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Abstract

In contrast to hand-crafted speech databases, which contain short out-of-context sentences in 

fairly  unemphatic  speech  style,  audio  books  contain  rich  prosody  including  intonation 

contours, pitch accents and phrasing patterns, which is a good pre-requisite for building a 

natural sounding synthetic voice. The following paper will give an overview of the steps that 

are involved in building a synthetic voice from audio book data. 

After an introduction to the theory of HMM-based speech synthesis, the properties of the 

speech database will be described in detail. It will be argued that it is necessary to model 

specific properties of the database, such as higher pitched speech or questions, to achieve a 

better quality synthetic voice. Furthermore, the acoustic modelling of these properties will be 

explained in detail. Finally, the synthetic voice is evaluated on the basis of an online listening 

test. 
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 1 Introduction and motivation

Statistical parametric speech synthesis based on HMMs is one of the most studied speech 

synthesis approaches (cf. Tokuda et al. 2002, Yamagishi et al. 2008, Zen et al. 2009) and can 

generate fairly natural sounding speech. In contrast to unit-selection speech synthesis systems, 

HMM-based  speech  synthesis  is  very  flexible  with  regard  to  speech  modelling.  While 

synthesised speech from unit-selection systems cannot be modified, and the output sounds 

basically like the speech from the input database, speech parameters can be manipulated in 

HMM-based speech synthesis. This is particularly interesting for speech appliances which 

require different kinds of speaking styles, such as audio books. 

State-of-the-art  speech synthesis  systems produce  natural  sounding  and intelligible 

speech, which is especially helpful for people with visual handicaps. Text-to-speech systems 

that read aloud texts from web sites or text documents are practicable for the facilitation of 

day-to-day tasks. However, when it comes to applets that are used for leisure, for example e-

book readers, people do not only want a voice they understand well, but one which is pleasant 

to listen to. State-of-the-art e-book readers like the one that is built into Amazon's Kindle do 

not satisfy this condition yet. As a self-conducted internet research revealed, a large number 

of users regard Kindle's voice as natural, but also as a nuisance when they listen to it for a 

longer time because it speaks with a  fairly monotone voice.

Using audio books as a speech database is a good means to get around this problem. In 

contrast  to hand-crafted speech databases, which contain short out-of-context sentences in 

quite  unemphatic  speech  style,  audio  books  contain  rich  prosody  including  intonation 

contours, pitch accents and phrasing patterns, which is a good pre-requisite for building a 

natural sounding synthetic voice. Furthermore, audio books contain various speaking styles, 

which can be modelled and built into the synthetic voice so that an e-book reader can employ 

these styles while reading aloud a book text. How this can be accomplished will be presented 

in this paper. The outline of the paper will be as follows.

Chapter 2 will give an overview of the theory behind HMM-based speech synthesis. 

HMM-based speech synthesis will  be explained in general, and on the basis of a training 

script for the HTS speech synthesis system that was developed at the University of Edinburgh. 

Chapter 3 will describe the nature of the audio book data in terms of a phonetic and prosodic 

analysis, and highlight the advantages and disadvantages of using audio book data for speech 

synthesis. Chapter 4 will outline the changes that were made to improve the speech synthesis 

system. Finally, chapter 5 will present a statistical evaluation of the synthetic voice, which is 
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based on the results of an online listening test. 

 2 The theory behind HMM-based speech synthesis 

The theory behind HMM-based speech synthesis1 will be explained on the basis of the HTS 

speech synthesis system, which was publicly released in 2002 and is undergoing a constant 

development (cf. http://hts.sp.nitech.ac.jp). HTS is an extension of the Hidden Markov Model 

Toolkit (HTK) for automatic speech recognition (cf. http://htk.eng.cam.ac.uk) and uses hidden 

Markov  models  to  model  speech  parameters.  The  training  script  that  was  used  in  this 

dissertation project was developed by Junichi Yamagishi, member of the Centre for Speech 

Technology  Research  (CSTR)  at  the  University  of  Edinburgh,  in  2010.  Training  was 

conducted  on  the  Edinburgh  Compute  and  Data  Facility  (ECDF)  (  cf. 

http://www.ecdf.ed.ac.uk), which is a high performance cluster of servers and storage. The 

advantage of using this cluster is that software can be run in parallel on separate CPUs, which 

speeds up processes like feature extraction or tree-based context clustering considerably. This 

way, several large voices can be built and stored on the cluster, which is not possible on a 

standalone machine with limited amount of memory and storage space. In the following, the 

background of HMM-based speech synthesis and the steps that are followed in building the 

voice will be explained in more detail.

HMM-based speech synthesis  is a statistical parametric speech synthesis approach. 

Compared  to  unit  selection  speech  synthesis,  which  concatenates  pre-recorded  chunks  of 

speech  with  minimal  application  of  signal  processing,  HMM-based  synthesis  can  be 

understood as generating the average of similar sounding speech units in the database (cf. Zen 

et  al.  2009:  1040).  In  the  framework,  spectral,  excitation  and  duration  parameters  are 

statistically and simultaneously modelled using HMMs. These parameters corresponding to 

input text are directly generated from HMMs themselves. The resulting synthetic speech may 

sound buzzy, but it is very smooth and stable compared to a unit selection voice. In addition to 

that, the speech units can be modified, which is not the case in concatenative synthesis where 

the  generated  speech  is  limited  to  the  speech  style  in  the  recorded  database.  This  is 

particularly problematic  when the recorded speaker  has a non-consistent speech style  and 

shows large variations in e.g. prosody or the expression of emotions. When the database is 

very small, the synthetic output from unit selection will sound quite unnatural. A substantial 

1 In fact, HSMMs (hidden semi-Markov models) are usually used in speech synthesis. These imply an explicit  

duration model, which allows for non-geometrical and non-exponential distributions of durations (cf. Yu and 

Kobayashi 2001: 235). The explicit duration model is not Markov, but the state transitions are, which is why  

it is called semi-Markov (cf. King 2010: 7).
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advantage of HMM-based synthesis is that speech synthesis is much more flexible. Since all 

the speech parameters are statistically modelled within the framework of HMMs, many model 

adaptation and model interpolation methods can be adopted to control the model parameters 

and  diversify  the  characteristics  of  generated  speech  (cf.  Yamagishi  et  al.  2009:  1208). 

Moreover, very good synthesis results can be obtained with a comparatively small speech 

database. 

 2.1 Feature extraction

The core architecture of a typical HMM-based synthesis system consists of a training part and 

a synthesis part, as shown in Figure 1. In the training step, excitation parameters (log f0 and 

band-limited aperiodic features for mixed excitation) and spectral parameters (39 Mel-cepstral 

coefficients) are extracted from a speech database. For f0 extraction, a voting of instantaneous 

frequency  amplitude  spectrum  (IFAS)  (cf.  Arifianto  et  al.:  2004),  fixed-point  analysis 

(TEMPO) (Kawahara et al.: 1999) and the ESPS get_f0 tool (cf. Talkin: 1995) is used to 

distinguish  between  voiced  and  unvoiced  signals.  IFAS  is  a  method  that  quantitatively 

determines  the  difference  between voiced  and unvoiced speech  signals  by measuring  the 

degree  of  periodicity  of  a  speech  signal.  This  method  has  been  proven  to  be  extremely 

efficient in noisy environments and outperformed TEMPO and the ESPS get_f0 tool in a 

study by Arifianto and Kobayashi (2005). It is therefore useful to apply IFAS in f0 extraction 

of the audio book data, which was not recorded in a sound studio and is not completely noise-

free. However, a voting method that combines all of these techniques was found to “reduce 
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errors such as f0 halving and doubling, and voiced/unvoiced errors” (Yamagishi et al.:  2008), 

and therefore a combination of these methods can be better than a single pitch tracker.

 2.2 Embedded training

The extracted parameters are first modelled by context-independent monophone HMMs, and 

then embedded training is  conducted.  Embedded training is  an iterative process,  which is 

performed by the Expectation Maximization (EM) algorithm to align wave files and their 

corresponding transcriptions (cf. Jurafsky and Martin 2009: 221). No initial segmentations or 

phone durations  are  needed.  The input  to  the  algorithm are  a  wave file  and its  phonetic 

transcription, modelled by an HMM. The EM algorithm sums over all possible segmentations 

of words and phones and aligns the phonetic labels with the cepstral features extracted from 

the waveform. The model parameters λ of the HMMs are set so as to maximise the probability 

of the training data O given a set of word sequences W that corresponds to O (cf. Zen et al. 

2009: 1042):

The EM algorithm is initialised with a flat start. In a flat start initialisation, probabilities for 

back  transitions  to  earlier  phones  are  set  to  zero,  while  all  other  transitions  are  equally 

probable. The mean and variance are identical for each Gaussian, which makes computation 

very simple (cf. Jurafsky and Martin 2009: 360). The algorithm consists of two steps, namely 

the expectation step, in which the state occupation probabilities of being in state j at time t are 

estimated, and the maximization step, which utilizes these state occupation probabilities to re-

estimate the HMM parameters. In the HTS training script, the algorithm iterates 5 times and 

the alignment of phonetic labels and cepstral features is re-estimated in each iteration. This 

way, unlikely alignments are replaced with more probable alignments and a more consistent 

and accurate set of labels is attained that we can train our models on. After embedded training 

is applied for monophone HMMs, these are converted to full-context HMMs, and embedded 

training  is  applied  again.  Full-context  HMMs  are  context-dependent  models,  which  in 

addition to phonetic quinphone contexts also model the  segmental, prosodic and linguistic 

context of a speech unit (cf. Zen and Gales 2011: 4560). 
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 2.3 Context-clustering

However, not all possible contexts can be captured by the context-dependent HMMs. If we 

consider  a  system with 40 phones  plus  silence,  then there  are  415 =  115,856,201 logical 

quinphone combinations. In a real corpus of English, not all of these combinations do actually 

occur, but it can be assumed that there are still a large number of quinphone combinations, 

which would require a high amount of training data to enable a robust estimation of the model 

parameters and to ensure that all possible quinphone combinations are covered (cf. Renals 

2011: 15). Training on a sufficiently large speech database is computationally expensive, but 

we can compensate for unseen quinphones by applying context clustering, which enables us 

to model quinphones that were not observed in the training data. In addition to the phonetic 

quinphone contexts, the segmental, prosodic and linguistic contexts have to be considered as 

well. Since it is impossible to cover all  possible contexts with a limited amount of training 

data, context clustering is applied for mel-cepstral coefficients, log f0, band-limited aperiodic 

features and state durations. With context clustering, every unseen context can be modelled.  

Context clustering is a data-driven, top-down approach, which uses binary decision 

trees  to  cluster  similar  context-dependent  HMM states  into  the  same context  classes  (cf. 

Jurafsky and Martin 2009: 381). At the root of the tree, all states are shared. Yes/no questions 

split the pool of states, and the resultant state clusters are given by the leaves of the tree. 

Example questions for a phonetic decision tree include, “Is the left context a nasal?” or ‘”Is 

the right context a central stop?”. The questions at each node are chosen from a large set of 

predefined questions, and at each node the question that maximizes the likelihood of the data 

given  the  state  clusters  is  chosen.  The  likelihood  of  a  state  cluster,  assuming  Gaussian 

distributions is given as (cf. Renals 2011):

Splitting is stopped if either the improvement given by the splitting question or the amount of 

data associated with a split node falls below a given threshold. 
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In voice building with HTS, further embedded training was applied after context-clustering. 

This  is  efficient  and necessary to  get  better  parameter  estimates.  The initial  training  was 

conducted with monophone models, which resulted in well-estimated models since enough 

examples of monophones were available in the training data. Then, context-dependent models 

were generated, but not all of these context-dependent models could be trained because some 

of them occurred only once, and some did not occur at all in the training data. Thus, we had 

very badly trained models. However, this did not matter because all they were used for was 

for the creation of a tree that did the parameter tying.  Context-classes were generated for 

phones with similar parameters. When the context-dependent phones are clustered, there is 

enough training data for each model and we get better parameter estimates after re-training. 

Next, the well-trained context-clustered models are cloned, untied, trained for one iteration 

and  re-tied  (cf.  Jurafsky  and  Martin  2009:  382).  Because  we  start  from  a  much  better 

initialisation than in the previous training steps, this training process will result in a better 

tree. We now have pretty good parameter estimates for synthesis. 

 2.4 Speech synthesis 

In the synthesis part,  for a given input text sequence T that is to be synthesized, a set of 

speech parameters S is generated from the estimated models λ (cf. Zen et al. 2009: 1042):

A given  word  sequence  is  converted  into  a  context-dependent  label  sequence.  Then  the 

context-dependent HMMs are concatenated according to that label sequence and a sentence 

HMM is constructed. The speech parameter generation algorithm generates the sequences of 

spectral and excitation parameters from the sentence HMM. According to these parameters, a 
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synthesis filter module synthesises a speech waveform (cf. Zen et al. 2007(a): 158). Durations 

are modelled by multivariate Gaussian distributions and are “determined so as to maximize 

the output probability of state durations” (Tokuda et al. 2002: 2). 

In  HTS,  synthesis  can  be  conducted  with  the  speech  parameter  generation  tool 

HMGenS, which applies the EM algorithm, or the software hts_engine (cf. Zen et al. 2007(b): 

295). For this dissertation project, sentences were synthesised with hts_engine. Hts_engine 

basically predicts the state durations by picking the mean of the duration distribution for each 

state, and, given this state alignment, performs the maximum likelihood parameter generation 

(MLPG)  algorithm.  The  MLPG  algorithm  considers  the  properties  of  dynamic  speech 

parameters  (delta  and delta-delta  coefficients)  and finds  the  most  likely output  parameter 

sequence given the static speech parameter distributions as well as the distributions of the 

delta and delta-delta coefficients (cf. King 2010: 10)

 3 The audio book data 

The data that was released for phase 1 of the Blizzard Challenge 2012 was available to build 

the  synthetic  voice.  This  data  was  provided  by  Toshiba  Research  Europe  Ltd  (cf.  

http://www.synsig.org/index.php/Blizzard_Challenge_2012)  and  includes  four  audio  books 

from librivox.org (http://librivox.org), an internet platform that provides audio books in the 

public domain, which are not restricted by copyright laws. All audio books on Librivox are 

recorded by volunteers. The four audio books that were used in this project were obtained 

from Project Gutenberg. Books from the Gutenberg Project have an accuracy target of 99% 

for their texts (cf. Prahallad 2010: 30), which means that there are some errors in the text that 

might have arisen in the transcription process. All audio books were recorded by the same 

American English speaker, John Greenman, who has a fairly consistent and stable voice, and 

are based on books written by Mark Twain between 1880-1910 (total running time indicated 

in parentheses):

1) A Tramp Abroad (15:46:01)

2) Life on the Mississippi (14:47:27)

3) The Adventures of Tom Sawyer (6:46:12)

4) The Man That Corrupted Hadleyburg, and Other Stories (13:04:00)

What has to be considered is that the speaker who records the book is likely to make mistakes 

and does not provide a one-to-one reproduction of the actual text. Moreover, the speaker adds 
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information about the source of the book at the beginning and the end of the book, and usually 

at the beginning of each chapter, e.g. “This is a Librivox recording. All Librivox recordings 

are from the public domain”. The Blizzard Challenge provided phonetic transcriptions that 

accounted for these additions, but they did not use a label format that agreed with the format 

needed for HTK. Therefore, new Festival labels were created from the output that had been 

retrieved by lightly supervised recognition (cf. Braunschweiler et al.: 2010), and was provided 

by the Blizzard Challenge. With lightly supervised recognition, the recorded speech had been 

recognised and the locations of word sequences had been used for automatic time alignment 

of text and speech. Then, recognised speech and the actual book text had been compared and 

a confidence measure was calculated, which determines the agreement of the recording and 

the book text. For the creation of labels, only output with a confidence measure above 90% 

was extracted. It was manually checked that the difference between the book text and the 

recording  was  usually  a  matter  of  punctuation  or  different  notation  of  numbers  if  the 

confidence measure ranged between 90 and 100%. 

For building the voice, not all data was used due to several reasons.  The Man That  

Corrupted Hadleyburg, and Other Stories contained a large amount of German and French 

sentences that were recorded by a different speaker. Around 1,000 label files that contained 

foreign utterances had to be deleted. A further problem was that some English transcriptions 

had corresponding wave files with a German or French translation of the English sentence. To 

play it safe and avoid a change for the worse in the synthetic voice, it was decided to leave out 

this  audio  book  completely  and  keep  some of  the  correct  transcriptions  for  the  test  set. 

Altogether, the remaining three audio books contained around 6,000 out of vocabulary words, 

which  was  discovered  by  checking  a  list  of  all  audio  book  words  against  Festival's 

pronunciation dictionary with a Python script that was specifically written for this task.  A 

Tramp Abroad contained a number of German sentences, but they remained within acceptable 

quantities  and  were  manually  removed  from  the  database.  Furthermore,  sentences  that 

contained  German  place  names  or  proper  names  were  removed  as  Festival  predicted  a 

pronunciation that was very different from the narrator's pronunciation. Finally, foreign place 

names and proper names were removed from Life on the Mississippi, e.g. words like  Mont 

Blanc, for which Festival predicted an English sounding pronunciation. 

Out of vocabulary words that were not of foreign origin, were kept in the database,  

and all in all, the number of out of vocabulary words could be reduced to around 2,000. The 

main  reason for  this  still  high  amount  is  that  the  book is  written  in  British  English,  but 

Festival uses an American pronunciation dictionary for the American English story-telling 
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voice.  Furthermore,  Mark  Twain  uses  a  number  of   rare  words,  e.g.  telescopulist or 

gimcrackery. However, these words still follow the rules of English pronunciation and it was 

checked for a selection of out-of vocabulary words that Festival predicted their pronunciation 

correctly. It is assumed that Festival also predicts the correct pronunciation for the remaining 

English words which are not in the dictionary. The final amount of data after cleaning up was 

as follows:

1) A Tramp Abroad (13:51:52)

2) Life on the Mississippi (13:31:36)

3) The Adventures of Tom Sawyer (6:45:36)

For the synthetic voices, not all of this data was used for reasons of time and computational 

costs. The actual data will be described in section 4.3. 

In general, audio books are a good candidates for building synthetic voices if certain 

conditions are met:

• consistent speaking style

• a large amount of training data is available for a single speaker 

• acceptable recording conditions

The  speaking  style  of  the  speaker  sounded  quite  consistent.  Furthermore,  the  recording 

environment was quiet throughout and the only disturbance was a faint microphone noise. An 

analysis  of  the narrator's  speaking rate  in  terms  of  syllables  per  second could  have been 

conducted, but it was decided not to do so. The reason for this was that listening to sound 

samples from different chapters of the book revealed that his speaking rate seemed to be fairly 

stable all the time.

In  contrast  to  carefully  designed  speech  databases,  such  as  the  CMU  ARCTIC 

database,  which  contain  short  out-of-context  sentences,  audio  books  contain  rich  prosody 

including “intonation contours,  pitch accents  and phrasing patterns” (Prahallad 2010:  31). 

This is an extremely good prerequisite for building a natural sounding synthetic voice, but the 

drawback is that while a manually designed database attempts to capture a very large variety 

of possible phone contexts, we have to rely on the authors of the book text when dealing with 

audio books. The number of contexts that are covered by audio book databases cannot be pre-

selected and a prior analysis of the data is helpful. In the following sections, the quinphone 

coverage as well as the prosodic coverage of the audio books will be examined.
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 3.1 Quinphone coverage of the audio book data 

As was pointed out earlier, the amount of quinphone combinations that could logically occur 

is 415. However, in the English language not all of these combinations can be found and 415  is 

not a realistic number the quinphones in the audio book data can be compared to. For that 

reason, a 1,000,000 word corpus containing data from the same domain as the training data 

was extracted from Project Gutenberg. This corpus contained books like Charles Dicken's 

Oliver Twist, several Jack London short stories and books by Mark Twain that were not part 

of the training corpus. A 1,000,000 million word corpus is still not a fair representation of the 

English language, but to keep computational load to a minimum and still investigate a corpus 

that is considerably larger than the audio book data, it should suffice for the data analysis. The 

texts  from Project  Gutenberg  were  converted  into  Festival  quinphone label  files,  and the 

quinphone types  and tokens  were counted.  The following table  gives  an overview of  the 

number of words, types and tokens in the audio books and the extracted corpus.

quinphone 

   types           tokens

word 

tokens

Tom Sawyer 119,045 264,745 73,512

Tramp Abroad 187,079 483,060 142,764

Mississippi 180,577 456,636 136,284

Tom Sawyer + 

Tramp Abroad

251,804 747,805 216,276

Tom Sawyer + 

Mississippi

245,666 721,381 209,796

Tramp Abroad +

Mississippi

289,365 939,696 279,048

All audio books 339,864 1,204,441 352,560

Gutenberg corpus 643,492 3,762,335 1,000,749

Table 1: Distribution of quinphone types and tokens over number of words (figures based on the  
cleaned-up data)

Table 1 and Figure 3 (see next page) illustrate that the number of quinphone types increases 

with the number of occurring words.  Tramp Abroad and  Life on the Mississippi have word 

counts that are not far apart, and this applies to their quinphone type counts as well.  Tom 

Sawyer has  approximately  half  the  amount  of  words  of  Tramp  Abroad and  Life  on  the  

Mississippi,  and contains  around 35% less  quinphone types.  When we look at  two audio 

books taken together, we can observe a similar situation.  Tom Sawyer + Tramp Abroad and 
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Tom Sawyer + Life on the Mississippi have comparable word and quinphone type counts, 

while  Tramp Abroad + Life on the Mississippi have a higher amount of words and also a 

higher amount of quinphone type occurrences. 

Compared to a larger amount of data, Tom Sawyer covers only 18.46% of the quinphone 

amount found in the Gutenberg corpus, while Tramp Abroad and Life on the Mississippi cover 

31.06% and 31.10% respectively. Looking at two audio books, Tom Sawyer + Tramp Abroad 

and  Tom Sawyer + Life on the Mississippi  cover 39.31% and 38.18%, and the two largest 

audio books Tramp Abroad + Life on the Mississippi cover 44.97% of the quinphone types in 

the Gutenberg corpus. Taking all audio books together, 56% of the quinphone amount in the 

Gutenberg corpus are contained in the training data (see Figure 4). This shows that taking 

only one audio book for voice building results in a poor quinphone coverage, and that it is a 

better idea to use more data.
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However, do we really need such a large variety of quinphone types we find in a 1,000,000 

word corpus to build a high quality synthetic voice? Using a large amount of data results in 

high computational cost. In fact, most quinphone combinations rarely occur more than once, 

and if they occur more often, they are part of commonly used words. Therefore, it is a better 

idea to look at the more frequent quinphones and investigate how many of those are covered 

by the audio book data.  For this  analysis,  the 3,000 most  frequent  quinphone types were 

extracted from the Gutenberg corpus and compared to the 3,000 most frequent quinphone 

types in the audio book data. It was decided to look at the 3,000 most frequent quinphone 

types because these types occur in a large quantity in the audio book data; each type occurs at 

least 100 times. 

Figure 5 shows that the coverage of the 3,000 most frequent quinphones does not 

change  considerably  with  a  larger  amount  of  data.  Reasons  for  this  might  be  that  the 

Gutenberg corpus is either not a representative sample, or that Mark Twain did not use a wide 

variety of words in his books. Indeed, an analysis of all words in the three books revealed that 

at least 25% of the word types occuring in one book occur in one of the other books as well:

Tom Saywer + Tramp Abroad 4,874 (25.28%)

Tom Sawyer + Mississippi 4,793 (25.12%)

Tramp Abroad + Mississippi 6,809 (28.66%)

Table 2: Overlap of word types across 2 audio books
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Fig.  5:  Quinphone coverage of  the 3,000 most  frequent  quinphones (TS=Tom Sawyer,  TA=Tramp  
Abroad, MS=Life on the Mississippi, GC=Gutenberg Corpus)

TS

TA

MS

TS+TA

TS+MS

TA+MS

GC

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Text sources

Q
u

in
p

h
o

n
e

 c
o

v
e

ra
g

e



The preceding analysis suggests that in order to cover the most frequent quinphones, using 

just one audio book should suffice. What has to be pointed out, however, is that there are also 

quinphone types in the audio book data that are not in the Gutenberg Corpus! Looking at all  

three audio books together, it was found that approximately a third of the quinphones in the 

audio book data does not occur in the Gutenberg corpus. This applies to taking all quinphone 

types  as  well  as taking only the 3,000 most  frequent  quinphone types  into consideration. 

Therefore, only comparing the audio book data to a larger corpus is dangerous! Taking this 

into  account,  the  quinphone coverage of  the  audio  book data  is  actually  better  than  was 

presented in the above diagrams. Nevertheless, there are other things that have to be taken 

into consideration as well, such as if questions are well modelled, or if a sufficient number of 

prosodic contexts are covered.

What questions are concerned, they are rare in narrative text, which does not include 

dialogues between characters. Overall, 156 questions were found in the narrative text in all 

audio books of which 90 occur in  Tom Sawyer, 37 in  Tramp Abroad and 29 in  Life on the  

Mississippi. Questions are more frequent when characters talk to each other: 784 questions 

were found in quoted speech. The reason why a difference is made between narrative text and 

quoted speech is that the narrator's intonation changes when he mimics characters. Questions 

in quoted speech are livelier and more emphatic, and often much shorter than in the narrative 

text. Quinphone coverage in questions is also an important issue. The intonation at the end of 

questions usually rises and modelling this with quinphones from a declarative sentence would 

not sound like a question. It has to be made sure that a large variety of quinphones is available 

to  model  the  end of  questions.  To investigate  this  matter,  the  last  5  quinphones  of  each 

question were extracted, and their type and token frequencies were counted. By looking at a 

number of pitch contours of questions, it was found that usually the last five phones of an 

utterance have a rising pitch (see Figure 6).
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Fig. 6: Pitch contour of a question



Table 3 shows that despite containing the smallest amount of data, Tom Sawyer includes the 

largest variation of quinphone types at the end of questions. What is noticeable is that there is 

hardly any overlap of quinphone types: Overall, only 105 quinphone types occur in more than 

one audio book. However,  this  is  no surprise if  we look at  the large number of different 

quinphone types in the whole database compared to the rather small number of quinphone 

types here. If we want to achieve the best possible modelling of questions, the questions from 

all audio books should be included in the training database. 

types tokens

Tom Sawyer 1,299 1,917

Tramp Abroad 694 980

Mississippi 790 1,007

All audio books 2,378 3,904

Table 3: Distribution of quinphone types and tokens at the end of questions in quoted speech 

 3.2      Prosodic variation 

The intonation of a speaker has an effect on the fundamental frequency (f0) of his speech. 

Since the audio books contain a variety of intonation styles such as character mimicking, it 

can  be  assumed  that  a  wide  range  of  f0  values  is  covered.  When  the  speaker  mimics 

characters, he often uses a higher pitched voice, but sometimes applies a dark voice as well. 

Therefore, the f0 range will probably be larger for quoted speech (character mimicking) than 

for narrative speech (the speech style which is employed when no characters are mimicked). 

For this reason, narrative speech and quoted speech will be analysed separately. Histograms 

were computed to determine and compare the pitch ranges of narrative and quoted speech. 

The f0 values were put into frequency bins, each of which has a frequency range of 10 Hz, 

and plotted on a logarithmic scale. A logarithmic frequency distribution is more Gaussian-like 

and, moreover, the logarithmic scale approximates the sense of human hearing (cf. Jurafsky 

and Martin  2009:  269).  The notation is  given in  Hertz values to  facilitate  understanding. 

Because the average f0 did not differ significantly between the three audio books for both 

narrative and quoted speech, the results are summarised in one histogram respectively. 
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Figure 7 illustrates that most f0 values lie between 80 and 140 Hz. There are some frames in 

the higher frequency range above 200 Hz, which usually do not make up a whole utterance, 

but arise when the speaker tries to convey excitement and his voice becomes very high and 

cracks. In addition to the distribution of framewise f0, the average f0 values for each utterance 

were  analysed.  This  eliminates  outliers  in  the  upper  frequency  range  and  serves  as  the 

evidence that whole utterances with a very high overall frequency do not occur in narrative 

speech. 

As Figure 8 shows, the highest average f0 for a whole utterance is around 227 Hz. However, 

average frequency values in this range are rare. The distribution follows a normal distribution 

and stands in contrast to the distribution of framewise f0 in Figure 7, which is right-skewed. 

This  underlines  the  argument  that  the  distribution  of  high  and  low  f0  values  within  an 

utterance is fairly balanced if we look at average f0 per utterance.
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Fig. 7: Distribution of f0 in narrative speech on a logarithmic axis
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Mean=116.14
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Fig. 8: Distribution of average f0 per utterance in narrative speech on a logarithmic axis
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Minimum=227.47

Mean=114.08

Std.dev.=17.358

N=12,177



As it was expected, the frequency range is wider for quoted speech, namely from 49 to 475 

Hz  (see  Figure  9).  Most  f0  values  lie  between  80  and 180  Hz,  which  is  a  wider  range 

compared to narrative speech. The mean, 141.26 in contrast to 116.14 in framewise f0 for 

narrative speech, is considerably higher as well. Moreover, in comparison to narrative speech, 

there is a considerable amount of f0 frames above 200 Hz. 

Figure  10  shows that  this  distribution  does  not  differ  considerably when we look  at  the 

average f0 value for whole utterances: both distributions are right-skewed, which suggests 

that the distribution of high and low pitch is not balanced within an utterance, but that there is 

actually a substantial number of utterances that are spoken with a high pitch throughout. 
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Fig. 9: Distribution of framewise f0 in quoted speech on a logarithmic axis

Fig.  10:  Distribution of average f0 per utterance in quoted speech on a logarithmic axis
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These  differences  in  f0 between narrative  speech and quoted  speech suggest  the  need to 

model  these  speaking  styles  differently.  A method,  which  is  proposed  in  section  4.2.2, 

describes the clustering of f0 according to frequency bins and it  will  be argued that  this 

method  will  improve  the  quality  of  synthetic  speech.  The  next  chapter  will  describe  the 

techniques that were applied in voice building.

 4 Techniques and methods

As the data analysis  has shown, the speech data is  quite  varied: the audio books contain 

speech in narrative style as well  as quoted speech with higher pitch,  and there is  a large 

prosodic variation, especially in quoted speech. Before training was conducted, the speech 

data was divided into separate context-classes according to their  f0 values,  which will  be 

explained in  detail  in  this  chapter.  Moreover,  noise was removed from the  audio files  to 

improve the quality of the synthetic voice.

 4.1 Noise removal 

Due to the fact that the audio books were not recorded in a studio, the recordings contained a 

small amount of background noise. As a result, the synthetic speech sounded buzzy and the 

background noise was audible. The noise was a constant microphone noise which did not 

change considerably throughout the recording sessions. Therefore, a good solution was to use 

a multi-band digital noise gate, which was applied with Audacity, an open-source software for 

recording and editing sounds (http://audacity.sourceforge.net).

Audacity's noise removal algorithm uses Fourier analysis, which is a technique that 

decomposes any complex waveform into sine waves of different frequencies (cf. Jurafsky and 

Martin 2009: 332). A noise profile is provided by selecting a part of audio with only noise and 

Fourier analysis finds the frequency bands that make up the noise spectrum. This noise profile 

serves as the sample for the background noise in the wave files the spectral noise gate is  

applied to. The noise floor in each of the frequency bands of the sample is calculated and used 

as a threshold for a bank of noise gates.

When the noise gate is applied to noisy speech, the algorithm decomposes the speech 

into its frequency bands, and any pure tone which is substantially louder than the pre-defined 

threshold will be reduced in loudness. This removes noise not only from silence, but also from 

speech signals. As a result, noise removal might have a negative effect on the speech signal,  

but a careful adjustment of the threshold and listening to the noise-free speech revealed that it 

is a very convenient method.   
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Noise removal was applied for each audio book separately because careful listening to 

the recordings revealed that the background noise was at least slightly different in one audio 

book, namely Life on the Mississippi. It might have been a good idea to analyse the energy in 

every single chapter and see whether there is a considerable difference as it can be assumed 

that  the  speaker  made  a  pause  between  chapters  and  changed  his  recording  conditions. 

However, building a small voice from noise-free data revealed that this was not necessary, and 

noise removal was successful without having a negative impact on the speech itself.

 4.2 Features added in voice building

 4.2.1 Modelling of quoted and non-quoted speech

Since the speaker employs different speaking styles when he mimics characters and usually 

speaks  with a  higher  pitched voice,  it  was decided to build different  acoustic  models  for 

quoted speech, i.e. character mimicking, and narrative speech (henceforth called non-quoted 

speech). It is expected that modelling these features will improve the synthetic output over a 

voice which is built from quoted and non-quoted material without any modelling of these 

speaking styles.

For the identification of quoted and non-quoted text, a Python programme was written 

that extracted text between quotation marks from the book transcription, which was provided 

by  the  Blizzard  Challenge,  and  wrote  quoted  and  non-quoted  text  together  with  the 

corresponding label name into separate files. The text recognised by the lightly supervised 

approach could not be used for  this  task since it  did not  contain any punctuation marks. 

Unfortunately, quotation marks were not used consistently so that sometimes a non-quote was 

marked as a quote when a quotation mark was missing or vice versa. Therefore, all extracted 

data was manually checked for errors. To facilitate the task, an utterance was only extracted if 

it was either quoted text or non-quoted text, but not a mixture of both, so sentences like, 

“'Tom', she screamed.” were discarded. However, most utterances were either purely quoted 

or non-quoted text. 

For each non-quoted utterance,  a feature label  was added at  the end of each full-

context model in the label files, for instance:

x^x-pau+ao=l@x_x/A:0_0_0/[...]Q:_0

Each full-context model got the label Q:_0 attached to its end. The label itself was defined in 

a so-called question file, which contained questions relating to each of the features that were 

modelled, e.g. phonetic context, number of syllables, part-of-speech-tags. The question that 
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asked for non-quoted material looked as follows:

QS "No_quotes_in_utterance" {*/Q:_0*}

Since  context-clustering  is  conducted  using  binary decision  trees,  extra  labels  for  quoted 

speech are not necessary. If the question “ No_quotes_in_utterance” is asked and answered 

with yes, all non-quoted material is clustered at the leaf of the yes branch of the tree, and if the 

question is answered with no, every full-context model that does not have the label Q:_0 at its 

end is clustered at the leaf of the no branch of the tree.             

 4.2.2 Modelling of f0

As was  demonstrated  in  chapter  3.2,  the  audio  books  contain  a  large  prosodic  variation, 

especially in quoted speech. It is assumed that creating models for different frequency ranges 

will  improve  the  synthetic  voice  considerably when training  data  from similar  frequency 

ranges is pooled together. Furthermore, if modelling higher or lower pitched voice for quoted 

speech is successful, the feature labels that model these speaking styles can be attached to the 

full-context models used at synthesis time so that the synthetic voice can speak in higher or 

lower pitched voice. How this is accomplished will be explained in section 4.5.

For f0 modelling, the f0 range was divided into 3 parts: lower pitched speech, average 

pitched speech and higher pitched speech. Figure 11 shows that the mean of log f0 in quoted 

speech is approximately 142 Hz. The standard deviation is 34.8 and it can be assumed that the 

f0 values that are farer away from the mean than the standard deviation sound substantially 

different. 
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Fig. 11: Frequency ranges in quoted speech on a logarithmic axis



Listening to several audio samples revealed that utterances with an average f0 value above 

190 Hz and below 110Hz sound considerably different from utterances spoken with average 

f0. These higher f0 values are farer away from the mean than the standard deviation, and 

differ to a large extent from the average, and the lower f0 values are nearly as far away from 

the mean as the standard deviation. Therefore, it was decided to model a low frequency range 

from the lowest value 63 Hz to 109 Hz, an average frequency range from 110 Hz to 189 Hz 

and a high frequency range from 190 Hz to 354 Hz. It is of course impossible to argue that an  

utterance spoken with an average frequency of 189 Hz is different from an utterance with an 

average frequency of 190 Hz, but the average f0 values of each individual frequency bin 

should give a pretty good representation of each frequency range. Moreover, it was decided to 

use only three frequency ranges for acoustic modelling in order to ensure that the largest 

possible amount of training data is available for each of the ranges. This is important when the 

features labels are added at synthesis time because we want to synthesise our sentences from 

well-trained data. 

The same procedure was conducted for non-quoted speech. Although the f0 range for 

non-quoted speech is not that diverse, it might still result in a better synthetic voice, if similar 

frequency ranges are clustered together. Listening to the audio book data also revealed that the 

speaker's voice can sound very different in lower frequency ranges. As was reported before, 

and can be seen in  Figure 12,  the tails  of the frequency distribution range over  different 

frequencies than it was the case in quoted speech. 
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Fig. 12: Frequency ranges in non-quoted speech on a logarithmic axis



Therefore, the frequency ranges that were determined for acoustic modelling differ as well. 

Again, the tails of the distribution were cut off, this time below 90 Hz and above 130 Hz. 

These  values  are  more  than  one  standard  deviation  away from the  mean  (mean=114.08, 

std.dev.=15.36),  and  listening  to  the  audio  in  these  frequency  ranges  showed  that  the 

utterances  sound substantially lower or higher  pitched.  The addition of feature labels and 

creation of questions was modelled in the same way as described in section 4.1.1, with the 

exception that questions were needed for each of the frequency ranges:

QS "Quote_low_F0"   {*/S:_0*}

QS "Quote_medium_F0"   {*/S:_1*}

QS "Quote_high_F0"   {*/S:_2*}

QS "Non-quote_low_F0"   {*/S:_3*}

QS "Non-quote_medium_F0" {*/S:_4*}

QS "Non-quote_high_F0"   {*/S:_5*}

 4.2.3 Modelling of questions and exclamations

Two questions were used to model questions in quoted and non-quoted speech separately 

because  due  to  the  prosodic  difference  between  both  speaking  styles,  it  is  assumed  that 

different parameters should be used to model these contexts. These two questions are:

QS "Quote_with_a_question" {*/R:_0}2

QS "Non-quote_with_a_question" {*/R:_1}

The feature 'R' with the value '0' is attached to all labels within questions that occur in quoted 

material, and the feature 'R' with the value '1' is attached to all labels within questions that 

occur in non-quoted material. In the case that questions in quoted and non-quoted material 

have similar parameters, a third question was added, which would cluster quoted and non-

quoted questions together if their parameter values are similar:

QS “Quote_or_non-quote_with_a_question” {*/R:_0,*/R:_1}

The higher level structure of the model is determined manually, but which of the questions is 

asked  in  the  end  will  be  decided  by the  data.  In  this  case,  it  is  assumed  that  different 

parameter  values  should  be  used  to  model  different  contexts,  the  possible  contexts  are 

2 No wildcards are needed at the end of these feature labels because they occur at the end of the full-context 

labels in the corresponding label files
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defined,  and the learning algorithm uses  the data to  determine what  the actual  parameter 

values are.  

It should be noted that only utterances that consisted of a single question were marked 

as questions. Utterances that contained a declarative sentence and a question were discarded 

for reasons of simplicity.  A Python programme was written that detected the questions by 

looking  at  those  utterances  from the  book  text  which  contained  a  question  mark  and  a 

preceding utterance,  but  no preceding or  succeeding declarative  sentence  or  exclamation. 

Their corresponding label names were written into a list and features were added to the full-

context labels in each of the label files. 

Exclamations were extracted the same way, but were only modelled for quoted speech. 

The reason for this is that exclamations in non-quoted speech do often not sound different 

from declarative sentences. Exclamations in quoted speech are generally spoken in a very 

expressive and lively manner.  The audio book data contained 860 exclamations in quoted 

speech, and it was decided that it is worth making the attempt to achieve a better modelling of 

these exclamations. 

4.3 The voices 

It was decided to build two voices from the same large database of utterances. In order to save 

computational time, but still achieve to get a good quality synthetic voice, not all audio books 

were used in the training database. Tom Sawyer and A Tramp Abroad were taken for training. 

These audio books contain the 2nd largest number of quinphone types, which should serve as a 

compromise  between  taking  a  higher  amount  of  data,  which  would  imply  a  higher 

computational cost, and maybe covering too few data types. Each voice was trained on around 

11,000 utterances.

One of the voices was modelled with the 11 additional features that were described 

above. The other voice was built without any modifications and serves as the baseline the 

modified voice is compared to in the evaluation. The reasons and assumptions behind this 

choice will be pointed out in detail in the evaluation section of this paper.

4.4 Analysis of decision trees

The decision trees for log f0, mel-cepstral coefficients (MCEP) and duration were analysed 

with respect to the newly added questions. It is expected that trees for these different features 

will  prefer  different  subsets  of  the  common  question  set.  To  illustrate  the  preference  of 

questions  in  the trees,  a  so-called  dominance score was  calculated  (cf.  Chomphan 2011), 

which is defined as the reciprocal of the distance between the root node and the question 
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node. A node is more important if it is near the root of the tree because the first questions 

separate  more  data  than  later  ones.  Thus,  distance  to  the  root  node  is  correlated  with 

dominance, but it is not a positive correlation; the bigger the distance, the less the dominance 

-   the  smaller  the  distance,  the  bigger  the  dominance.  This  can  be  called  an  inverse 

relationship. The reciprocal works like this: as x increases, 1/x decreases, and as x decreases 

1/x increases (as long as x is positive). Therefore, if we let x='the distance to the root node' 

then 1/x behaves like we want 'dominance' to.

For MCEPs and log f0,  the dominance scores of the 11 additional  questions  were 

computed  for  each  of  the  5  emitting  states  of  the  HMM,  and  their  average  score  was 

calculated. Duration was modelled with a single tree and set of distributions at the phone 

level. With 5 states, a 5-dimensional distribution was used. Therefore, the dominance scores 

for  phone durations  reflect  the actual  scores  that  were computed from a  single  tree.  The 

following diagram gives an overview of the questions and their  corresponding dominance 

scores:

Figure 13 shows that the dominance scores of questions differ between the trees, but that there 

are also some comparable tendencies. The first thing to note is that in the MCEP and log f0 

trees all questions were regarded as relevant, while all but two questions were asked in the 

phone duration tree (non-quote_high_f0 and  non-quote_with_question).  With  a  dominance 

score of 0.23,  the question  non-quote_medium_f0 occupies the highest node under  the 11 

questions in the MCEP tree. This means that, among the 11 questions, this question separates 

the data into the two largest sub-sets.  No_quotes_in_utterance is the second most important 

question, with a dominance score of 0.18. This question is nearest to the root node in the log 
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Fig. 13: Dominance scores of questions in context-custering



f0 and phone duration trees. This emphasizes the need for this question and shows that there is 

a substantial difference between non-quoted and quoted speech with regard to energy and f0, 

but also phone duration.

In both log f0 and MCEP trees,  questions  relating to  the f0 values  in  non-quoted 

speech received a relatively high dominance score as well, which suggests that there is a high 

amount of data that shares the features of non-quoted speech with high, medium and low f0 

respectively. What is noticeable is that the question quote_high_f0 received the second highest 

dominance score in the log f0 tree (0.19). This was expected since there is a considerable 

amount of utterances in the quoted speech data that is spoken with a higher pitch. Clustering 

the data into parameters that share the features of quoted speech with higher f0 is therefore a 

reasonable thing to do.

While the dominance scores in the phone duration tree are higher for the questions 

quote_with_question and quote_with_exclamation, this does not apply to the MCEP and log 

f0 trees. Listening to the audio files revealed that the phone durations of exclamations in 

quoted speech seem to be shorter than in narrative speech as these are usually spoken in a 

very lively and hasty manner, which could be the reason for the higher dominance score in the 

duration tree for quote_with_exclamation. A reason for the lower dominance scores in MCEP 

and  log  f0  trees  might  be  that  in  comparison  to  declarative  sentences,  questions  and 

exclamations  are  rare,  and  can  therefore  not  be  split  into  large  sub-sets  and  have  to  be 

clustered further down in the trees. 

All  in  all,  it  can  be  assumed  that  the  additional  features  are  well-modelled.  All 

questions were asked at the upper nodes of the trees, and adding their corresponding features 

at  synthesis  time  will  probably be  successful.  How the  attachment  of  these  features  was 

accomplished, will be the topic of the following sub-section.

4.5 Features in synthesis 

For synthesis, sentences from the held-out audio book  The Man That Corrupted Hadleyburg,  

and Other Stories were manually selected, extracted from the book text and converted into 

full-context  label  files  with  Festival.  For  each  domain  to  be  synthesised,  corresponding 

sentences were chosen. That is  to say,  quoted speech was synthesised from text that was 

spoken by characters, non-quoted speech was synthesised from narrative text, and questions 

and exclamations were synthesised from corresponding sentences in the book text. Because 

no feature was defined for quoted speech in context-clustering,  features relating to the f0 

ranges in quoted speech were added here. 
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It was decided manually,  where specific features should be added. The addition of 

features worked the same way as in the preparation of label files before training. A shell script 

was written that looped over the full-context labels in each label file and added the required 

feature label to the end of each label. It should be noted that the more features are added, the 

fewer parameters to synthesise a sentence might be available. For example, if we want to 

synthesise quoted speech with high f0, and add a label for this at synthesis time, the resulting 

speech output might sound quite good. But if we add a further label, for instance, if we would 

like to synthesise a question with a higher pitched voice, the speech might sound buzzier. This 

is the case because the pool of parameters that can be used at synthesis time becomes more 

restricted when more features are added. 

4.6 Automation of feature modelling in synthesis 

For the use as an actual applet in an e-book reader, the process of adding features at synthesis 

time should be automated. For the listener, it would be very uncomfortable if he had to tell the 

reader  when  to  change  his  pronunciation  and  such  an  implementation  would  be  quite 

impractical. One suggestion to solve this problem is to apply classification and regression 

trees (CART) (cf. Bennett and Black: 2005). CART trees are decision trees and work like  it  

was described in section 2.3. While classification trees are used to predict the value of a 

categorical  variable,  regression  trees  predict  the  value  of  a  continuous  variable.  For  the 

features  that are added at synthesis time,  a classification tree can be used. 

Classification trees can be learnt from data, but the pre-condition for this is that the 

predictors, the predictee and the questions that are asked about the predictors are pre-defined. 

The  predictee  might  be  one  of  the  features  we  want  to  add  at  synthesis  time,  and  the 

predictors are the characters of linguistic or prosodic items that help to classify a sequence of 

words or letters as this particular feature. For instance, if we would like to detect a quoted 

utterance in a book text and synthesise this utterance as quoted speech with a different pitch, 

example questions could include, “Is the utterance surrounded by quotation marks?” or  “Is 

the utterance preceded by a [insert a word that signifies the act of talking]?”.  As it was the 

case in context-clustering, the training algorithm will choose the questions that partition the 

data into the most consistent sub-sets and will decide where to put the questions in the tree.

When  these  classification  trees  are  implemented  into  the  e-book reader,  they  will 

automatically decide, which sentence has to be uttered in a particular way. However, more 

research is necessary to prove this argument and see in how far this approach is technically 

feasible, and, moreover, if listeners approve this kind of implementation.
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 5 Evaluation

The purpose of the evaluation was to find out if listeners prefer a voice that sticks to the same  

speaking style throughout the narration of an audio book, or if a voice that can apply different 

speaking styles  is  equally acceptable.  For  this  reason,  a baseline voice built  from around 

11,000 utterances was compared against a modified voice that included 11 additional features 

and was built from the same database as it was described in chapter 4.3. 

Listening to the voices revealed that the modelling of most features was successful.  

The modified voice is able to talk with lower and higher pitched speech, and there is  an 

audible rise of intonation at the end of most questions. Furthermore, non-quoted speech has a 

good quality and nice prosody. The prosody of the baseline voice is quite good and natural 

sounding as  well,  but  careful  listening to  the modified  voice revealed  that  its  prosody is 

slightly richer and sounds more natural. However, when the voice mimics characters and talks 

with a different pitch, it often sounds buzzier than non-quoted speech of both the modified 

voice and the baseline. Moreover, questions are not perfect: their intonation is not always 

smooth and stable and they sometimes sound quite buzzy as well. Exclamations are not well-

modelled at all and not identifiable as such. This is due to the fact that not enough training 

data was available for high and low pitch ranges, questions and exclamations. One way to 

improve this  is  to add more of this  material  to  the training data,  preferably by the same 

speaker,  or,  if  this  is  not  available,  data  from a  different  speaker  and adapt  a  transform. 

Because of the buzziness of quoted speech and questions, subjects might prefer the baseline 

voice. If this is the case will be answered later.

 5.1 Experimental design

The evaluation was implemented as an online survey, which was set up as follows. The aim of 

the survey was to assess the naturalness and liveliness of the two voices as well  as their 

commercial viability, i.e. if people would buy the voices. Although it is always good to test 

the intelligibility of a voice, a conscious decision was taken not to do this for several reasons. 

First, semantically unpredictable sentences (SUS) (cf. Benoît et al. 1996) were not available 

in  natural  speech.  These  sentences  are  syntactically  correct  but  meaningless,  and  do  not 

contain any semantic  contextual  cues.  This is  important  for testing the intelligibility of a 

speech synthesis system because it ensures that listeners cannot guess the following words in 

a sentence when they write down what they understood, and have to rely on their ears only. 

Because listeners also make mistakes when they listen to natural speech, it is crucial to test 

both natural and synthesised speech to determine the significance of the speech synthesiser's 
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degree of intelligibility. For an intelligibility test, semantically predictable sentences would 

have had to be used. This is problematic because the degree of correctness of a sentence can 

depend on  the linguistic competence of a speaker. Some speakers might be better than others 

at guessing a particular word they did not understand when the semantic context is provided. 

Another reason for excluding the intelligibility test is that the e-books which contain the test 

sentences are freely available on the internet and can be found with a simple web search. It is 

not claimed that subjects are inclined to cheat, but the possibility is there, and usually subjects 

want to perform well, even if the test is anonymous. The results of an intelligibility test are 

therefore not reliable enough.

Each of the three tests contained three sub-sections, which were the same for all tests: 

non-quoted speech, quoted speech and questions were assessed separately. Exclamations were 

excluded from the test since they could not be identified as such. Furthermore, only higher 

pitched speech was included in the evaluation of quoted speech because it had a better quality 

and was easier to distinguish from non-quoted speech than lower pitched speech. Questions 

were synthesised as non-quoted speech because this allowed a reasonable comparison to the 

baseline. 

For each sub-section, a total number of 40 sentences were synthesised. For each of the 

voices, the same 20 sentences were taken so that a proper comparison can be made between 

the two voices.  From the pool of 40 utterances, 20 random sentences were played to the 

subjects.  It  was  ensured that  the  subjects  did  not  listen  to  the  same sentence  twice.  If  a 

sentence  from the baseline voice was selected, it was controlled that the same sentence was 

not  re-played  with  the  modified  voice.  Although the  three  tests  contained  the  same sub-

sections, the synthesised sentences differed in each corresponding sub-section. This way, a 

larger amount of data can be evaluated, the evaluation has more variety and becomes more 

interesting for the subjects. How the individual tests looked like will be described in detail in 

the sections for each test.

 5.2 Participants

The number of participants was the same for all tested domains. Altogether, 39 participants 

took part in the evaluation, of which 32 had no experience with speech technology and never 

or a few times ever listened to a synthetic voice. 6 participants had experience with speech 

technology and listened to synthetic voices regularly. It was ensured that only native English 

speakers participated. Before the participants entered the survey, they were asked if they are 

native English speakers or not, and if they answered the question with no, they were not able 
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to enter.  Moreover, the participants were asked the same question at the end of the study 

again, and one participant who finally admitted to be a non-native speaker was excluded from 

the  statistical  analysis.  Therefore,  the  statistical  analysis  reflects  the  results  of  only  38 

participants.  It  was  assumed  that  including  non-native  speakers  in  the  evaluation  is 

problematic. Depending on their level of language proficiency, some speakers understand the 

content of the sentences better than others and this might influence their rating. 

 5.3 Evaluation of naturalness

 5.3.1 Methodology

In the evaluation of naturalness, the subjects listened to one voice per page, and rated it on the 

basis of five categories: completely unnatural, most unnatural, equally natural and unnatural, 

mostly natural, completely natural. Only one category could be selected. For the statistical 

evaluation,  these  categories  were  transformed  into  opinion  scores  so  that  most  unnatural 

received a score of 1 and most natural a score of 5. For each voice, the mean opinion score 

(MOS) was calculated by adding up the scores and dividing them by the number of sentences 

that were played to each subject, namely 10 per voice. Descriptive statistics and a one-way 

repeated measures ANOVA to analyse the within-subjects and between-subjects effects were 

carried out by means of SPSS (Version 17.0). The tests were the same for non-quoted speech, 

quoted speech and questions.

 5.3.2 Results

The hypothesis was that there is no significant difference in naturalness between the baseline 

voice  and  the  modified  voice  in  non-quoted  speech.  Listening  to  the  voices  before  the 

evaluation was carried out did only reveal subtle differences. In fact, both voices sounded 

very similar and especially for inexperienced subjects it might be difficult to perceive any 

difference at all. For experienced subjects, the richer prosody is possibly noticeable. There 

may also be a difference in MOS between inexperienced and experienced subjects because 

their perception of naturalness might differ. 

In addition to that, it was assumed that there is a significant difference in naturalness 

when it comes to quoted speech. The hypothesis is that quoted speech is regarded as less 

natural  sounding  when  spoken  by  the  higher  pitched  modified  voice  because  it  sounds 

buzzier. Moreover, although character mimicking often involves speaking with a higher pitch, 

the subjects might not appreciate the way this is accomplished by the modified voice because 

it sometimes sounds rather creaky. This is expected to be the case for both experienced and 

inexperienced subjects.
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What  questions  are  concerned,  the  modified  voice  performed  quite  well  and  it  is 

expected that  the subjects  will  agree with that  and prefer  the modified voice in  terms of 

naturalness. However, it might also be the case that they regard the baseline voice as more 

natural, although it lacks a rising pitch at the end of questions, because the modified voice 

does not sound smooth and stable throughout as it sometimes selects parameters from non-

questions due to an insufficient amount of training data for questions. If it is the case that 

some subjects  prefer  the baseline voice and others  prefer  the  modified  voice  in  terms  of 

naturalness, then there might be no significant difference between the two voices. 

 5.3.2.1 Descriptive statistics

The descriptive statistics in Figure 14 show that in matters of non-quoted speech, the MOS of 

the modified voice is slightly higher for both experienced and inexperienced listeners. The 

MOS of the baseline voice is 2.85 and 2.73, and the MOS of the modified voice is 2.98 and 

2.91 for inexperienced and experienced listeners respectively.3 Moreover, the lower bound of 

the MOS of the modified voice is higher for experienced listeners than for inexperienced 

listeners, which suggests that some experienced listeners heard a difference between the two 

voices, and a look at the individual results confirms this.

3 Note that the horizontal lines in the boxplots represent the median, although in most cases that were analysed 

here the values for mean and median are not far apart.
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If  we look at  the  descriptive  statistics  for  quoted  speech,  it  is  noticeable  that  the 

baseline voice was perceived as substantially more natural than the modified voice. While the 

MOS of the baseline voice is 2.66 for inexperienced and 2.97 for experienced subjects, the 

MOS of the modified voice is only 1.94 for inexperienced and 2.28 for experienced listeners. 

What is interesting is that the MOS for the baseline voice differ to some extent from the MOS 

in non-quoted speech, although the quality of the voice did not change at all. Inexperienced 

subjects rated the baseline voice in quoted speech slightly lower, while experienced subjects 

rated it slightly higher. A look at the individual data points showed that this applied to around 

2/3 of the inexperienced subjects and also 2/3 of the experienced subjects. A reason for this 

might be that the inexperienced subjects still regarded the baseline voice in quoted speech as 

somewhat  natural,  but  in  relation  to  the  fact  that  it  is  supposed  to  be  used  in  character 

mimicking, they might have expected a different voice quality, however, not the one applied 

by the modified voice either. For the experienced subjects, it might have been the case that 

they wanted to point out the difference between the modified voice and the baseline voice in 

quoted speech, and therefore set the scale of naturalness slightly higher for the baseline voice 

than before. 

Another point that is worth mentioning is that the lower bound of MOS of the baseline 

voice is higher for experienced subjects than for inexperienced subjects in quoted speech, and, 

even  more  dominant,  the  experienced  subjects  perceived  quoted  speech  spoken  by  the 

modified voice as  much more natural  than the inexperienced listeners.  This suggests that 

experienced listeners have a different perception of naturalness when they listen to synthetic 

voices.  When  inexperienced  subjects  hear  a  synthetic  voice,  they  might  have  higher 

expectations as they are not familiar with the limitations of synthetic speech and therefore are 

more critical in their judgements. On the other hand, experienced listeners know the state-of-

the-art and do not expect a synthetic voice to sound exactly like natural speech, which results 

in less critical judgements. 

Looking at the descriptive statistics for questions, it is obvious that the baseline voice 

was perceived as  more  natural  again.  The baseline  voice  has  a  MOS of  2.7 and 3.0  for 

inexperienced and experienced subjects, and the modified voice has a MOS of 2.4 and 2.6 for 

inexperienced and experienced subjects respectively. Again, the experienced listeners rated 

both voices slightly higher than the inexperienced listeners, but both groups agree that the 

lack  of  rising  intonation  makes  the  voice  more  natural  sounding,  probably  because  the 

baseline  voice  sounds  considerably  more  stable.  Although  it  looks  like  some  of  the 

experienced listeners rated the modified voice slightly higher than the baseline (see Figure 
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14), a closer look at the individual data points showed that this is actually not the case. All in 

all, there seems to be a general agreement of MOS between the subjects and there are no 

outliers. If the differences between the voices and the subject groups are significant, will be 

shown by the following inferential statistics. 

 5.3.2.2  Inferential statistics 

A one-way repeated measures ANOVA was applied to investigate if the MOS of the baseline 

voice  and the  modified  voice  differs  within  subjects.  Moreover,  it  was  analysed whether 

experience with speech technology has a significant effect on the judgement of naturalness. 

Levene's test was not significant, i.e. the variances between the two groups of voices 

are equal, which is a pre-condition for a parametric test like ANOVA, and the significance 

values can be trusted. This applies to all statistical tests that were conducted. The results of the 

sphericity assumed within-subjects tests in Table 4 show that for the voices in non-quoted 

speech, the mean square, which represents the amount of variation due to the experimental 

manipulation  (cf.  Field  2005:  322),  is  quite  low  (MS=0.255).  So  is  the  F-ratio,  which 

indicates that the experimental variation has been unsuccessful (F=2.716), which is confirmed 

by the non-significant p-value (p > 0.05). This means that there is no significant difference 

between the MOS of the baseline voice and the modified voice in non-quoted speech, which 

confirms the initial hypothesis. 

Mean Square F Sig.

Non-quoted speech Sphericity Assumed .255 2.716 .108

Quoted speech Sphericity Assumed 4.966 18.902 .000

Questions Sphericity Assumed 1.425 15.043 .000

Table 4: Tests of within-subjects effects

If we look at the results of the sphericity assumed test for quoted speech, things are different. 

The mean square is  higher  than for  non-quoted speech (MS=4.966)  and so is  the F-ratio 

(F=18.902).  The  p-value  does  not  exceed  0.05  (p=0.000),  which  means  that  there  is  a 

significant  difference  in  MOS  between  the  modified  voice  and  the  baseline.  Thus,  the 

implication of the descriptive statistics and the initial hypothesis that the baseline is perceived 

as significantly more natural can be confirmed. 

The same applies for the voices when they are used in the domain of questions. The 

hypothesis was that some subjects might prefer the modified voice because its intonation rises 

towards the end of questions, and that others prefer the baseline because it sounds smoother, 

and that therefore no significant difference can be found. However, the descriptive statistics 
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showed that there is a preference for the baseline, and the sphericity assumed test proves that 

this difference is significant (MS=1.425, F=15.043, p < 0.05). Therefore, the initial hypothesis 

cannot be confirmed and further research is essential to achieve a good modelling of questions 

with rising intonation.

Mean Square F Sig.

Experience (non-quoted speech) .086 .119 .732

Experience (quoted speech) 1.088 1.374 .249

Experience (questions) .533 .619 .436

Table 5: Tests of between-subjects effects

If we look at the effects of the factor experience on the rating of the voices, it is obvious that 

experience has no significant effect on the perception of naturalness of non-quoted speech 

(MS=0.086, F=0.119, p > 0.05), quoted speech (MS=1.088, F= 1.374, p > 0.05) and questions 

(MS=0.533, F=0.619, p > 0.05). However, the two groups of inexperienced and experienced 

listeners  are  difficult  to  compare  since  only  6  speech  synthesis  experts  took  part  in  the 

evaluation, which is not a representative sample of the population. It is therefore questionable 

if the results can be relied on, or if they would be different if more experienced listeners had 

taken part in the evaluation. 

     

 5.4 Evaluation of liveliness

 5.4.1 Methodology

In the evaluation of liveliness, the subjects listened to two voices per page that said the same 

sentence. Then, the subjects had to decide which of the voices sounded livelier. The options 

were: voice A sounds livelier,  voice B sounds livelier and The voices sound equally lively to  

me. For the statistical test, the results of each subject were transformed into scores and added 

up. If voice A sounded livelier, it received a score of 1 and the less lively voice a score of 0. If  

the two voices were perceived as equally lively, they both received a score of 1. As opposed to 

the  MOS in  the  analysis  of  naturalness,  the  absolute  scores  were  kept  here  for  a  better 

understanding. The scores of the subjects were compared with a one-way repeated measures 

ANOVA to analyse the within-subjects and between-subjects effects. Again, the tests were the 

same for non-quoted speech, quoted speech and questions. 20 recordings of each voice were 

played in each sub-section as well, but since two voices were presented on one page, each 

sub-section involved only 10 ratings. 

What should be noted is that the interpretation of liveliness is very subjective and it might 

33



differ between speakers. An exact definition of liveliness can therefore not be given, but what 

can be said is that a lively voice can be regarded as having a mixture of different properties. A 

lively voice should not be monotone, sound reasonably natural and be expressive. What is 

problematic is how the subjects see the concept of liveliness and how their concept influences 

the  rating  of  the  voices.  A definition  of  what  constitutes  liveliness  was  not  given to  the 

subjects, but might have been helpful in their accomplishment of the task.

 5.4.2 Results

The hypothesis  was that  when conveying non-quoted speech,  the modified voice and the 

baseline do not differ significantly in terms of liveliness for the same reasons that were given 

in  section  5.3.2.  Because  of  the  fact  that  only subtle  differences  between the  voices  are 

perceivable,  it  is  difficult  to  say that  one  of  them sounds livelier  than  the  other.  This  is 

expected to be the case for both experienced and inexperienced listeners. 

What quoted speech is concerned, the hypothesis was that the modified voice will win 

over  the  baseline  voice.  The  higher  pitched  voice  has  a  buoyant  prosody  and  is  quite 

expressive. The baseline voice is expressive as well, but it is not noticeable that characters are 

mimicked when the voice is applied in quoted speech. In contrast to the baseline, the higher 

pitch of the modified voice might be regarded as more vivacious. However, if subjects see 

naturalness as an inherent part of liveliness, their concepts of liveliness and naturalness might 

interfere and it is possible that they show a preference for the baseline. The same applies to 

questions. Although the rising intonation of the modified voice might be perceived as livelier, 

the fact that it has a buzzing quality and does not always sound smooth and stable, might 

cause the subjects to opt for the baseline voice. Nevertheless, the hypothesis was that for both 

quoted speech and questions, the modified voice is regarded as significantly livelier.
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 5.4.2.1 Descriptive statistics

The descriptive statistics  in  Figure 15 show that  there is  a  considerable difference in  the 

perception of liveliness between the baseline voice and the modified voice for inexperienced 

listeners (the means are 7.53 and 6.13 respectively). This is surprising as there is indeed a 

small  difference between the voices,  but  this  would rather  suggest  the opposite  outcome, 

namely that the modified voice should be regarded as livelier because of the richer prosody. 

The results of the experienced listeners emphasize that the difference between the voices is 

rather small, but they also seemed to regard the baseline voice as livelier (the means are 7.5 

for the baseline voice and 7.3 for the modified voice). A close look at the individual data 

points  showed  that  this  was  the  case  for  the  majority  of  participants.  However,  two 

experienced  listeners  rated  the  modified  voice  as  livelier,  with  considerable  differences 

between the  scores  of  the  baseline  and the  modified  voice.  This  demonstrates  that  some 

experienced listeners perceived a difference in liveliness, but more participants would have 

been required to see which voice is preferred in a larger population.

The scores for liveliness differ considerably when it  comes to quoted speech. It  is 

noticeable that the lower bounds of the rating scores for the modified voice are much higher 

than for the baseline voice, especially for experienced listeners. What is furthermore obvious 

is that some experienced subjects seemed to regard the baseline as very lively as well, and a 

look at the the individual data points showed that two subjects considered the baseline as 
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livelier, while the remaining experienced subjects opted for the modified voice. The mean 

rating scores for the baseline are 5.03 and 4.83 and for the modified voice 6.5 and 6.83 for 

inexperienced and experienced listeners respectively.

With regard to questions, the differences in liveliness are even more substantial. The 

mean rating scores of the baseline voice are 5.16 and 3.83, while the mean rating scores of the 

modified  voice are  7.78 and 9.0 for  inexperienced and experienced listeners  respectively. 

There is not only a noticeable difference between the scores within the two groups, but also 

between them: the inexperienced listeners rated the questions of the baseline voice as livelier 

than the experienced listeners, and for the modified voice it was the opposite case. A reason 

for this might be that the experienced listeners wanted to draw a sharper distinction between 

the baseline voice and the modified voice in terms of liveliness in questions, and that they also 

had a clearer concept of what it means for a voice to sound lively. The definition of liveliness 

was  not  quite  clear  to  a  large  number  of  inexperienced  listeners  as  they  reported  in  a 

questionnaire at the end of the survey. This confusion is reflected by the rating scores which 

are close  together, as opposed to the scores of the experienced listeners which are farer apart. 

Whether or not the differences reported here are significant will be answered in the following 

section. 

 5.4.2.2 Inferential statistics

Once more, a one-way repeated measures ANOVA was applied to investigate if the rating 

scores of the baseline voice and the modified voice differ within subjects. Furthermore, it was 

examined  whether  experience  with  speech  technology  has  a  significant  effect  on  the 

judgement of liveliness. Again, Levene's test was not significant, so that the statistics in Table 

6 can be trusted:

Mean Square F Sig.

Non-quoted speech Sphericity Assumed 6.250 1.688 .202

Quoted speech Sphericity Assumed 30.397 2.637 .133

Questions Sphericity Assumed 153.373 27.311 .000

Table 6: Tests of within-subjects effects

As it  was expected  from the  descriptive  statistics,  the  sphericity assumed test  of  within-

subjects effects proved that the difference in rating scores between the baseline voice and the 

modified voice is not significant (MS=6.25, F=1.688, p > 0.05) in non-quoted speech. This 

confirms the initial hypothesis, in which it was claimed that the subtle differences in liveliness 

will not be perceived by the subjects. Moreover, although the descriptive statistics suggested 
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that there is a difference between the baseline voice and the modified voice in quoted speech, 

this difference is not significant either (MS=30.397, F=2.637, p > 0.05). Therefore, the initial 

hypothesis  that  the modified voice sounds significantly livelier  in quoted speech than the 

baseline voice cannot be confirmed. 

However, the voices differ significantly in liveliness what questions are concerned. 

The mean square and the F-ratio are substantially higher than in the previous within-subjects 

tests (MS=153.373, F=27.311) and the p-value is significant (p < 0.05). In this case, the initial 

hypothesis  that  the modified voice sounds significantly livelier  than the baseline voice is 

supported. Table 7 shows whether the two groups of inexperienced and experienced listeners 

differed significantly in rating the voices:

Mean Square F Sig.

Experience (non-quoted speech) 3.500 1.555 .220

Experience (quoted speech) .46 .44 .834

Experience (questions) .027 .016 .901

Table 7: Tests of between-subjects effects

If we look at the effects of the factor experience on the rating of the voices, it is again the case 

that experience has no significant effect on the perception of naturalness of non-quoted speech 

(MS=3.5, F=1.555, p > 0.05), quoted speech (MS=0.46, F= 0.44, p > 0.05) and questions 

(MS=0.027, F=0.016, p > 0.05). It can therefore be stated that there is a significant difference 

between the liveliness of the voices in questions, and that this is the case for both experienced 

and inexperienced subjects, as the descriptive statistics clearly show.  
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 5.5 Evaluation of commercial viability

 5.5.1 Methodology

In the evaluation of the commercial viability of the voices, the subjects listened to two voices 

on each page and had to decide which of the voices they would buy as their personal story-

teller. The options were:  would buy none of them,  would buy voice A,  would buy voice B, 

would buy both.  For  the statistical  tests,  these options  were transformed into scores.  If  a 

subject would buy none of the voices, both voices received a score of 0. If a subject would 

buy voice A but not voice B, voice A received a score of 1 and voice B a score of 0 and vice 

versa. If a subject would buy both voices, both voices got a score of 1. The higher the score is 

for a voice, the more likely it is to be bought. Once more, the scores of the subjects were 

compared with  a  one-way repeated  measures  ANOVA to  analyse  the  within-subjects  and 

between-subjects effects. Again, the tests were the same for non-quoted speech, quoted speech 

and questions, and ten recordings were played for each voice. 

 5.5.2 Results

Whether or not a voice is likely to be bought is difficult to say, and this shall not be the main 

concern in proposing a reasonable hypothesis. It is more straightforward to say, which voice is 

more likely to be bought than the other, and this shall be the focus of the statistical analysis. 

Because of the fact that the subtle differences between the baseline voice and the modified 

voice  are  barely  perceivable,  it  is  hypothesised  that  the  consumer  behaviour  will  not  be 

affected by these differences and that it is equally likely that the subjects buy the baseline or 

the modified voice. 

With  regard  to  quoted  speech,  opinions  might  be  very  diversified  depending  on 

whether the subjects prefer a more natural or a livelier voice, but the hypothesis is that the 

baseline voice will attract more potential buyers. First of all, naturalness is an essential feature 

a synthetic voice should have, and, as was already pointed out before, the modified voice 

needs to be improved what higher pitched speech is concerned. 

The modified voice lacks further refinement in the domain of questions. While some 

questions  sound  pretty  good,  others  have  an  unnatural  intonation,  which  is  due  to  an 

insufficient amount of training data. Therefore, the hypothesis is that the baseline voice is 

commercially more viable than the modified voice when it comes to questions.
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 5.5.2.1 Descriptive statistics

Figure 16 shows that,  in contrast  to the previous descriptive statistics for naturalness and 

liveliness, the variety of scores that was given to the voices is much more varied. This is 

especially noticeable for the inexperienced subject group whose scores range from very low to 

very high for the baseline voice in all domains and the modified voice in non-quoted speech. 

The experienced subject group was overall more cautious and tended to give lower scores, i.e. 

on average, fewer experienced listeners than inexperienced listeners would buy the voices.

What  is  striking  is  that  there  is  a  considerable  difference  of  commercial  viability 

between the baseline and the modified voice in non-quoted speech for both inexperienced and 

experienced listeners. The mean rating scores for the baseline voice are 3.50 and 2.83 and for 

the modified voice 4.28 and 4.50 for inexperienced and experienced subjects respectively. 

There was not such a big difference between the rating scores of the baseline and the modified 

voice in the tests of naturalness and liveliness so that it was assumed that the subjects did not 

hear a major difference between both voices. However, here it can be seen that the subjects 

apparently perceived a difference nevertheless as the modified voice attracts more potential 

buyers. This suggests that this difference is not due to the naturalness or liveliness of the 

voice, but caused by another aspect that was not tested.

The commercial viability of quoted speech differs between the subject groups as well. 

Both groups agree that they would rather not buy the higher pitch aspect of the modified voice 
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(the mean rating scores are 1.59 for inexperienced and 2.0 for experienced subjects). The 

opinions seem to differ for the baseline voice because the range of scores that was given by 

the experienced subjects is quite large. Looking at the individual data points showed that this 

is the case because two subjects did not want to buy the baseline voice for quoted speech at 

all, and two other subjects were very attracted to buy it. The average scores for inexperienced 

and experienced subjects do, however, not differ considerably: the mean rating scores for the 

baseline are 4.88 for inexperienced listeners and 4.0 for experienced listeners.

What questions are concerned, the results of the two subject groups demonstrate that 

the baseline voice is once more commercially more viable. On average, the inexperienced 

listeners gave the baseline voice a score of 4.63, and the experienced listeners a score of 5.17.  

For  the  modified  voice,  the  mean  rating  scores  are  lower,  namely  2.38  and  2.0  for 

inexperienced and experienced listeners respectively. This confirms the assumption that the 

baseline  voice  is  more  attractive  to  buy when  it  comes  to  quoted  speech  and  questions. 

However, the fairly low average score also show that the voices need to be improved if a large 

number of potential buyers shall be satisfied. If the differences in rating scores are significant 

will be shown in the analysis of the inferential statistics. 

 5.5.2.2 Inferential statistics

A further time, a one-way repeated measures ANOVA was applied to examine if the rating 

scores of the baseline voice and the modified voice differ within subjects. In addition to that it  

was  analysed  whether  experience  with  speech  technology has  a  significant  effect  on  the 

buying  behaviour  of  potential  speech  technology  users.  Again,  Levene's  test  was  not 

significant, and the statistics in Table 8 are feasible:

Mean Square F Sig.

Non-quoted speech Sphericity Assumed 15.138 3.356 .075

Quoted speech Sphericity Assumed 70.463 9.785 .003

Questions Sphericity Assumed 74.123 23.322 .000

Table 8: Tests of within-subjects effects

The results of the sphericity assumed within-subjects test for non-quoted speech show that the 

difference between the baseline and the modified voice is considerable, but not significant 

(MS=15.138,  F=3.356,  p  >  0.05),  which  confirms  the  initial  hypothesis.  However,  the 

significance value (p=0.075) is extremely near to the threshold and it is questionable that it 

happened by chance that the subjects were more attracted to buy the modified voice. Yet, 

more research is necessary to find out what aspect of the modified voice was more attractive 
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to the subjects.

Quoted speech is significantly more commercially viable when it is produced by the 

baseline  voice  (MS=70.463,  F=9.785,  p  <  0.05).  This  is  also  the  case  for  questions 

(MS=74.123,  F=23.322,  p  <  0.05).  These  results  support  the  initial  hypotheses  that  the 

modified voice is less likely to be bought for the domains of quoted speech and questions, and 

that these domains need to be further improved. 

Mean Square F Sig.

Experience (non-quoted speech) .507 .082 .776

Experience (quoted speech) .555 .101 .753

Experience (questions) .070 .012 .914

Table 9: Tests of between-subjects effects

If we look at the effects of the factor experience on the rating of the voices, it can be seen that  

experience  has  no  significant  effect  on  the  commercial  viability  of  non-quoted  speech 

(MS=0.507, F=0.082, p > 0.05), quoted speech (MS=0.555, F= 0.101, p > 0.05) and questions 

(MS=0.070, F=0.012 p > 0.05). Therefore, it can be pointed out that there is a significant 

difference between the commercial viability of the two voices in quoted speech and questions, 

and that this is the case for both experienced and inexperienced subjects.

 5.6 Summary and discussion of results

The  preceding  evaluation  has  shown that  the  baseline  voice  and  the  modified  voice  are 

significantly  different  when  it  comes  to  naturalness  in  quoted  speech  and  questions. 

Furthermore, the liveliness of both voices differs significantly in questions. Finally, it was 

demonstrated that the commercial viability of the two voices is substantially different for non-

quoted speech and significantly different for quoted speech and questions. 

Although it was intended to build a synthetic voice that performs well in character 

mimicking and asking questions, this was not accomplished because the baseline voice was 

preferred in both domains. This might have been different if the modified voice had not been 

that  buzzy  and  less  creaky  when  conveying  higher  pitched  speech.  Further  research  is 

necessary to achieve a better modelling of the f0 ranges. This might be accomplished by using 

more  training  data  of  higher  pitched  speech  or  by  trying  another  acoustic  modelling 

technique. The same applies to questions. In contrast to declarative sentences, the training 

data included only few questions. However, finding an audio book with a sufficient amount of 

questions is difficult. A solution might be to take questions from various male speakers and 
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apply a speaker adaptation technique such as SAT (cf. Gibson and Byrne 2011).

A further problem was that the inexperienced listeners had problems rating the voices. 

Each subject had to answer a questionnaire at the end of the listening test where they could 

note  down their  suggestions  and  difficulties.  About  a  third  of  the  inexperienced  subjects 

regarded the rating of naturalness as problematic because they were either not exactly sure 

what the characteristics of natural speech are, or they considered the scores from 1-5 as hard 

to differentiate.  The rating of liveliness was even more complicated for the inexperienced 

subjects. Nearly half of the inexperienced listeners stated that they did not know what the 

concept of lively speech should include. Furthermore, they remarked that some of the livelier 

sentences, presumably from the modified voice, sounded less natural and that this interfered 

with their liveliness judgement. Therefore, it would have been helpful to define the concept of 

liveliness before the listening test. 

However,  most  of  the  experienced  listeners  did  not  have  any  problems  with  the 

liveliness judgement and none of them found it difficult to rate the naturalness of the voices. 

This  suggests  that  the experimental  design needs  to  be improved in terms of making the 

evaluation easier for the target group of synthetic voices, which are usually people who are 

not experienced with speech technology. 

 6 Conclusion

At the beginning of this paper, the theory of HMM-based speech synthesis was introduced to 

the reader to convey an impression of how voice building was conducted with the speech 

synthesis system HTS. After the training data was described and analysed in detail in chapter 

4, the modifications that were built into the speech synthesis system were outlined and it was 

argued why these modifications are regarded as necessary to improve the synthetic voice.

However, the evaluation in chapter 5 showed that these modifications are not accepted 

by the audience and that the baseline voice wins over the modified voice in the majority of 

domains. There is a slight indication that the subjects regarded the modified voice as better 

than the baseline in non-quoted speech, but not in terms of naturalness or liveliness. What 

causes  this  preference  is  subject  to  further  research.  It  might  be  the  case  that  character 

mimicking in a higher pitched voice as well as questions with a rising intonation are accepted 

by the listeners when these domains sound as smooth and stable as non-quoted speech. Once 

more, further research is necessary to accomplish this. 
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