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Abstract

Heterogeneous platforms play an increasingly important role in modern computer

systems. They combine high performance with low power consumption. From mo-

biles to supercomputers, we see an increasing number of computer systems that are

heterogeneous.

The most well-known heterogeneous system, CPU+GPU platforms have been widely

used in recent years. As they become more mainstream, serving multiple tasks from

multiple users is an emerging challenge. A good scheduler can greatly improve perfor-

mance. However, indiscriminately allocating tasks based on availability leads to poor

performance. As modern GPUs have a large number of hardware resources, most tasks

cannot efficiently utilize all of them. Concurrent task execution on GPU is a promising

solution, however, indiscriminately running tasks in parallel causes a slowdown.

This thesis focuses on scheduling OpenCL kernels. A runtime framework is devel-

oped to determine where to schedule OpenCL kernels. It predicts the best-fit device by

using a machine learning-based classifier, then schedules the kernels accordingly to ei-

ther CPU or GPU. To improve GPU utilization, a kernel merging approach is proposed.

Kernels are merged if their predicted co-execution can provide better performance than

sequential execution. A machine learning based classifier is developed to find the best

kernel pairs for co-execution on GPU. Finally, a runtime framework is developed to

schedule kernels separately on either CPU or GPU, and run kernels in pairs if their

co-execution can improve performance. The approaches developed in this thesis sig-

nificantly improve system performance and outperform all existing techniques.
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Lay Summary

In the past decade, processors originally designed for graphic processing have also

been widely used to solve general purpose computational problems. Architectural dif-

ferences between the Graphic Processing Unit (GPU) and the Central Processing Unit

(CPU) determine that, in most cases, either of them works better for a particular ap-

plication than the other. As an open standard, OpenCL provides programmers with a

method to program an application once but run it on various processors.

As it is widely known, OpenCL applications are functionally portable; however,

they are not performance portable across different processors. Therefore, finding out

the most appropriate device for a given program is significant, especially in a multitask-

ing environment. Also, since GPU vendors increase hardware resources in their prod-

ucts of every generation, GPU utilisation performs a critical role in system throughput.

Effective sharing a GPU by multiple OpenCL kernels enhances overall performance

by running these kernels concurrently without any significant interference from each

other while ineffective sharing behaves oppositely.

In this thesis, we focus on a smart scheduling method for OpenCL kernels in a

multitasking environment to improve the system performance. In our targeting system,

both multi-core CPU and discrete GPU are candidate scheduling devices. The goal

is to find out the most appropriate target device for every single kernel and all the

kernel pairs if they can benefit from their co-execution on the same GPU. We integrate

machine learning and just-in-time compilation technique to our runtime framework to

carry out this smart scheduling.
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Chapter 1

Introduction

Modern computer systems are becoming increasingly heterogeneous as they provide

high performance with low energy consumption. Such systems consist of more than

one type of processor, e.g. central processing units (CPUs), graphics processing units

(GPUs), digital signal processors (DSPs) and other types of application-specific inte-

grated circuits (ASICs). At least one processor is a CPU which acts as the host device

to run the operating system (OS), while the others typically work as accelerators to

speed up a particular part of the workload. By allocating programs to separate proces-

sors, which have different architectures, heterogeneous systems can provide flexible

choices to meet different performance and energy budgets. CPU and accelerators can

be placed into the same integrated circuit (IC) or, more commonly, into distinct ICs

which are then interconnected via buses, e.g. PCI Express.

The most popular heterogeneous system, CPUs+GPUs hybrid system has been

widely used in mobile platforms, desktop environments, supercomputers, and data cen-

ter. Typically it consists of a multi-core CPU and a discrete graphics device that has

a GPU processor and private memory. The multi-core CPU can work both as host

and an accelerator. As the host processor it supports the OS, and controls the parallel

workload distribution and memory copying. It acts as an accelerator when carrying out

parallel workload computation. Unlike CPUs, GPUs always perform as accelerators.

When both CPU and GPU work as accelerators, the difference in their architectures

affects the performance of workloads.

The architecture of a multi-core CPU is designed to provide high performance for

workloads that have strong data locality and complex control flows. GPUs consist

of many simpler processing units and require a new programming language to ex-

ploit their parallel structure. CUDA [NVIDIA (2016)] and OpenCL [Khronos (2016)]

1



2 Chapter 1. Introduction

are the most popular frameworks, which are developed and supported by Nvidia and

Khronos Group separately. Both of them ship with C-like programming languages

(and corresponding runtime compilers) and a set of application programming inter-

faces (APIs) which allow workload and memory management. An application, under

both frameworks, is divided into two parts: the host code and the device code. The

device code, also called the kernel, is the computation workload that is executed by the

accelerator, which is also known as the compute-device, or device. The host code ex-

ecutes on the CPU processor (or host-device) and issues kernels to the accelerator and

manages memory for both host- and compute- devices. The main difference between

CUDA and OpenCL is that CUDA only supports CUDA-enabled GPUs from Nvidia,

but OpenCL, as an open standard, embraces a wide range of processors, such as CPU,

GPU, DSP, and field-programmable gate arrays (FPGAs). Therefore, in this thesis, we

focus on OpenCL as it is portable across different processors.

The portability of OpenCL kernels provides an opportunity for workload distribu-

tion on CPU-GPU platforms. A kernel can be either allocated to the CPU or GPU. The

performance of a kernel varies on different processors; some kernels have reduced ex-

ecution time on a GPU relative to the CPU, but some kernels experience the opposite.

Some examples of this are shown in Figure 4.2 a and 6.1 a. Conventionally, the GPU

is designed to serve a single kernel at a time. However, as GPU becomes mainstream,

multiple workloads from multi-users are increasingly common in this type of system,

but there is no well-designed support for multi-task management. The default method

simply maps a task whenever an idle device is found. This method does not consider

the differences between kernel on different devices, and therefore, a First Come First

Served (FCFS) method can cause sub-optimal throughput of the overall system. Also,

serving one kernel at a time usually leads to GPU underutilization, especially for GPUs

that have a large number of hardware resources to support high parallelism comput-

ing. To improve the performance of CPU-GPU heterogeneous platforms, we have to

overcome the two above challenges in a multi-task environment.

1.1 Multi-tasking Challenges

When scheduling multiple tasks on CPU-GPU platform, two main challenges have to

be addressed: device affinity and GPU utilization. Device affinity describes the per-

formance variation of single kernels on different devices. Utilization identifies to what

extent various types of hardware resources have been efficiently used. Both device



1.2. Contribution 3

affinity and utilization are critical to performance as the GPU is designed as an ac-

celerator for a single application and has little support for discriminating and sharing

amongst workloads.

Device Affinity

OpenCL kernels can be executed on either multi-core CPU or GPU, and therefore, at

runtime, the scheduler has to decide which kernel is allocated to which device. Ar-

chitectural differences between CPU and GPU determines kernel execution time on

them. Some kernels run faster on the GPU; while others perform better on the CPU,

especially when taking into consideration of the data movement between CPU main

memory and GPU memory via PCI Express.

Because some kernels perform well on CPU, and some on GPU, it is vital for

the system performance to allocate kernels to their best-fit device. Also, due to each

kernel’s different device affinity, multi-core CPU and GPU can serve separate kernels

in parallel, and hence, improve the system throughput further.

GPU Utilization

Because of the GPU’s massive parallel architecture, it provides the potential for ex-

cellent performance as long as there is no complex control flow within the workload.

Therefore, kernels are often designed with few branches to satisfy this requirement.

With hardware technology improvement, an increasing number of various hardware

resources, such as computing unit, register, cache, and special units are integrated into

the GPU processor. A consequence of this trend is that a simple kernel is unlikely to

use all types of resources and can not share the extra resources with others since most

of the GPU processors work as a designated device that serves only one kernel at a

time.

1.2 Contribution

This thesis presents solutions for the challenges described above. A runtime framework

is developed to detect OpenCL kernels device affinities. It predicts the best-fit device

by using a machine learning based classifier, then inserts the kernels, according to

their estimated best device, into a task queue from which they can be issued to either

CPU or GPU from the corresponding end of the queue. To improve GPU utilization,
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a kernel merging approach is proposed. Here kernels are merged if their predicted co-

running can provide better performance than their sequential execution. Since random

co-running kernels may improve utilization but not necessarily improve performance,

a machine learning based classifier is developed to find out the best kernel pairs for co-

execution on GPU according to their code features and runtime parameters. Finally, a

runtime framework is developed to schedule kernels separately on either CPU or GPU,

and run kernels in pairs if co-running can improve the performance.

The following list separately summarizes the contributions of this thesis:

Chapter 4: The first contribution of this thesis is the development of a machine learn-

ing based individual kernel scheduler. By learning from the code features and runtime

parameters, an off-line model is trained which classifies each new arriving kernel as a

CPU or GPU friendly task. The scheduler inserts the kernels according to their device

affinities into the task queue. GPU friendly tasks are queued to one end of the queue,

while CPU friendly kernels are queued towards the other end of the queue. The sched-

uler dynamically issues a kernel from either end of the task queue when the appropriate

device is idle. The performance is improved by running a kernel on the most appro-

priate device as well as by concurrent kernel execution on CPU and GPU. Comparing

to a random scheduling method our approach improves the throughput by 20%+ and

optimizes the average turnaround time by 55%+.

Chapter 5: The second contribution of this thesis is a machine learning based con-

current kernel pairs selection strategy. Co-running kernels can improve GPU hardware

resource utilization; but do not necessarily mean improved performance. We devel-

oped a machine learning based approach to dynamically select kernel pairs that can

profitably be co-executed. A machine learning model is trained off-line but used online

to pair up newly arriving kernels according to their features. A graph based schedul-

ing approach is designed to maximize the number of kernel pairs, so as to increase

the overall throughput. The experiment results show that our method improves the

performance by 10%+ and 20%+ over two state-of-the-art approaches.

Chapter 6: The third contribution of this thesis is the design of a runtime framework

that co-schedules both separate and combined kernels. The runtime framework inte-

grates both separate and concurrent kernel classifiers. By setting up a global context

on all OpenCL supported devices, the framework manages the hardware resources and
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kernel allocations. All OpenCL applications are registered with the framework, and

therefore, the framework manages data and issues the kernel on behalf of each appli-

cation. This runtime layer can schedule kernels separately to CPU and GPU, or in pairs

to GPU, with the help of machine learning based classifiers. As the framework works

globally to serve all applications, there is no need for each program to initialize the en-

vironment, and therefore, it reduces the execution time further. The experiment shows

that co-scheduling method improves the performance by 50%+ comparing with state-

of-the-art concurrent kernel executions and 20%+ better than the scheduling approach

proposed in chapter 4.

1.3 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2: This chapter presents the technical background used in the remainder of

the thesis. It first introduces heterogeneous systems and two typical processors that are

widely used in heterogeneous platforms: CPU and GPU. Secondly, it introduces the

OpenCL programming model and memory hierarchy. Next, this chapter gives a brief

summary of machine learning techniques. A machine learning method has been used

to classify the candidate kernels based on their features. Finally, benchmarks and the

evaluation method used in this thesis are described.

Chapter 3: This chapter discusses related prior work. It first discusses the scheduling

methods on the heterogeneous system, which include allocating a single task to multi-

ple devices, multiple tasks to the single device, and multiple tasks to multiple devices.

It then introduces optimization on communication between host device and accelera-

tors. The method for analyzing software performance on the heterogeneous platform

is then introduced. Finally, this chapter discusses machine learning based approaches

for heterogeneous systems.

Chpater 4: This chapter introduces a machine learning based runtime scheduler which

schedules individual OpenCL kernels to their most appropriate devices. The model is

trained off-line on code features and runtime parameters of training kernel samples.

The trained model is a classifier that labels the new arriving kernels as CPU or GPU

friendly tasks. The scheduler inserts the GPU preferable tasks to one end of the queue
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while inserting the CPU preferable tasks towards the other end. At runtime, tasks are

dequeued from either end of the queue as long as the connected device is idle. The

scheduler can issue tasks to their best-fit device dynamically.

Chapter 5: This chapter introduces the construction of a pair of concurrent kernels

by merging their source code. Compared to issuing via separate command queues, this

merged kernel is not affected by the runtime environment or GPU hardware scheduler.

A machine learning based classifier is presented to detect whether or not two kernels

co-running have a better performance than running them sequentially. Finally, a graph

based scheduling method is proposed to maximize the number of kernel pairs.

Chapter 6: This chapter introduces the design of our runtime framework and a schedul-

ing method that combines the techniques developed in Chapter 4 and Chapter 5. Using

this runtime layer, OpenCL programs register with the framework, which launches the

kernels separately or pairwise with the support of machine learning based classifiers.

All tasks share a common context and hence reduce runtime overhead.

Chapter 7: This chapter concludes this thesis. It first summarizes the contributions

of the work in each technical chapter. Next, a critical analysis is presented discussing

the limitation of this work. Finally, it describes some areas of future work.



Chapter 2

Background

This chapter provides the necessary background material for the remainder of this

thesis. The key topics covered in this chapter are heterogeneous systems and machine

learning.

2.1 Heterogeneous System

Heterogeneous systems refer to platforms that comprise more than one type of proces-

sor. These systems have the potential to improve the performance and energy efficiency

by having different processors. There are two types of heterogeneous systems depend-

ing on the instruction set architecture (ISA): single-ISA and heterogeneous-ISA.

Single-ISA systems consist of multiple CPU cores. The cores share the same in-

struction set but have different hardware micro-architecture configurations. A typical

example of a single-ISA system is ARM’s big.LITTLE. As shown in figure 2.1, it con-

sists of compute-efficient Cortex-A15 CPUs and a power-efficient Cortex-A7 CPUs.

Executing task can be swapped between these cores, on the fly, to improve performance

or energy consumption.

Heterogeneous-ISA systems consist of processors with different architectures. Typ-

ically, these systems consist of a central processing unit (CPU) and one or more spe-

cialized processors. The specialized processors are accelerators that are designed for a

particular kind of computation. The CPU is used to execute the operating system and

deploy workloads to the appropriate accelerators. Heterogeneous-ISA systems nor-

mally significantly outperform the best single-ISA model [Venkat and Tullsen (2014)],

which make it more attractive in heterogeneous computing.

The most widely known heterogeneous-ISA model is the CPU-GPU architecture.

7
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GIC-400

Cortex A-15
Core

Cortex A-15
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Cortex A-7
Core

Cortex A-7
Core

IO Coherent 
Master

CCI-400 (Cache Coherent Interconnect)
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Interrupts Interrupts

Figure 2.1: big.LITTLE system. The big core, Cortex-A15, is designed to provide high

performance because it has a complex pipeline and more instruction parallelism. The

little core, Cortex-7, is power efficient, as its pipeline is relatively simple. Both big and

little cores share the same ISA.[ARM (2016)]

It has been widely used in mobile, desktops, and data centre, because of its high com-

puting performance delivered per watt. There are two flavours of CPU-GPU system:

integrated and discreted. An integrated GPU is placed in the same circuit package with

the CPU. It does not have independent RAM; instead, it shares the CPU’s main mem-

ory. Discrete GPU works as a stand-alone accelerator which accesses data from its

designated RAM. Though integrated GPU consumes less power, this thesis focuses on

systems that consist of discrete GPUs, as they provide higher performance than their

integrated counterpart and have been more widely used in desktops and supercomput-

ers.

2.1.1 Central Processing Units

The central processing unit (CPU) executes computer programs by performing arith-

metic, control and input/output (I/O) operations. In each generation of CPU, the pri-

mary goal of its designers has been to make it process instructions faster. Much effort

has been put in improving instruction-level parallelisms (ILP) by using out-of-order

execution, superscalar execution, branch prediction, and instruction pipelining. Con-

siderable effort has also been given to increasing the CPU clock frequency, as a higher
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clock frequency increases performance. However, this trend has stopped due to the

power wall [Venu (2011), Chung et al. (2010), Brodtkorb et al. (2010), Meenderinck

and Juurlink (2008)].

As single processors have now reached peak clock frequency, the major CPU man-

ufacturers, such as Intel and AMD, have switched their strategy to multi-cores. By

integrating more cores onto a single integrated circuit die, they provide enhanced per-

formance by increasing the throughput of the system. Typical multi-core processors

that have been widely used include, e.g. AMD Phenom II X2 and Intel Core Due,

AMD Phenom II X4 and Intel Core i5 and Core i7. Cores in these systems normally

have the same architecture as their single-processor counterparts.

Though modern CPUs support SIMD (Single Instruction, Multiple Data) process-

ing, they are mainly designed to provide high performance for the workload that has

strong data locality and complex control flows. For workloads that have large paral-

lelism and simple control flow, the GPU is a good alternative device, compared to its

CPU counterpart it has a strengthened capability for SIMD processing.

2.1.2 Graphic Processing Units

Graphics processing units (GPU) are specialized processors that originally targeted ac-

celerated graphics manipulation and display. They are an extensively use in personal

computers, workstations, and game consoles. They are designed to have a highly paral-

lel structure, which makes them efficient at processing videos and images. This feature

is also attractive to a large number of more general-purpose applications, particularly

those scientific programs, which have high parallelism.

General Architecture

The core architecture difference between CPU and GPU is that the GPU has large

numbers of simple cores to exploit massive parallelism via SIMD processing while the

CPU has sophisticated circuit logic to tackle complex control flows. To highlight the

differences between CPUs and GPUs architecture simplified diagrams are shown in

figure 2.2.

As the basic unit, the arithmetic logic unit (ALU) performs the arithmetic and

logic operations on both CPU and GPU. The ALU acquires its input from registers

(or main memory) and writes the results back to registers (or main memory) when

executing the instruction which is fetched and decoded by the hardware logic. For a
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Fetch/
Decode

ALU

Context
(Register Files)

(a) Simplified CPU Model.

Context 
(Register Files)

Shared Memory

(b) Simplified GPU Model.

Figure 2.2: Simplified models for CPU and GPU. To highlight the architectural differ-

ence, the sophisticated control and connection logics are removed from the model.

Both of the models are simple cores. In practice, multiple cores are placed in the real

circuit package, particular for GPU processors. [Fatahalian (2008)]

simplified CPU model, every instruction processes one data at a time and this shown in

figure 2.2a by connecting single ALU to a Fetch/Decode module. For the GPU model,

each instruction is decoded and performed on a number of different data. In figure 2.2b,

this mechanism is shown by connecting multiple ALUs to a single Fetch/Decode unit.

This SIMD architecture ensures GPU processors are efficient for the applications

that have high parallelism. However, it also enforces some constraints on the applica-

tions to perform efficiently.

Divergence Sensitiveness

SIMD works well when executing linear instruction sequences, but experiences poor

performance when encountering divergence control flow. When ALUs reach a branch

instruction, they compare control flow results with the condition. For those that meet

the condition, they perform the same statements and leave the others to execute a dif-

ferent group of instructions. As a result, when a branch occurs, only a subsection of

ALUs are active at any given time, making the overall throughput suboptimal. Fig-

ure 2.3 shows an example of this problem.

In the example in figure 2.3, we assume 8 ALUs execute the same instruction
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  If ( x > y ) {
      statement-1
      statement-2
      statement-3
  }
  else {
      statement-4
      statement-5
  }

Time

Figure 2.3: Divergence impacts on SIMD processor. In the worst case, 15 ALUs be-

come idle because of the branch. On average, code divergence would hurt SIMD per-

formance by 50%

synchronously at any given time. When the program reaches a branch instruction,

e.g. if-statement in this example, the ALUs compare the condition of the branch. In

this example, all ALUs detect whether or not their local value of x is greater than y.

For the ALUs that have a result of x greater than y, they carry on with the statements

1 to 3 in parallel, while the others have to wait until those subsets of ALUs finishing

their computing and then carry on executing the statements of 4 and 5 synchronously.

Therefore, the branch instruction causes ALUs to diverge, only a subset of them that

meet the same condition can work in parallel. In this example, due to the branch, the

throughput of the GPU has dropped by 50%.

Divergence sensitivity means simple control flow is preferable. However, the CPU

counterpart is not constrained by this, as it does not have a massive SIMD working

model.

Memory Accessing Latency Sensitivity

Memory access also has a significant impact. When the data is not available in the

register or local cache, the processor has to issue a memory access to fetch the data.

Loading data from main memory can cost hundreds of ALU cycles. As all ALUs

are working synchronized, they all become idle until data arrives in the corresponding

registers. To bypass the stall caused by memory access, the SIMD processors are

equipped with large register files so as to allow multiple sets of threads.

As each ALU under the same Fetch/Decode module processes the same instruction

on different data independently, the linear instruction sequence on each ALU can be

viewed as a thread. In figure 2.4, 16 ALUs share a Fetch/Decode module, hence in
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Figure 2.4: Context switch. Long latency memory access may cause threads stall.

Hardware scheduler can switch to another set of threads while the current one is waiting

for the memory operation. Switching between different sets of thread hides the latency

of memory accessing. [Fatahalian (2008)]

this example, 16 threads can run synchronously at the same time and threads set size

is 16. Therefore, if there were multiple thread sets, once the memory stall happens

in one set the ALUs can perform another set of threads while they wait for the data

accessing from the memory. Each set of threads has a context which consists of a

group of registers that contains the status and thread data. Modern GPU processors

equipped with large register files maintain multiple contexts so as to hide the memory

latency by switching between thread sets.

Figure 2.4 shows how thread sets switching hides memory access overhead. Once

a thread within the set can not access its data via the cache, it issues a long latency

instruction to access the main memory. Other threads within the same set also have to

stall. At this time, the hardware scheduler checks whether or not there exists another

set of threads that can be switched in and carry on their execution. As long as such a

candidate thread set is found, it will be switched in and executed until one of its threads

is stalled by a memory access.

High overhead memory access operations can be hidden by running thread sets

alternatively. As the basic scheduling unit, the thread set has different names from

different manufacturers. It is called a warp in Nvidia GPUs and a wavefront in AMD

GPUs. The maximum number of thread sets is determined by the hardware resources,
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Figure 2.5: GPU with 8 SIMD processors. In each SIMD processors, there are 2 de-

coders and 32 computing units. Also, 4 context groups can reside in each SIMD pro-

cessor simultaneously. Totally, 16 instructions can run in parallel at any given time, and

1024 contexts can reside in GPU to hide high-cost memory access. [Fatahalian (2008)]

e.g. the size of register files.

Multiple SIMD Processors

GPUs normally contain multiple SIMD processors. ALUs within each SIMD proces-

sor share the same local memory and therefore threads executing in the same SIMD

processor can communicate with each other by sharing data. However, threads in dif-

ferent SIMD processors only share the same main memory, and the hardware does not

support direct communication between them. The theoretical throughput of a GPU is

determined by the number of SIMD processors. In figure 2.5, a GPU with 8 SIMD

processors, each of which has 32 ALUs can run up to 256 threads at the same time.

Typically, the number of resident threads is larger than the active threads so as to hide

memory accessing latency. Therefore, a GPU can easily support thousands of con-

current threads execution. Typically, GPUs are accelerators that provide a massively

parallel computation. It requires a new programming language to exploit its parallel

structure.

2.2 OpenCL

Open Computing Language (OpenCL) is a framework for programming software ap-

plications that is portable across heterogeneous platforms. Since its initial release in
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Figure 2.6: OpenCL platform model. One host device can manage one or more com-

pute devices. Each compute device is composed of one or more compute units each

with one or more processing elements. [Khronos (2016)]

2009, there are several mainstream processors which support the OpenCL standard.

These include CPU, GPU, digital signal processors (DSP), field-programmable gate

arrays (FPGA) and other hardware accelerators.

OpenCL specifies a programming language and a group of application program-

ming interfaces (API) for programming the supported devices. The language is a C-

like language that is extended from C99. For any given OpenCL program, it is divided

into host code and kernel code. The host code carries out the primary control, such as

data input/output and workload synchronization. It also maintains the working envi-

ronment within which the kernel can access the selected device to perform its compu-

tation. The kernel code is portable across different devices. It is loaded and compiled

at runtime. When it is executed, a large number of threads are created from the same

kernel function but on different data.
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2.2.1 System Model

The OpenCL system abstraction is shown in figure 2.6. Typically, it consists of a host

device, and several compute devices. The host device must be a CPU processor while

the compute devices can be any processor that supports OpenCL. In this thesis, the

target compute devices include multi-core CPU and GPU.

The compute device consists of compute units which include processing elements.

For CPU, it contains one compute unit which has several cores that work as processing

elements. For GPU, the compute unit stands for the SIMD processor and the pro-

cessing elements represents the ALUs in figure 2.2b. Typically, the host and compute

devices are connected via PCI-Express. The code running on the host side manages

the data movement and workload allocation.

There are three core concepts for the OpenCL system model, which are platform,

device, and context. Each of them represents a level of hardware abstraction.

Platform The platform is a specific implementation of OpenCL that is provided by

device vendors. It is an abstraction of various devices that are mainly manufactured by

the same vendor. The platform abstraction hides the complexity of programming with

the specific drivers and allows the high-level source code to be migrated to another

processor by remapping to a new platform.

Device Devices are the physical processors that perform the computation. At the

runtime, each device has a unique identifier (ID). Through the device ID, the program

can manage data movement, loading the input data to the device and read back the

result when the device has finished the computation.

Context The context represents a set of devices that are accessible to the program

at runtime. It contains at least one device. When there are multiple devices in the

same context, all the devices can be of different types. When the context is created, the

programmer has to decide how many devices are to be contained by the context and

provides the list of device IDs explicitly. Therefore, during the program’s execution,

all those devices are visible, but others are not.

Within the same context, the host and compute device can cooperate with each

other. There is part of the typical work flow for every OpenCL program. The host and

compute device communicate and synchronize with one another via a data structure

named the command queue.
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Figure 2.7: OpencCL workflow. The host manages platform oriented procedures while

the device carries out the computation.

2.2.2 Work Flow

Every OpenCL program has a work flow similar to that is shown in figure 2.7. It

contains several steps: context setup, data preparation, kernel deployment, result re-

trieve, and environment clean up. The host code follows this work flow by calling the

corresponding OpenCL APIs.

Context Setup Every OpenCL program has to initialize the working environment

by checking the platform and devices. A context is the created on the devices so as

to manage data movement and kernel deployment among the devices. A command

queue is a data structure that is created in the context. The host and device then can

communicate via command queues. Normally, one command queue is bound to a

device; however, in some cases, multiple command queues are bound to the same

device for different reasons, such as maximizing bandwidth usage.
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Data Preparation Once the context is setup, the host code creates buffers for the in-

put data and then copies the data to the selected device. If the device is a GPU, for

example, explicit data movement happens between the main memory and GPU mem-

ory. However, if the selected device is the host device itself, explicit data movement is

not necessary. Instead of copying the data, pointers are passed to save cost.

Kernel Deployment The arguments of the kernel are set explicitly before its launch.

The overall number of threads and the workgroup size have to be set as well. A de-

tailed description about them is described in section 6.4.2. Then, the host launches

the kernel to the target device via the bounded command queue. Kernel launching is

asynchronous. The host code does not have to wait until the kernel finished; instead, it

can carry on with the other following statements.

Result Retrieve The result retrieve is usually a blocking function which does not

return until the data has been copied from the device. Similar to the data preparation,

as long as the target device is the host itself, no explicit data movement is necessary.

Cleaning up Finally, before the program is finished, the environment has to be

cleaned up. The runtime allocated objects, such as buffer objects and command queue,

have to be released properly.

2.2.3 Kernel Execution Space

The launched kernel is instantiated as an object with a large number of threads, so

as to run in parallel, especially on GPU processor. The thread instances (which are

called work-items in OpenCL) are organized in an N-dimensional index space, namely

NDRange, which is shown in figure 2.8. In OpenCL, the global size is used to de-

scribe the number of work-items in each dimension of the NDRange. For example, in

figure 2.8, the global sizes on x and y dimension of NDRange are Gx and Gy.

The work-items in NDRange are further organized into work-groups. Each work-

group contains the same number of work-items. In OpenCL, the size of the work-

group is denoted by work-group size which describes the number of work-items in

each dimension of the work-group. In the figure 2.8, the work-group size is represented

by (Wx, Wy). The work-group size is also called local-size.

Every work-item has a unique ID, called global ID, within the NDRange. Similarly,

it has an ID within the work-group, called local ID. However, the local ID is unique
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Figure 2.8: Two dimensional NDRange. A kernel is launched as multiple instances of

threads each with the same kernel functionality. Each thread is a work-item in OpenCL.

A fixed number of work-items are organized within a work-group and work-groups are

organized within an N-dimensional range, namely NDRange. [Khronos (2016)]

within the work-group. Like work-items, work-groups also have unique IDs to identify

themselves in the NDRange. The relationship of various objects in kernel execution

space is shown in figure 2.8, and the index description is shown as follows:

• Size of NDRange: (Gx, Gy)

• Size of work-group: (Sx, Sy)

• Number of work-groups: (Wx, Wy)

• Work-item global ID: (gx, gy)

• Work-group global ID: (wx, wy)

• Work-item local ID: (lx, ly)

The following formulas correlate the work-item identifiers and the size of the exe-

cution space:

(gx, gy) = (wx*Sx+lx, wy*Sy+ly)

(Wx, Wy) = (Gx/Sx, Gy/Sy)
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(wx, wy) = ((gx-sx)/Sx, (gy-sy)/Sy)

2.3 Machine Learning

Machine learning explores pattern in data. The learning algorithms build models from

data which can be used in prediction. As a data-driven scheme, machine learning

is different from traditional analytical models, which are derived by humans. The

primary advantage of machine learning is that it can generalize models from historical

samples to make an accurate decisions on unseen data in the future. Machine learning

has been employed in a wide range of areas, such as Web searching, spam filtering,

computer vision, and optical character recognition.

In this thesis, we use machine learning technique to predict OpenCL kernels device

affinity and whether or not two kernels concurrent execution can provide a strength-

ened performance over running them sequentially.

2.3.1 Feature-based Learning

Feature-based learning is a set of algorithms that learn from features, which are trans-

formations of the original data. The features are a representation of the primary aspects

of the input data and can be exploited by machine learning model effectively.

In feature based learning, an observation can be described by a pair 〈~x, t〉. Here the

~x represent a set of features, which is abstracted from the raw data, and t is the result,

or target, that we are interested in. The goal of the learning is to generalize a model

that discovers the relationship between features and targets from the training sample

pairs.

Typically, feature based learning is divided into two categories: unsupervised learn-

ing and supervised learning. In unsupervised learning, the training samples only in-

clude the features, and no correct output targets are provided within the samples. In

supervised learning, the algorithm learns from the training samples that contains both

the features and the desired targets.

Unsupervised learning Unsupervised learning algorithms infer functions solely from

the features to discover the input data similarity. As the input of the learning model,

all features are treated equally. The goal of learning is to detect the regularities of the

input and group the input data which are similar or have a close distance to each other.
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(a) The original data in 3D space. (b) After PCA the data space is reduced to 2D.

Figure 2.9: Example of using PCA reduce data set from 3D dimension to 2D dimension.

The canonical example of this method is clustering that partitions the observation in-

puts into several sets. In this thesis, the unsupervised learning approach is only used

as a pre-processing operation to find out the Principal Component Analysis (PCA). A

detailed discussion of PCA is given in section 2.3.2.

Supervised learning Supervised learning can be described as a set of observation

pairs 〈~x, t〉. The goal of the algorithm is to build a model that can find out the rela-

tion between vector ~x and target t. In training feature pairs, target t is set explicitly

to guide the learning; therefore, this learning procedure is supervised by the target.

According to the values of target t are continuous or discrete, supervised learning is

categorized into regression and classification. This thesis uses supervised learning to

build a classifier to estimate the target kernels. Section 2.3.3 and 2.3.4 discuss the

training algorithms that are used in this thesis.

2.3.2 Principle Component Analysis

PCA is a static method that converts a set of possibly correlated variables into a set

of linearly uncorrelated variables via orthogonal transformation. The number of lin-

early uncorrelated variables, called principal components, are less than or equal to the

original variables. Reducing the dimension reduces the complexity of the model, as

the problem is simplified when it has fewer features. Some features convey very little

information, e.g. they have small variances or can be expressed by other features lin-

ear combinations. The problem dimension can be safely reduced by removing these

features without sacrificing model accuracy.
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Figure 2.10: Decision Tree. A decision tree for labor negotiation: whether or not a

contract will satisfy the employee. [Witten and Frank (1999)]

PCA can be thought of as projecting an n-dimensional ellipsoid to the axes. The

principle components are organized in a way that the first component has the greatest

variance by the projection of ellipsoid to the coordinate. This coordinate is called the

first principle component. Then, it followed by the second greatest component, and so

on.

Figure 2.9a shows an example of a set of data that has three components, or fea-

tures. The variance of each component can be acquired by projecting the data to the

coordinate that represents the component. The variances in y-axis and z-axis are very

similar, but both of them are significantly greater than the variance along the x coor-

dinate. Therefore, the component space can be transformed from three-dimensions to

two-dimensions without losing much of the accuracy. The transformed feature graph

is shown in figure 2.9b.

2.3.3 Decision Tree

Decision tree based classifier is a supervised learning technique that classifies an ob-

servation of an item to a category that concludes the item’s target value. As the name

suggests, the trained model is typically presented as a tree. The internal nodes of

the tree test the features while the branches represent the results of the comparison.
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maximum margin

H1

H2 H3

Figure 2.11: Separate data with hyperplane of the maximum margin. SVM algorithm

attempts to find a hyperplane that can separate data nodes into two classes widely

enough to each other. Though, both H1 and H2 can separate data nodes, their margins

are small. H3 provides the best separation with the maximum margin.

The advantage of the decision tree is that it is simple to understand and interpretable.

However, training an optimal decision tree is known to be an NP-complete problem.

Compared to support vector machines the decision tree is often less accurate.

Decision trees are generally constructed in a top-down manner which includes two

phases: growing and pruning. The greedy algorithm constructs decision tree recur-

sively. In each iteration, the algorithm evaluates the partition of training and select the

most appropriate split. After that, a further subdivision is carried out on the training

set to split it into a smaller subset. The algorithm keeps splitting training data until no

split gains it can have.

Though training a proper tree is involved, using it is simple. New data items are

classified by traversing the tree from the root down to a leaf. At each internal node, the

corresponding feature is tested. The outcome of the comparison guides the item to the

particular branch and at that node, another comparison is carried out. Once the item

reaches a leaf node, the classification is finished. The category of the leaf node is the

data item’s target class.

Figure 2.10 shows an example of a decision tree that classifies whether or not an
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employment contract satisfies the employee [Witten and Frank (1999)]. If the first year

wage increase is less than 2.5 and in every week the working time is less than 36 hours,

it is not a good contract, as it ends up in the leftmost leaf node.

2.3.4 Support Vector Machine

Support Vector Machines (SVM) are a supervised learning technique. They can be

used for classification. When used as a binary classifier, SVMs determine whether

a data item belongs to one class or the other. A data item with n features can be

viewed as an n-dimensional vector. The function of SVMs is trying to find out an (n

- 1)-dimensional hyperplane to separate the data items. For a number of data items,

multiple hyperplanes existed that can partition them. The reasonable choice of the best

hyperplane requires that the data items are widest separated. Therefore, the function

of the linear SVMs classifier is to learn from the data to find the hyperplane that has

the maximum-margin.

Figure 2.11 shows and example of three hyperplanes. Only the H3 separates the

data items with the maximum margin. Therefore, the function of H3 is the model

SVM has learned from those training data. For new points, they will be classified to

one of the categories if their coordinate is on the top left of H3. Otherwise, they will

be categorized into the other class.

2.4 Benchmarks

Table 4.3 lists the OpenCL programs that are used in this thesis. We selected kernels

from a wide range of benchmark suites, which include Nvidia SDK, AMD SDK, Par-

boil, and polybench. The exact configurations, benchmark subset selection, and input

setting are described in the experiment setup sections of following chapters.

2.5 Evaluation Method

Performance Metrics: To evaluate our approach, we used two metrics, system through-

put, a system oriented metric, and turnaround time, a user oriented metric. Those two

metrics have widely been used to evaluate the performance of a scheduler in a multi-

tasking environment [Snavely and Tullsen (2000); Eyerman and Eeckhout (2010)].
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Table 2.1: Benchmarks

Suite Benchmarks Benchmark

N
V

ID
IA

BlackScholes ConvolutionSeparable

DXTCompression DotProduct

FDTD3d HiddenMarkovModel

Histogram MatrixMul

Pa
rb

oi
l

BFS Cutcp

Sgemm Spmv

A
M

D

BinarySearch BinomialOption

BitonicSort BlackScholes

BlackScholesDP DCT

DwtHaar1D FastWalshTransform

FloydWarshall Histogram

MatrixMultiplication MatrixTranspose

PrefixSum QuasiRandomSequence

Reduction ScanLargeArrays

SimpleConvolution

Pl
oy

be
nc

h ATAX BICG

CORRELATION GESUMMV

SYR2K SYRK

2DCONV 3DCONV

GEMM GRAMSCHMIDT

2MM 3MM

COVAR FDTD-2D

MVT

Our goal is to maximize the system throughput which in general leads to favourable

turnaround time results. The definitions of the two metrics are given as below.

System throughput (STP) is a higher is better metric. It describes the number of

tasks completed per unit time. This is calculated by using the baseline of 1.0, showing

the relative speedup of other scheduling policies. It is defined as

ST P =
∑T i

Baseline
max(∑T m

cpu,∑T n
gpu)

(2.1)

where T i
Baseline is the execution time given by baseline, and T i

cpu and T i
gpu are the

execution time by running task T i on the CPU and the GPU respectively.

Average normalized turnaround time (ANTT) is a smaller is better performance

metric. It quantifies the time between a task is created and its completion, indicating

the average user-perceived delay in multi-tasking environment compared to running a
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single task on the system. In the experiments, the turnaround time is normalized to the

baseline scheme. ANTT is defined as:

ANT T =
1
n

n

∑
i=1

T i
sch

T i
Baseline

(2.2)

where T i
Baseline and T i

sch are the time between task T i is created and its completion

using baseline and an alternative scheduling policy respectively.

2.6 Summary

This chapter presents an introduction to heterogeneous systems. CPU-GPU systems

have been widely used in recent years and are the target of this thesis. Then OpenCL

standard as the most significant framework is introduced. Applications can be pro-

grammed once and performed across different processors. The framework provides a

unified programming interface to hide the difference between various processors. A

brief introduction of machine learning is presented in the third section of this chapter.

Finally, this chapter presents the evaluation method and the benchmarks used in this

thesis.





Chapter 3

Related Work

This chapter discusses related work in task scheduling for heterogeneous systems. Sec-

tion 3.1 discusses single application scheduling across multiple processors. This work

uses workload partitioning to improve single program performance and power effi-

ciency. Section 3.2 presents work on multiple tasks space sharing on the same pro-

cessor. Such a scheduling method aims to improve hardware utilization via high job

concurrency. Section 3.3 discusses work on scheduling multiple tasks to multiple de-

vices. The goal of this scheduling is either to improve overall system throughput or

to decrease power consumption. Section 3.4 describes work that tries to minimize

data communication overhead. Finally, in section 3.5 and section 3.6, two different

modeling approaches are discussed: analytic modeling and machine learning.

3.1 Scheduling Single Task to Multiple Devices

This section describes prior work in scheduling a single task to multiple devices on

heterogeneous platforms. There are two different platforms considered in this section:

single-ISA and separate-ISA system. In the single-ISA system, single job scheduling

involves multiple threads split across separate devices and task migration. For separate-

ISA platform, the primary approach is task partitioning, which is used to improve

performance and balance workload.

3.1.1 Single-ISA Heterogeneous Platform

Scheduling for single-ISA platforms is either implemented dynamically by the runtime

or operating system, or statically by the compiler, by mapping threads to different

27
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physical cores.

Lakshminarayana et al. (2009) propose a runtime approach called Age-Based Longest

Job Fast Core First scheduling policy for asymmetric multiprocessors system. The pro-

posed scheduler predicts the remaining execution time of threads and assigns threads

with a larger estimated remaining time to a fast core. The execution time prediction

is based on the thread’s relative age, based on the observation that threads which are

created around the same time tend to have similar execution times. It schedules the

thread, which is created with other threads at the same time but has lagged behind, to

the fastest core in order to improve performance.

Li et al. (2007) present an operating system scheduler which works on both SMP

and NUMA-systems. The scheduler extends the conventional operating system load

balancing scheme. The proposed approach maintains the workload on each core pro-

portional to its computing power. A NUMA-aware migration controller optimizes

thread migration by predicting its migration overhead. The scheduler adopts a Faster-

Core-First algorithm. However, the scheduler extended the conventional method by

allowing threads to migrate to cores that have lower scaled load even when some of

their original cores may become idle. This migration ensures threads always run on

faster cores whenever they are under-utilized.

Shelepov et al. (2009) propose a compiler approach: Heterogeneous-Aware Signature-

Supported scheduling algorithm (HASS). HASS is a static method that makes the

program-core mapping based on the thread’s architecture signatures. The thread’s ar-

chitectural signature is collected offline, which includes a set of properties, such as

memory-boundedness, available ILP, sensitivity to variations in clock speed and other

parameters. At runtime, the scheduler analyzes a thread’s offline profiled signatures to

estimate its performance on each type of core to find out the best match.

Though single program mapping to separate single-ISA processors works well in

improving throughput and energy consumption, this approach cannot be used on het-

erogeneous platforms that have processors with different architectures and instruction

sets. For single-ISA cores, their differences are in the micro-architecture, i.e. frequen-

cies and cache sizes. Migrating threads from one core to another is straightforward,

as no code recompilation is required. As many single-ISA platforms share memory

or last level cache (e.g. ARM bigLittle [ARM (2016)]), communication overhead is

much smaller than in separate-ISA systems.
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3.1.2 Separate-ISA Heterogeneous Platform

Partitioning also is the core approach to scheduling a single job on multiple separate-

ISA processors. OpenCL is the dominant standard for cross-platform programming

and there has been much research in kernel partitioning. The core idea in kernel par-

titioning is to split a kernel into parts, each of which will be allocated to a distinct

device. The partitioning could be performed either staticly or dynamically and dif-

ferent approaches focus on achieving the best deployment to balancing kernel slices

across various devices.

Zhong et al. (2012) propose a model for scientific applications, such as linear al-

gebra routines, to execute them efficiently on CPU-GPU heterogeneous systems. The

target system is a hybrid platform that consists of CPU and GPU; each comes with

a dedicated memory system. The functional performance model (FPM) represents

processor speed as a function of problem size and a set of significant features that

characterize the architecture and application. Based on the model, a data partition-

ing algorithm takes place on the target application to improve its performance. The

workload aims to be balanced on the platform, as the application is partitioned across

multicore CPU and multi-GPU proportionally.

Grewe et al. (2013) propose a compiler-based approach that generates optimized

OpenCL code from OpenMP programs. A machine learning adaptive model is de-

veloped in this paper to predict whether to perform the original OpenMP application

on the multicore CPU or generate optimized OpenCL kernel and partition this kernel

across CPU and GPU.

Ghose et al. (2016) present an in-depth analysis of control flow divergence of

OpenCL kernels. Since branches have a significant impact on OperCL kernel per-

formance, in this paper, the author uses divergence as a guide to partition a kernel

across CPU and GPU. A machine learning model is trained by using the amount of

divergence in a program; then this model is used to predict unseen program’s optimal

partition.

Kaleem et al. (2014) propose an online profiling-based approach to partition ap-

plication across CPU and GPU. The scheduler works in two phases: profiling and

execution. First, the given kernel executes a subset of work items on both CPU and

GPU. By profiling the workload on CPU and measuring the execution time on GPU,

the scheduler calculates the partition ratio for the remaining kernel work items.
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Pandit and Govindarajan (2014) present a runtime framework, namely FluidiCL, to

run a single OpenCL application on both CPU and GPU. FluidiCL divides the applica-

tion into a set of small fractions, called sub-kernels. Each sub-kernel works on several

workgroups. The NDRange of the original kernel is flattened to a one-dimensional

NDRange so as to enable CPU and GPU taking workgroups from either end of the

new NDRange. The host CPU controls data transfer from the main memory to the

GPU buffer and controling the status for each workgroup. The GPU kernel periodi-

cally checks the status set by the CPU in the first work-item of every workgroup. If it

finds the workgroup has already been completed by the CPU, it exits the current ker-

nel and transfers the local results back to the CPU main memory. This is followed by

result merging. We have compared our work with FluidiCL in Chapter 4.

Kernel partitioning is an effective method to speed up single kernel’s execution

time by running separate kernel slices on different devices concurrently. It is also a

promising approach to balancing the workload across processors. However, greedily

speeding up every single kernel does not necessary lead to an optimized overall per-

formance when multiple applications are queueing for the processors. Therefore, a

different approach is required for targeting multi-tasks scheduling.

3.2 Scheduling Multiple Tasks to Single Device

Scheduling multiple tasks to a Single-ISA core is normally managed via time sharing.

This is a well-known technique and not discussed here. This section discusses the

work of multiple task scheduling on Separate-ISA heterogeneous platform. The most

popular idea among the following work is to space share the accelerator by multiple

workloads.

3.2.1 Separate-ISA Heterogeneous Platform

Scheduling multiple tasks to a single device has been investigated for CPU-GPU plat-

forms. Researchers note that GPU hardware resources are often underutilized. A ker-

nel from one application may consume one kind of hardware resource heavily and

leave others underutilized. Therefore, multiple tasks can share the GPU if they are

bounded by different kinds of resources. Concurrent kernel execution, or kernel fu-

sion, is the method that improves system throughput and GPU hardware utilization by

running multiple kernels on the same GPU simultaneously.
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Zhong and He (2014) proposed a runtime system, namely Kernelet, to support

concurrent execution of CUDA kernels on a single GPU to improve its throughput.

Kernelet slices the kernel into small pieces and then co-schedules it with other slices

from different kernels. Each kernel slice contains several CUDA blocks. The sizes

of the kernel slices are determined by Kernelet at runtime. Kernelet provides a per-

formance model for the purpose of selecting a pair of kernels for co-scheduling and

deciding the slice sizes for each of these kernels. After the target kernels are selected,

the scheduler deploys the kernels pair by pair using a greedy algorithm. The GPU is

space-shared by these kernels based on the ratio of their slice size.

Wang et al. (2010) propose a kernel fusion method to improve GPU utilization and

power efficiency. Based on CUDA, three kernel fusion approaches are proposed in

this paper, which are Inner Thread Kernel Fusion, Inner Thread Block Kernel Fusion,

and Inter Thread Block Kernel Fusion. By adopting dynamic voltage and frequency

scaling (DVFS) to the fused kernel, the presented method aims to optimize energy

consumption.

Wang et al. (2011) propose a runtime framework, namely context funneling, to

make CUDA kernels from different applications run concurrently. Targeting Fermi

architecture, the runtime framework provides a virtual context that could be shared

by all CUDA applications. Therefore, kernels from separate applications could run

concurrently via distinct CUDA streams under the same context.

Adriaens et al. (2012) provide a spatial multitasking method for the GPU to im-

prove resource utilization. Profiling information is used to choose the best partition of

CUDA stream machines. Based on profile information of all candidate programs, the

heuristic finds the best partition of GPU hardware and schedules a sub-set of applica-

tion to space share the GPU.

Tarakji et al. (2015) proposed a GPU scheduler to improve hardware resource uti-

lization. The scheduler in this paper works on the NVIDIA Kepler architecture GPU.

Given a group of applications, the scheduler splits their grids associated with the cor-

responding kernels into slices. Then, instead of launching each kernel as a whole, the

scheduler makes multiple kernels share the device to improve resource utilization.

Wende et al. (2012) propose a producer-consumer based runtime approach to man-

age concurrent kernel execution on a single GPU device. Targeting host programs that

have multiple threads running in parallel, where multiple kernels could be issued. This

paper presents a runtime system that uses a producer-consumer model to solve the syn-

chronization problem. The host thread place kernels onto different CUDA streams. All
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the kernels are placed into a queue, from which the consumer dequeues the kernel and

issues it to the GPU.

Awatramani et al. (2013) propose a block scheduling method to support concurrent

kernel execution. A new hardware block scheduler is described in this paper. The core

component of the block scheduler is a kernel status table that keeps track of all arrive

kernels. When issuing blocks, the scheduler checks the valid bit of each kernel and

launches them alternative to the stream machine by a round robin algorithm.

Aguilera et al. (2014c) present a kernel concurrent execution approach that takes

quality-of-service (QoS) into consideration. The method assumes at least one applica-

tion has a requirement on QoS. The proposed framework first checks the application

and predicts its minimum resource requirement; Then, it dynamically allocates the

number of stream machines to the application and runs kernels from other kernels that

are not sensitive to QoS on the rest of stream machines.

Aguilera et al. (2014a) present a spatial multi-tasking approach of within-die (WID)

GPU that shares the same die with CPU. This allows more stream machines integrated

into the same die and working under different clock frequencies. This paper proposes

a variation-aware workload partitioning approach that decides how many hardware

resources to assign to each application by characterizing the sensitivity of each appli-

cation’s performance to the stream machines.

Lee et al. (2014) present a hardware solution to support concurrent kernel execu-

tion. Two separate aspects of thread block scheduling methods are examined in this

paper, which is Lazy CTA scheduling (LCS) and block CTA scheduling (BCS). Among

these two scheduling aspects, LCS restricts the maximum number of blocks that could

be scheduled to the stream machine and BCS controls how consecutive blocks are

issued to the same stream machine.

Aguilera et al. (2014b) examines various resource sharing policies that impact per-

formance and fairness. The observation is that the resource allocation that is optimized

for the performance is not necessarily best for fairness. This paper proposes a met-

ric to measure the fairness of resource sharing. A runtime approach is proposed that

comes with several scheduling policies, such as equal compute resources for each ap-

plication, equal throughput for each application, equal speedup for each application,

and maximum system throughput. A runtime algorithm is then implemented to adjust

stream machine allocation among applications according to their predicted resources

requirement under each policy.
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Guerreiro et al. (2015) present an approach to tune the performance and energy

consumption for concurrent kernel execution. By profiling kernels, the auto-tuning

procedures explore the single- and multi- kernel’s performance and energy optimiza-

tion space, configure the thread block and set the GPU operating frequency accord-

ingly.

Although concurrent kernel execution improves GPU utilization and thereby opti-

mizes throughput, it does not take the multi-core CPU into consideration. In practice,

many applications have better performance on multi-core CPUs than on the GPUs,

particularly when taking data movement overhead into consideration. Also, since all

kernels execute on GPU, there is an imbalance between CPU and GPU. The key limi-

tation of the above approaches it that they do not utilize the multi-core CPU.

3.3 Scheduling Multiple Tasks to Multiple Devices

When scheduling multiple tasks to multiple devices, the primary function of the sched-

uler is to find out the most appropriate device for each application. In the following

sections, we describe prior work in both single-ISA and separate-ISA systems.

3.3.1 Single-ISA Heterogeneous Platform

Programs on single-ISA platforms typically have a better performance on the faster

core, but this performance comes at a cost of greater power consumption. The task

scheduler on single-ISA system tries to find the balance between maintaining the over-

all throughput and limiting the energy consumption at the same time. One common

method adopted by the single-ISA system is to make the scheduler deploy programs to

their best-fit device, with the help of compiler and architecture model, to meet a power

and performance budget.

Chen and John (2009) present a framework to leverage the relationship between

program characteristics and hardware resource requirement for program scheduling

in heterogeneous multicore processors. In this method, the program’s estimated re-

source demand and the core’s physical configuration are projected to a unified multi-

dimensional space. By using weighted Euclidean distance in this space, the best

program-core matching can be found and used as a guide in program scheduling.

Muck et al. (2015) provide an accurate runtime model to estimate performance

and power consumption. Implemented on top of the Linux kernel, the runtime model
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(Run-DMC) uses a fine grain per-thread metric to model instruction level parallelism,

thread load contribution, and scheduling policies to predict the power and performance

across all core types in the system. Run-DMC allows the program to find its most

appropriate core type when fully exploiting the heterogeneous platform. In practice, by

employing an evolutionary optimization algorithm, Run-DMC can find good thread-

to-core mappings to maximize overall energy efficiency.

Koufaty et al. (2010) propose a bias-based scheduler for heterogeneous system with

single-ISA cores. Since different applications behave differently on different cores, the

scheduler monitors the application bias then selects the most appropriate core for the

application. Here, the bias is defined as the type of core that application would prefer to

run at a particular time. Usually, a thread has a small core bias if its speedup brought

by running it on a larger core would be modest. On the other hand, a thread has a

large core bias if its speedup from executing on a larger core is significant compared

to running it on a small core. Performance counters are used to keep track of each

thread’s states, which are essential for thread bias computation. Then, the scheduler

deploys programs to the cores according to their bias.

Craeynest et al. (2012) develops a Performance Impact Estimation (PIE) mecha-

nism to schedule workload to single-ISA heterogeneous platforms. PIE is a model

that uses profiling information, such as CPI (Cycle Per Instruction) stack, MLP (Mem-

ory Level Parallelism) and ILP (Instruction Level Parallelism), to estimate workload

performance on different core types. According to the estimated performance, PIE

dynamically adjusts the scheduling scheme at the runtime to optimize the program

mapping and thereby improve the performance and energy consumption.

Becchi and Crowley (2006) propose a dynamic thread assignment for single-ISA

heterogeneous platforms. Two dynamic assignment approaches are provided, which

are Round Robin Dynamic Assignment and IPC-Driven Dynamic Assignment. The

round robin scheme is blind to thread runtime behavior. However, it is the simplest

strategy in practice and brings an improved performance compare to the static assign-

ment. The IPC-Driven assignment takes thread characteristics into consideration. It

uses the average of IPC as the control variable when assigning threads to physical

cores. The controlling variable is computed at runtime and used as a guide to trigger

thread migration between cores.

Though the above approaches are effective on the single-ISA platform, they cannot

directly be used on separate-ISA systems, as scheduling decisions are based on estimat-

ing the same instruction stream on separate hardware configurations. On separate-ISA
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platforms, programs are compiled and optimized for different processors separately;

and for each type of device, a dedicated power and performance model is needed for

the best program-device pair selection. Migrating jobs between devices can also lead

to a considerable runtime overhead introduced by recompilation and data movement.

Therefore, for separate-ISA heterogeneous systems, different approaches have been

tried.

3.3.2 Separate-ISA Heterogeneous Platform

Most separate-ISA scheduling work is targeted at on CPU-GPU system. In this section,

the main idea is to find the most appropriate device for a program via runtime metrics

and predictive models.

Lang and Rünger (2014) propose an execution time and energy model for parallel

Conjugate Gradient Method (CGM) on a CPU-GPU heterogeneous system. The model

is developed based on the platform information, such as the speedup of CPU and GPU,

their voltage and frequency scaling, the energy consumption of the memory and the

energy consumed by moving data between CPU main memory and GPU memory.

On a given machine, the model makes it possible to exploit the most energy-efficient

distribution of workload between multicore CPU and GPU.

Ravi et al. (2012) studies the problem of optimizing the overall throughput of a

group of applications on a heterogeneous platform that consists of multi-CPUs and

many-core GPUs. Two different scheduling problems are considered in this paper. In

the first one, the jobs can be executed on a single node, either CPU or GPU. In the

second one, the jobs can be served by CPU, GPU, or both. For the first problem,

three scheduling heuristics are developed, namely Relative Speedup based policy with

Aggressive Assignment (RSA), Relative Speedup based policy with Conservative as-

signment (RSC), and Adaptive Shortest Job First policy (ASJF). Different schemes

expect a different amount of information from the users, but they all outperform the

default round robin method. For the second problem, a Flexible Moldable Scheduling

method (FMS) are proposed to improve the throughput by modeling the resource type

and the number of requested nodes.

Barak et al. (2010) present a package that enables OpenMP, C++ and unmodified

OpenCL applications running on clusters with many GPU devices. This Many GPU

Package (MGP) includes the implementation of OpenCL and OpenMP extension that

allow applications to use various devices (CPUs, GPUs, or both) transparently. It
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also provides MOSIX-like algorithm for dynamic resource management to balance the

workload then make the resource fairly shared by all applications.

Augonnet et al. (2010) extended StarPU by taking data transfer overhead into con-

sideration. An asynchronous data prefetching method is proposed in this paper to-

gether with a data-aware scheduling policy. The proposed method not only exploits

the benefit of asynchronous data transfer but also saves memory transfers by introduc-

ing scheduling policy to exploit data locality.

Many of the above approaches use program profiling information to estimate the

best device. Profiling ahead is an effective method, however, in practice, it introduces

substantial runtime cost that outweighs its benefits. When scheduling unknown pro-

grams at runtime, these approaches cannot be used.

3.4 Communication Optimization

Data movement and host-to-device communication may incur large runtime overhead

for heterogeneous systems, particular is for those platforms that have discrete mem-

ory systems. In this section, we review some of the prior work on optimizing data

movement.

Dathathri et al. (2013) propose an automatic data movement method to optimize the

communication between computing devices in heterogeneous platforms with separate

memory systems. This approach targets nested loops with affine bounds and accesses.

By using static analysis and lightweight runtime routines, the compiler framework

carries out a source-to-source transformation that generates the communication code.

Then, by partitioning data dependencies, the approach proposed in this paper statically

optimizes the data transferred between devices.

Jablin et al. (2012) present a Dynamically Managed Data (DyManD) system that

works on automatic CPU-GPU data movement optimization. DyManD consists of a

runtime library and a set of compiler passes. The compiler inserts the memory alloca-

tion calls to the original program and generates DyManD compliant code for the GPU.

The runtime library manages data and optimizes communication. Similar to CGCM,

DyManD adopts an acyclic CPU-GPU communication pattern to keep the latency off

the program’s critical path and allow parallel execution between CPU and GPU.

Jablin et al. (2011) present communication optimization methods for CPU-GPU

heterogeneous platform. The CPU-GPU Communication Manager (CGCM) uses com-

piler modification and runtime library to manipulate data movement between CPU and
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GPU, so as to effectively reduce data transfer overhead.

Optimization of data movement and overlapping data transfer and computing work-

load improves system performance. However, these methods offer no help in finding

programs their best-fit devices and the relative executing orders. Also, similar to the

problem in single task scheduling, communication optimization cannot improve hard-

ware device utilization.

3.5 Analytical Models in Heterogeneous Scheduling

Many approaches use a performance model to estimate the performance of applications

that run on the system. Analytical models typically use a set of equations to charac-

terize devices and describe the action of a program on the target device. Information

about the hardware configuration and program characteristics are needed for the model

equations. In practice, the hardware configuration is modeled by running a group of

micro-benchmarks to test the behaviors of the platform. Applications characteristics,

which include memory footprint, the amount of instructions of each type, registers us-

age, the number of branches, are acquired by source code analysis. Analytical model

can be classified into several groups that estimate program execution time, application

bottleneck, power consumption and program behavior.

Execution Time Prediction

Hong and Kim (2009) models CUDA warp behavior by two metrics: MWP and

CWP, in which the first one measures the number of warps that can overlap the mem-

ory access latency and the second one measures the number of warps that could execute

their instructions in other warps memory accessing period. Based on the warp paral-

lelism, the model could estimate a program’s execution time according to its cost on

memory request. Due to its high accuracy, many other models adopt it in their perfor-

mance analysis.

Kothapalli et al. (2009) propose two models to predict the performance of CUDA

kernels. The MAX model uses the max value between computing and memory ac-

cessing cycles. The SUM model uses the sum of the cycles of computing and memory

accessing.

Kerr et al. (2010) uses statistical analysis to derive the relationship between pro-

gram behavior and heterogeneous processors. This is then fed into the model to predict

the performance of programs that have similar behavior on different processors.

Meng and Skadron (2009) specifically models the Iterative Stencil Loops (ISL)
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application. The framework proposed in this work automatically selects the best pa-

rameters for ISL to improves its performance.

Choi et al. (2010) present an auto-tuned implementation of Sparse Matrix-Vector

(SpMV) multiplication. The model is built for finding the best application parameters

that minimize the execution time.

3.5.1 Application Bottleneck Analysis

Williams et al. (2009) provide a mechanism, namely the Roofline model, to describe

the characteristics of a multi-core platform that may limit the performance of a par-

ticular application. Jia et al. (2012a) extended Roofline to guide kernel optimizations

on GPU. It shows how features that affect performance on GPU by pointing out the

bottleneck of the kernels.

Lai and Seznec (2012), Zhang and Owens (2011) and Baghsorkhi et al. (2010)

provide a breakdown of a CUDA kernel execution into several stages. Platform infor-

mation is gathered via micro-benchmark and the application is characterized by code

analysis. Baghsorkhi et al. (2012) present a memory hierarchy model for GPU to pre-

dict the efficiency of the memory system. Sim et al. (2012) present an analytical model

for GPU architectures and a framework that suggests the most profitable combination

of optimizations for a CUDA kernel to improve its performance.

Zhang and Owens (2011) present a microbenchmark-based performance analysis

model to identify the performance bottlenecks and guide programmers for optimiza-

tion. The performance model uses microbenchmark to test three primary GPU com-

ponents, which are instruction pipeline, shared memory, and global memory. Then,

for general programs, the model uses the number of instructions, shared memory, and

global memory transactions to detect the bottleneck.

Cui et al. (2012) present a model to estimate the performance of computation-

bound GPU kernels with control flow divergence. Widely used metrics, such as diver-

gent branches and divergent warp ratios, represent the divergence problem but do not

indicate the impact on performance, in this paper, a new metric is proposed to model

kernel performance. The metric is based on the basic block vector (BBV), instruction-

based weighting, and thread-block level scheduling. The metric is used to estimate

kernel performance, which has been further used as a value function for creating thread

regroupings.

Karami et al. (2013) propose a statistical performance model for OpenCL applica-
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tions. By using kernel performance parameters, a regression model is developed. The

bottleneck of the kernel is analyzed by using PCA technique. The trained model can

also leverage the unknown applications based on their performance similarities with

the existing programs in the training database.

van Werkhoven et al. (2014) present a performance model that includes data trans-

fer and computation and communication overlap for CPU-GPU systems. As data

movement via PCI-E has a significant impact on performance, it can limit performance

on CPU-GPU platforms, such as overlapping kernel computation and data communi-

cation. With the help of the PCI-E model, different methods for data transferring and

computation-communication overlapping could be examined to select the best.

3.5.2 Power Consumption Model

Wang and Ranganathan (2011) and Hong and Kim (2010) propose an analytical power

model. Both require the execution of micro-benchmarks and external power consump-

tion meters to characterize the target devices. GPUWattch by Leng et al. (2013) and

GPUSimPow by Lucas et al. (2013) present power model that work with GPGPU-Sim.

Both of them are adaptations to GPUs of the McPat power modeling for multi-core ar-

chitecture (Li et al. (2009)).

3.5.3 Simulations

Two popular simulators for GPU accelerator are GPGPU-Sim (Bakhoda et al. (2009))

and Barra (Collange et al. (2010)). Both are functional simulators of NVIDIA GPUs.

A collection of user-configurable parameters is required to fine-tune the target device

it simulated.

Apart from GPGPU-Sim and Barra, some other simulators simulating CPU+GPU,

such as MacSim [HPArch (2012)], FusionSim [Zakharenko et al. (2013)], and Multi2Sim

[Ubal et al. (2012)].

By modeling different types of computing instructions, cache and global memory

access, bandwidth, and data transferring overhead, the model effectively identifies the

bottleneck of a program, the best partition of a task, and even task execution time on

a particular device. However, program profiling information is necessary when using

the model in estimation, which limits the usage of this method in practice. Scalability

is another problem for the model based approach. A new device added usually means

a corresponding model should be built accordingly. A more flexible approach is to use
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machine learning-based methods, which will be discussed in the following section.

3.6 Machine Learning in Heterogeneous Scheduling

Machine learning techniques have become increasingly important in task scheduling

on heterogeneous systems. Though various performance models have been built to

analyze applications performance then guide the task to select the most appropriate

device, these models are hard wired by the authors and cannot adapt to new programs

and hardware platforms automatically. Machine learning based methods instead learn

from the data that are collected from programs and hardware configurations.

Machine learning has been used in power and performance analysis. In some work

(Nagasaka et al. (2010), Song et al. (2013)), samples of performance counters and

energy measurements at given frequency are used to train a model, which is used to

identify power and performance bottleneck for the applications.

Bogdanski et al. (2011) uses machine learning to choose parameters for task schedul-

ing and load balancing on a heterogeneous with GPU and FPGA. Paragon, proposed

by Delimitrou and Kozyrakis (2013) uses collaborative filtering techniques to classify

an unknown incoming workload on heterogeneity. The classification allows Paragon

to schedule applications in a manner that minimizes interference and maximizes server

utilization.

Song et al. (2013) uses an artificial neural network to estimate GPU power con-

sumption and identify power-performance bottlenecks. The trained model is used for

studying the energy efficiency for a single GPU-based system and energy-performance

efficiency for GPU cluster. Dao et al. (2015) present a machine learning-based model

to estimate the runtime of an arbitrary OpenCL kernel. With the information of cache

usage and branch divergence, the machine learning model detects the relationship be-

tween these factors and the kernel’s execution time.

Jia et al. (2012b) propose a regression-based performance model for GPU design

space exploration. Stargazer sparsely and randomly samples parameter values from

a full GPU design space, then uses these samples to train a machine learning-based

estimator to predict unseen kernel’s performance.

Kerr et al. (2010) uses a machine learning based model to predict the performance

of CUDA applications on CPUs and GPUs. The static features of the program are

used to derive the relationship between the program behavior and the performance on

the target architecture. Luk et al. (2009) proposes a linear regression-based model to
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distribute workloads to a CPU-GPU heterogeneous system. Unlike the above works,

the linear model in this work needs to be trained for each newly encountered kernel.

Grewe et al. (2013) uses machine learning to predict the best partition of an OpenCL

kernel between CPU and GPU. This static partition gets rid of the runtime overhead

of profiling every application to split the task in a proper way. The feasibility of such

an approach is guaranteed by the offline trained machine model. Jiao et al. (2015)

introduces neural networks based machine learning model to find out the best pair of

CUDA kernel that could improve the system performance by running in parallel.

As a very promising approach in building up the relationship between applications

and target processors, machine learning is now widely used. However, the analytical

models built by machine model focus on identifying the bottleneck of the application

and/or the system. It could guide the optimization in detail, but has few contributions

in runtime scheduling. Machine learning based task partitioning is an effective ap-

proach in balancing single task on CPU and GPU, however, it has not been used for

multiple tasks from separate users. Concurrent kernel execution using machine learn-

ing techniques can help avoid the overhead introduced by a wrong kernel combination,

but such an approach does not take CPU into consideration, which introduces an inter-

processor workload imbalance. Unlike the above work, this thesis takes both separate

and concurrent kernels scheduling into account using machine learning.

3.7 Summary

This chapter presents a brief review of prior work related to this thesis. These works

cover task scheduling on heterogeneous systems, communication optimization, perfor-

mance and energy models, and machine learning based runtime optimization.

In the next chapters, we present our smart runtime scheduler for CPU-GPU hetero-

geneous systems. By selecting OpenCL kernels their most appropriate device and best

concurrent kernel pair, our scheduler improves the system performance and hardware

utilization.





Chapter 4

Multi-Task Scheduling

This chapter examines multi-task scheduling on CPU-GPU heterogeneous platforms.

Our approach extracts static features of OpenCL kernel and dynamic parameters, which

are fed to an offline pre-trained machine learning based model that predicts whether

or not it will have a high speedup when running on GPU compared to executing on

CPU. Based on the estimated speedup, the scheduler inserts the candidate kernels into

a double-end sorted queue. From either end, tasks are dynamically dequeued and exe-

cuted on the appropriate device.

This chapter is organized as follows: Section 4.1 introduces the task scheduling

on the CPU-GPU system. It is followed by a background section on OpenCL task

scheduling in Section 4.2. In above sections, we present some of the background tech-

niques and the most related works which have been discussed in Section 2 and 3, so as

to highlight their relevance to this chapter. Section 4.3 provides a motivation example

that shows that by scheduling kernel to the appropriate device we can optimize system

throughputs. Section 4.4 describes the overall approach presented in this chapter. Sec-

tion 4.5 describes the machine learning based predictive model construction. Section

4.6 gives more details on how we schedule OpenCL kernels at runtime. In Section

4.7, multiple alternative scheduling policies are considered. Section 4.8 and 4.9 de-

scribe how the experiments were carried out and the results of the experiment. Finally,

there is a detailed analysis of our approach in Section 4.10, which is followed by the

summary of this chapter.

43
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4.1 Introduction

We now live in the parallel manycore era. Due to power-density constraints, increased

single processor performance via ever-increasing clock frequency is no longer possi-

ble. This move to parallel system has been mirrored by the growing use of specialised

accelerators such as GPUs. Heterogeneous systems consisting of multiple CPUs and

GPUs are increasingly attractive as they provide cost-effective, energy-efficient high

performance computing

OpenCL [Khronos (2016)] has emerged as a standard which provides program

portability by allowing the same program to execute on different types of device, as

discussed in Section 2.2. Although it provides portable functionality, its performance

will vary drastically across different components of the heterogeneous system. Now,

as such systems become more mainstream, they will move from application dedicated

devices to platforms that need to support multiple concurrent user applications. Per-

formance variability that may be manageable when the GPU is used as a dedicated

acceleration device by a single application poses a problem for concurrent users. Here

there is a need to determine when and where to map different applications to best utilise

the available hardware resources.

In this chapter, we address the problem of how to schedule multiple OpenCL ap-

plications on a CPU+GPU platform. Although scheduling is a much studied subject

[Snavely and Tullsen (2000); Zhang et al. (2002); Eyerman and Eeckhout (2010); Au-

gonnet et al. (2011); Singh et al. (2013); Emani et al. (2013)], heterogeneous schedul-

ing is made more complex by the different execution times an application will experi-

ence on different devices [Pandit and Govindarajan (2014); Sun et al. (2012); Luk et al.

(2009)]. Furthermore, while one application may experience significant performance

improvement when moving from a manycore CPU to a GPU, another may experience

a slow down. Given a set of application tasks to schedule, it is only possible to deter-

mine the best allocation of tasks to devices and their schedule if their execution time

is known at schedule time. While this may be possible in certain embedded systems,

it is not the case in general purpose systems when the job mix is not known ahead

of time. Furthermore, the best schedule can vary depending on optimization criteria;

maximizing system throughput may be at the expense of average turnaround time.

We develop a novel scheduling approach which determines at runtime which ap-

plications are likely to best utilize a device. We show that speedup is a good heuristic

for heterogeneous throughput and develop a novel predictor that determines an ap-
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plication’s speedup based on static code structure. However, a speedup alone based

priority heuristic would favour small jobs with high speedup over longer jobs with

more modest speedup. Our scheduler therefore combines speedup prediction and run-

time input data size as factors in considering scheduling priority. This technique is

applied to a large set of concurrent programs and evaluated for two distinct metrics:

system throughput and average normalized turnaround time. We compare our schedul-

ing approach against FluidiCL [Pandit and Govindarajan (2014)], a state-of-the-art

kernel split mapping scheme in which both CPU and GPU are fully used. Our ap-

proach shows significant performance improvement, for both metrics, over all other

approaches.

4.2 Background

This work is concerned with the scheduling of multiple OpenCL kernel tasks on a

CPU/GPU based heterogeneous platform. A kernel task is referred to as an OpenCL

kernel at runtime, which includes computation and associated CPU-GPU communica-

tions. This concept is depicted in Figure 4.1(a). Tasks might belong to one or more

than one OpenCL program. Note that in this chapter we do not split the work of a

single kernel across devices.

A typical scenario of OpenCL task scheduling is illustrated in Figure 4.1(b). Here

we have a task queue that is managed by a runtime scheduler. In this example, the task

queue contains several OpenCL tasks submitted by four OpenCL programs, where

each task can run on both the CPU and the GPU. It is therefore the runtime scheduler’s

responsibility to decide which device to use to run a particular task that can lead to the

best overall performance (e.g. throughput or turnaround time). This chapter aims to

develop a portable approach for efficient OpenCL multi-task scheduling and our goal is

to maximize the system throughput without significantly increasing the average appli-

cation turnaround time. The next section provides an example showing that scheduling

program task on CPU/GPU based heterogeneous systems is non-trivial.

4.3 Motivation Example

Consider a scenario of scheduling four OpenCL tasks (kernels) from four OpenCL pro-

grams (bfs, BlackScholes, Dotproduct, QuasirandomG) on a CPU/GPU het-

erogeneous system. Figure 4.2 shows the runtime of each individual kernel when it
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Figure 4.2: Task scheduling on heterogeneous systems is challenging – the best

scheduling depends on the mix of application tasks and executing on the GPU may

not be the best strategy.
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runs on the GPU or the CPU. As can be seen from this figure, kernel (bfs) is long

running on the GPU and the other two (BlackScholes and QuasirandomG) enjoy sig-

nificant improvement on the GPU. Conversely, the shortest running kernel on the CPU,

Dotproduct, shows no improvement when scheduled to the GPU.

We now consider how different scheduling policies allocate these tasks to a CPU/GPU

platform and investigate their resulting performance. The first one is a greedy first

come first served policy which allocates tasks to whichever device is available fcfs.

The second policy is to execute the tasks only on the multi-core CPU in a FIFO man-

ner allcpu. The third policy runs all tasks on the GPU in a FIFO manner allgpu.

Finally we consider the best possible schedule if we were to know the program execu-

tion time ahead of time best. This is impossible in practice but serves as a useful goal

for performance.

Figure 4.2 (b) shows the resulting throughput performance. Here we use fcfs

as our baseline of 1.00 and show the other policies’ relative speedup. The allcpu

scheme is obviously a poor scheme as it only utilizes the CPU. The allgpu policy

is more effective, but still not able to give performance improvement over fcfs. The

best schedule, however, achieves a speedup of 2x, a significant improvement over the

other schemes. Clearly, there is significant room for performance improvement for the

policies when compared to the best performance.

This example demonstrates that scheduling policy is critical to system throughput.

A good policy depends on whether each individual task can benefit from the GPU exe-

cution and how long running the task is. If we know this information before scheduling

the tasks, we can then determine efficiently which device to use to run each individual

task. What we need is a technique that can predict the GPU speedup of any given

OpenCL kernels and estimate the running time of a task. The remainder of the chapter

describes how to predict OpenCL kernels speedup and use these predicted speedups

together with input sizes as a guide to schedule tasks across the CPU and GPU.

4.4 Overall Scheme

Although knowledge of the execution time of each task is needed for optimal schedul-

ing, accurately determining the execution time of a unseen program is undecidable

[Hong and Kim (2010); Zhang and Owens (2011)]. Our approach is to use the pre-

dicted speedup of an OpenCL kernel when it is to be executed on the GPU as part of

the guide to its scheduling priority. High speedup kernel tasks are scheduled to the
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GPU, lower speedup ones to the CPU.

Determining the potential speedup of a kernel is non-trivial, so we consider a sim-

pler classification problem. We classify programs into two categories high, and low

speedups and use these classification to assign task priority. Accurately classifying

programs in this way relies on the structure of the program and the input data size.

Although we have access to the code before execution, the input data size will only be

known at runtime. As OpenCL is just-in-time (JIT) compiled, we consider code and

input size at the same time.

Figures 4.3 and 4.4 illustrate our 2-part approach. The compiler extracts static code

features from the abstract syntax tree for each OpenCL kernel. These features are then

combined with runtime data information to predict which speedup category (high or

low) this kernel belongs to when running it on the GPU. The prediction is achieved

by way of a machine learning model applied to the OpenCL kernel when compiled by

the JIT compiler. The prediction, i.e. the speedup category of the input program for

a given input, is used by the runtime scheduler to determine which device to use for

each individual task.

At the heart of this approach is a speedup category predictor. In the next section,

we will describe how a machine learning based classifier can be built to predict the

speedup category of any unseen OpenCL programs.
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4.5 Predictive Modeling

Our predictive model for speedup category prediction is a support vector machine.

The input to the model is a set of features that describes the input OpenCL kernel. Its

output is a classification that indicates whether the input kernel is a high-speedup or

low-speedup kernel.

4.5.1 Building the Predictor

Our predictor is built offline using training programs. The built model can then be used

within an OpenCL task scheduler.

Figure 4.5 depicts the process of training a machine learning model using training

programs. The training process involves the collection of training data which is used to

fit the model to the problem at hand. In our case we use a set of OpenCL programs that

are both executed on the CPU and the GPU to measure the speedup of the GPU execu-

tion for each individual kernel over the CPU. Depending on the speedup, each kernel

will be labelled as either a high-speedup or a low-speedup category. In this work,

an OpenCL kernel will be labelled as high-speedup if the measured GPU-speedup is

larger than a certain threshold. Otherwise, it will be labelled as low-speedup. This

threshold value was determined experimentally, which is set to 4 in this work.

We also extract features for each kernel as described in the following section. The

features together with the speedup category for each program from the training data

are used to build the model. Since training is only performed once at the factory, it is

a one-off cost. In our case the overall training process takes less than a day on a single

machine.

4.5.1.0.1 Predictive Model Our model is a support vector machines classifier [Bishop

(2006)]. We use the Radial basis function kernel, which is able to model both linear

and non-linear classification problems. We chose SVM as it gives better prediction ac-
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Table 4.1: Program Features
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Figure 4.6: Importance of program features. The larger the box, the more important a

feature is for the prediction accuracy.

curacy when compared to other models (i.e. K-nearest neighbour and decision trees)

in our case.

4.5.2 Program Features

Our predictor uses program features to characterize an OpenCL program. We use both

static code features, such as the number of instructions, and parallel runtime parame-

ters, such the number of work items. All the static and runtime features are listed in

Table 4.1.

Static code features are extracted from the abstract syntax tree of the OpenCL

kernel at the time the program is compiled by the OpenCL just-in-time compiler. The

feature extraction tool is based on Clang and LLVM UIUC (2016). At compile time,

we extract information about the number and type of operations.

Besides static code features, we also use parallel runtime features to character-

ize the dynamic behavior which is often associated with the program input. The

local work size and global work size indicate the maximum number of current

threads, which are useful for determining the amount of parallelism available. The
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queue based on their predicted speedup categories and input sizes. Tasks from each

end of the queue will be dispatched onto the GPU and CPU respectively.

memory transfer represents the communication overhead between the multi-core CPU

and the GPU, which can have a significant impact on the GPU speedup. The input/output

size is estimated by calculating the number of bytes to be transferred between the host

CPU and the GPU.

Our predictor is trained with all static features and dynamic features which are

shown in Table 4.1. Features which contribute least to the prediction is filtered out by

our training process. In our experiment, we only select five static features and four

dynamic features. Using fewer carefully selected training features is able to shrink

predictor training time without suffering a lost in accuracy. In this chapter, our selected

features is shown in Figure 4.6. The overall contribution of each selected feature in our

training process is also shown in Figure 4.6.

4.6 Runtime Task Scheduling

Newly arriving OpenCL kernels are inserted into a task queue from which kernel tasks

are dequeued and scheduled to either the CPU or GPU when the devices are available

as shown in Figure 4.7. The queue is sorted based on the predicted speedup category

and program input size. High-speedup kernel tasks are dequeued from one end and

scheduled to the GPU, low speedup task are dequeued from the other end and sched-

uled to the CPU. Tasks will be firstly grouped according to their speedup category

where tasks with the same speedup category will be placed together. Those tasks will

then be sorted according to the input size in a way that those tasks with relatively
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the example shown in Figure 6.1 using our machine learning based scheduler. In this

case, our approach achieves the optimal throughput.

smaller input sizes will be placed towards the end of the queue where the CPU will

take tasks from. This is because based on our observation tasks with a large input size

often correlates with long execution time. We always prefer to schedule tasks that have

long runtime but can enjoy GPU execution with a high-speedup onto the GPU.

Since tasks are dequeued from both sides of the task queue, this dequeue process

will meet at somewhere in the middle of the queue. The last task of the queue will

be replicated and mapped to both the CPU and the GPU. The last task will be first

scheduled to an available device and when the other device becomes idle the scheduler

will map a duplicated copy to this device. The scheduler then waits for one of the tasks

to complete and kills the outstanding duplicate.

Scheduling Example: Figure 4.8 shows how the four tasks, bfs, Dotproduct,

BlackScholes, QuasirandomG, presented in Figure 6.1 are scheduled by our sched-

uler. Our predictor takes the feature values for each OpenCL kernel task and predicts

to use the CPU or GPU for scheduling. For instance BlackScholes is classified by

our predictor as a high-speedup category, it is scheduled on the GPU. bfs has a set of

different feature values, which is classified by the predictor as low-speedup task, it is

scheduled on the CPU. Both BlackScholes and QuasirandomG are classified as high-

speedup tasks and the other two are classified as low-speedup tasks. Based on their

speedup categories and input sizes, the tasks are sorted in the task queue as shown in

Figure 4.8 (a). If we assume both the GPU and CPU are available upon the time those

tasks arrive, this will result in a scheduling plan as depicted in Figures 4.8 (b) - (e) over

time. For this example, our scheduler gives the best throughput performance.



54 Chapter 4. Multi-Task Scheduling

4.7 Alternative Policies

4.7.1 Alternative Scheduling Policies

We compare our approach against four different strategies:

• All on CPU. Using this scheme, tasks are dispatched to the shared CPU in the

arriving order.

• All on GPU. Using this scheme, tasks are dispatched to the shared GPU in the

arriving order.

• FCFS. This is a first come first served approach. Using this scheme, application

tasks will be put into the task queue in the order as they arrive. Then tasks will

be dispatched to any available computing device (either the GPU or the CPU).

• Input size guided. In the task queue, tasks are sorted based on the amount of

bytes needed to be transferred from the CPU to the GPU. With this scheme, the

GPU always gets a task that has the largest input and the CPU always gets a task

with the smallest input.

• Work item guided. In the task queue, tasks are sorted according to the number

of global work items of the kernel. Using this scheme, the GPU always gets a

task that has the largest number of work items while the CPU always gets a task

with the smallest number of work items.

There are some alternative scheduling schemes, such as the shortest-job-first scheme

[Pinedo (2008)], which all require to know the task execution time ahead of time.

Since our experimental settings assume this information is not available to the sched-

uler, those approaches cannot provide a fair comparison and hence are not included.

Round Robin is another widely used task scheduling scheme. However, because the

current GPU implementation does not support context switch or preemption, this is not

available for comparison either.

4.7.2 Partitioning OpenCL Kernels across Devices

The FluidiCL [Pandit and Govindarajan (2014)] runtime utilizes both the multi-core

CPU and the many-core GPU to concurrently execute a single OpenCL kernel. In this

way, the CPU executes part of the kernel, starting from the upper end of the working
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Table 4.2: Hardware platform

Intel CPU NVIDIA GPU AMD GPU

Model Core i7 2600K GeForce GTX 590 Radeon HD7970

Core Clock 3.4 GHz 1215 MHz 1000 MHz

Core Count 4 (8 w/ HT) 1024 2048

Memory 8 GB 3 GB 3GB

Memory Bandwidth 21GB 327 GB 288 GB

space, while the GPU executes the whole kernel, but starting from the lower end of the

working space. When the GPU reaches a work-group that has already been executed

by the CPU, the whole kernel execution is considered to have been completed and the

results will be merged. However, this scheme can only apply to one single OpenCL

kernel. As a result, kernels from multiple applications will have to be executed se-

quentially. Furthermore, distributing work items between the CPU and GPU requires

synchronization and communications between the two devices, which can incur signif-

icant runtime overhead. We compare our approach against FluidiCL in Section 4.9.2

4.8 Experiment Setup

This section describes our experimental setup and the evaluation methodology used in

the remainder of the chapter.

4.8.1 Platform and Benchmarks

Platform and Software Tools: We evaluate our approach on two CPU-GPU systems:

both use an Intel Core i7 4-core CPU. One system contains an NVIDIA GeForce GTX

590 GPU, the second an AMD HD 7970 GPU. Both run with the OpenSUSE 12.3

Linux. Our compiler is GCC 4.7.2 with -O3 as the compiler option. We use the

NVIDIA CUDA Toolkit 3.1 which has an OpenCL just in time compiler. Details of

the hardware platforms are shown in Table 6.1.

Benchmarks: We used 35 different benchmarks from three mainstream OpenCL

benchmark suites: the NVIDIA OpenCL SDK v4.2, the AMD SDK v2.8 and the Par-

boil OpenCL benchmark suite v2.5. From the above benchmark suites, we selected

those applications whose input data size can be easily scaled. Also, to compare our

method against FluidiCL, we included the Polybench benchmarks that can experience

enhanced performance by FluidiCL partitioning in its work. In the experiments, we ran
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Table 4.3: Benchmarks and Input Sizes

Suite Benchmarks Input Size Benchmark Input Size

N
V

ID
IA

BlackScholes 12K - 12M ConvolutionSeparable 1.6M - 420M

DXTCompression 17M - 604M DotProduct 41M - 654M

FDTD3d 452M HiddenMarkovModel 69M

Histogram 67M - 268M MatrixMul 63M

Pa
rb

oi
l

BFS 64M Cutcp 3M - 36M

Sgemm 192K - 12M Spmv 49K - 31M
A

M
D

BinarySearch 2K BinomialOption 3K

BitonicSort 16K - 65K BlackScholes 1M - 4M

BlackScholesDP 2M - 5M DCT 16K - 16M

DwtHaar1D 4K - 65K FastWalshTransform 4K - 131K

FloydWarshall 262K Histogram 4M-1G

MatrixMultiplication 16K - 1M MatrixTranspose 16K - 67M

PrefixSum 2K - 16K QuasiRandomSequence 1K

Reduction 8K ScanLargeArrays 4K - 65K

SimpleConvolution 16K

Pl
oy

be
nc

h ATAX 1G BICG 1G

CORR 50M GESUMMV 1G

SYR2K 50M SYRK 33M

each benchmark with a range of different inputs. The list of benchmarks and inputs is

shown in Table 4.3.

4.8.2 Runtime Scenarios

Our evaluation setting consists of multiple runtime scenarios with 49 different task

mixes where each task mix contains 2 to 50 OpenCL kernels (tasks). The task mixes

are grouped into three task groups with different numbers of tasks: small, medium,

and large. We consider a task group to be small, medium and large if it contains

less than 10, 10-20, or more than 20 (up to 50) kernels respectively. For each task

mix, we tried up to 125 different task combinations with different OpenCL kernels and

input sizes. We report the average performance per task group across all combinations.

The OpenCL applications of each task group were randomly selected from the list

of benchmarks given in Table 4.3. Moreover, in the experiments we replayed each

scheduling decision 10 times and calculated the average performance of each decision

to reduce the impact of jitter. Finally, we assumed all tasks arrive at the same time and

have the same priority.
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4.8.3 Performance Evaluation

Performance Metrics: To evaluate our approach, we used two metrics, system through-

put, a system oriented metric, and turnaround time, a user oriented metric. Those two

metrics have widely been used to evaluate the performance of a scheduler in a multi-

tasking environment [Snavely and Tullsen (2000); Eyerman and Eeckhout (2010)].

Our goal is to maximize the system throughput which in general leads to favourable

turnaround time results. The definitions of the two metrics are given as below.

System throughput (STP) is a higher is better metric. It describes the number of

tasks completed per unit time. This is calculated by using the fcfs scheme as a baseline

of 1.0, showing the relative speedup of other scheduling policies. It is defined as

ST P =
∑T i

FCFS
max(∑T m

cpu,∑T n
gpu)

(4.1)

where T i
FCFS is the execution time given by FCFS, and T m

cpu and T n
gpu are the execu-

tion time by running task T i on the CPU and the GPU respectively.

Average normalized turnaround time (ANTT) is a smaller is better performance

metric. It quantifies the time between a task is created and its completion, indicating

the average user-perceived delay in multi-tasking environment compared to running a

single task on the system. In the experiments, the turnaround time is normalized to the

fcfs scheme. ANTT is defined as:

ANT T =
1
n

n

∑
i=1

T i
sch

T i
FCFS

(4.2)

where T i
FCFS and T i

sch are the time between task T i is created and its completion

using fcfs and an alternative scheduling policy respectively.

Predictive Modeling Evaluation We use leave-one-out cross-validation to train

and evaluate our predictive modeling based scheduler. This means we remove the tar-

get OpenCL programs to be predicted from the training program set, collecting training

examples without the target programs to be presented, and then learning a model from

the training examples. It is a standard evaluation methodology, providing an estimate

of the generalization ability of a machine learning model in predicting unseen pro-

grams.
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4.9 Results

In this section we present the experimental results of our approach. The baseline is

FCFS. Our goal is to maximize the STP and minimize the ANTT, so that the system

can finish as many tasks as possible per time unit and at the same time reducing the

turnaround time.

4.9.1 Overall Results

STP: As can be seen from Figures 4.9 (a) and 4.10 (a), our approach consistently

outperforms the baseline for this higher is better metric. As the number of tasks to

be scheduled increases, we see an overall increase in the STP. The baseline FCFS

scheme performs well for a small task group and all other alternative approaches give

slowdown performance except for our approach where a 1.1x improvement is observed

on both platforms. The improvement of our approach increases to an average STP of

1.4 for a large task group. This is not an unexpected result as FCFS simply allocates

a task to the first available device without considering which the most appropriate

computing device is. This scheme may work well for a small task group as the number

of available scheduling options is small, but is unlikely to achieve good performance

as the number of tasks to be scheduled increases where a large number of scheduling

options is opened up. By assigning high-speedup tasks to the GPU and low-speedup

ones to the CPU, our approach can make effective use of both GPU and CPU and

achieves higher throughput. On average, our approach achieves a throughput of 1.25

across all task group sizes. This significantly outperforms other approaches which all

fail to improve the STP.

ANTT: Figures 4.9 (b) and 4.10 (b) show the achieved ANTT, a lower is better

metric, on the NVIDIA and AMD platforms respectively. As can be seen from the

diagrams, our approach not only improves throughput and but also the ANTT. Our

approach consistently outperforms the baseline and has a lower ANTT as the number

of tasks to be scheduled increases. The ANTT given by our approach is 0.58 and 0.8

for a small task group on the NVIDIA and the AMD platforms respectively, which

is further reduced to less than 0.6 for a large task group. Similar to the STP results,

our ANTT performance is improved as the number of tasks to be scheduled increases

where the number of available scheduling options increases. Overall, our approach

performs well with an average ANTT of 0.56 and 0.65 on the NVIDIA and the AMD

platforms respectively. On average, our approach outperforms all other approaches by
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(a) System throughput on the Nvidia Platform
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(b) Normalize average turnaround time on the Nvidia Platform

Figure 4.9: The achieved STP (a) and ANTT (b) on the Nvidia GPU platform. Our

approach achieves, on average, a 21% and 56% of improvement over the baseline

(FCFS) for the STP and ANTT metrics respectively.

reducing the turnaround time by at least 1.5x and 1.2x on the NVIDIA and the AMD

platforms respectively.

Summary: Our approach constantly outperforms all alternative approaches for

two performance metrics: STP and ANTT. The advantage of our approach is largely

attribute to its capability to predict the potential speedup category of each kernel task.

Without this information, the alternative schemes may inappropriately assign tasks

onto the GPU, which may not be able to benefit from the GPU execution. This leads

to the poor GPU utilization and overall poor scheduling performance.
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(a) System throughput on the AMD Platform
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Figure 4.10: The achieved STP (a) and ANNT (b) on the AMD GPU platform. Our

approach achieves, on average, a 25% and 65% improvement over baseline (FCFS) for

the STP and ANTT metrics respectively.



4.10. Analysis 61

4.9.2 Comparison to State-of-the-Art

Figure 4.11 (a) compares the STP improvement achieved by our approach against

FluidiCL on the NVIDIA platform. The performance of FluidiCL is disappointing

when scheduling multiple OpenCL tasks. It gives an average slowdown of 0.93 over

FCFS. Only for small task groups, by partitioning the work of OpenCL kernels across

the CPU and the GPU, FluidiCL is able to achieve a modest speedup (1.03x) over

FCFS.

Using FluidiCL, a faster computing device will eventually execute a large portion

of the work. For all the OpenCL kernels we used in the experiments, there is al-

ways one computing device (either the CPU or the GPU) which clearly outperforms

the other. As a result, the use of an additional computing device rarely accelerates

the computation of a single kernel. Also, we observed that FluidiCL often introduces

expensive synchronization and communication overhead between the two computing

devices for distributing work and merging results, leading to overall slowdown perfor-

mance. Unlike FluidiCL, our approach avoids such synchronization and communica-

tion overhead, giving constantly better STP performance over FluidiCL. On average,

our scheme improves the STP by 1.23x compared to FluidiCL. Furthermore, our ap-

proach is able to minimize the average turnaround time by 1.96x over FluidiCL (0.55

vs 1.08 in Figure 4.11 (b)).

4.10 Analysis

4.10.1 Best Available Performance

Although our scheme performs well compared to alternative approaches, it is useful

to know whether there is any further room for improvement. It may be the case that

the competitive schemes are very poor and that a smarter scheme could perform sig-

nificantly better. In Figure 4.12, we compare our scheme against the best available

STP performance on the NVIDIA platform. This is obtained by exhaustively trying

all possible scheduling options. This best STP scheduling is unrealistic in practice,

but provides a useful upper bound.

When there is a small number of kernel tasks to schedule, our approach gives nearly

optimal performance. When the number of kernel tasks is large, there is room for im-

provement. The best STP schedule is able to improve performance by 50% for the

STP. This is because speedup is only a proxy for execution time. Errors in estimating
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(a) System throughput of our approach vs FluidiCL
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Figure 4.11: Our approach constantly outperforms FluidiCL with an average improve-

ment of STP (a) (1.15x vs 0.93) and ANTT (b) (0.55 vs 1.08) on the NVIDIA platform.
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Figure 4.12: Comparison to the best available STP. Our approach achieves 43% of the

best available performance on the NVIDIA platform.
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execution time will increase as the number of tasks increase. In fact while we can

determine the best STP schedule, it is impossible to determine accurately the best

ANTT schedule due to combinatorial complexity. While we will never achieve the

performance of the best schedule as it is undecidable, there is still room for improve-

ment. In the next experiment, we therefore evaluated prediction accuracy and see if

this has an impact on performance.

4.10.2 Impact of Prediction Accuracy

We would like to know how the prediction accuracy affects the scheduling perfor-

mance. To do so, we have also considered a decision tree based model and a theoreti-

cally Perfect predictor which always gives the correct speedup classification (i.e. the

prediction accuracy is 100%).

Figure 4.13 compares the STP and ANTT performance achieved by the three mod-

els. As can be seen from the diagram, prediction accuracy has significant impact on

the scheduling performance and in fact the more accurate a predictor is the better per-

formance the scheduler has. The SVM model has higher accuracy (87%) than the

decision tree model (72%) for STP (Figure 4.13 (a)). The SVM model therefore gives

constantly better results for both evaluation metrics when compared to the decision tree

model (1.2x vs 1.13x). A Perfect classifier further increases performance to 1.25x.

We see a similar pattern for ANTT (Figure 4.13 (b)). Here the SVM model gives an

ANTT of 0.57. The decision tree once again degrades performance to 0.62 while the

Perfect predictor improves it. Although building a Perfect predictor is almost im-

possible in reality, this experiment result confirms that the scheduling performance can

be further improved with a more accurate model. However, by comparing to the best

available performance of STP1 there is still room for performance improvement even

for the perfect predictor. One reason may be that our current approach only has two

speedup categories which essentially is a coarse-grained classification. This hypothesis

is confirmed by the experiment described in the next section.

4.10.3 Fine-grained Speedup Categorization

Currently, each kernel task is classified into two speedup categories. We want to know

whether a finer-grained classification could improve scheduling performance. To do

1Given the extremely large combinatorial scheduling option available, it is infeasible to find the best
ANTT performance. Therefore, we do not present the best ANTT performance.
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Figure 4.13: The STP (a) and ANTT (b) achieved by different predictive models. The

more accurate the model is the better the scheduling performance is.
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Figure 4.14: STP performance tends to improve with a finer-grained speedup category

classification.

so, we first break down the number of speedup categories to create 3-7 categories; we

then classify the speedup of each kernel task using the actually measured speedup.

Figure 4.14 shows the STP performance using different category granularities. As

can be seen from this figure, a finer-grained classification in general leads to better

STP performance. This shows that our approach can be further improved using finer-

grained classification and this is our future work.

4.10.4 Overhead

Our predictive model is trained offline with training examples. In this work, collecting

the training examples took less than a day using a single machine, which has no impact

on runtime cost. The overhead of using the trained model includes extracting program

features and making predictions. This overhead is negligible (approximate 10ms in

total), which has been included in all experimental results.

4.11 Conclusions

This chapter has presented an efficient OpenCL task scheduling scheme which sched-

ules multiple programs across CPUs/GPUs heterogeneous platform. Our scheduler

uses a speedup predictor and runtime input data size to schedule tasks. This technique
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is applied to a large set of concurrent programs where it shows significant performance

improvement over all other existing approaches. This work shows that speedup is a

good priority function. Future work will investigate improving speedup prediction ac-

curacy using larger training data sets. Significant further improvement is potentially

available when using more fine-grained speedup classification.



Chapter 5

Concurrent Kernels

This chapter presents a method for efficient concurrent kernel execution on CPU-GPU

platforms. By space sharing the GPU, we improve utilization and overall system per-

formance. We propose a kernel merging method that gives fine grain and accurate

control of space sharing on GPUs by two OpenCL kernels. As the co-execution of ker-

nels does not always provide good performance, we propose a machine learning-based

technique to select pairs of kernels that can benefit from co-execution based on their

static code characteristics and dynamic parameters.

This chapter is structured as follows: Section 5.1 introduces the background of con-

current kernel execution. The architectural difference, which is discussed in Section

2.1, between CPU and GPU, requires a distinctive technique to increase GPU utilisa-

tion hence improve system performance. Some of the concurrent kernel methods that

are reviewed in Section 3.2.1 have been discussed in this section again, as being the

state-of-the-art approach, they provide the best performance. We will compare our ap-

proach with them in the following sections. Section 5.2 provides motivation showing

that the co-execution of carefully selected kernels improves performance; otherwise,

performance degrades. Section 5.3 describes how concurrent kernels are constructed

by static merging. Section 5.4 and 5.5 presents our experimental setup and the ex-

perimental results. Section 5.6 provides a detailed analysis of our approach. Finally,

Section 5.7 summarizes the chapter.

5.1 Introduction

GPUs and CPUs are architecturally different. CPUs are latency-oriented systems with

few cores but large amounts of cache memory. They use sophisticated branch predic-

67
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tion and speculative fetching logic to increase instruction-level parallelism. GPUs by

contrast, are throughput-oriented systems. Instead of focusing on per thread perfor-

mance improvement, they increase throughput by massive parallelism. Each genera-

tion of GPU has more computing units, larger register files and shared memory than its

predecessor to execute a greater number of threads. More hardware resources usually

mean higher performance, however, it can lead to a low utilization. Low resource uti-

lization restricts the expected performance brought by hardware development, as only

a fraction of the hardware is utilized at any given time. Kernels running on the GPU

are constrained by various limitations. Normally, they exhaust one of the resources,

e.g. registers, but leave the others underutilized, e.g. local memory.

The core scheduling unit, namely the workgroup, contains a group of threads that

execute concurrently and share local data. Several hardware constraints limit how

many threads each block of a launched kernel can have. These hardware limitations

include the maximum thread numbers, maximum dimensions of each workgroup, reg-

isters, and local memory consumptions. Usually, only one of the above requirements

determines the size of the workgroup, leaving the others underutilized. Hardware un-

derutilization restricts the system from approaching its peak performance.

Concurrent kernel execution is a promising solution to increasing GPU utilization.

As different kernels have various resource requirement, running multiple instances on

the same GPU at the same time can optimize the hardware configuration since some of

the kernels could use the spare resources left by others. One of the best-known works

is Elastic Kernel (EK) [Pai et al. (2013)], which scales the workgroup size to make

multiple kernels fit the same GPU. By launching through different CUDA streams, the

blocks, or workgroups, from candidate kernels arrive concurrently, then run in parallel.

Since the hardware executes various kernel functions, its utilization is improved.

Concurrent execution enhances resource utilization then boosts system performance

only if the co-running kernels are carefully selected. If multiple kernels are compet-

ing for the same hardware resource and leave others underutilized, overall utilization

is poor, and performance will be even worse than running those kernels sequentially.

Therefore, a smart selection is necessary when we adopt the approach of concurrent

kernels execution.

To select the kernels to run in parallel, Energy-Efficient Concurrent Kernel (EECK)

[Jiao et al. (2015)] profiles each candidate application ahead of time to acquire runtime

features. After training from these features, a neural network model determines which
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kernels run together and which do not improve energy and throughput at the runtime.

Since those features cover a broad range of attributes of the application, the predictive

model has useful information about the kernels to find good combinations. While this

approach works well, it introduces a substantial runtime overhead in acquiring those

crucial features.

Prior work limitation There are two significant problems in prior work. The first

is that they are all profiling-driven approaches, requiring running the applications in

advance. The cost brought by this method is not trivial and is not feasible in a dynamic

environment with unknown user jobs. Therefore, profiling ahead of time then execut-

ing is unrealistic in practice for multi-user applications. Secondly, prior work issues

workgroups of distinct kernels to the GPU alternately to perform concurrent execution,

which is an approach that is not accurate enough in practice. The assumption of this

method is that the hardware block scheduler dispatches workgroups to the computing

units by a round-robin algorithm, which is unfortunately is not always true. Indeed, the

launching order of workgroups, is undefined [ NVIDIA (2015)]. Also, the approach of

interleaving kernel workgroups has a problem of adaptivity, as workgroups of separate

kernels have a various length of execution time on different GPU devices. Therefore,

workloads could easily execute sequentially if the time for workgroup execution is

shorter than the API function call for issuing them.

New Approach To solve the above problems, we propose a smart concurrent kernel

execution in this chapter. Instead of profiling every candidate application ahead of time

to find the best co-running combinations, we use an offline trained model to classify

those targets according to their predicted associativities. Then, rather than issuing ker-

nels via independent command queues, or streams, at runtime, we merge the target

kernels by a source-to-source JIT compiler and launch the newly created kernel on the

GPU as a replacement. In our approach, we use static features and runtime parameters

to train the offline model and classify the new arriving jobs. Hence, there is no need

for new jobs profiling. This approach outperforms existing techniques and in the fol-

lowing parts of this chapter, we present the details of the implementation and the result

analysis.
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5.2 Motivation

Concurrent execution of kernels on a GPU can enhance hardware utilization thereby

improving performance. However, the improvement depends on the programs selected

and how much of the GPUs resources are allocated to each. The amount of GPU

resource allocated to each kernel is called the mixing proportion. To demonstrate the

impact of kernel selection and mixing proportion, we run all pairwise combinations

from six benchmarks, three of them from Polybench and the other three from Parboil

benchmark suite on AMD 7970 GPU, with a Tahiti architecture.

Figure 5.1 shows the results. Here the x-axis denotes the pair of programs run

together, and the y-axis describes the performance improvements over running the

kernels non-concurrently. Each pair has three performance bars. The first corresponds

to 25% of the GPU allocated to the first program with the rest assigned to the second

program. The second and the third bar represent 50% and 75% respectively. The

performance of many concurrent kernels is poor and only improves in certain cases.

In figure 5.1, no matter how atax and sgemm are combined, their performance

is always worse than running these two kernels sequentially. Kernel pairs, such as

3mm+mriQ, sgemm+mriQ, sgemm+sad, and mriQ+sgemm, experience a higher through-

put when running them concurrently. Other kernel pairs, such as 3mm+atax, gemm+3mm,

and mriQ+atax, can achieve good performance, but the correct allocation of resources

is critical. Otherwise, they will slow down.

Sharing resource among kernels is complex. The widely accepted idea is that the

intensity of computation and memory access have a significant impact on resource

sharing. Therefore, the mix of compute-bound and memory-bound applications would

be preferable for the sake of performance.

To examine how performance is affected by the concurrent execution, we profile all

those candidate kernels and list the profiling information in Table 5.1. There are two

columns showing the computing and memory accessing intensity respectively. Apart

from the time spending on computation and memory access, the rest of the time is cost

by the hardware unit stalls and conflicts, such as write unit stall, memory unit stall,

fetch unit stall, and memory bank conflict. As these kinds of information are very

low level and vary with the particular hardware resource configuration as well as the

characteristics of the input data, they are excluded from our experiment. The data in

each column reports the percentage of GPU time the computing unit and memory unit

is active. Take atax kernel1 for example; the computing unit is active for 0.315%



5.2. Motivation 71

atax+segmm

atax+gemm

atax+sad

3mm+sad

3mm+atax

3mm+mriQ

gemm+sad

gemm+3mm

gemm+mriQ

segmm+sad

segmm+3mm

segmm+gemm

mriQ
+sad

mriQ
+segmm

mriQ
+atax

200

150

100

50

0

50

100
P
e
rf

o
rm

a
n
ce

 I
m

p
ro

v
e
m

e
n
t

25% Kernel-1
50% Kernel-1
75% Kernel-1

(a) Performance improvement by concurrent kernel execution. (result in percentage)

Figure 5.1: Multi-Kernel execution on CPU+GPU platform

of the GPU time, and the memory unit is busy for 88.86%. Therefore, we denote

atax kernel1 as a memory bound application. We list all the six applications accord-

ing to their computation intensity ascendingly. Most of the applications are memory

bounded except sgemm and mri-q.

Table 5.1: Compute vs Memory Intensity

Kernels Compute Intensity Memory Intensity Benchmark Suite

atax kernel1 0.315 88.86 Polybench

sad calc 8 1.7 90.27 Parboil

sgemm 7.58 32.43 Parboil

3mm kernel2 20.83 87.41 Polybench

gemm kernel 23.3 88.9 Polybench

mri-q 35.16 0.16 Parboil

Combining computing-intensive and memory-intensive application can improve

in some cases, but not always necessarily so. As a computation-bounded applica-

tion, mri-q is ALU heavy but rarely accesses memory. Co-running mri-q with other
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memory-bounded application, like sad, could improve performance, no matter how the

two kernels are mixed. However, if we co-execute mri-q with another memory bound

kernel, such as atax, the mixing ratio is critical, though according to profiling atax is

as memory-bound as sad. From figure 5.1, we can see, the greater proportion mri-q

has, the better overall performance is. For an application like sgemm, co-running with

mri-q improves performance perhaps because it has low pressure in computation and

memory accessing. But, on the other hand, applications like 3mm and gemm, which are

balanced workloads and both have heavy usage of ALU and memory, can still bene-

fit from co-execution with mri-q, no matter how they mix with mri-q. Finally, as a

low resource pressure workload, sgemm can experience better performance from co-

execution with some other applications, such as mri-q and sad, but it can also suffer

a slowdown with workloads, like atax and gemm.

All in all, concurrent kernel execution is a promising approach to improve sys-

tem performance by strengthening hardware utilization. However, selecting the best

co-execution candidates is a non-trivial task, as the widely accepted idea of mixing

computing-intensive with memory-intensive kernels does not always work well, and

in some cases, it degrades.

5.3 Concurrent Kernel Construction

There are two main approaches, workgroup slicing and kernel fusion, that enable mul-

tiple kernels to run concurrently on GPU. Though modern GPUs support concurrent

kernel execution, the default strategy is back-to-back execution. The first few work-

groups of the next kernel can share some spare computing units if the last few work-

groups of the current kernel cannot exhaust all of them. Concurrency only occurs at

the moment of one kernel replacing another, and most of the time all hardware is oc-

cupied by a single kernel. Workgroup slicing and kernel fusion are two widely used

approaches to bypass the limitation of the back-to-back concurrency.

Workgroup Slicing

Workgroup slicing, or block slicing, is a general technique to share a GPU among dis-

tinct kernels. The overall workgroups have been separated into several slices, where

each slice holds an equal number of workgroups. The number of workgroups within

each slice is no more than the number of SIMD processors, so as to leave some hard-
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ware to fit other kernels. Launching workgroup slices through separate command

queues makes the candidate kernels run in parallel. By using different sized slices,

kernels share the hardware in proportion.

Workgroup slicing works under the assumption that the hardware schedules work-

groups in a First-In-First-Out (FIFO) strategy. Unfortunately, the precise order of

workgroup scheduling is not defined. If the execution time of a workgroup is faster

than the dispatching API call, only a proportion of computing units is active at any

given time. This leads to worse utilization compared to the default back-to-back con-

current strategy.

Kernel Fusion

The alternative approach is kernel fusion, a static method that fuses candidate kernels

to create a single new one, then dispatches it to the GPU. Kernel fusion is a popular

method, particularly for kernels with data dependencies [Lutz et al. (2015)]. If one

kernel’s input is another kernel’s output, fusing these two kernels could eliminate extra

data movement between the main memory and GPU memory. Also, data locality could

be improved, as the code for processing another kernel’s output has a higher chance of

finding the needed data in its cache.

The system environment has less impact on fused kernels when compared to its

slicing counterpart, as the kernel is issued to the device only once. Launching the ker-

nel once, instead of iteratively issuing slices one after another, exposes fewer chances

for the operating system to preempt its workgroup dispatching. Also, the sequential

executing of workgroups caused by short workgroup execution time does not occur.

As the new kernel is created by source-to-source transformation, this process is not

visible to the hardware.

Kernel fusion has a shortcoming as well. The main problem is that it cannot vary

the proportion of the mixing. Because the kernels are physically compiled together,

and the new kernel has a fixed number of workgroups, there is no room for controlling

the combination ratio adaptively.

In this thesis, we propose another approach to construct concurrent kernels. It

adopts the source-to-source kernel transformation proposed in kernel fusion but im-

proves it by enabling finer control on the mixing ratio. We will show more details

about this approach in the following subsections.
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5.3.1 Overview of Kernel Merging

We create a concurrent kernel by a source-to-source transformation with candidate

kernels as components of the combined one. The newly created kernel conditionally

executes either of the original ones. Depending on a condition, we can vary the pro-

portion of each original kernel executed.

Listing 5.1 shows a simple example of merging two kernels together. The argu-

ments belonging to the distinct kernels chain up to form the new kernel’s argument

list. To make the merged kernel work properly, we have to take care of some seman-

tic details. Since a combined kernel has a larger number of global threads than its

components, the index referenced by calling the built-in function get global id()

in the merged kernel is no longer valid. We need to map the thread index from the

new global thread space back to its original thread space. We also have to take care of

the NDRange of the combined kernel and its component kernels. Finally, we have to

choose a proper condition to ensure the correct mixing proportion.

Listing 5.1: Example of two kernels merging

__kernel void merged_kernel(kernel-1 arguments, kernel-2 arguments){

if(condition_is_true){

source code of kernel-1

}

else{

source code of kernel-2

}

}

As shown in Listing 5.1, once two kernels are merged, the new kernel function

takes arguments from both kernels as its argument. Besides, the new kernel has to

acquire extra arguments about the number of global and the local threads needed by

each of the kernels that are to be merged, so as to recalculate new thread IDs for each

of them after merging. The thread ID recalculation method is presented in Listing

5.2. Once we use workgroup ID as a guide to have a finer control on the mixing

ratio of two kernels, as shown in Listing 5.3, the thread index recalculated by the

method in Listing 5.2 would be spoiled, as neither of the sub-kernel has continuous

workgroups. Therefore, instead of recalculating thread index directly from the API

function get global id(0), we firstly transform the workgroup index from discrete

to continuous, as shown in Figure 5.2. Then, we use the new workgroup ID to calculate
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thread index for each sub-kernels.

5.3.2 Thread Index Transformation

Hardware maps workgroups and threads directly to computing units. This one-to-one

mapping simplifies the design complexity by using logical objects as physical ones and

works efficiently when this scheme is dealing with a single kernel. However, when

kernels contain separate logical functions, this one-to-one mapping fails. We need to

decouple logical workgroups and threads from their physical equivalents.

We adopt the approach proposed in Elastic-Kernel [Pai et al. (2013)] to transform

threads from logical space to physical space. The key idea is to attach extra param-

eters about each sub-kernel’s global NDRange and workgroup information to enable

recalculation of thread identifiers. The recalculation takes place in every sub-kernel

separately. Listing 5.2 shows the details of the threads recalculation.

Listing 5.2: Pseudo code for thread index transformation. global size 0,

global size 1, local size 0, and local size 1 are the arguments passed to

the merged kernel that represent the original kernel’s NDRange and workgroup in-

formation. block id and thread id are logical workgroups and thread identifiers.

block index x and block index y indicate the index of the workgroup in x and y

dimension. thread index x and thread index y designate the offset of a thread

within the workgroup in x and y dimension.

int gtid = get_global_id(0)

if(gtid < global_size_0 * global_size_1){

int block_id = gtid / (local_size_0 * local_size_1);

int thread_id = gtid % (local_size_0 * local_size_1);

int block_index_x = block_id % (global_size_0 / local_size_0);

int block_index_y = block_id / (global_size_0 / local_size_0);

int thread_index_x = thread_id % local_size_0;

int thread_index_y = thread_id / local_size_0;

source code of original kernel follows here

}

We have a unique thread identifier by calling the OpenCL built-in function get glob

al id(0). As long as the thread identifier obtained by the API function falls into the

range of logical space, it is a valid index; otherwise, the index goes beyond the bound-
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ary and does not belong to the related original kernel.

We then easily identify which logical workgroup it belongs to by dividing it by the

original workgroup size. Subsequently, we can also obtain the index on each dimension

of both workgroups and local threads. By replacing each thread or workgroup ID with

the transformed logical one, the sub-kernel can be executed as before, no matter how

many other kernels co-exist.

5.3.3 Kernel Mixing Ratio

With the support of the thread transformation above, we can mix kernels. As shown

in listing 5.1, the merged kernel is created by putting the original kernels into separate

branches of an if-statement. The condition is responsible for the sub-kernel selection

and controls the kernel mixing ratio.

Listing 5.3: Pseudo code for merged kernel

__kernel void opencl_kernel(kernel-1 arguments, kernel-2 arguments,

const int kernel1_global_size_0, const int kernel1_global_size_1,

const int kernel1_local_size_0, const int kernel1_local_size_1,

const int kernel2_global_size_0, const int kernel2_global_size_1,

const int kernel2_local_size_0, const int kernel2_local_size_1,

const int M, const int N){

if(get_group_id(0) % M < N){ // Launch kernel 1

// recalculated thread id

... ...

// original kernel-1

... ...

}

else{ // Launch kernel 2

// recalculated thread id

... ...

// original kernel-2

... ...

}

}
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In the OpenCL standard, the workgroup is the core scheduling unit. Each work-

group is assigned to a computing unit. Once a workgroup is allocated, it cannot migrate

from one computing unit to another. Threads within the same workgroup have private

register files but can share a common cache. The workgroup is allocated to a computing

unit until all of its consisting threads are finished. This characteristic of the workgroup

makes it a good guide to control the kernel mixing. The reason for controlling kernel

mixing at workgroup level, instead of thread level, is that no extra divergence will be

introduced by this method.

Listing 5.3 gives an example of how to use workgroup control kernel mixing ratio.

There are two extra parameters, namely M and N, where M is the number of computing

units available, and N is the number of units kernel1 is to run. For example, if there

are 16 computing units in a particular GPU, then at any given time 16 workgroups

could run in parallel. So, we can set M to 16 since it represents the maximum number

of parallel running workgroups. N could be any number between 0 and 16. Then,

when a workgroup arrives, the hardware selects and performs the corresponding part

of the code within it by comparing its ID with M and N.

Although by using workgroup ID, we can control the kernel mixing ratio, this in-

troduces another problem that splits the thread space into two parts. Each sub-kernel

holds only a part of the space and the other sub-kernel has the rest. The space split-

ting is caused by division operation on workgroup ID. Therefore, the workgroups

in neither sub-kernel have a continuous index and the thread ID acquired by calling

get global id(0) is not continuous as well. Noncontinuous thread index invalidates

the original kernel semantics. In the next section, we show how to tackle this problem

by using workgroup ID transformation.

5.3.4 Workgroup ID Transformation

Workgroup based selection causes a problem of thread space splitting. Take two ker-

nels 2:3 mixing for example as shown in figure 5.2. When we launch it, we would

like to have 40% of the hardware computing units serve one component kernel, and let

the other one have the remaining 60%. Here we set M and N to 5 and 2 to get the 2:3

mixing ratio. For the workgroups if its remainder for modulo operation is less than 2, it

will perform its sub-kernel1 part of the code; otherwise, it will activate its sub-kernel2

functions.

The left-hand side figure in figure 5.2 shows the example. In this example, the
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Figure 5.2: Discrete to contiguous conversion

compound kernel has 20 workgroups; each workgroup contains the code for both orig-

inal kernel-1 and kernel-2. After modulo operations on ID, those workgroups have

an identifier of 0, 1, 5, 6, 10, 11, 15, and 16 will choose to run kernel-1. The oth-

ers that are holding an ID of 2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18 and 19 will perform

kernel-2 instead. Consequently, though sub-kernels have enough workgroups to ful-

fill their function, the identifiers of these workgroups are not continuous, which lead

thread identifiers among these workgroups to be no longer continuous either.

The irregularity in workgroup IDs is caused by splitting them into two parts, ac-

cording to their physical ID, to perform different sub-kernels. Take kernel-1 in Fig-

ure 5.2 for example. Its third workgroup has a physical ID of 5, but logically it should

have a value of 2. We format the workgroups into a 2D matrix with each row has M

workgroups. Since the kernel selection has been made by a physical workgroup ID

modulo M, the workgroups locate at the left-hand side of the dotted line belongs to

kernel-1 and the ones at the right-hand side belongs to kernel-2.

The fundamental idea is to skip the unrelated workgroup IDs that belong to the

other kernel on the same row (or level). Therefore, for the sub-kernel that has physical

workgroups start from 0, there is no shift for workgroups on level-0. On level-2,

the workgroups have to move forward by M-N steps because those M-N workgroups are

taken by the other sub-kernel physically. Next, for the workgroups on level-3, they

are asked to move 2*(M-N) steps. M-N steps for the places in level-1 and another M-N

steps for the holes in level-0.

The logical workgroup IDs are recomputed by using equation 5.2.
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Figure 5.3: Training a predictive model. Raw features are firstly extracted from ker-

nel files, which contain static features, and runtime parameters, or dynamic features.

The feature vectors normalized and reduced PCA. They are summed from two kernels

according to their merging proportion. Finally, the learning algorithm is trained on the

feature vectors. As the result, the trained model will be used to classify the new coming

kernels.

Kernel1 : new group id = physical group id− level ∗ (M−N) (5.1)

Kernel2 : new group id = physical group id− (level +1)∗N (5.2)

After transforming the logical workgroup IDs back to continuous integer sequence,

the global thread indices for each sub-kernels can be recalculated by using equa-

tion 5.3. Since the physical workgroup size is fixed, we can use it with the transformed

workgroup indices to get the logical global thread indices for the sub-kernels:

new global id = logical group id ∗get local size(0)+get local id(0) (5.3)

5.4 Predictive Model

Rather than pairing up kernels according to their profiling information, this chapter

proposes a machine learning approach to find out the appropriate kernels that can ben-

efit from concurrent execution on the same GPU processor. This section describes how

to build the model with the kernel’s static features and runtime parameters as input.

5.4.1 Overview

The predictive model is trained off-line by using a supervised learning algorithm. The

training data consists of a pair of feature (the input object) and label (the desired output
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value). Fed by the training samples, the learning algorithm deduces a function to map

the features to the related labels. This function works as a pre-trained model on the

unseen instances to label them into various categories. The learned model classifies

the new data into a category.

The model in this chapter is trained from program features, which include both

static and dynamic features. Figure 5.3 shows the training process, which is further

divided into three sub-steps. Firstly, the raw features are derived from the application.

As OpenCL kernels are just-in-time (JIT) compiled, the code features, namely static

features, are extracted by a JIT compiler. Runtime parameters, such as the input sizes,

the number of working threads, and the NDRange of a kernel instance, are acquired

after the application started but before its kernel is launched. Once the raw features

are obtained, they are processed to construct feature vectors. Several procedures have

taken place in this step, such as features normalization, feature space reduction, and

concurrent kernel features creation. Finally, a learning algorithm works on the feature

vectors to train the model that will be used to classify unseen kernels according to

whether they can experience performance improvement from concurrent execution, or

not.

In the following section, we first introduce the machine learning algorithm, then

describe how features are obtained and manipulated to create feature vectors. Finally,

a graph based scheduling approach is used to find out the maximum pairs of concurrent

kernels.

5.4.2 Machine Learning Model

The predictive model trained in this chapter is based on Support Vector Machine

(SVM) and used to decide whether or not to run two kernels concurrently. The SVM

classifier, with a radial basis function (RBF) kernel, performs a non-linear classifica-

tion that maps the features into a high-dimensional space, then constructs a hyperplane

in this high-dimensional space to do the classification.

As a supervised learning model, SVM is trained from a group of training sam-

ples that consist of features and labels. The features describe the kernel codes static

characteristics and dynamic parameters. As OpenCL kernels are JIT compiled, the

static features are extracted by a JIT compiler when it is called by the application at

the runtime. Dynamic features can be derived before kernel launch, and they include

the input/output buffer size, the number of working threads, and the NDRange of the
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kernel instance. The labels in each training sample represent whether or not the kernel

pair in that sample could experience performance improvement from concurrent exe-

cution. For training samples, we exhaustively run the kernels in pairs and compare the

execution time with the sequential processing time so as to get the performance label.

As this procedure is done to train the model, the overhead is a one-time cost and after

the model has been built no further overhead will be introduced.

5.4.3 Task Features

The features used in training the model carry the critical information about the ap-

plication. As a kernel’s performance is determined by its function and the working

environment, therefore, two types of features that are used in this chapter, which are

static features and dynamic features.

Platform information is excluded from the training features to limit the feature

space. Details about the hardware resources, such as the number of processing cores,

processor/memory working frequencies, the number of cache layers, and cache sizes

are not included as training features, as all these configurations are fixed for any par-

ticular platform. We, therefore, build a model per platform. The impact of hardware

settings affects the application in the way of its execution. Hence, the characteristics

of a program and its performance on a particular platform carry all the information a

predictive model needs for classification.

Static Code Features

The static code features of a kernel is a set of integer values that describe the number of

instructions of each instruction type. The instructions are derived from the intermediate

representation (IR) that is generated by a JIT compiler. Code features carry information

about the kernel, such as the number of operations in computing, memory accessing,

and branches choosing.

Instructions of different types have separate latencies and throughput. We, there-

fore, weighted them differently in static features. Table 5.2 shows the details of the

weighted instructions for both Nvidia and AMD platform. We use the time of integer

addition as a scale to measure other operations. By assuming integer addition cost

1 unit of execution time, other operations could be calculated accordingly. Taking

Nvidia’s Kepler GPU for example, each streaming multi-processor has 192 single-

precision CUDA cores, which could perform integer or float operations. Therefore,
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Table 5.2: Weights of static features. Different operations performance are measured

in the weight of interger operations. For Nvidia GTX 780, the performance of double

precision is 1/24 of single precision. Hence, the double precision operation’s weight is

scaled up by 24 over single precision operation. Similar calculations take place on AMD

double precision operations as well.

NVIDIA (GTX 780) AMD (Radeon 7970)

Operation Type Weight Type Weight

Add, Sub, int 1 int 1

Max, Min float 1 float 1

double 1 × 24 double 1 × 4

Mul int 1 int 1

float 1 float 1

double 1 × 24 double 1 × 4

Mad int 4 int 4

float 4 float 4

double 4 × 24 double 4 × 4

Div int 8 int 8

float 8 float 8

double 8 × 24 double 8 × 4

And, Or, int 1 int 1

Xor, Shl, float - float -

Shr double - double -

sinf, cosf float 6 float 6

tanf, expf

sqrt

Load, Store - 100 - 100
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single-precision and integer operation have the same weight. Double-precision in this

particular Kepler GPU is 1/24 of single-precision performance; therefore, its operation

is weighted 24 times of the basic unit.

Multiply-and-Add (Mad) and Division are heavier than simple integer operation;

therefore, they are highlighted by having a bigger weight. Logical operations in GPU

processing cores usually cost one basic time unit (or clock cycle); hence, they have the

smallest instruction weight. Special functions, such as sine and cosine, are performed

on designated hardware, in Nvidia this hardware is Special Function Units (SFU).

Typically, the number of SFU is far less than the CUDA cores on Nvidia platform,

and the situation is the same for AMD GPUs. Therefore, the special operations have a

higher weight.

Finally, memory accessing operations are given the heaviest weight, due to their

long processing latencies. A load or store instruction could take hundreds of GPU

clock cycles to prepare data to the processors or write results back to the global mem-

ory. The long latency of memory instructions is described with the highest weight in

static features.

Runtime Parameters

Runtime parameters depend on input data. Typical dynamic features include the in-

put/output data sizes, the NDRange sizes, the number of workgroups within the NDRange,

and the number of working threads residing in the workgroup. Unlike static features,

which are fixed and remain static for each kernel, dynamic features change with the

input of the kernel. The size and the content of the input data, determine a kernel’s

dynamic features and impact the kernel’s performance.

Feature Processing

Using raw features directly has two principal issues. First, the number of the features

is large. There are around 50 kinds of instruction that could be derived from the LLVM

intermediate representation. Too many features relative to the number of samples make

model training difficult[Hawkins (2004), Ahmad and Narayanan (2015), Han (2014),

Mierswa (2007)]. It may lead to overfitting where the model fits the training data too

tight and performs poorly on the target instances. Second, the values of the feature have

wide ranges, and this causes a problem for the learning algorithm, as the feature with a

broad value range can dominate training. In order to tackle the above problem, features
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Table 5.3: Combined feature vector for concurrent kernel model

Features Description

F1 comptInst / (allInst) compute instruction ratio

F2 memInst / (allInst) memory instruction ratio

F3 br / (allInst) branch ratio

F4 barriers / (allInst) barriers ratio

F5 dataSize / (MaxMem) datasize

F6 dataSizeRatio1 first kernel datasize ratio

F7 dataSizeRatio2 second kernel datasize ratio

F8 globalWorkSize1 / (globalWorkSize) first kernel global threads ratio

F9 globalWorkSize2 / (globalWorkSize) second kernel global threads ratio

F10 localWorkSize1 / (localWorkSize) first kernel local threads ratio

F11 localWorkSize2 / (localWorkSize) second kernel local threads ratio

are grouped together according to their similarity and normalized into a unified range

before use. Finally, we combine the features from two candidate kernels to create the

feature vectors, with which the machine learning algorithm learns and evaluate the

performance of two kernels concurrent execution. The combined features are shown

in table 5.3.

5.4.4 Kernel Scheduling

The new arriving kernels, are classified by the off-line trained model in pairs according

to the estimated performance categories, which identify either good or poor throughput

compared to sequential execution. In practice, there are multiple pairing up schemes

for a given kernel. The number of the kernels that can co-run with a given kernel and

improve the throughput could be 0, 1, or any the number between 1 and n-1 (here n

stands for the whole number of tasks). When the pairing choice is 0, it means that the

kernel is better to run alone on the GPU because the system throughput would decrease

when it co-runs with any other n-1 kernels. The existence of multiple pairwise schemes

requires a proper scheduling method to maximize the number of concurrent kernel

pairs.

Kernel Pairs Selection

Kernel pairs selection has a great impact on overall performance. To discuss the effect

of various pairing schemes, consider the example in figure 5.4. There are five kernels,

which are represented as a-f, queuing for the GPU device. In figure 5.4, we use value

1 and 0 to identify the associativity of two kernels. The value 1 represents that running
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the two selected kernels in parallel is better than in sequential, and the value 0 means

the opposite.

As the scheduler is only interested in the kernel pairs that could improve perfor-

mance, we use a graph G = (V,E) to describe the relationship of the kernels. The

vertices represent the kernels and the edges between two vertices means running those

two kernels concurrently on GPU has a better overall performance than executing them

sequentially. Kernels that are not suited for co-running are disconnected from each

other in the graph. Figure 5.5a shows the pairwise kernel graph for the example in

figure 5.4.

The degree of the vertex in the pairwise kernel graph identifies the number of other

kernels that could experience throughput improvement when they pair up with the

kernel that is represented by the vertex. In figure 5.5a, the kernel a has the best asso-

ciativity. The system has an optimized throughput when kernel a pairs up with any of

the four kernels from b, d, e, f. Vertices, like c and e, have poor associativity, they can

only improve the performance when space sharing the GPU with particular kernels, in

this example they are vertices b and a.

Selection algorithms schemes affect the performance by selecting a different num-

ber of kernel pairs. Figure 5.5b and figure 5.5c show two selection methods. In fig-

ure 5.5b, two pairs of kernels, which are <a,b> and <d,f> are selected, and the rest of

the kernels (c and e in this case) are running sequentially since co-running them would

lead to a decreased throughput. Figure 5.5c shows a better pairing scheme, in which

all kernels are paired up, and it has an optimized performance compare to the scheme

in figure 5.5b.

Scheduling Algorithm

Finding the maximum number of kernel pairs is equivalent to finding out the maximum

matching in graph theory. In graph theory, a matching is described as a set of edges,

in which no vertex is shared by two edges[Savage (2016)]. Therefore, the problem

of finding the maximum kernel pairs can be equally transformed into the problem of

finding out the maximum independent set in a graph. In this thesis, we use blossom

algorithm [Edmonds (1965b), Edmonds (1965a), Ahn et al. (2015), Blum (2015), Ka-

vathekar (2005)] to find the maximum matching. It is a well-known algorithm as it has

a polynomial complexity. The key idea of the blossom algorithm is to find the odd-

length cycle in the graph, namely blossom, and then contract it into a single vertex.

After that, there are no cycles in the transformed graph and the independent edges can
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Figure 5.4: Five kernels (a to f) pairing associativity. If two kernels co-execution is

faster than running them sequentially, this pair of kernel is identified by 1, otherwise by

0.
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Figure 5.5: The kernel pairs can be represented as a graph, in which a kernel is rep-

resented as a vertex and the edge between two vertices means the co-execution of

corresponding two kernels can improve performance. A greedy pair selection scheme

pairs up whatever the kernels it encounters first. In many cases, this leads to a sum-

optimal selection (shown in b). The best selection can find the maximum number of

kernel pairs and outperform the greedy method.
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be calculated. As the blossom is the odd-length cycle, the independent edges can be

easily calculated.

Listing 5.4 shows the algorithm. Each vertex is labeled as odd or even alternatively

by traversing the graph. The starting vertex is labeled as even, and the next one is

labeled as odd, and so on. Next, the algorithm shrinks the graph by contracting the

blossom into a vertex. Once all blossoms are replaced by vertices, the independent

edges are calculated.

Listing 5.4: Maximum Matching by Blossom-Algorithm. Taken from [ Kavathekar (2005)]

Init an empty matching, M

while(a blossom || an augmenting path){

Grow forest, labelling the vertices "even" and "odd"

if(there is a blossom in the graph)

shrink the blossom to obtain a new graph G

continue

else

find all even-even edges to obtain a maximally disjoint set of

augmenting paths

}

5.5 Experiment Setup

We compare our approach to two existing schemes.

Elastic Kernels (EK) This approach runs two kernels concurrently and merges the

corresponding host programs. It does not have a model to determine what to merge. It

co-executes all kernels in pairs.

Energy-Efficient Concurrent Kernels (EECK) This approach is similar to EK but

requires profiling of the applications beforehand to determine what to merge. It uses

profiling information from a small data set to guide kernel mergings for the larger data

set.

Separate or Concurrent on GPU(SoC GPU) Our approach to concurrent execution

of kernels.

To make a fair comparison, we implement EK and EECK and ignore the intro-

duced overhead i.e. the cost of profiling and recompilation. Such overheads usually

outweighed the benefits, making them hard to use in practice. Throughout the com-
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Table 5.4: Hardware platform

Intel CPU NVIDIA GPU AMD GPU

Model Core i7 4770K GeForce GTX 780 Radeon HD7970

Architecture Haswell-DT Kepler GK110 Tahiti XT

Core Clock 3.4 GHz 1215 MHz 1000 MHz

Core Count 4 (8 w/ HT) 2304 2048

Memory 16 GB 3 GB 3GB

Memory Bandwidth 21GB 288 GB 264 GB

Table 5.5: Benchmarks

Suite Benchmarks Benchmark
Pa

rb
oi

l

BFS Mri-Q

Sgemm Spmv

Sad

Pl
oy

be
nc

h ATAX BICG

CORRELATION GESUMMV

SYR2K SYRK

2DCONV 3DCONV

GEMM GRAMSCHMIDT

2MM 3MM

COVAR FDTD-2D

MVT

parison, we use a unified metric, which is system throughput, to evaluate the results.

The experiments are carried on a number of benchmarks from Parboil and Polybench

benchmark suits.

5.5.1 Platform and Benchmarks

We evaluate on two CPU+GPU systems. Both have an Intel Core i7 4-core CPU and

16GB main memory. One platform contains an NVIDIA GeFore 780 and the other one

contains an AMD HD 7970, see table 5.4. Both systems host OpenSUSE 12.3 Linux.

We use LLVM 3.4 for JIT compilation and benchmarks are compiled using GCC 4.7.2

with -O3 option.

We restrict our attention to benchmarks with 1D and 2D NDranges from two main-

stream OpenCL benchmark suites (see table 5.5): the Parboil and the Polybench bench-

mark suite giving 20 programs in all .
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5.5.2 Performance Evaluation

We evaluated our schemes with 500 different task configurations. We selected 10 dif-

ferent task queue sizes containing between 2 and 64 kernels. For each task queue

size, we randomly selected 50 different programs, to give 500 configurations. As be-

haviour is dynamic, we evaluated each configuration 30 times and report the median

performance. This results in 6000 experiments per policy. Performance is presented as

speedup relative to executing in sequence on a GPU.

5.6 Results

In this section, we evaluate our approach against alternative approaches and analyze

the behavior and accuracy of our predictive model. As the performance is the main

goal of runtime optimation and task scheduling, we focus our results discussion on

system throughput in this and the subsequent chapter.

We divide the experiments into three groups according to the number of OpenCL

kernels in the task queue. In the small group, there are less than 16 kernels; in the

medium group, there are 16 to 32 kernels and in the large group, there are 32 to 64

kernels. Figure 5.7 shows the results of all three groups and the average performance

improvement. The STP performance has been increased for all of the approaches on

both of the platforms. The more kernels available means there are more opportunities

for a successful concurrent execution. For EECK and our approach, there is a sub-

stantial performance improvement with the number of kernels increasing. The gain is

larger on NVIDIA probably due to greater spare GPU resources. However, the perfor-

mance of EK is constantly poor, in many cases, it is even worse than the baseline. On

average, our approach is 27% better than EK and 11% better than EECK on NVIDIA

platform. On the AMD platform, our approach is 22.7% better than EK and 11.2%

better than EECK.

Figure 5.6 shows more details of results on NVIDIA and AMD platform respec-

tively. The x-axis is a ranked in order of experiment. On both platforms, our approach

consistently outperforms the other techniques. In the worst case, our approach is 6%

and 4% better than the baseline on NVIDIA and AMD platform; however, EECK and

EK are 4% and 5% worse than baseline on NVIDIA platform and are 10% and 45%

worse than baseline on AMD platform. Concurrent execution of the wrong kernels on

AMD is costly.
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(a) System throughput improvement on NVIDIA platform
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(b) System throughput improvement on AMD platform

Figure 5.6: Performance of all the GPU only experiments on NVIDIA and AMD plat-

forms. In 500 different task configurations of queue contains 2 to 64 kernels, our ap-

proach consistently outperforms the other techniques. In the worst case, our approach

is 6% and 4% better than the baseline on NVIDIA and AMD platform.
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On maximum performance improvement, our approach is 70% and 52% better than

baseline on NVIDIA and AMD platform, while the corresponding results for EECK

and EK are 63%, 41% on NVIDIA platform, and 46%, 31% on AMD platform.

5.7 Analysis

When running two kernels concurrently, the characteristics of these kernels have an

impact on the resulting performance. Such characteristics includes computation and

memory access intensity, branches within each kernel, NDRanges, processing data

sizes, and so forth. Here we examine the effects of kernel characteristics on perfor-

mance to see if it can provide insight into constructing concurrent kernels. To keep the

length of this chapter short, all results in the following sections are from the Nvidia

platform.

5.7.1 Impact of computation intensity

Figure 5.8-a shows the impact of kernel compute intensity on two kernels concurrent

execution. The candidate kernels are listed on the x-axis and y-axis separately. The dot

in the graph represents the performance of concurrent execution of two associated ker-

nels, one from the x-axis and the other from the y-axis. The color of the dot represents

whether the concurrent execution improves performance, or not. If the dot is blue,

we can expect a better throughput from the two corresponding kernels co-running.

Whereas, if the dot is red, there is a performance slowdown introduced by concurrent

execution. The size of the dot shows the changes on performance in either direction.

A bigger blue dot means better improvement and a bigger red dot stands for worse

slowdown.

The figure is diagonally symmetrical because the same kernels are listed on the

x-axis and the y-axis. We sort these kernels according to their computing intensity. On

the x-axis, the kernel located on the left side has a less computing intensity, and on

the y-axis, the kernel located higher are more compute-bound. So, a dot near the left

bottom corner represents the performance of two less compute-bound kernels perfor-

mance. A dot locate near the upper top corner represents two heavy compute-bound

kernels co-execution.

As we can see, merging two compute-intensive kernels is normally a bad idea, as in

most of the cases the system suffers a slowdown from it. On the other hand, merging
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(b) System throughput improvement on AMD platform

Figure 5.7: System throughput improvement for concurrent kernel execution. On av-

erage, our approach is 11% better than EECK and 27% better than EK on NVIDIA

platform; 11.2% better than EECK and 22.7% better than EK on AMD platform.
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two less compute-bound kernels not necessarily leads to performance improvement.

As we can see in the figure, half of them experience a higher throughput and results

of the other half are opposite. The performance varies a lot when a compute-intense

kernel runs with another less compute-intensive kernel. It depends on the specific

kernel pairs.

Figure 5.8-b summarizes the result by showing the percentage of kernel pairs that

have optimized throughput via concurrent execution. We show the result in three cate-

gories. The bar in each category represents the number of concurrent kernels that have

a throughput improvement versus the overall kernel pairs in that category. The first cat-

egory represents two low compute-intensive kernels co-running. The second category

stands for one high compute-intensive kernel and one low compute-intensive kernel

co-executing. The last category is two high compute-intensive kernels concurrent ex-

ecuting. As we can see, when we run two low compute-intensity kernels, 60% can

benefit from their co-execution. When it comes to the combination of a high compute-

intensity and a low compute-intensity kernel, the probability of having a performance

gain from it drops to 50%. When we run two high compute-intensive kernels, there is

only 27% that we can have a benefit from kernels co-running.

Figure 5.9 presents the result of kernel co-running in all three categories that have

separate mixing schemes. On average, only two low computing-intensive kernels co-

execution improves the throughput by 7%. Co-running of low intensive and high in-

tensive kernels suffers a slowdown of 35%. The slowdown increased to 116% when

two high compute-intensity kernels are running in parallel.

5.7.2 Impact of memory intensity

Figure 5.10-a shows the impact of the memory intensity. As in the case of computing

intensity, the blue dots represent performance improvement, and red dots stands for a

slowdown. The kernels on x-axis and y-axis are aligned according to their intensity.

From the figure, there is no clear pattern to identify which pair of kernels concurrent

execution could have a performance improvement or a slowdown.

Figure 5.10-b shows the summary result. As before, the kernels are divided into

three categories. In the first category, two kernels with low memory accessing inten-

sity run concurrently. 65% of kernel pairs in this category can improve throughput.

When the two kernels, one has low memory intensity, and the other has high memory

intensity, they fall into the second category. In this group, 50% of the kernel pairs can
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(a) Performance distribution when aligning kernels along their computation intensities.

Kernels are aligned in X-axis and Y-axis ascendingly, the bigger the index is the higher

compute-intensity a kernel has. The performance of the concurrent kernel execution is

designated by the size of the dot. Red dot means a slowdown and blue dot represent an

improvement.

(b) The proportion of kernels that have a performance improvement in each category. When

running two low-compute-intensity kernels in parallel, 63% of of the kernel combinations ex-

perience performance improvement. 50% and 30% of the kernels have improved through-

put for low-high and high-high mixing correspondingly.

Figure 5.8: The impact of kernel computing intensity on constructing concurrent kernels
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Figure 5.9: Performance summary of kernel co-running in all three compute-intensity

categories.

improve the system performance. Finally, when both of the kernels access memory

heavily, running them together, 46% of such kernel pairs improve the performance.

Figure 5.11 presents the result of kernel co-running in all three categories that have

separate mixing schemes. It shows that using memory intensities alone is a poor policy.

On average, two low memory-accessing-intensive kernels co-execution decreases the

throughput by 8%. Co-running of low intensive and high intensive kernels suffers

a slowdown of 37%. The slowdown increased to 46% when two high computing-

intensive kernels are running in parallel.

5.7.3 Impact of branches

Branches within the kernel have a big impact on a single kernel’s performance. When

kernel threads reach a branch, depending on the thread state and the branch condition,

usually part of the threads can keep active. Therefore, branches within the kernel can

hurt the parallelism. When running two kernels concurrently, the number of branches

in each kernel could possibly affect the overall performance as well.

We examine the impact of branches in this section. Figure 5.12-a shows the result.

Normally, concurrent execution of two kernels with fewer branches could improve the
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(a) Performance distribution when aligning kernels along their memory accessing inten-

sities. Kernels are aligned in X-axis and Y-axis ascendingly, the bigger the index is the

higher memory accessing intensity a kernel has. The performance of the concurrent kernel

execution is designated by the size of the dot. Red dot means a slowdown and blue dot

represent an improvement.

(b) The proportion of kernels that have a performance improvement in each category. When

running two low-memory-intensity kernels in parallel, 65% of of the kernel combinations ex-

perience performance improvement. 50% and 48% of the kernels have improved through-

put for low-high and high-high mixing correspondingly.

Figure 5.10: The impact of kernel memory accessing intensity on constructing concur-

rent kernels
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Figure 5.11: Performance summary of kernel co-running in all three memory-accessing-

intensity categories.

throughput. The co-execution of two kernels with more branches, on the other hand,

has a higher chance to hurt the performance. When it comes to a combination, it highly

depends on the kernels characteristics.

Figure 5.12-b shows the summary result. 65% of the concurrent kernels could

improve the performance when both of the kernels have fewer branches. When of two

kernels one has few branches but the other has many branches, 50% of such kernel

pairs can have a good throughput when running concurrently. If both of the kernels

have many branches in each of them, the average performance would drop. Only 38%

of those kernel pairs achieve a good throughput.

Figure 5.13 presents the result of kernel co-running in all three categories that have

separate mixing schemes. On average, with two low number of branch kernels co-

execution degrades the throughput by 12%. Co-running of low and high branches

kernels suffers a slowdown of 37%. The slowdown increased to 48% when two high

branch kernels are running in parallel.
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(a) Performance distribution when aligning kernels along their kernel branches. Kernels

are aligned in X-axis and Y-axis ascendingly, the bigger the index is the more branches a

kernel has. The performance of the concurrent kernel execution is designated by the size

of the dot. Red dot means a slowdown and blue dot represent an improvement.

(b) The proportion of kernels that have a performance improvement in each category. When

running two low branch-intensity kernels in parallel, 68% of of the kernel combinations ex-

perience performance improvement. 50% and 41% of the kernels have improved through-

put for low-high and high-high mixing correspondingly.

Figure 5.12: The impact of kernel branches on constructing concurrent kernels
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Figure 5.13: Performance summary of kernel co-running in all three branch-intensity

categories.

5.7.4 Impact of NDRange

NDRange has an impact on data locality, as threads belonging to the same workgroup

could share the local memory. Therefore, the bigger the workgroup, the better per-

formance would be. However, if threads within the same workgroup do not access

memory in a coalesced way, they suffer a performance drop. Then, a bigger work-

group makes the performance worse.

Figure 5.14-a shows the result of the impact of NDRange on concurrent kernel

execution. When running two kernels, if both of them has 1D NDRange, they have a

higher chance of improving performance. On the other hand, when both kernels have

2D NDRange, there is a lower probability of improving throughput.

Figure 5.14-b shows the summary of the result. 57% of the kernels pairs concur-

rent execution improves the system performance when both of the kernels have 1D

NDRange. This number drops to 50% when one kernel has a 1D NDRange and the

other kernel has a 2D NDRange. When both of the kernels have 2D NDRange, run-

ning them concurrently, only 45% of the total number of such kernel pairs can bring

improvement.

Figure 5.15 presents the result of kernel co-execution in all three categories. On
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(a) Performance distribution when aligning kernels along their kernel NDRange dimensions.

Kernels are aligned in X-axis and Y-axis ascendingly, the bigger the index is the higher

dimension a kernel has. The performance of the concurrent kernel execution is designated

by the size of the dot. Red dot means a slowdown and blue dot represent an improvement.

(b) The proportion of kernels that have a performance improvement in each category. When

running two low 1D NDRange kernels in parallel, 68% of of the kernel combinations expe-

rience performance improvement. 52% and 41% of the kernels have improved throughput

for 1D-2D and 2D-2D mixing correspondingly.

Figure 5.14: The impact of NDRange on constructing concurrent kernels
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Figure 5.15: Performance summary of kernel co-running in all three NDRange-mixing

categories.

average, only two 1D-NDRange kernels co-execution decreases the throughput by 4%.

Co-running of 1D and 2D kernels suffers a slowdown of 32%. The slowdown increased

to 59% when two 2D kernels are running in parallel.

5.7.5 Impact of data size

Finally, data sizes are also important to kernel performance. Larger size usually means

more computations. It also means more time would be consumed by transferring data

between CPU main memory and GPU memory. The overhead brought by data move-

ment could outweigh the kernel execution in some cases. We analyze its impact when

it comes to co-execution.

According to figure 5.16-a, two kernels co-execution would have poor performance

when both of the kernels have small data sizes. When both of the candidate kernels

have big data size, we have a higher chance of getting better performance. If one kernel

has a big data size but the other kernel has a small one, the performance of concurrent

execution is up to the kernels characteristics.

Figure 5.16-b shows the summary of the result. 18% of the kernel pairs could

improve the overall performance when both of the candidate kernels have a small data
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size. When the one has large data size and the other has small data size, 50% of such

kernel pairs may have a good throughput. When both of the candidate kernels are

dealing with big data size, running them concurrently has a higher chance, which is

67%, to end up with a good performance.

Figure 5.17 presents the result of kernel co-running in all three categories that have

separate mixing schemes. On average, only two small datasize kernels co-execution

improves the throughput by 77%. Co-running of small and large datasize kernels suf-

fers a slowdown of 39%. The slowdown decreased to 4% when two large datasize

kernels are running in parallel.

5.7.6 Summary of the analysis

In this section we have analyzed the kernels co-execution under five separate schemes.

The performance of pairwise kernel co-running is scattered when a single parameter is

used to guide the kernel combination. On average, most of the co-running approaches

decrease the system throughput except when running two low computing-intensive

kernels in parallel. However, the performance improvement is trivial. Therefore, naive

kernel combination guided by single parameter is not a promising approach in prac-

tice. To release a higher performance, the machine learning based approach is more

attractive method because it is based on the knowledge that is learnt from a wide range

of program features and runtime settings.

5.8 Summary

In this chapter, we described concurrent kernels execution on single GPU device to

improve the throughput of the system. According to the experiment, running compute-

intensive and memory-intensity kernels in parallel does not necessarily mean an op-

timized performance. In practice, kernels co-running is a complex problem that the

kernel selecting method built on one or a few parameters can hardly be embraced by

other kernels. Therefore, we develop a machine learning based approach to reveal the

relationship between kernel’s characteristics and the target devices. We evaluate our

approach on two different platforms and have a superior performance comparing to

other state-of-the-art methods.
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(a) Performance distribution when aligning kernels along their input data sizes. Kernels

are aligned in X-axis and Y-axis ascendingly, the bigger the index is the larger input data a

kernel has. The performance of the concurrent kernel execution is designated by the size

of the dot. Red dot means a slowdown and blue dot represent an improvement.

(b) The proportion of kernels that have a performance improvement in each category. When

running two small datasize kernels in parallel, 58% of of the kernel combinations experience

performance improvement. 52% and 43% of the kernels have improved throughput for

small-large and large-large mixing correspondingly.

Figure 5.16: The impact of data size on constructing concurrent kernels
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Figure 5.17: Performance summary of kernel co-running in all three datasize-mixing

categories.



Chapter 6

Separate and Concurrent Kernel

Scheduling

This chapter presents a runtime framework and a machine learning based scheduler

that schedules single and concurrent kernels on CPU-GPU heterogeneous platforms.

This chapter is organized as follows: Section 6.1 introduces the background of sin-

gle and concurrent kernel scheduling on CPU-GPU platforms. In this section, we have

reviewed the related materials, which have been presented in Section 2 and 3, from

the angle of a runtime framework. Section 6.2 presents the motivation of this chapter.

Section 6.3 describes the overview of the runtime framework and the implementation

details follow in Section 6.4. The experiment setup is presented in section 6.5. The

experiment results are shown in section 6.6, and an analysis is presented in section 6.7.

Finally, we summarise this chapter in section 6.8.

6.1 Introduction

Incorporating GPUs into multi-core parallel systems is increasingly popular. They

provide the potential for high performance computing with relatively low power. Users

typically write part of their applications as a kernel, using CUDA or OpenCL, which

is then executed on a GPU

GPUs are normally used as dedicated accelerators for a single application. There

is no overall operating system resource management, no hardware support for time

sharing and very limited support for space sharing. This lack of support is a problem

as GPUs become incorporated in mainstream parallel systems and used by multiple

concurrent user applications [Margiolas and O’Boyle (2015)]. In addition, where ap-

105
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propriate, we would like to share GPU resources amongst several jobs to fully utilize

resources [Pai et al. (2013)].

While GPUs are excellent at accelerating certain jobs, they are poorly suited to

others [Chapter 4]. Their suitability depends both on the job and the underlying GPU.

Ideally, we would like to schedule jobs on the GPU only when appropriate and execute

on the multi-core CPU host otherwise.

The research challenges are to determine (i) when to share the GPU among jobs

and (ii) when to schedule jobs to the multi-core CPU. Given that this trade-off will vary

based on programs and the underlying platform, we want an approach that is portable

and low overhead. Furthermore, as we focus on a general purpose dynamic multi-user

setting, we need an approach that does not require profiling or prior knowledge of the

user program.

This problem of GPU utilization has been recognized by other researchers and there

has been prior work in co-executing kernels on a GPU. However, such approaches

are inappropriate for multi-user scheduling. Elastic Kernels [Pai et al. (2013)] (EK)

is the best known work. Here, they statically merge the host code based on traces

of the programs. This approach is unsuitable for multiple concurrent user jobs as

it is unable to determine the best kernels to co-execute. In addition, the need to trace

applications prior to execution in order to merge host code and recompile, is unrealistic

in a live dynamic multi-user setting. In [Jiao et al. (2015)] they tackled the problem of

determining the best combination of kernels by profiling every candidate application

ahead of time and then selecting the two kernels that are likely to improve energy

and throughput. While this approach may work in single-user cases where the same

combinations of kernels are executed repeatedly, it cannot be used in a dynamic multi-

user setting with unknown jobs where prior profiling is not feasible.

Both EK and Energy-Efficient Concurrent Kernel (EECK)[Jiao et al. (2015)] fo-

cus on sharing the GPU, however, they do not consider the host CPU as a potential

scheduling target. As all GPU system systems have a host multicore, this is a wasted

opportunity. In Chapter 5 we determine whether to schedule OpenCL jobs to a CPU

or GPU. They show performance improvement over partitioning the job between CPU

and GPU but do not consider scheduling multiple jobs concurrently to the GPU to

exploit hardware resources.

This chapter develops a new scheduling approach for multiple OpenCL executing

on CPU/GPU heterogeneous systems. It first determines which user jobs should be

scheduled to the CPU and which to the GPU. It then determines if appropriate, which
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kernels should be merged to improve performance. Merging of kernels is performed

by a JIT compiler, while scheduling is performed by a thin runtime layer. Unlike

previous approaches this is totally transparent to the user and requires no profiling or

runtime overhead. Our approach relies on offline predictive modelling. It builds a

one-off, statistical model “at the factory”, based on offline experiments to determine

the best merging and scheduling of kernels based on program features and runtime

performance. This model is then cheaply deployed at runtime, taking program features

as inputs and predicts the best scheduling decision as an output.

It is evaluated on a large number of workloads ranging from 2 to 64 jobs in size ran-

domly selected from 20 benchmarks selected from the Parboil and Polybench bench-

mark suites. The framework was evaluated on the NVIDIA and AMD platforms where

in each case we improve performance by more than 40% on average.

The next section provides a motivating example showing the need for accurate

scheduling. This is followed by a description of our framework, the JIT compiler,

scheduler and predictive modelling approach. This is followed by our experimental

setup and results. Related work and a summary concludes the chapter.

6.2 Motivation

This section shows how sharing a GPU and effectively utilizing the CPU can improve

performance for multi-program OpenCL workloads. We first examine six benchmarks,

from the Polybench and Parboil benchmark suites and show that, individually, they

have widely divergent performance on a GPU. We then show that concurrent execu-

tion can improve performance but existing approaches perform poorly. We then show

that by incorporating concurrent GPU execution of kernels with combined CPU/GPU

scheduling we can outperform existing approaches proposed in prior chapters.

Single kernel GPU performance Figure 6.1a shows the speedup of a single kernels

on a NVIDIA GPU over CPU execution time. Some kernels, such mriQ, gemm and 3mm

segmm, have significant speedups on the GPU, however, for others e.g. sad and atax,

they slowdown. Knowing which device to use improves application performance.

Concurrent Kernel Execution Concurrent execution of kernels on a GPU by merg-

ing them can improve performance. The improvement depends on the programs se-

lected and how much of the GPUs resources are allocated to each as shown in fig-
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Figure 6.1: Multi-Kernel execution on CPU+GPU platform
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ure 6.1b (the same example that is used in Chapter 5). Here the x-axis denotes the

pair of programs merged and the y-axis, the performance improvement over running

the kernels non-concurrently. Each pair has three performance bars. The first cor-

responds to 25% of the GPU allocated to the first program (the rest allocated to the

second program). The second and third bar correspond to 50% and 75% respectively.

The performance of many merged kernels is poor and only improves in certain cases.

In figure 6.1b, no matter how atax and segmm are combined, their performance is al-

ways worse than running these two kernels sequentially. This is due to limited GPU

resources. Kernel pairs, such as 3mm+mriQ, gemm+mriQ, segmm+sad, mriQ+sad and

mriQ+segmm, experience a higher throughput when running concurrently

Other kernel pairs such as 3mm+atax, gemm+3mm and mriQ+atax, can achieve good

performance but the correct allocation of resources is critical otherwise they will slow-

down.

Existing Concurrent Approaches In figure 6.1c, the first three bars correspond

to three approaches to concurrent execution. Elastic-Kernel [Pai et al. (2013)] (EK)

merges pairwise without regard to suitability. Energy-Efficiency Concurrent Kernel

[Jiao et al. (2015)] (EECK uses prior profiling to determine what to run concurrently,

ahead of time. To make the use of profiling realistic, we use profiling information

from a small data set to guide merging. Best GPU only represents the best perfor-

mance available by choosing the right kernels to execute together and represents an

upper-bound on performance. Figure 6.1c shows the speedup of each approach over

just running the kernels sequentially on the GPU. EK suffers a 25% slowdown while

there is a 4.5% improvement when using EECK.

For EK, the slowdown is caused by carelessly selected kernel pairs and subopti-

mal mixing ratio selection. EECK is sensitive to the accuracy of the profiling. More

accurate profiling would certainly help but its excessive cost cannot be justified in a

multi-tasking environment. The third bar in figure 6.1c shows that there is a potential

22% performance improvement available when merging kernels smartly.

Separate vs Concurrent Kernel Scheduler GPU based systems have host multi

cores which are also scheduling targets as described in Chapter 4. The last 3 bars in

figure 6.1c show the performance when using different scheduling policies that use the

CPU over the performance available when just executing kernels sequentially on the

GPU. FCFS is a first-come-first-served scheduler that gives 19% improvement and is
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Figure 6.2: Multi-task scheduling on CPU+GPU platform.

less than the best performance of using just GPU alone. The Heterogeneous-Scheduler

(HS) [Chapter 4] can achieve a significant improvement, 38%. If, however, we were

able to correctly determine which kernels to merge and which kernels to schedule to

the CPU we can achieve a 69% improvement as shown by last bar labelled Best.

In summary, both concurrent kernel execution and scheduling to CPU and GPU

are able to improve system performance. Furthermore, there is significant room for

improvement over existing schemes. In this chapter, we propose a runtime framework

together with a Just-In-Time compilation tool to create and schedule concurrent kernels

to CPU/GPU heterogeneous platforms.

6.3 Overall Scheme

Figure 6.2 shows our overall scheme. Users compile their applications, which are

then submitted to the smart runtime. It examines each kernel of each application and

determines if it is best to merge it with another kernel from another application or to

execute it separately. It then determines whether to schedule it on the GPU or the CPU

and places the (merged) kernels in an ordered task queue. Tasks are dispatched from

one end of the queue to the CPU, the other end to the GPU. Determining whether to

merge or not depends on the other dynamically available kernels and is based on a

model learnt offline.
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Figure 6.3: The runtime framework is a software layer that is built on top of OpenCL

SDK. Instead of running directly on the device, applications register themselves to the

framework, from where the workloads are scheduled to the device.

6.4 Runtime Framework

The runtime framework is a software layer sitting on top of the OpenCL runtime.

Applications access target devices through this framework rather than directly. The

core benefit of this scheme is that the software layer enables a set of optimizations

which are transparent for the applications and their developers, such as eliminating

collisions in accessing GPU device, balancing workload between CPU and GPU, and

co-executing kernels on GPU to improve hardware resource utilization.

Figure 6.3 shows the runtime framework, as a software layer, built on top of the

OpenCL runtime. Without this layer, every OpenCL application runs its host code

on CPU and prefers to execute its kernel on the GPU. Since OpenCL is a low-level

programming standard, the programmer has to select explicitly which target device the

kernel code is going to run. The decision is usually fixed unless the developer puts

more effort into making the program more adaptive. Hard coding programs to run

on the GPU causes imbalances in processor usage and introduces collisions if more

than one programs tries to execute on the GPU at the same time. However, instead

of running on the device directly, if executing through this runtime framework, the

applications can be remapped to any of the devices to improve hardware usage.
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transformed to dynamically loadable libraries. Then, they are loaded by the framework

at runtime. The framework analyzes the information given by applications to create task

nodes. Tasks nodes are inserted into the task queue, from which they are scheduled to

the target devices.

6.4.1 Main Modules

Figure 6.4 presents the main modules of the framework. Applications are first trans-

formed into dynamically loadable programs. Instead of running independently, appli-

cations pass kernels, with input data, and other information to the framework. After

that, the framework evaluates the kernels to label their device affinity and creates the

kernel pairs which have better performance when running concurrently on GPU. Fi-

nally, the kernels and kernel pairs are inserted into the task queue from where they are

allocated to eitehr CPU or GPU through different ends.

There are five major modules in this framework: static feature extractor, kernel

node creator, separate kernel classifier, feature vector constructor, kernel merging con-

structor, and task node creator. Figure 6.4 shows how these modules are connected

to each other. Modules of static feature extractor and separate kernel classifier have

been introduced in Chapter 4, and the kernel merging constructor has been presented

in Chapter 5. Therefore, section 6.4.2 focuses on introducing the the other two mod-

ules which are kernel node and task node creators. Also, in section 6.4.2, we present a

detailed description of this multi-threading framwork.
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6.4.2 Multi-threading Design

OpenCL Work Flow

OpenCL provides a set of device-independent application programming interface (API)

to offer a unified design flow for each program. The application is decoupled from the

specific hardware, and instead of concentrating on the difference between the separate

type of processors the programmer can focus on the APIs regardless of what devices

the program is going to execute on. This feature of the OpenCL standard requires every

program to have a similar workflow.

The first diagram in Figure 6.5 gives the details of the major API calls and their

execution order. First, each program checks the platform and devices that the plat-

form supports. Then, a context is created, which can have one or more devices. The

command queue is used to communicate between the host and device. The host sends

instructions via a command queue to execute a kernel on the device and transfer data

back and forth. These API calls are mainly platform oriented.

Once the working environment is initialized, the application loads and compiles the

kernel and prepares the input data in buffers. By writing the data to the device memory

and setting the arguments for the kernel, the host then issues the compiled kernel to the

device and read the results back once the kernel finished. The dynamically allocated

memory and objects, such as kernel and kernel program, must be released to avoid

memory leakage. Finally, before the application finishes, the platform environment

has to be cleaned, e.g. release the command queue object. Here, most of the API calls

are application related, as different applications have separate kernel implementations

and input data.

Master-Worker Multi-threading Design

By analyzing the working flow, the framework is designed as a multi-threading runtime

system. A master thread performs the main function of the framework. It creates a

unified working environment for all arriving applications. Each OpenCL application

that waits to be executed by a device is described as a worker thread that is loaded and

managed by the master thread at runtime.

Figure 6.5 shows the API calls in master and worker thread in the middle and

right diagram separately. The master thread, besides controlling the working environ-

ment setup and cleaning, loads applications as independent threads and manages their

scheduling. For the application, instead of running directly, it prepares data and kernel
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then registers them to the master thread, from which the data memory will be written,

and the kernel will be executed.

The master-worker multi-threading design of the framework has two advantages.

First, the unified platform setup eliminates the cost spent on hardware initialization

for each application, especially when the time on initialization outweighs the time of

kernel execution. Second, the multi-threading design provides a unified address space,

which is significant, as the input data loaded by separate applications can be passed to

the master thread via an address pointer and thereby avoids unnecessary data copying.
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Reloadable Application Constructing

We compile the OpenCL program as a shared library, instead of a binary, as part of

the API functions have been removed from the source code. Figure 6.6 illustrates the

transformation. As a shared library, the OpenCL program can be loaded by the master

thread dynamically and shares the same address. It enables the master thread to create

a kernel node for each application and classify the program with the help of machine

learning based classifiers.

Kernel Node Construction

The worker thread prepares input data and compiles the kernel. It then registers its

information with the master thread. The core information from the worker thread con-

tains the size of input/output data, the name of the kernel, the arguments of the kernel,

the workgroup size of the kernel, the NDRange of the kernel, and the kernel’s code fea-

tures. With all these details about the application, the framework master thread creates

a kernel node of the application. The procedure is shown in figure 6.7.

Task Node Construction

The task node is created from the kernel node with extra information about a single

kernel’s estimated device affinity and co-execution kernel mixing ratio. The two kinds

of task nodes: single and concurrent task node, are labeled separately by the machine

learning-based classifiers presented in Chapter 4 and 5. Figure 6.8 shows the form of

these task nodes. The task node is the basic unit that is inserted into the task queue.

The location of the task node in the queue determines when and where the task is going

to execute.
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Inserting Task Node into Task Queue

The task queue is shown in figure 6.9. The single task node which has an estimated

CPU affinity is queueing towards the left-hand side of the queue, which is connected

to a multi-core CPU. The concurrent task node and single task node that has a GPU

affinity are queued toward the other end of the queue, which is connected to the GPU

processor.

New arriving tasks are inserted from some places that are in the middle of the

queue. There are two insertion places, which are maintained and updated by the master

thread. Figure 6.9 shows these two insertion places in arrows, assuming places in the

queue are indexed in ascending order, and the lowest index is on the left most. Also,

assuming the index of insertion place for the separate kernel is n and the other insertion

place is m. When a new task is arriving, if it is predicted to have a CPU affinity, then
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this task is inserted in the place of n-1. If this task is estimated to have a GPU affinity,

the kernel merging classifier then examines all the other GPU affinity tasks to check

whether or not the new arriving task can be paired up. If a pair is found, then a new

concurrent task node is created and inserted at the place of m+1. Otherwise, this task is

a single GPU affinity node which will be inserted at the place of n+1.

Kernel Synchronization

The master and worker threads must be synchronized to keep a valid performing order,

particularly for the applications that have multiple kernels or have one kernel being it-

erated many times on the input data. Figure 6.10 shows how the thread synchronization

works.

The master and worker threads are synchronized via signals. Before any applica-

tions are loaded, the master thread of the framework must be first started to initialize

the system. Then the master thread loads the applications concurrently. The loaded ap-

plications then prepare their data, kernel and other information. Once the preparation

is ready, the worker signals the master and registers its information with the master to

create a kernel node for it. After that, the worker stalls itself until the master sends a

signal to inform it that the kernel is completed. Then it checks whether or not there
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is another kernel coming behind or the same kernel is iterated again. In either case,

the worker signals the master to update the register information and stalls itself again

until this time the kernel is completed. The master uses the register information from

the workers to create task nodes and inserts them into the task queue. Once a job is

finished, it informs the related worker and checks whether or not there any other jobs

in the queue. If the queue is not empty, the master selects one and dequeues it to the

newly idle device. If there is no job exists in the queue, then the framework terminates

itself after a system cleaning up.

6.5 Model

In this chapter, we use both the machine learning based classifiers designed in chapter

4 and 5 to classify arriving tasks and insert them into the sorted task queue. Figure 6.11

shows how the two-step classifier works. For the arriving tasks, we first examine them

by the device affinity classifier to detect whether they have CPU or GPU affinity. As

explained earlier, the tasks with CPU affinity are inserted into the task queue right

after the estimation. The rest of the tasks are passed to the concurrent kernel classifier,

which estimates the co-running performance by exhaustively pairing up with all other

kernels. Then, the maximum matching algorithm is performed on this graph to find

out the maximum number of kernel pairs. For the kernels that have GPU affinity but

do not have a better performance by co-running with any other kernel, the framework

queues them in the task queue, towards the GPU end. After that, the merged kernels

are inserted into the queue and these kernels will be launched to the GPU first before

all single kernels.
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6.6 Experiment Setup

We compare our approach to a number of approaches on two platforms. We use the

same experiment setting as the one used in Chapter 5. For the convenience of reading,

the detailed setting and benchmark are listed here again.

Elastic Kernels (EK) This approach runs two kernels concurrently and merges the

corresponding host programs. It does not have a model to determine what to merge

and does not use the CPU as a scheduling target. It co-executes all kernels in pairs.

Energy-Efficient Concurrent Kernels (EECK) This approach is similar to EK but

requires profiling of the applications beforehand to determine what to merge. It does

not use the CPU as a scheduling target. It uses profiling information from a small data

set to guide kernel mergeings at larger data set.

Separate or Concurrent on GPU(SoC GPU) Our approach to concurrent execution

of kernels without using the CPU as a scheduling target

First-come-first-served(FCFS) This is a simple scheme that schedules jobs to either

the CPU or GPU based on availability. It does not run kernels concurrently.

Heterogeneous Scheduling (HS) This uses a model to schedules jobs to either the

CPU or GPU based on availability. It does not run kernels concurrently

Separate or Concurrent on GPU (SoC) Our approach to both concurrent execution

of kernels and using the CPU as a scheduling target

To make a fair comparison, we implement EK and EECK and ignore the intro-

duced overhead i.e. the cost of profiling and recompilation. Such overheads usually

outweighed the benefits, making them hard to work in practice. Throughout the com-

parison, we use a unified metric, which is system throughput, to evaluate the results.

The experiments are carried on a number of benchmarks from Parboil and Polybench

benchmark suites.

6.6.1 Platform and Benchmarks

We evaluate on two CPU+GPU systems. Both have an Intel Core i7 4-core CPU and

16GB main memory. One platform contains an NVIDIA GeForce 780 and the other

one contains an AMD HD 7970, see table 5. Both systems host OpenSUSE 12.3 Linux.

We use LLVM 3.4 for JIT compilation and benchmarks are compiled using GCC 4.7.2

with -O3 option.

We restrict our attention to benchmarks with 1D and 2D NDranges from two main-
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Table 6.1: Hardware platform

Intel CPU NVIDIA GPU AMD GPU

Model Core i7 4770K GeForce GTX 780 Radeon HD7970

Architecture Haswell-DT Kepler GK110 Tahiti XT

Core Clock 3.4 GHz 1215 MHz 1000 MHz

Core Count 4 (8 w/ HT) 2304 2048

Memory 16 GB 3 GB 3GB

Memory Bandwidth 21GB 288 GB 264 GB

Table 6.2: Benchmarks

Suite Benchmarks Benchmark
Pa

rb
oi

l

BFS Mri-Q

Sgemm Spmv

Sad

Pl
oy

be
nc

h ATAX BICG

CORRELATION GESUMMV

SYR2K SYRK

2DCONV 3DCONV

GEMM GRAMSCHMIDT

2MM 3MM

COVAR FDTD-2D

MVT

stream OpenCL benchmark suites: the Parboil and the Polybench benchmark suite

giving 20 programs in all. The benchmarks we used in this chapter are shown in list

6.2

6.6.2 Performance Evaluation

We evaluated our schemes with 500 different task configurations. We selected 10 dif-

ferent task queue sizes containing between 2 and 64 kernels. For each task queue

size, we randomly selected 50 different programs, to give 500 configurations. As be-

haviour is dynamic, we evaluated each configuration 30 times and report the median

performance. This results in 6000 experiments per policy. Performance is presented

throughout as speedup relative to executing just on a GPU i.e. the STP metric.
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Figure 6.12: Summary of performance improvement

6.7 Results

In this section, we evaluate our approach against alternative approaches and analyze

the behavior and accuracy of our predictive models. We then examine the impact of

our runtime framework on performance.

6.7.1 Performance Improvement Over Alternatives

In this section, we compare the result of our approach against other state-of-the-art

methods on both NVIDIA and AMD platforms. The SoC and SoC GPU use the run-

time framework described in this chapter; The other alternatives are not running on

this runtime layer. Instead, they work exactly in the way how they were proposed in

their original papers.

Comparison to Concurrent Kernel Execution

Figure 6.12 summarises the results of SoC/SoC GPU compared to the concurrent ker-

nel implementations. Except for EK, the performance of all the other methods im-

proves as the number of tasks increases. SoC has the best throughput. On average,

it is 16% better than SoC GPU on the Nvidia platform and 16% on the AMD plat-

form. Comparing to EECK, SoC is 49% and 50% better on Nvidia and AMD platform

separately.

Figure 6.13 shows the results in greater detail of our approach against EECK, EK,

and SoC GPU, which use only the GPU to serve concurrent kernels. On each platform,
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Figure 6.13: Performance improvement over baseline
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the results of two task size configurations are shown separately. In the first configura-

tion, 16 kernels run on the platform and in the second configuration increases to 32. On

both platforms, SoC and SoC GPU have a much stronger performance improvement

over the baseline than EECK and EK.

When the number of tasks is increased from 16 to 32, most of the four approaches

improve, except EK, which instead suffers a slowdown. On the AMD platform, the

performance improvement delivered by EECK over the baseline has been raised from

9% to 15% as the number of tasks increases. For SoC GPU, the corresponding perfor-

mance change is 53% and 58%. By adding a CPU as a scheduling target, SoC provides

the best performance, which is 70% and 76% better than the baseline when there are

16 and 32 tasks running. Randomly pairing up kernels for EK gives a slowdown from

0.23% to -0.7%, though more having tasks provide more options in kernels pairing up.

The results on the NVIDIA platform shows similar trends. For EK, performance

improvement decreases from 1% to 0.5% when the number of tasks increases from 16

to 32. The other approaches all have a performance improvement when the number of

tasks raises. The average performance improvement of EECK in 16 and 32 are 12%

and 20%. The SoC GPU has better performance, which is 56% and 58%. Finally, the

best performance is again achieved by SoC, which is 69% and 73%.

When there is a small number of kernels, SoC GPU may provide competitive per-

formance comparing to SoC as long as there are enough kernel pairwise options; other-

wise, performance is much worse than SoC. With the number of tasks increasing, SoC

outperforms SoC GPU continually, as the contribution of a CPU grows. For SoC GPU,

the worst performance of a large number tasks is better than with a small number of

jobs. As can be seen in figure 6.13, for both NVIDIA and AMD platform, the curve

gap between SoC and SoC GPU grows wider from 16 tasks to 32 tasks, and the worst

performance for 32 jobs is better than 16 jobs.

Comparing to CPU-GPU Scheduling

Figure 6.14 summarises the results of SoC compare to the separate kernel scheduling.

All the methods improve as the number of tasks increases. SoC has the best throughput.

On average, it is 21% better than HS on the Nvidia platform and 19% on the AMD

platform. Comparing to FCFS, SoC is 35% and 33% better on Nvidia and AMD

platform separately.

Figure 6.15 shows the results of SoC compared: HS and FCFS, which also use

the CPU. On both NVIDIA and AMD platform, the performance improvement over
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Figure 6.15: Performance improvement over baseline
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baseline is stable for both SoC and HS. However, the results of FCFS have spread

in a wide range. As FCFS randomly schedules a task on CPU and GPU whenever it

detects a processor becomes idle, the outcome of the scheduling is random as well.

Hence, for 16 tasks scheduling, the worst performance improved by FCFS is 1% on

NVIDIA platform and 1.7% on AMD platform, but the best are 51% and 53%. When

the number of tasks is increased to 32, the result of FCFS scheduling does not change

much.

On average, the performance improvement over baseline is 40% by FCFS, 47% by

HS, and 70% by SoC for 16 tasks scheduling on the AMD platform. The corresponding

result on NVIDIA platform is 36% by FCFS, 45% by HS, and 69% by SoC. When it

come to 32 tasks scheduling, the results are 39% (FCFS), 52% (HS), and 76% (SoC)

on the AMD; 38% (FCFS), 51% (HS), and 77% (SoC) on NVIDIA.

6.7.2 Performance Improvement Over Alternatives on The Same

Framework

As our framework provides a unified control on hardware resources management, it

improves the performance of our method. In order to isolate the contribution of SoC

scheduling proposed in this chapter, a deeper comparison is carried out in this sec-

tion by running all alternative approaches, including the baseline, with our runtime

framework.

Comparing to Concurrent Kernel Execution

Figure 6.16 summaries the results of SoC/SoC GPU compared to the concurrent kernel

implementations. Except EK, the performance of all the other methods improves with

the number of tasks increasing. SoC has the best throughput. On average, it is 11% bet-

ter than SoC GPU on the Nvidia platform and 16% on the AMD platform. Comparing

to EECK, SoC is 36% and 28% better on Nvidia and AMD platform separately.

Figure 6.17d shows the results of SoC against other concurrent kernels when us-

ing the same framework. Though the cost on initialization has been improved by the

framework for EK and EECK, SoC and SoC GPU are consistently providing better

performance comparing to them.

For a small number of tasks, 16 kernels, the average performance improved by EK

is -0.2%, which is worse than the baseline. For EECK and SoC GPU, the average

improvements are 24% and 35%. SoC provides the best average result, which is 51%
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Figure 6.16: Summary of performance improvement
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Figure 6.17: Performance improvement over baseline
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Figure 6.18: Summary of performance improvement

better than the baseline. For a larger number of tasks scheduling, e.g. 32 jobs, EK

provides a result of 1.37% and result from EECK is 29%. For SoC GPU and SoC, their

results are 36% and 60%. All above results are collected from the NVIDIA platform.

On AMD platform, for 16 task scheduling, the results for EK, EECK, SoC GPU,

and SoC are -2.6%, 14%, 24%, and 41%. For 32 tasks scheduling, the corresponding

results are -0.5%, 17%, 25%, and 51%.

Comparing to CPU-GPU Scheduling

Figure 6.18 summarises the results of SoC compare to the separate kernel scheduling.

All the methods improve as the number of tasks increases. SoC has the best throughput.

On average, it is 17% better than HS on the Nvidia platform and 10% on the AMD

platform. Comparing to FCFS, SoC is 27% and 17% better on Nvidia and AMD

platform separately.

Figure 6.19 gives the results of SoC comparing to the FCFS and HS. On average,

the performance gap between SoC and HS becomes widens as the number of tasks

increases. Similar trends exist between SoC and FCFS as well. When there are 16

tasks, the average performance improvement over baseline is 25% (FCFS), 32% (HS),

and 51% (SoC) on the NVIDIA platform. The corresponding results on AMD platform

are 21%, 29%, and 41%. The average performance all increases as the number of task

rises. For 32 tasks scheduling, the performance improvements are 33% (FCFS), 42%

(HS), and 60% (SoC) on the NVIDIA platform, and 30% (FCFS), 36% (HS), and 51%

(SoC) on the AMD platform.
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Figure 6.19: Performance improvement over baseline
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Figure 6.20: Feature importance on separate kernel speedup classifier. The bigger the

box is, the more important the feature is.

6.7.3 Performance Improvement by the Framework

Without the framework, SoC scheduling outperforms the baseline by 68% on the

Nvidia platform, and 66% on the AMD platform. When the baseline also uses the

same framework, the average performance improvement of SoC become 52% and

40%. Therefore, the framework developed in this chapter provides 16% performance

improvement on both Nvidia and AMD platforms.

6.8 Analysis

6.8.1 Estimation Accuracy

In our system, we trained our classifier using a leave-one-out-cross-validation, on

38 distinct kernels and 2031 concurrent kernels with different mix ratios. For the

CPU/GPU classifier, we have an accuracy of 88% on NVIDIA and 90.3% on AMD

platform. For the concurrent kernel classifier, its accuracy is 81% and 85% on those

platforms.
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Figure 6.21: Feature importance on concurrent kernel classifier. The bigger the box is,

the more important the feature is.

6.8.1.1 Feature Importance

We have evaluated feature importance for both of the classifiers. Features play an im-

portant role in the prediction accuracy, as they represent the characteristics of kernels.

Various features impact the predictor accuracy in different ways. Figure 6.20 and 6.21

show the detailed information about our features importance in each of the predictors.

The feature extractor is upgraded in this chapter. Therefore, features shown in

Figure 6.20 are different from those in Figure 4.6. The main difference is that we

separate branch instructions from the computation instructions, as they impact kernel

performance in different ways. On the contrary, the static feature of math functions

which is shown in Figure 4.6 is not an independent feature anymore. Such kind of

math functions feature has been weighed (according to Table 5.2) and added to the

feature of computation instructions. Finally, since the feature of the number of blocks

in Figure 4.6 can be calculated from the number of global and local thread, we can

safely remove it from the feature vector. By upgrading the feature vector, our predictor

has an enhanced accuracy than the one that proposed in Chapter 4.

In general, there are some critical features, such as the data size, branch instruction

ratios, memory access instruction ratios and computation instruction ratios. They are

important because they directly link to the kernel performance. For example, a kernel

that has high computation instruction ratio on a reasonable size of data and with fewer
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Figure 6.22: Performance limit study on NVIDIA platform. On average, a 100% accurate

classifier can improve the performance by another 5%. If we have more information

about the task, such as kernel execution time, the performance could be improved by

20%.

branches usually achieves high performance when it runs on GPU.

Other features impact the accuracy in a different way. For single kernel speedup

classifier, the global ND-Range has more influence than the local ND-Range, how-

ever, for a concurrent kernel classifier, this influence gap is not as big as for separate

kernels. The kernels ND-Range mixing ratios have an effect on concurrent kernels

classification, as they can help filter out some of the extreme mixing cases. The feature

of barrier contributes the least in our classifier because the barrier is rarely used in the

benchmark kernels.

6.8.2 Limit Study

To examine how the classifier accuracy impacts the performance, we performed a limit

study. We evaluated the system throughput in three different cases. In the first case,

we use our learnt models. In the second case, we replace the models with predictors

with 100% accuracy. They always correctly determine whether a kernel runs faster on

a GPU or a CPU and whether or not it runs faster concurrently or not.

In the third case, for each sequence of tasks, we run 10,000 different scheduling

orders to test the potential performance upper bound. Because of combinatorial com-
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Figure 6.23: Performance limit study on AMD platform. On average, a 100% accurate

classifier can improve the performance by another 7%. If we have more information

about the task, such as kernel execution time, the performance could be improved by

19%.

plexity, we cannot evaluate all possible kernel combinations and scheduling orders, and

this approach gives only an approximation of performance achievable. It represents the

Best schedule found.

Figure 6.23 and 6.22 show our results on two different platforms. In general, the

more accuracy a classifier is the higher throughput we can expect. For 100% accurate

classifier, we can get a 5% performance improvement on NVIDIA platform and 7% on

AMD platform over our classifier on average.

Classifying accurately is not enough. There may be a case where 2 kernels have

large concurrent speedup but have insignificant execution time while 2 others have a

small concurrent improvement but are long running and dominate overall execution

time. This is shown by the performance of the best scheduler which improves STP

further. On the NVIDIA platform, its performance is 20% better than our classifier

and on AMD platform this performance improvement is 19%.

This shows that while our approach has significant improvement over existing

schemes, there is still further room for improvement
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6.9 Conclusion

In this chapter, we have proposed a runtime system and a JIT compiler to schedule

multiple OpenCL kernels on a CPU-GPU heterogeneous platform. We have trained

two predictive models from OpenCL kernel’s static and runtime features to determine

whether the kernels would be merged and launched together, or dispatched to the best-

fit device separately. To evaluate the performance, we compare our approach with a

wide range of state-of-the-art methods on two different heterogeneous platforms. On

average, if only use the GPU device, our approach could improve system throughput by

27% and 20% on NVIDIA and AMD platform respectively. This improvement is more

than 20% better than Elastic-Kernel and 11% better than Energy-Efficient-Concurrent-

Kernel. When adding CPU as scheduling target as well, our approach improves the

system throughput by 43% on NVIDIA and 42% on AMD platform. And this is about

15% better than the Heterogeneous-Scheduler. Though our approach achieves a signif-

icant improvement over existing methods, there is still further room for improvement.

Precisely predicting task execution time would improve the performance further.





Chapter 7

Conclusion

This thesis has proposed several methods for addressing challenges of multi-task schedul-

ing on CPU-GPU heterogeneous systems. It proposes a machine learning-based ap-

proach to determining OpenCL kernel scheduling. Chapter 4 introduces an individual

kernel scheduler that dynamically allocates kernels to either multi-core CPU or GPU

according to their predicted device affinity. Chapter 5 focuses on improving GPU

hardware resource utilization smart space sharing. Chapter 6 introduces an efficient

runtime framework that is able to combine individual and merged kernels scheduling.

The contributions presented in this thesis have been implemented in software, which

is portable across platforms with CPUs and GPUs from different vendors.

The structure of this chapter is organized as follows. Section 7.1 summarises of

the contribution. Section 7.2 presents a critical analysis of the thesis together with

the limitations of our method. Section 7.3 introduces the future work, and finally, we

summarize this chapter in Section 7.4.

7.1 Contributions

This section summarizes the contributions of the three technical chapters.

7.1.1 Scheduling Kernels to the Best-fit Devices

A machine learning based classifier is developed in Chapter 4 to estimate the newly

arriving OpenCL kernels device affinity. Device affinity is measured by a kernel’s

relative speedup, which represents to what extent running the kernel on GPU is faster

than on multi-core CPU. The model is trained off-line on a broad range of training

135
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samples that contain the kernel code features, runtime parameters, and pre-profiled

relative speedups. At the runtime, the scheduler sorts the newly arriving kernels by

estimating their relative speedup with the help of the pre-trained model. Kernels with

high and low predicted speedup are queuing toward separate ends of the tasks queue,

from which they will be issued to the connected devices. The object of the model is

to learn the relationship between a kernel’s characteristics and the target device and

then use this knowledge to estimate affinities for unseen tasks. The scheduler manages

all the OpenCL supported devices and optimizes the overall throughput via allocating

task to the best-estimated device as well as overlapping and balancing the execution

on CPU and GPU. This lead to an overall speedup of 20% over a random scheduling.

7.1.2 Co-running Kernels with the Most Appropriate Peers

A machine learning based kernel merging method is proposed in Chapter 5. Though

concurrent executing kernels can improve GPU utilization, in practice, it does not nec-

essarily mean an improved performance. Using simple metrics (such as computing

intensity or number of branches) to guide co-execution of kernels do not bring the ex-

pected performance because of the complexity of kernels and target platforms. This

chapter instead develops a machine learning based technique to detect kernels asso-

ciativities. By learning from the kernel code features and the runtime parameters, the

model estimates two kernels improved performance depending on mixing ratios. Some

kernels work well together with many others. We use a graph matching algorithm in

the scheduler to find the maximum number of kernel pairs. The proposed approach

outperforms the state-of-the-art approach by 22%+ on both Nvidia and AMD plat-

forms.

7.1.3 Runtime Framework for Mix Scheduling

The final contribution of this thesis is the development of a runtime layer that supports

the efficiently mixed scheduling of separate and merged kernels on CPU-GPU hetero-

geneous systems. The framework manages all devices on the platform. It transfers

data between host and device and issues kernels on behalf of the OpenCL applications

registered to it. By estimating kernel device affinity and whether it can be effectively

co-scheduled on the GPU, the framework merges the kernels and sorts them accord-

ingly. As the framework provides a global environment for all OpenCL applications,

it reduces the runtime overhead of setting up and initialization which normally has
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to be done by every application. This scheduler outperforms the state-of-the-art con-

current kernels techniques by 50% and improves the throughput by 35% over random

scheduling.

7.2 Critical Analysis

This thesis has presented contributions to improving the throughput of CPU-GPU het-

erogeneous systems; however, there are aspects of the approach that should be criti-

cally reviewed.

7.2.1 Unified Task Arriving Orders and Priority

In this thesis, all tasks are presumed to arrive at the same time and with the identical

priority. It is a strong assumption, as the arrival order and priority have a significant

impact on the scheduling decisions which affect the performance of both throughput

and average turnaround time. Also, the scheduler in this thesis assumes each task

occurs only once; however, in practice, some applications are loaded and executed

periodically. Task arrival order and priority may not affect their device affinities, but

require the scheduler to issue them in a different way. For example, when a kernel with

high priority and GPU affinity arrives but neither CPU nor GPU is available, which

task shall the scheduler preempt so as to execute this high priority job? To estimate

and determine a suitable policy is a complex problem. We simplify the problem by

assuming all tasks arrive simultaneously with the same priority, in the future, both of

them needed to be taken into consideration.

7.2.2 Coarse Category of Classification

This thesis uses binary classifiers to estimate kernels device affinity and their associa-

tivity with other kernels. Speed of classification efficiency and accuracy are the main

advantages of the binary classification. However, it cannot exploit all the potential

performance that the platform promised. Section 4.10 shows that a finer classification

can improve the performance further by a significant way. Relying on classification

alone is a limited method, as kernel execution time cannot be estimated by a simple

classification. Take separate kernel scheduling for example. A kernel will be labeled

as CPU first task when its estimated relative speedup is 1.5x. However, this kernel

may have the longest execution time among all its counterparts and its execution time
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may contribute 90% of all tasks execution. Thus, instead of queueing it to CPU, the

best strategy is to make it map to the GPU to reduce processing time. Using a coarsely

grained classification, the scheduler can do nothing about it. Accurately predict ker-

nel’s execution time is hard and is our future work.

7.2.3 No Dependencies Between Kernels

This thesis assumes that all OpenCL kernels are independent, and from multiple users,

so there are no dependencies between any two kernels. However, for some applications

that contain multiple kernels, there is a high chance that one kernel’s input is another

kernel’s output. When dependencies exist between kernels, merging and running them

concurrently on GPU can optimize the hardware utilization as well as data movement.

Some prior work has been done in this area. This thesis did not consider this situation,

but prior work could be integrated into our framework, with an effort in extension.

7.2.4 Unaware of Coalesced Memory Access

Memory coalesced accessing has a significant impact on OpenCL kernels performance.

However, how to summarize and weight coalesced or un-coalesced accessing with

other static features is difficult. This is our future work as well.

7.2.5 Homogeneous Multi-core CPU processor

Finally, in this thesis, the target CPUs are homogeneous multi-core processors. How-

ever, there is a clear trend for the modern CPU processors to become heterogeneous as

well. They contain cores with different hardware resources (such as ARM bigLittle)

or integrated processors with a separate architecture, such as AMD Fusion and Intel

i7 that contains integrated GPU. Increasing heterogeneity of the platform requires a

more complex model, and therefore, the model could be the bottleneck of the system.

Optimizing the model and abstracting the system effectively is a new challenge not

addressed in this thesis.

7.3 Future Work

This section briefly introduces the directions for extending and improving the work

presented in this thesis in the future.
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7.3.1 Periodic Task and Priorities

As discussed earlier, this thesis assumes all tasks arriving simultaneously; however,

in practice, the tasks require the device in different orders and have separate priorities

and expected finishing time. Therefore, future work should consider scheduling orders

and priorities. There are jobs that are periodically executed. Unlike a one-time job,

periodic execution carries more detailed accumulated information about the task itself

which can make the model more accurate. Hence, a more accurate model could be

used in scheduling. It is a fruitful area of future work.

7.3.2 Workload Migration

Once the arrival order and priorities are considered by the scheduler, the jobs may

need to migrate from one processor to another or be suspended, as a high priority may

preempt a running task which has a lower priority. GPUs do not inherently support

preemption; however, some work has been proposed to enable preemptive execution

and interruption by extending the GPU hardware or software stack. As workload mi-

gration between CPUs and GPUs may introduce a large runtime overhead, a careful

decision has to be made by the scheduler at runtime.

7.3.3 Finer Classification and Execution Time Regression

As pointed out in Section 4.10, overall throughput can expect a further improvement

by using a model with a finer classification. However, without the information about

the precise execution time, there is still a huge performance gap between the reality

and the best that is achievable, even though a finer classification model may have been

used. Therefore, to probe the impacts on performance, both finer classification model

and execution time regression model should be examined.

7.3.4 Dependency Management

Dependencies among kernels affect their scheduling orders. However, merging kernels

that have dependencies may enhance the performance by reducing unnecessary data

transfers. The problem is, when and which kernels should be merged. This is future

work.



140 Chapter 7. Conclusion

7.3.5 Coalesced Memory Access Identification

As mentioned earlier, coalesced memory accessing has a significant impact on a ker-

nel’s performance. Currently, the training features have not included this information.

Assuming all kernels are well written by the programmer and have optimized coalesced

memory access is a strong condition. Therefore, to make the model more general, the

pattern of memory accessing needs to be included in the feature vectors.

7.3.6 Heterogeneous Multi-core CPU

A multi-core CPU can be heterogeneous itself. Cores within the same CPU package

can either share the same ISA but with different hardware resources (like cache sizes,

depth of pipelines, or clock frequencies) or have different types of architectures (like

integrated GPU). The heterogeneity of CPU brings more flexibility for the system, and

at the meantime it also introduces extra complexity in constructing the model.

7.3.7 Power Aware Scheduling

So far in this thesis, the kernel merging and scheduling decision is made purely for

the sake of performance improvement. In many areas, such as mobile system and data

centre, power consumption is as equally important as throughput. In many cases, the

goals of performance improving and power optimization conflict with each other, as

typically running a program faster requires more power. Therefore, another aspect of

the future work is to examine how to explore power consumption and performance

efficiency.

7.4 Summary

This chapter presents the conclusion of this thesis. It first summarizes the contribution

of each technical chapter. Then, it critically analyzed the limitation of the method

proposed in this thesis. Finally, we introduced potential areas of future work.
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