
Achieving Reliability using

Behavioural Modules in

a Robotic Assembly

System

Myra Scott Wilson

AHTIFICIAL INTELLIGENCE '
UNIVERSITY CF EDINdU

SO South Bridge
Edinburgh Eh1 1HN

Ph.D.

University of Edinburgh
1992

ii=ic;T" l irjTEi uGc^'ir:
UKtvcnsT " c.:. •, .

CO C j U i (... /sr., j
o

Edinburgh Gh1 1HNi

Achieving Reliability using

Behavioural Modules in

a Robotic Assembly

System

Myra Scott Wilson

30150 016210442

Ph.D.

University of Edinburgh
1992

Abstract

The research in this thesis looks at improving the reliability of robotic as¬

sembly while still retaining the flexibility to change the system to cope with dif¬

ferent assemblies. The lack of a truly flexible robotic assembly system presents

a problem which current systems have yet to overcome. An experimental sys¬

tem has been designed and implemented to demonstrate the ideas presented in

this work. Runs of this system have also been performed to test and assess the

scheme which has been developed.

The Behaviour-based SOMASS system looks at decomposing the task into

modular units, called Behavioural Modules, which reliably perform the as¬

sembly task by using variation reducing strategies. The thesis work looks at

expanding this framework to produce a system which relaxes the constraints of

complete reliability within a Behavioural Module by embedding these in a re¬

liable system architecture. This means that Behavioural Modules do not have

to guarantee to successfully perform their given task but instead can perform it

adequately, with occasional failures dealt with by the appropriate introduction

of alternative actions.

To do this, the concepts of Exit States, the Ideal Execution Path, and Alter¬

native Execution Paths have been described. The Exit State of a Behavioural

Module gives an indication of the control path which has actually been taken

during its execution. This information, along with appropriate information

available to the execution system (such as sensor and planner data), allows the
Ideal Execution Path and Alternative Execution Paths to be defined. These

show, respectively, the best control path through the system (as determined by
the system designer) and alternative control routes which can be taken when

necessary.

i

Acknowledgements

I would like to thank the following for their help during the preparation of

the thesis: Dr Tim Smithers for his guidance, time, and constant support, Chris

Malcolm for developing the SOMASS project which provided the foundation

for this work and for his supervision in the later stages of the work, Howard

Hughes for proof reading and for his comments throughout the years of sharing
an office, and Jonathan Salmon for reading early drafts and for some proof

reading. Thanks also to the technical staff for help with the practical side of

robotics and to SERC for funding.

Thanks also to the following members of the ARG robotics discussion group

for both technical and moral support: Alistair Conkie, Mitch Harris, Lykourgos

Petropoulakis, Piak Chongstitvatana, Peter Balch, Graham Deacon, and Jim

Donnett.

In addition, I would also like to thank the following past and present mem¬

bers of the department who have helped to make my time here enjoyable, either

as dining companions, games players, or sports partners (or any combination
of the three): in particular, Mike Cameron-Jones, Stephen Cranefield, Diana

Bental, Barbara Webb, and also all the others who are too numerous to mention

here.

I would like to take this chance to thank the "Mechanical Engineers" who

welcomed me into their badminton team and also the KBG for many an ener¬

getic Monday evening.

I would also like to thank my flatmate, Marianne MacLeod, for putting up

with piles of assorted papers littering the flat for the last few months, and for

refraining from dumping them with the newspapers and bottles to be recycled!

Last, but most certainly not least, I would specially like to thank my parents

and my sister for their constant support (and chocolate praline!) throughout
the course of the thesis.

ii

Declaration

I declare that this thesis has been composed by myself and that the work

described in it is my own.

Myra S. Wilson

Table of Contents

1. Introduction 1

1.1 The Reliability of Robotic Assembly 3

1.2 Behaviour-based Robotic Assembly 5

1.3 Reliable linking of Behavioural Modules 6

1.4 Outline 7

2. Related Work 9

2.1 Background to Variation and Uncertainty 10

2.2 Historical Perspective 13

2.3 Robotic Assembly Research at EDAI 24

2.4 Failure Handling 27

2.4.1 Error Detection and Recovery 28

2.4.2 Worst Case Analysis 34

2.4.3 Competent Execution Systems 41

2.5 Methods Summary 53

3. Behaviour-based Robotic Assembly 54

3.1 System decomposition 55

3.1.1 Planning for a Behaviour-based System 55

iii

Table of Contents iv

3.1.2 Behavioural Modules 57

3.2 The SOMASS Robotic Assembly System 60

3.2.1 The Soma World 61

3.2.2 SOMASS System Overview 65

3.2.3 The SOMASS Planner 68

3.2.4 The SOMASS Behavioural Modules 75

3.2.5 SOMASS Reliability Strategies 83

4. Increasing the Reliability of Behaviour-based Robotics 85

4.1 System Reliability 86

4.2 Diagrams 87

4.3 The Exit State 87

4.4 The Ideal Execution Path and Alternative Execution Paths . . 93

4.5 Usefulness of the system 97

4.6 Reliable Behaviour-based Robotic

Assembly 101

5. The Experimental System 103

5.1 System Outline 104

5.1.1 Implementation Stages 106

5.1.2 System Overview — Ideal Execution Path 117

5.1.3 System Overview — Alternative Execution Paths 122

5.2 Behavioural Modules 131

5.3 Exit States 135

5.4 Ideal Execution Path 139

Table of Contents v

5.5 Alternative Execution Path 140

5.6 Summary of the Experimental System

Reliability 143

5.6.1 Planner strategies 144

5.6.2 Variation and Uncertainty Handling Strategies 144

5.6.3 Exit States, the Ideal Execution Path, and

Alternative Execution Paths 145

6. Experimental Results 147

6.1 Part Acquisition Experiments 147

6.1.1 Variation 149

6.1.2 Pick-up results 151

6.2 Whole System Experiments 157

6.3 Summary of assembly runs 168

7. Conclusions and Further Work 170

7.1 Summary 170

7.2 Summary of the thesis work 171

7.2.1 The Thesis Contribution 173

7.3 Further Work 176

7.3.1 System Extensions 176

7.3.2 Long Term 177

A. Prolog List for Soma Assembly 179

B. Behavioural Module Diagrams 182

C. Spine Representation of the Soma-5 Set 193

Table of Contents v'

D. Soma5a

E. Pick Run Tables 196

F. Whole Run Tables 201

Bibliography 213

List of Figures

2-1 Variation and Uncertainty 12

2-2 Relationship between the robot end-effector and joint angles

[Craig, 1989] 15

2-3 Example of a VAL-II robot program 18

2-4 Error Detection and Recovery [Gini &: Gini, 1983] 30

2-5 A Multivariable servomechanism (Albus, 1981], page 114. ... 43

2-6 Varying Feedback [Albus, 1981], page 115 44

2-7 A cross-coupled processing-generating hierarchy [Albus, 1981],
page 129 45

2-8 Horizontal decomposition of a mobile robot control system into

functional modules [Brooks, 1986] 49

2-9 Vertical decomposition of a mobile robot control system based
on task achieving modules (Brooks, 1986] 49

2-10 Control layers in the Subsumption Architecture [Brooks, 1986]. 52

3-1 A hierarchical decomposition 59

3-2 Soma-3 set 61

3-3 Soma shapes composed of 4 cubes 62

3-4 Some Soma Assemblies 62

3-5 An example of the 2D Peg-in-Hole in the Soma-5 world 64

vii

List of Figures viii

3-6 An example of the 3D Peg-in-Hole in the Soma-7 world 64

3-7 The five degree of freedom Adept Robot 66

3-8 Representation of the 'fork3' Soma-4 part 69

3-9 Regrasp placement of the 'right' Soma-4 part 71

3-10 Regrasp acquisition of the 'right' Soma-4 part 71

3-11 Padding of assembly 74

3-12 Cyclic adjacency relationship of parts 74

3-13 VAL-II pre-coded procedures generated from the Prolog list. . . 75

3-14 VAL-II Behavioural Module — designed to pick up a Soma part. 77

3-15 Strategy to centre the Soma part by sweeping motions 80

3-16 Strategy to centre the Soma part by a double snap 80

4-1 Key for Behavioural Module Diagrams 88

4-2 An Example of a Behavioural Module 89

4-3 Example of a general Behavioural Module 91

4-4 Single level Alternative Execution Path 99

4-5 Multiple level Alternative Execution Path 100

5-1 A Chamfered Soma-4 Shape — Fork3 105

5-2 The original gripper fingers 108

5-3 Second set of gripper fingers (view A) Ill

5-4 Second set of gripper fingers (view B) Ill

5-5 CAD model of the finger design 112

5-6 Communication within the system 114

5-7 Adept robot workcell limitations — Gripper rotation 1 115

List of Figures ix

5-8 Adept robot workcell limitations — Gripper rotation 2 116

5-9 Adept robot workcell limitations — Gripper rotation 3 116

5-10 Force/Torque Sensor Sandwich 117

5-11 Gripper after downward probe to locate cube top 119

5-12 Finding orientation of a Soma part — Strategy 1 120

5-13 Finding orientation of a Soma part — Strategy 2 120

5-14 Final position of the lightbeam sensors on part pick-up 121

5-15 Using the Adept wrist to push the Soma part into place 123

5-16 Strategy for finding cube top (having found a chamfer) 125

5-17 First strategy to centre the cube in gripper 126

5-18 Second strategy to centre the Soma part in the gripper 127

5-19 Turning regrasp part through 180 degrees (before) 129

5-20 Turning regrasp part through 180 degrees (after) 130

5-21 Safe Height Behavioural Module 135

5-22 Monitored Move Behavioural Module 136

5-23 Find Height Behavioural Module 137

5-24 Find Cube Top Behavioural Module 138

5-25 Regrasp Behavioural Module 142

6-1 Actual centres and orientation of Soma cube for pick-up runs. . 150

6-2 Calculated centres and orientation of Soma cube for pick-up

runs 150

6-3 Difference between Actual and Calculated centres and orienta¬

tions 151

6-4 Pick Up Trial 153

List of Figures x

6-5 Experimental Runs using the Part Acquisition Behavioural Mod¬
ules 154

6-6 Calculated centres and orientation for the Soma part lell. . . . 159

6-7 Calculated centres and orientation for the Soma part ell 159

6-8 Calculated centres and orientation for the Soma part fork2. . . 160

6-9 Calculated centres and orientation for the Soma part fork3. . . 160

6-10 Calculated centres and orientation for the Soma part left. . . . 161

6-11 Calculated centres and orientation for the Soma part zed. . . . 161

6-12 Calculated centres and orientation for the Soma part right. . . 162

6-13 Experimental Runs using the complete set of Behavioural Mod¬

ules 163

6-14 Experimental Runs using the complete set of Behavioural Mod¬

ules (part acquisition) 164

6-15 Experimental Runs using the complete set of Behavioural Mod¬

ules (regrasp) 165

6-16 Experimental Runs using the complete set of Behavioural Mod¬
ules (placing the part) 166

B-l Key for Behavioural Module Diagrams 184

B-2 Normal Pick Behavioural Module 185

B-3 Find Location Behavioural Module 185

B-4 Find Cube Top Behavioural Module 186

B-5 Find Height Behavioural Module 186

B-6 Safe Height Behavioural Module 187

B-7 Monitored Move Behavioural Module 187

B-8 Check Sensors Behavioural Module 187

List of Figures xi

B-9 Find Centre Behavioural Module 188

B-lOHunt Centre Behavioural Module 188

B-llCheck Pressed Behavioural Module 189

B-12Compare Height Behavioural Module 189

B-13Location Behavioural Module 190

B-14Find Drop Behavioural Module 190

B-15 Compare Points Behavioural Module 191

B-16Unwind Gripper Behavioural Module 191

B-17Pick Double Snap Behavioural Module 191

B-18Pick Up Behavioural Module 192

C-l A Spine Representation of the Soma-5 set 194

D-l Spine Representation the Soma-5a group 195

List of Tables

6-1 Soma part pick up runs 148

6-2 Whole System assembly runs 158

xii

Chapter 1

Introduction

The reality of dexterous, walking, talking, and thinking robots of popular Sci¬

ence Fiction tales is still far from being realised in the present generation of

robots and is likely to remain so for many years to come. The robots of today
still have primitive motor control and limited sensory capabilities despite the
advances made in computer technology, engineering, and sensory equipment.

Even robots designed specifically to perform assembly tasks lack the dexterity

and sensory capabilities of a human hand. Mobile robots encounter problems

attempting to duplicate the degree of competence displayed by simple insects
and the complex capabilities of a human are still a long way beyond their cur¬
rent skills. Despite the above lack of ability, robots can still perform useful
functions and, as their capabilities improve, this range will increase.

Many industrial assemblies are performed by humans, who are readily

taught new applications and are quick to adapt to different situations. The
advanced sensory skills possessed by humans, in particular, touch, force, and

vision, allow skillful handling of assembly pieces, including compliant motions

which are particularly difficult to control in most automated systems. With

the application of intellectual reasoning and basic common sense, directed ex¬

perimentation or previous knowledge of possible problems can lead to a quick

diagnosis of the fault if assembly pieces cannot be correctly fitted together. The

part, or parts, at fault can be discarded, or recovery actions can be performed.

Human assembly workers can easily adapt to changes of assembly product. On

X

Chapter 1. Introduction 2

the other hand, fatigue through a working day makes it difficult for humans to
maintain a constant performance, leading to products of varying standards and

a problem with quality control. Certain tasks must be performed in potentially

dangerous and unpleasant environments where bulky protective clothing must

be worn, thus limiting the efficiency of the worker and reducing the acceptabil¬

ity of the working conditions.

Hard automation assembly systems with dedicated machine tools provide

repeatable results which lead to a good level of quality control. Dedicated

systems deal with the variation and uncertainty in the workcell by the use of

a large number of special jigs and fixtures. These serve to reduce significantly

the possibility of failure of the system by tightly engineering the environment.

This leads to systems which are expensive to change between different assembly

products as the workcell is specifically designed for only one. Even a small

change in the size of the parts may require extensive changes in the fixturing

and programming. The parts must be made to within tight tolerances or the

system will fail, adding to the problems of quality control, and the feeding

mechanisms must present the parts accurately, adding considerably to the cost

of the system. Sensory systems are very rarely used for anything more than

detecting the presence or absence of parts at various stages of the assembly,

relying instead on accurately setting up the non-sensory components of the

system to enable the successful performance of the assembly. In industrial

assembly, where the primary concerns are reliability and cost-effectiveness, this
method is only cost-effective when applied to large batch runs of a particular

product.

Unfortunately, only a minority of goods which can be assembled have the ad¬

vantage of large volume, the rest requiring small batch runs before changeover

to a different product. In some cases, it would also prove useful to interleave

different assemblies depending on the demand for particular products and the

availability of parts. The current hard automation is unable to deal with this

type of flexibility. It is in this area that it is hoped that robots can be intro¬

duced to fulfill the potential of their apparent flexibility.

Chapter 1. Introduction 3

Robots are already usefully employed in areas which, for humans, would

be dangerous, such as undersea work or toxic environments. Unpleasant and

repetitive tasks such as spray painting and arc welding are also performed by

robots. Among the advantages of the use of robots is that they are tireless

workers, performing consistent work over extended periods of time. It is the

problem of providing a reliable and easily programmed robotic assembly system

which is addressed in this thesis.

1.1 The Reliability of Robotic Assembly

A major problem with the use of robots to perform assembly tasks is the pres¬

ence of variation and uncertainty in the workcell. Variation in part dimensions

and positioning, and uncertainty introduced when using values measured from

sensors, can combine to produce an error situation which requires human in¬

tervention to restart the system after an unsuccessful assembly. This has led

to the production of tightly engineered robotic systems which, like specialised

hard automation systems, are specific to a particular application and lose the

generality and flexibility originally promised by the introduction of robots to

assembly.

Without sensors, robots are limited to performing pre-programmed mo¬

tions and cannot make decisions based on information gathered from the real

assembly world. In fact, all they can do is slavishly perform a series of mo¬

tions, regardless of the side effect of performing an assembly. Unfortunately,

the real world is not perfect, and, although complicated robot motions can be

performed to try to ensure that the task is successfully completed, it is often

useful to integrate sensors into the system to allow decision making dependent
on this information and to check whether a task has been correctly performed.

Research on the subject of producing a reliable robotic assembly system has

focused in three main areas which are developed further in Chapter 2. These

Chapter 1. Introduction 4

fall into the categories of Error Detection and Recovery, Worst Case Analysis,
and Competent Execution Systems.

Error Detection and Recovery systems approach the problem of providing

reliable systems by allowing errors to occur during the running of the assem¬

bly and attempting to perform actions to recover the system. The assembly

system is run until a failure is detected, a diagnosis is made of the cause of the

problem, and recovery actions are determined and performed. Much research

has gone into automating the above processes, with concentration focusing on

introducing sensing to monitor the workcell in order to detect the failures, and

setting up knowledge bases both to determine what has occurred and to decide

upon the best course of action. To enable the detection of errors, these sys¬

tems compare expected sensor values (determined from global world models)
and actual sensor values. This requires that the global world models be kept

up-to-date with appropriate context-dependent information. It is not an easy

problem to determine what information from the running system should be

transferred to the knowledge base to determine the cause of the error, and this

removal of the contextual information from the actual on-line system means

that incorrect diagnosis of particular instances of problems can occur.

Worst Case Analysis systems concentrate on producing plans which will

never fail, given the constraints imposed on the system by the designer. Much
use is made both of modelling the workcell and mathematically analysing the

task, leading to computationally expensive systems. By the very nature of

this work, it looks at dealing with the worst possible scenario which could be

faced by the system, and attempts to find a plan which will work in these tight

constraints. This precludes many strategies which will actually work in the

real workcell, and often rejects many which are useful and efficient.

Competent Execution Systems (one type of which, the Behaviour-based

approach, is used as the foundation of the thesis work) plan for a simplified
ideal world and allow the execution system to reliably perform the assembly
without recourse to re-planning at any point. These systems rely on making

information available when the system needs it and modularising the assembly

Chapter 1. Introduction 5

process to enable useful incorporation of sensory data at appropriate points.

The main research problems associated with this method are finding useful

modular boundaries, determining the modular architecture of the system, and

deciding how to integrate high level control to achieve long term goals.

The work in this thesis examines the problem of variation and uncertainty

in the robotic assembly workcell and looks at how it can be dealt with in the

framework of a Behaviour-based robotic assembly system.

1.2 Behaviour-based Robotic Assembly

The Behaviour-based approach to programming assembly robots aims to pro¬

vide a decomposition of the assembly task into easily programmed modules,

referred to as Behavioural Modules, which reliably perform their task in the

real world. Structured in a hierarchical fashion, with the top level determined

by the interface to a simplified planner, the Behavioural Modules, which com¬

bine hardware and software to perform their task, can be individually designed,

implemented and tested to help determine their suitability and reliability for a

particular task.

The planner can plan in terms of part motions, which are easier for pro¬

grammers to identify with than robot motions, and these part motions can

be translated into appropriate robot motions in the run-time system. This

improves the flexibility of the system by allowing the run-time system the free¬

dom to implement the conversion as required, and change it when necessary.

The assembly is now the explicit goal of the plan, rather than the side-effect of

robot motions.

Chapter 1. Introduction 6

1.3 Reliable linking of Behavioural Modules

This thesis examines a method of using appropriate information available to the

on-line system along with information returned from lower level Behavioural

Modules in the hierarchy to reliably link the Behavioural Modules and provide

alternatives on failure of a module. This uses the concepts of Exit States, the

Ideal Execution Path and Alternative Execution Paths.

The Exit State of a Behavioural Module informs the system what has oc¬

curred within that Behavioural Module, and reflects the control paths available

inside it. The control paths can vary within a Behavioural Module depending

on the returned Exit State from lower level Behavioural Modules in the hierar¬

chy and from deviations determined by local information (usually specific data
from the plan in combination with on-line knowledge of the physical workcell).
The Exit State gives an idea of the competence of the Behavioural Module

and what it can cope with, although, as Behavioural Modules can be general

purpose, the context in which it is called determines whether it has actually

performed its required task. In one call of a Behavioural Module, the Exit

State 'A' may mean successful completion of the task, but in another, this Exit
State may mean that the Behavioural Module has failed in its assigned task.

The Exit State can also be qualified by other parameters.

The Ideal Execution Path and Alternative Execution Paths define control

paths through the hierarchy of the Behavioural Modules. The Ideal Execution

Path describes the best route which can be taken through the Behavioural

Modules in the on-line system (determined by the system designer). Even

though Behavioural Modules are designed to perform reliably, there are still

times when they can fail. Alternative Execution Paths can be used if particular
Behavioural Modules on the Ideal Execution Path fail to perform their given

task correctly during the assembly, to attempt to bring the control of the

assembly back to the Ideal Execution Path.

Chapter 1. Introduction 7

This type of structuring can be used to increase the reliability of an assembly

system. Using monitored Behavioural Modules which are guaranteed to provide

one of several known Exit States, possible error situations can be identified and

alternative methods for handling failures devised.

The above system architecture can be used to contain the variation and

uncertainty in the on-line system, thus freeing the planner from any reasoning

about these matters. The on-line system therefore has the freedom to deal with

the interpretation of the part motions into robot motions depending on what

strategies and sensors are available to it. The robot motions are not dictated by

the planner, and this also allows easy implementation of improved strategies,

and the integration of alternative sets of actions if required.

An experimental system was designed and implemented for the thesis which

developed Behavioural Modules in the above type of architecture to provide a

working system which was built and tested in the real world.

1.4 Outline

The structure of the rest of the thesis is as follows:

Chapter 2 This chapter examines the robot programming language levels to

show how these have been used to attempt to produce easily programmed

systems. A survey of the methods which have been used to try to achieve

the goal of producing reliable robotic assembly systems is also presented.

Chapter 3 An introduction to the Behaviour-based approach to robotic as¬

sembly is presented along with a detailed overview of the SOMASS robotic

assembly system.

Chapter 4 This chapter introduces the ideas of the thesis and defines the

terms which are used to describe the work.

Chapter 1. Introduction 8

Chapter 5 This chapter describes the experimental system which was devel¬

oped to investigate the ideas of Chapter 4.

Chapter 0 The results of test runs of the above experimental system are pre¬

sented.

Chapter 7 A summary of the thesis work is provided and suggestions for

possible extensions of this work are detailed.

Chapter 2

Related Work

The purpose of this chapter is to examine the problems which face programmers

of robotic assembly systems, in particular, the problem of failed assemblies due
to uncertainty and to variation in the robot, workcell, and parts (see Section 2.1
for the specific meanings of these italicised terms which are used throughout

this thesis). To do this, a detailed look into the history of robot programming
methods and current research is required.

The first section of this chapter introduces the terms uncertainty, variation

and error situations. Programming languages to control robots have been de¬

veloped through the years in an attempt to provide a level of programming

which allows the programmer to quickly and easily develop reliable assembly

programs. The second section examines these programming levels and com¬

ments on their associated advantages and disadvantages. The robotic assembly

research work in the Artificial Intelligence Department of the University of Ed¬

inburgh (which will be referred to as EDAI), which provides the foundation for
the work of this thesis, is then examined, from the early 'Freddy' system to the

current Behaviour-based line of research. The chapter continues by describing

the different ways in which researchers have tackled the main research topic of

this thesis: increasing the reliability of robotic assembly. This is divided into

three parts: Error Detection and Recovery, Worst Case Analysis, and Com¬

petent Execution Systems, with each part sub-divided to deal with particular

9

Chapter 2. Related Work 10

systems and methods. The chapter concludes with a summary of the methods
described and the problems which still remain.

2.1 Background to Variation and Uncertainty

In the robotic assembly domain, there are two main sources of problems which

may lead to assembly failures. These are:

1. Variation in part shape and dimensions, and in their positioning within

the workcell.

2. Uncertainty introduced by sensor measurements.

For the purpose of this thesis, the terms variation and uncertainty are specif¬

ically treated as independent problems which can be dealt with separately but

which can both contribute to problems and failures. In particular, the term

uncertainty is used differently from the normal usage found in the literature

where it is often bound together with variation. These terms are fully defined

below. The term error situation is also used to specifically describe failed as¬

semblies where operator intervention must take place, as opposed to situations

where a problem is detected and recovered from automatically by the system.

• Variation and Uncertainty

When an assembly system is run, the parts supplied to be assembled

will vary in dimension. Variation can be seen as the difference between

the nominal position or part size, and the actual. Part size may range

within certain allowable variations, known as tolerances, or may, on rare

occasions, exceed these bounds. Most current assembly systems rely on

being supplied with parts which are within predefined tolerance bounds

to successfully complete the assembly. It is comparatively rare, again

depending on the actual assembly pieces, to be provided with parts which

have missing or additional features.

Chapter 2. Related Work 11

Depending on the way the parts are supplied to the workcell, there can

be a large variation in the position in which they are presented to the

robot. The feeding mechanisms can vary from presenting the parts in

tightly engineered pallets which, although expensive, significantly reduce

such variation, to the parts being randomly positioned in a large bin. The

relative costs of these methods contribute to the cost-effectiveness of the

robot workcell. If the parts are accurately placed, the feeding mechanism

and tight tolerancing become expensive, and if they are randomly placed,
the cost goes into dealing with the large variation in the way the parts

are presented.

In the real world, variations occur not only in the workcell and the parts

to be assembled, but also in robot itself. The robot kinematic model may

be an inaccurate representation of the real robot, and different behaviour

under load, such as bending, may further invalidate this model. Tempera¬

ture variation, structural faults, and joint wear may all contribute to this

inaccuracy and these may vary from run to run even when performing a

seemingly identical task.

Uncertainty, on the other hand, as distinct from variation, is only present

when using the measured values from sensor readings. If, for example,

a sensor has the capability of measuring the position of a part to within
± 1mm, that sensor can be used to locate that part to within ± 1mm

whatever the variation of the part in the workcell, giving the system the

uncertainty of ± 1mm. Much work has been undertaken in reducing the

value of the uncertainty associated with sensors, and some of this work

is examined in Section 2.4.2, page 34 where Kalman filters are discussed.

Sensors can be used to locate a part more accurately, that is, lessen

the effect of variation, but in doing so, account must be taken of the

uncertainty which the system is then subject to. Using the definition

of uncertainty above, the use of sensors actually introduces uncertainty

into the system (but can be used to reduce the effects of variation on the

system).

Chapter 2. Related Work 12

WORKCEI.L, ROBOT AND PARTS ROBOTIC SYSTEM

VARIATION UNCERTAINTY

n

v—V O

n

Figure 2-1: Variation and Uncertainty.

When the sensors are used to measure things in the world, this does not

actually reduce the variation in the workcell which is constant until some

outside agent alters this fact (as in moving the part). Variation can be
reduced or changed by physically changing the location or dimensions of
the part and various strategies can be employed to use the robot to do

this. The robot system can be uncertain about the variation in the world
because it tried to measure the amount of variation. The diagram in

Fig 2-1 shows the relationship between variation and uncertainty within
a robotic assembly system. The variation is present in the workcell and
the uncertainty is a feature of the robot system.

• Error Situation

If the variation actually present in the system is greater than it has been

designed to cope with, or the uncertainty in measurements taken from

sensors proves to be too much for the system to deal with, or a combi¬
nation of the two, the robot may fail to correctly complete the assembly.
If the robotic system fails to perform its allotted task or sub-task, and

no built in recovery action is taken, this failure results in an error situ-

Chapter 2. Related Work 13

ation. An error situation occurs if, were the robot to continue normally

with the task, the task would not be correctly completed. A distinction

is made here between an error situation and a situation from which the

robot, with some extra actions, continues the assembly to a successful

conclusion. An error situation requires some external agent, such as a

human, to intervene to restart the system.

In a sensorless robotic assembly system where no measurements can take

place, the system will not be creating uncertainty, except in the internal sensors
of the robot, but will still have to deal with any variation which occurs within

the workcell. This is usually done by performing clever motion strategies, or

by using jigging and fixturing. If the system employs sensors, not only does
it have to cope with variation, but has to take into account any uncertainty

these introduce. The close linking of sensors with the task in hand helps to

alleviate this problem, as inappropriate matching of sensor with task and the
environment may lead to a build up in uncertainty. Even if the right kind of

sensing is being used for a particular task, if the useful information range of

the sensor coincides with the level of noise in the environment or the noise

generated by the sensor itself, the problem of uncertainty build up may occur.

2.2 Historical Perspective

In order to more fully understand the nature of the problem facing programmers

of robotic assembly systems, a historical look must be taken at the develop¬

ment of robot programming languages and how these have affected the way in

which systems are produced. Through the years, in an attempt to facilitate

the adaptation of robot programs to different assemblies in the factory environ¬

ment, the level at which robots are programmed has changed. To achieve the

integration of robots in factories, it must be possible for someone, not neces¬

sarily familiar with advanced programming techniques, to program the robots

Chapter 2. Related Work 14

quickly and reliably. The following sections look at the four main programming

levels, described in (Malcolm & Fothergill, 1986]. These are:

Joint Level: Specifies the end-effector position in terms of the joint angles

or joint displacement of the robot which must be achieved to place the

end-effector in that position.

Manipulator Level: Specifies the end-effector position in terms of Cartesian

coordinates in a known coordinate frame.

Object Level: Specifies the required spatial relationships between the features

of the parts to be assembled.

Task Level: Uses a high level specification of the assembly task, such as, 'place

peg in hole'.

The first two levels are concerned with moving the end-effector to a known

position in the workcell, and the last two levels address the problem of describ¬

ing part motions. These levels will now be examined in more detail.

Joint Level

At this level of programming assembly robots, the position of the end-effector

is given in terms of the individual joint angles which must be reached to achieve

that position. See Fig 2-2 (from [Craig, 1989]). At the simplest level, this in¬
volves providing a control feedback loop for the servo-mechanisms which control
the joints of the arm, to compare their goal positions with the actual positions
and to work to reduce the difference by moving in the right direction.

Early robot movement control techniques led to erratic robot arm trajecto¬

ries as each joint was activated at the same time whatever the distance it had

to travel to its final destination. This method was refined to allow the links to

begin and end their movement simultaneously by running the motors at differ¬

ent rates. This joint-interpolated motion provided much smoother paths which

Chapter 2. Related Work 15

03
02

TOOL
FRAME

Z Z

X

>-Y

BASE
FRAME

Figure 2—2: Relationship between the robot end-effector and joint angles

[Craig, 1989].

could also be traversed in the reverse direction. Programs became a sequence of

positions, which were usually taught to the robot system by physically moving

the robot joints to the required positions, and storing the sequence.

The advantages of this kind of programming are few. It is easy to know
where the robot is going to move to, as the points have been stored by actually

placing the robot in the physical position, but actually teaching the robot

these positions requires that the programmer work in close proximity to the

robot, which can prove dangerous. It can also be extremely difficult to judge

the alignment of axes by line of sight alone, and viewing from different angles

becomes necessary, again placing the programmer within the workcell. To

develop new programs to assemble different parts, both the robot and prototype

examples of the parts must be available, thus keeping the robot from being

usefully employed in performing actual assemblies. Although computational
costs are low, small changes in the assembly task can require extensive changes

in the robot program.

Chapter 2. Related Work 16

As the programs consist of sequences of positions which must be replayed in

order, it is difficult to incorporate any programming control structures which
allow alternative robot motions to be used. It is not impossible to incorporate

simple conditional statements and loop control structures into a program, but

this proves to be a difficult and time-consuming exercise as the programmer

must be responsible for keeping a close track of the situation. This is also the
case when seeking to incorporate sensors whose readings can determine the

next appropriate action to take.

Using this level of programming robots to perform assembly tasks was too

unreliable and slow for useful integration into the factory environment. Im¬

provements had to be made in the method of specifying and learning positions,
and in the integration of mechanisms such as conditional statements and sen¬

sor data control for changing the actions of the robot depending on the actual

circumstances in the workcell. The next section examines the development of

Manipulator Level robot programming languages, which allows the program¬

ming of robots off-line in terms of the position of the end-effector in a defined

coordinate frame.

Manipulator Level

The majority of assembly robot programming languages in present use in both

factory environments and research establishments are programmed at the Ma¬

nipulator Level, where the task is described in terms of the position of the

robot's end-effector in some known coordinate frame, usually relative to the

base of the robot. (See Fig 2-2.) The robot joint values are calculated from
the coordinates of the position of the end-effector, given in the form of x, y, and
z coordinates, plus orientation values for the gripper. These Cartesian coordi¬

nates are accepted as input and converted using kinematic transformations into

joint angles at either compile or run time. See [Craig, 1989] for more details.

This method of programming was inspired by the problems encountered
in the Joint Level programming systems. Too much time was being spent

Chapter 2. Related Work 17

in teaching the robot the assembly task in the workcell. The above method
of programming enabled the program to be entered off-line from the robot,

allowing the latter to continue with its current assembly task until changeover

time. The real robot is only used for fine tuning the system and for making

adjustments to the final program, although in reality, as described on page 19,

this method of programming still relies heavily on taught positions.

The ability to program the robot away from the workcell, and in terms of
Cartesian coordinates in a world coordinate frame, led to the adaptation of

current computer languages into robot programming languages. The computer

languages retained their flexibility of control structures, including conditional

statements, subroutines and loop control, and also added commands specific

to the control of robots: to move the robot from one position to another; grip-

per control; to change the speed and acceleration of the robot; and to allow
the integration of sensors. An examination of some of the available languages

is presented in [Critchlow, 1985], VAL [Shimano, 1979], a common robot pro¬
gramming language, was developed using the control structures of the computer

language, BASIC, as a model. It did not support floating point numbers or

character strings, and could not pass arguments to subroutines. These deficien¬
cies were corrected in a later version of the language, VAL-II [Shimano et al.,

1984]. See Fig 2-3 for a small example of a program written in VAL-II. Another
robot programming language, PAL [Takase et al., 1981], was developed from
Pascal.

Programming robots at the Manipulator Level carries with it associated

advantages and disadvantages. The programming skills of the user must be

greater than those required for the Joint Level programming, but this higher

level allows more flexible control with useful conditional alternative actions de¬

pending on either sensor data, or other data available to the system. Program¬

ming can be done without using the robot which is safer for the programmer,

and allows the robot to be usefully employed while the programming is being

undertaken for the next assembly.

With their derivation from computer languages, robot programming lan-

Chapter 2. Related Work 18

.PROGRAM example(pick.drop) ; subroutine with parameters

; pick and drop

ACCEL IB ; acceleration IB

SPEED BO ; set robot speed to 60

number = 100 ; number of parts to be assembled

OPEN

MOVE start

; open gripper

; move (joint-interpolated) to a starting

; position, where start is given in terms

; of (x. y. z, yaw. pitch, roll)

FOR i = 1 TO number

MOVES pick

CLOSEI

MOVES drop

OPENI

DEPARTS height

END

process each part

move (straight line) to pick up position

close gripper

move (straight line) to drop position

open gripper

departs to a safe height

end of loop

TYPE ''Assembly completed'' ; end of program

.END

Figure 2-3: Example of a VAL-II robot program.

Chapter 2. Related Work 19

guages tend to treat the sensors as input peripherals, and the robot as an

output peripheral. This has eventually led to many systems being developed

which use a high level detailed model of the world inside the system to co¬

ordinate their integration. The workcell and the robot are modelled in this

internal world, and sensors are used to update this model with perceived in¬

formation from the real world. This leads to many problems in keeping this

model consistent with the actual world where unexpected events can invalidate

the current model, and the time factor between sensor readings and updating

the model may further invalidate these. This problem is examined in [Malcolm
ct at., 1989].

When a robot is programmed off-line, using the combination of position

controlled robots and an accurate world model to base the plans of action on,

the positions calculated in the model world may not correspond accurately

enough to the position in the real world where, for example, a part may be

expected to be found. The kinematics of the robot are designed to move the

robot to a point in a coordinate frame, and so it becomes important that

the positions of the assembly pieces be known in this coordinate system to

enable the robot to manipulate them. This problem does not occur at the

Joint Level of programming as the positions are taught with the physical robot

and parts in place. Robots tend to have the repeatability to move back to

taught positions, but may not have sufficient accuracy to move to a calculated

position. The Adept robot [Adel985b], a particularly accurate machine, can
return to a taught location with an error of ± 0.051mm and move to a position

taught off-line with an error of ± 0.127mm. The RTX robot [RTX1987] has
a repeatability of ± 0.5mm in moving to a taught location and its accuracy

has been found to be approximately 2mm. Manipulator Level programs have

therefore become a combination of teaching appropriate points, and moving

the robot relative to these, rather than relying on calculating positions off-line.

This reduces the advantage of programming away from the robot and brings
some of the programming back on-line.

In programming off-line from the actual workcell and the robot, it is some-

Chapter 2. Related Work 20

times difficult for the programmer to envisage what is actually happening in a

long series of robot motions. It is easy to lose track of where the robot should

be in relation to the parts, and whether a part has been moved or not.

To aid in the visualisation of the task, many systems, such as GRASP

[Derby, 1982] designed at Nottingham University and MCL [Wood &: Fugelso,

1983] developed by the McDonnell Aircraft Company of St. Louis, USA, have
used graphics tools to simulate the robot environment and workcell. The robot

and the parts are modelled in the simulated workcell under which a symbolic

language is provided. This is then post-processed into robot executable manip¬

ulator level language code. This helps with the planning of the assembly, and

collision avoidance problems, but the variation in the real world which is not

apparent in the simulated world causes problems when the underlying program

is used to run a real robot.

Recently, a group in Germany [Schraft et al., 1992] have linked an assembly
robot to a virtual reality head mounted stereo display and data glove system.

The robot can be tele-operated by the data glove, and the simulated robot in

the virtual reality can also manipulate simulated parts in its environment by

using the data glove, but when the operator cannot see the real robot and is

relying only on the image in the virtual world, the accuracy needed to perform

assembly is not available.

The next section continues the description of the development of robot

programming levels with the examination of the Object Level programming

languages, which look at describing the task in terms which are more familiar

to the programmer.

Object Level

In order to address the problems associated with Manipulator Level program¬

ming, a number of attempts have been made to raise the level of abstraction

away from the robot motions to deal with the spatial relationships between

parts. The assembly program describes the assembly task as a sequence of

Chapter 2. Related Work 21

the required spatial relationships between the parts, rather than by describing

the robot motions and the end-effector positions as in the lower level systems.

This level of abstraction is seen as a more natural way for a human program¬

mer to describe the assembly, and thus makes it easier to program. It is easier
to understand what is happening in the assembly when the system is told to

align the axis of a peg with the axis of a hole, or place face-1 of one object

against face-1 of another, than it is to know what is happening when the robot

is instructed to move between two points in the workcell. The actual robot
motions to achieve these relationships, usually written in a Manipulator Level

language, are hidden from the programmer and are derived by the system.

An example which approaches the ideas behind this kind of system is RAPT,

which was developed in EDAI (Artificial Intelligence Department of the Univer¬

sity of Edinburgh) (Popplestone et at., 1978]. RAPT is a model-based Object
Level programming language, which allows the assembly task to be described

in terms of the relationship between the part features. RAPT has a spatial

relationship inference system which infers relative locations of parts from a set

of spatial relations defined between them [Corner et al., 1983], These are then

post-processed into a lower level robot language to actually run a robot. This

system will be described in more detail in Section 2.3 on page 25, which looks

at the development of assembly robotics in EDAI.

It is claimed that programming a robot assembly task in an Object Level

system can be easily achieved by those not familiar with programming lan¬

guages. As well as defining the dimensions of the parts and the robot, a good

modelling system is required to visualise which features of the objects are being

referred to. It is easy to forget which feature of an object was referred to as

side-A when it has been rotated to match some previously specified relation¬

ship. With a visual modelling system, the current relationships in the assembly

system can be easily examined.

Object Level systems rely on the real world of the assembly cell conforming

to the geometric model used in the system. Unfortunately, this is not usu¬

ally the case, as the real world contains variation which does not conform to

Chapter 2. Related Work 22

this ideal world. An attempt was made to introduce a geometric tolerancing

analysis into RAPT [Fleming, 1987], but this proved to be too computation¬

ally expensive. Vision sensing was introduced [Yin tt a!., 1984] to detect the
translational variation in the initial position of the parts. The introduction

of sensors for this purpose proved successful, but the incorporation of sensors

to change the actions of the robot, rather than just its destination, remained

a difficult problem. As the sequence of all the positions and motions are de¬
termined in an off-line system which knows little about the on-line robot and

sensor availability, it is difficult to change the ordering to include alternative

strategies dependent on sensor data unless the system is told more about the

workcell conditions.

Task Level

In an attempt to raise the level of robot programming still further, another

level, Task Level, has been investigated. This level of programming has not

been fully achieved, although several systems have been partially developed at

this level, for example, AUTOPASS [Lieberman k Wesley, 1977], and more

recently, HANDEY [Lozano-Perez it al., 1987] [Lozano-Perez it al., 1990b].

The aim of this type of programming is to enable the programmer to specify

the parts and the assembly and some goals along the way, such as 'put peg in

hole', and the system will do the rest. Thus, the goal of the assembly would be

specified, but, to an even greater extent than with the Object Level program¬

ming languages, the programmer would have no knowledge of the assembly
execution system. All the sensing and robot movement would be hidden from
the user. This requires that the off-line system has extensive knowledge of

the robot environment as well as that of the parts and what actions can take

place in the workcell. This type of system therefore requires the integration

of research done into collision free paths, grasping strategies and part mating.

Again, as with the Object Level systems, the Task Level systems rely on the

hidden Manipulator Level languages to perform the task.

Chapter 2. Related Work 23

Summary

The different programming levels, Joint, Manipulator, Object and Task, have
been developed over the years to make it easier for robot programs to be de¬

veloped. As can be seen, this allows robot programming to be performed more

quickly and easily for an ideal world, but the problem of performing the as¬

semblies in the real world of the robot workcell still requires that uncertainty

and variation are dealt with in some constructive way.

Joint Level programming is too basic to be seriously considered as a useful
environment for programming assembly robots. Manipulator Level programs

are currently used in actual factory applications, but tend to be used only in

tightly constrained environments where the variation and uncertainty allowed
in the workcell are kept to a minimum. This is only cost-effective for large batch
assemblies. Achieving reliable programs which run repeatedly in the real world

without these constraints has yet to be realised. Object Level and Task Level

languages also aid the programmer with the ease of visualising the problem
and describing the task in familiar terms, but again, there are no guidelines for

systematically dealing with the reliability problems.

As has been mentioned in the introduction in Chapter 1, without sensors

robots can only execute fixed sequences of motions. Sensor input can be used

in two ways: to gather data to change the destination of the robot arm (but
still performing the same motion), or to change the sequence of actions of the
robot. These uses can overlap where data for the task discovers that an action

must be changed. The second use of sensors, to change the sequence of actions,

is useful when looking to improve the reliability of the system. The above

programming levels, although usually providing a basic interface for sensors,
do not provide an obvious systematic approach to their integration.

The next section examines the history of the development of research into

programming assembly robots at EDAI. The problems which were encountered

by the researchers at each stage are examined, and this shows how the research

Chapter 2. Related Work 24

line developed to produce the Behaviour-based approach currently being fol¬
lowed.

2.3 Robotic Assembly Research at EDAI

This section has been included in the thesis to show how the research work

in EDAI into robotic assembly has developed. Beginning with a Manipulator

Level system, the level of programming was then raised in the RAPT project,

which was programmed at the Object Level. Current research is also focused at

this level, with the system architecture developed under the Behaviour-based

methodology.

Work in the field of robotic assembly at EDAI began in the early 70's with

the 'Freddy' project, which performed the assembly of a toy wooden ship and

car [Ambler ct al., 1973]. The pieces to be assembled were initially sorted out

from a pile, recognised, picked up, re-oriented and placed at their 'assembly

position' in their 'assembly orientation'. The actual assembly was a separate

program which relied on having the parts placed in exactly the correct positions.

Simple vision sensing was used to identify the parts in the first stage of the

system, but was not used in the actual assembly. Force sensing was used for

two purposes in the assembly section of the system: to determine the success of
a spiral search for use in 'hole-fitting', and for some constrained motions where
the robot was used to follow a surface by continually bumping into it.

The 'Freddy' assembly system served to highlight several problems which
would have to be dealt with if robots were to be used for assembly. Program¬

ming Freddy proved to be difficult and tedious where the motions had either

to be taught using a teach pendant, or had to be specified in 6D configuration

space. This relates to the problems previously described in Section 2.2 with
Joint Level and Manipulator Level languages. It also proved to be a difficult
task for the programmers to incorporate the sensors into the system.

Chapter 2. Related Work 25

In an attempt to make programming easier, the Object Level program¬

ming language, RAPT, was developed [Popplestone et ol., 1978]. RAPT is a

model-based language which allows the assembly task to be described by the

relationships ('against', 'fits', 'coplanar', and 'aligned') between the part fea¬
tures ('face', 'edge', 'shaft', and 'hole'). These are entered into the system as

follows:

<relationship> / <featurel>, <feature2>;

E.g. against / face of bodyl, face of body2;

fits / shaft of bodyl, hole of body2;

From the spatial constraints of the parts and knowing how the part is to

be held in the gripper, RAPT is able to infer the position of the gripper to

satisfy the constraints by using geometric reasoning. The required motions of

the robot could be entered into the system by simply requesting a move using,

for example, one of the following commands:

move / <body name>;

move / <body name>, parlel, <feature>;

move / <body name>, perpto, <feature>;

move / <body name>, parlel, <feature>, <distance>;

move / <body name>, perpto, <feature>. <distance>;

To help the user visualise the above type of relationships, the RAPT lan¬

guage was integrated with a modelling system, ROBMOD [Cameron, 1984]
[Cameron & Aylett, 1988] [Ambler et al., 1987]. This allows the objects to be
modelled in terms of their surface features which the programmer of the system

can then use to define the above RAPT relationships.

RAPT moved away from describing the robot motions in terms of abso¬

lute Cartesian destinations, but instead provided an environment where the

assembly could be described in terms of how the features of parts fit together.

Chapter 2. Related Work 26

The integration of ROBMOD also helped the programmer of the system, but
did not address the problem of reliability. Fleming [Fleming, 1987] attempted
to introduce geometric tolerancing analysis into RAPT, but this proved to be

too computationally expensive (this work is also presented in Section 2.4.2 on

page 39). Yin [Yin et al., 1984] introduced vision sensing to determine the
translational differences between the nominal part position in the workcell and

the actual part position. This was done by inserting special RAPT commands

in the off-line system to use the camera information at set points. In this way,

when these commands were reached, the sensor information could be exam¬

ined as required. The camera had to be accurately calibrated to fit in with

the model of the world already defined by ROBMOD. Although this sensor

information proved useful to accurately determine the actual positions of the

parts in the workcell, the use of sensors to change the ordering of actions due

to real world information, rather than just the destination of the robot arm,

could not be easily achieved without bringing much more information off-line

from the system. Incorporating this knowledge into the off-line system would

prove difficult and specific to a particular workcell set-up.

The above work led to a different line of research — the Behaviour-based

approach to robotic assembly. Early ideas behind this line of research can be
found in [Smithers et al., 1987] [Smithers & Malcolm, 1989]. This work put
forward the idea of programming robotic assembly in terms of task-achieving

behaviours. The off-line system plans in terms of part motions, and the as¬

sembly is performed on-line by competent execution modules, referred to as

Behavioural Modules. Brooks, at MIT, was also developing work in Behaviour-
based mobile robotics along a similar theme [Brooks, 1986a] [Brooks, 1986b].
This work on mobile robotics is detailed further in Section 2.4.3 on page 50, and

the Behaviour-based programming methodology will be examined in the follow¬

ing chapters. The SOMASS project [Malcolm et al., 1989], a Behaviour-based
robotic assembly system developed from the Behaviour-based ideas, will also
be fully described in Chapter 3, as this provides the basis for the experimental

system developed for the thesis.

Chapter 2. Related Work 27

2.4 Failure Handling

As the level of programming robots was raised, there still remained the under¬

lying problem of reliability and how to deal with failed assemblies caused by

variation and uncertainty in the workcell, the robot, and the assembly com¬

ponents. The programming levels in themselves did not solve the problems

so methodologies were built on top of these levels to help to provide reliable

systems.

Research into the problem of reliable robotic assembly has led to several

strategies for dealing with the problem of variation and uncertainty in robotic

assembly systems. These range from the employment of a human overseer

to physically restart a failed assembly, to different automatic error recovery

methods, and uncertainty and variation reduction strategies. The use of a

human overseer is simple and flexible, but is inefficient in terms of human

resources.

The methods for dealing with potential failed assemblies fall into three

categories:

Error Detection and Recovery — Section 2.4.1 The robotic assembly is

monitored for deviations which may result in an error situation. If a de¬

viation is detected, it is identified off-line, and a recovery strategy per¬

formed to bring the system back to a point where the assembly can be

resumed as normal.

Worst Case Analysis —- Section 2.4.2 This method attempts to provide

a robotic system which is guaranteed to succeed in the presence of the

bounds on the variation and uncertainties presumed in the analysis. This

makes extensive use of modelling the world off-line and performing un¬

certainty analysis on this model.

Chapter 2. Related Work 28

Competent Execution Systems — Section 2.4.3 This method allows the
on-line system to deal with the variation and uncertainty in the real world,

rather than using a method which involves extensive re-planning or mod¬

elling.

2.4.1 Error Detection and Recovery

This section deals with the first category for coping with potential error sit¬

uations, namely Error Detection and Recovery. This method assumes that

errors will occur in the assembly process and uses some means to detect these

errors, diagnose their cause, and to recover from the error situation either by

returning to some previously correct state (sometimes just sweeping all parts
from the workcell) or by working forward by some other method to a future
correct state. One of the easiest ways of dealing with failure situations by using

Error Detection and Recovery is to provide each potential error situation with
a fixed error recovery routine. This method uses fixed strategies to deal with

events detected by sensors and is thus dependent on the data received and the

interpretation of this data.

Many of these systems have concentrated on automating the detection pro¬

cess and recovery planning, and are mainly concerned with monitoring the

running of systems with appropriate sensors, and replanning when the current

state of the world is different from the expected state. These systems make use

of knowledge about the nature of errors to reason about what has happened

and how to resolve it.

Failure Reason Analysis

Work with fixed routine error recovery systems led to research in the area

of automatic error recovery. Some of the earliest work can be attributed to

Srinivas [Srinivas, 1976] and [Srinivas, 1978], Due to the fact that the world
cannot be accurately modelled, Srinivas aimed to design a system which could

recover from failures based on knowledge collected about them. The method

Chapter 2. Related Work 29

he proposed, Failure Reason Analysis, attempts to find an explanation for the

failure, determine where the problem lies, and work out what can be done

about it. A task is seen as a sequence of actions that lead from an initial state

to a goal state, with intermediate states defined. A failure results when an

action does not produce the next expected state and the problem is then to

determine the cause of the failure and to identify a way of progressing from the

failure state to the goal state. A failure reason model represents the knowledge
about different reasons for failure of an action and what can be done to recover

from it. As the task is run, a failure tree is dynamically constructed containing

action nodes which are derived from the original plan, and failure nodes. The

failure nodes are obtained from an associated action model. It is from a pruned

version of this tree that error correction methods and the type of error are sent

to a patch planner which integrates them into the initial plan.

The main limitations of this system derive from two sources: the extensive

use of plan formation as the basis for constructing robot programs, and from

the choice of checking only the preconditions of the actions when the error may

be discovered later than it actually appeared which allows the system to go on

to perform other actions in the assumption that the previous has been correctly

performed.

Backward and Forward Error Analysis

One worker in the field of error recovery for many years is Maria Gini. Moving

on from early work in the field of logic programming, Gini proposed a version

of software error control using a knowledge base containing rules about the

interpretation of sensor data and recovery rules [Gini it Gini, 1983b] [Gini &
Gini, 1983a]. A monitoring system is run concurrently with the robot plan
which identifies the appearance of any error and consults the knowledge base

in order to determine what has happened, and to generate recovery actions.

The basic strategy can be seen in Fig 2-4.

Chapter 2. Related Work 30

Error Detected

PROGRAM ——— ^ What happened? (sensor rules)
EXECUTION

^ What to do? (recovery rules)
Recovery Actions

Figure 2-4: Error Detection and Recovery [Gini k Gini, 1983].

A dynamic model of the robot environment is constructed, initially from

declarations in the program and data from the sensors. Each robot action

has, associated with it, pre- and post-conditions which must match the actual
data from sensors. Errors are detected by matching a current model with the

expected model for a particular action. In early work, the recovery procedure

was only designed to bring the plan back to the point where it was suspended.
Later work [Gini k Smith, 1986] expands the Backward Error Analysis and
Recovery to include Forward Error Recovery, which consists of determining

the difference between the actual state and the desired state, then developing

operations to achieve the desired state. Information collected during execution

is passed to a recovery process which performs error recovery.

The above two methods rely on being able to correctly execute three dif¬

ferent procedures: detect errors, determine their cause, and perform an appro¬

priate recovery action. Each of these has associated problems which will be

discussed at the end of this section.

Forward Error Analysis

Another system [Trevelyan et a!., 1987] uses a slightly different definition of
Forward Error Analysis. Gini [Gini k Smith, 1986] defined Forward Error
Analysis as the determination of the difference between the actual state of

the robot and the desired state of the robot, then developed a sequence of

operations to achieve the desired state. Trevelyan developed a system for sheep

shearing in Australia which uses an alternative definition of Forward Error

Analysis. Due to the nature of the sheep shearing task, where most of the

Chapter 2. Related Work 31

movements are exact imitations of those used by human sheep shearers, it is

not feasible to simply attempt to reach the end of a shearing movement by some

alternative route. Thus, Trevelyan only allows resumption of the originally

interrupted movement rather than trying some alternative method.

Knowledge-based Error Recovery

Researchers at Aberystwyth University have been working to investigate sen¬

sory monitoring schemes for error detection, diagnosis of error states from sen¬

sory signals, and recovery actions to rectify diagnosed faults [Lee et al., 1983).
AFIRM (Aberystwyth Framework for Industrial Robot Monitoring) has been

designed to perform the first of these and to provide information on sensors,

sensory states, and controls for the second and third [Lee et al., 1984]. Later
work includes an analysis of low level robot actions which, it is claimed, pro¬

vides a simpler set of errors [Hardy et al., 1989). In a knowledge base, each
atomic robot action is associated with certain general errors. When a sensory

mismatch occurs, one or more errors are chosen relating to current action. Pos¬

sible causes are then sought using a knowledge base. This work is similar to

Srinivas in the use of tree structures, but instead of pruning trees from a full

failure tree, it attempts to restrict the growth of the tree by applying knowledge

as the tree develops.

Replanning for Assembly Tasks

Another method, developed by Xiao and Volz [Xiao & Volz, 1988], plans off¬
line for a zero error situation and devises simple on-line replanning strategies

based upon data available from force, moment, and position sensors to han¬

dle errors arising during program run-time. Use of compliant motion is made
and restrictions are imposed such that replanning is only performed when un¬

intended contact is detected by force or moment guards between any of the

parts involved. Again, extensive use of a world model is made, modelling ge¬

ometric and physical descriptions of the task environment, along with sensor

Chapter 2. Related Work 32

uncertainty and robot motion uncertainty. A patch plan is inserted to link the

unexpected configuration to one of the expected configurations [Xiao Az Volz,

1989],

Plan Management System

Drabble and Cox [Drabble Ac Cox, 1985) propose a Plan Management System

(PMS) which, as well as planning, carries out execution error monitoring and

analysis and can manage plan patching and re-planning. PMS contains three

major modules: a traditional planner based on Tate's NONLIN [Tate, 1984]; a
system for plan co-ordination, monitoring and error analysis; and a simulation

of effectors, sensors and the real world. The main purpose of the research is to

have a monitoring system which builds up a string of plan actions which can

be replaced by another plan if a problem occurs during execution, a problem

being recognised when an action is attempted for which a pre-condition is not

met.

One major problem with using planning systems to manoeuvre a manipu¬

lator in the real world is that the semantics of the planner are not usually rich

enough to deal with spatial relationships, temporal problems, or uncertainty.

Many planners create an internal model of the world which is a radically in¬

complete subset of the real world, containing information which can also be

out of date. Facts about the world change as the planner runs due to motions

and actions taking place in the real world, thus introducing the possibility of
execution errors.

Summary of Error Detection and Recovery

Error Detection and Recovery systems allow errors to occur, then attempt to

prevent error situations by diagnosing the failure and planning some new series

of motions designed to restore the system. The three sections of these systems,

detection of errors, diagnosis of the problem, and recovery actions, each have

their own associated problems.

Chapter 2. Related Work 33

The detection part of the system requires that each action is monitored
in an appropriate way, and that the expected state of the system is known.

This places a strain on the modelling system to keep track of exactly what

is happening in the real world, which is done by updating it as the assembly

progresses with information both from the sensors and from expected results

of the motions which have been performed. Again, the problem arises of keep¬

ing an accurate and up-to-date model which can cope with the actions and

consequences of actions in the real world. Each action must have associated

current and expected states which, as these are context dependent, mean that

each stage of the program must be examined separately.

The problem of context dependency also appears in the diagnostic section

where a knowledge base of some sort is consulted to determine what has hap¬

pened. The sensor readings are thus extracted from the context in which they

occurred, and enough information must be transferred with them to determine

the actual situation that the particular sensor readings have discovered. It is

a difficult problem to determine how much information is needed to correctly

identify the appropriate error. For example, if the gripper is empty, is the

problem due to gripper failure, or is it because the part has been knocked from

the gripper by some unexpected obstacle in the workcell during a motion of

the gripper?

The recovery actions rely on the correct diagnosis of the cause of the prob¬

lem. The knowledge base needs to contain information about the nature of

the errors which can occur and, again, the problem arises of information being

used out of context where inappropriate actions may be taken.

All the above methods deal with potential error situations, but do not make

any attempt to use the software side of the system to reduce the problems of

variation or uncertainty. The errors are allowed to occur, then identified, and

recovery actions planned. The following section looks at Worst Case Analysis
where the systems attempt to provide only plans and robot motions which are

guaranteed to work in the real world, given the bounds enforced by the system.

Chapter 2. Related Work 34

2.4.2 Worst Case Analysis

A different method for tackling the problems of variation and uncertainty in

robotic assembly is Worst Case Analysis. This method, unlike Error Detection

and Recovery, tries to guarantee that a plan will succeed, rather than letting

it fail and recovering from that failed position. Much use is made of both

modelling the workcell and mathematical analysis of the task.

Engineering the Workcell

One of the least computationally intensive methods of performing a type of

Worst Case Analysis is that of tightly engineering the workcell itself. If the
workcell is designed to accept only parts of certain specific tolerances, rejecting

completely those outwith these bounds, and fixturing and jigging is used for

particular applications to remove other variations, it leaves very little room

for error situations to arise. The unfortunate consequence of this is that the

method becomes feasible only for large batch products as the development

time and cost for changing the workcell for a different product becomes pro¬

hibitive. A number of parts are also rejected which may be fitted together, thus

causing wastage. Cambridge University [Williams et ol., 1986] are working on

programmable fixtures to speed up the changeover process and make it more

flexible.

Sensory Filtering

The use of control theory has been applied to the problem of uncertainty in
robotic sensory data. [Nevins et ai, 1984] looks into the advantages which could
be achieved by the use of these advanced control techniques in the presence

of noisy data and incomplete process models. Kalman filters [Kalman, 1960]
[Dean, 1986], have been applied to robotic systems in an attempt to reduce the

uncertainty present in the sensory data provided to these systems. [Whitney
&c Junkel, 1982] show mathematically how stochastic control theory can be

Chapter 2. Related Work 35

used to help robots monitor and calibrate themselves, and control other self-

adjusting behaviour. [Johnson it Hill, 1985] uses a Kalman filter to qualify
robot move instructions by sensor readings, updating the pre-taught locations

with corrected data. These methods give rise to the problems of estimating the

statistical parameters required.

Fine-Motion Planning

Early work by Taylor [Taylor, 1976] moves into the area of automatic synthesis
of fine-motion planning from strategy skeletons. These are partially specified

strategies which are completed by decisions made using error estimates found

by propagating the effect of errors, variations, and uncertainty through a model

of the task. Lozano-Perez also used strategy skeletons, this time to select mo¬

tion parameters [Lozano-Perez, 1976]. Each motion was expressed by the final

relationship of the parts during the task. Guarded movements and termination

conditions could be computed from the ranges of displacements that achieved

this relationship.

Brooks [Brooks, 1982] extended Taylor's approach and presented a plan
checker which uses a geometric computer-aided type of database to infer the

effects of actions and propagation of errors. This method for checking and

modifying robot plans tries to ensure that they will work given mechanical

variation in placement, and ranges of tolerances in the construction of the

workpieces and their orientation. The result of this is to try to produce a

plan which is guaranteed to succeed, by computing the effects of variation
and uncertainty symbolically, and, if the effects are small, the plan can be

accepted. The computational costs for this system are high. If the effects

are significant, most problem areas can be identified and the plan can either be
constrained to succeed, or different methods can be used to reduce the variation

or uncertainty, and sensory checks included. This method uses explicit models

of possible variations. The use of symbolic constraints means that not only can

they be used to estimate errors for particular operations, but they can be used

Chapter 2. Related Work 36

in the opposite direction to constrain the values for plan parameters to enable

the plan to succeed.

Configuration Space

In examining the problem of safe trajectory planning for mechanical manipu¬

lators with two links and multiple degrees of freedom, Udupa [Udupa, 1977]
presents the basic ideas for Configuration Space. A generalised form of these

ideas was presented in [Lozano-Perez & Wesley, 1979] where collision-free paths
were planned among polyhedral obstacles. The configuration of a system is said
to be any set of parameters which uniquely specify the position of every part of

that system, and the configuration space is the space defined by those param¬

eters. It is possible in configuration space to shrink the configuration object
down to a reference point and expand configuration obstacles accordingly. The

obstacles can be grown more in certain dimensions to encompass most geomet¬

rical variation, thus allowing a safety margin for the configuration object to

move in this space without collisions and banishing the need for exact calcu¬

lations for tolerancing error for the obstacles. The problem of planning a safe

path for a polyhedral object moving amongst polyhedral objects thus becomes

the mathematically easier problem of moving a point through a cluttered en¬

vironment. Many superficially different path-planning tasks become identical
when looked at in configuration space. A more formal explanation of this is

presented in [Lozano-Perez, 1981] [Lozano-Perez, 1983],

Later work expands the use of configuration space to compliant fine-motion

strategies [Lozano-Perez & Brooks, 1985]. Geometric descriptions of the parts
and estimates of sensing and motion errors are used to produce fine-motion

strategies which employ a combined strategy of force and position control to

guarantee the final configuration from all likely initial conditions.

The basic strategy employed is to look for ranges of positions in configura¬

tion space where the configuration object (now reduced to a single point), can
reach the goal in a single motion, which can be represented as a unit velocity

Chapter 2. Related Work 37

vector. The range of positions from which motion of a specified velocity along

the direction of the unit velocity vector will reach some point of the goal is

called the pre-image of the goal. When the pre-image of the goal does not con¬

tain the current position of the configuration object, backward chaining can be
used to work back until the configuration object is found within the pre-image,

using each previous pre-image as the new goal set. From these, a motion strat¬

egy consisting of velocity vectors and associated termination predicates can be
built up, which can be seen as a sequence of guarded motions.

Variation in the position of the configuration object can also be taken into

account by creating a sphere with a certain error radius around the position

as observed by the robot. Position variation due to inaccurate knowledge of

the initial starting position of objects in the workcell and also the uncertainty

in the robot's position sensors are combined to produce an upper error bound.

Since this now affects the termination predicates, perhaps leading to prema¬

ture termination of a motion, all possible positions of the configuration object

within this sphere must be within the goal in order to guarantee success. In

addition to the variation of the position of the configuration object, there is

also uncertainty in the velocity along a motion. The error between the actual

and the commanded velocity is given a bound and the resultant path is within
a cone centered on the commanded path with apex at the initial position. This

gives rise to strong pre-images, which are defined to be the locations for which

all motions within the range of velocity uncertainty will reach the goal. To cope

with empty pre-images often found when dealing with purely position controlled

motions, compliant motions such as sliding can be used along with generalised

damping, [Lozano-Perez et a!., 1990a], to produce larger pre-images. Although
less sensitive to uncertainty, there still remains the problems of friction and

finding the termination predicates.

Erdmann [Erdmann, 1984] looks into the problem of friction in the above
work. If it is assumed that the objects are of a single material with equal
coefficients of static and sliding friction, the reaction force from contact at a

point on a surface will lie within a friction cone with apex at the point of

Chapter 2. Related Work 38

contact and centre line along the surface normal. A model of friction can thus
be made, including angles at which the object will stick or will slide. The model

can also be extended to include rotations and moments [Erdmann & Mason,

1988],

Configuration Space and EDR strategies

The previous work concerned with configuration space deals with uncertainty

and variation arising from sensing and control errors. Donald [Donald, 1986]
proposed a strategy to cope with model errors, that is, errors occurring from

uncertainty in the geometric models of the environment and of the robot by

parameterisation of possible variations in the environment, such as in length

and angle of a chamfer, or width of a hole. It has been discovered that in the

presence of model error, there may be cases where such plans do not exist, where

the goal may vanish or may no longer be reachable. To deal with this, Donald

introduces Error Detection and Recovery (EDR) (a different use of the phrase
to that discussed in the previous section) which can only deal with strategies
which involve one motion. A plan can be found if the goal is recognisably

reachable, but if the goal vanishes, the EDR strategy is designed to allow the

plan to signal failure. EDR plans will succeed or fail recognisably with no

possibility that the plan will fail without the executor realising it. Model error

causes large changes in configuration space, and thus goal failure becomes more

prevalent. Donald states,

"An EDR strategy should attain the goal when it is recognizably

reachable, and signal failure when it is not. It should also per¬

mit serendipitous achievement of the goal. Furthermore, no motion

guaranteed to terminate recognizably in the goal should ever be

prematurely terminated as a failure. Finally, no motion should

be terminated as a failure while there is any chance that it might

serendipitously achieve the goal due to fortuitous sensing and con¬

trol events."

Chapter 2. Related Work 39

In [Donald, 1987], a planner called LIMITED is described which imple¬
ments EDR in a restricted domain of planar assemblies. Work reported in

[Donald, 1988] and [Jennings et ol., 1989], expands EDR to cope with multi-
step EDR strategies by introducing Push-Forward Algorithm and Failure Mode

Analysis, again implemented in LIMITED. This work is continued in [Donald,
1990] where Weak EDR Theory introduces new mathematical tools for studying

multi-step strategies.

All of the above strategies involve extensive use of a model of the world

and rely on this model taking into account all the relevant parameters which

may affect the assembly process. These also, by their very nature, use larger
boundaries on the parameters than may be necessary in the actual workcell,

thus not allowing some strategies which may be very successful.

Geometric Tolerancing Analysis

Extending Requicha's ideas [Requicha, 1983] on geometric tolerance represen¬

tation and semantics, Fleming examined the combined effects of tolerancing

constraints of assembly parts to determine whether they will fit together sat¬

isfactorily [Fleming, 1985a] [Fleming, 1985b]. The geometric tolerances can be
defined with tolerance zones (regions of space in which a real feature must lie)
and datums (a datum is a point, an infinite line or an infinite plane). In [Flem¬
ing, 1987], he shows how a toleranced part can be represented by a network
of tolerance zones and datums connected by arcs with associated inequality

constraints. The original work was intended for integration into the RAPT

programming language to check tolerance during design and off-line program¬

ming, but proved to be too computationally expensive for this to be successfully

achieved.

The Mechanics of Manipulation

Another category that falls under Worst Case Analysis is that of modelling

the mechanics of manipulation. Brost [Brost, 1986] investigated grasp strate-

Chapter 2. Related Work 40

gies which are specifically designed to bring the part into a unique orientation

and position in the gripper from a previously unknown initial configuration

with substantial initial variation in orientation and position. Other work has

concentrated on using 'fences' to manipulate parts in order to achieve a final
known orientation. These fences may either be manipulated by a robot with

the part on a stationary table, or the part may be moved by conveyor belt

through strategically placed stationary fences [Mani et al., 1985],

Peshkin and Sanderson [Peshkin & Sanderson, 1988) have contributed to
the above work by placing qualitative bounds on the rate at which a predicted

motion occurs to ensure that the methods can produce manipulation strategies

which are guaranteed to succeed. This involves calculating the Centre of Ro¬
tation (the coordinates of a point which express the two degrees of freedom of
the pushed object; its third degree of freedom is constrained by contact with

the pusher), which can change dramatically depending on the distribution of
the support forces of the object. Thus an attempt is made to find the locus

of COR's under all possible support distributions. This provides a basis for

planning manipulation of sliding objects either with or without sensors.

Peshkin has since moved on from this type of work to look at programmed

compliance [Peshkin, 1990). Given a nominal motion plan which takes no

account of errors, the compliance is then designed in such a way that the plan

will succeed. Underlying this strategy is the idea that forces arising during a

task often contain enough information to indicate where an assembly has gone

wrong. The damping matrix (compliance matrix) contains elements so that
the force which characterises every possible error condition maps into a motion

that reduces it.

Summary of Worst Case Analysis

In the systems above which use symbolic representation to produce an internal
world model from which the robotic system may reason about the current state
of the world, an important assumption is made that the world and the task can

Chapter 2. Related Work 41

be represented in this manner in such a way as to provide all the information

the system needs to keep running.

When the robot system uses a world model in this way, it becomes impor¬

tant that an accurate world model can be made and the resultant systems tend

to become involved in trying to produce an ever increasingly accurate represen¬

tation of the robot task and work environment. Even so, there is still enough

variation in the workcell at run-time to require more than a pre-determined

world model to achieve success in the given task. Even small variations in the
external world may cause failure of the task, thus making the internal world

model an even more inaccurate representation of the real world. Sensors can

be added, but the problem arises of determining the correct representation

and integration of this new data into the world model. Different tasks require

different information from the sensors, which in turn may require different rep¬

resentations. There is also the problem of the time interval between taking

readings from sensors, and making decisions based on the new information.

The method of Worst Case Analysis also tends to reject many strategies

which may in the real world, correctly perform the assembly. As the bounds

put on the system look at the worst scenario which could occur, many useful

and efficient strategies are rejected when they may actually work in the real

world. This leads to inefficient strategies and the system also considers many

situations which will never occur.

2.4.3 Competent Execution Systems

Another form of dealing with variation and uncertainty in the workcell is to

design a Competent Execution System. This method plans for a simplified

ideal world, and expects the execution system to reliably perform the assembly
without resorting to re-planning. The use of reliable modular design is an

important factor in this method.

Chapter 2. Related Work 42

Hierarchical Control

In his book, 'Brains, Behavior and Robotics' [Albus, 1981], Albus attempts to
show how the study of robotics can be used as a tool in the study of hierarchical

control systems and their relationship to goal-seeking and purposive behaviour.

In this, he looks at a hierarchical decomposition composed of goal-achieving

modules. This work is presented in detail as the thesis work also uses a similar

hierarchical structure, although the modularity is based on different ideas.

Albus uses the notation of vectors and trajectories to describe his ideas. A

vector is described as an ordered set, or list, of variables which can specify a

state. A trajectory is the path the state vector follows through the vector space

as time progresses, producing a sequence of states.

In examining servo mechanisms, the simplest case of using feedback to direct

behaviour to achieve a goal, he looks at a hierarchical structure designed to

examine achieving goals in an unpredictable environment. Feedback control

involves using sensing devices to monitor the state of the physical system, and

using this information as part of the next input to the system to moderate the

action taken. In effect, the sensory feedback is used to keep the system as close

to an ideal path towards the given goal as is possible. Any difference detected

between the real world situation and the expected situation results in an action

being taken to guide the output in the correct direction to reduce the error.

The vector notation allows expansion of the command, feedback and out¬

put used in servomechanisms. The combined input of the command and the

feedback from previous cycles is acted on by an operator to produce actuator

commands. See Fig 2-5 from Albus. The function, H, operates on all the

combinations of the input command, C (a vector consisting of the variables Sj

through and the feedback, F (a vector consisting of sensory variables si+1

through Sjv), to produce the output vector, P (a vector consisting of Pi through

Pi) which controls the actual actuators in the physical environment.

Albus goes on to examine a stationary command vector with feedback which

Chapter 2. Related Work 43

Figure 2-5: A Multivariate servomechanism [Albus, 1981], page 114.

varies over time; the situation is illustrated in Fig 2-6. Albus describes the

illustration as follows:

" A stationary C vector establishes a setpoint, and as time pro¬

gresses the feedback vector varies from F1 to F2 to F3. The S

vector thus traces out a trajectory Ts. The H operator computes

an output P for each input S and so produces an output trajectory

Tp. The result is that the input command C is decomposed into a

sequence of output subcommands P1, P2, P3."

If the command vector, C, stands for a task, a goal, or a plan, then the

output string of P1, P2, P3 represents a sequence of sub-tasks, subgoals, or

subplans respectively. The system relies heavily on correctly formulated H

functions (which may have to take into account speed, stability and the other
practical problems which are all embedded in the H functions) over the entire

space traversed by the S input.

This type of feedback control including vector notation can be used to pro¬

duce a behaviour generating hierarchy. A sensory-processing hierarchy is run

parallel to the behaviour-generating hierarchy (see Fig 2-7) to integrate both
sensory input from the external environment and data recalled from experi¬

ences or internal context, to recognise patterns and detect errors. This can

then be used to steer the actions along trajectories and provide the feedback

which can be used to determine the next action. Memory is used to recall

what has happened and predict what will happen depending on a certain ac-

Chapter 2. Related Work 44

tion, in the form of IF/THEN program structures. Sensory data enters at the
bottom of the hierarchy and filters up through sensory processing and pattern

recognition modules. Relevant information is sent out at appropriate levels.

The H modules in Fig 2-7 decompose input goals C into output subgoals

P using feedback F. The M modules recall expected sensory data R which is

compared with observed sensory experiences E. The G modules recognise sen¬

sory patterns Q and compute feedback errors F. Input to the M modules comes

from subgoal information P which indicates what action is being contemplated

or executed, as well as from context information X derived from a variety of

sources.

The top level input to the hierarchical structure is a goal, which is de¬

composed into sub-tasks until the lowest level produces observable behaviour.
Success or failure of the goal seeking depends on keeping the output within a

region of successful performance, despite perturbation and uncertainties in the

environment. At each level of the action, or as it is described by Albus, the

behaviour hierarchy, feedback is used to amend the current behaviour to keep

the system from straying into a failure situation and performs the function of

Chapter 2. Related Work 45

Figure 2-7: A cross-coupled processing-generating hierarchy [Albus, 1981],
page 129.

closing a real time control loop at each level of the hierarchy. At the lowest

levels of the hierarchy, the sensory feedback is unprocessed and hence fast act¬

ing, whereas at higher levels, the feedback provided by the sensory hierarchy
has passed through the ascending stages of processing, and thus will be slower

acting, giving the higher levels information over longer time intervals. There

are several trajectories through the system which will result in successful task

completion, but not all result in perfect task performance. If perturbations

occur at a low level, unless they overwhelm that level, they can be dealt with

quickly. If the system is overwhelmed, other layers of the hierarchy can deal

with it by a change of strategy. If the perturbation is so great that none of the

levels can deal with it, overall failure will occur. The level at which the system

is required to cope with the perturbation gives a good indication of how well

it is suited to the task. The further down the hierarchy the perturbations can

be dealt with, the better suited the system.

Albus goes on to look at a possible control structure for a robot. This

Chapter 2. Related Work 46

includes a hierarchy consisting of task-decomposition modules, sensory pro¬

cessing modules and world modules. The task-decomposition modules receive

information from the sensory processing modules which have extracted sensory

data to make decisions at that level. The sensory processing modules are pro¬

vided with expectations from the world model at the same level. The world

model module, in turn, receives input of actions, plans and hypothesis from the

task decomposition module. The sensory information can be compared with

the world model data to provide feedback to alter the actions. Commands can

be represented as vectors and sequences of commands as trajectories.

The complexity of the control of the system is dependent on the number of

levels of the control hierarchy, the number of feedback variables, the appropri¬

ateness of the H operator and of the sensory processing systems which extract

feedback for the H functions.

Supervisory System and Action Modules

A method developed by the Robotics group at Aberystwyth University, de¬

signed for the InFACT assembly system, separates sensing and action into

different modules, and links the two by a supervisory system [Hardy, 1991]
[Loughlin, 1992], Uncertainty and variation are dealt with by measurement

strategies which are only used in situations where it is thought that problems

or ambiguities may occur.

The system, which is designed to be easily integrated into existing machine

workcells, requires that minimal sensing be used, and machines be easily re-

configurable to allow easy reprogramming for diverse tasks. A supervisory

system interacts with action modules, and can also talk directly to a sensor

integration box. The sensory integration box collects information from sensors

and stores it until it is requested by the supervisor. The sensing and action are

deliberately kept separate by the intervention of the supervisory system. The

action modules are designed to be internally competent and deal with their own

Chapter 2. Related Work 47

servoing and safety. They also deal with their own verification of end-effector

position.

Certain assumptions are made concerning the type of environment this sys¬

tem is to work in. These include that variation is typically handled by clever

strategies, that the assembly is well constrained in the first place, and that the

failures involved are typically the result of certain well understood problems,

such as sticking feeding mechanisms. It is also assumed that cheap, fast sens¬

ing will be used. The actual sensors used in the workcell are specially designed

sentinel binary sensors (a robust finger-like sensor which is activated by the
robot knocking its spring-attached top half over), which can be moved round
the workcell as appropriate.

Measurement strategies are used to deal with the uncertainty and variation

present. Each recognised problem is matched with a specific measurement

strategy to deal with it. A strategy of moving a part past a sensor in a specific

direction may resolve a problem of a 180 degree ambiguity about the positioning
of a part. Variation in feed position can be avoided by being matched with fast

and simple correction strategies. If there is no strategy programmed for a

particular problem, nothing is done about the problem.

Information Space

Another method of using an execution system to cope with the variation in

the environment is proposed by a group at Hull University [Shen et al., 1987]
[Selke ef al., 1991], The method involves programming in terms of generic
tasks, with each task composed of feeding, transportation, and mating. Each

task is characterised in terms of the information required to define success of

that phase.

For a particular task, the robot motions are discretised by associated sensor

readings into regions in what is referred to as information space. Each discrete

region corresponds to an appropriate action and the task can be defined as

a trajectory through this information space. Different generic tasks provide

Chapter 2. Related Work 48

similar trajectories through these regions, differing only in their magnitude.

This leads to an expected route through the sensory space which leads to

successful completion of the task. If this trajectory is deviated from when
variation in the workcell is encountered, another region of the information space

is entered. This region also has associated actions which attempt to converge

the present trajectory with the previous expected trajectory. If the trajectory

leaves the set of known regions, this is seen as an error, but the data can be

examined and a new region incorporated so that in the future, this region will

provide an appropriate action.

The difficulty with this system is actually defining the boundaries of the

regions in information space. All relevant parameters would have to be ex¬

amined for a totally defined information space, and it is not obvious what

these parameters would be. The actions defined for each region must also be

appropriate.

Behaviour-based Programming

A different method for programming robots, the Behaviour-based method, has

emerged over the last few years due to a dissatisfaction with what has been
termed as the Classical approach to programming robots. The Behaviour-
based method attempts to decompose the task into reliable task-achieving

units, called behaviours, rather than into the separate information process¬

ing functions of the Classical approach. A move is made away from collecting
and processing data to form a single representation of the world in which the
robot operates, to integrating sensor information at the lowest possible level to
direct more responsive behaviour.

The advantages of modularisation are clearly shown by reference to com¬

puter programming languages where it is now commonplace to write modular

programs, aided by the use of subroutines. An important aspect of modularity
is to reduce the complexity between the modules by keeping the communi¬

cation between modules as low as possible. Both the Classical approach to

Chapter 2. Related Work 49

Sensors

o
■a
o.

Actuators

Figure 2-8: Horizontal decomposition of a mobile robot control system into

functional modules [Brooks, 1986).
Reason about behaviour of objects

Plan changes to the world

Identify objects

Monitor changes
Sensors ^ ^—————— Actuators

Build maps

Explore

Wander

Avoid objects

Figure 2-9: Vertical decomposition of a mobile robot control system based
on task achieving modules [Brooks, 1986].

programming robots, and the Behaviour-based approach, see modularity as a

useful goal and attempt to reduce communication between their modules. It
is the way in which the task is decomposed into these modules and thus the

composition of the modules which leads to the difference in approach.

Brooks, in [Brooks, 1986a], looks at the difference between the Classical hor¬

izontal decomposition and vertical Behaviour-based decomposition of a typical
mobile robot task (see Fig 2-8 and Fig 2-9).

In Fig 2-8, the Classical horizontal decomposition, each individual modular

unit must complete its task before the rest can begin, causing large information

Chapter 2. Related Work 50

bottlenecks within the system. Each module can be designed to have low infor¬

mation communication between modules, but each must still await completion

of the previous one. This leaves the system vulnerable to the speed of indi¬

vidual modules and to each communication interface between modules. The

interfaces must also be set up when the system is initially designed, making it

inflexible for future development. Sensor data takes time to filter through the

system, and, with this time delay, the external world may have changed and

rendered the data invalid (see [Malcolm et al., 1989]). The only way to speed
up the process is to enhance individual modules to increase the throughput of
information. Updating of internal world models with actual sensor information

improves the ability of the system to plan for more than just the immediate

actions, but, as already mentioned, if all actions are planned in this way, the

time delay may render them inappropriate.

With a vertical decomposition (see Fig 2-9), sensory data can be quickly
integrated and processed to produce immediate actions. This means that feed¬
back systems can be easily integrated into the system to guide it to complete

the task using information straight from the real world, which leads to more

stable systems incorporating less time delay. Each level of the hierarchy can be
influenced by its superior, but is independent in performing its own task. The
low levels are seen as performing simple and general tasks, with the upper levels

looking at more complex and situation specific tasks. Problems associated with
these types of system include the integration of high level control to achieve

longer term goals, finding good module boundaries where communication is

of low complexity, and determining the type of mediation between competing
behaviours.

Brooks advocates decomposition of the mobile robot task into task achieving

behaviours, based on the above vertical decomposition [Brooks, 1986b].

Brooks has developed a computational model, the Subsumption Architec¬

ture, to investigate building control systems for robots with insect level capa¬

bilities, in the belief that insects display the reliability and robustness which is

really required in mobile robots. Insects are well adapted to the environments

Chapter 2. Related Work 51

in which they live and they manage to act and survive despite the ever chang¬

ing world around them (see [Brooks, 1986a] for the insect metaphor). Brooks
aims to achieve an appropriate level of control for mobile robots.

The Subsumption Architecture consists of layers of task achieving behaviours

which together provide the competence of the system. Each behaviour must

achieve some task and compound behaviours can be formed by the amalga¬

mation of simple behaviours to achieve more complicated goals. Due to the

vertical decomposition of the hierarchical system, multiple parallel routes are

available through this system, allowing redundancy and therefore robustness

in the task completion.

The Subsumption approach provides an architecture for a complete robot

control system for a mobile robot achieving tasks in the real world. A control

system is initially built to perform the lowest level task, and is extensively

tested. This zeroth level is now never altered and any additional competences

to perform new tasks are added by building other layers on top of this (see
Fig 2-10). Any new layers can examine data from lower layers and can supply
data to these by suppressing the normal data flow within the layers. Each layer

is composed of a set of processors, each an Augmented Finite State Machine

(AFSM) with no shared global memory. Input signals can be suppressed by

signals from the upper layers and output signals can be inhibited. See [Brooks,
1987] for details of the hardware for such a system.

Brooks has gone on to demonstrate the Subsumption Architecture in real

robots in real working environments. [Flynn Brooks, 1988] looks back on the

early robots developed at MIT and examines their development from January

1985. The paper examines the development and ideas behind five working

robots which have been designed to operate autonomously and robustly in

dynamically changing environments. [Brooks, 1989] examines the development
of Genghis, a six-legged walking robot which measures about 35cm long and

weighs approximately 1 kg. This robot was developed using the incremental

steps provided by a subsumption architecture. Basic competences were built,

then augmented by additional layers providing an increase of performance and

Chapter 2. Related Work 52

Sensors ■

level 3

-»j level 2

level 1

level 0 Actuators

Figure 2-10: Control layers in the Subsumption Architecture [Brooks, 1986],

capability of the robot. Again, each layer was composed of a network of AFSMs.
Connell [Connell, 1989] describes a soda can collecting robot designed under
the Subsumption Architecture.

So far, this method has proved successful with mobile robots with a small

number of limited behaviours. The next stage which is being developed is to

test the Subsumption Architecture on more complex robots to achieve more

complicated behaviour using the combination of far more modules [Brooks,

1991b) [Brooks, 1991a).

SOMASS System

A brief mention must be made at this point of the Behaviour-based robotic

assembly system, SOMASS, developed by Malcolm [Malcolm, 1987] [Malcolm
&: Smithers, 1990). This work is described in more detail in Chapter 3, which
looks at the SOMASS system as a basis for the experimental work of this thesis.

The SOMASS robotic assembly system is a Behaviour-based system which

performs the assembly of Soma shapes, the details of which can be found in

Section 3.2.1. The system is divided into a planner which provides details

of part motions (see Section 3.2.3), and an execution system which reliably
achieves these motions (see Section 3.2.4). This system achieves its reliabil-

Chapter 2. Related Work 53

ity from a combination of planner enforced strategies, and reliable execution

modules, called Behavioural Modules (see Section 3.2.5).

2.5 Methods Summary

The first section of this chapter examined the development of the levels of

programming provided for robots. Although these levels have helped the pro¬

grammer to develop new ways of interfacing with the robot, the underlying

problem of dealing with the reliability of the assembly in the real world is not

faced. The natural way of programming using these kinds of levels has been
seen in the past as updating an internal model of the world with input from

sensors, and using this data to determine appropriate actions for the robot.

This leads to ad hoc methods of integrating sensors, and does not solve the

problem of reliable assemblies.

The three main categories of systems designed to deal with variation and

uncertainty, as seen above, are Error Detection and Recovery, Worst Case Anal¬

ysis and Competent Execution Systems. The first of these, Error Detection and

Recovery, makes no attempt to avoid failures in the assembly, but concentrates

on detecting these failures, diagnosing the cause by consulting some knowledge

source, and determining appropriate recovery motions. The main problem as¬

sociated with this method is determining what has happened at each stage

within the context of the assembly. The second method, Worst Case Analysis,

relies on being able to model all factors which may cause a system to fail, and

determining a successful series of motions under these constraints. This relies

on the world being exactly as expected by the system, and often involves ex¬

tensive computation. The last method, Competent Execution Systems, avoid

the problems of planning and modelling the system and rely instead on making

appropriate information available when the system needs it. The main research

problems associated with this method are finding useful modular boundaries

and determining how to integrate high level control to achieve long term goals.

Chapter 3

Behaviour-based Robotic Assembly

This chapter outlines the original ideas behind the development of a Behaviour-

based robotic assembly system, SOMASS [Malcolm ct a!., 1989]. These ideas
and the system itself are described here in detail to show how this type of system

originally dealt with the problem of providing a reliable robotic assembly in an

easily programmed environment.

The first section of this chapter examines the general decomposition of

a Behaviour-based robotic assembly system into an off-line planning system

and a Behaviour-based execution system. The examination of the execution

system concentrates on its decomposition into reliable modular units called
Behavioural Modules. The chapter then continues with an overview of the

SOMASS system, which is described in detail here as the planning system is

used in the experimental work for this thesis and the execution system provided
the foundation for the development of the sensory Behavioural Modules. The

main emphasis of this chapter is the examination of how the SOMASS system

provides a reliable assembly.

54

Chapter 3. Behaviour-based Robotic Assembly 55

3.1 System decomposition

Chapter 2 examines the problems facing programmers of robotic assemblies, in

particular, that of producing a system which will work reliably in the physical

assembly domain. Of the three main methodologies described, Error Detec¬

tion and Recovery (Section 2.4.1), Worst Case Analysis (Section 2.4.2), and
Competent Execution Systems (Section 2.4.3), it is the latter which is used
in the thesis work. This section will examine a useful system decomposition

which aids the reliability and ease of programming of a Behaviour-based robotic

assembly system.

The decomposition of the assembly system falls into two parts: the off¬

line planning system and the execution system, with the interface provided

by a plan. The planner is simplified to aid in the integration of sensing into

the on-line execution system, and therefore needs to know little about the

physical workcell. The planner can plan in terms of part motions which can be
«

translated into robot motions at run-time. The execution system can be split

into modular units, referred to as Behavioural Modules, which are designed,

implemented, and tested to reliably perform a particular task or sub-task in

the real world.

3.1.1 Planning for a Behaviour-based System

Planning systems are necessary in robotic assembly to impose an ordering on

the robot actions or the part motions. Initial constraints determine the ordering
of the assembly of the parts, ensuring that one assembly operation does not

prevent another from occurring. If a lid is placed on a box before another part
is placed inside the box, the lid must be removed again before the latter can

take place — an obvious waste of time and effort. Planning can also determine

the need to perform sub-assemblies which have to be integrated into the main

assembly.

Chapter 3. Behaviour-based Robotic Assembly 56

Traditional planning systems have aimed at the use of symbolic representa¬

tions of the environment to reason about available actions and the changes in

the real world caused by these actions. Such things as perception and motor

control can be represented as a set of symbols which can be manipulated by the

planning system to produce the final detailed plan. This has led to complex

problem solving systems which begin to reason about actions and effects of

uncertainty, and deduce what has happened from incomplete knowledge of the

world. (See Chapter 2, Section 2.4.2.) This creates systems where the robot
motions are carefully detailed by the planner. Error Detection and Recovery

systems use the planning system to re-plan the sequence of robot actions if

one action has failed to perform its correct function. In Worst Case Analysis

systems, the planner bases its actions on detailed models of the world.

The Behaviour-based approach on the other hand leaves the manipulation

and sensing to Behavioural Modules which use information from the real world
to enable completion of the task, freeing the planner from having to deal with

the motions and actions of the robot and the above reasoning about the real
world. (See Chapter 2, Section 2.4.3.) The planner, therefore, deals with an

ideal world and assumes that the robot will reliably carry out actions such

as pick and place. This leaves the planner to deal with problems such as

opportunistic scheduling (allowing the changing of the ordering of the assembly
depending on the available parts), which involve reasoning about the ordering of
the assembly rather than the actual robot motions and sensors used to achieve

the assembly.

In the SOMASS system and the experimental system developed for this

thesis, a planner which provides a high level description of the task was imple¬

mented, leaving the run time details and dealing with uncertainty and variation
to be performed at the level of the Behavioural Modules. The planner provides

Object Level plans, rather than the motions of the robot to achieve part move¬

ment. The translation of the part movement to robot motion takes place in
the Behavioural Modules themselves. The SOMASS system was specifically

Chapter 3. Behaviour-based Robotic Assembly 57

designed so that sensors could be introduced without significant change to the

planner.

3.1.2 Behavioural Modules

The planning system sits on top of the Behaviour-based execution system which

is formed from reliable Behavioural Modules which deal with a certain amount

of variation and uncertainty in the workcell. These Behavioural Modules are

joined together in a hierarchy, with the top level interfaced to the planner. This

section looks at the composition of Behavioural Modules and how they can be

used to provide a reliable system.

Behavioural Modules can be regarded as modular units which combine hard¬

ware and software to reliably perform a task in the real world. The following

characteristics are considered to be useful properties of Behavioural Modules

in general Behaviour-based systems [Malcolm k Howe, 1990]:

• they handle the variations and uncertainties typical of the task;

• they integrate sensing and action at a low level;

• they are computationally minimal;

• they know (i.e., represent symbolically) as little as possible.

Early work [Smithers k Malcolm, 1989] likened Behavioural Modules to
the modular units of VLSI chips. The VLSI design practices produce modular

units whose outputs are guaranteed, and they can therefore be easily combined

into a hierarchical system. The reliability of the modular units is achieved from

control of the uncertainties within the unit.

Built in a hierarchical fashion, each Behavioural Module can be composed

of any combination of other Behavioural Modules and individual robot com¬

mands in a robot control language. The competence of Behavioural Modules

Chapter 3. Behaviour-based Robotic Assembly 58

ranges from performing the complete task to achieving minor sub-tasks in¬

volving single robot motions. The lower level modules tend to focus on the

interaction of the robot and the assembly pieces. The Behavioural Modules

can be designed by implementing basic low level competences and using these
as building blocks to build higher level Behavioural Modules with correspond¬

ingly higher competences. Fig 3-1 shows tin example of a plan interfaced with

a hierarchy of Behavioural Modules.

Emphasis is placed on using information directly from the real world as

much as possible, thus moving away from the approach used by more classical

systems which rely on a centralised representation of the outside world residing

inside the system and updated by sensors. Behavioural Modules are designed,

implemented, and tested in the real world, thus ensuring that they are correctly

adapted to the chosen environment. As far as is possible, the variation and

uncertainty present in the task for which the Behavioural Module is designed,

is dealt with within the module by using variation-reducing strategies devised

by the designer and by correctly adapting sensors to a particular part of the
task. This applies to both the lower level Behavioural Modules which only

deal with robot commands, and to higher level Behavioural Modules which

can call the lower level ones. The higher level Behavioural Modules may deal

with variation and uncertainty reducing strategies over a combination of several

different lower level Behavioural Modules.

Chapter 3. Behaviour-based Robotic Assembly 59

PLANNER

BEHAVIOURAL
MODULES

Figure 3-1: A hierarchical decomposition.

Chapter 3. Behaviour-based Robotic Assembly 60

3.2 The SOMASS Robotic Assembly System

The SOMASS assembly system, designed and implemented by Malcolm [Mal¬
colm, 1987), provides a complete planning and execution system which performs
the assembly of Soma shapes. Developed as a first experiment in building a

Behaviour-based robotic assembly system, it was designed to explore the rep¬

resentational and architectural problems involved. High level descriptions of

the task are used by a symbolic planner to produce plans which provide an

interface to the actual run-time execution system.

The SOMASS system is divided into two parts: the planning system and the

execution system. The planner does no explicit reasoning about the variation

or uncertainty present in the real world of the assembly workcell but, instead,

leaves the problem of dealing with variation and uncertainty to the on-line
execution system. The assembly task is divided into part motions which are

realised in the robotic assembly cell by Behavioural Modules, designed and

engineered to cope with a certain amount of variation in the workcell. The

planner does use some implicit assembly rules, such as putting the parts into

the assembly in a vertically downward direction, which help to increase the

reliability of the system. Since the earliest system, described here, employs

no external sensing (and therefore does not deal with uncertainty), it relies
on variation-reducing motion strategies to increase the reliability within the

Behavioural Modules in the on-line system.

This section begins by examining the usefulness of the Soma world as a

domain for robotic assembly experiments and then continues by presenting an

overview of the planning and execution components of the SOMASS system.

The reliability of the SOMASS system is then summarised.

Chapter 3. Behaviour-based Robotic Assembly 61

lell

Figure 3-2: Soma-3 set.

3.2.1 The Soma World

The Soma Shapes

Soma shapes are built from individual cubes which are joined together accord¬

ing to certain construction rules. Each cube can be squarely joined by one or

more of its faces to other cubes of a similar size, to form shapes which are

irregular, that is, with at least one surface concavity. The only possible ar¬

rangement for two cubes is obviously not concave, and therefore not a Soma

shape. The first Soma shape, and, incidentally, set, comprises three cubes as

seen in Fig 3-2. This is referred to as the Soma-3 set, the set of Soma shapes

with three or fewer cubes.

There are six instances of Soma shapes with four cubes (see Fig 3-3). These
are combined with the one Soma-3 shape to form the Soma-4 set, the set of

Soma shapes with four or fewer cubes. This can be expanded to include shapes

with up to 'n' number of cubes, to form the Soma-n set, as long as they conform

to the above rule of irregularity.

The Soma-4 set, as a puzzle, was first discovered by the Danish Mathe¬

matician, Piet Hein around 1936 (Gardner, 1961]. It can be shown that the
seven Soma-4 shapes can be put together to form a 3 x 3 x 3 cube in 240

different ways, excluding rotational and mirror symmetries (Berlekamp ct al.,

1982]. Many other assemblies are also possible using the seven shapes from the
Soma-4 set. (See Fig 3-4.)

Chapter 3. Behaviour-based Robotic Assembly 62

fork2 ze(i

Figure 3-3: Soma shapes composed of 4 cubes.

Figure 3-4: Some Soma Assemblies.

Chapter 3. Behaviour-based Robotic Assembly 63

Soma Domain for Assembly

The Soma world was selected as the domain in which to perform experiments

in assembly and test an integrated planning and robotic assembly system.

The requirement for this kind of system was a simple experimental domain

which still retained the important properties of assembly tasks, such as the

fitting of parts together, without the geometric complexity normally associated

with such tasks. The assembly of the Soma shapes involves shape-dependent

part fitting. The Soma shapes are geometrically simple, thus making it easy for
a planner to represent and reason about them, yet they are not simple 'blocks

world' objects, whose assembly properties consist only of 'placing on' or 'next

to'.

Planning for this particular kind of assembly involves looking at the vast

combinatorial problem of space occupancy while the actual assembly by robot

involves placing the parts into an assembly, constrained by the part and as¬

sembly shape. Thus the geometry of the parts is simplified, but the planning

problem is still complex. In an industrial setting, as with this system, the part

placement would be worked out off-line and given to the run-time system. Hu¬

mans, with their advanced sensory systems and dexterous fingers, find it easy

to manipulate the physical Soma shapes, but find it difficult to cope with the

large solution space of the assembly problem. It is relatively easy for a com¬

puter program to search through the solution space, but the physical assembly

provides problems for a robot, which has a greatly limited sensory capability.

The Soma World is extendible, with the Soma-4 set easily expanded to

the Soma-5 set (see Appendix C for a spine representation of the Soma-5 set).
New problems are encountered with each expansion, as well as retaining the old

ones. An example of this is the 2D peg-in-hole problem which initially arises

in the Soma-5 set (see Fig 3-5), but the 3D peg-in-hole problem only appears

when the Soma-7 set is introduced (see Fig 3-6).

The geometrical properties of the Soma shapes are simplified, but this does

not mean that the physical assembly problem of variation in tolerances is de-

Chapter 3. Behaviour-based Robotic Assembly

Figure 3-5: An example of the 2D Peg-in-Hole in the Soma-5 world.

Figure 3-6: An example of the 3D Peg-in-Hole in the Soma-7 world.

Chapter 3. Behaviour-based Robotic Assembly 65

creased. The physical parts used in the assembly experiments were constructed
from roughly made wooden and plastic cubes, inaccurately glued together,

which often gave the shapes a tilt when set on the work surface. Therefore,

the problem of variation was still present due to the differences from the ideal
of the individual shapes, and the propagation of the effects of these differences
as the shapes were introduced into the assembly.

3.2.2 SOMASS System Overview

The SOMASS system was designed as an experimental investigation into the

Behaviour-based approach to robotic assembly. The system, composed of a

symbolic planner and a Behaviour-based execution system, is linked by the

plan itself, which has important implications on the architecture of the system.

The aim of the project was to show that appropriate Behaviour-based task

decomposition into a competent run-time system composed from Behavioural

Modules could produce a good foundation for robotic assembly. It was also

intended that the system show that Behavioural Modules could be used to build

useful assembly systems and provide a good interface to a simplified planner.

The planner and Behavioural Modules were designed to deal with assemblies
in the Soma world, using Soma shapes as the building components and some of

the many possible assemblies as the final assembly goal. The ideas were tested

in the real world in an assembly workcell with its associated variations and

uncertainties (see [Malcolm & Smithers, 1988]).

A five degree of freedom Adept robot provides the central feature of the

experimental workcell and can be seen in Fig 3-7. The Adept robot can be

programmed using the VAL-II robot programming language [Shimano et al.,

1984]. VAL-II supports certain well known program control statements, such
as conditional and simple loop structures, but also includes specific commands

for the control of the robot. The robot can be directed to a location in the

workcell. Location is defined, in this case, as being a combination of (x, y, z)
position relative to a specified coordinate frame, and the yaw, pitch and roll

Chapter 3. Behaviour-based Robotic Assembly 66

Figure 3-7: The five degree of freedom Adept Robot.

components of the robot hand orientation at that point. Direct movement to a

specific location can be made, or movement can be made relative to the current

location, either by straight line motion, or through a joint-interpolated path.

Special commands have been inserted to access sensor data, although in the

first experiments with this system, sensors were not employed.

The planning component of the system runs on a SUN3 workstation, which

produces a file of VAL-II commands which are, in turn, passed on to the Adept

controller via an RS232 link. The Behavioural Modules, stored in the Adept

controller, are programmed in VAL-II and called directly by the plan.

The planner and the execution system both make use of some explicit knowl¬

edge of the task and the workcell. Some rules of assembly were defined which

were the consequence of using a five degree of freedom robot, and also some

which were included to make the assembly more reliable. Some of these rules

are listed in the following paragraphs.

In the initial workcell configuration, the Soma-4 parts are placed in stable

configurations, with adequate space between them to avoid collisions due to

robot motion strategies when acquiring the parts. The parts must also be

Chapter 3. Behaviour-based Robotic Assembly 67

placed within the translational bounds of the part acquisition sweeping motion

(see Section 3.2.4, page 79) and must be within an orientation of approximately
± 40 degrees of the nominal initial position. The limitation of the gripper

opening distance means that the parts must be picked up across a single cube

length. This, along with a rule which states that a part must be grasped

vertically downward, leads to a simplification rule that states that the parts

must be initially placed, if possible, with a single topmost cube (the Soma-4
set shown in Fig 3-2 and Fig 3-3 shows these positions). In the Soma-4 set,

this is possible with all parts except for the 'zed' shape. This is unstable in all

positions with a single upright cube, and must instead be presented with two

cubes uppermost.

For insertion of the Soma shapes into the final assembly, again, it is insisted

that a vertically downward motion be used. This helps to avoid collisions with

other parts which have already been inserted. An allowance must also be

made for finger clearance on opening the gripper to release the shape. Thus,

there must be space on either side of the gripped cube of approximately half

a cube length. This cannot be done for the last piece to be inserted into some

assemblies, such as the 3x3x3 cube, so the part is set down in an offset

position.

When the parts are placed into the final assembly, gaps are left, determined

by the planner, to ensure that even when the parts are subject to variation,

they can still be inserted into the assembly without knocking into others already

there. This is called the strategy of padding the assembly. Once all the parts

have been assembled into their padded positions, the final assembly can be

pushed together to reduce the gaps (called pads). This process is referred to as

patting. [Salmon, 1989] implemented a patting strategy which dealt with most

assembly shapes.

Chapter 3. Behaviour-based Robotic Assembly 68

3.2.3 The SOMASS Planner

The planner is designed to deal with the Soma shapes and assemblies, and,
as such, incorporates several features particular to this world. In the original

SOMASS system, only the Soma-4 shapes were used in the assemblies. Written

in Prolog [Clocksin & Mellish, 1984), a language which naturally lends itself
to working with lists, the planner uses this facility to produce a file containing

information to perform the assembly, written in VAL-II. The aim of the planner
is to provide a plan which can be used to assemble the seven Soma-4 pieces into

a specified assembly pattern. This system was designed to be easily expanded

to include planning for the Soma-5 set at a later stage.

The planner was designed to have as little knowledge of the real world

and assembly domain as possible, leaving the workcell details to the execution

system. The input to the planning section of the system consists solely of a

representation of the shapes of the parts themselves, and a similar represen¬

tation of the shape of the final assembly. For ease of use, and simplicity of

drawing diagrams to understand the output from the planner, each cube was

shrunk to an [x,y,z] point, and the Soma shapes represented as a list of these
points. For example, the four cubes in the 'fork3' part are described by the

representation, [[0,0,0],[1,0,0],[0,1,0],[0,0,1]] (see Fig 3-8). The final assembly is
described in a similar fashion. The planner can now make use of the simplicity

of the integer numbers to manipulate the data since only simple arithmetic op¬

erations are now necessary to calculate part rotations, gravitational stability,
and space occupancy. These may be replaced by more complicated procedures
if different assembly pieces are used.

The planner is hierarchical and makes use of Prolog's backtracking facilities

to search the space of possible solutions for the particular assembly. The output
from the planner contains a generated list which is post-processed into VAL-

II. A sub-plan is produced for each shape, describing how it can be acquired,

re-oriented if necessary, and set down in the assembly. The following shows an

example Prolog sub-plan for a particular pick, regrasp and place for the part

Chapter 3. Behaviour-based Robotic Assembly 69

Z

[[0, 0, 0], [1,0, 0], to, 1, 0], [0, 0, 1]]

Figure 3-8: Representation of the 'fork3' Soma-4 part.

'right' of the Soma-4 set, integrated with a description of what each piece of

information represents. The wrist and gripper orientations and part positions

on the regrasp table are shown in the photographs in Fig 3-9 (regrasp part

placement) and Fig 3-10 (regrasp part acquisition). The full Prolog list from
which this was extracted can be found in Appendix A.

• [right,

The identifying name for the Soma shape which is also used as a reference

to its approximate taught location in the robot cell.

. [[[0,0,0],[0,1,0],[1,0,0],[1,0,1]],

A Prolog list of ordered points stating the initial orientation in which the

part should be presented in the workcell (taken from a [0,0,0] origin for
the part).

. [[0,y,z], [1,0,1]]],

The axis along which the gripper and the wrist should be aligned on pick

up of the cube, and the cube to be gripped.

Chapter 3. Behaviour-based Robotic Assembly 70

• Regrasp Details

- [[[*.o],[y,3]],
Rotation orientation of wrist for placing part on regrasp table.

- [[0,0,1],[1,0,0],[1,0,1],[1,1,0]],
Orientation of part on the regrasp table.

- [[1,0,0]],
Offset of base of part relative to table centre.

- [[0,y,-(x)],[0,0,1]],

Axis, wrist orientation and gripped cube for release.

- [[0,y,z],[1,0,1]],

Axis, wrist orientation and gripped cube for regrasp.

- [[«,0]]],
Rotation of wrist for eventual placing in assembly.

• [1,0],

x and y padding offsets for the part in the final assembly.

. [[[z,0],[y,3]],[[0,0,0],

The rotation and translation through which the part must be moved
relative to its initial location in order to place it in the final assembly.

. [[[0,0,1],[1,0,0],[1,0,1],[1,1,0]],

The list of ordered points stating the final location relative to the assem¬

bly origin of where the part will be located in the final assembly.

• [[0,y,z],[X,0,X]]]]]]

The axis along which the gripper and the wrist should be aligned on put

down of the cube, and the cube to be gripped.

Chapter 3. Behaviour-based Robotic Assembly 71

Figure 3-10: Regrasp acquisition of the 'right' Soma-4 part.

Chapter 3. Behaviour-based Robotic Assembly 72

Certain heuristics can be used to speed up the planning process, such as

looking at the rotations of parts which correspond with their initial configu¬
ration first. In the Soma-4 set, choosing the part with only three cubes to be
inserted first allows the remaining unfilled spaces in the assembly to be parti¬
tioned into multiples of four to see if the remaining parts can possibly be fitted

in.

The planner attempts to find a general solution to the problem of fitting the

parts into the assembly, then decorates this solution with details required to

perform the actual assembly, using backtracking between the different stages of

the planning. A complete plan is formed at each stage, before being expanded
at the next level. There are four stages of the planner, with each backtracking
to the previous on failure, except in some special cases where failure-directed

backtracking is used to miss out obviously impossible trials.

1. General Solution A general solution for an assembly is one way in which
the parts will correctly fit into the final assembly. For the Soma-4 shapes

and the 3x3x3 cube, the parts can fit into the final assembly in 240

different ways excluding rotational and mirror symmetries. The plan¬

ner finds 1440 solutions as gravity is important for this problem. The

parts can be rotated and translated from their initial starting orientation.

These movements may not be physically possible in the real assembly cell,

but such details are examined at later stages of the planner. Each part is

placed in turn, then the next part compared with the remaining spaces

in the assembly, backtracking when failure is encountered.

2. Gravitationally Stable Ordering Having found a general solution for

the parts, an attempt is made to find an ordering of the assembly which
will allow each part to be inserted vertically downwards into the already

completed subassembly, and come to rest in a gravitationally stable po¬

sition. This means that each downward surface of the part must be sup¬

ported either by the workcell surface, or by a cube of an already inserted

Soma part. This has the side effect of ensuring that no gaps are left under

Chapter 3. Behaviour-based Robotic Assembly 73

parts which later cannot be filled due to the rule of parts always being

inserted vertically downwards.

3. Put-down Grasp This section of the planner determines if a valid put-

down grasp can be obtained for each part. There must be clearance for
the gripper fingers to open to release the part in the actual assembly.
Thus there must be no other cube already in place to the sides of where
the gripped cube will be placed in the assembly. This rule can be relaxed

in some cases where the last part cannot be inserted in this manner due
to the shape of the assembly. In the 3x3x3 cube, for example, it is im¬

possible to insert the last part in this manner. Instead, the part is placed

offset from the put down location. The wrist position is automatically

clear of the assembly as the parts are inserted vertically downwards and
no part is higher in the assembly than the one being inserted.

4. Regrasp Planning When the part cannot be placed directly from the
initial starting location into its final place in the assembly using only

rotation around the z axis, the planner checks to see if the part can be

regrasped. Alternative grasps for the part are examined to find any that

may be successfully performed by the robot, taking into account that the

robot used to perform the assembly has only 5 degrees of freedom. Again,

backtracking takes place if a regrasp cannot be found.

After the planner has found a solution which can be performed in the real as¬

sembly workcell, an addition is made to help the put-down variation-reduction

strategy. This involves calculating a small distance, or pad which is left between
the parts on put-down (see Fig 3-11). The actual distance left is calculated at

the run-time of the actual assembly, and is dependent on the size of the cubes.

The information in the planner is in terms of unit offsets. After one part is

placed, the offset for the next is calculated. This is in terms of an x and y

offset, with each axis treated separately. If a previous part has been offset, the
next offset may be more than one pad as the chaining effect of other faces may

dictate that more offset is necessary.

Chapter 3. Behaviour-based Robotic Assembly 74

2 pads
Figure 3—11: Padding of assembly.

Figure 3-12: Cyclic adjacency relationship of parts.

With the Soma-4 set, this offset is always possible, but when the Soma-5 set

is used, or even duplicate parts in the Soma-4 set, cyclic adjacency relationships

may occur where the parts cannot possibly be separated in this manner (see
Fig 3-12).

Once the final Prolog list has been completed, containing the information

shown above, it is passed through the post-processor to provide a set of sub-

plans in VAL-II. Fig 3-13 is an example of part of the plan produced in VAL-II

code by the planner to pick, regrasp, and place a part. It shows the actual

VAL-II code generated for the part, named 'right', which was produced from
the Prolog list previously described.

The next section looks at the Behavioural Modules which are called from

these sub-plans.

Chapter 3. Behaviour-based Robotic Assembly 75

. The placing of right

CALL zpatget(b7.get, RZ(90), -1.5.0.5, RZ(0). -0.5.1.5)
CALL zget(b7.get:RZ(0))
CALL zmanip(table, RZ(0):RY(270).-1.0,0.0.2,RZ(0).0.0.0.0.2)
CALL zput(b7.put:RZ(0))

Figure 3-13: VAL-II pre-coded procedures generated from the Prolog list.

3.2.4 The SOMASS Behavioural Modules

The on-line section of the SOMASS system is performed by Behavioural Mod¬

ules which execute the plan specified by the planner. Written in VAL-II, these

Behavioural Modules run directly in the robot controller and are activated by

procedural calls from the plan created during the planning process. They are

structured in a hierarchical manner and realise the part motions which are

given in the plan. The top level of the hierarchy deals with the Behavioural
Modules zpatget (centre the part for pick up), zpick (pick up the part with
a single snap of the gripper), zget (pick up the part with a double snap of
the gripper), zmanip (regrasp the part if necessary), zput (place the part in
the assembly), and zvpatcube (push the final assembly together). Fig 3-13
shows a typical call produced from the planner of a sub-plan to place one part

into the assembly. Lower level Behavioural Modules can be called in turn from

these. The actual Behavioural Modules used are described on page 76.

Behavioural Module Characteristics

In the early version of the SOMASS system which is described here, no sensors

or sensory data were used, so it was only the variation in the workcell and

parts which had to be dealt with to achieve a reliable assembly system. The

system relies on variation-reducing motion strategies to produce these reliable

Chapter 3. Behaviour-based Robotic Assembly 76

assemblies and each Behavioural Module is designed to cope with a certain

amount of variation in the workcell, depending on the particular strategies

employed. Strategies were also implemented over several different Behavioural
Modules to help to produce a reliable system. An example of this type of

strategy is found in the patting strategy on page 82.

The Behavioural Modules know nothing of the assembly order, the space

occupancy of the parts, or the final assembly position. These are all passed

to them by parameters given in the plan in terms of relative information and

are instantiated with real workcell data at run-time. The system at this point

knows the nominal initial locations of the parts, the nominal cube size and

several placing locations, such as a location which defines where the final as¬

sembly should be built. It is assumed that the Soma shapes are presented in

an initial nominal configuration, within an allowable translational and orienta-

tional variation. These workcell details are required to ensure that there is no

interference between the starting locations for the parts and the other activi¬

ties in the workcell. The initial locations for the parts must be well spaced due
to the pick up strategy employed, providing a problem of workcell overcrowd¬

ing if more parts are introduced. This could be reduced by feeding the parts

in individually by another robot, or using a feeding mechanism. The initial

configuration was also designed so that the shapes would be gravitationally

stable and presented with a single upstanding cube to be grasped. This was

not possible with the 'zed' part which was presented with two topmost cubes.

Behavioural Module Implementation

The main Behavioural Modules, with associated parameters provided by the

planner, are listed in the following description. Each location mentioned refers
to a VAL-II defined location in the world coordinate frame, given as (x, y, z,
yaw, pitch, roll) and taught to the robot using a teach-pendant. Locations are

treated as distinct from positions or points which are defined as [x, y, z) only.
The rotations are rotations from a given normal location. An example of the
actual VAL-II code for the zget Behavioural Module can be found in Fig 3-14.

Chapter 3. Behaviour-based Robotic Assembly 77

.PROGRAM zget(pos)

; sets robot speed, approaches at a safe height above Soma part

; to be grasped, opens gripper, approaches part at a 90 degree

; rotation, moves down, opens/closes gripper, departs then moves

; down in correct orientation to grip the part and depart to a

; safe height.

SPEED transp

APPRO pos. clear

OPEN

APPROS pos:TRANSCO, 0. 0. -90. 0. 0). approach

MOVES pos:TRANS(0. 0, 0. -90, 0. 0)
CLOSEI

OPENI

DEPARTS approach

APPROS pos. approach

MOVES pos

CLOSEI

DEPARTS clear

RETURN

.END

Figure 3-14: VAL-II Behavioural Module — designed to pick up a Soma

part.

Chapter 3. Behaviour-based Robotic Assembly 78

zpatget (location, xrot, xminus, xplus, yrot, yminus, yplus)

• location — central taught location around which the sweeping mo¬

tions occur.

• xrot — rotation around the z axis from normal location needed to

perform a sweep along the x axis.

• xminus — offset from the central location to account for the shape

of the part. Part swept up to this distance from centre.

• xplus — as for xminus (2nd sweep).

• yrot — as for xrot, but to align for sweeping along the y axis.

• yminus — as for xminus (3rd sweep).

• yplus — as for xminus (4th sweep).

zpick (location)

• location— taught location,

zget (location)

• location — taught location.

zmanip (location, putrot, pxn, pyn, pzn, getrot, gxn, gyn, gzn)

• location — taught location for centre of regrasp table.

• putrot — rotations from normal location for depositing part.

• pxn, pyn, pzn — x, y and z offsets for the grasped cube to place the

part in a stable position on the regrasp table.

• getrot — rotations from normal location for reacquiring the part.

• gxn, gyn, gzn — x, y and z offsets for the new cube to be regrasped

as it sits on the regrasp table.

zput (location)

Chapter 3. Behaviour-based Robotic Assembly 79

• location — taught location,

zvpatcube (location)

• location — taught location.

The main three stages of the assembly, namely 'Part Acquisition', 'Regrasp'
and 'Part Placement' are described in more detail in the following sections.

Part Acquisition

The Behavioural Module designed to pick up the Soma parts is split into two

sections. See Fig 3-15 and Fig 3-16 for diagrams representing the two motion

strategies. The first of these, zpatget, centres the Soma shape by using a

straight piece of wood to sweep the part from all four sides. This reduces

the variation in the initial placing of the shape in the workcell and allows the

gripper to move down over the part without fear of colliding with the top of

the cube. The sweeping strategy is quite restrictive in that a lot of space is

required around the parts, and some of the Soma-5 parts swing round to the

wrong acquisition orientation on sweeping due to their awkward shapes and
the friction of the part on the table.

Once the part has been centred by sweeping, there are still two possible

methods of actually grasping it. The first, zget (see Fig 3-16) is used if a

single upstanding cube can be grasped. In this case, the gripper is turned

through 90 degrees around the z axis from the grasp orientation provided from

the planner and a single snap of the fingers is made. This centres the part

effectively in the gripper in this direction. The gripper then picks up the cube

from the normal orientation. If, as with the 'zed' part, two or more cubes are

present and the double snap cannot be performed, a single grasp is made, using
the zpick Behavioural Module. The single grasp, zpick is also used for picking

up the wood for the sweeping motions.

Chapter 3. Behaviour-based Robotic Assembly 80

Sweeping Direction

Sweeping Direction

Figure 3-15: Strategy to centre the Soma part by sweeping motions.

1 st snap of the grippers 2nd snap of the grippers

Figure 3-16: Strategy to centre the Soma part by a double snap.

Chapter 3. Behaviour-based Robotic Assembly 81

Regrasp

If, due to the use of the five degree of freedom robot, the Soma shape cannot

be directly inserted into the assembly using only a z rotation from the orig¬

inal orientation on pick up, the imanip Behavioural Module is used. This

Behavioural Module is one of the most susceptible to failure due to variation

in the environment as no attempt is made to perform any variation-reducing

strategies, although such strategies are possible, such as sweeping the parts

back into place as before. The planner decides if a regrasp must be performed,

and, if so, provides information about the cube to be regrasped and the orien¬

tation of the gripper and the wrist for the grasp. All these are passed to the

module by parameters. The picked up part is transported to a small regrasp

table, where the gripper can now approach the part from the side. This could

not have been done on the original pick up due to the possibility of wrist col¬

lision with the top of the worktable. The part can be placed on the regrasp

table, then picked up again from another orientation, and perhaps by grasping

a different cube. No variation-reduction strategies are introduced in this Be¬

havioural Module, so, although the parts are initially held in a known position

in the gripper from the pick-up Behavioural Module, the uneven surface of the

regrasp table occasionally causes the parts to rock and lose their position, or

the part can slip in the gripper while being turned. When the part is picked

up from the regrasp table, it may no longer be centred in the gripper.

Part Placement

The final put down Behavioural Module, zput is facilitated by a variation con¬

tainment strategy which involves leaving gaps in the assembly. If the previous

Behavioural Modules, especially the zmanip one, do not hold the part cor¬

rectly, have not picked it up correctly, or it has slipped slightly in the journey

through the workcell, the part may collide with the already completed partial

assembly, causing failure of the assembly. This may also happen due to inac¬

curately made cubes. To remove this possible source of failure, the planner

Chapter 3. Behaviour-based Robotic Assembly 82

calculates the x and y offsets needed for each part to safely insert it in the as¬

sembly. In the actual Behavioural Module, the distance of the gap is calculated

at run-time according to the actual size of the cubes used. (See Fig 3-11.)

The combination of the above Behavioural Module which leaves spaces,

and a Behavioural Module which pats the shape back together, shows an ex¬

ample of a variation-reduction strategy performed over several modules. The

zvpatcube Behavioural Module only works for the 3x3x3 cube shape. The

sweeping implement is applied to the four sides of the assembled cube in turn,

gradually moving the parts back to their proper place in the assembly. Two

rounds of the assembly are normally made. The padding of the parts cannot

be used with certain Soma-5 shapes where cyclic adjacencies occur.

These basic Behavioural Modules produce a reliable assembly system. Re¬

liability tests of the system have been performed and these are reported in

[Malcolm & Smithers, 1988]. In 517 runs involving large and small wooden
Soma-4 sets, and assembling 12 different assemblies, only 12 failures occurred,

mainly due to previously undiscovered bugs in the planner. Timings for the

planner are also reported in that paper.

The SOMASS system, in spite of its lack of external sensors, can still

perform reliable assemblies in the real world. In acquiring a Soma part, a

large amount of rotational and locational variation can be dealt with, and the

padding strategy allows much variation on part placement. Due to built in sim¬

plifications, certain assemblies cannot be built, in particular, those with any

overhanging cubes, those which need part placement to allow for finger clear¬
ance on more than the last part, and those tall enough to be unreachable by
the robot using the strategy of downward insertion. If anything does go wrong

in the assembly process, the robot has no knowledge of this and will continue

regardless with its pre-programmed actions. If some part of the assembly fails,
the whole assembly will fail.

A later version of the SOMASS system (implemented by Petropoulakis)
incorporates a different regrasp strategy which can deal with the regrasp table

being inaccessible from two sides. Later developments of the SOMASS system

Chapter 3. Behaviour-based Robotic Assembly 83

include the integration of a vision-guided part acquisition Behavioural Module

[Chongstitvatana & Conkie, 1990]. These involve no significant changes to the

planner.

3.2.5 SOMASS Reliability Strategies

This section provides a summary of the ways in which the SOMASS robotic

assembly system deals with the variation in the workcell and parts to provide a

reliable system. Uncertainty is not dealt with in this system as sensors are not

employed (see Chapter 2, Section 2.1 for the definition of the word 'uncertainty'
as used in this thesis). The management of variation is dealt with in two ways

in the SOMASS system. The first is in variation-reducing motion strategies,

and the second, by introducing rules constraining certain parts of the assembly.

All the variation-reducing motion strategies attempt to use the robot to

manipulate the assembly object by some means such that, at the end of the

motion, the part is in a more accurate position. The two examples of this are

the sweeping of the parts into place before picking them up, and using a double

snap to centre the part in the gripper before lifting it. Both of these manipulate

the workpiece in such a way that the variation which may have been present

before the motion is very much reduced. A useful, but less generally applicable

example of the robot itself being used as a variation-reduction implement, is

the final patting together of the cube. This is the climax of the variation

containment strategy which prevents collisions with other parts on put down

by leaving gaps in the assembly. These are squeezed out by patting the cube

together at the end.

The second way of producing a robust assembly relies on general rules and

strategies invented by the designer. Constraining the system such that parts
can only be acquired in a downwards direction ensures that the gripper does

not collide with other parts or the workcell floor. The same is true for the

rule stating that the parts are only put into the final assembly in a downwards

direction. The previous strategy of leaving pads in the assembly has already

Chapter 3. Behaviour-based Robotic Assembly 84

been mentioned. As parts are put into the assembly, the planner makes sure

that each downward facing cube is supported either by the workcell floor or

by some previously inserted cube. This also means that no overhangs are

permitted in the assembly, so there are some shapes which cannot be planned
for with this planner. Another method in the workcell for ensuring no collisions
is to use the idea of transporting all parts at a pre-defined safe height. After

picking up a part at any stage of the assembly, it is lifted to a safe height in
the workcell and transported at this height. The robot also moves at this safe

height when not burdened by a part.

The SOMASS system provides a demonstration of how reliability can be

achieved by appropriate modularisation of the task and dealing with variation

within individual Behavioural Modules. The work in this thesis looks at en¬

hancing the system by the introduction of sensors and investigating how the

reliability can be improved by appropriate linking of the Behavioural Modules

using information from these. Chapter 4 introduces the terms and ideas for
the thesis work.

Chapter 4

Increasing the Reliability of
Behaviour-based Robotics

Chapter 3 has introduced a Behaviour-based robotic assembly system which

provides a simplified planning system connected to a competent execution sys¬

tem. The reliability in the system is achieved by designing Behavioural Modules

which can individually deal with the variation present in the world and attempt

to reduce its effect by using motion strategies.

This thesis examines a method of increasing this reliability by integrating

sensors which help to provide reliable linking between Behavioural Modules.
This allows for a more responsive system which can deal with Behavioural

Modules which are unable to successfully complete their task.

The following chapter outlines the methodology and terminology which is

used to describe the thesis work. Beginning with a general introduction to

the ideas, the chapter continues with an introduction to Exit States, the Ideal

Execution Path, and Alternative Execution Paths which together form the basis

for the reliable linking of the Behavioural Modules in the assembly execution

system. The Exit State provides information on how a Behavioural Module

performed its task. The Ideal Execution Path and the Alternative Execution

Path describe control routes through the Behavioural Module hierarchy, which

can be used to prevent the assembly system falling into an error situation.

85

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 86

The chapter continues by examining how the above ideas can be used, then

concludes with a summary.

4.1 System Reliability

This thesis examines a system which was built to investigate the integration of

software and hardware to ensure that the Behavioural Modules can deal reliably

with the tasks they perform, and to investigate the linking of these Behavioural

Modules in a reliable way. To do this, it was necessary to introduce sensing

into the system.

In Chapter 2, it has been mentioned that sensors can perform two basic

functions when integrated into an assembly system: they can gather data to

change the destination of the robot arm, or they can change the sequence of

actions of the robot. Both these uses can increase the reliability of the assembly

system. Although this work looks in passing at several strategies which use

sensors to guide the destination of the robot arm, it is mainly the change of

the sequence of actions which will be examined here.

Sensors can be used to monitor Behavioural Modules to detect what is oc¬

curring during their execution. The hierarchical structure of the system allows

sensors to be integrated at any level, allowing the flexibility to monitor actions

where necessary. Therefore, the real world can be used as much as possible

to provide immediate information for the system, rather than relying on data

from a composed internal world model. The close integration of hardware,

software and the task can be achieved at all levels of the system and this allows

the Behavioural Modules to be specifically adapted to the task. This does not

limit the generality of the whole system as long as the tasks performed by the

Behavioural Modules are general over the assembly domain.

The above monitoring of the Behavioural Modules, along with information

obtained from the planner and instantiated at run-time with real world data,

allows the system to determine whether a Behavioural Module has performed

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 87

correctly within the context of its calling. If it has not, an alternative series of

actions may be initiated to attempt to prevent the system from falling automat¬

ically into an error situation. This type of system relies on real world testing of

the Behavioural Modules as they are developed and using the context in which
the Behavioural Modules are actually called to determine suitable alternative

actions.

The following sections look at the diagrams and terminology which has been

designed to help with the introduction of the ideas above: Exit States, the Ideal
Execution Path, and Alternative Execution Paths.

4.2 Diagrams

Before continuing with this chapter, the diagrams which will be used for the rest

of the thesis must be introduced. Fig 4-1 shows an example of a diagram which

illustrates a Behavioural Module called Example. This Behavioural Module is

composed of a lower level Behavioural Module, Find Height and a section of

local robot language code. This figure should be referred to when other similar

diagrams are encountered. The key explains the labeling conventions for each

of the symbols which are used, and an example of each symbol is incorporated

in the diagram.

4.3 The Exit State

This section looks at the concept of Exit States and examines how they are

determined, what they are, and what they can be used for.

The Exit State of a Behavioural Module provides an indication of the in¬

ternal control path which a particular call of that Behavioural Module has

followed. This value does not determine if the Behavioural Module has sue-

4. Increasing the Reliability of Behaviour-based Robotics

FIND

HBIGHT
Compare
Cube size

Correct size

Incorrect
cube size

FIND

HEIGHT

Compare
Cube size

FH1

Name given to the Behavioural Module.

Section of robot program - either a Behavioural Module
or local robot language code.

Name of Behavioural Module called in this section
of the robot program.

Descriptive name for the function of the local code
performed in this section of the robot program.

Control flow of robot program from a Behavioural Module.

Control flow of robot program from a section of local code.

Name of the Eixit State from a Behavioural Module.

Correct size Local information on which the flow of control is decided.

■— A non-connected Exit State from a Behavioural Module.

Figure 4—1: Key for Behavioural Module Diagrams.

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 89

DEMONSTRATION

Exit States

BEHAVIOURAL

MODULE I

L
BEHAVIOURAL
MODULE 2

BH-2A DEMO-A

BEHAVIOURAL

MODULE 3

Figure 4-2: An Example of a Behavioural Module.

ceeded or failed while performing the task assigned to it by the system, but

only informs the system what it has actually achieved.

The Exit State of a Behavioural Module reflects its internal execution and

can be determined from the following:

• The Exit States of lower level Behavioural Modules which are called

within the Behavioural Module.

• Sensory or locally available data.

The contents of each Behavioural Module can be partitioned according to its

composition. A section can either consist of one other lower level Behavioural

Module, or of a section of local robot code, curtailed by some type of con¬
trol decision where the control path divides when a decision is made. This

decision can be taken from sensor data, or other local information available

at that point. At the end of each section of code, an Exit State value for the

Behavioural Module may be produced to distinguish the difference in control

path through it. Whether the section produces one or more Exit State value

from the Behavioural Module or not depends on the decision of the designer.

In the example Behavioural Module diagram in Fig 4-2 (which will be referred
to throughout the remainder of this chapter — see Fig 4-1 for the key for this

diagram), the Behavioural Module Behavioural Module 2 produces its own

Exit State BM-2A, which is converted into an Exit State of DEMO-A for the

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 90

Behavioural Module Demonstration. In another section ofDemonstration,

the Behavioural Module Behavioural Module 3, produces two Exit States,

BM-3A and BM-3B. The first of these links directly to Behavioural Module

2, thus not directly becoming an Exit State for Demonstration, but the sec¬

ond is converted into the Exit State value of DEMO-B from Demonstration.

A simple Behavioural Module may have only one Exit State, while more

complex modules, especially those composed of lower level Behavioural Mod¬

ules, may have many more. The number of values that the Exit State can

attain depends on the actual Behavioural Module and its design. Each Be¬

havioural Module has one parameter assigned to carry its Exit State. This

means that addition of new Behavioural Modules to lower levels of the system

does not affect the number of parameters passed upwards, although the number

of Exit State values at each level may subsequently be different. With the ad¬

dition of another Behavioural Module into Demonstration, a new Exit State

of DEMO-C may now be needed, requiring only that this value be recognised

at a higher level if necessary. The Exit State parameter may also be supported

by other qualifying parameters which can provide information required by the

task.

The example in Fig 4-3 illustrates a general purpose Behavioural Module

which can be called to perform different tasks. As such, the parameterisation of

the Behavioural Module and the returned Exit State play an important part in

the use of this module. The parameterised values for the Behavioural Module,

move-and-check, are the position for the robot to move to, the expected state

of the sensor after the move, and the parameter which will contain the Exit

State. If the robot has been able to move to the correct position, it will return
the Exit State, 'Moved to position'. If it has not moved, then the Behavioural
Module move-and-check will return the Exit State value of 'Not moved'. If

the robot did move, the sensors can be checked to see if the move Behavioural

Module has performed its task correctly, with the sensor state telling the system

the expected values, for this call of the Behavioural Module, to be compared

with the actual values of the sensors. The sensor states can indicate that a

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 91

move-and-check(po8ition. sensor-state, Exit-State)

move(position, Exit-State)
if Exit-State = 'Moved to position' then

check-sensors(sensor-state, Exit-state)

if Exit-State = 'Sensors-as-expected' then

Exit-State = 'Yes'

else

Exit-State = 'No'

else

Exit-State = 'Not moved'

end

Figure 4-3: Example of a general Behavioural Module.

part should be in the gripper, or any particular aspect that the sensors may be

able to detect (again, dependent on the situation). The value of the parameter

Exit State for the Behavioural Module move-and-check is either 'Yes', 'No',

or 'Not moved'.

When a Behavioural Module is called upon to perform a task, it is not the

problem of the Behavioural Module itself to recognise whether it has succeeded

or failed for this particular call, but rather to recognise what has occurred
within it and pass this information back up via the Exit State parameter. Exit
States are useful for higher level Behavioural Modules to determine what has

happened at the lower level, although each level in turn is only concerned with

its own internal structure, rather than the interpretation of its output. Once

the Exit State has been passed on to the calling Behavioural Module further

up the hierarchy, it is up to this Behavioural Module to determine if the Exit

State returned is the appropriate one for which the Behavioural Module was

called, and also whether the qualifying parameters associated with the Exit

State provide valid information for that task.

The following example demonstrates the use of Exit States by a Behavioural

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 92

Module to determine if a lower level module has completed its task in the

required manner for that call. Suppose the existence of a Behavioural Module

which finds outlines of objects in an image taken from a vision system. The

Exit State from this particular Behavioural Module may be 'Yes, there are one

or more objects which I have determined the outline of', or 'No, there are no

objects in the image'. Depending on the context of the call of this Behavioural

Module, the system may be expecting there to be an object in the image, in

which case, if 'Yes' were returned, this would be interpreted as a correct Exit

State for that call. If, on the other hand, the Behavioural Module had returned

'No', this would mean that, from the Exit State value, it could be determined

that the Behavioural Module had failed to find an object. Even though a

correct Exit State is returned from a Behavioural Module, this does not mean

that the correct information is bound to be available, due to the generality of

the Behavioural Modules. In the above example, the Behavioural Module which

calls the lower level object-finding Behavioural Module may obtain the required

Exit State for that call, but when a qualifying parameter is examined, only

one object may have been found where two were looked for. Thus, although

Exit States prove useful in determining if a Behavioural Module has failed

completely in its task, even when the right Exit State for the context has been

returned, the parameterised information which is returned may prove to be

inadequate.

The Exit State plus the range of other returned parameters give an idea of

the competence of the Behavioural Module and what it can cope with. Once

the competence to perform a task has been constructed from Behavioural Mod¬

ules, it is possible to find the Ideal Execution Path through the Behavioural

Modules by looking at the Exit States and the other control decision points.

The following section looks at the ideas behind the Ideal Execution Path and

Alternative Execution Paths.

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 93

4.4 The Ideal Execution Path and Alternative

Execution Paths

Both the Ideal Execution Path and Alternative Execution Paths describe con¬

trol routes through the hierarchy of Behavioural Modules. The Ideal Execution

Path describes the best route, as determined by the system designer, which can

be taken through the Behavioural Modules. Alternative Execution Paths are

defined if particular Behavioural Modules on the Ideal Execution Path fail to

correctly perform their task due to there being too much variation and/or un¬

certainty in the actual workcell or the strategies being unable to deal with the

actual situation in the workcell.

Through any Behavioural Module hierarchy, an Ideal Execution Path can

be identified by the designer of the system which reflects the best way in which

the assembly can be performed. The criteria for this can be diverse, ranging

from time taken to execute the Behavioural Module, to its reliability. In the

example in Fig 4-2 the Ideal Execution Path for the task performed by the Be¬

havioural Module, Demonstration, can be designated as following the control

route through Behavioural Module 1, with Exit State BM-1A, and through

Behavioural Module 2, with Exit State BM-2A.

If the variation and uncertainty in the workcell prove too much for the

Behavioural Modules on the Ideal Execution Path, or it is determined that

the current Behavioural Module is no longer the most suitable for the task,

an Alternative Execution Path may be available to bring the system back to

the Ideal Execution Path where execution can continue onward as before. The

use of an Alternative Execution Path is not the optimal route that should

be followed for the assembly task, but can be useful to prevent failure of the

complete system when some alternative action can be performed which could

result in successful completion of the task.

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 94

The deviation to an Alternative Execution Path is determined by the Exit

State of the Behavioural Modules or from local information available to the

system. When an Exit State and qualifying parameters are returned from a

Behavioural Module, this can be examined to determine whether the task was

successfully completed in the context of the calling or whether it failed. The
Exit State can show whether the Behavioural Module could not attempt the

task due to the conditions in the physical workcell being outwith its compe¬

tence, or whether it partially completed the task, but then failed to complete
it. This is useful information which can be used to determine whether there

are other Behavioural Modules which could cope with the unusual situation
and bring the system back to the Ideal Execution Path.

Alternative Execution Paths can also be entered into by information from

the planner which can be instantiated at run-time with information from the

real world. The planning system does not know anything about the dimensions

of the parts and the workcell, but the on-line system can determine if alter¬

native Behavioural Modules should be used due to, for example, the height of

an assembly becoming too great for the normal method of inserting a part.

In Fig 4-2, an Alternative Execution Path is available through Behavioral

Module 3 if the Exit State from Behavioral Module 1 is BM-1B.

Alternative Execution Paths may consist of Behavioural Modules, or may

merely perform local robot commands, depending on the extent of the deviation

from the Ideal Execution Path. The Alternative Execution Path may simply

retry the original Behavioural Module which returned a failed Exit State if it is

possible that it may succeed in correctly performing the task if repeated. The

Alternative Execution Path may instead use different sensor types if available,

or may use different strategies. If, for example, a section of an object has

been identified by some sensing strategy, but not the segment required for

continuation of the Ideal Execution Path, it can be inferred that the object is

actually present, and a simple search strategy can be used to find the part of the

object required. In the majority of calls of this particular Behavioural Module,

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 95

the correct feature is identified, but occasionally the Alternative Execution

Path containing the search strategy may have to be used.

There follows a list of circumstances where an Alternative Execution Path

may prove useful.

1. A Behavioural Module on the Ideal Execution Path may not have the

competence to deal with the variation actually present in the real work-

cell. For example, an object may not be found within the range of the
visual field of a vision system being used by a Behavioural Module. Al¬

ternative strategies to deal with this problem may range from moving the

camera to using other types of sensor, depending on the capabilities of
the system.

2. A Behavioural Module on the Ideal Execution Path, on consulting in¬

formation gained from sensors within that Behavioural Module or from

local information, may decide that it is no longer in a situation where it

can best deal with the task. For example, a position calculated in the

Behavioural Module may be outwith the reach of the robot. This cannot

always be known before entering the Behavioural Module and actually

calculating the position. In this case, the robot may, for example, be able

to approach the position by using a different gripper orientation.

3. If the information received from a Behavioural Module which has suc¬

cessfully completed its task is determined to be invalid for the current

application of the Behavioural Module, an Alternative Execution Path

may be followed. For example, a value corresponding to a height is re¬

turned, thus the Behavioural Module whose task it was to find a height

has been successful, but this height does not lie close enough to an ex¬

pected estimated height. Depending on the context and capabilities of
the Behavioural Module, the source of the height which has been found

may be easily identified and an alternative strategy used to bypass this

obstacle.

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 96

Having set out the ideas concerning the Ideal Execution Path and the Al¬
ternative Execution Paths, the following example shows how these can be used

in practice. Supposing the existence of a Behavioural Module whose task is to

find an object (referred to as Find Object Behavioural Module). If the object
is usually in a certain location and orientation, then a simple touch sensor may

be used to find it with this Behavioural Module being on the Ideal Execution

Path. If this fails due to the actual workcell configuration being outwith the

variation it can cope with, an alternative type of sensing, such as vision, may

be used, providing an Alternative Execution Path. The competences of the
two Behavioural Modules, one using touch and the other using vision, will be

different, with vision perhaps able to sense quickly over a larger area, but the
touch may be more accurate. So, to the system designer, it may be obvious to

try the touch first, and if that fails, try the second. Thus, the Find Object

Behavioural Module may still succeed, but by a different method from the Ideal

Execution Path.

Some Behavioural Modules are only used within an Alternative Execution

Path, and thus will never be included in a system's Ideal Execution Path. Any

lower level Behavioural Modules within Behavioural Module 3 in Fig 4-

2 will not be on the Ideal Execution Path for the example system. When a

Behavioural Module is called in different circumstances in different parts of

the system, different routes through it may be included on the overall Ideal

Execution Path. One call of Demonstration (Fig 4-2) may determine that
the Ideal Execution Path for the system follows through Behavioural Module

1, with Exit State BM-1A, and through Behavioural Module 2, with Exit

State BM-2A, whereas another call of the Behavioural Module, still on the Ideal

Execution Path, may follow through Behavioural Module 1, with Exit State

BM-1B, and on through Behavioural Module 3 with Exit State BM-3B.

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 97

4.5 Usefulness of the system

This section looks at some of the other advantages which can be found when

using the above ideas within the framework of a Behaviour-based robotic as¬

sembly system, apart from that of providing a more reliable system by using

appropriate alternative actions.

Decomposition of the assembly system

In the SOMASS system described in Chapter 3, and the experimental system

developed for this thesis (described in Chapter 5), the planner plans for assem¬

bly in terms of part motions, rather than in terms of the robot motions required

to achieve the part motions. With this comes the advantages of Object Level

programming where it is seen as easier for the programmer to think in terms

of part motions (see Chapter 2, page 20). The planner, although enforcing the
constraints previously discussed, does not know anything about the dimensions

of the physical assembly parts or workcell, or the availability of sensors, and

performs no reasoning about the variation or uncertainty in the physical work-

cell. The execution system, composed of Behavioural Modules, interfaces to

the planner only through a series of part motions provided by a Prolog list (see
Appendix A), and this allows the execution system the freedom to interpret
these without resorting to replanning if a particular robot motion is not appro¬

priate. The Behavioural Modules can be easily changed and inserted into the

execution system to produce a more competent system using different sensors

and different strategies where appropriate. The execution system can be used

to handle possible error situations without re-planning.

Suitability of Behavioural Modules

The extent to which the system follows the Ideal Execution Path can be taken

as a measure of the suitability of the Behavioural Modules chosen to perform

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 98

a task. Extensive repeated deviation to Alternative Execution Paths shows

that the Behavioural Modules on the Ideal Execution Path are not now the

best suited for the task, whatever the criteria for their original choice. Either

the Behavioural Modules on the Ideal Execution Path have proved inadequate

to deal with the task, or the circumstances in the workcell have altered and

may need attention. In a system with no sensors and no information available

concerning possible Alternative Execution Paths, control will automatically

follow an Ideal Execution Path. Even if the variation proves too much for the

task to be successfully completed, the robot will still go through the motions

of the assembly with no parts in its gripper.

The linking of the planner with the Behavioural Modules provides an inter¬

face which is useful in determining the reasons for the failure of an assembly

system. The failure could be due to either the use of inappropriate Behavioural

Modules, or due to the level of the interface with the planning system provid¬

ing inappropriate information for the use of these Behavioural Modules. In
other words, the question becomes one of discovering whether the Behavioural
Modules are competent enough to deal with the variation in the environment,

or whether the planner is perhaps producing the wrong level of detail for the
Behavioural Modules which have been selected. If a large number of Alterna¬

tive Execution Paths are used regularly, then perhaps the choice of Behavioural

Modules on the Ideal Execution Path is inappropriate for the task.

Failure at Different Levels

The use of Alternative Execution Paths, deviated to by information from Exit

States and local information, allows the system to deal with the potential failure

of the system at any point in the hierarchy. The problem can be dealt with

at a low level within the same Behavioural Module, or may be tackled at a

higher level where another alternative can be used. This means that there is

no ultimate failure of the system until the top of the hierarchy is reached and

nothing more can be done. This leaves plenty of scope for recovery at any

level when relevant. It is usually the case that the further up the hierarchy

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 99

T1

Exit States

TASK-A S

TASK-A

TASK-A F

TASK-A2 S S
¥
¥TASK-A2

TASK-A2 F F

Figure 4-4: Single level Alternative Execution Path.

the problem is dealt with, the greater the problem there is with the variation

and uncertainty in the workcell. As with the hierarchical structure devised by

Albus, the problem of variation can be dealt with at any level, although with
this system, the decomposition is simpler and the sensory structure different.

The following example shows how failure can be dealt with at different levels

of the system.

In Fig 4-4, the Behavioural Module, named TI, has been designed to com¬

plete a task, TASK-A. The Behavioural Module, named TASK-A, is executed

and can return one of two values as its Exit State, in this case, either S or F.

As this is a simple task, these will currently be referred to as Success or Failure

to make explanation of the example easier.

If TASK-A returns Success, then the Behavioural Module, Tl, will return

Success. On the other hand, if the result of performing TASK-A is Fail, then an

alternative Behavioural Module, TASK-A2 can be tried. TASK-A2 is designed

to bring the assembly to the same state as would occur at the successful comple¬

tion of TASK-A. The Behavioural Module TASK-A2 may involve performing a

different strategy with the same sensors as TASK-A, it may use completely dif-

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 100

TASK-A

Figure 4-5: Multiple level Alternative Execution Path.

ferent sensors, or may simply try the Behavioural Module, TASK-A once more.

The Behavioural Module, TASK-A2, will return the value S, or F. This time,

if F is returned, the system designer has decided that there is no alternative

which can be tried. In this case, the Behavioural Module, T1 will return F.

Thus, this example demonstrates how an alternative can be tried at the same

level as a failure occurs.

The next example in Fig 4-5 looks at a deviation from the Ideal Execution

Path which cannot be dealt with at the same level of Behavioural Module.

Again, using T1 as a basic task, this looks at a slightly more complex situation.
TASK-A may consist of either local robot command coding, or may in turn be

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 101

composed of other Behavioural Modules. If the Behavioural Module, TASK-A,

is composed of Behavioural Modules, TASK-B and TASK-C, the failure may

be due to either one. In this case, as in Fig 4-5, there is no alternative available

at the TASK-B and TASK-C level, the problem may be left to be dealt with
at the level of TASK-A and TASK-A2. This time, TASK-A has the choice

of three values to return, S, Fl, or F2. The difference between F1 and F2

may be relevant at a higher level to determine where the Behavioural Module
went wrong. In this diagram, it has been decided that if the returned value is

Fl, the alternative Behavioural Module, TASK-A2 may be attempted. These
values may be carried up as far as required as Exit States from each level of
Behavioural Module.

4.6 Reliable Behaviour-based Robotic

Assembly

This chapter has introduced the terms and ideas which are used in this thesis

to investigate building a reliable robotic assembly system. These include Exit

States, the Ideal Execution Path, and Alternative Execution Paths.

A Behaviour-based robotic assembly system can be split into two distinct

sections, comprising a planning system and an execution system. The plan¬

ning system provides a high level description of the part motions, and these

are realised on-line by a competent execution system composed of Behavioural
Modules. These Behavioural Modules are modular units which combine soft¬

ware and hardware to perform a task in the real world and can deal with a

certain amount of variation and uncertainty in the workcell. Exit States, which

inform the system what has occurred within a Behavioural Module, can be used

along with local information to identify the Ideal Execution Path and appropri¬

ate Alternative Execution Paths. The Ideal Execution Path is a control path

through the hierarchy of Behavioural Modules which describes the best route

through these as decided by the designer of the system. If sensors or local

Chapter 4. Increasing the Reliability of Behaviour-based Robotics 102

information decree that the system is no longer in a state to follow the Ideal
Execution Path, Alternative Execution Paths may be available to bring the

system back to the Ideal Execution Path. Alternative Execution Paths may be

used to deal with more, or different, variations in the workcell, or may be used

to recover from a potential error situation.

The key to the diagrams which will be used throughout the thesis to illus¬

trate the Behavioural Modules has also been presented.

Chapter 5

The Experimental System

This chapter examines the experimental system which was designed and im¬

plemented to test the ideas related to Exit States, Ideal Execution Paths, and
Alternative Execution Paths (see Chapter 4). The Behavioural Modules devel¬

oped for this system provided a basis for examining the details which would

be needed to link them successfully to build a reliable and robust assembly

system.

As it is too soon in the development of the field for a coherent theory of

robotic assembly to have been formulated to provide a framework in which the

Behavioural Modules could be tested, the experiments invented for the system

were designed to test its ability to successfully complete a task in the presence

of variation using the Behavioural Modules on the Ideal Execution Path. If it

could not do this, alternative Behavioural Modules were provided for parts of

the system, and if these did not allow the task to be successfully completed,

the system was allowed to fail, providing details about this failure.

The experiments detailed in Chapter 6 show two sets of runs of the exper¬

imental system, one using only the part of the system which acquires Soma

parts, and the second set showing the running of the whole system. The num¬

ber of times the Ideal Execution Path and the Alternative Execution Path were

used in both trials are noted, along with the failures and the reason for the

failures.

103

Chapter 5. The Experimental System 104

The SOMASS system, described in Chapter 3, was selected as a foundation
for the development of Behavioural Modules using sensors. The advantages of
the Soma shapes as examples of assembly objects are examined in Section 3.2.1.

The existing planner for the SOMASS system was retained, with the focus of
the work concentrating on the development of appropriate sensory Behavioural

Modules and their linking. The planner output of a Prolog list remained un¬

changed, see Appendix A, but was post-processed into a different form more

suitable to exploit the new structure and sensors available.

The first section of this chapter examines the implementation details and

the structure of the experimental system, giving a complete outline of the

strategies and Behavioural Modules used. The second section looks in more

detail at some of the implemented Behavioural Modules. The third, fourth,

and fifth sections examine the Exit States of some of the Behavioural Modules,

the Ideal Execution Path, and some Alternative Execution Paths of the system

respectively. The final section provides a summary of the work.

5.1 System Outline

The system for the thesis work, based on the SOMASS system, performs the
task of assembling Soma structures. The planner for the SOMASS system is re¬

tained, but the structure and content of the Behavioural Modules are changed.

Simple binary sensing is integrated to allow decision making capabilities de¬

pendent on sensory information.

As with the original SOMASS system, the planner implicitly uses some

rules to facilitate assembly and assure that certain motions which are deemed
unreliable are not used. The rules which are still enforced in the experimental

assembly system include downward acquisition and insertion of the parts. Parts

must still be gravitationally supported when inserted into the assembly, with
each cube in the Soma part supported by the floor or another cube. Again,
this forbids the assembly of any shape with an overhang. Other rules have

Chapter 5. The Experimental System 105

Figure 5-1: A Chamfered Soma-4 Shape — Fork3.

been relaxed, such as the strategy of leaving pads in the final assembly, as the

system uses chamfered Soma parts (see Fig 5-1) which can adequately cope

with small translational variations.

The experimental system, as with the SOMASS system, uses some motion

strategies to reduce the variation present, but it also incorporates some sensing

strategies to help increase the reliability. The sweeping motions to move the

parts into a predefined position have been replaced by simple strategies using

binary sensors to acquire the part. Where possible, the double snap of the

gripper is used to centre the part in the gripper (see Fig 3-16), but when this
is not possible, the part is centred in the gripper by using a strategy involving
the simple sensors (see Section 5.1.3 on page 125). Whenever the part is carried
in the gripper, binary sensors monitor the contents of the gripper. If regrasp

is necessary, this is also closely monitored, allowing for more variation than in

the sensorless SOMASS system. When inserting the parts into the assembly,

the parts which have already been assembled are taken into account to ensure

that the part carried in the gripper will not collide with the already completed

Chapter 5. The Experimental System 106

assembly. If the assembly has reached a certain height, instead of moving

directly over the assembly and perhaps colliding, extra work can be done to

find a safe route into the assembly for the part, avoiding the already completed
sections. This comes in useful when the Soma-5 set is introduced, or when tall

assemblies are attempted. For the insertion of the parts, a force/torque sensor

is used to detect when the part reaches the table.

Most important for this particular work is the increased reliability which
can be gained by the use of the Ideal Execution Path and Alternative Execution

Paths. Information to determine change of control direction to the Alternative

Execution Paths from the Ideal Execution Path is available from Exit States

and local relevant information.

The following sections examine the implementation stages of the experi¬

mental system, and the strategies used in the Behavioural Modules in the final

system on both the Ideal Execution Path and the Alternative Execution Paths.

5.1.1 Implementation Stages

This section looks at the system development and introduces in more detail

the sensory system and the programming environment. As the experimental

system developed, several important modifications were made to its hardware

and software. The sections below detail the three major changes which were

required to improve the system and provide a better test-bed for the work. It is
also important to note how these hardware and software changes were affected

by the nature of the task itself.

The workcell's main component, consistently used through all the exper-

■iments, is the 5-degree of freedom Adept robot (shown in Fig 3-7). Cham¬
fered Soma shapes from the Soma-4 and Soma-5 sets are used as the assembly

components. As with the SOMASS system, the final assemblies are shapes

constructed from the individual Soma parts. Some of these can be seen in

Fig 3-4. The SOMASS planner was retained in the same form as before (see
Section 3.2.3), with the only addition being the input parameters of the part

Chapter 5. The Experimental System 107

description for the new Soma-5 set, and descriptions of the expanded range of
final assembly shapes. In dealing with final assemblies which used many more

parts, the time factor for finding a solution increased many times due to the

combinatorial expansion. For some of the larger assemblies (composed from
more than the original seven Soma-4 shapes), no solutions were found after
several days.

The aim of the newly expanded system was to introduce sensing into Be¬
havioural Modules and to examine their subsequent linking and composition.
As the ideas developed, several major changes took place in the system, and
these are detailed below. The changes reflected both the need for sensor in¬

formation appropriate to the task in hand, and the need for a more flexi¬
ble programming environment. It became quickly apparent that the software,

hardware, and the task were closely inter-related.

Experimental System 1

The first experimental system which was developed incorporated simple binary

sensing into Behavioural Modules. The Adept controller is configured to handle

eight external binary input/output signals through a serial line. Each signal
can be set to either 1 or 0, signifying 'on' or 'off'. These designations of 'on'

or 'off' are dependent on the electronic set-up of the particular sensor. The

binary sensors can be monitored directly by several VAL-II commands, such as

REACT, SIG, and SIGNAL. REACT commands initiate the monitoring of the

binary signals, SIG returns their state and SIGNAL can be used to trigger the

sensors. See the Adept User Manuals for specific details of these commands as

used with the Adept robot [Adel985a] [Adel985bJ.

The first sensor development integrated into the system involved two binary

sensors, one a microswitch, the other an infra-red lightbeam emitter/detector
set. The photograph in Fig 5-2 shows the placement of these sensors on the

gripper. The microswitch is located at the tip of one finger, and the lightbeam

emitter/detector set are placed such that the lightbeam crosses between the

Chapter 5. The Experimental System 108

Figure 5-2: The original gripper fingers.

gripper fingers. When located in the fingers in this way, both sensors can

be used to constantly monitor aspects of the robot gripper in the workcell,

especially when it is moving. The motion of the robot can also be used to

acquire information by using dynamic sensing. Some sensors are usefully placed
in the workcell itself, especially those sensitive to robot vibration, such as a

force sensor. Work done in Aberystwyth [Sharp, 1990] [Loughlin, 1992) has
produced some useful touch sensors which can be placed around the workcell.

The VAL-II REACTI command, an extension of the basic REACT com¬

mand which allows the robot arm to be halted when sensors are correctly

triggered, can be used to initiate the constant monitoring of a binary signal.
If a signal is monitored to detect a transition from 'off' to 'on', and the signal
is already 'on', no triggering occurs until the signal has gone to 'off' and then
'on' again. The signal must remain stable for at least 18 milliseconds to assure

detection of the transition. The monitoring continues until either the correct

transition occurs on a particular sensor, or until an IGNORE command is issued
for that sensor. When the sensor is triggered, the REACTI command stops

Chapter 5. The Experimental System 109

the robot immediately (or as fast as inertia will allow), and allows diversion to
a subroutine if required.

This kind of sensor triggering which can halt the robot allows guarded
motions to be performed. The stopping conditions can be any sensor transition,
or combination of sensor transitions (both OR and AND combinations), in this
case, either opening or closing the microswitch, or breaking or completing the

lightbeam. Once the robot has been stopped, its location in the workcell can be

returned to the controller and this information used by the system. With the

lightbeam sensor between the fingers, the gripper can be constantly checked to

see if it is holding a part.

Although useful in the first experiments with the system, several problems
came to light concerning the use of these fingers and sensors. The microswitch

proved to be a bulky addition to the gripper, often catching on the parts

during the assembly and causing damage to the parts and the microswitch itself.

This was particularly a problem when the parts were being inserted into the

assembly. The use of the lever on the microswitch (again, see the photograph
in Fig 5-2 for this detail) gave rise to problems in accuracy when using the
microswitch for guarded motions, as the lever could trigger the microswitch
from any point along its length.

Along with the above problems, it soon became clear that much more use¬

ful information could be gained by modifying the design of the fingers. The

microswitch was replaced by a simple lightbeam arrangement to protect the

bottom of the fingers, and the finger bottoms were chamfered to prevent snag¬

ging. More lightbeams were incorporated between the gripper fingers. Overall,

the fingers were less bulky, had more sensory capability, and were better pro¬

tected from damage. The next section looks at these new fingers, and the

information which could now be derived from them.

Chapter 5. The Experimental System 110

Experimental System 2

To maximise the information which can be gained from binary sensors, and

having observed from previous experience with the first set of sensors what

information can be useful in the manipulation and assembly of Soma shapes,
the new set of fingers, incorporating six binary sensors was designed.

Infra-red lightbeams replaced the microswitch, which was too bulky, inac¬

curate, and easily damaged. The photographs in Fig 5-3 and Fig 5-4 show
the sensor arrangement on the fingers. Each finger incorporates a light beam

across the top of the gripper which can be broken by depressing the probe at

the end of the finger. Fig 5-5 shows a CAD model of the probe itself and the

finger design which shows where the sensors actually lie. Each finger also holds

two lightbeam emitters and two detectors which line up with the detectors and

emitters respectively in the opposite finger. Again, the finger design to hold

these sensors is shown in Fig 5-5. The two sensor set-ups which incorporate

the probe will be referred to as the probes to distinguish them from the four

lightbeam sensors between the fingers.

The binary sensors were located in the fingers with the following design

features and functionality in mind:

• Ability to detect a point of contact of the gripper fingers with any object

in the z-downwards direction, stopping the robot if necessary.

• Find a vertical or horizontal edge of the object, again stopping the robot
if necessary.

• Detect presence/absence of object in gripper.

• Detect slippage of object in gripper.

• The use of chamfered fingers and rounded probes so no snagging can take

place.

Chapter 5. The Experimental System
111

Figure 5-3: Second set of gripper fingers (view A).

Figure 5-4: Second set of gripper fingers (view B).

Chapter 5. The Experimental System 112

The two sets of fingers which were designed were used within Behavioural

Modules which were stored and run directly from the Adept controller, as were

the Behavioural Modules designed for the SOMASS system.

In order to provide an easier working environment where the plan could
be run directly from a SUN workstation instead of sent down manually to the
controller and stored there, the system was changed once more. The following

section details these changes.

Experimental System 3

To aid the program development and provide a more flexible working environ¬

ment, it was decided that the complete system should be run from the SUN

workstation. The SOMASS system, as has been described in Section 3.2.2,

provides Prolog plans from a SUN workstation which are sent down an RS232

serial line to the Adept controller. These plans contain calls to Behavioural
Modules which are stored within the controller. Much time was spent sending

these VAL-II plans to the controller, and a slight modification in plan structure

or level of interface required a new VAL-II file to be produced and transported.

With the whole system run from the SUN workstation, individual VAL-II com¬

mands could be sent down from Prolog (SICStus Prolog [Sicl988] was now

being used for the planning system) to the controller at run-time, which meant

Chapter 5. The Experimental System 113

that the output from the planner, the Prolog list, could be interpreted as the

system ran. This gave the advantage of quick testing of modifications to the
interface between the planner and the Behavioural Modules, easy integration

of other sensing systems which had been developed, such as force sensing or

vision, and editing the Behavioural Modules became much easier, as the editing
facilities on the robot controller had proved unwieldy when dealing with large

systems as compared to the advanced editing facilities on the SUN workstation.

A C program had been developed by A. Conkie (EDAI) to allow simple com¬

munication between the SUN workstation and the Adept controller through an

RS232 serial line. This allowed a single command to be sent to the controller,

control returning to the SUN when the robot signaled completion of the com¬

mand. This program had to be modified to allow return of control to the
SUN workstation during the execution of the command, such as a MOVE in¬

struction, to allow other sensors which were connected directly to the SUN

workstation to be interrogated.

Fig 5-6 shows the new system set-up. As the VAL-II code could be run

one line at a time from Prolog, this brought about a more flexible control

environment, and the structure of the system could be changed as required for

experimentation. Control decisions could be made at any point in the program,

based on information from the planner, or on information from the sensors. The

robot controller could still deal with the kinematics and mathematics of the

robot, and the Prolog could deal with the interface with the planner and the

control structure. The binary sensors could still be used directly through the

controller, allowing fast reaction time, and other sensors, such as a force sensor,

could be incorporated at any level of the new structure.

Many Behavioural Modules had already been written in VAL-II code and

stored on the Adept controller. These were not updated to run directly from
SICStus Prolog (although they were now accessed as subroutines by a direct
call from SICStus Prolog). All new development of Behavioural Modules was

subsequently handled from the SUN. All VAL-II commands, even the calibra¬
tion of the robot, could be dealt with from this new integrated system. This

Chapter 5. The Experimental System 114

force sensor ~| finger
o o binary
0 q sensors

adept
controller

sun
workstation

o

A
adept
robot

Figure 5-6: Communication within the system.

helped with the integration of other sensing systems which were already con¬

nected into the backplane of the SUN, such as the force/torque sensor. Work
on a vision system [Chongstitvatana Ar Conkie, 1990], using Datacube software,
could also have been incorporated if required, but this type of sensing was not

used in the experimental system.

A brief mention should be made here concerning the use of the force/torque
sensor. Connected directly into the backplane of the SUN workstation, the

same communications program used for the Adept controller could be modified
to read the data from the force sensor. Although the force/torque sensor was

originally designed to be attached to the wrist of the Adept, this caused two

separate problems.

The first of these was the length this added to the wrist in the limited

workspace of the Adept robot. (See the photographs in Fig 5-7, Fig 5-8 and

Fig 5-9.) In Fig 5-7, with the Adept arm fully extended, the gripper can

reach a position much further away than is possible after a simple rotation of

the gripper though 180 degrees, which is shown in Fig 5-9. If the gripper is

positioned vertically downwards, as shown in Fig 5-8, it can reach the same

Chapter 5. The Experimental System 115

Figure 5-7: Adept robot workcell limitations — Gripper rotation 1.

positions as in Fig 5-9, but cannot reach those in Fig 5-7. This can lead to

problems when parts are placed in position with the gripper in one orientation,

and picked up with the gripper in another. This problem is compounded by
the addition of the force sensor attached to the wrist. The z height to which

the Adept can move with the gripper oriented as in Fig 5-9 is also severely

limited.

The second problem involved the noise of the robot vibration in the sensor

readings when it was mounted on the arm. To reduce these two problems, the

force/torque sensor was sandwiched between two metal plates and the assembly
was built on top of the plates, as can be seen in the photograph in Fig 5-10.

This meant that the force/torque sensor could not be used in the acquisition
of the parts, but the binary sensor coverage of this was adequate for the task.

Chapter 5. The Experimental System

Figure 5-9: Adept robot workcell limitations — Gripper rotation 3.

Chapter 5. The Experimental System 117

Figure 5-10: Force/Torque Sensor Sandwich.

5.1.2 System Overview — Ideal Execution Path

This section outlines the strategies used on the Ideal Execution Path of the

experimental system. From this point onward, the experimental system re¬

ferred to will be the one described in Section 5.1.1, using the set of gripper

fingers described in Experimental System 2 and the control from Experimental

System 3.

This experimental system was designed to perform the assembly of cham¬
fered Soma-4 and Soma-5 parts, constructing pre-selected assembly models.

The task decomposition falls into two stages for each part in turn: acquiring
the part, and then placing it in the assembly. Each of these is performed by a

Behavioural Module which in turn decomposes the task into smaller sections.

Both of these Behavioural Modules fall on the Ideal Execution Path.

Part Acquisition: The Soma part can be acquired from a nominal taught

location, dealing with variation in orientation of approximately ± 45

degrees and translational variation equivalent to the size of the top of the

Chapter 5. The Experimental System 118

cube by using suitable motion strategies and the binary sensors in the

fingers.

Part Placement: The Soma part can be placed in the final assembly in a

location calculated from offsets from a nominal taught location. Varia¬

tion can be dealt with by the use of the chamfers on the cubes, by the

force/torque sensor table, and using the sensors between the fingers.

The following two sections detail the strategies used to deal with variation

and uncertainty in this assembly system, but look only at the Ideal Execution

Path through the system. Section 5.1.3, examines the strategies employed when
these Ideal Execution Paths fail, and an Alternative Execution Path may be

taken instead.

Part Acquisition

The part acquisition Behavioural Module, Pick-up, requires taught nominal

locations for each part, and the nominal size of the cubes in the part. The

implemented strategy makes use of guarded motions performed using the two

probes in the Adept fingers, and the four sensors between the fingers.

Initially, the top of the cube to be gripped is located by performing a

guarded motion downwards towards the cube with one of the probe sensors

using a Behavioural Module called Find Height (detailed in Section 5.2).
The photograph in Fig 5-11 shows an example of the position of the gripper

after one such motion. The case where the probe lands on a chamfer is dealt

with in Section 5.1.3. Once the top of the cube has been located, the robot

performs a motion strategy to determine the orientation of the cube using the

Behavioural Module Location, which is again detailed in Section 5.2. The

first strategy designed to cope with this found the horizontal edge of the cube

along each of the ± x axes and ± y robot axes, and an additional fifth point

to distinguish between ambiguous cases. Fig 5-12 shows an example of this

strategy. The points were found by moving outward along the robot axes from

Chapter 5. The Experimental System 119

1

Figure 5—11: Gripper after downward probe to locate cube top.

the point already found on the top of the cube, and stopping the robot by trig¬

gering the sensor when the probe was released when it fell off the edge of the
cube (consistently halfway down the chamfered slope). These five points were

enough to determine an approximation of the orientation of the cube except in

the case where the angle was near zero. This was due to the method of calcu¬

lation (sine of a small angle), and it was decided that a complete new strategy
could be devised which would prove more useful than finding an alternative

strategy when the angle was near this problem orientation.

Using the same method of finding the edges of the cube, the second ori¬

entation strategy found a series of points along the edge until the orientation

changed to show a corner had been turned. See Fig 5-13 for an example of
such a strategy. When a corner was located, the centre of the cube could be

estimated sufficiently accurately from this and the knowledge of the nominal

size of a cube.

The strategy implemented is not a perfect way to find the orientation of
the cube, but performs well enough to enable the robot to straddle the cube

Chapter 5. The Experimental System 120

OITTWARD MOTION 3

• Initial Downward Probe Point

Figure 5-12: Finding orientation of a Soma part — Strategy 1.

• Initial Downward Probe Point

Figure 5-13: Finding orientation of a Soma part — Strategy 2.

Chapter 5. The Experimental System 121

CLEAR

Figure 5-14: Final position of the lightbeam sensors on part pick-up.

with its fingers, without colliding with the top of the part. The results from

the experimental system runs in Chapter 6 give more details of the variation

that can be dealt with.

The gripper moves to a safe height over the calculated centre point of the

cube, then vertically descends over the part until the bottom two sensor light-

beams between the fingers are broken by the cube. This is performed in the

Behavioural Module Pick Double Snap which is detailed in Section 5.2. The

cube is centred in the gripper with the double snaps as previously shown in

Fig 3-16. The part is then gripped with the lower two lightbeam sensors in the

fingers obscured by the gripped cube, while the upper two are clear of the top

of the part (as shown in Fig 5-14), and moved to a safe height in the workcell.

Part Placement

The part placement Behavioural Module, Place, requires that a location is

taught to the system informing it where the assembly should be built in the

Chapter 5. The Experimental System 122

workcell. The planner provides details of offsets from this position depending

on the placing of the individual parts as described in Chapter 3, page 73. The

actual distances are calculated at execution time and are dependent on the size

of the cube.

The part is always inserted downward into the assembly. When the force

sensor table is used as an assembly platform, the force/torque readings can be
examined to determine when the part has come into contact with the table
or the assembly, and the robot can be halted. At present, only the z reading

is examined to determine this contact, with a certain threshold defined as

contact having been made. The force sensor could be used in many other ways

to obtain more information about how the contact is made. Once contact has

been achieved, the gripper is opened, closed then opened once more to make

sure the part is correctly in place. The robot then retires to a safe height once

more. The sensors are constantly monitored for difference from expected values

and unexpected transitions.

As chamfered cubes are used for the assembly, it is no longer necessary to

leave pads in the assembly to cope with positional variation as the chamfers

themselves will prevent parts catching on the tops of others (see Chapter 3,

page 67). It is, however, still necessary, with some assemblies, to leave a gap

for finger clearance when inserting the last part. This part can then be pushed

into place using the back of the robot wrist. The photograph in Fig 5-15 shows
this strategy. This is only required for shapes like the large 3x3x3 cube where

no space is available for the grippers to insert the parts otherwise.

5.1.3 System Overview — Alternative Execution Paths

The Behavioural Modules which have been described fall within the Ideal Ex¬

ecution Path of the system for the application of putting together Soma as¬

semblies. These Behavioural Modules are quite reliable (see Section 6 for ex¬

perimental runs of these Behavioural Modules), but still fail to perform their
task on occasions. On these occasions, it is useful to have Alternative Execu-

Chapter 5. The Experimental System 123

Figure 5-15: Using the Adept wrist to push the Soma part into place.

tion Paths which can attempt to bring the system back from a certain error

situation.

The Alternative Execution Paths described below have been developed to

cope with specific failures in the Ideal Execution Path. Sensory data and

planner information in conjunction with knowledge about the physical workcell
can be used to determine when these Behavioural Modules are appropriate, and
the particular hierarchical structure of the linking of the Behavioural Modules

means that these can be easily integrated into the system.

The following sections detail some of the major Alternative Execution Paths

used in the system.

Find Centre Search for a point on the top of the Soma cube if a chamfer has
been detected on first downward probe.

Single Pick Centre the Soma part in the gripper if Pick Double Snap Be¬

havioural Module cannot be used.

Chapter 5. The Experimental System 124

Regrasp Reorient the Soma part for placing in the assembly.

Regrasp Twist Turn the Soma part on the regrasp pedestal if the Adept

cannot reach the cube to be gripped in the correct gripper orientation.

Slip If the Soma part slips in the gripper while being carried, try to regrasp

the part.

Move Round Assembly If the assembly becomes too high to allow clearance
of parts lifted over it, the parts can be placed in the assembly after moving
round the already completed assembly.

The extent of the Alternative Execution Paths varies from small deviations

to check a sensor reading, to changes involving the regrasp of a part. It is

only some of the major alternatives which are detailed here. More detailed

information of the Behavioural Modules will be described in Section 5.5, as the

current section deals mainly with the strategies involved.

Find Centre

If the Behavioural Module, Find Height, fails to land on the top of the Soma

cube to be gripped during the strategy described in Section 5.1.2, landing in¬
stead on the chamfer of that cube (determined by comparison with the nominal
height of the cube), a search can be made for a point located on the top of the
cube as it is known to be nearby.

The search strategy which is employed in the Behavioural Module Find
Centre simply probes downward a short distance from the chamfer point along

each of the four axes directions (± x and ± y) until a point corresponding to

the nominal cube height is found, as seen in Fig 5-16. This point can then be
used as the central point for the Location Behavioural Module described in

Section 5.1.2. Control then returns to the original Ideal Execution Path and

the system proceeds as before.

Chapter 5. The Experimental System 125

0 Initial Downward Probe Point
Figure 5-16: Strategy for finding cube top (having found a chamfer).

Single Pick

In some cases, especially when parts from the Soma-5 set are introduced as

assembly components, it is not possible to pick them up by a single upstanding
cube using the Pick Double Snap Behavioural Module. These cases can be

identified by looking at the Prolog list representation of the part and checking

for any other cubes at the same height in the Soma shape as the one to be

gripped. In order to centre the part in the gripper to reduce the locational

variation once more, a single snap of the gripper can be performed for one

direction, but the other requires a different strategy because of the extra cubes

in the way.

The original strategy devised for this was to use the four sensors located

between the fingers to find the vertical edge of the cube, as can be seen in the

photograph in Fig 5-17. Once the edge was found, the gripper could calculate
the centre of the Soma cube. This proved an impossible strategy when dealing

with some of the Soma-5 set where the part had cubes located on a diagonal

to the one to be grasped. This meant that the gripper could not be used in

Chapter 5. The Experimental System 126

Figure 5-17: First strategy to centre the cube in gripper.

the above way to find the vertical edge of the cube without bumping into the
other cubes at the same height. The strategy then developed used the probe
sensor to measure the top surface of the cube, finding the centre by dividing
this in two. This strategy is shown in Fig 5-18.

Finally, as in the Behavioural Module Pick Double Snap, the Adept is

moved down over the Soma part until the bottom two sets of lightbeams Eire

obscured, leaving the top two clear, as is shown in Fig 5-14.

Regrasp

Unlike the part acquisition and part placement which are required for every

part used in the Eissembly, the regrasp is required for just those parts which
cannot be placed in the assembly with only rotation around the z axis from the

pick up orientation (as in the SOMASS system). This is used as an Alternative
Execution Path, identified by knowledge from the planner.

Chapter 5. The Experimental System 127

Centred by Single

The regrasp strategy allows a part to be placed on a small pedestal in the

workcell and picked up from another orientation, either grasping the same cube,
or changing to another specified by the planner. This strategy is described in

Section 3.2.4, with photographs showing an example gripper position change

in Fig 3-9 and Fig 3-10.

The planner provides details of the orientation of the gripper on placing the

part on the table, and offsets which allow the part to be placed in a gravita-

tionally stable position in the centre of the small table. The same is provided
for picking the part up again, with details of which cube is to be grasped. Some

orientations of the gripper are not possible as the robot only has five degrees of

freedom, but these are taken into account when working out the way the part

can be grasped.

The part is released on the table then the Adept moves away, re-orients for

grasping the part from another direction, and moves back in to grasp it. The

probe sensors in the fingers are constantly monitored during all the motions to

detect if the probes have bumped into anything and the four lightbeams be-

Chapter 5. The Experimental System 128

tween the fingers are also constantly monitored to detect the presence/absence
of an object.

No motion strategies are used to improve the reliability of the Behavioural

Module Regrasp Put during this task, even though added variation may occur

if the regrasp table is unsteady or the part is uneven. To increase the reliability
of the Behavioural Module Regrasp Get, part of the same strategy which
was used for the Single Pick Behavioural Module is incorporated, where the

gripper straddles the part until the bottom two lightbeam sensors are obscured

(see in Fig 5-14). The two probe sensors are also used as, if they are triggered,
the part will have turned sufficiently so that the gripper can no longer straddle
the cube. Although, in the current system, no Alternative Execution Path has

been devised, this is the type of situation which could be detected and dealt

with in that way.

Not only is regrasp an example of an Alternative Execution Path, but the

execution of it can take several different paths as is shown in the next section.

Regrasp Twist

If the workcell restrictions are such that the Soma part cannot be placed on

the regrasp pedestal with the gripper orientation required (see the problem
described in Section 5.1.1 on page 114), the part can be rotated through 180

degrees and put down in this orientation instead. Whether the robot can reach

a given point can be worked out by the robot controller at run-time using

information from the plan, the taught regrasp location and its own internal
sensors. This Alternative Execution Path can be used if at least two approaches

to the regrasp table are available, at a 90 degree angle to each other.

Once more, if the gripper cannot reach the Soma part to pick it up in the

correct orientation for placing into the assembly, an intermediate rotation of

180 degrees can be used. For this rotation, more information must be supplied
to the Prolog plan from the planner to give an alternative grasp location to

Chapter 5. The Experimental System 129

Figure 5-19: Turning regrasp part through 180 degrees (before).

enable the robot to perform this action. An example of this type of turning is

shown in the two photographs in Fig 5-19 and Fig 5-20.

Slip

During any motion with the Soma part held in the Adept gripper fingers, the
four sensors between the fingers are monitored to check if the part is still in

position. If the sensors detect that the part has slipped, a simple Alternative
Execution Path is entered to try to restore the part to the correct position in

the gripper.

This strategy currently involves moving the Soma part back to its previous

location, either the taught pick up location, or the location on the regrasp

pedestal, dropping the part again, then attempting to pick it up by the same

method as previously used.

Chapter 5. The Experimental System 130

Figure 5-20: Turning regrasp part through 180 degrees (after).

Move Round Assembly

This particular Behavioural Module, Move Round Assembly, was intro¬

duced to deal with the problem of height clearance when dealing with high

assemblies, especially a problem with the introduction of parts from the Soma-

5 set. The addition of the force sensor table to build the assembly on also

reduced the height clearance in an already shallow workspace.

If the already constructed assembly reaches a certain height, determined by
information from the plan in conjunction with the size of the cubes (only known
at run-time), the robot will attempt to perform a different Place Behavioural
Module. A path is determined using information about the already completed

assembly and the cube size which will allow the robot to move around the

assembly and bring the part in from a direction which will not crash into the

parts which have already been inserted. Once the part has been moved around
the assembly, it can then be lowered into place as the assembly returns to the
Ideal Execution Path.

Chapter 5. The Experimental System 131

There are many other minor Alternative Execution Paths in the assem¬

bly system, all activated by sensory information from the real world, or by
information from the planner translated into real world terms.

5.2 Behavioural Modules

As the hardware and software in the experimental assembly system developed,
so too did the design and implementation of the Behavioural Modules. The
main changes described above involved inventing new and more robust strate¬

gies, and also using the sensors in ways better designed for the task of assem¬

bling Soma models. The following examples outline in more detail some of
the Behavioural Modules which were developed and used for the experimental
trials shown in Section 6.1, to give an idea of the possibilities available.

Example 1 — Monitored Move

The name, Monitored Move Behavioural Module, describes a set of Be¬

havioural Modules which fall under the movement category. The move¬

ment performed can be any one of the VAL-II commands: MOVE and
MOVES (straight line or joint-interpolated motion between two loca¬

tions); APPRO and APPROS (straight line or joint-interpolated motion
to a z tool offset distance, approaching a given location); or DEPART
and DEPARTS (straight line or joint-interpolated motion to a z tool off¬
set distance, departing from a given location). The sensors monitored

during this move, depending on which Behavioural Module is called, can
be either a single sensor, or two, four or six sensors.

These Behavioural Modules were designed as low level monitored actions

which could be reused in many different situations to build up other

levels of Behavioural Modules, increasing in competence up the hierarchy.

They can perform either straight-line motion, or joint-interpolated from

the current robot position to a position named as a parameter to the

Chapter 5. The Experimental System 132

module, while constantly monitoring the binary sensors in the fingers for

particular state changes which tire also detailed as parameters. If one of

the specified sensor transitions is detected, the Adept motion is halted

immediately.

To be useful in many situations, a Behavioural Module must be suffi¬

ciently general; in this case, this is achieved by parameterisation. As

has been explained in Section 5.1.1, the binary sensors can be constantly

monitored to detect changes in state. By setting parameters to detect

particular changes, the four sensors located between the fingers can de¬

tect the presence or absence of an object in the gripper, and also whether
an object has slipped in the gripper.

All the sensors can be used to perform guarded motions. An example

of this is to find the vertical height of an object by moving downward

until the probe sensor is triggered, as is used in the Behavioural Module

Find Height. The robot controller can be queried for the current robot

position if that position is required on completing a guarded move. If

the Behavioural Module is being used only to stop the robot, the actual

stopping location may not be important. This Behavioural Module can

be used for many different purposes, from guarded motions to checking

if an object has dropped from the gripper as it moves.

Example 2 — Find Height

Using a version of the previous Behavioural Module, Monitored Move,

which only monitors the two probes, this Behavioural Module is designed

to return a position, representative of the vertical distance between the

workcell surface and the current gripper position, thus determining a

height. The Adept moves to a safe height over a point which is pro¬

vided as a parameter, then, monitoring the two sensors, moves vertically

downward until either a sensor is triggered to halt the robot, or the given

point is reached. In this particular module, only one of the probes is

designated as able to find a height, with an error being announced if the

Chapter 5. The Experimental System 133

other sensor is triggered. This means that the height found will be the

height under the designated probe. The two sensor Monitored Move

Behavioural Module is used on all movements of the robot in the Find

Height Behavioural Module.

Example 3 — Find Drop

Again, stopping the robot using a binary sensor transition plays an im¬

portant part in this particular Behavioural Module. Of particular use

in the Soma domain where the shapes are cubes, once the height of an

object is found using the Find Height Behavioural Module, the robot
can then move horizontally until the probe sensor is released to find the
vertical edge of the cube. This has proved useful for finding locations and

orientations of the cubes. Again, this uses the Monitored Move for the

guarded motion to find the drop point. These drop points can be found

using Soma cubes with chamfers.

Example 4 — Location

Initially, the problem of picking up the Soma shapes was that of locating
the parts accurately enough in the workcell to be picked up without the

gripper catching on the upper surface of the cube on the way down to

grasp it. Variation in position and orientation could be so great that just

bringing the gripper down to straddle the part would often result in the

gripper becoming stuck on the top of the object. The sensorless SOMASS

system relied on sweeping the parts into place to reduce this variation and
allow the parts to be correctly grasped, but this required room around

the parts in the workcell for the sweeping motions. As more parts were

introduced, a problem arose concerning the space in the workcell, and
so a different orientation finding strategy was devised which used binary

sensors.

A reliable method for finding the orientation was devised, as detailed in

Section 5.1.2, mainly using the Behavioural Modules Find Drop and

Chapter 5. The Experimental System 134

Monitored Move. This gave an accurate enough location to lower the

gripper over the object without catching the top.

Example 5 — Pick Double Snap

When dealing with grasping Soma shapes which have a single upstanding
cube designated as the cube to be gripped (which is true of all parts

except zed in the Soma-4 set), a Behavioural Module similar to the one

used for the same purpose in the SOMASS system was used.

Having been provided with the location of the part as a parameter, the

robot moves down over the part, and performs two snaps of the gripper,

at 90 degrees to each other. This ensures that the part is centred in the

gripper, which is useful for variation reduction. As has already been men¬

tioned in Section 5.1.2, the additional strategy introduced in the system

with sensors involved moving down over the cube to be gripped until the

bottom two lightbeams located between the fingers were obscured. The

robot was then halted and the fingers closed. In this way, the sensors

reported whether the gripper was holding the cube, and could tell if it

slipped. All the movements in this Behavioural Module were performed

by the Behavioural Module, Monitored Move.

These are all examples of Behavioural Modules which were designed, im¬

plemented and tested individually as they were developed, checking that their

Exit States (some of which are examined in the next section) were relevant to
the task of the Behavioural Module. In this way, when combined, the compe¬

tence of the underlying Behavioural Modules could be relied on to perform to

a certain specification.

Chapter 5. The Experimental System 135

SAFE HEIGHT

Exit States

SHIChange
position

Figure 5-21: Safe Height Behavioural Module.

5.3 Exit States

This section expands some of the previous examples to include the possible
Exit States from the Behavioural Modules. As has been previously stated (see
Section 4.3), Exit States are the values returned from a Behavioural Module to

inform the system of how it has exited. Behavioural Modules can be designed

to return these Exit States, which can then be used by the control hierarchy to

determine if a Behavioural Module has successfully completed its task in the

context of its calling, or whether something has failed. It is important that the

sensory coverage is adequate and appropriate for the task being performed.

Safe Height

This Behavioural Module is an example of the simplest Exit State de¬

scription possible. There exists only one Exit State from the Behavioural

Module, SHI, which reflects the fact that the only task this module per¬

forms is to return a position which is within reach of the Adept at a

safe height above a designated point on the floor of the workcell. The

diagram in Fig 5-21 shows this simple Behavioural Module. The key for
the diagram can be found in Section 4.2 on page 88.

Monitored Move

The Behavioural Module Monitored Move, which is described in Sec¬

tion 5.2, has two very simple Exit States which are shown in Fig 5-22.

Chapter 5. The Experimental System 136

MONITORED MOVE

Figure 5-22: Monitored Move Behavioural Module.

The first Exit State, MM1, signifies that the Adept has either successfully

moved from its current position to the named position, carried in a pa¬

rameter, or it has been halted along the way when one of the monitored

binary sensors successfully triggered. Both of these results are regarded

as the same Exit State for this particular Behavioural Module. The only

other Exit State, MM2, is one which signifies that the position which the

Adept was told to move to could not be reached by the robot. This can

easily occur if the position has been calculated.

Find Height

As a more complex Behavioural Module, Find Height has more Exit

States than Monitored Move. The origin of the Exit States can be de¬

termined by examining the component sections of the Behavioural Mod¬

ule in Fig 5-23.

The Behavioural Module begins by calling another Behavioural Module,

Safeheight which can be seen in Fig 5-21. This Behavioural Module

always returns Exit State SHI and returns a position which is in reach

of the Adept at a safeheight above a designated point on the floor of the
workcell. This means that, by default, the two sensor Monitored Move

to this position will produce the successful Exit State, MM1. The Exit

State MM2, which is related to the position to be moved to being out of

range, is not needed and is therefore not returned in any form from Find

Chapter 5. The Experimental System 137

Figure 5-23: Find Height Behavioural Module.

Height. The state of the sensors is now compared with their expected

states, to determine if any sensors have been triggered on the way to the
safe position. If this has happened, Exit State FH4 is returned and the
Behavioural Module exited immediately.

If the sensors are in the expected state, the Adept is then commanded

to move vertically downward towards the workcell floor. The robot will

either be stopped by the sensors triggering, having touched something,

or by reaching the position on the floor. The height finding probe, for
this example, probe A, is checked to see if it has activated. If it has, the
Behavioural Module exits with FH1.

If the probe which has been designate to find the height, probe A, has

not been triggered, the robot is commanded to move down a very small

amount, to check if perhaps the other probe, probe B, has hit the object

first. If probe A now triggers, a valid height has been found, and, again,
Exit State FH1 is returned. This may happen if probe A lands over a

chamfer.

Chapter 5. The Experimental System 138

riWD CUB! TOP

Figure 5-24: Find Cube Top Behavioural Module.

If probe A does not trigger, probe B is then checked. If this has not

been triggered, Exit State FH2 is returned, signifying that no object has

been found. If it does trigger, Exit State FH3 is returned, signifying that

probe B has found some height.

The Exit State value Fill corresponds to a height being found by the cor¬

rect probe. A parameter containing the robot's position is also returned.

Find Cube Top

In moving up one more level, this Behavioural Module, Find Cube Top

uses the previous module, Find Height. Designed to locate the top of a

Soma shape in the workcell, when a nominal location of the part is known,

this module uses the Find Height module, then determines if the height
returned is useful. Fig 5-24 shows a diagram of the Behavioural Module.

The Find Height module can return one of the Exit States, FH1, FH2,

FII3, and FH4. Exit States FH2, FH3, and FH4 from Find Height result

in Exit State FCT5 from the Find Cube Top Behavioural Module.

If FH1 has been returned, signifying a height has been found, the pa¬

rameter containing the robot's position is examined to determine if the

Chapter 5. The Experimental System 139

position corresponds to the workcell floor. If it does, then Exit State
FCT4 is returned. If not, the returned position is then compared with
the nominal expected height of the cube, and if there is a match, Exit
State FCT1 will be returned.

If the height does not match with the expected top of cube height, the

height is then compared with a possible chamfer height. If the height
matches with this, a Behavioural Module on the Alternative Execution

Path, Find Centre (described in Section 5.1.3) is entered to move the
robot to the top of the cube. Corresponding Exit States will be returned

depending on how the Find Centre Behavioural Module is exited, pro¬

ducing FCT1 if the top has successfully been found, and FCT2 if not.

Diagrams showing the Find Centre Behavioural Module, and the Be¬

havioural Modules it calls, are given in Appendix B. If the height, on the
other hand, does not correspond to the height of the chamfer, the Exit

State FCT3 is returned.

5.4 Ideal Execution Path

At each level of the Behavioural Module hierarchy, the Ideal Execution Path

can be traced by the Exit States from lower level Behavioural Modules called

from this level, and by other control decisions which are made from information

available to the system at this point. Exit States define a certain way of exiting

a Behavioural Module and although, within a Behavioural Module the same

Exit State may be reached by several different paths, from the outside of the

Behavioural Module only the result is seen. An example of this is in the Find

Height Behavioural Module, see Fig 5-23, where Exit State FH1 can be arrived

at by two different routes. Therefore, to determine the Ideal Execution Path

through a system which has been built, the path is followed down through the

hierarchy and is determined by Exit States and local decisions.

Chapter 5. The Experimental System 140

The Ideal Execution Path for the experimental system begins at the top

level of the hierarchy, as described in Section 5.1.2, with calls to the Behavioural

Modules to acquire the parts, and to place them in the assembly. Both of these

are broken down into other Behavioural Modules as the hierarchy is traversed.

The example Behavioural Module, Find Cube Top (See Fig 5-24), is part
of the Ideal Execution Path for the system. The path progresses through the

Behavioural Module Find Height, with Exit State FH1, the 'Compare with

floor height' local module, with control information that floor height has not

been found, and ends up in the 'Compare Cube size' local module with the

correct cube size found. This leads to an Exit State of FCT1 from the Find

Cube Top Behavioural Module.

At the next level down, the Find Height Behavioural Module also lies on

the Ideal Execution Path, due to it being called from the Behavioural Mod¬

ule above already on the Ideal Execution Path. The Ideal Execution Path

through the Find Height Behavioural Module follows Safe Height with Exit

State SHI, Monitored Move with Exit State MM1, Check Sensors with

Exit State CS1, Monitored Move with Exit State MM1 and finally Check

Sensors with Exit State CS1, ending up with Exit State FH1 from this Be¬

havioural Module. Although two paths end with Exit State FH1, only the path

just described forms the Ideal Execution Path for this call of the Behavioural

Module.

5.5 Alternative Execution Path

In developing the complete system, several opportunities occurred to make

the most of the sensor and planner information available to allow the control

of a Behavioural Module to follow Alternative Execution Paths. The above

Ideal Execution Path is followed if the Behavioural Modules can deal with the

variation and uncertainty in the workcell. If they cannot (indicated by the
context of the Exit State from a Behavioural Module or by control information

Chapter 5. The Experimental System 141

within a Behavioural Module), an Alternative Execution Path may be followed
to make use of this information and to try to restore the system to the Ideal

Execution Path. It is useful to know how a Behavioural Module exited as, if

the Behavioural Module is well designed, this can tell the system exactly what

happened within it, allowing the correct choice of an Alternative Execution

Path.

In the original SOMASS system the Ideal Execution Path consisted solely of

the pick and place Behavioural Modules. The only Alternative Execution Paths
available were entered using information from the planner. These included the

regrasp strategy and the pick up Behavioural Module for the 'zed' part. All
other actions took place whether the assembly was being performed correctly or

not. If the variation in the workcell proved too great for the competence of the

Behavioural Modules, the robot would still continue along the Ideal Execution

Path although there was no way that the assembly could be correctly completed

in this way.

Several Alternative Execution Paths were designed for the experimental

system for this thesis. The Ideal Execution Path has already been described in

Section 5.4. This section will describe some of the major Alternative Execution

Paths which were specifically designed to operate in this system, giving exam¬

ples from the Behavioural Modules already described in the previous sections.

Find Cube Top

As has already been described in Section 5.3, this Behavioural Module

(Fig 5-24) locates a point on the top of the cube to be gripped of a

Soma shape. If a point is detected which corresponds with the height of

a chamfer on the cube, an Alternative Execution Path is used.

This particular Alternative Execution Path uses the Behavioural Module
Find Centre to locate a point on the top of the cube and bring the

system back to the Ideal Execution Path. If a chamfer has been located,

the top of the cube must be somewhere near, but it is not known in which

direction. The Find Centre Behavioural Module uses the Find Height

Chapter 5. The Experimental System 142

MORASP

ExK Stslss

Is put posn
r-

DEPART MORASP _
PUT _

Rnd get pt
"" Is it inran|e? -i m GST

RXQ2 ^

Not 1 I 1
Inrsngel ■*" ^R0^2^^.S,6.7,8.

Qisnge put
by 180 deg

MGRASP

TWIST

RT3
MT3 RXQ3 ^

RP2,3, 4, 5, f,7. RRQi _

Figure 5-25: Regrasp Behavioural Module.

Behavioural Module (see Fig 5-23) and tries points a small distance along
the ± x axes and ± y robot axes until the top is found as illustrated in

Fig 5-16.

Single Pick

The diversion from the Ideal Execution Path of the normal pick up Be¬

havioural Module, Pick Double Snap, is determined by information

from the planner. If any cubes are joined to the one to be gripped at the

same height as that cube, the strategy detailed in Section 5.1.2 is used.

Information about cubes joined at the same height as the gripped cube

could be easily discovered by the probe sensors in the fingers, but with

the planner interfaced at the Prolog level, and the information about the

parts available there, it proved less time consuming to consult this to

determine if the Alternative Execution Path should be followed.

Regrasp

The Regrasp Behavioural Module is only entered if information, again

from the planner, states that the part cannot be taken from the initial

starting location to its place in the final assembly with only rotation

around the z robot axis.

Once in the Regrasp Behavioural Module (Fig 5-25), if the robot cannot
physically place the part down on the regrasp table, then the part must

Chapter 5. The Experimental System 143

be rotated through 180 degrees and then placed down as described in
Section 5.1.3. This rotation forms another minor Alternative Execution

Path, depending on the information from the robot controller checking if
the robot can physically reach a position.

If the robot cannot reach the cube to be grasped, in the orientation that
it must use, another Alternative Execution Path is used. This time, the

alternative involves a Behavioural Module, Regrasp Twist, which per¬

forms a pick up, rotation and place (also described in Section 5.1.3). If
this Behavioural Module returns the Exit State RT1 showing that the ro¬

tation has been successfully achieved, the system can go on to regrasp the

correct cube and the control returns to the calling Behavioural Module.

Slip

The Slip Behavioural Module is only used if during the transportation

of the Soma part, the system detects that it has slipped in the grip-

per. An attempt is then made to pick up the part again as described in

Section 5.1.3.

Move Round Assembly

This Alternative Execution Path is determined from data from the plan¬

ner and performs a type of collision avoidance, since the main object of

this Behavioural Module is to avoid the already completed assembly.

5.6 Summary of the Experimental System

Reliability

The experimental system uses three different methods to deal with the variation
and uncertainty found in the workcell. These are as follows:

• Planner enforced strategies.

Chapter 5. The Experimental System 144

• Variation and uncertainty handling strategies.

• The use of Exit States and local information to determine the Ideal Ex¬

ecution Path and Alternative Execution Paths.

5.6.1 Planner strategies

As with the SOMASS system described in Chapter 3, certain strategies are

enforced by the planner with the aim of providing a more reliable assembly.

The planner enforces vertically downward acquisition of the parts by providing

a gripper orientation to this effect, and similarly for part placement (although
this constraint is removed when placing and picking the part up from the

regrasp table). The planning of the assembly also ensures that each cube in
the Soma part to be inserted into the assembly is supported either by the

workcell floor or by an already assembled part. All rotations provided by the

planner are such that they can be performed by the 5 degree of freedom robot
which was used for the assemblies.

5.6.2 Variation and Uncertainty Handling Strategies

Several strategies are used in the course of the assembly execution to reduce

the amount of variation in the workcell. The position and orientation of the

Soma parts are more accurately determined by using the probe in the fingertip

of the gripper to investigate the appropriate area, as described in Section 5.1.2.

This does not reduce the variation present in the part position, but allows the

position to be more accurately determined. The system must now also take

into account any uncertainty introduced by the sensory measurements if it is

still to perform reliably. A double snap of the gripper, as shown in Fig 3-16,

is used to centre the part in the gripper if a single upright cube is available for

grasping, physically reducing the variation present in the part position. If this
is not the case, a single snap helps to reduce the variation along one axis, and

running the probe across the top of the cube, as seen in Fig 5-18, helps to find

Chapter 5. The Experimental System 145

the centre of the cube along the other. On picking up the Soma part, the lower
two sensors between the gripper fingers inform the system when the gripper

moves over the part, as seen in Fig 5-14, providing a more accurate gripping

position and allowing the sensors to monitor slippage in the gripper.

When using the binary sensors to stop the robot and report the location

back to the system, the speed at which the robot is run provides different

locations for different speeds due to the time it takes for the sensor to trigger

and halt the robot. This means that the interpretation put on these results by
the system are speed dependent. To keep the bounds of the uncertainty within

a range that the system can still deal with, the system is run at the same speed

whenever reported guarded motion locations are required.

The lightbeam sensors incorporated into this assembly are simple on/off
binary sensors, and so the programmer does not have the same thresholding

problems which are found in force and vision sensing. The uncertainty intro¬

duced in some of the sensing strategies is either within the bounds that the

system can cope with, can be further reduced by strategies such as the exam¬

ple of running the robot at a constant speed, or the Behavioural Module can

be accepted as being susceptible to failure and carefully monitored to see if the

strategies have correctly completed their task.

5.6.3 Exit States, the Ideal Execution Path, and

Alternative Execution Paths

The experimental system described in this chapter uses Exit States, the Ideal

Execution Path, and Alternative Execution Paths to increase the reliability

of the assembly. This chapter has outlined the Behavioural Modules used
in the experimental system. Sections 5.3, 5.4, and 5.5 examine some of the

Behavioural Modules in more detail with respect to the concepts behind Exit

States, the Ideal Execution Path, and Alternative Execution Paths.

Section 5.3 examines the Exit State values of some of the Behavioural Mod¬

ules in the experimental system, and how these relate to each other as the

Chapter 5. The Experimental System 146

Behavioural Module hierarchy builds up from lower level Behavioural Mod¬

ules. These show how the sensory and local data are used as decision points to

determine the Exit State value.

Sections 5.4 and 5.5 examine the control paths which have been chosen for

this system and how these are identified from Exit State values and some local

decisions. Behavioural Modules on Alternative Execution Paths can either

deal with problems which have occurred during the execution of a Behavioural

Module on the Ideal Execution Path, such as dealing with a slipped part in

the gripper, or may have completely different competences more useful to deal

with the actual circumstances in the workcell, as can be seen by the example

of the Move Round Assembly Behavioural Module which can cope with

assemblies of a greater height than the normal Place Behavioural Module.

Several of these Alternative Execution Paths are described in Section 5.5.

Chapter 6

Experimental Results

The experimental system described in Chapter 5 was developed from the origi¬

nal SOMASS system to investigate increasing the reliability of such a Behaviour-
based system. To do this, sensors were introduced, along with the concept of
Exit States, the Ideal Execution Path, and Alternative Execution Paths, which

are described in Chapter 4.

This chapter examines some results obtained from two types of experimental

system runs. The first of these, in Section 6.1, test the Behavioural Modules

designed to acquire the Soma part while the second set, described in Section 6.2,

involve complete runs of the whole system.

6.1 Part Acquisition Experiments

The purpose of this set of experimental runs was to test the reliability of the

system in picking up Soma parts. The Behavioural Modules which were de¬

signed for the system were not in themselves the most reliable which could be

built for the task, following the relaxation of the idea that Behavioural Mod¬
ules must be very reliable task-achievers, but instead provided an adequate

competence. This allowed the system to be tested to see how well the Ideal

Execution Path and Alternative Execution Paths could improve the reliability
of the system.

147

Chapter 6. Experimental Results 148

Run no. Part Height(mm)
1-25 Right 20

26-50 Fork3 15

51-75 Fork3 22

76-100 Left 10

Table 6-1: Soma part pick up runs.

The hardware for these experiments is described in Section 5.1.1 (gripper
fingers from Experimental System 2, and the working environment from Ex¬

perimental System 3), with the complete system run from SICStus Prolog. As
the system ran, the Exit States and control directions were stored where they

could be examined to analyse the system. This information proved useful in de¬

termining the control flow through the Behavioural Modules and in identifying

any problem areas.

The experiment involved picking up Soma parts which had a large degree

of positional variation. For these runs, the variation was achieved by dropping

the part from the robot gripper, with the part bouncing on the table depen¬

dent on its shape. This kind of delivery was used in these experiments as the

mechanical repeatability gave sets of runs where the part landed at the edge of

the competence of the Behavioural Modules. The part was picked up using the

strategies and Behavioural Modules detailed in Chapter 5, then dropped again

with the actual position of the dropped part noted (to within approximately

2mm). An approximation to this position is calculated by the system dur¬
ing the Behavioural Module Location, and this is compared with the actual

position in Section 6.1.1.

Table 6.1 shows which Soma parts were used (see Fig 3-3 for the names

and shapes of the Soma parts), the run numbers, and the height from which
the parts were dropped. Runs 1-25 and 51-75 resulted in the Soma part

landing near the edge of the capability of the Behavioural Modules on the Ideal

Execution Path, with runs 26-50 tending to be well within their capability.

Chapter 6. Experimental Results 149

Runs 76-100 were between these extremes. The choice of which parts to use in

the experimental trials was arbitrary, with the only determining factors being

that they were in a stable configuration with one single upstanding cube and

they did not fall over into another configuration when dropped.

6.1.1 Variation

Before examining the details of the use of Alternative Execution Paths to deal

with the failure of Behavioural Modules on the Ideal Execution Path, the dif¬

ference between the actual position from which the part is acquired and the

position calculated by the system are compared. This section will also give an

idea of the variation which the Behavioural Modules can deal with in locating

the Soma part. The actual centre points and orientations were measured from

markings on graph paper while the system was being run, and the calculated

centre points and orientations were taken from calculations performed by the

system in its attempt to more accurately locate the part.

The diagrams in Fig 6-1 and 6-2 show the spread of actual and calculated
centre points and orientations of the Soma part which have been gathered from

the experimental runs. The two centre point diagrams show the actual and cal¬

culated centre positions, with the dotted outline of the chamfered cube showing
the nominal position of the cube as expected by the system. These diagrams do

not take into account the actual orientation of the cube at these centre points,

thus leading to centre points where the probe sensor would appear, from the

diagram, to land on the chamfer of the cube. This is not in fact the case as all

the centre points shown are calculated from a point found by the initial down¬
ward probe landing on the cube top. The accompanying histograms show the

orientation deviation from the nominal value of 0. The runs which failed before

the centre point could be calculated are not shown in the calculated diagrams,

but are indicated by a cross in the diagrams showing the actual centres and by

darker shading in the histogram for the actual orientations.

Chapter 6. Experimental Results 150

34
T 1 1 1 1 1 1

centre points (actual - success) ♦ 32
centre points (actual - failure) X

Ncainal cube location — 30

495 500 505 510 515 520 525 530 535
x axis (m) Angle of cube orientation

Figure 6-1: Actual centres and orientation of Soma cube for pick-up runs.

centre points (calculated)
Haiinal cube location -

1 ♦"

«* ♦ t 1
»!• 1

\ f

\ -a

Y
-45 -35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-2: Calculated centres and orientation of Soma cube for pick-up runs.

Chapter 6. Experimental Results 151

Distance (mm) between centre points Orientation difference in degree*
Actual and Calculated abc(Actual - Calculated)

Figure &-3: Difference between Actual and Calculated centres and orienta¬

tions.

The diagrams in Fig 6-3 show histograms of the frequency of occurrence

of the values of the difference between the actual and calculated centre points

and the actual and calculated orientation values. The difference between the

actual centres and the calculated centres is very small, considering the accuracy

with which the actual positions could be determined (to within approximately
± 2mm). The orientations also show a similar close correspondence. As the

gripper fingers, when fully open, can span approximately 50mm, with the cube

size approximately 35mm, the difference between the actual and calculated

values are within an error bound which can be dealt with by the system.

6.1.2 Pick-up results

The hierarchical structure of the Behavioural Modules used to execute the task

of picking up the Soma parts can be seen in Fig 6-4, with each branch of the

Chapter 6. Experimental Results 152

structure showing possible calls of the Behavioural Modules in the lower levels.

The internal structures of the Behavioural Modules are shown in full in the

diagrams in Appendix B, Figs B-2 to B-18. The key for these diagrams can

be found in Fig B-l at the beginning of Appendix B.

Looking at the Behavioural Module hierarchy in Fig 6-4, the Ideal Exe¬

cution Path for these runs involves the Behavioural Modules, Normal Pick,

Find Location, Find Cube Top, Find Height, Location and Pick Dou¬

ble Snap (and the complete tree structures beneath these). The only Alter¬
native Execution Path available for this task (enclosed in a dotted line) is the
Find Centre Behavioural Module which is called if the positional variation of

the Soma part is such that the initial downward probe of the sensor locates a

chamfer on the top of the cube.

The actual runs of the system are detailed in Appendix E with an explana¬

tion given on page 196. A summary of these results is shown in diagrammatic

form in Fig 6-5 which shows the Behavioural Modules, the number of runs

which reached each part of the system, and a letter referring to the number of

times each failure occurred. Out of the 100 runs of the system, 91 successfully

completed the task even though, as has already been mentioned, the limits of

the Behavioural Modules on the Ideal Execution Path were being tested. Of

the 99 which made it through the Find Height Behavioural Module, 32 were

immediately diverted to the Find Centre Behavioural Module on an Alterna¬

tive Execution Path, indicating that a height corresponding to a chamfer had

been found. 31 of these subsequently rejoined the Ideal Execution Path. The

details of the failures are described next.

The actual errors which occurred and led to error situations are detailed in

the following description, and where they occurred can be examined in both

the summary diagram (Fig 6-5) and in the detailed runs in Appendix E.

A The Find Height Behavioural Module found a point right on the edge of

the top just on the chamfer, and thus when the Location Behavioural

Chapter 6. Experimental Results 153

FDB PIHD COKPiM Dwmo lCHITOMD CHECI SAPS
: FDD) CENTRE

HEIGHT j DROP POIHTS GRIPPES MDVE SENSORS HEIGHT

SAFE MONITORED CHECK

HEIGHT MOVE SENSORS

Figure 6-4: Pick Up Trial

Chapter 6. Experimental Results 154

Figure 6-5: Experimental Runs using the Part Acquisition Behavioural Mod¬
ules.

Chapter 6. Experimental Results 155

Module returns to this point, occasionally the sensor pushes the cube

when trying to move horizontally.

B Incorrect orientation calculation — detected as the fingers move over the

part to be picked up.

C Chamfer detected, but search strategy failed to find top of cube.

D Sensor slid off side of cube when moving back to the centre position to

resume orientation finding strategy (due to slightly inaccurate tool coor¬
dinate frame change).

E Missed the cube completely on first downward probe.

Using the Diagrams in Appendix B which are too numerous to include in

the main body of the text, the Exit States for the above error situations are

as follows (beginning with the Behavioural Module lowest down the relevant

hierarchy):

A CS2, FD5, LOC4, FLOC2, NP3.

B CS2, PDS4, NP2.

C CH2, CP2, HC2, FC2, FCT2, FLOC3, NP3.

D CS2, FD5, COP3, LOC3, FLOC2, NP3.

E CS2, FH4, FCT5, FLOC3, NP3.

The control path, again with reference to the diagrams in Appendix B, for
the Alternative Execution Path which was used, sees the Behavioural Mod¬

ule Find Cube Top receiving the Exit State FH1 from the Find Height

Behavioural Module. The returned height is compared with the floor height,

then with the correct cube size, with the value agreeing with neither. When

compared to a possible chamfer height, the values agree and the Behavioural

Chapter 6. Experimental Results 156

Module, Find Centre is entered, producing either the Exit State FC1 or FC2.
These come out of Find Cube Top as either FCTl or FCT2.

These tests have shown that, although the actual Behavioural Modules on

the Ideal Execution Paths are not the best which could be designed, the addi¬

tion of a useful Alternative Execution Path, determined from sensor informa¬

tion, can provide a more reliable system. Without the Alternative Execution

Path, instead of the success rate being 91 out of 100, the successful pick up of

the Soma part would have been reduced to 60 out of 100. Again, it must be

realised that these runs were specifically designed so that the Soma part fell re¬

peatedly to a position where it was likely that the Alternative Execution Path

may be required. Only one run was lost during the deviation to the Alternative

Execution path, which was due to the search strategy employed.

This testing does serve to illustrate a useful way of determining if the Be¬

havioural Modules are appropriate for the task. If the Alternative Execution

Path is used more often than initially anticipated by the designer of the system,

or progressively becomes used more over a series of runs of the assembly, the

workcell and the robot can be examined to determine the cause. The system,

in the meantime, will continue its execution while the investigation is taking

place as the Alternative Execution Path can currently deal with the increase
in the variation. This could be due, for example, to a feeder which has shifted

in alignment.

For each error situation found in the part acquisition system runs, the

sensory coverage of the Behavioural Modules detected the problem and passed

the Exit State parameter back up through the hierarchy of the system. At

each level of the system, Alternative Execution Paths could have been used if

required to prevent the system from falling into an error situation.

An example of this, (using the diagrams of the Behavioural Modules in

Appendix B on page 182), could be applied to the error situation E where the
Soma part was missed completely on the first downward probe of the sensors.

Although detected at the very bottom level of the hierarchy by the Check
Sensor Behavioural Module, an alternative action could be made available at

Chapter 6. Experimental Results 157

the Find Cube Top level of the hierarchy, where another Behavioural Module

could be inserted on the control path from the Exit States FH2, FH3, and FH4

to attempt to find the part using either different sensors, or by using a different

strategy other than just a simple downward probe.

As well as implementing different actions to correct a problem, individual
Behavioural Modules can be replaced with others incorporating more reliable

strategies. For example, a different and more reliable search strategy could be

implemented for finding the top of the cube in the Find Centre Behavioural
Module.

6.2 Whole System Experiments

The second set of experimental runs involved the complete assembly system.

These runs were set up to examine the reliability of the Behaviour-based system

with the use of the Ideal Execution Path and Alternative Execution Paths.

The strategies used by the Behavioural Modules are described in Chapter 5,

Sections 5.1.2 and 5.1.3, and these perform the complete assembly.

The hardware and system set-up were as for the Part Acquisition experi¬

ments detailed above, with everything run from SICStus Prolog and using the

fingers with six binary sensors (see Chapter 5, Fig 5-3 and Fig 5-4). The exper¬

iment involved picking up the Soma parts from their nominal taught locations
in the workcell and placing them into the assembly. For these experiments,

the Soma parts were just placed in the workcell by hand at the start of each
run. The time taken to drop the parts from the gripper as for the Part Acquire

experiment proved too long to be feasible with so many assembly runs. Placing

the parts by hand provided a suitable amount of variation.

Most of the runs involved the Soma-4 set with its seven parts, but several
runs were made with some Soma-5 parts to assemble a 4 x 4 x 4 cube. The
Soma parts chosen to form the Soma-5a group are shown in Appendix D.

Table 6.2 shows the different runs, the Soma parts used, and the assemblies

Chapter 6. Experimental Results 158

Run no. Soma Set Assembly

1-12 Soma-4 Cube333

13-16 Soma-4 Cube333

17-18 Soma-4 Cube333

19-40 Soma-4 Crystal

41-59 Soma-4 Cube333

60-79 Soma-4 Bathtub

80-99 Soma-4 Cube333

100-104 Soma-5a Cube444

Table 6-2: Whole System assembly runs.

built. Most of the runs built different versions of the 3x3x3 cube which had

different ordering of the parts and different regrasps required. The number of
runs of each type of assembly was determined by the nature of the types of

error situations which were occurring. Several sets of runs were curtailed when

an error situation appeared at the same point in each run. In a developing

system, alternative actions could be provided for these error situations, but

as the system was not being developed further, nothing new was learned by

continuing these runs.

Figs 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, and 6-12 show the calculated centres

worked out for each of the Soma parts, along with the associated range of
calculated orientations. As for the Part Acquire runs, these calculations were

worked out by the system. In this case, no actual values were taken. These

diagrams give an idea of the variation present when the Soma parts were placed

in the workcell by hand. The results were dealt with in seven diagrams as each

part was nominally in one of seven taught locations.

The actual runs of the system are detailed in Appendix F, with the ex¬

planation for these given on page 201 of the Appendix. As with the results
from the part acquisition experimental system, the results are summarised in

a diagrammatic form, shown in Fig 6-13, Fig 6-14, Fig 6-15, and Fig 6-16.

Chapter 6. Experimental Results 159

lell centre (calculated) •

Naiinal cube location -

;yv. ,

.
♦♦ % V.

-45 -35 -25 -15 -5 0 5 15 25 35 45
34S 350 355 360 365 370 375 380 385

x axis (m) Angle of cube oriental ion

Figure 6-6: Calculated centres and orientation for the Soma part lell.

ell centre (calculated) ♦
Ncninal cube location —

v/'WV,
V '

. v» *»

1-
g % i 5

1
a Ja

3 SO 35S 360 S6S 370 37S 380 38S
x axis (a)

-45 -35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-7: Calculated centres and orientation for the Soma part ell.

Chapter 6. Experimental Results 160

fork2 centre (calculated) ♦
Nominal cube location —

360 36S 370
x axis (an)

-45 -35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-8: Calculated centres and orientation for the Soma part fork2.

fork3 centre (calculated)
Noainal cube location —

.<v
*!

. ' »*»•)- . ,i

355 360 365 370 376 3»0 385
x axis (u)

-45 - 35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-9: Calculated centres and orientation for the Soma part fork3.

Chapter 6. Experimental Results 161

left centre (calculated)
Noainal cube location -

"V f

»iW »>»4

* i ♦* a ** *
y \>*ss

S4S 5 SO SS5 S60 S6S
x axis (m)

-45 -35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-10: Calculated centres and orientation for the Soma part left.

Figure 6-11: Calculated centres and orientation for the Soma part zed.

Chapter 6. Experimental Results 162

i -160

tight centre (calculated) ♦
Ncainal cube location —

X >s
1

...]
.i

'
<>..* !

"t
• * . ! -

♦ 1
♦ 1

I
♦ 1

1

v' X'
\ /

,

8
6 16

-45 -35 -25 -15 -5 0 5 15 25 35 45

Angle of cube orientation

Figure 6-12: Calculated centres and orientation for the Soma part right.

Fig 6-13 shows the overall structure for each complete run of the assembly

system, completing the assembly of the runs shown in Table 6.2. Each run

involves initialisation, pick and place for each part, then a final Behavioural

Module to tidy up the system and park the robot. Figs 6-14, 6-15, and 6-16

show the individual pick and place for each part in each of the above assembly

runs (one run usually involved seven pick/place motions).

The diagrams do not show the complete set of Behavioural Modules used

to perform the assembly task, but show the major ones on the Ideal Exe¬

cution Path and the Alternative Execution Paths. From the diagrams, the

Behavioural Modules on the Ideal Execution Path are, as for the Part Acqui¬

sition experiments, Find Height, Location, Pick Double Snap, and for
the whole run of the system, the additional Behavioural Module, Place is also

used. The Alternative Execution Paths available are Find Centre (entered
10 times), Single Pick (entered 111 times), the assorted Behavioural Mod¬
ules used for Regrasping the part (Regrasp itself is entered 215 times, with
'turn for put' entered 2 times and Regrasp Twist entered 98 times), Slip

Chapter 6. Experimental Results 163

103

'

PLAN

103

ABCDEFG
HIJKLM

TID){ UP

79
* r

SUCCESS

Figure 6—13: Experimental Runs using the complete set of Behavioural Mod¬
ules.

PICK/PLACE
(For each Part)

79

Chapter 6. Experimental Results 164

Figure 6-14: Experimental Runs using the complete set of Behavioural Mod¬
ules (part acquisition).

Chapter 6. Experimental Results 165

Figure 6-15: Experimental Runs using the complete set of Behavioural Mod¬
ules (regrasp).

Chapter 6. Experimental Results 166

Figure 6-16: Experimental Runs using the complete set of Behavioural Mod¬
ules (placing the part).

Chapter 6. Experimental Results 167

(entered 4 times), and Move Round Assembly (entered 45 times). All these
Behavioural Modules are described in Chapter 5, Section 5.1.3.

Out of the 103 runs of the system, 79 produced correct assemblies, with the
24 failures due to individual failures in the pick/place Behavioural Modules.
The specific failures are shown in the digrams in Figs 6-14, 6-15, and 6-16. Of

the total of 678 individual pick/place for individual parts, 654 were successfully
performed (accounting for the 24 failed whole runs above). The Ideal Execution
Path follows the leftmost control path vertically downwards, with the number
of runs following these also shown. The actual causes of the failed runs are

detailed in the following description. Where they occurred is shown both in

the figures and in the detailed runs of the assembly in Appendix F.

A As for failure 'A' for the part acquisition runs. The Find Height Be¬

havioural Module found a point right on the edge of the top just on

the chamfer, and thus when the Location Behavioural Module returns

to this point, occasionally the sensor pushes the cube if trying to move

horizontally.

B Hardware fault.

C As for failure 'B' for the part acquisition runs. Incorrect orientation calcu¬

lation — detected as the fingers move over the part to be picked up.

D Part pushed aside by trailing probe during the strategy to find the orienta¬

tion of the cube.

E Part slipped in the gripper and could not be re-grasped.

F Part rotated on re-grasp table and could not be re-acquired.

G Part slipped in gripper while moving round the assembly and could not be

re-acquired.

H Part dropped completely.

Chapter 6. Experimental Results 168

I Part initially acquired in wrong orientation due to too much orientation

variation when setting it in the workcell.

J Robot invalid joint position error.

K One probe remained stuck in the 'on' position.

L Wrong probe sensor triggered in initial downward probe.

M Part unstable on the re-grasp table.

Each of these problems were identified by the Exit States of the system,

apart from the hardware faults where communication with the robot failed

completely and the whole system had to be restarted. For each of the other

error situations, possible Alternative Execution Paths could be provided if re¬

quired.

6.3 Summary of assembly runs

This chapter has detailed some assembly runs which were performed using the

assembly system described in Chapter 5.

The results show that, even when using Behavioural Modules which are

unreliable, so long as an appropriate Exit State can be returned from these
modules and other local information is available, the system can be made more

reliable by the introduction of Alternative Execution Paths.

In all of the above runs, the failure of the system was detected at a low level,

except in the case of hardware faults. The structure of the system also meant

that alternative actions could be made available at any level of the hierarchy.

For all of the above error situations, it is possible to devise strategies or new

Behavioural Modules to replace those which fail if required. It may of course

be the case that there is no alternative which can be devised, in which case,

operator intervention is required.

Chapter 6. Experimental Results 169

A useful way of keeping the system running at the edge of the competence

of the Behavioural Modules has also been shown. If the system uses Alternative

Execution Paths more frequently than expected or previously found, the system

can be examined to determine the cause of this unexpected use while still

running.

Chapter 7

Conclusions and Further Work

This thesis has been concerned with introducing sensors into a Behaviour-

based robotic assembly system and investigating how these can be used to

improve its overall reliability. The problem of achieving both a reliable and

easily programmed assembly system has been the focus of much research in

the area of robotics but, as yet, no definitive answer has been found.

The method of achieving reliability demonstrated in the Behaviour-based

SOMASS system has been expanded to encompass Behavioural Modules em¬

bedded in a reliable system architecture. This new approach still retains the

modularity which helps the programmer to construct new applications and the

method of linking the Behavioural Modules does not hinder this ability.

In this chapter, the main features of the research will be summarised, with
the main contributions indicated, then areas for further research will be listed.

7.1 Summary

As has been identified in the previous chapters, one of the major problems

facing users of robotic assembly systems is providing a reliable system which

is also easy to program. Current systems in use in industry tend to involve a

trade off between the two: either the workcell is tightly engineered to prevent

variation causing many failures, or the error situations are allowed to happen

170

Chapter 7. Conclusions and Further Work 171

and are dealt with manually. The first is by far the more popular method, but
this is only feasible when dealing with products which have the advantage of

volume. Research into the problem has been divided into three categories: Er¬

ror Detection and Recovery systems which rely on off-line knowledge sources to

re-plan on failure, Worst Case Analysis systems which concentrate on produc¬

ing plans which are guaranteed to succeed, and Competent Execution Systems

which rely on the run-time component to deal with variation and uncertainty.

7.2 Summary of the thesis work

The thesis work looks at increasing the reliability of an example of the third

type of system mentioned above, the Competent Execution System. The

Behaviour-based SOMASS system's reliability comes from implemented varia¬

tion reducing motion strategies in single Behavioural Modules (such as sweeping
the parts into the nominal position for picking them up), variation containment
strategies across several Behavioural Modules (such as leaving gaps in the as¬

sembly to be removed by patting the shape together at the end of the complete

assembly), and by providing information from the planner conducive to per¬

forming an action in one way (such as the grip positions given on the cubes

dictating that the part should be gripped from above).

Following this Behaviour-based approach, the work of the thesis has sought

to extend the scope of the reliability of the system to include a reliable system

architecture. This work has shown that with the aid of sensors and local infor¬

mation, it can be determined whether a sub-task has been correctly performed

within the context of its calling or whether it has failed to deal with the actual

workcell conditions. It has been shown that if a failure is discovered, or the
workcell conditions are such that the Behavioural Modules cannot actually per¬

form the task, alternative actions may be available, determined by the system

designer, which will prevent the system from falling into an error situation.

Chapter 7. Conclusions and Further Work 172

To enable these choices to be made, the following terms have been introduced:

Exit States, the Ideal Execution Path, and Alternative Execution Paths.

The concept of one returned parameter (possibly qualified by other pa¬

rameters), called an Exit State, which shows the internal control path of a

Behavioural Module, proved to be useful when determining the linking of Be¬

havioural Modules. The use of other local information which provided control
decision points within Behavioural Modules were also used as determining fac¬

tors as to whether a Behavioural Module had performed as required or whether

some alternative action should be performed to keep the system from failing.

The Exit State value for a particular Behavioural Module is determined from

local data, sensor data, and from Exit States returned from lower level Be¬

havioural Modules.

Two other useful concepts have been introduced in the thesis work: the Ideal

Execution Path and Alternative Execution Paths. These define control paths

through the hierarchy of the Behavioural Modules. The paths are determined

from the Exit States of Behavioural Modules and from decision points in the

local robot code used within the Behavioural Modules. The Ideal Execution

Path describes the best route, according to the system designer, through the

Behavioural Modules performing the assembly. Even though the Behavioural

Modules are designed and tested to be reliable, it can be seen that they are

not always perfect at performing the assembly task, and therefore, alternative

Behavioural Modules, those on an Alternative Execution Path can be included

to restore the system to the Ideal Execution Path. Alternative Execution Paths

can be brought into use when the Behavioural Modules on the Ideal Execution

Path cannot deal with the actual variation and uncertainty in the workcell, or

when one has failed while performing its task.

An experimental system has been designed and implemented to test the

above ideas, and examine the internal and external linking of the system. Sim¬

ple sensors were integrated into the system to monitor the Behavioural Mod¬

ules and to be used to help determine more accurate information about the

real world in which the assembly is performed, and thus provide valid Exit

Chapter 7. Conclusions and Further Work 173

States. New strategies were incorporated using the sensors which have been
detailed in previous chapters. The execution system was built up from low level,

low competence, Behavioural Modules, and, as each level of the hierarchy was

formed, the Behavioural Modules were tested to check that the hardware and

the software were well integrated to perform the given task. As the system

developed in this way, it was a relatively easy task to identify possible error

situations, and, for some of these cases, it was possible to slot in an Alternative

Execution Path to deal with the problem should it arise in the actual assem¬

bly. The building of Alternative Execution Paths could be done at any level
of the hierarchy wherever useful alternative Behavioural Modules were avail¬

able. The places where possible error situations could occur were identified due

to the close relation between sensing, action, software, and hardware, within
the experimental Behavioural Modules. These can also be recognised quickly,

allowing the system to be immediately halted or perform alternative actions,

rather than going on to perform inappropriate motions.

7.2.1 The Thesis Contribution

In this thesis, a system has been developed and implemented which is designed
to increase the reliability of a Behaviour-based robotic assembly system. In

doing so, several other points of significance have been discovered. This section

outlines the contributions of this research.

Relaxed Reliability of Individual Behavioural Modules

The kind of modular structure which has been developed for the thesis has also
shown that the constraints formerly imposed on Behaviour Modules, requiring

them to be very reliable task-achievers, can now be relaxed. Although, as far
as the system design is concerned, individual modular reliability is still a useful

thing to aim for, it can be seen that the system is forgiving of individual fail¬

ures and thus allows more flexibility in how reliable the individual Behavioural

Modules must be. Therefore, a Behavioural Module can now be good enough

Chapter 7. Conclusions and Further Work 174

for a task, instead of being guaranteed to correctly perform it. This means

that, unlike in many other systems where the system architecture can actually

degrade the reliability, this type of system uses the architecture to increase it.

Complete on-line reliability

Due to the way in which the system has been designed, it is able to contain

the problem of variation and uncertainty in the on-line execution system. The

planner is freed from having to reason about variation and uncertainty, and

therefore all this type of physical workcell detail does not have to be transported

off-line.

The system itself has no notion of specifically detecting errors, diagnosing

the problem, and performing recovery actions. Instead, it just keeps trying

to perform the task, sometimes modifying its actions according to the actual
circumstances. It is left to the designer of the system to insert appropriate

alternative actions if deemed necessary.

The system design allows these alternatives to be inserted at all levels of

the Behavioural Module hierarchy, with no outright failure until the top of the

hierarchy is reached. This allows the system great flexibility to deal with the

problem depending on what sensors and strategies it has available. An attempt

can be made to rectify a particular failure at a low level, but if this does not

succeed, it may still be possible to use an alternative at a higher level.

As the planner provides only part motions, and does not dictate how these

will be performed (unlike some systems where each robot motion is sent down
from the planner), the execution system has complete freedom to interpret
these part motions according to what Behavioural Modules are available. This

type of system can provide the flexibility to change old strategies with new

and improved ones without changing the interface to the planner. This allows

full use to be made of introducing new sensors into the system, or designing

new strategies to perform a sub-task. The hierarchical structure of this type

of system also allows Behavioural Modules to be slotted in where appropri-

Chapter 7. Conclusions and Further Work 175

ate, allowing easy insertion of Alternative Execution Paths. The Behavioural
Modules can be designed to limit the complexity of the individual Behavioural

Modules, without limiting the complexity of the system.

Retaining the context of the task

Unlike in systems such as the Error Detection and Recovery schemes, the archi¬
tecture discussed in this thesis retains the context in which the potential failures

occur. As the Behavioural Modules are designed, built and tested in the real

assembly workcell, the software and hardware can be specifically matched with
the task in hand. This allows the designer of the system to correctly identify

the problems and provide appropriate alternative if necessary. The context for

the Behavioural Module task will be present as the system is run, rather than

having the information extracted from the system to be dealt with off-line.

Behavioural Module Examination

The system can provide a framework for looking at what constitutes a good
Behavioural Module. The above system architecture can be used to examine

how well a particular Behavioural Module is monitored by sensory coverage

and to detect all possible control paths within it to see if it has successfully

completed its task. The system can be run in the real world and the output from
the system can be closely examined. Once a system has been developed and

appropriate Behavioural Modules inserted, the system can still be examined

while running to see if, for example, Alternative Execution Paths have been

used more often than normal, and therefore something may be misaligned in

the actual workcell. The output from this type of system can also be examined

to check the suitability of the Behavioural Modules on the Ideal Execution Path

to perform the assembly.

Chapter 7. Conclusions and Further Work 176

7.3 Further Work

In this section, some outlines for further research are suggested. These are split

into two sections: the first examines improvements to the current execution

system and the second looks at longer term work.

7.3.1 System Extensions

So far, the above ideas have only been tested in a relatively simple system

with binary sensors and limited complexity. Many useful Behavioural Modules
have been developed, but it has yet to be shown whether this methodology can

generalise out into more complex systems tackling more complicated assemblies.

Within the experimental domain which has been developed, new strategies

could be implemented to improve the reliability of the system. This could be

done in the first instance by enhancing individual Behavioural Modules, and
could also include better alternative strategies should some of the Behavioural
Modules on the Ideal Execution Path go wrong. The use of the Soma world

could also be expanded to include different strategies to deal with some of

the assemblies which are currently impossible, such as assemblies with cyclic

adjacency and overhang problems.

Along with developing Behavioural modules with different strategies to ex¬

pand the set of Behavioural Modules, an investigation could usefully be made

into the use of different and more complex sensors. The current Behavioural

Modules only use simple binary input from sensors, and more complex prob¬

lem, such as how to deal with more complicated monitoring of the Behavioural

Modules should be investigated in the context of Exit States, the Ideal Exe¬

cution Path, and Alternative Execution Paths. Different industrial assemblies

could be attempted, and different robots used to examine the generality of this

methodology.

Chapter 7. Conclusions and Further Work 177

From the above experimental changes, an investigation could be made into
what constitutes a good Behavioural Module, and what type of competences are

required. A useful expansion of this type of system would be to find out if these
low level Behavioural Modules provide a useful set of competences which can

also be used to build more complex systems. As yet, not enough Behavioural
Modules have been designed to examine the question of what makes a good
Behavioural Module and good modular boundaries, but it is hoped that the

above system can provide a basic framework for investigating this matter.

7.3.2 Long Term

As has been mentioned above, so far in the development of these Behaviour-

based systems, not many Behavioural Modules have been designed and imple¬

mented. An interesting line of research would be to determine what low level

competences are necessary from which generalised systems could be developed.

This type of work could lead to the eventual goal of providing a library of
Behavioural Modules from which the programmer could select useful ones for

a particular application.

This leads to the development of support tools to develop the Behavioural

Modules and link them together. As Behavioural Modules would thus be re¬

used in different situations, a more formalised description of their competence

would need to be developed, and part of this could be formed from the known

Exit States and the control paths through the Behavioural Modules. If a library

of already tested and reliable Behavioural Modules were available, this would

reduce the time currently needed to develop an assembly system. Even a

library of Behavioural Modules with a low level of competence would be useful
as it has been shown that these can be easily linked to provide a system of

greater competence. A useful decoupling of the development of Behavioural

Modules from their integration into a system can thus be defined, allowing the
Behavioural Modules to be updated independently while system development

can be continuing.

Chapter 7. Conclusions and Further Work 178

In the longer term, learning could be introduced into the type of architecture

detailed in this thesis. At present, all the design decisions are based on human

knowledge, but this is an area in which the system itself could be used to learn

where an Alternative Execution Path may be useful, and where the Behavioural

Modules should be inserted.

Appendix A

Prolog List for Soma Assembly

The following Prolog list represents a complete run of the assembly with seven

pick and place actions. A full explanation of one of these pick/place sub-lists
is given in Chapter 3 on page 69.

[[lell,

[[[0,0,0].[0,0,1],[1,0,0]],

[[0,y,z].[0.0.1]]] ,

[].

[0,1],

[[[z.3]]. [[0.0,0],

[[[0.0,0],[0,1,0],[0,1.1]],

[[0.x,z],[0,1,1]]]]]],

[fork2.

[[[0,0.0].[1,0,0],[1,0,1],[2,0,0]].

[[0.x, z], [1.0,1]]].

□ ,

[1.2],

[[[z. 2]]. [[0.2,0],

[[[0,2,0].[1,2,0],[1,2,1],[2,2,0]],

[[0.x,z],[1,2,1]]]]]],

[zed,

[[[0,0,1],[1,0,0],[1,0,1],[2,0,0]],

part name

nominal position

alignment k gripped cube (pick)

regrasp details

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

part name

nominal position

alignment k gripped cube (pick)

regrasp details

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

part name

nominal position

179

Appendix A. Prolog List for Soma Assembly 180

[O.y.z],[1,0.1]]],

] ,

2,1] .

[[z.3]],[[2,0,0],

[[2.0,0],[2,1,0],[2.1,1],[2,2,1]],

[0.x. z], [2,1,1]]]]]],

right.

[[0.0,0],[0,1,0], [1,0,0] . [1,0,1]] ,

[O.y.z],[1.0,1]]],

[[z.0].[y,3]].
[0,0,1],[1,0,0],[1.0,1],[1,1,0]],

[1,0.0]].

[O.y.-(x)].[0,0,1]].

[O.y.z],[1,0,1]],

[z.O]]] .

1,0] ,

[[z.O], [y.3]] .[[0,0,0],
[[0,0,1],[1,0,0],[1,0,1],[1,1,0]],

[O.y.z].[1,0,1]]]]]],

ell.

[[0,0,0],[0,0,1],[1,0,0].[2,0,0]],

[O.y.z].[0,0.1]]].

[[z, 1] , [x,3]] ,

[0,0,0].[0,0,1],[0,0,2],[0,1,2]],

[0,0,0]],

[0.x,y],[0,1,2]].

[0,x,-(y)],[0.0,1]],
[x.3].[z.O]]],

0.2] .

[[z, 1] , [x,2]] , [[0,0,1] ,

[[0,0,2],[0,1,2],[0,2,1],[0,2,2]] ,

[O.x.z],[0,1,2]]]]]] ,

alignment k gripped cube (pick)

regrasp details

padding offsets

rotation and translation (place)
nominal position in assembly

alignment fc gripped cube (place)

part name

nominal position

alignment k gripped cube (pick)

gripper/wrist alignment(regrasp)
nominal posn on regrasp table

base offset on regrasp table

alignment and gripped cube (put)

alignment and gripped cube (get)
rotation for place into assembly

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

part name

nominal position

alignment k gripped cube (pick)

gripper/wrist alignment(regrasp)
nominal posn on regrasp table

base offset on regrasp table

alignment and gripped cube (put)

alignment and gripped cube (get)
rotation for place into assembly

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

Appendix A. Prolog List for Soma. Assembly 181

left,

[[0,0,0].[0.1.0].[1.1.0].[1.1,1]].

[0.x.z],[1.1.1]]].

[[z.l]].

[0.0,0],[0.1.0].[0.1.1].[1.0,0]].

[0,0,0].[0.1.0]],

[O.y.z],[0.1.1]],

[O.y.-(x)].[0.1,1]].

[y.i].[z.o]]].

l.l],

[[z.l].[y.l]].[[1.1.1],
[[1,1.1] .[1.1.2].[1.2.2]. [2.2.2]] .

[O.y.z],[2,2.2]]]]]].

fork3.

[[0,1,0].[1.0.0].[1.1.0].[1.1,1]],

[0.x.z].[1.1.1]]].

[[z,3],[y,3]] ,

[0.0.1],[1.0.0],[1,0,1].[1.1.1]].

[1.0.0]].

[O.y.-(x)],[0,0.1]],

[O.y.z].[0.0,1]].
[z.O]]],

2,0] ,

[[z. 3], [y. 3]]. [[1.0,1],

[[1.0,2].[2.0.1],[2,0,2].[2.1,2]].

[-.y.z],[1,0,2]]]]]]]

part naze

nominal position

alignment k gripped cube (pick)

gripper/wrist alignment(regrasp)
nominal posn on regrasp table

base offset on regrasp table

alignment and gripped cube (put)

alignment and gripped cube (get)
rotation for place into assembly

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

part name

nominal position

alignment k gripped cube (pick)

gripper/wrist alignment(regrasp)
nominal posn on regrasp table

base offset on regrasp table

alignment and gripped cube (put)

alignment and gripped cube (get)
rotation for place into assembly

padding offsets

rotation and translation (place)
nominal position in assembly

alignment k gripped cube (place)

Appendix B

Behavioural Module Diagrams

This Appendix provides Behavioural Module Diagrams which are used for the

experimental system. The key for the diagrams has been provided again (see
Fig B—1) for convenience, although it also appears in Chapter 4.

The following descriptions detail briefly the function of each Behavioural

Module shown in the following diagrams:

Normal Pick (Fig B-2) Calls Behavioural Modules to locate the Soma part
and then pick it up.

Find Location (Fig B—3) Calls Behavioural Modules to find top of the cube
to be gripped and then calls Behavioural Modules to determine the ori¬

entation of the cube.

Find Cube Top (Fig B-4) Calls Behavioural Modules to find a point on the

top of the cube. If a chamfer height is found instead, calls a Behavioural

Module to attempt to locate the actual top of the cube.

Find Height (Fig B-5) Calls low level Behavioural Modules to return a

height found using the binary probe sensors.

Safe Height (Fig B-6) Finds a safe height in the workcell which is within
reach of the robot.

182

Appendix B. Behavioural Module Diagrams 183

Monitored Move (Fig B-7) Monitors the robot gripper sensors while the
robot is moving, halting the robot if any of the sensors are triggered.

Check Sensors (Fig B-8) Checks the actual values of the binary sensors

against given values.

Find Centre (Fig B-9) Calls Behavioural Modules to perform a simple search
strategy to find the top of a cube, given that a chamfer has already been
found.

Hunt Centre (Fig B-10) Simple search strategy which involves testing he¬
ights found in each of four directions.

Check Pressed (Fig B-ll) Calls Behavioural Modules to find a height and
check if it corresponds to the top of the cube.

Compare Height (Fig B-12) Checks if a height has been found correspond¬

ing to the top of a cube.

Location (Fig B-13) Calls Behavioural Modules to determine the orienta¬
tion of the part.

Find Drop (Fig B-14) Moves horizontally over the top of the cube till the
edge is detected.

Compare Points (Fig B-15) Calls Behavioural Modules which check the
values produced by the orientation strategy.

Unwind Gripper (Fig B-16) Rotate gripper to undo wrist wind-up.

Pick Double Snap (Fig B-X7) Calls Behavioural Modules to pick up part

using a double snap of the gripper.

Pick Up (Fig B-X8) Picks up the part using a single snap.

Appendix B. Behavioural Module Diagrams 184

EXAMPLE

FIND

HEIGHT

FH1
Compare
Cube size

Correct size

Exit States

EGl

JFH2
Incorrect
cube size

EXAMPLE Name given to the Behavioural Module.

Section of robot program - either a Behavioural Module
or local robot language code.

Name of Behavioural Module called in this section
of the robot program.

Descriptive name for the function of the local code
performed in this section of the robot program.

Control flow of robot program from a Behavioural Module.

Control flow of robot program from a section of local code.

Name of the Exit State from a Behavioural Module.

Local information on which the flow of control is decided.

A non-connected Exit State from a Behavioural Module.

Figure B-l: Key for Behavioural Module Diagrams.

FIND

HEIGHT

Compare
Cube size

FH1

Correct size

Appendix B. Behavioural Module Diagrams 185

NORMAL PICK

Figure B-2: Normal Pick Behavioural Module

FIND LOCATION

FIND CUB]

TOP

FCT1
LOCATION

LOCI

LOC2

LOC3
LOC4

Exit States

*-
FLOC2

FCT2

FCT3

FCT4

FCT5
FLOC3.

Figure B-3: Find Location Behavioural Module

Appendix B. Behavioural Module Diagrams 186

FIMD CUBE TOP

Figure B-4: Find Cube Top Behavioural Module

FIND KBIOHT

I 11

3

Figure B-5: Find Height Behavioural Module

Appendix B. Behavioural Module Diagrams 187

SAFE HEIGHT

Figure B-6: Safe Height Behavioural Module

MONITORED MOVE

Posn in range

Exit States

MM1
wCheck position

in range

Set sensors
Move to post

MM2

Posn not in range

Figure B-7: Monitored Move Behavioural Module

CHECK SENSORS

Compare
Sensor value

expected

different

Figure B-8: Check Sensors Behavioural Module

Appendix B. Behavioural Module Diagrams 188

riMD CEjrm*

Figure B-9: Find Centre Behavioural Module

HUNT CENTRE

Figure B-10: Hunt Centre Behavioural Module

Appendix B. Behavioural Module Diagrams 189

CHECK PRESSED

Figure B-ll: Check Pressed Behavioural Module

COMPARE HEIGHT

expected
Compare
Heights

different

Figure B-12: Compare Height Behavioural Module

Appendix B. Behavioural Module Diagrams 190

Exit State*

LOC2

LOCi

LOC4

Figure B-13: Location Behavioural Module

Appendix B. Behavioural Module Diagrams 191

COHPARS POINTS

Figure B-15: Compare Points Behavioural Module

UNWIND GRIPPER

Rotate

gripper

Figure B-16: Unwind Gripper Behavioural Module

PICK DOUBLE SNAP

"loie / Open
Tlose gripper

MONITOR*!

MOW
-*• CHECK

SENSORS

CS1
PICK

UP

Figure B-17: Pick Double Snap Behavioural Module

Appendix B. Behavioural Module Diagrams 192

Figure B-18: Pick Up Behavioural Module

Appendix C

Spine Representation of the Soma-5

These diagrams have been produced using the representation of shrinking a

Soma cube down to a single point, and connecting these points by lines to form
the Soma shapes. This fits in well with the idea of representing Soma shapes

in Prolog by a list of [x,y,z] triples.

The Soma-5 set comprises of the one Soma-3 shape, the six Soma-4 shapes

and twenty-eight Soma-5 shapes. Each of these are shown on the following

page in spine representation form.

193

AY\ V v
Figure C—1: A Spine Representation of the Soma-5 set.

Appendix D

Soma5a

This diagram also uses the spine representational form described in Appendix C

to show the sub-set of the Soma-5 set which is referred to as the Soma-5a group.

195

Appendix E

Pick Run Tables

The following tables detail the runs of the experimental robotic assembly

system described in Chapter 6. These runs involve the part acquisition Be¬

havioural Modules detailed in Section 6.1 of the above chapter. The hierarchi¬

cal structure for the Behavioural Modules can be found in Chapter 6, Fig 6-4.

The run numbers head the columns of the table, and the row headers show

the Behavioural Module names which are used. The ones picked out in cap¬

ital letters are the Behavioural Modules in upper level of the hierarchy, with

the others forming the lowest level Behavioural Modules in the structure. The

Behavioural Modules not on the Ideal Execution Path are indented. The num¬

bers shown against the Hunt Centre Behavioural Module and those below

show the number of probes it took to find the top of the cube, having already

found the chamfer. The numbers shown against the Find Drop Behavioural

Module refer to the number of horizontal sweeps across the cube which have

been made to determine the orientation of the cube. The actual errors which

occurred are noted by the addition of a letter corresponding to the explanation
of these given in Section 6.1.

196

Appendix E. Pick Run Tables 197

10 11 12 IS 14 16 16 17 IB 10 20 21 22 23 24 26

NORMAL PICK

riVD LOCATION

FIND CUBE TOP

FIVD HEIGHT

aafa kalght

■ova2/chack2

KOVt

chackona

chackona

FIND CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

aafa halght

■ova2/chack2

chackona

■ova

chackona

chackona

COMPARE HEIGHT

LOCATION

FIND DROP

approa2/chack2

chackona

COMPARE P0INT8

UNWIND GRIPPER

PICK DOUBLE SNAP

approa2/chack2

chacktwo

chacktwo

PICK UP

approa2/chack2

■ova2/chack2

chacktwo

aafa halght

Appendix E. Pick Run Tables 198

27 28 29 30 31 32 33 34 36 36 3 38 39 40 41 42 43 44 46 46 47 48 49 60

NORMAL PICK

FIVD LOCATION

FIND CUBE TOP

FIND HEIGHT

aafa halght

■ova2/chack2

■ova

chackona

chackona

FIND CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

■afa halght

■ova2/chack2

chackoaa

chackona

COMPARE HEIGHT

LOCATION

FIND DROP

approa2/chack2
■ovaaona

chackona

chackona

COMPARE POINTS

UNWIND GRIPPER

PICK DOUBLE SNAP

approa2/chack2
novaatwo

chacktwo

chacktvo

PICK UP

approa2/chack2

aova2/chack2

chacktvo

aafa halght

■ovaaona

chackaix

Appendix E. Pick Run Tables 199

s

NORMAL PICK

FIVD LOCATIOM

FIND CUBE HEIGHT

FIND HEIGHT

itfi haight

■ova2/chack2

chackona T

■ova

chackona

chackoaa

FIND CENTRE T

HUNT CENTRE 2

CHECKPRESSED 2

FIND HEIGHT 2

aafa halght 2

■ova2/chack2 2

■ovaaona 2

chackona 2

■ova 1

chackona 1

chackona 1

COMPARE HEIGHT 1

LOCATION T

FIND DROP A

approa2/chack2 4

■ovaaona 4

chackona 4

■ovaaona 4

chackona 4

COMPARE POINTS T

UNWIND GRIPPER T

PICK DOUBLE SNAP T

approa2/chack2 T

chacktwo

chacktvo

PICK UP

approa2/chack2

■ova2/chack2

chacktwo

aafa halght

chackaix

62 63 64 66 66 67 68 60 60 61 62 63 64 66 66 67 68 60 70 71 72 73 74 76

T T T T T T T T T Y Y Y

2 2 2 1 4 2 2 2 2 2 1 2

2 2 2 1 4 2 2 2 2 2 1 2

2 2 2 1 4 2 2 2 2 2 1 2

2 2 2 1 4 2 2 2 2 2 1 2

2 2 2 1 4 2 2 2 2 2 1 2

2 2 2 1 4 2 2 2 2 2 1 2

2 2 1 C 2 2 2 2 1 2

1 1 2 1 1 1 1 1 1

1 1 2 1 1 1 1 1 1

1 2 1 1 1 1

2 1 1 2 1 1 2 2 1 1 2

T T T T T T T T T T T T T T Y Y Y Y Y

6 4 6 4 4 6 10 4 6 7 6 4 6 6 6 1 7 7 0 6

6 4 6 4 4 6 10 4 6 7 6 4 6 6 6 1 7 7 0 6

6 4 6 4 4 6 10 4 6 7 6 4 6 6 6 1 7 7 0 6

6 4 6 4 4 6 10 4 6 7 6 4 6 6 D 1 7 D 0 6

6 4 6 4 4 6 10 4 6 7 6 4 6 6 6 1 7 6 0 6

6 4 6 4 4 6 10 4 6 7 6 4 6 6 6 1 7 6 0 6

T T T T T T T T T T T T T T Y Y

T T T T T T T T T T T T T T Y Y

T T T T T T T T T T T T T T Y Y

T T T T T T T T T T T T T T Y Y

T T T T T T T T T T T T T T Y Y

T T T B T T T T T T T T T Y Y Y

T T T I T T T T T T T T T Y Y

T T T T T T T I T T T T I Y Y

T T I T T T T 7 T T T T Y Y Y

T T T T T T T T I T T T Y Y Y

I T T T T T T T T T T I Y Y Y

T T T T T T T T T T T T Y Y Y

T T T T T T T T T T T T Y Y Y

T I T T I T T T T T T T Y Y Y

Appendix E. Pick Run Tables 200

NORMAL PICK

FIID LOCATIOI

FIHD CUBE TOP

FIND HEIGHT

•afa halght

■ova2/chack2

■OVIIOBI

chackona

■ova

chackona

chackona

FIHD CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

■afa haifht

mova2/chack2

chackona

■ova

chackona

chackona

COMPARE HEIGHT 1 1 1 1

LOCATION T T T T T T T T T T T T T T T Y Y Y Y

FIND DROP 0 8 4 7 5 8 6 4 12 4 6 6 4 6 6 8 0 0 6

approa2/chack2 0 8 4 7 5 8 6 4 12 4 6 5 4 6 6 8 0 0 6

■ovaaona 0 8 4 7 5 8 6 4 12 4 6 6 4 6 5 8 0 0 6

chackona 0 8 4 7 5 8 6 4 12 4 6 5 4 5 6 8 0 0 6

4 7 6 8 6 4 12 4 6 5 4 5 6 8 0 0 6

chackona 0 8 4 7 5 8 5 4 12 4 6 6 4 5 5 8 0 0 6

COMPARE POINTS T T T T T T T T T T I T T T T Y Y Y Y

UNWIND GRIPPER T T T T T T T T T T T T T T T Y Y Y Y

PICK DOUBLE SNAP T T T T T T T T T T T T T T T Y Y Y Y

approa2/chack2 T T T T T T T T T T T T T T Y Y Y Y Y

■ovaatwo T T T T T T T T T T T T B T Y Y Y Y Y

chacktvo T T TIT T T T T T T T T Y Y Y Y Y

chacktvo T T T T T T T T T T T T T Y Y Y Y Y

PICK UP T T T T T T T T T T T T T Y Y Y Y Y

approa2/chack2 T T T T T T T T T T T T T Y Y Y Y T

■ova2/chack2 T T T T T T T T T T T T T Y Y Y Y Y

chacktwo T T T T T T T T T T T T T Y Y Y Y Y

aafa haight T T T T T T T T T T T T Y Y Y Y Y Y

■ovaaona T T T T T T T T T T T T T Y Y Y Y Y

chackaix T T T T Y T T T T T T T T Y Y Y Y Y

Appendix F

Whole Run Tables

The following tables detail the runs of the experimental robotic assembly sys¬

tem described in Chapter 6. These runs involve the Behavioural Modules of the
whole assembly system, although only the ones important to the thesis work

are actually detailed here. The assembly runs are looked at in Section 6.2 of

the above chapter.

The run numbers head the columns of the table, and the row headers show

the Behavioural Module names which are used. The ones picked out in cap¬

ital letters are the Behavioural Modules in upper level of the hierarchy, with

the others forming the lowest level Behavioural Modules in the structure. The

Behavioural Modules not on the Ideal Execution Path are indented. The num¬

bers shown against the Hunt Centre and Find Drop Behavioural Modules

are described in the explanation for the part acquisition Behavioural Modules

runs in Appendix E. For these runs, each run consisted of initialisation and

tidy up sections, with several runs of each pick/place section dependent on the
number of Soma parts to be assembled. The diagrams also show where failures

occurred, and the actual cause of the errors is detailed in Section 6.2.

201

Appendix F. Whole Run Tables 202

1 2 3 4 6 6 7 8 0 10

PLAI Y Y Y Y Y Y Y Y Y Y

■et_op_init Y Y Y Y Y Y Y Y Y Y

PICI-UP YYYYYYY YYYYYYY YYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND LOCATION YYYYYYY YYYYYYY YYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND CUBE TOP YYYYYYY YYYYYYY YYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND HEIGHT YYYYYYY YYYYYYY YYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND CENTRE Y Y

HUNT CENTRE 1 4

CHECKP&ESSED 1 4

FIND HEIGHT 1 4

COMPARE HEIGHT 1 2

LOCATION YYYYYYY YYYYYYY YYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND DROP 4447400 4865506 44546A 8744 0444500 4847774 4744487 7444700 7444747 4040477

COMPARE POINTS YYYYYYY YYYYYYY YYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

PICI DOUBLE SNAP YY YYYY YY YYYY YY YY YY Y YY YYYY YY YYYY YY YYYY YY YYYY YY YYYC YY YYYY

PICK UP YY YYYY YY YYYY YY YY YY Y YY YYYY YY YYYY YY YYYY YY YYYY YY YYY YY YYYY

SINGLE PICK Y Y Y Y Y Y Y Y Y Y

FIND HEIGHT Y Y Y Y Y Y Y Y Y Y

FIND DROP Y Y Y Y Y Y Y Y Y Y

PICK UP Y Y Y Y Y Y Y Y Y Y

REGRASP Y YYY Y YYY Y Y Y Y YYY Y YYY Y YYY Y YYY Y YY Y YYY

tarn for put

REGRASP PUT Y YYY Y YYY Y Y Y Y YYY Y YYY Y YYY Y YYY Y YY Y YYY

REGRASP TWIST Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

REGRASP GET Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

REGRASP PUT Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

REGRASP GET Y YYY Y YYY Y Y Y Y YYY Y YYY Y YYY Y YYY Y YY Y YYY

PLACE YYYYYYY YYYYYYY YYYYY YYYB YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYY YYYYYYY

SLIP

CHECK PUSH YYYYYYY YYYYYYY YYYYY YYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYY YYYYYYY

PUSH Y Y Y Y Y Y Y

HOVE ROUND 1SS

approach aaa

placa part

depart aaa

CHECK PUSH

approach aaa

puah part

depart aaa

TIDT UP TY TYYY Y

Appendix F. Whole Run Tables 203

11 12

PL1I T T

aat_np_iait T T

13 14 16 16 17 18 10 20

T T T T T T T T

T T T T T T T T

PICK-UP TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT TT TTTT TTTTTTT TTTTTTT

FIND LOCATION TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT TT TTTT TTTTTTT TTTTTTT

FIND CUBE TOP TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT TT TTTT TTTTTTT TTTTTTT

FIND HEIGHT TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT TB TTTT TTTTTTT TTTTTTT

FIND CENTRE T T

HUNT CENTRE 1 1

UUA<&rU>aa&U

FIND HEIGHT 1 1

COMPARE HEIGHT 1 1

LOCATION TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT T TTTT TTTTTTT TTTTTTT

FIND DROP B6D 4666467 7874407 77686 6644684 86776 4 6784 0444446 7674476

COMPARE POINTS TT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT T TTTT TTTTTTT TTTTTTT

PICI DOUBLE SMAP TT TT TTTT TTTTT T TTTTT TTTTT T ITTTT T TTT TTTTTT TTTTTT

PICK UP

SINGLE PICK

FIND HEIGHT

FIND DROP

PICK UP

TT TT TTTT TTTTT T TTTTT TTTTT T TTTTT T TTT TTTTTT TTTTTT

REGRASP T

tarn for pat

REGRASP PUT T

REGRASP TVIST

REGRASP GET

REGRASP PUT

REGRASP GET T

TTT

T T

T T

T T

T T

T T

T

T

T

T T

T T

T

T

T

T T

T T T TT

TTTT

TTTT

T T T T

PLACE TT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTT T TTT TTTTT TTTTT

SLIP E E E

CHECK PUSH TT TTTTTT TTTTTTT TTTTTTT T TTT TTTTT TTTTT

PUSH T T T T

MOVE ROUND ASS TT TT

approach aaa TT TT

placa part TT TT

dapart aaa TT TT

CHECK PUSH TT TT

approach aaa

paah part

dapart aaa

TIDT UP T T T T

Appendix F. Whole Run Tables 204

21 22 23 24 26 26 27 28 28 30

PLAN Y Y Y Y Y Y Y Y Y Y

aat_up_init Y Y Y Y Y Y Y Y Y Y

PICI-UP YYYYYYY YYYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYYB YYYYYYY YYYYYYY YYYYYYY

FIND LOCATION YYYYYYY YYYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY

FIND CUBE TOP YYYYYYY YYYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY

FIND HEIGHT YYYYYYY YYYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY

FIND CENTRE Y Y YY

HUNT CENTRE 3 2 11

CHECKPRESSED 3 2 11

FIND HEIGHT 3 2 11

COMPARE HEIGHT 3 1 11

LOCATION YYYYYYY YYYYYYY YYYY YYYYYYY YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY

FIND DROP 7764684 7767448 646A 8848466 7644444 7644686 846 4747784 7848488 8784446

COMPARE POINTS YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY YYY YYYYYYY YYYYYYY YYYYYYY

PICI DOUBLE SNAP YYYYYY YYYYYY YYY YYYYYY YYYYYY YYYYYY YYY YYYYYY YYYYYY YYYYYY

PICI UP YYYYYY YYYYYY YYY YYYYYY YYYYYY YYYYYY YYY YYYYYY YYYYYY YYYYYY

SINGLE PICK Y Y Y Y Y Y Y Y

FIND HEIGHT Y Y Y Y Y Y Y Y

FIND DROP Y Y Y Y Y Y Y Y

PICI UP Y Y Y Y Y Y Y Y

REGRASP Y Y Y Y Y Y Y Y

tarn for pat

REGRASP PUT Y Y Y Y Y Y Y Y

REGRASP TWIST

REGRASP GET

REGRASP PUT

REGRASP GET Y Y Y Y Y Y Y Y

PLACE YYYYY YYYYY YYY YYYYY YYYYY YYYYY YYY YYYYY YYYYY YYYYY

SLIP

CHECI PUSH YYYYY YYYYY YYY YYYYY YYYYY YYYYY YYY YYYYY YYYYY YYYYY

PUSH

MOVE ROUND ASS TT TT YT YY YY YY YY YY

approach aaa YY YY YY YY YY YY YY YY

placa part YY YY YY YY YY YY YY YY

dapart aaa YY YY YY YY YY YY YY YY

CHECI PUSH YY YY YY YY YY YY YY YY

approach aaa

poah part

dapart aaa

IIDY UP YY YYY YYY

Appendix F. Whole Run Tables 205

31 32 33 34 36 36 37 38 30 40

PLAN Y Y T Y Y Y Y Y Y Y

«at_ap_lalt Y Y Y Y Y Y T T Y T

PICK-UP YTYYYTY TTTYYYT YTTYYTT YTYYTYT YYYYYYT TYTYTTY YTYYYY TTYYTYY YYYYYYY YYYTTYY

FIND LOCATION TYYYYYY TTTYYYY TYTYTTY YTTYYYY YYYYYYY YYYTYYY YYYTTT YYTYTYY YYYTYYY YYYYYYY

FIND CUBE TOP TYYYYYT YYYYYTT YTTTYTT YYTYYTY YTYTTYY TYTYTTY TYYTYY YYYYYYY YYYYYYY YYYTTYY

FIND HEICHT YYTYTTY TYYYYYT TTTTYYY YYTYYTT YYYYYYY YYYYTTY YTYYYT YYYTYYY YYTYYYY TYYYYTY

FIND CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

COMPARE HEIGHT

LOCATION

FIND DROP

COMPARE POINTS

TTTTTTT TTTTTTT TTTTYTT TTTTTTT TTTTTTT YTYTTTT YYYYYY YYYYYYY YYYYYYY YYYYYYY

4784458 6486484 7446687 6664468 8744466 6766467 804768 6464487 4744684 7444676

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYY YYYYYYY YYYYYYY YYYYYYY

PICX DOUBLE SNAP YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

PICI UP YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

SINGLE PICK

FIND HEIGHT

FIND DROP

PICK UP

REGRASP

tarn for pat

REGRASP PUT

REGRASP TVIST

REGRASP GET

REGRASP PUT

RECRASP GET

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

YYTYY YYYYY YTYYY YYTYT TYYYY TTYYT YTTYY YYYTY YYYYY YYYTT

YYYYY YTYYY TYYYY YTYYY YYTYY YYTYT YYYYY YYTYT YYYYY YTYYY

placa part

depart in

CHECK PUSH

approach an

push part

dapart at*

TIDT UP

YY

YY

YY

YY

YY

YY

YG

Y

Y

T

YY

TY

TT

YT

YT

Appendix F. Whole Run Tables 206

41 42 43 44 46 46 47 48 40 60

PLAI T T T T T T T T T T

aat_up_init T T T T T T T T T T

PICI-UP TTTTTYT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

PIID LOCATION TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

FIND CUBE TOP TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

FIND HEIGHT TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

FIND CENTRE T

HUNT CENTRE 3

CHECKPRESSED 3

FIND HEIGHT 3

COMPARE HEIGHT 1

LOCATION TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

FIND DROP S766466 4874776 4786 4844668 4074808 8748404 4886464 8464477 4874486 4466444

COMPARE POINTS TTTTTTT TTTTTTT YTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTYTTT TTTTTTT TTTTTTT

PICK DOUBLE SNAP TTTTT T TTTTT T TTTT TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T

PICK UP TTTTT T TTTTT T TTTT TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T TTTTT T

SINGLE PICK T T T T T T T T T

FIND HEIGHT T T T T T T T T T

FIND DROP T T T T T T T T T

PICK UP T T T T T T T T T

REGRASP T T T T T T T T T T T T T T T T T T

torn for pat

REGRASP PUT T T T T T T T T T T T T T T T T T T

REGRASP TYIST

REGRASP GET

RECRASP PUT

REGRASP GET T T T T T T T T T T T T T T T T T T

PLACE TTTTTTT TTTTTTT TTTI TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

SLIP

CHECK PUSH TTTTTTT TTTTTTT TTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

PUSH T T T T T T T T T

MOVE ROUND ASS

approach aaa

placa part

dapart aaa

CHECK PUSH

approach aaa

pneh part

dapart aaa

TIDT UP T T T T T T T T T

Appendix F. Whole Run Tables 207

PL1I

aat_np_init

PICK-DP

FIMD LOCATION

FIND CUBE TOP

FIND HEICHT

FIND CENTKE

HUNT CENTRE

CHECKPRESSED

FIND HEICHT

COMPARE HEICHT

LOCATION

FIND DROP

COMPARE POINTS

51 62 63 64 56 68 67 68 69 60

Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

TTTTTTT TTTTTTT TTTTTYT TTTTTTT YTTTTTT YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

4474454 6765575 4876445 4774456 4867477 8476488 4744684 4744444 4478744 7844444

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

PICK DOUBLE SNAP YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYY YYY

PICK UP

SINGLE PICK

FIND HEICHT

FIND DROP

PICK UP

TYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYYYY Y YYY YYY

RECRASP YY YY YY YY YY YY YY YY YYY YYY

tarn for pat

REGRASP PUI YY YY YY YY YY YY YY YY YYY YYY

REGRASP TWIST Y Y

REGRASP GET Y Y

REGRASP PUT T Y

REGRASP GET YY YY YY YY YY YY YY YY YYY YYY

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

approach aaa

placa part

dapart aaa

CHECK PUSH

approach aaa

pnah part

dapart aaa

TIDY UP

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYJ YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYY YYY

Appendix F. Whole Run Tables 208

61 62 63 64 66 66 67 68 60 70

PLAN Y Y Y Y Y Y Y Y Y Y

aat_up_init Y Y Y Y Y Y Y Y Y Y

PICK-UP YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND LOCATION YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND CUBE TOP

FIND HEIGHT YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND CENTRE T

HUNT CENTRE 1

CHECKPRESSED 1

FIND HEIGHT 1

COMPARE HEIGHT 1

LOCATION YTTTYTT YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

FIND DROP 13044844 0466884 7444474 6484644 4474466 8467464 4646474 6466744 0868644 4848744

COMPARE POINTS YYTYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

PICI DOUBLE SNAP YYY

PICI UP YYY

SINGLE PICK

FIND HEIGHT

FIND DROP

PICK UP

RECRASP

turn for put

YYT Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y

REGRASP PUT Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY

REGRASP TVIST Y

REGRASP GET Y

REGRASP PUT Y Y Y Y T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

REGRASP GET Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY Y YYY T YYY Y YYY

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

approach aaa

placa part

dapart ana

CHECK PUSH

approach aas

puah part

dapart aaa

TIDY UP

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYYYYY

Appendix F. Whole Run Tables 209

PUI

aat_ap_lnlt

PICI-OP

FIKD LOCATIOI

FIMD CUBE TOP

FIND HEIGHT

FIND CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

COMPARE HEIGHT

LOCATION

FIND DROP

COMPARE P0INT8

71 72 73 74 76 76 77 78 70 80

T T T T T T T T T T

T T T T T T T T T T

TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

YTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

8064684 8648474 0461 0846646 4847744 44677 8866064 4040764 0487764 4646666

TTTTTTT TTTTTTT TTT TTTTTTT TTTTTTT TTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

PICI DOUBLE SNAP TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT C TTT TTT TTT TTT TTT TTT TTT TTT

PICI UP

SINGLE PICE

FIND HEIGHT

FIND DROP

PICI UP

TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT

REGRASP T

torn for pnt

REGRASP PUT T

REGRASP TWIST

REGRASP GET

REGRASP PUT

REGRASP GET T

TTT T TTT T TTT T TTT T TTT T TTT T TTT

TTT T

T T

T T

T T

TTT T

TTT T

T T

T T

T T

TTT T

TTT T

T T

T T

T T

TTT T

TTT T

T T

T T

T T

TTT T

TTT T

T T

T T

T T

TTT T

TTT T

T T

T T

T T

TTT T

TTT

T T

T T

T T

TTT

T T

T T

T T

T T

T T

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

approach aaa

placa part

dapart aaa

CHECK PUSH

approach aaa

push part

dapart aaa

IIDT UP

TTTTTTT TTTTTTT TTT TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

TTTTTTT TTTTTTT TTT TTTTTTT TTTTTTT TTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT

Appendix F. Whole Run Tables 210

81 82 83 84 86 86 87 88 80 00

PLAN T T T T T T T T T T

aat_ap_lait T T T T T T T T T T

PICK-OP TTTTTTT TTTTTTT TTTTTTT T TTTTTTT TTTTTTT TTTTTTT T TTTTT TTTTTTT

FIND LOCATION TTTTTTT TTTTTTT TTTTTTT T TTTTTTT TTTTTTT TTTTTTT T TTTTT TTTTTTT

FIND CUBE TOP TTTYTTT TTTTTTT TTTTTTT T TTTTTTT TTTTTTT TTTTTTT T TTTTT TTTTTTT

FIND HEICHT TTTTTTT TTTTTTT TTTTTTT T TTTTTTT TTTTTTT TTTTTTT T TTTTT TTTTTTT

FIND CENTRE

HUNT CENTRE

CHECKPRESSED

FIND HEIGHT

COMPARE HEIGHT

LOCATION TTTTTTT TTTTTTT TTTTTTT T TTTTTTT TTTTTTT TTTTTTT T TTTTT TTTTTTT

FIND DROP S756885 8458844 8450774 6 8845444 7448448 7444648 6 86484 12666774

COMPARE POINTS TTTTTTT TTTTTTT TTTTTTT T TTTTTTT YYTTTTT TTTTTTT T TTTTT TTTTTTT

PICT DOUBLE SNAP TTT TTT TTT TTT TTT TTT L TTT TTT TTT TTT TTT TTT C TTT T TTT TTT

PICT UP TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT T TTT TTT

SINGLE PICK T T T T T T T T

FIND HEIGHT T T T T T T T T

FIND DROP T T T T T T T T

PICK UP T T T T T T T T

REGRASP T T T T T T T T T T T T T T T

torn for pot

RECRASP PUT T T T T T T T T T T T T T T T

REGRASP TNIST T T T T T T T T T T T T T T T

REGRASP GET T T T T T T T T T T T T T T T

REGRASP PUT T T T T T T T T T T T T T T T

REGRASP GET T T T T T T T T T T T T F T T

PLACE TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTT TTTTTTT

SLIP

CHECK PUSH TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTTTT TTTT TTTTTTT

PUSH T T T T T T T

MOVE ROUND ASS

approach an

placa part

dapart aaa

CHECK PUSH

approach aaa

poah part

dapart aaa

TIDT UP T T T T T T T

Appendix F. Whole Run Tables 211

PLiI

aat_up_init

PICI-OP

FIVD LQCATIQV

FIVD CUBE TOP

FIND HEIGHT

FIVD CENTRE

HUNT CEVTRE

CHECKPRESSED

FIVD HEIGHT

COMPARE HEIGHT

L0CATI0V

FIVD DBOP

COMPARE POIVTS

01 02 03 04 06 06 07 08 00

Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

TYTTTTT TTTTTTT TTTTTTT TTTTTTT TTTTYTT YYYYYYY YYYYYYY YYYYYYY YYYYYYY

0466846 8444864 0044764 4664466 4646476 6846447 4040446 4868444 4047474

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

PICT DOUBLE SVAP YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY

PICT UP

SIVCLE PICE

FIVD HEIGHT

FIVD DROP

PICT UP

YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY YYY

YYYYYYYYY

YYYYYYYYY

YYYYYYYYY

YYYYYYYYY

IEGRASP

turn for pot

REGRASP PUT

REGRASP TWIST

REGRASP GET

RECRASP PUT

REGRASP GET

T Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

approach aaa

placa part

iipart aaa

CHECK PUSH

approach aaa

puah part

dapart aaa

TIDY UP

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYYY

YYYYYYYYY

Appendix F. Whole Run Tables 212

PL1I

100

T

T

101 102

T T

T T

103

T

T

PICI-UP

FIND LOCATION

FIND CUBE TOP

FIND HEIGHT

FIND CENTRE

HUNT CENTRE

CHECKP&ESSED

FIND HEIGHT

COMPARE HEIGHT

LOCATION

FIND DROP

COMPARE POINTS

TTTTTTTTTTTT TTT TTTTTTTTTTTT TTTTTTT

TTTTTTTTTTTT TTT TTTTTTTTTTTT TTTTTTT

TTTTTTTTTTTT TTT TTTTTTTTTTTT TTTTTTT

TTTTTTTTTTTT TTT TTTTTTTTTTTT TTTTTTT

087969754787 458 874889467798 4878978

PICI DOUBLE SNAP T TTTTT TTTT T

PICK UP T TTTTT TTTT T

SINGLE PICI TTTT TT TT TC TTTT TT TT TTTT T

FIND HEIGHT

FIND DROP

PICI UP

TTTT TT TT T

TTTT TT TT T

TTTT TT TT T

TTTT TT TT TTTT T

TTTT TT TT TTTT T

TTTT TT TT TTTT T

REGRASP

turn for put

REGRASP PUT

REGRASP TWIST

REGRASP GET

REGRASP PUT

REGRASP GET

PLACE

SLIP

CHECK PUSH

PUSH

MOVE ROUND ASS

approach aaa

placa part

dapart asa

CHECI PUSH

approach aas

push part

dapart aaa

TIDT UP

TT TTTTTTTT

TT TTTTTTTT

TTTTTTT

E

TTTTTT

Bibliography

Adept manipulator system basic operation. 1212 Bordeaux Drive, Sunnyvale,

CA, 1.5 edition, February 1985.

Adept manipulator system VAL-II reference guide. 1212 Bordeaux Drive,

Sunnyvale, CA, 4.0 edition, July 1985.

Albus, J.S. (1981). Brains, Behavior, and Robotics. BYTE Publications Inc.

Ambler, A.P., Brown, C.M., Burstall, R.M., Popplestone, R.J., and Barrow,

H.G. (1973). A versatile computer-controlled assembly system. In Proceed¬
ings of 3rd International Joint Conference on A I, pages 298-307.

Ambler, A.P., Cameron, S.A., and Corner, D.F. (1987). Languages for
Sensor-based control in Robotics, pages 305-316. Volume F29, Springer-Verlag

: NATO ASI Series, Augmenting the RAPT Robot Language.

Berlekamp, Conway, and Guy. (1982). Winning Ways. Volume 2, Academic
Press.

Brooks, R.A. (1982). Symbolic Error Analysis and Robot Planning. AI
Memo 685, MIT.

Brooks, R.A. (1986). Achieving Artificial Intelligence Through Building
Robots. AI Memo 899, MIT, Artificial Intelligence Laboratory.

Brooks, R.A. (1986). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2:14-23.

213

Bibliography 214

Brooks, R.A. (1987). A hardware retargetable distributed layered architec¬
ture for mobile robot control. In Proceedings of IEEE Robotics and Automa¬

tion Conference, pages 106-110.

Brooks, R.A. (1989). A robot that walks: emergent behaviors from a carefully
evolved network. In Proceedings of IEEE Robotics and Automation Confer¬

ence, pages 692-696.

Brooks, R.A. (1991). Intelligence Without Reason. AI Memo 1293, MIT.

Brooks, R.A. (1991). Intelligence without representation. Artificial Intelli¬
gence, 47:139-160.

Brost, R. April 1986. Automatic grasp planning in the presence of uncer¬

tainty. In Proceedings of IEEE International Conference on Robotics and

Automation.

Cameron, S. and Aylett, J. (1988). Robmod: a geometry engine for robotics.
In Proceedings of IEEE Conference on Robotics and Automation.

Cameron, S.A. (1984). Modelling Solids in Motion. PhD thesis, Department
of Artificial Intelligence, University of Edinburgh.

Chongstitvatana, P. and Conkie, A.D. (1990). Behaviour-Based Assembly
Experiments using Vision Sensing. DAI Research Paper 466, Department of

Artificial Intelligence, University of Edinburgh.

Clocksin, B. and Mellish, C. (1984). Programming in Prolog. Springer.

Connell, J.H. (1989). A Colony Architecture for an Artificial Creature. PhD

thesis, Massachusetts Institute of Technology.

Corner, D.F., Ambler, A.P., and Popplestone, R.J. (1983). Reasoning about
the Spatial Relationships derived from a RAPT Program for describing assem¬

bly by Robot. DAI Research Paper 191, Department of Artificial Intelligence,

University of Edinburgh.

Bibliography 215

Craig, J.J. (1989). Introduction to Robotics, Mechanics and Control. 2nd
Edition, pages 1-144. Addison Wesley.

Critchlow, A.J. (1985). Introduction to Robotics, chapter 8, pages 293-324.
MacMillan.

Dean, G.C. March 1986. An introduction to kalman filters. Measurement +

Control, The Institute of Measurement and Control, 19(2).

Derby, S. March 1982. Computer graphics simulation of robot arms using the
GRASP program. In Proceedings of CAD/CAM conference, MIT, Cambridge.

Donald, B.R. April 1986. Robot motion planning with uncertainty in the

geometric models of the robot and environment : a formal framework for error

detection and recovery. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 1588-1593, San Francisco.

Donald, B.R. (1987). Error Detection and Recovery for Robot Motion Plan¬
ning with Uncertainty. PhD thesis, MIT Artificial Intelligence Laboratory.

Donald, B.R. (1988). Planning multi-step error detection and recovery strate¬

gies. In Proceedings of IEEE International Conference on Robotics and Au¬

tomation, pages 892-897.

Donald, B.R. February 1990. Planning multi-step error detection and recov¬

ery strategies. International Journal of Robotics Research, 9(l):3-60.

Drabble, B. and Cox, P. (1985). Error Detection and Recovery in an Uncer¬
tain Environment. Technical Report, Department of Computer Science and

Applied Mathematics, University of Aston, Birmingham.

Erdmann, M.A. and Mason, M.T. August 1988. An exploration of sensorless

manipulation. IEEE Journal of Robotics and Automation, 4(4):369-379.

Erdmann, M.A. (1984). On Motion Planning with Uncertainty. Technical

Report 810, MIT.

Bibliography 216

Fleming, A. (1985). Analysis of Uncertainty in a Structure of Parts 1. DAI
Research Paper 271, Department of Artificial Intelligence, University of Ed¬

inburgh.

Fleming, A. (1985). Analysis of Uncertainty in a Structure of Parts S. DAI
Research Paper 272, Department of Artificial Intelligence, University of Ed¬

inburgh.

Fleming, A.D. (1987). Analysis of Uncertainties and Geometric Tolerances
in Assemblies of Parts. PhD thesis, Department of Artificial Intelligence,

University of Edinburgh.

Flynn, A.M. and Brooks, R.A. (1988). MIT robots - what's next? In

Proceedings of IEEE Robotics and Automation Conference, pages 611-617.

Gardner, M. (1961). More Mathemctical Puzzles and Diversions. Penguin,
1966 edition.

Gini, M. and Gini, G. (1983). Recovering from failures : a new challenge
for industrial robots. In Proceedings of S6th IEEE Computer Society Intern.

Conf., pages 220-227.

Gini, M. and Gini, G. (1983). Towards automatic error recovery in robot
programs. In Proceedings of 8th International Joint Conference on Artificial

Intelligence, pages 821-823.

Gini, M. and Smith, R.E. (1986). Reliable real-time robot operation employ¬
ing intelligent forward recovery. Journal of Robotic Systems, 3:281-300.

Hardy, N.W. Robotic Assembly Workshop Presentation, Edinburgh Univer¬

sity, (1991).

Hardy, N.W., Barnes, D.P., and Lee, M.H. (1989). The automatic diagnosis
of task faults in flexible manufacturing systems. Robotica, 7(l):25-35.

Bibliography 217

Jennings, J., Donald, B.R., and Campbell, D. (1989). Towards experimental
verification of an automated compliant motion planner based on a geometric

theory of error detection and recovery. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 632-637.

Johnson, D.G and Hill, J.J. September 1985. A kalman filter approach to

sensor-based robot control. IEEE Journal of Robotics and Automation, RA-

1(3).

Kalman, R.E. March 1960. A new approach to linear filtering and prediction

problems. Journal of Basic Engineering, 82D:35-45.

Lee, M.H., Barnes, D.P., and Hardy, N.W. (1983). Knowledge based er¬

ror recovery in industrial robots. In Proceedings of 8th International Joint

Conference on Artificial Intelligence, pages 824-826.

Lee, M.H., Hardy, N.W., and Barnes, D.P. (1984). Research into auto¬

matic error recovery. In Proceedings of Conference on UK Robotics Research,

pages 65-69.

Lieberman, L.I. and Wesley, M.A. (1977). Autopass: an automatic program¬

ming system for computer controlled mechanical assembly. IBM Journal of
Research and Development, 21(4):321-333.

Loughlin, C., (ed.). (1992). InFACT: Project, Concepts, Machine. MCB
University Press Limited, Bradford.

Lozano-Perez, T. and Brooks, R.A. April 1985. An Approach to Automatic
Robot Programming. AI Memo 842, MIT.

Lozano-Perez, T. and Wesley, M.A. (1979). An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the ACM,

22(l0):560-570.

Lozano-Perez, T. (1976). The Design of a Mechanical Assembly System.
Technical Report 397, Artificial Intelligence laboratory, MIT.

Bibliography 218

Lozano-Perez, T. (1981). Automatic planning of manipulator transfer
movements. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

11 (10):681-698.

Lozano-Perez, T. February 1983. Spatial planning : a configuration space

approach. IEEE Transactions on Computers, C-32(2):108-120.

Lozano-Perez, T., Jones, J.L., Mazer, E., O'Donnell, P.A., and Grimson,

W.E.L. (1987). Handey: a robot system that recognises, plans, and ma¬

nipulates. In Proceedings of IEEE Conference on Robotics and Automation,

pages 843-849.

Lozano-Perez, T., Mason, M.T., and Taylor, R.H. (1990). Artificial Intelli¬

gence at MIT : Expanding Frontiers, chapter 27, pages 60-99. Volume 2, MIT

Press, Automatic Synthesis of Fine-Motion Strategies for Robots.

Lozano-Perez, T., Mazer, E., Jones, J.L., and O'Donnell, P.A. (1990). Ar¬

tificial Intelligence at MIT : Expanding Frontiers, chapter 26, pages 40-59.

Volume 2, MIT Press, Task Level Planning of Pick-and-Place Robot Motions.

Malcolm, C.A. and Fothergill, A.P. (1986). Some Architectural Implications
of the use of Sensors. DAI Research Paper 294, Department of Artificial

Intelligence, University of Edinburgh.

Malcolm, C.A. and Howe, J. (1990). Behavioural Modules: A New Approach
to Robotic Assembly. ACME Grant GR/E 68075 - Extended Report, Depart¬
ment of Artificial Intelligence, University of Edinburgh.

Malcolm, C.A. and Smithers, T. (1988). Programming Assembly Robots in
terms of Tack Achieving Behavioural Modules: First Experimental Results.
DAI Research Paper 410, Department of Artificial Intelligence, University of

Edinburgh.

Bibliography 219

Malcolm, C.A. and Smithers, T. (1990). Symbol grounding via a hybrid
architecture in an autonomous assembly system. Robotics and Autonomous

Systems, 6:123-144.

Malcolm, C.A. (1987). Planning and Performing the Robotic Assembly of
Soma Cube Constructions. Master's thesis, Department of Artificial Intelli¬

gence, University of Edinburgh.

Malcolm, C.A., Smithers, T., and Hallam, J. (1989). An Emerging Paradigm
in Robotic Architecture. DAI Research Paper 447, Department of Artificial

Intelligence, University of Edinburgh.

Mani, Murali, and Wilson. (1985). A programmable orienting system for flat
parts. In Proceedings of NAMRII.

Nevins, J.L., Desai, M., Fogel, E., Walker, B.K., and Whitney, D.E. (1984).
Adaptive control, learning, and cost effective sensor systems for robotic or

advanced automation systems. In The First International Symposium on

Robotics Research, pages 983-994.

Peshkin, M.A. and Sanderson, A.C. December 1988. The motion of a pushed,

sliding workpiece. IEEE Journal of Robotics and Automation, 4(6).

Peshkin, M.A. August 1990. Programmed compliance for error corrective

assembly. IEEE Transactions on Robotics and Automation, 6(4).

Popplestone, R.J., Ambler, A.P., and Bellos, I. (1978). RAPT, a language
for describing assemblies. Industrial Robot, 3:131-137.

Requicha. (1983). Towards a Theory of Geometrical Tolerancing. Tech.
Memo 40, University of Rochester.

Introducing RTX. UMI Ltd, London, England, 3rd edition, April 1987.

Bibliography 220

Salmon, J.C. (1989). Implementation of a Generalised Patting Behaviour for
the SOMASS System. Master's thesis, Department of Artificial Intelligence,

University of Edinburgh.

Schraft, R.D., Strommer, W.M., and Neugebauer, J.G. October 1992. A

virtual reality testbed for robot applications. In Proceedings of the SSth In¬

ternational Symposium on Industrial Robots, pages 105-110, Barcelona.

Selke, K.K.W., Shen, H.C., Deacon, G.E., and Pugh, A. (1991). A strategy
for sensors and rules in flexible robotic assembly. International Journal of

Production Res., 29(2):279-291.

Sharp, K.A.I. (1990). Measurement Generics For The Mkl Infact Machine.

Design Document, Department of Computer Science, University College of

Wales.

Shen, H.C., Selke, K.K.W., Deacon, G.E., and Pugh, A. (1987). A sensor-

data driven, rule based strategy for error recovery in robotic assembly. In

Proceedings of NATO Advanced Research Workshop on Kinematic and Dy¬

namic Issues in Sensor based Control.

Shimano, B. (1979). VAL: a versatile robot programming and control system.
In Proceedings of COMPSAC.

Shimano, B., Geschke, C., and Spalding, C. (1984). VAL-II: a robot pro¬

gramming language and control system. In SME Robots VIII Conference.

SICStus Prolog User's Manual. 0.6 patch level 7 edition, October 1988.

Smithers, T. and Malcolm, C.A. (1989). A behavioural approach to robot task

planning and off-line programming. Journal of Structured Learning, 10:137-

156.

Smithers, T., Malcolm, C.A., and Ambler, A.P. (1987). Towards An Inte¬

grated Intelligent Robotic Assembly System. DAI Working Paper 197, Depart¬

ment of Artificial Intelligence, University of Edinburgh.

Bibliography 221

Srinivas, S. (1976). Error Recovery in Robot Systems. PhD thesis, California
Institute of Technology.

Srinivas, S. (1978). Error recovery in robots through failure reason analysis.
In Proceedings of AFIPS National Computer Conference, pages 275-282.

Takase, K., Paul, R.P., and Berg, E.J. (1981). A structured approach to
robot programming and teaching. IEEE Transactions on Systems Man. and

Cybernatics, SMC-ll(4):274-239.

Tate, A. (1984). Planning and condition monitoring in an FMS. In Proceed¬
ings of the International Conference on Flexible Automation Systems.

Taylor, R.H. (1976). The Synthesis of Manipulator Control Programs from
Task-Level Specifications. Report AIM 282, Stanford University.

Trevelyan, J.P., Nelson, M., and Kovesi, P. (1987). Adaptive motion se¬

quencing for process robots. In Proceedings of jth International Symposium

of Robotic Research, pages 65-72.

Udupa, S.M. (1977). Collision Detection and Avoidance in Computer Con¬
trolled Manipulators. PhD thesis, California Institute of Technology.

Whitney, D.E. and Junkel, E.F. (1982). Applying stochastic control theory to

robot sensing, teaching, and long term control. In Proceedings of IFAC Conf.

on Information Control Problems in Manufacturing Technology, pages 109-

117.

Williams, D.J., Rogers, P., and Upton, D.M. (1986). Programming and re¬

covery in cells for factory automation. The International Journal of Advanced

Manufacturing Technology, 1:37-47.

Wood, B.O. and Fugelso, M.A. April 1983. MCL, the manufacturing control

language. In Proceedings of the ISth International Symposium on Industrial

Robots, pages 12/85-96, Chicago.

Bibliography 222

Xiao, J. and Volz, R.A. (1988). Design and motion constraints of part-
mating planning in the presence of uncertainties. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 1260-1268.

Xiao, J. and Volz, R.A. (1989). On replanning for assembly tasks using
robots in the presence of uncertainties. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 638-645.

Yin, B., Ambler, A.P., and Popplestone, R.J. (1984). Combining vision
verification with a high level robot programming language. In Proceedings of

the fth International Conference, ROVISEC, pages 371-379.

