Eq. (1.16)) given by:

d~⇠e(t) = J~⇠e(t) dt+Be d ~W (t), (2.40)

where the superscript e denotes external noise. The matrix J is the same as for internal

noise, but in the external noise case the di↵usion matrixDe = Be.(Be)T can be changed

independently of J by changing the external noise parameters.

Consider again the trimerization reaction scheme. When there is no noise of any

form, the deterministic rate equations for the concentrations are given by:

@t�A(t) = k0 � 2k1�
2
A(t)� k2�A(t)�B(t), (2.41)

@t�B(t) = k1�
2
A(t)� k2�A(t)�B(t). (2.42)
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Now consider the case when there is some external noise present in the system. One

method of representing external noise is by allowing the rate constants to be stochastic

[121]. White Gaussian noise processes e⌘i(t) are added to the rate constants and scaled

by a small parameter, ✏, so that the new stochastic rate constants read:

eki(t) = ki(1 + ✏ e⌘i(t)), (2.43)

where the tilde is used throughout to denote a random variable. It follows that the

dynamics in the presence of external noise is described by the stochastic rate equations:

@tf�A(t) = ek0(t)� 2 ek1(t)f�A
2
(t)� ek2(t)f�A(t)f�B(t), (2.44)

@tf�B(t) = ek1(t)f�A
2
(t)� ek2(t)f�A(t)f�B(t). (2.45)

We solve these equations by making the ansatz:

e�i(t) = �⇤
i + ✏ e⇠ei (t), (2.46)

where �⇤
A =

q
k0
3k1

and �⇤
B = k1

k2

q
k0
3k1

are the steady-state solutions of the deterministic

rate equations Eqs. (2.41)-(2.42) in the absence of any noise and ✏ e⇠ei (t) represents the

stochastic contribution about �⇤
A, �

⇤
B. Collecting terms of order ✏ we obtain:

@t

2

664
f⇠eA(t)

f⇠eB(t)

3

775 =

r
k0
3k1

2

664
�5k1 �k2

k1 �k2

3

775

2

664
f⇠eA(t)

f⇠eB(t)

3

775+
k0
3

2

664
3 �2 �1

0 1 �1

3

775

2

6666664

e⌘0(t)

e⌘1(t)

e⌘2(t)

3

7777775
,
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or

@t

2

664
f⇠eA(t)

f⇠eB(t)

3

775 =

r
k0
3k1

2

664
�5k1 �k2

k1 �k2

3

775

2

664
f⇠eA(t)

f⇠eB(t)

3

775+

2

664
fwA(t)

fwB(t)

3

775 ,

fwA(t) =
k0
3

(3 e⌘0(t)� 2 e⌘1(t)� e⌘2(t)) ,

fwB(t) =
k0
3

( e⌘1(t)� e⌘2(t)) .

The symmetric positive semi-definite external noise di↵usion matrix De is defined by:

hfwi(t)fwj(t
0)i = De

i,j�(t� t0), i, j = 1, 2,

where in the above notation w1 = wA and w2 = wB. We obtain this matrix by writing

the 3 ⇥ 3 symmetric positive semi-definite covariance matrix C for the external noise

⌘0, ⌘1 and ⌘2 as:

he⌘i(t) e⌘j(t0)i = Ci+1,j+1�(t� t0), i, j = 0, 1, 2.

As an example, the term De
1,1 = hfwA(t)fwA(t0)i is given by:

De
1,1 = hfwA(t)fwA(t

0)i,

=
k20
9

(9C1,1 � 12C1,2 � 6C1,3 + 4C2,2 + 4C2,3 + C3,3) .

Writing the matrix De in the form:

De = �m

0

BBB@

��1/2
r �c

�c �1/2
r

1

CCCA
,
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we find that the noise parameters �r and �c are given as functions only of the Ci,i (but

in a combination which is specific for the trimerization reaction scheme):

�r =
C2,2 � 2C2,3 + C3,3

9C1,1 � 12C1,2 � 6C1,3 + 4C2,2 + 4C2,3 + C3,3
,

�c =
3C1,2 � 3C1,3 � 2C2,2 + C2,3 + C3,3p

(9C1,1 � 12C1,2 � 6C1,3 + 4C2,2 + 4C2,3 + C3,3) (C2,2 � 2C2,3 + C3,3)
.

Varying the external noise parameters, Ci,i, allows a large range of possible �r, �c.

Given no prior information about the external noise, we might propose that noise in

the input reaction parameter k0 is uncorrelated with the noise in the other parameters,

i.e., C1,2 = C1,3 = C2,1 = C3,1 = 0, but that the other parameters are only constrained

so far as to give a positive semi-definite C matrix. We were able to find noise matrices

to satisfy these criteria for all of the �r, �c values used in the investigation of external

noise in Fig. 2.19.

The power spectra of the new stochastic di↵erential equation can be calculated

using Eq. (2.1) in the main text. NIO due to external noise are obtained whenever the

spectrum displays a maximum at some peak frequency.

2.6.2 Results of External Noise in the Trimerizor

For the simple trimerization reaction, the internal noise forces the constants to take

values: �r = 1/4 and �c = �1/4. In contrast, for external noise these constants can

take any value provided they satisfy the positive semi-definite constraints mentioned

earlier. In Fig. 2.19(a) we show the existence of NIO obtained from external noise

for four di↵erent values of �c, and with �r fixed to unity. Note that for internal noise

stable node NIO were only possible in one species (see Fig. 2.12(a)), but for external

noise it is possible to obtain NIO in both species in the stable node regime (region 5
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Figure 2.19: Properties of NIO stimulated by external noise in the trimerization reac-
tion. (a) Existence of external noise NIO as a function of the noise coupling strength
parameter �c with �r held constant and equal to unity. When �c  0 there are NIO
only in species B, with similar behaviour as for internal noise (see Fig. 2.12(a)). For
larger, positive, noise coupling �c = +0.50, NIO in A become possible (region 1�); for
very large noise coupling �c = +0.99 it is possible to have NIO in both A and B (re-
gion 5�). (b) Quality of external noise NIO as a function of the noise coupling strength
parameter �c with �r held constant and equal to 1/4. The solid line is for the stable
node point, ⇤ ⇡ 0.053, and the dotted line is for the stable focus point, ⇤ = 0.13. The
open circles here correspond directly to the open circles in Fig. 2.12(b) as they indi-
cate the external noise characteristics that exactly match the internal noise case. Note
that when �c < �0.8 the quality is higher in the focus regime, i.e., opposite to that
observed for internal noise NIO. Note also that the quality factor Q99% is calculated
as the peak frequency divided by the di↵erence of the two frequencies at which the
spectrum achieves 99% of its maximum power.

for the case �c = +0.99).

With internal noise we found that the quality at a point in the stable node regime

(Q99%
node ⇡ 2.7 when ⇤ ⇡ 0.053) is larger than in the focus regime (Q99%

focus ⇡ 1.6 when
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⇤ = 0.13, see Fig. 2.12(b)). In Fig. 2.19(b) we show the variation of Q99%
node and Q99%

focus

as a function of the noise coupling parameter �c when �r is fixed to the same value as for

the internal noise (�r = 1/4). Note that when �c < �0.8, Q99%
focus > Q99%

node, indicating

that at this level of external noise coupling the quality of stable focus NIO is better

than stable node NIO, a case opposite to that observed for the reaction stimulated by

internal noise. Hence it is clear that the counter-intuitive properties of stable node

NIO as induced by internal noise stem from the special form of the di↵usion matrix

enforced by the linear-noise approximation. It is also interesting that this implies

that the origin of noise plays a significant role in determining the properties of NIO.

For example, for both the node and focus points, increasing positive noise coupling

is observed to dramatically weaken and ultimately destroy the NIO. For the focus

point, when �c > �0.1 the NIO are so weak that the power spectrum peak is all-but

destroyed and the Q99% value is undefined; the NIO disappear altogether for �c � +0.1.

Interestingly, for the node point, NIO with defined Q99% exist for noise coupling values

as large as �c ⇡ +0.3.

An example of a stable node giving rise to NIO has recently been reported by

Qian who showed that for a particular numerical choice of the Jacobian and di↵usion

matrices, one can obtain a peak in the power spectrum for a stable node (see Fig. 3 of

[122]). This example falls within the general category of stable node NIO stimulated

by external noise since the Jacobian and di↵usion matrices are not constrained by

means of the linear-noise approximation. The work herein goes further by developing

a general theory of stable node NIO in the presence of both internal and external noise

and studying the quality of these noisy oscillations in realistic biochemical models.
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2.7 Reflecting on the Challenges in Understanding SNO

2.7.1 Is Nonlinearity Required?

Given the apparent ubiquity of NIO when their existence criterion is simply a peak

in the power spectrum, it is interesting to reassess any fundamental requirements for

oscillations in single cells. Novak and Tyson argued that, along with other require-

ments, su�cient nonlinearity is required for a motif to exhibit sustained deterministic

oscillations [19]. An example of high nonlinearity given is multimeric transcriptions

factor binding to a gene regulatory sequence. A way of testing the importance of non-

linearities for weak NIO is by examining whether NIO are possible for a circuit made of

zeroth or first order elementary reactions. A table of meaningful biochemical reactions

which fit this requirement is shown below:

Reaction Class Reaction

Import/Production

Ø ! X,

Ø ! Y,

Ø ! X + Y.

Export/Decay
X ! Ø,

Y ! Ø.

Transcription /
Translation

X ! X + Y

Isoform switching X �*)� Y

Dimer splitting X ! Y + Y

Table 2.2: The full set of all linear reactions which could be deemed plausible as
intracellular biochemical processes.

We find that when the reaction kinetics are elementary-type (i.e., mass action rates

and not complicated functions of the concentrations), any combination of these reac-
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tions produces a Jacobian matrix of the form:

J =

0

BB@
� +

+ �

1

CCA .

Therefore with only zeroth or first order elementary reactions there is no possibility

for negative feedback in the system. The parameter q > 0 for this type of Jacobian,

so any NIO would rely on the precise form of the noise matrix. We conducted a short

investigation of some realistic networks constructed from the above reactions, namely:

• Circuit 1: All import reactions, all export reactions, translation.

• Circuit 2: All import reactions, all export reactions, isoform switching.

• Circuit 3: All import reactions, all export reactions, dimer splitting.

We found that NIO are impossible for either species in each of the three circuits.

This implies that nonlinearity, either in the form of higher than first order reactions

(e.g., bimolecular) or non-elementary reaction kinetics (e.g., Hill-type repression) is

required for NIO. This nonlinearity might be crucial for its role in introducing negative

feedback in the system, a notion which is supported by the fact that in each of the

three nonlinear models presented here (Brusselator, Autocatalysis, Trimerization) the

Jacobian structure has a negative value for one of the terms J1,2 or J2,1.

2.7.2 Interpretation of the Presence of Oscillations in Only One of

Two Species

In elucidating the phenomenon of stable node NIO we have highlighted an intriguing

example of the non-intuitive e↵ects of intrinsic, i.e., irremovable, noise in biochemical
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systems. Thinking of oscillations in a traditional way, either within a deterministic

limit-cycle framework or a stochastic amplification framework, these stable node NIO

raise many obvious questions. For one, we might ask what it means to have an oscilla-

tion in only one of the two variables? How can this make sense? One might argue that

this cannot be a true oscillation, but then this is at odds with the view that the peak

in the power spectrum indicates a quasi-periodic behaviour, with the frequency of the

oscillation taken as the peak frequency in the spectrum. Indeed, if the oscillation is not

genuine, what is the meaning of the power spectrum peak?

First, we ask whether the stable node oscillation should be considered a true oscil-

lation? The conditions of what constitutes an oscillation has been challenged in recent

years by the discovery of NIO in biochemical systems [30]. The deterministic limit

cycle description declares oscillations to be perfectly sustained and perfectly periodic,

but as soon as stochasticity is involved there is clearly no possibility for the behaviour

to be perfectly periodic. This is not true even of high quality stochastic oscillations,

such as the coherent resonance e↵ect very close to the Hopf bifurcation, and yet these

oscillations have been widely accepted.

In Fig. 2.10 we showed example time series of the variable X1 in the Brusselator

system for two sets of parameters which yield a stable node in the rate equations. As

discussed above, these segments of the stochastic process were the best time series cho-

sen from a sample set of 100 such realisations, and we argued that since the oscillation

is reasonably clear by eye, and the proportion of variance in the signal which describes

the oscillatory motion is consistent with our quality measure, there is justification for

arguing the case of a noisy stochastic oscillation even in the stable node regime. How-

ever, some other realisations show considerably poorer behaviour in terms of visually

clear oscillations on the peak frequency timescale, and so it would seem that a two
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Figure 2.20: Time series and phase portrait of the noise-induced oscillations with the
simple autocatalysis model.

species stable node oscillator could not be relied upon as a precise biological timer.

Indeed, if the quality of a stochastic oscillations were judged by a visual inspection of

time series, our oscillations would likely fail to be considered a ‘good’ stochastic oscilla-

tion. In terms of being a precise biological timer, a two species stable node NIO is not a

good candidate. Nevertheless, we observe through the very clear stochastic oscillations

of the coupled stable node elements in Fig. 2.16 that the information encoded within

the resonant peak of a single, two species stable node oscillator is real and should not

be discarded. An alternative way of interpreting the result is that, since the extended

coupled system itself possesses only real eigenvalues and does exhibit pronounced and
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regular oscillations, one can conclude that for a chemical system with stable node be-

haviour to behave as a precise biological timer it must involve the interaction of a

su�ciently large number of species.

What are we to make of the presence of a resonant peak in one variable and not the

other in a two-variable system? Viewed within a deterministic framework this would

appear nonsensical, and even in a stochastic framework it is confusing because a one

species system cannot exhibit NIO. However, an interesting discovery has helped us to

understand this point. We recall that the spectrum is functionally composed of two

sub-spectra, one with a peak and the other monotonic decay in frequency. A peak in

the total spectrum means that the peaked sub spectrum dominates, and the lack of

peak in the total spectrum indicates that the monotonic decay sub spectrum dominates.

Using the form of the sub-spectra to infer real physical meaning, we hypothesised that

the dominant contribution of the non-peaked sub-spectrum to the fluctuations of the

non-oscillatory variable A is representative of low frequency noise that serves to mask

any oscillatory behaviour which might be expected due to its interaction with the

oscillatory variable B. Indeed, upon examination of the time series of species A in the

same time window as the earlier observed oscillatory behaviour of species B in Fig.

2.20(b) (which is a reprint of Fig. 2.10a), species A behaves as in Fig. 2.20(a). The

phase portrait of the two variables is shown in Fig. 2.20(c) which, while exhibiting

the rotation expected of the stable node oscillation in our cartoon of Fig. 2.2(b), has

a noticeable di↵erence. It is evident that the spiralling behaviour in the phase space

is akin to an oscillation without a well defined centre of rotation, as the baseline of

the variable A wanders slowly. We argue that this low-frequency behaviour dominates

any meaningful oscillation in species A in terms of an information carrier to other

cellular processes. This is justified since it has previously been argued that removing
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high-frequency noise from meaningful signals within cells is far simpler than filtering

o↵ low frequency noise [123]. This validates the notion that only one species should be

considered oscillatory and justifies the importance that we have placed on identifying

the single oscillatory biochemical species across the parameter space for the models in

this chapter.

2.8 Discussion and Conclusion

In this chapter, we have shown that NIO can be induced by internal noise in biochemi-

cal systems characterized by deterministic stable node steady states. This phenomenon

goes beyond the conventional well known case in which NIO are induced by noise for

systems with a deterministic focus steady state since stable nodes do not possess an

intrinsic frequency which can be stimulated by white noise. Rather the frequency of sta-

ble node NIO is determined by the timescales characterizing the non-oscillatory decay

of perturbations in stable nodes; in particular for two species systems, the frequency is

bounded from above by the geometric mean of the two real eigenvalues of the Jacobian.

These stable node NIO possess properties which are counter-intuitive. For exam-

ple, for deterministic oscillatory systems and for stable focus NIO close to the Hopf

bifurcation oscillations are present in all interacting species, but for stable node NIO

we find that this is not generally the case. We note that for internal noise, the linear-

noise approximation enforces a complicated dependence of the di↵usion matrix on the

elements of the Jacobian matrix and on the stoichiometric matrix and that this could

be the origin of the counter-intuitive property delineated above. This line of thought is

suggested by the fact that if the elements of the di↵usion matrix could be freely chosen

then the counter-intuitive property can be eliminated by appropriate choices (Section
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2.6). This indeed turns out to be the fundamental reason why stable node NIO stimu-

lated by external noise may have di↵erent properties than those stimulated by internal

noise since the former (unlike the latter) is characterized by a di↵usion matrix which

can take any values, provided the matrix is positive semi-definite.

It is also the case that one would expect NIO for stable foci to be of better quality

than stable node NIO because in the former there exists a clear internal frequency

which can be stimulated by white noise while in the latter there is not. However we

found that this is not generally the case: there are stable foci regions in parameter

space where there are no NIO (region 8 in Figs. 2.4(a), 2.7(a) and 2.12(a)) whereas

there are stable node regions where NIO are present (regions 1 and 3 in Figs. 2.4(a),

2.7(a) and 2.12(a)). For the trimerization reaction we found that the NIO quality

maximized in the node region and subsequently decreased as one approached the node-

focus borderline (Fig. 2.12(b)). Furthermore as we saw for the cascade reaction system

of Section 2.5, the quality of stable node NIO increases as the noisy signal makes its way

downstream through the network eventually leading to massive NIO, similar to those

previously observed for stable foci [30]. In this multi-species cascade model, there are

many developments which could be made to the model which are worthy of further

investigation. In particular, it would be of interest to study the e↵ect on NIO when

there is variability in the cascade modules, and also to look at the e↵ect of other forms

of coupling, e.g. bi-directional coupling between stages or coupling stage N to stage 1

and forming a cyclical reaction system.

We have also shown that stable node NIO do occur for chemical systems with mean

molecule numbers ranging from the order of one to a few thousand (see Figs. 2.6 and

2.16), i.e., the physiologically relevant range [42]. Furthermore we have identified two

chemical systems composed of at most bimolecular reactions and each involving merely
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two species, in which noise induces oscillations; this is in contrast to the well known

deterministic result that at least three species are needed to obtain limit cycle oscilla-

tions from elementary reaction models [124, 24]. It is however the case that oscillations

for two species systems are very noisy and their quality improves considerably as the

number of interacting species increases.

We conclude from the work in this chapter that noise can induce oscillations over

larger regions of parameter space and for simpler chemical systems than currently

thought, hence further amplifying the current trend of thought that noise plays a con-

structive and essential role in cellular regulation [125, 126].
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Chapter 3

E↵ects of Bursty Protein

Production on the Oscillatory

Properties of Downstream

Pathways

3.1 Introduction

In Chapter 2, we discovered that biochemical systems with stable node stability could

give rise to NIO. Using internal noise, the NIO were present in one of the two species,

and this was identified as the relevant information carrier for further cellular processes.

While it was observed that the presence and quality of stable node oscillations could be

controlled by selecting specific external noise parameters, the choices of these parame-

ters were left unmotivated from physical principles. In this Chapter we find that there

is an important biological phenomenon which, when modelled in terms of an internal
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noise framework, allows the tight coupling between the Jacobian and di↵usion matrices

to be relaxed, resulting in a physically motivated mechanism whereby cells can control

the noise dependent NIO.

Given a particular biochemical pathway of interest, noise can be further categorized

as that coming from sources external to the pathway and that originating from the

individual reactions constituting the pathway. A ubiquitous source of external noise is

the mechanism by which molecules are input or injected into a biochemical pathway.

The classic model for this is a Poisson process in which a single molecule is injected at

random points in time. However, numerous experimental studies over the past decade

have shown that such a description is often inaccurate [127, 128, 129, 130, 131].

Injection events have at least two physical interpretations for models of intracellu-

lar dynamics; injection can describe protein expression when modelling a biochemical

pathway in the cytosol, whereas for pathways in membrane-bound subcellular com-

partments injection events can describe transport of molecules into the compartment

by di↵usive or active transport. A number of studies have confirmed that protein ex-

pression occurs in sharp and random bursts [127, 128]. The bursts are found to be

exponentially distributed and the expression events are temporally uncorrelated. The

origin of these bursts can be explained by a simple mechanism. For bacteria and yeast,

the lifetime of mRNA is typically short compared to that of proteins. In its short life-

time, each mRNA is translated into a number of protein molecules leading to random

uncorrelated bursty events of protein production [129]. Although such protein expres-

sion is the best studied example of burstiness in protein production, it is not the only

one. It has recently been found that protein translocation to the nucleus in response

to an extracellular stimulus in yeast also occurs in sharp bursts; indeed these bursts

may be even more influential than those in protein expression since the mean size of the
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translocation bursts are estimated to be hundreds of molecules whereas those stemming

from protein expressions are of the order of few tens or less [131, 128].

It is interesting to ponder what e↵ects burstiness in protein production has on

the steady-state properties and dynamics of the downstream biochemical pathway into

which it feeds. Intuitively, a bursty input mechanism introduces a larger degree of

noise to the downstream pathway than a non-bursty one. Indeed, this increase in noise

has been quantified in very simple scenarios where the downstream pathway involves

protein decay via a first-order process; for a bursty production mechanism, it was found

that the Fano factor (variance of number fluctuations divided by the mean of molecule

numbers) is equal to 1 plus the mean burst size, whereas for a non-bursty mechanism

the Fano factor is 1 [131, 121]. It is expected that this noise amplification occurs for

all species’ concentrations in more complex downstream pathways; from this point of

view, bursting appears to be deleterious to the precise orchestration of cellular function.

Consequently one might expect the cell to have developed downstream mechanisms to

reduce or control such unwanted noise.

In this chapter we challenge this notion by demonstrating the non-intuitive e↵ects

of bursty inputs on noise-induced concentration oscillations. We compare the stochastic

properties of two identical biochemical pathways, in one of which the protein is produced

via a non-bursty input mechanism and in the other via a bursty input mechanism where

the number of molecules per burst are distributed according to a general probability

distribution. The mean rates of protein production are chosen to be the same in the

two pathways and hence, according to the deterministic rate equation formalism, the

two systems are characterized by the same steady-state concentrations. However, we

show that there exist pronounced di↵erences in the noise-induced oscillations generated

by bursty and non-bursty systems, and that the crucial non-dimensional parameter
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distinguishing the two is the sum of the mean and the Fano-factor of the burst size

probability distribution. By deriving necessary conditions for noise induced oscillations

in the two systems we demonstrate a method of classifying simple biochemical circuits

by their response to input bursting.

3.2 A General Framework for Assessing the E↵ects of

Bursty Protein Production

In this section we introduce the two-system setup which we will use to study the e↵ects

of bursting on the fluctuations in downstream pathways.

Consider a two species system in which both species are injected into a pathway,

and subsequently interact via a number R of downstream reactions. The non-bursty

version of this system can be schematically represented as:

Ø
h1�! X1,

Ø
h2�! X2,

s1jX1 + s2jX2
kj�! r1jX1 + r2jX2, j 2 [1, R] (3.1)

where Xi denotes species i, sij and rij (i = 1, 2) are the integer stoichiometric coe�-

cients and hj and kj are the associated rate constants of the jth input and jth processing

(downstream) reaction respectively.
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A bursty input version of this system can also be envisaged as follows:

Ø
h⇤
1q1(0)����! 0X1, Ø

h⇤
1q1(1)����! X1, Ø

h⇤
1q1(2)����! 2X1, ......., Ø

h⇤
1q1(M1)������! M1X1,

Ø
h⇤
2q2(0)����! 0X2, Ø

h⇤
2q2(1)����! X2, Ø

h⇤
2q2(2)����! 2X2, ......., Ø

h⇤
2q2(M2)������! M2X2,

s1jX1 + s2jX2
kj�! r1jX1 + r2jX2, j 2 [1, R], (3.2)

where qi(m) is the probability that the input burst size is m for species Xi and h⇤i is a

proportionality constant such that h⇤i qi(m) is an input rate constant.

For the above two systems chemical master equations take the respective form:

@P s(n1, n2, t)

@t
=⌦

⇥
(E�1

1 � 1)h1 + (E�1
2 � 1)h2

⇤
P s(n1, n2, t)+

⌦
RX

j=1

✓ NY

i=1

E
�Sij

i � 1

◆
f̂j(n1, n2,⌦)P

s(n1, n2, t), (3.3)

@P b(n1, n2, t)

@t
=⌦

"
M1X

m=0

(E�m
1 � 1)h⇤1q1(m) +

M2X

m=0

(E�m
2 � 1)h⇤2q2(m)

#
P b(n1, n2, t)+

⌦
RX

j=1

✓ NY

i=1

E
�Sij

i � 1

◆
f̂j(n1, n2,⌦)P

b(n1, n2, t), (3.4)

where P b/s(n1, n2, t) is the probability that there are n1 molecules of species X1 and

n2 molecules of species X2 at time t for the bursty input (b) and non-bursty, i.e.,

single-molecule input (s) systems, ⌦ is the volume of the compartment in which the

downstream pathway operates, Sij = rij � sij are the elements of the stoichiometric

matrix, Ej
i is the step operator which when it acts on some function w(ni) gives w(ni+j)

and f̂j is the microscopic rate function for the jth processing reaction which is given

by [14]:

f̂j(n1, n2,⌦) = kj⌦
�(s1j+s2j) n1!

(n1 � s1j)!

n2!

(n2 � s2j)!
. (3.5)
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Note that the first term in each of the master equations above describes the input

reactions while the second term describes the processing reactions.

As in the previous Chapter we circumvent the problem of the master equations

being unsolvable by using the linear noise approximation (LNA), and use the resultant

Fokker-Planck equation, with linear drift and di↵usion coe�cients, to describe the

stochastic dynamics. Note that here we prefer the Fokker-Planck representation over

the Langevin equation representation simply for clarity of the e↵ect of burstiness on

the di↵usion matrix. Since we have explained the LNA in previous sections, we now

simply state the relevant results of applying the LNA to the master equations (3.3) and

(3.4).

Within the LNA, the time evolution of the mean concentrations for the two systems

is given by the conventional rate equations:

d�1,s

dt
= h1( ~�s) + g1( ~�s),

d�2,s

dt
= h2( ~�s) + g2( ~�s), (3.6)

d�1,b

dt
= h⇤1( ~�b)µ1 + g1( ~�b),

d�2,b

dt
= h⇤2( ~�b)µ2 + g2( ~�b), (3.7)

where the first terms describe the input reactions and the second terms describe

the processing reactions. The vector ~�b/s = (�1,b/s,�2,b/s) is the concentration vector

for bursty (b) and non-bursty input (s) systems. The processing rates are given by

gi(�1,b/s,�2,b/s) =
PR

j=1 Sijkj�
s1j
1,b/s�

s2j
2,b/s. The factors µ1 and µ2 are the mean input

burst size for species X1 and X2 respectively, i.e., µi =
PMi

m=0mqi(m). Note that the

input rates hi and h⇤i may be constants, e.g., when modelling di↵usive transport, or

functions of the concentrations, e.g., when modeling repression or activation of gene

transcription.

The LNA analysis also shows that the Fokker-Planck equations describing the prob-

92



ability distribution ⇡s/b(✏1, ✏2, t) of concentration fluctuations about the mean concen-

tration solution of the above rate equations are given by:

@⇡s(✏1, ✏2, t)

@t
=�

2X

i,k=1

Js
ik( ~�s)

@

@✏i
✏k⇡

s(✏1, ✏2, t)

+
⌦�1

2

2X

i,k=1

[�ikhi( ~�s) +D0
ik( ~�s)]

@2

@✏i@✏k
⇡s(✏1, ✏2, t), (3.8)

@⇡b(✏1, ✏2, t)

@t
=�

2X

i,k=1

Jb
ik( ~�b)

@

@✏i
✏k⇡

b(✏1, ✏2, t)

+
⌦�1

2

2X

i,k=1

[�ikh
⇤
i ( ~�b)�i +D0

ik( ~�b)]
@2

@✏i@✏k
⇡b(✏1, ✏2, t), (3.9)

where ✏i is the noise about the mean concentration of species Xi, �i =
PMi

m=0m
2qi(m)

is the second moment of the distribution of bursts, Jb
ik(

~�b) = @/@�b
k[h

⇤
i (
~�b)µi + gi( ~�b)],

Js
ik(

~�s) = @/@�s
k[hi(

~�s) + gi( ~�s)] are the Jacobian matrices (describing linear stability)

of the two rate equations above and D0
ik(

~�b/s) =
PR

j=1 SijSkjkj�
s1j
1,b/s�

s2j
2,b/s.

Clearly the bursty and non-bursty systems have generally di↵erent mean concen-

trations and di↵erent fluctuations. To more easily and fairly compare the stochastic

properties for these two systems we enforce the condition that in each system the mean

number of molecules injected per unit time is the same. The mathematical conditions

leading to this scenario can easily be deduced from Eqs. (3.6) and (3.7) to be h1 = h⇤1µ1,

h2 = h⇤2µ2. Given these conditions, as well of course as the same initial conditions, both

systems have the same mean concentrations at all times. However, while these condi-

tions force the two rate equations to become the same, they do not force an equality of

the Fokker-Planck equations Eqs. (3.8) and (3.9), i.e., the two systems have the same

mean concentrations but di↵erent fluctuations.

An inspection of Eqs. (3.8) and (3.9) shows that when the mean concentrations of
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the two systems are the same, the crucial set of non-dimensional parameters determin-

ing the di↵erences in the fluctuations between the bursty and non-bursty input systems

are:

⌘i =
h⇤i�i

hi
=

�i

µi
=

�2
i

µi
+ µi, i = 1, 2 (3.10)

where �2
i is the variance of the probability distribution of the bursts in species Xi.

When ⌘i = 1 then the di↵erences between the Fokker-Planck equations for the bursty

and non-bursty input systems vanish. As expected, this occurs in the limit that the

variance approaches zero and the mean burst size is one. As discussed in Section

3.1, experiments show that the mean burst size is larger than one and hence we shall

exclusively consider ⌘i > 1. The implication of equation (3.10) is that the larger is ⌘1�1,

the larger are the expected di↵erences in the fluctuation properties of the downstream

pathways in the two systems. For example for a Poissonian distribution of bursts, it is

found ⌘i � 1 = µi whereas for a geometric distribution of bursts we have ⌘i � 1 = 2µi

and hence we expect the burstiness-induced e↵ects to be more prominent for systems

with the latter burst input.

We finish this section by noting that we now have a convenient analytical setup

with which to understand the e↵ects of burstiness on the fluctuations of a downstream

pathway. Since the bursty and non-bursty input systems have the same vector of mean

concentrations and the same Jacobian, in what follows we shall denote these as ~� and J

respectively, for both systems. In the next sections we use the Fokker-Planck equations

to understand how the fluctuations from bursty input change the downstream pathway’s

ability to generate oscillations.
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3.2.1 Necessary Conditions for Bursty Input Alteration of the Oscil-

latory Properties of the Downstream Pathway

In the setup described in the previous section, the bursty and non-bursty input sys-

tems are indistinguishable from a rate equation perspective and hence it follows that

the deterministic dynamics of the two systems, including their ability to generate deter-

ministic oscillations (limit cycles) are one and the same. However it is well appreciated

that noise can induce oscillations in systems whose rate equations predict none. Given

that the noise in the bursty and non-bursty input systems is di↵erent, it is plausible that

the noise-induced oscillations displayed by both systems can also be di↵erent. In what

follows we use the Fokker-Planck equations of the last section to probe this question.

We consider a general two variable Fokker-Planck equation with linear drift and

di↵usion coe�cients of the form:

@⇡(✏1, ✏2, t)

@t
= �

2X

i,k=1

Jik(~�)
@

@✏i
✏k⇡(✏1, ✏2, t)+

⌦�1

2

2X

i,k=1

Dik(~�)
@2

@✏i@✏k
⇡(✏1, ✏2, t) (3.11)

In the previous chapter we showed that the information contained in equation 3.11

is su�cient to derive an equation for the power spectrum of the fluctuations in the

number of molecules of species Xi (⌦✏i), and that this is found to be:

Si(!) =
⌦

⇡

↵i(J,D) + �i(D)!2

p(J) + q(J)!2 + !4
, (3.12)

where ↵1 = J2
12D22 � 2D12J12J22 + D11J2

22, ↵2 is the same as ↵1 but with 1 and 2

interchanged, �i = Dii. We emphasised in Chapter 2 that the terms p and q depend

only on the eigenvalues �1,�2. Alternatively we can write p = [Det(J)]2 and q =

[Tr(J)]2 � 2Det(J) where Tr and Det refer to the matrix trace and determinant.
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By comparing Eqs. (3.8) and (3.9) with the general form equation (3.11), we can

deduce that the power spectrum of the fluctuations in the non-bursty and non-bursty

input systems are given by equation (3.12) with Dik = �ikhi +D0
ik and Dik = �ikhi⌘i +

D0
ik respectively. These two spectra we shall refer to as Ss

i (!) and Sb
i (!) respectively.

By di↵erentiating Ss
i (!) and Sb

i (!) with respect to !, we find the su�cient condi-

tions for the power spectra to have a maximum, i.e., for the two systems to exhibit

noise-induced oscillations. If q < 0, it can be shown that both Ss
i (!) and Sb

i (!) display

a peak in their power spectrum; hence in this case burstiness does not lead to any qual-

itative change in the oscillatory properties of the downstream pathway. However for

q > 0 the situation is more interesting. The positive q condition describes downstream

pathways which, when parameterized, are far from a Hopf bifurcation [132]; the steady

state is described by a node (which satisfies Tr[J]2 > 4Det(J)) or by a focus close to the

node-focus borderline in phase space (which satisfies 2Det(J) < Tr[J]2  4Det(J)). In

this case (i.e., q > 0) the conditions for noise-induced oscillations in the concentration

of species X1 in the non-bursty and bursty input systems are di↵erent and given by

✓1 > ✓s1 =
J2
12

h1 +D0
11

✓
h2 +D0

22 �
2D0

12J22
J12

◆
, (3.13)

✓1 > ✓b1 =
J2
12

h1⌘1 +D0
11

✓
h2⌘2 +D0

22 �
2D0

12J22
J12

◆
, (3.14)

respectively. The parameter ✓1 is a function of the Jacobian elements only and is given

by:

✓1 =

✓
[Det(J)]2

((Tr[J])2 � 2Det(J))
� J2

22

◆
. (3.15)

The conditions for noise-induced oscillations in species X2 are as above but with 1 and

2 interchanged. Note that although not explicitly shown, the elements of the D and J
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matrices in Eqs. (3.14)-(3.15) are functions of the mean concentration vector ~�.

Case III

Case II

Case I

BIO

BDO

Figure 3.1: The impact of burstiness in the input reaction on the oscillatory prop-
erties of species X1 in a two species downstream pathway. The figure illustrates the
three possibilities: Case I in which both bursty and non-bursty input systems have
qualitatively similar oscillatory properties, i.e., both Sb

1(!) and Ss
1(!) have a peak or

not; Case II in which there is the possibility that the non-bursty input system dis-
plays noise-induced oscillations while the bursty input system does not (peak in Ss

1(!)
only); Case III in which there is the possibility that the bursty input system displays
noise-induced oscillations while the non-bursty input system does not (peak in Sb

1(!)
only). The parameters ✓b1, ✓

s
1 and ✓1 are defined in the main text by Eqs. (3.14)–(3.15)

respectively. Burstiness in the input reactions has no e↵ect in Case I, is deleterious in
Case II (BDO – bursting destroys oscillations) and promotes noise-induced oscillations
in Case III (BIO – bursting induces oscillations).

Hence for q > 0 we can identify three distinct cases: (i) ✓b1 = ✓s1, (ii) ✓b1 > ✓s1 and

(iii) ✓b1 < ✓s1. These are illustrated in Fig. 3.1. For case (i) either both systems display
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no oscillations or they both show noise-induced oscillations. For case (ii), there is the

possibility of a special regime (✓s1 < ✓ < ✓b1) in which the non-bursty input system

displays noise-induced oscillations but the bursty input system does not. For case

(iii), there is the possibility of a special regime (✓b1 < ✓ < ✓s1) in which the non-bursty

input system displays no oscillations but the bursty input system exhibits noise-induced

oscillations. Hence burstiness has no e↵ect in case (i), may cause destruction of noise-

induced oscillations in case (ii) and may promote noise-induced oscillations in case

(iii).

Note that ✓b1 > ✓s1 is only a necessary condition for the destruction of noise-induced

oscillations by burstiness in the input reactions; su�cient conditions ensue when we

further have (✓s1 < ✓1 < ✓b1) which may not be always possible to satisfy. Similarly

✓b1 < ✓s1 should be construed as a necessary condition for the creation of noise-induced

oscillations by burstiness in the input reactions.

By inspection of Eqs. (3.14)-(3.13), we can make further specific statements regard-

ing the importance of burstiness in the input reactions to the oscillatory dynamics of

the two species pathway:

• If the species X2 does not activate or inhibit X1, i.e., J12 = 0, then ✓b1 = ✓s1 = 0

and hence burstiness in the inputs of X1 or X2 do not cause a qualitative change

in the oscillatory dynamics of X1. Thus it is clear that bursting on its own is

insu�cient to a↵ect oscillatory dynamics, rather an interplay of bursting with a

downstream pathway featuring the interaction of two or more species is required.

• For all other (i.e., J12 6= 0) pathways, an increase in the input burstiness of species

X2 (for example by increasing the variance of the burst fluctuations at constant

burst size mean) always increases the term ✓b1 � ✓s1. Thus, since it is possible to
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induce the condition ✓b1 > ✓s1 but not the condition ✓s1 > ✓b1, bursting in species

X2 may destroy noise-induced oscillations in species X1 but can never promote

noise-induced oscillations in species X1.

• For pathways that obey the condition D0
22 � 2D0

12J22J
�1
12 > 0, an increase in

the input burstiness of species X1 decreases the term ✓b1 � ✓s1. Thus, since it

is possible to induce the condition ✓s1 > ✓b1, bursting in species X1 for these

pathways may promote noise-induced oscillations in species X1. An exemplary

class of such pathways are those in which the reactions are stoichiometrically

uncoupled (D0
12 = 0) but kinetically coupled (J12 6= 0), i.e., in each reaction there

is only a net change in the number of molecules of one species yet the kinetics of

the two species are coupled [17].

In the next section we investigate the e↵ects of input bursting in exemplary bio-

chemical circuits, in particular verifying our theoretical prediction that burstiness in

the input reactions can both promote and destroy noise-induced oscillations far from

the Hopf bifurcation. We conclude here by highlighting a simple four point recipe which

can be used to calculate the necessary conditions derived in this section for any two

species biochemical circuit:

Four step recipe for calculating the necessary conditions for burstiness-

induced e↵ects in a two-species system

Step 1. By comparison of the particular system under study with the general form

of the non-bursty input system described by scheme (3.1), one deduces the stoichio-

metric coe�cients sij and rij and constructs the elements of the stoichiometric matrix

Sij = rij � sij of the downstream pathway where i varies between 1 and 2 and j varies
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between 1 and the total number R of downstream reactions.

Step 2. Write down the rate equations d�1/dt = h1(~�) + g1(~�), d�2/dt = h2(~�) + g2(~�)

where gi(~�) =
PR

j=1 Sijkj�
s1j
1 �

s2j
2 . Solve these equations with the time derivative set

to zero to obtain the steady-state concentrations ~� = (�1,�2).

Step 3. Calculate the elements of the Jacobian matrix Jik(~�) = @/@�k[hi(~�) + gi(~�)].

Calculate the elements of the di↵usion matrix of the downstream pathway D0
ik(

~�) =

PR
j=1 SijSkjkj�

s1j
1 �

s2j
2 . Calculate the elements of the di↵usion matrices of the down-

stream path for bursty and non-bursty input: Db
ik(

~�) = �ikhi(~�)⌘i + D0
ik(

~�) and

Ds
ik(

~�) = �ikhi(~�) +D0
ik(

~�).

Step 4. Calculate ✓b1 � ✓s1 using their definitions in Eqs. (3.14)–(3.13) and from the

sign of this quantity identify which of the three cases illustrated in Fig. 3.1 the system

under study falls in.

3.3 Two Species Biochemical Systems with Burst-Induced

Oscillation E↵ects

3.3.1 Modified Brusselator

Here we consider a modified form of the Brusselator [133], which was introduced by

Tyson and Kau↵man in an early attempt to model dynamics within the process of
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mitosis. The non-bursty reaction scheme for this model is:

Ø
h1�! X1, 2X2 +X1

k1�! 3X2, X1
k2�! X2, X2

k3�! Ø. (3.16)

As previously explained, the bursty input version of this scheme having the same

mean concentrations as the non-bursty version involve replacing the input reaction

Ø
h1�! X1 by the set of reactions Ø

h1q1(0)/µ1�������! 0X1, Ø
h1q1(1)/µ1�������! X1, Ø

h1q1(2)/µ1�������!

2X1, ......., Ø
h1q1(M1)/µ1��������! M1X1, where M1 is some positive integer representing

the maximum input burst size, q1(m) is the probability of an input burst of size m in

species X1 and µ1 =
P

mmq1(m) is the mean burst size.

The quantities ✓bi � ✓si (for i = 1, 2) which determine the necessary conditions for

promotion or destruction of noise-induced oscillations by burstiness can be computed

by following the four step recipe outlined above. The steps of this recipe as applied to

the modified Brusselator are as follows:

Step 1. Comparison of the modified Brusselator reaction scheme (3.16) with that in

(3.1) shows that the stoichiometric coe�cients are: s11 = 1, s21 = 2, r11 = 0, r21 = 3

for the first downstream reaction 2X2 +X1 �! 3X2; s12 = 1, s22 = 0, r12 = 0, r22 = 1

for the second downstream reaction X1 �! X2 and s13 = 0, s23 = 1, r13 = 0, r23 = 0

for the third downstream reaction X2 �! Ø. Hence the stoichiometric matrix of the

downstream pathway reads:

S =

0

BB@
�1 �1 0

1 1 �1

1

CCA . (3.17)
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Step 2. Next one uses the stoichiometric information of Step 1 to write the functions

g1 = �k1�1�2
2 � k2�1 and g2 = k1�1�2

2 + k2�1 � k3�2 and hence the rate equations

are dt�1 = h1 + g1 and dt�2 = g2 which have a steady-state solution �2 = h1/k3 and

�1 = k23h1/(k1h
2
1 + k2k23).

Step 3. Using the functions g1 and g2 obtained in Step 2, the steady-state concen-

tration solutions also obtained in Step 2 and the stoichiometric information obtained

in Step 1, we can now calculate the three relevant matrices:

J = k3

0

BB@
�(⇤1 + ⇤2) � 2⇤1

⇤1+⇤2

⇤1 + ⇤2
⇤1�⇤2
⇤1+⇤2

1

CCA , Db = h1

0

BB@
1 + ⌘1 �1

�1 2

1

CCA , Ds = h1

0

BB@
2 �1

�1 2

1

CCA ,

(3.18)

where ⇤1 = h21k1/k
3
3 and ⇤2 = k2/k3 are non-dimensional parameters of the system.

Step 4. Using the three matrices calculated in the previous step, and the definitions

in Eqs. (3.14)–(3.13) we can finally calculate the two quantities relevant to deduce the

necessary conditions:

✓b1 � ✓s1 = � 2k23⇤1(⌘1 � 1)

(⇤1 + ⇤2)(1 + ⌘1)
, (3.19)

✓b2 � ✓s2 =
1

2
k23(⇤1 + ⇤2)

2(⌘1 � 1), (3.20)

Thus we have ✓b1 < ✓s1 and ✓b2 > ✓s2 for ⌘1 > 1, i.e., for all possible distributions of the

burst size with mean burst size greater than 1. These are Case III and Case II in Fig.

3.1 respectively, implying necessary conditions for bursting in the input to promote

noise-induced oscillations in species X1 and for it to destroy noise-induced oscillations
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in species X2.

Numerical ID
Classification

NIO Stability of Steady State
0 - Unstable
1 X Node
2 X Focus
3 X Node
4 X Focus

Table 3.1: Existence of noise-induced oscillations (NIO) and linear stability classifica-
tions of the steady-state as used in Figure 3.2.

We investigated these predicted phenomena in further detail as follows. We chose

the burst size distribution such that it was geometric with a mean burst size µ1 = 12

(and hence ⌘1 = 25; see equation (3.10) and the discussion which follows it) and varied

⇤1 and ⇤2 over the range 10�3 to 103. The geometric distribution is the discrete analog

of the exponential distribution which has been measured in experiments [128] and has

also been predicted from theory [134]. For each parameter set we deduced the nature of

the stable steady-state from linear stability analysis (focus, i.e., Tr[J] < 0, Det[J] > 0

and Tr[J]2 < 4Det(J) or node, i.e., Tr[J] < 0, Det[J] > 0 and Tr[J]2 > 4Det(J)

[132]) and also checked if there is a peak at some non-zero frequency in the LNA power

spectrum as given by equation (3.12) (which implies noise-induced oscillations). The

results for both species X1 and X2 are shown in Fig. 3.2 where the various regions

have been labeled according to the numeric classification shown in Table 3.1. The red

regions in Figs. 3.2 (a) and (b) denote the regions in parameter space where there

are noise-induced oscillations in species X1 for non-bursty and bursty input systems

respectively. Similarly the blue regions in Figs. 3.2 (c) and (d) denote the regions in

parameter space where there are noise-induced oscillations in species X2 for non-bursty

and bursty input systems respectively. Notice that in accordance with the predictions
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based on the necessary conditions discussed in the previous paragraph, we find that the

burstiness in the input reaction promotes noise-induced oscillations in X1 (increased

area of red region in Fig. 3.2 (b) compared to Fig. 3.2(a)) and destroys noise-induced

oscillations in X2 (decreased area of blue region in Fig. 3.2 (d) compared to Fig. 3.2

(c)). One also notices that the changes mainly occur in regions of parameter space

characterized by a node and not by a focus (dotted region), which is consistent with

the earlier prediction that burstiness has an important e↵ect in systems far from the

Hopf bifurcation.
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4

3

3
3

24

3

1

Figure 3.2: The impact of burstiness in the input reaction on the existence of noise-induced oscilla-
tions for the modified Brusselator model. The regions in ⇤1-⇤2 space are classified according to the
definitions in Table 3.1. Solid black lines bound the regions of di↵erent linear stability: the dotted
region corresponds to the stable focus regime; white regions correspond to the stable node regimes
and the grey region is where the fixed point is unstable (including the limit cycle regime). The red
regions in (a) and (b) show the parameter space region where there are noise-induced oscillations in
the concentration of species X1 for the non-bursty input and bursty-input versions of the modified
Brusselator respectively. The blue regions in (c) and (d) imply the same but for species X2. The burst
input distribution is geometric with mean burst size µ1 = 12. A comparison of (a) and (b) shows that
burstiness in the input reaction promotes noise-induced oscillations in X1 while a comparison of (c)
and (d) shows that it destroys them in X2. Note that the regions where most of these e↵ects occur are
not dotted, indicating that they are stable node steady-states.
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Power spectra of the Modified Brusselator

In Fig. 3.3 (a) and (c) we show the power spectra calculated from the LNA and from

stochastic simulations for two points in ⇤1–⇤2 space for which the LNA analysis of

Fig. 3.2 predicted that burstiness in the input reaction should promote and destroy

noise-induced oscillations, respectively.

For the simulations, SBML reaction models were created describing the non-bursty

input and bursty input versions of the modified Brusselator (equation (3.16)). The

upper burst size for Poisson or Geometric burst distributions is unbounded, meaning

that to be exact an infinite number of input reactions is required in the simulation. For

the chosen distributions (with mean burst size equal to 12 molecules) we truncated this

to a maximum input burst size of 160 molecules. A simple python script was used to

generate such a large reaction scheme. After parameterizing the models with the values

given in the legend of Fig. 3.3, the models were simulated using the exact stochastic

simulation implementation in the freely available software iNA (intrinsic noise analyser)

[112].

For a single realization r of the stochastic simulation algorithm, the number of

molecules nr
i (t) of species i over some time interval T was regularly sampled at L

discrete points separated by �t, such that T = (L � 1)�t. The choices of sampling

parameters for spectra in Fig. 3.3a and Fig. 3.3c were �t = 0.0018s, L = 600 and

�t ⇡ 7⇥ 10�4s, L = 600 respectively. Since the variance of the periodogram estimate

is known to be high, the final numerical power spectral density estimates plotted in Fig.

3.3 were obtained by averaging over 2000 realizations. See Appendix A.5 for further

details of the periodogram method.

The simulations confirm the predicted phenomena by showing that the spectra of

106



X1 and X2 exhibit the appearance and disappearance of a peak at a non-zero frequency

respectively, when bursting in the input reaction is turned on. It is also shown that the

phenomena are more pronounced for geometric burst size distributions rather than for

Poisson ones of the same mean burst size; this is since given the same mean, the width

of the former distribution is larger than that of the latter. In Fig. 3.3 (b) and (d) we

show the quality factor of the noise-induced oscillations as a function of the mean burst

size µ1. The quality factor is defined as Q99% = !̂/�!99%, where !̂ is the frequency

at which maximum power is obtained and �!99% is the di↵erence of the frequencies at

which the power takes 99% of its maximum value; this measure was introduced in the

previous Chapter and shown to be highly reflective of the rhythmicity visible in a time

series of noise-induced oscillations. For these far-from Hopf oscillations the maximum

possible value of Q99% is ⇡ 5 [135]. Of particular interest is the saturation observed in

Fig. 3.3 (b) which implies that there are limits to how much burstiness in the input

reaction can improve the quality of noise-induced oscillations. This also means that in

the limit of large burst sizes the quality of noise-induced oscillations is independent of

the precise type of the burst size distribution.
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Poisson Bursts, 
Geometric Bursts, 

Non‐bursty Input

Poisson Bursts, 
Geometric Bursts, 

Non‐bursty input

Figure 3.3: Verification of LNA predictions by stochastic simulations. In (a) and (c) we plot the

power spectra of the concentration fluctuations in X1 and X2 respectively using the LNA (solid lines)

and also from stochastic simulations (data points). Note that in (a) burstiness in the input reaction

promotes noise-induced oscillations (induces a peak in the spectrum of X1) and in (c) it destroys them

(removes the peak in the spectrum of X2 for non-bursty input). In (b) and (d) we plot the quality

of the noise-induced oscillations whose spectra are shown in (a) and (c) respectively. See text for

definition of the quality factor Q99%. Note that the quality of the noise-induced oscillations can only

be improved by burstiness in the input reaction to a certain extent (saturation of Q99% with mean

burst size µ1). The constants are (a) h1 = 3 ⇥ 10�5 Ms�1, k1 = 2.0625 ⇥ 1013 M�2 s�1, k2 = 22.5 s�1

and k3 = 15 s�1; (b) h1 = 3⇥ 10�4 Ms�1, k1 = 2.34375⇥ 1013 M�2 s�1, k2 = 7.5 s�1 and k3 = 750 s�1.

The compartment volume in each case is ⌦ = 3 ⇥ 10�15 l, which gives mean molecule numbers of (a)

hnX1i ⇡ 516 molecules and (b) hnX2i ⇡ 723 molecules. Note that the units for concentration, time and

frequency ! are Molar (M), second (s) and radians per second (rad s�1) respectively.
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3.3.2 Other Simple Circuits, Including Gene Regulation

Next we report the results of a detailed investigation of the e↵ect of burstiness on the

oscillatory properties of 8 biochemical pathways. The reaction schemes for the latter

including their rate equations and the non-dimensional parameters characterizing the

steady-state behaviour are shown in Tables 3.2 and 3.3. Note that for the gene circuits

(Tab. 3.3) we have set some of the rate constants to 1; the model’s behaviour can

then be described by at most three non-dimensional parameters which considerably

simplifies our analysis.

Next we used the four point calculational recipe to obtain the quantity ✓b1 � ✓s1 for

each of these 8 pathways. The sign of this quantity determines which of the three cases

shown in Fig. 3.1 each pathway falls into and hence constitutes necessary conditions

for promotion and destruction of noise-induced oscillations in species X1 by bursting.

The expressions for ✓b1 � ✓s1 are shown in the second column of Table 3.4. It is simple

to determine the sign of this quantity since all constants a1 to a8 are positive, as are

⇤1, ⇤2 and ⇤3 and ⌘1, ⌘2 > 1 (mean burst size is greater than 1). If the sign can take

negative values then Case III is possible; if the sign can take positive values then Case

II is possible. Which case can be displayed by each pathway is shown in columns 3 and

5 of Table 3.4. Notice that 6 out of 8 pathways can display Case III behaviour, i.e.,

bursting may induce oscillations; 6 out of 8 pathways can display Case II behaviour,

i.e., bursting may destroy oscillations; 4 out of 8 pathways can display both Case II

and Case III behaviour, i.e., bursting may promote or destroy oscillations.

As we have shown the simple necessary conditions are very easily determined in

practice, and give a quick indication of whether input burstiness could cause a quali-

tative change in oscillatory behaviour in a system. However these conditions are not
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su�cient by themselves to prove that the systems do actually display the burstiness-

induced destruction or promotion of noise-induced oscillations. As previously explained

and shown in Fig. 3.1, one needs to further determine if ✓1 falls in the correct range

of values. This is considerably more involved analytically and hence we determine it

numerically by an extensive parameter scan.

The parameter scan algorithm involved the following steps. We randomly picked

105 sets of non-dimensional parameters (the ⇤i’s in Tables 3.2 and 3.3 are uniformly

distributed in log-space over the range [10�3, 103] and the burtsiness parameters ⌘i are

uniformly distributed integers in the range [1, 25]) for which the system has a steady-

state. For each parameter set we calculated the quantities q, ✓1, ✓b1 and ✓s1. If q < 0

then for this parameter set both bursty and non-bursty input systems display noise-

induced oscillations. If q > 0, then ✓1, ✓b1 and ✓s1 are used to obtain which case and

which particular region of the case shown in Fig. 3.1 describes the system’s behaviour

for the chosen parameter set. These classifications are recorded for each parameter set.

110



BDO

Case I Case II Case III

Brusselator

X1
2X1+X2        

X1 

3X1

X1        X2        

Trimerization

BIO

X1
2X1        X2

X2+X1        

BDO

BIO

Autocatalysis

X1

X1+X2        2X2

X2 

X2

BIO
BDO

Two Gene Model B

G1        G1+X1

G2        G2+X2

One Gene Model A

BIO

X1        

G1        G1+X1

X2        

X2        

Two Gene Model A

G1        G1+X1

G2        G2+X2

Case I Case II Case III

Case I Case II Case III Case I Case II Case III

Case I Case II Case III Case I Case II Case III

Figure 3.4: Numerical investigation into the e↵ect of bursting in the input reactions on six of the eight
biochemical models shown in Tables 3.2 and 3.3. See main text for details of the numerical algorithm
used. q < 0 refers to the cases close to the Hopf bifurcation where both bursty and non-bursty input
systems show noise-induced oscillations. Cases I, II and III are for q > 0 (far from Hopf bifurcation)
described in Fig. 3.1. Ticks/crosses indicate that noise-induced oscillations are/are not observed for
both bursty and non-bursty-input systems. BDO and BIO refer to the cases where burstiness destroys
or promotes noise-induced oscillations, i.e., the behaviour of the two systems is di↵erent. The heights
of the bars for each behaviour are directly proportional to the fraction of the 100, 000 parameter sets
which exhibit that behaviour.

Information regarding whether the su�cient conditions were found to be satisfied
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or not is reported in columns 4 and 6 of Table 3.4. A more detailed classification is

shown in bar chart form in Fig. 3.4 for six of the eight pathways in Tables 3.2 and

3.3. Note that the two remaining pathways (One Gene Model B and Two Gene Model

C) are similar in behaviour to Two Gene Model A and hence not shown in the latter

figure. At least one of Case II or Case III behaviour was possible for each model. The

necessary conditions for bursts destroying or promoting noise-induced oscillations were

also su�cient, with three exceptions: One Gene Model B, Two Gene Model A and

Two Gene Model C. Interestingly, these three exceptions are unique among the models

in that they are the only ones which cannot exhibit noise-induced oscillations for any

parameter choices for both bursty and non-bursty systems.

We noticed that the e↵ect of burstiness on each system was strongly linked to two

main features: (a) whether burstiness is possible in one or both species; and (b) the

pathway’s feedback motif, as described by the signs of the o↵-diagonal elements of the

Jacobian matrix (column 3 in Tab. 3.4). The three exceptional models (One Gene

Model B, Two Gene Model A and Two Gene Model C) which never exhibited noise-

induced oscillations, and for which the necessary conditions for bursts destroying or

promoting noise-induced oscillations did not also translate to su�cient conditions, all

feature either mutual promotion or mutual inhibition between the two species.

Models with negative feedback, whereby one species promotes the other and that

species inhibits the first (indicated by di↵erent signs on the o↵-diagonals of J) were sen-

sitive to burstiness destroying or promoting noise-induced oscillations. When burstiness

is possible in both species (Autocatalysis and Two Gene Model B), necessary condi-

tions for both BIO and BDO can be satisfied and BIO and BDO were indeed observed.

Therefore, our results suggest that the combination of a negative feedback motif and

burstiness in both species allows a wide range of bursting-induced oscillatory behaviour.

112



When burstiness is only possible in one of the species, the matching of necessary and

su�cient conditions is again observed, but here the asymmetry of the Jacobian is

important; when J12 is positive (Brusselator) the necessary conditions indicate that

burstiness tends to destroy noise-induced oscillations in X1, but when J12 is negative

(Trimerization and One Gene Model A) the necessary conditions indicate that noise

tends to promote noise-induced oscillations in X1.

Here we have explored in detail the e↵ect of burstiness on species X1, and it has

become clear that asymmetry in the system can be important. For two of the models

with similar but asymmetric sign structures, i.e., the Trimerization and Brusselator

models, we show in Fig. 3.5 the e↵ect of input burstiness on species X2. Our theory

above suggested that input burstiness in the one species (e.g., X1) could only serve

to destroy noise induced oscillations in the other (e.g., X2). Indeed, destruction of

oscillations were found in each case (Fig. 3.5) in our parameter scan, albeit for a small

region of parameter space for the Brusselator. Considering the e↵ect of input burstiness

on the biochemical species in these two models, we therefore find that generally the

burstiness serves to destroy oscillations in these species, with the exception of X1 in

the Trimerization model for which burstiness induces oscillations for some parameters,

and that this can be predicted due to the sign structure of the Jacobian.

Although the regions of parameter space for which bursts promote or destroy noise-

induced oscillations is quite small in some models, we note that this region can be

considerably enlarged by choosing a smaller range for the burstiness parameters (e.g.

if ⌘1 and ⌘2 are fixed to 25 and 2 respectively rather than the range [1, 25] used in our

parameter scan). The fact that a large proportion of the considered pathways display

burstiness alteration of the noisy oscillatory dynamics suggests that such phenomena

may be common in many biochemical systems.
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BDO

Case I Case II Case III

Brusselator

X1
2X1+X2        

X1 

3X1

X1        X2        

Trimerization

X1
2X1        X2

X2+X1        

Case I Case II Case III

BDO

Figure 3.5: Numerical investigation into the e↵ect of bursting in the input reactions on
species X2 in the Brusselator and Trimerization models shown in Tables 3.2 and 3.3.
See main text for details of the numerical algorithm used. q < 0 refers to the cases
close to the Hopf bifurcation where both bursty and non-bursty input systems show
noise-induced oscillations. Cases I, II and III are for q > 0 (far from Hopf bifurcation)
described in Fig. 3.1. Ticks/crosses indicate that noise-induced oscillations are/are not
observed for both bursty and non-bursty-input systems. BDO refers to the case where
burstiness destroys noise-induced oscillations, i.e., the behaviour of the two systems is
di↵erent. The heights of the bars for each behaviour are directly proportional to the
fraction of the 100, 000 parameter sets which exhibit that behaviour.

3.4 Discussion and Conclusion

In this Chapter we have shown using the LNA that burstiness in the input reactions can

have a considerable impact on the oscillatory properties of the downstream pathway.

In particular we showed that for two identical pathways, one with bursty and one

with non-bursty input, the two pathways may di↵er in their ability to produce noise-

induced oscillations. We derived necessary conditions for the burstiness to promote

oscillations and for the burstiness to destroy oscillations and confirmed the existence

of these phenomena using stochastic simulations. Our work is the first to investigate

the e↵ect of burstiness on the noisy oscillatory dynamics of biochemical pathways;

previous work focused on deriving expressions for the steady-state distributions (or the

moments) of protein concentrations in the presence of bursting [129, 136, 137, 138].
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We note that our analysis is based on the LNA which is a good approximation

when describing pathways involving small levels of noise, i.e., pathways characterized

by a su�ciently large number of molecules. This is not always the case since a num-

ber of species inside cells occur in small molecule numbers [41]. Our theory can be

extended to account for such cases by considering higher-order terms than the LNA

in the system size expansion of the master equation [70, 139, 140]. We showed in the

previous Chapter that in non-bursty systems if the LNA predicts a peak in the power

spectrum of fluctuations for systems far from the Hopf bifurcation then the spectrum

calculated from stochastic simulations shows a peak even if the molecule numbers are

very small; the quality of the oscillations may, however, be lower than that predicted

by the LNA. Hence we expect the consideration of terms of higher order than the LNA

to have little or no e↵ect on the necessary conditions derived in this chapter since these

are specifically for the existence or non-existence of a peak in the power spectrum.

Our study also hints at a novel control mechanism for single cell rhythms. The

degree of burstiness in protein production can be controlled through the translation

rate or the mRNA degradation rate [131] and the latter can in turn be controlled by

small RNAs [141]. Hence it is plausible that the quality and strength of single cell

rhythms can be e↵ectively manipulated by controlling the expression levels of small

RNAs.
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Chapter 4

Intercellular Coupling and

Spontaneous Spatiotemporal

Patterns

NB: The work in Sections 4.1 to 4.5 of this chapter describes joint research by David

Toner (DT) and Benedicte Wenden (BW), published in [142]. Experimental work (plant

growth, luminescence imaging) was carried out by BW. Data analysis was carried out

by DT, who also led on the data visualization. Some figures were produced by DT,

some were produced by BW and some were created collaboratively between DT and

BW. Unless otherwise stated in each figure legend, figures in this chapter were produced

by DT. Section 4.6 contains unpublished work by DT.
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4.1 Introduction

Having investigated intriguing new modes of stochastic rhythmicity in simple models

of biochemical oscillators, we now shift our focus to the roles of intercellular coupling

in a particular biological oscillator system, namely circadian rhythms in the model

plant Arabidopsis thaliana. The circadian clock is known to play a fundamental role in

plant physiology, in that it regulates an extremely wide range of biological processes in-

cluding germination, rhythmic leaf movement, photosynthesis, flowering time, hormone

responses, Ca2+ concentrations, and stomatal opening [143, 144]. Given the importance

of the circadian clock for essential plant functions, there is now considerable research

into fully understanding the clock’s mechanisms. An area which remains particularly

poorly understood is the nature of rhythms in multicellular plant organisms, in terms

of the heterogeneity of clocks amongst cells and tissues and in terms of the presence

and nature of intercellular communication which could drive coherence of the whole

organism rhythm.

Circadian rhythms help organisms adapt to their environment, and are defined by

three central criteria [145]. Firstly, circadian rhythms are autonomous rhythms of ap-

proximately 24-hour periodicity, i.e., observed rhythmicity is not simply an e↵ect of

daily environmental cycles such as cycles in light or temperature. This is tested by

observing whether approximately 24-hour rhythms are observed when an organism is

transferred to ‘free-running’ (constant) conditions (principally in an environment with-

out changes in light and temperature)[145]. The second requirement is that circadian

rhythms can be entrained to new environmental stimuli, such as the ability (albeit im-

perfect) of human body clocks to entrain to new time zones after long distance travel.

The third criterion is that circadian rhythms can compensate for environmental tem-
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perature changes (such as seasonal changes) to an extent that the period of rhythms is

largely unchanged across a wide range of temperatures. Since temperature is well known

to be a fundamental factor in determining the rate of biochemical reactions generally,

the ability of circadian clocks to perform this extraordinary temperature compensation

(an area of active current research [146, 147]) is an indicator of the complexity of the

oscillator mechanisms.

Prompted by advances in research into the molecular mechanisms underpinning

circadian rhythmicity in other organisms such as Drosophila melanogaster and mouse

[148], in the past twelve years researchers have attempted to understand the molecu-

lar mechanisms of the plant circadian clock in the model plant organism Arabidopsis

thaliana. Although recent research has shown that circadian rhythms can arise from al-

ternative mechanisms [88], the understanding of plant circadian clocks has been princi-

pally within a framework of intracellular transcriptional and translation feedback loops

(TTFLs) amongst circadian clock genes. An essential feature of such a model structure

is at least one negative feedback loop, by which proteins indirectly repress their own

gene expression in a daily cycle. Early work into plant circadian rhythms identified

a central role for three genes; TIMING OF CAB EXPRESSION 1 (TOC1), which is

expressed in the evening, and two partially redundant transcription factors CIRCA-

DIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL

(LHY), which are expressed in the morning [148]. CCA1 and LHY were both found to

directly bind to the TOC1 promoter and inhibit its expression, whereas TOC1 protein

was found to promote the expression of CCA1 and LHY [148]. A first plant circadian

mathematical model was built on these discoveries, featuring a single negative feedback

loop between the TOC1 gene and a combined pseudo-gene referred to as CCA1/LHY

(representing the partially redundant nature of these transcription factors, Fig. 4.1(a))
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[51].

(a)

genes at night (Figure 1; [2]). LHY/CCA1
expression is suppressed by the PRR proteins in
a morning loop, while the EC is negatively
regulated by the ubiquitin E3 ligase COP1
(CONSTITUTIVE PHOTOMORPHOGENIC 1),
which targets ELF3 protein to degradation by
proteasome and by GI protein, in the evening
loop. The morning and evening loops are further
interlocked through the suppression of evening
gene expression by LHY/CCA1 and suppression
of PRR9 and TOC1 (PRR1) expression by the EC.
The model also includes the F box protein ZTL
(ZEITLUPE), which negatively regulates the level
of TOC1 protein. Light entrains the clock
similarly to the P2011 model through several
mechanisms, which are supported by experimental
data [2]. The main mechanisms include acute
activation of LHY/CCA1, PRR9 and GI transcription
(eqs. 1, 5, 27) immediately after dawn; stabilization
of PRR proteins in presence of light (eqs. 6, 8, 10)
and light-dependent regulation of the EC by COP1
and GI proteins (eqs. 24, 21, 22).

The TOC1-related reactions were substantially
extended. Firstly, we added multiple reactions of
inhibition of clock gene expression by TOC1.
This includes direct inhibition of expression of
LHY/CCA1 as in the P2011 model (eq. 1), and
also PRR9, PRR7, PRR5, LUX, ELF4 and GI (eqs.
5, 7, 9, 18, 14, 27), which is based on our data
[3] (Figure 1A). The details of TOC1 interactions
with other regulators (e.g. LHY/CCA1, EC,
protein P) to modulate gene expression are
largely unknown, so we assumed that TOC1 acts
as a non-competitive inhibitor of gene expression
Secondly, we added physiologically relevant
activation of TOC1 expression by the ABA
signalling pathway (Figure 1B, [9]), described in
section 2 below. This provided an additional
level of input to the clock through ABA, which
is induced by stress. Thirdly, we added
regulation of stomata aperture as a clock output,
which is directly related to both ABA and TOC1
signalling (Figure 1B), as presented in section 2
below.

PRR9 TOC1LHY/
CCA1

PRR7 PRR5 ECGI LUX ELF3ELF4

COP1

ZTL

ABA

BA

ABA

TOC1

PP2C

SnRK2

stomata 
closing

ABAR

LHY/
CCA1

gene expression 
via ABRE

The previous P2011 model was extended by adding:
1) TOC1 inhibition terms to the equations for PRR9, PRR7, GI, LUX and 

ELF4 transcription.
2) Induction of TOC1 transcription by ABA signalling through SnRK2
3) The key components of ABA signalling that are related to the clock: ABAR, 

PP2C, SnRK2 and stomatal aperture

C

Figure 1 Extended model of the plant circadian clock, including the multiple targets of TOC1 and the interactions with the ABA
signalling pathway. A: The clock model was extended from the previous one (P2011) by including the negative transcriptional regulations of
the core clock genes by TOC1 (blue lines) and the up-regulation of TOC1 expression by ABA signalling, as shown in panel B. Elements of the
morning and evening loops are shown in yellow and grey, respectively. Proteins are shown only for EC, ZTL and COP1 for simplicity. Post-
translational regulation of TOC1 and the EC by GI, ZTL and COP1 is indicated by the dotted red lines. B: Simplified model of ABA signalling, gated
by the clock through regulation of ABAR expression. See section “Model description” for more details. Transcriptional and protein regulation are
shown by solid and dotted lines, respectively. C: Short description of the newly-introduced connections and elements of the model compared
to P2011.

Pokhilko et al. BMC Systems Biology 2013, 7:23 Page 3 of 12
http://www.biomedcentral.com/1752-0509/7/23

(b)

Figure 4.1: (a) The first model of the single transcriptional-translational feedback loop
at the heart of the Arabidopsis clock [51]. (b) An overview of the latest multi-loop
model of interlocked transcriptional-translational feedback loops, which in fact features
more than 30 dynamic chemical species [149]. Lightning-bolt symbols indicate multiple
light inputs to the clock.

The single loop model provided a useful starting point for understanding the circa-

dian clock; in the years since a combination of experimental and mathematical research

have been used to develop the current three-loop model (Fig. 4.1(b)). Whenever the

state-of-the-art mathematical model has been found incapable of reproducing exper-

imentally observed phenotypes this has prompted incremental changes to the model.

One such example was the early discovery that the cca1;lhy double loss-of-function mu-

tant was found to exhibit damped oscillations in constant light conditions [150], which

clearly could not be accounted for by the single loop model with CCA1/LHY as an

essential rhythmic component. This prompted the addition of an extra feedback loop

to capture this residual rhythmicity, producing a model with two interlocked feedback

loops, robust to the loss-of-function mutation. As well as the requirements of being

robust in the sense that the clock can sustain rhythms when components are removed,
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focus is also given to ensuring that the models can reproduce precise timing of the

clock in terms of peak expression of its components under di↵erent photoperiods (e.g.,

8 hours of light and 16 hours of darkness (short days) or 16 hours of light and 8 hours

of darkness (long days)) [150]. The current model (Fig. 4.1(b)) is highly complex, with

more than 30 interacting chemical species and multiple light inputs. It is important for

us to note that while these biochemical models have been constructed and parameter-

ized with whole seedling data, the intracellular nature of the models imply an ability

to quantitatively describe the gene-regulatory mechanisms inside each individual cell in

the plant. Furthermore, while the current models of Arabidopsis are complex, and can

describe a wide range of experimental behaviour, little consideration has been given to

the added complexity of interactions between noisy single cell circadian oscillators. The

work in this chapter aims to contribute to current understanding of the multi-cellular

nature of the plant clock.

Experimental work over the last decade or so has provided greater insight to how

tissue-level rhythms originate from singe cell oscillators. In mammals, in the suprachi-

asmatic nucleus (SCN) tight coupling by synaptic transmission among SCN neurons

is now known to be crucial to sustain rhythmicity [100, 101]. In contrast, circadian

research in plants has revealed that plant cells appeared to be coupled more weakly,

if at all, though many of these studies have used whole plant assays to reach this

conclusion. Circadian time series data in higher plants are now commonly obtained

by means of a luminescent marker [145]. In Arabidopsis, the reporter gene Luc can

be placed under the control of a particular circadian gene’s promotor; Luc encodes

firefly luciferase which quickly catalyzes the oxidation of beetle luciferin (provided in

the media) [151, 145], producing light and thereby reporting on the promoter activity.

In tobacco, researchers were able to develop a strain which expressed both firefly lu-
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ciferase, under the promoter of the circadian gene light-harvesting complex (LHCB),

and the photoprotein aequorin [152], which can be used as a reporter of cytosolic free

calcium concentrations [153]. By altering incubation conditions, either LHCB activity

or [Ca2+] concentrations could be measured over several days. LHCB gene expression

was found to spontaneously desynchronise from cytosolic free calcium [153] and it was

hypothesised that the cytosolic free calcium may be expressed in specialised cells, and

therefore the desynchronisation could mean weak coupling among di↵erent cell types.

A similar argument for the presence of weakly coupled, heterogeneous, tissue-specific

circadian oscillators in Arabidopsis thaliana was made from the observed di↵erence in

free-running period of the expression of circadian genes PHYB and CAB in one study

[154], and CAB and CHS expression in a separate study [155]. These results derived

from whole-plant assays and were interpreted as showing desynchronisation among the

di↵erent cell types that express the distinct markers. In experimental work which ex-

amined Arabidopsis rhythms with spatial resolution, it was shown that di↵erent areas

of the same plant can be experimentally desynchronised, using light-dark treatments

to di↵erent locations of the same plant. After transfer to constant light, these regions

showed little relative phase change within time series of up to five days [95] and hence

no evidence of coupling among cells expressing the same LUC marker. In contrast, more

recent spatial-resolution investigations with longer time series have suggested that there

is weak coupling among Arabidopsis cells [156].

Due to the continued dominance of modelling Arabidopsis rhythms from a whole

plant perspective and the limited research into spatial heterogeneities of Arabidopsis

circadian gene expression, our objective was to determine the extent to which oscilla-

tions are coherent across Arabidopsis leaves in both natural and constant light condi-

tions, with a view to a better understanding of the nature of communication between
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cells. By transferring leaves between di↵erent light conditions (such as between con-

stant light conditions and entraining light-dark (LD) cycles) we aimed to capture the

relative importance of any intercellular coupling versus coupling between cells and the

entraining light signals. We also sought to understand whether any heterogeneities in

circadian rhythms across leaves were exhibited with a consistent spatial pattern, and

for this a high throughput method was required to yield a su�cient sample of leaves.

Our group therefore developed imaging and analysis methods to investigate circadian

coupling in short time series of LUC reporter gene expression in plant leaves, using a

high throughput imaging cabinet setup (see Appendix A.7), published in [142]. Sec-

tions 4.1 to 4.5 of this Chapter give the results of this work. Furthermore, to more

precisely investigate local spatial details in the timing in circadian expression, a lower

throughput, high-resolution microscope method was used; the results from analysing

these data are as yet unpublished and are presented in Section 4.6.

4.2 Setup and Analysis

To monitor luminescence rhythms in plants over several days, a protocol was designed

to image healthy leaves of intact transgenic seedlings for up to 6 days (Fig. 4.2).

Furthermore, imaging of detached leaves similarly to [156] allowed us to test expression

rhythms in older, isolated tissue (Fig. 4.2(a)). Details of the experimental methods

regarding plant growth conditions and imaging set-up, as established by Wenden and

Millar, are included in Appendix A.7.

Luminescence time series were obtained from 24 12-day-old seedlings or 8 21-day-

old detached leaves in a single field of view in the imaging cabinet with tissue-level

resolution (image pixel size 230µm, Figs. 4.2(e) and 4.2(f)) or from a single leaf with
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cellular resolution in the microscope (pixel size 5µm, Figs. 4.2(c) and 4.2(d)). In the

first part of this chapter we focus on the tissue-level data.

(a) (b)

(c) (d)

(e)

CCA1:LUC

TOC1:LUC

GI:LUC

CCR2:LUC

(f)

Figure 4.2: Setup for imaging luciferase in intact and detached leaves over several
days. (a) setup for one detached leaf; (b) red and blue light-emitting diode (LED)
system for intact plant imaging under the microscope; (c) setup for one intact plant;
(d) luminescence output from a leaf from a CCA1:LUC intact plant; (e) six-well plate
setup for intact plants for open field imaging in a cabinet; (f) luminescence output for
four six-well plates as imaged in a cabinet. [Figs. produced by BW and published in
[142].]
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Preliminary time series for the control marker 35S:LUC confirmed that the signal

from plants in imaging cabinets was strong enough to analyse not only the leaf average

but also single pixels (Fig. 4.3).
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Figure 4.3: Preliminary results for 35S:LUC (c) and luminescence (d) for all pixels,
detrended for a 35S:LUC leaf. Plant was grown in LL for 12 d and imaged under LL
conditions. [Figs. produced by BW and published in [142]]

4.2.1 Data Processing

A Matlab (Mathworks) script was developed to extract LUCIFERASE (LUC) lumi-

nescence data for each leaf at the pixel level and for each picture frame. For each leaf,

luminescence time series were then available for a square array of pixels, containing the

leaf and surrounding area. An example is shown in Fig. 4.4(a) and 4.4(b).

The goal was to locate the circadian peaks to define each pixels time-dependent

phase, ✓n(t). For each pixel, n, we use the definition of time-varying phase as a piecewise

linear function between successive peak times Tk and Tk+1, as used in [156]; i.e.,

✓n(t) = 2⇡
t� T k

n

T k+1
n � T k

n

, t 2
h
T k
n , T

k+1
n

⌘
. (4.1)

Upon visual inspection of the data for all leaves, some commonly found potential

issues were quickly identified: i) Extreme luminescence levels in the first few time
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(a) (b)

Pixel m,n

(c)

Figure 4.4: (a) All pixels luminescence time series for a single leaf. (b) Luminescence
across the square array at ZT20. (c) Assignment of colored image squares from pixel
data values using MATLAB’s ‘surf’ function with flat shading.

points (such as in Fig. 4.4(a)); ii) very low luminescence values at longer times; and

iii) luminescence spikes, from solar cosmic rays (Fig. 4.5(a)).

128



(a) (b)

Figure 4.5: (a) Example of solar cosmic rays (e.g., at ZT48, which were identified and

removed). (b) Retained pixels in leaf (as in Fig. 4.4(a) and 4.4(b)) following removal

of peripheral pixels from the array.

To address issues (i) and (ii), an appropriate data window for each leaf was identified

and then globally (i.e., across all pixels) data were omitted at the time points outside

this window. Because our determination of phase rests on determining peak times,

the start and end points of the data window were typically chosen around a trough

time (e.g., a start time of 6 h was chosen for the data in Fig. 4.4(a)). For each time

series that contained solar cosmic spikes, the luminescence reading at the identified

spike time, L(tsc), was replaced by the mean luminescence value from the preceding

and subsequent times; i.e., L(tsc) =
L(tsc��t)+L(tsc+�t)

2 .

Data in peripheral areas were excluded from the square array by specifying a min-

imum required quality for the data in each pixel. Firstly, pixels around the periphery

of the square array, and clearly outwith the leaf area, were omitted according to a

sub-threshold mean (over time) luminescence value. Second, because our method of

determining phase requires peak finding of oscillatory time series, a more useful mea-
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sure of the quality of a pixels data was the amplitude of oscillations around the data’s

baseline trend. For each pixel, the detrending algorithm for circadian data developed

with the mFourfit toolkit [157] was used to subtract the baseline trend from the data,

and then the pixel’s overall signal size was calculated as the sum of squares of these

baseline-detrended data. Further peripheral pixels were then omitted according to a

subthreshold signal-size value. Finally, the array of retained pixels was checked for

individual or small groups of unconnected pixels, such as those from an overlapping

secondary plant leaf, and these were simply removed manually as required. For the leaf

shown in Fig. 4.4(b), the resultant retained pixels after the above steps are shown in

Fig. 4.5(b).

To determine the phase, we identified peaks in the baseline-detrended time series

data. Because the data were noisy, a digital filter was applied to the data before iden-

tifying peaks, to remove unwanted high-frequency noise components from the signal.

The data were filtered with MATLABs filtfilt routine, using a third-order Butterworth

digital filter. The filtfilt routine filters the data twice, in the forward and then the

reverse time direction, and in this way avoids any distortion of the signal in time.

Eliminating such phase distortion was important for our purposes.

Having selected a third-order Butterworth filter, an additional parameter that was

required was the cuto↵ frequency, fco, of the filter. High fco filters remove less noise

than low-fco filters, so giving a tighter fit to the data. From our observations of data

fits, we found that fco values between 0.1 and 0.2, representing between 10% and 20%

of the Nyquist frequency, generally yielded good fits to the original data. To select

the appropriate fco value within this range, we observed that peaks of large amplitude

and a sharply peaked profile were better fitted using a tight fit (fco = 20%) whereas

smaller-amplitude, broader peaks were better approximated using a looser fit (fco =
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10%). Criteria were then set for using one of three filters: F1 (loose fit, fco = 10%); F2

(medium fit, fco = 15%); F3 (tight fit, fco = 20%). The full logic of the fitting process

used is outlined below, and an example of the final outcome of this procedure is given

in Fig. 4.6(a), for a single pixel within the detached leaf presented in Fig. 4.4(a).
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Figure 4.6: (a) Locally filtered data and corresponding peak location using three se-
lected digital filters: blue, luminescence data (baseline-detrended); red, data filtered
with filter F3 (20% fco); green, data filtered with filter F2 (15% fco); cyan, data fil-
tered with filter F1 (10% fco). (b) ‘Pixel problem map’, here showing the location of
pixels that contain one or more peak-to-peak times < 15h. (c) Peak locations for ex-
ample ‘problem’ pixel. Here, the sixth peak is clearly erroneous and was subsequently
removed. Leaf: Detached, LL conditions. (DB denotes baseline-detrended data).
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Method I: Used for all constant light (LL-LL) data.

1. Baseline-detrended data were filtered using filter F1.

2. Peaks in these filtered data were located using MATLABs findpeaks.m func-

tion, with minimum peak height threshold set to the mean value of the baseline-

detrended data (approximately zero).

3. Two characteristics of the data around each peak were then used to alter the used

fit and therefore refine the peak location:

• Peak signal size factor (SSF), which we defined as the sum of absolute data

values within a 24-h window around the peak.

• Peak sharpness factor (SHF), which we defined as follows. Data values in a

window extending 5 points on either side of the peak were normalised so that

the peak height was set to 1. The SSH was then defined as the minimum of

[(1� h1), (1� hend)], where h1 is the normalised height of the first point in

this 11-point window, and hend is the normalised height of the last point in

this window. An SSH value close to 1 indicates a sharp peak, and a value

close to 0 indicates a broad peak.

The refinement process then proceeded as follows:

1. If the oscillation was of very large amplitude (SSF> 104) and su�ciently sharp

(SHF > 0.25), filter F3 was applied to the data in this 24-h window and peaks

in the window were located. If only one peak was found within the window, the

F3 fit was retained and its peak time used. If more than one peak was found

using this tight fit, the F3 fit was discarded and this process was repeated using
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filter F2. Again, if more than one peak was found by using this medium fit, the

original F1 fit was selected.

2. If the oscillation was of medium amplitude (104 > SSF > 4⇥103) and su�ciently

sharp (SHF> 0.25), filter F2 was applied to the data in this 24-h window and

peaks in the window were located. If only one peak was found within the window,

the F2 fit was retained and its peak time used. If more than one peak was found

using this medium fit, the F2 fit was discarded and the original F1 fit was selected.

3. If the oscillation was either small in amplitude (SSF < 4⇥ 103) or broad (SHF<

0.25), the original F1 fit was selected.

Method II: Used for data from leaves grown in LL and imaged in lightdark (LD).

1. Baseline-detrended data were filtered using the tight-fit filter F3, because wave

profiles in the LD conditions are typically very sharp.

2. Peaks in these filtered data were located using MATLABs findpeaks.m func-

tion, with minimum peak height threshold set to the mean value of the baseline-

detrended data (approximately zero).

For leaves grown in LD and imaged under LL, one of method I or method II was

used, dependent on the very early-time data features. In some leaves there was evidence

of a very early- time peak, i.e., a synchronised peak during the LD conditions. In these

leaves we used method II, as the tight-fit filter was required to locate this early peak

accurately. In the other LD-LL leaves, whose fitted peaks were all in the LL regime,

method I was used.

Having performed the fitting and peak finding above, the peak- to-peak times for

each pixel were checked against reasonable (15 to 40h) circadian periods. Pixels with
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peak-to-peak times out of this range were highlighted for inspection (Fig. 4.6(b)).

Visual inspection then allowed, for example, manual removal of spurious peaks (Fig.

4.6(c)).

4.3 Loss of Spatial Synchronisation in Leaves without Wn-

trainment (LD ! LL Experiments)

Most circadian studies on seedlings have averaged the luminescence signal across the

whole seedling or leaf, in plants grown under LD cycles and then transferred to constant

light (LL) for imaging. However, the pixel-level analysis here showed that such aver-

aging masks significant heterogeneity (Fig. 4.7). Similar heterogeneity was observed

for multiple circadian clock markers, including GI:LUC (Fig.A.3) and CCR2:LUC (Fig.

A.4) (figures in Appendix A.10).
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Figure 4.7: Expression of CCA1:LUC rhythms in an intact leaf entrained under light-
dark cycles and imaged under constant light. Plants were entrained under LD 12:12
cycles for 12 d and then transferred and imaged under LL conditions. (a) Average
luminescence, detrended, for a CCA1:LUC leaf (Tab. A.2, plant 23); (b) detrended
luminescence for all pixels of the leaf in a. Time is in hours; ZT0 corresponds to
transfer to LL. [Figs. produced by DT and BW and published in [142].]

To assess the spatial organisation of circadian rhythms across the leaf, rhythmic
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Figure 4.8: Spatiotemporal analysis of CCA1:LUC rhythms in an intact leaf entrained
under lightdark cycles and imaged under constant light. (a) montage showing the
spatial pattern of the luminescence in Fig. 4.7(b) (interval between images = 2 h); (b)
data in (a) represented as a montage of the circadian phase (in radians) at each pixel.
Arrow indicates the petiole. Time is in hours; ZT0 corresponds to transfer to LL. [Figs.
produced by DT and BW and published in [142].]

CCA1:LUC luminescence data (Figs. 4.7(b) and 4.8(a)) were processed to identify the

circadian phase at the single pixel level. The calculated phases were used to generate

image sequences, termed phase maps (Fig. 4.8(b)). The circadian period of this leaf

increased in LL conditions (first peak at ZT2, second at ZT28, and third at ZT56,

where time is measured as Zeitgeber time (ZT) in hours since the last dark - light

transition). In a synchronised leaf all leaf areas are expected to be at the same phase

(and hence shown in the same colour) but here (Fig. 4.8(b)), as early as ZT18 there is

clear variation in the colours in the map, indicating a range of di↵erent phases.

A spatiotemporal pattern was clear at ZT48 (Fig. 4.9). Along the midline, the leaf

base phase led the leaf tip by > 1.5h. This loss of spatial synchronisation was also

observed with GI:LUC and CCR2:LUC markers (Figs. A.3 and A.4). The CCA1:LUC
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Figure 4.9: Phase at ZT48 along two central lines. The phase values are at the location
of the pixel values, as shown by the overlaid lines. No coloured square is created for
the uppermost data points, at the leaf petiole. Time is in hours; ZT0 corresponds to
transfer to LL.

marker was used for all further analysis, because its high luminescence signals allowed

the most precise analysis. Tabs. A.1 and A.2 presents an index of all plants analysed.

We analysed these patterns quantitatively by describing the phase ‘coherence’, R

[158, 159], among the leaf oscillators at each time point tk:

R(tk) =
1

N(tk)

������

X

n2Q(tk)

ei✓n(tk)

������
, 8tk s.t.N � 0.99NT . (4.2)

where N is the sample size of pixels and ✓n are the phases of the individual oscillators

within the population. The phase data are defined only between the first and the last

peak time for each pixel, and because these times are di↵erent for di↵erent pixels within
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the array, the size, N , of the set of active pixels, Q, is time dependent. To eliminate

the poorly defined R values in early and late times (when only few pixels are active),

we defined R only for time points where N � 99% (or 95% for a minority of leaves) of

the total number of leaf pixels, NT .

A pictorial representation of the phase coherence is provided in Fig. 4.10; R, takes

values near 0 when phase values of the oscillators are widely dispersed on the unit

circle and near 1 when the phases are tightly clustered or coherent. The equation for

phase coherence, which comes from the definition of the complex order parameter in

Kuramoto’s original model for synchronisation of globally coupled phase oscillators:

R(tk)e
i�(tk) =

1

N(tk)

X

n2Q(tk)

ei✓n(tk), (4.3)

describes the same statistical quantity as the mean resultant length, R, of a population

of circular data [160]; R is a measure of the dispersion of the data and R = 1 � CV ,

where CV is the circular variance.

Figure 4.10: Calculation of phase coherence, R, of the phase vectors projected on the
unit circle. (Left) At a particular time point, three pixels have phase angles ✓1, ✓2, and
✓3. Addition of the vectors and division by n = 3 gives the mean resultant length, R.
In this example R is close to 1, showing that the phases of the three pixels are rather
tightly clustered. (Right) indicates the mean phase at this time point.

As expected, R values for both intact and detached leaves of LD-grown plants
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started close to 1. However, a loss of synchronisation (in terms of the phase coherence)

could be quantitatively observed as R values decreased at various rates after transfer

into constant conditions, with similar behaviour in intact plants and detached leaves

(Figs. 4.11, 4.12 and 4.13 and A.8(b)). The emerging patterns were similar among some

of the leaves. In the examples shown (Figs. 4.12 and 4.13), circadian peaks started first

at the leaf margins (from ZT 46-48) and then spread toward the centre of the blade.

A similar pattern was observed in the luminescence signal by microscopy (i.e., at the

high-resolution level), which we investigate in more detail in Section 4.6. The presence

of spatial patterns strongly suggest that the circadian system is heterogeneous among

CCA1:LUC-expressing cells and that any intercellular coupling was thus insu�cient to

prevent the cellular heterogeneity from desynchronising, to some extent, the circadian

rhythms among cells, within a few days in constant light.
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Figure 4.11: R values for intact plants and detached leaves. Red and green lines
represent plant 3 (LD - LL conditions) and plant 16 (LL conditions), respectively (Tab.
A.1). [Figs. produced by DT and BW and published in [142].]
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Figure 4.12: Phase montage for a CCA1:LUC detached leaf, grown in LD for 21 d and
imaged in LL (Tab. A.1, plant 3); one cycle is 28 h. Interval between two images =
2 h. Time is in hours; ZT0 corresponds to the start of imaging. Arrow indicates the
position of the petiole. [Figs. produced by DT and BW and published in [142].]
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Figure 4.13: Phase montage for a synchronised detached leaf (Tab. A.1, plant 6). The
plant was entrained under LD 12:12 cycles for 21 d and then transferred and imaged
under LL conditions. ZT0 corresponds to transfer to LL. ZT0 corresponds to the start
of imaging. Interval between two images = 2 h. Arrow indicates the position of the
petiole. [Figs. produced by DT and BW and published in [142].]

4.4 Spatial Patterns of Circadian Rhythmicity Vary Among

Leaves (LL! LL Experiments)

To investigate the variety of possible spatial patterns of circadian rhythmicity which

could be expressed in Arabidopsis leaves, CCA1:LUC expression was imaged, and R

values calculated, in leaves of non-synchronised plants that were both grown and imaged

in LL. As expected, these leaves were less synchronised and had a wide range of R

values, which were < 1 but not < 0.4 (Fig. 4.11), whereas R would be 0 for uniformly
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randomised phases. Two LD-grown leaves reached a similar level of asynchrony (R

value) to that of LL-grown leaves within 4 days (Fig. 4.11); the data suggest other

LD-grown leaves could do so within a few more days. Phase maps showed a range

of phases (colours) in LL-grown leaves but their spatial distribution was not random

(Figs. 4.14, 4.15 and A.8(c)).
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Figure 4.14: Phase montage for a CCA1:LUC detached leaf, grown in LL for 21 d and
imaged in LL (Tab. A.1, plant 16); one cycle is 24 h. Interval between two images =
2 h. Time is in hours; ZT0 corresponds to the start of imaging. Arrow indicates the
position of the petiole. [Figs. produced by DT and BW and published in [142].]
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Figure 4.15: Other examples of phase montages for CCA1:LUC detached and intact
leaves. (a) Phase montage for a nonsynchronised detached leaf (Tab. A.1, plant 20).
The plant was grown in LL for 21 d and then transferred and imaged under LL con-
ditions. ZT0 corresponds to the start of imaging. (b and c) Phase montages for two
nonsynchronised intact leaves (Tab. A.2, plants 56 and 58, respectively). Plants were
grown for 12 d and then transferred and imaged under LL conditions. ZT0 corresponds
to the start of imaging. Interval between two images = 2 h. Arrow indicates the
position of the petiole. [Figs. produced by DT and BW and published in [142].]
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4.4.1 Characteristic Length Scale of Phase Coupling

The characteristic length scale at which the intercellular coupling in LL-grown plants

is as e↵ective as environmental entrainment was determined by comparing the local

degree of phase coherence, i.e., in small clusters of pixels, for leaves in non-entraining

(LL) conditions with the global, i.e., whole leaf, degree of phase coherence for leaves in

entraining (LD) conditions. Reference typical R values for leaves in entraining condi-

tions were calculated, both for detached leaves and for leaves from intact plants. For

detached leaves, R-value data within the time window 0 � 36h from plants grown in

LD and transferred to LL were ensemble and time averaged (mean), yielding a value of

R = 0.991 (3 significant figures, Fig. 4.16(b)). For leaves from intact plants two such

reference values were obtained: value I, calculated in the same way as above, i.e., time

and ensemble-averaged R values over 0 � 36 h and across LD-LL leaves, resulting in

the same value, R = 0.991 (3.s.f.); and value II, calculated as the time and ensemble

average over 60 � 76 h and across LL-LD leaves, yielding the slightly higher value of

R = 0.998 (3.s.f., Fig. 4.17(b)).
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(a) (b)

(c)

Figure 4.16: E↵ective length scale of intercellular coupling for phase and period. (a)
Schematic of analysis of LL-grown leaf (detached leaf 16). Pixels (black dots) are
overlaid with two or four representative pixel patches. The pixels in these patches were
then grouped in nonoverlapping clusters of size 1 ⇥ 1 (i.e., single pixel, cyan), 2 ⇥ 2
(green), 3⇥ 3 (blue), and 6⇥ 6 (red); for clarity only one cluster is illustrated in each
patch. (b) Phase coherence, R, as a function of cluster size for three LL detached
leaves (plants 14, 16, and 20). Mean R denotes the time average and <> the ensemble
average (over clusters). Coloured dots correspond to the size of cluster groups as in
(a). Reference R values typical of LD-grown leaves are shown (horizontal lines). (c)
Ensemble (across clusters) mean of sample standard deviation in period (mean peak-
to-peak time) for clusters of varying size, using the same leaves and pixel patches as in
(a,b).

Six leaves from LL-grown plants were chosen for the coupling length-scale study:

plant indexes 4, 16, and 20 (detached leaves) and 37, 46, and 58 (intact plants). For

the detached leaves, pixels within four randomly selected 6 ⇥ 6 patches were used to

represent each leaf (Fig. 4.16(a)). Two patches were used for the smaller leaves of

143



(a) (b)
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Figure 4.17: E↵ective length scale of intercellular coupling for phase and period. (a)
Schematic of analysis of LL-grown leaf (intact plant 58). Pixels (black dots) are overlaid
with two or four representative pixel patches. The pixels in these patches were then
grouped in nonoverlapping clusters of size 1⇥ 1 (i.e., single pixel, cyan), 2⇥ 2 (green),
3 ⇥ 3 (blue), and 6 ⇥ 6 (red); for clarity only one cluster is illustrated in each patch.
(b) Phase coherence, R, as a function of cluster size for three leaves from LL intact
plants (plants 37, 46, and 58). Mean R denotes the time average and <> the ensemble
average (over clusters). Coloured dots correspond to the size of cluster groups as in
(a). Reference R values typical of LD-grown leaves are shown (horizontal lines). (c)
Ensemble (across clusters) mean of sample SD in period (mean peak-to-peak time) for
clusters of varying size, using the same leaves and pixel patches as in (a,b).

intact plants (Fig. 4.17(a)). All of the pixels in these patches were grouped in square

clusters of varying size, 1⇥ 1, 2⇥ 2, 3⇥ 3, and 6⇥ 6, and for each choice of cluster size,

the time and ensemble (across clusters) mean R value was calculated (Figs. 4.17(b) and

4.16(b)). For detached leaves, the cluster length at which intercellular coupling provides

as much phase coherence as environmental entrainment is 3 � 4 pixels, as judged by
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comparison with the reference R value for detached leaves in LD (Fig. 4.16(b)). For

intact leaves, the two LD reference values intersect the local coherence plots at slightly

di↵erent lengths (Fig. 4.17(b)), but the upper bound of 4 pixels again seems reasonable.

We conclude that in both detached leaves and intact plants the length scale at which

coupling is as e↵ective as entrainment is not >1 mm.

Using the same leaves and pixel patches as in the investigation of the characteristic

phase length scale, local similarity of periods was also observed. Here, the sample

SD of periods (mean peak-to-peak times) within each cluster of a particular size was

calculated and then these values were ensemble averaged (i.e., across clusters), yielding

a single value for the typical variation in period at a particular length scale (Figs.

4.17(c) and 4.16(c)). The SD of period increased with cluster size, for all of the leaves.

Although there is clear variation in periods among spatially separate regions in the leaf

(Fig. 4.19), this result indicates that periods are more spatially similar with decreasing

length scale (Figs. 4.17(c) and 4.16(c)).

4.4.2 Peak Firing Maps

To better observe the shape of the traveling waves of CCA1: LUC in LL-grown plants,

image sequences were constructed to map only pixels at the peak of rhythm in two

independent, detached leaves (Figs. 4.18(a) and 4.18(b)). The leaves had di↵erent

patterns: (i) Early peaks started in the middle of the leaf blade and spread toward the

edges (Fig. 4.18(a)) and (ii) early peaks started at the tip of the leaf and spread toward

the petiole (Fig. 4.18(b)). The propagation speeds of the first wave from tip to petiole

were 1.3 mm/h (plant 16, Fig. 4.18(a)) and 1.8 mm/h (plant 20, Fig. 4.18(b)). These

spatial patterns of peak firing were sustained over four cycles, indicating a degree of

stability over time.
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Figure 4.18: Peak firing patterns for two independent CCA1:LUC detached leaves (Tab.
A.1, (a) plant 16 and (b) plant 20) grown and imaged in LL. Black dots represent the
leaf areas peaking at the time of the picture. Interval between two images = 40 min.
[Figs. produced by DT and BW and published in [142].]

4.4.3 Mean Period Patterns

The firing patterns in Fig. 4.18 could be linked to maps of the mean circadian period.

For leaves grown and imaged in constant light conditions, mean period times were

calculated per pixel as the sample mean of peak-to-peak times. This method was

attempted for those leaves that provided good enough quality of data to allow phase

and R value calculations. The mean periods and their sample SDs for the detached

leaf featured in Figs. 4.4(a), 4.4(b) and 4.5(b) (plant 20) are shown in Figs. 4.19(g)

and 4.19(h). For those leaves with period estimates from only two cycles, the range in

the periods was calculated as a simplistic way of measuring data spread in place of SD.

Note that SDs in the periods do not account for error in the process of locating data

peaks.
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The mean period was shown to be lower in the areas where the peaks started (period

⇡ 22.5 h) and higher in the regions that the wave reached last (period ⇡ 24.5 h) (Figs.

4.18(a), 4.18(b) and Fig. 4.19). The calculated periods are also locally correlated

(Figs. 4.17(c) and 4.16(c)). To investigate the range of spatial patterns among plants,

heterogeneity in the mean period was compared among 34 leaves (10 detached and 24

intact) grown and imaged in LL. The period patterns of 14 leaves fell into three groups

(Tabs. A.1 and A.2): i) Higher period at the leaf margins (on one side or all around

the leaf), sometimes with a slight vascular pattern of increased period: 2 intact leaves,

6 detached leaves (including plant 16; Figs. 4.14 and 4.19(e), 4.19(f). ii) Higher period

in the central region of the leaf: 4 intact leaves (including plant 56; Fig. 4.19(a), Fig.

4.19(b)). iii ) Higher period toward the petiole: 1 intact leaf (plant 58; Figs. 4.19(c)

and 4.19(d)) and 1 detached leaf (plant 20; 4.19(g) and 4.19(h)). Of the remaining

leaves, 10 had only one circadian cycle with good quality data over the majority of the

leaf and 10 had highly variable periods in some or all of the leaf, so the mean periods

gave no useful conclusions. Although phase di↵erences within a leaf could be large (up

to the uncharacteristically high value of 17 h in plant 12), leaves never had spatially

randomised phases (R ⇡ 0), consistent with a role for intercellular coupling in limiting

the extent of asynchrony. The range of R values and spatial patterns of rhythmicity also

suggest a dynamic system, rather than a static, spatial pattern of circadian properties

among the cells of the leaf.
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Figure 4.19: Mean period and SD for intact and detached leaves grown and imaged in
LL. (a and b) Mean period (a) and range of values (b) for an intact leaf [Tab. A.2,
plant 56 (number of periods, n = 2)]. (c and d) Mean period (c) and SD (d) for an
intact leaf [Tab. A.2, plant 58 (n = 3)]. (e, f, g, and h) Mean period (e and g) and SD
(f and h) for detached leaves [Tab. A.1, plants 16 (n = 3) and 20 (n = 3), respectively].
Note that only the first three periods were used as these were common to all pixels in
the array.
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(a) (b)

Figure 4.20: (a) Longest and shortest period pixels for a detached leaf (Tab. A.1, plant
16). Min period pixel (x, y) = 19, 27 denoted by white o, left, and blue line, right.
Max period pixel (x, y) = 1, 10, denoted by *, left, and red line, right. (b) Longest
and shortest period pixels for a detached leaf (Tab. A.1, plant 20). Min period pixel
(x, y) = 1, 28 denoted by o, left, and blue line, right. Max period pixel (x, y) = 8, 45,
denoted by *, left, and red line, right.

4.4.4 Period Trends

Temporal trends in the period (peak-to- peak) times were investigated for the same six

LL-grown leaves as in the investigations of characteristic length scale and local similarity

of period. Pixels that gave a period profile reasonably consistent with a simple linear

regression (i.e., R2 > 0.5, Fig. 4.21) exhibited period increases or decreases or, in a

small minority of cases (3.7%), no period change. Of the subset of pixels with R2 >

0.5 in all six leaves, we tested the mean absolute change in the period length, which

was found to be |0.65| h per cycle. Across the six leaves, no pixel changed period by an

average of >2.67 h per cycle, although this was an uncharacteristically high value; in

four of the six leaves, the maximum period change per cycle was not >1.67 h per cycle

on average. These slowly rising or falling periods would progressively alter the spatial

phase patterns over longer timescales than our sampling times. Examples of the time

series which exhibit period lengthening and period shortening for the leaves in 4.21 are

shown in Figs. A.5, A.6 and A.7 in Appendix A.10.
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(a) (b)

(c)

Figure 4.21: Regression slope (estimated linear rate of change of period), a, against

the regression R2 coe�cient for cycle lengths in three leaves. Size of the plot marker

is proportional to the number of pixels with that pair of a, R2 values. For ease of

visualisation, negative period trends (period shortening) are marked green, and positive

period trends (period lengthening) are marked blue. No period trend (constant period)

is marked red.

4.4.5 E↵ect of Amplitude

To consider the e↵ects of amplitude on the R values, the leaf mean phase, �, calcu-

lated in the R-value equation (4.3) was compared with the phase of the single time

series obtained by averaging luminescence across the whole leaf (Fig. 4.22). The lat-
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ter measure incorporates amplitude e↵ects, because pixels with greater signal strength

could dominate the final result. Among our six representative LL-grown plants, ex-

amples were found where the angle � between these two measurements was positive

and in other cases � was negative, with di↵erent behaviour for di↵erent leaves (Fig.

4.22(b)). Thus, neglecting amplitude e↵ects did not introduce a consistent bias in the

description of phase coherence. The whole leaf phase, p, was calculated by averaging

the preprocessed luminescence data across the leaf, detrending and then filtering (with

filter F3), finding peaks and calculating the phase. The angle � was determined

by simply subtracting the mean phase calculated in the R equation, �, from p; i.e.,

� = p � �. The MATLAB function ‘unwrap’ was used to locate and correct jumps

> 2 in � , which occur when the two angles are describing di↵erent circadian cycles.

(a) (b)

Figure 4.22: E↵ects of amplitude on the phase measure. (a) Plot of the mean phase
for plant 16 at t = 54.67 h, as measured by (i) the mean (blue line) of all pixel phases
(black circles), as used in R-value calculations, and (ii) the phase of the (detrended)
mean luminescence (green line), which is a↵ected by the rhythmic amplitude of each
pixel. (b) Plot of the di↵erence in angle, � , between i and ii over time for six
representative leaves (14, 16, 20, 37, 46, and 58). Including the amplitude of each
pixels rhythm (in measure ii) has no consistent e↵ect across leaves.
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4.5 Balance of Internal and External Coupling (LL ! LD

Experiments)

To test how far these spatiotemporal patterns might a↵ect circadian rhythms in nature,

23 intact, LL-grown plants were transferred to LD and imaged in cabinets. Twenty-two

of 23 leaves yielded a good quality CCA1:LUC luminescence signal. The 4 fully anal-

ysed leaves lost essentially all phase heterogeneity within three cycles (ZT72), as they

synchronised with the LD cycle (Figs. 4.11, 4.23, 4.24, and A.8(d)). The remaining

18 leaves exhibited complex multi-modal expression patterns during synchronisation,

due to the variable starting phase and the acute light induction of the CCA1: LUC

reporter, which hampered phase analysis. However, 16 showed near-complete synchro-

nisation within four LD cycles, as judged by visually synchronous final peaks in the time

series (Fig. 4.24). Thus, the spatiotemporal circadian patterns of leaves in constant

light are rapidly erased by entrainment to the external light/dark cycle.
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Figure 4.23: Resynchronisation of a nonentrained leaf. Plant 31 (Tab. A.2) was grown
under LL conditions for 13 d and transferred into LL and then LD for imaging. (a)
Luminescence for all pixels, detrended for the CCA1:LUC leaf. (b) Montage of the
detrended luminescence, interval between two images = 2 h. Time is in hours; ZT0
corresponds to start of imaging. Arrow indicates the position of the petiole. [Figs.
produced by DT and BW and published in [142].]
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Figure 4.24: Phase montage and luminescence for CCA1:LUC leaves grown under con-
stant light conditions and imaged in lightdark cycles. (a) Phase montage for plant
31 (Tab. A.2). Interval between two images = 2 h. (b) Luminescence for all pixels,
detrended, for intact leaves. Plants 28, 29, 30 and 32 (Tab. A.2) are indicated; other
plants are not included in Tab. A.2. All plants were grown under LL conditions for 13
d and imaged under 24 h of LL conditions and 96 h of LD cycles. Time in hours, ZT0
corresponds to transfer to imaging. [Figs. produced by DT and BW and published in
[142].]
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4.6 Local Variations from Macroscopic Phase Waves

By examining circadian luminescence at di↵erent areas in leaves we have investigated

Arabidopsis circadian rhythms at a resolution not typically considered. However, each

of the individual ‘oscillators’ in the leaf arrays, as described by a single pixel of the

‘cabinet images’, comprises at least tens, if not hundreds, of cells. In our consideration

of coupling length scales thus far, the leaf has been viewed primarily as a continuum

of similar cells, from which an emergent macroscopic (i.e., whole leaf level) phase wave

is observed. How this wave emerges from interactions between single cells is less clear

from the analysis. There are a number of candidates for intercellular coupling, but

the connection mechanism for circadian dynamics is still unclear. To extend state-of-

the-art Arabidopsis models [87] to meaningful spatial models with cell communication,

some knowledge of the biochemical signal will be vital. However, in the absence of

knowledge of the communication mechanism, we can still make some advances into

early suggestions for the models.

Whatever the biochemical chemical signal involved in communication, a vital start-

ing consideration for any model of circadian phase waves in leaves, which we believe

exist through an interaction of cell autonomous rhythm and intercellular coupling, is

whether the assumption of a continuum of similar cells is appropriate. Fukuda and

others [156] argued the case for two types of cell, main lamina mesophyll cells and cells

in the veins, with a phase delay observed in the veins. From this, they developed a

coupled phase oscillator model comprised of one layer of mesophyll cells and one layer

of a simple vein structure (in the shape of a + sign to describe the main vein and one

trans vein). We have observed some cases of a di↵erence in the behaviour between

cells within vasculature and lamina regions, in both mean period (suggestion of longer
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periods in veins in Fig. 4.19(g)) and phase (suggestions of a delay in the central vein in

Fig. 4.18(b)), but clear evidence of a general delay in all vein cells was not found using

the resolution provided in the cabinet images. Further, the di↵erences in behaviour

between vein and mesophyll cell types that we have observed have only been in the

detached leaves - this is likely because the detached leaves are older and larger, there-

fore the resolution is greater, but alternatively the communication system in each case

could be profoundly di↵erent.

Fortunately, we also have data from high resolution microscope images, which we

have been able to use to probe the question of whether there is indeed a qualitative

di↵erence among the rhythmic properties of vein and mesophyll cells.

(a) (b)

Figure 4.25: Comparison of scales in the microscope data (a) and cabinet image data
(b). [Fig. (a) produced by BW and published in [142].]

The resolution of the microscope images of intact plants is 1024 ⇥ 1024 pixels - a

dramatic advance on the resolution obtained for intact plants in the cabinet images.

For images of intact leaves in the cabinet setup, which were no larger than 32 ⇥ 32

pixels, this means that 1024 high resolution pixels are contained within a single low

resolution pixel. Any description of the phase of the oscillators at the low resolution is

still an average over a large ensemble of cells, and certainly an average over di↵erent
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cell types.

4.6.1 Investigation of Di↵erent Spatial Scales of Dynamic Operation

from Microscope Images

We investigated microscope data for a single leaf (Fig. 4.25(a)) at two di↵erent spa-

tial scales to try to determine any di↵erences in the phase dynamics among vein and

mesophyll cells. This leaf was grown and imaged in constant light conditions. While

these data are very rich in spatial resolution, only two full circadian periods were avail-

able for this leaf. New microscope data of circadian luminescence in other leaves are

currently being collected, and of these some have given clear luminescence signals for

4� 5 days. Therefore, we provide a methodology here which we hope can be pursued

and strengthened with the forthcoming longer data.

To make connection with the earlier work, we considered the data of the whole leaf

at a ‘low resolution’ spatial scale, by compressing the full 1024 ⇥ 1024 into 32 ⇥ 32

data. This was achieved by first removing solar cosmics from the 1024 ⇥ 1024 data and

then averaging the time series in space, so that pixel (x, y) in the low resolution image

comprised the average of the time series [32(x�1)+1 . . . 32x, 32(y�1)+1 . . . 32y] from

the full high resolution data. We observed that the signals were of very good quality

across the leaf for the two periods of data collected and so instead of the involved

procedure of detrending and filtering the data around the peaks based on features of

the detrended signals, we simply filtered all of the data using the tight fit digital filter

(F3) to determine the peaks. Further, we used cubic splines to interpolate the data

and achieve greater time resolution for the peak finding; the reason for this step will

become apparent.

Having determined the peaks from the time series, we performed the same analysis
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Figure 4.26: Phase montage for the nonsynchronised intact leaf shown in Fig. 4.25(a),
at a low resolution level (32 ⇥ 32 pixels). The plant was grown and imaged under LL
conditions. ZT0 corresponds to the start of the imaging. Interval between images = 2
h. Arrow indicates the position of the petiole.

as before for determining the spatial phase wave at this spatial resolution, and found a

spatial wave propagating from the tip of the leaf towards the petiole and also towards

the leaf edges (Fig. 4.26). The phase coherence among the oscillators at this spatial

level is quite high (R ⇡ 0.9) and remains constant over the two periods for which data

was collected (Fig. 4.27). This is reflected by a relatively stable phase wave in these two

periods (Fig. 4.26). Because only two periods are available for this leaf, this behaviour

samples from the dynamics in a wider time window which could be quite di↵erent.

We then wished to compare the results from data obtained at a higher spatial

resolution. For the high resolution comparison, we chose not to use the full available

resolution (1024 ⇥ 1024) but rather performed the same spatial averaging process as

before but for a target image size of 256⇥ 256 pixels. As well as making further analysis

more computationally feasible, this level of resolution allowed both clear definition of

the vasculature and also a high signal quality in each of the pixels. We used the same

simplified time-filtering and peak finding process for the time series in the 256 square

array to determine spatial phase wave propagation (Fig. 4.28). Comparison with Fig.
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Figure 4.27: Phase coherence (R value) over time for the intact leaf in Fig. 4.25(a), as
obtained from the low resolution 32⇥ 32 data and the high resolution 256⇥ 256 data.

4.26 shows that the same phase wave from central distal point in the leaf to the petiole

and leaf edges is observed, but there are some suggestions of local deviations from

that phase wave (e.g. at time t = 28h). We expected that the R-value for this high-

resolution data would be similar to that for the low resolution image, and indeed there

is very little di↵erence between the values for low and high resolution data (Fig. 4.27).

This validates that the previous analysis of rhythms from cabinet images captured well

the phase coherence among all leaf oscillators. However, there are some important

subtleties in the phase dynamics which can only be observed at the high resolution

level, and these are less obvious from observation of the R values alone.

4.6.2 A General Methodology for Determining High Resolution Con-

clusions

Because the macroscopic phase wave dominates the behaviour in the leaf, it is at first

glance di�cult to conclude whether the phase lags in the vasculature, as has been

previously proposed [156]. It is precisely the use of two spatial scales which we propose

as a methodology to examine the fine details of phase interactions.
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Figure 4.28: Phase montage for the nonsynchronised intact leaf shown in Fig. 4.25(a),
at a high resolution level (256 ⇥ 256 pixels). The plant was grown and imaged under
LL conditions. ZT0 corresponds to the start of the imaging. Interval between images
= 2 h. Arrow indicates the position of the petiole.

All of the phase information used throughout our analysis is contained in the timing

of peak circadian expression. For the data used here there are three peak times (two

periods) available in each pixel. In Fig. 4.29(a) we show the time of expression of the

first peak across the leaf from low resolution (32 ⇥ 32) data; the equivalent from the

high resolution (256 ⇥ 256) data is shown in Fig. 4.29(c). To compare the di↵erence

in timing between the two resolutions, and therefore focus on the local details of peak

timing, we need to subtract the ‘low-resolution’ peak times from the ‘high-resolution’

peak times. As a precursor to this step we linearly interpolated in space the 32 ⇥ 32

peak-time data (Fig. 4.29(a)) onto a 256⇥ 256 grid (Fig. 4.29(b)). Fig. 4.29(d) shows

the result of subtracting the low resolution data in Fig. 4.29(b) from the high resolution

data in Fig. 4.29(c). It appears that there is a spatial pattern in the local details of

peak expression (Fig. 4.29(d)) which corresponds rather well with the vasculature (Fig.

4.25(a)). However, we note that this distinction is enabled by the fact that we earlier

time-interpolated the time series data of each pixel; the di↵erence in timings between

phase leaders (cold colours) and phase laggers (hot colours) in the first peak is only
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just detectable at the experimental time resolution available (�t = 0.67h). We return

to this point below.
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Figure 4.29: Plots of the first peak times across pixels in the (a) 32⇥32 resolution data;
(b) linearly interpolated in space 32⇥ 32 resolution data and (c) 256⇥ 256 resolution
data. Figure (d) shows the di↵erence in timing of the first peak at the high resolution
and low resolution levels, i.e. (c) - (b), revealing a spatial pattern. Times on colour
bars are shown in hours.

To investigate further the details of peak expression we determined the vasculature

at the 256⇥256 level using two methods based on the level of expression across the leaf.

It is clear in Fig. 4.25(a) that the size of the signal is larger in the veins (indeed that

is why we can see the vasculature in the microscope image). The level of expression is

therefore a natural candidate for detecting edges between vein and mesophyll cells. We

used a formal edge detection technique (the ‘Canny’ method from MATLAB’s Image
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Processing Toolbox) to find edges based on the expression level (Fig. 4.30(a)), and

validated this by grouping cells into two types according to a threshold luminescence

level (Fig. 4.30(b)). This process allowed us to test the hypothesis that peak expression

in the veins might lag that in the nearby mesophyll cells by selecting three pixels; one

within the vein region and two in mesophyll regions on either side of that vein (Fig.

4.30(b)). If there were no di↵erence between mesophyll and vein expression timing we

would expect the expression in these cells to follow the global (coarse grained) phase

wave expression. Instead, we see in Fig. 4.30(c) that expression in the vein region,

especially at the second peak (Fig. 4.30(d)), slightly lags that of the neighbouring

mesophyll cells.

Figs. 4.31(a), 4.31(c) and 4.31(e) show the result of the subtracting procedure for

all three sets of peak expression times. While leading and lagging cells do seem to be

arranged according the vasculature, it is only really valid to draw conclusions about

this on the experimental resolution time scale �t (and not on the finer timescale of

the interpolated data). Therefore we highlight in Figs. 4.31(b), 4.31(d) and 4.31(f)

those pixels which ‘lead the global phase wave’ of Fig. 4.26 by 1
2�t (coloured red) and

those pixels which ‘lag the global phase wave’ by 1
2�t (coloured blue). In these figures

we overlay the vein structure and it is thus clear that blue pixels (phase laggers) often

correspond to regions within veins and that red regions (phase leaders) often correspond

with lamina regions, especially in the second and third peak expression times. The time

separation of expression is short, however, and it is certainly not true to say that all

cells in the vasculature are expressed after all mesophyll cells. Rather it is the case that

the coarse grained phase wave dominates the timing of expression, and that within this

phase wave there are local di↵erences which seem to correlate well with cell type.

What this means for modelling purposes is that a) mesophyll cells and vein cells
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should not be considered to be the same amplitude (since we can see the vasculature,

so vein cells have higher expression) and that b) coupling between vein and mesophyll

cells may di↵er from coupling within these cell types, such that the circadian timing

of the two cell types di↵ers slightly. Using the same methodology developed here for

the high resolution, longer time microscope data now being collected will allow the

findings here to be validated. It will be particularly interesting to see whether there

are di↵erences in the long term period trends of vein cells and mesophyll cells. We

suggest that it would be interesting to also perform the same analysis for a detached

leaf at the high resolution level to determine whether there is a qualitative di↵erence in

the coupling between vein cells and mesophyll cells when vein transport from the rest

of the plant is cut.
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Figure 4.30: Investigating whether expression might lag in vein cells. (a) Leaf veins
determined by edge detection using the ‘Canny’ method of MATLAB’s Image Process-
ing Toolbox, (b) Grouped mesophyll (green) and vein (blue) cells, as determined by
threshold luminescence levels. Three pixels are highlighted: Mesophyll Pixel 1 (black
square); Vein Pixel (white circle); Mesophyll Pixel 2 (red square), (c) Circadian expres-
sion of the three pixels in (b), (d) Zoomed view of the second peak showing a slight
phase delay in the vein cell, which is spatially located between the two mesophyll cells.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Finding cells which lead and lag the global phase wave. (a,b) expression
at the first peak; (c,d) expression at the second peak, (e,f) expression at the third
peak. (a,c,e) Local details of phase expression determined by subtracting the peak
time obtained from the coarse grained (32 ⇥ 32) data from the peak time obtained
from the high resolution data (256⇥ 256). (b,d,f) Pixels which ‘lead’ the global phase
wave by 1

2�t (half an experimental-resolution time point) (red) and pixels which lag
the global phase wave by 1

2�t (blue), with overlaid vein structure as determined from
the ‘Canny’ edge detection method. Time on colour bars are shown in hours.
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4.7 Discussion

Our research group developed a protocol to image LUC reporter expression in young

Arabidopsis leaves over several days and analysed spatio-temporal patterns of clock

gene expression under di↵erent and changing light conditions. It is likely that the data

come from multiple di↵erent types of cell, with mesophyll cells the most numerous.

From imaging the circadian rhythms of this combination of cell types, we observed

an increase in phase heterogeneity among the cells just 48 h after transfer from light-

dark entraining cycles into constant light conditions. This extends recent work which

found desynchronisation between leaf stomatal guard cells and mesophyll cells after 7

days in constant light [161]. In constant light conditions, previous whole plant-level

measurements often showed damping in the amplitude, and previous circadian rhythm

research has proposed that a part of this damping is from increasing phase hetero-

geneity among the cells [161, 162, 163]. Population-level damping as a result of single

cell desynchronization has also recently been shown from simulations of a stochastic

version of the Arabidopsis clock model [164]. To assess the maximum extent of phase

heterogeneity in the leaf, we measured leaves which were grown and imaged exclusively

in these non-synchronising, constant light conditions. Over the measured time window,

we found that the circadian luminescence was expressed in sustained spatio-temporal

phase patterns characterized by a range of phase coherence values (R = 0.4�0.95); this

is a larger range than seen in previous measures of phase coherence in SCN slice cul-

tures, which maintained a rather constant level of R ⇡ 0.85 [103]. Intercellular coupling

among the plant cells was evidently too weak to maintain synchronisation across the

leaf, but was strong enough to avoid phase randomisation and to promote spatiotem-

poral waves of circadian gene expression. This result is consistent both with the earlier

166



studies arguing that plant cells were (at least partially) uncoupled [95, 154, 155, 161]

and with results that indicated a detectable coupling [156]. Regional phase di↵erences

have been documented in the SCN [100, 102] but have rarely been investigated in the

leaf, except for the stomatal guard cells [161] and proposals of longer periods in the

leaf vasculature [156, 165]. Our analysis of R values, phase patterns, peak firing, and

mean period maps revealed substantial variability among the set of leaves tested under

constant light conditions, with at least three broad spatiotemporal patterns. The time-

varying phase coherence of individual leaves (Fig. 4.11) suggests that the interaction

of heterogeneous, stochastic circadian oscillators through intercellular coupling could

generate a range of spatiotemporal patterns over time within a single leaf, and this was

supported by the presence of di↵erent period trends of cells within the same leaf. With

this view, the set of leaves and their time-windows measured in this study likely give

just a sample of all of the possible leaf phase patterns, such as spiral wave phenomena

[156] that we did not observe in any of the leaves.

The mechanisms of clock heterogeneity and intercellular coupling that underlie the

observed patterns remain unclear, although our analysis of short time-series data at

the microscope resolution level suggests that there may be small di↵erences in the

timing of expression of vein and mesophyll cells. We suggest that our methodology

developed here, based on defining two functional spatial-scales, could be applied to the

leaf data which is currently being collected in the research group to validate this finding.

Several signaling components are known to move through the leaf and to alter the

circadian clock, including the phytohormones auxin and cytokinins [166, 167]. These

species are possible candidates for the intercellular coupling between cellular clocks

which could promote wave-like propagation of circadian phase at the rates observed.

A combination of experimental uncoupling assays, as demonstrated in the SCN [104],
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and models of arrays of circadian oscillators [103] will be essential to further investigate

these hypotheses and to test their relevance to any natural condition in the leaf. Such

cellular uncoupling could be achieved in two main ways. A simple method would be to

physically cut the leaf at certain points to remove direct communication between cells on

either side of the incision. Careful experimentation would be needed to ensure that plant

tissue is able to survive such intervention. A second, and perhaps more enlightening

method, would be to place droplets of signalling inhibitors (e.g., auxin inhibitors) at

individual locations on the surface of the leaf. Loss of coherence to some measurable

extent among oscillators near the droplet would indicate disruption due to the particular

inhibitor and give much needed insight into the method of communication between

cells. Unfortunately, first e↵orts in the group to apply small doses of such chemical

inhibitors within droplets of inert lanolin have proved lethal to the leaf’s survival, and

so more research is required to determine whether a non-lethal but e↵ective dose can be

administered. Our results from leaves grown and entrained to natural light-dark cycles,

as well as from leaves transferred to these entraining conditions, show that light-dark

signals are more important than intracellular coupling signals in synchronising the

clocks of leaf cells. In these natural conditions some cell types will have less direct

access to light and these may still entrain to chemical proxies for light (such as sugars)

that are communicated among cells [168, 169]. It is possible that some plant cells

beyond the range of even indirect light signals rely on intercellular circadian coupling,

of the type we measure here among leaf cells.
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Chapter 5

Summary

Proponents of rate equation models of biochemical oscillations have argued that every

model is necessarily an abstraction of reality, and that one should ‘avoid complicat-

ing from the outset the analysis of systems whose kinetics is already complex’ [1].

However the argument of what constitutes a biochemical oscillation has changed by

virtue of recognising phenomena such as noise induced oscillations and cellular coupling-

sustained oscillations, which then highlights the importance of including these ‘details’

in the model. Increasingly there is a drive to understand how system-wide oscillatory

behaviour arises from dynamic coupling between noisy oscillations in single cells. The

work in this thesis contributes to a fuller understanding of both the roles of stochastic-

ity in single cell oscillations and the intriguing complexities observed in non-spatially

uniform biochemical oscillations in multi-cellular organisms.

In a stochastic world, oscillations with perfectly regular phase and amplitude are

not achievable. While some researchers focused on the ability of biochemical oscillators

to be robust to intrinsic noise stemming from the random nature of reactions in cells,

others realised that such randomness could be a ‘force for good’ in terms of its ability to
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sustain oscillations which would otherwise die out. In mathematical terms, such noise-

induced oscillations have been understood in terms of noise smoothing the transition

from (deterministic) limit cycle behaviour to stable steady state behaviour, such that

when the noiseless (deterministic) system exhibits a steady state, the noisy (stochastic)

system exhibits sustained oscillations. These noise-induced oscillations have commonly

been identified by a peak in the fluctuation power spectrum at the dominant frequency,

and near the Hopf bifurcation the frequency is closely approximated by the imaginary

part of the complex eigenvalues found through deterministic linear stability analysis. A

central message in our work is that such a power spectrum peak can exist in a system

which does not have complex eigenvalues, i.e. a stable node, a result which seems

counterintuitive from a deterministic viewpoint given the lack of an obvious resonant

frequency. We have gone on to explore these far-from-Hopf noise-induced oscillations

in great depth in this thesis.

In three simple biochemical models, which are abstractions of intracellular auto-

catalysis and dimerization processes, we used the linear noise approximation to identify

the presence and quality of such stable node oscillations induced by internal noise, and

verified the fluctuation spectrum peak by means of stochastic simulations. Notably,

these models were very simple in their structure, featuring only elementary reactions

between two species, and two of the models did not exhibit deterministic limit cy-

cle behaviour for any choice of parameters. To understand the changes in oscillation

quality brought about by changes in the kinetic parameters, we developed a novel Q-

factor (Q99%) to describe these low-quality stable node oscillations. This technique

was validated by using standard LTI filter theory whereby the parameterised biochem-

ical oscillators were treated as a component within a filtering system. This validation

method is in fact more than a convenient mathematical technique; by demonstrating

170



that our stable node oscillators can enhance the quality of other oscillatory signals we

also infer their potential importance as constructive modules in a coupled oscillatory

biochemical system. Indeed, although the stable node NIO were always of low qual-

ity for two species systems, we found that this was not true in a higher dimensional

stable node system of coupled Brusselator modules, showing that the presence of com-

plex eigenvalues is not required for visually coherent and sustained oscillations in a

noisy biochemical system. Our investigation of these coupled stable node modules was

limited to a cascade system of uni-directionally coupled similar modules; further work

is required to understand the functionality of stable node modules in heterogeneous,

multi-directionally coupled systems.

The simplest stable node NIO in systems with two species prompt interesting debate

around what it means to have an oscillation. There is no doubt that there is a clear

peak in the power spectrum, but we also showed that, compared to time series data

from near-Hopf NIO, stable node oscillations were far less visible by the eyeball norm.

By performing running averages of a small number of time series (thereby filtering

some of the higher frequency noise) we were able to visualise stable node oscillations

at the dominant frequency, and to show that the oscillation in the time series was

clearer for higher Q99% stable node NIO. However, we must be clear that the ability of

even the highest quality two-species NIO to provide functionality as a precise biological

timer with a well-defined period and phase needs to be questioned. Evidently more

advanced methods than mere visual inspection of time series data from simulations of

these stable node oscillators will be required to understand the extent to which two

species stable node NIO can provide useful, rhythmic biological information to the cell.

Having not explored this aspect we highlight this as a central limitation in our research.

The technique of recurrence plot analysis from the literature in dynamical systems has
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been cited as useful for understanding ‘oscillating systems whose oscillations are not

easily recognisable’ [170] and we believe this o↵ers an exciting prospect for aiding the

understanding of our weak stable node oscillations. With this method, recurrences

of the dynamical system in regions of phase space are recorded and mapped onto a

two-dimensional matrix, providing an information-rich visual representation. Further,

formal methods associated with recurrence plots have been developed for quantify-

ing the extent of periodicity, such as the normalised recurrence period density entropy

(RDPE), which aims to provide a ‘straightforward sliding scale’ between periodicity

(H = 1) and aperiodicity (H = 0). If our Q99% measure, derived quickly from the

LNA, was found to be directly related to the RDPE measured from simulations then

this would be a significant further validation of the work.

In Chapter 3 we investigated the e↵ect of burstiness in the production of proteins

on the oscillatory properties of downstream pathways, which is relevant for models of

gene expression and of vesicular transport. In essence, this work combined our theory

on stable node oscillations with the notion that in a stochastic framework the reaction

Ø ! A occurring at rate k is an entirely di↵erent event from the reaction Ø ! mA

occurring at rate k/m. We developed a theory for comparing non-bursty input and

bursty-input stochastic models and identified a parameter to describe the extent of

burstiness to linear noise approximation level. This burstiness parameter was found to

act as a control parameter for the presence and quality of the oscillations, and since

the burstiness it describes in terms of gene expression can be physically managed by,

for example, small RNAs a↵ecting mRNA degradation rates, this is an interesting and

important new candidate for the control of oscillations in the cell. In our theory we were

able to develop necessary conditions on the model parameters which indicated whether

the model was susceptible to burstiness in promoting or destroying a noise-induced
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oscillation. Through extensive parameter scanning using the linear noise approximation

we tested and confirmed that in general these necessary conditions were powerful in

their ability to predict when a biochemical model could indeed exhibit the phenomena

of bursting induced oscillations and/or bursting destroyed oscillations. We used this

combination of theory and numerical parameter scans to draw out some general rules

for the e↵ect of burstiness on noise induced oscillations in two species systems. Firstly,

we found that when burstiness was present in the input to both species a wide range

of e↵ects on oscillatory properties were possible, highlighting that weak NIO in cellular

processes could be strongly influenced by burstiness. Secondly, we found that the sign

structure of the Jacobian of the deterministic rate equations was an important feature

in determining whether burstiness induced oscillations could be promoted or destroyed.

We highlight that in this work on burstiness the same limitations as in our previous

work exist, in terms of our emphasis on a peak in the fluctuation power spectrum in

identifying a noise induced oscillation and in our lack of an in-depth comparison with

advanced time series analysis methods for verifying the quality of rhythmic information.

Again, we suggest that this would be an excellent line of work to advance our research.

In Chapter 4 we addressed the open question of the role of intercellular coupling in

plants by investigating the expression of the circadian gene CCA1 in Arabidopsis leaves.

Given that detailed circadian modelling in Arabidopsis has drawn upon data from

whole seedlings, one objective was to understand the extent to which this was a valid

approach given the possible heterogeneity in rhythmic expression amongst single cells.

Further, our work sought to understand the relative strength of intercellular coupling

verses coupling between cells and the entraining signal, by means of observing changes

in the spatial expression when leaves were transferred between di↵erent entrainment

conditions. Further still, our work sought to understand whether intercellular coupling
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is arranged in leaves such that circadian rhythms are expressed in a consistent spatial

pattern and to answer this question required the analysis of a large data set of leaves.

To analyse the luminescent circadian data expressed across leaves, we developed a

simple method based on filtering and peak picking to assess the phase of a cluster of

single cell oscillators represented by a single pixel in the spatial array. This method

allowed a simple quantification of the phase coherence, R, of oscillations across the leaf

under di↵erent entrainment conditions. We note that analysing short, noisy time series

is a notoriously di�cult problem and we would suggest that a limitation of our work

was in not providing a second method of defining the circadian phase so as to cross-

validate our method. Other suitable approaches include finding zero crossing times of

the baseline detrended signal, using the analytic signal representation based on Hilbert

transforms to define the phase or more advanced methods such as wavelet analysis to

denoise the signal. The latter approach might be particularly useful based on the fact

that generally both the oscillation amplitudes and baselines decreased over the course

of the experiments.

We found that in constant light conditions, sustained but dynamic spatiotempo-

ral patterns were observed across the leaf. The degree of coupling was captured by

the phase coherence of oscillators across the leaf in both intact and detached leaves,

and this was found to be variable both across leaves and over time within individual

leaves. Importantly, coherence levels (R-values) were never less than 0.4, indicating

that phase was never uniformly randomised over the leaf. The variation in R-values

amongst leaves was reflected by variation in the spatiotemporal patterns of expression,

which we studied both by assessing the spread of phase waves across leaves and by

calculating mean periods of clusters of cells across the leaf. Through this we were able

to show that conclusions in plant chronobiology based on a single endogenous circadian
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rhythm across a whole leaf or plant in ‘free-running’ conditions might be failing to ad-

dress important heterogeneity amongst cells. From our investigation of entrained leaves

which were then transferred to constant light conditions, we concluded from both the

spatial patterns which naturally form and the limited decrease in phase coherence over

a few days that coupling amongst cells serves to limit the extent of desynchronisation.

Conversely, the fast transition to spatial uniformity in the reverse experimental condi-

tions (constant light to entrainment) showed that cellular coupling to the entraining

signal dominates intercellular coupling. This point is important in supporting the va-

lidity of using data from whole tissues or whole seedlings to infer single cell behaviour

in entrained conditions. Specifically, under entrained conditions the relatively weak

coupling amongst cells means that rhythms across the whole plant tissue can quickly

become extremely coherent; therefore time series data from the whole tissue is indeed

highly representative of the rhythmic behaviour of single cells in the ensemble. We

have therefore established that the message concerning the validity of using whole tis-

sue data for representing single cell behaviour is strongly dependent on whether the

plant is under entraining or free-running conditions. A further avenue of work that

we would also recommend is to try to draw together any links between the shape of

the waveform from the whole tissue signal and the spatial pattern of expression at a

cell-cluster level. Analysis of circadian data from whole tissue or whole seedling data

typically places great importance on the precise shape of the expression waveform, and

we would suggest that any irregularities in the wave form could be associated with

unusual spatial expression patterns caused by abnormal or defective cellular coupling.

Further investigations within the research group into spatial rhythmicity in leaves

are being conducted with even higher resolution microscope data, and we provided a

starting point for this work by considering the importance of separately considering the
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dynamics in vein cells and lamina cells. The amplitude of oscillations in the vasculature

is evidently larger than in lamina cells and we provided a framework to assess whether

there is also a di↵erence in phase between vein cells and lamina cells by comparing

leaf phases at di↵erent spatial scales. In the single leaf we investigated, there is some

evidence of a short delay of phase in the veins locally, but we were able to conclude that

this local variation is within the global phase wave as observed in the lower-resolution

leaf data of the main study. Indeed, the delay time between peak expression in lamina

and vein cells in this single leaf is so short to be at the limit of what is observable at

the time resolution available. We predict that the same analysis performed in di↵erent

leaves, with sustained oscillations over more periods, will provide a more definite answer

to this question. The result will then guide whether a spatial circadian model, which

was not developed within the timeframe of our work, should comprise two subsets of

dissimilar cells (vein and lamina) or whether a continuum of similar cells would be

su�cient.

In this work we have investigated the roles of intracellular noise and intercellular

coupling separately but it is likely that stochastic and spatial considerations in com-

bination will be necessary to fully understand the emergence of complex rhythms in

multicellular organisms. Indeed, a particularly fascinating avenue of work which we

would have liked to have pursued would be to draw together the stable node oscilla-

tion aspect of our work with our research of rhythms in a real, coupled multi-cellular

system. More specifically, could stable node oscillators really contribute to such com-

plex biological oscillators as the circadian clock? We have explained that the circadian

clock is more than just a rhythmic timer because its complexity enables entrainment

to dawn and dusk in di↵erent photoperiods and also the ability to compensate for

temperature changes. Such complexities are certainly beyond our simple biochemical
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models exhibiting stable noise NIO - indeed, we have highlighted that even their ability

to serve as a precise biological timer is to be challenged. However, it is certainly of

great interest to us to investigate the extent to which these stable node oscillations can

play a constructive role within a multi-cellular array of heterogeneous oscillators. For

example, can an array of mixed strong (near Hopf) and weak (far from Hopf) noise

induced oscillators be coupled in a biologically relevant way such that they produce a

collective rhythm? Such an exciting question could indeed be approached using our

preferred method of the linear noise approximation, as it has recently been shown that

this method is highly suitable for assessing the level of synchronisation amongst cells

in a stochastic framework [171].

Cellular oscillations such as circadian rhythms are necessarily complex because they

need to be both adaptable but also robust to changing external conditions. The em-

phasis to date in plant circadian rhythms has been to ascribe the complexity to the

intracellular working of the clock. We feel that it is important to question whether

such flexibility and complexity could not be emergent from a system involving intricate

coupling between a mix of di↵erent varieties of noisy oscillators. It is clear to us that

a combination of further biological and mathematical research will be required to fully

understand the relative importance of the intracellular mechanisms in noisy, crowded

cellular environments and the extracellular coupling mechanisms in multi-cellular struc-

tures in producing life’s most fundamental rhythms.
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Appendix A

Appendix

A.1 A Simple Example of the Chemical Master Equation

Description of Reactions

Consider the univariate system with reactions Ø ! A,A ! Ø. The stoichiometric

matrix for this system is

S =

✓
1 �1

◆
, (A.1)

with propensity functions

• a1 (nA) = c1: The probability, per unit time, that a reaction of type 1 will occur.

• a2 (nA) = nA ⇥ c2: The probability, per unit time, that a reaction of type 2 will

occur.

In a chemical reaction volume the propensities are better described by the molecule

densities than their absolute number [56], so the functions a(n) may be written ⌦a(e�)

by defining the mesoscopic concentration e� ⌘ n
⌦ . Then, the general univariate CME
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may be written

dp(n, t)

dt
= ⌦

JX

j=1

�
E�S1,j � 1

�
aj(e�) p(n, t), (A.2)

where the step operator Em acts on functions of n with the rule Em (f(n)) = f(n+m).

Applying A.2 to the current example gives,

dp (nA, t)

dt
=
�
E�1 � 1

�
a1 (nA) p(nA) +

�
E1 � 1

�
a2 (nA) p (nA) , (A.3)

the solution of which is straightforward by moment generating functions.

A.2 The System Size Expansion for Multivariate CMEs

The macroscopic rate equation for a multivariate system;

d~�

dt
= S~f(~�), (A.4)

can be written in terms of the vector of the molecule numbers:

d~n⇤

dt
= ⌦Sf(~�), (A.5)

where ~n⇤ is the macroscopic number of molecules.

We recall the equivalent mesoscopic representation; the multivariate Master Equa-

tion:

dp(~n, t)

dt
= ⌦

JX

j=1

 
LY

l=1

E�Slj

l � 1

!
aj

✓
~e�
◆
p(~n, t). (A.6)

The fundamental Ansatz of Van Kampen’s “System Size Expansion”, is that we
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can change the variable from ~n to the variable ~⇠ as follows:

~n = ⌦~�(t) + ⌦
1
2 ~⇠. (A.7)

This says that we expect the number of molecules in the system to be approximately

equal to the macroscopic value ⌦�(t) as obtained from rate equations plus a fluctuation

term which scales approximately with the root of the system size. This rule can be

rationalised by considering a Poisson process, for which the standard deviation of the

fluctuations exactly matches
p
n.

We can rewrite the Ansatz as:

~e� = ~�(t) + ⌦� 1
2 ~⇠, (A.8)

and it is clear that as ⌦ ! 1, this Ansatz predicts that
~e� = ~�, i.e. in the large-

volume limit, the mesoscopic and macroscopic concentrations are equal.

Transformation of the Master Equation

The System Size Expansion converts the mathematically intractable CME in discrete

space ~n (representing the number of molecules), to an approximating linear Fokker-

Planck equation in continuous space ~⇠ (representing the fluctuations around the mean

concentration). While p(~n, t) describes the probability of the system being in state ~n

at time t (conditioned on the system being in some state state ~n0 at time t0), we use

⇢(~⇠, t) to denote the probability that the fluctuation variables are in state ~⇠ at time t

(conditioned on the system being in some state state ~⇠0 at time t0).

Following the derivations in [14, 21, 33] the multivariate Master Equation (equation
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(A.6)) is transformed as follows:

• Left Hand Side :

dp(~n, t)

dt
=

@⇢(~⇠, t)

@t
+

JX

j=1

@⇢(~⇠, t)

@⇠j

d⇠j
dt

. (A.9)

We note that the time derivative of p(~n, t) in the Master Equation is taken with

~n constant, i.e. d~n
dt = 0. Therefore, from equation (A.7) we can write:

d⇠j
dt

= �⌦+ 1
2
d�j

dt
, (A.10)

and equation (A.9) becomes

dp(~n, t)

dt
=

@⇢(~⇠, t)

@t
� ⌦+ 1

2

JX

j=1

@⇢(~⇠, t)

@⇠j

d�j

dt
. (A.11)

• Expanding the Step Operator E: The multivariate operator
QL

l=1 E
ml
l acts on

a function of ~n as follows:

LY

l=1

Eml
l (f(~n)) = f (n1 +m1, n2 +m2, . . . , nL +mL) . (A.12)

If f is a smooth function of ~n, we can replace this discrete operator by a continuous

operator, by means of a Taylor expansion, i.e.

LY

l=1

Eml
l (f(~n)) = f(~n) +

LX

l=1

@f(~n)

@nl
ml +

1

2

LX

l=1

LX

k=1

@2f(~n)

@nl@nk
mlmk + . . . (A.13)

However, a jump of m may cause a large change in f(~n). Intuitively, if we have

a system with the order of millions of molecules of each species, a change of
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1 molecule will have little e↵ect on the reaction propenities, but in a system

of only tens of molecules this might have a considerable e↵ect. Van Kampen’s

transformation of variables formalises this point.

In equation (A.12) a jump of ml in n-space corresponds to a jump of ml⌦
� 1

2 in

⇠-space. As ⌦ ! 1 these jumps in ⇠-space become small. Therefore, when ⌦ is

large, and we work with the fluctuation variable ⇠, the replacement of the discrete

operator with a continuous one can be expected to work well.

We remark here that whether acting upon functions of ⇠ or e�, the continuous

operator is written:

LY

l=1

Eml
l = 1 +

LX

l=1

@

@⇠l
ml⌦

� 1
2 +

1

2

LX

l=1

LX

k=1

@2

@⇠l@⇠k
mlmk⌦

�1 + . . . , (A.14)

which can be explained as follows.

For a univariate system, we write the continuous approximation of the step op-

erator for functions of ⇠ as:

Em(f(⇠)) = f(⇠ +m⌦� 1
2 ) (A.15)

= f(⇠) +
df(⇠)

d⇠
m⌦� 1

2 +
1

2

d2f(⇠)

d⇠2
m2⌦�1 + . . . (A.16)

In equation (A.6) we need to consider how the step operator acts upon the tran-

sition probabilities, which are functions of e�. Recalling equation (A.8),

Em(f(e�)) = f(e�+m⌦�1) (A.17)

= f(e�) + df(e�)
de�

m⌦�1 +
1

2

d2f(e�)
de�2

m2⌦�2 + . . . (A.18)
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We can write

df(e�)
d⇠

=
df

de�
@e�
@⇠

, (A.19)

and from equation (A.8),

@e�
@⇠

= ⌦� 1
2 , (A.20)

so that

df

de�
= ⌦

1
2
df(e�)
d⇠

. (A.21)

Therefore equation (A.17) may be written

f(e�+m⌦�1) = f(e�) + df(e�)
d⇠

m⌦� 1
2 +

1

2

d2f(e�)
d⇠2

m2⌦�1 + . . . (A.22)

Comparison of (A.15) and (A.22) shows that the continuous operator has the

same form when acting upon functions of ⇠ of e�, and it can be written as:

Em = 1 +
d

d⇠
m⌦� 1

2 +
1

2

d2

d⇠2
m2⌦�1 + . . . (A.23)

Finally, returning to the multivariate case, we can write the operator as:

LY

l=1

Eml
l = 1 +

LX

l=1

@

@⇠l
ml⌦

� 1
2 +

1

2

LX

l=1

LX

k=1

@2

@⇠l@⇠k
mlmk⌦

�1 + . . . (A.24)

• Expanding the Propensity Function aj(~�):

Finally, approximation of the propensity function aj(
~e�) by a Taylor series about
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the macroscopic rate equation fj(~�) proceeds as follows [21]:

aj(
~e�) = aj(~�+ ⌦� 1

2 ~⇠) (A.25)

= aj(~�) +
LX

l=1

@aj(~�)

@�l
⌦� 1

2 ⇠l +
1

2

LX

l=1

LX

k=1

@aj(~�)

@�l@�k
⌦�1⇠l⇠k + . . . (A.26)

As ⌦! 1, aj(~�) ⇡ fj(~�), so we can write:

aj(
~e�) = fj(~�) +

LX

l=1

@fj(~�)

@�l
⌦� 1

2 ⇠l +
1

2

LX

l=1

LX

k=1

@fj(~�)

@�l@�k
⌦�1⇠l⇠k + . . . (A.27)

Performing the above transformations and inserting into equation (A.6) yields the

multivariate System Size Expansion.

As with any perturbative approximation scheme the approximation becomes more

accurate with the number of terms one considers. In the System Size Expansion, we can

collect terms of di↵erent orders in ⌦, which provide di↵erent levels of approximations

of the noise. Terms of order ⌦
1
2 on the left and right hand sides of the Master equation

cancel due to the fact that ~� satisfies the macroscopic REs (A.4).

• To Linear Approximation Order, ⌦0:

The volume independent terms ⌦0 o↵er the first approximation of the fluctua-

tions, and by considering only these terms we obtain the Linear Noise Approxima-

tion. These are often the only terms which are considered to describe the noise,

though in recent years there have been notable exceptions which consider higher

orders in the expansion [46, 172]. By considering the LNA terms, the intractable

Master Equation in discrete space is formulated into a linear Fokker-Planck equa-

tion in continuous space. For a multivariate system this linear Fokker-Planck
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equation has the form:

@⇢(~⇠, t)

@t
=
X

i,j

Aij
@(⇠j⇢)

@⇠i
+

1

2

X

i,j

Dij
@2⇢

@⇠i@⇠j
, (A.28)

where the Aij are the elements of the Jacobian matrix of the macroscopic system

of equations, A , and Dij are the elements of the di↵usion matrix D.

• Next Order Corrections to the Linear Approximation, ⌦� 1
2 :

The procedure of calculating the volume dependent terms ⌦� 1
2 is considerably

more involved than that for the linear noise approximation, although this has

been aided by very recent developments of dedicated software to perform these

calculations [173]. It has been shown that considering these terms yields, for

example, corrections to the mean of ⇠ in small reaction volumes [174].

A.3 Time Correlation Matrix Derivation

This derivation follows along the lines presented in Gardiner [56].

In a univariate system, the autocorrelation function for species i can be written:

R⇠i (t1, ⌧) = h⇠i (t1 + ⌧) ⇠i (t1)i , (A.29)

where <> denotes the expected value. For a stationary process, R⇠i (t1, ⌧) is inde-

pendent of t1 so we can set t1 = 0 without loss of generality:

R⇠i (⌧) = h⇠i (⌧) ⇠i (0)i . (A.30)

Similarly, for the multivariate system we can write the time-correlation matrix for
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the vector of random variables ~⇠:

R(⌧) =
D
~⇠(⌧)~⇠(0)T

E
, (A.31)

where the diagonal element
D
~⇠(⌧)~⇠(0)T

E

ii
corresponds to the autocorrelation func-

tion for species i, i.e. R⇠i(⌧). The o↵-diagonals give cross-correlation functions.

Let us denote a particular vector of values that ~⇠ can take by z. Then we can write:

D
~⇠(⌧)~⇠(0)T

E
=

Z
⇡ ([z⌧ , ⌧ ] ; [z0, t0]) z⌧z

T
0 dz⌧ dz0

=

Z
⇡ (z0, t0)⇡ (z⌧ , ⌧ | [z0, t0]) z⌧zT0 dz⌧ dz0

=

Z
⇡ (z0, t0)

D
~⇠(⌧)| [z0, t0]

E
zT0 dz0. (A.32)

The first moment dynamics from the LNA are linear, and follow the dynamics from

the Jacobian of the macroscopic variables, A, i.e.:

@

@⌧

D
~⇠(⌧)

E
= A

D
~⇠(⌧)

E
. (A.33)

Similarly, we can write:

@

@⌧

D
~⇠(⌧)| [z0, t0]

E
= A

D
~⇠(⌧)| [z0, t0]

E
, (A.34)

whose solution is:

D
~⇠(⌧)| [z0, t0]

E
= e�A⌧

D
~⇠(0)| [z0, t0]

E
. (A.35)

186



This initial condition is trivial;
D
~⇠(0)| [z0, t0]

E
= z0, so (A.35) becomes

D
~⇠(⌧)| [z0, t0]

E
= e�A⌧z0. (A.36)

Substitution of (A.36) into (A.32) gives:

D
~⇠(⌧)~⇠(0)T

E
=

Z
⇡ (z0, t0) e

�A⌧z0z
T
0 dz0 (A.37)

= e�A⌧
D
~⇠(0)~⇠(0)T

E
. (A.38)

Therefore, we notice that according to the LNA the evolution of the time correlation

functions in the stationary state follow the dynamics of the macroscopic variables, and

take as initial conditions the covariance matrix at stationary state,
D
~⇠(0)~⇠(0)T

E
.

A.4 Proofs Relating to the Connection between Eigenval-

ues and Quality in the Two-Species Spectrum Equa-

tions

A.4.1 The Parameters p and q are Simple Functions of the Eigenvalues

of the Jacobian

As discussed in section 1.5.3, the power spectrum matrix equation for number fluctua-

tions resultant from the Linear Noise Approximation is given by

Si(!) =
⌦

⇡


[�J+ Ii!]�1D

⇥
(�J)T � Ii!

⇤�1
�

ii

, (A.39)
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where J and D are the Jacobian and di↵usion matrices shown in Eq. (1.17) and

Eq. (1.18).

Writing the matrices fully as

J =

2

664
J11 J12

J21 J22

3

775 ,D =

2

664
D11 Dc

Dc D22

3

775 , (A.40)

where the form of D describes its positive semi-definite nature and the subscript

c denotes noise coupling, inserting these elements into Eq. (A.39) and writing the

equation for S1(!) gives:

S1(!) =
⌦

⇡

(D11J2
22 +D22J2

12 � 2DcJ12J22) +D11!2

(J2
11J

2
22 + J2

12J
2
21 � 2J11J22J12J21) + (J2

11 + J2
22 + 2J12J21)!2 + !4

(A.41)

The equation for the other variable S2(!) is simply the above with subscripts 1 and

2 reversed. This equation is of the form shown in section 2.2, i.e.,

Si(!) =
⌦

⇡

↵i(J,D) + �i(D)!2

p(J) + q(J)!2 + !4
, (A.42)

where we now see that

p = J2
11J

2
22 + J2

12J
2
21 � 2J11J22J12J21, (A.43)

q = J2
11 + J2

22 + 2J12J21. (A.44)
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The eigenvalues of J are:

�1,2 =
1

2
[J11 + J22 ±

p
(J11 � J22)2 + 4J12J21]. (A.45)

Rearranging Eqs. (A.45) for J11 and J12 gives

J11 = �1 + �2 � J22, (A.46)

J12 =
1

J21
(J22 � �1)(J22 � �2). (A.47)

Finally, by substituting Eqs. (A.46) into (A.43) it easily follows that

p = �2
1�

2
2, (A.48)

q = �2
1 + �2

2. (A.49)

A.4.2 Si(!) Can Have at Most One Peak for ! > 0

To find the peak frequency of Si(!) we simply solve d
d!Si(!) for !. Using the form of

the spectrum given in Eq. (A.42), the five solutions of d
d!Si(!) are

! = 0, ± 1

�i

r
�↵i�i ± �i

q
↵2
i + �2

i p� ↵i�iq. (A.50)

Of the two positive solutions, the solution ! = 1
�i

r
�↵i�i � �i

q
↵2
i + �2

i p� ↵i�iq

is complex valued because p,↵i,�i 2 R>0 and q 2 R. Hence, there can be at most one

(real valued) peak frequency in the range ! > 0.
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A.4.3 Q50% can be written in terms of two non dimensional parame-

ters, RH↵� andR✏

The traditional quality factor Q50% = !̂
�! is intuitive but analytically rather involved.

Here we show that it can be written in terms of two non-dimensional parameters:

the ratio of eigenvalues R✏ = �1
�2

and the ratio of maximum heights of the ↵ and �

sub-spectra RH↵� =
S↵
i (0)

S�
i (!̂S� )

.

Quality of the � sub-spectrum

We begin by analysing the � sub-spectrum to show that in the limit that ↵ ! 0, the

quality Q50% is written only as a function of R✏. Starting with the general form of the

spectrum equation

Si(!) =
⌦

⇡

↵i(J,D) + �i(D)!2

p(J) + q(J)!2 + !4
, (A.51)

and using the result that p = �2
1�

2
2 and q = �2

1+�2
2 we can write the ‘� sub-spectrum’

as

S�
i (!) =

⌦

⇡

�i !2

�2
1�

2
2 + (�2

1 + �2
2)!

2 + !4
. (A.52)

For real eigenvalues, the positive real solution of d
d!S

�
i (!) is found easily to be

!̂S� =
p
�1�2. Inserting this value of ! =

p
�1�2 into Eq. (A.52), we find the peak

height of this sub spectrum to be

S�
i (!̂S� ) =

⌦

⇡

�

(�1 + �2)2
. (A.53)

The bandwidth �!S� of the sub-spectrum is found by first solving S�
i (!) =

1
2S

�
i (!̂S� )
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to find the two positive frequencies at which the sub spectrum takes its half maximum

values, which we denote ! 1
2
. These frequencies are found to be:

! 1
2
=

1

2
[
p
(�1 + �2)2 + 4�1�2 ± (�1 + �2)]. (A.54)

The bandwidth for this sub spectrum is given by the di↵erence between these half-

maximum frequencies, which is simply �!S� = �1 + �2. From this, we find that the

Q50% value in the limit that ↵ ! 0 is given by

Q50% =
!̂S�

�!S�
, (A.55)

=

p
�1�2

�1 + �2
. (A.56)

For describing stable node NIO, we introduce our first non-dimensional variable

(describing the ratio of real valued eigenvalues) via the replacement �1 = R✏�2. With

this replacement we find that this qualityin the limit that ↵ ! 0 can be written only

as a function of R✏:

Q50% =

p
R✏

R✏ + 1
. (A.57)

Quality of the overall spectrum

Prompted by the usefulness of the first non-dimensional parameter R✏, we write the

full spectrum equation as

S�
i (!) =

⌦

⇡

↵i + �i !2

R2
✏�

4
2 + (R2

✏ + 1)�2
2 !

2 + !4
. (A.58)
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Having now moved away from the limit ↵ ! 0, it is natural to introduce some

new parameter which describes the relative weighting of the two sub-spectra, which we

denote R0. The candidate R0 = ↵
� is unsuitable as it is not dimensionless. Progress is

made by noting that any linear scaling of frequency has no e↵ect on Q50%, and that we

can therefore make the transformation ! = w �2 to find

S�
i (w) =

⌦

⇡

�i
�2
2

 ↵i
�i�2

2
+ w2

R2
✏ + (R2

✏ + 1)w2 + w4

!
. (A.59)

The pre-factor �i

�2
2
now merely serves to scale the above spectrum in power, and

this has no e↵ect on Q50%. Therefore it is clear that Q50% can be described by a

combination of R✏ and any non-dimensionless parameter of the form

R0 =
↵i

�i�2
2

R1. (A.60)

While we could have simply used the non-dimensional parameter R0 = ↵i
�i�2

2
we

elected instead to use a non-dimensional parameter with more intuitive meaning, namely

the ratio of maximum heights of the two subspectra, i.e. R0 = RH↵� =
S↵
i (0)

S�
i (!̂S� )

. This

is easily found to be

RH↵� =
↵i

�i�2
2

(R✏ + 1)2

R2
✏

, (A.61)

which is of the form required of our second non-dimensional parameter (Eq. (A.60)).

Using the same steps as shown above for finding quality in the limit ↵ ! 0, the

quality Q50% of the overall spectrum is then found to be an equation of the form

Q50% = f(RH↵� , R✏); this function is shown graphically in Fig. 2.2(a).
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A.5 Power Spectrum Estimates from the Stochastic Sim-

ulation Algorithm

From a single realization r of the stochastic simulation algorithm, the number of

molecules nr(t) of a particular species over some time interval T was regularly sampled

at L discrete points separated by �t (such that (L� 1)�t = T ).

Using the notation nr
l ⌘ nr(l�t), l 2 [0, L � 1], the fluctuation in numbers of

molecules about the mean is n̂r
l = nr

l �
1
L

PL�1
j=0 nr

j . The discrete Fourier transform of

n̂r, which we denote N r, was calculated by:

N r
k =

L�1X

l=0

n̂r
l e

�2⇡ilk/L, k 2 [0, L� 1]. (A.62)

From this, the one-sided periodogram estimate, P r, of the number fluctuation power

spectrum from realization r is defined as [175]:

P r
k =

1

L2

8
>>>><

>>>>:

|N r
k |2 k = 0, L2

|N r
k |2 + |N r

L�k|2 k 2 [1, L2 � 1].

(A.63)

The L
2 +1 frequencies !k over which P r is defined span the frequency range [0,!Nyq]

where !Nyq is the Nyquist rate, !Nyq =
⇡
�t rad s�1. The frequency interval �! between

!k and !k+1 is �! = 2⇡
L�t rad s�1.

Since n̂r
l has zero mean, P r

0 = 0. The remaining L
2 periodogram values are nor-

malised in Eq. (A.63) such that
PL/2

k=1 P
r
k = �2

n̂r where �2
n̂r is the sample variance of

n̂r, i.e. �2
n̂r = 1

L

PL�1
l=0 (n̂r

l )
2. For comparison with the spectrum from the linear-noise

approximation, Eq. (1.23), which is truly a power spectral density, we desire that the

integral and not the sum of the numerical spectral density over these L
2 frequencies is
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equal to �2
n̂r .

The value of P r at frequency !k = 2⇡k
L�t represents some average of the power

within the frequency bin !k ± 1
2�! [175]. By assuming that the power in a frequency

bin !k ± 1
2�! is uniformly distributed within that bin, the integral-normalised form of

the power spectral density over the frequency range (!1� 1
2�!,!L

2
+ 1

2�!) is given by:

Sr(!k ±
1

2
�!) =

1

�!
P r
k , k 2 [1,

L

2
]. (A.64)

For display purposes in Figs. 2.5, 2.8, 2.9 and 2.13, we represent the power spectral

density estimate over the frequency bin !k± 1
2�! by a single point of value Sr(!k± 1

2�!)

at !k. We refer to this as Sr
k.

Finally, since the variance of the estimate Sr at a single frequency k from the

periodogram method is known to be high, we obtain the final numerical power spectral

density estimate by averaging Sr over R realizations, i.e.,

Sk =
1

R

RX

r=1

Sr
k. (A.65)

A.6 Suitability of Fitted Functions for Determining Qual-

ity of Numerical Fluctuation Power Spectra at Small

Volumes

For each of the numerical power spectra SSSA from the stochastic simulation algorithm

shown in Fig. 2.6(a), the Q50% was determined by fitting the numerical power spectra
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using a function of the form:

Sfit =
↵+ �!2

p+ q!2 + !4
.

To determine the parameters of Sfit, the MATLAB optimization toolbox function fmin-

search was used to perform an unconstrained parameter search which minimized the Eu-

clidean norm between the data and the fitted function, i.e., C =

r
PL/2

k=1

⇣
Sfit
k � SSSA

k

⌘2
.

The fitted functions are shown in Fig. A.1.
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Figure A.1: The close fit between fitted spectrum functions using fminsearch and nor-
malised fluctuation spectra obtained by the SSA for the Brusselator reaction at small
volumes.
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A.7 Experimental Setup and Luminescence Image Anal-

ysis

NB: The following section, describing experimental protocol developed by Wenden and

Millar for plant growth and imaging, was written by Benedicte Wenden and is included

here for reference.

The 35S:LUC, CCA1:LUC+, GI:LUC+, and CCR2:LUC+ lines in theWassilewskija

accession have been described [176, 157]. Seeds were surface sterilized, sown on Gilroy-

agar media (no added sucrose,1.5% (wt/vol) agar), and stratified at 4�C for 96 h in

darkness. Seedlings were then grown at 22 C under LL conditions or (12 h/12 h) LD

cycles of 75 µmol m�2s�1 cool white fluorescent light for 11 days (intact plants) or

20 days (detached leaves) in Sanyo MLR350 environmental test chambers. 11-day-old

intact leaves and 20-day-old detached leaves were kept healthy between a slide and a

coverslip and kept immobile both horizontally and vertically (Figs. 4.2(c), 4.2(e) and

Fig. 4.2(a)).

Seedlings were sprayed with 5 mM luciferin solution in 0.01% Triton-X100 24 h

before the imaging setup and provided with a liquid Murashige and Skoog (MS) solution

and luciferin during imaging. Luminescence images were captured as described in ref.

[157]. For the intact plants, 11-day-old leaves were kept still both horizontally and

vertically between a slide and a coverslip lying on two layers of porous fiber tape

(Micropore), thus allowing an airflow around the leaves. Horizontal movements were

prevented by taping the petiole to the slide with a thin piece of porous fiber tape.

The rest of the seedling was supported by a second slide and nutrients and water were

provided to the root from a liquid Murashige and Skoog (MS) medium (Figs. 4.2(c)

and 4.2(e)). 21-day-old detached leaves were also placed between a slide and a coverslip
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lying on two layers of porous fiber tape and provided with water and nutriments through

a thin piece of precision wipe tissue in contact with both the petiole and the liquid MS

medium (Fig. 4.2(a)). Intact plants were prepared in individual plates (Fig. 4.2(c)) or

in six-well plates (Fig. 4.2(e)) and detached leaves were prepared in individual plates

(Fig. 4.2(a)). This setup did not allow imaging of older rosette leaves as other leaves

from the rosette would move on top of the imaged leaf. As acclimatization to the setup,

plants and detached leaves were then left in the Sanyo chambers under their growth

conditions for 24 h.

For imaging, seedlings and detached plants were then transferred to the microscope

or open-field Percival I-30BLL growth chambers (CLF Plant Climatics) at 22 C under

an equal mix of red and blue light-emitting diodes (LEDs). This setup was developed

for six-well plates, allowing the imaging of 24 plants in open-field imaging cabinets

and single plants for microscope imaging (Fig. 4.2(c) and Figs. 4.2(b) and 4.2(f)).

Older detached leaves were also imaged (Fig. 4.2(a)). Luminescence outputs were

obtained for both scales: at the tissue level in 24, 12-d-old seedlings in open-field

imaging cabinets (Fig. 4.2(f)) and also at the cellular level under the microscope (Fig.

4.2(d)). Luminescence images were captured as described [157, 177], at 40 minute

intervals with 15 minute exposure.

A.8 Creating MATLAB ‘surf’ Images

The spatial images of luminescence, phase and mean periods were all constructed using

MATLAB’s surf function, using the default flat shading. The operation of this function

is described below.

We define A as a matrix of values, such as phase. The entries of this matrix are
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Pixel m,n

Figure A.2: Assignment of coloured image squares from pixel data values using MAT-
LABs surf function with flat shading.

Am,n where, as usual, m is the column index and n the row index, and to each entry

is assigned a value from the camera pixel m, n. Each MATLAB image created is an

array of squares, whose centre point we can index (x, y), with x the horizontal and y

the vertical. The surf function with flat shading takes the value of the pixel m,n and

maps it to the square x, y, assigning a colour according to the pixel’s value as shown

in each figure’s colour scale.

An additional feature of this function is that for the square x, y to be assigned a

colour, it is required that all of the pixels at the other three corners of that square

(marked in light green in Fig. A.2) must themselves have associated data values. This

requirement does mean that around the edge of the leaf, where this outcome may not

be the case, some pixel values are not represented in the coloured image.
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A.9 Plant Index Tables

Plant

Index
Marker Detached/

Intact

Growth

Conditions

Imaging

Conditions

Imaging

Date

Plant

Number

Period

Classification

1 CCA1:LUC Detached LD LL 04/10/2010 3

2 CCA1:LUC Detached LD LL 04/10/2010 4

3 CCA1:LUC Detached LD LL 04/10/2010 7

4 CCA1:LUC Detached LD LL 12/10/2010 1

5 CCA1:LUC Detached LD LL 12/10/2010 2

6 CCA1:LUC Detached LD LL 16/10/2010 3

7 CCA1:LUC Detached LD LL 16/10/2010 4

8 CCA1:LUC Detached LD LL 23/11/2010 1

9 CCA1:LUC Detached LD LL 23/11/2010 4

10 CCA1:LUC Detached LD LL 23/11/2010 5

11 CCA1:LUC Detached LL LL 09/11/2010 1 None (c)

12 CCA1:LUC Detached LL LL 09/11/2010 2 None (c)

13 CCA1:LUC Detached LL LL 16/11/2010 1 None (c)

14 CCA1:LUC Detached LL LL 16/11/2010 2 i

15 CCA1:LUC Detached LL LL 16/11/2010 3 i

16 CCA1:LUC Detached LL LL 16/11/2010 5 i

17 CCA1:LUC Detached LL LL 16/11/2010 6 i

18 CCA1:LUC Detached LL LL 16/11/2010 7 i

19 CCA1:LUC Detached LL LL 16/11/2010 8 i

20 CCA1:LUC Detached LL LL 18/08/2010 3 iii

Table A.1: Index table of detached leaves in the study. [Tab. derived from that

produced by DT and BW and published in [142]. Leaves are described for growth

and imaging conditions and mean period pattern classification: (i) Higher period at

the leaf margins (predominantly on one side or all around the leaf), sometimes with a

slight vascular pattern of increased period; (ii) higher period in the central region of

the leaf; (iii) higher period toward the petiole. None (a): No period classification, leaf

data deemed of insu�cient quality to produce a reliable R value. None (b): No period

classification, good data available over majority of leaf for only one circadian cycle.

None (c): No period classification, SD/range values either too large or too spatially

correlated with means. Plants shaded correspond to plants examined in detail in this

thesis.]
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Plant

Index
Marker

Detached/

Intact

Growth

Conditions

Imaging

Conditions

Imaging

Date

Plant

Number

Period

Classification

21 CCA1:LUC Intact LD LL 10/09/2010 2

22 CCA1:LUC Intact LD LL 10/09/2010 3

23 CCA1:LUC Intact LD LL 10/09/2010 4

24 CCA1:LUC Intact LD LL 25/02/2010 1

25 CCA1:LUC Intact LD LL 25/02/2010 2

26 CCA1:LUC Intact LD LL 25/02/2010 3

27 CCA1:LUC Intact LD LL 25/02/2010 4

28 CCA1:LUC Intact LL LD 09/06/2010 1

29 CCA1:LUC Intact LL LD 09/06/2010 11

30 CCA1:LUC Intact LL LD 09/06/2010 21

31 CCA1:LUC Intact LL LD 09/06/2010 22

32 CCA1:LUC Intact LL LD 09/06/2010 23

33 CCA1:LUC Intact LL LL 09/06/2010 1 ii

34 CCA1:LUC Intact LL LL 09/06/2010 2 None (a)

35 CCA1:LUC Intact LL LL 09/06/2010 4 None (c)

36 CCA1:LUC Intact LL LL 09/06/2010 5 None (c)

37 CCA1:LUC Intact LL LL 09/06/2010 6 ii

38 CCA1:LUC Intact LL LL 13/09/2009 1 None (b)

39 CCA1:LUC Intact LL LL 13/09/2009 2 None (b)

40 CCA1:LUC Intact LL LL 13/09/2009 3 None (b)

41 CCA1:LUC Intact LL LL 13/09/2009 4 None (a)

42 CCA1:LUC Intact LL LL 13/09/2009 5 None (b)

43 CCA1:LUC Intact LL LL 13/09/2009 6 None (b)

44 CCA1:LUC Intact LL LL 13/09/2009 7 None (a)

45 CCA1:LUC Intact LL LL 14/10/2009 3 i

46 CCA1:LUC Intact LL LL 14/10/2009 4 i

47 CCA1:LUC Intact LL LL 17/04/2010 1 None (c)

48 CCA1:LUC Intact LL LL 17/04/2010 2 None (c)

49 CCA1:LUC Intact LL LL 17/04/2010 3 None (c)

50 CCA1:LUC Intact LL LL 17/04/2010 4 None (b)

51 CCA1:LUC Intact LL LL 17/04/2010 5 None (b)

52 CCA1:LUC Intact LL LL 17/04/2010 6 None (b)

53 CCA1:LUC Intact LL LL 21/04/2010 1 None (b)

54 CCA1:LUC Intact LL LL 21/04/2010 3 None (c)

55 CCA1:LUC Intact LL LL 21/04/2010 5 None (c)

56 CCA1:LUC Intact LL LL 21/04/2010 6 ii

57 CCA1:LUC Intact LL LL 25/02/2010 2 None (b)

58 CCA1:LUC Intact LL LL 25/02/2010 4 iii

59 CCA1:LUC Intact LL LL 25/02/2010 5 ii

60 GI:LUC Intact LD LL

61 CCR2:LUC Intact LD LL

Table A.2: Index table of intact plants in the study. [Tab. derived from that produced
by DT and BW and published in [142]. Leaves are described for growth and imaging
conditions and mean period pattern classification: (i) Higher period at the leaf margins
(predominantly on one side or all around the leaf), sometimes with a slight vascular
pattern of increased period; (ii) higher period in the central region of the leaf; (iii)
higher period toward the petiole. None (a): No period classification, leaf data deemed
of insu�cient quality to produce a reliable R value. None (b): No period classification,
good data available over majority of leaf for only one circadian cycle. None (c): No
period classification, SD/range values either too large or too spatially correlated with
means. Plants shaded correspond to plants examined in detail in this thesis.]
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A.10 Additional Luminescence Data
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Figure A.3: Spatiotemporal analysis of GI:LUC in an intact leaf (Tab. A.2, plant 60)
entrained under lightdark cycles and imaged under constant light. (a) Luminescence for
all pixels, detrended; (b) montage for the detrended luminescence; (c) phase montage.
The plant was entrained under LD 12:12 cycles for 12 d and then transferred and
imaged under LL conditions. Zeitgeber time (ZT)0 corresponds to transfer to LL.
Interval between two images = 2 h. Arrow indicates the position of the petiole. [Fig.
produced by BW and DT and published in [142]]
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Figure A.4: Spatiotemporal analysis of CCR2:LUC in an intact leaf (Tab. A.2, plant 61)
entrained under lightdark cycles and imaged under constant light. (a) Luminescence for
all pixels, detrended; (b) montage for the detrended luminescence; (c) phase montage.
The plant was entrained under LD 12:12 cycles for 12 d and then transferred and
imaged under LL conditions. Zeitgeber time (ZT)0 corresponds to transfer to LL.
Interval between two images = 2 h. Arrow indicates the position of the petiole. [Fig.
produced by BW and DT and published in [142]]
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Figure A.5: Examples of expression data from two pixels in the leaf from plant 20 (Tab.
A.1); (a) a pixel which exhibits period lengthening and (b) a pixel which exhibits period
shortening.
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Figure A.6: Examples of expression data from two pixels in the leaf from plant 37 (Tab.
A.2); (a) a pixel which exhibits period lengthening and (b) a pixel which exhibits period
shortening.
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Figure A.7: Examples of expression data from two pixels in the leaf from plant 16 (Tab.
A.1); (a) a pixel which exhibits period lengthening and (b) a pixel which exhibits period
shortening.
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(a) (b)

(c) (d)

Figure A.8: Snapshots of circadian expression movies, available for reference at [178].
(a) Luminescence output of a leaf from a CCA1:LUC intact plant. The plant was
grown for 12 days and then transferred and imaged under LL conditions, (b) Processed
output for a detached leaf grown in LD and imaged in LL. (Upper Left) Movie of the
luminescence, baseline-detrended. (Upper Right) Movie of the phase of each pixel, as
defined by the timing of peak expression. (Lower Right) Movie of all leaf pixels phase
values projected onto the unit circle (blue circles). The green vector has length R and
mean phase angle � (anticlockwise from the horizontal). (Lower Left) Phase coherence,
R, of the leaf oscillators. Interval between two images = 40 min. (c) Processed output
for an intact leaf grown in LD and imaged in LL. (d) Processed output for an intact
leaf grown in LL and imaged in LD. [Fig. (a) only - produced by BW and published
in [142]]
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poral variation of metabolism in a plant circadian rhythm: the biological clock

as an assembly of coupled individual oscillators. Proc. Nat. Acad. Sci. USA,

98(20):11801–11805, 2001.

225



[164] M L Guerriero, A Pokhilko, A P Fernández, K J Halliday, A J Millar, and

J Hillston. Stochastic properties of the plant circadian clock. Journal of the

Royal Society Interface, 9(69):744–756, 2012.
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