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Abstract

In exploration seismics and non-destructive evaluation, acoustic, elastic and

electro-magnetic waves sensitive to inhomogeneities in the medium under inves-

tigation are used to probe its interior. Waves multiply scattered by the inho-

mogeneities carry significant information but, due to their non-linear relation

with the inhomogeneities, are notoriously difficult to image or invert for subsur-

face structure. Recently, however, this paradigm may have been broken as it was

shown that high-order multiply scattered acoustic waves can be time-reversed and

focused onto their original source location through arbitrary, unknown, inhomo-

geneous media using a so-called time-reversal mirror: in a first step, the multiply

scattered waves are recorded on an array of transducers partially surrounding

the medium, in the second step the recorded wavefields are time-reversed and re-

emitted into the medium (i.e., the time-reversal mirror acts as a linear boundary

condition on the medium injecting the time-reversed, multiply scattered wave-

field). The multiply scattered waves retrace their paths through the medium and

focus on the original source location. In another development the full waveform

Green’s function between two (passive) receivers has been observed to emerge

from crosscorrelation of multiply scattered coda waves. This process is called

interferometry. The principal aim of this thesis is to explore the relation between

time-reversal and interferometry and to apply the resulting insights to forward

modeling of wave propagation in the broader context of inversion. A secondary

aim is to see if the seismological receiver function method can be applied to a

reflection setting in ways that are both dynamically and kinematically correct.

These aims are achieved through: (1) Derivation of an integral representation

for the time-reversed wavefield in arbitrary points of an inhomogeneous medium

[first, for the acoustic case, based on the Kirchhoff-Helmholtz integral, then for

the elastic case based on the Betti-Rayleigh reciprocity theorem]. Evaluation of
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these integral representations for points other than the original source point will

be shown to give rise to the Green’s function between the two points. Physically

intuitive explanations will be given as to why this is the case. (2) Application of

ordinary reciprocity to the integral representation for the time-reversed wavefield

to get an expression in terms of sources on the surrounding surface only. This

gives rise to an efficient and flexible forward modeling algorithm. By illuminating

the medium from the surrounding surface and storing full waveforms in as many

points in the interior as possible, full waveform Green’s functions between arbi-

trary points in the volume can be computed by crosscorrelation and summation

only. (3) Derivation of an exact, interferometric von Neumann type boundary

condition for arbitrary interior perturbed scattering problems. The exact bound-

ary condition correctly accounts for all orders of multiple scattering, both inside

the scattering perturbation(s) and between the perturbations and the background

model and thus includes all so-called higher-order, long-range interactions. (4)

A comprehensive study of the receiver function method in a reflection setting,

both kinematically and dynamically. All presented results are verified and illus-

trated by numerical (finite-difference) modeling. Overall, the results in this thesis

demonstrate that, while the original instabilities associated with direct inversion

remain, multiply scattered waves can be used in an industrial context – both

in real-life experiments and in forward modeling – in ways that are stable. The

presented advances in forward modeling are argued to have a significant impact

on inversion as well, albeit indirectly.
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Chapter 1

Introduction

1.1 Breaking the irreversibility paradigm

We report the first experiments showing the reversibility of transient

acoustic waves through high-order multiple scattering by means of an

acoustic time-reversal mirror.

Derode et al., 1995, Phys. Rev. Lett. 75(23), pp. 4206-4209.

With this somewhat cryptic sentence researchers from the Laboratoire Ondes

et Acoustique, Universite Paris VII announced the results of their ground break-

ing experiments to an astonished and even skeptical community of physicists.

Further describing their experiments and results, they continued:

A point source generates a pulse which scatters through 2000 steel rods

immersed in water. The time-reversed waves are found to converge

to their source and recover their original wave form, despite the high

order of multiple scattering involved and the usual sensitivity to initial

conditions of time-reversal processes.

The experimental setup of Derode et al. (1995) is reproduced in figure 1.1. The

whole setup is submerged in water (sound speed c=1500 m/s). On the left an

ultrasonic acoustic source is shown, emitting a short 3MHz pulse. In the middle

a forest of steel rods causes strong multiple scattering of the pulse. On the right,

a linear array of 128 piezo-electric transducers records the scattered wavefield,

time-reverses it, and sends it back into the medium.

1



2 1.1 Breaking the irreversibility paradigm

Figure 1.1: Experimental setup used by Derode et al. (1995) to demonstrate the
reversibility of transient acoustic waves through high-order multiple scattering. The whole
setup is submerged in water (sound speed c=1500 m/s). On the left an ultrasonic acoustic
source is shown, emitting a short 3MHz pulse. In the middle a forest of steel rods causes
strong multiple scattering of the pulse. On the right, a linear array of 128 piezo-electric
transducers records the scattered wavefield, time-reverses it, and sends it back into the
medium. Despite the strong multiple scattering the wavefield retraces its complex path
through the medium and focuses on the original source location.

Figure 1.2: Experimental results of Derode et al. (1995), demonstrating the reversibility
of transient acoustic waves through high-order multiple scattering. In the top panel, the
3MHz acoustic pulse is shown. In the middle panel, the strongly scattered signal recorded
on the central transducer is shown. Note that the span of the time-axis is unchanged. In
the bottom panel, the signal recorded at the original source location after time-reversal is
shown. Despite the strong multiple scattering the wavefield focuses on the original source
location and the 160 µs signal is re-compressed to the original duration of the source pulse.
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The results are shown in figure 1.2. Despite the strong multiple scattering

the wavefield retraces it complex path through the medium and focuses on the

original source location!

While it had been known for centuries that the wave-equation in theory is

invariant for time-reversal1, in practice, the nonlinear dependence of the multiply

scattered waves on the medium and the finite knowledge of the medium and

precision of the recording equipment were expected to lead to instabilities in the

reversal process and destroy the time-reversal. And there were good reasons

to believe this: after all, it was found to do so in imaging and inversion of

acoustic, electro-magnetic and elastic waves and quantum mechanical potentials.

Interestingly, even Derode et al. (1995) maintain this view as they refer to:

the usual sensitivity to initial conditions of time-reversal processes.

Could it really be that Derode et al. (1995) had succeeded in doing the

impossible? This would truly be remarkable because it appears to defy the 2nd

law of thermodynamics, which gives time its direction. Throw a stone in the pond

and one observes the ripples diverging, however the physically equally plausible

converging waves are never observed. Yet, the reported experimental results

proved extremely robust and sparked a wave of research into multiple scattering.

The apparent paradox of stability was later elegantly resolved in an illuminating

comment by Snieder and Scales (1998):

The upshot of this issue is that when one discusses instability of

multiple scattering processes one should carefully state whether one

refers to instability of the wavefield to perturbations of the boundary

conditions, instability of the wavefield to perturbations of the medium,

or instability of the inverse problem to perturbations of the data. These

are different issues that should not be confused. In any case, the

experiments of Finks group have shown that it is possible to make

use of multiply-scattered waves in an industrial context.

Roughly at the same time as Derode et al. (1995) reported their remarkable

results, researchers in the apparently unrelated fields of diffuse field ultrasonics

1Since the wave equation only contains 2nd order derivatives in time, replacing t by −t in a
solution does not change the result.



4 1.1 Breaking the irreversibility paradigm

and optics were starting to observe phenomena that could not be accounted

for using even the most complicated diffusive field theories of radiative transfer.

Diffuse ultrasonic fields are usually described without reference to any but the

simplest and most local aspects of field phase (Weaver and Lobkis, 2006). Yet

coherent backscattering (Akkermans et al., 1988; de Rosny et al., 2004) and

Anderson localization (Weaver, 1990) were emerging examples where the global

phase of the wavefield could no longer be ignored.

Draeger and Fink (1999), working on one-bit time-reversal of a multiply

scattered wavefield propagating on a silicon wafer, were able to show both

theoretically and experimentally that by correlation of a chaotic wavefield at

points A and B due to a single source at C, the Green’s function between the

two points is obtained, convolved with the backscattering response from a source

point C to itself. They called their relation the “cavity equation”. The derivation

was based on normal mode theory and the fact that non-diagonal terms in the

crosscorrelation of the modal expansions can be ignored if the boundary of the

silicon wafer satisfies certain ergodicity properties.

In diffuse field ultrasonics, a similar argument led Weaver and Lobkis (2001)

to predict the emergence of the Green’s function of a medium from field-

field correlations of diffuse fields. The prediction was essentially confirmed in

experiments using thermally excited elastic waves (thermal phonons) in finite

bodies at MHz frequencies (Weaver and Lobkis, 2001, 2003).

Separately, in exploration seismology, Wapenaar (2003) and Wapenaar et al.

(2004), using one way reciprocity theorems of the correlation type, succeeded

in proving the conjecture by Claerbout (1968) that the reflection response for

arbitrary inhomogeneous 3D-media can be computed from the crosscorrelation

of noise recordings in a process called “daylight imaging”. In an early influential

paper titled “Synthesis of a layered medium from its acoustic transmission

response” in 1968, Claerbout had shown that the reflection seismogram from

a surface source and a surface receiver is one side of the autocorrelation of the

seismogram from a source at depth and the same receiver2. What distinguishes

all these methods is their ability to use the full multiply scattered wave field in a

constructive and stable way.

2Interestingly, he also speculated on that “the synthesis problem with p-sv conversions may
be solvable with two-channel time-series analysis.”
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Without immediately realizing it, Claerbout, Draeger, Weaver and Wapenaar

(and their co-workers) had all discovered a process that is now known as

interferometric Green’s function construction. In interferometry, waves recorded

at two receiver locations are correlated to find the Green’s function between the

locations. The central idea in interferometry is that there may be energy which

propagates from an original source point to one of the receiver locations via

the other receiver location. This energy is recorded at both receivers and, per

definition, the path leading up to the first receiver is the same. By crosscorrelating

the data, such overlapping paths are removed and the resulting event in the

crosscorrelation has a traveltime that corresponds to a wave propagating between

the two receivers3. Of course, there will also be many spurious events resulting

from crosscorrelation between events that do not have a part of their path

in common. However, by stacking crosscorrelations for many, appropriately

distributed, source locations such spurious events can be removed while the true

overlapping paths will be preserved4.

Finally, Derode et al. (2003) showed that there exists a close link between time-

reversed acoustics and interferometry. By heuristically reasoning what would be

observed when watching time-reversal in a point other than the original source

point he was able to show that the time-reversed Green’s function between the

source point and the second point would be observed. Thus, by replacing one

(passive) receiver from the previous paragraph by a source, it becomes clear that

the overlapping paths (now occurring between the second point and the time-

reversal mirror) are undone in the time-reversal. Thus, the Green function can

be recovered as long as the sources in the medium are distributed forming a

perfect time-reversal device.

3Incidentally, the use of crosscorrelations to find traveltime differences between related events
on two traces is also a central theme in chapter 5, where the receiver function method will be
discussed

4At this point, the terms “stacking” and “appropriately distributed” are rather vague and
it is not intuitively clear why the spurious events should interfere destructively while the signal
interferes constructively. In chapters 2, and 3, these claims will be backed up and formally
derived for acoustic and elastodynamic wave propagation and the conditions for appropriate
distribution discussed in detail.
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1.2 Remaining quest(ions) for the coda

When looking at the recent developments surrounding the use of multiply

scattered waves a pattern emerges: In all these methods successfully making

use of coda waves (i.e., coda wave interferometry, time-reversal and reflection-

transmission transforms) crosscorrelation is the essential ingredient, or equiva-

lently, convolution with the time-reverse. Indeed, by now it is well accepted that

these algorithms all belong to the same class.

Yet important questions remain unanswered. Under which conditions exactly

do the Green’s functions emerge? How do we reconcile the results for random

and deterministic media (diffuse versus complex wavefields)? In random media,

the (uncontrolled) sources, usually distributed throughout the medium, are

assumed to be spatially and temporally uncorrelated and have white noise spectra.

Construction involves crosscorrelation of just two passive noise recordings of long

duration, but no integration. In deterministic media, on the other hand, the

sources are typically controlled and they surround the area of interest.

In the following, I show that for deterministic media (and, incidentally, for

random media as well), provided the sources on the surrounding surface are

excited separately, the Green’s function can be reconstructed without having to

rely on so-called time/event averaging (see below). Constructive and destructive

interference instead arises by integration over the surrounding surface. A physical

explanation based on Huygens’ principle is given. In contrast, in random media,

since a superposition of uncontrolled sources is measured, constructive and

destructive interference arises precisely and only because the unwanted cross-

terms in the correlation are in the ensemble average uncorrelated and vanish

thence.

Time/event averaging also raises questions about convergence rate of the

emerging Green’s function. Is it feasible to have uncorrelated simultaneous

sources on the surrounding surface of a deterministic medium as well? Snieder

(2002) discusses the emergence of the ballistic wave in surface wave interferometry

and finds that there is a fundamental limit to the signal-to-noise ratio for a given

record length and number of observations. In later chapters, where interferometry

is exploited in the forward modeling of wave propagation, I explore the possibility

of encoding the sources on the surrounding surface using pseudo-noise sequences
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and firing them simultaneously and derive similar fundamental limits on encoding

and decoding.

How do the boundary conditions affect the reconstruction? What is the

difference between interferometry in (partially) open versus closed media? I

argue that, since time-reversal and interferometric Green’s function construction

are based on reciprocity theorems of the correlation type and since the media in

the forward and time-reversed states are identical and have the same boundary

conditions, it follows that no sources are required on interfaces with homogeneous

boundary conditions. This is confirmed in the given examples. Also, the

implications of having outgoing (absorbing or radiation) boundary conditions on

(part of) the surrounding surface are discussed, as this leads to a simplification

in the reconstruction formula and/or a reduced illumination or modeling effort.

With the scene set by these remarkable observations and remaining unan-

swered questions, I now give a brief formal outline of the thesis.

1.3 Outline of the thesis

In chapter 2, a methodology based on time-reversal and interferometry is

presented that provides a new perspective on modeling of wave propagation in

generally inhomogeneous media. The approach relies on a representation theorem

of the wave equation to express the Green’s function between points in the interior

as an integral over the response in those points due to sources on a surface

surrounding the medium. A highly efficient two-stage modeling algorithm is

then discussed where, in an initial phase, the model is systematically illuminated

from a surface surrounding the medium using a sequence of conventional forward

modeling runs and, in a second phase, Green’s functions between arbitrary points

in the volume can be computed by crosscorrelation and summation. The method

is illustrated on the acoustic Pluto model and a physical interpretation of the

Green’s function reconstruction is given. A possible redundancy in the boundary

source illumination is also investigated.

In chapter 3, the interferometric modeling method is extended to elastic media

and many of the key ideas introduced in chapter 2 are now discussed and explained

in more detail. It is shown how the “theorem” by Derode et al. (2003) can be
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derived from an elastodynamic representation theorem. Connections with the

Porter-Bojarski equation in the field of generalized holography in optics (Porter,

1969, 1970; Bojarski, 1983) and reciprocity theorems of the correlation type

(de Hoop, 1988, 1995; Fokkema and van den Berg, 1993; Wapenaar, 2004) are also

explored. A step-by-step example illustrates the method on an acoustic model

consisting of isotropic point scatterers embedded in a homogeneous background

medium. This is followed by an example for a complex region of the elastic

Pluto model and a detailed discussion of computational aspects. A method to

drastically speed up the initial forward modeling phase, by encoding the boundary

sources and exciting them simultaneously, is also discussed.

In chapter 4, I show that the interferometric modeling method may provide the

crucial missing component of an efficient forward modeler in a waveform inversion

engine, as an exact boundary condition for arbitrary inhomogeneous locally

perturbed scattering problems is proposed. The method uses a source wavefield

recorded for the unperturbed model as a boundary condition on the truncated

computational domain and updates this boundary condition at every timestep.

This is done by extrapolating the wavefield scattered off the perturbations from a

surface surrounding the perturbations to the boundary with a Kirchhoff integral.

The boundary condition preserves all high-order long-range interactions with the

unperturbed background model. Using the interferometric modeling method all

Green’s functions required for the source wavefield and the extrapolation through

the unperturbed model to update the boundary condition (BC) can be computed

efficiently and flexibly. Interferometric modeling also removes the need to define

the perturbation regions in advance. The method is illustrated using a simple

one-dimensional (1D) example.

In chapter 5, I show that the recent work in the seismological community on

kinematic aspects of receiver function processing can be extended significantly,

by building on relevant results from the exploration and production seismic

community in the areas of velocity analysis, stacking and migration. I also

propose two alternative ways of receiver function calculation, beyond the usual

slowness domain approach: space-time domain (2D) deconvolution, which treats

the spatial aspects of mode-conversion completely analogously to the temporal

aspects, and model independent receiver function calculation. This last approach

enables, at least in theory, complete removal of an incident mode in arbitrarily
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complex inhomogeneous media, demonstrating the full potential of receiver

function calculation in terms of source equalization. Dynamic aspects of receiver

function processing are also discussed as these naturally arise when examining the

differences between receiver function calculation in a reflection and a transmission

setting.

In chapter 6, a discussion and outlook are provided for the work on time-

reversal and interferometry, the exact boundary condition and receiver functions.

It is argued that the interferometric modeling method is ideally suited for “tun-

able” full waveform modeling, where accuracy can be traded-off for computational

efficiency, without compromising on multiple scattering and maintaining sensitiv-

ity to the full seismogram. A suite of suggestions is provided to support this. I

also suggest that, by combining the flexibility of interferometric modeling with

so-called finite-difference injection methods (Robertsson and Chapman, 2000),

we have the essential ingredients for efficient and flexible targeted full waveform

inversion. The potential of frequency domain implementations of interferometric

modeling is also highlighted. Finally, the outlook for reflection seismic receiver

functions is presented.

First, however, we start with time-reversed acoustics and its relation with

interferometry and full waveform modeling.
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Chapter 2

Modeling of wave propagation in

inhomogeneous media1

We present a methodology providing a new perspective on modeling

and inversion of wave propagation satisfying time-reversal invariance

and reciprocity in generally inhomogeneous media. The approach

relies on a representation theorem of the wave equation to express the

Green’s function between points in the interior as an integral over the

response in those points due to sources on a surface surrounding the

medium. Following a predictable initial computational effort, Green’s

functions between arbitrary points in the medium can be computed

as needed using a simple cross-correlation algorithm.

2.1 Introduction

Many applications in diverse fields such as communications analysis, waveform

inversion, imaging, survey and experimental design, and industrial design, require

a large number of modelled solutions of the wave equation in different media.

The most complete methods of solution, such as finite differences (FD), which

accurately model all high-order interactions between scatterers in a medium,

typically become prohibitively expensive for realistically complete descriptions

1This chapter has been published as: van Manen, D., Robertsson, J.O.A., and Curtis, A.,
2005, Modeling of wave propagation in inhomogeneous media, Physical Review Letters, Vol.
94, pp. 164301 (week ending 29 APRIL 2005).

11
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of the medium and the geometries of sources and receivers and hence for

solving realistic problems based on the wave equation. Here we show that the

key to breaking this apparent paradigm lies in a basic reciprocity argument

in combination with recent theoretical advances in the fields of time-reversed

acoustics (Derode et al., 2003) and interferometric seismic imaging (Weaver and

Lobkis, 2001; Wapenaar et al., 2004; Wapenaar, 2004; Schuster, 2001).

In time-reversed acoustics, invariance of the wave equation for time-reversal

can be exploited to focus a wave field through a highly scattering medium on

an original source point (Derode et al., 1995). Cassereau and Fink (1992, 1993)

realized that the acoustic representation theorem (Wapenaar and Fokkema, 2004)

can be used to time-reverse a wave field in a volume by creating secondary

sources (monopole and dipole) on a surface surrounding the medium such that

the boundary conditions correspond to the time-reversed components of a wave

field measured there. These secondary sources give rise to the back-propagating,

time-reversed wave field inside the medium that collapses onto itself at the original

source location. Note that since there is no source term absorbing the converging

wave field, the size of the focal spot is limited to half a (dominant) wavelength in

accordance with diffraction theory (Cassereau and Fink, 1992). The diffraction

limit was overcome experimentally by de Rosny and Fink (2002) by introducing

the concept of an “acoustic sink”.

In interferometry, waves recorded at two receiver locations are correlated

to find the Green’s function between the locations. Interferometry has been

successfully applied to helioseismology (Rickett and Claerbout, 2000), ultrasonics

(Weaver and Lobkis, 2001) and exploration seismics (Wapenaar et al., 2004).

Recently it was shown that there exists a close link between the time-reversed

acoustics and interferometry disciplines when Derode et al. (2003) analyzed

the emergence of the Green’s function from field-field correlations in an open

scattering medium in terms of time-reversal symmetry. The Green’s function

can be recovered as long as the sources in the medium are distributed forming a

perfect time-reversal device. A rigorous proof for the general case of an arbitrary

inhomogeneous elastic medium was presented by Wapenaar (2004).
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2.2 Theory and Method

Our starting point is the acoustic wave equation in the space-frequency domain:

∂i(ρ
−1∂ip)+(ω2/K)p = f , where p = p(x, ω) denotes the pressure field at location

x and frequency ω, ρ(x) and K(x) denote the mass density and incompressibility

respectively and f = f(x, ω) is a source term denoting the change of volume

injection rate density over time. Now consider two states A and B that could

occur in the same medium independently: ∂i(ρ
−1∂ip

A) + (ω2/K)pA = fA and

∂i(ρ
−1∂ip

B) + (ω2/K)pB = fB. The acoustic representation theorem can be

derived by multiplying the equation for the first state by pB(x, ω) and the equation

for the second state by pA(x, ω), subtracting and integrating the results over a

volume V , applying Gauss’ theorem to convert the volume integral to a surface

integral and identifying state A with a mathematical state [i.e., a state involving

(analytic) Green’s functions rather than measured quantities (Wapenaar and

Fokkema, 2004)]: fA(x) = δ(x − x′) and pA(x) = G(x,x′), where δ(x) denotes

the Dirac delta distribution and G(x,x′) the Green’s function due to a source at

x′. Following a reciprocity argument, interchanging the coordinates x ↔ x′ and

dropping the superscripts for state B this procedure yields:

p(x) =

∫

V

G(x,x′)f(x′)dV ′

+

∫

S

1

ρ(x′)
[∇′G(x,x′)p(x′)−G(x,x′)∇′p(x′)] · n dS ′, (2.1)

where ∇′G(x,x′) denotes the gradient of the Green’s function with respect to

primed coordinates and n the normal to the boundary. Thus, the wave field can

be computed everywhere inside the volume V once the exciting force f(x′) inside

the volume and the wave field p(x′) and its gradient ∇′p(x′) on the surrounding

surface S are known. To time-reverse a wave field in a volume V , the wave field

p and its gradient ∇′p, measured at the surface S in a first step, have to be time-

reversed on the surface such that the time-reversed pressure field ptr(x) radiated

from the boundary can be written:

ptr(x) =

∫

S

1

ρ(x′)
[∇′G(x,x′)p∗(x′)−G(x,x′)∇′p∗(x′)] · n dS ′, (2.2)
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where ∗ denotes complex conjugation and we have ignored the volume integral

which corresponds to the acoustic sink (de Rosny and Fink, 2002). Note that

Eq. 2.2 can be used to compute the time-reversed wave field (including all high-

order interactions) at any location, not just at an original source location. Now,

assume that the wave field p(x′) was due to a point source at location x1 and

that we have p(x′) = G(x′,x1). By measuring the wave field in a second location

x2, the Green’s function and its time-reverse between the source point x1 and the

second point x2 are observed (Derode et al., 2003; Wapenaar, 2004):

G∗(x2,x1)−G(x2,x1) =∫

S

1

ρ(x′)
[∇′G(x2,x

′)G∗(x′,x1)−G(x2,x
′)∇′G∗(x′,x1)] · n dS ′, (2.3)

where the negative forward Green’s function −G(x2,x1) arises from the missing

acoustic sink (Cassereau and Fink, 1992; de Rosny and Fink, 2002). Using

reciprocity, we can rewrite Eq. 2.3 so that it involves only sources on the boundary

enclosing the medium:

G∗(x2,x1)−G(x2,x1) =∫

S

1

ρ(x′)
[∇′G(x2,x

′)G∗(x1,x
′)−G(x2,x

′)∇′G∗(x1,x
′)] · n dS ′. (2.4)

Thus, the Green’s function between two points x1 and x2 can be calculated once

the Green’s functions between the enclosing boundary and these points are known.

A highly efficient two-stage modelling strategy follows from Eq. 2.4: first, the

Green’s function terms G and ∇′G are calculated from boundary locations to

internal points in a conventional forward modelling phase; in a second inter-

correlation phase, the integral is calculated requiring only cross-correlations

and numerical integration. Since the computational cost of typical forward

modelling algorithms (e.g., FD) does not significantly depend on the number

of receiver locations but mainly on the number of source locations, efficiency

and flexibility are achieved by storing the wave field modelled for each of the

boundary sources in as many points as possible throughout the medium. To

calculate the Green’s function between two points the recordings in the first point

due to the dipole sources on the boundary are cross-correlated with the recordings
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in the second point due to the monopole sources, and vice-versa. The resulting

cross-correlations are subtracted and numerically integrated over the boundary of

source locations. Unprecedented flexibility follows from the fact that the Green’s

function can be calculated between all pairs of points that were defined up front

and stored in the initial modelling phase. Thus, we calculate a partial modelling

solution that is common to all Green’s functions, then a bespoke component for

each Green’s function.

2.3 Results

Our method is illustrated using a FD implementation of the two-dimensional

acoustic wave equation for a typical modelling scenario in an exploration seismic

setting. In Fig. 2.1 the compressional wave velocity in a 4.6 x 4.6 km representa-

tive region of an Earth model often used to benchmark marine seismic imaging

algorithms (Stoughton et al., 2001) is shown. Note the high velocity (4500 m/s)

salt body on the right. In black, two points of interest (offset 1 km) are shown.

The dotted line denotes the boundary with NS = 912 source locations distributed

with a density consistent with the local spatial Nyquist frequency. Outgoing (i.e.,

radiation or absorbing) boundary conditions (Clayton and Engquist, 1977) are

applied right outside the surface enclosing the points of interest to truncate the

computational domain.

Forward simulations were carried out for each of the 912 source locations on

the boundary and the waveforms stored at 90,000 points distributed throughout

the model. Note that because of the cross-symmetry of the terms in the integrand

in Eq. 2.4, no sources are required along interfaces with homogeneous boundary

conditions (e.g., the Earth’s free surface). Depending on the particular wave

equation (scalar or vector), several forward simulations may have to be carried out

for each source location. In the acoustic example two data sets are required: with

monopole and dipole sources respectively. However, when the surface surrounding

the medium has outgoing boundary conditions, the wave field and its gradient

(traction) are directly related (Holvik, 2003). Hence, the normal derivatives can

be calculated from the wave field itself without additional modelling. Fig. 2.2

shows the integrand of Eq. 2.4, inversely weighted by boundary source density,
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Figure 2.1: 2D acoustic marine seismic model [compressional wave velocity] (see e.g.,
Stoughton et al., 2001, for a description of the model). The color scale is clipped to display
weak velocity contrasts (the velocity of salt is 4500 m/s).

for each source location x′ and for the two points x1 and x2 in Fig. 2.1. In

Fig. 2.3, the resulting Green’s function between the points in Fig. 2.1 computed

using Eq. 2.4, and a reference trace computed by direct FD modelling, are shown

in red and blue respectively.

The signal at negative times corresponds to the waves flowing back in time

and opposite direction past the second point. The four inserts show the excellent

match between the reference trace and the new method in detail.

Interestingly, the time-series in Fig. 2.2 bear little resemblance to the final

Green’s function in Fig. 2.3. Eq. 2.4 sums these signals along the horizontal axis

and hence relies on the delicate constructive and destructive interference of time-

reversed waves back-propagating through the medium, recombining and undoing

the scattering at every discontinuity to produce the Green’s function.

In Fig. 2.2, each column represents the set of all waves travelling from

point x1 to a single boundary source, correlated with the Green’s function

from that boundary source to x2. Some of the waves travelling from x1 to

this boundary source may pass through x2 before being recorded and therefore

have the remainder of their path in common with waves emitted from x2 in the

same direction (or wavenumber). The traveltimes associated with such identical
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Figure 2.2: Green’s function inter-correlation gather (weighted) for the two points shown
in Fig. 2.1. The low correlation amplitude for boundary sources 250-310 corresponds to the
shadow of the salt body.
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Figure 2.3: (A) Waveform computed by summation of the weighted inter-correlation
gather shown in Fig. 2.2 (red) compared to a conventional FD computation (blue).
Inserts show particular events in the time-series. (B) Waveform computed after successive
subsampling of the inter-correlation gather.
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parts of the path are eliminated in the cross-correlation and the remaining part

corresponds to an event in the Green’s function from x1 to x2. Similarly, some

waves emitted from x2 may travel to the boundary source location via x1 and

have a common section of path between x1 and the boundary source. Again

traveltime on the common section will be eliminated and give rise to the same

event in the Green’s function from x1 to x2 at negative (a-causal) times. Note

that the wavenumbers involved for positive and negative times are in general not

parallel since they are related to the background structure of the whole model

(one or other may not exist for the same boundary source). Hence, waves at

positive and negative times are reconstructed differently. All cross-correlations

involving energy that does not pass through x2 are eliminated by destructive

interference by summation of the columns (Snieder, 2004).

The new method is particularly attractive in applications where Green’s

functions are desired between a large number of points interior to a medium, but

where there are no common source or receiver points. No other existing method

could offer full waveforms at comparable computational cost. The method also

offers great flexibility where the exact interior points are not known in advance

since Green’s functions can be computed on an “as needed” basis from Green’s

functions between points on the surrounding surface and its interior. We have

shown how the latter Green’s functions constitute a common component of all

Green’s functions in the medium through Eq. 2.4. In the example above, this

common component is stored compressed by a factor of 50 compared to explicitly

storing all desired Green’s functions between pairs of interior points.

Whereas traditional approximate modelling methods typically impose restric-

tions with respect to the degree of heterogeneity in the medium of propagation

or neglect high-order scattering, the new time-reversal modelling methodology

allows us instead to compromise on noise level while maintaining high-order scat-

tering and full heterogeneity in the medium. Recent experimental and theoretical

work indicates that time-reversed imaging is robust with respect to perturbations

in the boundary conditions (Derode et al., 2003; Snieder and Scales, 1998). For

cases where the wave propagation is heavily dominated by multiple scattering

even a single source may be sufficient to refocus essential parts of a time-reversed

signal (Draeger and Fink, 1999). Also for more deterministic models, such as the

one in the example, it is possible to substantially reduce the number of sources
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and still recover essential parts of the signal. In Fig. 2.3B we show the part of

the signal corresponding to the insert in the upper right corner of Fig. 2.3A as

we reduce the number of sources around the boundary. Even for as few as one

sixteenth of the original number of sources we are able to reproduce amplitude

and phase of an arrival of interest fairly accurately, but with an increased noise

level. Clearly, the required number of sources will depend on the application. Our

numerical experiments thus confirm the robustness of the methodology with re-

spect to variations in parameters such as location and discretization of integration

surfaces.

We also experimented with exciting the boundary sources simultaneously by

encoding the source signals using pseudo-noise sequences (Fan and Darnell, 2003)

and with simultaneous sources distributed randomly in the medium (Derode et al.,

2003) as two alternative ways to reduce the number of sources. There is a well

known limit to the quality of separation of such sequences of a given length

when emitted simultaneously (Welch, 1974). Insufficient separation of sequences

again is manifest in an increased noise level in the final Green’s functions. In

all cases, the limits of separation caused relatively high noise levels compared

to the equivalent FD effort using the method described above, but for many

applications, the possibility to trade-off signal-to-noise ratio to CPU time without

compromising on medium complexity or high-order scattering will be another

attractive property of the new method.

Thus, we have shown how recent insights into the relationship between Green’s

theorem and time-reversal can be extended to modelling of wave propagation by

invoking reciprocity. We expect that this may significantly change the way we

approach modelling and inversion of the wave equation in future.



Chapter 3

Interferometric modeling of wave

propagation in inhomogeneous

elastic media using time-reversal

and reciprocity1

Time-reversal of arbitrary elastodynamic wavefields in partially open

media can be achieved by measuring the wavefield on a surface

surrounding the medium and applying the time-reverse of those

measurements as a boundary condition. We use a representation

theorem to derive an expression for the time-reversed wavefield at

arbitrary points in the interior. When this expression is used to

compute, in a second point, the time-reversed wavefield originating

from a point source, the time-reversed Green’s function between

the two points is observed. By invoking reciprocity we obtain an

expression that is suitable for modeling and from this we develop an

efficient and flexible two-stage modeling scheme. In the initial phase,

the model is systematically illuminated from a surface surrounding the

medium using a sequence of conventional forward modeling runs. Full

waveforms are stored for as many points in the interior as possible.

1This chapter has been published as: van Manen, D., Curtis, A., and Robertsson, J.O.A.,
2006, Interferometric modeling of wave propagation in inhomogeneous elastic media using time-
reversal and reciprocity, Geophysics, Volume 71, Issue 4, pp. SI47-SI60 (July-August 2006).
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In the second phase, Green’s functions between arbitrary points in

the volume can be computed by crosscorrelation and summation of

data computed in the initial phase. We illustrate the method with

a simple acoustic example and then apply it to a complex region

of the elastic Pluto model. It is particularly efficient when Green’s

functions are desired between a large number of points but where

there are no common source or receiver points. The method relies

on interference of multiply scattered waves but is stable. We show

that encoding the boundary sources using pseudo-noise sequences and

exciting them simultaneously, akin to daylight imaging, is inefficient

and in all explored cases leads to relatively high noise levels.

3.1 Introduction

Many applications in diverse fields such as communications analysis, waveform

inversion, imaging, survey and experimental design, and industrial design, require

a large number of modeled solutions of the wave equation in different media.

The most complete methods of solution, such as finite differences (FD), which

accurately model all high-order interactions between scatterers in a medium,

typically become prohibitively expensive for realistically complete descriptions

of the medium and geometries of sources and receivers, and hence for solving

realistic problems based on the wave equation. In chapter 2 (van Manen et al.,

2005) I showed that the key to breaking this apparent paradigm lies in combining a

basic reciprocity argument with contemporary theoretical advances in the fields of

time-reversed acoustics (Derode et al., 2003) and seismic interferometry (Schuster,

2001; Weaver and Lobkis, 2001; Wapenaar et al., 2004).

In time-reversed acoustics, the invariance of the wave equation to time-reversal

is exploited to focus a wavefield through a highly scattering medium on an original

source point (Derode et al., 1995). Cassereau and Fink (1992, 1993) realized that

an acoustic representation theorem can be used to time-reverse a wavefield in

a volume by creating secondary sources on a surface surrounding the medium

such that the boundary conditions correspond to the time-reversed components

of a wavefield measured there. These secondary sources give rise to the back-
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propagating, time-reversed wavefield inside the medium that collapses onto itself

at the original source location. Note that since there is no source term absorbing

the converging wavefield, the size of the focal spot is limited to half a (dominant)

wavelength in accordance with diffraction theory (Cassereau and Fink, 1992).

The diffraction limit was overcome experimentally by de Rosny and Fink (2002)

by introducing the concept of an “acoustic sink”.

In interferometry, waves recorded at two receiver locations are correlated

to find the Green’s function between the locations. Interferometry has been

successfully applied to helioseismology (Rickett and Claerbout, 2000), ultrasonics

(Weaver and Lobkis, 2001) and exploration seismics (Wapenaar et al., 2004;

Bakulin and Calvert, 2004, 2006). Recently it was shown that there exists

a close link between the time-reversed acoustics and interferometry disciplines

when Derode et al. (2003) analyzed the emergence of the Green’s function from

field-field correlations in an open scattering medium in terms of time-reversal

symmetry. The Green’s function can be recovered as long as the sources in the

medium are distributed forming a perfect time-reversal device.

Here, we extend the interferometric modeling introduced in chapter 2 (van

Manen et al., 2005) to elastic media and show how the “theorem” by Derode

et al. (2003) can be derived from an elastodynamic representation theorem.

We emphasize the connection with the Porter-Bojarski equation in the field

of generalized holography in optics (Porter, 1969, 1970; Bojarski, 1983) and

reciprocity theorems of the correlation type (de Hoop, 1988; Fokkema and van den

Berg, 1993; de Hoop, 1995; Wapenaar et al., 2004). More specifically, we show

how the elastodynamic representation theorem can be used to time-reverse a

wavefield in a volume and how, using the appropriate sets of Green’s functions,

the time-reversed wavefield can be computed at any point in the interior. Note

that the elastodynamic Kirchhoff integral has previously been used as a boundary

condition in reverse-time finite-difference migration (Mittet, 1994; Hokstad et al.,

1998) and in the finite-difference injection method proposed by Robertsson and

Chapman (2000) to efficiently compute FD seismograms after model alterations.

By applying a simple reciprocity argument it is shown how the elastodynamic

Green’s tensor between arbitrary points in a volume can be computed using

only crosscorrelations and numerical integration once the Green’s tensors from

sources on the surrounding surface to these points are known. It is argued that
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illuminating a model from the outside leads to a flexible and efficient modeling

algorithm.

The method is first illustrated using a simple acoustic model consisting of

isotropic point scatterers embedded in a homogeneous background medium.

This is followed by an example for a more complicated inhomogeneous elastic

medium and a detailed discussion of computational aspects. The limits of using

pseudo-noise sources on the boundary and exciting them simultaneously are also

discussed. Finally, we speculate about reducing the number of sources on the

surrounding surface as a way of approximate modeling that maintains high-order

scattering and suggest possible synergies with methods of inversion for medium

properties.

In the next section the interferometric modeling method will be derived

from the elastodynamic representation theorem, closely following the physically

intuitive reasoning of Derode et al. (2003). However, to fully understand the

relation between time-reversal, interferometry and generalized holography it is

useful to briefly review reciprocity first.

3.2 Reciprocity and the representation theorem

A reciprocity theorem relates two independent acoustic, electromagnetic or

elastodynamic states that can occur in the same spatio-temporal domain, where

a state simply means a combination of material parameters, field quantities,

source distributions, boundary conditions and initial conditions that satisfy the

relevant wave equation. In its most general form it relates a specific combination

of field quantities from both states on a surface surrounding a volume, to

differences in source distributions, medium parameters, boundary conditions or

even flow velocities (in cases where the material is moving) throughout the volume

(Fokkema and van den Berg, 1993; de Hoop, 1995; Wapenaar et al., 2004).

Here we consider a special case of elastodynamic reciprocity where the medium

in both states is identical and non-flowing. In that case, states (A) and (B) are

simply characterized by the following wave equations (in the space-frequency
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domain):

ρω2u
(A)
i + ∂j

(
cijkl∂ku

(A)
l

)
= −f

(A)
i , (3.1)

ρω2u
(B)
i + ∂j

(
cijkl∂ku

(B)
l

)
= −f

(B)
i , (3.2)

where u
(A)
i and u

(B)
i denote the components of particle displacement for state (A)

and (B), respectively, generated by the components of body force density f
(A)
i

and f
(B)
i and where cijkl(x) and ρ(x) are the stiffness tensor and mass density,

respectively, at location x in the medium. Note that Einstein’s summation

convention for repeated indices is used. The Betti-Rayleigh reciprocity theorem

can be derived by multiplying the first equation by u
(B)
i and the second by u

(A)
i ,

subtracting the results, integrating over a volume V and using Gauss’ theorem

to convert volume integrals to surface integrals. This gives (Snieder, 2002)

∫

S

{
u

(B)
i njcijkl∂ku

(A)
l − njcijkl∂ku

(B)
l u

(A)
i

}
dS =

−
∫

V

{
f

(A)
i u

(B)
i − f

(B)
i u

(A)
i

}
dV. (3.3)

Equation 3.3 is called a reciprocity theorem of the convolution type because the

displacement and traction from the two states multiply each other (Bojarski,

1983; de Hoop, 1988). A Betti-Rayleigh reciprocity theorem of the correlation

type can be derived by taking the complex conjugate of both sides of equation 3.1:

ρω2u
∗(A)
i + ∂j

(
cijkl∂ku

∗(A)
l

)
= −f

∗(A)
i , (3.4)

where a star ∗ denotes complex conjugation, and following the same procedure

that led up to equation 3.3. This gives

∫

S

{
u

(B)
i njcijkl∂ku

∗(A)
l − njcijkl∂ku

(B)
l u

∗(A)
i

}
dS =

−
∫

V

{
f
∗(A)
i u

(B)
i − f

(B)
i u

∗(A)
i

}
dV, (3.5)

where now the quantities from both states occur in pairs that correspond
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to crosscorrelation in the time-domain. At this stage, however, the physical

significance of a reciprocity theorem of the correlation type is not clear intuitively.

A representation integral can be derived from equation 3.3 by identifying

one state with a mathematical or Green’s state (i.e., a state where the source

is a unidirectional point force and the resulting particle displacement is called

the elastodynamic Green’s function) and the other with a physical state that

can be any wavefield resulting from an arbitrary source distribution. Thus,

we arbitrarily choose state (B) to be the Green’s state and take f(B) a unit

point force at location x′ in the n direction: f
(B)
i (x) = δinδ(x − x′), where

δin and δ(x) denote the Kronecker symbol and Dirac distribution, respectively,

and the wavefield u
(B)
i (x) becomes the Green tensor: u

(B)
i (x) = Gin(x,x′). We

leave state (A) unspecified. Inserting these expressions, carrying out the volume

integral, dropping the superscripts for state (A) and making no assumptions

about the boundary conditions we arrive at

un(x′) =

∫

V

Gin(x,x′)fi(x) dV

+

∫

S

{Gin(x,x′)njcijkl∂kul(x)− njcijkl∂kGln(x,x′)ui(x)} dS. (3.6)

Finally, applying reciprocity to the Green’s tensor and exchanging the coordinates

x ↔ x′ and indices i ↔ n we arrive at the elastodynamic representation theorem

(Snieder, 2002)

ui(x) =

∫

V

Gin(x,x′)fn(x′) dV ′

+

∫

S

{Gin(x,x′)njcnjkl∂
′
kul(x

′)− njcnjkl∂
′
kGil(x,x′)un(x′)} dS ′, (3.7)

where ∂′kGil(x,x′) denotes the partial derivative of the Green’s tensor in the k

direction with respect to primed coordinates and n denotes the normal to the

boundary. Thus, the wavefield ui(x) can be computed everywhere inside the

volume V once the exciting force fn(x′) inside the volume and the displacement

un(x′) and the associated traction njcijkl∂
′
kul(x

′) on the surrounding surface S

are known.
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3.3 Time-reversal using the representation

theorem

To time-reverse a wavefield in a volume V , one possibility would be to reverse

the particle velocity at every point inside the volume simultaneously. However,

Cassereau and Fink (1992) noted that for open systems (i.e., with outgoing

boundary conditions on at least part of the surrounding surface S) time-reversal

can also be achieved by measuring the wavefield and its gradient on the enclosing

surface, time-reversing those measurements and letting them act as a time-varying

boundary condition on the surface S. Their approach directly follows from

an application of Green’s theorem (or the Kirchhoff-Helmholtz integral) and is

easily extended to elastodynamic wave propagation using equation 3.7 derived

above. Thus, to time-reverse any wavefield ui(x), due to an arbitrary source

distribution fn(x), we substitute the complex conjugate of the wavefield (phase-

conjugation being equivalent to time-reversal), its gradient and its sources into

the elastodynamic representation theorem (equation 3.7). This gives

u∗i (x) =

∫

V

Gin(x,x′)f ∗n(x′) dV ′

+

∫

S

{Gin(x,x′)njcnjkl∂
′
ku
∗
l (x

′)− njcnjkl∂
′
kGil(x,x′)u∗n(x′)} dS ′. (3.8)

Equation 3.8 can be used to compute the back-propagating wavefield (including

all high-order interactions) at any location, not just at an original source location.

It can also be confirmed that equation 3.8 is a valid representation for the time-

reversed wavefield by substituting two forward Green’s states into the equivalent

Betti-Rayleigh reciprocity theorem of the correlation type (equation 3.5).

In order for the time-reversal to be complete, the energy converging at the

original source locations should be absorbed. Thus, the volume integral in the

right-hand side of equation 3.8 corresponds to the wavefield generated by a

distribution of “elastic sinks” (de Rosny and Fink, 2002) which destructively

interferes with the time-reversed wavefield that propagates through the foci.

Now, say that the wavefield ui(x) was also originally set up by a point force

source excitation, but at location x′′ and in the m-direction (i.e., fi(x) = δimδ(x−
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x′′) and ui(x) is a Green’s tensor: ui(x) = Gim(x,x′′)). Thus, if we compare

equations 3.7 and 3.8, it is clear that effectively we are taking the unspecified

state to be a time-reversed Green’s state which satisfies the conjugated wave

equation ρω2G∗
im + ∂j (cijkl∂kG

∗
lm) = −δimδ(x− x′′) (cf. equation 3.4). Inserting

these expressions in equation 3.8 and carrying out the volume integration gives

G∗
im(x,x′′) = Gim(x,x′′) +

∫

S

{Gin(x,x′)njcnjkl∂
′
kG

∗
lm(x′,x′′)

− njcnjkl∂
′
kGil(x,x′)G∗

nm(x′,x′′)} dS ′. (3.9)

Equation 3.9 relates the time-advanced and time-retarded elastodynamic Green’s

functions. In the field of generalized holography in optics an equation of this type

is often referred to as the Porter-Bojarski equation after the work by Porter (1969,

1970) and Bojarski (1983) who previously derived it for the scalar inhomogeneous

Helmholtz wave equation and electric and magnetic vector wavefields.

Note that the time-retarded Green’s function Gim(x,x′′) in the right-hand

side now corresponds to the wavefield generated by the point force elastic sink.

In the following, the elastic sink will not be modeled – only the integral term

in equation 3.9 will be calculated. Physically, this means that the converging

wavefield will immediately start diverging again after focusing. Mathematically,

the time-retarded Green’s function has to be subtracted from both sides of

equation 3.9 and the homogeneous Green’s function, Gh
im(x,x′′) ≡ G∗

im(x,x′′) −
Gim(x,x′′), will be obtained: the time-reversed wavefield is a solution to the

homogeneous wave equation (i.e., without a source term). The latter also follows

immediately when subtracting the wave equations for the forward and time-

reversed states (Oristaglio, 1989; Cassereau and Fink, 1992).

Equation 3.9 states that by measuring or computing the time-reversed wave-

field at location x for a source originally at location x′′, the Green’s function and

its time-reverse between the source point x′′ and point x are observed. This agrees

with other recent experimental and theoretical observations (Derode et al., 2003;

Wapenaar, 2004). Using reciprocity: Gij(x
′,x) = Gji(x,x′), we can rewrite equa-
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tion 3.9 so that it involves only sources on the boundary enclosing the medium:

G∗
im(x,x′′)−Gim(x,x′′) =

∫

S

{Gin(x,x′)njcnjkl∂
′
kG

∗
ml(x

′′,x′)

− njcnjkl∂
′
kGil(x,x′)G∗

mn(x′′,x′)} dS ′. (3.10)

Hence, Green’s function between two points x and x′′ in a partially open elastic

medium can be calculated once the Green’s functions between the enclosing

boundary and each of these points are known. In the following, we refer to

equation 3.10 as the interferometric modeling equation.

3.4 Interferometric modeling

A highly efficient two-stage modeling strategy follows from equation 3.10: first,

the Green’s function terms Gim(x,x′) and njcijkl∂
′
kGlm(x,x′) under the integral

sign are calculated from boundary locations to internal points in a conventional

forward modeling phase; in a second, intercorrelation phase, the integral is

calculated requiring only crosscorrelations and numerical integration. Since the

computational cost of typical forward modeling algorithms (e.g., FD) does not

significantly depend on the number of receiver locations but mainly on the

number of source locations, efficiency and flexibility are achieved because sources

need only be placed around the bounding surface, not throughout the volume.

The modeled wavefield should be stored for each of the boundary sources in as

many points as possible throughout the medium. To calculate the components

of the Green’s tensor between two points the appropriate components of the

displacement vector in the first point, due to deformation rate tensor type

sources on the boundary, are crosscorrelated with the appropriate components

of the Green’s tensor in the second point, due to the point force sources from

the same location on the boundary. The resulting crosscorrelation gathers are

subtracted and numerically integrated over the boundary of source locations.

Unprecedented flexibility follows from the fact that Green’s functions can be

calculated between all pairs of points that were defined up front and stored in the

initial boundary source modeling phase. Thus, we calculate a partial modeling

solution that is common to all Green’s functions, then a bespoke component for
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each Green’s function. A flowchart of the interferometric modeling method is

given in Figure 3.1 and discussed in detail below for an acoustic isotropic point

scattering example.

3.4.1 Boundary conditions

Note that because of the symmetry of the terms in the integrand in equation 3.10,

no sources are required along the Earth’s free surface, or any interface with

homogeneous boundary conditions (e.g., with vanishing traction or vanishing

particle displacement). Intuitively, this can be understood from a method of

imaging argument: since such interfaces act as perfect mirrors, reflecting all

energy back into the volume, an equivalent medium can be constructed which

consists of the original medium combined with its mirror in the homogeneous

boundary and the homogeneous boundary absent. Since the original boundary

with source locations is mirrored as well, the new boundary does completely

surround this hypothetical medium and therefore, the sources constitute a perfect

time-reversal mirror. Note that when the free surface has topography, although

the method of imaging argument breaks down, this property still holds.

According to equation 3.10 derivatives of the Green’s function with respect

to the source location on the boundary also have to be computed. As mentioned

above, these terms correspond to the response due to special (deformation rate

tensor type) sources on the boundary and seem to require additional modeling

with such special sources before Green’s functions can be computed using the

new method. However, using reciprocity, these terms can also be interpreted

as the traction measured on the enclosing boundary due to point forces at a

particular point of interest (cf. equation 3.8). Crosscorrelation of components of

particle displacement with components of traction ensures that waves that are

incoming and outgoing at the surrounding boundary are correctly separated in

the correlation process (Wapenaar and Haimé, 1990; Mittet, 1994).

When part of the surface surrounding the medium has outgoing boundary

conditions (i.e., no energy crosses the surface as ingoing wave), the displacement

and the corresponding traction are directly related (Holvik and Amundsen, 2005).

In Appendix A, it is explained in detail how these properties can be exploited

to avoid the need for additional direct modeling. When the boundary sources
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are embedded in a medium that is homogeneous along the source array, the

components of the particle displacement in a particular point of interest gather

are simply Fourier transformed into the frequency-wavenumber domain, matrix

multiplied with an analytical expression and inverse transformed back to the

space-time domain. This directly gives the corresponding components of traction.

When the boundary is curved or the medium is inhomogeneous along the source

array, spatially compact filter approximations can be designed to filter the data in

the space-frequency domain using space-variant convolution. Such an approach

is commonly used to decompose multi-component seismic data into up- and

downgoing waves in the shot domain and is described in detail in, e.g., Robertsson

and Curtis (2002); Robertsson and Kragh (2002); van Manen et al. (2004) and

Amundsen et al. (2005).

Recently, Wapenaar et al. (2005) have shown, for the acoustic case, that

when the surface surrounding the medium has outgoing boundary conditions,

the two terms under the integral in the interferometric modeling equation

(equation 3.10) are approximately equal, but have opposite sign. In addition,

when the surrounding surface has large enough radius such that Fraunhofer far-

field conditions (Fokkema and van den Berg, 1993) apply, only monopole sources

are required to compute (time-integrated) Green’s functions.

3.4.2 Special case: interferometric modeling of

acoustic waves

The interferometric modeling formula for acoustic waves can be derived similarly,

as discussed in detail in chapter 2 (van Manen et al., 2005). Here, we simply

restate the result, valid for partially open acoustic media (i.e., with outgoing,

radiation or absorbing boundary conditions on at least part of the surrounding

surface):

G∗(x,x′′)−G(x,x′′) =

∫

S

1

ρ(x′)

{
nj∂

′
jG(x,x′)G∗(x′′,x′)

− G(x,x′)nj∂
′
jG

∗(x′′,x′)
}

dS ′, (3.11)
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PHASE I: Initial computations

• All boundary sources 

modeled ( j==Ns )?

yes

no, j=j+1

• Select potential source and receiver locations 

in the interior (i.e., so-called points of interest).

• Compute response for boundary source j

(all orthogonal directions of point force) 

using, e.g., finite-differences or finite-elements. 

• Record wavefield in all points of interest 

(stress and particle displacement).

• Sort data into point of interest gathers. (i.e., all 

waveforms for the same point of interest)

• Define a boundary S, with Ns source locations 

surrounding the medium. Set j=1.

PHASE II: Inter-correlation

• Crosscorrelate appropriate components of 

displacement and traction for all boundary 

sources and sum over the surrounding surface.

• Retrieve gathers for two points of interest

• Calculate traction on surrounding surface by 

spatial filtering to give equivalent second 

source type (deformation rate tensor source) 

• Compute another 

Green’s function? yes

no

Figure 3.1: Flowchart of the proposed modeling method. The method consists of two
main phases: an initial phase that creates a partial modeling solution that is common
to all Green’s functions (computed only once using a conventional forward modeling
algorithm), followed by a second phase where desired Green’s functions are computed from
the partial modeling solution using only crosscorrelation and summation, without the need
for additional modeling.

where G(x,x′′) denotes the Green’s function for the pressure at location x due

to a point source of volume injection at location x′′ and nj∂
′
jG(x,x′) denotes

the normal derivative of Green’s function with respect to primed coordinates.

Thus, the pressure Green’s function G(x,x′′) between two points x and x′′ can be

calculated once the Green’s functions between the enclosing boundary and these

points are known. Note that the terms G(x,x′) correspond to simple monopole

sources on the surrounding surface whereas the terms nj∂
′
jG(x,x′) correspond

to dipole sources. This formula will be used in the next section to compute the

Green’s function between points in a 2D acoustic model with three isotropic point

scatterers embedded in a homogeneous background medium.
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3.5 Example I: 2D acoustic isotropic

point scattering

The methodology described above is now explained in more detail using a

simple 2D acoustic example. A more realistic elastic model, including strong

heterogeneity and interfaces with homogeneous boundary conditions, is discussed

in a later section. In Figure 3.2, three isotropic point-scatterers are shown,

embedded in a homogeneous background medium of infinite extent (background

velocity v0 = 750 m/s). The point-scatterers are indicated by large black dots.

The new method is used to model full waveform Green’s functions between

arbitrary source and receiver locations in the medium.

As indicated in the flowchart in Figure 3.1, in the first step a boundary

enclosing the medium is defined and spanned by source locations. A large number

of so-called “points of interest” are also specified. In Figure 3.2, every second

boundary source location is marked with a star. The boundary sources should be

spaced according to local Nyquist criteria. The grid of small points are the points

where we may be interested in placing a source or receiver later. The number of

points of interest should be chosen as large as possible, the only limitation being

the waveform data storage capacity. In Figure 3.2, the triangles denote some

particular points of interest that we will be looking at later.

In the second step of the initial phase, separate conventional forward modeling

runs are carried out for each source on the boundary and the wavefield is stored

at all points of interest. In this example, we have used a deterministic variant

of Foldy’s method (Foldy, 1945; Groenenboom and Snieder, 1995; Snieder and

Scales, 1998) to compute the multiply scattered wavefield for each boundary

source. This method naturally incorporates radiation boundary conditions. Note

that we could have used any method that accurately models multiple scattering

(e.g., FD). Our methodology is not restricted to any particular forward modeling

method or code. Also, since multiplication with a complex conjugate in the

frequency domain corresponds to crosscorrelation in the time domain, the method

is not limited to a frequency-domain implementation. In the following, the

examples are computed using the time-domain equivalent of equation 3.11.

In Figure 3.2, a snapshot of the early stages of the wavefield is shown for the
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Figure 3.2: 2D acoustic model and snapshot of the first boundary source wavefield:
Three isotropic point scatterers (large black dots) embedded in a homogeneous background
medium v0 = 750 m/s of infinite extent. Stars (*) mark every second source location
on a surface enclosing the medium. Particular sources are numbered for reference with
Figure 3.3a-f. Small dots (.) mark potential source and receiver locations (so-called points
of interest) for Green’s function intercorrelation. Triangles mark one of many cross-well
source/receiver configurations that can be evaluated using the new method. In the initial
phase, the wavefield is computed for all boundary sources separately and stored in all points
of interest.

first source on the enclosing surface. Thus, in the second step, the interior of

the model is systematically illuminated from the surrounding surface. During or

after the simulations for all boundary sources, it is convenient to sort the data

into so-called point-of-interest gathers comprising data from all boundary sources

recorded at each point of interest. These constitute a common component of all

Green’s functions involving that point of interest.

In the second, intercorrelation phase, we may now calculate the Green’s func-

tion between any pair of points that were defined beforehand by crosscorrelation

and summation of boundary source recordings. In Figure 3.2, the triangles de-

note a subset of points that we could be interested in as part of, e.g., a cross-well

survey design experiment.

In Figure 3.3, panels (a) and (d), the modeled wavefield due to each monopole

source on the boundary is shown for two of the points of interest x1 and x2 (with

coordinates [-50,0] and [50,-50], respectively). Note that, even though there are
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only three isotropic point scatterers, several multiply scattered waves can easily

be identified. Also note the flat event at approximately t = 0.2 s. This is the

incident wave from each boundary source, scattered isotropically in the direction

of the two points of interest by the central scatterer (which is equidistant from

each boundary source). In panels (b) and (c), the normal derivative with respect

to the boundary has been computed by spatial filtering of the point of interest

gathers (a) and (d), respectively, to simulate the response due to dipole sources

on the boundary. This is possible since we have outgoing (i.e., absorbing or

radiation) boundary conditions on the surrounding surface and hence the pressure

and its gradient are directly related (see section 3.4.1 on boundary conditions and

Appendix A for details). Calculation of the normal derivative with respect to the

boundary source location is completely equivalent to measuring the response due

to a dipole source so, alternatively, we could have modeled the required gradient

using a second dipole source type. Typically, however, direct modeling would be

computationally much more expensive.

Panels (e) and (f) show the trace-by-trace crosscorrelation of panels (a) and (c)

and (b) and (d), respectively. Thus, they form the two terms in the integrand

of the time-domain equivalent of equation 3.11. It is difficult to make a straight-

forward interpretation of the crosscorrelation gathers: although equation 3.11

predicts that the waveform resulting from summation of these crosscorrelations

for all boundary sources will be anti-symmetric in time, panels (e) and (f) clearly

are not. This is because, at this stage, we still have not carried through the

Huygens’ summation which provides the delicate (but stable!) constructive and

destructive interference of the back-propagating wavefield. It can be seen, as

predicted by Wapenaar et al. (2005) and discussed in the section on boundary

conditions, that panels (e) and (f) are approximately equal, but have opposite

sign. A more thorough analysis of the features of such crosscorrelation gathers is

presented for the second example.

In the final step, crosscorrelation gathers (e) and (f) are weighted by ρ−1,

subtracted and numerically integrated (summed) over all source locations. The

resulting intercorrelation Green’s function and a directly computed reference

solution are shown in Figure 3.3(g). The insets show particular events in the

waveform in detail.

To further illustrate the new modeling method, the intercorrelation phase
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Figure 3.3: Modeled waveforms for all boundary sources in two points of interest and their
crosscorrelation: (a) Monopole response in point x1 and (b) corresponding dipole response
computed by spatial filtering (see text for details). (c) Dipole response in point x2 computed
by spatial filtering and (d) corresponding monopole response. (e) Crosscorrelation of (a)
and (c). (f) Crosscorrelation of (b) and (d). The difference between gathers (e) and (f),
weighted by ρ−1, forms the integrand of equation 3.11. (g) Intercorrelation Green’s function
(solid line) and a directly computed reference solution (squares). Insets show details of
the signals in time-intervals bounded by dashed boxes. Note the anti-symmetry of the
intercorrelation Green’s function across t = 0 s, as predicted by equation 3.11.
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Figure 3.4: Comparison of Green’s functions computed with the interferometric modeling
method and a reference solution for the cross-well transmission and reflection setting in
Figure 3.2 with a single source fixed at [-50,-50]. (a) Reference solution (transmission), (b)
interferometric solution (transmission), and (c) difference (×10). (d) Reference solution
(reflection), (e) interferometric solution (reflection), and (f) difference (×10). Note the
mismatch in (f) for coincident source-receiver, this is because the interferometric solution
is diffraction limited.

is now applied repeatedly to look-up Green’s functions for a simple cross-well

transmission and reflection seismic experiment shown in Figure 3.2 (source and

receiver locations are indicated by triangles). Note that this does not require any

additional conventional forward modeling but instead uses the same data modeled

in the initial phase. Also note that we could consider a completely different well

location, for any combination of point-of-interests (indicated by small dots in

Figure 3.2) as long as they were defined beforehand and the wavefield was stored

in those points during the initial modeling phase.

In Figure 3.4, panels (a) and (b), Green’s functions computed using a con-

ventional forward modeling method and the new method are shown, respectively.

These Green’s functions correspond to the transmission experiment shown in Fig-

ure 3.2 (source at [-50,-50], receivers distributed vertically from [50,50] to [50,-50]

at 1 m spacing). Note that the amplitudes have been scaled up to show the

weak, multiply scattered events. In panel (c), the difference between the Green’s

functions computed with the two methods is shown and the amplitude differ-

ences have been scaled up by a factor 10 to emphasize the match. Similarly, in

panels (d),(e) and (f), Green’s functions computed using the new method are

compared to a reference solution for the reflection setting shown in Figure 3.2
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(source at [-50,-50], receivers distributed vertically from [-50,50] to [-50,-50] at

1 m spacing). Again, amplitude differences have been scaled up by a factor 10.

Note the mismatch in the Green’s function for the direct wave close to the orig-

inal source location. This error results from the missing acoustic sink and the

bandlimited nature of the synthetics and agrees with the theory which predicts

that the homogeneous Green’s function will be retrieved.

3.6 Example II: 2D elastic Pluto model

In the second example we apply the method to an elastic model that is more

relevant to the exploration seismic setting. In Figure 3.5, the compressional

wave velocity in a 4.6 x 4.6 km region of the elastic Pluto model (Stoughton

et al., 2001) is shown. This model is often used to benchmark marine seismic

imaging algorithms. A high velocity (4500 m/s) salt body on the right represents a

common imaging challenge. In black, two particular points of interest, x1 and x2,

are shown (offset 1 km). The solid line S denotes the boundary with source

locations. Every twentieth source location is marked by a square and selected

source locations are numbered. These should be distributed with sufficient density

such that the wavefields are not aliased after sorting the data into point-of-interest

gathers. Outgoing (i.e., radiation or absorbing) boundary conditions (Clayton

and Engquist, 1977) are applied right outside the surface enclosing the points of

interest to truncate the computational domain.

Forward simulations were carried out for all of the source locations on the

boundary using an elastic FD code (Robertsson et al., 1994) and the waveforms

stored at a large number of points distributed regularly throughout the model.

Since we are dealing with the 2D elastodynamic wave equation, at least two

forward simulations have to be carried out for each source location: one for

each point force source in mutually orthogonal directions. Here, we also directly

computed the response for the special deformation rate tensor type sources, but

the equivalent traction data could also have been obtained by spatial filtering

of the particle velocity point-of-interest gathers (see section 3.4.1 on boundary

conditions and Appendix A for details). Since the FD modeling code is based

on a velocity-stress formulation, in the following particle velocity Green’s tensors
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Figure 3.5: P-wave velocity of a 2D elastic marine seismic model. The color scale is
clipped to display weak velocity contrasts (P-wave velocity of salt is 4500 m/s). The model
is bounded by a free surface on top and by absorbing boundary conditions on the remaining
sides. Every twentieth source on the surrounding surface S is marked by a dot.

are used and the interferometric Green’s functions computed after taking the

time-derivative of the interferometric modeling equation (equation 3.10). Again,

results are shown in the time domain.

Figure 3.6 shows the first 4 seconds of ġ11(x1,x
′) (i.e., the horizontal compo-

nent of particle velocity in x1 due a horizontal point-force sources at location x′

on the boundary) for all boundary sources. For reference, several sources on the

boundary have been numbered in Figure 3.5 (the numbering increases clockwise

from just below the free surface on the right). As explained in section 3.4.1, no

sources are required along the free surface.

An interesting feature of the data, to which we will return later, occurs

approximately between sources 200-475, and between sources 1800-2200. These

sources are located in the near-surface of the sedimentary column, just beneath

the water layer. The Pluto model includes many randomly positioned, near-

surface scatterers, representing complex near-surface heterogeneity that is often

observed in nature. Within these two source ranges it is clear that all coherent

arrivals are followed by complicated codas that are superposed, resulting in a

multiply-scattered signal that builds with time.

When all components of the Green’s tensor and the equivalent traction data

have been retrieved for the two points of interest x1 and x2, the gathers are

crosscorrelated and summed according to the equivalent interferometric modeling

equation for particle velocity. Note that even before numerical integration
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Figure 3.6: Point-of-interest gather for the left point in Figure 3.5 showing ġ11(x1, x′), the
horizontal component of particle velocity in the point of interest due to individual horizontal
point force sources on the boundary. This is one of four required particle velocity Green’s
function gathers, computed in the initial phase, needed in the construction of all Green’s
functions involving that point.

this requires summation of crosscorrelation gathers since Einstein’s summation

convention for repeated indices is used.

Figure 3.7(a) shows the integrand of the interferometric modeling equation for

particle velocity (in the time-domain) for the ġ11(x2,x1) component of Green’s

tensor between the two points of interest x1 and x2. Note how the strongly

scattered coda previously identified in Figure 3.6 affects both negative and

positive time-lags in the crosscorrelation. In Figure 3.7(b), the Green’s function

ġ11(x2,x1) resulting from direct summation of the crosscorrelation traces in

panel (a) along the horizontal direction is shown. Note the emergence of the

time-symmetry (across t = 0 s) from the non-symmetric crosscorrelations. The

intercorrelation Green’s function is time-symmetric instead of anti-symmetric, as

predicted by equation 3.10, because particle velocity Green’s functions were used

in the example instead of particle displacement Green’s functions.

In Figure 3.8, the four components of the particle velocity Green’s tensor
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Figure 3.7: (a) Green’s function intercorrelation gather (weighted) for the two
points shown in Figure 3.5. The low correlation amplitude for boundary sources 620-
800 corresponds to the shadow of the salt body. (b) Interferometric Green’s function,
ġ11(x1, x2,−t) + ġ11(x1, x2, t), computed by direct summation of the crosscorrelations in
panel (a) along the horizontal direction. Note the emergence of time-symmetry from the a-
symmetric crosscorrelations. The reconstructed Green’s function is symmetric, rather than
anti-symmetric (as predicted by equation 3.10) because particle velocity Green’s functions
were used instead of particle displacement as in the theory.
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computed using the new method (in blue) are compared to a directly computed

reference solution (in green). The ġ11(x2,x1) component in panel (a) was already

shown in Figure 3.7(b). Note the good match between the directly computed

reference solutions and the Green’s functions computed using the new method,

even at late times. The waveforms have been scaled and clipped to show the

match in more detail. Some numerical noise at a-causal time-lags (i.e., before

arrival of the direct wave) can clearly be seen. This noise is probably due to a

slight undersampling of the shear wavefield as the computational parameters have

been set rather tightly to minimize computational cost. Note how the different

source radiation patterns are reproduced accurately by the new modeling method;

panels (a) and (b) show more P-wave energy (e.g., the first significant arrival),

which is consistent with a point force source in the horizontal direction and the

second point of interest at the same depth level, whereas panels (c) and (d) show

more S-wave energy because of the maximum in S-wave radiation in the horizontal

direction by a point force excitation in the vertical direction.

3.7 Interpretation of the crosscorrelation gather

The time-series in Figure 3.7 bear little resemblance to the final Green’s func-

tion in Figure 3.8. Equation 3.10 sums signals such as those in Figure 3.7 along

the horizontal axis and hence relies on the delicate constructive and destruc-

tive interference of time-reversed waves back-propagating through the medium,

recombining and undoing the scattering at every discontinuity to produce the

Green’s function. In Figure 3.7, each column represents the set of all waves prop-

agating from point x1 to a particular location on the boundary, correlated with

the Green’s functions from a source at that location to x2. Thus, each column

represents the Huygens’ contribution of a particular boundary source to point x2,

when the time-reversed wavefield is applied as a boundary condition. Some of the

energy propagating from x1 to this boundary source may pass through x2 before

being recorded and therefore has part of its path in common with waves emitted

from x2 in the same direction. The traveltimes associated with such identical

parts of the path are eliminated in the crosscorrelation and the remaining trav-

eltime corresponds to an event in the Green’s function from x1 to x2. Similarly,
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Figure 3.8: Components of the particle velocity Green’s tensor ġ(x2, x1) computed by
summation of weighted intercorrelation gathers using the new method (blue) compared to
reference solutions computed using a conventional FD method (green). (a) ġ11(x2, x1),
(b) ġ12(x2, x1), (c) ġ21(x2, x1), (d) ġ22(x2, x1). For details see text.
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some waves emitted from x2 may travel to the boundary source location via x1

and have a common section of path between x1 and the boundary source. Again

traveltime on the common section will be eliminated and give rise to the same

event in the Green’s function from x1 to x2 but at negative times. Note that the

directions involved with such overlapping paths for positive and negative times

in general are not parallel since they are related to propagation of energy to the

boundary through the background structure of the whole model (hence, one or

other may not even exist for the same boundary source). Hence, waves at positive

and negative times are reconstructed differently, even though the final Green’s

function constructed is identical. All energy in the crosscorrelations correspond-

ing to waves that do not pass from x1 through x2 or vice-versa is eliminated

by destructive interference through summation of the columns. This process of

constructive and destructive interference is discussed in detail by Snieder (2004)

and Snieder et al. (2006) using the method of stationary phase.

3.8 Computational aspects

We now discuss some computational aspects of the new modeling method.

First, an estimate of the number of floating point operations (flops) is derived

for both the initial and intercorrelation phase and compared to the cost of

a sequence of conventional finite-difference computations. Then memory and

storage implications are highlighted. In Table 3.1, parameters and variables

mentioned in the computational discussion are summarized.

In the following, we ignore the cost of modeling the response to the second

source type (i.e., the dipole or deformation rate tensor type sources). As explained

in detail in Appendix A, the gradient (or traction) can be computed from the

pressure (or particle velocity) through a spatial filtering procedure as applied to

the point-of-interest gathers. The cost of this type of spatial filtering is typically

insignificant compared to the FD simulations.

3.8.1 The cost of the initial phase and direct computation

Both direct computation and the initial phase of the new method, while consisting

of a sequence of conventional finite-difference simulations have a computational
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parameter description
a number of operations to evaluate the discrete

temporal and spatial derivatives
flops

c number of crosscorrelations for a single com-
ponent of Green’s tensor

dimensionless

d dimension of the modeling dimensionless
q number of source components dimensionless
CFD cost of a single finite-difference run flops
CFFT cost of a combined FFT of two, padded real-

valued traces
flops

CGREEN cost of a single Green’s function intercorre-
lation

flops

CINIT cost of the initial phase in the new method flops
CCONV cost of a conventional sequence of FD simu-

lations
flops

CNEW cost using the new methodology to compute
Green’s functions

flops

NX number of gridpoints along a typical dimen-
sion

dimensionless

NT number of timesteps in the initial FD com-
putations

dimensionless

NT ′ number of timesteps in the intercorrelation
phase

dimensionless

NS number of source locations on the boundary dimensionless
NGF number of Green’s function intercorrelations dimensionless
NM minimum number of conventional sources or

receivers
dimensionless

Table 3.1: Description of all parameters and variables mentioned in the computational
discussion
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cost that is directly proportional to the cost of a single FD simulation, CFD.

Typically, CFD ∼ aNT Nd
X , where NT is the number of timesteps, NX the number

of gridpoints in each of d dimensions and a is the number of flops required for

the evaluation of the discrete temporal and spatial derivatives (e.g., a = 22 for a

typical acoustic 2D FD code). When the data are computed directly, on the order

of NM FD simulations are required (where NM is the minimum of the number of

source and receiver locations considered in the modeling) whereas in the initial

phase of the new method at least NS FD runs need to be carried out (where NS

is the number of source locations on the boundary).

For the new modeling method, however, the simulation time T has to be longer

than in a conventional FD simulation: energy that is time-reversed has to be

recorded on the surrounding surface (in the equivalent reciprocal experiment). In

the following we assume that this doubles the simulation time for the new method.

Defining a quantity q, where q = 1 for acoustic and q = d for elastodynamic

problems, and in the typical case that we are interested in all the components

of the Green’s tensor we find for direct computation and the initial phase of the

new method:

CCONV = qNMCFD, (3.12)

CINIT = 2qNSCFD. (3.13)

3.8.2 The cost of looking up a Green’s function

Although the initial phase constitutes the bulk of the computations, the cost

of “looking up” a Green’s function cannot simply be ignored, especially when

the number of Green’s functions that are looked up is large. For each Green’s

function at least NS crosscorrelations and summations have to be computed and

often more.

On the other hand, in the second, intercorrelation phase of the new method,

the strict spatio-temporal sampling requirements of a typical full waveform

modeling method [as governed by numerical accuracy and the Courant criterion

(Robertsson et al., 1994)] can be relaxed to Nyquist criteria. For a typical acoustic

2D finite-difference code with 2nd order accuracy in time and 4th order accuracy

in space it can be shown that the ratio of the number of samples NT in the initial
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phase to the number of samples NT ′ in the intercorrelation phase can be as large

as 30. Thus, the cost of looking up a Green’s function in the intercorrelation

phase is substantially reduced by abandoning the oversampling.

In addition, waveforms modeled in the initial phase are stored in the frequency

domain in anticipation of the crosscorrelations in the intercorrelation phase. This

avoids having to recompute the Fourier transform of point of interest gathers when

computing several Green’s functions involving the same point of interest. To avoid

end effects, the traces are padded with NT ′ zeros. Transforming a waveform to

the frequency domain using an FFT therefore takes on the order of

CFFT ≈ NT ′ log2(NT ′ + 1) (3.14)

flops, where NT ′ is twice the number of time samples in the desired (one-sided)

final seismogram and we have made use of the fact that the FFT of two real

traces can be computed at once.

The number of crosscorrelations, c, that need to be computed for a boundary

source location depends on the the type of wave equation (i.e., scalar or vector)

and the spatial dimensionality of the problem, d. For an acoustic problem there

is only a single, scalar quantity and this does not increase with the spatial

dimensionality. Therefore, c = 2, the number of terms in the integrand in

equation 3.11. For an elastic problem, the implicit Einstein summation (for

repeated indices) in equation 3.10 and the two terms in the integrand lead to

c = 2d. The acoustic and elastic cases can be written in the same form using

the quantity q defined above: c = 2q. Complex multiplication of the positive

frequencies for all source locations on the boundary and the c crosscorrelations

takes 6cNSNT ′ operations. Complex addition of the c crosscorrelation gathers

takes 2(c − 1)NSNT ′ operations. Multiplying the crosscorrelation gathers with

the (varying) weighting factor along the boundary takes 2NSNT ′ operations.

Summing the weighted crosscorrelations for all source locations takes 2(NS−1)NT ′

flops. Thus, the total number of flops required for the intercorrelation of a single

component of Green’s tensor is approximately

CGREEN ≈ (8c + 2)NSNT ′ + CFFT , (3.15)
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where CFFT relates to the final inverse FFT. Note that CFFT can typically be

neglected since in most cases of interest (8c+2)NS À log2(NT ′+1). In Table 3.2,

c is computed for two- and three-dimensional acoustic and elastic modeling.

3.8.3 Comparison of direct computation and the

new method

To make an exact comparison between direct computation and the new method

means that one has already chosen a particular source and receiver geometry. In

a lot of cases, such as survey evaluation and design and full waveform seismic

inversion, this is simply not possible and therefore the new method enables the

full potential of such applications. In other applications, such as straightforward

simulation of synthetic data, one intrinsically limits the uses of the data by

deciding on a geometry upfront (e.g, by choosing the source or receiver depth(s)

when generating a towed marine synthetic seismic data set). Nevertheless, it is

instructive to assess the relative efficiency of the two methods when a given set

of Green’s functions has to be computed.

Assuming that we are interested in all d2 components of the Green’s tensor and

that NGF Green’s functions are looked-up, the cost of the new method compared

to a sequence of conventional finite-difference simulations follows directly from

equations 3.12, 3.13 and 3.15:

CCONV = qNMCFD, (3.16)

CNEW = 2qNSCFD + q2NGF CGREEN . (3.17)

From these equations it is not immediately clear that the new method is always

more efficient than direct computation. For instance, in the case, 1, that one

is interested in only Green’s functions between a single point and a set of other

points, the initial computational burden clearly makes the new method inefficient.

In the other extreme case, 2, where one is interested in all combinations of

Green’s functions between a large number of points, NM , the new method is

also less efficient because the number of Green’s functions to be looked up, NGF ,

is proportional to the square of NM . In such a case, equations 3.16 and 3.17 are

a straight line through zero and a vertically offset parabola, as a function of NM ,
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Acoustic Elastic
parameter 2D 3D 2D 3D

a 22 32 50 102
q 1 1 d(= 2) d(= 3)

c(= 2q) 2 2 4 6

Table 3.2: Values for the different parameters in 2D and 3D acoustic and elastic modeling

respectively and, at best, there may be a region where the new method is more

computationally efficient.

On the other hand, in applications, 3, where Green’s functions between a large

number of points interior to a medium are desired, but where there are no common

source or receiver points, the upfront value of the new method is obvious. In such

a case, a separate conventional FD simulation is required for each Green’s tensor

and hence, NGF = NM . In this case, equations 3.16 and 3.17 are a straight line

through zero and a vertically offset straight line, as a function of NM , respectively

and the new method becomes more efficient beyond the intersection point of

the two lines. No other existing method offers full waveforms at comparable

computational cost.

The three cases described above (denoted 1,2,3) are illustrated in figure 3.9

for a 2D acoustic finite-difference code. The chosen parameters are: NT = NX =

1000, d = 2, a = 22, NS = 1000 (number of sources on the boundary), q = 1, and

NT ′ = NT /30 for a range of number of Green’s functions to be looked-up NGF .

The computational cost of conventional FD modeling (in flops) is shown in blue.

Note that both cases 1 and 3 for interferometric FD modeling, in red, are governed

by the same equations. However, case 1 relates to the unefficient application

where few Green’s functions are computed for single source and many receivers

(the left part of the figure), while case 3 relates to the efficient application where

many Green’s functions are computed but where there are no common source or

receiver points. In Green the cost of interferometric FD modeling is shown when

Green’s functions between all pairs of points are required. It can be seen that

there is a region where the interferometric modeling method is more efficient.
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Figure 3.9: Computational cost of conventional versus interferometric modeling for a
2D acoustic FD code. The cost of conventional FD modeling is shown in blue. The cost
of interferometric FD modeling for scenarios 1 and 3 (described in the main text) is shown
in red, and the cost of interferometric FD modeling for scenario 2 is shown in green. Note
that the interferometric modeling method is not always more efficient then conventional
FD modeling.
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3.8.4 Memory and storage

Assuming that a standard isotropic elastic FD method is used (e.g., not relying

on domain decomposition), the amount of run-time memory required for storage

of the (d/2)(d + 3) field quantities (e.g., vi and σij) and 3 medium parameters

(e.g., ρ, λ and µ) is at least 4[(d/2)(d + 3) + 3]Nd
X bytes (for a heterogeneous

medium and calculations carried out in single precision). We note that for a

medium size of NX = 1000, a 3D elastic problem will require on the order of

45 Gbytes of primary memory. This number grows considerably for even more

complex media (e.g., anisotropic), and the computations therefore typically rely

on large shared memory machines or heavily parallelized algorithms running on

clusters with high-performance connections. Using our methodology we compute

a table of all point of interest gathers using high-end computational resources.

The computations in the intercorrelation phase, on the other hand, are performed

on much smaller machines as they require a substantially smaller amount of

primary memory and because they require only a subset of the intercorrelation

table to be exported. We have shown how the point of interest gathers with

Green’s functions constitute a common component of all Green’s functions in the

medium through equation 3.10.

3.9 Simultaneous sources:

limits of encoding and decoding

We also investigated exciting the boundary sources simultaneously by encoding

the source signals using pseudo-noise sequences (Fan and Darnell, 2003) and

with simultaneous sources distributed randomly in the medium (Derode et al.,

2003) as two alternative ways to reduce the number of sources, and hence, the

computational cost of the initial forward modeling phase. Such approaches

have been investigated in attempts to speed-up conventional finite-difference

simulations, although in surprisingly few published studies. Recent experimental

evidence in passive imaging, however, using techniques based on interferometry

and time-reversal, seems to suggest that such an approach would be highly feasible

for the new modeling method. For instance, Wapenaar and Fokkema (2004)

and Derode et al. (2003) show that, when the sources surrounding and inside
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the medium consist of uncorrelated noise sequences, their autocorrelation tends

to a delta function and terms involving crosscorrelations between the different

noise sequences can be ignored. However, it is well known in the field of

communications analysis that Welch’s bound (Welch, 1974) poses a fundamental

limit to the quality of separation of such pseudo-noise sequences of a given length,

when emitted simultaneously. In Appendix B it is shown that, when making

no assumptions about the Green’s function, the signal-to-interference (from the

unwanted crosscorrelations between the encoding sequences) ratio in the final

modeled seismogram is proportional to ∼ √
N , where N is the length of the

sequences. Thus, the signal-to-interference ratio only improves as the square-

root of the sequence length. Note that the number of sequences required, the so-

called family size M (equal to the number of boundary sources: M = NS), does

not influence the signal-to-interference ratio. A similar expression was recently

derived by Snieder (2004) using a statistical approach to explain the emergence

of the ballistic (direct wave) Green’s function through an ensemble of scatterers

with uncorrelated positions.

Although in principle, and in real-life experiments, it is possible to reduce such

interference by time/event averaging, where data are “modeled” for free and all

we have to do is listen longer (Snieder, 2004), in synthetic modeling of Green’s

functions it is exactly the modeling itself that is expensive and therefore the use

of pseudo-noise sequences for the purpose of interferometric, simultaneous source

FD modeling is probably limited. In all explored cases, the limits of separation

caused relatively high noise levels compared to the equivalent FD effort using the

direct method described above.

3.10 Discussion and conclusion

Whereas traditional approximate modeling methods typically impose restrictions

with respect to the degree of heterogeneity in the medium of propagation or

neglect high-order scattering, the new time-reversal modeling methodology allows

us instead to compromise on noise level while maintaining high-order scattering

and full heterogeneity in the medium. Recent experimental and theoretical work

indicates that time-reversed imaging is robust with respect to perturbations in
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the boundary conditions (Snieder and Scales, 1998; Derode et al., 2003). For cases

where the wave propagation is heavily dominated by multiple scattering even a

single source may be sufficient to excite all wavenumbers in the model, and hence

to refocus essential parts of a time-reversed signal (Draeger and Fink, 1999).

Even when not all wavenumbers are excited by a single source, such as in the

examples above, it may be possible to substantially reduce the number of sources

and still recover essential parts of the signal. In chapter 2 (van Manen et al.,

2005) we showed that even for as few as one sixteenth of the original number of

sources they were able to reproduce amplitude and phase of an arrival of interest

fairly accurately, but with an increased noise level. Clearly, the required number

of sources will depend on the application. For many applications, the possibility

to trade-off signal-to-noise ratio to CPU time without compromising on medium

complexity or high-order scattering will be another attractive property of the new

method.

We anticipate that the new methodology will also have a significant impact

on inversion. For example, Oristaglio (1989) has shown that the Porter-

Bojarski equation (similar to equation 3.10) forms the basis for an inverse

scattering formula that uses all the data. He proved that a three step imaging

procedure, consisting of backpropagation of receiver and source arrays followed by

temporal filtering, gives the scattering potential within the Born approximation.

His formula relies on complete illumination of a (three-dimensional) scattering

object from a surface surrounding the object, as our modeling method does.

Interestingly, the method provides exactly those Green’s functions required for

direct evaluation of higher-order terms in the Neumann series solution to multiple

scattering. Consider perturbing an inhomogeneous background model (e.g., by

adding multiple isotropic point scatterers). In such a case, computation of the

Green’s functions in the background medium may not be trivial and the new

method provides such Green’s functions efficiently and flexibly. Note that we

do not even have to specify beforehand which regions of the model we want to

perturb or add the scatterers to. Rose (2002) argues that focusing, combined

with time-reversal is the physical basis of exact inverse scattering and derives the

Newton-Marchenko equation from these two principles.

The new method also provides a flexible way to compute spatial derivatives

of the intercorrelation Green’s functions with respect to both source and receiver
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coordinates for any region in the model, provided the points of interest are spaced

closely enough in the initial modeling phase. This makes it straightforward to

consider other types of sources and receivers, such as pure P- and S-wave sources

and receivers (see e.g. Wapenaar and Haimé, 1990; Robertsson and Curtis, 2002;

Wapenaar et al., 2004). Alternatively, in cases the medium is relatively well

known, but where the objective is to track some kind of non-stationary source or

receiver within the volume, computationally cheap spatial derivatives may also

be a significant advantage.

Thus, we have shown how the elastodynamic representation theorem can

be used to time-reverse a wavefield in a volume, and how, using a second

set of Green’s functions, the time-reversed wavefield may be computed at

any point in the interior. We emphasized the relationship between time-

reversal, interferometry, holography and reciprocity theorems of the correlation

type. By invoking reciprocity, we arrived at an expression that is suitable for

interferometric modeling of wave propagation and suggested an efficient two-stage

modeling scheme whereby in an initial phase the model is illuminated from the

outside using a sequence of conventional forward modeling runs and in a second

phase Green’s functions between arbitrary points in the volume can be computed

using only crosscorrelations and summation (numerical integration). The method

was illustrated in detail using an acoustic isotropic point scattering example and

applied to a region of the elastic Pluto model. A physical description of the

crosscorrelation gathers was given and the computational aspects discussed. The

limits of encoding and decoding were also discussed. Finally, implications for

modeling and inversion were suggested. We expect that the new method may

significantly change the way we approach modeling and inversion of the wave

equation in future.



Chapter 4

An exact boundary condition

for interior scattering problems

involving arbitrarily large

model perturbations

An exact boundary condition for scattering problems involving arbi-

trarily large model perturbations in generally inhomogeneous media

(e.g., acoustic, elastic, electro-magnetic) is presented. The bound-

ary condition decouples the wave propagation on a perturbed domain

while maintaining all interactions with the background model, thus

eliminating the need to regenerate the response on the full model. The

method, which is explicit, relies on a Kirchhoff-integral extrapolation

approach to update the boundary condition at every time-step of,

for example, a finite-difference calculation. The Green’s functions re-

quired for extrapolation through the background model are computed

efficiently using interferometry.

4.1 Introduction

Many problems involving wave scattering such as waveform inversion, experimen-

tal and industrial design, and non-destructive testing, require evaluation of the

55
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wavefield response for a suite of closely related models. While model changes

may be restricted to small subvolumes, realistic strong multiple scattering of-

ten rules out a Born approximation, making repeated full waveform simulations

for the entire model a necessity. We show that this paradigm may be broken

by combining a Kirchhoff-integral extrapolation approach with recent advances

in interferometry, resulting in an exact boundary condition for arbitrarily large

model perturbations.

Non-reflecting boundary conditions based on the Kirchhoff integral were first

proposed by Ting and Miksis (1986). By extrapolating the wavefield from an

artificial surface surrounding a scatterer to the boundary of the computational

domain, exact boundary conditions are found, such that the computational

domain can be truncated without generating spurious reflections. The boundary

condition was implemented and tested by Givoli and Cohen (1995). Teng (2003),

exploring the limiting case where the extrapolation surface coincides with the

boundary condition, obtained a boundary integral equation that can be solved

in conjunction with the finite-difference scheme on the subgrid. However, in

each case, only exterior wave problems were considered, i.e., with non-reflecting

boundary conditions outside the scatterer.

On the other hand, in locally perturbed scattering problems the boundary

condition should treat both incoming and outgoing waves correctly. Schuster

(1985) proposed a hybrid boundary integral equation + Born series modeling

scheme in which he perturbed a system of surface boundary integral equations

for a multibody scattering problem into a part corresponding to the long-range

interactions of the perturbation with itself, which could be relatively easily

inverted, and a part between the perturbations, which he solved using a Born

series. However, he only homogeneous background models and interiors.

Robertsson and Chapman (2000) describe a method to “inject” on a perturbed

interior computational domain a wavefield recorded during an initial simulation

on the full domain. The injection thus drives the computation on the perturbed

interior domain. Their boundary condition accounts for all orders of interactions

of the wavefield on the subvolume and for the first-order interaction between

the subvolume and the unperturbed background model, both of which can be

arbitrarily inhomogeneous. The only part of the wavefield missing is that resulting

from those interactions of the altered wavefield with the unaltered model outside
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the subvolume which propagates back into the subvolume and interacts with the

perturbations again: so-called, high-order, long-range interactions.

The exact boundary condition presented here combines elements from the

“injection” and Kirchhoff extrapolation approaches: it uses an incident wavefield

as a boundary condition to drive the simulation on a subvolume, but accurately

models all high-order, long-range interactions between the perturbed region

and the background medium by continuously updating the boundary condition

through the evaluation of a Kirchhoff convolution integral involving full waveform

Green’s functions. The Green’s functions required for extrapolation through the

background model can be computed efficiently and flexibly using interferometry:

by illuminating the model from a surrounding surface with a sequence of

conventional forward modeling runs, exact Green’s functions between any pair of

points can be computed using only crosscorrelations and summations (chapters 2

and 3).

Thus, computationally, the new method differs from the original “injection”

approach by Robertsson and Chapman (2000) in at least two important ways: (1)

no additional absorbing boundary conditions are required outside the injection

surface as the new boundary condition does truncate the perturbed computational

domain, and, (2) the boundary condition is updated during every timestep

of the finite-difference computation to account for the higher-order long-range

interactions whereas the original injection approach was not. It generalises the

non-reflecting boundary conditions based on the Kirchhoff integral to arbitrary

exterior scattering configurations.

Note that even though we propose to use crosscorrelation based methods

(interferometry) to compute the full waveform Green’s function required for

extrapolation through the background model, the method is still based on

evaluating a discrete, causal convolution integral. Therefore, the link with time-

reversal that was strong in chapters 2 and 3 is much weaker here. Nevertheless, the

efficiency and flexibility resulting from the use of interferometry to compute the

Green’s functions for the background model are crucial in making the proposed

exact boundary condition practical.
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4.2 Scattering by an arbitrary

inhomogeneous object

It is well known (Fokkema and van den Berg, 1993; de Hoop, 1995) how the

wavefield scattered by an object with material properties ρs(x), κs(x), different

from the inhomogeneous medium within which it is embedded, with properties

ρ(x), κ(x), originates from the contrast in the material properties [note that

κ(x) = K−1(x)]. Defining the scattered wavefield {psct, vsct
k } as the difference

between the total wavefield {p, vk}, propagating in the perturbed model, and

the incident wavefield {pinc, vinc
k }, propagating in the background model, it is

straightforward to show that the scattered wavefield quantities satisfy (figure 4.1):

∂kp
sct + ρ∂tv

sct
k = (ρ− ρs)∂tvk x ∈ Dsct, (4.1)

∂kv
sct
k + κ∂tp

sct = (κ− κs)∂tp x ∈ Dsct. (4.2)

Equations 4.1 and 4.2, show how the scattered wavefield originates from body

force sources, (ρ − ρs)∂tvk, and volume injection sources, (κ − κs)∂tp, acting in

the background medium. However, the simplicity of equations 4.1 and 4.2 is

deceptive since the source terms on the right-hand side depend on the unknown

total wavefield quantities p and vk inside Dsct. Nevertheless, if the scattered

wavefield is known on a surface surrounding the scatterer, S, equations 4.1 and 4.2

constitute an acoustic radiation problem and we have the following representation

for the scattered pressure at any point, xR, outside Dsct:

psct(xR, τ) =

τ∫

0

∫

S

[
Gq(xR|x, τ − t)vsct

k (x, t)

+ Γq
k(x

R|x, τ − t)psct(x, t)
]
nkdSdt, (4.3)

where Gq(xR|x, τ − t) and Γq
k(x

R|x, τ − t) are the Green’s functions for pressure

due to point sources of volume injection and body force, respectively, in the

background medium. Note that even though equation 4.3 contains the scattered

wavefield quantities in the right-hand side, this equation is also valid for the total

wavefield quantities as it can be shown that the corresponding integral over the

incident wavefield quantities vanishes. This is because the incident wavefield,
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Figure 4.1: Definition of the extrapolation surface and injection boundary. Note that
three events will contribute to the boundary condition: the incident wavefield propagating
in the background medium, the extrapolated waves that are outgoing at the boundary
(these will complement the corresponding waves propagating on the subgrid), and the
extrapolated waves that are incoming at the boundary and which radiate onto the subgrid,
providing long-range interaction.

which propagates in the background medium, is source-free in the subvolume

Dsct [see figure 4.1 and (Fokkema and van den Berg, 1993)].

Ting and Miksis (1986) have shown how equation 4.3 can be used to predict

outgoing waves arriving at the boundary, B, of a computational domain by

extrapolating the scattered wavefield from an auxiliary surface surrounding

the scatterer through free space. This involves substituting free-space Green’s

functions and evaluating equation 4.3 at time-retarded values t − r/c (with r/c

the traveltime between the extrapolation surface and the boundary). Because

the waves arriving at the edge of the computational domain are matched by the

Kirchhoff extrapolated waves, the differences involved in the finitely discretised
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equations of motion are exactly as they would be in the case of outgoing boundary

conditions, and hence the boundary is non-reflecting.

4.3 Exact boundary conditions for perturbed scat-

tering problems

If the scatterer occupies just a small part of the background model and the

medium is inhomogeneous outside the extrapolation surface, S, ingoing waves

resulting from interaction of the scattered wavefield with the background model

will be present and the above approach no longer yields the correct boundary

data required to truncate the computational domain at B. However, equation 4.3

may still be used to extrapolate the wavefield to any point outside the extrap-

olation surface, S, as long as the exact, full waveform Green’s functions for the

inhomogeneous background model are used instead of free-space Green’s func-

tions. Moreover, the boundary data at B can no longer be calculated by evaluat-

ing equation 4.3 only at time-retarded values since multiple scattering between

the perturbed region and the inhomogeneous background model may affect the

boundary data at all later times1. For modeling purposes, we can write equa-

tion 4.3 recursively to make the contribution of scattered wavefield at time t to

all later times explicit. After discretizing the convolution integral in time this

gives:

p̂sct(xR, l, n) = p̂sct(xR, l, n− 1)

+

∫

S

[
Ĝq(xR|x, l − n)v̂k(x, n)

+ Γ̂q
k(x

R|x, l − n)p̂(x, n)
]
nkdS, (4.4)

1Thus, one difference between the present exact boundary condition and the work by
Ting and Miksis (1986) is that their method is looking backward in time from the boundary
(i.e., relying on previously computed values on the extrapolation surface or even the surface
of the scatterer) since because of the simplicity of the model they know exactly at which
single (retarded) time to look. In contrast, our method is looking forward in time from the
extrapolation surface, keeping track of which points on the boundary will be causally influenced
by what is happening on the extrapolation surface at the current time.



CHAPTER 4. Exact boundary condition for interior scattering problems 61

whereˆis used to differentiate between continuous time and sampled quantities.

Thus, to update the scattered wavefield p̂sct(xR, l, n−1) at xR at timestep n of the

computation for all future time steps l > n, one has to scale the Green’s functions

Ĝq(xR|x, l−n) and nkΓ̂
q
k(x

R|x, l−n) by the current value of the normal component

of particle velocity v̂k(x, n)nk and the pressure p̂(x, n) on the extrapolation surface

and add this to the previously computed boundary values. Equation 4.4 needs to

be complemented by the incident wavefield p̂inc(xR, n) to give the total wavefield

at xR on B.

The resulting boundary condition is exact and equivalent to the Neumann

series solution to the scattering problem (Snieder and Scales, 1998). It includes

all orders of interactions between the background model and the perturbations.

We now show how to compute the Green’s functions in equation 4.4 required for

extrapolation efficiently.

4.4 Interferometry

In the interferometric paradigm, waves at two receiver locations are correlated

to find the Green’s function between them. As shown in chapters 2 and 3 and

Wapenaar and Fokkema (2006), there is a strong link between interferometry

and reciprocity. Consider the acoustic reciprocity theorem of the correlation type

(Fokkema and van den Berg, 1993):

∫

S

[
Ct

{
pA, vB

k

}
+ Ct

{
vA

k , pB
}]

nkdS =

∫

V

[
Ct

{
fA

k , vB
k

}
+ Ct

{
pA, qB

}

+Ct

{
vA

k , fB
k

}
+ Ct

{
qA, pB

}]
dV, (4.5)

where Ct{f, g} denotes the temporal crosscorrelation of functions f and g, S

is a surface surrounding a volume V with radiation conditions on at least part

of the surface, and nk are the components of the normal to the surface S. An

interferometric representation for the pressure due to a point source of volume

injection, Gq(xA|xB, t), between points xA and xB, can be derived by taking

state A to be the wavefield generated by a point source of volume injection at xA:
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{
pA, vA

k

}
(x, t) = {Gq, Γq

k} (x|xA, t) and
{
qA, fA

k

}
(x, t) =

{
δ(t)δ(x− xA), 0

}
and

state B to be the wavefield generated by a point source of volume injection at xB:{
pB, vB

k

}
(x, t) = {Gq, Γq

k} (x|xB, t) and
{
qB, fB

k

}
(x, t) =

{
δ(t)δ(x− xB), 0

}
.

Inserting these expressions into equation 4.5, performing the volume integrations

and using reciprocity we find:

Gq(xB|xA, t) + Gq(xB|xA,−t) =∫

x∈S

[
Gq(xA|x, t) ∗ Gf

k(x
B|x,−t)

+Gf
k(x

A|x, t) ∗ Gq(xB|x,−t)
]
nkdS, (4.6)

where * denotes temporal convolution. Similarly, an interferometric representa-

tion for the pressure due to a point force source can be derived. By systematically

illuminating the model from the surrounding surface, while storing the wavefield

in as many points in the interior as possible, full waveform Green’s functions

can be computed for any pair of points using only crosscorrelation and numerical

integration [see chapters 2 and 3 and van Manen et al. (2005, 2006) for details].

This allows the Green’s functions Ĝq and Γ̂q
k required to update the boundary

condition in equation 4.4 to be computed efficiently.

4.5 1D Example

The exact boundary condition is demonstrated in an example using a staggered

finite-difference approximation of the 1D acoustic wave-equation. The model

consists of single scattering layer (propagation velocity cs = 1750 m/s, mass

density ρs = 1250 kg/m3) embedded in a homogeneous background medium

between 130 m and 170 m depth (c0 = 2000 m/s, ρ0 = 1000 kg/m3) and with a

free surface at the top.

Since the model is one-dimensional and bounded by a free-surface at the top,

a single source at the bottom of the well is sufficient to illuminate the model

completely (see section 3.4.1 for details). Thus, only two conventional forward

modeling runs were performed (one for each source type) and the data stored

at every gridpoint. Non-reflecting boundary conditions were used just below

the source to truncate the computational domain. Given the data of these two
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Figure 4.2: Comparison of the proposed exact boundary condition with a directly
computed reference. (top) Pressure, directly computed for the perturbed model by FD on
the full grid. (middle) Pressure, computed using the new method and FD on the subgrid.
(bottom) Difference between (top) and (middle) for the extent of the subgrid (110-190 m).

initial simulations, Green’s functions between arbitrary points in the well can be

computed.

An incident wavefield was calculated using interferometry, for a volume

injection source at 50 m depth, and receivers collocated with the pressure points

at the planned edge of the truncated computational domain. Since the finite-

difference calculations are done on a staggered grid, whereas the Kirchhoff integral

(and also the integral in the interferometric construction) is evaluated for the

pressure and particle velocity quantities collocated in space and time, care should

be taken that the required pressure and particle velocities are linearly interpolated

to the same location and time.

Auxiliary extrapolation “surfaces” were defined just above and below the

scattering layer at 125 m and 175 m depth. Next, the model was strongly
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Figure 4.3: Comparison of conventional FD-injection with a directly computed refer-
ence. (top) Pressure, computed using conventional FD-injection. (bottom) Difference
between (top) and a directly computed reference for the extent of the subgrid (110-190 m).

perturbed by increasing the velocity by 500 m/s and the density by 250 kg/m3 in

the scatterer. Since there is a free surface, waves scattering off the perturbation

will reflect at the free surface and repeatedly interact with the perturbation.

Thus, high-order, long-range interactions will be present, ruling out a Born

approximation or conventional finite-difference injection to compute the response

on the perturbed model.

To compute the response using the new methodology, the computational

domain was truncated 15 m above and below the extrapolation points (at 110 m

and 190 m depth, respectively). The offset of 15 m between the extrapolation

surface and the boundary of the truncated domain was chosen to prevent errors

due to the diffraction limit inherent in the interferometric Green’s functions

(de Rosny and Fink, 2002). Without loss of generality, we opted for a pressure
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(Dirichlet) boundary condition at the edge of the truncated computational

domain and collocated the evaluation points of the Kirchhoff integral with the

(staggered) FD pressure points at the edge of the grid. Thus, Green’s functions

for extrapolation through the background model need to be computed between

all combination of points with one point on the extrapolation and one point

on the “injection” surface (i.e., between 125 m and 110 m, 125 m and 190 m,

175 m and 125 m, and 175 m and 190 m) and for both pressure-to-pressure and

particle velocity-to-pressure interactions, giving a total of 8 extrapolation Green’s

functions for this simple 1D example.

In practice, the Kirchhoff extrapolation (equation 4.4) is evaluated for every

time-step of the finite-difference simulation on the truncated perturbed domain

and the resulting seismograms are added to a buffer of future boundary values.

The next sample from the buffer is then used as the boundary condition for the

subsequent time-step in the FD calculation. The wavefield on the perturbed grid

resulting from the new boundary condition is shown in figure 4.2 (middle panel).

Note that no additional absorbing boundary conditions were used outside the new

exact boundary condition. The resulting pressure wavefield can be compared to

a reference wavefield in figure 4.2 (top panel). In the bottom panel, the difference

between the top and middle panel is shown for the extent of the subgrid (110-

190 m). The first high-order long-range interactions start between 0.2 s and

0.24 s (depending on the depth). Thus, the high-order long-range interactions

are reproduced exactly.

For reference, in figure 4.3, the wavefield computed using conventional FD-

injection (Robertsson and Chapman, 2000) (top panel) and the difference with

a directly computed reference solution are shown (bottom panel), again for the

extent of the subgrid (110-190 m). Note that already at 0.2 s, when the second-

order long-range interactions start, conventional FD-injection breaks down. In

such a case, we have no alternative but to compute all high-order long-range

interactions using a different method, such as the one presented here.
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4.6 Leading order CPU estimate

To assess the impact of the presented exact boundary condition, I now estimate

the computational cost to the leading order. Three main parts can be identified

in the methodology outlined above:

1. Interferometry to compute the extrapolation Green’s functions,

2. Regular finite-difference update on the subgrid, and,

3. Extrapolation of the wavefield to the injection boundary.

The first step is performed only once for each subvolume and does not have to

be repeated when considering multiple perturbations (or incident wavefields) of

the same subvolume (see also below). Steps 2 and 3 are repeated for different

perturbations. We now discuss the cost of each of the three steps in detail.

Step 1: Interferometry to compute the extrapolation Green’s functions Let

NZ and ND denote the original model size and the reduced size, respectively, and

NT the number of time-steps for which the model is to be run2.

The construction of a single interferometric Green’s function requires cross-

correlation of on the order of NZ traces (i.e., the number of points is of the same

order as one of the sides of the model). The construction can be done efficiently

by multiplication in the frequency domain (data stored as FFT) and results in

on the order of NZNT operations (for details, see chapter 3). The number of

points on the extrapolation surface and the injection boundary is of order Nm−1
D ,

i.e., one dimension less than the model dimensionality. Extrapolation Green’s

functions have to be constructed between any pair of those, resulting in N
2(m−1)
D

of them. Combining the cost of a single interferometric Green’s function and the

number of extrapolation Green’s functions, we get for the total cost of computing

the extrapolation Green’s function: NZNT N
2(m−1)
D .

2We use lowercase letters to denote the physical requirements and uppercase letters the
simulation requirements. For example, Nz is the number of depth points required to describe
the physical model, whereas NZ is the number that may be required in the simulation model.
Often NZ À Nz. E.g., in finite-difference calculations: NZ ∼ ωmax

vmin
À Nz.
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1D (m=1) 2D (m=2) 3D (m=3)
Finite-difference full grid N2

Z N3
Z N4

Z

Finite-difference subgrid NDNZ N2
DNZ N3

DNZ

Kirchhoff extrapolation N2
Z N2

DN2
Z N4

DN2
Z

Table 4.1: Leading order number of floating point operations for the exact boundary
condition. Note that for simplicity we have assumed that the number of timesteps, NT is
of the same order as the number of depth points in the simulation model, NZ .

Step 2: Regular finite-difference update on the subgrid This step is

proportional to Nm
D NT , the length of the subgrid raised to the dimensionality

of the model, times the number of timesteps.

Step 3: Extrapolation of the wavefield to the injection boundary After each

timestep of the regular FD update (i.e., step 2), all N
2(m−1)
D extrapolation Green’s

functions (of length NT ) must be scaled by the field values at the extrapolation

surface and integrated. This takes on the order of N
2(m−1)
D NT operations each

timestep, and N
2(m−1)
D N2

T for the whole simulation.

Note that we have not included the initial cost of systematically illuminating

the model from the outside since this is done only once and does not have to

be repeated when considering multiple arbitrary model perturbations. We only

include such steps that need to be recomputed when considering perturbations in

another subvolume, so that we can explicitly compare against the cost of a single

finite-difference run on the full grid for the perturbed model.

To proceed further, we assume that the number of timesteps, NT , is of the

same order as the number of depth points in the simulation model, NZ . In

table 4.1, the computational cost of the different steps is summarized for one,

two, and three dimensions. Note that the cost of the finite-difference update on

the subgrid is typically insignificant compared to the cost of repeated evaluation

of the Kirchhoff extrapolation integral and therefore is neglected in the following.

Thus, in order for the exact boundary condition to be more efficient than direct
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finite-difference computation on the full grid, we find the following inequalities:

1D: N2
Z ≤ N2

Z

2D: N2
D ≤ NZ

3D: N4
D ≤ N2

Z .

Thus, for 1D, since ND does not enter the equations (the number of extrap-

olation and injection points is just two regardless of the size of the enclosed

perturbation), the cost is roughly of the same order as direct finite-differences on

the subgrid. For 2D and 3D, we get the same condition, namely that the length

of the subgrid should be smaller than the square-root of the number of depth

points in the full grid.

At this point it should be mentioned that some of the multiplying constants

ignored in the leading order estimate are quite large and therefore one should

be cautious not to draw too many conclusions from the above leading order

estimate. The main point of the calculation is to show that, although the number

of points on the extrapolation surface surrounding the subgrid is small, since the

extrapolation needs to be done between all pairs of points and is repeated at every

timestep of the finite-difference calculation on the subgrid, some of the immediate

advantages of the presented exact boundary condition disappear3.

Finally, note that, although the number of floating point operations for the

exact boundary condition may be comparable to direct computation on a full grid,

the nature of the calculations is different. Evaluation of the Kirchhoff integral

only requires scaling and summation of extrapolation Green’s functions and hence

is highly suitable for vectorization/parallelization. Moreover, there are likely to

be significant advantages in terms of memory as well.

4.7 Discussion

The presented method is exact and includes all second and higher-order long

range interactions with the background model that were missing in conventional

3Note that, it may be possible to significantly increase the time interval between successive
extrapolations by subsampling the extrapolation Green’s functions to the Nyquist frequency of
the output data, provided proper temporal stabilization (e.g., by averaging in time) is in place.
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FD-injection (Robertsson and Chapman, 2000). This accuracy, however, comes at

a price: the cost estimate in the previous section suggests that the new method is

not always more efficient than computing the wavefield for the perturbed medium

on the full grid directly.

It is an open question whether an exact method to update full waveforms after

localized model perturbations that includes all interactions with the background

model can be more efficient than, e.g., direct finite-differences on the full grid.

Since the perturbed wavefield will interact with all parts of the background model,

in a way that is impossible to predict in advance, such interactions need to be

computed somehow. The keyword here, obviously, is somehow, as it implies that

there may be no way to circumvent this cost.

Nevertheless the other keyword in the previous paragraph, exact, allows more

room for improvement than suggested above. Suppose we are only interested in

long-range interactions with the background medium up to a certain pre-defined

order. Surely we should be able to do better than direct full waveform modeling

on the full grid! Thus, the question of a Neumann series for the exact boundary

condition arises and a closer look at the hybrid boundary integral equation +

Born series modeling scheme by Schuster (1985) seems warranted.

4.7.1 A Born (Neumann) series representation for the

exact boundary condition

In the following we refer to a Born series as a series between surfaces of scattering

regions rather than between individual point scatterers. This terminology is

inspired by the work of Schuster (1985) on the Generalized Born Series (GBS).

The GBS is based upon perturbing a surface boundary integral equation (SBIE)

matrix for a multi-body scattering problem into a part to be easily inverted,

called the self-interaction operator, and a part not to be inverted at all, called the

extrapolation operator. By applying the inverse of the self-interaction operator

to the surface boundary integral equations, Schuster (1985) obtained a new

integral equation which can be solved efficiently with a Born-like series using

the extrapolation operator.

More specifically, what Schuster (1985) calls a self-interaction operator, S, is

the set of boundary integral equations (BIE) for a single volume scatterer (or
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perturbed region) in a background medium. It is possible to arrive at a similar

set of equations for the exact boundary condition presented here by collocating

the extrapolation and injection surfaces and by substituting a Kirchhoff integral

representation for the propagation on the interior of the perturbed region4.

The integral representation for the exterior remains unchanged and uses the

interferometric Green’s functions computed for the background medium. The

resulting system can then be solved by a pure BIE method. Alternatively, the self-

interaction operator can be solved by collocating the extrapolation and injection

surfaces and solving the extrapolation in conjunction with FD on the perturbed

grid. The latter approach was used by Teng (2003) for homogeneous background

models. Note that both approaches require dealing with singularities arising from

the collocation of the extrapolation and injection surfaces.

The upshot of all this is that, notwithstanding subtle mathematical differ-

ences, inverting the self-interaction operator is equivalent to computing the long-

range interactions between a perturbed region in isolation and the background

model using the exact boundary condition. Moreover, the long-range interactions

between scatterers in the generalized Born series are taken into account by using

the extrapolation operator to iteratively extrapolate the full reflection response

computed for each individual scatterer in what amounts to a Born-like series.

Notice that if we formally want to demonstrate that the exact boundary

condition can be written as a Born like series we still need to explain what happens

to the scattered wavefield from an isolated first perturbation when injected into

other perturbed regions. Since such scattered wavefields already contain all

interactions with the background model (because the exact, full waveform Green’s

functions are used), it is non-trivial that subsequent injection and extrapolation

doesn’t double the contribution from the background model.

Clearly, the support of the wavefield scattered off a first perturbation in

isolation does not extend beyond the perturbation itself. Therefore, the scattered

wavefield propagating in the background medium is source-free everywhere else,

including inside the other perturbed regions. As a result, the part of the scattered

4Note that it is not immediately clear which Green’s functions should be used for this
interior Kirchhoff integral. Intuitively, Green’s functions for the perturbed region with outgoing
boundary conditions should be used. In practice, this would require FD computations for
sources distributed on the surface surrounding the truncated perturbed region, with absorbing
boundary conditions outside. It would be quite costly, but by no means impossible.
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wavefield propagating in the background medium does not contribute to the

Kirchhoff-Helmholtz integral when evaluated for the other perturbed regions

and we are left with the interaction of the scattered wavefield with the other

perturbations5.

This means that we can apply the same iterative procedure as Schuster (1985)

and solve for the second- and higher-order long-range interactions between the

scattering regions using a Born (Neumann) series:

1. First we compute the self-interaction of each perturbed region with the

background model in isolation using the new exact boundary condition

while storing the resulting scattered wavefield at the receivers and at all

other injection surfaces.

2. Next for each perturbed region we superpose the scattered wavefields due to

all the other perturbed regions (computed separately in step 1) as injection

wavefield and compute the self-interaction again for each perturbed region

in isolation while storing the resulting scattered wavefield at the receivers

and all other injection surfaces.

This process is repeated until the desired order of long-range interactions has

been computed. The Neumann series is explained in figure 4.4. At this point I

should like conclude this section with the following remarks:

• While at first sight it appears that we have succeeded in deriving a Neumann

series representation for the exact boundary condition and hence have found

a way of trading accuracy for efficiency, this is not the case. We have

presented a different Neumann series, namely for the high-order interactions

between volume scatterers, and not for high-order interactions between the

volume scatterer and the background medium as desired. This is a different

Neumann series and should be clearly distinguished. An analysis of the

latter Neumann series is beyond the scope of this thesis.

• In practice, we would probably not calculate the response for the different

volume scatterers in isolation, but instead run the finite-differences on the

5Note that this reasoning is completely analogous to the reasoning in section 4.2, demon-
strating that the incident wavefield vanishes when integrated over the surrounding surface of a
single perturbation.
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perturbed subgrids simultaneously and continuously update the boundaries

of the subgrids by Kirchhoff extrapolation at each timestep and hence

compute the long-range interactions between the volume scatterers on the

fly.

• The presented Neumann series for long-range interactions between volume

scatterers can also be applied easily to conventional FD-injection techniques

(Robertsson and Chapman, 2000). The scattered wavefield leaking out the

perturbed region (missing the second- and higher-order long-range interac-

tions with the background model) is extrapolated through the background

medium to the other perturbed regions and injected in the usual fashion.

This leads to another set of scattered wavefields which can then be re-

injected in the original perturbed region to obtain the long-range interac-

tions between the perturbed regions.

4.7.2 Hybrid modeling

Note that although interferometry provides the required full waveform Green’s

functions for extrapolation through the background medium cheaply and accu-

rately, interferometry is not strictly required for the exact boundary condition.

In principle, the Green’s functions can be computed by direct finite-differences or

any other full waveform forward modeling method, although generally at a higher

computational cost.

However, in some cases where part of the (background) medium is particularly

simple or satisfies certain symmetry properties, it may be more efficient to

compute the Green’s functions for the background medium using a different (non-

interferometric) method. For example, if the background medium is horizontally

layered, a reflectivity method (Kennett, 1983) is the obvious method of choice.

Thus, the exact boundary condition makes it possible to consider, for example,

an inhomogeneous layer embedded between two horizontally layered halfspaces

(stacks).

Similarly, when considering scattering from a set of irregularly shaped in-

homogeneous objects embedded in a homogeneous background medium, analytic

free-space Green’s functions can be used to connect the subgrids for full waveform



CHAPTER 4. Exact boundary condition for interior scattering problems 73

injection boundary B
extrapolation surface S

scattering 
Perturbation II

(x)(x), �� ss

injection boundary B
extrapolation surface S

scattering 
Perturbation III

(x)(x), �� ss

injection boundary B
extrapolation surface S

scattering 
Perturbation I

(x)(x), �� ss

Figure 4.4: Long-range interactions between volume scatterers in the presented exact
boundary condition. Note that the extrapolation from one volume scatterer’s extrapola-
tion surface to the other scatterer’s injection surfaces through the background model is
equivalent to application of Schuster’s (1986) extrapolation operator. Similarly, compu-
tation of the full response for one volume scatterer in isolation, including all high-order
long-range interactions with the background model, is equivalent to inverting Schuster’s
(1986) self-interaction operator. For details see text.

modeling. In this way, the expensive part of the modeling (e.g. finite-differences)

is only applied locally, whereas the extrapolation from one scatterer to the oth-

ers is done using free-space Green’s functions. The exact boundary condition

ensures that all orders of interactions between the scatterers are included in the

calculation.

Thus, the exact boundary condition teaches us how to couple the results of

typically expensive full waveform modeling applications, as applied locally, to

inexpensive global modeling methods, so that all orders of interactions between

the complicated volume scatterers and the less complicated (but potentially

still inhomogeneous) background medium are modeled correctly. Combined

with significant advantages in terms of memory, this makes the exact boundary

condition an essential ingredient for future hybrid modeling methods.
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4.7.3 Absorbing Boundary Conditions

Besides the generalized Born series and hybrid modeling, the exact boundary

condition also finds application as an absorbing boundary condition. Provided

the full waveform Green’s functions (one-way) are available to extrapolate

the wavefield from an auxiliary surface surrounding the domain of interest

to the boundary of the computational domain several gridpoints outside, the

computational domain can be truncated by using the integral representation of

the exact boundary condition to extrapolate the (outgoing) wavefield to the edge

of the computational domain and match the waves propagating on the grid there.

This is very similar to the original application proposed by Ting and Miksis,

who were also interested in truncating the domain of calculation for an exterior

scattering problem. The main difference here is the realization that the method

can be applied beyond the homogeneous embedding.

4.8 Conclusion

The presented boundary condition is exact and can be used to compute the

response, including all higher-order long-range interactions, to multiple arbitrary

perturbations in inhomogeneous models. There are no restrictions on the

medium between the extrapolation surface and the boundary of the truncated

computational domain as long as it is exactly the same as in the background

model. No additional absorbing boundaries are necessary and no special functions

or singular integrals need to be evaluated. Although the computational cost of the

new method is roughly of the same order as direct computation on the full grid,

the nature of the computations make it an ideal candidate for parallelization and

efficient memory implementations. When multiple perturbed volume scatterers

are present, the interaction between the volume scatters can be written explicitly

as a Neumann series. A similar Neumann series for the interaction between the

background model and individual volume scatterers may provide a way to trade-

off accuracy for computational cost. It is expected that the exact boundary

condition will have a significant impact on hybrid and full waveform modeling.



Chapter 5

Receiver functions

5.1 Introduction

A receiver function is a time- or frequency-domain trace resulting from a

particular combination, usually deconvolution, of P- and S-wave seismograms.

The aim of receiver function calculation is to produce a trace which isolates

propagation effects due to structure close to the receiver. By exploiting mode-

conversions of the wavefield close to the receiver, features common to the

waveforms of the converted and unconverted waves are divided out in the

deconvolution, and the imprint of the source and of bulk propagation effects

are removed.

The receiver function method has its origin in earthquake seismology where

often, after registration of a teleseismic P-wave on the vertical component

seismogram, a strong trailing coda was observed on the horizontal components.

This coda was found to consist of shear waves, resulting from mode-conversion at

intra-crustal and upper-mantle discontinuities. Phinney (1964) initially proposed

calculating spectral ratios of the vertical divided by the horizontal component to

isolate and invert the crustal coda for structure close to the receiver, but it was

only after Langston (1979) and Vinnik (1977) independently made two minor

modifications to the spectral ratio method that one can really speak of receiver

functions. Both researchers proposed dividing the horizontal components by the

vertical and worked in the time-domain instead of the frequency-domain. This

had two advantages: first, since the P-wave was recorded almost unperturbed on

75
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the vertical component, its complicated spectrum could be removed successfully

from the horizontal component trace. More importantly, the arrival times of all

mode-converted waves were shifted in time relative to the arrival of the P-wave.

The resulting time-domain trace was more easily interpretable than Phinney’s

amplitude spectra and the implicit removal of the source signature effectively

made it possible to compare and stack receiver functions for different earthquakes

with varying depth and source mechanism.

More recently, van Manen (2001) and van Manen et al. (2003) have shown

that the receiver function method can also be applied to multi-component

seabed seismic data and that the resulting receiver functions provide information

about the shear-wave static time-delays arising from low-velocity unconsolidated

sediments close to the receiver. Their approach relied on deconvolution and

stacking of receiver functions in the common receiver domain and is reproduced

in figure 5.1. For a typical line of multi-component seismic data, on the order

of 200 receiver functions were stacked into a single trace per receiver, producing

a profile of receiver functions with high signal-to-noise ratio. Events in such a

profile, corresponding to shallow mode-converted waves, constrained the shear-

wave statics. However, in contrast to the seismological setting, they concluded

that the main converted wave energy in the receiver functions originates from

mode-conversion upon reflection rather than transmission.

In this chapter, I investigate whether the receiver function approach by van

Manen et al. (2003) can be applied more generally to exploration and production

seismic data. The result is a comprehensive treatment of receiver function

processing, with specific application to multi-component reflection data in mind.

In the first part (sections 5.4 to 5.6), I discuss three different ways of receiver

function calculation and focus on their subsequent kinematic interpretation.

Starting with the usual slowness domain implementation in section 5.4, I show

that the recent work in the seismological community on moveout correction and

stacking of receiver functions (e.g., Gurrola et al., 1994; Ryberg and Weber, 2000)

can be extended significantly, building on relevant results from the exploration

and production seismic community. Results include a series expansion for the

traveltime difference in generally horizontally layered media and a so-called

Dix-Krey-type velocity inversion formula. This is followed in section 5.5 by

a new approach, dubbed space-time domain (2D) deconvolution, which treats
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Figure 5.1: Shear-wave statics using receiver functions (after van Manen et al., 2003).
(A) Typical common receiver gather of hydrophone data. (B) Corresponding gather of inline
horizontal component data. (C) Receiver functions calculated by stabilised deconvolution
of the pressure from the respective horizontal component traces. Note the complicated
behaviour in the centre of the gather. The receiver functions are subsequently stacked to
form a single trace and this process is repeated for all receivers. (D) Profile of stacked
receiver functions. The arrow denotes the shallow P-S mode-converted wave constraining
the shear-wave statics. Note that to obtain this profile the pressure and horizontal
component data in (A) and (B) were muted below the black solid lines. This suggests
that the mode-conversion takes place upon reflection rather than transmission.

the spatial aspects of mode-conversion completely analogously to the temporal

aspects. Thus, the receiver function becomes a two-dimensional transfer function,

which shows how far the P-waves have to be shifted in space and delayed in time

to match the corresponding PS-converted waves. Again, a series expansion of

the traveltime difference leads naturally to a two-term moveout approximation

and a Dix-Krey-type velocity inversion formula, but this time as a function of

the difference in horizontal travel-distance rather than slowness. The first part

is concluded in section 5.6 with a method of receiver function calculation (and
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processing) that is model independent. By matching the slowness of the PP-

reflected and PS-converted waves on the source-side, and exploiting the fact

that the traveltime difference is stationary for the PP- and PS-wave, reflected

and mode-converted at the same subsurface point, the complete downgoing P-

wave leg (and all propagation effects associated with it!) can be removed in

arbitrary inhomogeneous models, without any knowledge of the subsurface. A

simple method for pre-stack migration of the resulting model-independent receiver

functions in homogeneous media is also discussed. Finally, the power of the

model-independent approach is illustrated with an example of a case where

increased attenuation suffered in the down-going P-wave leg is removed by the

deconvolution.

In the second part of the chapter (section 5.7), dynamic aspects of receiver

function processing are discussed as these naturally arise when examining the

differences between receiver function calculation in a reflection and a transmission

setting. It is shown that even for a two-layer reflection seismic example, there no

longer exists a simple transfer function connecting the two pairs of PP-reflected

and PS-converted waves. By developing a non-stationary filter model for the

receiver function, it is then shown that the receiver function no longer is a function

but is a matrix in the reflection setting. Finally, I end the chapter with some

conclusions.

First, however, I briefly review the main observations and assumptions

underpinning the receiver function method and highlight wavefield decomposition

as a necessary pre-processing step, before returning to the roots of the receiver

function method with the slowness domain implementation.
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5.2 A first model for receiver functions

The concept of a receiver function would not be useful if there were not some

underlying physical reality in which the vertical and horizontal components

of teleseismic body wave data are simply related and share some common

convolutional components. In other words, a receiver function derives its

meaning, not from its definition in terms of a mathematical operation such as

deconvolution, but from observational facts. They are worth repeating here for

teleseismic transmission data, as they may or may not be valid when applying

the receiver function method to reflection seismic data:

1. the P-waves are recorded dominantly on the vertical component, and

2. they are not affected much by the intra-crustal discontinuities, whereas

3. the S-waves are recorded dominantly on the horizontal components, and

4. they are the result of P-S conversion at intra-crustal discontinuities.

Based on these observations, seismologists like Phinney and Langston have

formulated models that explain and predict, for realistic crustal and upper-mantle

models, which combination of converted and unconverted waves will be present

in the receiver function. Such models have helped them to see which information

about the structure close to the receiver is isolated in the receiver functions, and

how to extract it. The initial model they adopted was based on the following

assumptions (figure 5.3):

• Pure-mode transmission coefficients (e.g., Tpp1, Tpp2, Tss1, etc.) are close to

unity and can be neglected as the teleseismic P-waves are near-vertically

incident on the crust from below.

• Multiple mode-conversions can be neglected as their amplitude depends on

the power of a number that is typically much smaller than one.

• Internal and free-surface related multiples are neglected (i.e., only primary

reflected and converted waves are recorded).

• The earth, to first approximation, is horizontally layered.
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The last two assumptions are also very common in exploration and production

seismology, especially in the early stages of velocity model building. Under these

assumptions, as will be discussed in detail in section 5.7.1, the transmission

receiver function, Ht(t), in an n-layered model, has the following simple form:

Ht(t) ≈
n∑

k=1

Tpsk · δ(t− dtpsk), (5.1)

where Tpsk is the upward P-S transmission coefficient at layer k and dtpsk =∑k
i=1 tsi−tpi with tsi and tpi the one-way P- and S-wave traveltimes through layer

i, respectively. Hence, the transmission receiver function contains a single event

per interface, related to mode-conversion at that interface. Note that the time

difference between a PP-transmitted and PS-converted wave from a particular

interface is summed (integrated) for all the layers above that converting interface

and the amplitude of the event is, to first order, the PS-conversion coefficient

of that interface. This extremely simple model preserves the two main features

of receiver functions mentioned in the introduction: deconvolution of the source

signature (i.e., the original source wavelet has been removed and replaced by a

delta-function), and shifting of the converted waves relative in time to the arrival

time of the main, unconverted wave. At this point it is still an open question

whether such a simple model exists for reflection seismic receiver functions.

Obviously, even for a horizontally layered medium, the traveltimes tsi and

tpi depend on the slowness of the incident wave and any model, whether

for transmission or reflection receiver functions, should take this into account.

This is discussed in detail in section 5.4.2. In section 5.4.3 we show how

to extract the information that is present, in temporally integrated form, in

receiver functions calculated for horizontally layered models. But first I show

that wavefield decomposition is a necessary pre-processing step before calculating

receiver functions in the slowness domain when observations 1 and 3 above are

no longer met.
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5.3 Receiver function pre-processing:

wavefield decomposition

In figure 5.2 (top), synthetic space-time domain data for the six-layer model

in table 5.1 is shown. The data was modeled using a two-dimensional (2D)

reflectivity code (Kennett, 1983) and will be used to illustrate the processing

steps involved with receiver function calculation in a reflection setting. On the

left, the modeled vertical component of particle velocity is shown and on the

right, the horizontal component. Note that the natural separation of P-waves on

the vertical and S-waves on the horizontal is not complete and that significant

amounts of P- and S-wave energy are projected onto the other component.

As was already mentioned in the introduction, the goal of receiver function

calculation is to calculate some kind of transfer function between P- and S-waves

which isolates propagation effects close to the receiver. When the P-waves are

recorded dominantly on the vertical component and S-waves on the horizontal,

this can be achieved by direct deconvolution of the vertical component out of the

horizontal. However, when significant amounts of energy are projected on the

other component due to increased angles of incidence – as is often the case in

reflection seismics – a better approach is to decompose the wavefield into P- and

S-waves before calculating receiver functions.

Wavefield decomposition of land multi-component seismic data has been

discussed by many authors, including Dankbaar (1985), Wapenaar and Haimé

(1990) and Robertsson and Curtis (2002). Wavefield decomposition of seabed

seismic data is discussed by Amundsen and Reitan (1995), Donati and Stewart

(1996) and Schalkwijk et al. (1999). A complete review of wavefield decomposition

techniques is beyond the scope of this thesis. However, we discuss here briefly

the decomposition of two-component land seismic data, as proposed by Dankbaar

(1985), as this technique is used in our subsequent examples.

Let Z(k, ω) and X(k, ω) denote the vertical and horizontal components of

particle velocity in the frequency-wavenumber domain, respectively1. Dankbaar

(1985) has shown that upgoing P- and S-waves, P up and Sup, may be obtained

1It is convenient to decompose the data into plane waves by transforming the data to the
frequency-wavenumber domain as the wavefield decomposition filters (to be introduced shortly)
are a function of frequency and horizontal wavenumber (or slowness).
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Layer VP (m/s) VS (m/s) h (m)
1 1650 400 50
2 1775 700 75
3 1900 950 100
4 2000 1000 200
5 2250 1125 275
6 2750 1375 600
7 3000 1500 ∞

Table 5.1: Medium properties of the six-layer over a halfspace model used to generate
the reflectivity data in figure 5.2. VP , VS and h denote the P-wave velocity, S-wave velocity
and thickness of the layers, respectively.

from Z and X as follows:

P up(k, ω) = F P
Z (k, ω)Z(k, ω) + F P

X (k, ω)X(k, ω) (5.2)

Sup(k, ω) = F S
Z (k, ω)Z(k, ω) + F S

X(k, ω)X(k, ω) (5.3)

where the decomposition filters, F , acting on the vertical and horizontal compo-

nents are:

F P
Z (p) =

(1− 2V 2
S p2)

2VP

(
V −2

P − p2
) 1

2

, (5.4)

F P
X (p) = V 2

S p/VP , (5.5)

F S
Z (p) = VSp, (5.6)

F S
X(p) =

(1− 2V 2
S p2)

2VS

(
V −2

S − p2
) 1

2

, (5.7)

and VP , VS, and p are the P- and S-wave velocities of the medium at the receiver

array and the horizontal slowness, respectively. Note that the decomposition

filters are independent of frequency.

In figure 5.2 (bottom), the result of applying wavefield decomposition to the

vertical and horizontal component data in the top panels is shown. On the left,

the upgoing P-waves are shown and on the right, the upgoing S-waves. Notice

that the P-wave projections preceding the arrival of the first S-waves have now

disappeared. Some minor, decomposition-related artifacts can also be seen. In

the following we calculate receiver functions based on the PS-separated data only.
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Figure 5.2: Space-time domain reflectivity data used in the receiver function examples.
In the top panels, the vertical (left) and horizontal (right) components of particle velocity
are shown. In the bottom panels, the result of applying wavefield decomposition to the data
in the top panels is shown. On the left, the upgoing P-waves are shown, on the right, the
upgoing S-waves. Note that the projections of the P-waves on the horizontal component
and the S-waves on the vertical component have been removed.
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5.4 Slowness domain treatment

5.4.1 Receiver function calculation I: 1D Deconvolution

In figure 5.3, a schematic drawing of all the raypaths and phases involved in

conventional seismological receiver function calculation is shown. Because in

a horizontally layered medium the horizontal slowness (henceforth referred to

as just the slowness) is preserved upon refraction and mode-conversion at an

interface in accordance with Snell’s law, waves propagating at a first slowness do

not interfere with waves propagating at a second slowness and the traveltime

difference between P- and S-waves is most easily obtained as a function of

slowness. Since we are looking for a transfer function between P- and S-waves

from the same wave-system, it is natural to formulate the receiver function

calculation in the slowness domain. If Z̃(p, ω), R̃(p, ω) and T̃ (p, ω) denote the

vertical, radial and transverse components in frequency-slowness (ω, p) domain,

then the receiver functions are calculated as follows:

H̃R(p, ω) =
R̃(p, ω)Z̃(p, ω)∗

Z̃(p, ω)Z̃(p, ω)∗ + ε
, (5.8)

H̃T (p, ω) =
T̃ (p, ω)Z̃(p, ω)∗

Z̃(p, ω)Z̃(p, ω)∗ + ε
, (5.9)

where ∗ denotes complex conjugation and ε is some fraction of the maximum

of the autocorrelation and is included to stabilize the division. Note that in a

horizontally layered model, the P-SV system is completely decoupled from the SH

system. For commonly used explosive-type sources in exploration and production

seismic no SH-waves are generated and therefore we will not further discuss the

tangential receiver function in the following2. When the vertical and horizontal

component data have been separated into P- and S-waves, equation 5.8 for the

radial receiver function becomes:

H̃R(p, ω) =
S̃up(p, ω)P̃up(p, ω)∗

P̃up(p, ω)P̃up(p, ω)∗ + ε
. (5.10)

2The tangential receiver function plays an important role in crustal seismology in the
determination of dipping layers (see e.g., Zhang and Langston, 1995) and crustal anisotropy
(Levin and Park, 1997).
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Figure 5.3: Schematic illustration of the phases and raypaths involved in the seismological
receiver function setting. A plane P-wave is incident on a stack of n horizontal layers from
below and mode-converts to shear-wave energy at discontinuities within and at the base of
the stack. P- and S-waves are denoted by solid and dashed lines respectively. The data
from each station are processed separately and the additional time Th is treated implicitly
in the traveltime difference calculation.

In earthquake seismology, because of the large distances involved and the

predominantly radially symmetric earth structure, teleseismic body waves at a

receiver station are, to first approximation, planar and hence naturally separated

as a function of slowness according to epicentral distance. In exploration and

production seismology, the spherical nature of the reflected wavefield can not be

neglected and the waves recorded along a receiver array must be decomposed into

their plane wave components before equations 5.8 and 5.9 can be applied. Using

the conventional definitions for the Fourier transform and (τ, p) transform we find

for data u(x, t) transformed into the frequency-slowness (ω, p) domain:

Ũ(p, ω) =

∫ ∞∫

−∞

u(x, t)eiω(t−px)dtdx, (5.11)

u(x, t) =
|ω|

(2π)2

∫ ∞∫

−∞

Ũ(p, ω)e−iω(t−px)dpdω, (5.12)
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where τ , is related to the input time, t, the slowness, p, and offset, x, through

τ = t − px. The resulting (τ, p)-domain receiver functions are found by inverse

Fourier transforming equations 5.8, 5.9 and 5.10 along the frequency dimension,

respectively.

In figure 5.4, the (τ ,p)-domain data obtained by transforming the (x,t)-

domain reflectivity data from figure 5.2 are shown. In the top panels, the result

of transforming the un-separated vertical and horizontal components is shown.

In the bottom panels, the corresponding transformed, wavefield-separated data

are shown. The left and right panels correspond to vertical and horizontal and

upgoing P- and upgoing S-waves, respectively. By comparing the top and bottom

panels, again it it clear that the natural separation of P-waves on the vertical and

S-waves on the horizontal is not complete and that the data should be wavefield-

separated before calculating the receiver functions.

In the next section a series expansion for the traveltime difference between

P- and S-waves through horizontally layered models is derived and from this a

general expression for the traveltime difference for PS-conversions (both upon

reflection and transmission) at all layers arises.

5.4.2 Series expansion of the traveltime difference I:

Function of slowness

Now that we know how to calculate receiver functions in the slowness domain,

we need to understand better the timing of the events in the receiver functions.

As mentioned above, even for a horizontally layered medium, the traveltimes tpn

and tsn depend on the slowness of the incident wave. From global seismology, it is

well known that the difference in traveltime dt between a plane P-wave incident

on a stack of n horizontal layers from below and the corresponding PS-waves,

converted upon transmission, can be written (Paulssen et al., 1993):

dt =
n∑

k=1

hk

(√
V s−2

k − p2 −
√

V p−2
k − p2

)
, (5.13)

where hk, V sk and V pk denote the thickness, shear- and compressional-wave

velocity of layer k respectively, and p the slowness of the incident wave. Equa-

tion 5.13 implicitly takes into account the extra time it takes the incident wave
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Figure 5.4: (τ ,p)-domain reflectivity data obtained by transforming the space-time
domain reflectivity data from figure 5.2 using equation 5.11. In the top panels, the
transformed vertical (left) and horizontal (right) components of particle velocity are shown.
In the bottom panels, the transformed, upgoing P-waves (left) and upgoing S-waves (right)
are shown. Notice how wavefield decomposition has removed the projections of the P-waves
on the horizontal component and the S-waves on the vertical component.
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to reach the horizontally offset conversion point at the base of layer k and com-

pares arrival times of PP-transmitted and PS-converted waves recorded at a single

multi-component station (see figure 5.3). It is also valid in a reflection setting,

provided the primary PP-reflected and PS-converted waves can be decomposed

into their plane-wave constituents at a single station as discussed in the previous

section.

As it stands, equation 5.13 is not very useful to model the moveout of

events in receiver functions because it is a function of all unknown medium

parameters above the converting interface and has a different number of terms

in the right-hand side for different interfaces. Instead, it would be useful to

find a representation for the traveltime difference with a form that is interface

independent, consists of a small number of terms, and has a simple slowness

dependence. For example, we could postulate the form: dt = c0 + c1p
2 + · · · .

This would then allow fitting (determination of the ci’s) of the observed moveout

for each event in the receiver functions using the same two parameter equation

and make it possible, for example, to sum the events corresponding to a particular

interface along such curves to improve the signal-to-noise ratio of that event. In

Appendix C it is shown that this can be achieved by expanding the square-root

terms in equation 5.13 as Taylor series in the product v2p2, where v can denote

either P- or S-velocity. The result is:

dtsmallp =
n∑

k=1

hk

(
V s−1

k − V p−1
k

)
+

1

2

n∑

k=1

hk (V pk − V sk) p2. (5.14)

The first term on the right of equation 5.14 is the difference in traveltime between

a vertically incident P- and S-wave (p=0 s/m) through the stack of layers. The

second term, multiplying p2, is not simply interpretable since it contains products

of layer thicknesses and differences in velocities and has units [m2/s]. However,

maintaining the analogy with normal moveout (NMO) corrections developed in

exploration and production seismic, we call this the pseudo rms-velocity3. Thus

3In exploration and production seismic, the small-spread approximation has the form:
t2 = C0 +C1x

2, where C0 equals the square of the two-way traveltime at vertical incidence and
C1 = (

∑n
k=1 ∆τk)/(

∑n
k=1 v2

k∆τk), with ∆τk ≡ hk/vk the vertical two-way traveltime through
layer k. If we now interpret C1 as the inverse of a squared velocity: C1 = 1/v2

rms, then
the small-spread approximation has the familiar hyperbolic form and the velocity becomes
vrms = (

∑n
k=1 v2

k∆τk/
∑

k=1 ∆τk)1/2, which, because of its form clearly merits the name rms
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we have:

dtsmallp = dt0 + ṽrmsp
2,

where

dt0 ≡
n∑

k=1

hk

(
V s−1

k − V p−1
k

)
, (5.15)

ṽrms =
1

2

n∑

k=1

hk (V pk − V sk) . (5.16)

Thus, all knowledge of the medium is implicit in the traveltime difference and

pseudo rms-velocity for a particular interface (i.e., information about the medium

is buried in coefficients c0 and c1 of the postulated two parameter curve). As

hinted above, these parameters can usually be obtained from a so-called velocity

spectrum stack [VSS] (see e.g., Gurrola et al., 1994) by scanning over a range

of realistic values for ṽrms at each dt0 and calculating a measure of coherence

of the receiver functions as a function of slowness called semblance. Using,

these parameters it is thus possible to correct, for example, the moveout of an

event corresponding to mode-conversion at the base of layer k without explicit

knowledge of the medium above that interface.

Note that for the special case of a single layer, the short-spread approximation

reduces to the expression given by Ryberg and Weber (2000).

Slowness domain receiver functions and the two-term series approximation to

the traveltime difference are illustrated in figure 5.5 for the six-layer model from

table 5.1. In the top-left panel, the receiver functions resulting from stabilized

deconvolution of the wavefield-separated, (τ ,p)-transformed data from figure 5.4

(bottom panels) are shown. Notice that only positive lag-times are shown and

that the range of lag-times is restricted to 0.8 s. The receiver functions contain

a myriad of events and it is not immediately clear which events relate to the

PS-converted waves from each interface. To aid the interpretation, in dark blue,

the exact traveltime difference as a function of slowness, obtained by raytracing

trough the six-layer model, is shown. In light blue, the two-term approximation

calculated using equation 5.14 and the exact vertical traveltime difference dt0, and

velocity. Notice that at this point the resemblance between our equation 5.14 and the small-
spread approximation is merely conceptual. Later on, in section 5.5 we will discuss an example
where the resemblance is more acute.
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Figure 5.5: Slowness domain receiver functions (top-left) and their NMO correction (top-
right) for the PS-separated, (τ ,p)-transformed reflectivity data from figure 5.4, bottom
panels. In blue, the exact traveltime difference as a function of slowness, obtained by
raytracing trough the six-layer model, is shown. In light blue, the two-term approximation
calculated using equation 5.14 and the exact vertical traveltime difference dt0, and pseudo
rms-velocity ṽrms (equations 5.15 and 5.16) is shown. In the bottom panels, a zoom-in of
the top panels is shown.
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pseudo rms-velocity ṽrms (equations 5.15 and 5.16) is shown. Note that the two-

term approximation agrees well with the exact traveltime differences for small to

medium slowness. In the top-right panel, the result of applying a normal moveout

correction, based on the two-term approximation, is shown. Again, exact pseudo

rms-velocities were used, but initial tests indicate that these quantities indeed can

be derived from semblance-based velocity analysis. In blue, the expected residual

moveout is shown.

5.4.3 Dix-Krey relations for receiver functions I:

Slowness domain expression

At this point we may ask if, given the vertical incidence traveltime differences

and the pseudo rms-velocities, we can get back to the medium properties for each

individual layer. In reflection seismology this problem is well known and has been

solved for P-waves and PS-converted waves reflecting in a horizontally layered

medium. Such “inversion” formulae are known as Dix-Krey relations after the

work by Dix (1955) and Krey (1954). In Appendix D it is shown that by carrying

out a similar analysis as Tessmer and Behle (1988), who derived Dix-Krey-type

relations for PS-converted waves, it is straightforward to obtain:

V snV pn = 2 · ṽn
rms − ṽn−1

rms

dtn0 − dtn−1
0

. (5.17)

Equation 5.17 says that only the product of P- and S-wave interval velocities in

layer n can be resolved and equals twice the ratio of the differences in pseudo

rms-velocities and vertical incidence traveltime differences between interface n

and n − 1. Equation 5.17 can easily be checked by substituting the definitions

of the vertical incidence traveltime difference and the pseudo rms-velocity (equa-

tions 5.15 and 5.16). Readers familiar with the work of Tessmer and Behle (1988)

may notice that equation 5.17 has a simpler form than their relation. This is be-

cause our approximations of the traveltime difference and rms-velocities are in

the slowness domain whereas Dix-Krey-type relations for PS-converted waves are

based on rms-velocities in the offset domain.

This concludes the slowness domain treatment. In the next section we discuss

an approach which exploits the dense sampling that is typically present in
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exploration and production seismic surveys and that treats the spatial aspects

of mode-conversion completely analogously to the temporal aspects.
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5.5 Space-time (x,t) domain treatment

5.5.1 Receiver function calculation II: 2D Deconvolution

In the previous sections, the offset between the P-wave transmission point and

PS-conversion point at the base of the stack was taken into account implicitly in

the derivation of the traveltime difference (equation 5.13). The main, historical

reason for this is that it facilitates comparison of P- and PS-wave traveltimes

at a single multicomponent station. However, when data are recorded on a

densely spaced array of receivers (see figure 5.6), the P- and S-waves, reflected and

converted at the same location on an interface, are recorded, although at spatially

offset receiver locations. This makes it possible to treat the spatial separation

between PP-reflected and PS-converted waves originating from the same location

completely analogously to temporal separation and a 2D deconvolution receiver

function can be defined as follows.

Expressing the two-dimensional Fourier transform of u(x, t) and its inverse as

Ū(k, ω) =

∫ ∞∫

−∞

u(x, t)ei(wt−kx)dtdx, (5.18)

u(x, t) =
1

(2π)2

∫ ∞∫

−∞

Ū(k, ω)e−i(wt−kx)dωdk, (5.19)

where k denotes the wavenumber along the array, and letting Z̄(p, ω), R̄(p, ω)

and T̄ (p, ω) denote the vertical, radial and transverse components transformed

to the frequency-wavenumber (ω, k) domain, respectively, then the 2D receiver

function is calculated by spectral division as:

H̄R(k, ω) =
R̄(k, ω)Z̄(k, ω)∗

Z̄(k, ω)Z̄(k, ω)∗ + ε
, (5.20)

H̄T (k, ω) =
T̄ (p, ω)Z̄(k, ω)∗

Z̄(k, ω)Z̄(k, ω)∗ + ε
, (5.21)

with a similar expression for the PS-separated input data. The corresponding

(x, t)-domain expressions, hr(x, t) and ht(x, t), are found by two-dimensional in-

verse fourier transform of equations 5.20 and 5.21, respectively. Comparing equa-
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Figure 5.6: Schematic illustration of the phases and raypaths involved in the exploration
and production seismic receiver function setting. An explosive point source generates a
spherically diverging P-wave reflecting and mode-converting at each interface. The PP-
reflected and PS-converted waves are recorded on a densely spaced array of receivers. P-
and S-waves are denoted by solid and dashed lines respectively. The data from all receivers
can be analyzed jointly and, as the PP-reflections and PS-conversions from common points
on each interface are recorded at spatially and temporally offset locations, the spatial aspect
of mode-conversion can be treated completely analogously to the temporal aspects.

tions 5.20 and 5.21 for the 2D deconvolution receiver functions with equations 5.8

and 5.9 and noting that for any function Ũ(ωp, ω) = Ū(k, ω) it is clear that

H̄R(k, ω) = H̃R(ωp, ω), (5.22)

H̄T (k, ω) = H̃T (ωp, ω). (5.23)

Thus, the 2D deconvolution receiver function equals the slowness domain decon-

volution receiver function along lines of constant slowness p = k/ω.

An example of a 2D deconvolution receiver function calculated using equa-

tion 5.20 is shown in figure 5.7. The events in the receiver function show how

much the P-wave data should be shifted, both spatially and temporally, to match

the corresponding PS-converted waves. The 2D receiver function relates the P-

waves to the PS-converted waves by two-dimensional convolution.

Similar assumptions underpin the 2D receiver function as those discussed in
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section 5.2 for the slowness domain deconvolution receiver function and hence

these will not be repeated here. To extract the information about subsurface

structure from the 2D receiver function, again we need approximate expressions

for the traveltime difference through a horizontally layered medium. In this case,

however, the series expansions are a function of the horizontal offset between the

PP-reflected and PS-converted waves instead of slowness since the 2D receiver

function presents the temporal shift as a function of that quantity. This is the

topic of the next section.

5.5.2 Series expansion of the traveltime difference II:

Function of horizontal offset

Using elementary trigonometric relations and Snell’s law, the explicit difference

in traveltime between a plane P- and PS-wave of slowness p, transmitted and

converted at the same location at the base of layer n, can be written (Figure 5.6):

dt =
n∑

k=1

(Tsk − Tpk) =
n∑

k=1

[
hk

V sk

√
1− p2V s2

k

− hk

V pk

√
1− p2V p2

k

]
. (5.24)

Similarly, the offset between the recording locations of a P- and PS-wave, reflected

and converted at the same point in the subsurface, can be written:

dx =
n∑

k=1

(Xpk −Xsk) =
n∑

k=1

[
hkV pk√
1− p2V p2

k

− hkV sk√
1− p2V s2

k

]
. (5.25)

Again, the traveltime difference and horizontal offset in equations 5.24 and 5.25

depend on all unknown medium parameters above the reflection/conversion point.

To process the 2D receiver functions in section 5.5.1, the traveltime difference dt

should be parameterized as a function of dx with as few parameters as possible.

This can be achieved by first writing equations 5.24 and 5.25 as infinite series of

increasing powers of slowness by expanding terms of the form (1 − p2v2)−
1
2 into
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Taylor series. In Appendix E, it is shown that this gives:

dt =
∞∑

j=1

γjp
2j−2, (5.26)

dx = p

∞∑
j=1

bjp
2j−2, (5.27)

where the coefficients bj and γj are determined by the layer velocities and

thicknesses as follows:

γm = qmam., (5.28)

bm = −qmam+1, , (5.29)

am =
n∑

k=1

hk

(
V s2m−3

k − V p2m−3
)
. (5.30)

Equations 5.26 and 5.27 have the same form as Taner and Koehler (1969) derived

for the traveltime and offset of a P-wave reflection in a horizontally layered

medium and as Tessmer and Behle (1988) later found for the traveltime and offset

of PS-converted waves. This suggests that by applying a similar methodology,

it is possible to find an expansion of the square of the traveltime difference into

increasing even powers of the horizontal offset dx of the form:

dt2 = c1 + c2 · dx2 + c3 · dx4 + c4 · dx6 · · · (5.31)

In Appendix E, it is shown that this is indeed the case and it is shown that the

first two coefficients of equation 5.31 can be calculated as:

c1 =

(
n∑

k=1

hk

(
1

V sk

− 1

V pk

))2

≡ dt20, (5.32)

c2 =

∑n
k=1 hk

(
1

V sk
− 1

V pk

)
∑n

k=1 hk (V sk − V pk)
≡ 1

v2
rms

. (5.33)

Note that coefficient c1 (equation 5.32) can be directly interpreted as the square

of the difference in traveltime between the P- and PS-converted wave at vertical

incidence (p = 0 s/m) and hence has been equated to dt20. The coefficient c2 can
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not be interpreted so easily, although the numerator is equal to dt0, but it has

the same form as was found by Tessmer and Behle (1988) for PS-converted waves

and hence we have equated it to the inverse of the square of an RMS-velocity.

The series expansion of the traveltime difference as a function of the difference

in horizontal travel distance is illustrated in figure 5.7 using the 2D deconvolution

receiver functions computed previously for the six-layer model. In dark blue,

the theoretical traveltime difference as a function of the difference in horizontal

traveldistance are shown, computed for each interface using equations 5.24

and 5.25 and the slowness obtained by ray-tracing. In light blue, the two-term

approximation calculated using equation 5.31 and the exact vertical traveltime

difference dt0, and rms-velocity vrms (equations 5.32 and 5.33) are shown. Note

that the two-term approximation agrees well with the exact traveltime differences

for small to medium horizontal offsets between the P- and S-waves. In green,

successive higher-order approximations are shown. Although the higher-order

approximations are more accurate than the two-term approximation, it can be

seen that they tend to diverge more quickly as well.

The observed divergent behaviour was recently explained for ordinary PP-

reflected waves by Ghosh and Kumar (2002), who showed that this type of

series expansions, after Taner and Koehler (1969), of the traveltime (or traveltime

difference) through a horizontally medium as a function of the offset (or offset

difference) is divergent and hence that adding more terms does not necessarily

increase the accuracy. It is astonishing that such a key result, which forms the

theoretical basis for velocity analysis in all exploration and production seismic,

should prove divergent and that it took more than thirty years to find out. Given

the success of two- and three-term velocity analysis in the past, we shall not

be discouraged here by the theoretical properties of equation 5.31 and follow a

similar route to invert the rms-velocities as followed by Tessmer and Behle (1988)

for PS-converted waves. This is the topic of the next section.

5.5.3 Dix-Krey relations for receiver functions II:

Space-time domain expression

Similarly to the derivation of the Dix-Krey relation for the two-term approxima-

tion in the slowness domain, a Dix-Krey-type relation can now be derived for
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the two-term asymptotic truncation of the series expansion developed in the pre-

vious section. Such a relation will again provide the basis for inversion of the

rms-velocities (equation 5.33) for medium properties between two consecutive

interfaces. The derivation of the relation is presented in Appendix F, here we

simply state the result:

V pnV sn =
dtn0v

2
rms,n − dtn−1

0 v2
rms,n−1(

dtn0 − dtn−1
0

) , (5.34)

Equation 5.34 shows how the product of P- and S-wave interval velocities for a

layer n, can be calculated once the rms-velocities and the vertical incidence time

differences for that layer and the previous layer are known. Equation 5.34 has

exactly the same form as found previously for PS-converted waves by Tessmer

and Behle (1988). Note however that the vertical incidence traveltime differences

and rms-velocities are defined differently in their work.

This concludes the treatment of the 2D receiver functions. The results in this

and previous sections can be used to moveout-correct and stack both 1D slowness

domain and 2D space-time domain receiver functions. In the next section we

investigate possibilities of calculating receiver functions when the medium is no

longer horizontally layered, but arbitrarily inhomogeneous.
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Figure 5.7: 2D deconvolution receiver function calculated for the PS-separated, (x,t)-
domain input data from figure 5.2 (left panels) and its kinematic behaviour (right panels).
In dark blue, the theoretical traveltime difference as a function of the difference in horizontal
traveldistance is shown, computed for each interface using equations 5.24 and 5.25 and the
slowness obtained by ray-tracing. In light blue, the two-term approximation calculated
using equation 5.31 and the exact vertical traveltime difference dt0, and rms-velocity vrms

(equations 5.32 and 5.33) are shown. In green, successive higher-order approximations are
shown. In the bottom panels, a zoom-in of the top panels is shown.
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5.6 Model independent treatment

5.6.1 Receiver function calculation III:

Model independent approach

Slowness domain deconvolution and the 2D approach discussed above work well

when the medium is invariant for translation along the horizontal direction since

in that case the transfer function characterizing the medium at every slowness, or

combination of dt and dx, has a particular form that can be captured theoretically

(as was done in the sections on kinematics above). However, when the medium

is not horizontally layered, such a simple form does not exist and, in general,

there is no one-to-one correspondence between events in the transfer function

and PS-waves converted at a particular interface and slowness (or dx-dt)4.

In this section, I propose an alternative way of calculating a receiver function

that is independent of the model and applies to arbitrary inhomogeneous media.

The approach is inspired by a method due to Grechka and Tsvankin (2002)

to calculate pseudo-shear wave data from PP and PS converted waves. Their

method relies on matching the slowness of a PS-converted wave to the slowness

of the corresponding PP-wave on the source side and is illustrated in figure 5.8

[after Grechka and Tsvankin (2002), figure 2]. By comparing the reflection

slope on the common receiver gather for the PS-converted wave recorded at

x(3) to the reflection slope of the PP-wave recorded at x(2) it is found that

they are equal for source at location x(1). Therefore, the PP-wave and the PS-

converted wave must have left the synthetic source array at x(1) under the same

angle, and have reflected and converted at the same subsurface location. By

repeating this analysis for the PP-wave and its PS-conversion from a source at x(2)

and subtracting and adding the appropriate traveltimes, Grechka and Tsvankin

(2002) were able to construct pseudo-shear-wave data with correct offsets and

traveltimes. The approach was automated in Grechka and Dewangan (2003)

by formulating the procedure as a series of convolutions and crosscorrelations

followed by stacking to yield the stationary phase contribution.

A similar approach to calculate receiver functions is to deconvolve (trace-by-

4To see this, note, e.g., that source and receiver side slowness are no longer necessarily
identical for the incident and reflected wavefields.
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Figure 5.8: Model independent receiver function calculation by matching PP- and PS-
wave slowness on the source side (after Grechka and Tsvankin, 2002)

trace) all PP-waves in a common receiver gather recorded at, say x(2), from all

PS-converted waves recorded at, say x(3). Since the slope of the PP-waves and

PS-converted waves is equal at some point x(1), the receiver functions will show

a stationary event at x(1) at the corresponding traveltime difference. By stacking

these receiver functions, a single function is obtained, giving the true amplitude

relation between a PP- and PS-converted wave with that traveltime difference

and the horizontal distance dx = x(2) − x(3)5.

This approach is illustrated for a simple model consisting of a single reflector

dipping 15 degrees to the right. In figure (5.9), the raypaths are shown for a PP-

wave (solid) and PS-wave (dotted) common receiver gather recorded at points

x(2) and x(3), respectively. The downgoing P-wave rays overlap for a source at

x(1). In figure 5.10(a), the corresponding PP- and PS-wave arrivals are shown,

generated by convolving a 30 Hz Ricker wavelet with appropriately delayed unit

amplitude spikes. It can be seen that the reflection slopes match at x(1). In

5With true amplitude, here, we mean to emphasize that since the PP-reflection and PS-
conversion point coincide, the deconvolution of the downgoing leg, and all propagation effects
associated with it, is complete: the resulting receiver function is a combination only of the
PP-reflection and PS-conversion coefficient and the corresponding upgoing paths.
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Figure 5.9: Raypaths in model independent receiver function calculation for a model
consisting of a single layer dipping 15 degrees to the right. PP-wave raypaths (solid)
for the common receiver gather recorded at x(2) and PS-wave raypaths (dotted) for the
common receiver gather recorded at x(3). The downgoing P-wave rays match at source
location x(1).

figure 5.10(b), the receiver functions are shown, calculated by trace-by-trace (1D)

deconvolution of the PP- and PS-events in (a). The traveltime difference in the

receiver functions is stationary around x(1). By stacking the receiver functions

over the horizontal direction, outputting the result at the midpoint in between

x(2) and x(3) and repeating this procedure for increasing horizontal differences

dx = x(2) − x(3), a common midpoint receiver function gather is obtained that

can be further processed to yield an image of the (PS/PP)-reflectivity. Note that

by taking x(2) = x(3), i.e., by deconvolving PP- and PS-wave events in common

receiver gathers recorded at the same location and stacking the resulting receiver

functions, a zero-offset receiver function is obtained6 that can be migrated in a

homogeneous background medium using the pseudo-velocity (V pV s)/(V p−V s).

In the next section, I show how to migrate non-zero offset receiver functions.

6Note that in isotropic media no P-S conversion takes place at normal incidence. However,
many authors have observed P-S converted waves at or near normal incidence and from a
methodological perspective it may still be useful to talk about zero-offset receiver functions.
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Figure 5.10: Slope matching in model independent receiver function calculation for a
model consisting of single layer dipping 15 degrees to the right. (a) Common receiver
gather P-wave data recorded at x(2) (top event) with superimposed the PS-wave data
recorded at x(3) (bottom event). The reflection slopes match at a source location x(1).
(b) Receiver functions resulting from trace-by-trace deconvolution of the PP- and PS-wave
data shown in (a). The traveltime difference is stationary at x(1). A single receiver function
is obtained for the points x(2) and x(3) (dx = x(2)−x(3)) by stacking the receiver functions
over the horizontal coordinate.
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Figure 5.11: Raypath geometry for computing the locus of points consistent with an
observed traveltime difference in the receiver functions.

5.6.2 Pre-stack migration of receiver functions

With the aid of the normal moveout equations and the Dix-Krey type equations

presented earlier, receiver functions obtained for plane layered media can, in prin-

ciple, be moveout corrected and stacked. However, when significant deviations

from horizontal layering exist, such a procedure is suboptimal and may result in

a significant mispositioning of the events in the receiver functions. In the previ-

ous section, a first step towards accommodating such lateral variations was made

by showing how model independent receiver functions can be calculated for arbi-

trary inhomogeneous models. Here we show how such model independent receiver

functions can be migrated (pre-stack) by deriving the locus of points from which

an event with a certain PS-PP traveltime difference could have originated. In

figure 5.11, the relevant geometry is shown. The traveltime difference, dtps, as

can be seen from the figure is:

dt =

√
(x− h)2 + z2

β
−

√
(x + h)2 + z2

α
, (5.35)

where α and β are the P- and S-wave velocities in the medium, respectively.

Repeatedly squaring equation 5.35 and after some algebra we find:

(
α2 − β2

αβ

)2

(x2 +h2 +z2)2−2
(α2 + β2)

αβ

[
2(α2 − β2)

αβ
(xh) + αβdt2

]
(x2 +h2 +z2)
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+

[
2(α2 − β2)

αβ
(xh) + αβdt2

]2

+ 16(xh)2 = 0. (5.36)

This equation is of the form

Aε2 + 2B(x)ε + C(x) = 0 (5.37)

which is quadratic in ε = z2 + x2 + h2 and can be solved using the well known

formula. This gives:

z2 + x2 + h2 = (α2 − β2)−2
{
(α2 + β2)

[
α2β2dt2 + 2h(α2 − β2)x

]

± 2α2β2dt
√

α2β2dt2 + 4h(α2 − β2)x
}

. (5.38)

This equation gives the locus of points (x, z) consistent with the observed

traveltime difference dtps at half offset h and may be compared with equation 4.24

of Harrison (1992, pg. 63) for the depth migration locus of a PS-converted wave

recorded at time t and half offset h converted at a distance x away from the

midpoint:

z2 + x2 + h2 = (α2 − β2)−2
{
(α2 + β2)

[
α2β2t2 + 2h(α2 − β2)x

]

− 2α2β2t
√

α2β2t2 + 4h(α2 − β2)x)
}

. (5.39)

Although the equations look virtually the same, the solution sets are quite

different. This can be understood by considering the traveltime difference dtpp

between two P-waves originating from the same point in depth (i.e., taking

α = β = V in equation 5.36). This gives:

(x

a

)2

−
(z

b

)2

= 1, (5.40)

where

a = V dtpp, and b =
V

√
dt2pp − 4h2/V 2

2
. (5.41)

Equation 5.40 is the equation for a hyperbola with semimajor axis a and

semiminor axis b and constitutes the less well known receiver function counterpart

(to the best of my knowledge unknown) of the migration ellipse for P-P data.
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Thus, although both solution sets belong to the family of conic sections, the curves

look fundamentally different. For example, no solution points on the semiminor

axis (the line vertically through the midpoint) exist for the hyperbola7.

As in Harrison (1992), the depth migration curve, equation 5.35, can be

converted to a time migration curve by substituting the vertical traveltime

difference dt0, where

dt0 =
z

β
− z

α
= z

(
α− β

αβ

)
. (5.42)

This gives

dt02 =
1

(α + β)2

[
(α2 + β2)

(
dt2 + 2

(α2 − β2)

α2β2
(xh)

)

± 2dt
√

α2β2dt2 + 4(α2 − β2)(xh)
]
−

(
α− β

αβ

)
(x2 + h2). (5.43)

For the mixed mode receiver functions, as for conventional PS-converted

waves, there are no closed form solutions for the raypath depth- and time-

migration curves, so equations 5.38 and 5.43 must be solved numerically. In

figure 5.12, the solution sets are shown for an offset of h=1 km in a medium with

α=2000 m/s and β=1000 m/s for various traveltime differences.

5.6.3 Model independent approach: Q-deconvolution

To further illustrate the model independent approach and the potential of

completely removing the downgoing P-wave leg and all propagation effects

associated with it, we now briefly discuss a second example involving anelastic

attenuation. In figure 5.13, left panel, a model with a single reflector at 250 m

depth and a free-surface at the top is shown. Conventional absorbing boundaries

(gray) were included on the remaining sides to truncate the computational

domain. The quality factor, Q=250, is initially constant throughout the model.

Selected primary PP-reflected and PS-converted wave raypaths are shown for a

source at (0,0) m and multicomponent receivers distributed along the free-surface.

7One might speculate on uses of an equation such as eq. 5.40. One application that comes
to mind is migration of interferometric data: consider crosscorrelating P-wave recordings from
a noise source in the subsurface. The resulting traces contain events at time-lags dtpp and these
can be re-positioned through a simple Kirchhoff migration using equation 5.40.
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Figure 5.12: Receiver function migration curves for a receiver-to-receiver offset of 200 m
and various one-way traveltime differences. The solid line denotes the particular solution
for which the P- and S-wave slowness with respect to the receiver array are equal. The
inverted triangles denote the two receiver locations. A constant amplitude Ricker wavelet
of 30 Hz was used to generate this plot.

Data were generated using a viscoelastic finite-difference code (see e.g.,

Robertsson et al., 1994). In figure 5.14 (top, left) and (top, right), the modeled

primary PP-reflected and PS-converted waves are shown, as recorded on the

vertical and horizontal components, respectively. The direct wave, free-surface

related multiples and the projections of the primaries on the horizontal and

vertical component have been muted. These data form the input for our receiver

function reference.

Next, the model was perturbed by increasing the attenuation (decreasing the

quality factor) to Q = 50 in the first layer for the leftmost 75 m of horizontal

distance only. The resulting laterally varying Q-model is shown in figure 5.13,
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Figure 5.13: 2D finite-difference model used to illustrate the removal of increased
attenuation associated with the common downgoing P-wave leg. In the left panel, the
reference model with homogeneous attenuation (Q=250) is shown. Selected PP-reflected
(blue) and PS-converted (red) raypaths arriving at the same receiver are also shown. In
the right panel, the model with increased attenuation (Q=50) in the leftmost region is
shown. Selected PP-reflected (blue) and PS-converted (red) raypaths with a common
reflection/conversion point but arriving at different receivers are also shown. These raypaths
experience exactly the same attenuation in the downgoing P-wave leg.

right panel. The apparent difference in raypaths is a matter of choice and

explained later. Again, absorbing boundaries were included on the remaining

sides, and selected (different) raypaths are shown. The modeled data are shown

in figure 5.14 (bottom, left) and (bottom, right) on the same scale as reference

data in the top panels. Notice how the increased attenuation in the left-hand

side of the model has severely impacted the amplitudes and waveforms of the

recorded data across the full offset range.

From the difference between raypaths in the left and right panels of figure 5.13,

and our preceding discussion about matching the slowness on the source side, it is

clear that in order to completely remove the effects associated with the increased

attenuation – experienced (mainly) in the downgoing P-wave leg on the left-

hand side – the downgoing raypaths should perfectly overlap. Thus, vertical and

horizontal component data from a common reflection and conversion point on the

interface should be used in the receiver function calculation.

Although we cannot use the stationary phase approach exactly as outlined

in the previous paragraph, since we computed the data only for a single
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source position, we can illustrate the principle of removal of the common

downgoing leg using a single trace. In figure 5.15, top panel, the primary PP-

reflection at 175 m offset is shown for the model with homogeneous (blue) and

heterogeneous attenuation (green). In the 2nd panel, the primary PS-converted

wave from the same reflection point is shown (recorded at offset 129 m), again

for homogeneous (blue) and heterogeneous (green) attenuation. In the third

panel, the receiver function, calculated using 1D stabilised deconvolution is shown

for the homogeneous (blue) and heterogeneous (green) attenuation. Perhaps

surprisingly, the amplitudes and waveforms match (no additional scaling or

filtering has been applied)! Thus, even though the waves in the perturbed model

suffered significantly higher attenuation, this attenuation is removed because it

is common between the PP-reflected and PS-converted wave. The bottom three

panels, resulting from Fourier transforming the top three panels to the temporal

frequency domain, again confirm these observations: while the amplitude spectra

of the PP- reflected and PS-converted waves (green) are significantly attenuated

compared to the data modeled for the homogeneous attenuation (blue), the

resulting receiver function amplitude spectra in the bottom panel are almost

identical.

Notice that, although we have illustrated the removal of attenuation associated

with the downgoing P-wave leg, other propagation effects experienced in the

downgoing P-wave leg, such as internal and free-surface related multiples, would

also have been removed when calculating the receiver function in the model

independent manner.

This concludes the treatment of model independent receiver functions. It

is anticipated that the kinematic processing of receiver functions given above

can be extended along the same lines as the kinematic development of PS-

converted waves, drawing heavily on the work by Harrison (1992). For instance,

the traveltime expressions for post-stack migration of PS-converted waves in

horizontally layered media derived by Eaton et al. (1991) contain sums of down-

and upgoing, P- and S-wave legs, respectively. Re-deriving these expressions

for traveltime differences between P- and S-wave legs appears straightforward,

although the physical interpretation of zero-offset receiver functions (as with PS-

converted waves) may be questionable.

We will not follow this route here. Instead, we focus on a more pressing
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problem that plagues reflection receiver function calculation: while we have

shown that the kinematic interpretation and processing of reflection receiver

functions is straightforward and does not present any fundamental differences

compared to transmission receiver functions, the same is not true for dynamics

(i.e., amplitudes). In the next section, starting using a simple two-layer example,

we will show that no simple transfer function exists between all joint pairs of PP-

reflected and PS-converted waves. Although the reflection receiver function can

be generalized to a reflection receiver transfer matrix using a non-stationary filter

model, the sheer number of unknowns will prevent calculation without a-priori

information.
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Figure 5.14: Finite-difference data computed for the anelastic models in figure 5.13.
In the top panels, the PP- and PS-wave primary reflections are shown, as recorded on the
vertical and horizontal components, respectively, computed for the model with homogeneous
attenuation (Q=250). Note that the direct wave, free-surface related multiples and
projections on the other component have been muted. In the bottom panels, the same
events for the model with increased attenuation (Q=50) in the left-hand side is shown.
Note the severe attenuation of the PP-reflected and PS-converted wave for the full range
of receivers.
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Figure 5.15: Receiver functions (time- and frequency-domain) computed for the (x,t)-
domain input data from figure 5.14. In the top panel, the primary PP-reflection at 175 m is
shown for the model with homogeneous (blue) and heterogeneous (green) attenuation.
Similarly, in the second panel, the PS-reflection at 129 m, from the same subsurface
reflection point is shown. In the third panel, the time-domain receiver functions obtained
by deconvolution of the traces in the top panels are shown for homogeneous (blue)
and heterogeneous (green) attenuation. In the bottom three panels, the corresponding
amplitude spectra of the top three panels are shown, respectively. Note that despite the
severe attenuation in the downgoing P-wave leg for the heterogeneous model, the receiver
function is the same as for the model with homogeneous attenuation.



CHAPTER 5. Receiver functions 113

5.7 Dynamic development

As visual inspection of the receiver functions computed for the horizontally lay-

ered model in sections 5.4 and 5.5 already showed, the receiver functions contain

a lot of spurious events that do not correlate with traveltime difference curves

computed for PS-conversion upon reflection at the different known interfaces.

Here, I will show with a simple two layer example that this is because of funda-

mental differences between receiver function calculation in reflection-seismic and

transmission settings.

In global seismology the receiver function method is typically applied to tele-

seismic body waves that convert at intra-crustal or upper-mantle discontinuities

(e.g. Paulssen et al., 1993; Gurrola et al., 1994). Hence, the original receiver func-

tion setting is almost exclusively a transmission setting. On the other hand, most

mode-converted waves recorded in a surface seismic experiment have converted

upon reflection at discontinuities in the model (Rodriguez-Suarez et al., 2000).

5.7.1 A simple two layer example

To investigate the differences between a transmission and a reflection setting, I

consider a horizontally layered model consisting of only two layers and calculate

receiver functions for a transmission and reflection setting analytically. To make

the problem tractable, internal and free-surface related multiples are ignored and

only primary P-waves and singly mode-converted waves are considered8. It is

also assumed that pure-mode transmission coefficients can be neglected in both

settings. The geometry of the problem is shown in figure 5.16.

The transmission receiver function

Let Rt(ω) denote the radial component transmission seismogram recorded due to

a plane P-wave incident on a two layer medium (overlying a halfspace) from below.

Zt(ω) denotes the corresponding vertical component seismogram. We assume

that wavefield separation has been applied and that the vertical component only

contains P-waves, and the radial component only PS-converted waves. The

8It was confirmed that these initial assumptions do not affect the general conclusion that in
general no simple transfer function exists between reflected P- and S-waves.
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Figure 5.16: Two layer geometry for analytical receiver function calculation.

source-time function of the plane P-wave is taken to be a delta-function. If

internal and free-surface related multiples are neglected, as well as multiple mode-

conversions, Rt(ω) and Zt(ω) can be written (in the frequency domain):

Rt(ω) = Tps1 · Tpp2 · e−iω(ts1+tp2) + Tss1 · Tps2 · e−iω(ts1+ts2), (5.44)

Zt(ω) = Tpp1 · Tpp2 · e−iω(tp1+tp2), (5.45)

where the Tpp1’s and Tps2’s denote the transmission and conversion coefficients at

the two layers and the dependence on slowness has been suppressed for notational

convenience. The tp and ts’s denote the one-way P- and S-wave traveltimes

through each of the two layers respectively. The transmission receiver function,

Ht(ω) is defined as the spectral ratio of the radial and the vertical component:

Ht(ω) =
Rt(ω)

Zt(ω)
=

Tps1 · Tpp2 · e−iω(ts1+tp2) + Tss1 · Tps2 · e−iω(ts1+ts2)

Tpp1 · Tpp2 · e−iω(tp1+tp2)
(5.46)

In the seismological literature, it has been argued (e.g. Langston, 1979) that

the pure-mode transmission coefficients Tpp1, Tpp2, Tss1 etc. can be neglected

in the context of receiver function studies, where a teleseismic P-wave is near-

vertically incident on the crust from below. Hence, the P-wave is recorded almost

unperturbed on the vertical component. In addition, we can define transfer

functions Ht1(ω) and Ht2(ω), predicting the amplitude and phase of the PS-
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converted waves on the radial component due to the P-wave on the vertical:

Ht1(ω) ≡ Tps1 · e−iω(ts1−tp1), (5.47)

Ht2(ω) ≡ Tps2 · e−iω(ts1+ts2−tp1−tp2), (5.48)

Zt(ω) ≈ e−iω(tp1+tp2). (5.49)

Ht1(ω) and Ht2(ω) can be regarded as partial receiver functions for each layer,

making up the total transmission receiver function for the stack of the layers, as

will be clear by substitution into equation 5.46:

Ht(ω) =
Rt(ω)

Zt(ω)
≈ Ht1(ω)Zt(ω) + Ht2(ω)Zt(ω)

Zt(ω)
= Ht1(ω) + Ht2(ω). (5.50)

Hence, in the transmission setting, under the aforementioned assumptions, the

total receiver function is simply the sum of the partial receiver functions for each

individual layer. Note that the time difference between a P- and PS-converted

wave from a particular interface is integrated (summed) through all the layers

above that interface and the amplitude of the event is, to first order, the PS-

conversion coefficient of the interface. This remains valid for more complicated

horizontally layered models with more than two layers.

The reflection receiver function

Next we consider the same two layer medium, under the same assumptions of

no internal and free-surface related multiples, and neglecting again transmission

coefficients of order one. Let Rr(ω) and Zr(ω) denote the radial and vertical

component seismograms, due to a plane P-wave source at the free-surface. In

this case, the primary PS-converted waves (converted upon reflection) on the

radial and the P-reflections on the vertical can be written:

Rr(ω) = Rps1 · e−iω(ts1+tp1) + Tss1 ·Rps2 · T̃pp1 · e−iω(ts1+ts2+tp2+tp1), (5.51)

Zr(ω) = Rpp1 · e−iω(2tp1) + Tpp1 ·Rpp2 · T̃pp1 · e−iω(2(tp2+tp1)), (5.52)

where the Rps1’s and Tps2’s denote reflection and transmission coefficients respec-

tively. The˜serves to distinguish transmission coefficients from above from trans-

mission coefficients from below. Again, the slowness dependence is suppressed in
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the notation because we consider a single set of plane-waves with equal slowness.

Note that the ts1’s etc. are exactly the same as those considered in the trans-

mission setting, i.e., kinematically, the reflection and transmission setting are

completely equivalent. Neglecting the single-mode transmission coefficients, we

can define the approximate P-reflection from each layer on the vertical component

Zr1(ω) and Zr2(ω) and transfer functions Hr1(ω) and Hr2(ω):

Zr1(ω) ≡ Rpp1 · e−iω(2tp1), (5.53)

Zr2(ω) ≡ Rpp2 · e−iω(2(tp1+tp2)), (5.54)

Hr1(ω) ≡
(

Rps1

Rpp1

)
· e−iω(ts1−tp1), (5.55)

Hr2(ω) ≡
(

Rps2

Rpp2

)
· e−iω(ts1+ts2−tp1−tp2), . (5.56)

Again, the transfer functions Hr1(ω) and Hr2(ω) can be understood as partial

receiver functions, relating to the PS-conversion at each of the two interfaces,

predicting the converted wave signal on the radial component from the separate

signals Zr1(ω) and Zr2(ω) on the vertical component. Thus, using these

definitions the approximate reflection receiver function can be written:

Hr(ω) =
Rr(ω)

Zr(ω)
≈ Hr1(ω) · Zr1(ω) + Hr2(ω) · Zr2(ω)

Zr1(ω) + Zr2(ω)
. (5.57)

This expression for the approximate reflection receiver function should be com-

pared with the corresponding approximate transmission receiver function for the

same two layer medium (equation 5.46). Note that, as in the transmission seis-

mic setting, we would have liked to have obtained a receiver function, simply

containing a sum of the partial receiver functions Hr1(ω) and Hr2(ω) because in

such a case the events in the receiver function are simply interpretable as ratios of

P-wave and PS-wave reflection coefficients at each interface and integrated time-

delays through the layered structure above it. What we have obtained, however,

is more complicated because it consists of a division by the sum of two terms in

the frequency domain, instead of a single term as in the transmission setting.

Since we are interested in the partial receiver functions, as they give infor-

mation about each interface separately, the reflection receiver function presents

a much harder dataset from which to extract this information than the transmis-
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sion receiver function. This is because the vertical component now contains two

primary reflections: while between each event in a pair a well defined transfer

function exists, in general no simple, causal transfer function exists between two

pairs of independently scaled seismic wavelets. As a consequence, the reflection

receiver function now consists of an infinite number of peaks with distorted am-

plitudes. This amplitude distortion is discussed in detail in Appendix G, where

also a series approximation to the reflection receiver function is presented.

To illustrate the complexity of even a two-layer receiver function in a reflection

setting, we have performed a simple numerical experiment corresponding to

the two-layer (over a halfspace) reflection seismic setting discussed above (i.e.,

equation 5.57). In figure 5.17 (top), wavefield-separated vertical and radial

component data (in blue and red, respectively) are shown for the case that the

P-wave reflection coefficient at the second interface is lower than the reflection

coefficient at the first interface. In the 2nd panel, the corresponding receiver

functions, calculated by stabilised deconvolution (green), as well as the five-term

approximation from Appendix G (blue), and the desired partial receiver functions

(red) are shown. Note that the receiver function contains a lot of unwanted events

and that only one of the events matches a partial receiver function. In the 3rd

panel, vertical and radial component data are shown for the case that the P-

wave reflection coefficient at the second interface is higher than the reflection

coefficient at the first interface. In the bottom panel, again, the resulting receiver

functions (green), as well as a five-term approximation (blue), and the partial

receiver functions (red) are shown. The receiver function is now even a-causal

and, hence, unphysical as it contains a lot of energy before time-lag zero, implying

that the slower S-wave precedes the arrival of the P-wave.

Notice that the analytical approximations, developed in Appendix G, match

very well the stabilised deconvolution results and give insight into the complica-

tion that is introduced by additional P-events on the vertical component. It is an

open question how serious this difference between the reflection and transmission

setting is for real data, which contains many more than two layers. A further dis-

cussion on the differences between reflection and transmission and this two-layer

example is included at the end of Appendix G.
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Figure 5.17: Receiver function calculation in a simple two layer medium. (top) Vertical
and horizontal component reflection data (blue and red, respectively) when Rpp1 > Rpp2.
(2nd from top) Receiver function calculated by stabilised deconvolution (green, c = 0.01,
a = 125 Hz) of the vertical and horizontal component data in the top panel and a five-
term analytical approximation (blue). (3rd from top) Vertical and horizontal component
reflection data (blue and red, respectively) when Rpp1 < Rpp2. (bottom) Receiver functions
calculated by stabilised deconvolution (green, c = 0.01, a = 125 Hz) of the vertical and
horizontal component data in the third panel and a five-term analytical approximation
(blue). For details, see text.
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5.7.2 A model for the reflection receiver function

We have seen in the previous section that receiver functions calculated for

reflection seismic data do not have the desirable property of maintaining a single

event per interface, which transmission receiver functions do. This is because of

the absence of a simple convolutional model between the P- and PS-converted

waves for the reflection seismic setting. As a consequence, some of the events

relating to a particular interface may be absent in the reflection receiver function

or have perturbed amplitudes. In addition, spurious noise events are introduced.

To be useful and interpretable, the reflection receiver function has to be

cleaned up, or perhaps, calculated by some other procedure. Ad hoc techniques,

based on, e.g., simultaneous windowing of the P- and PS-wave data and an initial

receiver function estimate can be tuned to work for certain simple models, but

are likely to fail on more realistic models. One of the main problems with such an

approach is the inherent assumption of a limited number of layers in the model,

with sufficient two-way traveltimes to record the P- and PS-converted waves from

each interface without interference from other layers.

Layer stripping or dynamic deconvolution methods (e.g., Claerbout, 1976;

Robinson, 1982; Yagle and Levy, 1984, 1985; Bregman et al., 1985; Carazzone,

1992) are in principle most powerful as they have the ability to strip away all

effects due to an overlying layer, which will make iterative receiver function

calculation for deeper layers more correct. However, they are notoriously unstable

and seem overly complex for the purpose that we are considering here.

In this section, we briefly explore an alternative model for the reflection

receiver function that is based on the theory of non-stationary filtering. The

standard convolutional model for PP- and PS-waves, based on a source wavelet

that does not change with depth (i.e., is stationary), does not solve the problem

of multiple events on the vertical. On the other hand, a non-stationary but elastic

model, in itself, is not general enough to deliver the expected advantages from

receiver function calculation such as the removal of common propagation effects

such as anelastic attenuation. Even a constant-Q model requires a non-stationary

convolutional model to describe the increasingly attenuated source pulse with

depth or two-way traveltime (Margrave, 1998).

Separation of the non-stationary Q-filters for downgoing (P) and upgoing
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(P/S) waves leads naturally to a time-variant deterministic deconvolution proce-

dure with similar advantages as seismological receiver function calculation. Since

the increasingly attenuated downgoing incident wavelet is the same for the PP-

and PS-wave models, it can be removed. Another question is how the PP and

PS arrival times are reconciled in such a model and events are correlated. As

shown below, PP/PS matching (see e.g., Gaiser, 1996) can be described as an-

other time-variant filtering operation, since it involves stretching of the PP-wave

trace. However, this will affect the spectra of the stretched trace. Finally, after

inverse-Q filtering and stretching the PP-waves to PS-wave times, they need to be

forward Q-filtered to match the frequency content of the PS-waves. As the model

combines three steps that can all be formulated in terms of non-stationary filter-

ing (inverse Q-filtering, time-stretching, and forward Q-filtering), the resulting

model is also non-stationary.

We start by briefly reviewing the theory of non-stationary filtering (Margrave,

1998). The similarity principle, relating the spectra of the stretched and the

original trace, is also discussed. The three elements are then illustrated with a

simple example, before ending with a discussion and some conclusions.

Non-stationary filtering

Non-stationary filtering has been described in detail by Margrave (1998). We

only briefly review the theory here that is relevant to our application. Since we

want to preserve the inverse Q-filtering aspect of receiver function calculation, it

seems reasonable to start with a constant Q model. Note that even though we are

dealing with constant Q, the increasing attenuation with depth (or traveltime)

requires a non-stationary filter model.

Constant Q filtering Constant Q filtering is most easily described using the

mixed domain formulation of non-stationary filtering (Margrave, 1998). The

mixed domain formulation relates the frequency spectrum, G(f), of the non-

stationary filtering result to the time-domain input trace, h(τ), as follows:

G(f) =

∞∫

−∞

a(f, τ)h(τ)e−2πifτdτ. (5.58)
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where a(f, τ) denotes the non-stationary filter in the frequency-time domain.

Attenuation can be described if we assume the following form for a(f, τ):

a(f, τ) = e−πα(t,f)+iφ(t,f), (5.59)

where α(t, f) is a generalized non-stationary attenuation function, and φ(t, f) is

the phase associated with the attenuation (Schoepp, 1997). If α(t, f) = 1/Q(t),

the attenuation becomes the constant Q model. To satisfy the minimum phase

requirements the phase is usually calculated by taking the Hilbert transform, H,

(over frequency) of the natural logarithm of the amplitude spectrum: φ(t, f) =

H(−πα(t, f)). The time-domain non-stationary filter matrix a(t, τ) can be simply

found by inverse Fourier transforming over the remaining frequency axis.

Inverse Q-filtering A similar non-stationary filter model was used by Schoepp

and Margrave (1997) to remove the effects of constant Q-attenuation in a

procedure referred to as time-variant spectral inversion. This procedure estimates

the continuously changing wavelet by smoothing time-variant spectra. Once the

time-variant wavelets have been found, stabilized inverses of them are calculated.

The stabilized inverses are then applied in exactly the same manner as the time-

variant forward-Q filter.

Squeezing and stretching and the similarity principle Squeezing of the PS-

converted wave trace to P-wave times (and stretching of the P-wave trace to

PS-wave times) can be simply described as another time-variant filter operation:

a non-stationary phase-shift. Let the relation between input and output times τ

and t be denoted by some general function s [i.e., t = s(τ)], then non-stationary

filtering of a trace h(t) requires evaluation of the following integral:

g(t) =

∞∫

−∞

δ(t− s(τ))h(τ)dτ. (5.60)
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Defining a new integration variable τ = s(τ), and using the sifting property of

the delta function it is straightforward to show that:

g(t) =
h(s−1(t))

s′(s−1(t))
. (5.61)

where s′(τ) = ds(τ)
dτ

and s−1(τ) denotes the inverse of the stretching function.

In order to interpret this formula, consider the case of uniform stretching:

s(τ) = mτ , with m a constant. Since s′(τ) = m and s−1(τ) = τ
m

, we find:

g(t) =
1

m
h(

t

m
) (5.62)

To see how the spectrum of the stretched trace is affected, take the Fourier

transform of equation 5.61 over the output time axis, t:

G(f) =

∞∫

−∞




∞∫

−∞

δ(t− s(τ))h(τ)dτ


 e−2πiftdt. (5.63)

Changing the order of integration, and defining a new integration variable

t′ = t− s(τ), it is straightforward to show that:

G(f) =

∞∫

−∞

h(τ)e−2πifs(τ)dτ. (5.64)

For uniform stretching, s(τ) = mτ , this can be recognised as the Fourier transform

of h(t), denoted H(f), sampled at frequencies mf instead of f :

G(f) = H(mf) (5.65)

Combining equations 5.62 and 5.65, we find:

1

m
h(

t

m
) ⇐⇒ H(mf). (5.66)

This is the so-called similarity principle (Bracewell, 1965). If H(f) is the

spectrum of the un-compressed trace h(t) and the uniformly compressed trace

takes the form 1/mh(t/m), then the spectrum of the compressed trace is simply
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a frequency-scaled version H(mf). This is the reason why Gaiser (1996), in his

work on multicomponent Vp/Vs correlation analysis, implements a low-pass filter

before transforming the PS-converted wave trace to P-wave times in a step which

he describes as a matching of the PP and PS wavelengths.

As the stretching between PP- and PS-waves only concerns the reflectivi-

ties (the increasingly attenuated downgoing source wavelet is not affected by the

different velocities for the PP-reflected and PS-converted waves), another impli-

cation of the similarity principle is that the source wavelet and effects of anelastic

attenuation should be removed before stretching the PP-wave trace to PS-wave

times. Since after inverse-Q filtering the spectra are significantly flatter, stretch-

ing (i.e., scaling) will not affect the spectra much. In contrast, if the PP-wave

trace is stretched before removing the signature and attenuation effects, these

common components will no longer match and hence can not be removed.

Procedure and Example

Based on the discussion of non-stationary filtering above, the following procedure

to calculate the PS-converted waves (or the horizontal component trace) from the

primary PP-reflected waves now suggests itself:

1. Designature and time-variant inverse Q-filtering,

2. Reflectivity compensation and time-variant stretching to PS-times,

3. Signature and time-variant forward Q-filtering.

As all steps are described by non-stationary convolutions (i.e., matrix-

vector multiplications), it is straightforward to combine them into a single non-

stationary convolution by successive matrix multiplication9.

9Notice that we could have chosen the opposite route as well: inverse-Q filtering the PS-
converted wave trace, followed by compression to PP-wave traveltimes and forward Q-filtering.
In principle, this approach is equally valid, however since the receiver function is defined as the
deconvolution of the vertical component out of the horizontal component, it is natural to define
the non-stationary filtering which, acting on Z, produces the horizontal component X. The
resulting non-stationary filter matrix, R, can then be seen as a generalized receiver function, as
it constitutes the (2D) transfer function between the vertical component (PP-reflected waves)
and the horizontal component (PS-converted waves).



124 5.7 Dynamic development

To illustrate the procedure outlined above, synthetic multi-component data

(primaries only) were generated for a simple horizontally layered model by ran-

domly perturbing the shear-wave velocity obtained from Hamilton’s, Gardner’s

and the Mudrock relations. PP-reflected and PS-converted wave traveltimes were

calculated by raytracing through the resulting model and plane-wave reflection

and conversion coefficients calculated using the relevant expressions from Aki and

Richards (2002). The primary data were bandlimited using a 50Hz Ricker wavelet

and forward Q-filtered (Q=50) to present realistically strong attenuation. The

resulting PP-wave trace is shown in figure 5.18, top-middle panel.

Next, a non-stationary inverse-Q filter matrix was computed by calculating

stabilized inverses of the bandlimited (by the source wavelet) forward-Q filters.

The resulting filter matrix is shown in figure 5.18, top-left panel. Note that this

step requires knowledge of Q and the source wavelet and normally would be done

using a similar approach as Schoepp and Margrave (1998), i.e., by smoothing

time-variant spectra and computing inverses of them. The result of applying the

inverse-Q filter matrix to the PP-wave input trace is shown in the top-right panel.

Following Margrave (1998), we have purposely placed the non-stationary filter

matrices and the input and output traces to reflect the underlying corresponding

matrix-vector multiplication.

In the second step, a non-stationary phase shift matrix was generated by

interpolating the exact, time-varying traveltime differences for all 100 layers and

computing accordingly delayed band-limited delta-functions. The resulting filter

matrix is shown in figure 5.18, middle-left panel. This step also included a time-

variant reflectivity compensation, obtained by interpolating the ratio of the PS-

conversion and PP-reflection coefficient between each layer. In the middle-middle

panel, the output trace from the top panel is repeated, as it now becomes the

input for the time-variant stretching. The resulting time-stretched output trace

is shown in the middle-right panel.

In the third and last step, the time-variant forward Q-filter and source wavelet

are re-applied. Note that in this simple model there is no difference between the

attenuation factor Q for the P-waves and for the S-waves. Thus, the same forward

Q-filters can be applied to filter the reflectivity compensated and stretched

output from the middle panel as were used to compute the initial attenuated
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Figure 5.18: Time-variant filter model for reflection receiver functions. (top) Non-
stationary inverse-Q filtering matrix (left) applied to the forward modeled PP-reflection data
(center) by matrix-vector multiplication and the resulting inverse-Q filtered trace (right).
(middle) Non-stationary phase shift matrix (left) applied to the inverse-Q filtering result
from the top row (center) and the resulting trace stretched from PP- to PS-times (right).
(bottom) Forward-Q filtering matrix (left) applied to the inverse-Q filtered, stretched result
from the middle row (center), and the resulting pseudo PS-converted wave trace (right).
By combining the three non-stationary filtering steps into a single non-stationary filtering
step a generalized receiver function model is obtained.
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PP-reflections. The resulting pseudo PS-converted wave trace is shown in the

bottom-right panel.

Discussion

The model outlined above conceptually generalizes the receiver function to

the reflection seismic setting, while preserving the main attractive aspects of

receiver function calculation in a transmission setting10. As there is no direct

deconvolution of the two data traces with their countless PP- and PS-wave

reflection pairs, a-causal and infinitely long transfer functions are avoided.

Nevertheless, with that the simplicity and economy of the original approach

are also lost: it is not clear how the receiver function transfer matrices can

be estimated from the data in a single, deconvolution-like step without adding

significant a-priori information.

While the inverse-Q filtering method by Schoepp and Margrave (1998) has

seen some success in its application on field data, and the Vp/Vs correlation

method by Gaiser (1996) has become the industry standard, both methods

require a fair amount of interactive processing (and are thus usually applied post-

stack) making this approach unattractive for pre-stack reflection receiver function

calculation. Moreover, while together they provide all information necessary to

calculate the receiver function, this is exactly the kind of information that would

normally be obtained from the receiver function. Hence, such explicit processing

undermines the very rationale behind receiver function calculation. At this point

in time, it is an open question whether a direct method for estimating a non-

stationary transfer matrix between two traces can be found.

5.8 Conclusion

This concludes the discussion of dynamic aspects of reflection receiver functions

and also the receiver functions chapter. The previous two sections should have

made it increasingly clear that it is not straightforward to come up with a model

for reflection seismic receiver functions that is simple, preserves the advantages

of the transmission setting and can handle an arbitrary number and complexity

10Designature and removal of common propagation effects.
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of layers naturally. Indeed, it was shown that a simple convolutional model

does not exist. Although time-variant convolutional models do exist, the receiver

functions in such models become non-stationary filter matrices instead of single

traces and inverting for them represents a seriously under-determined problem.

In the discussion chapter we will briefly return to the problem of calculating

a receiver functions in a seismic reflection setting and suggest research into a

transformation approach which transforms reflection data into transmission data

and vice-versa.
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Chapter 6

Discussion

6.1 Interferometry: tunable full

waveform modeling

A critical reader may well argue that no specific examples were given for

which the interferometric modeling method is computationally cheaper than

existing forward modeling methods. As argued in chapter 3, any discussion of

a particular modeling scenario necessarily ignores one of the main advantages

of the interferometric approach: namely, that one does not have to decide on

a scenario upfront. This flexibility, that per definition cannot be expressed in

terms of CPU time or the number of floating point operations, should rather

be measured in terms of overall efficiency (including human) over the complete

duration of a modeling project or application. The ability to meet changing

requirements as the understanding of the modeler evolves, may well be one of

the main advantages of the new method. Nevertheless, it is instructive to review

some other promising approaches to reduce the cost of the new method, albeit at

the expense of accuracy.

Aperture As shown in chapter 2, and originally suggested by Prof. Snieder

(personal communication), in many cases there is a redundancy in the number

of sources on the surrounding surface even when the boundary is sampled

at the (local) Nyquist wavenumber. The phase of an arrival could still be

reconstructed successfully after reducing the number of boundary sources by a

129
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factor of sixteen. The explanation for this, as in the case of super-resolution

reported by Derode et al. (1995), is that strong multiple scattering augments the

wavenumber spectrum, thus filling in gaps in the illumination by the sources on

the surrounding surface and increasing their effective aperture.

Illumination Another case in which the number of sources on the surrounding

surface can be reduced, is in the case of favorable geology. For example, in

the truncated Pluto model discussed in chapter 3 and 4, it was noticed that

the weighted crosscorrelations (in the interferometric construction) for boundary

sources just below the salt did not contain any significant energy. This is because

the high velocity of the salt bends the rays away from the vertical and hence

produces a shadow zone beneath the salt. Because of reciprocity, boundary

sources located in the shadow zone do not illuminate large parts of the model

and hence can be neglected. Similarly, as explained in detail in chapter 3, no

sources are required on interfaces with homogeneous boundary conditions. Thus,

in some modeling scenarios where extremely large contrasts in acoustic or elastic

impedances are encountered, it will be advantageous to let the surrounding surface

coincide with such interfaces.

While raytracing can help to identify shadow zones along the boundary

of the model, it should be mentioned that currently there is no

mathematical or physical framework to determine, rigorously, a priori,

which boundary sources can be neglected in the above two approaches.

While for a particular pair of points in the medium, sources on the

boundary in the point of interest gathers may not contain significant

energy, it could be that for a different pair of points these sources do

contain essential contributions.

Stationary phase The closest thing to a mathematical framework to determine

which source contributions can be neglected is probably the method of stationary

phase. In the stationary phase interpretation (Snieder, 2004; Snieder et al., 2006)

an event will be reconstructed if the point for which the difference in traveltime

to the two receivers is stationary wrt. position perturbations is included in the

Kirchhoff integral. However, it is easy to show that even in the case of a single
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layer bounded by a free surface above and a half space below, an infinite number

of such stationary points must exist – one for each multiple reflection bouncing

back and forth between two points of interest. Similarly, in more complex models,

in the presence of strong multiple scattering, a single boundary source may

even act as stationary point for different events in the same reconstruction (i.e.,

between the same pair of points) in a non-trivial way. In principle, it is possible

(and relatively straightforward) to determine such stationary points up to a pre-

determined order of events using a relatively cheap forward modeling algorithm

such as raytracing. However, this seems contrary to the purpose of full waveform

modeling in the first place. Besides, we have no guarantee that additional events

(in addition to those ray-traced) will be reconstructed properly.

Simultaneous sources At this point I also would like to return briefly to the

possibility of encoding the boundary sources using pseudo-noise sequences, which

was discussed in detail in chapter 3. Some reviewers have argued that we are too

pessimistic in our conclusion that encoding using orthogonal sequences does not

pay off in forward modeling experiments. Perhaps they are right. To be clear, we

never said that encoding using pseudo-noise sequences does not work – indeed it

does work!1 – we merely emphasize that this will not be the holy grail that the

full waveform modeling and inversion community is looking for. I feel that it is

important to stress that having uncorrelated noise sources is not enough: one also

has to listen (or model) long enough, or average over enough events, where long

enough is dictated precisely by the signal-to-noise ratio that is required for the

final application. And therein lies precisely the crux: while it is possible to speed

up the computations by compromising on signal-to-noise ratio, in general, it will

not be possible to achieve the same accuracy as the original finite-difference run

at a reduced computational cost compared to the original simulations. In the

physics of wave propagation there’s no such thing as a free lunch!

One-bit time-reversal Another promising approach, that significantly reduces

both the storage requirements and the cost of looking up a Green’s function (but

not the initial forward modeling effort), is suggested by the research of Derode

1For another recent example of successful simultaneous source encoding in the context of
frequency domain forward modeling see Nihei and Nakagawa (2003).
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et al. (1999). Discussing pulse compression with one-bit time reversal through

multiple scattering they show that both the temporal and spatial resolutions of

the refocused pulse remain unchanged when the scattered signals are digitized

using only one bit. Moreover, in their experiments the compressed pulse is

amplified by 12dB and the signal-to-noise ratio improved by 1.2 dB, making

the one-bit results even better than the full 8-bit dynamic range digitization.

Derode et al. (1999) explain their results by remarking that although reducing

the number of bits certainly changes the amplitude of the signal that is recorded

on the time-reversal mirror, it does not change its correlation time. Another

way of saying this is that the crucial information in the random signals for time-

reversal and interferometry resides in the phase, or rather, the phase difference

information of the recorded signals. Reconstruction (constructive and destructive

interference) relies on phase differences being stationary and thus the amplitude of

the reconstruction has perhaps more to do with the integral over the surrounding

surface (the surface of Derode’s time-reversal mirror) than the exact amplitude

of the individual signals2. This observation is also consistent with the mentioned

stability of time-reversal and the remarks of Snieder and Scales (1998), that the

time-reversal mirror acts as a linear boundary condition on the time-reversed

wavefield and therefore is robust to such dramatic changes in digitization.

Thus, it would be interesting to record the conventional full-precision bound-

ary source simulations using a reduced number of bits (or, in the limit of one bit

the sign only) in all points of interest. Note that this also has the desirable prop-

erty of immediately reducing the storage requirements by a corresponding power

of two and the look-up cost considerably as well! Again, I want to emphasize

that the corresponding results will be approximate and that there is no real way,

for a general model, to predict the accuracy of the reconstruction. Nevertheless,

for sufficiently complex (read random) models, the results of Derode et al. (1999)

are encouraging. Also, similar to the way in which the length of the orthogonal

pseudo-noise sequence determines the accuracy of the results, here the accuracy

can be controlled carefully through the number of bits in the recording.

2Note that this property is also exploited in methods that design signature deconvolution
operators based on the full seismic trace. By applying a time-variant gain the later recorded
data are weighted more equally and the dynamic range of the data, as in n-bit digitization, is
reduced.
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Data compression Clearly, the properties of the crosscorrelation and the

linearity of the boundary condition on the time-reversal make the interferometric

method also an ideal candidate to try various data compression algorithms

(preferably to individual sources or to the point of interest gathers). While

generally it is not possible to determine upfront whether a given reduction in

boundary source sampling or in the number of bits used in digitization will lead

to an acceptable noise level, a posteriori, the effect of such reductions can be

evaluated and an optimal level, given the particular requirements for the data,

chosen.

Thus, based on the above discussion on accuracy again a pattern of flexibility

emerges: the interferometric modeling method allows compromising on accuracy

while maintaining full multiple scattering. This aspect also makes the method

an ideal candidate for full waveform inversion, where the sensitivity to the full

data trace is maintained, while at the same time being able to trade-off the

computational cost. This is also the case in the next section, where full waveform

inversion in the frequency domain is discussed.
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6.2 Frequency Domain Inversion (FDI)

In a typical FDI approach, (see e.g., Pratt et al., 1998; Pratt, 1999), the acoustic

or elastic wave equation is discretized in the frequency-space domain using a

finite-difference or a finite-element approach and the resulting linear system of

equations for a single frequency solved using direct matrix factorization methods.

If LU factorization is used, Marfurt (1984) and Pratt and Worthington (1990)

have shown that the matrix factors can be re-used to compute the response for

a new source position using only a fraction (∼1 percent) of the time required

to compute the original matrix factors (Stekl and Pratt, 1998). In addition, the

frequency domain forward modeling approach leads to a straightforward matrix

implementation of the backpropagation method of Lailly (1984) to compute

the gradient of a misfit function (implicitly through the Frechet derivatives) in

waveform inversion problems (see also section 6.4 below).

The interferometric modeling method does not rely on a frequency or time-

domain implementation. Indeed, the equations for interferometric modeling

in chapters 2 and 3 were derived in the frequency domain. The resulting

multiplications with the complex conjugate were subsequently interpreted as

crosscorrelations in the time domain. Thus, it is straightforward to apply

the interferometric modeling method in conjunction with the frequency-domain

forward modeling approach of Pratt et al. (e.g., 1998), with all the advantages

discussed above. Since the response for different sources can be computed at only

a fraction of the cost of the initial LU decomposition, the initial illumination of the

model from a surrounding surface is cheap. Furthermore, instead of on the order

of several thousand samples only one (complex-valued) sample needs to be stored

for each frequency, reducing the storage requirements dramatically. Similarly,

when looking up Green’s functions only one complex multiplication needs to be

computed for each boundary source and the results added.

It should be kept in mind however, that there could be some surprises when

dealing with non-reciprocal absorbing boundary conditions in such methods

(Pratt et al., 1998, p. 344). With reciprocity such an essential ingredient of

all time-reversal and interferometry-based methods, it may be that a renewed

look at absorbing boundary conditions for frequency domain methods is required

before interferometry can be applied. Also, it is an open question whether the
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exact boundary condition for non-linear model perturbations discussed in chapter

4 can be implemented in the frequency domain. The exact boundary condition

relies heavily on causality and the condition of causality is not as easily ensured

in the frequency domain as in the time domain. Since the benefits of a frequency

domain approach are substantial, future research should address how to extend

the exact boundary condition to the frequency domain.

6.3 Beyond 2D?

Unfortunately, the advantages of frequency domain finite-differences disappear

when the method is applied to realistic 3D models and even the storage of the

LU decomposition matrices becomes an problem. A similar storage problem

also thwarts the interferometric modeling method: even for a relatively small

2D acoustic model of 300 x 300 gridpoints, storage of a reasonable subset of the

Green’s functions on the interior already requires up to 450 Gigabytes of data.

Although such amounts of data are by no means show stoppers, for realistic 3D

models we can forget about storing the response at all gridpoints in the medium

and for all timesteps unless we find a way to drastically reduce both the internal

memory and storage requirements.

Recently, however, an alternative approach has been suggested by Nihei and

Nakagawa (2003), which keeps the advantages of the time-domain finite-difference

approach in terms of algebraic complexity and memory requirements, while

producing a single or a limited number of frequency outputs. The approach,

which is based on so-called phase-sensitive detection (PSD), relies on running a

time-domain finite-difference algorithm for a harmonic source out to steady state,

before performing an integration over several cycles of the waveform correlated

with a reference. Because the integration is performed as a running summation

it is never necessary to store full waveforms.

The same approach could be applied to the interferometric modeling method.

While not reducing the heavy computational burden, as frequency-domain finite-

differences did in two-dimensions, this approach does reduce the storage require-

ments drastically. Another promising approach to reduce the computational and

memory requirements associated with 3D full waveform inversion is to target the
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inversion to a particular region of interest. The potential of combining finite-

difference injection techniques with interferometry to give flexible, targeted full

waveform inversion is discussed next.

6.4 FD-injection + interferometry =

targeted full waveform inversion

As mentioned above, Lailly (1984) and Tarantola (1984) have shown that by

correlating backpropagated data-residuals with forward propagated wavefields,

the gradient of the misfit function can be computed efficiently. Even though

this approach reduces the number of forward modeling steps involved in the

computation of the gradient for each shotpoint to two, the repeated modeling

step still makes (frequency domain) full waveform inversion in 3D prohibitively

expensive. Also, note that Marfurt (1984) and Pratt and Worthington (1990) do

not teach us how to limit the modeling and inversion to a particular region of

interest.

Robertsson and Chapman (2000), on the other hand, present an efficient

method for updating full waveform seismograms after localized model pertur-

bations. The method, based on superposition and continuity, works by recording

the wavefield on a surface surrounding a region of interest during an initial run

on the full grid and using the recorded wavefield to drive subsequent simulations

on a smaller perturbed grid. In this way, all interactions with the exception of

second and higher-order long-range interactions with the background model are

properly accounted for (this, in stark contrast with hybrid methods). However,

the authors do not discuss inversion. In another recent development, Valenciano

et al. (2006) discuss targeted inversion. Their approach relies on writing the for-

ward modeling operator in a target-oriented fashion and computing the Hessian

explicitly. To limit the computational cost, one-way Green’s functions are used.

It seems probable that by combining elements from both the global waveform

inversion approach and the localized injection approach with interferometry that

new, more optimal inversion strategies will be found. For example, instead of

backpropagating the data-residuals through the background model using finite-

differences on the full grid, one could compute a time-reversed injection wavefield
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by extrapolating data residuals from the surface through the background model

using the Kirchhoff-Helmholtz integral and interferometrically computed Green’s

functions. The time-reversed injection wavefield would then drive a finite-

difference simulation on the smaller (unperturbed) grid, giving rise to the exact

same backpropagating data-residual wavefield that would have been obtained

using finite-differences on the full grid. This so-called missing diffracted field, not

taken into account by the current model (Tarantola, 1984), can then be correlated

with the forward propagated wavefield in the usual way3. Alternatively, one

could skip the injection step altogether and compute the forward and backward

Kirchhoff-Helmholtz integral for each point in the target region explicitly and

correlate the resulting extrapolated wavefields. The merits of each approach

obviously depend on the number of points in the subgrid and the relative cost of

Kirchhoff extrapolation vs. finite-differences, but are clearly more efficient than

computing finite-differences on the full grid.

Note that, although interferometry is not strictly required for the above

described application, interferometry provides the full waveform Green’s functions

for the background model cheaply (once the initial computational burden has been

paid-off), consistently (compare with the one-way Green’s functions of Valenciano

et al. (2006) and other hybrid approaches) and flexibly – allowing the target region

to be redefined, extended or completely changed without incurring significant new

computational costs.

6.5 Receiver functions and a possible relation with

interferometry

In the chapter on receiver functions, it was shown that the kinematic treatment

of receiver functions can be extended quite far along the lines of conventional

converted wave processing (e.g., by following the work of Harrison, 1992). It

appears completely feasible to formulate such concepts as moveout correction,

3Note that one could also compute the forward injection wavefield interferometrically and
inject the forward and time-reversed data-residual wavefield simultaneously, making use of
linearity of the solutions of the wave-equation. The conventional zero-lag crosscorrelation can
then be calculated implicitly in the finite-difference calculation on the subgrid through a running
summation (integration) of the field variable(s) over time.
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stacking, dip moveout and pre- and post-stack time or depth migration for

receiver functions. Nevertheless, such kinematic extensions will only be successful

if the receiver functions input to such algorithms have well defined meanings

and simple interpretations, dynamically speaking. For receiver functions in a

reflection seismic setting this is debatable at least. Due to the increased number

of events on the vertical component in a reflection setting, there is no well defined

(stationary) transfer function between the vertical and the horizontal components

and the deconvolution (or crosscorrelation) thus produces a trace with many more

events than the desired number of primary PP- and PS-converted wave pairs and

without obvious interpretation. The concept of a receiver function simply cannot

be extended in a straightforward manner to the reflection setting. As shown, even

when adopting a non-stationary filter model along the lines of Margrave (1998),

the resulting transfer function is not a function, but rather a matrix and it is not

clear how this matrix, with its many more degrees of freedom, can be estimated

cheaply and robustly without performing full converted wave processing.

At this point, it is interesting to step back a little and think a bit more

about the fundamental differences between reflection and transmission data: what

is the fundamental difference between reflection and transmission data? Are

reflection data intrinsically “more complicated” than transmission data? Does

reflection data contain more “information” than transmission data, or less, or

perhaps equal? Or is it better to think of reflection and transmission data

as complementary? A partial answer to this question, which bring us back

to interferometry, was given by Claerbout, in a classic paper in 1968 titled:

“Synthesis of a layered medium from its acoustic transmission response”. As

the answer turned out to be surprisingly brief and simple, we can directly quote

it from the paper here:

The reflection seismogram from a surface source and a surface receiver

is one side of the autocorrelation of the seismogram from a source at

depth and the same receiver.

Thus, if we have measured the transmission response of a layered medium, we

can reconstruct the reflection response simply by calculating the autocorrelation

of the transmission response and taking one side of it.

Notice that Claerbout’s result seems to imply that the reflection and trans-
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mission responses indeed contain the same amount of information, since one can

be calculated from the other by the process of spectral factorization. For hori-

zontally layered acoustic media, embedded between two halfspaces, this is almost

certainly the case. Recently Wapenaar (2004) generalized Claerbout’s results to

arbitrary inhomogeneous elastic media.

A more promising approach to receiver function therefore suggests itself: if it

were possible to transform the multi-component reflection data into the equivalent

multi-component transmission data for the same model, receiver function analysis

could be applied to the transmission data using conventional methods and

the extended kinematics presented in this thesis could be applied without all

the problems associated with the increased number of events on the vertical

component.

At this point it should be mentioned that for the acoustic case Thorbecke

et al. (2003) have shown that the transmission coda that can be retrieved from

reflection data but not the absolute transmission time of a primary due to a

source below the stack of layers. It is not clear how this result generalizes to

a horizontally layered elastic medium. For the above suggestion to work, it is

important that the relative PP- and PS-converted wave transmission times are

preserved. If this is not the case, then there is no merit in transforming the

reflection data into transmission coda. It has also been pointed out (Wapenaar,

2007, personal communication) that the extension of the reflection-transmission

transforms to 3D acoustic media is not straightforward either.

It is beyond the scope of this thesis to investigate the possible use of such

reflection-transmission transforms for receiver function calculation. A brief survey

of the existing literature however suggests that this may be a much harder problem

than it appears to be at first sight. Going from transmission data to reflection

data is relatively easy, as the interferometric Green’s function constructions show.

As mentioned in the introduction, already in 1968, Claerbout speculated that

“the synthesis problem with p-sv conversions may be solvable with two-channel

time-series analysis.”.

Given the fact that it took more than 30 years to prove Claerbout’s first

conjecture, I will modestly conclude here by saying that interferometry, now

perhaps more than ever, holds great promise and will continue to inspire

researchers for many years to come!
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Appendix A

Computation of the gradient by

spatial filtering

It is well known that when the wavefield on a boundary satisfies outgoing (i.e.,

radiation or absorbing) boundary conditions, the wavefield and its gradient (or

traction) are directly related. For example, Holvik and Amundsen (2005) derive

the following expressions in the frequency-wavenumber (ω,k)-domain that relate

the upgoing components of particle velocity V(up)(k) of a plane wave propagating

with horizontal slowness p = (k/ω) to the upgoing traction T(up)(k) across a

horizontal array of receivers (sources):

T(up)(k) = LTV (k)V(up)(k), (A.1)

where the particle velocity and traction vector are defined as

V(up) =
(
V

(up)
1 , V

(up)
2 , V

(up)
3

)T

(A.2)

T(up) =
(
T

(up)
1 , T

(up)
2 , T

(up)
3

)T

(A.3)

and T denotes transposed. The 3 × 3 matrix LTV (k) is derived as (Holvik and

Amundsen, 2005):

LTV =
ρω

kφ




kz,α − k2
y

k2
β
(kz,α − kz,β) kxky

k2
β

(kz,α − kz,β) kx(1− 2k−2
β kφ)

kxky

k2
β

(kz,α − kz,β) kz,α − k2
x

k2
β
(kz,α − kz,β) ky(1− 2k−2

β kφ)

−kx(1− 2k−2
β kφ) −ky(1− 2k−2

β kφ) kz,β


 .

(A.4)
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In equation A.4, kx and ky are the components of the wavenumber vector parallel

to the array of receivers (sources), kr = (k2
x+k2

y)
1
2 is the length of the wavenumber

vector and kz,α = (k2
α−k2

r)
1
2 and kz,β = (k2

β−k2
r)

1
2 are the P- and S-wavenumbers

perpendicular to the array of receivers (sources) respectively with kα = (ω/α)

and kβ = (ω/β) the P- and S-wavenumbers. In addition, an auxiliary quantity

kφ = k2
r + kz,αkz,β has been defined.

Similarly, for acoustic waves propagating in a single direction across an array,

the pressure P (k) and its gradient ∇P (k) are related through:

∂P

∂n
≡ n · ∇P = ikz,αP, (A.5)

where n is the normal to the array and i is the imaginary unit. Note that these

relations depend on material properties and require that the medium is (locally)

laterally homogeneous.

Thus, equations A.1 and A.5 allow us to calculate the outgoing traction or

pressure gradient associated with the modeled particle velocity or pressure on

the surface surrounding the medium because absorbing boundaries were included

right outside the enclosing boundary during the modeling.

The implementation of equations A.1 and A.5 is straightforward when the

wavefield is recorded (or emitted) on a linear array of regularly spaced receivers

(sources) embedded in a homogeneous medium. In that case, the point of interest

gathers can be directly transformed to the frequency-wavenumber domain and the

matrix multiplication carried out explicitly before the components of the resulting

traction vector are inverse-Fourier transformed to the space-frequency domain.

Alternatively, when the medium is laterally varying or the array of receivers

(sources) is curved, equation A.1 can be implemented by designing spatially

compact filters that approximate the terms of LTV (or, in the acoustic case,

iωqα) and filtering the data in the space-frequency domain. Such an approach

has been used in, for instance, the seabed seismic setting to decompose the

wavefield measured at the seabed into up- and downgoing P- and S-waves (Røsten

et al., 2002; van Manen et al., 2004) and is based on solving a linear least-

squares problem with (in-)equality constraints to find a small number of spatial

filter coefficients with a wavenumber spectrum that best matches the spectrum

of the analytical expression. Since the analytical expressions (equations A.4

and A.5) are functions of frequency, this optimization is carried out for each
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frequency separately. The laterally varying seafloor properties are accommodated

by designing such compact filters for the particular seafloor properties that are

present at each receiver location. These filters are then applied to the point of

interest gathers in the space-frequency domain by space-variant convolution.

Note that the filter coefficients only have to be optimized once for a particular

model and can be reused for all Green’s functions that are computed in the

intercorrelation phase. This approach was tested on acoustic data computed for

the Pluto model (modeled with β = 0 m/s) and gave good results.
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Appendix B

The Welch bound and limits to

encoding using pseudo-noise

sequences

In communications analysis, the problem of encoding and decoding signals using

pseudo-noise sequences and its limits are well known. In particular, Welch

(1974) has shown that for any family of M (unit energy) sequences {a(i)
n },

i = 0, . . . , M − 1, n = 0, . . . , N − 1 of length N , a lower bound on the maximum

(aperiodic) crosscorrelation or off-peak autocorrelation is

Cmax = max{Cam, Ccm} ≥
√

M − 1

M(2N − 1)− 1
(B.1)

where Cam and Ccm are the maximum off-peak autocorrelation and maximum

crosscorrelation values defined by

Cam = max max |Ci,i(τ)|
i 1<τ≤N−1

Ccm = max max |Ci,j(τ)|
i6=j 0<τ≤N−1
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and Ci,j is the discrete aperiodic correlation function of the sequences a
(i)
n and

a
(j)
n defined as

Ci,j(τ) =





∑N−1−τ
n=0 a

(i)
n a

(j)
n+τ , 0 ≤ τ ≤ N − 1∑N−1+τ

n=0 a
(i)
n−τa

(j)
n , −N + 1 ≤ τ < 0

0, |τ | ≥ N.

Note that the Welch bound (equation B.1) holds without reference to a particular

type of sequence set [e.g., maximal, Kasami or Gold sequences (Fan and

Darnell, 2003)]. This means that when we encode signals using sequences of

any such family, superpose the encoded signals and subsequently decode using

crosscorrelation, there will be some point in the decoded output where the

interference between the original data sequences is at least Cmax. We can

estimate the best possible performance that can be expected [without making any

(questionable) assumptions about the uncorrelatedness of the Green’s functions

from boundary sources to points of interest] by looking at the (rms) expected

signal-to-interference ratio when all members a
(i)
n of the sequence set are simply

added and the result rn is autocorrelated. Thus we have

rn =
∑

i

a(i)
n (B.2)

and the corresponding autocorrelation Cr,

Cr(τ) =
N−1−τ∑

n=0

rnrn+τ , 0 ≤ τ ≤ N − 1, (B.3)

which, using equation B.2 can be written

Cr(τ) =
∑

i

N−1−τ∑
n=0

a(i)
n a

(i)
n+τ

︸ ︷︷ ︸
CD(τ)

+
∑

i 6=j

N−1−τ∑
n=0

a(i)
n a

(j)
n+τ

︸ ︷︷ ︸
CC(τ)

. (B.4)

The first term denotes the diagonal, or signal term CD(τ) whereas the second term

CC(τ) denotes the cross-terms related to the (unwanted) interference between the

different codes and contains a double summation.

Equation B.4 mimics the structure of the interferometric modeling equations

(equations 3.10 and 3.11): when the boundary source signals are encoded using
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pseudo-noise sequences and excited simultaneously, it is their superposition (con-

volved with the Green’s function) that is recorded in the points of interest, and

when calculating the Green’s function, decoding, crosscorrelation and summation

are implicit in a direct correlation (just like in a typical retrieval of the Green’s

function from uncorrelated noise sources). Thus, as long as we assume that the

Green’s functions from the boundary to the points of interest do not influence the

signal-to-interference ratio, an estimate of the ratio can be found by analyzing

equation B.4. This is done by comparing the expected magnitude of the first term

to the magnitude of the second term. Since the diagonal term consists of a sum

of the autocorrelations of the sequences, its magnitude is maximum at zero-lag

(τ = 0) and equal to the family size M :

CD(0) =
∑

i

N−1∑
n=0

a(i)
n a(i)

n = M (B.5)

because the signals are unit energy. The expected value of the second term, is

actually calculated by Welch as part of his derivation of equation B.1. In fact,

Welch’s original statement is basically a lower bound on the root-mean-square

value of a family of unit energy signals:

Crms ≥
√

M − 1

M(2N − 1)− 1
(B.6)

and since Cmax ≥ Crms, equation B.1 follows. Thus, the Welch bound gives the

rms-value of each of the terms within the double sum in CC(τ). Note that the

sign of each of these M(M − 1) terms is not directly specified through the Welch

bound. The only thing we can say about the sign is that its expected value is

zero when the DC component of the sequences vanishes and the sequences are

(in the ensemble average) uncorrelated. Thus, we estimate the magnitude of the

term CC(τ) by calculating the variance of

CC(τ) = ±Crms ± Crms ± Crms . . .︸ ︷︷ ︸
M(M−1)terms

(B.7)

which simply is

〈CC(τ)〉 1
2 =

√
M(M − 1)Crms (B.8)
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and the ratio of the signal term to the interference term becomes

CD(0)

〈CC(τ)〉 1
2

≈ M

√
M(2N − 1)− 1

M(M − 1)2
. (B.9)

When both the sequence length N and the family size M are much larger than

one, this becomes
CD(0)

〈CC(τ)〉 1
2

≈
√

2N. (B.10)

Thus, the signal-to-interference ratio improves as the square-root of the sequence

length.



Appendix C

Series expansion of the traveltime

difference as function of slowness

In this Appendix, the difference in traveltime between a P-wave and PS-wave,

converted at the base of layer n is expanded into a Taylor series of increasing

powers of slowness p. This leads naturally to a small slowness approximation,

similar to the near-offset approximation in reflection seismics. As discussed in

the main text, the traveltime difference can be written:

dt =
n∑

k=1

hk

(√
V s−2

k − p2 −
√

V p−2
k − p2

)
. (C.1)

Equation C.1 contains terms of the form: (1− p2v2)
1
2 , where v can denote either

the P- or S-wave velocity. Such terms can be expanded into a Taylor series as

follows:

(
1− p2v2

) 1
2 =

∞∑
j=0

qj

(
p2v2

)j
= 1− 1

2

(
p2v2

)− 1

8

(
p2v2

)2− 1

16

(
p2v2

)3− . . . , (C.2)

where the coefficients qj are given by:

q0 = 1, qj =
1
2

(
1
2
− 1

) (
1
2
− 2

)× . . .× (
1
2
− j + 1

)

j!
(−1)j . (C.3)
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Substituting equation C.2 into equation C.1, the traveltime difference can be

written:

dt =
∞∑

j=0

qj

n∑

k=1

hk

(
V s2j−1

k − V p2j−1
k

) (
p2

)j
. (C.4)

Equation C.4 is an expansion of the traveltime difference between plane P- and

PS-converted waves through an n-layered medium in increasing even powers of

slowness. Note that the accuracy of the expansion is directly related to the

accuracy of the substituted Taylor series approximation (equation C.2), which

means that the product p2v2 should be small (at least the waves should be

propagating) throughout the stack. Therefore the product of the highest P-

velocity and the slowness determine the accuracy of equation C.4.

If we assume that p2v2 ¿ 1, we can truncate the infinite series given by

equation C.4 after the second term and neglect terms of fourth order in slowness

and higher. This gives the small-slowness, or short-spread approximation:

dtsmallp =
n∑

k=1

hk

(
V s−1

k − V p−1
k

)
+

1

2

n∑

k=1

hk (V pk − V sk) p2. (C.5)



Appendix D

A Dix-Krey-type relation for

receiver function pseudo

rms-velocities

The definition of a pseudo rms-velocity in equation 5.16 allows the derivation of a

Dix-Krey-type formula that that relates the pseudo rms-velocities to the product

of P- and S-wave interval velocities, as will be shown below. We apply a similar

analysis as Tessmer and Behle (1988) and express the thickness hk of layer k in

terms of the one-way vertical traveltimes τ p
k and τ s

k and interval velocities in that

layer:

hk =
1

2
(V pkτ

p
k + V skτ

s
k) . (D.1)

Furthermore the ratio of vertical one-way traveltimes equals the inverse of the

ratio of interval velocities:
τ p
k

τ s
k

=
V sk

V pk

. (D.2)

If equation D.1 is subsituted into the definition of the pseudo rms-velocity

(equation 5.16) and the identity D.2 is used, we arrive at the following expression

for the pseudo rms-velocity at layers n and n− 1:

ṽn
rms =

1

2

n∑

k=1

(τ s
k − τ p

k ) · V skV pk, (D.3)

ṽn−1
rms =

1

2

n−1∑

k=1

(τ s
k − τ p

k ) · V skV pk. (D.4)

159



160

Subtracting equation D.4 from equation D.3, one arrives at:

V snV pn = 2 · ṽn
rms − ṽn−1

rms

(τ s
n − τ p

n)
. (D.5)

Finally, using the fact that the difference in vertical one-way S- and P-traveltime

through layer n is equal to the difference in vertical incidence traveltime differ-

ences between layer n and layer n− 1:

(τ s
k − τ p

k ) = dtn0 − dtn−1
0 , (D.6)

one arrives at:

V snV pn = 2 · ṽn
rms − ṽn−1

rms

dtn0 − dtn−1
0

. (D.7)

Equation D.7 is the equivalent of the Dix-Krey-type formula derived by Tessmer

and Behle (1988) for converted waves. It says that the product of P- and S-wave

interval velocities in layer n is simply twice the ratio of the differences in pseudo

rms-velocities and vertical incidence traveltime differences. Equation D.7 can eas-

ily be verified by directly substituting the definitions of the pseudo rms-velocities

and vertical incidence traveltime differences (equations 5.16 and 5.15). Note that

equation D.7 is substantially different from the result derived by Tessmer and

Behle (1988) for converted waves. This is because our approximations of the

moveout in the traveltime difference and corresponding definition of the pseudo

rms-velocity are done in the slowness domain.



Appendix E

Expansion of the traveltime

difference as function of the

difference in horizontal distance

Following the analysis of Tessmer and Behle (1988), we expand both dt and dx in

equations 5.24 and 5.25 into infinite series of even powers of slowness. Hereby we

use the Taylor series expansion of the function (1− p2v2)
1
2 , where v can denote

both the P- and S-wave velocity.

(
1− p2v2

)− 1
2 =

∞∑
j=1

qj

(
p2v2

)j−1

= 1 +
1

2

(
p2v2

)
+

1× 3

2× 4

(
p2v2

)2
+

1× 3× 5

2× 4× 6

(
p2v2

)
+ . . .(E.1)

where the coefficients qj are given by:

q1 = 1, qj =
1× 3× · · · × (2j − 3)

2× 4× · · · × (2j − 2)
. (E.2)

Note that this expansion is the inverse of the expansion used in the previous

sections (see equation C.2). We substitute equation E.1 into equations 5.24

and 5.25 for terms containing either P- or S-velocities to obtain infinite series
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for dt and dx:

dt =
∞∑

j=1

qj

n∑

k=1

hk

(
V s2j−3

k − V p2j−3
k

) (
p2j−2

)
, (E.3)

dx =
∞∑

j=1

qj

n∑

k=1

hk

(
V s2j−1

k − V p2j−1
k

) (
p2j−1

)
. (E.4)

To simplify the appearance of equations E.3, E.4 and subsequent derivations, we

define the following coefficients:

am =
n∑

k=1

hk

(
V s2m−3

k − V p2m−3
)
, (E.5)

bm = −qmam+1, (E.6)

γm = qmam. (E.7)

Using these, equations E.3 and E.4 become:

dt =
∞∑

j=1

γjp
2j−2, (E.8)

dx = p

∞∑
j=1

bjp
2j−2. (E.9)

The explicit form of equation 5.31 in the main text can be found by squaring

the power series for dt (equation E.8), calculating successive even powers of dx

(equation E.9) and ordering terms of equal powers in slowness p. We start by

squaring dx:

dx2 =

(
p

∞∑

k=1

bkp
2j−2

)2

= p2
(
b1 + b2p

2 + b3p
4 + b4p

6 + · · · )2

= p2
(
b2
1 + (b1b2 + b2b1) p2 +

(
b1b3 + b2

2 + b3b1

)
p4

+ (b1b4 + b2b3 + b3b2 + b4b1) p6 + . . .
)

= p2

∞∑

k=1

Bk1p
2k−2, (E.10)
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where,

Bk1 = b1bk + b2bk−1 + · · ·+ bk−1b2 + bkb1. (E.11)

The higher, even powers of this series can be found by recursively applying

equation E.10 to find the coefficients. This leads to the following result:

dx2n =
∞∑

k=1

Bknp
2k−2, (E.12)

where,

Bkn = B11Bk,n−1 + B21Bk−1,n−1 + · · ·+ Bk−1,1B2,n−1 + Bk1B1,n−1. (E.13)

Note that the coefficients Bkn have to be calculated recursively since they contain

coefficients B··· ,n−1. The same methodology can also be applied to find the square

of dt and we find:

dt2 =

( ∞∑

k=1

Akp
2k−2

)
= c1 + c2 ·

(
p2

∞∑

k=1

Bk1p
2k−2

)

︸ ︷︷ ︸
dx2

+ c3 ·
(

p4

∞∑

k=1

Bk2p
2k−2

)

︸ ︷︷ ︸
dx4

+c4 ·
(

p6

∞∑

k=1

Bk3p
2k−2

)

︸ ︷︷ ︸
dx6

+c5 · · · · , (E.14)

where,

Ak = γ1γk + γ2γk−1 + · · ·+ γk−1γ2 + γkγ1. (E.15)

Hence, written out up to 6th order in p, equation E.14 becomes:

A1 + A2p
2 + A3p

4 + A4p
6 + · · · =

c1 + c2B11p
2 + (c2B21 + c3B12) p4 + (c2B31 + c3B22 + c4B13) p6 + · · · .

Thus, we find for the first two coefficients, using equations E.5, E.6 and E.7,

c1 = A1 = γ2
1 = (q1a1)

2 =

(
n∑

k=1

hk

(
1

V sk

− 1

V pk

))2

≡ dt20, (E.16)

c2 =
A2

B11

=
2γ1γ2

b2
1

a1

a2

=

∑n
k=1 hk

(
1

V sk
− 1

V pk

)
∑n

k=1 hk (V sk − V pk)
≡ 1

v2
rms

. (E.17)
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Appendix F

A Dix-Krey relation for reflection

seismic receiver functions

Analogous to the treatment in Appendix D, Dix-Krey-type relations can also be

derived for the approximations of the traveltime difference as a function of the

difference in horizontal travel distance, as developed in Appendix E. This is the

topic of the current Appendix. As we will see, the result will relate the rms-

velocities defined in the previous Appendix to the products of P- and S-wave

interval velocities. We start from the squared rms-velocity:

v2
rms =

∑n
k=1 hk (V sk − V pk)

dt20
. (F.1)

Again, we proceed by using equation D.1 for the thickness of a layer k and the

ratio of one-way vertical traveltimes (equation D.2) to rewrite the numerator in

equation F.1 and we have:

n∑

k=1

hk (V sk − V pk) =
n∑

k=1

1

2
(V pkτ

p
k + V skτ

s
k) (V sk − V pk)

=
n∑

k=1

(τ p
k − τ s

k) · V skV pk. (F.2)
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Hence, combining equations F.2 and F.1, we find for layer n and n−1 respectively:

dtn0v
2
rms,n =

n∑

k=1

(τ p
k − τ s

k) · V pkV sk, (F.3)

dtn−1
0 v2

rms,n−1 =
n−1∑

k=1

(τ p
k − τ s

k) · V pkV sk, (F.4)

Subtracting equation F.4 from equation F.3, we find for the product of P- and

S-wave interval velocities in layer n:

V pnV sn =
dtn0v

2
rms,n − dtn−1

0 v2
rms,n−1

(τ p
n − τ s

n)
, (F.5)

Now finally, using that:

(τ p
n − τ s

n) = dtn0 − dtn−1
0 , (F.6)

equation F.5 can be written:

V pnV sn =
dtn0v

2
rms,n − dtn−1

0 v2
rms,n−1(

dtn0 − dtn−1
0

) , (F.7)

Equation F.7 is the desired result. It shows how the product of P- and S-wave

interval velocities for a layer k, can be calculated once the rms-velocities and the

vertical incidence time differences for that layer and the previous layer are known.

Equation F.7 has exactly the same form as found previously for PS-converted

waves by Tessmer and Behle (1988). Note however that the vertical incidence

traveltime differences and rms-velocities are defined differently, as shown in

Appendix E.



Appendix G

Analytical expressions for the

receiver function in a two-layer

medium

To get a better feeling for difference between a reflection and a transmission

receiver function, we will now expand the approximate equation for the reflection

seismic receiver function into an infinite series. As mentioned previously, division

in the frequency domain, corresponds to deconvolution in the time domain.

Alternatively, if we can calculate the inverse of the vertical component, we may

convolve the numerator with the time-domain equivalent of the inverse. Hence,

the objective of this section is to find the inverse of Zr(ω) or, more correctly, of

Zr1(ω) + Zr2(ω):

Z−1
r (ω) ≈ (Zr1(ω) + Zr2(ω))−1 =

R−1
pp1 · e+iω(2tp1)

1 + (Rpp2/Rpp1) · e−iω(2tp2)
. (G.1)

Now if we define k = (Rpp2/Rpp1) and z = exp (−iω (2tp2)), the inverse of the

denominator can be written:

(
1 + (Rpp2/Rpp1) · e−iω(2tp2)

)−1
= (1 + kz)−1 . (G.2)

According to k greater or smaller than one, equation G.2 signifies the inverse of

a maximum or minimum delay wavelet respectively. In both cases a binomial

expansion can be used to find a series approximation of the inverse (Robinson

and Treitel, 2002). Both cases are now discussed in detail.
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Case 1: Rpp1 < Rpp2. In this case k < 1 and the stable inverse of a minimum-

delay wavelet (1, k) (in z-transform notation) is given:

(1 + kz)−1 = 1− kz + k2z2 − k3z3 + k4z4 − · · · .

Substituting the infinite series in equation G.1, we find:

R−1
pp1 · e+iω(2tp1)

1 + (Rpp2/Rpp1) · e−iω(2tp2)
=

1

Rpp1

e−iω(−2tp1) − Rpp2

R2
pp1

e−iω(2tp2−2tp1) +
R2

pp2

R3
pp1

e−iω(4tp2−2tp1) − · · · . (G.3)

Using the first three terms of this expansion in the reflection receiver function

(equation 5.57) we get:

Hr(ω) ≈
(

Rps1

Rpp1

) (
Rpp2

Rpp1

)0

e−iω(ts1−tp1+0tp2)

−
(

Rps1

Rpp1

) (
Rpp2

Rpp1

)1

e−iω(ts1−tp1+2tp2)

+

(
Rps1

Rpp1

) (
Rpp2

Rpp1

)2

e−iω(ts1−tp1+4tp2)

+

(
Rps2

Rpp2

) (
Rpp2

Rpp1

)1

e−iω(ts1+ts2−tp1−tp2+2tp2)

−
(

Rps2

Rpp2

) (
Rpp2

Rpp1

)2

e−iω(ts1+ts2−tp1−tp2+4tp2)

+

(
Rps2

Rpp2

) (
Rpp2

Rpp1

)3

e−iω(ts1+ts2−tp1−tp2+6tp2),

where, to emphasize regularity, we have defined: (Rpp2/Rpp1)
0 ≡ 1 and added the

zero phase term: 0tp2. This result can be transformed to the time-domain and
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slightly rewritten, to find for the first six terms of the reflection receiver function:

hr(t) ≈
(

Rps1

Rpp1

) (
Rpp2

Rpp1

)0

δ (t− (ts1 − tp1)− 0tp2)

−
(

Rps1

Rpp1

) (
Rpp2

Rpp1

)1

δ (t− (ts1 − tp1)− 2tp2)

+

(
Rps1

Rpp1

) (
Rpp2

Rpp1

)2

δ (t− (ts1 − tp1)− 4tp2)

+

(
Rps2

Rpp2

) (
Rpp2

Rpp1

)1

δ (t− (ts1 + ts2 − tp1 − tp2)− 2tp2)

−
(

Rps2

Rpp2

) (
Rpp2

Rpp1

)2

δ (t− (ts1 + ts2 − tp1 − tp2)− 4tp2)

+

(
Rps2

Rpp2

) (
Rpp2

Rpp1

)3

δ (t− (ts1 + ts2 − tp1 − tp2)− 6tp2) . (G.4)

Equation G.4 gives us some insight into the nature of the receiver function in a

two layer reflection setting. The first term can be recognised as hr1(t), the partial

receiver function for the first layer. This term has both the desired amplitude

and phase, giving information about the ratio of the P-wave reflection and PS-

wave conversion coefficients at the first interface and the difference in traveltime

between the P- and PS-wave reflection at that interface.

The next two events are shifted - with respect to the traveltime difference

through the first layer - by an integer number of times the traveltime through

layer 2. To see why this is the case, one has to realize that the time through

layer 2 equals the difference in traveltime between a P-wave reflected at layers 1

and 2. The amplitude of the second and third events is the ratio of the P-wave

reflection and PS-conversion coefficients at the first interface modified by the ratio

(squared) of the P-wave reflection coefficients at the two interfaces.

The last three terms can be interpreted similarly, but now relative to the

traveltime difference between the PS-wave and the P-wave reflection at the second

interface (i.e., ts1 + ts2 − tp1 − tp2) and the corresponding ratio of reflection and

conversion coefficients (i.e., Rps2/Rpp2). Again, we see that the events are shifted

by an integer number of times the traveltime through layer 2 and scaled by

increasing powers of the ratio of P-wave reflection coefficients at the first and

second interface.
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Case 2: Rpp2 > Rpp1. For completeness, I now discuss the case when the

reflection coefficient at the second interface is larger than the first. We will

see that this case is slightly different from the previous case considered. Since in

this case k > 1, we need to find the inverse of a maximum-delay wavelet (1, k).

However, the causal binomial expansion used in the previous section is unstable

when k > 1, so in this case we have to use the anti-causal binomial expansion:

(1 + kz)−1 = k−1z−1 − k−2z−2 + k−3z−3 − k−4z−4 + k−5z−5 − · · · .

Substituting k and z in the infinite series, we find for equation G.1:

R−1
pp1 · e+iω(2tp1)

1 + (Rpp2/Rpp1) · e−iω(2tp2)
=

1

Rpp2

e+iω(2tp1+2tp2) − Rpp1

R2
pp2

e+iω(2tp1+4tp2) +
R2

pp1

R3
pp2

e+iω(4tp1+6tp2) − · · · . (G.5)

Using the first three terms of this expansion in the reflection receiver function we

get:

Hr(ω) ≈
(

Rps1

Rpp1

) (
Rpp1

Rpp2

)1

e−iω(ts1−tp1−2tp2)

−
(

Rps1

Rpp1

) (
Rpp1

Rpp2

)2

e−iω(ts1−tp1−4tp2)

+

(
Rps1

Rpp1

) (
Rpp1

Rpp2

)3

e−iω(ts1−tp1−6tp2)

+

(
Rps2

Rpp2

) (
Rpp1

Rpp2

)0

e−iω(ts1+ts2−tp1−tp2−0tp2)

−
(

Rps2

Rpp2

) (
Rpp1

Rpp2

)1

e−iω(ts1+ts2−tp1−tp2−2tp2)

+

(
Rps2

Rpp2

) (
Rpp1

Rpp2

)2

e−iω(ts1+ts2−tp1−tp2−4tp2). (G.6)

where, again to emphasize regularity, we have used: (Rpp1/Rpp2)
0 ≡ 1 and added

the zero phase term: 0tp2. This result can be transformed to the time-domain,
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to find the first six terms of the reflection receiver function:

hr(t) ≈
(

Rps1

Rpp1

)(
Rpp1

Rpp2

)1

δ (t− (ts1 − tp1) + 2tp2)

−
(

Rps1

Rpp1

)(
Rpp1

Rpp2

)2

δ (t− (ts1 − tp1) + 4tp2)

+

(
Rps1

Rpp1

)(
Rpp1

Rpp2

)3

δ (t− (ts1 − tp1) + 6tp2)

+

(
Rps2

Rpp2

)(
Rpp1

Rpp2

)0

δ (t− (ts1 + ts2 − tp1 − tp2))

−
(

Rps2

Rpp2

)(
Rpp1

Rpp2

)1

δ (t− (ts1 + ts2 − tp1 − tp2) + 2tp2)

+

(
Rps2

Rpp2

)(
Rpp1

Rpp2

)2

δ (t− (ts1 + ts2 − tp1 − tp2) + 4tp2) . (G.7)

Equation G.7 can be compared with the time-domain expression G.4 found in the

previous section for the case Rpp1 > Rpp2. The fourth term can be recognised as

hr2(t), or the partial receiver function for the second interface and hence provides

the ratio of the P-wave reflection to the PS-conversion coefficient at the second

interface and is positioned (in time) at the difference in traveltime between the

P-wave reflected and the PS-wave converted at the second interface. The other

terms can be interpreted as in the previous section, with one important difference:

whereas for the case Rpp1 > Rpp2, the additional terms where delayed by integer

multiples of the two-way traveltime through the second layer, in this case the

additional terms are advanced. This means that, as the order of the terms in

the approximation increases, these terms will end up more and more before the

zero-lag of the deconvolution, thus representing energy at a-causal time-lags.

The receiver function calculation for the two-layer example, both analytically

and numerically, shows that even for a simple two-layer medium, the change

from a seismological transmission setting to a seismic reflection setting makes the

interpretation of the receiver function much more difficult and ambiguous than

in the corresponding transmission setting. Depending on the relative size of the

P-reflection coefficients, the inverse “filter” of the vertical component is either a

causal, stable, infinite time function or an a-causal, stable, infinite time function.

Convolution with this inverse thus introduces a (theoretically infinite) number

of secondary events, which appear as noise at causal or a-causal time-lags. For
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the two-layer model, under the mentioned assumptions, only one of the many

events in the receiver function gives unperturbed information about the ratio of

reflection and conversion coefficients at one of the two interfaces and appears at

the correct time-lag corresponding to the difference in traveltime between the

PS-wave and the P-reflection at that interface.

The deliberate choice of a medium consisting of only two layers allowed

the expansion of the inverse of the vertical component (or P-wave) recording.

Unfortunately, it is not straightforward to apply the same methodology to

find analytic approximations of the receiver function in a general multi-layered

reflection seismic setting. This makes it difficult to predict exactly what the

receiver function will look like for such a complicated but more realistic model

and it is not clear what kind of information can be obtained from such a receiver

function. Once again, in the transmission setting, adding a layer to the existing

stack, to first order, only leads to an additional PS-converted wave, recorded

dominantly on the radial component. The vertical component remains virtually

unchanged. In the reflection seismic setting, the addition of a layer, introduces,

under the same approximations, at least two events; a P-wave on the vertical

component and a PS-wave converted upon reflection, recorded on the radial

component. For a more complicated medium in a reflection setting, with many

layers, it seems reasonable to expect that: (a) no simple inverse will exist for the

vertical component P-wave data, (b) the inverse will contain energy at both a-

causal and causal time-lags (the earth reflectivity is very probably not a minimum,

or maximum phase wavelet) and (c) the relative timing and amplitude of the

events in the receiver function may be distorted by this complicated inverse of

the vertical component.

On the other hand, it could also be possible that the randomness or “white-

ness” of the earth reflectivity leads to some kind of stabilization in the receiver

function calculation, preserving some of the relative amplitude and phase infor-

mation.


