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AbstratIn this thesis we are onerned with the role of formal argumentation in arti�ial in-telligene, in partiular in the �eld of knowledge engineering. The intuition behindargumentation is that one an reason with imperfet information by onstruting andweighing up arguments intended to give support in favour or against alternative on-lusions. In dynami argumentation, suh arguments may be revised and strengthenedin order to inrease or derease the aeptability of ontroversial positions.This thesis studies the theory, arhiteture, development and appliations of formalargumentation systems from the proedural perspetive of atually generating argu-mentation proesses. First, the types of problems that an be takled via the argumen-tation paradigm in knowledge engineering are haraterised. Seond, an abstrat formalframework for dynami argumentation is proposed, based on an analysis of dynami as-pets of informal argumentation. Formal arguments in this framework are built froman underlying set of axioms, represented here as exeutable logi programs. Finally, anarhiteture for dynami argumentation systems is de�ned, and domain-spei� appli-ations are systematially instantiated from this formalisation. Relevant appliationsare presented within di�erent domains, thus grounding problems with very distintiveharateristis into a similar soure in argumentation.The methods and de�nitions desribed in this thesis have been assessed on variousbases, inluding the reonstrution of informal arguments and of arguments apturedby existing formalisms, the relation between our framework and these formalisms, andexamples of dynami argumentation appliations in the safety-engineering and multi-agent domains.
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Part IBakground and Overview
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Chapter 1Context and Motivation
This thesis is onerned with the role of formal argumentation in knowledge engineering.Our motivation is that researh into argumentation an provide methods and tehniquesfor takling the sorts of wiked problems that are ommon in this �eld, problems whihaording to Rittel and Webber (1973) have no de�nitive and orret solutions beauseriteria for suess are often subjetive and oniting.The intuition behind argumentation is that one an reason with imperfet informationand deal with suh wiked problems by onstruting and weighing up arguments relevantto alternative onlusions. In a reent survey (Carbogim et al. 2000b), we have identi�edfour types of problems in knowledge engineering that have been takled by argument-based approahes:� the problem of defeasibility in a knowledge base, where some onlusions mightbe withdrawn in the presene of new knowledge;� the problem of deision making based on unertain knowledge, where we have todeide whih alternative to selet;� the problem of negotiation, where autonomous agents ommuniate and reasonabout propositions in order to reah an agreement; and� the problem of design, where it is important to make deisions, ommuniatedeisions and argue that the resulting artifat represents an aeptable solutionto a partiular problem. 3



An analysis of the state of the art in argumentation researh shows that there are asyet few lear guides to standard pratie in this area, and although argumentationgives a generi arhiteture for a partiular style of reasoning, muh domain-spei�expertise is required to instantiate this arhiteture to a domain of appliation. Sineargumentation, in automated forms, is relatively new there do not yet exist methodsfor guiding appliation of arhitetures to problems, and the fous has been on moreabstrat argumentation theory. In many ases speialised solutions have been adoptedin order to implement pratial systems from theoretial frameworks, and systems havebeen mostly evaluated in terms of simple benhmark problems.This present state of a�airs reets an expeted diretion of development in argument-oriented researh in knowledge engineering, summarised in the following two (related)points:� there is a need for inreasing the pratial utility of argumentation systems inknowledge engineering by taking more omplex arguments into aount; and� there is a need for lear methodologies for the systemati development of systemsfor argument generation in spei� domains.This thesis looks at both issues.1.1 Formal Argumentation and ReasoningOne of the assumptions underlying the use of lassial methods for representation andreasoning is that the information available is omplete, ertain and onsistent. But oftenthis is not the ase. In almost every domain, there will be beliefs that are not ategorial;rules that are inomplete, with unknown or impliit onditions; and onlusions thatare ontraditory. Therefore, we need alternative knowledge representation tehniquesfor dealing with the problem of imperfet information.There are two reations to this sort of problem when designing systems. The �rst isto resolve onit and restore onsisteny, as for instane in most researh in beliefrevision. A seond view, however, suggests that inonsisteny an o�er insights into4



CHAPTER 1. CONTEXT AND MOTIVATION 5rational proesses and therefore should not be eradiated. Argumentation as a reasoningtehnique is an example of the latter, through whih we an onstrut and omparearguments in order to reah and justify deisions.Argumentation bears a strong resemblane to ertain approahes for inonsisteny man-agement, in partiular to truth maintenane systems (Doyle 1979). The di�erene ismore about a shift in emphasis than it is tehnial. Truth maintenane systems keeptrak of the reasons for deriving onlusions from a knowledge base, so they an dealwith onit by trying to explain why it happened. If a belief needs to be retrated (e.g.to restore onsisteny), truth maintenane systems an identify whih are the onlu-sions that depend on this belief that should also be retrated. On the other hand, inargumentation it is important to make the soures of inonsisteny learer, and also tohart the ourse of an argument, so we an reason methodially in the fae of onit.Formal argumentation theories are haraterised by representing preisely some featuresof (informal) argumentation via formal languages and by applying formal inferenetehniques to these. Although suh systems an be of di�erent nature and have distintaims, the notion of argument adopted by them is usually the same, orresponding tothat of logial proof. In fat, the di�erene between formal argument and logial proof isnot syntati, but pragmati in the sense that proofs are ertain and arguments an bedefeated by or preferred over others. As remarked by Krause et al. (1995), \argumentshave the form of logial proof, but they do not have the fore of logial proof."Despite the traditional interest in argumentation in many disiplines, omputationalframeworks for representing moderately omplex arguments have appeared on the seneonly reently. Some believe that formal argumentation has many disadvantages, beausethe study of formal logi an require a great deal of e�ort (van Eemeren et al. 1987)and its use to model real (natural language) arguments is too restritive (Reed 1997).However, formal models of argumentation an be applied suessfully as a reasoningmethod in ertain ontexts, espeially if used in a lightweight manner by applyinglogi to spei� parts of a problem in a foused and seletive way (Robertson andAgust�� 1999). Reent e�orts in bringing the ommunities of philosophy and arti�ialintelligene together have also resulted in a handbook (Norman and Reed 2000) foridentifying problems, issues and a roadmap for researh in the interdisiplinary �eld of



argument and omputation.11.1.1 Truth and AeptabilityWhat is interesting about argumentation is that it explores aspets of pratial reasoningthat are not always addressed by onventional reasoning theories. For instane, it isbased on the notion of aeptability|a proposition is aeptable on the basis of thearguments that are relevant to it. As argued by Prakken and Vreeswijk (1999):Argumentation systems are not onerned with the truth of propositions, but withjusti�ation of aepting a proposition as true.Note that this view had already been advoated by Doyle (1979, p.234):To say that some attitude (suh as belief, desire, intent, or ation) is rational isto say that there is some aeptable reason for holding that attitude. Rationalthought is the proess of �nding suh aeptable reasons. [...℄ One onsequeneof this view is that to study rational thought, we should study justi�ed belief orreasoned argument, and ignore questions of truth.Being a onstrutive proess for �nding aeptable reasons, argumentation is essentiallydynami in nature (Gabbay 1999, 2000), and also intrinsially non-monotoni beausea position may be warranted with respet to ertain premises but not if other relatedarguments are also onsidered. Note that argument proesses rely mostly on onit anddisagreement hene it is important to deal with these types of inonsisteny properly.Again, moving away from the notion of truth to that of aeptability gives a way fordoing this.1.2 The Way We View ArgumentsThe study of argument is traditional in many disiplines, and although the notion ofargumentation is ommon to most of us there is still no onsensus as to the orret1 \Call it omputational theory of argumentation, or argument-based arti�ial intelligene (or both)."|David Hithok, e-mail posting to the ARGTHRY list on 3 August 2000.6



CHAPTER 1. CONTEXT AND MOTIVATION 7meaning of the term (Gilbert 1995). The following tries to summarise the ubiquitousharater of informal argumentation.Argumentation is a verbal and soial ativity of reason aimed at inreasing (ordereasing) the aeptability of a ontroversial standpoint for the listener or reader,by putting forward a onstellation of propositions intended to justify (or refute) thestandpoint before a rational judge. (van Eemeren et al. 1996, p. 5)Note that this de�nition enompasses two views of an argument:� a loal, stati view, in whih an argument is intended to give support in favour oragainst a onlusion; and� a global, dynami view, in whih an argument is intended to inrease or dereasethe aeptability of ontroversial positions.Most existing formalisms are limited in sope beause they desribe the shape of anargument but not the mehanisms needed to give dynamis to it. Suh formalisms areoften haraterised as two-step proesses in whih arguments are �rst generated and thenevaluated in terms of their aeptability. The dynami ounterpart of argumentationis restrited to determining whether an argument is aeptable based on its relationsto all existing arguments. This may be de�ned in dialetial terms via dialogues anddebates, but is still a limited view of dynamis beause it does not allow arguments tobe revised or strengthened in order to hange their aeptability with respet to ertainpositions.Mehanisms for apturing dynamis involve revising arguments that have been attakedin order to reestablish their validity; and also strengthening arguments by antiipatingritiisms and dismissing them. This thesis fouses on whether suh mehanisms anbe formalised and automated and how argumentation seen from this dynami perspe-tive an provide an answer to the two researh issues stated above. Our position issummarised below:� Argument dynamis broadens the sope of argument-based appliations in the



knowledge engineering domain by grounding various problems with very distin-tive harateristis into a similar soure.� Certain types of argument dynamis an be formalised and provide a generimethodology supporting the design of domain-spei� argument systems in a sys-temati way.Although this view of dynamis has not been muh explored in the ontext of formalargumentation, it is a legitimate part of the study of arguments and informal logi.Arguments are based on reasons and assumptions whih are not neessarily aknowl-edged by others, and whih an therefore be hallenged. Studies in argument analysisinlude the use of tehniques for strengthening an argument so as to redue hanes ofattaks and to eliminate the demand for yet more reasons and justi�ations. Fogelinand Sinnott-Armstrong (1997, p. 40) have identi�ed three suh tehniques:Assuring an argument by stating that bakup reasons exist, although they are notexpliitly presented.Guarding an argument by weakening the argument laim, thus proteting it fromertain attaks.Disounting an argument by antiipating ritiisms and dismissing them.Among these strategies, we are mostly interested in that of disounting, i.e. in ways ofonsidering potential attaks and dismissing them. Aording to Fogelin and Sinnott-Armstrong (1997), \the general pattern of disounting is to ite a possible ritiism inorder to rejet it" by indiating that the urrent position is more important than thisritiism. We are also onerned with ases in whih ritiisms an be more important.And to dismiss suh ritiisms, the argument under attak might need to be restrutured:some premises on whih it is based may be reviewed, and new ones may be put forward.1.3 General Questions Addressed in this ThesisThis thesis is about generating arguments. It is a study of theory, arhiteture anddevelopment of formal argumentation systems in the ontext of knowledge engineering8



CHAPTER 1. CONTEXT AND MOTIVATION 9from a omputational and proedural perspetive. The entral ontribution is that itis possible to onstrut an abstrat formal framework for argument dynamis, and tosystematially instantiate domain-spei� appliations from this formalisation.The work in this thesis has been guided by two main, general questions, namely:� How an knowledge engineers bene�t from argumentation-based approahes toknowledge representation and reasoning?� How an we improve the methodology for building systems for supporting suhtasks?More spei� questions are stated in the next setion, after we de�ne in more detailthe problem of formalising and automating argument dynamis. Before, though, wedelineate the struture of the present thesis.1.3.1 Thesis OverviewThe remainder of this thesis is divided as follows:Part I. In Chapter 2 we identify and de�ne preisely the problem to be addressed inthis thesis. Then, in Chapter 3, we haraterise the types of problems that anbe takled via the argumentation paradigm in knowledge engineering.Part II. Chapter 4 introdues the formal onepts underlying our approah, and identi-�es the subproblems that need to be addressed in order to formalise and automatedynami argumentation. The rest of the hapters in this part then address thesesubproblems: Chapter 5 gives an intuitive desription of our approah in termsof informal examples and of onepts from informal argumentation theory; then,Chapter 7 introdues the orresponding formal desription based on a preiseharaterisation of possible attaks given in Chapter 6; Chapter 8 gives a workedexample illustrating the use of two possible implementations for a dynami argu-mentation mehanism; and �nally, roles and properties of our theory are disussedin Chapter 9.



Part III. This part is about adapting our abstrat theory of dynami argumentationto domain-spei� appliations. We do this in Chapter 10 by proposing a generiarhiteture for argumentation systems whih elaborates on the mehanisms de-�ned in Part II. Two areas of appliation are onsidered: safety-engineering inChapter 11, and negotiation in Chapter 12.Part IV. In Chapter 13 we summarise our ontributions, and �nally, in Chapter 14,we disuss possible diretions and avenues for future work.

10



Chapter 2Problem De�nition: DynamiArgumentation
From a proedural perspetive, formal argumentation is about apturing proesses ofargument exhange by means of formal languages and inferene tehniques. Suh argu-ments are often represented by means of logial proofs, generated from an underlyingknowledge base|usually omposed of fats and rules|via a provability relation. Andalthough argumentation proesses an be of di�erent natures and have distint aims,they are often based on onit and disagreement between arguments.Argumentation is sometimes used for determining whether a onlusion is aeptablewith respet to a stati knowledge base (or a set of knowledge bases) assumed to be�xed over time. Note that here time does not neessarily orrespond to real time, butrather it is related to the sequene of argument moves. Thus, the knowledge base|andonsequently the set of all arguments that an be derived from it|remain unhanged asthe argumentation develops. Most onventional formal argumentation systems desribeonly this type of proess for organising the relevant arguments (possibly in a dialetialstyle) in order to speify if a onlusion an suessfully defend itself from attaks.Examples are given in Setions 3.1 and 3.2. In this work, however, we are interested inargumentation proesses that do aount for hanges to the underlying knowledge base.We refer to these as dynami.Changes to a knowledge base an be of two broad types: those independent from theargumentation, and those related to it. The �rst type is said to be external in the sense11



that hanges are aused by some outside, not neessarily known, fator. Suh hangeshappen over time, but independently from the sequene of argument moves. Dynamiargumentation systems that aount for external hanges are used to determine whetherertain onlusions are aeptable given that the available information an hange duringthe argumentation. These are briey disussed in Setion 3.1.2.The seond type of hange is said to be guided by argumentation, in the sense thathanges an allow desired arguments to be generated and undesired arguments to bebloked. These are intrinsially related to the sequene of argument moves|we an de-liberately try to inrease or derease the aeptability status of a position by performinghanges so as to introdue supporting or attaking arguments, respetively. Therefore,dynami argumentation systems that aount for guided hanges an be used not onlyto determine if a onlusion is aeptable with respet to a knowledge base, but also toa�et its aeptability status by performing ertain hanges to this knowledge base dur-ing the argumentation. Examples of suh proesses are presented later in this hapter,in Setion 2.1.In brief, the nature and purpose of eah type of argumentation proess an be ratherdi�erent. Figure 2.1 illustrates the di�erent sorts of proesses with respet to the hangesallowed. Below we summarise the general onept of dynami argumentation.Dynami argumentation is about using formal languages and inferene tehniquesfor apturing proesses of argument exhange where the knowledge base from whiharguments are derived is dynami, i.e. it an be hanged during the argumentationproess, either via external hanges or via guided hanges.In this thesis we are interested in formally desribing dynami argumentation proessesbased on guided hanges. From now on we refer to these by dynami argumentation orargument dynamis, unless there is a risk of ambiguity. We also use the term revisionto refer to any sort of hange to the knowledge base.
12



CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 13
A0 ,, A1 ++ ::: -- AN�(a) Conventional (stati) argumentation: argumentation steps assume �xed knowledge base.

AN�M::: --:::A1 ,,�K:::��1A0 --�0 ///o ///o ///o ///o ///o(b) Dynami argumentation with external hanges: knowledge base may hange independentlyof argumentation step.
AN�N::: --:::A2 ,,�2A1 ,,�1A0 ,,�0 ///o ///o ///o ///o() Dynami argumentation with guided hanges: knowledge base hanges as a onsequene ofargumentation steps.Figure 2.1: Types of argumentation aording to hanges in the underlying knowledgebase, symbolised here by the possibly indexed letter �. A0; A1; A2; ::: represents thesequene of argument moves, while �0;�1;�2; ::: stands for the sequene of knowledgebases obtained as hanges (expressed by ;) are performed.



2.1 Examples of Dynami ArgumentsOne way to think about argument dynamis is that it should be possible to hangeand revise an argument in order to defend it from attaks. In formal systems, wherearguments are derived from a knowledge base, it should be possible to revise this knowl-edge base so as to defend arguments from attaks, e.g. by adding new information sothat new supporting arguments or ounter attaks an be derived. From this perspe-tive, dynami argumentation is a proess of knowledge base revision guided by attaksand ounter attaks, whih is intended to inrease|rather than just determine|theaeptability status of a position with respet to this knowledge base.Our view is that argumentation seen from a dynami perspetive has a broader rolein omputational systems. This setion gives some senarios in whih formalising andautomating the kind of dynami arguments above ould be useful, and it turns outthat these are appliable also in domains far removed from the roots of argumentationtheory|for instane in desribing relationships between fault trees and system modelsin examples taken from the safety-engineering ommunity.2.1.1 Model DesignArgumentation an play an important role in design and analysis, espeially in safety-ritial domains, where safety arguments are normally intended to onvine people thatthe spei�ed system will be safe if implemented appropriately.Consider for example a system that models the operation of the pressure tank ontrolsystem in Figure 2.2, as de�ned in the Fault Tree Handbook (Vesely et al. 1981):The pump pumps uid from an in�nitely large reservoir into the tank. We shallassume that it takes 60 seonds to pressurize the tank. The pressure swith hasontats whih are losed when the tank is empty. When the threshold pressure hasbeen reahed, the pressure swith ontats open, deenergizing the oil of relay K2so that relay K2 ontats open, removing power from the pump, ausing the motorto ease operation. The tank is �tted with an outlet valve that drains the entiretank in an essentially negligible time. [...℄ When the tank is empty, the pressure14



CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 15
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FROM  RESERVOIRFigure 2.2: A pressure tank system.swith ontats lose, and the yle is repeated.Formal arguments for the safety of this system may involve a proof that the system isoperational at all times. In safety-ritial domains, though, it is also important to showthat the system is aeptably tolerant to known faults, and suh arguments are oftensupported by fault tree analysis.The fault tree tehnique is a well-established method used in industry for analysingharateristis of systems under development. A fault tree is a model of the faults thatan lead to an unsafe event, or top event, in suh systems. Fault tree analysis evaluatesweaknesses of the system by assessing the fault tree qualitatively and quantitatively. Itidenti�es the possible ombinations of basi events in a fault tree from whih the topevent an be derived (namely minimal ut sets), and estimates the probability of thetop event from the probabilities assigned to the basi events. Thus fault tree analysisnot only gives possible points of attak to the system model, but it also provides riteriafor priority and relevane of suh arguments.Consider the top event of a fault tree for this system to be the rupture of the pressuretank after the start of pumping1. One of the minimal ut sets of this fault tree is1 See hapter VIII in (Vesely et al. 1981) for the fault tree analysis with respet to this top event.



omposed of the basi event primary failure of k2 . By primary failure of a omponentwe mean that the omponent fails to work under irumstanes in whih it should work,so if k2 ontats fails to open when the oil of k2 is deenergised, then the tank willrupture.Aording to the fault tree analysis in (Vesely et al. 1981), the probability of thisminimal ut set is 3 � 10�5, whih is fairly high for safety standards. This representsa strong argument against system safety, but whih an be undermined if we add someredundany to the system; i.e. safety ould be onsiderably improved by adding anotherrelay in parallel to k2 .In suh a way, the fault tree model is a soure of possible arguments against systemsafety that an guide the revision of a system model in order to inrease its aeptabilitywith respet to known faults. Chapter 11 shows how our argumentation framework dealswith a fault tree example taken from the safety engineering literature.2.1.2 Negotiation between AgentsNegotiation is often desribed as the proess of ahieving mutually aeptable agree-ments between agents. Sometimes agreements are about �nding aeptable solutions forommon problems (rather than deiding on onlusions that are aeptable to all agentsinvolved), whih an be ahieved in a sort of goal-oriented reasoning where agents takesome goal as a starting point and interat in order to agree on how to satisfy it.In this ontext, negotiation fouses on the onstrution of objets as solutions to openproblems, and dynami argumentation an provide means for building suh solutions.In ontrat-based negotiation for instane, ontrats are objets that an be adjustedbased on reasoned arguments by the agents involved in the agreement so that it isaeptable for all the parties involved.Assume that ontrats are objets whih regulate agreements between autonomousagents|onsumers (or lients) and produers (or servers)|about the supply of produtsand servies. The proess of ontrat-based negotiation ould be desribed as follows.Initially, one of the parties proposes a binding ontrat to regulate the agreement be-tween them; without loss of generality, we an assume that a produer makes this �rst16



CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 17proposal. This ontrat is now the objet of negotiation between produer and on-sumer, and an be seen as a set of formulae stating the onditions for aomplishing theagreement.The onsumer reeives the ontrat from the produer and analyses it. If it agrees withthe lauses, then the proess of negotiation is over. More interestingly, the onsumermight have reasons to believe that this partiular ontrat will not be suessfully om-pleted. In this ase, the onsumer sends it bak to the produer with the appropriateritiisms. The produer then tries to adapt some of the lauses in that partiular on-trat in order to make it more aeptable, sending it bak again to the onsumer forfurther analysis. The proess of adjusting the ontrat ontinues until there are no moreritiisms (i.e. it is aeptable for produer and onsumer) or until one of the partieswithdraws. This proess is similar to the kind of negotiation that humans perform inmany situations involving ontrats.In suh a way, negotiation an be viewed as a dynami argument where the aim is toinrease the aeptability of a ontrat by revising it in terms of possible objetions frompartiipating agents, until all agents ommit to it. Chapter 12 shows how our argumen-tation framework deals with an example of this sort in ontrat-based negotiation.2.2 Spei� Questions Addressed in This ThesisThere are two main reasons why we believe it is important to formalise and automateargumentation proesses like the ones mentioned above. First, argument-based method-ologies should be supported by (semi-) automated tools whih an both guide knowledgeengineers in developing knowledge bases that derive the intended onsequenes, and alsosupport designers of argument systems in investigating properties and e�ets of ertainattaks and revisions in a domain. Seond, automated argument systems an be used byarti�ial agents that want to employ this tehnique to solve ertain types of problems.A number of more spei� questions has steered the development of suh a formalisationof argument dynamis (together with those general questions stated in Setion 1.3), suhas:



� Whih onepts are involved in argument dynamis, and whih of these would beinteresting to formalise? Can these be de�ned in a general way or are they (orsome of them) domain-spei�?� How to represent and generate an argument? What types of arguments are im-portant to be represented?� How do arguments relate to eah other and what types of relationships an bede�ned between arguments?� Where do attaks ome from?� What mehanisms are used to prioritise arguments, and how an ontextual (do-main) information be inorporated into suh mehanisms?� When do dynami arguments terminate?Now, before moving towards a formalism for apturing arguments dynamis, the nexthapter presents an overview of the existing work in argumentation in the ontext ofknowledge engineering.
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Chapter 3Argumentation and KnowledgeEngineering
One of the ontributions of this thesis is to haraterise the types of problems in theknowledge engineering domain that have been takled by formal argumentation. Thishapter surveys the state-of-the-art in formal models of argumentation and presents alassi�ation in terms of problems they are meant to solve.Our goal is to illustrate the use of formal and strutured semi-formal approahes to ar-gumentation, evaluating its pratial utility in knowledge engineering. Instead of takingthe usual path of reviewing di�erent proposals for solving a partiular problem, herewe analyse di�erent issues that an be takled by automated argumentation systems,briey omparing these approahes to other paradigms found in the literature. This isnot supposed to be an exhaustive survey, but an analysis of various formal representationstyles that are obtained by looking at argumentation from di�erent perspetives.Beause at this point we take suh a broad view of argumentation, the systems we de-sribe are diverse. To guide the reader and failitate omparison, the existing argument-based e�orts are analysed in terms of general problems stated at the beginning of eahsetion. The hapter is then organised as follows:� Setion 3.1 disusses how formal argumentation an deal with non-monotoni anddefeasible reasoning;� Setion 3.2 reports on some of the argument-based approahes for deision making19



and reasoning under unertainty;� Setion 3.3 reviews some appliations of argumentation in distributed settings,paying partiular attention to multi-agent negotiation systems;� Setion 3.4 fouses on systems that use argumentation to support the design ofan artifat, espeially in the software development ontext.Beause many argument-based systems share similar features and purposes, it is hard (ifnot impossible) to establish a de�nitive lassi�ation of whih researh falls into whihategory. However, an analysis based on our problem-oriented lassi�ation helps tohighlight strengths and problems in the existing proposals.Finally, Setion 3.5 summarises the urrent state-of-the-art and speulates on importantdiretions in argument-oriented researh in knowledge engineering.3.1 Argument and Non-monotoni Reasoning3.1.1 Problem DesriptionThis setion onsiders the problem of drawing onlusions from a knowledge base inthe fae of inompleteness and inonsisteny. Very often, the addition of new propo-sitions into a knowledge base an invalidate previously held onlusions and introdueontraditions. In this ase, reasoning is said to be non-monotoni.Non-monotoni or defeasible reasoning1 addresses the problem of reasoning under in-ompleteness and inonsisteny in the sense that some onlusions an be taken bak inthe presene of new information. That is, a proposition an be aepted until a betterreason for rejeting it is found. Approahes for dealing with non-monotoni reasoningshould then have means for deiding whih onlusions are justi�ed and aeptable ina knowledge base. Here we investigate how formal argumentation models an providethis means.1 The term defeasibility has its origins in the ontext of Legal Philosophy|see (Prakken and Vreeswijk1999, p. 10) and (Ches~nevar et al. 1999, p. 3). As argued by Pollok (1987), the ideas behind defeasiblereasoning as it is studied in Philosophy and non-monotoni reasoning in Arti�ial Intelligene areroughly equivalent, hene these terms have often been used interhangeably.20



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 213.1.2 Defeasible ArgumentationSeveral approahes for formalising non-monotoni reasoning have been proposed in theliterature, suh as default logis (Reiter 1980; Antoniou 1998). Argumentation providesa di�erent perspetive to non-monotoni and defeasible reasoning, in whih a laim isaepted or withdrawn on the basis of the arguments for and against it, and on whetherthese arguments an be attaked and defeated by others. This view has been hara-terised as defeasible argumentation2 and gained momentum after the publiation of thework of Loui (1987) and Pollok (1987). Sine then, myriad defeasible argumentationsystems have been proposed (Nute 1988, 1994; Lin and Shoham 1989; Simari and Loui1992; Freeman 1993; Brewka 1994; Dung 1995; Bondarenko et al. 1997; Jakobovits 2000),also motivated by researh in the area of legal reasoning (Kowalski and Toni 1996, 1994;Verheij 1996; Prakken 1997a,b; Prakken and Sartor 1997, 1996; Vreeswijk 1997). It isimportant to note that the �eld of Arti�ial Intelligene and Law has proved a fertiledomain for defeasible argumentation researh and appliations. This setion, however,does not desribe partiular approahes to legal argumentation.3 Instead it onentrateson general tehniques for takling defeasible reasoning based on argumentation, oftenreferred to as argument-based semantis.In general, defeasible argumentation systems are intended to haraterise preiselywhether an argument is aeptable based on its relations to other arguments. Prakken(1995) has identi�ed a generi oneptual framework whih underlies the majority ofexisting defeasible argumentation systems. This framework onsists of �ve basi notionsthat may not always be expliit:1. an underlying logial language;2. a onept of argument;2 A omprehensive view of logis for defeasible argumentation an be found in (Prakken and Vreeswijk1999), and this setion is partly based on it. For another survey on this topi, inluding a historialaount of argumentation and defeasibility, see (Ches~nevar et al. 1999).3 An overview of legal appliations of defeasible argumentation an be found in (Ches~nevar et al. 1999,pp. 12{14). A more reent roadmap paper (Benh-Capon et al. 2000) brings together various strandsof researh in this area to reate a oneptual model for the rational reonstrution of legal argument.For more spei� referenes, the interested reader an refer to the Arti�ial Intelligene and LawJournal and to the Proeedings of the International Conferene on Arti�ial Intelligene and Law,both aessible from the homepage of the International Assoiation for Arti�ial Intelligene and Lawat http://ais.gmd.de/iaail/.



3. a onept of onit between arguments;4. a notion of defeat among arguments; and5. an aount of the aeptability status of arguments.The status of one argument depends on the whole set of arguments, and an be spei�edin two ways: delaratively, by de�ning a lass of aeptable arguments; and proedurally,via proof-theoretial mehanisms for determining whether an argument is in this lass.A di�erent view of proedural models was summarised by Loui (1998), who argues thatwhat makes beliefs rational is not only their relations to other beliefs, but also the wayin whih they are built as the outome of deliberative proesses. In this sense, Louigives an aount of defeasible argumentation as resoure-bounded, dialeti disputationprotools. Protools are proedural models for onstruting arguments based on notionssuh as whih parties are involved; what are the possible moves for eah party; howmoves a�et the outome; how to determine if a disputation has �nished; and if it hasbeen won or lost. For the outome to be rational, suh protools must be fair (e.g.parties get the same amount of resoures, suh as time) and e�etive (e.g. when aonlusion is established, it means that maximum resoures were used in unsuessfulritiisms).More reently, Prakken (2000) has also been fousing on the study of dialetial pro-tools, but from a slightly di�erent perspetive than Loui's. Rather than onsideringpartial omputation and limited resoures, Prakken (2000) is interested in ases wherenew information is added during the proess, and in haraterising the properties thatmake protools appropriate in these situations (e.g. if a partiipant ould have advanedan attak, this partiipant had the hane to do so during the argumentation). In hiswords, protools must be fair and sound. One ould think of suh protools as repre-senting dynami argumentation with external hanges (see Chapter 2), in the sense thatthey do aount for hanges in the underlying knowledge base but are not onernedwith exatly why nor when these happened.It has been argued that these sorts of proedural models are at a di�erent layer of argu-mentation, a layer onerned with disputes and dialogue games rather than delarative22



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 23aeptability of arguments. Benh-Capon et al. (2000) summarise the four types of layersoften onsidered in omputational models of argument: a logial layer|orrespondingto the underlying logi mentioned above|for generating arguments and justi�ationsbased on a monotoni logial system; an argument framework layer|addressed in thissetion in terms of the framework above|for dealing with non-monotoni and defeasi-ble reasoning by lassifying aeptable arguments based on onits and attaks from a�xed set of premises; a proedural layer for regulating real disputes in whih informationan be added or hallenged dynamially; and a heuristi layer on top of the proedu-ral layer for onsidering eÆient strategies for seletion and presentation of argumentsduring a dispute.This thesis is mostly onerned with the latter two layers, partiularly on how dynamihanges to the set of premises relate to types of attaks that an be generated. Theanalysis in this setion, though, is onerned with non-monotoni and defeasible rea-soning, and hene with the argument framework layer. We base this analysis on thegeneri oneptual framework above, so it is possible to identify many similarities andommon features between existing systems for defeasible argumentation, and also dif-ferenes between these systems in terms of variations of these basi onepts. We willbe looking at this framework in detail in Setion 3.1.3.We are not presenting the various defeasible argumentation formalisms in detail. A om-prehensive aount of the most relevant ones an be found in (Prakken and Vreeswijk1999) and (Ches~nevar et al. 1999). Instead, the rest of this setion fouses on a partiu-lar approah that is viewed as a unifying, abstrat aount of defeasible argumentation.The Abstrat Argumentation Framework of Kowalski & Toni (also known as the BDTKapproah) is a logi programming-based theory of argumentation that \uni�es and gen-eralises many approahes to default reasoning" (Bondarenko et al. 1997; Kowalski andToni 1994). Most existing defeasible argumentation systems an be understood anddesribed in terms of this formalism, whih is disussed in Setion 3.1.4.Finally, Setion 3.1.5 ompares argument-based semantis approahes to other paradigmsfor apturing defeasible and non-monotoni reasoning found in the literature.



3.1.3 A Coneptual Framework for Defeasible Argumentation SystemsThis setion disusses the �ve main onepts behind formalisms for defeasible argumen-tation: an underlying logi notions of argument, onit and defeat, and an aount ofthe possible status of an argument. Note that these are not always expliit, and theterminology used to designate them may also vary between argumentation systems.Eah element is briey desribed below based on the more omplete aount given in(Prakken 1995; Prakken and Vreeswijk 1999).Underlying Logi As disussed earlier, formal argumentation systems are hara-terised by the use of formal knowledge representation and inferene tehniques.The underlying logi is essentially the formal logi system de�ning a monotonionsequene relation as the basis for deriving arguments. For instane, we mightadopt a Horn lause resolution-based system as the underlying logi. Suh systemsare fundamentally dedutive and therefore monotoni.Arguments Arguments orrespond to proofs in the underlying formal system. Con-sider, for example, the set of Horn lauses below:p q ^ r q  s r  true s trueThen the following proof of p (depited as a tree with lower nodes supporting theonlusion above) is said to be an argument for p.p
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rsConit Intuitively, argumentation presupposes disagreement, whih is aptured inthis framework by the notion of onit. Also referred to in the literature as at-tak or ounter-argument (Prakken and Vreeswijk 1999), onit determines whihonlusions in a knowledge base an be onsidered ontraditory. For example,the sentenes married (X) and bahelor (X) an be seen as oniting, when in-stantiated by the same value for X. 24



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 25It is possible to identify di�erent types of onit in terms of the underlying system,e.g. rebuttal. Arguments are said to be rebutting if they have ontraditoryonlusions. Assume for instane propositions p and not p to be oniting, andsuppose the following lauses are added to the small example above:not p u ^ v ^ w u true v  true w  truethen the arguments A1 and A2 below are examples of rebutting arguments.A1 : p
��
� ;;

; A2 : not p
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r u v wsDefeat Beause the underlying logi is monotoni, the addition of new information doesnot invalidate existing arguments or previously derived onlusions, so onitingarguments may oexist in a knowledge base. In the item above, for example, weare able to derive arguments for both p and not p. The non-monotoni haraterof argumentation arises from the fat that some arguments may be preferredover others, and we should have means to deide whih of these arguments areaeptable.The notion of defeat is usually based on some omparative measure for argumentsand a riterion based on this measure for adjudiating between oniting argu-ments. One way to do this is to assign some priority order to ertain lauses in aknowledge base, and to use this order to deide between arguments. For instane,if the lause not p u ^ v ^ w has preedene over p q ^ r, then the argumentA2 for not p defeats the argument A1 for p.It has already been argued that suh riteria are usually domain spei� (Konolige1988; Prakken and Sartor 1997), but in some ases it is possible to apply generi,domain independent standards suh as the spei�ity priniple4 (Simari and Loui1992).4 The spei�ity priniple is a priority measure in whih rules that deal with spei� ases are preferredover generi ones. For example, if we an derive the following oniting arguments:Tweety ies beause Tweety is a birdTweety does not y beause Tweety is a penguinthen by the spei�ity priniple the argument for Tweety does not y is preferred beause the fatthat Tweety is a penguin is more spei� than the fat that Tweety is a bird.



Status The goal of a defeasible argumentation system is to determine whih laimsand whih arguments are aeptable. The notion of aeptability an vary fromformalism to formalism, but intuitively an argument that defeats a onitingargument but is also defeated by a third one is not aeptable. Therefore it is notenough to just look at the two oniting arguments alone to deide upon them,but instead all relevant arguments must be onsidered before making a deision.For instane take the knowledge base that extends the examples above by theaddition of the following lauses.not u t ^ z t true z  trueLet the oniting propositions be p and not p; and u and not u, and assume thefollowing priority ordering is assigned to this knowledge base.� not p u ^ v ^ w has preedene over p q ^ r;� not u t ^ z has preedene over u true;� every other lause has equal preedene.We know from this ordering that argument A2 for not p defeats argument A1 forp. However, this is not enough to deide that argument A1 is not aeptable. Thisis beause there might exist an argument A3 that defeats A2, thus restoring thevalidity of A1. In fat, the following argument for not u defeats A2.A3 : not u
ww

ww GG
GGt zIn a sense, the aeptable arguments in a knowledge base an be viewed as oneway of settling existing onits. Sometimes, e.g. in the example above, there isexatly one way of settling onit aording to the way preferenes were de�ned,hene the set of aeptable arguments is unique. There may be ases, however,where onit an be resolved in alternative ways, and therefore alternative setsof aeptable arguments may exist.A more re�ned view identi�es three general lasses of argument, intuitively de-sribed as follows: 26



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 27� An argument is justi�ed if and only if all arguments defeating it are notjusti�ed; e.g. A1 and A3 above are justi�ed arguments.� An argument is overruled if and only if it is not justi�ed and it is defeatedby a justi�ed argument; e.g. A2 above.� An argument is defensible otherwise.From this perspetive there are two possible attitudes towards aeptane ofarguments|redulous and septial. In redulous systems, an argument is a-epted if it defensible. On the other hand, in septial systems an argument isaepted only if it justi�ed. This distintion between justi�ed and defensible isalso possible in ases where there are alternative sets of aeptable arguments,so an argument is defensible if it is in at least one of these sets, but for it to bejusti�ed it must be in every alternative set.This oneptual sketh is in line with Dung's view that every argumentation system on-sists of two essential parts: an Argument Generation Unit (AGU) for generatingarguments; and an Argument Proessing Unit (APU) for deiding whether an ar-gument is aeptable. Dung (1995) argues that logi programming and non-monotonireasoning are types of argumentation whih an be formalised in an abstrat way vianotions of argument and attak. He proposes a method for generating meta-interpretersfor argumentation systems, showing also that argumentation an be seen as logi pro-gramming. The method is simple and is desribed below:� The AGU spei�es the attak (or onit) relationships between arguments. In(Dung 1995), these relations are onsidered to be primitive and represented interms of a binary prediate attak : if an argument A attaks an argument B, thisis expressed by attak (A;B).� The APU is the following logi program with negation as failure that determineswhether an argument A is aeptable.aeptable(A)  not defeat(A)defeat(A)  attak(B;A) ^ aeptable(B)



Intuitively, an argument is aeptable if it annot be shown to be defeated, i.e. ifthere is no aeptable argument that defeats it. This aptures the idea that anargument A an be attaked by another argument, whih in its turn may also beattaked by a third one, therefore restoring the validity of A, but does not apturethe distintion between justi�ed and defensible arguments above.From the perspetive of this oneptual model we now take a loser look at the AbstratArgumentation Framework, a logi programming based haraterisation of defeasibleargumentation whih is both generi and oriented towards omputation.3.1.4 An Abstrat Aount of Defeasible ArgumentationThe Abstrat Argumentation Framework in (Kowalski and Toni 1994, 1996; Bondarenkoet al. 1997) gives a exible way of dealing with defeasibility in argument. As a languageindependent formalisation of defeasible argumentation, it an semantially haraterisemany approahes to default reasoning. This framework is partly based on Dung's Ar-gumentation Framework (Dung 1995), but a fundamental di�erene is that in Dung'sformalism the notions of argument and attak are onsidered as primitives.So let (L;`) be a monotoni dedutive system, where L is a formal language and ` isprovability relation suh that � ` � if there is a dedution of � 2 L from a theory �. Atheory is any set � � L.De�nition 3.1 (Abstrat Argumentation Framework) Let (L;`) be a monotonidedutive system. An Abstrat Argumentation Framework (�;A;� ) with respet to(L;`) is an assumption-based framework de�ned by:� a theory � � L representing fats or beliefs;� a set of assumptions A � L, A 6= ;, that an extend any theory; and� a mapping � : A! L to apture the notion of ontrary of an assumption|i.e.� 2 L represents the ontrary of � 2 A. 2A key motivation is that it should be possible to make expliit the assumptions onwhih defeasible reasoning is based. For instane, an argument whih rests on suh28



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 29assumptions is aepted if there is no evidene to the ontrary. Non-monotoniity ariseswhen evidene against these assumptions is provided, thus the arguments based on themare no longer aepted (Bondarenko et al. 1997).De�nition 3.2 (Argument) If a onlusion � 2 L an be derived from � � A and� � L, then we say that � [� ` � is an argument for �. 2Note that arguments are based on assumptions, and these assumptions an be attakedby others:De�nition 3.3 (Attak) Let (�;A;� ) be an Abstrat Argumentation Framework. Aset of assumptions � � A attaks another set of assumptions �0 � A if there is � 2 �0suh that � [� ` �. 2The term attak used in this framework orresponds to the notion of onit in theoneptual sketh in Setion 3.1.3. Beause an argument an only be attaked by meansof its assumptions, onits between arguments are not symmetrial; i.e. if an argumentA attaks an argument B, then B does not neessarily attak A. These sorts of attaksare known as assumption attaks. In this sense, all relations between arguments in theAbstrat Argumentation Framework are redued to undermining attaks, as illustratedin the following example, adapted from (Kowalski and Toni 1996) and (Robertson andAgust�� 1999).Example 3.1 . Consider the following theory � of an Abstrat Argumentation Frame-work about inheritane. inherits(P; estate(B))  valid will (W;B; P ) (3.1)disinherited (P; estate(B))  found guilty(P;murder (B)) (3.2)found guilty(john ;murder(henry))  (3.3)valid will (do042 ; henry ; john)  (3.4)We say that a person P inherits the estate of B if there is a valid will W from B tothat person. On the other hand, we say that a person P is disinherited of the estate ofB if this person has been found guilty of the murder of B. In a partiular inheritane



ase, John has been found guilty of the murder of Henry, and there exists a valid willidenti�ed as do042 naming John the bene�iary of Henry's estate.Intuitively, there is onit if a person P both inherits and is disinherited of some es-tate. It should be possible to onstrut two rebutting arguments here: one supporting theonlusion inherits(john ; estate(henry)), and another disinherited (john ; estate(henry)).However, from the formal de�nition of attak given above, we annot derive any on-iting argument.Attaks are based on assumptions. Therefore, in order to allow arguments to be attakedwe need to appropriately extend the expressions in the theory by adding assumptions asextra premises. Let the abduible sentenes be represented by a non-provability operatorof the form annot be shown(�), whih denotes that a sentene � is assumed to be falseif it annot be proved to be true. Note that annot be shown(�) = �.Expressions (3.1) and (3.2) ould then be rewritten as follows:inherits(P; estate(B))  valid will (W;B; P ) ^annot be shown(disinherited (P; estate(B))) (3.5)disinherited (P; estate(B))  found guilty(P;murder(B)) ^annot be shown(inherits(P; estate(B))) (3.6)From De�nition 3.3 we now have two undermining arguments orresponding to theintuitive rebutting arguments. 2There is no expliit riterion for deiding between two arguments in an Abstrat Argu-mentation Framework. In fat, the notions of defeat and onit oinide in the sensethat every attak to an argument defeats this argument. Note that defeat an be sym-metrial, so it is possible to have two arguments defeating eah other. This is illustratedabove, where the argument for inherits(john ; estate(henry)), defeats the argument fordisinherited (john ; estate(henry)), and vie versa. In this sense, there are two ways ofsolving onit in this inheritane base, orresponding to the following two alternativesets of aeptable arguments: one ontaining the argument supporting inheritane, andthe other ontaining the argument supporting disinheritane. Both onlusions are de-30



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 31fensible (but not justi�ed), so in a redulous system both would be aeptable whereasin a septial system neither of them would.It should be possible, however, to represent priorities and preferenes in this framework.Atually, there are two ways to prioritise an argument in terms of assumptions withoutaltering the semantis. One way is by removing assumptions so that the argument anno longer be attaked. The seond way is by introduing labels to the expressions andadding rules that talk about their priorities. A methodology for doing the latter isdesribed in detail in (Kowalski and Toni 1996). Next we illustrate both ases.Example 3.2 Consider again the example 3.1. Intuitively, if John is found guilty ofmurdering the owner of the estate he is supposed to inherit (Henry), it an be expetedthat he is disinherited of that estate, even if a valid will exists. Therefore, we wouldlike to prioritise the argument for disinheritane with respet to the one supportinginheritane.One way to do this is by removing the assumption in expression (3.6). Therefore, inthe theory onsisting of expressions (3.5), (3.2), (3.3) and (3.4) there are no argumentsattaking the argument for disinherited (john ; estate(henry)).Another way to prioritise arguments is by talking about priorities in terms of labels.Consider the following expressions:r1 : inherits(P; estate(B))  valid will (W;B; P ) ^annot be shown(defeated (r1(P ))) (3.7)r2 : disinherited (P; estate(B))  found guilty(P;murder(B)) ^annot be shown(defeated (r2(P ))) (3.8)defeated (r1(P ))  annot be shown(defeated (r2(P ))) (3.9)Expression (3.9) intuitively orresponds to the idea of \inherits unless is disinherited of",so the argument for inheritane is defeated in ase a person is proved to be disinherited ofthe estate under onsideration. In the theory omposed of expressions (3.7), (3.8), (3.3),(3.4) and (3.9), the argument for disinherited (john ; estate(henry)) defeats the argumentfor inherits(john ; estate(henry)), but the reverse does not hold beause no lause existsfor defeated (r2(john)). 2



Having de�ned the notions of defeat, the arguments in an Abstrat ArgumentationFramework an be evaluated in terms of their ability to defend themselves againstattak (Kowalski and Toni 1994). The way in whih the lass of aeptable argumentsis de�ned an vary aording to the semantis that one wants to apture. In the aseof admissibility semantis, for instane, an argument is aeptable if and only if it isonsistent and it attaks every argument that attaks it.De�nition 3.4 (Aeptability) An argument � [� ` � is aeptable if and only ifthe set of assumptions � on whih it is based is admissible. 2De�nition 3.5 (Admissibility) A set of assumptions � � A is admissible if and onlyif, for every �0 � A, if �0 attaks � then � attaks �0 ��. 2To build an admissible argument for a onlusion � we �rst need to onstrut an argu-ment � [� ` � and then augment the set of assumptions � so as to defend it againstall possible attaks. Note that this is not trivial beause by adding new assumptions toan argument we are also adding new potential points of attak against it.Many other redulous and septial semantis for negation as failure an also be apturedby adopting other de�nitions of aeptability.5 In partiular, di�erent logis for defaultreasoning an be obtained by onsidering di�erent notions of aeptability, di�erentsets of assumptions or even by assuming a di�erent underlying logi. The advantageof this framework is that it is both generi and oriented towards omputation, sineit an be implemented as a logi program. Reently, a parametrisable proof theoryhas been developed for it (Kakas and Toni 1999), where the di�erent semantis thatan be formalised via argumentation an be omputed in terms of instanes of theseparameters.3.1.5 Relation to Other Paradigms for Non-monotoni ReasoningBy appropriately instantiating the onepts desribed in Setion 3.1.3, argumentationframeworks an provide a haraterisation of di�erent formalisms for default reasoning,5 It has reently been shown in (Dimopoulos et al. 1999) that redulous reasoning under admissibilitysemantis is as hard as under stable semantis, but in the ase of septial reasoning it is atuallyeasier. Other omplexity results for some of the semantis aptured by the Abstrat ArgumentationFramework an also be found in that paper. 32



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 33suh as logi programming with negation as failure, default logi and auto-epistemilogi, among others. Reonstruting these formalisms in terms of an Abstrat Argumen-tation Framework means speifying appropriately eah one of the elements in De�nition3.1, namely an underlying logi, a set of assumptions, and the notion of ontrary of anassumption.For illustrative purposes, onsider the ase of default logi.6 A default theory is basedon a �rst-order dedutive system (L0;`0) and an be de�ned as a pair (W;D), where Wis a set of formulae in the underlying system and D is a set of default rules (Antoniou1998). Default rules have the general form �:�1;:::;�n , denoting that if � is true and if wean assume �1; :::; �n to be onsistent with �, then we an derive . Let M� representthat it is onsistent to assume �. A default theory (W;D) an then be desribed asan instane of an Abstrat Argumentation Framework (W;A;� ) based on a dedutivesystem (L;`) as follows:� (L;`) is the underlying �rst-order dedutive system:{ L = L0 [ fM� j � 2 L0g;{ ` is de�ned by the set of inferene rules R below,R = R0 [ f�;M�1;:::;M�n j �:�1;:::;�n 2 Dg,where R0 is the set of inferene rules de�ning `0.� A is the set of assumptions de�ned by fM� j � 2 L0g.� The notion of the ontrary of an assumption is de�ned as M� = :�.Reently, argumentation has also been applied to the problem of belief revision (Car-bogim and Wassermann 2000), where an instane of the oneptual model in Setion3.1.3 is used in a resoure-bounded belief model to deide whether an inoming beliefshould be aepted or not.As summarised by Prakken and Vreeswijk (1999, p. 9), the argumentation paradigmseems to be appliable in areas other than defeasible reasoning:6 The interested reader should refer to (Bondarenko et al. 1997) for a more omplete aount of thisreonstrution in terms of the Abstrat Argumentation Framework with respet to the various possiblesemantis.



[...℄ argumentation systems have a wider sope than just reasoning with default.Firstly, argumentation systems an be applied to any form of reasoning with on-traditory information, whether the ontraditions have to do with rules and ex-eptions or not. For instane, the ontraditions may arise from reasoning withseveral soures of information, or they may be aused by disagreement about be-liefs or about moral, ethial or politial laims. Moreover, it is important thatseveral argumentation systems allow the onstrution and attak of arguments thatare traditionally alled `ampliative', suh as indutive, analogial and abdutive ar-guments: these reasoning forms fall outside the sope of most other non-monotonilogis.The following setions then explore this wider sope of argumentation in other ontexts.3.2 Argument and Deision Making under Unertainty3.2.1 Problem DesriptionAs argued by Fox and Krause (1992), deision making is not only about quantitativeoption seletion. Pratial reasoning|or reasoning about what is to be done|is arather omplex ativity that involves many other funtions, suh as deision struturing,ommuniation, and representation of values, beliefs and preferenes. In partiular, Foxand Krause (1992) have identi�ed the following requirements that deision supportsystems should satisfy: robustness, exibility, aountability and soundness.What makes the problem of pratial reasoning yet more omplex is the fat that infor-mation on whih deisions are based is very likely to be imperfet and unertain. Belowwe desribe some ways in whih unertainty an arise in a knowledge base.� We an have degrees of on�dene assoiated with the information in the knowl-edge base, and these measures should be propagated appropriately as we reasonabout it.� Unertainty may be present in a non-deterministi fashion, where either of two(or more) alternatives an ome about, but we do not know whih. This type ofunertainty is usually represented in terms of disjuntions in the knowledge base.34



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 35� Moreover, unertainty an arise when we annot expliitly aount for the manyonditions that are neessary for a rule or a relation to hold. This is usually alledthe quali�ation problem.This setion looks at the problem of deision making from the more omplex perspetiveadvoated by Fox and Krause (1992), onsidering ases where the information availableis unertain in one of the three senses desribed above.3.2.2 Argumentation and Deision MakingMost standard deision theories do not address all the requirements identi�ed by Foxand Krause (1992) appropriately. On one hand, symboli approahes suh as knowledgebased expert systems are usually onstruted in an ad ho manner, and often onsideredto be brittle. On the other hand, probabilisti deision theories are not suÆientlyexible nor aountable with respet to the options onsidered, and therefore havelimited appeal to users. In fat, psyhologial researh indiates that people do notreason probabilistially when faed with unertainty.7 Moreover, it is not always possibleto obtain preise, objetive statistis in ertain domains (Parsons and Fox 1997).The argumentation paradigm has been explored as an alternative approah to standarddeision making theories, where deisions are made by onsidering arguments for andagainst deision options. As stated in (Fox and Krause 1992):Argumentation aptures a natural and familiar form of reasoning, and ontributesto the robustness, exibility and intelligibility of problem solving, while having alear theoretial basis.A reent statement on argumentation and pratial reasoning has also elaborated onthe roles and issues underlying argument-based deision support systems (Girle et al.2000).Argumentation has been applied extensively in domains suh as risk assessment (MBur-ney and Parsons 1999, 2000) and mediine (Fox and Das 2000). The Logi of Argumen-7 See (Parsons and Fox 1997) for a more extensive disussion, inluding referenes to empirial evidenesupporting this laim.



tation (Krause et al. 1995) in partiular is a well-established formal model for pratialreasoning in whih a strutured argument rather than some summative measure is usedfor desribing unertainty. That is, the degree of on�dene in a proposition is obtainedby analysing the struture of the arguments relevant to it. The Dialetial Argumen-tation System (Freeman 1993) is also based on the same ideas and motivations, but ithas been less widely used than the Logi of Argumentation. Both will be disussed inSetion 3.2.3.Other argumentation-based deision theories look at deision making from the sameperspetive, but onsider di�erent representations of unertainty. Setion 3.2.4 brieydisusses some of these other approahes, in partiular Haenni's Assumption-based Sys-tems (Haenni 1998) and an extension of Dung's Argumentation Framework for modellingunertainty (Ng et al. 1998).3.2.3 The Logi of ArgumentationThe Logi of Argumentation (LA) is a qualitative approah to deision making, pre-sented as an alternative to standard formalisms in order to overome some of the lim-itations imposed by them. The development of LA was largely based on Toulmin'swork on informal argumentation (Toulmin 1958; Fox et al. 1992), partiularly on hisdesriptive model of arguments whih is summarised in Figure 3.1.QUALIFIER
vvllllDATA // CLAIMWARRANT REBUTBACKINGFigure 3.1: Toulmin's argument struture: a laim is supported by data (or evidene)and by a warrant, whih is a general rule or priniple supporting the step from data toa laim; the baking is a justi�ation for the warrant, and the rebut is a ondition wherea warrant does not hold; a quali�er expresses the appliability of the warrant.
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CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 37Fox and Parsons (1998) argue that ertain harateristis of this struture make itsuitable for pratial reasoning in general and for deision making under unertainty inpartiular. In ontrast to stritly dedutive mathematial reasoning, pratial reasoningan involve imperfet information and inferene relations other than dedution (Elvang-Goransson et al. 1993). In a sense, Toulmin's model aounts for some of these issues:the idea that onlusions are followed by a quali�er suggests that degrees of on�denean be assoiated with laims; and ontradition an also be represented in terms of therebut omponent.Arguments about BeliefsIn a nutshell, the idea behind LA is to analyse the struture of the arguments that arerelevant to a proposition in order to obtain a degree of on�dene for it. As stated byKrause and Clark (1993), \degrees or states of unertainty an be viewed as a synthesisof the outome of reasoning proesses (i.e. arguments) germane to the proposition inquestion."The Logi of Argumentation is based on a fragment of minimal propositional logi om-posed of onnetives ^, ! and :. In line with most formal frameworks for argumenta-tion, an argument is de�ned as a proof in this logi, but also with the more pragmatiinterpretation of tentative proof for indiating support for (or against) a proposition.Eah argument in LA is represented as the following struture in a Labelled DedutiveSystem style (Gabbay 1996): (St : G : S),where:� St is any formula of the underlying logi. It orresponds to the onlusion of theargument, or the laim in Toulmin's struture.� G represents the grounds on whih the argument is based, i.e. the proof or jus-ti�ation for the argument. The idea is that the sentenes and formulae used toderive St in the underlying logial system are expliitly represented in G. G istherefore similar to the data and warrant supporting the laim in Toulmin's model.



� S is a sign, i.e. an element of a ditionary (set) of symbols or numerial valuesrepresenting possible degrees of on�dene in the sentene St, thus apturing thenotion of quali�er in Toulmin's model.A number of ditionaries of on�dene measures were de�ned and analysed in (Fox andParsons 1998), with emphasis on symboli ones. An example is the so-alled boundedgeneri ditionary f+;++g, in whih + indiates that a laim is supported whereas++ denotes that a laim is on�rmed and hene annot be rebutted with respet tothe grounds on whih it is based. The delta ditionary f+;�g is another example of aset of symboli degrees of on�dene, where � represents an opposing argument, or anyargument that dereases the on�dene in a laim. In the delta ditionary for instanethe following relation holds: (:St : G : +), (St : G : �).In summary, arguments are strutures that desribe how a sentene is justi�ed. If � isa knowledge base omposed of suh argument strutures, then new arguments an begenerated from � via an argument onsequene relation `ACR. Figure 3.2 gives someof the rules de�ning this relation in a onsequent style. The interested reader an referto (Krause et al. 1995; Fox and Parsons 1998) for a omplete and detailed de�nition of`ACR.To illustrate the types of arguments that an be represented in LA, onsider the followingexample from a medial domain, adapted from (Fox and Parsons 1998).Example 3.3 Suppose that a patient has oloni polyps whih ould beome anerous.These beliefs an be represented in a knowledge base by the following arguments in termsof the bounded generi ditionary.b1: The patient has oloni polyps (p : fb1g : ++)b2: Polyps may lead to aner (p! a : fb2g : +)Here p stands for \the patient has oloni polyps" and a for \the patient will developaner". The symbols b1 and b2 are labels for identifying beliefs in the knowledge base.These labels are partiularly useful for representing the sentenes that are used to proveor justify an argument; i.e. its grounds. 38



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 39(Ax) If (St : G : S) is in the knowledge base, then (St : G : S) is an argument itself.(St:G:S)2�� `ACR (St:G:S)(^E1) If we an build an argument for St ^ St0 on the grounds of G and with on�-dene S, then we an eliminate one onjunt and build an argument for St onthe same grounds G and the same degree of on�dene S assoiated with it.� `ACR (St^St0:G:S)� `ACR (St:G:S)(!E) If we an build an argument for St and an argument for St! St0, then wean build an argument for St0. The grounds on whih St0 is based are repre-sented by the union of the grounds on whih St and St! St0 were derived.The degree of on�dene assoiated with St0 is obtained from a ombinationfuntion with respet to the elimination of impliation.� `ACR (St:G:S) � `ACR (St!St0:G0:S0)� `ACR (St0:G[G0:ombimp elim (S;S0)Figure 3.2: The Argument Consequene Relation `ACR.The argument onsequene relation in Figure 3.2 an derive, on the grounds of thearguments above, that this patient may develop aner.b: The patient may develop aner (a : fb1; b2g : +)More spei�ally, it uses the impliation elimination rule (!E) whih an be understoodas an speial appliation of Modus Ponens in whih the grounds and signs have to bepropagated appropriately. In this ase, the sign propagation funtion is a minimalisationof the degree of on�dene. 2Thereby LA provides a way of building the arguments that are relevant to a sentene.What still needs to be de�ned is a mehanism for ombining every distint argument inorder to obtain a single on�dene measure for the sentene in question. This mehanismis also known as aggregation or attening, and is de�ned in terms of attening funtionsover the adopted ditionary. If ASt is the set of all arguments (St : G : Sg) relevant toa sentene St, then: F lat(ASt) = hSt; vi,



where v an be an element of the given ditionary, but an also be drawn from di�erentones.The symboli aggregation proedure de�ned in (Krause et al. 1995) is an example ofthe latter ase. It ombines arguments for (+) and against (�) a proposition into anelement of a di�erent ditionary (orresponding to v above) omposed of the followinglinguisti terms:fertain ; on�rmed ; probable ; plausible ; supported ; openg.Furthermore these terms losely resemble the quali�ers used by Toulmin. One advantageof this approah is that it an provide a high level summary of the available evidenewithout going into details of the aggregation proedure.From the perspetive of argumentation, pratial reasoning in general and deisionmaking in partiular an be haraterised as a two-step proess in whih we �rst on-strut arguments for the alternative options and then we selet the most aeptableone (Elvang-Goransson et al. 1993). The di�erene between this approah and the onepresented in Setion 3.1 is that here degrees of aeptability are assoiated to eah sen-tene, and therefore the argument proessing step onsists of piking the most aeptableargument instead of identifying the aeptable ones. It has been shown that the Logiof Argumentation an be related to other systems for non-monotoni reasoning, suh asdefault logi. But unlike the argument-based appliations to non-monotoni reasoning,LA does not in itself aount for the dialetial perspetive of argumentation, nor forthe possibility of reinstatement. Suh aspets are now being explored more broadly inmulti-agent negotiation ontexts, as desribed in Setion 3.3.3.A lear mathematial semantis for argumentation and aggregation is provided in termsof ategory theory (Ambler 1996), so that proofs of soundness an be developed forthe systems based on LA. Other alternative semantis have also been proposed, forinstane the probabilisti semantis in (Parsons and Fox 1997) allows LA to representprobabilisti reasoning.In the ontext of deision support systems the argumentation paradigm has been provedquite e�etive (Fox and Das 2000; Fox and Parsons 1998). The Logi of Argumentation40



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 41has been widely used as the basis of an agents' internal arhitetures8 and employed ina number of pratial reasoning tasks, espeially in medial domains where systems forsupporting medial diagnosis are amongst its appliations (Parsons and Fox 1997).Arguments about AtionsReasoning about beliefs|what is the ase|is atually di�erent from reasoning aboutations|what we ought to do (Fox and Parsons 1998). In the �rst ase LA an beapplied to build arguments (or tentative proofs) supporting a partiular onlusion.However, a di�erent notion of support may be needed for reasoning about ations,whih may involve values|what is important or positive|and expeted values|whatis the expeted value of doing a ertain ation.Expeted values and utilities are traditional ingredients in standard deision theories.In the ontext of informal argumentation, these onepts were also explored in the NewRethori (Perelman and Olbrets-Tytea 1969), a theory that has inspired reent formalapproahes suh as Daphne (Grasso 1998). Daphne is a system that builds argumentsto promote healthy nutrition eduation based on users' values and preferenes.9The following is an informal example extrated from (Fox and Parsons 1998) whihextends Example 3.3 and gives an argument-based haraterisation of a deision makingtheory involving both beliefs and ations.Example 3.4 Suppose that a patient has oloni polyps whih ould beome anerous.Sine aner is life-threatening, some ation ought to be taken in order to preempt thisthreat. Surgial exision is an e�etive proedure for removing polyps, and hene this isan argument for arrying out surgery. Although surgery is unpleasant and has signi�antmorbidity, this is preferable to loss of life, so surgery ought to be arried out.Part of this reasoning is about beliefs and ould be represented in LA-style as follows:8 Fox and olleagues have developed the DOMINO model, an agent arhiteture based on the BDI|Belief Desire Intention|model (Rao and George� 1991, 1995), and whih inorporates proeduresfor deision making and plan exeution based on the Logi of Argumentation (Fox and Das 2000; Daset al. 1996; Fox and Das 1996).9 Issues related to argument-based persuasion and guidane are raised in almost every ontribution in(Norman and Reed 2000), as for instane in (Gerlofs et al. 2000; Crosswhite et al. 2000).



b1: The patient has oloni polyps (p : fb1g : ++)b2: Polyps may lead to aner (p! a : fb2g : +)b3: Caner may lead to loss of life (a! ll : fb3g : +)b4: Surgery preempts malignany (su! :(p! a) : fb4g : ++)b5: Surgery has some side e�et se (su! se : fb5g : ++)Other arguments are about values for representing whether a state is desirable or not.v1: Loss of life is intolerable (:ll : fv1g : ++)v2: Side e�et of surgery is not desirable (:se : fv2g : +)Arguments about the expeted values of ations ombine arguments about values withstandard LA arguments for reasoning about beliefs.ev1: Surgery should be arried out (su : fb1; b2; b3; b4; v1g : +)ev2: Surgery should not be arried out (:su : fb5; v2g : +)Furthermore, preferenes between deision options and alternative ourses of ationshould be represented, and here this is done in terms of a speial prediate pref .p1: Surgery side-e�ets is preferableto loss of life (pref (se; ll) : fv1; v2g : ++)p2: It is preferable to arry out surgerythan to not arry out surgery (pref (su;:su) : fev1; ev2; p1g : ++)Other types of argument an also be identi�ed: losure arguments, whose grounds mightinlude a proof that all relevant arguments have been onsidered; and arguments forommitting to partiular ations and deision options.l1: No arguments to veto surgery (safe(su) : G : ++)o1: Commit to surgery (do(su) : fp2; l1g : ++) 2To deal with arguments about values|suh as v1 and v2|and expeted values|suhas ev1 and ev2|Fox and Parsons (1998) have proposed a Logi of Value (LV) and aLogi of Expeted Value (LEV), respetively. Arguments in LV and LEV have essentiallythe same format as the arguments in the Logi of Argumentation, expliitly stating thegrounds on whih they are based. Figure 3.3 summarises the sort of reasoning shemathat ombines belief arguments in LA with value arguments in LV to obtain an argumentfor the expeted value of an ation in LEV.42



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 43On the grounds of G, we an argue that ationA will lead to ondition C with on�dene S (A! C : G : S) (LA)On the grounds of G0, C has value V (C : G0 : V ) (LV)Therefore, on the grounds of G [G0,ation A has expeted value E (A : G [G0 : E) (LEV)Figure 3.3: Reasoning about beliefs, values and expeted values.Apart from mehanisms for aggregating arguments about values and expeted values,we also need a funtion that ombines signs from LV and LA into a sign in LEV. Thatis, in Figure 3.3 we need a funtion for deriving an expeted value E given a value Vand a on�dene measure S.Compared to the Logi of Argumentation, LV and LEV are still in a preliminary stage ofdevelopment. The proposal in (Fox and Parsons 1998) onentrates on identifying whihbehaviour to apture rather than on providing a omplete formalisation and analysis ofthese logis. To our knowledge, systems that involve LV and LEV have not yet beene�etively implemented. The merit of this approah, however, lies in the haraterisationof the di�erent aspets of deision making in terms of argumentation. De�ning suhaspets via separated argumentation systems is rather intuitive and provides a moreintelligible aount to the problem of deision making under unertainty.LA and the Dialetial Argumentation SystemAlso inspired by Toulmin's argumentation model is the work by Freeman and Farley(1992), namely a formal theory for reasoning, making deisions, and proving and jus-tifying laims in weak theory domains, i.e. domains in whih knowledge is unertain,inonsistent or inomplete. Again, the motivation for applying argumentation to dealwith inomplete knowledge is that �nding an adequate method for attahing numerialvalues to propositions, and for ombining and propagating these values is a diÆulttask. As stated in (Freeman and Farley 1992), \argumentation an be used as a methodfor loating, highlighting and organizing relevant information in support of and ounter



to proposed laims."In ontrast to the Logi of Argumentation, an argument may be viewed not only as astrutured entity, but also from a dialetial perspetive. This means that an argumentis not only desribed as a struture that organises relevant information for and against alaim, but also as a dynami proess engaged by oniting parties as in a debate. Theargument strutures adopted by Freeman and Farley (1992) orrespond to a slightlyextended version of Toulmin's original shema (see Figure 3.1) together with variousquali�ers for apturing unertainty. The extended Toulmin strutures have been imple-mented as a Dialetial ARgumenTation System|DART|that generates arguments ina game-like, dynami proess. DART has been used to model simple legal arguments(Freeman and Farley 1996; Freeman 1993), but has not been applied to real worldsenarios.3.2.4 Other Argumentation-based Approahes to UnertaintyArguing about beliefs under unertainty is not fundamentally di�erent from arguingabout the aeptability of a laim in a non-monotoni ontext as disussed in Setion3.1. For instane, Ng et al. (1998) propose a framework for dealing with unertainand oniting knowledge that extends the proposals in (Dung 1995) and (Prakken andSartor 1997).This proposal onsists in applying argument-based mehanisms to resolve onits in adistributed setting, both within an agent's knowledge base and among di�erent agents.The agents' knowledge bases are represented as extended disjuntive logi programs(Gelfond and Lifshitz 1991), where unertainty is desribed by disjuntions in thehead of the lauses. The lause below for instane says that a dog barks when it sees astranger or a �re; so if a dog barks then we know that one of these alternatives is true,but we do not know whih. stranger _ �re  dog barksAs in (Prakken and Sartor 1997), two types of attak are onsidered: rebuttals, basedon strong (or lassial) negation; and assumption attaks, based on weak negation (or44



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 45negation as failure). Defeat is based on an expliit preferene hierarhy. In some spei�ases, suh as a single agent senario, this framework an be proved equivalent to thatof (Prakken and Sartor 1997).Another approah to argument-based unertainty has reently been proposed, this timein terms of assumption-based systems. Haenni (1998) inorporates unertainty as ex-tra assumptions into propositional knowledge, analogously to the idea in the AbstratArgumentation Framework (see Setion 3.1.4) of making expliit the assumptions onwhih defeasible reasoning is based. This onnetion is not surprising, as the latter isan assumption-based system itself.Haenni's proposal onsists in transforming unertain ausal relations into lauses inan assumption-based propositional logi, and then building arguments for hypothesesbased on these assumptions. For instane, the ausal relations expressed by the graphbelow
...e1 e2 en

ould be represented by the following lause stating that if ause  is true then at leastone e�et among e1, ..., en is also true.! e1 _ e2 _ ::: _ enMoreover, beause some relations in a ausal network an be unertain, the e�etsmay only ome about under ertain onditions, or assumptions. These assumptions areintrodued as extra premises in the orresponding lauses, as shown below. ^ a! e1 _ e2 _ ::: _ enAn argument for an hypothesis is a set of assumptions that allow this hypothesis tobe derived in the underlying propositional logi. An hypothesis is aepted or rejetedbased on the arguments for and against it; i.e. on the arguments that allow the hy-pothesis to be derived, and on the arguments that allow the falsity of the hypothesis



to be derived. Note that this di�ers from the Abstrat Argumentation Framework inthe sense that ounter-arguments are not de�ned in terms of assumption attaks, butin terms of rebuttals.Just as in the Logi of Argumentation, it is possible to aggregate the arguments relevantto an hypothesis in order to obtain a on�dene measure for it. In Haenni's proposal,however, the aggregation measure is purely quantitative, and it an be derived by as-signing prior probabilities to the assumptions and propagating them aordingly. Notethat the framework also �ts in the two-step proess haraterisation of argumentationsystems disussed in the previous setions, sine we �rst build all arguments related toan hypothesis and then, based on these arguments, we evaluate it quantitatively.The formalism desribed in (Haenni 1998) has been implemented in ABEL (AssumptionBased Evidential Language), a modelling language for omputing symboli and numer-ial arguments for an hypothesis given an expert knowledge base and a set of fatsand observations (Anrig et al. 1999). ABEL has been applied mostly for reonstrutingstandard AI examples, in partiular in the model-based diagnosis and ausal modellingdomains.Hene argumentation an be used to model deision proesses under unertainty in thesense desribed in Setion 3.2.1. Moreover, beause the informal notion of argument isnaturally onneted to that of disagreement between parties, it seems that this paradigmould also be applied in distributed senarios. This is what we explore next.3.3 Argument and Multi-Agent Systems3.3.1 Problem DesriptionIntelligent software agents should be able to interat with other agents in many dif-ferent ways. Suh interations usually pose a variety of issues related to informationdisovery, ommuniation, reasoning, ollaboration, oordination of joint approahesand soial abilities. Some of these issues may be viewed as a proess of ahieving mu-tually aeptable agreements between agents (Parsons and Jennings 1997), where thenature of these agreements varies aording to the type of problem to be addressed.46



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 47There are in general two types of agreement that an be attempted by agents. Onone hand, agreement is about deiding on a onlusion that is aeptable to all agentsinvolved. This sort of interation usually takes plae when there is a onit that needsto be settled or resolved. On the other hand, agreement may be ahieved in a goal-oriented type of reasoning, in whih agents take a previously aepted goal as a startingpoint and interat in order to �nd an aeptable way of reahing or satisfying it. Thissort of interation arises when there is a ommon problem to be solved by the agents,who have to agree on a solution. In either ase, it is important for agents to reasonabout their own beliefs, as well as about other agents' beliefs. So it is very likely thatthese interations will be based on imperfet information in general and ontraditorybeliefs and intentions in partiular.Note that this way of looking at multi-agent interations seems to be in line with thelassi�ation of dialogues given by Walton and Krabbe (1995). They have identi�edsix basi types of argumentative dialogues, whih an be haraterised in terms of aninitial situation, a main goal, and the aims of the partiipants. One systemati way fordetermining the type of a dialogue is to onsider whether it starts from a onitingsituation or from an open problem to be solved, in a similar way as we have haraterisedthe types of multi-agent agreements above. A more detailed disussion on the relationbetween models in argumentation theory and in multi-agent approahes is given in(Carbogim et al. 2000a), whih addresses and identi�es issues and open problems thatare of interest to both ommunities.In the agent ommunity in partiular the problem of ahieving mutually aeptableagreements between agents has often been desribed as negotiation.10 In this ontext,we now onsider the problem of negotiation based on the two general types of agreementsidenti�ed above.10 Negotiation is one of the six basi dialogue types identi�ed in (Walton and Krabbe 1995)|it startswith a onit of interests and has settling, or making a deal, as the main goal. The multi-agentommunity adopts a broader view of negotiation, usually de�ned as a general proess for ahievingagreements. This de�nition subsumes other types of dialogues suh as deliberation and persuasion,but is still ompatible with these: \negotiation dialogues may pro�t both from inquiries and frompersuasion dialogues as sub-dialogues" (Walton and Krabbe 1995, p. 73).



3.3.2 Argumentation-based NegotiationResearh in argumentation in multi-agent settings has been guided by the question ofwhether it an provide or support intelligent interation between agents. Reently therehas been muh interest in applying argumentation systems to apture negotiation, sineproesses for reahing agreements often involve the exhange of arguments betweenagents.Here we present two ways in whih negotiation proesses an be formalised in terms ofargumentation. Setion 3.3.3 onsiders protool-based argumentation approahes, whihfous on the exhange of messages between agents, and therefore are partiularly usefulfor reahing agreements about whih onlusion to aept when there is onit. Setion3.3.4 onsiders objet-based argumentation formalisms. Suh formalisms onentrate onthe onstrution of objets as solutions to open problems, and therefore are appropriatefor reahing agreements on how to satisfy or ahieve ertain goals. Note that thislassi�ation is not novel, as a similar distintion on argumentation-based negotiationresearh was presented in (Jennings et al. 1998).3.3.3 Protool-based Negotiation via ArgumentationAgent ommuniation models or interation protools usually desribe dialogues be-tween agents in terms of notions that are relevant to argumentation, and therefore itis possible to look at them from an argumentation perspetive. For instane, onsiderthe ase of the Knowledge Query and Manipulation Language|KQML|an agent om-muniation language that provides a set of performatives through whih agents aninterat (Finin et al. 1997; Labrou et al. 1999). The notion of performatives omes fromspeeh at theory, and essentially is used to onvey some ation about a message whentransmitting it. Some KQML reserved performatives are shown in Figure 3.4.More ommonly, however, interation protools are only a part of argument-based ne-gotiation models, whih is used for dealing with ommuniation issues. Negotiationformalisms normally extend single-agent argumentation frameworks (of the types pre-sented in the previous setions) by using these to generate arguments whih will bepassed to other agents via some ommuniation protool, thus providing an argument-48



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 49Category NameBasi query evaluate, ask-if, ask-about, ask-one, ask-allMulti-response (query) stream-about, stream-all, eosResponse reply, sorryGeneri informational tell, ahieve, anel, untell, unahieveGenerator standby, ready, next, rest, disard, generatorCapability-de�nition advertise, subsribe, monitor, import, exportNetworking register, unregister, forward, broadast, routeFigure 3.4: Some KQML performatives lassi�ed into ategories (Finin et al. 1997).based approah for reasoning with imperfet information in a distributed setting.For instane, the framework proposed by M�ora et al. (1998) extends the single-agentdelarative argumentation framework in (Prakken and Sartor 1997) to deal with oop-eration among agents. Analogously to its single-agent ounterpart, the aim is to deidewhih onlusions are aeptable in this distributed environment, also haraterisingthe semantis of distributed logi programs in terms of argumentation. In this ase,however, agents an ooperate by looking for support from other agents when tryingto build arguments. Agents are de�ned as extended logi programs, so they ooperateby asking other agents to infer ertain onlusions neessary to omplete a proof. Theommuniation proess is implemented via an argumentation protool based on �vespeeh ats: ask, reply, propose, oppose and agree.The approah de�ned in (Shroeder 1999a) is also based on the same delarative frame-work in Setion 3.1.3. The proposal is preliminary, but it goes one step further in thediretion of building e�etive operational argumentation systems, as Shroeder touheson issues related to the heuristi layer11 suh as the need to de�ne strategies for selet-ing the best argument in order to redue the number of exhanged messages and theneed to inrease general understanding of argumentation and logi, thus underminingsome of the most ommon ritiisms of the use of formal logi in modelling arguments.He addresses this need by proposing a graphial language for dynamially visualisingargumentation proesses (Shroeder 1999b).1211 See Setion 3.1.2.12 Information about this language is available at http://www.soi.ity.a.uk/homes/msh/gi/viz/.A system for ooperation between agents in business proess modelling is also available athttp://www.soi.ity.a.uk/homes/msh/gi/aa/aa.html. This system was motivated by a



In the ontext of deision making, where it is important to resolve oniting objetivesand to oordinate ooperative ations, negotiation has been haraterised in terms of ageneri proess for exhanging proposals, ritiques, ounter-proposals, explanations andmeta-information. More reently, Wooldridge and Parsons (2000) have been fousing onthe study of formal properties that generi logial languages for negotiation an have,as for instane what types of protools are guaranteed to lead to an agreement. Belowwe disuss the protool for negotiation proposed in (Parsons and Jennings 1997), andskethed in Figure 3.5.Proposal A proposal is the basi element of negotiation, and it usually orresponds toan o�er or a request.Critique Intuitively, to ritique a proposal means to rejet this proposal, maybe at-taking the parts whih are not aeptable.Counter-proposal A ounter-proposal is a type of ritique where the agent not onlyrejets a proposal, but also presents another (preferable) one.Explanation An explanation is a justi�ation or an argument for a proposal, ritiqueor ounter-proposal.Meta-information Any piee of extra information that an be used for guiding theanalysis and evaluation of proposals, suh as information about preferenes orvalues.In the protool outlined in Figure 3.5 there is no expliit indiation of exhange ofmeta-information, as this type of message an be passed at any point by any agent.Arguments (explanations) may be sent together with ritiques and proposals, and arerepresented by the formula �.This protool forms the basis of the multi-agent deision making frameworks in (Parsonset al. 1998) and (Sierra et al. 1997b) whih, although related, look at argumentationfrom two di�erent but (maybe) omplementary perspetives.projet for developing multi-agent models in the domain of business proess management (Jenningset al. 1996), whih also inspired the negotiation model in (Sierra et al. 1997b) disussed later in thissetion. 50
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Figure 3.5: Negotiation protool for two agents a and b (Parsons et al. 1998).The work in (Sierra et al. 1997b) was motivated by multi-agent appliations in businessproess management domains (Jennings et al. 1996). The emphasis in this proposalis given to the soial aspets of negotiation rather than to the atual generation ofproposals, so attak relations are assumed to be primitive as in Dung's approah. Themodel is based on a spei� ommon ommuniation language whih deals with elementsof persuasion (Syara 1990)|suh as threat, reward and appeal|that agents use totry to hange eah other's preferenes, values and beliefs. Suh hanges are done in arather domain spei� manner, and some investigation on notions suh as values andexpeted utility in the sense desribed in Setion 3.2.3 might shed some light on howpersuasion ould be de�ned in more systemati terms.While this work fouses on soial elements, the framework in (Parsons and Jennings1997) and (Parsons et al. 1998) is more onerned with providing the neessary meha-nisms for implementing the negotiation proess in Figure 3.5. More spei�ally, it usesthe Logi of Argumentation to:



� generate proposals, ritiques, ounter-proposals, meta-information and explana-tions; and� evaluate proposals, ounter-proposals and meta-information.The Logi of Argumentation provides means of generating proposals as arguments andof evaluating them in terms of their aeptability. A ruial di�erene between howLA is applied here and in a single-agent senario is that now an agent has to makeexpliit not only the rules and fats that it used to generate an argument, but also theinferene rules, beause di�erent agents might use di�erent logis and therefore wouldnot be able to reonstrut an argument if neessary. This issue is takled by adopting auniform underlying agent arhiteture, the multi-ontext arhiteture. An advantage ofthe multi-ontext approah is that it is generi enough to apture other arhitetures,suh as the BDI framework (see footnote 8).Although argumentation systems like LA give a generi arhiteture for a partiular styleof reasoning, muh domain-spei� expertise is required to instantiate this arhitetureto a domain of appliation. One way to de�ne lear methodologies for the develop-ment of argumentation systems is to emphasise the problem and domain by identifyinglasses of problems in whih ertain evaluation priniples would hold and then applyingargumentation in these domains (Jakson 1994; Nwana and Ndumu 1999). The sorts ofresults given in (Wooldridge and Parsons 2000) represent one step in this diretion. TheLogi of Argumentation also provides a very good example of this, where a number ofdi�erent symboli ditionaries and aggregation mehanisms were identi�ed as suitablefor medial appliations, allowing di�erent argument-based systems to be implementedin this domain (Fox and Parsons 1998).3.3.4 Objet-based Negotiation via ArgumentationNegotiation-based models for deision making an also be seen from the perspetiveof the objet being negotiated, rather than from a ommuniation protool viewpoint(Jennings et al. 1998). In general, objets are formalised as olletions of issues (orvariables) over whih agreement an be made, and the proess of negotiation onsistsin �nding an assignment to the variables that suits every agent. However, it is also52



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 53possible to onsider a wider, onstrutive view in whih the objet under negotiationorresponds to an argument that has to be built by agents involved in mixed-initiativetasks. This more generi view subsumes the one where objets orrespond to variables,allowing other types of negotiation proesses to be haraterised.One example is the ontrat-based negotiation model initially proposed in (Carbogimand Robertson 1999) and desribed later in Part III of this thesis. Contrats are objetsthat are adjusted based on reasoned arguments by the agents involved in the agreement.In this sense, negotiation is about adjusting the terms of an agreement as opposed tothe protool-oriented view of forming an agreement. The same idea is explored in(Ferguson and Allen 1994), now in the ontext of mixed-initiative planning. Plans areexpliitly represented as arguments that an be ritiised and revised by the agentsin a framework for plan onstrution and ommuniation. The framework used forgenerating and evaluating arguments is based on previous work by Pollok (Pollok1987) and Loui (Loui 1987). Unlike most defeasible argumentation systems, it is notused to derive defeasible onlusions from a plan, but to build a plan whih is thedefeasible argument itself.In summary, the idea is to onstrut an argument (plan) supporting a partiular on-lusion (goal) whih is aeptable to all agents involved. The example below, adaptedfrom (Ferguson and Allen 1994), illustrates this type of reasoning:Example 3.5 Suppose that two agents are ooperating in order to onstrut a plan fortransporting ertain supplies (x) to a partiular loation. To get this done, they �rstneed to move the supplies overland to the port and then arry them by ship. A ship (s)leaves every day between 4h00 and 6h00. If the supplies are shipped by train to the ship,they will arrive at 5h00. If they are shipped by truk, they will arrive at 3h00, but it willost three times more than if transported by train. One possible interation between theagents is de�ned below:� Agent A suggests to ship the supplies by train.� Agent B argues that the supplies will miss the ship if it leaves at 4h00.� Agent A argues that the supplies will not miss the ship if it leaves at 6h00.



� Agent B then suggests to ship the supplies by truk.� Agent A aepts this suggestion.Note that the agents ould go on arguing if for some reason (suh as shipping by trukis too expensive) agent A does not �nd the proposal aeptable. 2In order to build an aeptable plan, agents make proposals, evaluate suggestions andpropose alternative ourse of ations, in a similar way as desribed in the protool-basednegotiation model of Figure 3.5. In this ase, though, reasoning is goal-oriented|inExample 3.5 the goal is to load the ship with the supplies before it leaves the dok.In (Ferguson and Allen 1994) this sort of reasoning is formalised by means of defeasiblerules representing ausal knowledge. Intuitively, these rules say that if the preonditionsfor an ation a hold at time t, then attempting a at time t auses an event et to happenat the next time point. Defeasibility arises beause it is hard (if not impossible) tospeify all the preonditions for a rule to hold, and impliit or unknown onditions aninvalidate the relation. This is also referred to as the quali�ation problem, alreadymentioned in Setion 3.2.1. Defeasible rules have the following generi form.Holds(preond(a); t) ^ Try(a; t; et)! Event(et):Holds(preond(a); t) ^ Try(a; t; et)! :Event(et)The de�nition of an event uses material impliation (denoted here by �) instead ofdefeasible impliation to denote that the e�ets of this event will hold at the next timepoint. Event(et) � Holds(e�ets(et); n(t)).This representation an formalise part of the reasoning in Example 3.5.AtDok(x; t) ^AtDok(s; t) ^ Try(load (x; s); t; et)! Load (et; x; s) (3.10)Load(et; x; s) � In(x; s; n(t)) (3.11)54



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 55Moreover, it is possible to apture unertainty in terms of disjuntions.AtDok(s; t) � t < 4h00 _ t < 5h00 _ t < 6h00 (3.12)The fat that! is a defeasible onnetive is important. Agents an build arguments fora partiular goal and these arguments an be attaked beause they involve elements ofunertainty and defeasibility.What is more interesting about this approah is that it allows the representation ofpartial plans that do not take all the preonditions of an ation into aount. Tobuild partial plans, agents an use variants of the existing ausal rules obtained byonsidering only a subset of the preonditions spei�ed in the original relation. As aonsequene, a preferene riterion an be de�ned based on the spei�ity priniple: inase of oniting positions, the position supported by the more spei� variant (i.e.the rule in whih more preonditions are taken into aount) defeats the position thatis based on a less spei� variant of the same rule.Example 3.6 To illustrate this idea, we represent the possible variants of rule (3.10)ordered in a lattie of spei�ity, where the rule at the top is the most spei� one.
(b) AtDok(s; t) ^ Try(load(x; s); t; et)! Load(et; x; s)(d) Try(load(x; s); t; et)! Load(et; x; s)() AtDok(x; t) ^ Try(load(x; s); t; et)! Load(et; x; s)(a) AtDok(x; t) ^ AtDok(s; t) ^ Try(load(x; s); t; et)! Load(et; x; s)
In Example 3.5, agent A presents a proposal for sending the supplies by ship based on apartial plan that disregards whether the ship is in fat at the dok at the time of loading.Suh a plan an be supported by variant () of the original rule (3.10). 2Other issues are involved in the type of argument desribed in the example whih are notonsidered in this proposal. In partiular, riteria other than spei�ity for evaluatingarguments ould be useful in this domain, espeially to apture the idea of values and



expeted values of ations. Again, the work on pratial reasoning and arguments aboutations13 is relevant also to this type of appliation.The next setion explores how this onstrutive view of argumentation has also beenapplied in a broader ontext.3.4 Argument and Design3.4.1 Problem DesriptionDesign is the proess of reating an artifat, but this general de�nition does not apturethe omplex, multifaeted nature of design ativities. Moran and Carroll (1996) identifyfour distint paradigms in the literature whih try to portray the nature of design: designas deomposition and re-synthesis; design as searh in a design spae; design as a proessof deliberation and negotiation, in whih unertainty and disagreement is intrinsi; anddesign as a reetive ativity. They also desribe a number of issues that must beonsidered if we are to address the various aspets inherent to the problem of design,some of whih are listed below:� how to represent hanges in the problem de�nition;� how to keep trak of the deisions taken and assumptions made during the designproess;� how to aid ommuniation among di�erent partiipants in the proess.These sorts of issues are relevant to design proesses in a variety of domains, fromarhitetural design to engineering design and software design. This setion onsidersthem from the perspetive of software design.3.4.2 Arguing about Software DesignIf we look at design as a mixed-initiative proess of negotiation, then the objet of thenegotiation (in the same sense disussed in Setion 3.3.4) is the artifat to be designed|13 See Setion 3.2.3 and (Girle et al. 2000). 56



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 57in this ase, the software system. In this way, we move from the type of multi-agentappliations to design support environments that possibly involve many partiipants.There are two signi�ant di�erenes between the approahes onsidered in this setionand the multi-agent negotiation models presented earlier in Setion 3.3. First, in theontext of design, less emphasis has been given to argumentation itself than to theproblem being takled (i.e. the design of a software system involving one or moreparties). This is an important point, as argued by Moran and Carroll (1996, p. 7):A lot of domain-spei� knowledge is needed, and the praties of design are dif-ferent in di�erent domains [...℄ Useful design tools need to be domain-spei�, butmany of the priniples behind the tools are generi.The seond di�erene is that in the software development senario, argument systemsfor supporting design have been applied to fairly omplex senarios.One way to relate the use of argumentation to software design is in terms of viewpointsin requirements engineering (Finkelstein et al. 1994, 1992). Though viewpoints are notexpliitly haraterised as arguments, they involve many ideas germane to the argumentparadigm, allowing multiple perspetives to be desribed and integrated by dealing withinonsistenies just when it is neessary, thus preserving these di�erent perspetives aslong as possible.Also in the ontext of system requirements, a number of approahes for generatingsafety arguments have been presented in (Krause et al. 1997). Safety arguments arenormally intended to onvine people that the spei�ed system will be safe if it isimplemented appropriately. Aording to MaKenzie (1996) there are essentially threetypes of safety arguments. Indutive arguments support that a system is safe by testingit. Dedutive arguments orrespond to mathematial proofs that the system is orret.Finally, onstrutive arguments rely upon the proess of design itself, whih is arguedto be a safe proess that results in safe outomes. This setion fouses on the latterform of arguments.Many problems arise when we try to represent safety arguments formally, although ithas been possible to obtain e�etive and useful results in domain-spei� settings. A



signi�ant number of these problems stem not from the tehnialities of the hosenargumentation system but from assumptions made about its design and deployment,sine the entire safety argument annot be made internal to the formal argumentationsystem and the �t to its external environment must be arefully shaped. A disussionof these issues appears in (Robertson 1999a; Gurr 1997).More ommonly, argumentation is embedded in design rationale and omputer-supportedollaborative argumentation (CSCA)14 systems that support the development of designativities. Design rationale is about expliitly reording the reasons why an artifatwas designed in a partiular way. In argumentation-based design rationale, reasons aregenerally represented as semi-formal arguments in terms of Issue Based InformationSystem|IBIS|models (Conklin and Begeman 1988). Setion 3.4.3 disusses anotherargumentation-based methodology for software design rationale.Related to design rationale and CSCA systems, argument-based mediation systems pro-vide support for deliberative proesses involving one or more partiipants (users), inwhih the main goal is to reah a deision of some sort. Examples of mediation systemsare disussion fora, where it is important to argue and negotiate about di�erent issues,inluding design issues. The Zeno Argumentation Framework (Gordon and Karaapi-lidis 1997) is an Internet-based environment that supports strutured forms of groupdeision making, and it has been widely applied aross di�erent domains. Zeno is alsobased on Toulmin's model of argument, and an be thought of as a formal version ofIBIS in the sense that it automatially labels and quali�es positions aording to argu-ments and preferenes (i.e. determines a degree of aeptability assoiated with eahposition). There is a fous shift between systems like Zeno and the formal approahesfor deision making disussed in Setion 3.2, as in the �rst the emphasis is on represent-ing arguments based on di�erent soures and perspetives rather than on generatingthese arguments from some set of premises.3.4.3 Argumentation-based Design RationaleSigman and Liu (1999) use argumentation to onnet software system requirements14 See http://kmi.open.a.uk/~simonb/sa/ for a resoure site in CSCA.58



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 59to the orresponding design dialogue, providing a methodology for apturing designrationale, identifying onits and assessing the aeptability of design options. Ageneri argumentation model is used to relate the omponents of software design to thoseof design dialogue. This model allows di�erent perspetives to be represented in termsof requirements, onstraints and design features. An overview of the argumentationmodel is skethed in Figure 3.6.
Perspective

Desired Design
Feature

Requirement Constraint

Conflict

Design Issue

Position

Decision

Argument

Artifact

has
has

has

tradeoff suggests

has
has

generates

modifications
suggest

is-a

supports/attacks

references

supports/attacks

generates

selects

refines

responds-to
suggests

limits/
suggests

resolves

is-a

pretains-to
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This transformation is needed in order to identify inonsistenies as well as to assess theaeptability of the position. One example of suh heuristi rules is de�ned below andillustrated in Figure 3.7 in terms of a simpli�ed version of position dialogue graphs.Heuristi Rule 1 If an argument A strongly supports a position P and an argumentB strongly supports argument A, then argument B strongly supports position P .
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CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 61approahes are essentially the same. The di�erene lies in the notion of argumentitself and in the ways arguments are generated. In this ase, an argument does notorrespond to a proof, but is represented by a piee of text stating the argument. Werefer to these approahes as semi-formal, sine argumentation is not fully automated; oras lightweight, in the sense that formality is applied only to ertain parts of the problemin a foused and seletive (e.g. automated argument evaluation). Lightweight uses oflogi have already been advoated elsewhere (Robertson and Agust�� 1999).Bukingham Shum and Hammond (1994) have argued that strutured semi-formal ap-proahes to design rationale are useful and usable, and an play several roles in design,suh as:� struturing design problems;� keeping trak of deisions;� failitating ommuniation and reasoning;� assisting the integration of theory into design pratie;� supporting maintenane and reuse;� exposing all assumptions|whih may have been unstated, and onits|whihmay be suppressed; and� enabling the formal inorporation of diverse types of information.The approahes onsidered in this setion are lightweight appliations of formal argu-mentation whih broaden the role of argumentation by arefully targeted appliationsof a simple formal method.3.5 DisussionThe main purpose of this hapter was to analyse the pratial use and usefulness offormal and strutured semi formal argument-based systems in knowledge engineering.We have done this by lassifying the existing e�orts in terms of the problems they



intend to solve, disussing whether these were atually solved or not, in whih ase weaddressed some of the limitations and the remaining issues that need to be onsidered.Four general types of problems have been identi�ed whih an be takled by argument-based methodologies. These are:� the problem of defeasibility in a knowledge base, where some onlusions mightbe withdrawn in the presene of new knowledge;� the problem of deision making based on unertain knowledge, where we have todeide whih alternative to selet;� the problem of negotiation, where autonomous agents ommuniate and reasonabout propositions in order to reah an agreement; and� the problem of design, where it is important to make deisions, to ommuniatedeisions and to argue that the resulting artifat represents an aeptable solutionto a partiular problem.One thing that these problems have in ommon is that they involve knowledge that isfar from ertain and omplete. Potential disagreement and onit are intrinsi to allfour ategories above. Therefore, the fat that onit is the essene of argumentationmight explain why the argument paradigm an be applied in these ases.We have found many ommon features among the various approahes presented in thishapter. Below we summarise these ommonalities:� In general, formal argumentation an be haraterised as a two-step proess: �rst,arguments are generated; then, arguments are evaluated in terms of their aept-ability.� Automated frameworks for argumentation have appeared on the sene only re-ently. This is probably one reason why most theories are not yet mature enoughto allow appliations to be developed in a systemati way. In many ases ad ho,speialised solutions have been adopted in order to implement pratial systemsfrom theoretial frameworks. 62



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 63� This is partiularly true for argument evaluation. Generi riteria, suh as thespei�ity priniple, are not suÆient for e�etively apturing the notion of ar-gument defeat aross the myriad domains in whih argumentation is appliable.Therefore, many theoretial formalisms tend to leave onepts suh as preferenesand priorities unspei�ed, but without addressing the issue of how to instantiatethese appropriately in order implement pratial argument systems from theseformalisms.� Beause argumentation is suh a broad onept, many already established for-malisms an be viewed from an argument perspetive. Examples are KQML (Se-tion 3.3.3), viewpoints (Setion 3.4) and probabilisti reasoning (Setion 3.2.3).� Only a few argument systems have atually been deployed in real, omplex do-mains. Most systems have been evaluated in terms of simple benhmark problems.There are still open researh issues in eah of these onsiderations whih an reetan expeted diretion of development in argument-oriented researh in knowledge engi-neering.� The idea of argumentation as a two-step proess suggests that all arguments haveto be omputed before they are evaluated. This may not always be the beststrategy if we want to build a onstrutive theory of argumentation for atuallygenerating arguments, and perhaps more emphasis should be given to the sort ofresoure-bounded argument disussed by Loui and the proedural and heuristilayers of argumentation (see Setion 3.1.2).� Setion 3.3.3 disussed the need for lear methodologies for the development ofargumentation systems. Note that we do not advoate a one-size-�ts-all approahto argumentation, as we believe that the multifarious nature of argumentationannot be aptured by a uniform method. However, we would like to providemeans of implementing argument theories in a systemati way, by trying to iden-tify di�erent methods that allow di�erent types of argument-based systems to bedeveloped. This may be ahieved by fousing on domains and problems ratherthan on tasks, thus speifying domain-spei� underlying theories and evaluationriteria instead of generi, domain-independent formalisms for argumentation.



� It was possible to look at ertain problems in knowledge engineering from an ar-gumentation viewpoint. This suggests that if we take a more lightweight approahto argumentation formalisms, by using them in a foused and seletive way, wemight broaden the sope of their appliations in the �eld. This may be ahievedby onsidering more exible, semi-formal notions of arguments other than that ofa proof.� Finally, to inrease the pratial utility of these systems, more omplex and realarguments need to be taken into aount. This again might be possible to ahieveby appropriately lightweight appliations of argument formalisms.This summarises the urrent landsape of argumentation researh, whih is satteredwith tantalising glimpses of problems whih may be takled by this means, yet there arefew lear guides to standard pratie in this area; nor are there extensive ase studiesto give maps of fertile domains. The work in this thesis draws a lot from existing workand from the analysis presented here in order to address some of the issues above.
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Part IIA Pragmati Approah
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Chapter 4Basi Conepts and De�nitions
As disussed in Chapter 2, one way to think about argument dynamis is that it shouldbe possible to revise the underlying knowledge base so as to defend arguments andpositions from attaks, for instane by adding new information so that new argumentsor ounter-attaks an be derived or by removing ertain premises so as to blok existingderivations.To formally desribe this sort of argumentation we need to desribe preisely whattypes of revisions an be performed, and when they an be applied. In omparisonto external revisions, guided revisions have some interesting properties: �rst, we knowmore about when they happen, beause they follow the pae of argumentation and aresynhronised with argument moves; seond, we know more about what they are, beausethey are bound up with and guided by attaks to arguments. In pratie, however, thereare many ways to attak and defend an argument, and these are essentially domain-spei�. We address this problem in a pragmati way by desribing how to aptureshemata for argument revision in terms of the struture of attaks, inspired by standardargumentative strutures from studies in the �elds of informal logi and argumentationtheory.The type of strutural lassi�ation we present is not omplete in itself, but it is basedon a omplete aount of what we mean by dynami argumentation. But despite itsinompleteness, it allows the introdution of both generi and domain-spei� revisionshemata in a systemati way. We will be arefully examining this approah in the nexthapters, where we �rst present an intuitive desription of the lassi�ation in terms67



of informal examples (Chapter 5) before introduing its formal ounterpart (Chapter7) based on a preise haraterisation of possible attaks (Chapter 6). We then givea worked example that illustrates how this approah an be used to apture dynamiargumentation (Chapter 8), �nally disussing the range of ases overed by our proposal,and analysing how other existing proposals an ope with these ases (Chapter 9).In the rest of this hapter we present a high level aount of dynami argumentation,before explaining the formal onepts underlying our approah.4.1 An Abstrat View of Dynami ArgumentationChapter 1 disussed the informal notion of argumentation as usually enompassing twoviews of an argument. In order to formalise argumentation, we need to aount for bothof them:� a loal view, in whih an argument is intended to give support in favour or againsta onlusion; and� a global view, in whih an argument is a proess of argument exhange (from aloal perspetive), often based on disagreement, that is used to determine and toa�et the aeptability status of ertain ontroversial positions.Our notion of dynami argumentation omprehends both these views. From the loalperspetive, arguments orrespond to formal proofs, and are generated from a knowledgebase via a proof mehanism. From the global perspetive, argumentation is a proessof argument exhange and knowledge base revision guided by attaks. Cruial to bothviews is the onept of knowledge base, whih we address more arefully now.In a sense, this underlying knowledge base onstitutes the spae of reasons that anbe used to justify and refute positions, and whih an be hallenged and altered asthe argumentation proess goes along; in short, it onstitutes the spae of argumentpremises. From now on, we refer to suh knowledge bases or spaes of premises assets of axioms or theories, the building bloks of our approah. An axiom set anrepresent spei�ations, models, ontrats, beliefs or any other theories we might want68



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 69to argue about with respet to the onsequenes they support. We an assume thatthese onsequenes an be derived from the premises via a logial inferene relation. Ifa onlusion an be derived from a theory, we say that there is an argument for thatonlusion in this theory.Theories usually express someone's view of a problem rather than universal truths,and therefore are intrinsially arguable and refutable. It is likely that unwanted orunpredited onlusions will follow from a theory, or even that desired onlusions arenot supported. Dynami argumentation is about revising this theory to protet it fromsuh attaks; in this sense, it is onerned with arguing about theories.Argument dynamis an then be thought of as a type of goal-oriented reasoning meantto inrease the aeptability of a theory as an argument for the position in question byappropriately defending it from attaks. This view is partiularly useful if we onsidertasks suh as argument onstrution and evaluation, where it is not enough to onsidera sole laim, but the whole argument|i.e. the theory|supporting the laim.In this way, we an attak a theory for two reasons: either beause it supports a positionthat we would expet (or want) not to be justi�ed; or beause it does not support aposition that we would expet (or want) to be justi�ed. How we deide on whih arethe relevant laims that should or should not be justi�ed in a theory is subjet to adeeper disussion, whih will be addressed later in Chapter 7. But the intuition behindit is simple:� if a onlusion an be derived from a theory (if there is an argument for thisonlusion in the theory) when we believe it should not be, then we an revise thetheory in order to (try to) blok this onlusion from being justi�ed (in order torejet the argument supporting it);� analogously, if a onlusion annot be derived from a theory (if there is no argu-ment for this onlusion in the theory) when we believe it should be, then we anrevise the theory in order to (try to) allow the onlusion to be justi�ed (in orderto introdue an argument that justi�es it);



As desribed above, revision of a theory is guided by the intention of either invalidatingsome existing argument, or adding a new argument to it. So instead of looking todynami argumentation as a proess of revising a theory, we ould onsider it as aproess for manipulating the arguments in that theory. Let us assume for a momentthe notion of argument to be primitive, and onsider the set of all arguments in atheory as the starting point of an argumentation proess1. If we onsider argumentsto be primitive entities, then dynami argumentation is about putting forward newarguments and rejeting others in order to attak and defend ertain positions. So, asthe proess develops, new arguments an be added to the initial set, and others an bewithdrawn.An advantage of de�ning argumentation as manipulation of a set of primitive argumentsrather than as revision of an underlying set of premises is that it is more intuitive totalk about introduing and removing arguments than it is to talk about whih premisesneed to be added and removed in order to introdue or remove some argument. Therelationship between these views is not straightforward, and it also depends on the hoieof logi underlying the generation of arguments. This more abstrat approah, however,an be too abstrat and also impratial, as aounting for the set of all arguments islikely to be a omputationally expensive, if not in�nite, task.Here we take a pragmati approah by trying to identify ways for apturing this moreabstrat view of manipulating sets of arguments in terms of guided revisions to theunderlying theories that represent the premises of these arguments.4.2 Formal De�nitionsIn this setion we formally de�ne some general onepts underlying our approah todynami argumentation. We start by de�ning what is meant by axiom and by theory.Theories and axioms are at the heart of our proposal, as they represent the premises onwhih arguments are based.1 A lot of researh in formal argumentation is atually based on this assumption, e.g. (Dung 1995) and(Prakken 2000). Jakobovits (2000) also desribes how to obtain this set of all arguments from a logiprogram. 70



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 71De�nition 4.1 (Axiom) Let L be a logial language. An axiom is any well-formedformula in L. �. 2De�nition 4.2 (Theory) Let L be a logial language on whih a provability relation `is de�ned. Let FL be the set of axioms (formulae) in L. A theory in L is any onsistentsubset of FL, denoted by the possibly indexed symbol �. 2Note that at this point we are not making any ommitments on the hoie of logiunderlying an axiom set, nor on the inferene rules assoiated with it; these will bede�ned in more detail in Chapter 7. For the moment we assume that theories andaxiom sets are omposed of fats and rules (onditionals).4.2.1 ArgumentsAs in most onventional formalisms, arguments are assoiated with the provability rela-tion in the underlying logial system, and therefore orrespond to logial proofs. Suharguments are often used to indiate support and justify positions.De�nition 4.3 (Argument) Let � be a theory and ' be a sentene in a logial system(L;`). If ' an be inferred from � � � via the provability relation `, then � ` ' is anargument (or justi�ation) for ' in �. 2Arguments are represented by a two-part struture (often denoted by the letter A)omprising an inferene � ` ' and the orresponding derivation tree, with lower nodessupporting the onlusion above. The generi form of a justi�ation � ` ' onsists of:� a laim ': the onlusion of the argument;� the grounds, or evidene �: the premises supporting the laim;� the reasoning `: the link that relates the onlusion ' (laim) to the premises �(evidene); here the reasoning step is based on a logial inferene relation `, andwe often use the term `� to indiate that this relation is restrited to a theory �.Note that justi�ation is not the only purpose of an argument. Arguments an play otherroles, suh as to attak other laims and arguments, for instane in the form of ounter-arguments that justify opposing views, or in the form of refutations for rejeting other



arguments. These roles are not onerned with individual justi�ations but with therelationships between them, hene they should be onsidered from a global perspetive.4.2.2 Dynami ArgumentsInstead of looking at arguments individually, dynami argumentation is about onsid-ering how the relationships between relevant arguments will determine and a�et thestatus of the orresponding laims. Note that having measures of aeptability is not amain part of this thesis. Instead we adopt a simple|yet expressive enough|notion ofaeptability: a laim beomes aeptable when an argument supporting it is presented;but it beomes non-aeptable if this argument is attaked; moreover, if this attak isitself attaked, the aeptable status of the laim is restored. In a nutshell, a laim isaeptable if all attaks an be properly dismissed by means of ounter-attaks (whihare attaks themselves).The whole idea of attak is based on onit. An argument is said to attak another ar-gument if they support ontraditory onlusions in the underlying language. Moreover,it is also possible to attak and rejet the grounds|or premises|on whih an argumentis based. Yet another type of attak, standard in informal argumentation, onsists inrejeting the reasoning underlying an argument by suggesting that the onlusion doesnot follow from the premises. But in formal systems justi�ations are generated bymeans of a sound logial inferene method, so we shall assume that the onlusion al-ways follows from the premises.2 This latter type of attak is therefore not relevant toour approah, and we ould say that here argument defeasibility is redued to premisedefeasibility.We also need to onsider the fat that ertain arguments may be preferred over others.Preferene an sometimes be determined from the logial struture of arguments andlaims, but it an also be based on omparative measures for arguments. The notion ofpreferene between ontraditory arguments is often referred to as defeat, and de�nedseparately in terms of attak. Here we inorporate it in our de�nition of attak.2 An inferene or proof method is said to be sound if it produes only onlusions that are logialonsequenes of its premises aording to some de�ned notion of logial onsequene. Rememberthat at this point we have made no ommitment on the hoie of a partiular logial system, or of alogial onsequene relation. 72



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 73De�nition 4.4 (Attak) An argument A0 attaks an argument A if and only if A0ontradits a laim supported by A and A is not preferred over A0. 2Some aspets of this de�nition are ommented below:� First, an argument an support di�erent types of laims, and a haraterisationof what these laims might be an be extremely useful for desribing the generalformat of attaks.� Seond, what it means for laims to be ontraditory in a language|as well aswhat it means for arguments to be preferred over others|an depend on the hoieof the underlying logial language itself.� Finally, riteria for deiding if arguments are preferred may not always exist, inwhih ase any argument is strong enough to rejet a ontraditory argument; butif suh riteria exist, they are likely to be domain-spei�.These are important remarks and will be further elaborated mainly in Chapter 6, andlater in Part III of this thesis.Another onept we have to aount for is that of revision. Notie that by revision wemean strutural revision, in whih some premises an be retrated from and others anbe added to the original theory, allowing for instane for new onepts to be introdued.In the ontext of argumentation, this intuitively orresponds to the idea of hallengingexisting premises and bringing in new ones.De�nition 4.5 (Revision) A strutural revision operation � in a language L is har-aterised by a pair (R;A), where:� R � FL orresponds to the axioms that will be retrated from a theory; and� A � FL orresponds to the axioms that will be added to a theory.The outome of applying � to a theory � in L is a theory �� obtained from � as follows:�� = (� n R) [A.



If R = ; and A = ; then � is said to be trivial. If either R is a singleton and A = ;,or if A is a singleton and R = ;, then � is said to be elementary. If � is neither trivialnor elementary, then it is said to be omplex. 2Observation 4.1 Note that any non trivial operation an be deomposed into a se-quene of elementary operations. 2In the ontext of dynami argumentation, revisions to a theory are performed in order toallow di�erent types of attaks and ounter-attaks to be generated. Therefore hangesare guided by attaks, so revisions are de�ned in terms of the argument in a theory thatis about to be attaked.De�nition 4.6 (Attak-based Revision) Let � be a theory and A be an argumentabout ' in �. An attak-based revision operation � to � with respet to A de�nes atheory �� suh that in �� we an derive an argument that attaks A.Attak-based operations are denoted by ��;A, as they may depend on � and A (andonsequently on '). The supersript symbols may be omitted when the ontext is lear.2Note that neither the argument to be attaked nor the theory need to be fully spei�edin an attak-based revision operation. Instead, suh operations an be desribed bypartially de�ned strutures, like generi shemata for arguments and theories.In a sense these operations are a bit like ations. They have preonditions that determinewhen they an be applied, and postonditions that de�ne the outome of applying them.In the next hapters we analyse the types of revisions that an lead to relevant attaks.We pay speial attention to elementary operations, their properties and harateristis,and also how more omplex revisions an be de�ned from them.We an now formalise the onept of dynami argument. At this point we would alsolike to emphasise the proedural nature of argumentation|in fat, argument dynamisan be seen as a mehanism for proving whether a position is aeptable with respetto a theory, where this proof proess an involve revisions to the theory itself. Eahargument that is advaned hanges the aeptability status of the initial laim, and74



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 75for the theory to be aeptable with respet to this laim it has to be revised until allattaks have been appropriately dismissed. Notie also that when we revise a set ofaxioms to defend it from attaks new points of attaks may be introdued, so the wholeresulting theory should be again open to argument. This view is desribed below andillustrated in Figure 4.1.De�nition 4.7 (Dynami Argument) Let � be a theory and ' be a sentene in alogial system (L;`), and let � be a olletion of attak-based revision operations de�nedin terms of generi shemata for arguments and theories in L.A dynami argument Æ about � with respet to ' is denoted by a sequene:Æ(';�) = hA0; �1; A1; :::; �K ; AK ; :::i, where� A0 is a justi�ation for ' in �;� �1; :::; �K ; ::: 2 � is a sequene of revision operations to �;� for i � 1, Ai is an argument in ��1:::�i; and� for i � 1, Ai attaks Ai�1 in the ontext of the moves hA0; �1; A1; :::; �i�1; Ai�1iadvaned so far.If there is N � 0 suh that no attak-based revision � 2 � an be applied to ��1:::�Nwith respet to AN , then we say that Æ(';�) onverges to �0 = ��1:::�N . Also, if N iseven then �0 is said to be aeptable in relation to ' (or yet that ' is aeptable withrespet to �0), as the attaks to ' have been appropriately dismissed. 2AN�N::: --:::A2 ,,�2A1 ,,�1A0 ,,�0 �1 ///o

�2 ///o

�3 ///o

�N ///oFigure 4.1: Dynami argumentation: revising sets of premises.Note that this desription aounts for all the onepts in onventional argument frame-works, as identi�ed by Prakken (Prakken 1995) and disussed in Chapter 3:



� an underlying logial language;� a onept of argument;� a onept of onit between arguments;� a notion of defeat among arguments; and� an aount of the aeptability status of arguments (and in this ase, of theories).Here, however, we have to onsider one more notion:� an aount of attak-based revision.Although we have haraterised what properties a dynami argument should have sothat it generates aeptable theories, we have not solved the problem of atually gener-ating them. Instead we have identi�ed exatly the subproblems that need to be takled:1. First, we need to haraterise the possible attaks at some point i � 1 in a dynamiargument, onsidering the moves hA0; �1; A1; :::; �i�1; Ai�1i advaned so far.2. Seond, we need to speify the set � of possible revision operations; i.e. howattaking arguments an be generated and how they relate to hanges and revisionsin a theory. Are there any desirable properties for �, and what would be theironsequenes? Is there a systemati way to de�ne �?3. Finally, we need to speify a mehanism for seleting whih attak to generate.This seletion mehanism is likely to be based on the set � (item 2 above) and onthe haraterisation of attaks (item 1 above).In the rest of this part we will deal with the �rst two items, leaving the last|as well asthe disussion about preferene riteria|for Part III, where we onsider ontrol aspetsof argument generation in automated dynami argumentation systems.
76



Chapter 5Towards a Classi�ation ofArgument Shemata
Chapter 4 gave a haraterisation of argument dynamis as a sequene of argumentsintended to defend positions from potential attaks, some of whih may be put forwardonly if a strutural revision is performed in the underlying theory. In this way we annotassume that all premises used to generate arguments in a dynami argument will beavailable from the start, as some an be added and others withdrawn during the ourseof the proess.So the aim of this hapter is to identify ways in whih axioms in a theory an hange aswe advane new arguments. Based on examples and ideas from argumentation theory,we move towards a lassi�ation of argument shemata for relating the possible hangesin a set of premises with the types of attaks we want to put forward. This lassi�ationwill be used to desribe the sorts of revision that haraterise dynami argumentation.At this point we do not fous on hoosing whih laim or argument to attak. Instead,we want to explore systematially the types of theory revision that an be performedin order to generate an attak for a given laim. As might be expeted, attaks ansometimes be generated from the urrent set of premises, in whih ase the theoryneed not be revised (or is trivially revised). However, beause here we are interested inlassifying hanges, we an assume for the moment that attak-based revisions are nontrivial.The desriptions in this hapter are informal in order to illustrate the possible sorts77



of strutural revision, but they will also serve to introdue the formal language thatwill be used in Chapter 7 to de�ne the omplete argument shemata lassi�ation. Tomake it easier to understand the idea behind eah shema, we will follow the standarddesription pattern below:� we �rst present an informal desription of the shema;� then we present a natural language argument as an example of the shema;� �nally we ast the example by means of the formal shemata desription language.The arguments used to illustrate the shemata are drawn diretly from or based onpoliy debates about the possible arinogeniity of hemial substanes (MBurneyand Parsons 1999). We take a lose look at the aatoxin debate, whih has already beenused for investigating argument-based risk assessment (Fox 1994; Robertson 1995) andonit exploration (Haggith 1996). We set out the ontext for this debate in Setion5.1, before presenting examples of argument revision shemata in Setion 5.2. Finally,in Setion 5.3 we briey disuss some onepts from informal argumentation that havefounded the shemata presented here.5.1 The Aatoxin Debate: Assessing Caner RisksThis example onerns a real debate about the arinogeniity of ertain hemial sub-stanes alled aatoxins, and about the FDA (US Food and Drugs Administration)poliy that restrits aatoxin levels to 20 parts per billion (ppb). The following aretwo arguments presented by Rodriks (1992)1 for di�erent standpoints onerning thequestion of whether the FDA's position is sienti�ally defensible.(1) Yes. The FDA learly did the right thing, and perhaps did not go far enough.Aatoxins are surely potent aner-ausing agents in animals. We don't have sig-ni�ant human data, but this is very hard to get and we shouldn't wait for it beforewe institute ontrols. We know from muh study that animal testing gives a re-liable indiation of human risk. We also know that aner-ausing hemials are1 As ited in (Fox 1994). 78



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 79a speial breed of toxiants|they an threaten health at any level of intake. Weshould therefore eliminate human exposure to suh agents whenever we an, and,at the least redue exposure to the lowest possible level whenever we're not surehow to eliminate it.(2) No. The FDA went too far. Aatoxins an indeed ause liver toxiity inanimals and are also arinogeni. But they produe these adverse e�ets only atlevels far above the limit FDA set. We should ensure some safety margin to protethumans, but 20 ppb is unneessarily low and the poliy that there is no safe levelis not supported by sienti� studies. Indeed, it is not even ertain that aatoxinsrepresent a aner risk to humans beause animal testing is not known to be areliable prediator of human risk. Moreover, the arinogeni poteny of aatoxinsvaries greatly among the several animal speies in whih they have been tested.Human evidene that aatoxins ause aner is unsubstantiated. There's no soundsienti� basis for FDA's position.The seond paragraph gives some reasons for rejeting the argument supporting theFDA's position, whih is essentially based on animal testing|or bioassays. As arguedin (MBurney and Parsons 1999) bioassays are the most ommon sort of evidene sup-porting the possible arinogeniity of a substane, and the authors have identi�ed anumber of di�erent assumptions that must hold for this evidene to be onsidered valid.For instane, to laim that a ertain hemial is arinogeni on the basis of a bioassayon an animal speies, the animal physiology and hemistry relevant to the ativity ofthis hemial must be suÆiently similar to human physiology and hemistry.What we want to illustrate in this hapter is that there might exist standard ways foradvaning attaks (e.g. those in paragraph 2) that are based on the struture of theargument being attaked (e.g. the argument in paragraph 1) and whih an be instan-tiated by domain-spei� expertise (e.g. the assumptions identi�ed by MBurney andParsons (1999)). Not all example arguments we present are an aurate reprodutionof the aatoxin debate as stated by Rodriks (1992), as we might alter or introdueinformation for illustrative purposes only.



In what follows, sets of beliefs related to the aatoxin debate will be expressed as generallogi programs.2 As expeted, axioms (lauses) will be fundamentally arguable, as theyrepresent the essentials of a problem rather than universal truths.5.2 Argument Shemata for Arguing about AatoxinsWe now illustrate the use of argument shemata with some examples from the aatoxindebate. Shemata are used for generating arguments and attaks, spei�ed in termsof revision operations as de�ned in Setion 4.2. Here we depit shemata built uponelementary revisions (Setions 5.2.2 and 5.2.3) and upon updating revisions, i.e. thoseomposed of two elementary operations and used for updating an axiom by retratingit and subsequently adding a modi�ed version (Setions 5.2.4). First we give a generalaount of the types of shema we onsider and the language used for desribing these.5.2.1 An Overview of the Shemata Desription LanguageWhen desribing argument shemata we want to represent not only the hanges to beperformed to the knowledge base, but also the reasons why we an perform them. Bylooking at onepts studied in argumentation theory|suh as argumentation shemesand fallaies3|we have identi�ed a number of possible reasons and motivations foradding, hanging and adapting premises in an argument. Here we make use of a formaldesription language to apture and represent a subset of these, whih we feel is relevantto the types of argument in whih we are interested.For instane, when we add a new premise to the theory we might want to say that weare introduing a new fat, i.e. something that is taken to be true. In ase we are addinga new rule, then we an also speify whether it is a substantiated rule for yielding newonlusions, or a burden shift rule for reversing the burden of proof.It should also be possible in this language to represent the reasons for updating andaltering premises. We an, for instane, hange an axiom in a theory beause it shouldbe speialised, or generalised. Or else, we an replae it with a more elaborated version,2 See Appendix A for a onise aount of logi programming onepts and syntax.3 See disussion in Setion 5.3. 80



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 81with extra preonditions; or with a less elaborated version obtained by removing somepreondition that is thought to be irrelevant. Furthermore, we ould revise the onlu-sion of a rule, or reverse the relation between the onsequent and the anteedent. Thesedesriptions onvey the possible reasons for altering and replaing axioms.It is often the ase, though, that these language onstruts only summarise what ouldbe guessed from the struture of the updated or added premises|i.e. from the revisionoperation itself that is assoiated with the shema. But hanges that are di�erent innature may sometimes yield idential instanes of shemata based on idential revisionoperations. In these ases, suh a desription language allows us to keep and representthe original distintion.This is partiularly true when we remove premises from a theory. We may have a numberof di�erent reasons for withdrawing a premise, but the type of revision assoiated withthese will always be syntatially equivalent. Thus in our representation we use di�erentonstruts to distinguish between di�erent reasons for retrating an axiom from a theory,either beause it is an invalid rule, a weak rule or a misrelation. The di�erene is brieydisussed below:Invalid rule. A rule an be onsidered to be invalid if there are exeptionsto it|ases where the anteedent holds but the onsequent does not.Weak rule. A rule an be onsidered to be weak if there are instanes wherethe anteedent does not hold, a�eting the generality of the relation.Misrelation. The relation expressed by an axiom is said to be mistaken ifthere are ases where the anteedent holds and the onsequent doesnot, and instanes where the anteedent does not hold but the onse-quent does, thus ompromising the adequay of the orrelation betweenanteedent and onsequent.Note that we do not require these onditions to be neessarily valid when we apply theorresponding revisions. However, they provide designers with extra information whihould be useful in de�ning domain-spei� ases for theory revision.The terms disussed in this setion onstitute part of the language we use for desribing



argument shemata, whih we illustrate in the next setions and formally de�ne inChapter 7.5.2.2 Adding a New PremiseIn this setion we look at shemata for deriving new arguments by adding a new axiomto the theory. Added lauses are diagrammatially represented within light gray boxes .Informal Shema 1 (Adding a New Fat) A trivial way to present an argumentfor a sentene is by adding it as a fat in the theory, as fats immediately follow fromthe theory.This is partiularly useful if the sentene orresponds to an observation, or to a beliefthat is taken to be ategorially true. For instane, to advane the following argument:Aatoxins are surely potent aner-ausing agents in animals.it is enough to add it as a fat in the theory, justi�ed by diret observation. Letthe sentene auses(aatoxin ; aner ; animal (X)) represent the statement above, whereanimal (X) denotes that X is a non-human animal speies. The type of revision nees-sary for justifying this sentene is depited below,4fg add(fat); auses(aflatoxin, aner, animal(X))and is represented by the following instantiated shema:justify(auses(aatoxin; aner ; animal(X))) ifadd(fat � auses(aatoxin ; aner ; animal(X))  true �)The following trivial argument an now be derived:fauses(aatoxin ; aner ; animal(X)) trueg ` auses(aatoxin ; aner ; animal(X)) (5.1)4 For reasons of larity and spae, in the revision diagrams in this setion we denote fats of the formH  true by the sole expression H in Prolog style.82



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 83This sort of argument is often regarded as a fallay in argumentation theory, namelybegging the question or irular reasoning. Although logially sound, it is also \triviallyuninteresting" (Fogelin and Sinnott-Armstrong 1997, p. 40), and in our example annotbe onsidered as a proof that aatoxins ause aner in animals.However, suh arguments are indeed valid. It might be uninteresting in this ase, but anbe useful for generating arguments from more ompliated shemata based on omplextypes of revisions.Informal Shema 2 (Adding a New Substantiated Rule) We an justify a sen-tene by adding a new rule for deriving it suh that the rule anteedent is supported.For instane, we an advane the following argument supporting the laim that aatox-ins ause aner in humans.Aatoxins are surely potent aner-ausing agents in animals. We know from muhstudy that animal testing gives a reliable indiation of human risk.So, for this laim to be derived we an add to the theory a rule stating that all agents thatause some pathology in some non-human animal speies would ause this pathology inhumans. This is a substantiated rule for the ase of aatoxins beause its anteedent issatis�ed by the fat (in the theory) that aatoxins ause aner in non-human speies.This type of revision is depited below,auses(aflatoxin, aner, animal(X)) add(substantiated rule); auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X))and is represented by the following instantiated shema:justify(auses(aatoxin ; aner ; human)) ifadd(substantiated rule � auses(A;P; human) auses(A;P; animal(X)) �)This rule may not be an universal truth, but it aptures the general nature of the domainwe are representing. The following argument an now be derived:



auses(aatoxin; aner ; human)auses(aatoxin ; aner ; animal(X))auses(A;P;human) auses(A;P;animal(X)) (5.2)
Informal Shema 3 (Adding a Burden Shift Rule) We an shift the burden ofproof by adding a rule stating that a sentene is justi�ed if some other (opposing) sen-tene is not. In this way, we justify a sentene by arguing that its ontrary annot besupported.For instane, we an put forward the following argument for sustaining the laim thatthere is no safe level of exposure for arinogeni agents.We an assume that there is no safe exposure level for an agent unless one ansienti�ally prove that there is a safe level of exposure for this agent at whih itwill not ause aner.This argument an be derived if we add a general rule stating that there is no safeexposure level for a aner-ausing agent if we annot justify the existene of a safelevel for it. Given that we annot prove that there is a safe level for aatoxins, this ruleshifts the burden of proof to someone willing to prove that suh a level does exist. Thistype of revision is depited below,auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) add(burden shift rule); auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X))no safe level(A)  not safe level(A, L)and is represented by the following instantiated shema:justify(no safe level(aatoxin)) ifadd(burden shift rule � no safe level(A) not safe level(A;L) �)Hene the argument below an be derived, supporting the laim that there is no safeexposure level for aatoxins. 84



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 85no safe level(aatoxin)not safe level(aatoxin ; L)no safe level(A) not safe level(A;L) (5.3)
Shifting the burden of proof is sometimes regarded as a fallay, namely appeal to igno-rane, whereby a laim is said to be true beause there is no evidene that it is false.This type of reasoning, however, an also be used non fallaiously in ertain problemsand domains.5.2.3 Retrating an Existing PremiseRevisions in this setion are onerned with the quality of the premises used in anargument, in partiular with the quality of rules. We fous on rules rather than fatsand propositions beause the general way for hallenging and refuting a proposition isto justify some opposing or ontraditing position (i.e. to present a ounter-argument).In the ase of rules, however, the quali�ation problem states that it is not alwayspossible to expliitly aount for the many onditions neessary for rules to hold, so itis important to investigate whether a rule is in fat germane to the problem in question.What is interesting about retration is that it brings into play more of the dynamisof argumentation as opposed to the usual approah of only adding arguments whihoverome the weak ones. That allows for instane for previous arguments to be notonly defeated but invalidated, e.g. for being fallaious.As disussed in Setion 5.2.1, there may be di�erent reasons for rejeting an axiom, andnow we look more losely at some of these ways through whih we an withdraw a ruleand hallenge its validity. Removed lauses are diagrammatially represented withindark gray boxes .Informal Shema 4 (Retrating an Invalid Rule) We an refute an argument be-ause the onditional used to derive the argument laim is logially invalid, i.e. thereare exeptions to it (ases for whih the anteedent holds but the onsequent does not).For instane, the argument below refutes argument 5.2, suggesting that the laim that



aatoxins ause aner in humans is unsubstantiated.It's not even ertain that aatoxins represent a aner risk to humans beauseanimal testing is not known to be a reliable preditor of human risk.This argument rejets the rule that relates animal testing and human risk by questioningits reliability, e.g. beause there might be exeptions to this relation (ases of an spei�agent known to ause some spei� pathology in some animal speies, and not ausingthe same pathology in humans). This type of revision is depited below,auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) retrat(invalid rule); auses(aflatoxin, aner, animal(X))and is represented by the following instantiated shema:refute(auses(aatoxin ; aner ; human)) ifretrat(invalid rule � auses(A;P; human) auses(A;P; animal(X)) �)In this way, argument 5.2 is no longer derivable from the revised set of premises.Informal Shema 5 (Retrating a Weak Rule) We an refute an argument be-ause the onditional used to derive the argument laim is logially weak, i.e. thereare ases for whih the anteedent does not hold, ompromising the generality of therelation.Let us onsider the following argument:It's not even ertain that aatoxins represent a aner risk to humans beauseanimal testing is not known to be a reliable preditor of human risk. Moreover, thearinogeni poteny of aatoxins varies greatly among the several animal speiesin whih they have been tested.Again, this argument rejets the rule that relates animal testing and human risk byquestioning its reliability. This hallenge may not be grounded on expliit denials likein the previous shema, but on weakening the generality and relevane of this relation.86



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 87For instane, by presenting ases where the anteedent does not hold, or a partiularanimal speies to whih aatoxins are not arinogeni (in line with the assertion thatthe arinogeni poteny of aatoxins di�ers among speies). This type of revision isdepited below,auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) retrat(weak rule); auses(aflatoxin, aner, animal(X))and is represented by the following instantiated shema:refute(auses(aatoxin; aner ; human)) ifretrat(weak rule � auses(A;P; human) auses(A;P; animal(X)) �)Note that this is idential to the instane of Shema 4, the only distintion being thereason for retrating the rule, aptured in this representation by the di�erent onstrutsinvalid rule and weak rule. And again, argument 5.2 is no longer supported in therevised set of premises, in whih ase the laim that aatoxins ause aner in humansis unsubstantiated.Informal Shema 6 (Retrating a Misrelation) We an refute an argument be-ause the orrelation expressed by the rule used to derive the argument laim is mistaken,i.e. the orrelation between anteedent and onsequent is not adequate.Let us onsider again the following argument:It's not even ertain that aatoxins represent a aner risk to humans beauseanimal testing is not known to be a reliable preditor of human risk.This time we ould hallenge the reliability of the relation between human risk andanimal testing on the basis that this relation is mistaken, e.g. beause the onsequent isnot very likely to follow from the anteedent, or simply beause there is no orrelationat all between the sentenes (a partiular agent is known to ause some pathologyin an animal speies but not in humans, and some other agent is known to ause adi�erent pathology in humans but not in ertain animal speies). Suh argument thenundermines the general extrapolation of animal risk to human risk. This type of revisionis depited below,



auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) retrat(misrelation); auses(aflatoxin, aner, animal(X))and is represented by the following instantiated shema:refute(auses(aatoxin; aner ; human)) ifretrat(misrelation � auses(A;P; human) auses(A;P; animal(X)) �)This argument one again refutes argument 5.2, in whih ase the laim that aatoxinsause aner in humans is again unsupported.5.2.4 Updating an Existing PremiseIt it not always the ase that a hallenged rule needs to be retrated for good. In fat,aording to the quali�ation problem, it is hard (if not impossible) to speify all thepreonditions for a rule to hold, as there might be impliit or unknown onditions thatan invalidate the relation. So we an refute a rule by retrating it, and subsequentlyadding an updated version that aounts for some of these impliit or unknown ondi-tions. In the same way, not all onditions in a rule may be pertinent to the problem weare representing, so we an revise the rule again by dismissing suh irrelevant premises.In this setion we look at examples where new arguments are generated on the basisof revised rules. Notie that we an revise an axiom not only to refute an existingargument that is based on it, but also to introdue a new argument that makes use ofthe updated axiom in order to be inferred. After all, revision is also about strengtheningan argument by reviewing the axioms that support it.Informal Shema 7 (Removing Irrelevane in a Rule) We an justify a senteneby removing an irrelevant preondition from a rule so that the rule anteedent is nowsatis�ed, and the sentene onsequently follows from it.For instane, the argument below supports the laim that the maximum required levelof intake for aatoxins should be set to its minimum detetable level, i.e. 20 parts perbillion, on the basis that suh substanes are arinogeni.88



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 89We know that aner-ausing hemials are a speial breed of toxiants|they anthreaten health at any level of intake. We should therefore eliminate human expo-sure to suh agents whenever we an, and, at the least redue exposure to the lowestpossible level whenever we're not sure how to eliminate it. The level of intake forarinogeni substanes should always be restrited, even it is argued that a safelevel of intake exists whih is far above the minimum detetable level.Suppose that our theory about arinogeniity of substanes already ontains a rulestating that the required level of an agent should be set to its minimum detetable levelif it is arinogeni and if there is no known safe exposure level for it. However, if thetheory also ontains a fat stating that a safe exposure level s for aatoxins does existwhih is far greater than the minimal detetable level, then the rule above annot beused as not all its preonditions are satis�ed. What we argue, though, is that one annever be too autious when dealing with arinogeni substanes. So the required levelfor aatoxins should still be set to their minimum detetable level, beause we mustdisregard any onditions about safe exposure levels for an agent that an ause aner.This type of revision is depited below,auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)safe level(aflatoxin, s)no safe level(A)  not safe level(A, L)required level(A, L)  auses(A, aner, X) ^no safe level(A) ^min det level(A, L) update(irrelevane); auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)safe level(aflatoxin, s)no safe level(A)  not safe level(A, L)required level(A, L)  auses(A, aner, X) ^min det level(A, L)and is represented by the following instantiated shema:justify(required level(aatoxin ; 20ppb) ifretrat(irrelevane0BB� required level(A;L) auses(A; aner ;X) ^no safe level(A) ^min det level(A;L) 1CCA)andadd(irrelevane0� required level(A;L) auses(A; aner ; X) ^min det level(A;L) 1A)The argument below an then be derived:



required level(aatoxin ; 20ppb)auses(A; aner ; animal(X)) min det level(aatoxin; 20ppb)required level(A;L) auses(A;aner;Y )^min det level(A;L)WWWWWWWWWWWWWWWWWWW

(5.4)
Informal Shema 8 (Revising the Consequent of a Rule) We an revise the on-sequent of a rule if it does not orrespond to what is expeted to follow from the preon-ditions of this rule. This revision an either allow a new argument for a sentene to bederived (if this sentene is now the revised onsequent) or refute an existing argumentfor a sentene (if this sentene was the onsequent of the original rule).Assume that in our urrent theory the laim that a safe level of intake for aatoxinsexists is based on a rule stating that the minimum detetable level for a arinogenisubstane is safe, in the sense that it will not ause adverse e�ets. We an present thefollowing argument for refuting this onlusion.We know that aner-ausing hemials are a speial breed of toxiants|they anthreaten health at any level of intake. We should therefore eliminate human ex-posure to suh agents whenever we an, and, at the least redue exposure to thelowest possible level whenever we're not sure how to eliminate it.In the urrent theory, we are inferring the wrong onlusion from the right premises.The minimum detetable level of a arinogeni substane should never be regarded assafe, but as the best we an do to eliminate risk (i.e. the maximum aeptable level).This type of revision is depited below,auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)safe level(A, L)  auses(A, aner, X) ^min det level(A, L) update(misonlusion); auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  auses(A, aner, X) ^min det level(A, L)and is represented by the following instantiated shema:refute(safe level(aatoxin ; aner ; 20ppb)) ifretrat(misonlusion 0� safe level(A;L) auses(A; aner ; X) ^min det level(A;L) 1A)andadd(misonlusion 0� required level(A;L) auses(A; aner ; X) ^min det level(A;L) 1A)90



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 91Informal Shema 9 (Reversing a Rule) We an invert a rule when the relation be-tween its anteedent and onsequent is reversed. This revision an either allow a newargument for a sentene to be derived (the anteedent of the original rule, whih is nowthe onsequent of the updated rule) or refute an existing argument for a sentene (theonsequent of the original rule, whih is now the anteedent of the updated rule).Suppose that we still wanted to argue that there is a safe level of exposure for aatoxins,and that we had done so by introduing a (new substantiated) rule stating that therequired level of exposure for an agent is atually a safe exposure level. Below is aounter argument that bloks the safe level onlusion from being derived in this ase.It is not the ase that the maximum aeptable level of intake for a arinogenisubstane is neessarily safe. In fat, it should be restrited by a safe exposure level,if suh safe level an ever be proven to exist.In this way the onlusion that a safe level of intake for aatoxins exists is no longersupported, as the rule used to derive it an no longer be applied. This type of revisionis depited below,auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  auses(A, aner, X) ^min det level(A, L)safe level(A, L)  required level(A, L) update(reversion); auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  auses(A, aner, X) ^min det level(A, L)required level(A, L)  safe level(A, L)and is represented by the following instantiated shema:refute(safe level(aatoxin ; 20ppb)) ifretrat(reversion � safe level(A;L) required level(A;L) �)andadd(reversion � required level(A;L) safe level(A;L) �)The last two argument shemata were used to blok the laim that the minimum de-tetable level of aatoxin is a safe exposure level for it. Notie, however, that these arenot intended to rejet the required level of exposure from being set to this minimumlevel. Instead, these shemata onvey the idea that no safe level of intake for a ar-inogeni agent an ever exist, i.e. that aner-ausing substanes \an threaten healthhealth at any level of intake."



Informal Shema 10 (Speialising a Rule) One way to refute an argument is byspeialising the rule used to derive the argument laim so that it is no longer appliableto the ase under disussion.For instane, we an refute argument 5.4 for required level(aatoxin ; 20ppb) by advan-ing the following argument.We should not restrit the level of aatoxin intake to its minimum detetable levelunless it is known that aatoxins ause aner in humans. In fat, aatoxins anause liver toxiity in animals and are also arinogeni, but it is not even ertainthat they represent a aner risk to humans beause animal testing is not knownto be a reliable prediator of human risk.The idea behind this argument is that the rule for restriting the level of intake is toogeneral, and should only be applied if an agent is known to be arinogeni to humansin partiular.This type of revision is depited below,auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  auses(A, aner, X) ^min det level(A, L) update(speialisation); auses(aflatoxin, aner, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  auses(A, aner, human) ^min det level(A, L)and is represented by the following instantiated shema:refute(required level(aatoxin ; 20ppb)) ifretrat(speialisation 0� required level(A;L) auses(A; aner ; X) ^min det level(A;L) 1A)andadd(speialisation 0� required level(A;L) auses(A; aner ; human) ^min det level(A;L) 1A)In this way, we an no longer derive an argument for required level(aatoxin ; 20ppb) inthe revised theory.Informal Shema 11 (Generalising a Rule) We an justify a sentene by general-ising some existing rule so that it now allows this sentene to be derived.92



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 93Suppose we have previously observed that aatoxins ause aner in rabbits, and nowwe want to use this fat to support the laim that aatoxins are arinogeni to humanson the basis of a bioassay evidene.Aatoxins are potent aner-ausing substanes in rabbits, and we know that animaltesting gives a reliable indiation of human risk.Suppose also that the urrent theory about arinogeniity of hemial substanes on-tains a rule stating that a hemial agent auses some pathology in humans if it ausesthis pathology in mie. The existing extrapolation rule annot be applied beause it isspei� to the ase of mie, so to advane the argument above we need to generalise it.This type of revision is depited below,auses(aflatoxin, aner, animal(rabbit))auses(A, P, human)  auses(A, P, animal(mouse)) update(generalisation); auses(aflatoxin, aner, animal(rabbit))auses(A, P, human)  auses(A, P, animal(X))and is represented by the following instantiated shema:justify(auses(aatoxin; aner ; human)) ifretrat(generalisation � auses(A;P; human) auses(A;P; animal(mouse)) �)andadd(generalisation � auses(A;P; human) auses(A;P; animal(X)) �)The argument below an then be derived:auses(aatoxin ; aner; human)auses(aatoxin; aner; animal(rabbit))auses(A;P;human) auses(A;P;animal(X)) (5.5)
Informal Shema 12 (Elaborating Preonditions in a Rule) One way to refutean argument is by elaborating the preonditions in the rule used to derive the argumentlaim so that its anteedent is no longer satis�ed.The following is an argument that refutes argument 5.2 (or similarly, argument 5.5) byelaborating on the onditions for applying the general extrapolation rule.



To laim that an agent is arinogeni on the basis of animal testing, the animalphysiology and hemistry relevant to the ativity of this agent must be suÆientlysimilar to human physiology and hemistry.At this point, the laim that aatoxins ause aner in humans is unsubstantiatedbeause there is no indiation of whether the type of animal that is onsidered is in fatsimilar enough to humans. This type of revision is depited below,auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) update(elaboration); auses(aflatoxin, aner, animal(X))auses(A, P, human)  auses(A, P, animal(X)) ^similar physiology(human, X)and is represented by the following instantiated shema:refute(auses(aatoxin ; aner ; human)) ifretrat(elaboration � auses(A;P; human) auses(A;P; animal(X)) �)andadd(elaboration 0� auses(A;P; human) auses(A;P; animal(X)) ^similar physiology(human ; X)) 1A)Note that this sort of refutation is not as damaging as those disussed in the previoussetion. In fat, to reestablish the onlusion that aatoxins ause aner in humans,we just need to expliitly aount that the animal used in the bioassay was suÆientlysimilar to humans in what matters. Furthermore, this elaborated rule may be betterproteted from the types of refutations in Setion 5.2.3, as it better spei�es what hasto be onsidered as relevant in this domain.5.3 Relationship with Informal Argumentation TheoryThe shemata illustrated here all required some sort of domain-spei� expertise to beinstantiated in a relevant way. But notie that we do not want to fous on a domain-spei� solution. Our point is that an analysis of formal argument struture an shedsome light on how justi�ations and refutations are generated in any partiular domain,thus providing rough skethes to whih domain-spei� knowledge an be applied.To de�ne a lassi�ation of shemata we have then looked into traditional argumenta-tion theory. In fat, one of the main problem areas in the study of informal logi onsists94



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 95in identifying, analysing and evaluating arguments (van Eemeren et al. 1996), so argu-mentation theorists are often interested in developing models and tools for supportingthese tasks. One example is the notion of argumentation shemes (Walton 1996).As argued by van Eemeren et al. (1996), argumentation shemes are onerned withthe internal struture of arguments, and \to the kind of relation established in a sin-gle argument between its premises and the standpoint the argument aims to justify orrefute." In summary, they are used for lassifying and modelling various types of argu-ment forms. Their use dates bak to Aristotle, who disussed the idea of argumentationshemes (or tehniques, or moves) being seleted and instantiated by an attaker duringdialetial debates (van Eemeren et al. 1996, p.38).More reent approahes (Walton 1996; Perelman and Olbrets-Tytea 1969) proposelists and atalogues of argumentation shemes that represent aeptable ways for on-neting premises and onlusions. The onlusion of a shema is then said to be pre-sumptively (or defeasibly) valid if the assoiated premises and onditions hold. In theNew Rhetori (Perelman and Olbrets-Tytea 1969)5, for instane, shemes representlogial as well as rhetorial arguments, and haraterise inferene mehanisms that anbe used to onvine an audiene in persuasive argumentation. Furthermore, ritialquestions are asked in relation to an argumentation shema to determine whether it anin fat be applied.In our ase, however, we adopt a slightly di�erent position. We want to de�ne generistrutures of logial arguments rather than di�erent types of inferene linkages. This isbeause our arguments are generated based on a logial system, and on a formal andsound logial inferene mehanism. So defeasibility is related not with the reasoningstep but with the types of premises that an be used, added, removed or updated.In the ases where premises are removed or updated, we have looked at the idea offallaies, i.e. arguments that appear to be valid but are atually not. The study of fal-laies onstitutes another major area in argumentation theory, whih provided us withrih material for analysing the quality of premises in an argument, and for indiatingwhen these were not really well-grounded. Below we desribe some informal fallaies5 As ited by van Eemeren et al. (1996) and by Warnik and Kline (1992).



that we have onsidered and identi�ed as being relevant to our analysis, relating themto the shemata in the previous setions. In partiular, we refer to possible revision-based shemata that ould have been applied in order to improve the quality of thefallaious argument. The literature on fallaies is vast, and we have based our desrip-tions mainly on general resoures suh as (van Eemeren et al. 1996) and (Fogelin andSinnott-Armstrong 1997).Slippery Slope. When a laim is said to be aused by a sequene of events, but thereis not enough evidene of suh relationship.In this ase, the rule representing this relationship may be removed for being invalid(Informal Shema 4), weak (Informal Shema 5), or mistaken (InformalShema 6); or its onlusion may be revised (Informal Shema 8).False ause. When there is not enough evidene that one event aused another.Similarly to the ase above, we an apply Informal Shemas 4, 5, 6, 8.Hasty onlusion. When we jump to a onlusion not based on enough grounds.As above, here we ould apply Informal Shemas 4, 5, 6, 8.False riteria. When false or irrelevant riteria are used in the argument.In this ase, Informal Shema 7 an be used to disregard this riteria.Wrong diretion. When the relation between ause and e�et is reversed.Here Informal Shema 9 ould be applied to reverse the relation.Hasty generalisation. When the generalisation is not based on enough ases or sam-ples.In this ase, we ould apply Informal Shema 10 to speialise the rule.Composition. When a property that is valid for a part is assumed to be valid for thewhole entity ontaining it.Again, Informal Shema 10 ould be applied to speialise the relation to onsiderthe part, and not the whole. 96



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 97Division. When a property that is valid for a whole entity is assumed to be valid foreah of its parts.Again, Informal Shema 11 ould be applied to generalise the relation to onsiderthe whole, and not the parts.Complex Cause. When the ause identi�ed is simpler than the atual ause of thee�et.In this ase, Informal Shema 12 ould be used to elaborate the relation andintrodue other relevant onditions.By looking at existing aounts from informal argumentation theory, we were then ableto ombine domain-independent knowledge about arguments to desribe general logi-al forms of arguments and attaks in terms of the premises used. The next haptersformally desribe a lassi�ation of argument shemata and disuss some of its proper-ties. To these generi strutures we an then apply domain-spei� knowledge so thatwe instantiate and determine the ontents of an attak to be advaned in an dynamiargumentation proess.First, though, we need to desribe exatly how arguments attak eah other.





Chapter 6Attaks in Argument Dynamis
Chapter 4 identi�ed preisely the problems we need to address in order to fully desribeand generate dynami arguments. This hapter onsiders one of those problems, namelyhow to haraterise the general format of attaks and the possible ontraditions inargument.6.1 Types of Argument ClaimsAording to De�nition 4.4, an argument A0 attaks an argument A if and only if A0ontradits a laim supported by A and A is not preferred over A0. For the moment weshall assume that no preferene riterion is de�ned, thus no argument is preferred overany other. We return to the topi of argument prioritisation later in Part III of thisthesis.To haraterise the types of attak to an argument we then need to identify what are thelaims supported by this argument and how these an be ontradited. In Chapter 4 wehave referred to a laim as being the onlusion of a justi�ation,1 but here we take theview that laims are general statements (about sentenes in the language) supported byarguments in general. If, for example, an argument A is a justi�ation for ' in a theory�, then based on A we an say that ' is substantiated in �.Whereas a justi�ation an serve as a reason for aepting a sentene, other types ofarguments|suh as ounter-justi�ations and refutations|an be used for rejeting a1 See De�nition 4.3. 99



justi�ation and onsequently its onlusion. Notie that it only makes sense to talkabout these in onnetion with some previously onstruted justi�ation, and not asindividual entities. While ounter-arguments are essentially justi�ations supporting asentene that onits with some point of the original argument, refutations are usedfor bloking onlusions from being derived. That is, refutations are used for rejeting apremise (axiom) in a justi�ation, either by removing it from the theory or by updatingit so that the argument no longer follows. Thus refutations are logially valid but notsound, beause they ontain axioms not onsidered to be sound with respet to thetheory in question. If an argument A is a refutation of a justi�ation for ' in a theory�, then based on A we an say that ' is not substantiated.The following de�nition summarises these notions.De�nition 6.1 (Types of Claims) Let A be an argument about ' in a theory �.There are two ases to be onsidered:� A is a justi�ation � `� 'Then A supports the laim that ' is substantiated in �|i.e that ' is in the setof onsequenes of �.We denote this by ' : in.� A is a refutation2 � 6`� 'Then A supports the laim that ' is unsubstantiated in �|i.e. that ' is not in theset of onsequenes of �, at least with respet to A. We denote this by ' : out.2So laims are sentenes annotated with labels in and out, whih indiate whether thesentene is aeptable or not in the theory with respet to the argument in question. Byadopting this notation the onnetion with truth maintenane systems draws even loser:sentenes in a TMS are said to be in if they have at least one urrently aeptable (valid)reason, and are said to be out otherwise (Doyle 1979). We shall be disussing pointsof ontat between argumentation and TMS throughout this hapter before looking atthis relationship more arefully in Setion 6.4.2 � 6`� ' is a refutation of � ` ' in � if � `�p ' is a justi�ation of ' in some previous theory �p, and� is obtained from �p by retrating some premise from � � �p.100



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 101Some important points need to be made about this, in relation to the disussion abouttruth and aeptability in Setion 1.1.1. As argued by Doyle (1979, p. 238):The distintion between in and out is not that between true and false. The formerlassi�ation refers to urrent possession of valid reasons for belief. True and false,on the other hand, lassify statements aording to truth value independent of anyreasons for belief.This distintion also holds for labels in and out in De�nition 6.1. To say that a sentene' is out of the set of onsequenes of a theory with respet to an argument (refutation)is not equivalent to saying that ' is not a onsequene of the theory. The reason whyis that we have taken a omputational view where arguments may exist in a theorybut may not yet have been found, thus labels give the status of sentenes in relation tothe arguments that were omputed and presented so far. Although we have rejeted ajusti�ation for ', there is no guarantee of whether some alternative justi�ation for itexists, in whih ase ' would in fat be a onsequene of the theory. What we guaranteeis that there is one less way of inferring the sentene within the theory, but that doesnot mean that its set of onsequenes is smaller.6.1.1 Claim Dependenies in an ArgumentDe�nition 6.1 gives the sorts of statements that an be made about an argument mainonlusion, or main laim. As arguments are strutured objets omposed of sub-arguments, it should also be possible to make statements|or indiret laims|aboutthe sub-onlusions underpinning the main laim, and to say things suh as a sentene issubstantiated beause it is based on other sentenes whih are themselves substantiated.To apture these dependenies, laims supported by an argument are represented in adireted graph obtained from the orresponding argument tree. Appendix B gives thebasi notation used in this thesis for expressing argument trees and direted graphs.The following example illustrates this notion.Example 6.1 Let � be the theory below in a Horn lause resolution-based language.



p(X;Y )  q(X) ^ r(Y )q(X)  s(X) ^ t(X)r(b)  trues(a)  truet(a)  trueThen the argument A below is a justi�ation for p(a; b) in �.fp(X;Y ) q(X) ^ r(Y ); q(X) s(X) ^ t(X); s(a) true; t(a)  true; r(b) trueg `� p(a; b)Notie that arguments an also be represented as rooted trees: eah premise in the ar-gument de�nes a sub-tree with root orresponding to the onlusion of the axiom, andhildren orresponding to the sub-arguments allowing this onlusion to be derived. Thisalternative representation for A is given below:
p(a, b)

r(b)

s(a) t(a)

q(a)

true true

true�The dependenies between laims supported by A are organised in the following struture.p(a; b) : inq(a) : in 66mmmm r(b) : inhhQQQQs(a) : in 77nnnn t(a) : inhhQQQQtrue : inOOiiSSSSSSSSSSSSS

AA�����������From this dependeny struture we an say for instane that p(a; b) is supported beauseboth q(a) and r(b) are in. The term true is always in.For the ase of refutations, this sort of laim struture an be obtained by onsidering thedependenies in the refuted justi�ation, then removing the rejeted premise and �nallypropagating the labels appropriately. Consider for instane argument A above. Thereare many ways to refute A, one is by rejeting the premise r(b) true thus retratingit from the theory so that A annot be aepted as a justi�ation for p(a; b) with respetto � n fr(b) trueg. This refutation is represented below.102



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 103fp(X;Y ) q(X) ^ r(Y ); q(X) s(X) ^ t(X); s(a) true; t(a)  true; r(b) trueg 6`�nfr(b) trueg p(a; b)A refutation an be depited as a tree as follows, where we indiate the rejeted premiseby pruning the sub-tree de�ned by it.
p(a, b)

r(b)

s(a) t(a)

q(a)

true true

true�nfr(b) truegAmong the things that an be said about this, p(a; b) is now argued to be unsubstanti-ated in � n fr(b) trueg beause r(b) is out in � n fr(b) trueg. The dependeniesbetween laims are now represented as follows.p(a; b) : outq(a) : in 66llll r(b) : outiiRRRRs(a) : in 77nnnn t(a) : inhhRRRR true : inOOiiTTTTTTTTTTTTT 2The struture of laims supported by an argument is essentially a direted graph inwhih a node is labelled in only if all its supporting nodes are labelled in. This is againvery similar to the sorts of dependeny networks kept by truth maintenane systems,the only di�erene is that the dependeny graph is obtained from a valid justi�ationthat has been (at some point) suessfully generated via the provability relation `, andhene well-founded either on valid assumptions or on the premise true. In TMS thegraph is obtained from adding and deleting rules (so-alled justi�ations) that are notneessarily related nor hained.Remember, though, that in the ase of refutations premises may have been either re-trated or updated, and eah of these possibilities must be arefully onsidered. Butbefore de�ning the struture of laims formally, a note on notation: the symbols used forrepresenting argument trees and direted graphs|e.g. the hooked arrow ,! to denotesupporting edges in a graph|are presented in detail in Appendix B.



De�nition 6.2 (Argument Claims) Let A be an argument in �. The laim struturesupported by A is the direted graph GA (with assoiated labelling funtion) indutivelyde�ned from the argument tree A as follows:Base ase:A = true� V(GA) = ftrueg and E(GA) = fg� labelGA(true) = inA = tree('; assumption ; fg)� V(GA) = f'g and E(GA) = fg� labelGA(') = inIndutive ase:A = tree('P ; P; fA'P1 ; A'P2 ; :::; A'PN g)Let GA1 ; :::;GAN be the laim strutures supported by sub-arguments A'P1 ; :::; A'PN ,respetively, suh that root (A'Pi ) = 'Pi .Before we de�ne how to ombine suh strutures in order to obtain GA, onsider thefollowing auxiliary sets and labelling funtion (whih merge the labelling funtionsobtained in the indutive step):� V 0 = N[i=1V(GAi) and E 0 = N[i=1E(GAi )� label 0 : V 0 7! fin;outg, where label 0(') = � in 9GAi :labelGAi (') = inout otherwiseMoreover, let V be an operator for ombining and propagating labels aross sup-porting nodes in GA.To de�ne GA we need to onsider the possibilities for P , namely:1. P is an axiom in the theory;2. P has been removed from the theory;3. P has been replaed by some axiom P 0 in the theory.104



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 1051. P 2 �� V(GA) = V 0 [ f'P g and E(GA) = E 0 [ N[i=1f'Pi ,! 'P g� labelGA(') = 8<: label 0(') ' 6= 'PV' ' = 'P2. P 62 � has been removed in �Then the arguments supporting 'P are no longer relevant:� V(GA) = f'g and E(GA) = fg� labelGA(') = out3. P 62 � has been replaed by P 0 2 �Let 'P 0 and 'P 01 ; :::; 'P 0M denote the onlusion and preonditions of P 0.If 'P 0 6= 'P , this redues to ase 2 (as P 0 no longer derives 'P ).Otherwise, if 'P 0 = 'P , then:� V(GA) = V 0 [ f'P g [ f'P 01 ; :::; 'P 0M g and E(GA) = E 0 [ M[i=1f'P 0i ,! 'P g
� labelGA(') = 8>>>><>>>>: label 0(') ' 6= 'P and ' 2 V 0out ' 6= 'P and ' 62 V 0V' ' = 'P 2Instanes of ases 1 and 2 are given in Example 6.1, whereas ase 3 is illustrated laterin Example 6.4. The observation below follows from this de�nition:Observation 6.1 If A is a justi�ation for ' then labelGA(') = in; otherwise, if A isa refutation of ' then labelGA(') = out. 26.2 The General Format of AttaksThe problem of how to generate an attak to a given argument an now be redued tothat of generating an argument that supports a ontraditory laim. The basi intuition



is simple: if a sentene is argued to be in, then in the next step of the argument we wantto laim that it is out|and vie versa. In one diretion, we an refute the argumentthat justi�es this sentene; in the other, we an produe an alternative justi�ation forit. ' : in remove argument; ' : out' : out add argument; ' : inSuh types of attak are independent from the hoie of logial system beause theyrely on supporting and bloking onlusions only. Nonetheless, it should be possible toaount for any notion of onit de�ned in the underlying language (e.g. through nega-tion), meaning for instane that we ould attak a justi�ation not only by invalidatingits premises but also by justifying an opposing view.A question arises at this point, of how these relate to the attaks above. In other words,if ' denotes a sentene that onits3 with ' then we want to determine whether thefollowing types of attak are also legitimate:1. If ' is argued to be in, then in the next step of the argument an we argue that' is out by arguing that ' is in?2. If ' is argued to be out, then in the next step of the argument an we laim that' is in by arguing that ' is out?The problem, though, is that the equivalene between ' : in and ' : out does not gen-erally hold. As disussed in Setion 6.1, argumentation is onerned not with the truthof propositions but rather with justifying whether a proposition an be aepted as trueon the basis of the reasons that an be onstruted for it. From this perspetive, a sen-tene an only be refuted if it has been previously justi�ed. Arguing that a onitingsentene is out does not mean that the sentene is not a onsequene of the theory, andmay not give enough reasons for aepting the sentene itself as substantiate (unlessthis is expliitly stated, e.g. by a burden shift premise).3 The only property assumed for the notion of onit is that it is symmetri, so if ' onits with 'then ' onits with '. 106



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 107Hene it is not neessarily the ase that ' : out implies ' : in. On the other hand,however, it seems reasonable to ontradit the laim that a sentene is in by justifyinga oniting sentene, as this gives enough reasons for not aepting the original senteneas substantiated; ' : out then follows as a onsequene of ' : in. In this way, only the�rst type of attak above is also onsidered to be legitimate:' : in add argument; ' : inNotie that in truth maintenane systems the situation is similar, as states in and out:[...℄ are not symmetri, for while reasons an be onstruted to make P in, noreason an make P out. (At most, it an make :P in as well.) (Doyle 1979, p. 234)The following example illustrates the intuition behind this.Example 6.2 Let the following be sentenes in a language for expressing the possibleolours of an objet x:folour(x; red); olour (x; yellow ); olour (x; green)gsuh that onit in this language is de�ned by olour (X;C) = olour(X;C 0), where C 0 6= C.Assume that olour (x; red ) is urrently in. Aording to the disussion above, possibleattaks onsist of either refuting olour (x; red ) or justifying olour (x; red ), where:olour (x; red) = olour(x; green) or olour (x; red) = olour (x; yellow ).If the advaned attak has the form:olour (x; red) : in; olour (x; green) : inthen olour (x; red ) beomes out as olour (x; green) is now in. At this point arguing thatsome oniting sentene|e.g. olour (x; yellow )|is out may not hange the urrentout status of olour (x; red ):olour (x; red) : out 6; olour(x; yellow ) : out.



This sort of attak does not have the quality of refuting the sentene olour (x; yellow )as a justi�ation for it has not yet been advaned. On the other hand olour (x; green)has been justi�ed so the following attak is legitimate:olour (x; green) : in; olour(x; green) : out,and it would onsequently reinstantiate the in status of olour (x; red ). 2This sort of attak an be useful to introdue new sentenes other than supportingsentenes that are also relevant to the argumentation proess. In this way, a sentene isnow said to be in not only if all its supporting sentenes are argued to be in, but alsoif no (known) oniting sentene is in as well.We now formalise this intuition, lassifying the general purpose of revision operations forgenerating attaks in a dynami argument in terms of of the general format of attaksdisussed above. In Setion 7.3.4 these are used as the starting point for de�ning aolletion of more detailed revisions.De�nition 6.3 (General Types of Revision) Let A be an argument in �, and A0be an argument in a revised theory �� suh that it attaks A. To desribe the typesof attak-based revision � yielding the derivation of A0 (see De�nition 4.6), we shallonsider the possibilities for ontradition.On one hand, if A supports ' : in then A0 has to support ' : out, either beause itdiretly rejets ' or beause it supports ' : in.(a) ' : in remove argument�;A; ' : outHere A0 is neessarily a refutation of A, in whih we rejet the premise used forinferring '. The purpose of � is to refute ' by bloking the derivation of A,withdrawing this argument as being a valid, well-grounded justi�ation for '.(b) ' : in add argument�;A; ' : inHere A0 is neessarily a ounter-argument for ', i.e. a justi�ation for ' where 'and ' are oniting sentenes in the language. The purpose of � is to allow A0to be derived, where � may be trivial if A0 an be inferred from �.108



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 109On the other hand, for A0 to ontradit ' : out, it must support ' : in.() ' : out add argument�;A; ' : inHere A0 must be a justi�ation for '. As in ase (b) above, the purpose of � is tojustify ' by allowing A0 to be derived, and � may be trivial if A0 an already beinferred from �. 2A ouple more notes on terminology. An attak that ontradits the main laim of anargument is known as a diret attak, whereas an attak that ontradits an indiretlaim of an argument is said to be an indiret attak. Moreover, the possible typesof ontradition in De�nition 6.3 are in aordane with the three general types ofonit (or attak) identi�ed in the literature, namely rebuttals, underutting attaksand assumption attaks (Prakken and Vreeswijk 1999):1. Underutting attaks rejet not a sentene itself but the premise supporting itsinferene.Underutting attaks orrespond to ase (a) above: if a sentene is proved tobe in, argue that it is out by refuting (underutting) the justi�ation givenfor it.2. Rebuttals are symmetri types of attak in whih arguments have oniting on-lusions.Rebuttals are aptured by ase (b) above: if a sentene is proved to be in,rebut it by proving that a oniting sentene is also in.3. Assumption attaks prove the ontrary of what was assumed without being proved.Assumption attaks an be aptured by ase (), in the partiular ase of non-provability assumptions: if a sentene is assumed to be out, prove that it isin fat in (prove what was argued to be not provable). More generally, if as-sumptions are onsidered to be speial sentenes that an extend the initiallanguage, then assumption attaks an be aptured by ase (b): if an assump-tion is argued to be in, prove that its ontrary is in (where the notion of theontrary of an assumption is similar to that of onit, but asymmetri).



Notie that some are may be needed in handling oniting sentenes appropriately.The following example illustrates what problems might arise.Example 6.3 In Example 6.2, the laim struture supported after the attak:olour (x; red) : in; olour (x; green) : inis depited by the following direted graph, where the dotted edge represents a on-iting link rather than a supporting link (i.e. olour (x; green) is in onit witholour (x; red )):4 olour(x; red) : outolour (x; green) : inOOBoth laims represent potential points of attak that an allow olour (x; red ) to be rein-stated. Aording to De�nition 6.3, the possibilities for attak in the next step are:olour (x; red) : out ; olour (x; red) : inolour (x; green) : in ; olour(x; green) : outolour (x; green) : in ; olour (x; green) : inNevertheless, beause olour (x; green) is itself a oniting sentene (rather than a sup-porting node), not all sentenes olour (x; green) in the third type of attak are guaranteedto hange the status of the sentene olour (x; red ) above in a oherent way. Considerfor instane the following attak, where olour (x; green) = olour(x; yellow ):olour (x; green) : in; olour(x; yellow ) : inThe struture of dependenies is now represented as:olour(x; red) : inolour(x; green) : outOOolour(x; yellow) : inOO4 Refer to Appendix B for detailed notation. 110



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 111whih essentially says that \x is red beause it is not green, and it is not green beauseit is yellow", and that is learly inonsistent. The reason why this type of attak isproblemati is beause sentenes that onit with olour (x; green) may also onit witholour (x; red ). The solution is to restrit the types of rebuttals that an be generated foroniting nodes to those that reated the onit itself; in this ase the only hoie forolour (x; green) that an e�etively alter the status of olour (x; red ) is olour (x; red )itself: olour(x; green) : in; olour (x; red) : in. 2The next example also illustrates some of the onepts presented so far:Example 6.4 Consider again argument A for p(a; b) in Example 6.1. One way torefute A is for instane by arguing that q(a) should not be substantiated:q : in remove argument�;A; q : outThis attak orresponds to ase (a) in De�nition 6.3 instantiated to the sentene q(a).Note that this is an indiret attak to A beause it ontradits an indiret laim.To present suh an attak � needs to be revised into �0 so as to rejet the premiseused for deriving q(a). The following revision operation does that by elaborating on thepreonditions for applying the rule:p(X;Y ) q(X) ^ r(Y )q(X) s(X) ^ t(X)r(b) trues(a) truet(a)  true remove argument�;A; p(X;Y ) q(X) ^ r(Y )q(X) s(X) ^ t(X) ^ r(X)r(b) trues(a) truet(a) trueThe sentene q(a) is refuted beause A is no longer a sound argument with respet to �0.This fragment of a dynami argument is pitured below along the same lines as Figure2.1.
p(a, b)

r(b)

s(a) t(a)

q(a)� remove argument�;A; r(b)

s(a) t(a)

q(a)

p(a, b)�0



Notie that this diagram only represents the original argument being refuted beause thisis what the argument move is about. However, we want also to be able to apture theonsequenes of this revision, suh as the addition of a new preondition, and this isgiven by the orresponding laim struture.As disussed in De�nition 6.2, the struture of laims supported by a refutation is depen-dent on the sub-argument de�ned by the rejeted axiom; in this ase, q(X) s(X) ^ t(X).The reason why sentene q(a) beame unsupported after the update is beause it now de-pends on a new preondition, namely r(a), that is laimed to be out beause it has not(yet) been shown to be supported.Every sentene that was dependent on q(a) also beomes unsupported after the refutation,though other laims suh as s(a) : in still hold and are still relevant to the argument.The struture below represents these dependenies between sentenes after the attak hasbeen advaned, aording to ase 3 in De�nition 6.2.p(a; b) : outq(a) : out 55llll r(b) : inhhRRRRs(a) : in 66mmmm t(a) : inOO r(a) : outiiRRRR true : injjUUUUUUUUUUUUUU
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@@������������This struture also gives laims that an be attaked in the next step. For instane, oneould alter the status of q(a)|and hene of p(a; b)|by justifying r(a). 2So the notion of ontraditory laims provides a higher-level desription of argumentdynamis than that based on strutural revision. Claims onvey the intention of rejet-ing existing arguments and also of advaning new ones, without speifying premises tobe retrated from or added to the theory. This is in line with the disussion in Setion4.1, where dynami argumentation was desribed as an abstrat proess of manipula-tion of arguments as primitive entities. In this sense, we have now taken a �rst steptowards apturing that abstrat view in terms of a more pragmati approah based onthe revision of sets of premises.Determining whih laims are supported after an attak has been advaned is partiu-larly important in the ontext of a dynami argument, where we need to keep trak of112



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 113issues suh as:� whih laims an be ontradited during the ourse of argument;� whih laims are relevant at eah point in the proess; and� how these relate to the main sentene under dispute.Next we desribe a way to propagate the e�ets of an attak to the laims supportedby the original argument, whih is used in this thesis for generating and automatingargument dynamis.6.3 Possible Attaks in a Dynami ArgumentIn a dynami argument about a sentene ', the purpose of eah advaned argumentis to alter the status of ' from substantiated (in, or aeptable) to unsubstantiated(out, or unaeptable), and vie-versa. As justi�ations and refutations are presented,dependenies between ' and other sentenes are made expliit, and we should be ableto look at these in order to selet a laim to be ontradited so that it will hange theurrent aeptability status of '.The moves hA0; �1; A1; :::; �i; Aii advaned up to step i � 0 de�ne a dependeny stru-ture of annotated sentenes that represents not a preise reord of the argumentationbut rather the laims that are supported and relevant after argument Ai has been ad-vaned. Essentially, this struture is a direted graph obtained from the orrespondinglaim strutures GA1 ; :::;GAi (see De�nition 6.2) by ombining them appropriately. Inthe same way, a node is labelled in only if all supporting nodes are labelled in (and nooniting nodes are labelled in), and the laims to be ontradited are those that ane�etively alter the status of the node ontaining '.Based on the de�nitions of a dynami argument (4.7), argument laims (6.2) and gen-eral types of attak (6.3), we an now desribe how to inrementally onstrut thisdependeny graph as the ourse of argument develops.



De�nition 6.4 (Dependeny Graph) Let hA0; �1; A1; :::; �i; Aii be the state of a dy-nami argument Æ(';�) at step i � 0. The dependeny graph of laims supported at thispoint is a direted graph Di with labelling funtion, whih an be de�ned as follows:Base ase (i = 0)By de�nition A0 is a justi�ation for ', therefore D0 is equivalent to GA0 .Indutive ase (i > 0)By de�nition Ai attaks Ai�1, thus Ai ontradits a laim supported by Ai�1 in theontext of hA0; �1; A1; :::; �i�1; Ai�1i|i.e. a laim in Di�1. Let Ai be an attakto a sentene ', and GAi the laim struture supported by it.Moreover, let V be an operator for ombining and propagating labels aross sup-porting and oniting nodes in Di. Di is onstruted from Di�1 and GAi asfollows:� V(Di) = V(Di�1) [ V(GAi)� E(Di) = �E(Di�1) n EV(GAi)(Di�1)� [ E 0, where{ EV(D) � E(D) denotes the set of edges in a graph D that terminate at somenode in the set V; and{ E 0 denotes the links between sentenes in the argument struture, maybe withan additional oniting edge in the ase of rebuttals:5E 0 = 8<: E(GAi) [ f' ,! 'g Ai was given by ' : in; ' : inE(GAi) otherwiseThe labelling funtion labelDi is de�ned below, where V 0 � V(Di) denotes the setof nodes reahable in Di from some node in V(GAi):{ labelDi( ) = 8>>>>><>>>>>: labelGAi ( )  2 V(GAi)labelDi�1( )  62 V(GAi) and  62 V 0^  62 V(GAi) and  2 V 0 25 Remember from Appendix B that dotted arrows ,! represent oniting edges in a graph whereassupporting links are depited by ,!. 114



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 115The basi idea behind this de�nition is to remove any edges from the original dependenygraph whih are used to support sentenes from the new argument, atually replaingthese by the relations given in this argument.Note that by onstrution the following observation holds:Observation 6.2 The only way to introdue a oniting node in the dependeny graphis by expliitly justifying a oniting sentene aording to some notion of onit|ase (b) of De�nition 6.3. 2In fat, the argument strutures themselves only inlude supporting links (see De�-nition 6.2). This type of attak allows for an expliit introdution of onit, whihis not aptured by the underlying argument generated mehanism, but whih an beused both for rebutting sentenes in the language and for ontraditing assumptions.This is again another point of onnetion with truth maintenane systems, where sen-tenes P and :P are unrelated unless this is expliitly stated, and a node is expresslymarked as a ontradition.This de�nition tells us how the status of other sentenes are a�eted by an attak, intro-duing sentenes that beome relevant in the light of the new argument and dismissingothers that are no longer at issue. This dependeny struture gives the possible attaksfor the next step of argument, namely any laim suh that altering its label will a�etthe status of the main sentene.� if a sentene in in, then all its supporting sentenes (whih are in) and its on-iting sentenes (whih are out) are potential points of attaks;� if a sentene is out, then potential points of attaks inlude oniting senteneswhih are in or supporting sentenes whih are out.The possible attaks to sentene ' at step i in a dynami argument are then given bythe transitive losure in Di of these potential points of attak with respet to the urrentstatus of '. This idea is equivalent to that of supporting-nodes de�ned by Doyle (1979),who refers to the orresponding transitive losure as the anestors of a node.



6.4 Argumentation and Truth Maintenane SystemsConsidering the many similarities pointed out in the previous setions, this is a good timeto disuss the relation between these two approahes in more detail. Before deepeningthe disussion, let us briey summarise the basi onepts behind truth maintenanesystems (Doyle 1979; de Kleer 1986; Forbus and de Kleer 1993).There are essentially two sorts of strutures in a TMS: nodes representing propositions,and justi�ations assoiated with these nodes. Eah justi�ation onsists of two lists ofnodes|an IN-list and an OUT-list|suh that a justi�ation is said to be valid only ifevery node in the IN-list is in and every node in the OUT-list is out. Assumptions inpartiular are nodes whose supporting justi�ation has an empty IN-list (so they annotbe justi�ed) and a non-empty OUT-list (but they an be ontradited). There are alsotwo types of mehanisms involved: a truth maintenane proedure for making revisionsin the support status of nodes given that justi�ations may be added and retrated;and the dependeny-direted baktraking for identifying whih assumptions need to behanged in order to restore onsisteny in ase of ontradition.Aording to Doyle (1979, p. 236) the purpose of a TMS is that it:[...℄ reords and maintains arguments for potential program beliefs, so as to distin-guish, at all times, the urrent set of program beliefs.And given that Doyle also proposes a way to \organize a problem solving program's useof the TMS into the form of dialetial argumentation"6, the question of how exatlythe two approahes relate beomes more and more persistent.The di�erene turns out to be more a shift in emphasis than it is tehnial. Whereastruth maintenane systems are onerned with \how to make hanges in omputationalmodels" (Doyle 1979, p. 231), models of argumentation as studied in AI|espeiallymodels of argument dynamis|are more onerned with the issue of what hanges tomake. From an argumentation perspetive there is not muh interest in maintainingor reestablishing onsisteny, but rather in exploring ontraditions and introduing6 See Setion 6 in (Doyle 1979). 116



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 117onits and attaks deliberately.In this way, while the dependeny-direted baktraking mehanism is more about restor-ing onsisteny (and hene not as germane to the proess of argumentation), the sort oftruth-maintenane proedure on the other hand seems to have a signi�ant role to playin argumentation models. Originally this is supposed to give the aeptability status ofsentenes in the urrent set of beliefs, but it ould also be interpreted as a mehanismfor keeping trak of weaknesses and points of attak given the justi�ations onsideredso far.We have found that by foring notation and terminology to be similar the di�erenes andrelations between the argumentation and TMS beame more apparent. For instane,we are now able to ask a more spei� question, namely:If we keep adding and retrating justi�ations to a TMS aording to thejusti�ations and refutations advaned during an argumentation proess, willthe TMS network be equivalent to the dependeny graph that is onstrutedinrementally during the ourse of the argument?The answer to this question is sometimes yes, but generally no. The fundamentaldi�erene is that a TMS keeps a set of justi�ations assoiated with eah node, eahrepresenting a di�erent reason for it, whereas the dependeny graph in De�nition 6.4only maintains the links assoiated to one argument, namely the argument that waslast advaned (remember that every edge supporting a sentene is dismissed unless thissentene is not part of the new argument). So if an invalid justi�ation beomes validagain there is no need to expliitly add this justi�ation again, as the TMS automatiallyupdates the status of the supported sentene to in. Argumentation mehanisms on theother hand must generate a new well-founded justi�ation and the entire new argumentneeds to be expliitly advaned again.It is true, though, that one ould bolt on a TMS to our argument revision omponentto produe a more sophistiated system that an keep trak of the onsequenes thatfollow from every argument advaned so far, even if these have not been expliitlystated before. However, it seems to us that the emphasis in argumentation is more on



add just rms(If, Then) :-add a new justi�ation If ! Then to the databaseand propagate the e�etsdel just rms(If, Then) :-remove a justi�ation If ! Then to the databaseand propagate the e�etsFigure 6.1: Basi interfaing prediates as de�ned by Shoham (1994).searhing for and advaning appropriate arguments during the proess. In any ase, it isalso possible to fore a truth maintenane system to keep only one relevant justi�ationassoiated to eah node by deleting every previous justi�ation when a new argumentis advaned.6.4.1 Experiments with Truth MaintenaneE�etive testing of this relation between truth maintenane proedures and dependenygraphs was also possible. The experiments onsisted in feeding both mehanisms withthe same justi�ations and omparing the results at eah step of argument. On theargumentation side we have used our own Prolog implementation; on the TMS side wehave used Shoham's implementation of a reason maintenane system7 as desribed in(Shoham 1994). Figure 6.1 gives the basi interfae prediates in this system.This setion illustrates one suh experiment, namely the use of the TMS mehanism inthe ontext of Examples 6.1 and 6.4. Note that in this ase the outome is idential tothe one given by the dependeny graph as no alternative reasons exist simultaneouslyfor any of the sentenes.In Shoham's implementation, a justi�ation is an expression of the form:If ! Thenwhere If is a list of nodes that justify the sentene Then . Supporting nodes of the form(N;+) are in the so-alled IN-list, while nodes denoted by (N;�) are said to be in the7 The Prolog ode is available online at http://yoda.is.temple.edu:8080/books/shoham/.118



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 119OUT-list. Moreover, the speial node premise is always in (note that this is equivalentto the speial term true in De�nitions 6.2 and 6.4).What we mean by justi�ation in this thesis is more like a olletion of justi�ations inthe TMS sense. So in order to supply appropriate information to the TMS mahinery,justi�ations then need to be broken into the smaller steps that orrespond to theappliation of eah axiom. For instane, the following �ve justi�ations an representthe justi�ation A for p(a; b) given in Example 6.1:| ?- add just rms(((q(a),+), (r(b),+)), p(a,b)),add just rms(((s(a),+), (t(a),+)), q(a)),add just rms(((premise,+)), s(a)),add just rms(((premise,+)), t(a)),add just rms(((premise,+)), r(b)).yesAfter adding these justi�ations, the status of the sentenes are represented by thenetwork in Figure 6.2, where the label in indiates that the orresponding sentene is inthe database. The prediate printdb/0 gives the urrent state of the database, wherein sentenes are denoted by the prediate rms/1.| ?- printdb.Database listing :The fats:rms(premise).rms(s(a)).rms(t(a)).rms(q(a)).rms(r(b)).rms(p(a,b)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(s(a), +, j2).justifier(t(a), +, j2).justifier(premise, +, j3).justifier(premise, +, j4).justifier(premise, +, j5).Justifiands:justifiand(j1, p(a,b)).justifiand(j2, q(a)).justifiand(j3, s(a)).justifiand(j4, t(a)).justifiand(j5, r(b)).yes
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+j5 @@������������Figure 6.2: A TMS orresponding to argument A for p(a; b).Consider now the ase of refutations, whih are used for rejeting axioms in a justi�a-tion, either by removing it from the theory or by updating it so that the argument nolonger follows. The �rst ase is also illustrated in Example 6.1, where a refutation forA was given on the basis of rejeting axiom r(b) true. In TMS style, suh refutationould be obtained by deleting the orresponding justi�ation as follows:| ?- del just rms(((premise,+)), r(b)).yes| ?- printdb.Database listing :The fats:rms(premise).rms(s(a)).rms(t(a)).rms(q(a)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(s(a), +, j2).justifier(t(a), +, j2).justifier(premise, +, j3).justifier(premise, +, j4).Justifiands: justifiand(j1, p(a,b)).justifiand(j2, q(a)).justifiand(j3, s(a)).justifiand(j4, t(a)).yesFigure 6.3 gives the state of the database after justi�ation premise ! r(b) was deleted.Notie though that in refutations axioms do not need to be rejeted for good, but an beupdated. Rather then refuting argument A by rejeting axiom r(b) true, Example 6.4120



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 121p(a; b) : outq(a) : in+j1 66llll r(b) : out+j1iiRRRRs(a) : in+j2 77nnnn t(a) : in+j2hhRRRRpremise : in+j4 OO+j3iiTTTTTTTTTTTTTFigure 6.3: TMS from Figure 6.2 after premise ! r(b) was deleted.illustrates a type of refutation that elaborates on the preonditions for applying axiomq(X) s(X) ^ t(X). This an be aptured in a TMS style as follows, onsidering thepartiular instane of this axiom supporting the sentene p(a; b).| ?- del just rms(((s(a),+), (t(a),+)), q(a)),add just rms(((s(a),+), (t(a),+), (r(a),+)), q(a)).yes| ?- printdb.Database listing :The fats:rms(premise).rms(s(a)).rms(t(a)).rms(r(b)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(premise, +, j3).justifier(premise, +, j4).justifier(premise, +, j5).justifier(s(a), +, j6).justifier(t(a), +, j6).justifier(r(a), +, j6).Justifiands:justifiand(j1, p(a,b)).justifiand(j3, s(a)).justifiand(j4, t(a)).justifiand(j5, r(b)).justifiand(j6, q(a)).yesFigure 6.4 gives the state of the database after justi�ation s(a); t(a)! q(a) was elab-orated into s(a); t(a); r(a) ! q(a).
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+j5 @@������������Figure 6.4: TMS from Figure 6.2 after s(a); t(a)! q(a) was updated.The fat is that it is possible to use a TMS to keep a reord of points of attak duringargumentation. By taking the extra are of maintaining only one urrent justi�ationfor eah node, and of grounding any variables in order to bind them appropriately, wean then get the desired results. In our urrent implementations of dynami argumen-tation generators (see Chapter 8) it is possible to use Shoham's implementation as thedependeny graph mehanism.So this hapter desribed a high level aount of attak-based revision relations in termsof potential ontraditions, haraterising the possible attaks during the ourse of adynami argument. Chapter 8 further illustrates these onepts in terms of the aatoxindebate in Chapter 5. The next step is to propose a olletion of operations that elaborateon the general types of revision add argument and remove argument in order to satisfythe sorts of attaks disussed in Setion 6.2. Note, however, that up till now relationswere desribed only at a fairly abstrat level. But to de�ne suh a olletion of morere�ned strutural revisions we will need to ommit to a partiular underlying logialsystem.
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Chapter 7A Formal Classi�ation ofArgument Shemata
This hapter addresses another issue identi�ed in Chapter 4, that of how to speify anappropriate set of revision operations for generating dynami arguments, and the waywe takle this problem is by ategorising argument revision shemata in terms of thetypes of attaks identi�ed in the previous hapter. At this point we also ommit to aspei� underlying logial system.7.1 Generating Dynami ArgumentsA dynami argument as de�ned in Chapter 4 is a proess of argument exhange whihmay involve strutural hanges to the underlying knowledge base. From the perspetiveof transformation of theories, the purpose of a dynami argument is to produe a theory�0 from an initial theory � whih is more aeptable with respet to a sentene '.At eah step, the original theory may revised until no more attaks to '|or ounterattaks to defend '|an be generated. Whether this proess onverges and all attaksare properly rejeted depends on the types of prede�ned revision operations that areallowed.Dynami arguments an then be generated by a term rewriting system, expressed in alogi programming style in Figure 7.1.The term � represents the attak generation step, expressed here as a relation between123



Æ(';�;�0)  �(�;�00) ^ Æ(';�00;�0)Æ(';�;�)  Figure 7.1: A system for generating dynami arguments.theories. In fat, �(�;�00) holds if and only if from �00 we an derive an attak on anargument in �. If � is an attak-based revision that an be applied to �, then �(�;��)holds by de�nition (see De�nition 4.6).In the rest of this hapter we propose a way to re�ne the relation � for obtaining anorganised olletion of argument revision shemata based on the general haraterisationof attaks given in Chapter 6. This olletion provides a systemati way to de�ne theset of revision operations that an be applied in a dynami argument, also helping toidentify useful properties that these operations ould have.7.2 A Logi Programming FrameworkIn Chapter 4 we proposed a generi formalisation of dynami argumentation that wasbased on an arbitrary logial system, leaving a number of parameters undetermined.Nevertheless, one of our aims is to de�ne a dynami argumentation framework that isof pratial use, and whih an be applied in a systemati way. And whilst the oneptsde�ned in Setion 4.2 are abstrat enough to apture the type of behaviour in whihwe are interested, they still leave too muh to be spei�ed for someone wishing to usethem.So to fully desribe the onepts in Chapter 4 we shall adopt a spei� underlying sys-tem, namely logi programming (based on the resolution method). The reasons behindthis hoie are manifold. First, logi programming theory has its roots in �rst-orderprediate alulus. Beause many people are familiar with �rst-order languages, thereis no need to introdue and explain new symbols, onnetives or semantis. Moreover,logi programming has proved suitable for a number of tasks in the knowledge repre-sentation realm. In our ase, for instane, it is natural to think of logi programs asa way of expressing theories that represent models, ontrats or beliefs. Finally, as anexeutable language, logi programming is also omputationally attrative.124



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 125We often assume that theories orrespond to general logi programs in a �rst-orderlanguage, as illustrated in Chapter 5. Though many of our results are based on de�nitelogi programs, whih are general programs restrited to Horn lauses (without theourrene of negation as failure, and thus with the advantage of monotoniity), we alsodisuss whether and how these results extend to the more generi ase. A brief aountof logi programming is given in Appendix A.Given an underlying logi programming framework, we an now elaborate on the formalde�nitions in Setion 4.2. In partiular, the notion of argument follows diretly. Just asin De�nition 4.3, an argument ontains the lauses used in the derivation of a senteneand an be depited by the orresponding support tree.Attaks are redued to ontraditory laims (as presented in De�nition 6.3), althoughwhat it means for two sentenes to be in onit still remains to be spei�ed. In logiallanguages, onit is often represented in terms of expliit negation and thus reduedto inonsisteny. Rather than allowing an expliit aount of (lassial) negation withinthe logi, we treat onit as a meta-level relation between prediates in the language.This approah is in line with a number of proposals in the literature (Bondarenko et al.1997; Ambler 1996).What is more, in the ase of logi programming the types of argument laims seem tobe naturally assoiated with the notion of interpretation. The interpretation �(�) ofa (de�nite) logi program � ontains all ground atoms that an be dedued from �;that is, all the ground sentenes that are justi�ed in this theory. Hene, stating that anargument in � supports the laim ' : in orresponds to saying that at least one groundinstane of ' is in �(�). Again, this orrespondene does not hold as neatly for the aseof refutations beause being out does not neessarily mean not being in.1But this is not neessarily bad news. In fat, in the ase of monotoni systems we anassoiate the interpretation sets of an original theory and a revised theory by means ofset inequality relations. Moreover, the notion of argument (and of argument laim) isimportant here beause it helps fousing on ertain elements of these sets, rather thanalulating and enumerating them all. We disuss these properties in Chapter 9.1 See disussion in Setion 6.1.



7.2.1 Considering Negation as FailureAt this point we should make some remarks about how arguments involving negationrelate to the orresponding interpretation sets. The interpretation set of a general logiprogram under the losed world assumption onsists of all the ground atoms that an bederived from this theory plus the negation of the ground atoms that annot be inferredfrom it.It is worth noting that argumentation has been used for apturing various alternativesemantis for general logi programs, suh as well-founded or stable semantis (Bon-darenko et al. 1997). Our approah to negation here is slightly di�erent. We are lessinterested in disussing what is the right semantis for negation in logi programs thanin handling it as �nite failure by using an extension of the original resolution meha-nism. These two approahes to negation are distint and have been haraterised byDix and Brewka (1997) as the NML-approah (fous on non-monotoni issues) and theLP-approah (fous on logi programs themselves), respetively. Of ourse there arenon-monotoni aspets of our proposal, and these are disussed in Chapter 9.In any ase, if negation as failure is involved then the argument premises should ontainnot only lauses from the program, but also the negated ground onsequenes neededin the derivation. Suh sentenes are onsidered to be assumptions beause they annotbe formally proved to be in, but only assumed to be in beause some ontraditorysentene is out.Example 7.1 Let � be the following general logi program:p(X)  q(X) ^ not r(X)q(a)  truer(b)  trueThen argument A below is a derivation (based on the resolution mehanism extendedwith negation as �nite failure) supporting p(a):
q(a)

p(a)

not r(a)

true� 126



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 127and whih an be represented by:fp(X) q(X) ^ not r(X); q(a) trueg [ fnot r(a)g `� p(a).The struture below depits the dependenies between laims in argument A.p(a) : inq(a) : in 77nnnn not r(a) : inhhRRRRtrue : inOO r(a) : outOO 27.3 A System of Argument RewritesHaving introdued the notion of a general attak-based relation between theories, thissetion desribes an organised olletion of argument revision shemata for satisfyingthis relation. This is done by speifying a rewriting system for re�ning the relation �in Figure 7.1 into argument shemata for theory revision based on the general hara-terisation of attaks.As disussed in Chapter 5, we want to provide desriptions of argument shemata towhih domain-spei� knowledge an be applied. To enrih and give oherene to ourproposal, we organise these shemata in a asade of levels ranging from an overalllassi�ation in terms of interpretation to the manipulation of partiular lauses ina theory, eventually getting to a domain-spei� level. The suggested organisationprovides a pragmati way to de�ne revision shemata for attak generation, but it turnsout to be useful also in supporting explanation and retrospetive analysis of a dynamiargument at di�erent levels of abstration.As we go down this lassi�ation tree, we instantiate the neessary parameters for gener-ating a valid attak. To guarantee that this is the ase, to eah rewrite we assoiate a setof relevant properties that an be veri�ed during or after the instantiation. Propertiesassoiated with eah rewrite persist through subsequent rewrites, thus aumulating aset of properties during the proess.



Rewrite rules also have onditions whih are used to instantiate and onstrain theirparameters. There are two types of onditions here: some are onerned with hoosingan element from a set (2-onditions); others, with instantiating the rewrites with theseseleted elements (=-onditions). Satisfying these generates an instane of an attak.In what follows, rewrites are grouped into setions aording to the di�erent lassi�a-tion levels. A standard presentation pattern is adopted for eah rewrite rule, onsistingof an informal desription together with the formal rewrite rule, and the related prop-erties and onditions.7.3.1 The General Attak Relation between TheoriesThis setion gives the rule for re�ning the general relation between theories, thus allow-ing it to be rewritten as an attak generation step involving some unrestrited attak-based revision to the underlying theory. The idea is to onstrain this operation asthe attak relation is re�ned, and the property attaks an be used to ensure that theoriginal argument is in fat attaked by (and not preferred over) the argument that isgenerated.Argument Rewrite 1 For a general attak relation between two theories � and �0 tohold, we an identify an argument A in � suh that � is an (unrestrited) attak-basedrevision operation to � with respet to A, and hene in �0 we an derive an argumentA0 that attaks A.2 �(�;�0) ) argument(A;�);� ��;A; �0;argument(A0;�0)Properties: � attaks(A0; A) 	Conditions: true7.3.2 The General Form of Theory RevisionAny revision operation is haraterised by two sets ontaining the axioms to be removedfrom and added to the theory, respetively. De�ning a meaningful revision operation2 See De�nition 4.6. 128



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 129is then redued to seleting these sets appropriately. Notie that this rewrite is lessabout re�ning the revision operation per se than about speifying whih tasks shouldbe de�ned for suh an operation to be performed.Argument Rewrite 2 An unonstrained attak-based revision operation is hara-terised by sets of axioms R and A that will be removed from and added to � withrespet to the argument A being attaked, suh that the resulting set is a theory (that is,a onsistent set of axioms). � ��;A; �0 ) selet(A;�;R;A);revise(�;R;A;�0)Properties: � onsistent(�0) 	Conditions: true7.3.3 Types of Argument ClaimsRewrites in this setion allow arguments to be rewritten in terms of the general laimsthey support. Like the previous rule, they do not speify how to re�ne the revisionoperation itself, but are useful for harnessing the possible laims that an be supportedby an argument. Given an argument A, these laims an be seleted from the possibleattak points in the orresponding struture GA of argument laims.3Argument Rewrite 3 An argument A in a theory � may support the laim that sen-tene X is substantiated. argument(A;�) ) in(X;A;�)Properties: fgConditions: X : in 2 GAArgument Rewrite 4 An argument A in a theory � may support the laim that asentene X is not substantiated.3 During a dynami argument, laims an be seleted from the overall dependeny graph D, whihby de�nition (see De�nition 6.4) inludes the laims supported by the last advaned argument. SeeSetion 6.3 for more details.



argument(A;�) ) out(X;A;�)Properties: fgConditions: X : out 2 GA7.3.4 From Contraditory Claims to General Types of RevisionThis setion gives rewrites for apturing the general purpose of revision operationsin terms of the ontraditions they generate. Based on De�nition 6.3, these rewritesrepresent the �rst level of instantiation of revision operations in our lassi�ation. Thetype of property that is aumulated here an be used to ensure that the argument tobe generated supports the intended ontradition, and also that it is valid in the ontextof moves advaned so far. (e.g. that it is onsistent and has not been presented beforeunder the same irumstanes).Aording to De�nition 4.6, attak-based operations may depend on the theory andthe argument (and onsequently on a laim supported by it) to be attaked. Thesehave been denoted so far as supersript symbols, but here we express them as extraparameters in the prediate for seleting the sets of axioms that haraterise a revision.Argument Rewrite 5 A revision to � an be de�ned by a prediate that selets thesets A and R based on an argument A in �, with the purpose of rejeting this argument.If A substantiates a sentene X, the attak may onsist in refuting A so that in therevised theory it no longer substantiates X.in(X;A;�) ) in(X;A;�)selet(A;�;R;A) ) remove argument(X;A;�;R;A)argument(A0;�0) ) out(X;A0;�0)Properties: � supports(A0; X : out;�0) 	Conditions: A0 = AArgument Rewrite 6 A revision to � an be de�ned by a prediate that selets the setsA and R based on an argument A in �, with the purpose of introduing a justi�ation A0whih attaks A. If A substantiates a sentene X, then A0 may substantiate a oniting130



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 131sentene Y in the revised theory.in(X;A;�) ) in(X;A;�)selet(A;�;R;A) ) add argument(Y;A;�;R;A)argument(A0;�0) ) in(Y;A0;�0)Properties: � supports(A0; Y : in;�0) 	Conditions: Y 2 onit(X)Argument Rewrite 7 A revision on � an be de�ned by a prediate that selets thesets A and R based on an argument A in �, with the purpose of introduing a justi�a-tion A0 whih attaks A. If A supports the laims that a sentene X is unsubstantiated,then A0 may substantiate X in the revised theory.out(X;A;�) ) out(X;A;�)selet(A;�;R;A) ) add argument(X;A;�;R;A)argument(A0;�0) ) in(X;A0;�0)Properties: � supports(A0; X : in;�0) 	Conditions: true7.3.5 From Dealing with Arguments to Dealing with PremisesThe rules in this setion relate the general types of revision for introduing or withdraw-ing an argument with fundamental types of operation|namely trivial, elementary andupdating (see De�nition 4.5 and Setion 5.2). These are fundamental in the sense thatthey represent the minimum hanges neessary for adding or removing an argument,and more omplex operations an be de�ned by expanding the sets R and A in a waythat the assoiated properties still hold.Argument Rewrite 8 A revision (R;A) for introduing a justi�ation for X (basedon argument A in �) may be a trivial operation.add argument(X;A;�;R;A) ) trivial(R;A)Properties: fgConditions: R = ;;A = ;



Argument Rewrite 9 A revision (R;A) for introduing a justi�ation for X (basedon an argument A in �) may be an elementary operation that justi�es X by adding apremise P to the theory. So R is empty, and A is a singleton ontaining P .add argument(X;A;�;R;A) ) elementary(justify(X); A;�; P )Properties: fgConditions: R = ;;A = fPgArgument Rewrite 10 A revision (R;A) for removing a justi�ation A for X in �may be an elementary operation that refutes X by removing a premise P from the theory.So R is a singleton ontaining P , and A is empty.remove argument(X;A;�;R;A) ) elementary(refute(X); A;�; P );Properties: fgConditions: R = fPg;A = ;Argument Rewrite 11 A revision (R;A) for introduing a justi�ation for X (basedon an argument A in �) may be an updating operation that justi�es X by removing apremise P from the theory and adding an updated axiom P 0. So R and A are singletonsontaining P and P 0, respetively.add argument(X;A;�;R;A) ) updating(justify(X); A;�; P; P 0)Properties: fgConditions: R = fPg;A = fP 0gArgument Rewrite 12 A revision (R;A) for removing a justi�ation A for X in �may be an updating operation that refutes X by removing a premise P from the theoryand adding an updated axiom P 0. So R and A are singletons ontaining P and P 0,respetively.
132



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 133remove argument(X;A;�;R;A) ) updating(refute(X); A;�; P; P 0)Properties: fgConditions: R = fPg;A = fP 0g7.3.6 Logi-Spei� Rules for Speifying PremisesRewrites in this setion further re�ne setsR and A in elementary and updating revisionsvia prediates that speify the premises in these sets aordingly.The prediate fat for example gives the sorts of fats that an be added to the theoryby an elementary revision intended to justify a sentene X|namely any axiom of theform H  true suh that X and H are uni�able, and H is an atom from L.These sorts of rewrites are logi-spei� beause they rely on the syntax and mehanismsof (general) logi programs to de�ne the shape and struture of these premises. Generalprogram lauses are denoted here by H  B, where H is a positive literal and B is aonjuntion of literals. Individual literals are denoted by the (possibly indexed) letter B.A substitution � 2 subst that represents the most general uni�er between two sentenesis denoted by mgu.4Some prediates in these rewrites might require interation with a user to supply keyomponents, for instane for introduing new literals or axioms and de�ning substitu-tions. There are no diÆulties in seleting premises to be removed from the theorybeause this is a �nite set whih an be easily traversed, but determining exatly theomponents of a new premise is likely to depend on domain information. What wedo at this point is to desribe the general shape of new axioms, whih an be furtherinstantiated by domain-spei� shemata.The level of lassi�ation in this setion orresponds to the shemata to whih domain-spei� knowledge was applied in Chapter 5. For omparison we refer to the orre-sponding informal shemata between parentheses.4 Please refer to Appendix A for the de�nition of syntax adopted in this setion.



Argument Rewrite 13 (Informal Shema 1) An elementary operation intended tojustify X may be established by adding a fat H  true suh that X and H are uni�able.elementary(justify(X); A;�; P ) ) add(fat(P ))Properties: � unify(X;H) 	Conditions: H 2 L;P = H  trueArgument Rewrite 14 (Informal Shema 2) An elementary operation intended tojustify X may be established by adding a substantiated lause H  B to the theory thatallows X to be dedued.elementary(justify(X); A;�; P ) ) add(substantiated rule(P ))Properties: � unify(X;H);satis�able(B�;�) �Conditions: H;B 2 L;P = H  B;� = mgu(X;H)Argument Rewrite 15 (Informal Shema 3) An elementary operation intended tojustify X may be established by adding a rule H  not B that gives X beause B annotbe derived when H uni�es with X.elementary(justify(X); A;�; P ) ) add(burden shift rule(P ))Properties: � unify(X;H);:satis�able(B�;�) �Conditions: H;B 2 L;P = H  not B;� = mgu(X;H)
134



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 135Argument Rewrite 16 (Informal Shema 4) An elementary operation intended torefute X (by rejeting the argument A supporting it) may be established by removing thelause H  B used in A to derive X beause this is an invalid rule.elementary(refute(X); A;�; P ) ) retrat (invalid rule(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0 2 subst : aÆrm(B�0 ^ not(H�0))Argument Rewrite 17 (Informal Shema 5) An elementary operation intended torefute X (by rejeting the argument A supporting it) may be established by removing thelause H  B used in A to derive X beause this is a weak rule.elementary(refute(X); A;�; P ) ) retrat (weak rule(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0 2 subst : aÆrm(not(B�0))Argument Rewrite 18 (Informal Shema 6) An elementary operation intended torefute X (by rejeting the argument A supporting it) may be established by removing thelause H  B in A used to derive X beause it expresses a mistaken orrelation.elementary(refute(X); A;�; P ) ) retrat (misrelation(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0; �00 2 subst :aÆrm(B�0 ^ not(H�0) ^H�00 ^ not(B�00))



Argument Rewrite 19 (Informal Shema 7) An updating operation intended to jus-tify X may be established by removing a lause from �, and adding a variant obtainedfrom this by dismissing some preondition that was bloking the derivation of X.updating(justify(X); A;�; P; P 0) ) retrat(irrelevane(P ));add(irrelevane(P 0))Properties: 8<: unify(X;H);satis�able((B1 ^ ::: ^ Bi�1 ^ Bi+1 ^ ::: ^Bm)�;�);:satis�able(Bi�;�) 9=;Conditions: H  B1 ^ ::: ^Bm 2 �;P = H  B1 ^ ::: ^Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^ Bi+1 ^ ::: ^ Bm,� = mgu(X;H)Argument Rewrite 20 (Informal Shema 12) An updating operation intended torefute X (by rejeting the argument A supporting it) may be established by removingthe lause used in A to derive X and adding an elaborated variant ontaining an extrapremise whih is not satis�able, thus bloking the derivation of X.updating(refute(X); A;�; P; P 0) ) retrat(elaboration(P ));add(elaboration(P 0))Properties: 8<: unify(X;H);satis�able((B1 ^ ::: ^ Bm)�;�):satis�able(B�;�) 9=;Conditions: H  B1 ^ ::: ^Bm 2 A;P = H  B1 ^ ::: ^Bm;B 2 L;i 2 f0; :::; mg;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)
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CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 137Argument Rewrite 21 (Informal Shema 11) An updating operation intended tojustify X may be established by removing a lause from � and adding a variant thatallows X to be inferred, generalising the original rule so that the set of ground instanesof the original rule is smaller than the set of ground instanes of the variant rule.updating(justify(X); A;�; P; P 0) ) retrat (generalisation(P ));add (generalisation(P 0))Properties: 8<: unify(X;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�) 9=;Conditions: H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(X;H�0)Argument Rewrite 22 (Informal Shema 10) An updating operation intended torefute X (by rejeting the argument A for it) may be established by removing the lauseused in A to derive X and adding a variant that bloks the derivation of X, speialisingthe original rule so that the set of ground instanes of the original rule is greater thanthe set of ground instanes of the variant rule. Derivation of X an fail for two reasons:either beause X no longer uni�es with the head of the new rule or, if it does, beausethe body is not satis�able.updating(refute(X); A;�; P; P 0) ) retrat(speialisation(P ));add(speialisation(P 0))Properties: 8>><>>: unify(X;H);ground(P 0;�) � ground(P;�);8(Hg  Bg) 2 ground(P�;�) \ ground(P 0;�)::satis�able(Bg;�) 9>>=>>;Conditions: H  B 2 A;P = H  B;� = mgu(X;H);�0 2 subst ;P 0 = (H  B)�0



Argument Rewrite 23 (Informal Shema 8) An updating operation intended to jus-tify X may be established by removing a lause from � and adding a variant that revisesthe original onlusion, so that X an now be inferred.updating(justify(X); A;�; P; P 0) ) retrat(misonlusion(P ));add(misonlusion(P 0))Properties: � unify(X;H 0);satis�able(B�;�) �Conditions: H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(X;H 0)Argument Rewrite 24 (Informal Shema 8) An updating operation intended to re-fute X (by rejeting the argument A for it) may be established by the removing the lauseused in A to derive X and adding a variant that revises the original onlusion, so thatX no longer follows.updating(refute(X); A;�; P; P 0) ) retrat (misonlusion(P ));add(misonlusion(P 0))Properties: � unify(X;H);:unify(X;H 0) �Conditions: H  B 2 A;P = H  B;H 0 2 L;P 0 = H 0  BArgument Rewrite 25 (Informal Shema 9) An updating operation intended to jus-tify X may be established by removing a lause from � and adding the reversed rule sothat X an be inferred.updating(justify(X); A;�; P; P 0) ) retrat (reversion(P ))add (reversion(P 0))Properties: � unify(X;B);satis�able(H�;�) �Conditions: H  B 2 �;P = H  B;� = mgu(X;B);P 0 = B  H138



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 139Argument Rewrite 26 (Informal Shema 9) An updating operation intended to re-fute X (by rejeting the argument A for it) may be established by the removing the lauseused in A to derive X and adding the reversed rule so that X no longer follows.updating(refute(X); A;�; P; P 0) ) retrat (reversion(P ))add(reversion(P 0))Properties: � unify(X;H);:unify(X;B) �Conditions: H  B 2 A;P = H  B;P 0 = B  H7.3.7 Domain-Spei� LevelFigure 7.2 depits the organised olletion of rewrites up to the logi-spei� level, whereprediates give the general shape of the lauses to be added and removed, thus expressingstandard types of revisions in argument. Appendix C gives the possible shemata forargument revision obtained from this lassi�ation.Notie that in pratie not all the onditions in the rewrites an be satis�ed in a straight-forward way, espeially if they involve the seletion of elements from in�nite or unspei-�ed sets. For instane, deiding exatly whih literals or substitutions instantiate ertainshemata is likely to be dependent on the domain, as illustrated in Chapter 5. The nextlevel in the lassi�ation should then be omposed of domain-spei� shemata, fromwhih we an onstrut libraries of possible revisions for generating dynami argumentsautomatially.A worked example in the next hapter illustrates one way in whih this lassi�ationan be used to de�ne possible revision operations in a partiular domain.
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Figure 7.2: Organisation of argument revision shemata obtained via our rewritingsystem. Shemata 2, 3 and 4 are not depited in the diagram beause they have noimmediate e�et on re�ning a revision operation, but are still useful for harnessing thepossible revisions that are allowed.
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Chapter 8Worked Example: De�ningDomain-Spei� Shemata
The system of rewrites in Setion 7.3 not only allows harnessing of argument rewrit-ing,1 but also provides a tehnique for systematially generating attaks in dynamiargumentation systems like the one in Figure 7.1. This hapter desribes how examplesfrom the aatoxin debate in Chapter 5 ould be modelled in this dynami argumentframework.8.1 Two Dynami Argumentation SystemsFigure 7.1 gives the general form of a system for dynami argumentation that explorespossible attaks to a sentene and onverges when no more attaks an be generated.Suh a system onstitutes the essene of the implementations we developed, two ofwhih we demonstrate in this hapter. We have implemented these systems in Pro-log as desribed in Figure 8.1, whih gives the top-level lauses orresponding to thespei�ation in Figure 7.1, here with an extra argument for reording the sequene ofmoves.In summary, the prediate dynami arg/4 generates dynami arguments about a par-tiular sentene given an initial theory, thus produing a revised theory that is moreaeptable with respet to the sentene only if all attaks to it have been dismissed.Here theories are represented as lists of axiom; new axioms are added at the end of the1 See Appendix C and Figure 7.2. 141



%--------------------------------------------------------% dynami arg(X, TInit, T, D) :-% D is a dynami argument about a theory TInit with% respet to a sentene X, that onverges to theory Tdynami arg(X, TInit, T, D) :-initialise(X, TInit, DInit),dynami arg(X, TInit, T, DInit, D).dynami arg(X, TNow, T, DSofar, D) :-gen attak(X, TNow, TNext, DSofar, NewDSofar),dynami arg(X, TNext, T, NewDSofar, D).dynami arg(X, T, T, D, D).Figure 8.1: Prolog spei�ation of a generi dynami argumentation system.list whereas updated premises just replae the original ones. But like in sets, there areno dupliate entries of the same axiom.The extra parameter D is a strutured term omprising both the sequene of argumentsand revisions hA0; �1; A1; :::; �i; Aii advaned so far, as well as the urrent dependenygraph Di. In Prolog terms, D (or DSofar) is represented as follows:d([Ai, Ri,..., A1, R1, A0℄, Di).The �rst parameter has the sequene of arguments in reversed order in an aumulatorstyle, as it used to aumulate information on the way down through the reursion. Theprediate initialise/3 instantiates this term to:d([A0℄, D0)by generating an initial justi�ation A0 for X, and initialising the dependeny tree D0with the orresponding struture of argument laims. Prediate dynami arg/5 thenreursively explores the possible attaks via gen attak/5 until no more attaks an begenerated, and so the �nal instantiation of D ours.The ruial question then is how to de�ne the prediate gen attak/5 appropriately.In what follows we briey desribe two ways for doing that.142



CHAPTER 8. WORKED EXAMPLE 1438.1.1 Generating Attaks InterativelyOne possibility is for gen attak/5 to explore the attak relation by going down thelassi�ation level in Figure 7.2 and querying for appropriate information as it reaheshoie points, namely:� whih rewrite rule to apply at eah level; and� how to instantiate the onditions in the rewrite.In the latter ase, interation happens exatly at stages where an element must beseleted from a set|that is, when 2-onditions need to be satis�ed.One all the neessary information has been supplied, the system performs the orre-sponding revision, generates the new attaking argument and heks the relevant prop-erties that were aumulated down the shemata lassi�ation. Beause in this way itis always possible to ome up with a new attak, the proess only terminates one theuser deides not to attak the last advaned argument.This system is highly exible and interative, and is mostly intended to illustrate theonepts introdued in the previous hapters. Its use is demonstrated in Setion 8.2.8.1.2 Generating Attaks AutomatiallyAnother possibility is to allow the systemati searh of possible sequenes of argumentexhange, in whih ase gen attak/5 onstruts attaks automatially from a pre-de�ned atalogue � of argument revision shemata2 rather than by interatively goingdown the lassi�ation tree of possible revisions. Libraries of revision shemata are om-posed of attened revisions, as desribed in Appendix C. These represent the generalformat of attaks, with the properties aumulated down the orresponding path in thelassi�ation and maybe some domain-spei� information inorporated appropriately.At eah step the laims onstituting the possible points of attak an be alulated fromthe urrent dependeny graph, and the system selets one of these suh that it mathes2 See De�nition 4.7.



some revision shema in � (i.e suh that there is a shema in � that an be used toattak the laim). An argument is then generated, and the orresponding properties ofthe applied shema an guarantee that it supports the intended attak in the ontextof the arguments advaned so far.3 The dynami argument terminates one no moreattaks an be onstruted from the shemata in �.We illustrate the use of this system in Setion 8.3.8.2 The Aatoxin Debate RevisitedTo reonstrut the examples given in Chapter 5 we use the interative argumentationsystem from Setion 8.1.1. For larity of presentation we ast the output of this systeminto an easier-to-read format, representing argument trees and other strutured termsgraphially and using di�erent font types to reprodue the interation between thesystem and the user: for instane, sans serif and italis are used to denote requests forinformation by the system and information supplied by the user, respetively.The following is an argument proess, as generated by the system, about the FDA poliythat restrits aatoxin levels to 20ppb.The initial theory TInit is represented by the following general logi program:min det level(aatoxin ; 20)  trueauses(aatoxin; aner ; animal(X))  truerequired level(Ag; L)  auses(Ag; aner ;X) ^no safe level(Ag) ^min det level(Ag; L)no safe level(Ag)  not safe level(Ag; L)Aording to De�nition 4.7, the �rst argument to be advaned is a justi�ation4 sup-porting the main laim required level(aatoxin ; 20).Argument A0 is a justi�ation for required level(aatoxin ; 20).3 Things that an be heked here inlude whether the argument is onsistent and if it has not beenadvaned before (so as to avoid irularity). Appendix D desribes preisely what it means for anargument to support a laim in the ontext of a dynami argument, onsidering that this argumentmay be based on a revision.4 For larity of presentation, from now on we omit the term true from the representation of argumenttrees (but not from the dependeny graphs). 144



CHAPTER 8. WORKED EXAMPLE 145
required_level(aflatoxin, 20)

no_safe_level(aflatoxin) min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))

not safe_level(aflatoxin, L)The dependenies between laims at this initial stage are represented below, withhighlighted nodes orresponding to possible attak points.D0 : required level(aatoxin; 20) : inauses(aatoxin; aner; animal(X)) : in 33gggggggggggggg no safe level(aatoxin) : inOO min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWnot safe level(aatoxin; L) : inOOsafe level(aatoxin; L) : outOO

true : in
bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}Do you want to attak this argument? (yes/no) yesRevision �1 is determined interatively as follows.Enter rewrite hoie from the following:Rewrite 3: selet an in laim to be attakedRewrite 4: selet an out laim to be attaked Rewrite 4Enter out laim to be attaked safe level(aatoxin ; L) : outEnter rewrite hoie from the following:Rewrite 7: add an argument supporting the sentene Rewrite 7Enter rewrite hoie from the following:Rewrite 8: perform a trivial revision for justifying the senteneRewrite 9: perform an elementary revision for justifying the sentene



Rewrite 11: perform an updating revision for justifying the sentene Rewrite 9Enter rewrite hoie from the following:Rewrite 13: justify the sentene by adding a new fatRewrite 14: justify the sentene by adding a new substantiated ruleRewrite 15: justify the sentene by adding a new burden shift rule Rewrite 13Enter fat for justifying the sentene safe level(aatoxin ; s)In this way,�1 : add(fat(safe level(aatoxin ; s) true))is an attak-based revision that an be used to onstrut an argument for justifyingthat a safe exposure level s does exist for aatoxins, whih is far greater than20ppb. Moreover, the properties aumulated during the instantiation an ensurethat the generated argument in fat supports that safe level(aatoxin ; L) : in.Argument A1 is a justi�ation for safe level(aatoxin ; s).
safe_level(aflatoxin, s)The dependenies between laims at this stage are represented below, again withhighlighted nodes orresponding to possible attak points. Remember that theattak points are only those nodes that ontribute to the urrent status of themain sentene.D1 : required level(aatoxin; 20) : outauses(aatoxin; aner; animal(X)) : in 33gggggggggggggggg no safe level(aatoxin) : outOO min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWWWnot safe level(aatoxin; L) : outOOsafe level(aatoxin; L) : inOO

true : inOO

bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}146



CHAPTER 8. WORKED EXAMPLE 147Do you want to attak this argument? (yes/no) yesRevision �2 an be determined interatively as follows.Enter rewrite hoie from the following:Rewrite 3: selet an in laim to be attakedRewrite 4: selet an out laim to be attaked Rewrite 4Enter out laim to be attaked required level(aatoxin ; 20) : outEnter rewrite hoie from the following:Rewrite 7: add an argument supporting the sentene Rewrite 7Enter rewrite hoie from the following:Rewrite 8: perform a trivial revision for justifying the senteneRewrite 9: perform an elementary revision for justifying the senteneRewrite 11: perform an updating revision for justifying the sentene Rewrite 11Enter rewrite hoie from the following:Rewrite 19: justify the sentene by dismissing an irrelevant preondition from an existing axiomRewrite 21: justify the sentene by generalising an exiting axiomRewrite 23: justify the sentene by hanging the onlusion of an exiting axiomRewrite 25: justify the sentene by reversing an exiting axiom Rewrite 19Enter axiom to be updated via the irrelevane shemarequired level(Ag;L) auses(Ag; aner ; X) ^no safe level(Ag) ^min det level(Ag;L)Enter preondition to be removed no safe level(Ag)In this way,



�2 : retrat (irrelevane0BB� required level(Ag;L) auses(Ag; aner ; X) ^no safe level(Ag) ^min det level(Ag;L) 1CCA)andadd (irrelevane0� required level(Ag;L) auses(Ag; aner ; X) ^min det level(Ag;L) 1A)is an attak-based revision allows argument 5.4 to be derived, reinstating thelaim that the maximum required level for aatoxins should be set to 20ppb (seeInformal Shema 7).Argument A2 is a justi�ation for required level(aatoxin ; 20).
required_level(aflatoxin, 20)

min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))The dependenies between laims at this stage are represented below, again withhighlighted nodes orresponding to possible attak points.D2 : required level(aatoxin; 20) : inauses(aatoxin; aner; animal(X)) : in 33gggggggggggggg min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWtrue : inllXXXXXXXXXXXXXXXXX

33fffffffffffffffDo you want to attak this argument? (yes/no) yesRevision �3 an be determined interatively as follows.Enter rewrite hoie from the following:Rewrite 3: selet an in laim to be attakedRewrite 4: selet an out laim to be attaked Rewrite 3Enter in laim to be attaked required level(aatoxin ; 20) : inEnter rewrite hoie from the following:Rewrite 5: remove the argument supporting the senteneRewrite 6: add an argument supporting a oniting sentene148



CHAPTER 8. WORKED EXAMPLE 149Rewrite 5Enter rewrite hoie from the following:Rewrite 10: perform an elementary revision for refuting the senteneRewrite 12: perform an updating revision for refuting the sentene Rewrite 12Enter rewrite hoie from the following:Rewrite 20: refute the sentene by elaborating the axiom supporting itRewrite 22: refute the sentene by speialising the axiom supporting itRewrite 24: refute the sentene by hanging the onlusion of the axiom supporting itRewrite 26: refute the sentene by reversing the axiom supporting it Rewrite 22Enter substitution that speialises the axiomrequired level(Ag;L) auses(Ag; aner ; X) ^min det level(Ag;L) X = humanIn this way,�2 : retrat (speialisation0� required level(Ag;L) auses(Ag; aner ; X) ^min det level(Ag;L) 1A)andadd (speialisation0� required level(Ag;L) auses(Ag; aner ; human) ^min det level(Ag;L) 1A)is an attak-based revision that refutes argument A2 (see Informal Shema 10).Argument A3 is a refutation of required level(aatoxin ; 20).
required_level(aflatoxin, 20)

min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))The dependenies between laims at this stage are represented below, again withhighlighted nodes orresponding to possible attak points.D3 : required level(aatoxin; 20) : outauses(aatoxin; aner; human) : out 33gggggggggggggg min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWWWtrue : in 33ggggggggggggggggggDo you want to attak this argument? (yes/no) yes



Revision �4 is determined interatively as follows.Enter rewrite hoie from the following:Rewrite 3: selet an in laim to be attakedRewrite 4: selet an out laim to be attaked Rewrite 4Enter out laim to be attaked auses(aatoxin ; aner ; human) : outEnter rewrite hoie from the following:Rewrite 7: add an argument supporting the sentene Rewrite 7Enter rewrite hoie from the following:Rewrite 8: perform a trivial revision for justifying the senteneRewrite 9: perform an elementary revision for justifying the senteneRewrite 11: perform an updating revision for justifying the sentene Rewrite 9Enter rewrite hoie from the following:Rewrite 13: justify the sentene by adding a new fatRewrite 14: justify the sentene by adding a new substantiated ruleRewrite 15: justify the sentene by adding a new burden shift rule Rewrite 14Enter head and body of a substantiated rule for justifying the sentene auses(Ag;P; human)auses(Ag;P; animal(X))In this way,�4 : add(substantiated rule � auses(Ag;P; human) auses(Ag;P; animal(X)) �)is an attak-based revision that an be used to onstrut an argument for justifyingthat aatoxins ause aner in humans (see Informal Shema 2).Argument A4 is a justi�ation for auses(aatoxin ; aner ; human).150



CHAPTER 8. WORKED EXAMPLE 151
causes(aflatoxin, cancer, human)

causes(aflatoxin, cancer, animal(X))The dependenies between laims at this initial stage are represented below, withhighlighted nodes orresponding to possible attak points.D4 : required level(aatoxin; 20) : inauses(aatoxin; aner; human) : in 33gggggggggggggg min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWauses(aatoxin; aner; animal(X)) : inOO true : inllXXXXXXXXXXXXXXXXX

77ooooooooooooooooooooooDo you want to attak this argument? (yes/no) yesRevision �5 an be determined interatively as follows.Enter rewrite hoie from the following:Rewrite 3: selet an in laim to be attakedRewrite 4: selet an out laim to be attaked Rewrite 3Enter in laim to be attaked auses(aatoxin ; aner ; human) : inEnter rewrite hoie from the following:Rewrite 5: remove the argument supporting the senteneRewrite 6: add an argument supporting a oniting sentene Rewrite 5Enter rewrite hoie from the following:Rewrite 10: perform an elementary revision for refuting the senteneRewrite 12: perform an updating revision for refuting the sentene Rewrite 12Enter rewrite hoie from the following:Rewrite 20: refute the sentene by elaborating the axiom supporting it



Rewrite 22: refute the sentene by speialising the axiom supporting itRewrite 24: refute the sentene by hanging the onlusion of the axiom supporting itRewrite 26: refute the sentene by reversing the axiom supporting it Rewrite 20Enter extra literal to be introdued in the axiomauses(Ag;P; human) auses(Ag;P; animal(X)) similar physiology(human; X)Enter position in the axiom body in whih to introdue the literal (0-1) 1In this way,�4 : retrat (elaboration � auses(Ag;P; human) auses(Ag;P; animal(X)) �)andadd (elaboration0� auses(Ag;P; human) auses(Ag;P; animal(X)) ^similar physiology(human; X) 1A)is an attak-based revision that refutes argument A4 (see Informal Shema 12).Argument A5 is a refutation of auses(aatoxin ; aner ; human).
causes(aflatoxin, cancer, human)

causes(aflatoxin, cancer, animal(X))The dependenies between laims at this initial stage are represented below, withhighlighted nodes orresponding to possible attak points.D5 : required level(aatoxin; 20) : outauses(aatoxin; aner; human) : out 33ffffffffffffff min det level(aatoxin; 20) : inkkWWWWWWWWWWWWWWWauses(aatoxin; aner; animal(X)) : inOO similar physiology(human;X) : outkkXXXXXXXXXXXXXX

true : iniiTTTTTTTTTTTTTTTTTTTTTTTT

99ttttttttttttttttttttttttttttDo you want to attak this argument? (yes/no) no152



CHAPTER 8. WORKED EXAMPLE 153With the argument terminating at this stage, the revised theory below is said to beunaeptable with respet to the sentene required level(aatoxin ; 20):min det level(aatoxin ; 20)  trueauses(aatoxin ; aner ; animal(X))  truerequired level(Ag; L)  auses(Ag; aner ; human) ^min det level(Ag;L)no safe level(Ag)  not safe level(Ag;L)safe level(aatoxin ; s)  trueauses(Ag;P; human)  auses(Ag; P; animal(X)) ^similar physiology(human ;X)This example illustrates the sort of arguments we an automate. Although the systemapplied here is highly interative and relies on a great amount of information to beprovided by a user, it an be quite useful in analysing spei� arguments and exploringthe roles of ertain types of revision in a domain. There is sope for making use of therevisions de�ned during this interative proess in order to automatially explore otherpossible ourses of argument.8.3 Searhing for Alternative ArgumentsGiven that a atalogue � of possible attak-based revision shemata has been spei�ed,the system in Setion 8.1.2 an then be used to generate dynami arguments in anautomated form. The question, then, is how to speify �.8.3.1 A Catalogue of Argument Shemata for the Aatoxin ExampleOne way to de�ne suh a atalogue for the aatoxin example is to onsider eah shemain � to be the attened equivalent of an operation determined during the interativeargumentation. For instane, the following representation of �1 ould be inluded in �:Domain-Spei� Revision Shema �1: 1) 2) 4) 7) 9) 13out(safe level(aatoxin ; L); A;�);add(fat(P )); revise(�; fg; fPg;�0);in(safe level(aatoxin ; L); A0;�0)



Properties: 8>><>>: attaks(A0; A);onsistent(�0);supports(A0; safe level(aatoxin ; L) : in;�0);unify(safe level(aatoxin ; L); safe level(aatoxin ; s)) 9>>=>>;Conditions: safe level(aatoxin ; s) 2 L;P = safe level(aatoxin ; s) trueThis shema is obtained diretly from the rewrites used in the interative system, butit ould as well be de�ned manually by a designer of an argumentation system. It isimportant to note that we do not require all the properties to be veri�ed, so designersmight hoose to disregard properties whih they feel are redundant or not relevant. Here,for instane, properties like unify ould be safely dismissed as it is valid independently ofthe atual revision being performed and the new attak being generated. Also, beausewe are not onsidering priorities between arguments, attaks holds by de�nition as thearguments must support ontraditory laims (out and in, respetively). Furthermore,sine our hoie of formal language does not inlude lassial negation there are no risksof logial inonsisteny, so as a designer we an hoose not to verify onsisteny in therevised set of axioms. One ruial property to be tested, though, is that of supports ,beause it guarantees that an attaking argument an in fat be generated and advaned.Hene in this ase the following is an equivalent desription of �1 above.Domain-Spei� Revision Shema �1: 1) 2) 4) 7) 9) 13out(safe level(aatoxin ; L); A;�);add(fat(P )); revise(�; fg; fPg;�0);in(safe level(aatoxin ; L); A0;�0)Properties: � supports(A0; safe level(aatoxin ; L) : in;�0) 	Conditions: safe level(aatoxin ; s) 2 L;P = safe level(aatoxin ; s) trueAnother point to be noted here is that onditions for applying the orresponding logi-spei� rewrites from Setion 7.3.6 still remain. As remarked in the previous setion,interation may happen only in ases where an element must be seleted from a set(2-onditions). Although in domain-spei� shemata suh elements have been deter-154



CHAPTER 8. WORKED EXAMPLE 155mined, onditions are still needed in order instantiate them appropriately throughoutthe shema.Similarly the following is a representation of revision �2.Domain-Spei� Revision Shema �2: 1) 2) 4) 7) 11) 19out(required level(aatoxin ; 20); A;�);retrat (irrelevane(P )); add(irrelevane(P 0)); revise(�; fPg; fP 0g;�0);in(required level(aatoxin ; 20); A0;�0)Properties: 8>><>>: supports (A0; required level(aatoxin; 20) : in;�0);unify(required level(aatoxin ; 20); required level(Ag;L));satis�able(B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm;�):satis�able(no safe level(aatoxin);�) 9>>=>>;Conditions: P = required level(Ag;L) B1 ^ ::: ^Bm 2 �;Bi = no safe level(Ag) 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^ Bi+1 ^ ::: ^ BmNote that a shema that is obtained from the interative system is spei� to the attakperformed in that system, and in this example these are grounded to the ase of therequired level of aatoxin being 20ppb. However, beause the attak is based on a moregeneri statement required level(Ag;L), and beause the propertyunify(required level(aatoxin ; 20); required level(Ag;L)),holds, then shema �2 an be generalised so as to attak any sentene of the formrequired level(Ag;L):Domain-Spei� Revision Shema �2: 1) 2) 4) 7) 11) 19out(required level(Ag;L); A;�);retrat (irrelevane(P )); add(irrelevane(P 0)); revise(�; fPg; fP 0g;�0);in(required level(Ag;L); A0;�0)Properties: 8<: supports (A0; required level(Ag;L) : in;�0);satis�able(B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm;�):satis�able(no safe level(Ag);�) 9=;Conditions: P = required level(Ag;L) B1 ^ ::: ^ Bm 2 �;Bi = no safe level(Ag) 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^ Bi�1 ^Bi+1 ^ ::: ^Bm



Other operations are desribed analogously.Domain-Spei� Revision Shema �3: 1) 2) 3) 5) 12) 22in(required level(Ag;L); A;�);retrat (speialisation(P )); add(speialisation(P 0)); revise(�; fPg; fP 0g;�0);out(required level(Ag;L); A;�0)Properties: � supports (A; required level(Ag;L) : out;�0):satis�able(auses(Ag; aner ; X)�0;�) �Conditions: P = required level(Ag;L) B 2 A;auses(Ag; aner ; X) 2 B;�0 = [X = human ℄;P 0 = (H  B)�0Domain-Spei� Revision Shema �4: 1) 2) 4) 7) 9) 14out(auses(Ag;P; human); A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(auses(Ag;P; human); A0;�0)Properties: � supports (A0; auses(Ag;P; human) : in;�0)satis�able(auses(Ag;P; animal(X));�) �Conditions: auses(Ag;P; human); auses(Ag;P; animal(X)) 2 L;P = auses(Ag;P; human) auses(Ag;P; animal(X))Domain-Spei� Revision Shema �5: 1) 2) 3) 5) 12) 20in(auses(Ag;P; human); A;�);retrat (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g;�0);out(auses(Ag;P; human); A;�0)Properties: 8<: supports(A; auses(Ag;P; human) : out;�0)satis�able(B1 ^ ::: ^ Bm;�);:satis�able(similar physiology(human; X);�) 9=;Conditions: P = auses(Ag;P; human) B 2 A;auses(Ag;P; animal(X)) 2 B;B = similar physiology(human ; X) 2 L;P 0 = auses(Ag;P; human) B ^ BIn this way, � an be de�ned as the following set:� = f�1; �2; �3; �4; �5g.156



CHAPTER 8. WORKED EXAMPLE 1578.3.2 Exploring the Searh Spae of ArgumentsThe system in Setion 8.1.2 an now be used to explore the searh spae of arguments.Moreover, given the seletion of possible revision shemata, we expet the system tobe able to re-generate the dynami argumentation that was onstruted interatively inSetion 8.2: hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5i.This argument in partiular does not sueed in defending the FDA poliy for restritingaatoxin levels to 20ppb. It would be interesting, however, to see whether other oursesof argument|if they exist|yield the same onlusion.The system takes advantage of the fat that ompliated hoie points (suh as selet-ing an element from an unspei�ed or in�nite set) have already been explored by theinterative system and resolved in the shemata in �. The searh spae of possiblearguments an be exhaustively explored by traversing well de�ned sets: at eah step iof the proess the system selets one possible laim to be attaked (from Di) and onemathing argument shema (from �) that gives an attak to this laim. For the sameinitial theory TInit from Setion 8.2, the query:| ?- findall(D, dynami arg(required level(aflatoxin, 20), TInit, T, D), AllD).gives three possible dynami arguments based on �:hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5ihA0; �3; A03; �4; A4; �5; A5ihA0; �3; A03; �4; A4; �1; A1; �2; A2; �5; A5iwhere A03 is the following refutation of A0.
required_level(aflatoxin, 20)

no_safe_level(aflatoxin) min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))

not safe_level(aflatoxin, L)



The resulting theories are di�erent for eah ase,5 and required level(aatoxin ; 20) isnot established in any of them.It seems also that generi trivial revisions6 should always be inluded in the library ofpossible revisions, so inherent onits and alternative justi�ations for a sentene anbe explored automatially. In this example, however, no argument an be generatedbased on trivial revisions, as no onits are expliitly de�ned and no two alternativearguments for any relevant sentene oexist. Every possible attak onsists in eitherbloking a derivation or introduing a new justi�ation.An issue arises here. We have shown that domain-spei� shemata an be obtainedfrom arguments that are onstruted interatively, but these may be over-spei�ed.Take for instane shema �1. Rather than ommitting to a partiular safe level s,we ould leave this as an open parameter to be automatially instantiated during theargumentation. This means we need to re�ne our framework for dynami argumentationin order to inorporate speial mehanisms that provide the neessary information forinstantiation. This is quite an important point, as automating this proess is not onlyruial for understanding dynamis in argument, but it is also useful for (autonomous)agents that want to apply this tehnique to partiular problems.Beause in these ases we may know less about spei� revisions, we need to know moreabout the onsequenes of applying ertain types of revision. The next hapter inludesan investigation of desirable properties that libraries of revisions an have, and howthese an a�et the automati generation of arguments.

5 Considering that theories are implemented as lists, ��1�2�3�4�5 is distint from ��3�4�1�2�5 . Bothare omposed of the same premises, but in a di�erent order (one is a permutation of the other).6 See Setion C.1 in Appendix C. 158



Chapter 9Roles and Properties of ourApproah
So far we have presented the formal basis of our approah to argumentation, showingthat it is pratiable to model and to automate argument dynamis by speifying aatalogue of shemata for generating attaks. We have also presented a lassi�ationthat allows di�erent types of attaks to be explored in a systemati way, and whihtogether with the possibility for automati testing and searh, allows us to understandmore about dynamis in argument.This hapter now onsiders some of the roles and properties of this formalisation, andpossible uses of our lassi�ation both in analysing generated arguments as well as ingenerating new ones. The disussion in the next setions is guided by the followingquestions:� what sorts of properties an we give to our formalisation?� to what extent an examples from existing frameworks an be aptured?� how well an existing approahes deal with the types of dynami argument ex-plored here?� what are the bene�ts and limitations of our approah?
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9.1 Non-monotoni Aspets of Dynami ArgumentationAs disussed in Chapter 3, researh in argumentation in the ontext of non-monotonireasoning is about haraterising preisely the lass of aeptable arguments from a�xed knowledge base, so that \the role of argumentation is to justify the use of ertaindefeasible rules deriving a onlusion in preferene to the use of other defeasible rulesderiving oniting onlusions" (Kowalski and Toni 1996). Setion 9.1.1 investigateshow our model relates to these argumentation frameworks if we �x the set of possibleattak-based revisions to trivial revisions only, and whether representative examples anthen be aptured.Other types of revision, however, speify from a proedural perspetive how to hallengeinformation and introdue new arguments. This brings other non-monotoni issues intoplay that are related to the atual transformation of theories via attaks. We disussthese in Setion 9.1.2.9.1.1 Determining Aeptability in Fixed TheoriesWork in argument-based semantis onentrates primarily on de�ning in a delarativeway (for instane by a �xpoint operator, or in terms of multiple extensions) when argu-ments and sentenes are justi�ed given ertain relations of onit and defeat. Some-times proof theories are also developed, whih are onerned with establishing|oftenin a dialetial style|the status of individual arguments aording to the underlyingstatus haraterisation.Reall from Chapter 3 that there are in general three lasses of arguments, namelyjusti�ed, defensible and overruled. Exatly how these are de�ned varies between thedi�erent types of argument-based semantis proposed so far, but the general intuitionis often the same: justi�ed arguments are those aeptable from a septial perspetive,whereas defensible arguments are those aeptable for a redulous reasoner; overruledarguments are defeated by a justi�ed one, and hene not aeptable.The model proposed here, however, is more a onstrutive theory of how argument pro-esses are generated than a way of haraterising sets of aeptable arguments aording160



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 161to their relation to all other arguments. Nonetheless the two approahes are expeted tobe related, mainly for the following reasons. First, there is an element of aeptabilityalso in our formalisation|aording to De�nition 4.7 a sentene is aeptable if it ispossible to generate a dynami argument about it in whih all attaks generated froma atalogue � of argument shemata are appropriately dismissed. Seond, if � is �xedto ontain only trivial revisions then it an generate and explore every possible attakfrom a �xed knowledge base by means of the underlying provability relation. Therebydynami argumentation an be seen as a proof-theoretial mehanism for determiningwhether an argument is defensible; i.e. aeptable from a redulous perspetive.To make omparison easier, our model ould be desribed in terms of the arhiteturefor argumentation frameworks proposed by Dung (1995) and disussed in Chapter 3.The Argument Generation Unit (AGU) generates arguments and spei�es the at-tak relationships between them.Here the AGU is omposed of the underlying provability relation `, and the library ofpossible attak-based revisions � restrited to trivial operations:1� = ftrivial(X : in; X : in); trivial(X : out; X : in)g.Note that by de�nition, if A and A0 are both arguments in a theory �, and A0 attaks A,then A0 an be generated via a trivial revision.The Argument Proessing Unit (APU) orresponds to the proof theory for deter-mining whether a sentene or an argument is aeptable.Here the APU orresponds to the dynami argumentation mehanism whih instantiatespossible shemata in � and veri�es the orresponding properties. A sentene ' is said tobe aeptable if hA0; �1; A1; :::; �N ; AN i is a dynami argument with respet to the (�xed)underlying theory � suh that all attaks to ' have been dismissed (i.e. ' : in 2 DN ) .The following example illustrates this notion.1 Setion C.1 gives the general desription of trivial operations, represented here by expressions pa-rameterised by the relevant type of attak.



Example 9.1 Let � be the following theory in a Horn lause resolution-based system:2pai�st(X)  quaker(X)no pai�st(X)  republian(X)quaker (nixon)  truerepublian(nixon)  truesuh that pai�st(X) and no pai�st(X) are oniting sentenes in the language. Also,let Ap and Anp be the arguments supporting pai�st(nixon) and no pai�st(nixon), re-spetively.In this ase, the query:| ?- findall(D, dynami arg(paifist(nixon), TInit, T, D), AllD).gives only one possible ourse of argument (with T = TInit):� Ap; trivial (pai�st(nixon) : in; no pai�st(nixon) : in); Anp;trivial (no pai�st(nixon) : in; pai�st(nixon) : in); Ap �.Note that Ap was allowed to be advaned again as it had not yet been used to attak Anp.This aptures the behaviour harateristi of a redulous reasoner: if arguments A andB attak eah other with equal strength, and B is used to attak A during argumentation,then A an be used to attak, and onsequently dismiss, B.3Analogously, the query:| ?- findall(D, dynami arg(no paifist(nixon), TInit, T, D), AllD).gives also one possible argument, in whih Anp is also established as defensible. 2Very often suh APUs are de�ned in a dialetial style, as argument games between aproponent and an opponent:2 This example is drawn from (Prakken and Vreeswijk 1999), a omprehensive study on the relationbetween non-monotoni reasoning and argumentation. Their general disussion, though, abstratsfrom the internal struture of arguments, assuming both arguments and attaks to be primitiveonepts. Thus in order to experiment with their examples we have reonstruted them in a logiprogramming, resolution-based style.3 Appendix D gives the restritions for advaning an attak by means of the property supports .162



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 163The proponent starts with an argument to be tested, and eah of the following moveonsists of an argument that attaks the last move of the other party with a ertainminimum fore. The initial argument provably has a ertain status if the proponenthas a winning strategy, i.e., if he an make the opponent run out of moves whatevermoves the opponent makes. The exat rules of the game depend on the semantisit is meant to apture. (Prakken and Vreeswijk 1999, p. 82)In fat, Jakobovits (2000) has identi�ed some of the issues that give the �ne tuning forthe game rules so that it aptures the intended semantis. These inlude:4� Can players repeat arguments?� Must the player reat immediately?� May players ontradit themselves?� Can players use arguments whih have already been attaked by the opponent?� Can a player use arguments whih have already been used by the opponent?The following for instane is a spei�ation of a proof-theoretial dispute that apturesseptial reasoning, in whih only justi�ed arguments (rather than defensible ones) areonsidered to be aeptable:5De�nition 9.1 (Proof-theoretial Dispute) A (proof-theoretial) dispute on an ar-gument A is a non-empty sequene of moves of the form movei = (Player i; Ai) withA0 = A suh that:� Player i = PROPONENT if and only if i is even; otherwise Player i = OPPONENT.� If Player i = Player j = PROPONENT, i 6= j, then Ai 6= Aj.� If Player i = PROPONENT, i � 0, then Ai stritly attaks Ai�1. (That is, Aiattaks Ai�1 but Ai�1 does not attak Ai.)� If Player i = OPPONENT, then Ai attaks Ai�1.4 Later in Chapter 12 we onsider some issues on how this view relates to the sorts of protools,languages and game theory in multi-agent negotiation.5 Adapted from (Prakken and Vreeswijk 1999, p. 82).



The di�erent burdens of proof for the PROPONENT and the OPPONENT guarantee thatif the PROPONENT wins the dispute, then A is justi�ed. 2Clearly dynami arguments an also be seen as an argument game|both representproesses of argument exhange, the main di�erene being that attaks in our formalismare generated from a library of argument shemata. Remember that in a dynamiargument eah step is intended to alternately hange the aeptability status of thesentene under dispute, either from out to in or from in to out; in this way, the �rstan be seen as moves advaned by a PROPONENT, and the latter by an OPPONENT.The PROPONENT is also the �rst player to move by advaning a justi�ation for thesentene. Finally, two atalogues of argument shemata ould be onsidered, one to beused by the PROPONENT and another by the OPPONENT, but for the type of redulousreasoning illustrated in Example 9.1 these an be assumed to be idential.Beause our mehanism is essentially redulous, in order to apture the sort of septialreasoning in De�nition 9.1 we need to aount for some of the onditions that determinethe exat rules of that game. It turns out that the sorts of of features addressed in(Jakobovits 2000) an be easily inorporated into our original mehanism by meansof the properties that are tested in onnetion with eah attak-based shema. Forinstane, a sentene is said to be aeptable from a septial perspetive (justi�ed) ifwe an generate a dynami argument hA0; �1; A1; :::; �N ; AN i suh that:� �i 2 �PROPONENT if i is even, where �PROPONENT is obtained from � aboveas follows: �rst, re�ne the property supports so that it disallows any repetitionof arguments whatsoever; then, introdue the extra property :attaks(A0; A) toeah shema in �PROPONENT, thus foring the attak to be strit;� �i 2 �OPPONENT if i is odd, where �OPPONENT is equivalent to � above.Example 9.2 Consider again the theory in Example 9.1, together with the mehanismabove for generating septial dynami arguments. Now the query:| ?- findall(D, dynami arg(paifist(nixon), TInit, T, D), AllD).164



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 165gives only the argumentation below, and therefore the argument for pai�st(nixon) isnot septially aeptable.
 Ap; trivial (pai�st(nixon) : in; no pai�st(nixon) : in); Anp �. 2This onnetion with proof theories is not surprising, as our formalisation takes anessentially proedural view on argumentation. Existing proof-theoretial models of ar-gumentation an be expressed as dynami argumentation mehanisms by restriting thetypes of revision to trivial ones and by adapting the orresponding properties so that itgives the same behaviour. Nevertheless \it turns out that all semantis have some prob-lems", and yet muh work remains to be done in providing orretness and ompletenessresults for the proof-theories proposed so far (Prakken and Vreeswijk 1999).Some other issues have been raised by Jakobovits (2000) whih are less onerned withargument-based semantis than with real disputes, and therefore loser to our interests.These are:� How should attak between arguments be de�ned?� Is the set of possible arguments known before the dialogue takes plae, or is itgenerated dynamially?These questions have been addressed extensively throughout this thesis, but we nowfous a bit more on the latter, espeially on the onsequenes of atually hanging theset of possible arguments dynamially.9.1.2 Non-monotoniity in Argument-based Theory RevisionAording to Prakken (2000, p. 2) the di�erene between proof-theoretial disputes inthe ontext of argument-based semantis and real disputes is that:[...℄ while in proof-theoretial disputes all arguments are onstruted from a givenbody of information, in disputes between real agents this body of information is



usually onstruted dynamially, during the dispute, sine the partiipants an atany time supply new or withdraw old information.Non-monotoniity in this ase is not only about some arguments being preferred overothers, but rather about the atual addition and retration of information. Assumingthat the underlying provability relation is monotoni,6 this setion looks at how ertaintypes of attak an a�et the interpretation set of the orresponding theory.The reason why suh a haraterisation is important is beause argument dynamis analso be viewed as a proess of theory manipulation intended to generate more aeptabletheories. Central to this view is the notion of interpretation.7 When designing argumentsystems (and libraries of revision shemata), or analysing an argument produed by suhsystems, it should be possible to desribe how attak-based transformations a�et theorresponding interpretation set.One way of expressing suh relations is by onsidering the harateristis of ertain typesof shema in order to make preditions about the behaviour of the interpretation set.This gives a high level desription of key relations between transformation steps withoutsaying exatly how the arguments are going to be (or were) derived. A neat orrespon-dene would for instane say that adding an argument auses the interpretation set toexpand, while removing an argument onstrains it. Unfortunately this is not always thease, as adding an argument sometimes means bloking others, and vie-versa.The question now is whether the attak relation �(�;�0) an be expressed via setinequality relations between interpretation sets �(�) and �(�0) (assuming the underlyinglogi to be monotoni). In what follows the lassi�ation in Figure 7.2 is used for guidingthis analysis by onsidering the possibilities for an unonstrained attak-based revision6 Although the extended resolution method for treating negation as failure in general logi programsis learly non-monotoni, it is possible to onsider these from an abdutive perspetive that onsistsin adding non-provability assumptions as fats to the theory and treating these monotonially. Formore details, refer to setion on the Abstrat Argumentation Framework in Chapter 3, and later inSetion 9.5.7 At this point the relation with the �elds of transformation (Pettorossi and Proietti 1998) and synthesis(Deville and Lau 1994) of logi programs beomes more apparent. Transformation of logi programsis onerned with preserving the semanti value of a spei�ation as we derive orret and eÆientprograms from it, so at eah transformation step the interpretation set must remain the same. Onthe other hand, some reent approahes to strutural synthesis have onsidered inequalities betweensets of onsequenes as the basis for re�nement of spei�ations (Robertson 1999b).166



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 167� �; �0. Between parentheses we refer to the setions in Appendix C that de�ne theorresponding shemata.Adding an ArgumentTrivial Revision (Setion C.1)� trivial; �0 ! �(�) = �(�0)By de�nition, trivial revisions involve no hanges to the theory, so � = �0.Elementary Revisions (Setion C.2)� elementary; �0 ! �(�) � �(�0)This follows from the monotoniity of the system and the fat that elementary revisionsfor adding an argument onsist in adding axioms only|i.e. � � �0. In fat:Adding a Fat (Setion C.2.1)� fat; �0 ! � � �0Adding a Substantiated Rule (Setion C.2.2)� substantiated rule; �0 ! � � �0Adding a Burden Shift Rule (Setion C.2.3)� burden shift rule; �0 ! � � �0Remember that negation as failure an be represented by extra non-provability as-sumptions in the language.Updating Revisions (Setion C.3)� updating; �0 6! �(�) � �(�0)In this ase it is harder to predit how the interpretation set behaves in general, beause� 6� �0. However, looking at the properties assoiated to eah logi-spei� shema inthis ategory an provide more information about the hanges.Removing Irrelevane in a Rule (Setion C.3.1)� irrelevane; �0 ! �(�) � �(�0)



This follows from the properties assoiated to the irrelevane shema: the axiomfrom � that is updated in �0 is suh that all onlusions derived from it are stillderived, and others are now allowed, namely those dependent on the satis�ability ofthe removed literal.Generalising a Rule (Setion C.3.2)� generalisation; �0 ! �(�) � �(�0)Again this follows from the properties assoiated to the shema: the axiom in �0that is updated from � is obtained via the appliation of an inverse substitution(from terms to variables), so everything that was derived before an still be inferred.Revising the Consequent of a Rule (Setion C.3.3)� misonlusion; �0 6! �(�) � �(�0)Revising the onsequent of a rule may introdue new elements into �(�0) but mayalso blok others from being derived. In this ase, no generi relation between theinterpretations sets an be identi�ed.Reversing a Rule (Setion C.3.4)� reversion; �0 6! �(�) � �(�0)As above, no set inequality relation between the two interpretation sets an be saidto hold in the general ase.Removing an ArgumentElementary Revisions (Setion C.4)� elementary; �0 ! �(�) � �(�0)This follows from the monotoniity of the system and the fat that elementary revisionsfor removing an argument onsist in retrating axioms only|i.e. � � �0. In fat:Retrating an Invalid Rule (Setion C.4.1)� invalid rule; �0 ! � � �0Retrating a Weak Rule (Setion C.4.2)� weak rule; �0 ! � � �0 168



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 169Retrating a Misrelation (Setion C.4.3)� misrelation; �0 ! � � �0Updating Revisions (Setion C.5)� updating; �0 6! �(�) � �(�0)Again it is harder to predit how the interpretation set behaves in general, beause � 6� �0.Analogously as in the updating ases above, the properties assoiated to eah logi-spei�shema in this ategory an give more information about the hanges.Elaborating Preonditions in a Rule (Setion C.5.1)� elaboration; �0 ! �(�) � �(�0)The properties assoiated to the elaboration shema guarantee that some onlu-sions that were allowed in � will be bloked in �0, namely those dependent on thesatis�ability of the new literal whih is required to be unsatis�able in the theory.Speialising a Rule (Setion C.5.2)� speialisation; �0 ! �(�) � �(�0)Again this follows from the properties assoiated to the speialisation shema: theaxiom in �0 that is updated from � is obtained via the appliation of a substitution(from variables to terms), thus some of its original onlusions may no longer beinferred.Revising the Consequent of a Rule (Setion C.5.3)� misonlusion; �0 6! �(�) � �(�0)Revising the onsequent of a rule may blok some elements from �(�) but may alsointrodue new ones, so no generi relation between the interpretations sets an beidenti�ed.Reversing a Rule (Setion C.5.4)� reversion; �0 6! �(�) � �(�0)For the same reasons, no relations between the two interpretation sets an be guar-anteed to hold in the general ase.Designers of argument systems may hoose types of shema that onform to ertainharateristis so as to predit an overall behaviour of the transformation proess. For



instane if every shema � in a atalogue � is suh that �(�) � �(��), then the inter-pretation set of a theory is guaranteed to either expand or at least remain unhangedthroughout any dynami argument. On the other hand, if � also ontains ertain oper-ations suh that �(�) � �(��), then nothing an be said about the global developmentof the argument, as transitivity annot be applied in this ase.Desribing possible revisions in terms of interpretation sets an provide yet more in-formation for inuening and guiding the design of domain spei� shemata from thelassi�ation in Figure 7.2. A question arises at this point, and is onsidered later inSetion 9.3, of whether this lassi�ation is omplete is some sense. Also related tothis, Setion 9.4 disusses the role of this lassi�ation in retrospetive analysis andexplanation of arguments.9.2 TerminationAt this stage termination an be redued to the existene of �nite relevant argumentsin the theory. A revision an only be applied one to generate the same attak, andassuming that the number of possible revisions in the atalogue is �nite, the question iswhether an in�nite number of attaks satisfying the requirements of a ertain shemaan be generated. Problems an arise for in�nite hains of argumentation, but these area problem for dialetial models of argumentation frameworks as well, as they may beaptured by �xpoint approahes but not by exhaustively onsidering every argument inthe theory (Prakken and Vreeswijk 1999).9.3 Is Our Classi�ation Complete?Chapter 7 proposed a way to parameterise the attak generation step by onstrainingthe types of revision operation in a asade of levels whih eventually gets to be domainspei�. We do not laim that this is the only way to haraterise the possible revisionsto argument, nor that the entire olletion in Figure 7.2 is omplete. We do argue,though, that this lassi�ation is omplete up to a level, namely the level of instantiationdesribed in Setion 7.3.5. 170



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 171In fat, the level of instantiation desribed in Setion 7.3.4 and depited in Figure 9.1below is omplete by de�nition, beause it is based on the haraterisation of attaksgiven in Chapter 6. Any attak onsists in either introduing a (not neessarily new)argument, or retrating an existing one. � �; �0� add argument; �0 � remove argument; �06,7 5
Figure 9.1: General types of revision.Setion 7.3.5 gives the general struture of the revisions for adding and removing anargument, as depited in Figure 9.2. Beause only fundamental types of revision areonsidered, ompleteness an only be established with respet to these.� add argument; �0 � remove argument; �08� trivial; �0 � elementary; �0 129 11 � updating; �0� updating; �0 10� elementary; �0Figure 9.2: From dealing with arguments to dealing with premises.Arguing that this level is omplete is equivalent to saying that the following are theonly possible ombinations for adding or removing an argument:� adding an argument via a trivial revision;� adding an argument via an elementary revision (adding a new premise);� adding an argument via an updating revision (updating an existing premise);� removing an argument via an elementary revision (removing a premise);� removing an argument via an updating revision (updating an existing premise);whih in its turn is equivalent to saying the remaining ombinations below annot beused to desribe an attak:



� removing an argument via a trivial revision;� adding an argument via an elementary revision (removing a premise);� removing an argument via an elementary revision (adding a new premise).Let us then onsider eah possibility as follows:Removing an argument via a trivial revision.This is learly not possible, as removing an argument means refuting it, and that mustinvolve some revision to the theory.Removing an argument via an elementary revision (adding a premise).The most straightforward example in this ase involves the extended resolution mehanismfor negation as failure, in whih adding a premise an blok onlusions based on ertainnon-provability assumptions.For instane, the fat q(a) true an be added to the theory below is order to refute theargument for p(a) that is based on the non-provability of q(a).p(X)  not q(X)q(b)  trueInstead, this ould be interpreted as adding an argument for q(a) rather than as removingthe argument for p(a), and hene ould be obtained from rewrite 9.Adding an argument via an elementary revision (removing a premise).Analogously, this ase an also be redued to that of removing an argument by removinga premise, and thus obtained from rewrite 10.Hene this level of instantiation is omplete for fundamental types of operations. Fromthe level of logi-spei� shemata8 downwards ompleteness results an no longer beguaranteed, beause it is always possible to give more or less detailed desriptions ofthe strutural revisions that are allowed.For instane elementary revisions for adding a premise are quite unspei�, the mainrestrition onerning the head of the lause to be added whih has to unify with the8 See Setion 7.3.6. 172



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 173sentene in question. Some updating revisions on the other hand are more spei� asthey depend on an existing axiom and on a well-de�ned way of transforming this axiom(e.g. speialisation or generalisation). Also, our experiene in modelling arguments hasshown that the types of shema for reversing a rule or revising its onsequent are not asfrequent as other updating shemata. We have even onsidered not inluding these inthe olletion given in Chapter 7, but �nally deided on keeping them to illustrate thepossibility of introduing and preserving diverse forms of revision.9.4 Communiating Dynami ArgumentsThis hierarhial lassi�ation not only promotes a methodial design of argumentshemata in whih domain-spei� instanes may be gradually devised, but also supportsanalysis, explanation and presentation of produed arguments. Given that prede�nedshemata may be reognised by the orresponding path in the hierarhy, two sorts ofinformation may be ombined in ommuniating eah step in the argument: the vari-ous levels of instantiation for the revision operator, and the possible relations betweeninterpretation sets.We now revisit parts of the example in Chapter 8 to exemplify alternative modes ofargument ommuniation. In partiular, we onsider the dynami argument below:hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5i.A plain form of presentation whih onsists in laying out the whole argument in all itsdetails, with argument trees and instantiated argument shemata, may be denoted asfollows: A0 �1; A1 �2; A2 �3; A3 �4; A4 �5; A5.Sometimes, though, a higher level presentation may be more appropriate, and the follow-ing setions illustrate how the information assoiated to eah shema may be employedfor that purpose.



9.4.1 Di�erent Levels of InstantiationThis setion explores alternative presentations of an argument based on the variouslevels of instantiation given by the hierarhy in Figure 7.2. Also, assume that at everylevel the desription is parameterised by the type of attak it promotes, so it is possibleto say whih laim is supported at eah step.Expressing General Types of RevisionAt this level of desription|given in Setion 7.3.4|the argument proess, whih startswith a justi�ation for required level(aatoxin ; 20), unfolds as follows:A0 add argument; A1 add argument; A2 remove argument; A3 add argument; A4 removeargument; A5The �rst moveonsists in adding an argument for safe level (aatoxin ; s).The seond moveonsists in adding an argument for required level(aatoxin ; 20).The third moveonsists in removing the argument for required level(aatoxin ; 20).The fourth moveonsists in adding an argument for auses(aatoxin ; aner ; human).The �nal moveonsists in removing the argument for auses(aatoxin ; aner ; human).Expressing Fundamental Types of RevisionAt this level of desription|given in Setion 7.3.5|the argument proess, whih startswith a justi�ation for required level(aatoxin ; 20), unfolds as follows:A0 elementary; A1 updating; A2 updating; A3 elementary; A4 updating; A5The �rst moveperforms an elementary revision for justifying safe level (aatoxin ; s).The seond moveperforms an updating revision for justifying required level (aatoxin ; 20).174



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 175The third moveperforms an updating revision for refuting required level(aatoxin ; 20).The fourth moveperforms an elementary revision for justifying auses(aatoxin ; aner ; human).The �nal moveperforms an updating revision for refuting auses(aatoxin ; aner ; human).Expressing Logi-Spei� Types of RevisionsAt this level of desription|given in Setion 7.3.6|the argument proess, whih startswith a justi�ation for required level(aatoxin ; 20), unfolds as follows:A0 fat; A1 irrelevane; A2 speialisation; A3 substantiated rule; A4 elaboration; A5The �rst moveonsists in adding a fat to justify safe level(aatoxin ; s).The seond moveonsists in removing irrelevane in a rule to justify required level (aatoxin ; 20).The third moveonsists in speialising a rule to refute required level (aatoxin ; 20)The fourth moveonsists in adding a substantiated rule to justify auses(aatoxin ; aner ; human).The �nal moveonsists in elaborating a rule to refute auses(aatoxin ; aner ; human).Finally eah step in the argument may be ommuniated in its integral form as originallyillustrated in Chapter 8.9.4.2 Relations between TheoriesDynami arguments may also be presented at a yet higher level of desription for ex-pressing set relations between theories, without knowing diretly how eah onseutivetheory interats nor how and what arguments triggered the transformation. Aording



to the properties disussed in Setion 9.1.2,9 the proess of theory transformation basedon the aatoxin example gives the following relations between eah transformation step:�(�) � �(��1) � �(��1�2) � �(��1�2�3) � �(��1�2�3�4) � �(��1�2�3�4�5)Notie that nothing an be guaranteed about the relation between the initial and �naltheory in this ase, beause di�erent kinds of transformation (expanding and onstrain-ing) have been involved.9.5 The Abstrat Argumentation Framework: LimitationsWhile Setion 9.1.1 elaborated on how dynami argumentation relates to formalisms fordefeasible argumentation, this setion looks at types of arguments that annot be en-tirely aptured by these. In partiular, it takes the Abstrat Argumentation Frameworkas a representative formalism and applies it to the example of argument from the safetyengineering domain in Chapter 2, identifying questions whih the existing framework donot answer but whih are needed to represent a larger lass of dynami arguments. Thisbrings in some of the issues to be addressed in the next part of this thesis in onnetionto the automation of suh examples.The reason why the Abstrat Argumentation Framework is used here is beause itis exible and generi, subsuming other approahes to defeasible argumentation (seeChapter 3). Also, it inorporates some elements of revision, suh as treating assumptionsas extra fats in the theory (and whih an be attaked by proving their ontrary),and extending axioms to inlude other non-provability assumptions. But although in(Kowalski and Toni 1996) it is laimed that the Abstrat Argumentation Framework\seems to orrespond well with informal argumentation", there are some informal anduseful arguments that annot be represented within it.9 Assume that this example is now modelled as a de�nite logi program where negated atoms aretreated as positive assumptions extending the language, and whih are onsidered to be true butan be attaked by their ontrary as de�ned by an asymmetri onit relation. This guaran-tees the monotoniity of the underlying language, and hene the use of properties disussed inSetion 9.1.2. Notie that this only a�ets revision �1, whih now de�nes an attak of the formannot be shown(safe level(aatoxin ; L)) : in; safe level(aatoxin ; L) : in rather than the originalsafe level(aatoxin ; L) : out; safe level(aatoxin ; L) : in.176



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 177One suh example is the safety argument about the pressure tank ontrol system inSetion 2.1.1. Argumentation was used as a way of revising the system model in orderto inrease its aeptability with respet to known faults, based on a tehnique knownas fault tree analysis. Fault tree analysis is essentially a method that \starts with anevent diretly related to an identi�ed hazard, the `top event', and works bakwards todetermine its ause" (Storey 1996, p.43). Taking the top event to be the rupture of thetank, the safety argument in Setion 2.1.1 followed by onsidering the possible auses (orminimal ut sets of events) leading to this event and adapting the model where neessaryso as to make the system aeptably tolerant to these. For instane, one possible auseleading to the rupture of the tank is the primary failure of the relay k2 (see Figure 2.2),and the orresponding ourse of dynami argument ould be represented as follows:h A0 : The system is operational at all times�1 : introdue primary failure of k2A1 If relay k2 fails to open when it should, thesystem is no longer operational at all times�2 : add a redundant relay to the modelA2 If we add an extra relay in parallel,then the system is still operational iTo represent this argument in terms of an Abstrat Argumentation Framework we �rstselet a supporting dedutive system, for instane the Horn lause resolution-basedsystem of (Kowalski and Toni 1996). Let A be the set of assumptions of the formannot be shown('), where ' is a sentene in the underlying language. Assuming thatwe know how to extend the rules appropriately, the following is a (simpli�ed) model �for the pressure tank system in Figure 2.2.operational tank(T )  on motor(T ) ^ not full(T )operational tank(T )  o� motor(T ) ^ pressurised(T )not operational tank(T )  on motor(T ) ^ pressurised(T )on motor(T )  losed(relay(k2 ); T )o� motor(T )  open(relay(k2 ); T )losed (relay(K); T )  energised(relay(K); T ) ^annot be shown(open(relay(K); T )open(relay(K); T )  deenergised(relay(K); T ) ^annot be shown(losed (relay(K); T )Briey, the tank is operational at a time point T if the motor is pumping water into



it when it is not full, or when the tank is pressurised but the motor is o�. Otherwise,the tank is not operational if the motor is still on when the tank is pressurised. Notiethat operational tank(T ) and not operational tank(T ) are oniting sentenes in thelanguage.In partiular, assume that at a given time t the relay k2 is de-energised and the tank ispressurised: pressurised(t)  truedeenergised (relay(k2 ); t)  trueAlso, as desribed in Setion 2.1 it is possible for the ontats of relay k2 to fail toopen when the oil is de-energised, ausing the rupture of the tank. This fault may berepresented by following axiom:losed(relay(K); T )  deenergised (relay(k2 ); T )So let � denote the set of lauses above, and let:� = fannot be shown(losed (relay(k2 ); t)gAn argument supporting that the tank is operational at time t an be obtained if theassumption � is added to �: � [� ` operational tank(t): (9.1)Besides, the following argument for not operational tank (t) an also be derived:� ` not operational tank(t): (9.2)Beause the underlying system is monotoni, the addition of lauses only allows morepossible onlusions to be derived. In this way 9.1 and 9.2 are two oniting arguments,but 9.1 annot defend itself against 9.2. On the basis of aeptable arguments (oradmissible assumptions), this framework disriminates between faulty and non-faultybehaviours and allows only the inferene of not operational tank (t).This is an important point beause it shows that the Abstrat Argumentation Frame-work an formalise part of the safety argument about the pressure tank system. In178



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 179this partiular ase where a fault is present, it does not allow a safe onlusion to beerroneously derived.Yet this is a matter of safety, so it is essential that we an adapt the model to exhibit onlysafe behaviours. The revisions allowed in this framework, though, are only about addingextra non-provability assumptions. This makes it possible to defend operational tankfrom attaks by �rst assuming that things annot go wrong, and then prioritising thesearguments over the arguments for not operational tank . But these solutions do notrepresent any enhanement of system safety beause they do not hange the strutureof the system. Arguments suh as \if an extra relay is added in parallel this attak willno longer be relevant enough to be a onern"|whih are ommon when modelling sys-tems in safety-ritial domains|annot be expressed by means of extra non-provabilityassumptions.10This is another important point: the Abstrat Argumentation Framework does say alot about what an argument is within a olletion of logi programming lauses, but itdoes not presribe strategies for revising these lauses. Yet this is the most essentialtask in dynami argumentation. Although the Abstrat Argumentation Framework ise�etive in expressing the defeasibility in argument, it does not aount for many ofthe features whih are responsible for argument dynamis, as suh as how attaks anmap onto hanges to the argument. In terms of argument shemata, for instane, oneould de�ne a revision shema that adds redundany to the system by elaborating onthe axioms that depend on the behaviour of k2 .In summary, we took a novel view of spei�ations as arguments (e.g. the desriptionof the pressure tank model as an argument) and observed that in safety domains faulttrees are used to ritiise spei�ations. The Abstrat Argumentation Framework alonedoes not enable us to repliate automatially the reasoning that is done based on faulttree analysis. What we found though is that it is in fat representationally adequatebut not enough distintions were made to atually represent that reasoning.In the next part we give a more detailed arhiteture for adversarial argument that allowsfor external soures of information (suh as the fault tree model) to generate instanes10 It ould be argued that one ould just augment the set of lauses in some way, but the AbstratArgumentation Framework itself does not aount for any methodology supporting suh a task.



of attaks from a atalogue of possible revision shemata. This arhiteture inludes themehanisms neessary to give dynamis to arguments, aounting for important aspetssuh as:� where attaks ome from;� how these lead to ounter-attaks;� how the soure of these attaks maps onto hanges to the argument; and� how to determine the omparative strength of ritiism.
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Part IIIInstantiating Appliations
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Chapter 10A General Arhiteture forDynami Argumentation Systems
Having explored the mehanisms for argument dynamis in Part II, the aim of thispart is to de�ne the di�erent notions involved in dynami argumentation separately,thus providing a learer piture of how arguments an be generated and evaluated, andalso allowing for a larger lass of arguments to be formally represented by onsideringpossible external soures of ritiism and attak.The arhiteture presented here was �rst proposed in (Carbogim et al. 1999) as anextension of the Abstrat Argumentation Framework in (Kowalski and Toni 1996; Bon-darenko et al. 1997) and of the Argumentation Framework in (Dung 1995), in the sensethat these formalisms were used as a starting point in developing a more detailed frame-work for implementing adversarial argument. This hapter gives a general de�nition ofthe three types of omponents forming the basis of this proposal, namely a theory, aritiism theory and a ontrol module.The rest of this part suggests ways of instantiating this arhiteture so as to obtain,in a systemati way, relevant domain-spei� appliations of dynami argumentationsystems. At this point we return to the senarios introdued in Chapter 2 to desribepossible argumentation systems to solve those problems. We �rst illustrate the useof this arhiteture in a safety-engineering domain (Chapter 11), before desribing anappliation in the ontext of multi-agent negotiation (Chapter 12).
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10.1 The TheoryAs disussed in Chapter 4, argument dynamis is de�ned around the notion of a theory,so it only makes sense to keep it at the entre of the arhiteture. Theories representthe objets about whih we argue.De�nition 10.1 (Theory) Let (L;`) be a logial system, and FL be the set of axiomsin L. A theory � is any onsistent subset of FL.1 2Notie that this is where arguments and attaks are generated (via possible argument-based shemata), and so far the types of shemata used in Part II depended only onthe theory itself. But remember from the disussion in Setion 8.3.2 that domain-spei� shemata may sometimes be over-spei�ed, so it is interesting to leave ertainopen parameters to be automatially instantiated during the argumentation, allowingfor points of attak to be provided by an external soure. This, though, requires anadditional theory.10.2 The Critiism TheoryThe intuition behind a ritiism theory is to provide potential points of attak to argu-ments within the arhiteture itself. These an guide the generation of attaks in thetheory �, but are de�ned separately from it by means of an additional theory �rit .De�nition 10.2 (Critiism Theory) Let (Lrit ;`rit) be a logial system, and FLritthe set of axioms in Lrit . A ritiism theory �rit is any onsistent subset of FLrit . 2The notion of argument an be de�ned analogously to De�nition 4.3 by means of `rit ,but no notion of attak is spei�ed within the ritiism theory itself. Arguments from�rit are mapped onto the theory in order to instantiate ertain attaks in �.Note that the ritiism theory is not a mere partition of the theory itself, beause it mayinvolve di�erent inferene mehanisms. In fat, the provability relations from theoryand ritiism theory might be di�erent (e.g. ` an be dedutive and `rit abdutive,1 This de�nition orresponds to De�nition 4.2 in Chapter 4.184



CHAPTER 10. A GENERAL ARCHITECTURE 185as illustrated in the next hapter), and this is one reason for de�ning them separately.This dissoiation, however, is not always lear beause the theories might lash whenthe underlying languages are equivalent, as in the ase of the Abstrat ArgumentationFramework whih is abdutive at the meta-level although it uses a dedutive monotonilogi at the objet-level.The proess for interpreting arguments from �rit to � is based on the relation:map � L� Lritwhih essentially assoiates onsequenes from both theories,2 identifying whih sen-tenes in the ritiism theory orrespond to whih sentenes in the theory. This proessis desribed below and illustrated in Figure 10.1:
�0 = � [ ���0 ` ' map(�;�rit ) �rit `rit �ritmap('; )

Figure 10.1: Argument level: generating arguments based on a ritiism theory.1. Let ' be a sentene in L.2. If map('; ) holds, then  is a point of ontat between the additional theory andthe main one.3. Let �rit `rit  be an argument for  in �rit .4. Let � be the orresponding set of sentenes in L obtained from �rit aording tothe mapping above; i.e. map(�;�rit).5. Then in the extended theory �0 = � [ � it should be possible to derive an argu-ment �0 ` ' for ' that is based on the orresponding argument for  in �rit .2 The relation map('; ) is said to hold between two formulae ';  if ('; ) 2 map. Analogously,map(�;�0) holds between two sets of formulae if for every ' 2 � there exists  2 �0 suh thatmap('; ), and vie-versa.



Notie that it is hard if not impossible to plae any general onstraints on the mappingrelation so that the proess above is always guaranteed to give a orresponding argumentin the main theory. There is more in sharing inferenes than just translating expres-sions between logial systems (Corrêa da Silva et al. 1999)|for instane, the inferenemehanisms of eah systems need to be ompatible. This is a diÆult assumption tomake, but in our ase this proess is quite disiplined and regulated.The reason why a ritiism theory an provide points of attak to the theory is beauseonditions in an attak-based revision shemata may involve the generation of argumentsfrom this theory as a way of instantiating ertain elements in a shema. While Figure10.1 gives the general intuition behind mapping arguments from one theory to another,exatly whih axioms are added or altered in the theory are de�ned within a shemaby using the sorts of methods disussed in the previous part. In this way, the mappingrelation above an be viewed as a speial type of revision shema that depends onexternal theories to be instantiated. It beomes more a mapping of onepts than ofinferenes, and whether the intended argument an then be generated is ensured by theproperties assoiated to eah shema as disussed in Chapter 7.Finally, the last type of omponent in our arhiteture aounts for the notion of prior-ities and preferenes between arguments.10.3 The Control ModuleIn human argument it is often the ase that extra information is applied to ontrol thegeneration of arguments, for instane when preferenes are used for deiding betweenoniting arguments (Prakken and Sartor 1997; Simari and Loui 1992; Brewka 1996;Amgoud and Cayrol 1998). Remember that our de�nition of attak3 already inor-porates the notion of preferene between arguments (and whih ould be heked byassoiated properties during the argumentation), although throughout Part II it wasassumed that every argument had equal strength.The role of the ontrol module is to de�ne omparative and prioritisation measures forarguments, and also to speify riteria based on these measures for hoosing stronger3 See De�nition 4.4 in Chapter 4. 186



CHAPTER 10. A GENERAL ARCHITECTURE 187arguments, or for adjudiating between oniting arguments. Of ourse riteria fordeiding whether arguments are preferred may not always exist, but if they do they arelikely to be domain-spei� (Carbogim et al. 2000b; Konolige 1988; Prakken and Sartor1997).There are many ways one an apture the notion of omparative measure between argu-ments, suh as de�ning a strit partial ordering on the set of defeasible rules (Prakkenand Sartor 1997), or adopting the spei�ity priniple (Simari and Loui 1992). But theontrol module also allows other types of prioritisation based on the individual strengthof arguments, whih ould be done in di�erent ways, e.g. by prioritising onsequenesin the theory or by prioritising arguments from the ritiism theory. Notie that thestudy of preferenes is a subjet in itself, and the fous on this thesis has been more onthe struture of arguments. In any ase, Setion 11.4 briey disusses the possibilitiesfor prioritisation in this arhiteture.So as to allow adaptation separately from the rest of the framework, we haraterise theontrol module as a meta-level omponent whih treats theory and/or ritiism theory assoures of information and propagates priority measures through them aordingly. Thisarhiteture|skethed in Figure 10.2|is similar to the type of layered meta-interpreterdesribed in (Yalinalp and Sterling 1991; Sterling and Shapiro 1994), and is useful forseparating the parts dealing with priorities from those dealing with the struture of thearguments.
PRIORITY LEVEL

ARGUMENT LEVEL

� �rit
Control

Figure 10.2: Arhiteture overview: interations between the ontrol module and thetheories in the argument level are of a di�erent nature than those between theory andritiism theory, and thus are represented by dashed arrows rather than by the solidarrows depited in Figure 10.1.



De�nition 10.3 (Control Module) Given a logial system (L0;`0) the ontrol mod-ule de�nes a priority measure on L0 and a mehanism for propagating these measureson top of the argument generation mehanism `0. 2This three-omponent arhiteture extends the formalism presented in Part II in orderto aount for external instantiation mehanisms and for attaks based on priorities andpreferenes. De�ning these separately allows for di�erent strategies to be used in eahof them, whih an be useful for understanding even more of the dynamis in argument.Together with the library of possible argument shemata, this arhiteture an deriveand ompare the arguments and attaks that will be needed for generating dynamiarguments4 by the sorts of mehanisms explored in the previous part (and outlinedin Figure 7.1). As before, attaks allow hanges to be made to the theory, but nowthese an be based on preferene riteria for omparing arguments, priority measuresfor qualifying attaks, and on reasoned ritiism arguments with the soure of theseritiisms expliitly de�ned.This is a quite generi and unrestrited desription so as to allow many possibilitiesfor instantiation. This thesis in partiular explores suh possibilities in two di�erentdomains, namely safety-engineering in Chapter 11, and agent negotiation in Chapter12.

4 As disussed in Setion 9.1, this is similar to the Argument Generation Unit in (Dung 1995).188



Chapter 11Worked Example: Instantiatingthe Arhiteture
In Setion 3.4 we briey disussed the importane of safety arguments in safety-ritialdomain. Now this hapter looks at how the arhiteture proposed in Chapter 10 an beinstantiated to desribe ertain relations in examples taken from the safety-engineeringommunity, and whether dynami arguments an support the design and development ofmodels, being used as part of safety ases for supporting that the design of the proposedsystem is aeptably safe (Krause et al. 1997; Gurr 1997).More spei�ally, we onsider the safety argument in Setions 2.1.1 and 9.5 in whihfault tree analysis was used as a soure of possible arguments against the safety of apressure tank ontrol system, guiding the revision of a system model in order to inreaseits aeptability with respet to known faults (Vesely et al. 1981). The following se-tions desribe exatly how this example an be modelled in our dynami argumentationframework, derived from the existing implementation of the system. This is done in twosteps:� �rst, we de�ne the three omponents of the arhiteture as desribed in Chapter10, namely a theory, a ritiism theory, and a ontrol module;� seond, we instantiate the mehanism for generating dynami arguments disussedin Part II by de�ning a suitable library of domain-spei� revision shemata.The implementation desribed in Chapter 8 is then used to automatially generate189
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FROM  RESERVOIRFigure 11.1: A pressure tank system (see Figure 2.2).dynami arguments about the pressure tank system being operational, and produesaeptable theories|in this ase, models of the system|if all attaks based on thede�ned revisions and on the fault theory are suessfully dismissed.111.1 Instantiating the Arhiteture in a Safety DomainWe start by de�ning the omponents in the arhiteture. For the sake of larity herewe just refer to fragments of the instantiation. The omplete arhiteture de�nition inProlog as used in the implementation for this example is desribed in Appendix E.11.1.1 The Theory: The Pressure Tank ModelIn this ase, the theory|i.e. the objet about whih we argue|is the model of thepressure tank system in Figure 2.2 (reprodued here in Figure 11.1). The following isone way to express this model in terms of a Horn lause resolution-based system.1 See De�nition 4.7 of a dynami argument.
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CHAPTER 11. WORKED EXAMPLE 191operational tank(T )  on motor(T ) ^ not full(T )operational tank(T )  o� motor(T ) ^ pressurised(T )not operational tank(T )  on motor(T ) ^ pressurised(T )on motor(T )  losed (relay(k2 ); T )o� motor(T )  open(relay(k2 ); T )losed (relay(K); T )  energised(relay(K); T )open(relay(K); T )  deenergised (relay(K); T )As in Setion 9.5, here we adopt a simpli�ed version of the pressure tank model, whereenergised=deenergised and pressurised=not full are observable prediates in the sensethat they are given as fats in the theory. For instane, assume that at time 60 the tankis observed to be pressurised, and relay k2 deenergised:2pressurised(60 )  truedeenergised(relay(k2 ); 60 )  trueIn our implementation, we use the expression main(T ) as a way to identify the maintheory T in the arhiteture. If (L;`) is the underlying logial system, then expressionstheory(T;�) and provability (T; P ) are used to de�ne the set of axioms � orrespondingto the initial theory in L, and a prediate P for generating arguments based on theprovability relation `. In this example, this is instantiated in Prolog as follows:main(ptmodel).provability(ptmodel, solve).theory(ptmodel, TInit).where:� TInit is the list of axioms above de�ning the funtioning of the system, orre-sponding to the axioms in �, and� solve is a meta-interpreter that gives an argument for a sentene from a list ofaxioms aording to resolution-based proof rules.Remember that in our Prolog implementation we represent sets of axioms as lists. Forease of referene in our disussion we assoiate a number with eah axiom. TInit isthen represented as follows:2 The spei�ation in Appendix E is more omplex beause it models the behaviour of relays andthe pressurisation of the tank in terms of the behaviour of the other omponents and the givenpressurisation time.



1 operational tank(T )  on motor(T ) ^ not full(T )2 operational tank(T )  o� motor(T ) ^ pressurised(T )3 not operational tank(T )  on motor(T ) ^ pressurised(T )4 on motor(T )  losed (relay(k2 ); T )5 o� motor(T )  open(relay(k2 ); T )6 losed (relay(K); T )  energised (relay(K); T )7 open(relay(K); T )  deenergised (relay(K); T )8 pressurised(60 )  true9 deenergised (relay(k2 ); 60 )  true11.1.2 The Critiism Theory: The Fault Tree ModelA andidate theory for a ritiism theory is the fault tree model assoiated with thesystem. As disussed in Setion 2.1.1 a fault tree is a model of the faults that an leadto an unsafe event in a system, and whih is de�ned separately from the system modelitself. Fault trees are basially omposed of and- and or-gates, and therefore an beeasily expressed in a delarative way in terms of Horn lauses. Figure 11.2 gives thebasi fault tree for the pressure tank system in Figure 11.1 as desribed in (Vesely et al.1981).
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CHAPTER 11. WORKED EXAMPLE 193after this time interval.1 tank rupture  ontinuous pump operation2 ontinuous pump operation  primary failure(relay(k2))Let the underlying ritiism language Lrit be a Horn lause based language, and `rit bean abdutive provability relation. We de�ne a set of abduibles that orrespond to thebasi events in the fault tree, and arguments for tank rupture are based on assumptionsabdutively seleted from this set. For instane:fprimary failure(relay(k2))g `rit tank ruptureNote that identifying minimal ut sets in fault trees|i.e. the ombination of failuresleading to system fault|is equivalent to applying abdution with minimality onstraintsto the orresponding delarative model. Hene `rit di�ers from the dedutive infereneused to determine onsequenes within the theory.In our implementation, we use the expression rit(T) as a way to identify a ritiismtheory T in the arhiteture. Analogously as in the ase above, we use expressionstheory(T;�rit) and provability(T; P) to de�ne the set of axioms �rit orrespondingto this ritiism theory in Lrit , and a prediate P for generating arguments based onthe provability relation `rit . The sort of fault tree based reasoning above an then beharaterised in Prolog as follows:rit(ftree).provability(ftree, solve abd).theory(ftree, TCrit).where:� TCrit is a list of axioms de�ning the fault tree model, orresponding to the axiomsin �rit , and� solve abd is an abdutive meta-interpreter for these axioms.Figure 11.3 illustrates the argumentation proess for generating attaks based on aritiism theory for this partiular safety argument. � and �rit are fragments of the



tank rupture ontinuous pump operation� �ritmap(not operational tank(T ); tank rupture)

pressurised(60)onflit(operational tank(T );

operational tank(T )  off motor(T ) ^ pressurised(T )on motor(T ) ^ not full(T )operational tank(T )  
deenergised(relay(K); T )energised(relay(K); T )losed(relay(K); T ) open(relay(k2); T )off motor(T ) not operational tank(T )  on motor(T ) ^ pressurised(T )losed(relay(k2); T )on motor(T ) 

deenergised(relay(k2); 60)open(relay(K); T ) not operational tank(T ))open(relay(k2); T )losed(relay(k2); T ) 

ontinuous pump operation primary failure(relay(k2))

map(losed(relay(K); T ) open(relay(K); T ); primary failure(relay(K)))Figure 11.3: Generating attaks to the pressure tank model based on the fault theory.pressure tank system model and the assoiated fault tree model, respetively. From theargument for tank rupture in �rit whih is based on the primary failure of relay k2 , weadd to the theory the axiom losed(relay(k2); T ) open(relay(k2); T ) for representingthis type of failure|namely, k2 is losed when it should be open. Using this premisewe an derive an argument for not operational tank(60) whih attaks the argumentfor operational tank(60) in �.To illustrate why we annot atten all of this into a single theory, as we would have todo if we followed the approah desribed in the Abstrat Argumentation Framework,3onsider the example in Figure 11.4. If we interpret mappings m1 and m2 in (a) asimpliations, then we merge the theories as in (b). But then we do not have a meansof driving the non-monotoni revisions to the argument, sine we do not know that thefault struture is tested di�erently from the rest (hene we do not know where to applyabdution).Reall that mappings between the theory and a ritiism theory an be spei�ed as3 See Setions 3.1.4 and 9.5. 194
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Figure 11.4: Our proposal (a) and the attened equivalent (b).argument shemata. The mapping above, for instane, orresponds to an operation foradding a substantiated lause based on arguments generated from the fault theory. Thefault theory gives exatly whih omponents an be validly instantiated in the domain-spei� shema below so that, if they fail, they should lead to a system fault. Notiethat this shema is obtained from the general shema for adding substantiated lauses(see Setion C.2.2) in a similar way as desribed in Setion 8.3.Domain-spei� Shema PRIMARY FAILURE OF ACTIVE COMPONENTS: 1 ) 2 ) 3 )6) 9) 14 in(operational tank(T ); A;�);add(substantiated rule(P )); revise(�; fg; fPg [ A0;�0);in(not operational tank(T ); A0;�0)Properties: � supports(A0; not operational tank(T ) : in; �0);satis�able(on motor(T ) ^ pressurised (T ); � [ A0) �Conditions: operational tank(T ) : in 2 GA;not operational tank(T ); on motor(T ) ^ pressurised(T ) 2 L;P = not operational tank (T ) on motor (T ) ^ pressurised (T );gen argument(ftree; tank rupture;Arit);A0 = flosed (C; T ) open(C;T ) jprimary failure(C) 2 Arit ; type(C) 6= tankgsuh that arguments are generated via the orresponding meta-interpreter solve abd :gen argument(ftree, X, A) :-theory(ftree, TCrit),solve abd(X, A, TCrit).An interesting point to make about this shema is that it is not fundamental (i.e. trivial,elementary or updating) like most shemata disussed so far. Apart from the lause for
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Figure 11.5: Generating attaks to models based on fault theories.deriving not operational tank(T )|whih is the lause intended to be substantiated|we need to add the axioms in A0 so as to substantiate it. In fat, remember fromSetion 7.3.5 that more omplex operations an be de�ned by expanding the sets R andA in a way that the assoiated properties still hold.4 The only adaptation is that anyproperties involving the original theory � should onsider also the extra axioms|e.g.in the shema above rather than heking that the body of the main lause is satis�ablein � we need to hek that it is satis�able in � [ A0, so that P an in fat give theintended argument in �0 = � [A0 [ fPg.5The last two onditions in the shema give exatly what extra axioms should be addedbased on the ritiism argument for tank rupture . The reason why we disregard thepossible primary failure of the tank itself is beause, aording to standard tehniquesfor fault tree evaluation, the tank is a passive omponent (Vesely et al. 1981, p. VIII-12)rather than an ative omponent suh as a relay or a swith.4 Reall from De�nition 4.5 that a strutural revision operation is haraterised by a pair (R;A) ofsets of axioms.5 Note that the axiom P in shema PRIMARY FAILURE OF ACTIVE COMPONENT is already inthe theory. Although theories are implemented as lists they are supposed to behave like sets, sothe addition of a new element whih is equivalent to an existing one does not reate a dupliate(equivalent) entry in the list.
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CHAPTER 11. WORKED EXAMPLE 19711.1.3 The Control ModuleThere are various types of results that an be obtained from fault tree evaluation teh-niques, inluding determination of minimal ut sets, numerial probabilities assoiatedwith these sets, and quantitative and qualitative rankings of ontribution to systemfailures (e.g. aording to the size of eah minimal ut set). That means that thereare also various ways of prioritising the attaks whih are based on these subsets ofassumptions from the fault tree model.One way for instane is by assigning probabilities to the basi events and propagatingthese through the fault tree model aording to the laws of probability theory. We anestimate the probability of the top event being derived from an argument and the riteriafor deiding whether this argument defeats a safe argument from the theory is basedon the analysis of this probability. For instane, this an be ompared to a thresholdimportane value, under whih attaks based on the argument an be disregarded. Thatmeans that not every ombination of events leading to the top event needs to trigger arevision in the model so as to generate an attaking argument; i.e. an attak is relevantenough to be a onern if the probability of the minimal ut set on whih it is based isnot aeptable for safety standards. This losely resembles the method of analysis forfault tolerane used in pratie, as desribed in (Vesely et al. 1981).As disussed in Chapter 10, we haraterise this sort of prioritisation by layered meta-interpreters so as to propagate priority measures on top of the generation of arguments.In our representation, the expression �lter(P1; P2) denotes that the meta-interpreterP2 treats the de�nition of meta-interpreter P1 for argument generation as a soure ofinformation. In this example, the expression below:filter(solve abd, solve filter).states that solve �lter onsiders the probabilities assigned to basi events and propa-gates these appropriately as arguments are onstruted by solve abd , thus �ltering thearguments that are strong or relevant enough and hene allowed to be advaned as at-taks. The prediate solve �lter (rather than solve abd) is used to generate prioritisedarguments from the fault tree model:



gen argument(ftree, X, A) :-theory(ftree, TCrit),solve filter(solve abd(X, A, TCrit)).This is one way of prioritising arguments in the ontrol module; others are disussed inSetion 11.4.11.2 Generating Dynami ArgumentsWith the arhiteture omponents de�ned in this way, we an then use the mehanismsdisussed in Part II to generate dynami arguments in this domain. Note, though,that with only one type of shema|namely PRIMARY FAILURE OF ACTIVE COMPONENTS|arguments an just introdue faults to the model. But as disussed in Setion 9.5, it isimportant to allow adaptation of the model. One might say that the base model of thesystem|i.e. the initial model|satis�es all points of attak given by the orrespondingfault tree, although only the attaks that are strong enough (aording to the prioriti-sation de�nition) an in fat be advaned. In these ases, we should try to dismiss theseattaks by making appropriate hanges to the struture of the model.However, the urrent spei�ation does not give any means for that. Even if we onsidertrivial shemata, there are no alternative arguments for operational tank , and in anyase these would not be enough to raise the on�dene that the system is aeptablysafe. To reinstate a partiular onlusion after it has been attaked we need to performsome ation to hange the theory suh that this attaking argument an no longer bederived. This is illustrated in Setion 2.1.1, where a parallel relay was introdued toimprove system safety. One way to undermine the argument based on the failure of k2 ,and thus to onsiderably improve system safety, is by adding some redundany to thesystem (i.e. another relay in parallel to k2 ).What it means for a new relay to be added in parallel to an existing relay is thatthe new relay must have the same behaviour as the original one. Moreover, if someonlusion depended on the original relay being open, the same onlusion depends onthe new relay being open (only one relay being open is suÆient to derive it). In termsof the model, we an dupliate the lauses de�ning the behaviour of the original relay in198



CHAPTER 11. WORKED EXAMPLE 199order to de�ne the behaviour of the new relay (whether and when its ontats are openor losed), as well as those lauses in whih the preonditions involve the original relaybeing open. One we add a redundant relay, if some onlusion depended on the originalrelay being losed, it now depends on both relays being losed, and this is the lause inthe model that needs to be elaborated in order to blok ertain undesired onlusions.This ould be aptured by the omplex (i.e. non fundamental) domain-spei� shemabelow for adding a redundant relay, obtained from the general shema for elaboratinga rule (see Setion C.5.1) in a similar way as desribed in Setion 8.3.6Domain-spei� Shema REDUNDANCY OF RELAY: 1) 2) 3) 5) 12) 20in(X;A;�);retrat (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g [ A00;�0);out(X;A;�0)Properties: 8<: supports(A;X : out;�0);unify(X;H);:satis�able(B�;� [ A0) 9=;Conditions: X : in 2 GA;losed (relay(R); T ) open(relay(R); T ) 2 A;P = H  B1 ^ ::: ^ Bm 2 A;Bi = losed(relay(R); T );new omponent id(R1);B = losed(relay(R1); T ) 2 L;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H);A0 = fP1[R=R1℄ j P1 2 �; P1 6= PgThus, just beause we are adopting an arhiteture that allows instantiation from ex-ternal soures it is not stritly neessary for all shemata to be instantiated in thatway. Shemata like the one above suggest general ways for adapting models aordingto known faults that have been introdued to the model deliberately. They an then beapplied to other arguments, thus produing alternatives for design based on the initialmodel. These an vary, for instane, aording to di�erent measures of prioritisation(i.e. whih ombination of events an be safely dismissed) and also to the orderingin whih arguments have been generated (e.g. adding a redundant omponent mightblok other attaks from being supported based on the fault tree). One a dynami6 As de�ned in Appendix A, F[T1=T2℄ denotes the formula obtained from a formula F by replaing everyourrene of the term T1 by the term T2.



argumentation proess is over|i.e. one every minimal ut set has been dismissed|wemay have produed an alternative, more elaborated model. One again, one may wantto onsider the fault tree model for the new strutured system and rerun the proess.11.3 A Dynami Argument in the Safety DomainNow that the arhiteture and a atalogue � of attak-based revision shemata havebeen spei�ed, the system in Setion 8.1.2 an be used to generate dynami argumentsin an automated form.Let TInit be the theory in Setion 11.1.1, and � be:fPRIMARY FAILURE OF ACTIVE COMPONENTS;REDUNDANCY OF RELAYg.Assume also that the threshold importane value is set e.g. to 0.1, meaning that anattak based on the fault tree model (ritiism theory) an only be advaned if theorresponding minimal ut set ontributes in more than 10% to the probability of thetop event being derived.7 Below we present a dynami argument proess about thetank being operational as generated by our implementation, in the same format as theaatoxin argument in Setion 8.2.Aording to De�nition 4.7, the �rst argument to be advaned is a justi�ation sup-porting the main laim that the pressure tank system is operational, for instane, attime 60.Argument A0 is a justi�ation for operational tank (60).
deenergised(relay(k2), 60)

open(relay(k2), 60)

off_motor(60)

operational_tank(60)

pressurised(60)

7 The relative quantitative importane of minimal ut sets is obtained by taking the ratio of the minimalut set probability to the total system probability (Vesely et al. 1981).200



CHAPTER 11. WORKED EXAMPLE 201Revision �1 is obtained from shema PRIMARY FAILURE OF ACTIVE COMPONENTS, andfrom the argument for tank rupture in the fault tree model whih is based onfprimary failure(relay(k2 ))g. As desribed by Vesely et al. (1981), the relativequantitative importane of this minimal ut set is 86%, and hene above thestipulated threshold.In this way,�1 : add(substantiated rule0BBBB� not operational tank(T ) on motor(T ) ^ pressurised (T );losed(relay(k2); T ) open(relay(k2); T ) 1CCCCA)is an attak-based revision that an be used to onstrut an argument for jus-tifying that the system is not operational at time 60. Moreover, the propertiesaumulated during the instantiation an ensure that the generated argument infat supports that not operational tank(60) : in.Argument A1 is a justi�ation for not operational tank (60).

deenergised(relay(k2), 60)

open(relay(k2), 60)

on_motor(60) pressurised(60)

closed(relay(k2), 60)

not_operational_tank(60)

Revision �2 adapts the model via shema REDUNDANCY OF RELAY, adding a new relayk2 0 in parallel to k2 in order to refute the laim that the motor is on at time 60.In this way,�4 : retrat (elaboration � on motor(T ) losed(relay(k2 ); T ) �)andadd (elaboration0BBBBBB� on motor(T ) losed (relay(k2 ); T ) ^ losed(relay(k2 0); T );deenergised (relay(k2 0); 60) true ;o� motor(T ) open(relay(k2 0); T )
1CCCCCCA)is an attak-based revision that that refutes argument A1.



Argument A2 is a refutation of on motor (60).
deenergised(relay(k2), 60)

open(relay(k2), 60)

on_motor(60)

closed(relay(k2), 60)

At this point no other attak an be generated suh that the laim operational tank(60)beomes unsubstantiated. The revised theory below is said to be aeptable with respetto the faults in the fault tree model.1 operational tank(T )  on motor(T ) ^ not full(T )2 operational tank(T )  o� motor(T ) ^ pressurised(T )3 not operational tank(T )  on motor(T ) ^ pressurised(T )4 on motor(T )  losed (relay(k2 ); T ) ^ losed (relay(k2 0); T )5 o� motor(T )  open(relay(k2 ); T )6 losed (relay(K); T )  energised (relay(K); T )7 open(relay(K); T )  deenergised (relay(K); T )8 pressurised(60 )  true9 deenergised (relay(k2 ); 60 )  true10 losed (relay(k2); T )  open(relay(k2); T )11 deenergised(relay(k2 0); 60 )  true12 o� motor(T )  open(relay(k2 0); T )In a nutshell, there are two advantages in de�ning dynami argument systems based onthis arhiteture: one is beause we allow external soures of ritiism to be represented;the seond is to allow modular representation of priorities. This separation is interestingbeause it allows, for instane, di�erent inferenes to be used and di�erent strategies ofprioritisation to be tested. Now that we have seen an example of argument prioritisation,the next setion disusses some of the uses of priorities in the generation and seletionof arguments within our arhiteture.11.4 Argument Prioritisation in the ArhitetureAs mentioned in Chapter 4 and illustrated in Setion 11.1.3, the use of defeat andprioritisation riteria to represent that ertain arguments may be preferred over othersis an important element in the generation and development of argumentation proesses.202



CHAPTER 11. WORKED EXAMPLE 203The issue of preferenes in argumentation has been extensively studied in the literature,and various frameworks for dealing expliitly with priorities and with how preferenerelations an be integrated into argumentation systems have been proposed (Amgoudand Cayrol 1998; Prakken and Sartor 1997; Brewka 1996; Vreeswijk 1993; Grosof 1997).In general, prioritisation of arguments involve the aggregation of preferene riteria givensome preedene ordering. Very often it is assumed that a partial|i.e. transitive|ordering between arguments (or between axioms in the knowledge base) exist, basedon whih the notion of defeat is de�ned and onits are resolved. Examples of pri-oritisation riteria are the spei�ity priniple, reliability of soures, or yet temporalpreedene of arguments or axioms.This setion does not present a general aount of priorities in argumentation, nor itproposes a spei� representation for it (whih is likely to be domain-spei�, as dis-ussed earlier in this thesis). Priorities and preferenes are not a main part of thisthesis, but it is interesting to note that our arhiteture also allows for prioritisation ofindividual arguments as a way of measuring the quality of these arguments, thus blok-ing some from being advaned and reduing the spae of possible dynami arguments.Most existing systems only onsider preferenes as a way of omparing two (oniting)arguments.Hene, given that up to this point we have presented details of a dynami argumentgenerator, various worked examples and an arhiteture for dynami argument systems,we now briey disuss suitable prioritisation representations linked to our appliations,looking at some of the possibilities for priority handling within the arhiteture pro-posed in Chapter 10. For instane, the example above desribed a way to prioritisearguments generated from a fault theory in a safety-ritial domain. This is one typeof prioritisation whih involves the �ltering of arguments aording to some relevaneriterion, and whih is disussed in Setion 11.4.1.Another possibility for prioritisation in our arhiteture, involving the primary ompar-ison of arguments, is disussed in Setion 11.4.2. Finally, Setion 14.2.2 addresses somerelated issues in onnetion with the seletion of arguments to be advaned.



11.4.1 Priority Criteria for Generating ArgumentsThis sort of prioritisation onerns the generation of individual arguments, and henean be applied both to arguments generated in the main theory as well as to argumentsgenerated in a ritiism theory. Essentially, it is about the quality of the arguments.As desribed in Setion 11.1.3, given a provability relation for argument generation|either in the theory or in a ritiism theory|we an de�ne a layered meta-interpreterthat uses the de�nition of the �rst to propagate ertain priority measures as argumentsare generated, �ltering those arguments that satisfy some threshold ondition givensome preedene ordering. In the example in Setion 11.1.3, this was related to thequantitative ontribution of minimal ut sets to system failure.�rit �rit + �lter� any generated argument isrelevant prioritise ritiism� + �lter prioritise onsequenes inthe theory prioritise ritiism and pri-oritise onsequenes in thetheoryFigure 11.6: Prioritisation in the generation of individual arguments.Table 11.6 summarises the possibilities for prioritisation of argument generation in ourarhiteture. The fault tree example for instane �ts in the top-right box. Notie thatthis has nothing to do with heking whether the property supports holds or not. Inthat ase, arguments may not be advaned beause they have already been onsideredin the proess. Here arguments may be bloked beause they are not relevant enough,or good enough, in the domain.11.4.2 Preferene Relations for Comparing ArgumentsAnother possibility is to use priorities to blok arguments from being advaned notbeause they are not relevant enough per se, but beause they are not strong enoughto defeat some oniting argument. This sort of prioritisation does not our in the204



CHAPTER 11. WORKED EXAMPLE 205ontext of generating individual arguments, but in the ontext of attaks and onitsduring the argumentation proess. Hene, it only ours within the main theory, whenan attak of the form in; in is advaned. If no prioritisation of this sort is de�ned, thenno argument is preferred over any other (remember that this is the basi assumptionwe adopted throughout Part II of this thesis).Comparative measures between oniting arguments in the main theory an also bede�ned in the same layered style, in whih a meta-interpreter is used on top of theargument generator to propagate some preferene measure. But in this ase, rather thanomparing the onlusive fore of one argument to some threshold value, the preferenemehanism ompares the relative fore of two oniting arguments. A meta-interpreterfor argument omparison again uses the de�nition of the provability relation in the maintheory to propagate ertain preferene measures aording to the argument struture,taking as input any two arguments whih an then be ompared aording to somepreedene ordering.Notie that we may have di�erent riteria for argument �ltering (e.g. we may onlyonsider to be relevant those arguments involving less than �ve inferene steps) andargument omparison (e.g. we may deide between two oniting arguments, bothonsisting of less than �ve inferene steps, by analysing their onlusive fore based onan expliit partial order on the axioms in the underlying theory).





Chapter 12Relating Argument Dynamis toa Multi-Agent Problem
Another potential area of appliation of dynami arguments is that of negotiation be-tween autonomous agents,1 in whih agents must ome to a mutually aeptable agree-ment about some matter (Parsons and Jennings 1997; Parsons et al. 1998; Sierra et al.1997b). In fat, Jennings et al. (1998) have haraterised three general topis in researhin negotiation, namely negotiation protools, agreement objets and agents' strategies.The �rst fouses on de�ning the rules of the game, suh as the types of partiipants,the possible negotiation states and valid ations of eah partiipant in eah state. Theseond is about speifying the range of negotiable issues|e.g. prie, delivery date,quality|over whih agreement is to be reahed. Finally, the last is onerned with theagents' deision making strategies, and is often shaped by the �rst two.The di�erene in fous between negotiation protools and agreement objets is similarto the sort of distintion between protool- and objet-based argumentation disussedin Setions 3.3.3 and 3.3.4. Remember that we an emphasise di�erent aspets of theproess depending on what we want to formalise. On the one hand, emphasis is onommuniation between agents, and on de�ning protools for exhanging messages on-taining proposals and ounter-proposals, and for deiding whih onlusion is aeptableto every agent involved. On the other hand, though, emphasis is on the struture ofthe agreement rather than on ommuniation and exhange of messages. This is aboutnegotiating omplex terms and onditions of a proposed deal/agreement, and adjusting1 See disussion in Setions 2.1.2 and 3.3. 207



the terms of suh agreements based on reasoned arguments by the agents involved.Beause the fous on argument dynamis is on the development of an objet, we foundthat the partiular problem of forming ontrats between negotiating agents onformsto a style of reasoning similar to that of generating dynami argument. This hapterdesribes a way to instantiate a system from the general arhiteture in Chapter 10 forgenerating arguments in this domain.12.1 Contrat-based NegotiationWork on ontrats is not new. Sierra et al. (1997a) proposed a model of negotiationbased on ontrats that are represented as olletions of issues (variables) whose valuesneed to be set. Through negotiation, an agent proposes values within its aeptablerange until an assignment of values suiting every partiipant is obtained.Although ontrats are essentially olletions of negotiable issues, some approahes fousless on the proess of assigning aeptable values to negotiables than on struturing thesein terms of logial rules. In the logi-programming ommunity, for instane, Daskalopuluand Sergot (1997) have investigated the use of logi-based (automated) tools supportingthe analysis and representation of legal ontrats in large-sale, long-term engineeringtrading agreements. These are substantially more omplex than sales of goods ontrats.Reeves et al. (1999, 2000) also propose a way for representing ontrats as ourteouslogi programs (Grosof 1997). The idea is to have a delarative desription of thespei�ation of a ontrat, and then generate �nal, exeutable ontrats via automation�guration for di�erent types of autions.In our model of ontrat-based negotiation2 we also onsider ontrats to be sets oflogial rules whih an, via dynami argumentation proesses, be adjusted based onreasoned arguments by the agents involved in the agreement. By adjusting we mean notonly hanging the values assoiated with negotiable issues, but also the struture of theorresponding rules and hene the relations between negotiables.2 The model we present in this hapter was initially proposed in (Carbogim and Robertson 1999).
208



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 20912.1.1 Contrat-based Negotiation as Dynami ArgumentationThe worked example in this hapter is based on the model for ontrat-based negoti-ation desribed in Setion 2.1.2. Remember that ontrats are objets whih regulateagreements between two autonomous agents|a onsumer and a produer|about thesupply of a partiular produt (or servie). The purpose of ontrat-based negotiationis to adjust the terms of this agreement so that it is aeptable for both parties involved.We assume that only two parties are involved in the negotiation, although an agent mayalso be involved in other di�erent proesses simultaneously, even playing distint rolesin distint proesses (e.g. being a produer in some ontexts and a onsumer in others).The proess of ontrat-based negotiation starts when one of the parties proposes abinding ontrat to regulate some agreement between produer and onsumer. We anassume that the produer makes this �rst proposal (e.g. upon previous request fromthe onsumer). This ontrat is now the objet of negotiation between the parties and isrepresented as a set of formulae stating the onditions for aomplishing the agreement.The onsumer reeives the ontrat from the produer and analyses it. If it agrees withthe lauses, then the proess of negotiation is over. But if the onsumer has reasonsto believe that this partiular ontrat will not be suessfully ompleted, it sendsthe ontrat bak to the produer with the appropriate ritiisms. The produer thentries to adapt some of the lauses in that partiular ontrat in order to make it moreaeptable, sending it bak again to the onsumer for further analysis. The proess ofadjusting the ontrat ontinues until there are no more ritiisms (i.e. it is aeptablefor both produer and onsumer) or until one of the parties withdraws.12.1.2 A Simple Language for ContratsThis setion desribes the basi senario we use to develop our ideas on how negotiationrelates to dynami argumentation, and a simple spei�ation language used to representontrats in this senario. In partiular, we onsider two types of agents:Produers. The term produer (X;P ) denotes that agent X wants to sell produt P .Consumers. The term onsumer (Y; P ) denotes that agent Y wants to aquire P .



Agents produer Xonsumer YAgreement agent X to supply produt P to agent YContrat expliitly state the onditions for the agents to ommitto this agreementFigure 12.1: Basi senario for ontrat negotiation between produer and onsumer.If a produer X has agreed to supply produt P to a onsumer Y , then a ontrat-based negotiation proess is arried out by X and Y in order to adjust the lauses ofthis agreement so that it is aeptable to both parties. This senario is summarised inFigure 12.1.Being the produer,X proposes an initial ontrat to Y stating the onditions for suessof the arrangement between them. These onditions might inlude the appropriatedelivery of the produt by X within the stipulated time, and the appropriate paymentfor it by the onsumer Y . The form of a generi ontrat lause is given below, assumingan underlying Horn lause resolution-based system.A ontrat between a produer X and a onsumer Y for the supply of a produt P is suessfullyompleted if all the agreed terms T1; :::; Tm are ful�lled. Eah term Ti|suh as for instanequantity, delivery or payment| may depend on X, Y and P .ontrat ompletion(X;Y; P )  produer (X;P ) ^onsumer(Y; P ) ^ful�ll(T1) ^ ::: ^ ful�ll (Tm)For instane, the following is a possible instantiation of this general lause with twoontratual terms, namely delivery and payment.A ontrat between a produer X and a onsumer Y for the supply of a produt P is suessfullyompleted if the agreed terms of delivery of P are ful�lled by X, and the agreed terms of paymentfor P are ful�lled by Y . 210



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 211ontrat ompletion(X;Y; P )  produer(X;P ) ^onsumer(Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))The question now is how to determine whether a partiular term has been ful�lled ornot. Terms in a ontrat usually speify values of negotiables and determine ations tobe taken. Ful�lment then depends on whether the result of implementing these termsonforms to what is set by the ontrat-holders. For instane, we an say that paymentterms are ful�lled if the onsumer pays for the amount spei�ed in the ontrat.A term T in a ontrat is ful�lled if the result of its implementation onforms to theorresponding value V set in the ontrat.ful�ll(T )  set(T; V ) ^ outome(T; V )Beause it is impossible to predit the outome of implementing ertain onditions atthe time of ontrat de�nition, we assume by default that whatever onditions spei�edin the ontrat will be implemented by the responsible agent aordingly.outome(T; V )  set(T; V )As we will see in the following example, this is useful beause it gives points of attakand ritiism within the ontrat. Contraditions arise when an agent argues thatsome spei�ed ontratual lause should be implemented di�erently, hene yielding adi�erent outome than the one initially indiated. In this way, it is possible to deriveontraditory laims based on distint outomes V and V 0 for the same ontratualterm T .12.1.3 An Example of Contrat FormationIf we adopt this representation, as well as a model of time based on integer time points(for instane representing days), the following set of formulae spei�es a ontrat be-tween two agents a and b.



1 ontrat ompletion(X;Y; P )  produer (X;P ) ^onsumer (Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))2 ful�ll(T )  set(T; V ) ^outome(T; V )3 set(delivery(X;Y; P ); D)  prodution time(X;P;D)4 set(payment(Y;X; P ); (V; std))  prie(P;X; V )5 outome(T; V )  set(T; V )6 produer (a; p)  true7 onsumer (b; p)  true8 prodution time(a; p; 14)  true9 prie(p; a; 10)  trueFor a ontrat to be aeptable to an agent, we mean that the main onlusion forsuess|in this ase ontrat ompletion(a; b; p)|is substantiated, and that the agenthas no reason to attak it. We an say that the ontrat above is aeptable to agent abeause it is onsistent with its internal theory (sine a proposed it), and beause fromthis set of axioms we an derive a justi�ation for ontrat ompletion(a; b; p). In thisase, the ontrat is suessfully ompleted if delivery terms are ful�lled|i.e. produtis delivered within two weeks| and also payment terms are ful�lled|i.e. the onsumerpays the stipulated prie for the produt, say 10.As noted before, some of the possibilities for ontradition in this model have to dowith the value of the negotiables|in this ase, there are three of them: the time fordelivery D of the produt P by the produer X to the onsumer Y ; and the amountV to be payed by the onsumer Y , as well as the form of payment (initially set forstd , i.e. standard 30-day payment). Hene expressions outome(delivery(X;Y; P );D)and outome(delivery(X;Y; P );D0) are ontraditory if D and D0 are instantiated todi�erent values.At this point the produer a sends this ontrat to the onsumer b, who investigateswithin its internal theory whether some oniting arguments an be derived. Note thatthe onsumer is not trying to blok the onlusion in an stritly opponent fashion|btoo wants to establish the agreement. But beause the ontrat was proposed by theproduer, we an just assume that it is aeptable to a but not neessarily to theonsumer b. For instane, b might want the produt to be delivered at a di�erent date,212



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 213one week earlier than what was initially proposed by the produer. The onsumer thenadds the following lause to the ontrat.outome(delivery(a; b; p);D) prodution time(a; p;D1) ^D is D1 � 7The lause above an be seen as a ritiism to the initially proposed ontrat, as the on-sumer an now derive a oniting argument for outome(delivery(a; b; p); 14), namelyoutome(delivery(a; b; p); 7). Remember from Chapter 6 that this sort of attak ausesthe main laim ontrat ompletion(a; b; p) to beome unsubstantiated.The onsumer b sends this version of the ontrat bak to a, who tries to reonilethe ritiism with the original lauses by attempting to re-substantiate the onlusionontrat ompletion . A new version of the ontrat features hanges based on b ritiism.For example, a an aept b's request for an earlier delivery by updating the onlusionin the lause just introdued by b so that it is now used for speifying the new agreeddelivery time. set(delivery(a; b; p);D) prodution time(a; p;D1) ^D is D1 � 7The lause above spei�ally addresses the delivery of produt p by a to b, as opposed tothe more generi formula proposed initially. This may still be valid in general, but herewe implement a sort of prioritisation based on reeny allowing only the most reentlause among the possible (unifying) de�nitions of set(T; V ) to be used in a derivation.But nothing omes without a prie, so a may introdue other hanges to ompensatefor this onession of delivering a produt one week earlier than usual. For instane, amay inrease by 10% the amount to be harged for p.set(payment(b; a; p); (V; std)) prie(a; p; V1) ^V is V1 + 0:1� PAfter these hanges a justi�ation for ontrat ompletion an again be derived, withdelivery set to an earlier date but at a higher ost. The produer sends this new versionof the ontrat bak again to b, who an either agree with it or provide some morereasoned ritiism. Suppose that b still does not �nd this deal aeptable and asks for



a further disount of 15% on the value of the produt. This is done by adding thefollowing lause to the ontrat, whih suggests a smaller ost to be harged for p thanthe one stipulated by a. outome(payment(b; a; p); (V; std)) prie(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15� V2Again there is a ontradition, and so ontrat ompletion is one more unsubstantiated.This time a an aept b's request for a disount, but not without onstraining thepayment form from standard 30-day to immediate.set(payment(b; a; p); (V; imm)) prie(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15� V2The produer sends this ontrat again for b's srutiny. If b annot �nd any more reasonsfor not aomplishing the agreement suessfully|e.g. b has no target requirements withrespet to payment form, and all other requirements with respet to delivery and priehave been met|then b agrees with the urrent proposal. The �nal binding ontratthat sets the terms for the supply of p by a to b is then desribed below. Note that onlythe more reent lauses de�ning eah ontratual term are kept, in aordane with thesort of prioritisation mentioned above.1 ontrat ompletion(X;Y; P )  produer (X;P ) ^onsumer (Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))2 ful�ll(T )  set(T; V ) ^outome(T; V )5 outome(T; V )  set(T; V )6 produer (a; p)  true7 onsumer (b; p)  true8 prodution time(a; p; 14)  true9 prie(p; a; 10)  true10 set(delivery(a; b; p); D)  prodution time(a; p;D1) ^D is D1 � 711 set(payment(b; a; p); (V; imm))  prie(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15 � V2214



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 215This example illustrates the type of proess in whih we are interested in onnetionwith the problem of ontrat-based negotiation in multi-agent domains. The argumentsexhanged between the agents during this proess are onerned primarily with what isaeptable to eah of them, and with how to adapt the ontrat so that these are takeninto onsideration.Next we disuss how to instantiate arhiteture in order to apture this proess as adynami argument generated by the mehanism desribed in Chapter 8.12.2 Instantiating the Arhiteture in an Agent SenarioThis setion desribes how the example above an be modelled in our dynami argu-mentation framework, derived from the existing implementation of the system. Herewe de�ne eah omponent of the arhiteture as desribed in Chapter 10, as well as asuitable library of domain-spei� revision shemata. The implementation desribed inChapter 8 is then used to automatially generate dynami arguments about the ontratbeing suessfully ompleted, produing a mutually aeptable ontrat when all attaksgenerated by the agents via the de�ned revisions have been appropriately dismissed.12.2.1 The Theory: The Contrat between Produer and ConsumerLet a; b be two autonomous agents|produer and onsumer, respetively|negotiatingthe terms of a ontrat regarding the supply of a partiular produt p. This ontratis represented by a theory � in the Horn lause resolution-based language desribed inSetion 12.1.2. This theory ontains, in partiular, a top-level goal speifying the termsfor the suessful ompletion of the ontrat.In this example, this is instantiated in Prolog style as follows:main(ontrat).provability(ontrat, solve).theory(ontrat, TInit).where TInit is the initial list of axioms given in Setion 12.1.3, and solve is a meta-interpreter for deriving arguments by means of resolution-based proof rules.



The adjustment of � is then guided by a dynami argument about the suessful om-pletion of the ontrat|i.e. about ontrat ompletion(a; b; p). Attaks are generatedby a and b; or, in this arhiteture, by the ritiism theories.12.2.2 The Critiism Theories: Produer and ConsumerOne interesting aspet of this example is that it illustrates the uses of two ritiismtheories in the arhiteture. Let �a and �b represent the internal theories of agents aand b, respetively. Within eah agent's theory we assume that there is a module thataounts for ontrat manipulation and negotiation whih is based on some provabilityrelation. In partiular, let �a � �a, �b � �b be suh subsets of agents a and b'sinternal theories. For the sake of larity, we assume that the languages underlying �,�a and �b are equivalent, meaning that agents have agreed on a set of terms andde�nitions to be used in ontrats. However, we make no further assumptions aboutagents' theories, in partiular about the way beliefs are represented or revised. In fat,the rest of an agent's theory does not even need to be logial, as illustrated in Figure12.2. �a �b�b��aFigure 12.2: Contrat-based negotiation in the arhiteture.In this proess, the role of the ritiism theory is played by the sub-theories or modules�a and �b . The question now is how to de�ne these modules.Devising a formalism for representing autonomous, negotiating agents is outside thesope of this thesis. However, in order to experiment with our ideas and further inves-tigate the relation between negotiation and dynami argumentation, we have de�ned asimple representation language for the agents' ontrat manipulation module so that wean apture the sort of argument given in the previous example. This domain-spei�language is essentially used to desribe the range of aeptability for ontratual termsfor the agents, and what possible adjustments and onessions ould be made in eah216



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 217ase. Below we desribe the terms used for speifying this for individual agents of eahtype|namely, onsumers and produers.Consumers Remember that from a onsumer's perspetive, the ritiism theory al-lows the generation of arguments for attaking the suessful ompletion of the ontrat.These attaks, as disussed in Setion 12.1.3, are essentially rebuttal attaks of the form:outome(T; V ) : in; outome(T; V 0) : infor di�erent values V and V 0 suh that V 0 is better for b (e.g. heaper). Arguments inthe ritiism theory will then give possible aeptable values for ontratual terms. Therole of onsumers is then to make suh proposals throughout the negotiation proess.In partiular, the expression aeptable value(T; V;NV ) is used to obtain a new valueNV for a ontratual term T whih is aeptable|or more aeptable|to the onsumer(as opposed to the urrent value V ). The following lauses for instane de�ne theontrat manipulation module for agent b in the example from Setion 12.1.3.1 aeptable value(delivery(X; b; p); V; 7) Di� is V � 7 > 0 ^reonile(delivery(X; b; p); V �Di� )2 aeptable value(payment(b;X; p); (V; ); (V � 15%; )) V > 10 ^reonile(payment(b;X; p); (V � 15%; ))The expression reonile(T; V ) suggests that V should be inorporated to the orre-sponding ontratual lause for T , thus giving a new outome for T whih ontraditsthe one previously derived.Similar to the fault tree ase, if we onsider these expressions to be assumptions, thenwe an use abdution to selet whih adjustments are needed in order to reonile theritiism with the original lauses in the ontrat. For instane, if we take Lrit to be aHorn lause based language, and `rit to be an abdutive provability relation, then thefollowing is an argument supporting the proposal of an earlier delivery for p:freonile(delivery (a; b; p); 14� 7)g `rit aeptable(delivery(a; b; p); 14; 7)



Note that the desription of b's ontrat manipulation module is haraterised withinthe arhiteture as follows:rit(b).provability(b, solve abd).theory(b, TCrit b).where TCrit b is the list of axioms above and solve abd is an abdutive meta-interpreterfor these axioms.Reall that mappings between a theory and a ritiism theory an be spei�ed as ar-gument shemata|in this ase, revisions are about adding a substantiated lause sup-porting the onsumer's proposal of a oniting outome.Domain-spei� Shema PROPOSAL OF CONTRADICTORY OUTCOME BY CONSUMER: 1)2) 3) 6) 9) 14 in(outome(T; V ); A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(outome(T; V 0); A0;�0)Properties: � supports(A0; outome(T ;V 0) : in; �0);satis�able(B; �) �Conditions: outome(T; V ) : in 2 GA;H;B 2 L;P = H  B;gen argument(b; aeptable value(T; V; V 0); Ab);reonile(T; E) 2 Ab;set(T;Var) B0 2 A;P 0 = outome(T;Var ) B0;adjust(P 0; E; P )The term adjust(P 0; E; P ) denotes that P is obtained by adjusting the variables inaxiom P 0 aording to expression E. Also, remember that b's arguments are generatedvia the orresponding meta-interpreter solve abd:gen argument(b, X, A b) :-theory(b, TCrit b),solve abd(X, A b, TCrit b).Produers From the point of view of the produer, the ontrat manipulation moduleallows new ontrat versions to be generated, in whih arguments an be derived so as to218



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 219reestablish the substantiated status of ontrat ompletion . These attaks, as disussedin the example 12.1.3, have the general form below:ontrat ompletion : out; ontrat ompletion : in.Produers need to deide whether it is possible or not to reonile the onsumer's pro-posal (of outome V 0 for term T ) with the original theory, and if so whih other hangesshould also be arried out. In partiular, we use expression is aeptable(T; V ) not onlyto verify whether a proposal for a ontratual term is aeptable for the produer, butalso to (abdutively) determine if other adjustments and onditions need to hold for V tobeome aeptable. The following lauses for instane de�ne the ontrat manipulationmodule for agent a in the example from Setion 12.1.3.1 is aeptable(delivery(a; Y; p); D) prodution time(a; p;D)2 is aeptable(delivery(a; Y; p); D) prodution time(a; p;D1) ^D < D1 ^prie(a; p; V ) ^reonile(payment(Y; a; p); (V + 10%; ))3 is aeptable(payment(Y; a; p); (V; std)) prie(a; p; V )4 is aeptable(payment(Y; a; p); (V; std)) prie(a; p; V 1) ^V < V 1 ^reonile(payment(Y; a; p); ( ; imm))Note that the logial system underlying this ritiism theory is equivalent to the oneadopted by the onsumer b: same language Lrit , same abdutive provability rela-tion `rit , and same set of abduibles|namely, the set of expressions of the formreonile(T;E). The desription of a's ontrat manipulation module is then har-aterised within the arhiteture as follows:rit(a).provability(a, solve abd).theory(a, TCrit a).where TCrit a is the list of axioms above and solve abd is the abdutive meta-interpreteralso used by b.



Thus to defend from the sorts of attaks put forward by a onsumer, produers need toadapt the lause supporting the ontraditory proposal so that it is used to speify thenew agreed value for the ontratual term in question. In this ase hanges are aboutupdating this lause by revising its onlusion. Abdution an indiate whether otherrevisions need to be made|e.g. whether substantiated lauses need to be added so asto reonile other ritiisms with the original axioms.Domain-spei� Shema COUNTER-PROPOSAL FOR CONTRACT COMPLETION BY PRO-DUCER: 1) 2) 4) 7) 11) 23out(ontrat ompletion(X;Y; Pr); A;�);retrat (misonlusion(P )); add(misonlusion(P 0)); revise(�; fPg; fP 0g [ A0;�0);in(ontrat ompletion(X;Y; Pr); A0;�0)Properties: � supports(A0; ontrat ompletion(X ;Y ;Pr) : in;�0);satis�able(B;� [ A0) �Conditions: ontrat ompletion(X;Y; Pr) : out 2 GA;ontrat ompletion(X;Y; Pr) B 2 �;outome(T; V 0) : in; outome(T; V ) : out 2 GA;gen argument (a; is aeptable(T; V 0); Aa);P = outome(T; E) B0 2 A;H 0 = set(T;Var) 2 L;P 0 = H 0  B0;A0 = fPi j reonile(Ti; Ei) 2 Aa;P 0i = set(Ti;Var i) Bi 2R � [ fP 0g;adjust(P 0i ; Ei; Pi)gNote that 2R orresponds to the usual set-membership 2 operator restrited to a reenyordering R in the set (list) of axioms. That is, X 2R S selets the most reent elementin S that uni�es with X.12.2.3 The Control ModuleWith respet to preferenes, priority measures ould be de�ned from two perspetives.On one hand, agents an have preferenes based on utility funtions, values (Fox andParsons 1998) or expliitly represented by means of a speial meta-prediate (Sierraet al. 1997b). These are spei�ed within the agents theories and an be used to prioritiseritiisms. 220



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 221On the other hand, we an also have riteria for preferring one lause over anotherin a ontrat (e.g. the one introdued most reently). In any ase these notions ofprioritisation onform to the arhiteture in Setion 10.3, but in this example we onlyimplement the latter. Beause we are adopting a fairly simple spei�ation languagefor the agents' ontrat manipulation module, we assume in this ase that argumentsgenerated in the ritiism theories have equal weight.Similarly to solve filter in the fault tree example,3 this sort of reeny-based pri-oritisation onerns the generation of individual arguments. Assuming an ordering ofreeny among axioms, a layered meta-interpreter an then prioritise onsequenes inthe theory, bloking any derivation whih is based on an earlier de�nition of a lause.In terms of our arhiteture, this is represented as follows:filter(solve, solve reeny).states that solve reeny onsiders the underlying reeny ordering for �ltering argu-ments onstruted by solve, allowing only those based on the most reent de�nitions ofa prediate to be advaned. The prediate solve reeny (rather than solve) is used togenerate prioritised arguments from the ontrat:gen argument(ontrat, X, A) :-theory(ontrat, T),solve reeny(solve(X, A, T)).Thus this example populates the bottom-left box for argument prioritisation in Figure11.6.It is important to note that ontrats are de�ned and altered in terms of agents' internaltheories and target requirements. In this sense, they are similar to KQML messages,where the use of performatives is desribed in terms of the agents' ognitive states(Labrou and Finin 1994). However, di�erently from KQML, ontrats are strutures|or objets|whih are manipulated by agents and used to test whether ertain propertiesare satis�ed or not.By instantiating the arhiteture in this way, the sorts of dynami argument mehanisms3 See Setion 11.1.3.



disussed in Part II an then be applied in order to obtain, for instane, the �nal ontratin the example above.12.3 A Dynami Argument for Contrat FormationA ouple of remarks in omparison to the previous adaptation of the arhiteture inChapter 11 should be made at this point. First, in this ase we have all the shematabeing instantiated by external soures of ritiism. No shema is dependent on thetheory only.Seond, eah agent has aess to its library of shemata only. In fat, � ould berepresented as follows:� = �PRODUCER [ �CONSUMER, where�PRODUCER = fCOUNTER-PROPOSAL FOR CONTRACT COMPLETIONg�CONSUMER = fPROPOSAL OF CONTRADICTORY OUTCOMEgReall that this is similar to the sort of disussion about disputes and argument gamesin Setion 9.1.1 between opponents and proponents.Now that the arhiteture and a atalogue � of attak-based revision shemata havebeen spei�ed, the system in Setion 8.1.2 an be used to generate the dynami argumentin Setion 12.1.3 in an automated form.So let TInit be the initial theory as desribed in Setion 12.2.1, and � as de�ned above.Below we present a dynami argumentation proess about ontrat ompletion(a; b; p)as generated by our implementation. Aording to De�nition 4.7, the �rst argumentto be advaned is a justi�ation supporting the main laim that the ontrat will besuessfully ompleted.Argument A0 is a justi�ation for ontrat ompletion(a; b; p) advaned by a, based onoutome(delivery(a; b; p); 14) and outome(payment(b; a; p); (10; std)).Revision �1 is obtained from shema PROPOSAL OF CONTRADICTORY OUTCOME, andfrom the argument for aeptable value(delivery (a; b; p); 14; 7) in b's ritiism modulewhih is based on reonile(delivery (a; b; p); 14� 7).222



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 223Argument A1 is a justi�ation for outome(delivery(a; b; p); 7) advaned by b.Revision �2 adapts the ontrat through shema COUNTER-PROPOSAL FOR CONTRACTCOMPLETION based on the a's argument for is aeptable(delivery (a; b; p); 7) gener-ated from reonile(payment(b; a; p); (10 + 10%; )) .Argument A2 is a justi�ation for ontrat ompletion(a; b; p) advaned by a, based onoutome(delivery(a; b; p); 7) and outome(payment(b; a; p); (11; std)).Revision �3 is obtained from shema PROPOSAL OF CONTRADICTORY OUTCOME, andfrom the argument for aeptable value(payment(b; a; p); (11; ); (9:35; )) in b's riti-ism module whih is based on reonile(payment(b; a; p); (11� 15%; )) .Argument A3 is a justi�ation for outome(payment(b; a; p); (9:35; std)) advaned by b.Revision �4 adapts the ontrat through shema COUNTER-PROPOSAL FOR CONTRACTCOMPLETION based on a's argument for is aeptable(payment(b; a; p); (9:35; imm))generated from reonile(payment(b; a; p); ( ; imm)).Argument A4 is a justi�ation for ontrat ompletion(a; b; p) advaned by a, based onoutome(delivery(a; b; p); 7) and outome(payment(b; a; p); (9:35; imm)).12.4 Issues Raised by this ExampleThe type of appliation proposed in this hapter relates a style of reasoning that isommon in multi-agent senarios to the sort of argument dynamis that we have exploredin this thesis. What we have done is to redue a problem of ontrat negotiation to thegeneration of a dynami argument in whih ritiism theories are omponents of theagents.Note that in the ase of the fault tree obtaining the ritiism theory was atually astraightforward task, as fault trees are standard pratie in the safety domain and thuswidely available. In the ase of agent-based appliations, however, we felt the need ofdevising a simple spei�ation language for individual agents in order to illustrate ourideas. This language, though, is quite spei� to this appliation and more thought



should be given on how it relates to existing proposals for agent formalisms and arhi-tetures. As a matter of fat, our implementation is essentially sequential, and no formof agent ommuniation or interation is presribed.This opens interesting possibilities for researh, in whih for instane di�erent agents anadopt di�erent proof strategies and at in parallel in order to explore possible attaksin di�erent ways.
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Part IVConlusions and Disussion
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Chapter 13Contributions
The overall goal of the researh desribed in this thesis is to explore the role of formalargumentation systems in the area of knowledge engineering. As stated in Chapter 1,our work has been guided by two leading, general questions, namely:� How an knowledge engineers bene�t from argumentation-based approahes toknowledge representation and reasoning?� How an we improve the methodology for building systems for supporting suhtasks?Regarding the �rst question, there is no doubt that the general paradigm of argument-based reasoning has proved appliable to a variety of tasks, espeially those involvinginonsistent and inomplete information. Chapter 3 gave a detailed analysis of the sortsof problems that an be takled by this means, and throughout the thesis we havepresented other appliations and examples of uses of argumentation.This links to the seond question above. Again, as disussed in Chapter 1, we weremotivated by the need to take more omplex arguments into aount in a systematiway. The way we did that was �rst by identifying a partiular type of argumentationproess whih ould allow for di�erent types or argument to be represented, and then byonstruting an abstrat formal framework for apturing those proesses and allowingfor domain-spei� appliations to be instantiated from this framework.227



We took a pragmati approah to formal argumentation and to the generation ofdynami arguments, whih was essentially based on atalogues of (domain-spei�)shemata for generating arguments and attaks. The development of our frameworkwas steered by the questions stated in Chapter 2, whih are reprodued below beforewe summarise the main tehnial ontributions of this thesis.� Whih onepts are involved in argument dynamis, and whih of these would beinteresting to formalise? Can these be de�ned in a general way or are they (orsome of them) domain-spei�?� How to represent and generate an argument? What types of arguments are im-portant to be represented?� How do arguments relate to eah other and what types of relationships an bede�ned between arguments?� Where do attaks ome from?� What mehanisms are used to prioritise arguments, and how an ontextual (do-main) information be inorporated into suh mehanisms?� When do dynami arguments terminate?Exploring these questions produed the following main ontributions:A Problem-oriented Classi�ation of Argument-based Researh.Chapter 3 haraterised the types of problems in knowledge engineering that anbe addressed by argumentation. These problems range from non-monotoni anddefeasible reasoning to deision making under unertainty, and from negotiationto design.A Formalisation of Dynami Argumentation.First of all, in Chapter 2 we have haraterised exatly what we mean by argumentdynamis, and how these ompare to other approahes to formal argumentation.Dynami arguments are based on the generation of proesses of argument exhange228



CHAPTER 13. CONTRIBUTIONS 229where the knowledge base from whih arguments are derived is dynami, i.e. itan be hanged during the proess itself. Arguments are essentially proofs givenvia an underlying provability relation from this knowledge base. The onept ofdynami argumentation is novel in itself, although related to what is sometimesreferred to as proedural models of argumentation (see Setion 3.1). In this sense,we are onerned with showing that this onept|dynami argument|is usefuland usable.A novel formalisation of dynami argumentation was given in Chapter 4, basedon attak-based revisions used for revising a knowledge base so as to generate apartiular attak. In onnetion with this formalisation, we have taken a novelview of theories (i.e. knowledge bases) as arguments, and dynami argumentationas a proess for theory transformation guided by attaks.A Preise Charaterisation of Attaks.Chapter 6 presented a preise, well-founded haraterisation of attaks, and ofpossible ontraditions in arguments.An Analysis of the Relation between Argumentation and TMS.In our representation we were able to e�etively ompare the funtions of truthmaintenane systems and argumentation. We also have shown that it is possibleto use a truth maintenane system mehanism for implementing and maintainingthe struture of laims whih an be attaked during a dynami argument (Setion6.4).Implementation of a Mehanism for Generating Dynami Arguments.We have de�ned a general mehanism for argument generation from the perspe-tive of transformation of theories. Every step of argument is represented by ageneral attak-relation between the original theory and a revised theory (Setion7.1), and the theory may be revised until no more attaks an be generated.Two dynami argumentation systems have been implemented from this mehanismby onsidering di�erent possibilities for attak generation based on the lassi�a-tion of argument shemata presented in Chapter 7:



� one system generates attaks interatively by querying for appropriate in-formation eah time it reahes seletion points in this lassi�ation (Setion8.1.1)� the other generates attaks automatially from a atalogue of argumentshemata previously obtained from the lassi�ation (Setion 8.1.2).A Method of Speifying Argument Shemata.We have devised a formal lassi�ation of argument shemata (Chapter 7), whihis essentially an abstrat top-down approah to apture argument struture, andobtaining argument shemata for generating attaks. This lassi�ation, whih isbased on an underlying logi programming based theory, was de�ned in terms ofthe general types of attak (Chapter 6), and inspired by standard argumentativestrutures from studies in the �elds of informal logi and argumentation theory(Chapter 5).A ruial element in this approah is the notion of properties assoiated to eahrewrite. Properties aumulate as we go down in the hierarhy of rewrites de�ningpossible argument shemata, and they give a large exibility to our framework andto designers of atalogues of (domain-spei� shemata). Chapter 8 desribed away to de�ne a atalogue of domain-spei� shemata from this lassi�ation.Setion 8.3 in partiular disussed the use of properties in great detail. Moredomain-spei� shemata were de�ned later in the appliations in Part III.We also have shown that this lassi�ation is omplete up to a ertain point. Otheruses of our proposed methodology are also supported, suh as ommuniation andretrospetive analysis of arguments (Chapter 9).A General Arhiteture for Dynami Argumentation SystemsWe have devised an arhiteture that elaborates on the mehanisms for dynamiargument generation so as to allow for external instantiation of revision shemata,and for attaks based on priorities and preferenes (Chapter 10).
230



CHAPTER 13. CONTRIBUTIONS 231Instantiation of Appliations.Beause we annot formally prove the orretness of our model, appliations areneessary to judge the relevane of the theory. We have takled two distintproblems by adapting the arhiteture to domain-spei� senarios. This is doneby maintaining the overall, generi mehanism for generating dynami arguments,but allowing for domain-spei� adaptation of the omponents of the arhiteture,and of the atalogue of revision shemata (Chapters 11 and 12).In summary, we have given details of dynami argumentation generators and of anarhiteture of dynami argumentation systems. Also, we have presented an analysisof various examples and of di�erent problems with similar grounds in argumentation,based on the same arhiteture. Linked to some of these examples we have presented arestrited analysis of prioritisation.





Chapter 14What Next to Do?
Throughout this thesis we have touhed upon many related issues of interest, unsolvedproblems and possible avenues for future work. In this hapter we look arefully at theseissues, elaborating upon the limitations of our approah as well as the limitations of thisdoument, and expanding some of the topis whih we believe deserve|or require|further exploration.14.1 The Fine PrintSome of the shortomings of this thesis are intrinsi to our researh given the sope ofour problem and the appliability of our formalism.The most obvious limitation is that innumerable forms and types of arguments thatannot be aptured by our model. This is �ne, though, beause we do not aim atformalising argumentation. Our perspetive of the problem is that argumentation anbe used to model partiular styles of reasoning|and not that formal styles of reasoningan be used to model argumentation. A similar distintion is made by Reed (1997).In fat, the sorts of problems that an be aptured as dynami arguments are thosethat an be idealised as operations and transformations over sets of axioms whih anbe guided by arguments. This is a very abstrat problem desription, and similarly thesolution we provided was as abstrat as possible. Essentially, we assume that theoriesan be expressed as sets of axioms, and that suitable prede�ned atalogues of revisionshemata are available from start. 233



By taking this view we have desribed a way of automating the generation of dynamiarguments. Remember from Chapter 2 that one of the reasons why we believe it isimportant to formalise and automate argumentation proesses is beause argument-based methodologies should be supported by (semi-) automated tools, whih an bothguide knowledge engineers in developing knowledge bases that derive the intended on-sequenes, and also support designers of argument systems in investigating propertiesand e�ets of ertain attaks and revisions in a domain. Also, automated argumenta-tion systems an be used by arti�ial agents that want to employ this solution to solvepartiular problems.However, suh a level of abstration has made it very hard to demonstrate general formalproperties of the framework and to make stronger laims about the types of argumentproesses that are generated. It is diÆult to prove for instane whether argumentswill terminate just by looking at a set of possible (unonstrained) revision operations.Other questions may arise suh as how muh do we have to know in advane in orderto de�ne a suitable atalogue.We do not laim that realistially these mehanisms an be used in their target domainsof appliation as they are. Although the lassi�ation provides a systemati way to buildargument shemata, knowledge of formal methods and domain-spei� engineering workare still needed to be put in the task (for instane, on deiding the terms and expressionsto be used in eah partiular domain). This is unlikely to be a trivial task, and supporttools still need to be provided.Related to this we have presented no de�nition of what onstitutes a good dynamiargument. Would it be possible to �nd an appropriate metri so as to evaluate gener-ated arguments automatially? One possibility for evaluation is to have human usersto analyse the plausibility of the arguments. But automati evaluation using some de-�ned metri ould allow for the analysis and omparison of strategies and shemata forargument generation in terms of the quality of the dynami argumentation proesses,and of the �nal, resulting theories.Note that the design of our generi framework as well as the lassi�ation of shematahave been informed by many ideas whih were transferred from the roots of argu-234



CHAPTER 14. WHAT NEXT TO DO? 235mentation theory. And while many onepts underlying our lassi�ation of shematawere built assuming a logi programming representation, the ore onepts of dynamiargumentation|those de�ned in Chapter 4|are logi-independent and should easilyadapt to di�erent logis. This brings up another question, though|namely of howeasy would it be to transfer these logi-spei� onepts aross other hoies of logialrepresentation.In summary, our approah to argumentation is di�erent from the onventional statiapproahes in the literature. By taking this view we have broadened the sope of ap-pliation of argumentation in knowledge engineering ontexts, but we have also made itharder to reognise suitable problems in whih to apply this tehnique. So, how easy isit really to deide whether some problem an be haraterised as dynami argumenta-tion, and what would be a suitable atalogue of revisions in a target domain? To whihdegree does our formalisation, inluding the lassi�ation, presribe how to takle apartiular problem?Maybe some of these questions ould be further eluidated if other limitations of thisthesis had been addressed|in this ase, limitations whih stem from the time-limit ofour researh projet, suh as:� A omplete analysis of the use of priorities and preferenes in argument generationwas not the fous of this thesis, although these an play an important role in thegeneration of arguments. We have only examined this linked to the appliationsof the arhiteture, but not in a deep way.� Linked to this, an analysis of seletion strategies might shed more light on theatual generation of arguments, in partiular to the seletion of arguments andhow this ould a�et the proess, generating more eÆient arguments.So next we desribe a researh wish list, whih we believe would provide learer answersregarding the usefulness and usability of dynami argumentation.



14.2 A Wish ListOur work on arguments and dynamis opens up a number of issues and areas for futureexploration, some of these are disussed below.14.2.1 Analysis of Priorities and PreferenesSetion 11.4 has investigated two ways in whih our arhiteture allows for prioritisationof arguments: one involves the diret omparison of arguments in the theory; the otheris about prioritising individual arguments both in the theory and in the ritiism theoryaording to some measure of quality.This is as far as our analysis has gone, apart from providing some examples in on-netion with the domains of appliation given in Part III. A deeper analysis of suhprioritisation tehniques, espeially in the ontext of Figure 11.6, is fundamental for adeeper understanding of dynami argumentation.14.2.2 Strategies for Seleting ArgumentsThis follows as a onsequene of the work in prioritisation, and an also shed light onaspets of eÆient argument generation in onnetion with proedural and heuristilayers of argument systems disussed in Chapter 3.A trivial strategy for seleting the next argument to be advaned is simply to advanethe �rst argument that is generated. This is partiularly satisfatory if we are able toexplore the whole searh spae of possible dynami arguments, as desribed in Setion8.3. However, given that priority measures and preedene orderings may exist, onemight use this information to deide upon the best possibility, in what is essentially agenerate-and-test approah.Determining whih argument to advane is a atually a di�erent task from that ofseleting whih laim to attak (see Chapter 6). In our approah, the latter is equivalentto seleting whih instane of attak-based shema to apply in the next step. But thistask too an be guided by some sort of prioritisation, e.g. an expliit partial orderingon the shemata in the atalogue �. 236



CHAPTER 14. WHAT NEXT TO DO? 237In any ase, rather than adopting a generate-all-and-selet-best strategy, it would beinteresting to analyse whether we an ombine the tasks of argument generation withthat of seletion so that at eah step in the argument proess one possible argument isgiven.14.2.3 Automated Evaluation of Dynami ArgumentsWhile prioritisation is onerned with the quality of arguments within the theory, eval-uation of dynami arguments would probably take other riteria into onsideration,maybe related to the quality of the �nal theory and to other onepts in the heuristilayer, suh as eÆieny and persuasiveness.Coming up with some metri for this is a diÆult task, and would probably have to beinformed by analysis and experiments with human users.14.2.4 Formal Analysis of the FrameworkAs we have argued before, proving generi formal results about our framework|e.g.termination|is a very diÆult task. This may be made easier if we assume ertainproperties about the sorts of revisions allowed, maybe even in onnetion with templatesand libraries of domain-spei� revisions.There is muh sope for researh in this area. Other areas of study may provide luesand results that ould be appliable to our approah, suh as researh in term rewritingsystems (given that our formalism an be de�ned as suh).14.2.5 Adopting Di�erent Underlying LogisIn many ases, general logi programs may not be the best hoie of representation for atheory. Although we do not ommit to a partiular logi until later in the thesis, muhof what makes it appliable to domains is dependent on this language.This opens an interesting possibility for researh, namely whether we an identify apreise notion of attak and desribe a similar lassi�ation of shemata based on adi�erent representation language, and to what extent the logi-spei� elements in this



thesis ould be reused.14.2.6 Editors and Tools Supporting the Design of Argument SystemsThis is perhaps one of the main areas for improvement in our work. Providing tools suhas shemata editors, with support for the adaptation of properties and for realisti useof argumentation mehanisms in domains of appliations. Support for generi as wellas domain-spei� argument shemata ould also improve usability of this tehnique.14.2.7 Testing PropertiesMaybe in relation to the editors and tools mentioned above, it should be possible tomake a better use of the properties in argument shemata. One possibility, for instane,is to allow users/designers to introdue extra properties, disregard others, or yet de�nenew ones, also testing the onsequenes of these hoies in relation to the outome ofargumentation proesses.14.2.8 Appliations to DomainsThis involves muh more than just adapting the arhiteture so as to generate dynamiarguments in partiular domains. Researh in this area demands identi�ation of suit-able target domains, and a serious analysis of requirements of users/designers in thesedomains.For instane, we have just briey touhed issues like ommuniation of dynami argu-ments, but these are likely to involve di�erent aspets for di�erent domains.14.2.9 Appliation in Real Multi-Agent SenariosRealisti multi-agent appliations are haraterised by aspets and features suh asommuniation languages, interation and parallel proessing. It would be interestingto examine preisely how our mehanisms ould �t within suh senarios, and also howdynami argumentation relates to existing languages for negotiation.
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Appendix ABasi Syntax: LogiProgramming
This appendix gives the basi syntax of logi programming theory used in this thesis.For a omplete aount of logi programming theory, see (Lloyd 1987; Apt 1995).Syntax. The syntax of logi programs is based on the usual onepts of terms, atomsand well-formed formulae from �rst order languages. A literal is an atom (positiveliteral) or the negation of an atom (negative literal).A program lause, or de�nite lause, is a lause of the form:H  B1 ^ ::: ^Bn (A.1)where H;B1; :::; Bn are positive literals. H and B1 ^ ::: ^ Bn are alled the head andbody of the lause, respetively. A goal lause is a lause of the form: B1 ^ ::: ^Bn (A.2)A Horn lause is either a program lause or a goal lause.General lauses are essentially program lauses whih allow negative literals to our inthe body of the lause. A general lause has the form:H  B1 ^ ::: ^Bm ^ not Bm+1 ^ ::: ^ not Bn (A.3)where not stands for negation as failure, and eah Bi is a positive literal.A de�nite logi program is a �nite set of de�nite lauses. A general logi program is a�nite set of general lauses. General logi programs are sometimes alled normal logiprograms.The body of a lause an be denoted by a single bold letter B representing a onjuntionof literals. Individual literals are denoted by the (possibly indexed) letter B.239



Substitution and Uni�ation. Uni�ation gives means to ompute values in logiprograms. Variables Vi an be assoiated with terms Ti via substitutions of the form� = [Vi=Ti℄. Uni�ation is onerned with �nding a substitution whih an be appliedto two expressions and make them syntatially idential.The most general uni�er is the simplest substitution that unify two expressions. Asubstitution � that represents the most general uni�er between two expressions sentenesis denoted by mgu.Also, we use the expression F[T1=T2℄ to denote the formula obtained from a formula Fby replaing every ourrene of a term T1 by term T2.
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Appendix BBasi Notation: Trees andGraphs
This appendix gives the basi notation used in this thesis for representing trees anddireted graphs. Trees are mainly used to represent arguments, whereas more generidireted graphs are used to express dependenies between laims in an argument.B.1 Direted GraphsA graph G is a pair (V; E) of verties (or nodes) and edges (or links), respetively. Theset of verties of a graph G an be referred to as V(G), and the set of edges as E(G).A graph is said to be direted if the edges have an orientation. An edge  ,! ' is saidto initiate at node  and terminate at node '.For the type of appliation in this thesis, it is useful to di�erentiate between two types ofedges, namely those initiating at a supporting node, and those initiating at a onitingnode:� if  supports ' then  ,! ' is said to be a supporting link;� if  onits with ' then  ,! ' is said to be a oniting link.Alternatively, edges an be represented diagrammatially as follows, where dotted linesdenote a oniting link. ' ' OO  OO
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Moreover, we are interested in direted graphs with labelling funtions for expressingthe support status of eah node. The labelling funtion assoiated with a graph G isdenoted by: labelG : V(G) 7! fin;outgThe status labelG( ) assoiated with eah node in G may be determined either by anexternal fator (e.g. given by some other labelling funtion), or by means of an operatorV that derives this value from the status of other nodes in the graph.Essentially, V gives the status in only if all supporting nodes of  in G are in, and alloniting nodes of  in G are out; otherwise, V derives out. This operator an beapplied given that other nodes have their labels already de�ned, thus forming the basestep of the de�nition.B.2 Argument TreesA tree is essentially an ayli, onneted graph. In partiular, here we use rooted treesfor representing arguments derived from a provability relation, suh that lower nodessupport the onlusion above. In this representation, nodes in an argument tree haveat most one parent.Eah premise P of the form H  B1 ^ ::: ^ BN in an argument de�nes a tree withroot H and subtrees AB1 ; :::; ABN orresponding to the arguments supporting sentenesB1; :::; BN , respetively. Suh trees are denoted here by the expression:tree(H; P; fAB1 ; :::; ABN g).
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Appendix CHarnessing Argument Rewriting
This appendix ontains the possible shemata for argument revision as represented inFigure 7.2 and produed by the rewriting system of Setion 7.3. Altogether they indiatethe general format of attak, with properties aumulated down the lassi�ation andonditions that give the struture of the premises to be added and retrated (inluding2-onditions from the previous rewrites that an be used selet appropriate instanesof an attak).C.1 Trivial RevisionsApplying Argument Rewrites 1) 2) 3) 6) 8in(X;A;�);trivial(fg; fg); revise(�; fg; fg;�0);in(Y;A0;�0)Properties: 8<: attaks(A0; A);onsistent(�0);supports(A0; Y : in;�0) 9=;Conditions: X : in 2 GA;Y 2 onit(X)Applying Argument Rewrites 1) 2) 4) 7) 8out(X;A;�);trivial(fg; fg); revise(�; fg; fg;�0);in(X;A0;�0)Properties: 8<: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0) 9=;Conditions: X : out 2 GA243



C.2 Elementary Revisions for Adding an ArgumentC.2.1 Adding a FatApplying Argument Rewrites 1) 2) 3) 6) 9) 13in(X;A;�);add(fat(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>><>>: attaks(A0; A);onsistent(�0);supports (A0; Y : in;�0);unify(Y;H) 9>>=>>;Conditions: X : in 2 GA;Y 2 onit(X);H 2 L;P = H  trueApplying Argument Rewrites 1) 2) 4) 7) 9) 13out(X;A;�);add(fat(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>><>>: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0);unify(X;H) 9>>=>>;Conditions: X : out 2 GA;H 2 L;P = H  true
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APPENDIX C. HARNESSING ARGUMENT REWRITING 245C.2.2 Adding a Substantiated RuleApplying Argument Rewrites 1) 2) 3) 6) 9) 14in(X;A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports(A0; Y : in;�0);unify(Y;H);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H;B 2 L;P = H  B;� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 9) 14out(X;A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports (A0; X : in;�0);unify(X;H);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H;B 2 L;P = H  B;� = mgu(X;H)



C.2.3 Adding a Burden Shift RuleApplying Argument Rewrites 1) 2) 3) 6) 9) 15in(X;A;�);add(burden shift rule(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports(A0; Y : in;�0);unify(Y;H);:satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H;B 2 L;P = H  not B;� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 9) 15out(X;A;�);add(burden shift rule(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0);unify(X;H);:satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H;B 2 L;P = H  not B;� = mgu(X;H)
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APPENDIX C. HARNESSING ARGUMENT REWRITING 247C.3 Updating Revisions for Adding an ArgumentC.3.1 Removing Irrelevane in a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 19in(X;A;�);retrat (irrelevane(P )); add(irrelevane(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>>>><>>>>>>: attaks(A0; A);onsistent(�0);supports (A0; Y : in;�0);unify(Y;H);satis�able((B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^ Bm)�;�);:satis�able(Bi�;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H  B1 ^ ::: ^ Bm 2 �;P = H  B1 ^ ::: ^ Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm,� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 11) 19out(X;A;�);retrat (irrelevane(P )); add(irrelevane(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>>>><>>>>>>: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0);unify(X;H);satis�able((B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^ Bm)�;�);:satis�able(Bi�;�)
9>>>>>>=>>>>>>;Conditions: X : out 2 GA;H  B1 ^ ::: ^ Bm 2 �;P = H  B1 ^ ::: ^ Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)



C.3.2 Generalising a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 21in(X;A;�);retrat (generalisation(P )); add(generalisation(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>>>><>>>>>>: attaks(A0; A);onsistent(�0);supports (A0; Y : in;�0);unify(Y;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(Y;H�0)Applying Argument Rewrites 1) 2) 4) 7) 11) 21out(X;A;�);retrat (generalisation(P )); add(generalisation(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>>>><>>>>>>: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0);unify(X;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�)
9>>>>>>=>>>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(X;H�0)Notie that in these shemata the property ground(P;�) � ground (P�0;�) holds byonstrution beause �0 is an inverse substitution.
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APPENDIX C. HARNESSING ARGUMENT REWRITING 249C.3.3 Revising the Consequent of a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 23in(X;A;�);retrat (misonlusion(P )); add(misonlusion(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports (A0; Y : in;�0);unify(Y;H 0);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(Y;H 0)Applying Argument Rewrites 1) 2) 4) 7) 11) 23out(X;A;�);retrat (misonlusion(P )); add(misonlusion(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports (A0; X : in;�0);unify(X;H 0);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(X;H 0)



C.3.4 Reversing a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 25in(X;A;�);retrat (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports (A0; Y : in;�0);unify(Y;B);satis�able(H�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 onit(X);H  B 2 �;P = H  B;� = mgu(Y;B);P 0 = B  HApplying Argument Rewrites 1) 2) 4) 7) 11) 25out(X;A;�);retrat (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>><>>>>: attaks(A0; A);onsistent(�0);supports(A0; X : in;�0);unify(X;B);satis�able(H�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;� = mgu(X;B);P 0 = B  H
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APPENDIX C. HARNESSING ARGUMENT REWRITING 251C.4 Elementary Revisions for Removing an ArgumentRemember that the property attaks holds if an argument in the revised theory attaksan argument in the original theory. Hene in this ontext attaks(A;A) does not standfor self-defeating arguments, but rather it denotes that argument A in �0 is a refutationof argument A in �.C.4.1 Retrating an Invalid RuleApplying Argument Rewrites 1) 2) 3) 5) 10) 16in(X;A;�);retrat (invalid rule(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0 2 subst : aÆrm(B�0 ^ not(H�0))C.4.2 Retrating a Weak RuleApplying Argument Rewrites 1) 2) 3) 5) 10) 17in(X;A;�);retrat (weak rule(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0 2 subst : aÆrm(not(B�0))



C.4.3 Retrating a MisrelationApplying Argument Rewrites 1) 2) 3) 5) 10) 18in(X;A;�);retrat (misrelation(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: attaks(A;A);onsistent (�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0; �00 2 subst :aÆrm(B�0 ^ not(H�0) ^H�00 ^ not(B�00))
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APPENDIX C. HARNESSING ARGUMENT REWRITING 253C.5 Updating Revisions for Removing an ArgumentAgain, note that the property attaks(A;A) denotes that argument A in a revised theory�0 is a refutation of argument A in the original theory �.C.5.1 Elaborating Preonditions in a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 20in(X;A;�);retrat (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>>>><>>>>>>: attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H);satis�able((B1 ^ ::: ^Bm)�;�):satis�able(B�;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;H  B1 ^ ::: ^ Bm 2 A;P = H  B1 ^ ::: ^ Bm;B 2 L;i 2 f0; :::; mg;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)C.5.2 Speialising a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 22in(X;A;�);retrat (speialisation(P )); add(speialisation(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>>>>>><>>>>>>>>:

attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H);ground(P 0;�) � ground(P;�);8(Hg  Bg) 2 ground(P�;�) \ ground (P 0;�)::satis�able(Bg;�)
9>>>>>>>>=>>>>>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;� = mgu(X;H);�0 2 subst ;P 0 = (H  B)�0



Here the property ground(P�0;�) � ground (P;�) also holds by onstrution be-ause �0 is a substitution.C.5.3 Revising the Consequent of a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 24in(X;A;�);retrat (misonlusion(P )); add(misonlusion(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>><>>>>: attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H);:unify(X;H 0) 9>>>>=>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;H 0 2 L;P 0 = H 0  BC.5.4 Reversing a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 26in(X;A;�);retrat (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>><>>>>: attaks(A;A);onsistent(�0);supports(A;X : out;�0);unify(X;H);:unify(X;B) 9>>>>=>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;P 0 = B  H
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Appendix DCheking the Property supports
The property supports ensures whether an argument an be advaned or not in order tosupport the intended laim in the ontext of moves advaned so far. Its main purposeis to avoid irularity and ine�etive repetition of arguments.Intuitively, an argument is not allowed if it has been advaned before to attak the samelaim via the same attak-based revision operation. Moreover, if the revision is non-trivial, then the argument must aount for some premise that has either been retratedor added by the orresponding operation.So, let hA0; �1; A1; :::; �i�1; Ai�1irepresent the argument proess so far, and Ai be an argument in the revised theory ��ithat is generated via the operation �i in order to support a laim C. Then:holds(supports(Ai; C;��i); �i; hA0; �1; A1; :::; �i�1; Ai�1i)ensures that argument Ai is a valid move in the proess.The prediate holds/3 is used to hek the various properties assoiated with an at-tak. Below is the spei�ation urrently used in our system for verifying the propertysupports . Note that as in the ase of any other property, designers of argument systemsmay hoose to relax or strengthen this spei�ation. Prediate argtree member/2 veri-�es if a premise is used the argument; i.e. if it de�nes some sub-tree in the orrespondingargument tree.The prediate nextto/3 is a list operation de�ned in SICStus that heks whether twoelements appear side-by-side in a list.
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%----------------------------------------------------------------% Cheking property: supports%--- trivial revisionholds(supports(A, X:in, Theory), RevisionOp, ArgSofar) :-trivial(RevisionOp),attak type(RevisionOp, X:out ==> X:in),n+ member(A, ArgSofar).holds(supports(A, X:in, Theory), RevisionOp, ArgSofar) :-trivial(RevisionOp),attak type(RevisionOp, X1:in ==> X:in),n+ nextto(A, RevisionOp, ArgSofar).%--- non-trivial revision, where Rem is nonemptyholds(supports(A, C, Theory), RevisionOp, ArgSofar) :-nontrivial(RevisionOp, r(Rem, Add)),member(Axiom, Rem),argtree member(Axiom, A),n+ nextto(A, RevisionOp, ArgSofar).%--- non-trivial revision, where Rem is emptyholds(supports(A, C, Theory), RevisionOp, ArgSofar) :-nontrivial(RevisionOp, r(Rem, Add)),n+ member(Axiom, Rem),member(Axiom, Add),argtree member(Axiom, A),n+ nextto(A, RevisionOp, ArgSofar).Figure D.1: Cheking the property supports .
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Appendix EArhiteture: the Pressure TankExample
This Appendix gives the Prolog �le ontaining the arhiteture de�nition for the pressuretank example, as desribed in Chapter 11.%%% File:%%% arhiteture.pl%%% Author:%%% Daniela Carbogim%%% Purpose:%%% Speify eah omponent of the arhiteture to be%%% used by the argument generator%%%------------------------------------------------------------%%%- Theory -%%%------------------------------------------------------------main(ptmodel).provability(ptmodel, solve).theory(ptmodel,[axiom(1, operational_tank(tank(pt), T),[on(motor(m), T), not_full(tank(pt), T)℄),axiom(2, operational_tank(tank(pt), T),[off(motor(m), T), full(tank(pt), T)℄),axiom(3, not_operational_tank(tank(pt), T),[on(motor(m), T), full(tank(pt), T)℄),axiom(4, on(motor(m), T),[losed(relay(k2), T)℄),axiom(5, off(motor(m), T),[open(relay(k2), T)℄),axiom(6, losed(relay(k2), T),[losed(relay(k1), T), losed(swith(ps), T)℄),axiom(7, open(relay(k2), T),[open(relay(k1), T)℄),axiom(8, open(relay(k2), T),[open(swith(ps), T)℄),axiom(9, losed(relay(k1), T),[losed(relay(timer), T),losed(swith(s1), Tp), preedes(T, Tp)℄),257



axiom(10, open(relay(k1), T),[open(relay(timer), T)℄),axiom(11, losed(swith(ps), T),[not_full(tank(pt), T)℄),axiom(12, open(swith(ps), T),[full(tank(pt), T)℄),axiom(13, losed(swith(s1), T),[initial_time(T)℄),axiom(14, open(swith(s1), T),[initial_time(Ti), greater(T, Ti)℄),axiom(15, losed(relay(timer), T),[timing(relay(timer), TC, T),pressurisation_time(TP), greater(TP, TC)℄),axiom(16, open(relay(timer), T),[timing(relay(timer), TC, T),pressurisation_time(TP), geq(TC, TP)℄),axiom(17, timing(relay(timer), 0, T),[initial_time(T)℄),axiom(18, timing(relay(timer), 0, T),[initial_time(Ti), greater(T, Ti), open(swith(ps), T)℄),axiom(19, timing(relay(timer), TC, T),[previous(T, Tp),timing(relay(timer), TCp, Tp), inrement(TCp,1,TC)℄),axiom(20, full(tank(pt), T),[pressurisation_time(TP), mod(T, TP, 0)℄),axiom(21, not_full(tank(pt), T),[pressurisation_time(TP), mod(T, TP, X), greater(X, 0)℄),axiom(22, previous(T, Tp),[initial_time(Ti), greater(T, Ti), inrement(T,-1,Tp)℄),axiom(23, preedes(T, Tp),[previous(T, Tp)℄ ),axiom(24, preedes(T, Tp),[previous(T, Tp1), preedes(Tp1, Tp)℄ ),axiom(25, initial_time(0), true),axiom(26, pressurisation_time(60), true)℄).%%%--- Confliting prediatesonflit(operational_tank(P, T), not_operational_tank(P, T)).%%%--- Provability relation for the theorysolve([℄, [℄, _Theory).solve([X|R℄, [ArgX|ArgR℄, Theory) :-solve(X, ArgX, Theory),solve(R, ArgR, Theory).solve(true, true, _Theory).solve(X, arg(X, Id, ArgB), Theory) :-member_list(axiom(Id, X, B), Theory),solve(B, ArgB, Theory).solve(X, arg(X, pmtv, true), _Theory) :-primitive_pred(X), X.primitive_pred(greater(_,_)).primitive_pred(geq(_,_)).primitive_pred(inrement(_,_,_)).primitive_pred(mod(_,_,_)). 258



APPENDIX E. ARCHITECTURE: THE PRESSURE TANK EXAMPLE 259
%%%------------------------------------------------------------%%%- Critiism Theory -%%%------------------------------------------------------------rit(ftree).provability(ftree, solve_abd).theory(ftree,[axiom(e1A, tank_rupture, [primary_failure(tank(pt))℄),axiom(e1B, tank_rupture, [ontinuous_pump_operation℄),axiom(e2A, ontinuous_pump_operation, [primary_failure(relay(k2))℄),axiom(e2B, ontinuous_pump_operation, [emf_applied_on(relay(k2))℄),axiom(e3, emf_applied_on(relay(k2)),[primary_failure(swith(ps)), emf_applied_on(swith(ps))℄),axiom(e4A, emf_applied_on(swith(ps)), [primary_failure(swith(s1))℄),axiom(e4B, emf_applied_on(swith(ps)), [emf_applied_on(relay(k1))℄),axiom(e5A, emf_applied_on(relay(k1)), [primary_failure(relay(k1))℄),axiom(e5B, emf_applied_on(relay(k1)), [primary_failure(relay(timer))℄)℄).%%%--- Provability relation for the ritiism theory:- dynami solve_abd/3.solve_abd([℄, [℄, _FTree).solve_abd([X|R℄, Arg, FTree) :-solve_abd(X, ArgX, FTree),solve_abd(R, ArgR, FTree),append(ArgX, ArgR, Arg).solve_abd(true, [℄, _FTree).solve_abd(X, [X℄, _FTree) :-abduible(X).solve_abd(X, A, FTree) :-member_list(axiom(_Id, X, B), FTree),solve_abd(B, A, FTree).abduible(primary_failure(_)).



%%%------------------------------------------------------------%%%- Control Module -%%%------------------------------------------------------------filter(solve_abd, solve_filter).%%%--- Measure values for ritiism theory(ftree, solve_abd)m_ftree(abduible(primary_failure(tank(pt))), 5.0e-06).m_ftree(abduible(primary_failure(relay(k2))), 3.0e-05).m_ftree(abduible(primary_failure(swith(ps))), 1.0e-04).m_ftree(abduible(primary_failure(swith(s1))), 3.0e-05).m_ftree(abduible(primary_failure(relay(k1))), 3.0e-05).m_ftree(abduible(primary_failure(relay(timer))), 1.0e-04).filter_threshold(M) :-M > 0.1.%%%--- Propagation mehanism solve_filter for solve_abdsolve_filter(solve_abd(X, A, FTree)) :-measure_arg(solve_abd(X, A, FTree), M1),measure_sent(X, M2, FTree),ombine_measure(M1, M2, M),filter_threshold(M).measure_sent(X, M, FTree) :-findall(MX, measure_arg(solve_abd(X, _A, FTree), MX), Ms),ombine_measure_sent(Ms, M).measure_arg((A1, A2), M) :-measure_arg(A1, M1),measure_arg(A2, M2),ombine_measure_arg(M1, M2, M).measure_arg(true, 1).measure_arg(abduible(X), M) :-m_ftree(abduible(X), M).measure_arg(solve_abd(X, A, FTree), M) :-lause(solve_abd(X, A, FTree), B),measure_arg(B, M).measure_arg(A, 1) :-\+ A = true,\+ A =.. [solve_abd|_℄,\+ A =.. [abduible|_℄,\+ A = (_A1, _A2),A.ombine_measure_arg(M1, M2, M) :-M is M1*M2.ombine_measure_sent(Ms, M) :-sum(Ms, M).ombine_measure(M1, M2, M) :-M is M1/M2.%-----------------------------------------------------------------% EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF%-----------------------------------------------------------------260
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