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Abstra
tIn this thesis we are 
on
erned with the role of formal argumentation in arti�
ial in-telligen
e, in parti
ular in the �eld of knowledge engineering. The intuition behindargumentation is that one 
an reason with imperfe
t information by 
onstru
ting andweighing up arguments intended to give support in favour or against alternative 
on-
lusions. In dynami
 argumentation, su
h arguments may be revised and strengthenedin order to in
rease or de
rease the a

eptability of 
ontroversial positions.This thesis studies the theory, ar
hite
ture, development and appli
ations of formalargumentation systems from the pro
edural perspe
tive of a
tually generating argu-mentation pro
esses. First, the types of problems that 
an be ta
kled via the argumen-tation paradigm in knowledge engineering are 
hara
terised. Se
ond, an abstra
t formalframework for dynami
 argumentation is proposed, based on an analysis of dynami
 as-pe
ts of informal argumentation. Formal arguments in this framework are built froman underlying set of axioms, represented here as exe
utable logi
 programs. Finally, anar
hite
ture for dynami
 argumentation systems is de�ned, and domain-spe
i�
 appli-
ations are systemati
ally instantiated from this formalisation. Relevant appli
ationsare presented within di�erent domains, thus grounding problems with very distin
tive
hara
teristi
s into a similar sour
e in argumentation.The methods and de�nitions des
ribed in this thesis have been assessed on variousbases, in
luding the re
onstru
tion of informal arguments and of arguments 
apturedby existing formalisms, the relation between our framework and these formalisms, andexamples of dynami
 argumentation appli
ations in the safety-engineering and multi-agent domains.
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 supervisor in Brazil and the main personresponsible for me 
oming to Edinburgh in the �rst pla
e. Fl�avio himself was a PhDstudent at the former AI Department, in fa
t the �rst one to be supervised by Dave. Abig thank-you also to Wamberto Vas
on
elos for all his tips, advi
e, time and knowledgevii



from the early start.More generally, I thank the sta� of the former AI Department and now Division ofInformati
s|parti
ularly Janet Lee, Olga Franks, Jean Bunten, Deirdre Burke, JaneRankin, Mi
helle Sisz
zuk, Neil Brown, Craig Stra
han, Gordon Reid and John Berry|for the enjoyable and informative 
hats, and for being so helpful in every possible way. Aspe
ial a
knowledgement goes to Olga for her 
ommitment in providing a most 
ompleteservi
e whi
h is the AI Library. Thanks are also due to the Informati
s GraduateS
hool for support provided through the Student Travel Grant, and to the Fa
ulty ofS
ien
e and Engineering for running valuable programmes su
h as the Transferable SkillsProgramme and the S
ien
e and Engineering Mentoring and Springboard Programme.For its dire
t support I would like to a
knowledge the Brazilian National Resear
hCoun
il (Conselho Na
ional de Desenvolvimento Cient���
o e Te
nol�ogi
o, CNPq), un-der grant no. 200074/97-0. Eli Ribeiro and Nelson Prugner in parti
ular have beenextraordinarily helpful and eÆ
ient.Finally, a most heartfelt and loving thank-you to my other half, Z�e, who has given upso mu
h unsel�shly, 
oming with me to Edinburgh, helping me with everything, readingmy drafts, making the right questions. Thanks for your love, and for being there all thetime.

viii



De
larationI hereby de
lare that I 
omposed this thesis entirely myself and that it des
ribes myown resear
h.

Daniela Vas
on
elos CarbogimEdinburghO
tober 20, 2000

ix





Contents
Abstra
t vA
knowledgements viiDe
laration ixList of Figures xixList of De�nitions xxiI Ba
kground and Overview 11 Context and Motivation 31.1 Formal Argumentation and Reasoning . . . . . . . . . . . . . . . . . . . 41.1.1 Truth and A

eptability . . . . . . . . . . . . . . . . . . . . . . . 61.2 The Way We View Arguments . . . . . . . . . . . . . . . . . . . . . . . 61.3 General Questions Addressed in this Thesis . . . . . . . . . . . . . . . . 81.3.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Problem De�nition: Dynami
 Argumentation 112.1 Examples of Dynami
 Arguments . . . . . . . . . . . . . . . . . . . . . . 142.1.1 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Negotiation between Agents . . . . . . . . . . . . . . . . . . . . . 162.2 Spe
i�
 Questions Addressed in This Thesis . . . . . . . . . . . . . . . . 173 Argumentation and Knowledge Engineering 19xi



3.1 Argument and Non-monotoni
 Reasoning . . . . . . . . . . . . . . . . . 203.1.1 Problem Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . 203.1.2 Defeasible Argumentation . . . . . . . . . . . . . . . . . . . . . . 213.1.3 A Con
eptual Framework for Defeasible Argumentation Systems 243.1.4 An Abstra
t A

ount of Defeasible Argumentation . . . . . . . . 283.1.5 Relation to Other Paradigms for Non-monotoni
 Reasoning . . . 323.2 Argument and De
ision Making under Un
ertainty . . . . . . . . . . . . 343.2.1 Problem Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . 343.2.2 Argumentation and De
ision Making . . . . . . . . . . . . . . . . 353.2.3 The Logi
 of Argumentation . . . . . . . . . . . . . . . . . . . . 363.2.4 Other Argumentation-based Approa
hes to Un
ertainty . . . . . 443.3 Argument and Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . 463.3.1 Problem Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . 463.3.2 Argumentation-based Negotiation . . . . . . . . . . . . . . . . . 483.3.3 Proto
ol-based Negotiation via Argumentation . . . . . . . . . . 483.3.4 Obje
t-based Negotiation via Argumentation . . . . . . . . . . . 523.4 Argument and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.4.1 Problem Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . 563.4.2 Arguing about Software Design . . . . . . . . . . . . . . . . . . . 563.4.3 Argumentation-based Design Rationale . . . . . . . . . . . . . . 583.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61II A Pragmati
 Approa
h 654 Basi
 Con
epts and De�nitions 674.1 An Abstra
t View of Dynami
 Argumentation . . . . . . . . . . . . . . . 684.2 Formal De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.2.1 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.2.2 Dynami
 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . 725 Towards a Classi�
ation of Argument S
hemata 77xii



5.1 The A
atoxin Debate: Assessing Can
er Risks . . . . . . . . . . . . . . 785.2 Argument S
hemata for Arguing about A
atoxins . . . . . . . . . . . . 805.2.1 An Overview of the S
hemata Des
ription Language . . . . . . . 805.2.2 Adding a New Premise . . . . . . . . . . . . . . . . . . . . . . . . 825.2.3 Retra
ting an Existing Premise . . . . . . . . . . . . . . . . . . . 855.2.4 Updating an Existing Premise . . . . . . . . . . . . . . . . . . . 885.3 Relationship with Informal Argumentation Theory . . . . . . . . . . . . 946 Atta
ks in Argument Dynami
s 996.1 Types of Argument Claims . . . . . . . . . . . . . . . . . . . . . . . . . 996.1.1 Claim Dependen
ies in an Argument . . . . . . . . . . . . . . . . 1016.2 The General Format of Atta
ks . . . . . . . . . . . . . . . . . . . . . . . 1056.3 Possible Atta
ks in a Dynami
 Argument . . . . . . . . . . . . . . . . . 1136.4 Argumentation and Truth Maintenan
e Systems . . . . . . . . . . . . . 1166.4.1 Experiments with Truth Maintenan
e . . . . . . . . . . . . . . . 1187 A Formal Classi�
ation of Argument S
hemata 1237.1 Generating Dynami
 Arguments . . . . . . . . . . . . . . . . . . . . . . 1237.2 A Logi
 Programming Framework . . . . . . . . . . . . . . . . . . . . . 1247.2.1 Considering Negation as Failure . . . . . . . . . . . . . . . . . . 1267.3 A System of Argument Rewrites . . . . . . . . . . . . . . . . . . . . . . 1277.3.1 The General Atta
k Relation between Theories . . . . . . . . . . 1287.3.2 The General Form of Theory Revision . . . . . . . . . . . . . . . 1287.3.3 Types of Argument Claims . . . . . . . . . . . . . . . . . . . . . 1297.3.4 From Contradi
tory Claims to General Types of Revision . . . . 1307.3.5 From Dealing with Arguments to Dealing with Premises . . . . . 1317.3.6 Logi
-Spe
i�
 Rules for Spe
ifying Premises . . . . . . . . . . . . 1337.3.7 Domain-Spe
i�
 Level . . . . . . . . . . . . . . . . . . . . . . . . 1398 Worked Example: De�ning Domain-Spe
i�
 S
hemata 1418.1 Two Dynami
 Argumentation Systems . . . . . . . . . . . . . . . . . . . 1418.1.1 Generating Atta
ks Intera
tively . . . . . . . . . . . . . . . . . . 143xiii



8.1.2 Generating Atta
ks Automati
ally . . . . . . . . . . . . . . . . . 1438.2 The A
atoxin Debate Revisited . . . . . . . . . . . . . . . . . . . . . . . 1448.3 Sear
hing for Alternative Arguments . . . . . . . . . . . . . . . . . . . . 1538.3.1 A Catalogue of Argument S
hemata for the A
atoxin Example . 1538.3.2 Exploring the Sear
h Spa
e of Arguments . . . . . . . . . . . . . 1579 Roles and Properties of our Approa
h 1599.1 Non-monotoni
 Aspe
ts of Dynami
 Argumentation . . . . . . . . . . . 1609.1.1 Determining A

eptability in Fixed Theories . . . . . . . . . . . 1609.1.2 Non-monotoni
ity in Argument-based Theory Revision . . . . . . 1659.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709.3 Is Our Classi�
ation Complete? . . . . . . . . . . . . . . . . . . . . . . . 1709.4 Communi
ating Dynami
 Arguments . . . . . . . . . . . . . . . . . . . . 1739.4.1 Di�erent Levels of Instantiation . . . . . . . . . . . . . . . . . . . 1749.4.2 Relations between Theories . . . . . . . . . . . . . . . . . . . . . 1759.5 The Abstra
t Argumentation Framework: Limitations . . . . . . . . . . 176III Instantiating Appli
ations 18110 A General Ar
hite
ture for Dynami
 Argumentation Systems 18310.1 The Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18410.2 The Criti
ism Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18410.3 The Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18611 Worked Example: Instantiating the Ar
hite
ture 18911.1 Instantiating the Ar
hite
ture in a Safety Domain . . . . . . . . . . . . 19011.1.1 The Theory: The Pressure Tank Model . . . . . . . . . . . . . . 19011.1.2 The Criti
ism Theory: The Fault Tree Model . . . . . . . . . . . 19211.1.3 The Control Module . . . . . . . . . . . . . . . . . . . . . . . . . 19711.2 Generating Dynami
 Arguments . . . . . . . . . . . . . . . . . . . . . . 19811.3 A Dynami
 Argument in the Safety Domain . . . . . . . . . . . . . . . . 200xiv



11.4 Argument Prioritisation in the Ar
hite
ture . . . . . . . . . . . . . . . . 20211.4.1 Priority Criteria for Generating Arguments . . . . . . . . . . . . 20411.4.2 Preferen
e Relations for Comparing Arguments . . . . . . . . . . 20412 Relating Argument Dynami
s to a Multi-Agent Problem 20712.1 Contra
t-based Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . 20812.1.1 Contra
t-based Negotiation as Dynami
 Argumentation . . . . . 20912.1.2 A Simple Language for Contra
ts . . . . . . . . . . . . . . . . . . 20912.1.3 An Example of Contra
t Formation . . . . . . . . . . . . . . . . 21112.2 Instantiating the Ar
hite
ture in an Agent S
enario . . . . . . . . . . . . 21512.2.1 The Theory: The Contra
t between Produ
er and Consumer . . 21512.2.2 The Criti
ism Theories: Produ
er and Consumer . . . . . . . . . 21612.2.3 The Control Module . . . . . . . . . . . . . . . . . . . . . . . . . 22012.3 A Dynami
 Argument for Contra
t Formation . . . . . . . . . . . . . . . 22212.4 Issues Raised by this Example . . . . . . . . . . . . . . . . . . . . . . . . 223IV Con
lusions and Dis
ussion 22513 Contributions 22714 What Next to Do? 23314.1 The Fine Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23314.2 A Wish List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23614.2.1 Analysis of Priorities and Preferen
es . . . . . . . . . . . . . . . 23614.2.2 Strategies for Sele
ting Arguments . . . . . . . . . . . . . . . . . 23614.2.3 Automated Evaluation of Dynami
 Arguments . . . . . . . . . . 23714.2.4 Formal Analysis of the Framework . . . . . . . . . . . . . . . . . 23714.2.5 Adopting Di�erent Underlying Logi
s . . . . . . . . . . . . . . . 23714.2.6 Editors and Tools Supporting the Design of Argument Systems . 23814.2.7 Testing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 23814.2.8 Appli
ations to Domains . . . . . . . . . . . . . . . . . . . . . . . 238xv



14.2.9 Appli
ation in Real Multi-Agent S
enarios . . . . . . . . . . . . . 238A Basi
 Syntax: Logi
 Programming 239B Basi
 Notation: Trees and Graphs 241B.1 Dire
ted Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241B.2 Argument Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242C Harnessing Argument Rewriting 243C.1 Trivial Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243C.2 Elementary Revisions for Adding an Argument . . . . . . . . . . . . . . 244C.2.1 Adding a Fa
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244C.2.2 Adding a Substantiated Rule . . . . . . . . . . . . . . . . . . . . 245C.2.3 Adding a Burden Shift Rule . . . . . . . . . . . . . . . . . . . . . 246C.3 Updating Revisions for Adding an Argument . . . . . . . . . . . . . . . 247C.3.1 Removing Irrelevan
e in a Rule . . . . . . . . . . . . . . . . . . . 247C.3.2 Generalising a Rule . . . . . . . . . . . . . . . . . . . . . . . . . 248C.3.3 Revising the Consequent of a Rule . . . . . . . . . . . . . . . . . 249C.3.4 Reversing a Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 250C.4 Elementary Revisions for Removing an Argument . . . . . . . . . . . . . 251C.4.1 Retra
ting an Invalid Rule . . . . . . . . . . . . . . . . . . . . . 251C.4.2 Retra
ting a Weak Rule . . . . . . . . . . . . . . . . . . . . . . . 251C.4.3 Retra
ting a Misrelation . . . . . . . . . . . . . . . . . . . . . . . 252C.5 Updating Revisions for Removing an Argument . . . . . . . . . . . . . . 253C.5.1 Elaborating Pre
onditions in a Rule . . . . . . . . . . . . . . . . 253C.5.2 Spe
ialising a Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 253C.5.3 Revising the Consequent of a Rule . . . . . . . . . . . . . . . . . 254C.5.4 Reversing a Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 254D Che
king the Property supports 255E Ar
hite
ture: the Pressure Tank Example 257xvi



Bibliography 261Index 271

xvii





List of Figures
2.1 Types of argumentation a

ording to 
hanges in the underlying knowl-edge base, symbolised here by the possibly indexed letter �. A0; A1; A2; :::represents the sequen
e of argument moves, while �0;�1;�2; ::: stands forthe sequen
e of knowledge bases obtained as 
hanges (expressed by ;)are performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 A pressure tank system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.1 Toulmin's argument stru
ture: a 
laim is supported by data (or eviden
e)and by a warrant, whi
h is a general rule or prin
iple supporting the stepfrom data to a 
laim; the ba
king is a justi�
ation for the warrant, and therebut is a 
ondition where a warrant does not hold; a quali�er expressesthe appli
ability of the warrant. . . . . . . . . . . . . . . . . . . . . . . 363.2 The Argument Consequen
e Relation `ACR. . . . . . . . . . . . . . . . . 393.3 Reasoning about beliefs, values and expe
ted values. . . . . . . . . . . . 433.4 Some KQML performatives 
lassi�ed into 
ategories (Finin et al. 1997). 493.5 Negotiation proto
ol for two agents a and b (Parsons et al. 1998). . . . . 513.6 A software design argumentation model from (Sigman and Liu 1999). . 593.7 An example of a heuristi
 rule. . . . . . . . . . . . . . . . . . . . . . . . 604.1 Dynami
 argumentation: revising sets of premises. . . . . . . . . . . . . 756.1 Basi
 interfa
ing predi
ates as de�ned by Shoham (1994). . . . . . . . . 1186.2 A TMS 
orresponding to argument A for p(a; b). . . . . . . . . . . . . . 1206.3 TMS from Figure 6.2 after premise ! r(b) was deleted. . . . . . . . . . 1216.4 TMS from Figure 6.2 after s(a); t(a)! q(a) was updated. . . . . . . . . 1227.1 A system for generating dynami
 arguments. . . . . . . . . . . . . . . . 124

xix



7.2 Organisation of argument revision s
hemata obtained via our rewritingsystem. S
hemata 2, 3 and 4 are not depi
ted in the diagram be
ausethey have no immediate e�e
t on re�ning a revision operation, but arestill useful for harnessing the possible revisions that are allowed. . . . . 1408.1 Prolog spe
i�
ation of a generi
 dynami
 argumentation system. . . . . 1429.1 General types of revision. . . . . . . . . . . . . . . . . . . . . . . . . . . 1719.2 From dealing with arguments to dealing with premises. . . . . . . . . . . 17110.1 Argument level: generating arguments based on a 
riti
ism theory. . . . 18510.2 Ar
hite
ture overview: intera
tions between the 
ontrol module and thetheories in the argument level are of a di�erent nature than those betweentheory and 
riti
ism theory, and thus are represented by dashed arrowsrather than by the solid arrows depi
ted in Figure 10.1. . . . . . . . . . 18711.1 A pressure tank system (see Figure 2.2). . . . . . . . . . . . . . . . . . . 19011.2 Basi
 fault tree for the pressure tank example: 
ir
les denote basi
 events(faults) that require no further development, whereas boxes denote inter-mediate events in whi
h a fault o

urs be
ause of one or more ante
edent
auses a
ting through logi
 gates. Or-gates and and-gates are representedby + and �, respe
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19211.3 Generating atta
ks to the pressure tank model based on the fault theory. 19411.4 Our proposal (a) and the 
attened equivalent (b). . . . . . . . . . . . . . 19511.5 Generating atta
ks to models based on fault theories. . . . . . . . . . . 19611.6 Prioritisation in the generation of individual arguments. . . . . . . . . . 20412.1 Basi
 s
enario for 
ontra
t negotiation between produ
er and 
onsumer. 21012.2 Contra
t-based negotiation in the ar
hite
ture. . . . . . . . . . . . . . . 216D.1 Che
king the property supports . . . . . . . . . . . . . . . . . . . . . . . 256

xx



List of De�nitions
3.1 Abstra
t Argumentation Framework . . . . . . . . . . . . . . . . . . . . . . 283.2 Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.3 Atta
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.4 A

eptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.5 Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.1 Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.3 Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.4 Atta
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.5 Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.6 Atta
k-based Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744.7 Dynami
 Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.1 Types of Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006.2 Argument Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.3 General Types of Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.4 Dependen
y Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149.1 Proof-theoreti
al Dispute . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16310.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18410.2 Criti
ism Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18410.3 Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xxi





Part IBa
kground and Overview

1





Chapter 1Context and Motivation
This thesis is 
on
erned with the role of formal argumentation in knowledge engineering.Our motivation is that resear
h into argumentation 
an provide methods and te
hniquesfor ta
kling the sorts of wi
ked problems that are 
ommon in this �eld, problems whi
ha

ording to Rittel and Webber (1973) have no de�nitive and 
orre
t solutions be
ause
riteria for su

ess are often subje
tive and 
on
i
ting.The intuition behind argumentation is that one 
an reason with imperfe
t informationand deal with su
h wi
ked problems by 
onstru
ting and weighing up arguments relevantto alternative 
on
lusions. In a re
ent survey (Carbogim et al. 2000b), we have identi�edfour types of problems in knowledge engineering that have been ta
kled by argument-based approa
hes:� the problem of defeasibility in a knowledge base, where some 
on
lusions mightbe withdrawn in the presen
e of new knowledge;� the problem of de
ision making based on un
ertain knowledge, where we have tode
ide whi
h alternative to sele
t;� the problem of negotiation, where autonomous agents 
ommuni
ate and reasonabout propositions in order to rea
h an agreement; and� the problem of design, where it is important to make de
isions, 
ommuni
atede
isions and argue that the resulting artifa
t represents an a

eptable solutionto a parti
ular problem. 3



An analysis of the state of the art in argumentation resear
h shows that there are asyet few 
lear guides to standard pra
ti
e in this area, and although argumentationgives a generi
 ar
hite
ture for a parti
ular style of reasoning, mu
h domain-spe
i�
expertise is required to instantiate this ar
hite
ture to a domain of appli
ation. Sin
eargumentation, in automated forms, is relatively new there do not yet exist methodsfor guiding appli
ation of ar
hite
tures to problems, and the fo
us has been on moreabstra
t argumentation theory. In many 
ases spe
ialised solutions have been adoptedin order to implement pra
ti
al systems from theoreti
al frameworks, and systems havebeen mostly evaluated in terms of simple ben
hmark problems.This present state of a�airs re
e
ts an expe
ted dire
tion of development in argument-oriented resear
h in knowledge engineering, summarised in the following two (related)points:� there is a need for in
reasing the pra
ti
al utility of argumentation systems inknowledge engineering by taking more 
omplex arguments into a

ount; and� there is a need for 
lear methodologies for the systemati
 development of systemsfor argument generation in spe
i�
 domains.This thesis looks at both issues.1.1 Formal Argumentation and ReasoningOne of the assumptions underlying the use of 
lassi
al methods for representation andreasoning is that the information available is 
omplete, 
ertain and 
onsistent. But oftenthis is not the 
ase. In almost every domain, there will be beliefs that are not 
ategori
al;rules that are in
omplete, with unknown or impli
it 
onditions; and 
on
lusions thatare 
ontradi
tory. Therefore, we need alternative knowledge representation te
hniquesfor dealing with the problem of imperfe
t information.There are two rea
tions to this sort of problem when designing systems. The �rst isto resolve 
on
i
t and restore 
onsisten
y, as for instan
e in most resear
h in beliefrevision. A se
ond view, however, suggests that in
onsisten
y 
an o�er insights into4



CHAPTER 1. CONTEXT AND MOTIVATION 5rational pro
esses and therefore should not be eradi
ated. Argumentation as a reasoningte
hnique is an example of the latter, through whi
h we 
an 
onstru
t and 
omparearguments in order to rea
h and justify de
isions.Argumentation bears a strong resemblan
e to 
ertain approa
hes for in
onsisten
y man-agement, in parti
ular to truth maintenan
e systems (Doyle 1979). The di�eren
e ismore about a shift in emphasis than it is te
hni
al. Truth maintenan
e systems keeptra
k of the reasons for deriving 
on
lusions from a knowledge base, so they 
an dealwith 
on
i
t by trying to explain why it happened. If a belief needs to be retra
ted (e.g.to restore 
onsisten
y), truth maintenan
e systems 
an identify whi
h are the 
on
lu-sions that depend on this belief that should also be retra
ted. On the other hand, inargumentation it is important to make the sour
es of in
onsisten
y 
learer, and also to
hart the 
ourse of an argument, so we 
an reason methodi
ally in the fa
e of 
on
i
t.Formal argumentation theories are 
hara
terised by representing pre
isely some featuresof (informal) argumentation via formal languages and by applying formal inferen
ete
hniques to these. Although su
h systems 
an be of di�erent nature and have distin
taims, the notion of argument adopted by them is usually the same, 
orresponding tothat of logi
al proof. In fa
t, the di�eren
e between formal argument and logi
al proof isnot synta
ti
, but pragmati
 in the sense that proofs are 
ertain and arguments 
an bedefeated by or preferred over others. As remarked by Krause et al. (1995), \argumentshave the form of logi
al proof, but they do not have the for
e of logi
al proof."Despite the traditional interest in argumentation in many dis
iplines, 
omputationalframeworks for representing moderately 
omplex arguments have appeared on the s
eneonly re
ently. Some believe that formal argumentation has many disadvantages, be
ausethe study of formal logi
 
an require a great deal of e�ort (van Eemeren et al. 1987)and its use to model real (natural language) arguments is too restri
tive (Reed 1997).However, formal models of argumentation 
an be applied su

essfully as a reasoningmethod in 
ertain 
ontexts, espe
ially if used in a lightweight manner by applyinglogi
 to spe
i�
 parts of a problem in a fo
used and sele
tive way (Robertson andAgust�� 1999). Re
ent e�orts in bringing the 
ommunities of philosophy and arti�
ialintelligen
e together have also resulted in a handbook (Norman and Reed 2000) foridentifying problems, issues and a roadmap for resear
h in the interdis
iplinary �eld of



argument and 
omputation.11.1.1 Truth and A

eptabilityWhat is interesting about argumentation is that it explores aspe
ts of pra
ti
al reasoningthat are not always addressed by 
onventional reasoning theories. For instan
e, it isbased on the notion of a

eptability|a proposition is a

eptable on the basis of thearguments that are relevant to it. As argued by Prakken and Vreeswijk (1999):Argumentation systems are not 
on
erned with the truth of propositions, but withjusti�
ation of a

epting a proposition as true.Note that this view had already been advo
ated by Doyle (1979, p.234):To say that some attitude (su
h as belief, desire, intent, or a
tion) is rational isto say that there is some a

eptable reason for holding that attitude. Rationalthought is the pro
ess of �nding su
h a

eptable reasons. [...℄ One 
onsequen
eof this view is that to study rational thought, we should study justi�ed belief orreasoned argument, and ignore questions of truth.Being a 
onstru
tive pro
ess for �nding a

eptable reasons, argumentation is essentiallydynami
 in nature (Gabbay 1999, 2000), and also intrinsi
ally non-monotoni
 be
ausea position may be warranted with respe
t to 
ertain premises but not if other relatedarguments are also 
onsidered. Note that argument pro
esses rely mostly on 
on
i
t anddisagreement hen
e it is important to deal with these types of in
onsisten
y properly.Again, moving away from the notion of truth to that of a

eptability gives a way fordoing this.1.2 The Way We View ArgumentsThe study of argument is traditional in many dis
iplines, and although the notion ofargumentation is 
ommon to most of us there is still no 
onsensus as to the 
orre
t1 \Call it 
omputational theory of argumentation, or argument-based arti�
ial intelligen
e (or both)."|David Hit
h
o
k, e-mail posting to the ARGTHRY list on 3 August 2000.6



CHAPTER 1. CONTEXT AND MOTIVATION 7meaning of the term (Gilbert 1995). The following tries to summarise the ubiquitous
hara
ter of informal argumentation.Argumentation is a verbal and so
ial a
tivity of reason aimed at in
reasing (orde
reasing) the a

eptability of a 
ontroversial standpoint for the listener or reader,by putting forward a 
onstellation of propositions intended to justify (or refute) thestandpoint before a rational judge. (van Eemeren et al. 1996, p. 5)Note that this de�nition en
ompasses two views of an argument:� a lo
al, stati
 view, in whi
h an argument is intended to give support in favour oragainst a 
on
lusion; and� a global, dynami
 view, in whi
h an argument is intended to in
rease or de
reasethe a

eptability of 
ontroversial positions.Most existing formalisms are limited in s
ope be
ause they des
ribe the shape of anargument but not the me
hanisms needed to give dynami
s to it. Su
h formalisms areoften 
hara
terised as two-step pro
esses in whi
h arguments are �rst generated and thenevaluated in terms of their a

eptability. The dynami
 
ounterpart of argumentationis restri
ted to determining whether an argument is a

eptable based on its relationsto all existing arguments. This may be de�ned in diale
ti
al terms via dialogues anddebates, but is still a limited view of dynami
s be
ause it does not allow arguments tobe revised or strengthened in order to 
hange their a

eptability with respe
t to 
ertainpositions.Me
hanisms for 
apturing dynami
s involve revising arguments that have been atta
kedin order to reestablish their validity; and also strengthening arguments by anti
ipating
riti
isms and dismissing them. This thesis fo
uses on whether su
h me
hanisms 
anbe formalised and automated and how argumentation seen from this dynami
 perspe
-tive 
an provide an answer to the two resear
h issues stated above. Our position issummarised below:� Argument dynami
s broadens the s
ope of argument-based appli
ations in the



knowledge engineering domain by grounding various problems with very distin
-tive 
hara
teristi
s into a similar sour
e.� Certain types of argument dynami
s 
an be formalised and provide a generi
methodology supporting the design of domain-spe
i�
 argument systems in a sys-temati
 way.Although this view of dynami
s has not been mu
h explored in the 
ontext of formalargumentation, it is a legitimate part of the study of arguments and informal logi
.Arguments are based on reasons and assumptions whi
h are not ne
essarily a
knowl-edged by others, and whi
h 
an therefore be 
hallenged. Studies in argument analysisin
lude the use of te
hniques for strengthening an argument so as to redu
e 
han
es ofatta
ks and to eliminate the demand for yet more reasons and justi�
ations. Fogelinand Sinnott-Armstrong (1997, p. 40) have identi�ed three su
h te
hniques:Assuring an argument by stating that ba
kup reasons exist, although they are notexpli
itly presented.Guarding an argument by weakening the argument 
laim, thus prote
ting it from
ertain atta
ks.Dis
ounting an argument by anti
ipating 
riti
isms and dismissing them.Among these strategies, we are mostly interested in that of dis
ounting, i.e. in ways of
onsidering potential atta
ks and dismissing them. A

ording to Fogelin and Sinnott-Armstrong (1997), \the general pattern of dis
ounting is to 
ite a possible 
riti
ism inorder to reje
t it" by indi
ating that the 
urrent position is more important than this
riti
ism. We are also 
on
erned with 
ases in whi
h 
riti
isms 
an be more important.And to dismiss su
h 
riti
isms, the argument under atta
k might need to be restru
tured:some premises on whi
h it is based may be reviewed, and new ones may be put forward.1.3 General Questions Addressed in this ThesisThis thesis is about generating arguments. It is a study of theory, ar
hite
ture anddevelopment of formal argumentation systems in the 
ontext of knowledge engineering8



CHAPTER 1. CONTEXT AND MOTIVATION 9from a 
omputational and pro
edural perspe
tive. The 
entral 
ontribution is that itis possible to 
onstru
t an abstra
t formal framework for argument dynami
s, and tosystemati
ally instantiate domain-spe
i�
 appli
ations from this formalisation.The work in this thesis has been guided by two main, general questions, namely:� How 
an knowledge engineers bene�t from argumentation-based approa
hes toknowledge representation and reasoning?� How 
an we improve the methodology for building systems for supporting su
htasks?More spe
i�
 questions are stated in the next se
tion, after we de�ne in more detailthe problem of formalising and automating argument dynami
s. Before, though, wedelineate the stru
ture of the present thesis.1.3.1 Thesis OverviewThe remainder of this thesis is divided as follows:Part I. In Chapter 2 we identify and de�ne pre
isely the problem to be addressed inthis thesis. Then, in Chapter 3, we 
hara
terise the types of problems that 
anbe ta
kled via the argumentation paradigm in knowledge engineering.Part II. Chapter 4 introdu
es the formal 
on
epts underlying our approa
h, and identi-�es the subproblems that need to be addressed in order to formalise and automatedynami
 argumentation. The rest of the 
hapters in this part then address thesesubproblems: Chapter 5 gives an intuitive des
ription of our approa
h in termsof informal examples and of 
on
epts from informal argumentation theory; then,Chapter 7 introdu
es the 
orresponding formal des
ription based on a pre
ise
hara
terisation of possible atta
ks given in Chapter 6; Chapter 8 gives a workedexample illustrating the use of two possible implementations for a dynami
 argu-mentation me
hanism; and �nally, roles and properties of our theory are dis
ussedin Chapter 9.



Part III. This part is about adapting our abstra
t theory of dynami
 argumentationto domain-spe
i�
 appli
ations. We do this in Chapter 10 by proposing a generi
ar
hite
ture for argumentation systems whi
h elaborates on the me
hanisms de-�ned in Part II. Two areas of appli
ation are 
onsidered: safety-engineering inChapter 11, and negotiation in Chapter 12.Part IV. In Chapter 13 we summarise our 
ontributions, and �nally, in Chapter 14,we dis
uss possible dire
tions and avenues for future work.

10



Chapter 2Problem De�nition: Dynami
Argumentation
From a pro
edural perspe
tive, formal argumentation is about 
apturing pro
esses ofargument ex
hange by means of formal languages and inferen
e te
hniques. Su
h argu-ments are often represented by means of logi
al proofs, generated from an underlyingknowledge base|usually 
omposed of fa
ts and rules|via a provability relation. Andalthough argumentation pro
esses 
an be of di�erent natures and have distin
t aims,they are often based on 
on
i
t and disagreement between arguments.Argumentation is sometimes used for determining whether a 
on
lusion is a

eptablewith respe
t to a stati
 knowledge base (or a set of knowledge bases) assumed to be�xed over time. Note that here time does not ne
essarily 
orrespond to real time, butrather it is related to the sequen
e of argument moves. Thus, the knowledge base|and
onsequently the set of all arguments that 
an be derived from it|remain un
hanged asthe argumentation develops. Most 
onventional formal argumentation systems des
ribeonly this type of pro
ess for organising the relevant arguments (possibly in a diale
ti
alstyle) in order to spe
ify if a 
on
lusion 
an su

essfully defend itself from atta
ks.Examples are given in Se
tions 3.1 and 3.2. In this work, however, we are interested inargumentation pro
esses that do a

ount for 
hanges to the underlying knowledge base.We refer to these as dynami
.Changes to a knowledge base 
an be of two broad types: those independent from theargumentation, and those related to it. The �rst type is said to be external in the sense11



that 
hanges are 
aused by some outside, not ne
essarily known, fa
tor. Su
h 
hangeshappen over time, but independently from the sequen
e of argument moves. Dynami
argumentation systems that a

ount for external 
hanges are used to determine whether
ertain 
on
lusions are a

eptable given that the available information 
an 
hange duringthe argumentation. These are brie
y dis
ussed in Se
tion 3.1.2.The se
ond type of 
hange is said to be guided by argumentation, in the sense that
hanges 
an allow desired arguments to be generated and undesired arguments to beblo
ked. These are intrinsi
ally related to the sequen
e of argument moves|we 
an de-liberately try to in
rease or de
rease the a

eptability status of a position by performing
hanges so as to introdu
e supporting or atta
king arguments, respe
tively. Therefore,dynami
 argumentation systems that a

ount for guided 
hanges 
an be used not onlyto determine if a 
on
lusion is a

eptable with respe
t to a knowledge base, but also toa�e
t its a

eptability status by performing 
ertain 
hanges to this knowledge base dur-ing the argumentation. Examples of su
h pro
esses are presented later in this 
hapter,in Se
tion 2.1.In brief, the nature and purpose of ea
h type of argumentation pro
ess 
an be ratherdi�erent. Figure 2.1 illustrates the di�erent sorts of pro
esses with respe
t to the 
hangesallowed. Below we summarise the general 
on
ept of dynami
 argumentation.Dynami
 argumentation is about using formal languages and inferen
e te
hniquesfor 
apturing pro
esses of argument ex
hange where the knowledge base from whi
harguments are derived is dynami
, i.e. it 
an be 
hanged during the argumentationpro
ess, either via external 
hanges or via guided 
hanges.In this thesis we are interested in formally des
ribing dynami
 argumentation pro
essesbased on guided 
hanges. From now on we refer to these by dynami
 argumentation orargument dynami
s, unless there is a risk of ambiguity. We also use the term revisionto refer to any sort of 
hange to the knowledge base.
12



CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 13
A0 ,, A1 ++ ::: -- AN�(a) Conventional (stati
) argumentation: argumentation steps assume �xed knowledge base.

AN�M::: --:::A1 ,,�K:::��1A0 --�0 ///o ///o ///o ///o ///o(b) Dynami
 argumentation with external 
hanges: knowledge base may 
hange independentlyof argumentation step.
AN�N::: --:::A2 ,,�2A1 ,,�1A0 ,,�0 ///o ///o ///o ///o(
) Dynami
 argumentation with guided 
hanges: knowledge base 
hanges as a 
onsequen
e ofargumentation steps.Figure 2.1: Types of argumentation a

ording to 
hanges in the underlying knowledgebase, symbolised here by the possibly indexed letter �. A0; A1; A2; ::: represents thesequen
e of argument moves, while �0;�1;�2; ::: stands for the sequen
e of knowledgebases obtained as 
hanges (expressed by ;) are performed.



2.1 Examples of Dynami
 ArgumentsOne way to think about argument dynami
s is that it should be possible to 
hangeand revise an argument in order to defend it from atta
ks. In formal systems, wherearguments are derived from a knowledge base, it should be possible to revise this knowl-edge base so as to defend arguments from atta
ks, e.g. by adding new information sothat new supporting arguments or 
ounter atta
ks 
an be derived. From this perspe
-tive, dynami
 argumentation is a pro
ess of knowledge base revision guided by atta
ksand 
ounter atta
ks, whi
h is intended to in
rease|rather than just determine|thea

eptability status of a position with respe
t to this knowledge base.Our view is that argumentation seen from a dynami
 perspe
tive has a broader rolein 
omputational systems. This se
tion gives some s
enarios in whi
h formalising andautomating the kind of dynami
 arguments above 
ould be useful, and it turns outthat these are appli
able also in domains far removed from the roots of argumentationtheory|for instan
e in des
ribing relationships between fault trees and system modelsin examples taken from the safety-engineering 
ommunity.2.1.1 Model DesignArgumentation 
an play an important role in design and analysis, espe
ially in safety-
riti
al domains, where safety arguments are normally intended to 
onvin
e people thatthe spe
i�ed system will be safe if implemented appropriately.Consider for example a system that models the operation of the pressure tank 
ontrolsystem in Figure 2.2, as de�ned in the Fault Tree Handbook (Vesely et al. 1981):The pump pumps 
uid from an in�nitely large reservoir into the tank. We shallassume that it takes 60 se
onds to pressurize the tank. The pressure swit
h has
onta
ts whi
h are 
losed when the tank is empty. When the threshold pressure hasbeen rea
hed, the pressure swit
h 
onta
ts open, deenergizing the 
oil of relay K2so that relay K2 
onta
ts open, removing power from the pump, 
ausing the motorto 
ease operation. The tank is �tted with an outlet valve that drains the entiretank in an essentially negligible time. [...℄ When the tank is empty, the pressure14
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FROM  RESERVOIRFigure 2.2: A pressure tank system.swit
h 
onta
ts 
lose, and the 
y
le is repeated.Formal arguments for the safety of this system may involve a proof that the system isoperational at all times. In safety-
riti
al domains, though, it is also important to showthat the system is a

eptably tolerant to known faults, and su
h arguments are oftensupported by fault tree analysis.The fault tree te
hnique is a well-established method used in industry for analysing
hara
teristi
s of systems under development. A fault tree is a model of the faults that
an lead to an unsafe event, or top event, in su
h systems. Fault tree analysis evaluatesweaknesses of the system by assessing the fault tree qualitatively and quantitatively. Itidenti�es the possible 
ombinations of basi
 events in a fault tree from whi
h the topevent 
an be derived (namely minimal 
ut sets), and estimates the probability of thetop event from the probabilities assigned to the basi
 events. Thus fault tree analysisnot only gives possible points of atta
k to the system model, but it also provides 
riteriafor priority and relevan
e of su
h arguments.Consider the top event of a fault tree for this system to be the rupture of the pressuretank after the start of pumping1. One of the minimal 
ut sets of this fault tree is1 See 
hapter VIII in (Vesely et al. 1981) for the fault tree analysis with respe
t to this top event.




omposed of the basi
 event primary failure of k2 . By primary failure of a 
omponentwe mean that the 
omponent fails to work under 
ir
umstan
es in whi
h it should work,so if k2 
onta
ts fails to open when the 
oil of k2 is deenergised, then the tank willrupture.A

ording to the fault tree analysis in (Vesely et al. 1981), the probability of thisminimal 
ut set is 3 � 10�5, whi
h is fairly high for safety standards. This representsa strong argument against system safety, but whi
h 
an be undermined if we add someredundan
y to the system; i.e. safety 
ould be 
onsiderably improved by adding anotherrelay in parallel to k2 .In su
h a way, the fault tree model is a sour
e of possible arguments against systemsafety that 
an guide the revision of a system model in order to in
rease its a

eptabilitywith respe
t to known faults. Chapter 11 shows how our argumentation framework dealswith a fault tree example taken from the safety engineering literature.2.1.2 Negotiation between AgentsNegotiation is often des
ribed as the pro
ess of a
hieving mutually a

eptable agree-ments between agents. Sometimes agreements are about �nding a

eptable solutions for
ommon problems (rather than de
iding on 
on
lusions that are a

eptable to all agentsinvolved), whi
h 
an be a
hieved in a sort of goal-oriented reasoning where agents takesome goal as a starting point and intera
t in order to agree on how to satisfy it.In this 
ontext, negotiation fo
uses on the 
onstru
tion of obje
ts as solutions to openproblems, and dynami
 argumentation 
an provide means for building su
h solutions.In 
ontra
t-based negotiation for instan
e, 
ontra
ts are obje
ts that 
an be adjustedbased on reasoned arguments by the agents involved in the agreement so that it isa

eptable for all the parties involved.Assume that 
ontra
ts are obje
ts whi
h regulate agreements between autonomousagents|
onsumers (or 
lients) and produ
ers (or servers)|about the supply of produ
tsand servi
es. The pro
ess of 
ontra
t-based negotiation 
ould be des
ribed as follows.Initially, one of the parties proposes a binding 
ontra
t to regulate the agreement be-tween them; without loss of generality, we 
an assume that a produ
er makes this �rst16



CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 17proposal. This 
ontra
t is now the obje
t of negotiation between produ
er and 
on-sumer, and 
an be seen as a set of formulae stating the 
onditions for a

omplishing theagreement.The 
onsumer re
eives the 
ontra
t from the produ
er and analyses it. If it agrees withthe 
lauses, then the pro
ess of negotiation is over. More interestingly, the 
onsumermight have reasons to believe that this parti
ular 
ontra
t will not be su

essfully 
om-pleted. In this 
ase, the 
onsumer sends it ba
k to the produ
er with the appropriate
riti
isms. The produ
er then tries to adapt some of the 
lauses in that parti
ular 
on-tra
t in order to make it more a

eptable, sending it ba
k again to the 
onsumer forfurther analysis. The pro
ess of adjusting the 
ontra
t 
ontinues until there are no more
riti
isms (i.e. it is a

eptable for produ
er and 
onsumer) or until one of the partieswithdraws. This pro
ess is similar to the kind of negotiation that humans perform inmany situations involving 
ontra
ts.In su
h a way, negotiation 
an be viewed as a dynami
 argument where the aim is toin
rease the a

eptability of a 
ontra
t by revising it in terms of possible obje
tions fromparti
ipating agents, until all agents 
ommit to it. Chapter 12 shows how our argumen-tation framework deals with an example of this sort in 
ontra
t-based negotiation.2.2 Spe
i�
 Questions Addressed in This ThesisThere are two main reasons why we believe it is important to formalise and automateargumentation pro
esses like the ones mentioned above. First, argument-based method-ologies should be supported by (semi-) automated tools whi
h 
an both guide knowledgeengineers in developing knowledge bases that derive the intended 
onsequen
es, and alsosupport designers of argument systems in investigating properties and e�e
ts of 
ertainatta
ks and revisions in a domain. Se
ond, automated argument systems 
an be used byarti�
ial agents that want to employ this te
hnique to solve 
ertain types of problems.A number of more spe
i�
 questions has steered the development of su
h a formalisationof argument dynami
s (together with those general questions stated in Se
tion 1.3), su
has:



� Whi
h 
on
epts are involved in argument dynami
s, and whi
h of these would beinteresting to formalise? Can these be de�ned in a general way or are they (orsome of them) domain-spe
i�
?� How to represent and generate an argument? What types of arguments are im-portant to be represented?� How do arguments relate to ea
h other and what types of relationships 
an bede�ned between arguments?� Where do atta
ks 
ome from?� What me
hanisms are used to prioritise arguments, and how 
an 
ontextual (do-main) information be in
orporated into su
h me
hanisms?� When do dynami
 arguments terminate?Now, before moving towards a formalism for 
apturing arguments dynami
s, the next
hapter presents an overview of the existing work in argumentation in the 
ontext ofknowledge engineering.

18



Chapter 3Argumentation and KnowledgeEngineering
One of the 
ontributions of this thesis is to 
hara
terise the types of problems in theknowledge engineering domain that have been ta
kled by formal argumentation. This
hapter surveys the state-of-the-art in formal models of argumentation and presents a
lassi�
ation in terms of problems they are meant to solve.Our goal is to illustrate the use of formal and stru
tured semi-formal approa
hes to ar-gumentation, evaluating its pra
ti
al utility in knowledge engineering. Instead of takingthe usual path of reviewing di�erent proposals for solving a parti
ular problem, herewe analyse di�erent issues that 
an be ta
kled by automated argumentation systems,brie
y 
omparing these approa
hes to other paradigms found in the literature. This isnot supposed to be an exhaustive survey, but an analysis of various formal representationstyles that are obtained by looking at argumentation from di�erent perspe
tives.Be
ause at this point we take su
h a broad view of argumentation, the systems we de-s
ribe are diverse. To guide the reader and fa
ilitate 
omparison, the existing argument-based e�orts are analysed in terms of general problems stated at the beginning of ea
hse
tion. The 
hapter is then organised as follows:� Se
tion 3.1 dis
usses how formal argumentation 
an deal with non-monotoni
 anddefeasible reasoning;� Se
tion 3.2 reports on some of the argument-based approa
hes for de
ision making19



and reasoning under un
ertainty;� Se
tion 3.3 reviews some appli
ations of argumentation in distributed settings,paying parti
ular attention to multi-agent negotiation systems;� Se
tion 3.4 fo
uses on systems that use argumentation to support the design ofan artifa
t, espe
ially in the software development 
ontext.Be
ause many argument-based systems share similar features and purposes, it is hard (ifnot impossible) to establish a de�nitive 
lassi�
ation of whi
h resear
h falls into whi
h
ategory. However, an analysis based on our problem-oriented 
lassi�
ation helps tohighlight strengths and problems in the existing proposals.Finally, Se
tion 3.5 summarises the 
urrent state-of-the-art and spe
ulates on importantdire
tions in argument-oriented resear
h in knowledge engineering.3.1 Argument and Non-monotoni
 Reasoning3.1.1 Problem Des
riptionThis se
tion 
onsiders the problem of drawing 
on
lusions from a knowledge base inthe fa
e of in
ompleteness and in
onsisten
y. Very often, the addition of new propo-sitions into a knowledge base 
an invalidate previously held 
on
lusions and introdu
e
ontradi
tions. In this 
ase, reasoning is said to be non-monotoni
.Non-monotoni
 or defeasible reasoning1 addresses the problem of reasoning under in-
ompleteness and in
onsisten
y in the sense that some 
on
lusions 
an be taken ba
k inthe presen
e of new information. That is, a proposition 
an be a

epted until a betterreason for reje
ting it is found. Approa
hes for dealing with non-monotoni
 reasoningshould then have means for de
iding whi
h 
on
lusions are justi�ed and a

eptable ina knowledge base. Here we investigate how formal argumentation models 
an providethis means.1 The term defeasibility has its origins in the 
ontext of Legal Philosophy|see (Prakken and Vreeswijk1999, p. 10) and (Ches~nevar et al. 1999, p. 3). As argued by Pollo
k (1987), the ideas behind defeasiblereasoning as it is studied in Philosophy and non-monotoni
 reasoning in Arti�
ial Intelligen
e areroughly equivalent, hen
e these terms have often been used inter
hangeably.20



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 213.1.2 Defeasible ArgumentationSeveral approa
hes for formalising non-monotoni
 reasoning have been proposed in theliterature, su
h as default logi
s (Reiter 1980; Antoniou 1998). Argumentation providesa di�erent perspe
tive to non-monotoni
 and defeasible reasoning, in whi
h a 
laim isa

epted or withdrawn on the basis of the arguments for and against it, and on whetherthese arguments 
an be atta
ked and defeated by others. This view has been 
hara
-terised as defeasible argumentation2 and gained momentum after the publi
ation of thework of Loui (1987) and Pollo
k (1987). Sin
e then, myriad defeasible argumentationsystems have been proposed (Nute 1988, 1994; Lin and Shoham 1989; Simari and Loui1992; Freeman 1993; Brewka 1994; Dung 1995; Bondarenko et al. 1997; Jakobovits 2000),also motivated by resear
h in the area of legal reasoning (Kowalski and Toni 1996, 1994;Verheij 1996; Prakken 1997a,b; Prakken and Sartor 1997, 1996; Vreeswijk 1997). It isimportant to note that the �eld of Arti�
ial Intelligen
e and Law has proved a fertiledomain for defeasible argumentation resear
h and appli
ations. This se
tion, however,does not des
ribe parti
ular approa
hes to legal argumentation.3 Instead it 
on
entrateson general te
hniques for ta
kling defeasible reasoning based on argumentation, oftenreferred to as argument-based semanti
s.In general, defeasible argumentation systems are intended to 
hara
terise pre
iselywhether an argument is a

eptable based on its relations to other arguments. Prakken(1995) has identi�ed a generi
 
on
eptual framework whi
h underlies the majority ofexisting defeasible argumentation systems. This framework 
onsists of �ve basi
 notionsthat may not always be expli
it:1. an underlying logi
al language;2. a 
on
ept of argument;2 A 
omprehensive view of logi
s for defeasible argumentation 
an be found in (Prakken and Vreeswijk1999), and this se
tion is partly based on it. For another survey on this topi
, in
luding a histori
ala

ount of argumentation and defeasibility, see (Ches~nevar et al. 1999).3 An overview of legal appli
ations of defeasible argumentation 
an be found in (Ches~nevar et al. 1999,pp. 12{14). A more re
ent roadmap paper (Ben
h-Capon et al. 2000) brings together various strandsof resear
h in this area to 
reate a 
on
eptual model for the rational re
onstru
tion of legal argument.For more spe
i�
 referen
es, the interested reader 
an refer to the Arti�
ial Intelligen
e and LawJournal and to the Pro
eedings of the International Conferen
e on Arti�
ial Intelligen
e and Law,both a

essible from the homepage of the International Asso
iation for Arti�
ial Intelligen
e and Lawat http://ais.gmd.de/iaail/.



3. a 
on
ept of 
on
i
t between arguments;4. a notion of defeat among arguments; and5. an a

ount of the a

eptability status of arguments.The status of one argument depends on the whole set of arguments, and 
an be spe
i�edin two ways: de
laratively, by de�ning a 
lass of a

eptable arguments; and pro
edurally,via proof-theoreti
al me
hanisms for determining whether an argument is in this 
lass.A di�erent view of pro
edural models was summarised by Loui (1998), who argues thatwhat makes beliefs rational is not only their relations to other beliefs, but also the wayin whi
h they are built as the out
ome of deliberative pro
esses. In this sense, Louigives an a

ount of defeasible argumentation as resour
e-bounded, diale
ti
 disputationproto
ols. Proto
ols are pro
edural models for 
onstru
ting arguments based on notionssu
h as whi
h parties are involved; what are the possible moves for ea
h party; howmoves a�e
t the out
ome; how to determine if a disputation has �nished; and if it hasbeen won or lost. For the out
ome to be rational, su
h proto
ols must be fair (e.g.parties get the same amount of resour
es, su
h as time) and e�e
tive (e.g. when a
on
lusion is established, it means that maximum resour
es were used in unsu

essful
riti
isms).More re
ently, Prakken (2000) has also been fo
using on the study of diale
ti
al pro-to
ols, but from a slightly di�erent perspe
tive than Loui's. Rather than 
onsideringpartial 
omputation and limited resour
es, Prakken (2000) is interested in 
ases wherenew information is added during the pro
ess, and in 
hara
terising the properties thatmake proto
ols appropriate in these situations (e.g. if a parti
ipant 
ould have advan
edan atta
k, this parti
ipant had the 
han
e to do so during the argumentation). In hiswords, proto
ols must be fair and sound. One 
ould think of su
h proto
ols as repre-senting dynami
 argumentation with external 
hanges (see Chapter 2), in the sense thatthey do a

ount for 
hanges in the underlying knowledge base but are not 
on
ernedwith exa
tly why nor when these happened.It has been argued that these sorts of pro
edural models are at a di�erent layer of argu-mentation, a layer 
on
erned with disputes and dialogue games rather than de
larative22



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 23a

eptability of arguments. Ben
h-Capon et al. (2000) summarise the four types of layersoften 
onsidered in 
omputational models of argument: a logi
al layer|
orrespondingto the underlying logi
 mentioned above|for generating arguments and justi�
ationsbased on a monotoni
 logi
al system; an argument framework layer|addressed in thisse
tion in terms of the framework above|for dealing with non-monotoni
 and defeasi-ble reasoning by 
lassifying a

eptable arguments based on 
on
i
ts and atta
ks from a�xed set of premises; a pro
edural layer for regulating real disputes in whi
h information
an be added or 
hallenged dynami
ally; and a heuristi
 layer on top of the pro
edu-ral layer for 
onsidering eÆ
ient strategies for sele
tion and presentation of argumentsduring a dispute.This thesis is mostly 
on
erned with the latter two layers, parti
ularly on how dynami

hanges to the set of premises relate to types of atta
ks that 
an be generated. Theanalysis in this se
tion, though, is 
on
erned with non-monotoni
 and defeasible rea-soning, and hen
e with the argument framework layer. We base this analysis on thegeneri
 
on
eptual framework above, so it is possible to identify many similarities and
ommon features between existing systems for defeasible argumentation, and also dif-feren
es between these systems in terms of variations of these basi
 
on
epts. We willbe looking at this framework in detail in Se
tion 3.1.3.We are not presenting the various defeasible argumentation formalisms in detail. A 
om-prehensive a

ount of the most relevant ones 
an be found in (Prakken and Vreeswijk1999) and (Ches~nevar et al. 1999). Instead, the rest of this se
tion fo
uses on a parti
u-lar approa
h that is viewed as a unifying, abstra
t a

ount of defeasible argumentation.The Abstra
t Argumentation Framework of Kowalski & Toni (also known as the BDTKapproa
h) is a logi
 programming-based theory of argumentation that \uni�es and gen-eralises many approa
hes to default reasoning" (Bondarenko et al. 1997; Kowalski andToni 1994). Most existing defeasible argumentation systems 
an be understood anddes
ribed in terms of this formalism, whi
h is dis
ussed in Se
tion 3.1.4.Finally, Se
tion 3.1.5 
ompares argument-based semanti
s approa
hes to other paradigmsfor 
apturing defeasible and non-monotoni
 reasoning found in the literature.



3.1.3 A Con
eptual Framework for Defeasible Argumentation SystemsThis se
tion dis
usses the �ve main 
on
epts behind formalisms for defeasible argumen-tation: an underlying logi
 notions of argument, 
on
i
t and defeat, and an a

ount ofthe possible status of an argument. Note that these are not always expli
it, and theterminology used to designate them may also vary between argumentation systems.Ea
h element is brie
y des
ribed below based on the more 
omplete a

ount given in(Prakken 1995; Prakken and Vreeswijk 1999).Underlying Logi
 As dis
ussed earlier, formal argumentation systems are 
hara
-terised by the use of formal knowledge representation and inferen
e te
hniques.The underlying logi
 is essentially the formal logi
 system de�ning a monotoni

onsequen
e relation as the basis for deriving arguments. For instan
e, we mightadopt a Horn 
lause resolution-based system as the underlying logi
. Su
h systemsare fundamentally dedu
tive and therefore monotoni
.Arguments Arguments 
orrespond to proofs in the underlying formal system. Con-sider, for example, the set of Horn 
lauses below:p q ^ r q  s r  true s trueThen the following proof of p (depi
ted as a tree with lower nodes supporting the
on
lusion above) is said to be an argument for p.p
��� ==

=q
���

rsCon
i
t Intuitively, argumentation presupposes disagreement, whi
h is 
aptured inthis framework by the notion of 
on
i
t. Also referred to in the literature as at-ta
k or 
ounter-argument (Prakken and Vreeswijk 1999), 
on
i
t determines whi
h
on
lusions in a knowledge base 
an be 
onsidered 
ontradi
tory. For example,the senten
es married (X) and ba
helor (X) 
an be seen as 
on
i
ting, when in-stantiated by the same value for X. 24



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 25It is possible to identify di�erent types of 
on
i
t in terms of the underlying system,e.g. rebuttal. Arguments are said to be rebutting if they have 
ontradi
tory
on
lusions. Assume for instan
e propositions p and not p to be 
on
i
ting, andsuppose the following 
lauses are added to the small example above:not p u ^ v ^ w u true v  true w  truethen the arguments A1 and A2 below are examples of rebutting arguments.A1 : p
��
� ;;

; A2 : not p
vvv HHHq

���
r u v wsDefeat Be
ause the underlying logi
 is monotoni
, the addition of new information doesnot invalidate existing arguments or previously derived 
on
lusions, so 
on
i
tingarguments may 
oexist in a knowledge base. In the item above, for example, weare able to derive arguments for both p and not p. The non-monotoni
 
hara
terof argumentation arises from the fa
t that some arguments may be preferredover others, and we should have means to de
ide whi
h of these arguments area

eptable.The notion of defeat is usually based on some 
omparative measure for argumentsand a 
riterion based on this measure for adjudi
ating between 
on
i
ting argu-ments. One way to do this is to assign some priority order to 
ertain 
lauses in aknowledge base, and to use this order to de
ide between arguments. For instan
e,if the 
lause not p u ^ v ^ w has pre
eden
e over p q ^ r, then the argumentA2 for not p defeats the argument A1 for p.It has already been argued that su
h 
riteria are usually domain spe
i�
 (Konolige1988; Prakken and Sartor 1997), but in some 
ases it is possible to apply generi
,domain independent standards su
h as the spe
i�
ity prin
iple4 (Simari and Loui1992).4 The spe
i�
ity prin
iple is a priority measure in whi
h rules that deal with spe
i�
 
ases are preferredover generi
 ones. For example, if we 
an derive the following 
on
i
ting arguments:Tweety 
ies be
ause Tweety is a birdTweety does not 
y be
ause Tweety is a penguinthen by the spe
i�
ity prin
iple the argument for Tweety does not 
y is preferred be
ause the fa
tthat Tweety is a penguin is more spe
i�
 than the fa
t that Tweety is a bird.



Status The goal of a defeasible argumentation system is to determine whi
h 
laimsand whi
h arguments are a

eptable. The notion of a

eptability 
an vary fromformalism to formalism, but intuitively an argument that defeats a 
on
i
tingargument but is also defeated by a third one is not a

eptable. Therefore it is notenough to just look at the two 
on
i
ting arguments alone to de
ide upon them,but instead all relevant arguments must be 
onsidered before making a de
ision.For instan
e take the knowledge base that extends the examples above by theaddition of the following 
lauses.not u t ^ z t true z  trueLet the 
on
i
ting propositions be p and not p; and u and not u, and assume thefollowing priority ordering is assigned to this knowledge base.� not p u ^ v ^ w has pre
eden
e over p q ^ r;� not u t ^ z has pre
eden
e over u true;� every other 
lause has equal pre
eden
e.We know from this ordering that argument A2 for not p defeats argument A1 forp. However, this is not enough to de
ide that argument A1 is not a

eptable. Thisis be
ause there might exist an argument A3 that defeats A2, thus restoring thevalidity of A1. In fa
t, the following argument for not u defeats A2.A3 : not u
ww

ww GG
GGt zIn a sense, the a

eptable arguments in a knowledge base 
an be viewed as oneway of settling existing 
on
i
ts. Sometimes, e.g. in the example above, there isexa
tly one way of settling 
on
i
t a

ording to the way preferen
es were de�ned,hen
e the set of a

eptable arguments is unique. There may be 
ases, however,where 
on
i
t 
an be resolved in alternative ways, and therefore alternative setsof a

eptable arguments may exist.A more re�ned view identi�es three general 
lasses of argument, intuitively de-s
ribed as follows: 26



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 27� An argument is justi�ed if and only if all arguments defeating it are notjusti�ed; e.g. A1 and A3 above are justi�ed arguments.� An argument is overruled if and only if it is not justi�ed and it is defeatedby a justi�ed argument; e.g. A2 above.� An argument is defensible otherwise.From this perspe
tive there are two possible attitudes towards a

eptan
e ofarguments|
redulous and s
epti
al. In 
redulous systems, an argument is a
-
epted if it defensible. On the other hand, in s
epti
al systems an argument isa

epted only if it justi�ed. This distin
tion between justi�ed and defensible isalso possible in 
ases where there are alternative sets of a

eptable arguments,so an argument is defensible if it is in at least one of these sets, but for it to bejusti�ed it must be in every alternative set.This 
on
eptual sket
h is in line with Dung's view that every argumentation system 
on-sists of two essential parts: an Argument Generation Unit (AGU) for generatingarguments; and an Argument Pro
essing Unit (APU) for de
iding whether an ar-gument is a

eptable. Dung (1995) argues that logi
 programming and non-monotoni
reasoning are types of argumentation whi
h 
an be formalised in an abstra
t way vianotions of argument and atta
k. He proposes a method for generating meta-interpretersfor argumentation systems, showing also that argumentation 
an be seen as logi
 pro-gramming. The method is simple and is des
ribed below:� The AGU spe
i�es the atta
k (or 
on
i
t) relationships between arguments. In(Dung 1995), these relations are 
onsidered to be primitive and represented interms of a binary predi
ate atta
k : if an argument A atta
ks an argument B, thisis expressed by atta
k (A;B).� The APU is the following logi
 program with negation as failure that determineswhether an argument A is a

eptable.a

eptable(A)  not defeat(A)defeat(A)  atta
k(B;A) ^ a

eptable(B)



Intuitively, an argument is a

eptable if it 
annot be shown to be defeated, i.e. ifthere is no a

eptable argument that defeats it. This 
aptures the idea that anargument A 
an be atta
ked by another argument, whi
h in its turn may also beatta
ked by a third one, therefore restoring the validity of A, but does not 
apturethe distin
tion between justi�ed and defensible arguments above.From the perspe
tive of this 
on
eptual model we now take a 
loser look at the Abstra
tArgumentation Framework, a logi
 programming based 
hara
terisation of defeasibleargumentation whi
h is both generi
 and oriented towards 
omputation.3.1.4 An Abstra
t A

ount of Defeasible ArgumentationThe Abstra
t Argumentation Framework in (Kowalski and Toni 1994, 1996; Bondarenkoet al. 1997) gives a 
exible way of dealing with defeasibility in argument. As a languageindependent formalisation of defeasible argumentation, it 
an semanti
ally 
hara
terisemany approa
hes to default reasoning. This framework is partly based on Dung's Ar-gumentation Framework (Dung 1995), but a fundamental di�eren
e is that in Dung'sformalism the notions of argument and atta
k are 
onsidered as primitives.So let (L;`) be a monotoni
 dedu
tive system, where L is a formal language and ` isprovability relation su
h that � ` � if there is a dedu
tion of � 2 L from a theory �. Atheory is any set � � L.De�nition 3.1 (Abstra
t Argumentation Framework) Let (L;`) be a monotoni
dedu
tive system. An Abstra
t Argumentation Framework (�;A;� ) with respe
t to(L;`) is an assumption-based framework de�ned by:� a theory � � L representing fa
ts or beliefs;� a set of assumptions A � L, A 6= ;, that 
an extend any theory; and� a mapping � : A! L to 
apture the notion of 
ontrary of an assumption|i.e.� 2 L represents the 
ontrary of � 2 A. 2A key motivation is that it should be possible to make expli
it the assumptions onwhi
h defeasible reasoning is based. For instan
e, an argument whi
h rests on su
h28



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 29assumptions is a

epted if there is no eviden
e to the 
ontrary. Non-monotoni
ity ariseswhen eviden
e against these assumptions is provided, thus the arguments based on themare no longer a

epted (Bondarenko et al. 1997).De�nition 3.2 (Argument) If a 
on
lusion � 2 L 
an be derived from � � A and� � L, then we say that � [� ` � is an argument for �. 2Note that arguments are based on assumptions, and these assumptions 
an be atta
kedby others:De�nition 3.3 (Atta
k) Let (�;A;� ) be an Abstra
t Argumentation Framework. Aset of assumptions � � A atta
ks another set of assumptions �0 � A if there is � 2 �0su
h that � [� ` �. 2The term atta
k used in this framework 
orresponds to the notion of 
on
i
t in the
on
eptual sket
h in Se
tion 3.1.3. Be
ause an argument 
an only be atta
ked by meansof its assumptions, 
on
i
ts between arguments are not symmetri
al; i.e. if an argumentA atta
ks an argument B, then B does not ne
essarily atta
k A. These sorts of atta
ksare known as assumption atta
ks. In this sense, all relations between arguments in theAbstra
t Argumentation Framework are redu
ed to undermining atta
ks, as illustratedin the following example, adapted from (Kowalski and Toni 1996) and (Robertson andAgust�� 1999).Example 3.1 . Consider the following theory � of an Abstra
t Argumentation Frame-work about inheritan
e. inherits(P; estate(B))  valid will (W;B; P ) (3.1)disinherited (P; estate(B))  found guilty(P;murder (B)) (3.2)found guilty(john ;murder(henry))  (3.3)valid will (do
042 ; henry ; john)  (3.4)We say that a person P inherits the estate of B if there is a valid will W from B tothat person. On the other hand, we say that a person P is disinherited of the estate ofB if this person has been found guilty of the murder of B. In a parti
ular inheritan
e




ase, John has been found guilty of the murder of Henry, and there exists a valid willidenti�ed as do
042 naming John the bene�
iary of Henry's estate.Intuitively, there is 
on
i
t if a person P both inherits and is disinherited of some es-tate. It should be possible to 
onstru
t two rebutting arguments here: one supporting the
on
lusion inherits(john ; estate(henry)), and another disinherited (john ; estate(henry)).However, from the formal de�nition of atta
k given above, we 
annot derive any 
on-
i
ting argument.Atta
ks are based on assumptions. Therefore, in order to allow arguments to be atta
kedwe need to appropriately extend the expressions in the theory by adding assumptions asextra premises. Let the abdu
ible senten
es be represented by a non-provability operatorof the form 
annot be shown(�), whi
h denotes that a senten
e � is assumed to be falseif it 
annot be proved to be true. Note that 
annot be shown(�) = �.Expressions (3.1) and (3.2) 
ould then be rewritten as follows:inherits(P; estate(B))  valid will (W;B; P ) ^
annot be shown(disinherited (P; estate(B))) (3.5)disinherited (P; estate(B))  found guilty(P;murder(B)) ^
annot be shown(inherits(P; estate(B))) (3.6)From De�nition 3.3 we now have two undermining arguments 
orresponding to theintuitive rebutting arguments. 2There is no expli
it 
riterion for de
iding between two arguments in an Abstra
t Argu-mentation Framework. In fa
t, the notions of defeat and 
on
i
t 
oin
ide in the sensethat every atta
k to an argument defeats this argument. Note that defeat 
an be sym-metri
al, so it is possible to have two arguments defeating ea
h other. This is illustratedabove, where the argument for inherits(john ; estate(henry)), defeats the argument fordisinherited (john ; estate(henry)), and vi
e versa. In this sense, there are two ways ofsolving 
on
i
t in this inheritan
e base, 
orresponding to the following two alternativesets of a

eptable arguments: one 
ontaining the argument supporting inheritan
e, andthe other 
ontaining the argument supporting disinheritan
e. Both 
on
lusions are de-30



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 31fensible (but not justi�ed), so in a 
redulous system both would be a

eptable whereasin a s
epti
al system neither of them would.It should be possible, however, to represent priorities and preferen
es in this framework.A
tually, there are two ways to prioritise an argument in terms of assumptions withoutaltering the semanti
s. One way is by removing assumptions so that the argument 
anno longer be atta
ked. The se
ond way is by introdu
ing labels to the expressions andadding rules that talk about their priorities. A methodology for doing the latter isdes
ribed in detail in (Kowalski and Toni 1996). Next we illustrate both 
ases.Example 3.2 Consider again the example 3.1. Intuitively, if John is found guilty ofmurdering the owner of the estate he is supposed to inherit (Henry), it 
an be expe
tedthat he is disinherited of that estate, even if a valid will exists. Therefore, we wouldlike to prioritise the argument for disinheritan
e with respe
t to the one supportinginheritan
e.One way to do this is by removing the assumption in expression (3.6). Therefore, inthe theory 
onsisting of expressions (3.5), (3.2), (3.3) and (3.4) there are no argumentsatta
king the argument for disinherited (john ; estate(henry)).Another way to prioritise arguments is by talking about priorities in terms of labels.Consider the following expressions:r1 : inherits(P; estate(B))  valid will (W;B; P ) ^
annot be shown(defeated (r1(P ))) (3.7)r2 : disinherited (P; estate(B))  found guilty(P;murder(B)) ^
annot be shown(defeated (r2(P ))) (3.8)defeated (r1(P ))  
annot be shown(defeated (r2(P ))) (3.9)Expression (3.9) intuitively 
orresponds to the idea of \inherits unless is disinherited of",so the argument for inheritan
e is defeated in 
ase a person is proved to be disinherited ofthe estate under 
onsideration. In the theory 
omposed of expressions (3.7), (3.8), (3.3),(3.4) and (3.9), the argument for disinherited (john ; estate(henry)) defeats the argumentfor inherits(john ; estate(henry)), but the reverse does not hold be
ause no 
lause existsfor defeated (r2(john)). 2



Having de�ned the notions of defeat, the arguments in an Abstra
t ArgumentationFramework 
an be evaluated in terms of their ability to defend themselves againstatta
k (Kowalski and Toni 1994). The way in whi
h the 
lass of a

eptable argumentsis de�ned 
an vary a

ording to the semanti
s that one wants to 
apture. In the 
aseof admissibility semanti
s, for instan
e, an argument is a

eptable if and only if it is
onsistent and it atta
ks every argument that atta
ks it.De�nition 3.4 (A

eptability) An argument � [� ` � is a

eptable if and only ifthe set of assumptions � on whi
h it is based is admissible. 2De�nition 3.5 (Admissibility) A set of assumptions � � A is admissible if and onlyif, for every �0 � A, if �0 atta
ks � then � atta
ks �0 ��. 2To build an admissible argument for a 
on
lusion � we �rst need to 
onstru
t an argu-ment � [� ` � and then augment the set of assumptions � so as to defend it againstall possible atta
ks. Note that this is not trivial be
ause by adding new assumptions toan argument we are also adding new potential points of atta
k against it.Many other 
redulous and s
epti
al semanti
s for negation as failure 
an also be 
apturedby adopting other de�nitions of a

eptability.5 In parti
ular, di�erent logi
s for defaultreasoning 
an be obtained by 
onsidering di�erent notions of a

eptability, di�erentsets of assumptions or even by assuming a di�erent underlying logi
. The advantageof this framework is that it is both generi
 and oriented towards 
omputation, sin
eit 
an be implemented as a logi
 program. Re
ently, a parametrisable proof theoryhas been developed for it (Kakas and Toni 1999), where the di�erent semanti
s that
an be formalised via argumentation 
an be 
omputed in terms of instan
es of theseparameters.3.1.5 Relation to Other Paradigms for Non-monotoni
 ReasoningBy appropriately instantiating the 
on
epts des
ribed in Se
tion 3.1.3, argumentationframeworks 
an provide a 
hara
terisation of di�erent formalisms for default reasoning,5 It has re
ently been shown in (Dimopoulos et al. 1999) that 
redulous reasoning under admissibilitysemanti
s is as hard as under stable semanti
s, but in the 
ase of s
epti
al reasoning it is a
tuallyeasier. Other 
omplexity results for some of the semanti
s 
aptured by the Abstra
t ArgumentationFramework 
an also be found in that paper. 32
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h as logi
 programming with negation as failure, default logi
 and auto-epistemi
logi
, among others. Re
onstru
ting these formalisms in terms of an Abstra
t Argumen-tation Framework means spe
ifying appropriately ea
h one of the elements in De�nition3.1, namely an underlying logi
, a set of assumptions, and the notion of 
ontrary of anassumption.For illustrative purposes, 
onsider the 
ase of default logi
.6 A default theory is basedon a �rst-order dedu
tive system (L0;`0) and 
an be de�ned as a pair (W;D), where Wis a set of formulae in the underlying system and D is a set of default rules (Antoniou1998). Default rules have the general form �:�1;:::;�n
 , denoting that if � is true and if we
an assume �1; :::; �n to be 
onsistent with �, then we 
an derive 
. Let M� representthat it is 
onsistent to assume �. A default theory (W;D) 
an then be des
ribed asan instan
e of an Abstra
t Argumentation Framework (W;A;� ) based on a dedu
tivesystem (L;`) as follows:� (L;`) is the underlying �rst-order dedu
tive system:{ L = L0 [ fM� j � 2 L0g;{ ` is de�ned by the set of inferen
e rules R below,R = R0 [ f�;M�1;:::;M�n
 j �:�1;:::;�n
 2 Dg,where R0 is the set of inferen
e rules de�ning `0.� A is the set of assumptions de�ned by fM� j � 2 L0g.� The notion of the 
ontrary of an assumption is de�ned as M� = :�.Re
ently, argumentation has also been applied to the problem of belief revision (Car-bogim and Wassermann 2000), where an instan
e of the 
on
eptual model in Se
tion3.1.3 is used in a resour
e-bounded belief model to de
ide whether an in
oming beliefshould be a

epted or not.As summarised by Prakken and Vreeswijk (1999, p. 9), the argumentation paradigmseems to be appli
able in areas other than defeasible reasoning:6 The interested reader should refer to (Bondarenko et al. 1997) for a more 
omplete a

ount of thisre
onstru
tion in terms of the Abstra
t Argumentation Framework with respe
t to the various possiblesemanti
s.



[...℄ argumentation systems have a wider s
ope than just reasoning with default.Firstly, argumentation systems 
an be applied to any form of reasoning with 
on-tradi
tory information, whether the 
ontradi
tions have to do with rules and ex-
eptions or not. For instan
e, the 
ontradi
tions may arise from reasoning withseveral sour
es of information, or they may be 
aused by disagreement about be-liefs or about moral, ethi
al or politi
al 
laims. Moreover, it is important thatseveral argumentation systems allow the 
onstru
tion and atta
k of arguments thatare traditionally 
alled `ampliative', su
h as indu
tive, analogi
al and abdu
tive ar-guments: these reasoning forms fall outside the s
ope of most other non-monotoni
logi
s.The following se
tions then explore this wider s
ope of argumentation in other 
ontexts.3.2 Argument and De
ision Making under Un
ertainty3.2.1 Problem Des
riptionAs argued by Fox and Krause (1992), de
ision making is not only about quantitativeoption sele
tion. Pra
ti
al reasoning|or reasoning about what is to be done|is arather 
omplex a
tivity that involves many other fun
tions, su
h as de
ision stru
turing,
ommuni
ation, and representation of values, beliefs and preferen
es. In parti
ular, Foxand Krause (1992) have identi�ed the following requirements that de
ision supportsystems should satisfy: robustness, 
exibility, a

ountability and soundness.What makes the problem of pra
ti
al reasoning yet more 
omplex is the fa
t that infor-mation on whi
h de
isions are based is very likely to be imperfe
t and un
ertain. Belowwe des
ribe some ways in whi
h un
ertainty 
an arise in a knowledge base.� We 
an have degrees of 
on�den
e asso
iated with the information in the knowl-edge base, and these measures should be propagated appropriately as we reasonabout it.� Un
ertainty may be present in a non-deterministi
 fashion, where either of two(or more) alternatives 
an 
ome about, but we do not know whi
h. This type ofun
ertainty is usually represented in terms of disjun
tions in the knowledge base.34



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 35� Moreover, un
ertainty 
an arise when we 
annot expli
itly a

ount for the many
onditions that are ne
essary for a rule or a relation to hold. This is usually 
alledthe quali�
ation problem.This se
tion looks at the problem of de
ision making from the more 
omplex perspe
tiveadvo
ated by Fox and Krause (1992), 
onsidering 
ases where the information availableis un
ertain in one of the three senses des
ribed above.3.2.2 Argumentation and De
ision MakingMost standard de
ision theories do not address all the requirements identi�ed by Foxand Krause (1992) appropriately. On one hand, symboli
 approa
hes su
h as knowledgebased expert systems are usually 
onstru
ted in an ad ho
 manner, and often 
onsideredto be brittle. On the other hand, probabilisti
 de
ision theories are not suÆ
iently
exible nor a

ountable with respe
t to the options 
onsidered, and therefore havelimited appeal to users. In fa
t, psy
hologi
al resear
h indi
ates that people do notreason probabilisti
ally when fa
ed with un
ertainty.7 Moreover, it is not always possibleto obtain pre
ise, obje
tive statisti
s in 
ertain domains (Parsons and Fox 1997).The argumentation paradigm has been explored as an alternative approa
h to standardde
ision making theories, where de
isions are made by 
onsidering arguments for andagainst de
ision options. As stated in (Fox and Krause 1992):Argumentation 
aptures a natural and familiar form of reasoning, and 
ontributesto the robustness, 
exibility and intelligibility of problem solving, while having a
lear theoreti
al basis.A re
ent statement on argumentation and pra
ti
al reasoning has also elaborated onthe roles and issues underlying argument-based de
ision support systems (Girle et al.2000).Argumentation has been applied extensively in domains su
h as risk assessment (M
Bur-ney and Parsons 1999, 2000) and medi
ine (Fox and Das 2000). The Logi
 of Argumen-7 See (Parsons and Fox 1997) for a more extensive dis
ussion, in
luding referen
es to empiri
al eviden
esupporting this 
laim.



tation (Krause et al. 1995) in parti
ular is a well-established formal model for pra
ti
alreasoning in whi
h a stru
tured argument rather than some summative measure is usedfor des
ribing un
ertainty. That is, the degree of 
on�den
e in a proposition is obtainedby analysing the stru
ture of the arguments relevant to it. The Diale
ti
al Argumen-tation System (Freeman 1993) is also based on the same ideas and motivations, but ithas been less widely used than the Logi
 of Argumentation. Both will be dis
ussed inSe
tion 3.2.3.Other argumentation-based de
ision theories look at de
ision making from the sameperspe
tive, but 
onsider di�erent representations of un
ertainty. Se
tion 3.2.4 brie
ydis
usses some of these other approa
hes, in parti
ular Haenni's Assumption-based Sys-tems (Haenni 1998) and an extension of Dung's Argumentation Framework for modellingun
ertainty (Ng et al. 1998).3.2.3 The Logi
 of ArgumentationThe Logi
 of Argumentation (LA) is a qualitative approa
h to de
ision making, pre-sented as an alternative to standard formalisms in order to over
ome some of the lim-itations imposed by them. The development of LA was largely based on Toulmin'swork on informal argumentation (Toulmin 1958; Fox et al. 1992), parti
ularly on hisdes
riptive model of arguments whi
h is summarised in Figure 3.1.QUALIFIER
vvllllDATA // CLAIMWARRANT REBUTBACKINGFigure 3.1: Toulmin's argument stru
ture: a 
laim is supported by data (or eviden
e)and by a warrant, whi
h is a general rule or prin
iple supporting the step from data toa 
laim; the ba
king is a justi�
ation for the warrant, and the rebut is a 
ondition wherea warrant does not hold; a quali�er expresses the appli
ability of the warrant.

36



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 37Fox and Parsons (1998) argue that 
ertain 
hara
teristi
s of this stru
ture make itsuitable for pra
ti
al reasoning in general and for de
ision making under un
ertainty inparti
ular. In 
ontrast to stri
tly dedu
tive mathemati
al reasoning, pra
ti
al reasoning
an involve imperfe
t information and inferen
e relations other than dedu
tion (Elvang-Goransson et al. 1993). In a sense, Toulmin's model a

ounts for some of these issues:the idea that 
on
lusions are followed by a quali�er suggests that degrees of 
on�den
e
an be asso
iated with 
laims; and 
ontradi
tion 
an also be represented in terms of therebut 
omponent.Arguments about BeliefsIn a nutshell, the idea behind LA is to analyse the stru
ture of the arguments that arerelevant to a proposition in order to obtain a degree of 
on�den
e for it. As stated byKrause and Clark (1993), \degrees or states of un
ertainty 
an be viewed as a synthesisof the out
ome of reasoning pro
esses (i.e. arguments) germane to the proposition inquestion."The Logi
 of Argumentation is based on a fragment of minimal propositional logi
 
om-posed of 
onne
tives ^, ! and :. In line with most formal frameworks for argumenta-tion, an argument is de�ned as a proof in this logi
, but also with the more pragmati
interpretation of tentative proof for indi
ating support for (or against) a proposition.Ea
h argument in LA is represented as the following stru
ture in a Labelled Dedu
tiveSystem style (Gabbay 1996): (St : G : S),where:� St is any formula of the underlying logi
. It 
orresponds to the 
on
lusion of theargument, or the 
laim in Toulmin's stru
ture.� G represents the grounds on whi
h the argument is based, i.e. the proof or jus-ti�
ation for the argument. The idea is that the senten
es and formulae used toderive St in the underlying logi
al system are expli
itly represented in G. G istherefore similar to the data and warrant supporting the 
laim in Toulmin's model.



� S is a sign, i.e. an element of a di
tionary (set) of symbols or numeri
al valuesrepresenting possible degrees of 
on�den
e in the senten
e St, thus 
apturing thenotion of quali�er in Toulmin's model.A number of di
tionaries of 
on�den
e measures were de�ned and analysed in (Fox andParsons 1998), with emphasis on symboli
 ones. An example is the so-
alled boundedgeneri
 di
tionary f+;++g, in whi
h + indi
ates that a 
laim is supported whereas++ denotes that a 
laim is 
on�rmed and hen
e 
annot be rebutted with respe
t tothe grounds on whi
h it is based. The delta di
tionary f+;�g is another example of aset of symboli
 degrees of 
on�den
e, where � represents an opposing argument, or anyargument that de
reases the 
on�den
e in a 
laim. In the delta di
tionary for instan
ethe following relation holds: (:St : G : +), (St : G : �).In summary, arguments are stru
tures that des
ribe how a senten
e is justi�ed. If � isa knowledge base 
omposed of su
h argument stru
tures, then new arguments 
an begenerated from � via an argument 
onsequen
e relation `ACR. Figure 3.2 gives someof the rules de�ning this relation in a 
onsequent style. The interested reader 
an referto (Krause et al. 1995; Fox and Parsons 1998) for a 
omplete and detailed de�nition of`ACR.To illustrate the types of arguments that 
an be represented in LA, 
onsider the followingexample from a medi
al domain, adapted from (Fox and Parsons 1998).Example 3.3 Suppose that a patient has 
oloni
 polyps whi
h 
ould be
ome 
an
erous.These beliefs 
an be represented in a knowledge base by the following arguments in termsof the bounded generi
 di
tionary.b1: The patient has 
oloni
 polyps (
p : fb1g : ++)b2: Polyps may lead to 
an
er (
p! 
a : fb2g : +)Here 
p stands for \the patient has 
oloni
 polyps" and 
a for \the patient will develop
an
er". The symbols b1 and b2 are labels for identifying beliefs in the knowledge base.These labels are parti
ularly useful for representing the senten
es that are used to proveor justify an argument; i.e. its grounds. 38



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 39(Ax) If (St : G : S) is in the knowledge base, then (St : G : S) is an argument itself.(St:G:S)2�� `ACR (St:G:S)(^E1) If we 
an build an argument for St ^ St0 on the grounds of G and with 
on�-den
e S, then we 
an eliminate one 
onjun
t and build an argument for St onthe same grounds G and the same degree of 
on�den
e S asso
iated with it.� `ACR (St^St0:G:S)� `ACR (St:G:S)(!E) If we 
an build an argument for St and an argument for St! St0, then we
an build an argument for St0. The grounds on whi
h St0 is based are repre-sented by the union of the grounds on whi
h St and St! St0 were derived.The degree of 
on�den
e asso
iated with St0 is obtained from a 
ombinationfun
tion with respe
t to the elimination of impli
ation.� `ACR (St:G:S) � `ACR (St!St0:G0:S0)� `ACR (St0:G[G0:
ombimp elim (S;S0)Figure 3.2: The Argument Consequen
e Relation `ACR.The argument 
onsequen
e relation in Figure 3.2 
an derive, on the grounds of thearguments above, that this patient may develop 
an
er.b: The patient may develop 
an
er (
a : fb1; b2g : +)More spe
i�
ally, it uses the impli
ation elimination rule (!E) whi
h 
an be understoodas an spe
ial appli
ation of Modus Ponens in whi
h the grounds and signs have to bepropagated appropriately. In this 
ase, the sign propagation fun
tion is a minimalisationof the degree of 
on�den
e. 2Thereby LA provides a way of building the arguments that are relevant to a senten
e.What still needs to be de�ned is a me
hanism for 
ombining every distin
t argument inorder to obtain a single 
on�den
e measure for the senten
e in question. This me
hanismis also known as aggregation or 
attening, and is de�ned in terms of 
attening fun
tionsover the adopted di
tionary. If ASt is the set of all arguments (St : G : Sg) relevant toa senten
e St, then: F lat(ASt) = hSt; vi,



where v 
an be an element of the given di
tionary, but 
an also be drawn from di�erentones.The symboli
 aggregation pro
edure de�ned in (Krause et al. 1995) is an example ofthe latter 
ase. It 
ombines arguments for (+) and against (�) a proposition into anelement of a di�erent di
tionary (
orresponding to v above) 
omposed of the followinglinguisti
 terms:f
ertain ; 
on�rmed ; probable ; plausible ; supported ; openg.Furthermore these terms 
losely resemble the quali�ers used by Toulmin. One advantageof this approa
h is that it 
an provide a high level summary of the available eviden
ewithout going into details of the aggregation pro
edure.From the perspe
tive of argumentation, pra
ti
al reasoning in general and de
isionmaking in parti
ular 
an be 
hara
terised as a two-step pro
ess in whi
h we �rst 
on-stru
t arguments for the alternative options and then we sele
t the most a

eptableone (Elvang-Goransson et al. 1993). The di�eren
e between this approa
h and the onepresented in Se
tion 3.1 is that here degrees of a

eptability are asso
iated to ea
h sen-ten
e, and therefore the argument pro
essing step 
onsists of pi
king the most a

eptableargument instead of identifying the a

eptable ones. It has been shown that the Logi
of Argumentation 
an be related to other systems for non-monotoni
 reasoning, su
h asdefault logi
. But unlike the argument-based appli
ations to non-monotoni
 reasoning,LA does not in itself a

ount for the diale
ti
al perspe
tive of argumentation, nor forthe possibility of reinstatement. Su
h aspe
ts are now being explored more broadly inmulti-agent negotiation 
ontexts, as des
ribed in Se
tion 3.3.3.A 
lear mathemati
al semanti
s for argumentation and aggregation is provided in termsof 
ategory theory (Ambler 1996), so that proofs of soundness 
an be developed forthe systems based on LA. Other alternative semanti
s have also been proposed, forinstan
e the probabilisti
 semanti
s in (Parsons and Fox 1997) allows LA to representprobabilisti
 reasoning.In the 
ontext of de
ision support systems the argumentation paradigm has been provedquite e�e
tive (Fox and Das 2000; Fox and Parsons 1998). The Logi
 of Argumentation40



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 41has been widely used as the basis of an agents' internal ar
hite
tures8 and employed ina number of pra
ti
al reasoning tasks, espe
ially in medi
al domains where systems forsupporting medi
al diagnosis are amongst its appli
ations (Parsons and Fox 1997).Arguments about A
tionsReasoning about beliefs|what is the 
ase|is a
tually di�erent from reasoning abouta
tions|what we ought to do (Fox and Parsons 1998). In the �rst 
ase LA 
an beapplied to build arguments (or tentative proofs) supporting a parti
ular 
on
lusion.However, a di�erent notion of support may be needed for reasoning about a
tions,whi
h may involve values|what is important or positive|and expe
ted values|whatis the expe
ted value of doing a 
ertain a
tion.Expe
ted values and utilities are traditional ingredients in standard de
ision theories.In the 
ontext of informal argumentation, these 
on
epts were also explored in the NewRethori
 (Perelman and Olbre
ts-Tyte
a 1969), a theory that has inspired re
ent formalapproa
hes su
h as Daphne (Grasso 1998). Daphne is a system that builds argumentsto promote healthy nutrition edu
ation based on users' values and preferen
es.9The following is an informal example extra
ted from (Fox and Parsons 1998) whi
hextends Example 3.3 and gives an argument-based 
hara
terisation of a de
ision makingtheory involving both beliefs and a
tions.Example 3.4 Suppose that a patient has 
oloni
 polyps whi
h 
ould be
ome 
an
erous.Sin
e 
an
er is life-threatening, some a
tion ought to be taken in order to preempt thisthreat. Surgi
al ex
ision is an e�e
tive pro
edure for removing polyps, and hen
e this isan argument for 
arrying out surgery. Although surgery is unpleasant and has signi�
antmorbidity, this is preferable to loss of life, so surgery ought to be 
arried out.Part of this reasoning is about beliefs and 
ould be represented in LA-style as follows:8 Fox and 
olleagues have developed the DOMINO model, an agent ar
hite
ture based on the BDI|Belief Desire Intention|model (Rao and George� 1991, 1995), and whi
h in
orporates pro
eduresfor de
ision making and plan exe
ution based on the Logi
 of Argumentation (Fox and Das 2000; Daset al. 1996; Fox and Das 1996).9 Issues related to argument-based persuasion and guidan
e are raised in almost every 
ontribution in(Norman and Reed 2000), as for instan
e in (Gerlofs et al. 2000; Crosswhite et al. 2000).



b1: The patient has 
oloni
 polyps (
p : fb1g : ++)b2: Polyps may lead to 
an
er (
p! 
a : fb2g : +)b3: Can
er may lead to loss of life (
a! ll : fb3g : +)b4: Surgery preempts malignan
y (su! :(
p! 
a) : fb4g : ++)b5: Surgery has some side e�e
t se (su! se : fb5g : ++)Other arguments are about values for representing whether a state is desirable or not.v1: Loss of life is intolerable (:ll : fv1g : ++)v2: Side e�e
t of surgery is not desirable (:se : fv2g : +)Arguments about the expe
ted values of a
tions 
ombine arguments about values withstandard LA arguments for reasoning about beliefs.ev1: Surgery should be 
arried out (su : fb1; b2; b3; b4; v1g : +)ev2: Surgery should not be 
arried out (:su : fb5; v2g : +)Furthermore, preferen
es between de
ision options and alternative 
ourses of a
tionshould be represented, and here this is done in terms of a spe
ial predi
ate pref .p1: Surgery side-e�e
ts is preferableto loss of life (pref (se; ll) : fv1; v2g : ++)p2: It is preferable to 
arry out surgerythan to not 
arry out surgery (pref (su;:su) : fev1; ev2; p1g : ++)Other types of argument 
an also be identi�ed: 
losure arguments, whose grounds mightin
lude a proof that all relevant arguments have been 
onsidered; and arguments for
ommitting to parti
ular a
tions and de
ision options.
l1: No arguments to veto surgery (safe(su) : G : ++)
o1: Commit to surgery (do(su) : fp2; 
l1g : ++) 2To deal with arguments about values|su
h as v1 and v2|and expe
ted values|su
has ev1 and ev2|Fox and Parsons (1998) have proposed a Logi
 of Value (LV) and aLogi
 of Expe
ted Value (LEV), respe
tively. Arguments in LV and LEV have essentiallythe same format as the arguments in the Logi
 of Argumentation, expli
itly stating thegrounds on whi
h they are based. Figure 3.3 summarises the sort of reasoning s
hemathat 
ombines belief arguments in LA with value arguments in LV to obtain an argumentfor the expe
ted value of an a
tion in LEV.42



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 43On the grounds of G, we 
an argue that a
tionA will lead to 
ondition C with 
on�den
e S (A! C : G : S) (LA)On the grounds of G0, C has value V (C : G0 : V ) (LV)Therefore, on the grounds of G [G0,a
tion A has expe
ted value E (A : G [G0 : E) (LEV)Figure 3.3: Reasoning about beliefs, values and expe
ted values.Apart from me
hanisms for aggregating arguments about values and expe
ted values,we also need a fun
tion that 
ombines signs from LV and LA into a sign in LEV. Thatis, in Figure 3.3 we need a fun
tion for deriving an expe
ted value E given a value Vand a 
on�den
e measure S.Compared to the Logi
 of Argumentation, LV and LEV are still in a preliminary stage ofdevelopment. The proposal in (Fox and Parsons 1998) 
on
entrates on identifying whi
hbehaviour to 
apture rather than on providing a 
omplete formalisation and analysis ofthese logi
s. To our knowledge, systems that involve LV and LEV have not yet beene�e
tively implemented. The merit of this approa
h, however, lies in the 
hara
terisationof the di�erent aspe
ts of de
ision making in terms of argumentation. De�ning su
haspe
ts via separated argumentation systems is rather intuitive and provides a moreintelligible a

ount to the problem of de
ision making under un
ertainty.LA and the Diale
ti
al Argumentation SystemAlso inspired by Toulmin's argumentation model is the work by Freeman and Farley(1992), namely a formal theory for reasoning, making de
isions, and proving and jus-tifying 
laims in weak theory domains, i.e. domains in whi
h knowledge is un
ertain,in
onsistent or in
omplete. Again, the motivation for applying argumentation to dealwith in
omplete knowledge is that �nding an adequate method for atta
hing numeri
alvalues to propositions, and for 
ombining and propagating these values is a diÆ
ulttask. As stated in (Freeman and Farley 1992), \argumentation 
an be used as a methodfor lo
ating, highlighting and organizing relevant information in support of and 
ounter



to proposed 
laims."In 
ontrast to the Logi
 of Argumentation, an argument may be viewed not only as astru
tured entity, but also from a diale
ti
al perspe
tive. This means that an argumentis not only des
ribed as a stru
ture that organises relevant information for and against a
laim, but also as a dynami
 pro
ess engaged by 
on
i
ting parties as in a debate. Theargument stru
tures adopted by Freeman and Farley (1992) 
orrespond to a slightlyextended version of Toulmin's original s
hema (see Figure 3.1) together with variousquali�ers for 
apturing un
ertainty. The extended Toulmin stru
tures have been imple-mented as a Diale
ti
al ARgumenTation System|DART|that generates arguments ina game-like, dynami
 pro
ess. DART has been used to model simple legal arguments(Freeman and Farley 1996; Freeman 1993), but has not been applied to real worlds
enarios.3.2.4 Other Argumentation-based Approa
hes to Un
ertaintyArguing about beliefs under un
ertainty is not fundamentally di�erent from arguingabout the a

eptability of a 
laim in a non-monotoni
 
ontext as dis
ussed in Se
tion3.1. For instan
e, Ng et al. (1998) propose a framework for dealing with un
ertainand 
on
i
ting knowledge that extends the proposals in (Dung 1995) and (Prakken andSartor 1997).This proposal 
onsists in applying argument-based me
hanisms to resolve 
on
i
ts in adistributed setting, both within an agent's knowledge base and among di�erent agents.The agents' knowledge bases are represented as extended disjun
tive logi
 programs(Gelfond and Lifs
hitz 1991), where un
ertainty is des
ribed by disjun
tions in thehead of the 
lauses. The 
lause below for instan
e says that a dog barks when it sees astranger or a �re; so if a dog barks then we know that one of these alternatives is true,but we do not know whi
h. stranger _ �re  dog barksAs in (Prakken and Sartor 1997), two types of atta
k are 
onsidered: rebuttals, basedon strong (or 
lassi
al) negation; and assumption atta
ks, based on weak negation (or44



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 45negation as failure). Defeat is based on an expli
it preferen
e hierar
hy. In some spe
i�

ases, su
h as a single agent s
enario, this framework 
an be proved equivalent to thatof (Prakken and Sartor 1997).Another approa
h to argument-based un
ertainty has re
ently been proposed, this timein terms of assumption-based systems. Haenni (1998) in
orporates un
ertainty as ex-tra assumptions into propositional knowledge, analogously to the idea in the Abstra
tArgumentation Framework (see Se
tion 3.1.4) of making expli
it the assumptions onwhi
h defeasible reasoning is based. This 
onne
tion is not surprising, as the latter isan assumption-based system itself.Haenni's proposal 
onsists in transforming un
ertain 
ausal relations into 
lauses inan assumption-based propositional logi
, and then building arguments for hypothesesbased on these assumptions. For instan
e, the 
ausal relations expressed by the graphbelow
...e1 e2 en



ould be represented by the following 
lause stating that if 
ause 
 is true then at leastone e�e
t among e1, ..., en is also true.
! e1 _ e2 _ ::: _ enMoreover, be
ause some relations in a 
ausal network 
an be un
ertain, the e�e
tsmay only 
ome about under 
ertain 
onditions, or assumptions. These assumptions areintrodu
ed as extra premises in the 
orresponding 
lauses, as shown below.
 ^ a! e1 _ e2 _ ::: _ enAn argument for an hypothesis is a set of assumptions that allow this hypothesis tobe derived in the underlying propositional logi
. An hypothesis is a

epted or reje
tedbased on the arguments for and against it; i.e. on the arguments that allow the hy-pothesis to be derived, and on the arguments that allow the falsity of the hypothesis



to be derived. Note that this di�ers from the Abstra
t Argumentation Framework inthe sense that 
ounter-arguments are not de�ned in terms of assumption atta
ks, butin terms of rebuttals.Just as in the Logi
 of Argumentation, it is possible to aggregate the arguments relevantto an hypothesis in order to obtain a 
on�den
e measure for it. In Haenni's proposal,however, the aggregation measure is purely quantitative, and it 
an be derived by as-signing prior probabilities to the assumptions and propagating them a

ordingly. Notethat the framework also �ts in the two-step pro
ess 
hara
terisation of argumentationsystems dis
ussed in the previous se
tions, sin
e we �rst build all arguments related toan hypothesis and then, based on these arguments, we evaluate it quantitatively.The formalism des
ribed in (Haenni 1998) has been implemented in ABEL (AssumptionBased Evidential Language), a modelling language for 
omputing symboli
 and numer-i
al arguments for an hypothesis given an expert knowledge base and a set of fa
tsand observations (Anrig et al. 1999). ABEL has been applied mostly for re
onstru
tingstandard AI examples, in parti
ular in the model-based diagnosis and 
ausal modellingdomains.Hen
e argumentation 
an be used to model de
ision pro
esses under un
ertainty in thesense des
ribed in Se
tion 3.2.1. Moreover, be
ause the informal notion of argument isnaturally 
onne
ted to that of disagreement between parties, it seems that this paradigm
ould also be applied in distributed s
enarios. This is what we explore next.3.3 Argument and Multi-Agent Systems3.3.1 Problem Des
riptionIntelligent software agents should be able to intera
t with other agents in many dif-ferent ways. Su
h intera
tions usually pose a variety of issues related to informationdis
overy, 
ommuni
ation, reasoning, 
ollaboration, 
oordination of joint approa
hesand so
ial abilities. Some of these issues may be viewed as a pro
ess of a
hieving mu-tually a

eptable agreements between agents (Parsons and Jennings 1997), where thenature of these agreements varies a

ording to the type of problem to be addressed.46



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 47There are in general two types of agreement that 
an be attempted by agents. Onone hand, agreement is about de
iding on a 
on
lusion that is a

eptable to all agentsinvolved. This sort of intera
tion usually takes pla
e when there is a 
on
i
t that needsto be settled or resolved. On the other hand, agreement may be a
hieved in a goal-oriented type of reasoning, in whi
h agents take a previously a

epted goal as a startingpoint and intera
t in order to �nd an a

eptable way of rea
hing or satisfying it. Thissort of intera
tion arises when there is a 
ommon problem to be solved by the agents,who have to agree on a solution. In either 
ase, it is important for agents to reasonabout their own beliefs, as well as about other agents' beliefs. So it is very likely thatthese intera
tions will be based on imperfe
t information in general and 
ontradi
torybeliefs and intentions in parti
ular.Note that this way of looking at multi-agent intera
tions seems to be in line with the
lassi�
ation of dialogues given by Walton and Krabbe (1995). They have identi�edsix basi
 types of argumentative dialogues, whi
h 
an be 
hara
terised in terms of aninitial situation, a main goal, and the aims of the parti
ipants. One systemati
 way fordetermining the type of a dialogue is to 
onsider whether it starts from a 
on
i
tingsituation or from an open problem to be solved, in a similar way as we have 
hara
terisedthe types of multi-agent agreements above. A more detailed dis
ussion on the relationbetween models in argumentation theory and in multi-agent approa
hes is given in(Carbogim et al. 2000a), whi
h addresses and identi�es issues and open problems thatare of interest to both 
ommunities.In the agent 
ommunity in parti
ular the problem of a
hieving mutually a

eptableagreements between agents has often been des
ribed as negotiation.10 In this 
ontext,we now 
onsider the problem of negotiation based on the two general types of agreementsidenti�ed above.10 Negotiation is one of the six basi
 dialogue types identi�ed in (Walton and Krabbe 1995)|it startswith a 
on
i
t of interests and has settling, or making a deal, as the main goal. The multi-agent
ommunity adopts a broader view of negotiation, usually de�ned as a general pro
ess for a
hievingagreements. This de�nition subsumes other types of dialogues su
h as deliberation and persuasion,but is still 
ompatible with these: \negotiation dialogues may pro�t both from inquiries and frompersuasion dialogues as sub-dialogues" (Walton and Krabbe 1995, p. 73).



3.3.2 Argumentation-based NegotiationResear
h in argumentation in multi-agent settings has been guided by the question ofwhether it 
an provide or support intelligent intera
tion between agents. Re
ently therehas been mu
h interest in applying argumentation systems to 
apture negotiation, sin
epro
esses for rea
hing agreements often involve the ex
hange of arguments betweenagents.Here we present two ways in whi
h negotiation pro
esses 
an be formalised in terms ofargumentation. Se
tion 3.3.3 
onsiders proto
ol-based argumentation approa
hes, whi
hfo
us on the ex
hange of messages between agents, and therefore are parti
ularly usefulfor rea
hing agreements about whi
h 
on
lusion to a

ept when there is 
on
i
t. Se
tion3.3.4 
onsiders obje
t-based argumentation formalisms. Su
h formalisms 
on
entrate onthe 
onstru
tion of obje
ts as solutions to open problems, and therefore are appropriatefor rea
hing agreements on how to satisfy or a
hieve 
ertain goals. Note that this
lassi�
ation is not novel, as a similar distin
tion on argumentation-based negotiationresear
h was presented in (Jennings et al. 1998).3.3.3 Proto
ol-based Negotiation via ArgumentationAgent 
ommuni
ation models or intera
tion proto
ols usually des
ribe dialogues be-tween agents in terms of notions that are relevant to argumentation, and therefore itis possible to look at them from an argumentation perspe
tive. For instan
e, 
onsiderthe 
ase of the Knowledge Query and Manipulation Language|KQML|an agent 
om-muni
ation language that provides a set of performatives through whi
h agents 
anintera
t (Finin et al. 1997; Labrou et al. 1999). The notion of performatives 
omes fromspee
h a
t theory, and essentially is used to 
onvey some a
tion about a message whentransmitting it. Some KQML reserved performatives are shown in Figure 3.4.More 
ommonly, however, intera
tion proto
ols are only a part of argument-based ne-gotiation models, whi
h is used for dealing with 
ommuni
ation issues. Negotiationformalisms normally extend single-agent argumentation frameworks (of the types pre-sented in the previous se
tions) by using these to generate arguments whi
h will bepassed to other agents via some 
ommuni
ation proto
ol, thus providing an argument-48



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 49Category NameBasi
 query evaluate, ask-if, ask-about, ask-one, ask-allMulti-response (query) stream-about, stream-all, eosResponse reply, sorryGeneri
 informational tell, a
hieve, 
an
el, untell, una
hieveGenerator standby, ready, next, rest, dis
ard, generatorCapability-de�nition advertise, subs
ribe, monitor, import, exportNetworking register, unregister, forward, broad
ast, routeFigure 3.4: Some KQML performatives 
lassi�ed into 
ategories (Finin et al. 1997).based approa
h for reasoning with imperfe
t information in a distributed setting.For instan
e, the framework proposed by M�ora et al. (1998) extends the single-agentde
larative argumentation framework in (Prakken and Sartor 1997) to deal with 
oop-eration among agents. Analogously to its single-agent 
ounterpart, the aim is to de
idewhi
h 
on
lusions are a

eptable in this distributed environment, also 
hara
terisingthe semanti
s of distributed logi
 programs in terms of argumentation. In this 
ase,however, agents 
an 
ooperate by looking for support from other agents when tryingto build arguments. Agents are de�ned as extended logi
 programs, so they 
ooperateby asking other agents to infer 
ertain 
on
lusions ne
essary to 
omplete a proof. The
ommuni
ation pro
ess is implemented via an argumentation proto
ol based on �vespee
h a
ts: ask, reply, propose, oppose and agree.The approa
h de�ned in (S
hroeder 1999a) is also based on the same de
larative frame-work in Se
tion 3.1.3. The proposal is preliminary, but it goes one step further in thedire
tion of building e�e
tive operational argumentation systems, as S
hroeder tou
heson issues related to the heuristi
 layer11 su
h as the need to de�ne strategies for sele
t-ing the best argument in order to redu
e the number of ex
hanged messages and theneed to in
rease general understanding of argumentation and logi
, thus underminingsome of the most 
ommon 
riti
isms of the use of formal logi
 in modelling arguments.He addresses this need by proposing a graphi
al language for dynami
ally visualisingargumentation pro
esses (S
hroeder 1999b).1211 See Se
tion 3.1.2.12 Information about this language is available at http://www.soi.
ity.a
.uk/homes/ms
h/
gi/viz/.A system for 
ooperation between agents in business pro
ess modelling is also available athttp://www.soi.
ity.a
.uk/homes/ms
h/
gi/a
a/a
a.html. This system was motivated by a



In the 
ontext of de
ision making, where it is important to resolve 
on
i
ting obje
tivesand to 
oordinate 
ooperative a
tions, negotiation has been 
hara
terised in terms of ageneri
 pro
ess for ex
hanging proposals, 
ritiques, 
ounter-proposals, explanations andmeta-information. More re
ently, Wooldridge and Parsons (2000) have been fo
using onthe study of formal properties that generi
 logi
al languages for negotiation 
an have,as for instan
e what types of proto
ols are guaranteed to lead to an agreement. Belowwe dis
uss the proto
ol for negotiation proposed in (Parsons and Jennings 1997), andsket
hed in Figure 3.5.Proposal A proposal is the basi
 element of negotiation, and it usually 
orresponds toan o�er or a request.Critique Intuitively, to 
ritique a proposal means to reje
t this proposal, maybe at-ta
king the parts whi
h are not a

eptable.Counter-proposal A 
ounter-proposal is a type of 
ritique where the agent not onlyreje
ts a proposal, but also presents another (preferable) one.Explanation An explanation is a justi�
ation or an argument for a proposal, 
ritiqueor 
ounter-proposal.Meta-information Any pie
e of extra information that 
an be used for guiding theanalysis and evaluation of proposals, su
h as information about preferen
es orvalues.In the proto
ol outlined in Figure 3.5 there is no expli
it indi
ation of ex
hange ofmeta-information, as this type of message 
an be passed at any point by any agent.Arguments (explanations) may be sent together with 
ritiques and proposals, and arerepresented by the formula �.This proto
ol forms the basis of the multi-agent de
ision making frameworks in (Parsonset al. 1998) and (Sierra et al. 1997b) whi
h, although related, look at argumentationfrom two di�erent but (maybe) 
omplementary perspe
tives.proje
t for developing multi-agent models in the domain of business pro
ess management (Jenningset al. 1996), whi
h also inspired the negotiation model in (Sierra et al. 1997b) dis
ussed later in thisse
tion. 50
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ritique(b; a; �)proposal(a; b; �) 
ritique(a; b; �)proposal(b; a; �)proposal(b; a; �)proposal(a; b; �)a

ept(a; b; �)a

ept(b; a; �) withdrawproposal(a; b; �) proposal(b; a; �)withdraw withdraw
proposal(a; b; �)

Figure 3.5: Negotiation proto
ol for two agents a and b (Parsons et al. 1998).The work in (Sierra et al. 1997b) was motivated by multi-agent appli
ations in businesspro
ess management domains (Jennings et al. 1996). The emphasis in this proposalis given to the so
ial aspe
ts of negotiation rather than to the a
tual generation ofproposals, so atta
k relations are assumed to be primitive as in Dung's approa
h. Themodel is based on a spe
i�
 
ommon 
ommuni
ation language whi
h deals with elementsof persuasion (Sy
ara 1990)|su
h as threat, reward and appeal|that agents use totry to 
hange ea
h other's preferen
es, values and beliefs. Su
h 
hanges are done in arather domain spe
i�
 manner, and some investigation on notions su
h as values andexpe
ted utility in the sense des
ribed in Se
tion 3.2.3 might shed some light on howpersuasion 
ould be de�ned in more systemati
 terms.While this work fo
uses on so
ial elements, the framework in (Parsons and Jennings1997) and (Parsons et al. 1998) is more 
on
erned with providing the ne
essary me
ha-nisms for implementing the negotiation pro
ess in Figure 3.5. More spe
i�
ally, it usesthe Logi
 of Argumentation to:



� generate proposals, 
ritiques, 
ounter-proposals, meta-information and explana-tions; and� evaluate proposals, 
ounter-proposals and meta-information.The Logi
 of Argumentation provides means of generating proposals as arguments andof evaluating them in terms of their a

eptability. A 
ru
ial di�eren
e between howLA is applied here and in a single-agent s
enario is that now an agent has to makeexpli
it not only the rules and fa
ts that it used to generate an argument, but also theinferen
e rules, be
ause di�erent agents might use di�erent logi
s and therefore wouldnot be able to re
onstru
t an argument if ne
essary. This issue is ta
kled by adopting auniform underlying agent ar
hite
ture, the multi-
ontext ar
hite
ture. An advantage ofthe multi-
ontext approa
h is that it is generi
 enough to 
apture other ar
hite
tures,su
h as the BDI framework (see footnote 8).Although argumentation systems like LA give a generi
 ar
hite
ture for a parti
ular styleof reasoning, mu
h domain-spe
i�
 expertise is required to instantiate this ar
hite
tureto a domain of appli
ation. One way to de�ne 
lear methodologies for the develop-ment of argumentation systems is to emphasise the problem and domain by identifying
lasses of problems in whi
h 
ertain evaluation prin
iples would hold and then applyingargumentation in these domains (Ja
kson 1994; Nwana and Ndumu 1999). The sorts ofresults given in (Wooldridge and Parsons 2000) represent one step in this dire
tion. TheLogi
 of Argumentation also provides a very good example of this, where a number ofdi�erent symboli
 di
tionaries and aggregation me
hanisms were identi�ed as suitablefor medi
al appli
ations, allowing di�erent argument-based systems to be implementedin this domain (Fox and Parsons 1998).3.3.4 Obje
t-based Negotiation via ArgumentationNegotiation-based models for de
ision making 
an also be seen from the perspe
tiveof the obje
t being negotiated, rather than from a 
ommuni
ation proto
ol viewpoint(Jennings et al. 1998). In general, obje
ts are formalised as 
olle
tions of issues (orvariables) over whi
h agreement 
an be made, and the pro
ess of negotiation 
onsistsin �nding an assignment to the variables that suits every agent. However, it is also52
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onsider a wider, 
onstru
tive view in whi
h the obje
t under negotiation
orresponds to an argument that has to be built by agents involved in mixed-initiativetasks. This more generi
 view subsumes the one where obje
ts 
orrespond to variables,allowing other types of negotiation pro
esses to be 
hara
terised.One example is the 
ontra
t-based negotiation model initially proposed in (Carbogimand Robertson 1999) and des
ribed later in Part III of this thesis. Contra
ts are obje
tsthat are adjusted based on reasoned arguments by the agents involved in the agreement.In this sense, negotiation is about adjusting the terms of an agreement as opposed tothe proto
ol-oriented view of forming an agreement. The same idea is explored in(Ferguson and Allen 1994), now in the 
ontext of mixed-initiative planning. Plans areexpli
itly represented as arguments that 
an be 
riti
ised and revised by the agentsin a framework for plan 
onstru
tion and 
ommuni
ation. The framework used forgenerating and evaluating arguments is based on previous work by Pollo
k (Pollo
k1987) and Loui (Loui 1987). Unlike most defeasible argumentation systems, it is notused to derive defeasible 
on
lusions from a plan, but to build a plan whi
h is thedefeasible argument itself.In summary, the idea is to 
onstru
t an argument (plan) supporting a parti
ular 
on-
lusion (goal) whi
h is a

eptable to all agents involved. The example below, adaptedfrom (Ferguson and Allen 1994), illustrates this type of reasoning:Example 3.5 Suppose that two agents are 
ooperating in order to 
onstru
t a plan fortransporting 
ertain supplies (x) to a parti
ular lo
ation. To get this done, they �rstneed to move the supplies overland to the port and then 
arry them by ship. A ship (s)leaves every day between 4h00 and 6h00. If the supplies are shipped by train to the ship,they will arrive at 5h00. If they are shipped by tru
k, they will arrive at 3h00, but it will
ost three times more than if transported by train. One possible intera
tion between theagents is de�ned below:� Agent A suggests to ship the supplies by train.� Agent B argues that the supplies will miss the ship if it leaves at 4h00.� Agent A argues that the supplies will not miss the ship if it leaves at 6h00.



� Agent B then suggests to ship the supplies by tru
k.� Agent A a

epts this suggestion.Note that the agents 
ould go on arguing if for some reason (su
h as shipping by tru
kis too expensive) agent A does not �nd the proposal a

eptable. 2In order to build an a

eptable plan, agents make proposals, evaluate suggestions andpropose alternative 
ourse of a
tions, in a similar way as des
ribed in the proto
ol-basednegotiation model of Figure 3.5. In this 
ase, though, reasoning is goal-oriented|inExample 3.5 the goal is to load the ship with the supplies before it leaves the do
k.In (Ferguson and Allen 1994) this sort of reasoning is formalised by means of defeasiblerules representing 
ausal knowledge. Intuitively, these rules say that if the pre
onditionsfor an a
tion a hold at time t, then attempting a at time t 
auses an event et to happenat the next time point. Defeasibility arises be
ause it is hard (if not impossible) tospe
ify all the pre
onditions for a rule to hold, and impli
it or unknown 
onditions 
aninvalidate the relation. This is also referred to as the quali�
ation problem, alreadymentioned in Se
tion 3.2.1. Defeasible rules have the following generi
 form.Holds(pre
ond(a); t) ^ Try(a; t; et)! Event(et):Holds(pre
ond(a); t) ^ Try(a; t; et)! :Event(et)The de�nition of an event uses material impli
ation (denoted here by �) instead ofdefeasible impli
ation to denote that the e�e
ts of this event will hold at the next timepoint. Event(et) � Holds(e�e
ts(et); n(t)).This representation 
an formalise part of the reasoning in Example 3.5.AtDo
k(x; t) ^AtDo
k(s; t) ^ Try(load (x; s); t; et)! Load (et; x; s) (3.10)Load(et; x; s) � In(x; s; n(t)) (3.11)54
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apture un
ertainty in terms of disjun
tions.AtDo
k(s; t) � t < 4h00 _ t < 5h00 _ t < 6h00 (3.12)The fa
t that! is a defeasible 
onne
tive is important. Agents 
an build arguments fora parti
ular goal and these arguments 
an be atta
ked be
ause they involve elements ofun
ertainty and defeasibility.What is more interesting about this approa
h is that it allows the representation ofpartial plans that do not take all the pre
onditions of an a
tion into a

ount. Tobuild partial plans, agents 
an use variants of the existing 
ausal rules obtained by
onsidering only a subset of the pre
onditions spe
i�ed in the original relation. As a
onsequen
e, a preferen
e 
riterion 
an be de�ned based on the spe
i�
ity prin
iple: in
ase of 
on
i
ting positions, the position supported by the more spe
i�
 variant (i.e.the rule in whi
h more pre
onditions are taken into a

ount) defeats the position thatis based on a less spe
i�
 variant of the same rule.Example 3.6 To illustrate this idea, we represent the possible variants of rule (3.10)ordered in a latti
e of spe
i�
ity, where the rule at the top is the most spe
i�
 one.
(b) AtDo
k(s; t) ^ Try(load(x; s); t; et)! Load(et; x; s)(d) Try(load(x; s); t; et)! Load(et; x; s)(
) AtDo
k(x; t) ^ Try(load(x; s); t; et)! Load(et; x; s)(a) AtDo
k(x; t) ^ AtDo
k(s; t) ^ Try(load(x; s); t; et)! Load(et; x; s)
In Example 3.5, agent A presents a proposal for sending the supplies by ship based on apartial plan that disregards whether the ship is in fa
t at the do
k at the time of loading.Su
h a plan 
an be supported by variant (
) of the original rule (3.10). 2Other issues are involved in the type of argument des
ribed in the example whi
h are not
onsidered in this proposal. In parti
ular, 
riteria other than spe
i�
ity for evaluatingarguments 
ould be useful in this domain, espe
ially to 
apture the idea of values and



expe
ted values of a
tions. Again, the work on pra
ti
al reasoning and arguments abouta
tions13 is relevant also to this type of appli
ation.The next se
tion explores how this 
onstru
tive view of argumentation has also beenapplied in a broader 
ontext.3.4 Argument and Design3.4.1 Problem Des
riptionDesign is the pro
ess of 
reating an artifa
t, but this general de�nition does not 
apturethe 
omplex, multifa
eted nature of design a
tivities. Moran and Carroll (1996) identifyfour distin
t paradigms in the literature whi
h try to portray the nature of design: designas de
omposition and re-synthesis; design as sear
h in a design spa
e; design as a pro
essof deliberation and negotiation, in whi
h un
ertainty and disagreement is intrinsi
; anddesign as a re
e
tive a
tivity. They also des
ribe a number of issues that must be
onsidered if we are to address the various aspe
ts inherent to the problem of design,some of whi
h are listed below:� how to represent 
hanges in the problem de�nition;� how to keep tra
k of the de
isions taken and assumptions made during the designpro
ess;� how to aid 
ommuni
ation among di�erent parti
ipants in the pro
ess.These sorts of issues are relevant to design pro
esses in a variety of domains, fromar
hite
tural design to engineering design and software design. This se
tion 
onsidersthem from the perspe
tive of software design.3.4.2 Arguing about Software DesignIf we look at design as a mixed-initiative pro
ess of negotiation, then the obje
t of thenegotiation (in the same sense dis
ussed in Se
tion 3.3.4) is the artifa
t to be designed|13 See Se
tion 3.2.3 and (Girle et al. 2000). 56
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ase, the software system. In this way, we move from the type of multi-agentappli
ations to design support environments that possibly involve many parti
ipants.There are two signi�
ant di�eren
es between the approa
hes 
onsidered in this se
tionand the multi-agent negotiation models presented earlier in Se
tion 3.3. First, in the
ontext of design, less emphasis has been given to argumentation itself than to theproblem being ta
kled (i.e. the design of a software system involving one or moreparties). This is an important point, as argued by Moran and Carroll (1996, p. 7):A lot of domain-spe
i�
 knowledge is needed, and the pra
ti
es of design are dif-ferent in di�erent domains [...℄ Useful design tools need to be domain-spe
i�
, butmany of the prin
iples behind the tools are generi
.The se
ond di�eren
e is that in the software development s
enario, argument systemsfor supporting design have been applied to fairly 
omplex s
enarios.One way to relate the use of argumentation to software design is in terms of viewpointsin requirements engineering (Finkelstein et al. 1994, 1992). Though viewpoints are notexpli
itly 
hara
terised as arguments, they involve many ideas germane to the argumentparadigm, allowing multiple perspe
tives to be des
ribed and integrated by dealing within
onsisten
ies just when it is ne
essary, thus preserving these di�erent perspe
tives aslong as possible.Also in the 
ontext of system requirements, a number of approa
hes for generatingsafety arguments have been presented in (Krause et al. 1997). Safety arguments arenormally intended to 
onvin
e people that the spe
i�ed system will be safe if it isimplemented appropriately. A

ording to Ma
Kenzie (1996) there are essentially threetypes of safety arguments. Indu
tive arguments support that a system is safe by testingit. Dedu
tive arguments 
orrespond to mathemati
al proofs that the system is 
orre
t.Finally, 
onstru
tive arguments rely upon the pro
ess of design itself, whi
h is arguedto be a safe pro
ess that results in safe out
omes. This se
tion fo
uses on the latterform of arguments.Many problems arise when we try to represent safety arguments formally, although ithas been possible to obtain e�e
tive and useful results in domain-spe
i�
 settings. A



signi�
ant number of these problems stem not from the te
hni
alities of the 
hosenargumentation system but from assumptions made about its design and deployment,sin
e the entire safety argument 
annot be made internal to the formal argumentationsystem and the �t to its external environment must be 
arefully shaped. A dis
ussionof these issues appears in (Robertson 1999a; Gurr 1997).More 
ommonly, argumentation is embedded in design rationale and 
omputer-supported
ollaborative argumentation (CSCA)14 systems that support the development of designa
tivities. Design rationale is about expli
itly re
ording the reasons why an artifa
twas designed in a parti
ular way. In argumentation-based design rationale, reasons aregenerally represented as semi-formal arguments in terms of Issue Based InformationSystem|IBIS|models (Conklin and Begeman 1988). Se
tion 3.4.3 dis
usses anotherargumentation-based methodology for software design rationale.Related to design rationale and CSCA systems, argument-based mediation systems pro-vide support for deliberative pro
esses involving one or more parti
ipants (users), inwhi
h the main goal is to rea
h a de
ision of some sort. Examples of mediation systemsare dis
ussion fora, where it is important to argue and negotiate about di�erent issues,in
luding design issues. The Zeno Argumentation Framework (Gordon and Kara
api-lidis 1997) is an Internet-based environment that supports stru
tured forms of groupde
ision making, and it has been widely applied a
ross di�erent domains. Zeno is alsobased on Toulmin's model of argument, and 
an be thought of as a formal version ofIBIS in the sense that it automati
ally labels and quali�es positions a

ording to argu-ments and preferen
es (i.e. determines a degree of a

eptability asso
iated with ea
hposition). There is a fo
us shift between systems like Zeno and the formal approa
hesfor de
ision making dis
ussed in Se
tion 3.2, as in the �rst the emphasis is on represent-ing arguments based on di�erent sour
es and perspe
tives rather than on generatingthese arguments from some set of premises.3.4.3 Argumentation-based Design RationaleSigman and Liu (1999) use argumentation to 
onne
t software system requirements14 See http://kmi.open.a
.uk/~simonb/
s
a/ for a resour
e site in CSCA.58



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 59to the 
orresponding design dialogue, providing a methodology for 
apturing designrationale, identifying 
on
i
ts and assessing the a

eptability of design options. Ageneri
 argumentation model is used to relate the 
omponents of software design to thoseof design dialogue. This model allows di�erent perspe
tives to be represented in termsof requirements, 
onstraints and design features. An overview of the argumentationmodel is sket
hed in Figure 3.6.
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Figure 3.6: A software design argumentation model from (Sigman and Liu 1999).A dialogue about a design issue is a dire
ted graph in whi
h all relevant arguments forand against ea
h alternative position are organised under the 
orresponding positionnode. These stru
tures are referred to as position dialogue graphs. Positions and argu-ments have to expli
itly state their owner, i.e. the parti
ipant that has advan
ed them.Moreover, linguisti
 labels are atta
hed to arguments to indi
ate their strength. Thestrength measure used is that of fuzzy sets, represented in terms of the following quali-tative labels: strong atta
k (SA), medium atta
k (MA), in
on
lusive (I), mediumsupport (MS) and strong support (SS).Some general argumentation heuristi
 rules provide means of redu
ing the positiondialogue graphs in a way that all arguments are dire
tly 
onne
ted to the position node.



This transformation is needed in order to identify in
onsisten
ies as well as to assess thea

eptability of the position. One example of su
h heuristi
 rules is de�ned below andillustrated in Figure 3.7 in terms of a simpli�ed version of position dialogue graphs.Heuristi
 Rule 1 If an argument A strongly supports a position P and an argumentB strongly supports argument A, then argument B strongly supports position P .
owner A

A

owner B

B

owner P
P

owner P
P

owner A

A
owner B

B

SS

SS

Heuristic Rule 1
SS SS

Figure 3.7: An example of a heuristi
 rule.The a

eptability of a position is then 
al
ulated via a favorability fa
tor. The favorabil-ity fa
tor is a fun
tion that assigns a strength measure to the position in question basedon two aspe
ts: the strength of the arguments that are relevant to this position; andthe priorities previously assigned to parti
ipants, representing some idea of hierar
hyamong them. Comparing the favorability fa
tors of alternative positions provides moreinformation on whi
h de
isions 
an be based.Note that this model resembles de
ision making approa
hes in many ways (see Se
tions3.2 and 3.3). First, the idea of using linguisti
 labels is similar to that proposed in theLogi
 of Argumentation. Se
ondly, the 
al
ulation of the favorability fa
tor for a positiona
tually 
orresponds to the notion of aggregation pro
edures in LA. Third, the idea ofassigning priorities to parti
ipants is in line with the so
ial aspe
ts 
onsidered in thenegotiation approa
hes in Se
tion 3.3.3. Finally, this proposal 
an also be 
hara
terisedas a two-step argumentation model, be
ause all arguments relevant to a position are�rst gathered and then analysed in order to provide an a

eptability measure for thisposition.The me
hanisms for manipulating arguments in this framework and in other existing60



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 61approa
hes are essentially the same. The di�eren
e lies in the notion of argumentitself and in the ways arguments are generated. In this 
ase, an argument does not
orrespond to a proof, but is represented by a pie
e of text stating the argument. Werefer to these approa
hes as semi-formal, sin
e argumentation is not fully automated; oras lightweight, in the sense that formality is applied only to 
ertain parts of the problemin a fo
used and sele
tive (e.g. automated argument evaluation). Lightweight uses oflogi
 have already been advo
ated elsewhere (Robertson and Agust�� 1999).Bu
kingham Shum and Hammond (1994) have argued that stru
tured semi-formal ap-proa
hes to design rationale are useful and usable, and 
an play several roles in design,su
h as:� stru
turing design problems;� keeping tra
k of de
isions;� fa
ilitating 
ommuni
ation and reasoning;� assisting the integration of theory into design pra
ti
e;� supporting maintenan
e and reuse;� exposing all assumptions|whi
h may have been unstated, and 
on
i
ts|whi
hmay be suppressed; and� enabling the formal in
orporation of diverse types of information.The approa
hes 
onsidered in this se
tion are lightweight appli
ations of formal argu-mentation whi
h broaden the role of argumentation by 
arefully targeted appli
ationsof a simple formal method.3.5 Dis
ussionThe main purpose of this 
hapter was to analyse the pra
ti
al use and usefulness offormal and stru
tured semi formal argument-based systems in knowledge engineering.We have done this by 
lassifying the existing e�orts in terms of the problems they



intend to solve, dis
ussing whether these were a
tually solved or not, in whi
h 
ase weaddressed some of the limitations and the remaining issues that need to be 
onsidered.Four general types of problems have been identi�ed whi
h 
an be ta
kled by argument-based methodologies. These are:� the problem of defeasibility in a knowledge base, where some 
on
lusions mightbe withdrawn in the presen
e of new knowledge;� the problem of de
ision making based on un
ertain knowledge, where we have tode
ide whi
h alternative to sele
t;� the problem of negotiation, where autonomous agents 
ommuni
ate and reasonabout propositions in order to rea
h an agreement; and� the problem of design, where it is important to make de
isions, to 
ommuni
atede
isions and to argue that the resulting artifa
t represents an a

eptable solutionto a parti
ular problem.One thing that these problems have in 
ommon is that they involve knowledge that isfar from 
ertain and 
omplete. Potential disagreement and 
on
i
t are intrinsi
 to allfour 
ategories above. Therefore, the fa
t that 
on
i
t is the essen
e of argumentationmight explain why the argument paradigm 
an be applied in these 
ases.We have found many 
ommon features among the various approa
hes presented in this
hapter. Below we summarise these 
ommonalities:� In general, formal argumentation 
an be 
hara
terised as a two-step pro
ess: �rst,arguments are generated; then, arguments are evaluated in terms of their a

ept-ability.� Automated frameworks for argumentation have appeared on the s
ene only re-
ently. This is probably one reason why most theories are not yet mature enoughto allow appli
ations to be developed in a systemati
 way. In many 
ases ad ho
,spe
ialised solutions have been adopted in order to implement pra
ti
al systemsfrom theoreti
al frameworks. 62



CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 63� This is parti
ularly true for argument evaluation. Generi
 
riteria, su
h as thespe
i�
ity prin
iple, are not suÆ
ient for e�e
tively 
apturing the notion of ar-gument defeat a
ross the myriad domains in whi
h argumentation is appli
able.Therefore, many theoreti
al formalisms tend to leave 
on
epts su
h as preferen
esand priorities unspe
i�ed, but without addressing the issue of how to instantiatethese appropriately in order implement pra
ti
al argument systems from theseformalisms.� Be
ause argumentation is su
h a broad 
on
ept, many already established for-malisms 
an be viewed from an argument perspe
tive. Examples are KQML (Se
-tion 3.3.3), viewpoints (Se
tion 3.4) and probabilisti
 reasoning (Se
tion 3.2.3).� Only a few argument systems have a
tually been deployed in real, 
omplex do-mains. Most systems have been evaluated in terms of simple ben
hmark problems.There are still open resear
h issues in ea
h of these 
onsiderations whi
h 
an re
e
tan expe
ted dire
tion of development in argument-oriented resear
h in knowledge engi-neering.� The idea of argumentation as a two-step pro
ess suggests that all arguments haveto be 
omputed before they are evaluated. This may not always be the beststrategy if we want to build a 
onstru
tive theory of argumentation for a
tuallygenerating arguments, and perhaps more emphasis should be given to the sort ofresour
e-bounded argument dis
ussed by Loui and the pro
edural and heuristi
layers of argumentation (see Se
tion 3.1.2).� Se
tion 3.3.3 dis
ussed the need for 
lear methodologies for the development ofargumentation systems. Note that we do not advo
ate a one-size-�ts-all approa
hto argumentation, as we believe that the multifarious nature of argumentation
annot be 
aptured by a uniform method. However, we would like to providemeans of implementing argument theories in a systemati
 way, by trying to iden-tify di�erent methods that allow di�erent types of argument-based systems to bedeveloped. This may be a
hieved by fo
using on domains and problems ratherthan on tasks, thus spe
ifying domain-spe
i�
 underlying theories and evaluation
riteria instead of generi
, domain-independent formalisms for argumentation.



� It was possible to look at 
ertain problems in knowledge engineering from an ar-gumentation viewpoint. This suggests that if we take a more lightweight approa
hto argumentation formalisms, by using them in a fo
used and sele
tive way, wemight broaden the s
ope of their appli
ations in the �eld. This may be a
hievedby 
onsidering more 
exible, semi-formal notions of arguments other than that ofa proof.� Finally, to in
rease the pra
ti
al utility of these systems, more 
omplex and realarguments need to be taken into a

ount. This again might be possible to a
hieveby appropriately lightweight appli
ations of argument formalisms.This summarises the 
urrent lands
ape of argumentation resear
h, whi
h is s
atteredwith tantalising glimpses of problems whi
h may be ta
kled by this means, yet there arefew 
lear guides to standard pra
ti
e in this area; nor are there extensive 
ase studiesto give maps of fertile domains. The work in this thesis draws a lot from existing workand from the analysis presented here in order to address some of the issues above.
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Part IIA Pragmati
 Approa
h
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Chapter 4Basi
 Con
epts and De�nitions
As dis
ussed in Chapter 2, one way to think about argument dynami
s is that it shouldbe possible to revise the underlying knowledge base so as to defend arguments andpositions from atta
ks, for instan
e by adding new information so that new argumentsor 
ounter-atta
ks 
an be derived or by removing 
ertain premises so as to blo
k existingderivations.To formally des
ribe this sort of argumentation we need to des
ribe pre
isely whattypes of revisions 
an be performed, and when they 
an be applied. In 
omparisonto external revisions, guided revisions have some interesting properties: �rst, we knowmore about when they happen, be
ause they follow the pa
e of argumentation and aresyn
hronised with argument moves; se
ond, we know more about what they are, be
ausethey are bound up with and guided by atta
ks to arguments. In pra
ti
e, however, thereare many ways to atta
k and defend an argument, and these are essentially domain-spe
i�
. We address this problem in a pragmati
 way by des
ribing how to 
aptures
hemata for argument revision in terms of the stru
ture of atta
ks, inspired by standardargumentative stru
tures from studies in the �elds of informal logi
 and argumentationtheory.The type of stru
tural 
lassi�
ation we present is not 
omplete in itself, but it is basedon a 
omplete a

ount of what we mean by dynami
 argumentation. But despite itsin
ompleteness, it allows the introdu
tion of both generi
 and domain-spe
i�
 revisions
hemata in a systemati
 way. We will be 
arefully examining this approa
h in the next
hapters, where we �rst present an intuitive des
ription of the 
lassi�
ation in terms67



of informal examples (Chapter 5) before introdu
ing its formal 
ounterpart (Chapter7) based on a pre
ise 
hara
terisation of possible atta
ks (Chapter 6). We then givea worked example that illustrates how this approa
h 
an be used to 
apture dynami
argumentation (Chapter 8), �nally dis
ussing the range of 
ases 
overed by our proposal,and analysing how other existing proposals 
an 
ope with these 
ases (Chapter 9).In the rest of this 
hapter we present a high level a

ount of dynami
 argumentation,before explaining the formal 
on
epts underlying our approa
h.4.1 An Abstra
t View of Dynami
 ArgumentationChapter 1 dis
ussed the informal notion of argumentation as usually en
ompassing twoviews of an argument. In order to formalise argumentation, we need to a

ount for bothof them:� a lo
al view, in whi
h an argument is intended to give support in favour or againsta 
on
lusion; and� a global view, in whi
h an argument is a pro
ess of argument ex
hange (from alo
al perspe
tive), often based on disagreement, that is used to determine and toa�e
t the a

eptability status of 
ertain 
ontroversial positions.Our notion of dynami
 argumentation 
omprehends both these views. From the lo
alperspe
tive, arguments 
orrespond to formal proofs, and are generated from a knowledgebase via a proof me
hanism. From the global perspe
tive, argumentation is a pro
essof argument ex
hange and knowledge base revision guided by atta
ks. Cru
ial to bothviews is the 
on
ept of knowledge base, whi
h we address more 
arefully now.In a sense, this underlying knowledge base 
onstitutes the spa
e of reasons that 
anbe used to justify and refute positions, and whi
h 
an be 
hallenged and altered asthe argumentation pro
ess goes along; in short, it 
onstitutes the spa
e of argumentpremises. From now on, we refer to su
h knowledge bases or spa
es of premises assets of axioms or theories, the building blo
ks of our approa
h. An axiom set 
anrepresent spe
i�
ations, models, 
ontra
ts, beliefs or any other theories we might want68



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 69to argue about with respe
t to the 
onsequen
es they support. We 
an assume thatthese 
onsequen
es 
an be derived from the premises via a logi
al inferen
e relation. Ifa 
on
lusion 
an be derived from a theory, we say that there is an argument for that
on
lusion in this theory.Theories usually express someone's view of a problem rather than universal truths,and therefore are intrinsi
ally arguable and refutable. It is likely that unwanted orunpredi
ted 
on
lusions will follow from a theory, or even that desired 
on
lusions arenot supported. Dynami
 argumentation is about revising this theory to prote
t it fromsu
h atta
ks; in this sense, it is 
on
erned with arguing about theories.Argument dynami
s 
an then be thought of as a type of goal-oriented reasoning meantto in
rease the a

eptability of a theory as an argument for the position in question byappropriately defending it from atta
ks. This view is parti
ularly useful if we 
onsidertasks su
h as argument 
onstru
tion and evaluation, where it is not enough to 
onsidera sole 
laim, but the whole argument|i.e. the theory|supporting the 
laim.In this way, we 
an atta
k a theory for two reasons: either be
ause it supports a positionthat we would expe
t (or want) not to be justi�ed; or be
ause it does not support aposition that we would expe
t (or want) to be justi�ed. How we de
ide on whi
h arethe relevant 
laims that should or should not be justi�ed in a theory is subje
t to adeeper dis
ussion, whi
h will be addressed later in Chapter 7. But the intuition behindit is simple:� if a 
on
lusion 
an be derived from a theory (if there is an argument for this
on
lusion in the theory) when we believe it should not be, then we 
an revise thetheory in order to (try to) blo
k this 
on
lusion from being justi�ed (in order toreje
t the argument supporting it);� analogously, if a 
on
lusion 
annot be derived from a theory (if there is no argu-ment for this 
on
lusion in the theory) when we believe it should be, then we 
anrevise the theory in order to (try to) allow the 
on
lusion to be justi�ed (in orderto introdu
e an argument that justi�es it);



As des
ribed above, revision of a theory is guided by the intention of either invalidatingsome existing argument, or adding a new argument to it. So instead of looking todynami
 argumentation as a pro
ess of revising a theory, we 
ould 
onsider it as apro
ess for manipulating the arguments in that theory. Let us assume for a momentthe notion of argument to be primitive, and 
onsider the set of all arguments in atheory as the starting point of an argumentation pro
ess1. If we 
onsider argumentsto be primitive entities, then dynami
 argumentation is about putting forward newarguments and reje
ting others in order to atta
k and defend 
ertain positions. So, asthe pro
ess develops, new arguments 
an be added to the initial set, and others 
an bewithdrawn.An advantage of de�ning argumentation as manipulation of a set of primitive argumentsrather than as revision of an underlying set of premises is that it is more intuitive totalk about introdu
ing and removing arguments than it is to talk about whi
h premisesneed to be added and removed in order to introdu
e or remove some argument. Therelationship between these views is not straightforward, and it also depends on the 
hoi
eof logi
 underlying the generation of arguments. This more abstra
t approa
h, however,
an be too abstra
t and also impra
ti
al, as a

ounting for the set of all arguments islikely to be a 
omputationally expensive, if not in�nite, task.Here we take a pragmati
 approa
h by trying to identify ways for 
apturing this moreabstra
t view of manipulating sets of arguments in terms of guided revisions to theunderlying theories that represent the premises of these arguments.4.2 Formal De�nitionsIn this se
tion we formally de�ne some general 
on
epts underlying our approa
h todynami
 argumentation. We start by de�ning what is meant by axiom and by theory.Theories and axioms are at the heart of our proposal, as they represent the premises onwhi
h arguments are based.1 A lot of resear
h in formal argumentation is a
tually based on this assumption, e.g. (Dung 1995) and(Prakken 2000). Jakobovits (2000) also des
ribes how to obtain this set of all arguments from a logi
program. 70



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 71De�nition 4.1 (Axiom) Let L be a logi
al language. An axiom is any well-formedformula in L. �. 2De�nition 4.2 (Theory) Let L be a logi
al language on whi
h a provability relation `is de�ned. Let FL be the set of axioms (formulae) in L. A theory in L is any 
onsistentsubset of FL, denoted by the possibly indexed symbol �. 2Note that at this point we are not making any 
ommitments on the 
hoi
e of logi
underlying an axiom set, nor on the inferen
e rules asso
iated with it; these will bede�ned in more detail in Chapter 7. For the moment we assume that theories andaxiom sets are 
omposed of fa
ts and rules (
onditionals).4.2.1 ArgumentsAs in most 
onventional formalisms, arguments are asso
iated with the provability rela-tion in the underlying logi
al system, and therefore 
orrespond to logi
al proofs. Su
harguments are often used to indi
ate support and justify positions.De�nition 4.3 (Argument) Let � be a theory and ' be a senten
e in a logi
al system(L;`). If ' 
an be inferred from � � � via the provability relation `, then � ` ' is anargument (or justi�
ation) for ' in �. 2Arguments are represented by a two-part stru
ture (often denoted by the letter A)
omprising an inferen
e � ` ' and the 
orresponding derivation tree, with lower nodessupporting the 
on
lusion above. The generi
 form of a justi�
ation � ` ' 
onsists of:� a 
laim ': the 
on
lusion of the argument;� the grounds, or eviden
e �: the premises supporting the 
laim;� the reasoning `: the link that relates the 
on
lusion ' (
laim) to the premises �(eviden
e); here the reasoning step is based on a logi
al inferen
e relation `, andwe often use the term `� to indi
ate that this relation is restri
ted to a theory �.Note that justi�
ation is not the only purpose of an argument. Arguments 
an play otherroles, su
h as to atta
k other 
laims and arguments, for instan
e in the form of 
ounter-arguments that justify opposing views, or in the form of refutations for reje
ting other



arguments. These roles are not 
on
erned with individual justi�
ations but with therelationships between them, hen
e they should be 
onsidered from a global perspe
tive.4.2.2 Dynami
 ArgumentsInstead of looking at arguments individually, dynami
 argumentation is about 
onsid-ering how the relationships between relevant arguments will determine and a�e
t thestatus of the 
orresponding 
laims. Note that having measures of a

eptability is not amain part of this thesis. Instead we adopt a simple|yet expressive enough|notion ofa

eptability: a 
laim be
omes a

eptable when an argument supporting it is presented;but it be
omes non-a

eptable if this argument is atta
ked; moreover, if this atta
k isitself atta
ked, the a

eptable status of the 
laim is restored. In a nutshell, a 
laim isa

eptable if all atta
ks 
an be properly dismissed by means of 
ounter-atta
ks (whi
hare atta
ks themselves).The whole idea of atta
k is based on 
on
i
t. An argument is said to atta
k another ar-gument if they support 
ontradi
tory 
on
lusions in the underlying language. Moreover,it is also possible to atta
k and reje
t the grounds|or premises|on whi
h an argumentis based. Yet another type of atta
k, standard in informal argumentation, 
onsists inreje
ting the reasoning underlying an argument by suggesting that the 
on
lusion doesnot follow from the premises. But in formal systems justi�
ations are generated bymeans of a sound logi
al inferen
e method, so we shall assume that the 
on
lusion al-ways follows from the premises.2 This latter type of atta
k is therefore not relevant toour approa
h, and we 
ould say that here argument defeasibility is redu
ed to premisedefeasibility.We also need to 
onsider the fa
t that 
ertain arguments may be preferred over others.Preferen
e 
an sometimes be determined from the logi
al stru
ture of arguments and
laims, but it 
an also be based on 
omparative measures for arguments. The notion ofpreferen
e between 
ontradi
tory arguments is often referred to as defeat, and de�nedseparately in terms of atta
k. Here we in
orporate it in our de�nition of atta
k.2 An inferen
e or proof method is said to be sound if it produ
es only 
on
lusions that are logi
al
onsequen
es of its premises a

ording to some de�ned notion of logi
al 
onsequen
e. Rememberthat at this point we have made no 
ommitment on the 
hoi
e of a parti
ular logi
al system, or of alogi
al 
onsequen
e relation. 72



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 73De�nition 4.4 (Atta
k) An argument A0 atta
ks an argument A if and only if A0
ontradi
ts a 
laim supported by A and A is not preferred over A0. 2Some aspe
ts of this de�nition are 
ommented below:� First, an argument 
an support di�erent types of 
laims, and a 
hara
terisationof what these 
laims might be 
an be extremely useful for des
ribing the generalformat of atta
ks.� Se
ond, what it means for 
laims to be 
ontradi
tory in a language|as well aswhat it means for arguments to be preferred over others|
an depend on the 
hoi
eof the underlying logi
al language itself.� Finally, 
riteria for de
iding if arguments are preferred may not always exist, inwhi
h 
ase any argument is strong enough to reje
t a 
ontradi
tory argument; butif su
h 
riteria exist, they are likely to be domain-spe
i�
.These are important remarks and will be further elaborated mainly in Chapter 6, andlater in Part III of this thesis.Another 
on
ept we have to a

ount for is that of revision. Noti
e that by revision wemean stru
tural revision, in whi
h some premises 
an be retra
ted from and others 
anbe added to the original theory, allowing for instan
e for new 
on
epts to be introdu
ed.In the 
ontext of argumentation, this intuitively 
orresponds to the idea of 
hallengingexisting premises and bringing in new ones.De�nition 4.5 (Revision) A stru
tural revision operation � in a language L is 
har-a
terised by a pair (R;A), where:� R � FL 
orresponds to the axioms that will be retra
ted from a theory; and� A � FL 
orresponds to the axioms that will be added to a theory.The out
ome of applying � to a theory � in L is a theory �� obtained from � as follows:�� = (� n R) [A.



If R = ; and A = ; then � is said to be trivial. If either R is a singleton and A = ;,or if A is a singleton and R = ;, then � is said to be elementary. If � is neither trivialnor elementary, then it is said to be 
omplex. 2Observation 4.1 Note that any non trivial operation 
an be de
omposed into a se-quen
e of elementary operations. 2In the 
ontext of dynami
 argumentation, revisions to a theory are performed in order toallow di�erent types of atta
ks and 
ounter-atta
ks to be generated. Therefore 
hangesare guided by atta
ks, so revisions are de�ned in terms of the argument in a theory thatis about to be atta
ked.De�nition 4.6 (Atta
k-based Revision) Let � be a theory and A be an argumentabout ' in �. An atta
k-based revision operation � to � with respe
t to A de�nes atheory �� su
h that in �� we 
an derive an argument that atta
ks A.Atta
k-based operations are denoted by ��;A, as they may depend on � and A (and
onsequently on '). The supers
ript symbols may be omitted when the 
ontext is 
lear.2Note that neither the argument to be atta
ked nor the theory need to be fully spe
i�edin an atta
k-based revision operation. Instead, su
h operations 
an be des
ribed bypartially de�ned stru
tures, like generi
 s
hemata for arguments and theories.In a sense these operations are a bit like a
tions. They have pre
onditions that determinewhen they 
an be applied, and post
onditions that de�ne the out
ome of applying them.In the next 
hapters we analyse the types of revisions that 
an lead to relevant atta
ks.We pay spe
ial attention to elementary operations, their properties and 
hara
teristi
s,and also how more 
omplex revisions 
an be de�ned from them.We 
an now formalise the 
on
ept of dynami
 argument. At this point we would alsolike to emphasise the pro
edural nature of argumentation|in fa
t, argument dynami
s
an be seen as a me
hanism for proving whether a position is a

eptable with respe
tto a theory, where this proof pro
ess 
an involve revisions to the theory itself. Ea
hargument that is advan
ed 
hanges the a

eptability status of the initial 
laim, and74



CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 75for the theory to be a

eptable with respe
t to this 
laim it has to be revised until allatta
ks have been appropriately dismissed. Noti
e also that when we revise a set ofaxioms to defend it from atta
ks new points of atta
ks may be introdu
ed, so the wholeresulting theory should be again open to argument. This view is des
ribed below andillustrated in Figure 4.1.De�nition 4.7 (Dynami
 Argument) Let � be a theory and ' be a senten
e in alogi
al system (L;`), and let � be a 
olle
tion of atta
k-based revision operations de�nedin terms of generi
 s
hemata for arguments and theories in L.A dynami
 argument Æ about � with respe
t to ' is denoted by a sequen
e:Æ(';�) = hA0; �1; A1; :::; �K ; AK ; :::i, where� A0 is a justi�
ation for ' in �;� �1; :::; �K ; ::: 2 � is a sequen
e of revision operations to �;� for i � 1, Ai is an argument in ��1:::�i; and� for i � 1, Ai atta
ks Ai�1 in the 
ontext of the moves hA0; �1; A1; :::; �i�1; Ai�1iadvan
ed so far.If there is N � 0 su
h that no atta
k-based revision � 2 � 
an be applied to ��1:::�Nwith respe
t to AN , then we say that Æ(';�) 
onverges to �0 = ��1:::�N . Also, if N iseven then �0 is said to be a

eptable in relation to ' (or yet that ' is a

eptable withrespe
t to �0), as the atta
ks to ' have been appropriately dismissed. 2AN�N::: --:::A2 ,,�2A1 ,,�1A0 ,,�0 �1 ///o

�2 ///o

�3 ///o

�N ///oFigure 4.1: Dynami
 argumentation: revising sets of premises.Note that this des
ription a

ounts for all the 
on
epts in 
onventional argument frame-works, as identi�ed by Prakken (Prakken 1995) and dis
ussed in Chapter 3:



� an underlying logi
al language;� a 
on
ept of argument;� a 
on
ept of 
on
i
t between arguments;� a notion of defeat among arguments; and� an a

ount of the a

eptability status of arguments (and in this 
ase, of theories).Here, however, we have to 
onsider one more notion:� an a

ount of atta
k-based revision.Although we have 
hara
terised what properties a dynami
 argument should have sothat it generates a

eptable theories, we have not solved the problem of a
tually gener-ating them. Instead we have identi�ed exa
tly the subproblems that need to be ta
kled:1. First, we need to 
hara
terise the possible atta
ks at some point i � 1 in a dynami
argument, 
onsidering the moves hA0; �1; A1; :::; �i�1; Ai�1i advan
ed so far.2. Se
ond, we need to spe
ify the set � of possible revision operations; i.e. howatta
king arguments 
an be generated and how they relate to 
hanges and revisionsin a theory. Are there any desirable properties for �, and what would be their
onsequen
es? Is there a systemati
 way to de�ne �?3. Finally, we need to spe
ify a me
hanism for sele
ting whi
h atta
k to generate.This sele
tion me
hanism is likely to be based on the set � (item 2 above) and onthe 
hara
terisation of atta
ks (item 1 above).In the rest of this part we will deal with the �rst two items, leaving the last|as well asthe dis
ussion about preferen
e 
riteria|for Part III, where we 
onsider 
ontrol aspe
tsof argument generation in automated dynami
 argumentation systems.
76



Chapter 5Towards a Classi�
ation ofArgument S
hemata
Chapter 4 gave a 
hara
terisation of argument dynami
s as a sequen
e of argumentsintended to defend positions from potential atta
ks, some of whi
h may be put forwardonly if a stru
tural revision is performed in the underlying theory. In this way we 
annotassume that all premises used to generate arguments in a dynami
 argument will beavailable from the start, as some 
an be added and others withdrawn during the 
ourseof the pro
ess.So the aim of this 
hapter is to identify ways in whi
h axioms in a theory 
an 
hange aswe advan
e new arguments. Based on examples and ideas from argumentation theory,we move towards a 
lassi�
ation of argument s
hemata for relating the possible 
hangesin a set of premises with the types of atta
ks we want to put forward. This 
lassi�
ationwill be used to des
ribe the sorts of revision that 
hara
terise dynami
 argumentation.At this point we do not fo
us on 
hoosing whi
h 
laim or argument to atta
k. Instead,we want to explore systemati
ally the types of theory revision that 
an be performedin order to generate an atta
k for a given 
laim. As might be expe
ted, atta
ks 
ansometimes be generated from the 
urrent set of premises, in whi
h 
ase the theoryneed not be revised (or is trivially revised). However, be
ause here we are interested in
lassifying 
hanges, we 
an assume for the moment that atta
k-based revisions are nontrivial.The des
riptions in this 
hapter are informal in order to illustrate the possible sorts77



of stru
tural revision, but they will also serve to introdu
e the formal language thatwill be used in Chapter 7 to de�ne the 
omplete argument s
hemata 
lassi�
ation. Tomake it easier to understand the idea behind ea
h s
hema, we will follow the standarddes
ription pattern below:� we �rst present an informal des
ription of the s
hema;� then we present a natural language argument as an example of the s
hema;� �nally we 
ast the example by means of the formal s
hemata des
ription language.The arguments used to illustrate the s
hemata are drawn dire
tly from or based onpoli
y debates about the possible 
ar
inogeni
ity of 
hemi
al substan
es (M
Burneyand Parsons 1999). We take a 
lose look at the a
atoxin debate, whi
h has already beenused for investigating argument-based risk assessment (Fox 1994; Robertson 1995) and
on
i
t exploration (Haggith 1996). We set out the 
ontext for this debate in Se
tion5.1, before presenting examples of argument revision s
hemata in Se
tion 5.2. Finally,in Se
tion 5.3 we brie
y dis
uss some 
on
epts from informal argumentation that havefounded the s
hemata presented here.5.1 The A
atoxin Debate: Assessing Can
er RisksThis example 
on
erns a real debate about the 
ar
inogeni
ity of 
ertain 
hemi
al sub-stan
es 
alled a
atoxins, and about the FDA (US Food and Drugs Administration)poli
y that restri
ts a
atoxin levels to 20 parts per billion (ppb). The following aretwo arguments presented by Rodri
ks (1992)1 for di�erent standpoints 
on
erning thequestion of whether the FDA's position is s
ienti�
ally defensible.(1) Yes. The FDA 
learly did the right thing, and perhaps did not go far enough.A
atoxins are surely potent 
an
er-
ausing agents in animals. We don't have sig-ni�
ant human data, but this is very hard to get and we shouldn't wait for it beforewe institute 
ontrols. We know from mu
h study that animal testing gives a re-liable indi
ation of human risk. We also know that 
an
er-
ausing 
hemi
als are1 As 
ited in (Fox 1994). 78



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 79a spe
ial breed of toxi
ants|they 
an threaten health at any level of intake. Weshould therefore eliminate human exposure to su
h agents whenever we 
an, and,at the least redu
e exposure to the lowest possible level whenever we're not surehow to eliminate it.(2) No. The FDA went too far. A
atoxins 
an indeed 
ause liver toxi
ity inanimals and are also 
ar
inogeni
. But they produ
e these adverse e�e
ts only atlevels far above the limit FDA set. We should ensure some safety margin to prote
thumans, but 20 ppb is unne
essarily low and the poli
y that there is no safe levelis not supported by s
ienti�
 studies. Indeed, it is not even 
ertain that a
atoxinsrepresent a 
an
er risk to humans be
ause animal testing is not known to be areliable predi
ator of human risk. Moreover, the 
ar
inogeni
 poten
y of a
atoxinsvaries greatly among the several animal spe
ies in whi
h they have been tested.Human eviden
e that a
atoxins 
ause 
an
er is unsubstantiated. There's no sounds
ienti�
 basis for FDA's position.The se
ond paragraph gives some reasons for reje
ting the argument supporting theFDA's position, whi
h is essentially based on animal testing|or bioassays. As arguedin (M
Burney and Parsons 1999) bioassays are the most 
ommon sort of eviden
e sup-porting the possible 
ar
inogeni
ity of a substan
e, and the authors have identi�ed anumber of di�erent assumptions that must hold for this eviden
e to be 
onsidered valid.For instan
e, to 
laim that a 
ertain 
hemi
al is 
ar
inogeni
 on the basis of a bioassayon an animal spe
ies, the animal physiology and 
hemistry relevant to the a
tivity ofthis 
hemi
al must be suÆ
iently similar to human physiology and 
hemistry.What we want to illustrate in this 
hapter is that there might exist standard ways foradvan
ing atta
ks (e.g. those in paragraph 2) that are based on the stru
ture of theargument being atta
ked (e.g. the argument in paragraph 1) and whi
h 
an be instan-tiated by domain-spe
i�
 expertise (e.g. the assumptions identi�ed by M
Burney andParsons (1999)). Not all example arguments we present are an a

urate reprodu
tionof the a
atoxin debate as stated by Rodri
ks (1992), as we might alter or introdu
einformation for illustrative purposes only.



In what follows, sets of beliefs related to the a
atoxin debate will be expressed as generallogi
 programs.2 As expe
ted, axioms (
lauses) will be fundamentally arguable, as theyrepresent the essentials of a problem rather than universal truths.5.2 Argument S
hemata for Arguing about A
atoxinsWe now illustrate the use of argument s
hemata with some examples from the a
atoxindebate. S
hemata are used for generating arguments and atta
ks, spe
i�ed in termsof revision operations as de�ned in Se
tion 4.2. Here we depi
t s
hemata built uponelementary revisions (Se
tions 5.2.2 and 5.2.3) and upon updating revisions, i.e. those
omposed of two elementary operations and used for updating an axiom by retra
tingit and subsequently adding a modi�ed version (Se
tions 5.2.4). First we give a generala

ount of the types of s
hema we 
onsider and the language used for des
ribing these.5.2.1 An Overview of the S
hemata Des
ription LanguageWhen des
ribing argument s
hemata we want to represent not only the 
hanges to beperformed to the knowledge base, but also the reasons why we 
an perform them. Bylooking at 
on
epts studied in argumentation theory|su
h as argumentation s
hemesand falla
ies3|we have identi�ed a number of possible reasons and motivations foradding, 
hanging and adapting premises in an argument. Here we make use of a formaldes
ription language to 
apture and represent a subset of these, whi
h we feel is relevantto the types of argument in whi
h we are interested.For instan
e, when we add a new premise to the theory we might want to say that weare introdu
ing a new fa
t, i.e. something that is taken to be true. In 
ase we are addinga new rule, then we 
an also spe
ify whether it is a substantiated rule for yielding new
on
lusions, or a burden shift rule for reversing the burden of proof.It should also be possible in this language to represent the reasons for updating andaltering premises. We 
an, for instan
e, 
hange an axiom in a theory be
ause it shouldbe spe
ialised, or generalised. Or else, we 
an repla
e it with a more elaborated version,2 See Appendix A for a 
on
ise a

ount of logi
 programming 
on
epts and syntax.3 See dis
ussion in Se
tion 5.3. 80



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 81with extra pre
onditions; or with a less elaborated version obtained by removing somepre
ondition that is thought to be irrelevant. Furthermore, we 
ould revise the 
on
lu-sion of a rule, or reverse the relation between the 
onsequent and the ante
edent. Thesedes
riptions 
onvey the possible reasons for altering and repla
ing axioms.It is often the 
ase, though, that these language 
onstru
ts only summarise what 
ouldbe guessed from the stru
ture of the updated or added premises|i.e. from the revisionoperation itself that is asso
iated with the s
hema. But 
hanges that are di�erent innature may sometimes yield identi
al instan
es of s
hemata based on identi
al revisionoperations. In these 
ases, su
h a des
ription language allows us to keep and representthe original distin
tion.This is parti
ularly true when we remove premises from a theory. We may have a numberof di�erent reasons for withdrawing a premise, but the type of revision asso
iated withthese will always be synta
ti
ally equivalent. Thus in our representation we use di�erent
onstru
ts to distinguish between di�erent reasons for retra
ting an axiom from a theory,either be
ause it is an invalid rule, a weak rule or a misrelation. The di�eren
e is brie
ydis
ussed below:Invalid rule. A rule 
an be 
onsidered to be invalid if there are ex
eptionsto it|
ases where the ante
edent holds but the 
onsequent does not.Weak rule. A rule 
an be 
onsidered to be weak if there are instan
es wherethe ante
edent does not hold, a�e
ting the generality of the relation.Misrelation. The relation expressed by an axiom is said to be mistaken ifthere are 
ases where the ante
edent holds and the 
onsequent doesnot, and instan
es where the ante
edent does not hold but the 
onse-quent does, thus 
ompromising the adequa
y of the 
orrelation betweenante
edent and 
onsequent.Note that we do not require these 
onditions to be ne
essarily valid when we apply the
orresponding revisions. However, they provide designers with extra information whi
h
ould be useful in de�ning domain-spe
i�
 
ases for theory revision.The terms dis
ussed in this se
tion 
onstitute part of the language we use for des
ribing



argument s
hemata, whi
h we illustrate in the next se
tions and formally de�ne inChapter 7.5.2.2 Adding a New PremiseIn this se
tion we look at s
hemata for deriving new arguments by adding a new axiomto the theory. Added 
lauses are diagrammati
ally represented within light gray boxes .Informal S
hema 1 (Adding a New Fa
t) A trivial way to present an argumentfor a senten
e is by adding it as a fa
t in the theory, as fa
ts immediately follow fromthe theory.This is parti
ularly useful if the senten
e 
orresponds to an observation, or to a beliefthat is taken to be 
ategori
ally true. For instan
e, to advan
e the following argument:A
atoxins are surely potent 
an
er-
ausing agents in animals.it is enough to add it as a fa
t in the theory, justi�ed by dire
t observation. Letthe senten
e 
auses(a
atoxin ; 
an
er ; animal (X)) represent the statement above, whereanimal (X) denotes that X is a non-human animal spe
ies. The type of revision ne
es-sary for justifying this senten
e is depi
ted below,4fg add(fa
t); 
auses(aflatoxin, 
an
er, animal(X))and is represented by the following instantiated s
hema:justify(
auses(a
atoxin; 
an
er ; animal(X))) ifadd(fa
t � 
auses(a
atoxin ; 
an
er ; animal(X))  true �)The following trivial argument 
an now be derived:f
auses(a
atoxin ; 
an
er ; animal(X)) trueg ` 
auses(a
atoxin ; 
an
er ; animal(X)) (5.1)4 For reasons of 
larity and spa
e, in the revision diagrams in this se
tion we denote fa
ts of the formH  true by the sole expression H in Prolog style.82



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 83This sort of argument is often regarded as a falla
y in argumentation theory, namelybegging the question or 
ir
ular reasoning. Although logi
ally sound, it is also \triviallyuninteresting" (Fogelin and Sinnott-Armstrong 1997, p. 40), and in our example 
annotbe 
onsidered as a proof that a
atoxins 
ause 
an
er in animals.However, su
h arguments are indeed valid. It might be uninteresting in this 
ase, but 
anbe useful for generating arguments from more 
ompli
ated s
hemata based on 
omplextypes of revisions.Informal S
hema 2 (Adding a New Substantiated Rule) We 
an justify a sen-ten
e by adding a new rule for deriving it su
h that the rule ante
edent is supported.For instan
e, we 
an advan
e the following argument supporting the 
laim that a
atox-ins 
ause 
an
er in humans.A
atoxins are surely potent 
an
er-
ausing agents in animals. We know from mu
hstudy that animal testing gives a reliable indi
ation of human risk.So, for this 
laim to be derived we 
an add to the theory a rule stating that all agents that
ause some pathology in some non-human animal spe
ies would 
ause this pathology inhumans. This is a substantiated rule for the 
ase of a
atoxins be
ause its ante
edent issatis�ed by the fa
t (in the theory) that a
atoxins 
ause 
an
er in non-human spe
ies.This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X)) add(substantiated rule); 
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X))and is represented by the following instantiated s
hema:justify(
auses(a
atoxin ; 
an
er ; human)) ifadd(substantiated rule � 
auses(A;P; human) 
auses(A;P; animal(X)) �)This rule may not be an universal truth, but it 
aptures the general nature of the domainwe are representing. The following argument 
an now be derived:




auses(a
atoxin; 
an
er ; human)
auses(a
atoxin ; 
an
er ; animal(X))
auses(A;P;human) 
auses(A;P;animal(X)) (5.2)
Informal S
hema 3 (Adding a Burden Shift Rule) We 
an shift the burden ofproof by adding a rule stating that a senten
e is justi�ed if some other (opposing) sen-ten
e is not. In this way, we justify a senten
e by arguing that its 
ontrary 
annot besupported.For instan
e, we 
an put forward the following argument for sustaining the 
laim thatthere is no safe level of exposure for 
ar
inogeni
 agents.We 
an assume that there is no safe exposure level for an agent unless one 
ans
ienti�
ally prove that there is a safe level of exposure for this agent at whi
h itwill not 
ause 
an
er.This argument 
an be derived if we add a general rule stating that there is no safeexposure level for a 
an
er-
ausing agent if we 
annot justify the existen
e of a safelevel for it. Given that we 
annot prove that there is a safe level for a
atoxins, this ruleshifts the burden of proof to someone willing to prove that su
h a level does exist. Thistype of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) add(burden shift rule); 
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X))no safe level(A)  not safe level(A, L)and is represented by the following instantiated s
hema:justify(no safe level(a
atoxin)) ifadd(burden shift rule � no safe level(A) not safe level(A;L) �)Hen
e the argument below 
an be derived, supporting the 
laim that there is no safeexposure level for a
atoxins. 84



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 85no safe level(a
atoxin)not safe level(a
atoxin ; L)no safe level(A) not safe level(A;L) (5.3)
Shifting the burden of proof is sometimes regarded as a falla
y, namely appeal to igno-ran
e, whereby a 
laim is said to be true be
ause there is no eviden
e that it is false.This type of reasoning, however, 
an also be used non falla
iously in 
ertain problemsand domains.5.2.3 Retra
ting an Existing PremiseRevisions in this se
tion are 
on
erned with the quality of the premises used in anargument, in parti
ular with the quality of rules. We fo
us on rules rather than fa
tsand propositions be
ause the general way for 
hallenging and refuting a proposition isto justify some opposing or 
ontradi
ting position (i.e. to present a 
ounter-argument).In the 
ase of rules, however, the quali�
ation problem states that it is not alwayspossible to expli
itly a

ount for the many 
onditions ne
essary for rules to hold, so itis important to investigate whether a rule is in fa
t germane to the problem in question.What is interesting about retra
tion is that it brings into play more of the dynami
sof argumentation as opposed to the usual approa
h of only adding arguments whi
hover
ome the weak ones. That allows for instan
e for previous arguments to be notonly defeated but invalidated, e.g. for being falla
ious.As dis
ussed in Se
tion 5.2.1, there may be di�erent reasons for reje
ting an axiom, andnow we look more 
losely at some of these ways through whi
h we 
an withdraw a ruleand 
hallenge its validity. Removed 
lauses are diagrammati
ally represented withindark gray boxes .Informal S
hema 4 (Retra
ting an Invalid Rule) We 
an refute an argument be-
ause the 
onditional used to derive the argument 
laim is logi
ally invalid, i.e. thereare ex
eptions to it (
ases for whi
h the ante
edent holds but the 
onsequent does not).For instan
e, the argument below refutes argument 5.2, suggesting that the 
laim that



a
atoxins 
ause 
an
er in humans is unsubstantiated.It's not even 
ertain that a
atoxins represent a 
an
er risk to humans be
auseanimal testing is not known to be a reliable predi
tor of human risk.This argument reje
ts the rule that relates animal testing and human risk by questioningits reliability, e.g. be
ause there might be ex
eptions to this relation (
ases of an spe
i�
agent known to 
ause some spe
i�
 pathology in some animal spe
ies, and not 
ausingthe same pathology in humans). This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) retra
t(invalid rule); 
auses(aflatoxin, 
an
er, animal(X))and is represented by the following instantiated s
hema:refute(
auses(a
atoxin ; 
an
er ; human)) ifretra
t(invalid rule � 
auses(A;P; human) 
auses(A;P; animal(X)) �)In this way, argument 5.2 is no longer derivable from the revised set of premises.Informal S
hema 5 (Retra
ting a Weak Rule) We 
an refute an argument be-
ause the 
onditional used to derive the argument 
laim is logi
ally weak, i.e. thereare 
ases for whi
h the ante
edent does not hold, 
ompromising the generality of therelation.Let us 
onsider the following argument:It's not even 
ertain that a
atoxins represent a 
an
er risk to humans be
auseanimal testing is not known to be a reliable predi
tor of human risk. Moreover, the
ar
inogeni
 poten
y of a
atoxins varies greatly among the several animal spe
iesin whi
h they have been tested.Again, this argument reje
ts the rule that relates animal testing and human risk byquestioning its reliability. This 
hallenge may not be grounded on expli
it denials likein the previous s
hema, but on weakening the generality and relevan
e of this relation.86



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 87For instan
e, by presenting 
ases where the ante
edent does not hold, or a parti
ularanimal spe
ies to whi
h a
atoxins are not 
ar
inogeni
 (in line with the assertion thatthe 
ar
inogeni
 poten
y of a
atoxins di�ers among spe
ies). This type of revision isdepi
ted below,
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) retra
t(weak rule); 
auses(aflatoxin, 
an
er, animal(X))and is represented by the following instantiated s
hema:refute(
auses(a
atoxin; 
an
er ; human)) ifretra
t(weak rule � 
auses(A;P; human) 
auses(A;P; animal(X)) �)Note that this is identi
al to the instan
e of S
hema 4, the only distin
tion being thereason for retra
ting the rule, 
aptured in this representation by the di�erent 
onstru
tsinvalid rule and weak rule. And again, argument 5.2 is no longer supported in therevised set of premises, in whi
h 
ase the 
laim that a
atoxins 
ause 
an
er in humansis unsubstantiated.Informal S
hema 6 (Retra
ting a Misrelation) We 
an refute an argument be-
ause the 
orrelation expressed by the rule used to derive the argument 
laim is mistaken,i.e. the 
orrelation between ante
edent and 
onsequent is not adequate.Let us 
onsider again the following argument:It's not even 
ertain that a
atoxins represent a 
an
er risk to humans be
auseanimal testing is not known to be a reliable predi
tor of human risk.This time we 
ould 
hallenge the reliability of the relation between human risk andanimal testing on the basis that this relation is mistaken, e.g. be
ause the 
onsequent isnot very likely to follow from the ante
edent, or simply be
ause there is no 
orrelationat all between the senten
es (a parti
ular agent is known to 
ause some pathologyin an animal spe
ies but not in humans, and some other agent is known to 
ause adi�erent pathology in humans but not in 
ertain animal spe
ies). Su
h argument thenundermines the general extrapolation of animal risk to human risk. This type of revisionis depi
ted below,




auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) retra
t(misrelation); 
auses(aflatoxin, 
an
er, animal(X))and is represented by the following instantiated s
hema:refute(
auses(a
atoxin; 
an
er ; human)) ifretra
t(misrelation � 
auses(A;P; human) 
auses(A;P; animal(X)) �)This argument on
e again refutes argument 5.2, in whi
h 
ase the 
laim that a
atoxins
ause 
an
er in humans is again unsupported.5.2.4 Updating an Existing PremiseIt it not always the 
ase that a 
hallenged rule needs to be retra
ted for good. In fa
t,a

ording to the quali�
ation problem, it is hard (if not impossible) to spe
ify all thepre
onditions for a rule to hold, as there might be impli
it or unknown 
onditions that
an invalidate the relation. So we 
an refute a rule by retra
ting it, and subsequentlyadding an updated version that a

ounts for some of these impli
it or unknown 
ondi-tions. In the same way, not all 
onditions in a rule may be pertinent to the problem weare representing, so we 
an revise the rule again by dismissing su
h irrelevant premises.In this se
tion we look at examples where new arguments are generated on the basisof revised rules. Noti
e that we 
an revise an axiom not only to refute an existingargument that is based on it, but also to introdu
e a new argument that makes use ofthe updated axiom in order to be inferred. After all, revision is also about strengtheningan argument by reviewing the axioms that support it.Informal S
hema 7 (Removing Irrelevan
e in a Rule) We 
an justify a senten
eby removing an irrelevant pre
ondition from a rule so that the rule ante
edent is nowsatis�ed, and the senten
e 
onsequently follows from it.For instan
e, the argument below supports the 
laim that the maximum required levelof intake for a
atoxins should be set to its minimum dete
table level, i.e. 20 parts perbillion, on the basis that su
h substan
es are 
ar
inogeni
.88



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 89We know that 
an
er-
ausing 
hemi
als are a spe
ial breed of toxi
ants|they 
anthreaten health at any level of intake. We should therefore eliminate human expo-sure to su
h agents whenever we 
an, and, at the least redu
e exposure to the lowestpossible level whenever we're not sure how to eliminate it. The level of intake for
ar
inogeni
 substan
es should always be restri
ted, even it is argued that a safelevel of intake exists whi
h is far above the minimum dete
table level.Suppose that our theory about 
ar
inogeni
ity of substan
es already 
ontains a rulestating that the required level of an agent should be set to its minimum dete
table levelif it is 
ar
inogeni
 and if there is no known safe exposure level for it. However, if thetheory also 
ontains a fa
t stating that a safe exposure level s for a
atoxins does existwhi
h is far greater than the minimal dete
table level, then the rule above 
annot beused as not all its pre
onditions are satis�ed. What we argue, though, is that one 
annever be too 
autious when dealing with 
ar
inogeni
 substan
es. So the required levelfor a
atoxins should still be set to their minimum dete
table level, be
ause we mustdisregard any 
onditions about safe exposure levels for an agent that 
an 
ause 
an
er.This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)safe level(aflatoxin, s)no safe level(A)  not safe level(A, L)required level(A, L)  
auses(A, 
an
er, X) ^no safe level(A) ^min det level(A, L) update(irrelevan
e); 
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)safe level(aflatoxin, s)no safe level(A)  not safe level(A, L)required level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L)and is represented by the following instantiated s
hema:justify(required level(a
atoxin ; 20ppb) ifretra
t(irrelevan
e0BB� required level(A;L) 
auses(A; 
an
er ;X) ^no safe level(A) ^min det level(A;L) 1CCA)andadd(irrelevan
e0� required level(A;L) 
auses(A; 
an
er ; X) ^min det level(A;L) 1A)The argument below 
an then be derived:



required level(a
atoxin ; 20ppb)
auses(A; 
an
er ; animal(X)) min det level(a
atoxin; 20ppb)required level(A;L) 
auses(A;
an
er;Y )^min det level(A;L)WWWWWWWWWWWWWWWWWWW

(5.4)
Informal S
hema 8 (Revising the Consequent of a Rule) We 
an revise the 
on-sequent of a rule if it does not 
orrespond to what is expe
ted to follow from the pre
on-ditions of this rule. This revision 
an either allow a new argument for a senten
e to bederived (if this senten
e is now the revised 
onsequent) or refute an existing argumentfor a senten
e (if this senten
e was the 
onsequent of the original rule).Assume that in our 
urrent theory the 
laim that a safe level of intake for a
atoxinsexists is based on a rule stating that the minimum dete
table level for a 
ar
inogeni
substan
e is safe, in the sense that it will not 
ause adverse e�e
ts. We 
an present thefollowing argument for refuting this 
on
lusion.We know that 
an
er-
ausing 
hemi
als are a spe
ial breed of toxi
ants|they 
anthreaten health at any level of intake. We should therefore eliminate human ex-posure to su
h agents whenever we 
an, and, at the least redu
e exposure to thelowest possible level whenever we're not sure how to eliminate it.In the 
urrent theory, we are inferring the wrong 
on
lusion from the right premises.The minimum dete
table level of a 
ar
inogeni
 substan
e should never be regarded assafe, but as the best we 
an do to eliminate risk (i.e. the maximum a

eptable level).This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)safe level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L) update(mis
on
lusion); 
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L)and is represented by the following instantiated s
hema:refute(safe level(a
atoxin ; 
an
er ; 20ppb)) ifretra
t(mis
on
lusion 0� safe level(A;L) 
auses(A; 
an
er ; X) ^min det level(A;L) 1A)andadd(mis
on
lusion 0� required level(A;L) 
auses(A; 
an
er ; X) ^min det level(A;L) 1A)90



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 91Informal S
hema 9 (Reversing a Rule) We 
an invert a rule when the relation be-tween its ante
edent and 
onsequent is reversed. This revision 
an either allow a newargument for a senten
e to be derived (the ante
edent of the original rule, whi
h is nowthe 
onsequent of the updated rule) or refute an existing argument for a senten
e (the
onsequent of the original rule, whi
h is now the ante
edent of the updated rule).Suppose that we still wanted to argue that there is a safe level of exposure for a
atoxins,and that we had done so by introdu
ing a (new substantiated) rule stating that therequired level of exposure for an agent is a
tually a safe exposure level. Below is a
ounter argument that blo
ks the safe level 
on
lusion from being derived in this 
ase.It is not the 
ase that the maximum a

eptable level of intake for a 
ar
inogeni
substan
e is ne
essarily safe. In fa
t, it should be restri
ted by a safe exposure level,if su
h safe level 
an ever be proven to exist.In this way the 
on
lusion that a safe level of intake for a
atoxins exists is no longersupported, as the rule used to derive it 
an no longer be applied. This type of revisionis depi
ted below,
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L)safe level(A, L)  required level(A, L) update(reversion); 
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L)required level(A, L)  safe level(A, L)and is represented by the following instantiated s
hema:refute(safe level(a
atoxin ; 20ppb)) ifretra
t(reversion � safe level(A;L) required level(A;L) �)andadd(reversion � required level(A;L) safe level(A;L) �)The last two argument s
hemata were used to blo
k the 
laim that the minimum de-te
table level of a
atoxin is a safe exposure level for it. Noti
e, however, that these arenot intended to reje
t the required level of exposure from being set to this minimumlevel. Instead, these s
hemata 
onvey the idea that no safe level of intake for a 
ar-
inogeni
 agent 
an ever exist, i.e. that 
an
er-
ausing substan
es \
an threaten healthhealth at any level of intake."



Informal S
hema 10 (Spe
ialising a Rule) One way to refute an argument is byspe
ialising the rule used to derive the argument 
laim so that it is no longer appli
ableto the 
ase under dis
ussion.For instan
e, we 
an refute argument 5.4 for required level(a
atoxin ; 20ppb) by advan
-ing the following argument.We should not restri
t the level of a
atoxin intake to its minimum dete
table levelunless it is known that a
atoxins 
ause 
an
er in humans. In fa
t, a
atoxins 
an
ause liver toxi
ity in animals and are also 
ar
inogeni
, but it is not even 
ertainthat they represent a 
an
er risk to humans be
ause animal testing is not knownto be a reliable predi
ator of human risk.The idea behind this argument is that the rule for restri
ting the level of intake is toogeneral, and should only be applied if an agent is known to be 
ar
inogeni
 to humansin parti
ular.This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  
auses(A, 
an
er, X) ^min det level(A, L) update(spe
ialisation); 
auses(aflatoxin, 
an
er, animal(X))min det level(aflatoxin, 20ppb)required level(A, L)  
auses(A, 
an
er, human) ^min det level(A, L)and is represented by the following instantiated s
hema:refute(required level(a
atoxin ; 20ppb)) ifretra
t(spe
ialisation 0� required level(A;L) 
auses(A; 
an
er ; X) ^min det level(A;L) 1A)andadd(spe
ialisation 0� required level(A;L) 
auses(A; 
an
er ; human) ^min det level(A;L) 1A)In this way, we 
an no longer derive an argument for required level(a
atoxin ; 20ppb) inthe revised theory.Informal S
hema 11 (Generalising a Rule) We 
an justify a senten
e by general-ising some existing rule so that it now allows this senten
e to be derived.92



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 93Suppose we have previously observed that a
atoxins 
ause 
an
er in rabbits, and nowwe want to use this fa
t to support the 
laim that a
atoxins are 
ar
inogeni
 to humanson the basis of a bioassay eviden
e.A
atoxins are potent 
an
er-
ausing substan
es in rabbits, and we know that animaltesting gives a reliable indi
ation of human risk.Suppose also that the 
urrent theory about 
ar
inogeni
ity of 
hemi
al substan
es 
on-tains a rule stating that a 
hemi
al agent 
auses some pathology in humans if it 
ausesthis pathology in mi
e. The existing extrapolation rule 
annot be applied be
ause it isspe
i�
 to the 
ase of mi
e, so to advan
e the argument above we need to generalise it.This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(rabbit))
auses(A, P, human)  
auses(A, P, animal(mouse)) update(generalisation); 
auses(aflatoxin, 
an
er, animal(rabbit))
auses(A, P, human)  
auses(A, P, animal(X))and is represented by the following instantiated s
hema:justify(
auses(a
atoxin; 
an
er ; human)) ifretra
t(generalisation � 
auses(A;P; human) 
auses(A;P; animal(mouse)) �)andadd(generalisation � 
auses(A;P; human) 
auses(A;P; animal(X)) �)The argument below 
an then be derived:
auses(a
atoxin ; 
an
er; human)
auses(a
atoxin; 
an
er; animal(rabbit))
auses(A;P;human) 
auses(A;P;animal(X)) (5.5)
Informal S
hema 12 (Elaborating Pre
onditions in a Rule) One way to refutean argument is by elaborating the pre
onditions in the rule used to derive the argument
laim so that its ante
edent is no longer satis�ed.The following is an argument that refutes argument 5.2 (or similarly, argument 5.5) byelaborating on the 
onditions for applying the general extrapolation rule.



To 
laim that an agent is 
ar
inogeni
 on the basis of animal testing, the animalphysiology and 
hemistry relevant to the a
tivity of this agent must be suÆ
ientlysimilar to human physiology and 
hemistry.At this point, the 
laim that a
atoxins 
ause 
an
er in humans is unsubstantiatedbe
ause there is no indi
ation of whether the type of animal that is 
onsidered is in fa
tsimilar enough to humans. This type of revision is depi
ted below,
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) update(elaboration); 
auses(aflatoxin, 
an
er, animal(X))
auses(A, P, human)  
auses(A, P, animal(X)) ^similar physiology(human, X)and is represented by the following instantiated s
hema:refute(
auses(a
atoxin ; 
an
er ; human)) ifretra
t(elaboration � 
auses(A;P; human) 
auses(A;P; animal(X)) �)andadd(elaboration 0� 
auses(A;P; human) 
auses(A;P; animal(X)) ^similar physiology(human ; X)) 1A)Note that this sort of refutation is not as damaging as those dis
ussed in the previousse
tion. In fa
t, to reestablish the 
on
lusion that a
atoxins 
ause 
an
er in humans,we just need to expli
itly a

ount that the animal used in the bioassay was suÆ
ientlysimilar to humans in what matters. Furthermore, this elaborated rule may be betterprote
ted from the types of refutations in Se
tion 5.2.3, as it better spe
i�es what hasto be 
onsidered as relevant in this domain.5.3 Relationship with Informal Argumentation TheoryThe s
hemata illustrated here all required some sort of domain-spe
i�
 expertise to beinstantiated in a relevant way. But noti
e that we do not want to fo
us on a domain-spe
i�
 solution. Our point is that an analysis of formal argument stru
ture 
an shedsome light on how justi�
ations and refutations are generated in any parti
ular domain,thus providing rough sket
hes to whi
h domain-spe
i�
 knowledge 
an be applied.To de�ne a 
lassi�
ation of s
hemata we have then looked into traditional argumenta-tion theory. In fa
t, one of the main problem areas in the study of informal logi
 
onsists94



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 95in identifying, analysing and evaluating arguments (van Eemeren et al. 1996), so argu-mentation theorists are often interested in developing models and tools for supportingthese tasks. One example is the notion of argumentation s
hemes (Walton 1996).As argued by van Eemeren et al. (1996), argumentation s
hemes are 
on
erned withthe internal stru
ture of arguments, and \to the kind of relation established in a sin-gle argument between its premises and the standpoint the argument aims to justify orrefute." In summary, they are used for 
lassifying and modelling various types of argu-ment forms. Their use dates ba
k to Aristotle, who dis
ussed the idea of argumentations
hemes (or te
hniques, or moves) being sele
ted and instantiated by an atta
ker duringdiale
ti
al debates (van Eemeren et al. 1996, p.38).More re
ent approa
hes (Walton 1996; Perelman and Olbre
ts-Tyte
a 1969) proposelists and 
atalogues of argumentation s
hemes that represent a

eptable ways for 
on-ne
ting premises and 
on
lusions. The 
on
lusion of a s
hema is then said to be pre-sumptively (or defeasibly) valid if the asso
iated premises and 
onditions hold. In theNew Rhetori
 (Perelman and Olbre
ts-Tyte
a 1969)5, for instan
e, s
hemes representlogi
al as well as rhetori
al arguments, and 
hara
terise inferen
e me
hanisms that 
anbe used to 
onvin
e an audien
e in persuasive argumentation. Furthermore, 
riti
alquestions are asked in relation to an argumentation s
hema to determine whether it 
anin fa
t be applied.In our 
ase, however, we adopt a slightly di�erent position. We want to de�ne generi
stru
tures of logi
al arguments rather than di�erent types of inferen
e linkages. This isbe
ause our arguments are generated based on a logi
al system, and on a formal andsound logi
al inferen
e me
hanism. So defeasibility is related not with the reasoningstep but with the types of premises that 
an be used, added, removed or updated.In the 
ases where premises are removed or updated, we have looked at the idea offalla
ies, i.e. arguments that appear to be valid but are a
tually not. The study of fal-la
ies 
onstitutes another major area in argumentation theory, whi
h provided us withri
h material for analysing the quality of premises in an argument, and for indi
atingwhen these were not really well-grounded. Below we des
ribe some informal falla
ies5 As 
ited by van Eemeren et al. (1996) and by Warni
k and Kline (1992).



that we have 
onsidered and identi�ed as being relevant to our analysis, relating themto the s
hemata in the previous se
tions. In parti
ular, we refer to possible revision-based s
hemata that 
ould have been applied in order to improve the quality of thefalla
ious argument. The literature on falla
ies is vast, and we have based our des
rip-tions mainly on general resour
es su
h as (van Eemeren et al. 1996) and (Fogelin andSinnott-Armstrong 1997).Slippery Slope. When a 
laim is said to be 
aused by a sequen
e of events, but thereis not enough eviden
e of su
h relationship.In this 
ase, the rule representing this relationship may be removed for being invalid(Informal S
hema 4), weak (Informal S
hema 5), or mistaken (InformalS
hema 6); or its 
on
lusion may be revised (Informal S
hema 8).False 
ause. When there is not enough eviden
e that one event 
aused another.Similarly to the 
ase above, we 
an apply Informal S
hemas 4, 5, 6, 8.Hasty 
on
lusion. When we jump to a 
on
lusion not based on enough grounds.As above, here we 
ould apply Informal S
hemas 4, 5, 6, 8.False 
riteria. When false or irrelevant 
riteria are used in the argument.In this 
ase, Informal S
hema 7 
an be used to disregard this 
riteria.Wrong dire
tion. When the relation between 
ause and e�e
t is reversed.Here Informal S
hema 9 
ould be applied to reverse the relation.Hasty generalisation. When the generalisation is not based on enough 
ases or sam-ples.In this 
ase, we 
ould apply Informal S
hema 10 to spe
ialise the rule.Composition. When a property that is valid for a part is assumed to be valid for thewhole entity 
ontaining it.Again, Informal S
hema 10 
ould be applied to spe
ialise the relation to 
onsiderthe part, and not the whole. 96



CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 97Division. When a property that is valid for a whole entity is assumed to be valid forea
h of its parts.Again, Informal S
hema 11 
ould be applied to generalise the relation to 
onsiderthe whole, and not the parts.Complex Cause. When the 
ause identi�ed is simpler than the a
tual 
ause of thee�e
t.In this 
ase, Informal S
hema 12 
ould be used to elaborate the relation andintrodu
e other relevant 
onditions.By looking at existing a

ounts from informal argumentation theory, we were then ableto 
ombine domain-independent knowledge about arguments to des
ribe general logi-
al forms of arguments and atta
ks in terms of the premises used. The next 
haptersformally des
ribe a 
lassi�
ation of argument s
hemata and dis
uss some of its proper-ties. To these generi
 stru
tures we 
an then apply domain-spe
i�
 knowledge so thatwe instantiate and determine the 
ontents of an atta
k to be advan
ed in an dynami
argumentation pro
ess.First, though, we need to des
ribe exa
tly how arguments atta
k ea
h other.





Chapter 6Atta
ks in Argument Dynami
s
Chapter 4 identi�ed pre
isely the problems we need to address in order to fully des
ribeand generate dynami
 arguments. This 
hapter 
onsiders one of those problems, namelyhow to 
hara
terise the general format of atta
ks and the possible 
ontradi
tions inargument.6.1 Types of Argument ClaimsA

ording to De�nition 4.4, an argument A0 atta
ks an argument A if and only if A0
ontradi
ts a 
laim supported by A and A is not preferred over A0. For the moment weshall assume that no preferen
e 
riterion is de�ned, thus no argument is preferred overany other. We return to the topi
 of argument prioritisation later in Part III of thisthesis.To 
hara
terise the types of atta
k to an argument we then need to identify what are the
laims supported by this argument and how these 
an be 
ontradi
ted. In Chapter 4 wehave referred to a 
laim as being the 
on
lusion of a justi�
ation,1 but here we take theview that 
laims are general statements (about senten
es in the language) supported byarguments in general. If, for example, an argument A is a justi�
ation for ' in a theory�, then based on A we 
an say that ' is substantiated in �.Whereas a justi�
ation 
an serve as a reason for a

epting a senten
e, other types ofarguments|su
h as 
ounter-justi�
ations and refutations|
an be used for reje
ting a1 See De�nition 4.3. 99



justi�
ation and 
onsequently its 
on
lusion. Noti
e that it only makes sense to talkabout these in 
onne
tion with some previously 
onstru
ted justi�
ation, and not asindividual entities. While 
ounter-arguments are essentially justi�
ations supporting asenten
e that 
on
i
ts with some point of the original argument, refutations are usedfor blo
king 
on
lusions from being derived. That is, refutations are used for reje
ting apremise (axiom) in a justi�
ation, either by removing it from the theory or by updatingit so that the argument no longer follows. Thus refutations are logi
ally valid but notsound, be
ause they 
ontain axioms not 
onsidered to be sound with respe
t to thetheory in question. If an argument A is a refutation of a justi�
ation for ' in a theory�, then based on A we 
an say that ' is not substantiated.The following de�nition summarises these notions.De�nition 6.1 (Types of Claims) Let A be an argument about ' in a theory �.There are two 
ases to be 
onsidered:� A is a justi�
ation � `� 'Then A supports the 
laim that ' is substantiated in �|i.e that ' is in the setof 
onsequen
es of �.We denote this by ' : in.� A is a refutation2 � 6`� 'Then A supports the 
laim that ' is unsubstantiated in �|i.e. that ' is not in theset of 
onsequen
es of �, at least with respe
t to A. We denote this by ' : out.2So 
laims are senten
es annotated with labels in and out, whi
h indi
ate whether thesenten
e is a

eptable or not in the theory with respe
t to the argument in question. Byadopting this notation the 
onne
tion with truth maintenan
e systems draws even 
loser:senten
es in a TMS are said to be in if they have at least one 
urrently a

eptable (valid)reason, and are said to be out otherwise (Doyle 1979). We shall be dis
ussing pointsof 
onta
t between argumentation and TMS throughout this 
hapter before looking atthis relationship more 
arefully in Se
tion 6.4.2 � 6`� ' is a refutation of � ` ' in � if � `�p ' is a justi�
ation of ' in some previous theory �p, and� is obtained from �p by retra
ting some premise from � � �p.100



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 101Some important points need to be made about this, in relation to the dis
ussion abouttruth and a

eptability in Se
tion 1.1.1. As argued by Doyle (1979, p. 238):The distin
tion between in and out is not that between true and false. The former
lassi�
ation refers to 
urrent possession of valid reasons for belief. True and false,on the other hand, 
lassify statements a

ording to truth value independent of anyreasons for belief.This distin
tion also holds for labels in and out in De�nition 6.1. To say that a senten
e' is out of the set of 
onsequen
es of a theory with respe
t to an argument (refutation)is not equivalent to saying that ' is not a 
onsequen
e of the theory. The reason whyis that we have taken a 
omputational view where arguments may exist in a theorybut may not yet have been found, thus labels give the status of senten
es in relation tothe arguments that were 
omputed and presented so far. Although we have reje
ted ajusti�
ation for ', there is no guarantee of whether some alternative justi�
ation for itexists, in whi
h 
ase ' would in fa
t be a 
onsequen
e of the theory. What we guaranteeis that there is one less way of inferring the senten
e within the theory, but that doesnot mean that its set of 
onsequen
es is smaller.6.1.1 Claim Dependen
ies in an ArgumentDe�nition 6.1 gives the sorts of statements that 
an be made about an argument main
on
lusion, or main 
laim. As arguments are stru
tured obje
ts 
omposed of sub-arguments, it should also be possible to make statements|or indire
t 
laims|aboutthe sub-
on
lusions underpinning the main 
laim, and to say things su
h as a senten
e issubstantiated be
ause it is based on other senten
es whi
h are themselves substantiated.To 
apture these dependen
ies, 
laims supported by an argument are represented in adire
ted graph obtained from the 
orresponding argument tree. Appendix B gives thebasi
 notation used in this thesis for expressing argument trees and dire
ted graphs.The following example illustrates this notion.Example 6.1 Let � be the theory below in a Horn 
lause resolution-based language.



p(X;Y )  q(X) ^ r(Y )q(X)  s(X) ^ t(X)r(b)  trues(a)  truet(a)  trueThen the argument A below is a justi�
ation for p(a; b) in �.fp(X;Y ) q(X) ^ r(Y ); q(X) s(X) ^ t(X); s(a) true; t(a)  true; r(b) trueg `� p(a; b)Noti
e that arguments 
an also be represented as rooted trees: ea
h premise in the ar-gument de�nes a sub-tree with root 
orresponding to the 
on
lusion of the axiom, and
hildren 
orresponding to the sub-arguments allowing this 
on
lusion to be derived. Thisalternative representation for A is given below:
p(a, b)

r(b)

s(a) t(a)

q(a)

true true

true�The dependen
ies between 
laims supported by A are organised in the following stru
ture.p(a; b) : inq(a) : in 66mmmm r(b) : inhhQQQQs(a) : in 77nnnn t(a) : inhhQQQQtrue : inOOiiSSSSSSSSSSSSS

AA�����������From this dependen
y stru
ture we 
an say for instan
e that p(a; b) is supported be
auseboth q(a) and r(b) are in. The term true is always in.For the 
ase of refutations, this sort of 
laim stru
ture 
an be obtained by 
onsidering thedependen
ies in the refuted justi�
ation, then removing the reje
ted premise and �nallypropagating the labels appropriately. Consider for instan
e argument A above. Thereare many ways to refute A, one is by reje
ting the premise r(b) true thus retra
tingit from the theory so that A 
annot be a

epted as a justi�
ation for p(a; b) with respe
tto � n fr(b) trueg. This refutation is represented below.102



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 103fp(X;Y ) q(X) ^ r(Y ); q(X) s(X) ^ t(X); s(a) true; t(a)  true; r(b) trueg 6`�nfr(b) trueg p(a; b)A refutation 
an be depi
ted as a tree as follows, where we indi
ate the reje
ted premiseby pruning the sub-tree de�ned by it.
p(a, b)

r(b)

s(a) t(a)

q(a)

true true

true�nfr(b) truegAmong the things that 
an be said about this, p(a; b) is now argued to be unsubstanti-ated in � n fr(b) trueg be
ause r(b) is out in � n fr(b) trueg. The dependen
iesbetween 
laims are now represented as follows.p(a; b) : outq(a) : in 66llll r(b) : outiiRRRRs(a) : in 77nnnn t(a) : inhhRRRR true : inOOiiTTTTTTTTTTTTT 2The stru
ture of 
laims supported by an argument is essentially a dire
ted graph inwhi
h a node is labelled in only if all its supporting nodes are labelled in. This is againvery similar to the sorts of dependen
y networks kept by truth maintenan
e systems,the only di�eren
e is that the dependen
y graph is obtained from a valid justi�
ationthat has been (at some point) su

essfully generated via the provability relation `, andhen
e well-founded either on valid assumptions or on the premise true. In TMS thegraph is obtained from adding and deleting rules (so-
alled justi�
ations) that are notne
essarily related nor 
hained.Remember, though, that in the 
ase of refutations premises may have been either re-tra
ted or updated, and ea
h of these possibilities must be 
arefully 
onsidered. Butbefore de�ning the stru
ture of 
laims formally, a note on notation: the symbols used forrepresenting argument trees and dire
ted graphs|e.g. the hooked arrow ,! to denotesupporting edges in a graph|are presented in detail in Appendix B.



De�nition 6.2 (Argument Claims) Let A be an argument in �. The 
laim stru
turesupported by A is the dire
ted graph GA (with asso
iated labelling fun
tion) indu
tivelyde�ned from the argument tree A as follows:Base 
ase:A = true� V(GA) = ftrueg and E(GA) = fg� labelGA(true) = inA = tree('; assumption ; fg)� V(GA) = f'g and E(GA) = fg� labelGA(') = inIndu
tive 
ase:A = tree('P ; P; fA'P1 ; A'P2 ; :::; A'PN g)Let GA1 ; :::;GAN be the 
laim stru
tures supported by sub-arguments A'P1 ; :::; A'PN ,respe
tively, su
h that root (A'Pi ) = 'Pi .Before we de�ne how to 
ombine su
h stru
tures in order to obtain GA, 
onsider thefollowing auxiliary sets and labelling fun
tion (whi
h merge the labelling fun
tionsobtained in the indu
tive step):� V 0 = N[i=1V(GAi) and E 0 = N[i=1E(GAi )� label 0 : V 0 7! fin;outg, where label 0(') = � in 9GAi :labelGAi (') = inout otherwiseMoreover, let V be an operator for 
ombining and propagating labels a
ross sup-porting nodes in GA.To de�ne GA we need to 
onsider the possibilities for P , namely:1. P is an axiom in the theory;2. P has been removed from the theory;3. P has been repla
ed by some axiom P 0 in the theory.104



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 1051. P 2 �� V(GA) = V 0 [ f'P g and E(GA) = E 0 [ N[i=1f'Pi ,! 'P g� labelGA(') = 8<: label 0(') ' 6= 'PV' ' = 'P2. P 62 � has been removed in �Then the arguments supporting 'P are no longer relevant:� V(GA) = f'g and E(GA) = fg� labelGA(') = out3. P 62 � has been repla
ed by P 0 2 �Let 'P 0 and 'P 01 ; :::; 'P 0M denote the 
on
lusion and pre
onditions of P 0.If 'P 0 6= 'P , this redu
es to 
ase 2 (as P 0 no longer derives 'P ).Otherwise, if 'P 0 = 'P , then:� V(GA) = V 0 [ f'P g [ f'P 01 ; :::; 'P 0M g and E(GA) = E 0 [ M[i=1f'P 0i ,! 'P g
� labelGA(') = 8>>>><>>>>: label 0(') ' 6= 'P and ' 2 V 0out ' 6= 'P and ' 62 V 0V' ' = 'P 2Instan
es of 
ases 1 and 2 are given in Example 6.1, whereas 
ase 3 is illustrated laterin Example 6.4. The observation below follows from this de�nition:Observation 6.1 If A is a justi�
ation for ' then labelGA(') = in; otherwise, if A isa refutation of ' then labelGA(') = out. 26.2 The General Format of Atta
ksThe problem of how to generate an atta
k to a given argument 
an now be redu
ed tothat of generating an argument that supports a 
ontradi
tory 
laim. The basi
 intuition



is simple: if a senten
e is argued to be in, then in the next step of the argument we wantto 
laim that it is out|and vi
e versa. In one dire
tion, we 
an refute the argumentthat justi�es this senten
e; in the other, we 
an produ
e an alternative justi�
ation forit. ' : in remove argument; ' : out' : out add argument; ' : inSu
h types of atta
k are independent from the 
hoi
e of logi
al system be
ause theyrely on supporting and blo
king 
on
lusions only. Nonetheless, it should be possible toa

ount for any notion of 
on
i
t de�ned in the underlying language (e.g. through nega-tion), meaning for instan
e that we 
ould atta
k a justi�
ation not only by invalidatingits premises but also by justifying an opposing view.A question arises at this point, of how these relate to the atta
ks above. In other words,if ' denotes a senten
e that 
on
i
ts3 with ' then we want to determine whether thefollowing types of atta
k are also legitimate:1. If ' is argued to be in, then in the next step of the argument 
an we argue that' is out by arguing that ' is in?2. If ' is argued to be out, then in the next step of the argument 
an we 
laim that' is in by arguing that ' is out?The problem, though, is that the equivalen
e between ' : in and ' : out does not gen-erally hold. As dis
ussed in Se
tion 6.1, argumentation is 
on
erned not with the truthof propositions but rather with justifying whether a proposition 
an be a

epted as trueon the basis of the reasons that 
an be 
onstru
ted for it. From this perspe
tive, a sen-ten
e 
an only be refuted if it has been previously justi�ed. Arguing that a 
on
i
tingsenten
e is out does not mean that the senten
e is not a 
onsequen
e of the theory, andmay not give enough reasons for a

epting the senten
e itself as substantiate (unlessthis is expli
itly stated, e.g. by a burden shift premise).3 The only property assumed for the notion of 
on
i
t is that it is symmetri
, so if ' 
on
i
ts with 'then ' 
on
i
ts with '. 106



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 107Hen
e it is not ne
essarily the 
ase that ' : out implies ' : in. On the other hand,however, it seems reasonable to 
ontradi
t the 
laim that a senten
e is in by justifyinga 
on
i
ting senten
e, as this gives enough reasons for not a

epting the original senten
eas substantiated; ' : out then follows as a 
onsequen
e of ' : in. In this way, only the�rst type of atta
k above is also 
onsidered to be legitimate:' : in add argument; ' : inNoti
e that in truth maintenan
e systems the situation is similar, as states in and out:[...℄ are not symmetri
, for while reasons 
an be 
onstru
ted to make P in, noreason 
an make P out. (At most, it 
an make :P in as well.) (Doyle 1979, p. 234)The following example illustrates the intuition behind this.Example 6.2 Let the following be senten
es in a language for expressing the possible
olours of an obje
t x:f
olour(x; red); 
olour (x; yellow ); 
olour (x; green)gsu
h that 
on
i
t in this language is de�ned by 
olour (X;C) = 
olour(X;C 0), where C 0 6= C.Assume that 
olour (x; red ) is 
urrently in. A

ording to the dis
ussion above, possibleatta
ks 
onsist of either refuting 
olour (x; red ) or justifying 
olour (x; red ), where:
olour (x; red) = 
olour(x; green) or 
olour (x; red) = 
olour (x; yellow ).If the advan
ed atta
k has the form:
olour (x; red) : in; 
olour (x; green) : inthen 
olour (x; red ) be
omes out as 
olour (x; green) is now in. At this point arguing thatsome 
on
i
ting senten
e|e.g. 
olour (x; yellow )|is out may not 
hange the 
urrentout status of 
olour (x; red ):
olour (x; red) : out 6; 
olour(x; yellow ) : out.



This sort of atta
k does not have the quality of refuting the senten
e 
olour (x; yellow )as a justi�
ation for it has not yet been advan
ed. On the other hand 
olour (x; green)has been justi�ed so the following atta
k is legitimate:
olour (x; green) : in; 
olour(x; green) : out,and it would 
onsequently reinstantiate the in status of 
olour (x; red ). 2This sort of atta
k 
an be useful to introdu
e new senten
es other than supportingsenten
es that are also relevant to the argumentation pro
ess. In this way, a senten
e isnow said to be in not only if all its supporting senten
es are argued to be in, but alsoif no (known) 
on
i
ting senten
e is in as well.We now formalise this intuition, 
lassifying the general purpose of revision operations forgenerating atta
ks in a dynami
 argument in terms of of the general format of atta
ksdis
ussed above. In Se
tion 7.3.4 these are used as the starting point for de�ning a
olle
tion of more detailed revisions.De�nition 6.3 (General Types of Revision) Let A be an argument in �, and A0be an argument in a revised theory �� su
h that it atta
ks A. To des
ribe the typesof atta
k-based revision � yielding the derivation of A0 (see De�nition 4.6), we shall
onsider the possibilities for 
ontradi
tion.On one hand, if A supports ' : in then A0 has to support ' : out, either be
ause itdire
tly reje
ts ' or be
ause it supports ' : in.(a) ' : in remove argument�;A; ' : outHere A0 is ne
essarily a refutation of A, in whi
h we reje
t the premise used forinferring '. The purpose of � is to refute ' by blo
king the derivation of A,withdrawing this argument as being a valid, well-grounded justi�
ation for '.(b) ' : in add argument�;A; ' : inHere A0 is ne
essarily a 
ounter-argument for ', i.e. a justi�
ation for ' where 'and ' are 
on
i
ting senten
es in the language. The purpose of � is to allow A0to be derived, where � may be trivial if A0 
an be inferred from �.108



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 109On the other hand, for A0 to 
ontradi
t ' : out, it must support ' : in.(
) ' : out add argument�;A; ' : inHere A0 must be a justi�
ation for '. As in 
ase (b) above, the purpose of � is tojustify ' by allowing A0 to be derived, and � may be trivial if A0 
an already beinferred from �. 2A 
ouple more notes on terminology. An atta
k that 
ontradi
ts the main 
laim of anargument is known as a dire
t atta
k, whereas an atta
k that 
ontradi
ts an indire
t
laim of an argument is said to be an indire
t atta
k. Moreover, the possible typesof 
ontradi
tion in De�nition 6.3 are in a

ordan
e with the three general types of
on
i
t (or atta
k) identi�ed in the literature, namely rebuttals, under
utting atta
ksand assumption atta
ks (Prakken and Vreeswijk 1999):1. Under
utting atta
ks reje
t not a senten
e itself but the premise supporting itsinferen
e.Under
utting atta
ks 
orrespond to 
ase (a) above: if a senten
e is proved tobe in, argue that it is out by refuting (under
utting) the justi�
ation givenfor it.2. Rebuttals are symmetri
 types of atta
k in whi
h arguments have 
on
i
ting 
on-
lusions.Rebuttals are 
aptured by 
ase (b) above: if a senten
e is proved to be in,rebut it by proving that a 
on
i
ting senten
e is also in.3. Assumption atta
ks prove the 
ontrary of what was assumed without being proved.Assumption atta
ks 
an be 
aptured by 
ase (
), in the parti
ular 
ase of non-provability assumptions: if a senten
e is assumed to be out, prove that it isin fa
t in (prove what was argued to be not provable). More generally, if as-sumptions are 
onsidered to be spe
ial senten
es that 
an extend the initiallanguage, then assumption atta
ks 
an be 
aptured by 
ase (b): if an assump-tion is argued to be in, prove that its 
ontrary is in (where the notion of the
ontrary of an assumption is similar to that of 
on
i
t, but asymmetri
).



Noti
e that some 
are may be needed in handling 
on
i
ting senten
es appropriately.The following example illustrates what problems might arise.Example 6.3 In Example 6.2, the 
laim stru
ture supported after the atta
k:
olour (x; red) : in; 
olour (x; green) : inis depi
ted by the following dire
ted graph, where the dotted edge represents a 
on-
i
ting link rather than a supporting link (i.e. 
olour (x; green) is in 
on
i
t with
olour (x; red )):4 
olour(x; red) : out
olour (x; green) : inOOBoth 
laims represent potential points of atta
k that 
an allow 
olour (x; red ) to be rein-stated. A

ording to De�nition 6.3, the possibilities for atta
k in the next step are:
olour (x; red) : out ; 
olour (x; red) : in
olour (x; green) : in ; 
olour(x; green) : out
olour (x; green) : in ; 
olour (x; green) : inNevertheless, be
ause 
olour (x; green) is itself a 
on
i
ting senten
e (rather than a sup-porting node), not all senten
es 
olour (x; green) in the third type of atta
k are guaranteedto 
hange the status of the senten
e 
olour (x; red ) above in a 
oherent way. Considerfor instan
e the following atta
k, where 
olour (x; green) = 
olour(x; yellow ):
olour (x; green) : in; 
olour(x; yellow ) : inThe stru
ture of dependen
ies is now represented as:
olour(x; red) : in
olour(x; green) : outOO
olour(x; yellow) : inOO4 Refer to Appendix B for detailed notation. 110



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 111whi
h essentially says that \x is red be
ause it is not green, and it is not green be
auseit is yellow", and that is 
learly in
onsistent. The reason why this type of atta
k isproblemati
 is be
ause senten
es that 
on
i
t with 
olour (x; green) may also 
on
i
t with
olour (x; red ). The solution is to restri
t the types of rebuttals that 
an be generated for
on
i
ting nodes to those that 
reated the 
on
i
t itself; in this 
ase the only 
hoi
e for
olour (x; green) that 
an e�e
tively alter the status of 
olour (x; red ) is 
olour (x; red )itself: 
olour(x; green) : in; 
olour (x; red) : in. 2The next example also illustrates some of the 
on
epts presented so far:Example 6.4 Consider again argument A for p(a; b) in Example 6.1. One way torefute A is for instan
e by arguing that q(a) should not be substantiated:q : in remove argument�;A; q : outThis atta
k 
orresponds to 
ase (a) in De�nition 6.3 instantiated to the senten
e q(a).Note that this is an indire
t atta
k to A be
ause it 
ontradi
ts an indire
t 
laim.To present su
h an atta
k � needs to be revised into �0 so as to reje
t the premiseused for deriving q(a). The following revision operation does that by elaborating on thepre
onditions for applying the rule:p(X;Y ) q(X) ^ r(Y )q(X) s(X) ^ t(X)r(b) trues(a) truet(a)  true remove argument�;A; p(X;Y ) q(X) ^ r(Y )q(X) s(X) ^ t(X) ^ r(X)r(b) trues(a) truet(a) trueThe senten
e q(a) is refuted be
ause A is no longer a sound argument with respe
t to �0.This fragment of a dynami
 argument is pi
tured below along the same lines as Figure2.1.
p(a, b)

r(b)

s(a) t(a)

q(a)� remove argument�;A; r(b)

s(a) t(a)

q(a)

p(a, b)�0



Noti
e that this diagram only represents the original argument being refuted be
ause thisis what the argument move is about. However, we want also to be able to 
apture the
onsequen
es of this revision, su
h as the addition of a new pre
ondition, and this isgiven by the 
orresponding 
laim stru
ture.As dis
ussed in De�nition 6.2, the stru
ture of 
laims supported by a refutation is depen-dent on the sub-argument de�ned by the reje
ted axiom; in this 
ase, q(X) s(X) ^ t(X).The reason why senten
e q(a) be
ame unsupported after the update is be
ause it now de-pends on a new pre
ondition, namely r(a), that is 
laimed to be out be
ause it has not(yet) been shown to be supported.Every senten
e that was dependent on q(a) also be
omes unsupported after the refutation,though other 
laims su
h as s(a) : in still hold and are still relevant to the argument.The stru
ture below represents these dependen
ies between senten
es after the atta
k hasbeen advan
ed, a

ording to 
ase 3 in De�nition 6.2.p(a; b) : outq(a) : out 55llll r(b) : inhhRRRRs(a) : in 66mmmm t(a) : inOO r(a) : outiiRRRR true : injjUUUUUUUUUUUUUU

eeKKKKKKKK

@@������������This stru
ture also gives 
laims that 
an be atta
ked in the next step. For instan
e, one
ould alter the status of q(a)|and hen
e of p(a; b)|by justifying r(a). 2So the notion of 
ontradi
tory 
laims provides a higher-level des
ription of argumentdynami
s than that based on stru
tural revision. Claims 
onvey the intention of reje
t-ing existing arguments and also of advan
ing new ones, without spe
ifying premises tobe retra
ted from or added to the theory. This is in line with the dis
ussion in Se
tion4.1, where dynami
 argumentation was des
ribed as an abstra
t pro
ess of manipula-tion of arguments as primitive entities. In this sense, we have now taken a �rst steptowards 
apturing that abstra
t view in terms of a more pragmati
 approa
h based onthe revision of sets of premises.Determining whi
h 
laims are supported after an atta
k has been advan
ed is parti
u-larly important in the 
ontext of a dynami
 argument, where we need to keep tra
k of112
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h as:� whi
h 
laims 
an be 
ontradi
ted during the 
ourse of argument;� whi
h 
laims are relevant at ea
h point in the pro
ess; and� how these relate to the main senten
e under dispute.Next we des
ribe a way to propagate the e�e
ts of an atta
k to the 
laims supportedby the original argument, whi
h is used in this thesis for generating and automatingargument dynami
s.6.3 Possible Atta
ks in a Dynami
 ArgumentIn a dynami
 argument about a senten
e ', the purpose of ea
h advan
ed argumentis to alter the status of ' from substantiated (in, or a

eptable) to unsubstantiated(out, or una

eptable), and vi
e-versa. As justi�
ations and refutations are presented,dependen
ies between ' and other senten
es are made expli
it, and we should be ableto look at these in order to sele
t a 
laim to be 
ontradi
ted so that it will 
hange the
urrent a

eptability status of '.The moves hA0; �1; A1; :::; �i; Aii advan
ed up to step i � 0 de�ne a dependen
y stru
-ture of annotated senten
es that represents not a pre
ise re
ord of the argumentationbut rather the 
laims that are supported and relevant after argument Ai has been ad-van
ed. Essentially, this stru
ture is a dire
ted graph obtained from the 
orresponding
laim stru
tures GA1 ; :::;GAi (see De�nition 6.2) by 
ombining them appropriately. Inthe same way, a node is labelled in only if all supporting nodes are labelled in (and no
on
i
ting nodes are labelled in), and the 
laims to be 
ontradi
ted are those that 
ane�e
tively alter the status of the node 
ontaining '.Based on the de�nitions of a dynami
 argument (4.7), argument 
laims (6.2) and gen-eral types of atta
k (6.3), we 
an now des
ribe how to in
rementally 
onstru
t thisdependen
y graph as the 
ourse of argument develops.



De�nition 6.4 (Dependen
y Graph) Let hA0; �1; A1; :::; �i; Aii be the state of a dy-nami
 argument Æ(';�) at step i � 0. The dependen
y graph of 
laims supported at thispoint is a dire
ted graph Di with labelling fun
tion, whi
h 
an be de�ned as follows:Base 
ase (i = 0)By de�nition A0 is a justi�
ation for ', therefore D0 is equivalent to GA0 .Indu
tive 
ase (i > 0)By de�nition Ai atta
ks Ai�1, thus Ai 
ontradi
ts a 
laim supported by Ai�1 in the
ontext of hA0; �1; A1; :::; �i�1; Ai�1i|i.e. a 
laim in Di�1. Let Ai be an atta
kto a senten
e ', and GAi the 
laim stru
ture supported by it.Moreover, let V be an operator for 
ombining and propagating labels a
ross sup-porting and 
on
i
ting nodes in Di. Di is 
onstru
ted from Di�1 and GAi asfollows:� V(Di) = V(Di�1) [ V(GAi)� E(Di) = �E(Di�1) n EV(GAi)(Di�1)� [ E 0, where{ EV(D) � E(D) denotes the set of edges in a graph D that terminate at somenode in the set V; and{ E 0 denotes the links between senten
es in the argument stru
ture, maybe withan additional 
on
i
ting edge in the 
ase of rebuttals:5E 0 = 8<: E(GAi) [ f' ,! 'g Ai was given by ' : in; ' : inE(GAi) otherwiseThe labelling fun
tion labelDi is de�ned below, where V 0 � V(Di) denotes the setof nodes rea
hable in Di from some node in V(GAi):{ labelDi( ) = 8>>>>><>>>>>: labelGAi ( )  2 V(GAi)labelDi�1( )  62 V(GAi) and  62 V 0^  62 V(GAi) and  2 V 0 25 Remember from Appendix B that dotted arrows ,! represent 
on
i
ting edges in a graph whereassupporting links are depi
ted by ,!. 114



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 115The basi
 idea behind this de�nition is to remove any edges from the original dependen
ygraph whi
h are used to support senten
es from the new argument, a
tually repla
ingthese by the relations given in this argument.Note that by 
onstru
tion the following observation holds:Observation 6.2 The only way to introdu
e a 
on
i
ting node in the dependen
y graphis by expli
itly justifying a 
on
i
ting senten
e a

ording to some notion of 
on
i
t|
ase (b) of De�nition 6.3. 2In fa
t, the argument stru
tures themselves only in
lude supporting links (see De�-nition 6.2). This type of atta
k allows for an expli
it introdu
tion of 
on
i
t, whi
his not 
aptured by the underlying argument generated me
hanism, but whi
h 
an beused both for rebutting senten
es in the language and for 
ontradi
ting assumptions.This is again another point of 
onne
tion with truth maintenan
e systems, where sen-ten
es P and :P are unrelated unless this is expli
itly stated, and a node is expresslymarked as a 
ontradi
tion.This de�nition tells us how the status of other senten
es are a�e
ted by an atta
k, intro-du
ing senten
es that be
ome relevant in the light of the new argument and dismissingothers that are no longer at issue. This dependen
y stru
ture gives the possible atta
ksfor the next step of argument, namely any 
laim su
h that altering its label will a�e
tthe status of the main senten
e.� if a senten
e in in, then all its supporting senten
es (whi
h are in) and its 
on-
i
ting senten
es (whi
h are out) are potential points of atta
ks;� if a senten
e is out, then potential points of atta
ks in
lude 
on
i
ting senten
eswhi
h are in or supporting senten
es whi
h are out.The possible atta
ks to senten
e ' at step i in a dynami
 argument are then given bythe transitive 
losure in Di of these potential points of atta
k with respe
t to the 
urrentstatus of '. This idea is equivalent to that of supporting-nodes de�ned by Doyle (1979),who refers to the 
orresponding transitive 
losure as the an
estors of a node.



6.4 Argumentation and Truth Maintenan
e SystemsConsidering the many similarities pointed out in the previous se
tions, this is a good timeto dis
uss the relation between these two approa
hes in more detail. Before deepeningthe dis
ussion, let us brie
y summarise the basi
 
on
epts behind truth maintenan
esystems (Doyle 1979; de Kleer 1986; Forbus and de Kleer 1993).There are essentially two sorts of stru
tures in a TMS: nodes representing propositions,and justi�
ations asso
iated with these nodes. Ea
h justi�
ation 
onsists of two lists ofnodes|an IN-list and an OUT-list|su
h that a justi�
ation is said to be valid only ifevery node in the IN-list is in and every node in the OUT-list is out. Assumptions inparti
ular are nodes whose supporting justi�
ation has an empty IN-list (so they 
annotbe justi�ed) and a non-empty OUT-list (but they 
an be 
ontradi
ted). There are alsotwo types of me
hanisms involved: a truth maintenan
e pro
edure for making revisionsin the support status of nodes given that justi�
ations may be added and retra
ted;and the dependen
y-dire
ted ba
ktra
king for identifying whi
h assumptions need to be
hanged in order to restore 
onsisten
y in 
ase of 
ontradi
tion.A

ording to Doyle (1979, p. 236) the purpose of a TMS is that it:[...℄ re
ords and maintains arguments for potential program beliefs, so as to distin-guish, at all times, the 
urrent set of program beliefs.And given that Doyle also proposes a way to \organize a problem solving program's useof the TMS into the form of diale
ti
al argumentation"6, the question of how exa
tlythe two approa
hes relate be
omes more and more persistent.The di�eren
e turns out to be more a shift in emphasis than it is te
hni
al. Whereastruth maintenan
e systems are 
on
erned with \how to make 
hanges in 
omputationalmodels" (Doyle 1979, p. 231), models of argumentation as studied in AI|espe
iallymodels of argument dynami
s|are more 
on
erned with the issue of what 
hanges tomake. From an argumentation perspe
tive there is not mu
h interest in maintainingor reestablishing 
onsisten
y, but rather in exploring 
ontradi
tions and introdu
ing6 See Se
tion 6 in (Doyle 1979). 116
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on
i
ts and atta
ks deliberately.In this way, while the dependen
y-dire
ted ba
ktra
king me
hanism is more about restor-ing 
onsisten
y (and hen
e not as germane to the pro
ess of argumentation), the sort oftruth-maintenan
e pro
edure on the other hand seems to have a signi�
ant role to playin argumentation models. Originally this is supposed to give the a

eptability status ofsenten
es in the 
urrent set of beliefs, but it 
ould also be interpreted as a me
hanismfor keeping tra
k of weaknesses and points of atta
k given the justi�
ations 
onsideredso far.We have found that by for
ing notation and terminology to be similar the di�eren
es andrelations between the argumentation and TMS be
ame more apparent. For instan
e,we are now able to ask a more spe
i�
 question, namely:If we keep adding and retra
ting justi�
ations to a TMS a

ording to thejusti�
ations and refutations advan
ed during an argumentation pro
ess, willthe TMS network be equivalent to the dependen
y graph that is 
onstru
tedin
rementally during the 
ourse of the argument?The answer to this question is sometimes yes, but generally no. The fundamentaldi�eren
e is that a TMS keeps a set of justi�
ations asso
iated with ea
h node, ea
hrepresenting a di�erent reason for it, whereas the dependen
y graph in De�nition 6.4only maintains the links asso
iated to one argument, namely the argument that waslast advan
ed (remember that every edge supporting a senten
e is dismissed unless thissenten
e is not part of the new argument). So if an invalid justi�
ation be
omes validagain there is no need to expli
itly add this justi�
ation again, as the TMS automati
allyupdates the status of the supported senten
e to in. Argumentation me
hanisms on theother hand must generate a new well-founded justi�
ation and the entire new argumentneeds to be expli
itly advan
ed again.It is true, though, that one 
ould bolt on a TMS to our argument revision 
omponentto produ
e a more sophisti
ated system that 
an keep tra
k of the 
onsequen
es thatfollow from every argument advan
ed so far, even if these have not been expli
itlystated before. However, it seems to us that the emphasis in argumentation is more on



add just rms(If, Then) :-add a new justi�
ation If ! Then to the databaseand propagate the e�e
tsdel just rms(If, Then) :-remove a justi�
ation If ! Then to the databaseand propagate the e�e
tsFigure 6.1: Basi
 interfa
ing predi
ates as de�ned by Shoham (1994).sear
hing for and advan
ing appropriate arguments during the pro
ess. In any 
ase, it isalso possible to for
e a truth maintenan
e system to keep only one relevant justi�
ationasso
iated to ea
h node by deleting every previous justi�
ation when a new argumentis advan
ed.6.4.1 Experiments with Truth Maintenan
eE�e
tive testing of this relation between truth maintenan
e pro
edures and dependen
ygraphs was also possible. The experiments 
onsisted in feeding both me
hanisms withthe same justi�
ations and 
omparing the results at ea
h step of argument. On theargumentation side we have used our own Prolog implementation; on the TMS side wehave used Shoham's implementation of a reason maintenan
e system7 as des
ribed in(Shoham 1994). Figure 6.1 gives the basi
 interfa
e predi
ates in this system.This se
tion illustrates one su
h experiment, namely the use of the TMS me
hanism inthe 
ontext of Examples 6.1 and 6.4. Note that in this 
ase the out
ome is identi
al tothe one given by the dependen
y graph as no alternative reasons exist simultaneouslyfor any of the senten
es.In Shoham's implementation, a justi�
ation is an expression of the form:If ! Thenwhere If is a list of nodes that justify the senten
e Then . Supporting nodes of the form(N;+) are in the so-
alled IN-list, while nodes denoted by (N;�) are said to be in the7 The Prolog 
ode is available online at http://yoda.
is.temple.edu:8080/books/shoham/.118



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 119OUT-list. Moreover, the spe
ial node premise is always in (note that this is equivalentto the spe
ial term true in De�nitions 6.2 and 6.4).What we mean by justi�
ation in this thesis is more like a 
olle
tion of justi�
ations inthe TMS sense. So in order to supply appropriate information to the TMS ma
hinery,justi�
ations then need to be broken into the smaller steps that 
orrespond to theappli
ation of ea
h axiom. For instan
e, the following �ve justi�
ations 
an representthe justi�
ation A for p(a; b) given in Example 6.1:| ?- add just rms(((q(a),+), (r(b),+)), p(a,b)),add just rms(((s(a),+), (t(a),+)), q(a)),add just rms(((premise,+)), s(a)),add just rms(((premise,+)), t(a)),add just rms(((premise,+)), r(b)).yesAfter adding these justi�
ations, the status of the senten
es are represented by thenetwork in Figure 6.2, where the label in indi
ates that the 
orresponding senten
e is inthe database. The predi
ate printdb/0 gives the 
urrent state of the database, wherein senten
es are denoted by the predi
ate rms/1.| ?- printdb.Database listing :The fa
ts:rms(premise).rms(s(a)).rms(t(a)).rms(q(a)).rms(r(b)).rms(p(a,b)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(s(a), +, j2).justifier(t(a), +, j2).justifier(premise, +, j3).justifier(premise, +, j4).justifier(premise, +, j5).Justifi
ands:justifi
and(j1, p(a,b)).justifi
and(j2, q(a)).justifi
and(j3, s(a)).justifi
and(j4, t(a)).justifi
and(j5, r(b)).yes



p(a; b) : inq(a) : in+j1 66llll r(b) : in+j1hhRRRRs(a) : in+j2 77nnnn t(a) : in+j2hhRRRRpremise : in+j4 OO+j3iiTTTTTTTTTTTTT

+j5 @@������������Figure 6.2: A TMS 
orresponding to argument A for p(a; b).Consider now the 
ase of refutations, whi
h are used for reje
ting axioms in a justi�
a-tion, either by removing it from the theory or by updating it so that the argument nolonger follows. The �rst 
ase is also illustrated in Example 6.1, where a refutation forA was given on the basis of reje
ting axiom r(b) true. In TMS style, su
h refutation
ould be obtained by deleting the 
orresponding justi�
ation as follows:| ?- del just rms(((premise,+)), r(b)).yes| ?- printdb.Database listing :The fa
ts:rms(premise).rms(s(a)).rms(t(a)).rms(q(a)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(s(a), +, j2).justifier(t(a), +, j2).justifier(premise, +, j3).justifier(premise, +, j4).Justifi
ands: justifi
and(j1, p(a,b)).justifi
and(j2, q(a)).justifi
and(j3, s(a)).justifi
and(j4, t(a)).yesFigure 6.3 gives the state of the database after justi�
ation premise ! r(b) was deleted.Noti
e though that in refutations axioms do not need to be reje
ted for good, but 
an beupdated. Rather then refuting argument A by reje
ting axiom r(b) true, Example 6.4120



CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 121p(a; b) : outq(a) : in+j1 66llll r(b) : out+j1iiRRRRs(a) : in+j2 77nnnn t(a) : in+j2hhRRRRpremise : in+j4 OO+j3iiTTTTTTTTTTTTTFigure 6.3: TMS from Figure 6.2 after premise ! r(b) was deleted.illustrates a type of refutation that elaborates on the pre
onditions for applying axiomq(X) s(X) ^ t(X). This 
an be 
aptured in a TMS style as follows, 
onsidering theparti
ular instan
e of this axiom supporting the senten
e p(a; b).| ?- del just rms(((s(a),+), (t(a),+)), q(a)),add just rms(((s(a),+), (t(a),+), (r(a),+)), q(a)).yes| ?- printdb.Database listing :The fa
ts:rms(premise).rms(s(a)).rms(t(a)).rms(r(b)).Justifiers:justifier(q(a), +, j1).justifier(r(b), +, j1).justifier(premise, +, j3).justifier(premise, +, j4).justifier(premise, +, j5).justifier(s(a), +, j6).justifier(t(a), +, j6).justifier(r(a), +, j6).Justifi
ands:justifi
and(j1, p(a,b)).justifi
and(j3, s(a)).justifi
and(j4, t(a)).justifi
and(j5, r(b)).justifi
and(j6, q(a)).yesFigure 6.4 gives the state of the database after justi�
ation s(a); t(a)! q(a) was elab-orated into s(a); t(a); r(a) ! q(a).



p(a; b) : outq(a) : in+j1 66llll r(b) : in+j1hhRRRRs(a) : in+j6 77nnnn t(a) : in+j6OO r(a) : out+j6hhRRRRpremise : in+j3iiTTTTTTTTTTTTT

+j4ddJJJJJJJJ

+j5 @@������������Figure 6.4: TMS from Figure 6.2 after s(a); t(a)! q(a) was updated.The fa
t is that it is possible to use a TMS to keep a re
ord of points of atta
k duringargumentation. By taking the extra 
are of maintaining only one 
urrent justi�
ationfor ea
h node, and of grounding any variables in order to bind them appropriately, we
an then get the desired results. In our 
urrent implementations of dynami
 argumen-tation generators (see Chapter 8) it is possible to use Shoham's implementation as thedependen
y graph me
hanism.So this 
hapter des
ribed a high level a

ount of atta
k-based revision relations in termsof potential 
ontradi
tions, 
hara
terising the possible atta
ks during the 
ourse of adynami
 argument. Chapter 8 further illustrates these 
on
epts in terms of the a
atoxindebate in Chapter 5. The next step is to propose a 
olle
tion of operations that elaborateon the general types of revision add argument and remove argument in order to satisfythe sorts of atta
ks dis
ussed in Se
tion 6.2. Note, however, that up till now relationswere des
ribed only at a fairly abstra
t level. But to de�ne su
h a 
olle
tion of morere�ned stru
tural revisions we will need to 
ommit to a parti
ular underlying logi
alsystem.

122



Chapter 7A Formal Classi�
ation ofArgument S
hemata
This 
hapter addresses another issue identi�ed in Chapter 4, that of how to spe
ify anappropriate set of revision operations for generating dynami
 arguments, and the waywe ta
kle this problem is by 
ategorising argument revision s
hemata in terms of thetypes of atta
ks identi�ed in the previous 
hapter. At this point we also 
ommit to aspe
i�
 underlying logi
al system.7.1 Generating Dynami
 ArgumentsA dynami
 argument as de�ned in Chapter 4 is a pro
ess of argument ex
hange whi
hmay involve stru
tural 
hanges to the underlying knowledge base. From the perspe
tiveof transformation of theories, the purpose of a dynami
 argument is to produ
e a theory�0 from an initial theory � whi
h is more a

eptable with respe
t to a senten
e '.At ea
h step, the original theory may revised until no more atta
ks to '|or 
ounteratta
ks to defend '|
an be generated. Whether this pro
ess 
onverges and all atta
ksare properly reje
ted depends on the types of prede�ned revision operations that areallowed.Dynami
 arguments 
an then be generated by a term rewriting system, expressed in alogi
 programming style in Figure 7.1.The term � represents the atta
k generation step, expressed here as a relation between123



Æ(';�;�0)  �(�;�00) ^ Æ(';�00;�0)Æ(';�;�)  Figure 7.1: A system for generating dynami
 arguments.theories. In fa
t, �(�;�00) holds if and only if from �00 we 
an derive an atta
k on anargument in �. If � is an atta
k-based revision that 
an be applied to �, then �(�;��)holds by de�nition (see De�nition 4.6).In the rest of this 
hapter we propose a way to re�ne the relation � for obtaining anorganised 
olle
tion of argument revision s
hemata based on the general 
hara
terisationof atta
ks given in Chapter 6. This 
olle
tion provides a systemati
 way to de�ne theset of revision operations that 
an be applied in a dynami
 argument, also helping toidentify useful properties that these operations 
ould have.7.2 A Logi
 Programming FrameworkIn Chapter 4 we proposed a generi
 formalisation of dynami
 argumentation that wasbased on an arbitrary logi
al system, leaving a number of parameters undetermined.Nevertheless, one of our aims is to de�ne a dynami
 argumentation framework that isof pra
ti
al use, and whi
h 
an be applied in a systemati
 way. And whilst the 
on
eptsde�ned in Se
tion 4.2 are abstra
t enough to 
apture the type of behaviour in whi
hwe are interested, they still leave too mu
h to be spe
i�ed for someone wishing to usethem.So to fully des
ribe the 
on
epts in Chapter 4 we shall adopt a spe
i�
 underlying sys-tem, namely logi
 programming (based on the resolution method). The reasons behindthis 
hoi
e are manifold. First, logi
 programming theory has its roots in �rst-orderpredi
ate 
al
ulus. Be
ause many people are familiar with �rst-order languages, thereis no need to introdu
e and explain new symbols, 
onne
tives or semanti
s. Moreover,logi
 programming has proved suitable for a number of tasks in the knowledge repre-sentation realm. In our 
ase, for instan
e, it is natural to think of logi
 programs asa way of expressing theories that represent models, 
ontra
ts or beliefs. Finally, as anexe
utable language, logi
 programming is also 
omputationally attra
tive.124



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 125We often assume that theories 
orrespond to general logi
 programs in a �rst-orderlanguage, as illustrated in Chapter 5. Though many of our results are based on de�nitelogi
 programs, whi
h are general programs restri
ted to Horn 
lauses (without theo

urren
e of negation as failure, and thus with the advantage of monotoni
ity), we alsodis
uss whether and how these results extend to the more generi
 
ase. A brief a

ountof logi
 programming is given in Appendix A.Given an underlying logi
 programming framework, we 
an now elaborate on the formalde�nitions in Se
tion 4.2. In parti
ular, the notion of argument follows dire
tly. Just asin De�nition 4.3, an argument 
ontains the 
lauses used in the derivation of a senten
eand 
an be depi
ted by the 
orresponding support tree.Atta
ks are redu
ed to 
ontradi
tory 
laims (as presented in De�nition 6.3), althoughwhat it means for two senten
es to be in 
on
i
t still remains to be spe
i�ed. In logi
allanguages, 
on
i
t is often represented in terms of expli
it negation and thus redu
edto in
onsisten
y. Rather than allowing an expli
it a

ount of (
lassi
al) negation withinthe logi
, we treat 
on
i
t as a meta-level relation between predi
ates in the language.This approa
h is in line with a number of proposals in the literature (Bondarenko et al.1997; Ambler 1996).What is more, in the 
ase of logi
 programming the types of argument 
laims seem tobe naturally asso
iated with the notion of interpretation. The interpretation �(�) ofa (de�nite) logi
 program � 
ontains all ground atoms that 
an be dedu
ed from �;that is, all the ground senten
es that are justi�ed in this theory. Hen
e, stating that anargument in � supports the 
laim ' : in 
orresponds to saying that at least one groundinstan
e of ' is in �(�). Again, this 
orresponden
e does not hold as neatly for the 
aseof refutations be
ause being out does not ne
essarily mean not being in.1But this is not ne
essarily bad news. In fa
t, in the 
ase of monotoni
 systems we 
anasso
iate the interpretation sets of an original theory and a revised theory by means ofset inequality relations. Moreover, the notion of argument (and of argument 
laim) isimportant here be
ause it helps fo
using on 
ertain elements of these sets, rather than
al
ulating and enumerating them all. We dis
uss these properties in Chapter 9.1 See dis
ussion in Se
tion 6.1.



7.2.1 Considering Negation as FailureAt this point we should make some remarks about how arguments involving negationrelate to the 
orresponding interpretation sets. The interpretation set of a general logi
program under the 
losed world assumption 
onsists of all the ground atoms that 
an bederived from this theory plus the negation of the ground atoms that 
annot be inferredfrom it.It is worth noting that argumentation has been used for 
apturing various alternativesemanti
s for general logi
 programs, su
h as well-founded or stable semanti
s (Bon-darenko et al. 1997). Our approa
h to negation here is slightly di�erent. We are lessinterested in dis
ussing what is the right semanti
s for negation in logi
 programs thanin handling it as �nite failure by using an extension of the original resolution me
ha-nism. These two approa
hes to negation are distin
t and have been 
hara
terised byDix and Brewka (1997) as the NML-approa
h (fo
us on non-monotoni
 issues) and theLP-approa
h (fo
us on logi
 programs themselves), respe
tively. Of 
ourse there arenon-monotoni
 aspe
ts of our proposal, and these are dis
ussed in Chapter 9.In any 
ase, if negation as failure is involved then the argument premises should 
ontainnot only 
lauses from the program, but also the negated ground 
onsequen
es neededin the derivation. Su
h senten
es are 
onsidered to be assumptions be
ause they 
annotbe formally proved to be in, but only assumed to be in be
ause some 
ontradi
torysenten
e is out.Example 7.1 Let � be the following general logi
 program:p(X)  q(X) ^ not r(X)q(a)  truer(b)  trueThen argument A below is a derivation (based on the resolution me
hanism extendedwith negation as �nite failure) supporting p(a):
q(a)

p(a)

not r(a)

true� 126



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 127and whi
h 
an be represented by:fp(X) q(X) ^ not r(X); q(a) trueg [ fnot r(a)g `� p(a).The stru
ture below depi
ts the dependen
ies between 
laims in argument A.p(a) : inq(a) : in 77nnnn not r(a) : inhhRRRRtrue : inOO r(a) : outOO 27.3 A System of Argument RewritesHaving introdu
ed the notion of a general atta
k-based relation between theories, thisse
tion des
ribes an organised 
olle
tion of argument revision s
hemata for satisfyingthis relation. This is done by spe
ifying a rewriting system for re�ning the relation �in Figure 7.1 into argument s
hemata for theory revision based on the general 
hara
-terisation of atta
ks.As dis
ussed in Chapter 5, we want to provide des
riptions of argument s
hemata towhi
h domain-spe
i�
 knowledge 
an be applied. To enri
h and give 
oheren
e to ourproposal, we organise these s
hemata in a 
as
ade of levels ranging from an overall
lassi�
ation in terms of interpretation to the manipulation of parti
ular 
lauses ina theory, eventually getting to a domain-spe
i�
 level. The suggested organisationprovides a pragmati
 way to de�ne revision s
hemata for atta
k generation, but it turnsout to be useful also in supporting explanation and retrospe
tive analysis of a dynami
argument at di�erent levels of abstra
tion.As we go down this 
lassi�
ation tree, we instantiate the ne
essary parameters for gener-ating a valid atta
k. To guarantee that this is the 
ase, to ea
h rewrite we asso
iate a setof relevant properties that 
an be veri�ed during or after the instantiation. Propertiesasso
iated with ea
h rewrite persist through subsequent rewrites, thus a

umulating aset of properties during the pro
ess.



Rewrite rules also have 
onditions whi
h are used to instantiate and 
onstrain theirparameters. There are two types of 
onditions here: some are 
on
erned with 
hoosingan element from a set (2-
onditions); others, with instantiating the rewrites with thesesele
ted elements (=-
onditions). Satisfying these generates an instan
e of an atta
k.In what follows, rewrites are grouped into se
tions a

ording to the di�erent 
lassi�
a-tion levels. A standard presentation pattern is adopted for ea
h rewrite rule, 
onsistingof an informal des
ription together with the formal rewrite rule, and the related prop-erties and 
onditions.7.3.1 The General Atta
k Relation between TheoriesThis se
tion gives the rule for re�ning the general relation between theories, thus allow-ing it to be rewritten as an atta
k generation step involving some unrestri
ted atta
k-based revision to the underlying theory. The idea is to 
onstrain this operation asthe atta
k relation is re�ned, and the property atta
ks 
an be used to ensure that theoriginal argument is in fa
t atta
ked by (and not preferred over) the argument that isgenerated.Argument Rewrite 1 For a general atta
k relation between two theories � and �0 tohold, we 
an identify an argument A in � su
h that � is an (unrestri
ted) atta
k-basedrevision operation to � with respe
t to A, and hen
e in �0 we 
an derive an argumentA0 that atta
ks A.2 �(�;�0) ) argument(A;�);� ��;A; �0;argument(A0;�0)Properties: � atta
ks(A0; A) 	Conditions: true7.3.2 The General Form of Theory RevisionAny revision operation is 
hara
terised by two sets 
ontaining the axioms to be removedfrom and added to the theory, respe
tively. De�ning a meaningful revision operation2 See De�nition 4.6. 128



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 129is then redu
ed to sele
ting these sets appropriately. Noti
e that this rewrite is lessabout re�ning the revision operation per se than about spe
ifying whi
h tasks shouldbe de�ned for su
h an operation to be performed.Argument Rewrite 2 An un
onstrained atta
k-based revision operation is 
hara
-terised by sets of axioms R and A that will be removed from and added to � withrespe
t to the argument A being atta
ked, su
h that the resulting set is a theory (that is,a 
onsistent set of axioms). � ��;A; �0 ) sele
t(A;�;R;A);revise(�;R;A;�0)Properties: � 
onsistent(�0) 	Conditions: true7.3.3 Types of Argument ClaimsRewrites in this se
tion allow arguments to be rewritten in terms of the general 
laimsthey support. Like the previous rule, they do not spe
ify how to re�ne the revisionoperation itself, but are useful for harnessing the possible 
laims that 
an be supportedby an argument. Given an argument A, these 
laims 
an be sele
ted from the possibleatta
k points in the 
orresponding stru
ture GA of argument 
laims.3Argument Rewrite 3 An argument A in a theory � may support the 
laim that sen-ten
e X is substantiated. argument(A;�) ) in(X;A;�)Properties: fgConditions: X : in 2 GAArgument Rewrite 4 An argument A in a theory � may support the 
laim that asenten
e X is not substantiated.3 During a dynami
 argument, 
laims 
an be sele
ted from the overall dependen
y graph D, whi
hby de�nition (see De�nition 6.4) in
ludes the 
laims supported by the last advan
ed argument. SeeSe
tion 6.3 for more details.



argument(A;�) ) out(X;A;�)Properties: fgConditions: X : out 2 GA7.3.4 From Contradi
tory Claims to General Types of RevisionThis se
tion gives rewrites for 
apturing the general purpose of revision operationsin terms of the 
ontradi
tions they generate. Based on De�nition 6.3, these rewritesrepresent the �rst level of instantiation of revision operations in our 
lassi�
ation. Thetype of property that is a

umulated here 
an be used to ensure that the argument tobe generated supports the intended 
ontradi
tion, and also that it is valid in the 
ontextof moves advan
ed so far. (e.g. that it is 
onsistent and has not been presented beforeunder the same 
ir
umstan
es).A

ording to De�nition 4.6, atta
k-based operations may depend on the theory andthe argument (and 
onsequently on a 
laim supported by it) to be atta
ked. Thesehave been denoted so far as supers
ript symbols, but here we express them as extraparameters in the predi
ate for sele
ting the sets of axioms that 
hara
terise a revision.Argument Rewrite 5 A revision to � 
an be de�ned by a predi
ate that sele
ts thesets A and R based on an argument A in �, with the purpose of reje
ting this argument.If A substantiates a senten
e X, the atta
k may 
onsist in refuting A so that in therevised theory it no longer substantiates X.in(X;A;�) ) in(X;A;�)sele
t(A;�;R;A) ) remove argument(X;A;�;R;A)argument(A0;�0) ) out(X;A0;�0)Properties: � supports(A0; X : out;�0) 	Conditions: A0 = AArgument Rewrite 6 A revision to � 
an be de�ned by a predi
ate that sele
ts the setsA and R based on an argument A in �, with the purpose of introdu
ing a justi�
ation A0whi
h atta
ks A. If A substantiates a senten
e X, then A0 may substantiate a 
on
i
ting130



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 131senten
e Y in the revised theory.in(X;A;�) ) in(X;A;�)sele
t(A;�;R;A) ) add argument(Y;A;�;R;A)argument(A0;�0) ) in(Y;A0;�0)Properties: � supports(A0; Y : in;�0) 	Conditions: Y 2 
on
i
t(X)Argument Rewrite 7 A revision on � 
an be de�ned by a predi
ate that sele
ts thesets A and R based on an argument A in �, with the purpose of introdu
ing a justi�
a-tion A0 whi
h atta
ks A. If A supports the 
laims that a senten
e X is unsubstantiated,then A0 may substantiate X in the revised theory.out(X;A;�) ) out(X;A;�)sele
t(A;�;R;A) ) add argument(X;A;�;R;A)argument(A0;�0) ) in(X;A0;�0)Properties: � supports(A0; X : in;�0) 	Conditions: true7.3.5 From Dealing with Arguments to Dealing with PremisesThe rules in this se
tion relate the general types of revision for introdu
ing or withdraw-ing an argument with fundamental types of operation|namely trivial, elementary andupdating (see De�nition 4.5 and Se
tion 5.2). These are fundamental in the sense thatthey represent the minimum 
hanges ne
essary for adding or removing an argument,and more 
omplex operations 
an be de�ned by expanding the sets R and A in a waythat the asso
iated properties still hold.Argument Rewrite 8 A revision (R;A) for introdu
ing a justi�
ation for X (basedon argument A in �) may be a trivial operation.add argument(X;A;�;R;A) ) trivial(R;A)Properties: fgConditions: R = ;;A = ;



Argument Rewrite 9 A revision (R;A) for introdu
ing a justi�
ation for X (basedon an argument A in �) may be an elementary operation that justi�es X by adding apremise P to the theory. So R is empty, and A is a singleton 
ontaining P .add argument(X;A;�;R;A) ) elementary(justify(X); A;�; P )Properties: fgConditions: R = ;;A = fPgArgument Rewrite 10 A revision (R;A) for removing a justi�
ation A for X in �may be an elementary operation that refutes X by removing a premise P from the theory.So R is a singleton 
ontaining P , and A is empty.remove argument(X;A;�;R;A) ) elementary(refute(X); A;�; P );Properties: fgConditions: R = fPg;A = ;Argument Rewrite 11 A revision (R;A) for introdu
ing a justi�
ation for X (basedon an argument A in �) may be an updating operation that justi�es X by removing apremise P from the theory and adding an updated axiom P 0. So R and A are singletons
ontaining P and P 0, respe
tively.add argument(X;A;�;R;A) ) updating(justify(X); A;�; P; P 0)Properties: fgConditions: R = fPg;A = fP 0gArgument Rewrite 12 A revision (R;A) for removing a justi�
ation A for X in �may be an updating operation that refutes X by removing a premise P from the theoryand adding an updated axiom P 0. So R and A are singletons 
ontaining P and P 0,respe
tively.
132



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 133remove argument(X;A;�;R;A) ) updating(refute(X); A;�; P; P 0)Properties: fgConditions: R = fPg;A = fP 0g7.3.6 Logi
-Spe
i�
 Rules for Spe
ifying PremisesRewrites in this se
tion further re�ne setsR and A in elementary and updating revisionsvia predi
ates that spe
ify the premises in these sets a

ordingly.The predi
ate fa
t for example gives the sorts of fa
ts that 
an be added to the theoryby an elementary revision intended to justify a senten
e X|namely any axiom of theform H  true su
h that X and H are uni�able, and H is an atom from L.These sorts of rewrites are logi
-spe
i�
 be
ause they rely on the syntax and me
hanismsof (general) logi
 programs to de�ne the shape and stru
ture of these premises. Generalprogram 
lauses are denoted here by H  B, where H is a positive literal and B is a
onjun
tion of literals. Individual literals are denoted by the (possibly indexed) letter B.A substitution � 2 subst that represents the most general uni�er between two senten
esis denoted by mgu.4Some predi
ates in these rewrites might require intera
tion with a user to supply key
omponents, for instan
e for introdu
ing new literals or axioms and de�ning substitu-tions. There are no diÆ
ulties in sele
ting premises to be removed from the theorybe
ause this is a �nite set whi
h 
an be easily traversed, but determining exa
tly the
omponents of a new premise is likely to depend on domain information. What wedo at this point is to des
ribe the general shape of new axioms, whi
h 
an be furtherinstantiated by domain-spe
i�
 s
hemata.The level of 
lassi�
ation in this se
tion 
orresponds to the s
hemata to whi
h domain-spe
i�
 knowledge was applied in Chapter 5. For 
omparison we refer to the 
orre-sponding informal s
hemata between parentheses.4 Please refer to Appendix A for the de�nition of syntax adopted in this se
tion.



Argument Rewrite 13 (Informal S
hema 1) An elementary operation intended tojustify X may be established by adding a fa
t H  true su
h that X and H are uni�able.elementary(justify(X); A;�; P ) ) add(fa
t(P ))Properties: � unify(X;H) 	Conditions: H 2 L;P = H  trueArgument Rewrite 14 (Informal S
hema 2) An elementary operation intended tojustify X may be established by adding a substantiated 
lause H  B to the theory thatallows X to be dedu
ed.elementary(justify(X); A;�; P ) ) add(substantiated rule(P ))Properties: � unify(X;H);satis�able(B�;�) �Conditions: H;B 2 L;P = H  B;� = mgu(X;H)Argument Rewrite 15 (Informal S
hema 3) An elementary operation intended tojustify X may be established by adding a rule H  not B that gives X be
ause B 
annotbe derived when H uni�es with X.elementary(justify(X); A;�; P ) ) add(burden shift rule(P ))Properties: � unify(X;H);:satis�able(B�;�) �Conditions: H;B 2 L;P = H  not B;� = mgu(X;H)
134



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 135Argument Rewrite 16 (Informal S
hema 4) An elementary operation intended torefute X (by reje
ting the argument A supporting it) may be established by removing the
lause H  B used in A to derive X be
ause this is an invalid rule.elementary(refute(X); A;�; P ) ) retra
t (invalid rule(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0 2 subst : aÆrm(B�0 ^ not(H�0))Argument Rewrite 17 (Informal S
hema 5) An elementary operation intended torefute X (by reje
ting the argument A supporting it) may be established by removing the
lause H  B used in A to derive X be
ause this is a weak rule.elementary(refute(X); A;�; P ) ) retra
t (weak rule(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0 2 subst : aÆrm(not(B�0))Argument Rewrite 18 (Informal S
hema 6) An elementary operation intended torefute X (by reje
ting the argument A supporting it) may be established by removing the
lause H  B in A used to derive X be
ause it expresses a mistaken 
orrelation.elementary(refute(X); A;�; P ) ) retra
t (misrelation(P ))Properties: � unify(X;H) 	Conditions: H  B 2 A;P = H  B;9�0; �00 2 subst :aÆrm(B�0 ^ not(H�0) ^H�00 ^ not(B�00))



Argument Rewrite 19 (Informal S
hema 7) An updating operation intended to jus-tify X may be established by removing a 
lause from �, and adding a variant obtainedfrom this by dismissing some pre
ondition that was blo
king the derivation of X.updating(justify(X); A;�; P; P 0) ) retra
t(irrelevan
e(P ));add(irrelevan
e(P 0))Properties: 8<: unify(X;H);satis�able((B1 ^ ::: ^ Bi�1 ^ Bi+1 ^ ::: ^Bm)�;�);:satis�able(Bi�;�) 9=;Conditions: H  B1 ^ ::: ^Bm 2 �;P = H  B1 ^ ::: ^Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^ Bi+1 ^ ::: ^ Bm,� = mgu(X;H)Argument Rewrite 20 (Informal S
hema 12) An updating operation intended torefute X (by reje
ting the argument A supporting it) may be established by removingthe 
lause used in A to derive X and adding an elaborated variant 
ontaining an extrapremise whi
h is not satis�able, thus blo
king the derivation of X.updating(refute(X); A;�; P; P 0) ) retra
t(elaboration(P ));add(elaboration(P 0))Properties: 8<: unify(X;H);satis�able((B1 ^ ::: ^ Bm)�;�):satis�able(B�;�) 9=;Conditions: H  B1 ^ ::: ^Bm 2 A;P = H  B1 ^ ::: ^Bm;B 2 L;i 2 f0; :::; mg;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)
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CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 137Argument Rewrite 21 (Informal S
hema 11) An updating operation intended tojustify X may be established by removing a 
lause from � and adding a variant thatallows X to be inferred, generalising the original rule so that the set of ground instan
esof the original rule is smaller than the set of ground instan
es of the variant rule.updating(justify(X); A;�; P; P 0) ) retra
t (generalisation(P ));add (generalisation(P 0))Properties: 8<: unify(X;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�) 9=;Conditions: H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(X;H�0)Argument Rewrite 22 (Informal S
hema 10) An updating operation intended torefute X (by reje
ting the argument A for it) may be established by removing the 
lauseused in A to derive X and adding a variant that blo
ks the derivation of X, spe
ialisingthe original rule so that the set of ground instan
es of the original rule is greater thanthe set of ground instan
es of the variant rule. Derivation of X 
an fail for two reasons:either be
ause X no longer uni�es with the head of the new rule or, if it does, be
ausethe body is not satis�able.updating(refute(X); A;�; P; P 0) ) retra
t(spe
ialisation(P ));add(spe
ialisation(P 0))Properties: 8>><>>: unify(X;H);ground(P 0;�) � ground(P;�);8(Hg  Bg) 2 ground(P�;�) \ ground(P 0;�)::satis�able(Bg;�) 9>>=>>;Conditions: H  B 2 A;P = H  B;� = mgu(X;H);�0 2 subst ;P 0 = (H  B)�0



Argument Rewrite 23 (Informal S
hema 8) An updating operation intended to jus-tify X may be established by removing a 
lause from � and adding a variant that revisesthe original 
on
lusion, so that X 
an now be inferred.updating(justify(X); A;�; P; P 0) ) retra
t(mis
on
lusion(P ));add(mis
on
lusion(P 0))Properties: � unify(X;H 0);satis�able(B�;�) �Conditions: H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(X;H 0)Argument Rewrite 24 (Informal S
hema 8) An updating operation intended to re-fute X (by reje
ting the argument A for it) may be established by the removing the 
lauseused in A to derive X and adding a variant that revises the original 
on
lusion, so thatX no longer follows.updating(refute(X); A;�; P; P 0) ) retra
t (mis
on
lusion(P ));add(mis
on
lusion(P 0))Properties: � unify(X;H);:unify(X;H 0) �Conditions: H  B 2 A;P = H  B;H 0 2 L;P 0 = H 0  BArgument Rewrite 25 (Informal S
hema 9) An updating operation intended to jus-tify X may be established by removing a 
lause from � and adding the reversed rule sothat X 
an be inferred.updating(justify(X); A;�; P; P 0) ) retra
t (reversion(P ))add (reversion(P 0))Properties: � unify(X;B);satis�able(H�;�) �Conditions: H  B 2 �;P = H  B;� = mgu(X;B);P 0 = B  H138



CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 139Argument Rewrite 26 (Informal S
hema 9) An updating operation intended to re-fute X (by reje
ting the argument A for it) may be established by the removing the 
lauseused in A to derive X and adding the reversed rule so that X no longer follows.updating(refute(X); A;�; P; P 0) ) retra
t (reversion(P ))add(reversion(P 0))Properties: � unify(X;H);:unify(X;B) �Conditions: H  B 2 A;P = H  B;P 0 = B  H7.3.7 Domain-Spe
i�
 LevelFigure 7.2 depi
ts the organised 
olle
tion of rewrites up to the logi
-spe
i�
 level, wherepredi
ates give the general shape of the 
lauses to be added and removed, thus expressingstandard types of revisions in argument. Appendix C gives the possible s
hemata forargument revision obtained from this 
lassi�
ation.Noti
e that in pra
ti
e not all the 
onditions in the rewrites 
an be satis�ed in a straight-forward way, espe
ially if they involve the sele
tion of elements from in�nite or unspe
i-�ed sets. For instan
e, de
iding exa
tly whi
h literals or substitutions instantiate 
ertains
hemata is likely to be dependent on the domain, as illustrated in Chapter 5. The nextlevel in the 
lassi�
ation should then be 
omposed of domain-spe
i�
 s
hemata, fromwhi
h we 
an 
onstru
t libraries of possible revisions for generating dynami
 argumentsautomati
ally.A worked example in the next 
hapter illustrates one way in whi
h this 
lassi�
ation
an be used to de�ne possible revision operations in a parti
ular domain.



�(�;�0)� �; �0� add argument; �0 � remove argument; �0

� substantiated rule; �0

16,7 5
8 10� updating; �0� trivial; �0 � elementary; �0 � elementary; �0

� mis
on
lusion; �0� generalisation; �0 � spe
ialisation; �0� elaboration; �0� reversion; �0� reversion; �0 � mis
on
lusion; �0

129 11
� fa
t; �0 � invalid rule; �0� weak rule; �0� misrelation; �013 14

� burden shift rule; �0� irrelevan
e; �0
18171615 19 21 22 20242623 25

� updating; �0

Figure 7.2: Organisation of argument revision s
hemata obtained via our rewritingsystem. S
hemata 2, 3 and 4 are not depi
ted in the diagram be
ause they have noimmediate e�e
t on re�ning a revision operation, but are still useful for harnessing thepossible revisions that are allowed.
140



Chapter 8Worked Example: De�ningDomain-Spe
i�
 S
hemata
The system of rewrites in Se
tion 7.3 not only allows harnessing of argument rewrit-ing,1 but also provides a te
hnique for systemati
ally generating atta
ks in dynami
argumentation systems like the one in Figure 7.1. This 
hapter des
ribes how examplesfrom the a
atoxin debate in Chapter 5 
ould be modelled in this dynami
 argumentframework.8.1 Two Dynami
 Argumentation SystemsFigure 7.1 gives the general form of a system for dynami
 argumentation that explorespossible atta
ks to a senten
e and 
onverges when no more atta
ks 
an be generated.Su
h a system 
onstitutes the essen
e of the implementations we developed, two ofwhi
h we demonstrate in this 
hapter. We have implemented these systems in Pro-log as des
ribed in Figure 8.1, whi
h gives the top-level 
lauses 
orresponding to thespe
i�
ation in Figure 7.1, here with an extra argument for re
ording the sequen
e ofmoves.In summary, the predi
ate dynami
 arg/4 generates dynami
 arguments about a par-ti
ular senten
e given an initial theory, thus produ
ing a revised theory that is morea

eptable with respe
t to the senten
e only if all atta
ks to it have been dismissed.Here theories are represented as lists of axiom; new axioms are added at the end of the1 See Appendix C and Figure 7.2. 141



%--------------------------------------------------------% dynami
 arg(X, TInit, T, D) :-% D is a dynami
 argument about a theory TInit with% respe
t to a senten
e X, that 
onverges to theory Tdynami
 arg(X, TInit, T, D) :-initialise(X, TInit, DInit),dynami
 arg(X, TInit, T, DInit, D).dynami
 arg(X, TNow, T, DSofar, D) :-gen atta
k(X, TNow, TNext, DSofar, NewDSofar),dynami
 arg(X, TNext, T, NewDSofar, D).dynami
 arg(X, T, T, D, D).Figure 8.1: Prolog spe
i�
ation of a generi
 dynami
 argumentation system.list whereas updated premises just repla
e the original ones. But like in sets, there areno dupli
ate entries of the same axiom.The extra parameter D is a stru
tured term 
omprising both the sequen
e of argumentsand revisions hA0; �1; A1; :::; �i; Aii advan
ed so far, as well as the 
urrent dependen
ygraph Di. In Prolog terms, D (or DSofar) is represented as follows:d([Ai, Ri,..., A1, R1, A0℄, Di).The �rst parameter has the sequen
e of arguments in reversed order in an a

umulatorstyle, as it used to a

umulate information on the way down through the re
ursion. Thepredi
ate initialise/3 instantiates this term to:d([A0℄, D0)by generating an initial justi�
ation A0 for X, and initialising the dependen
y tree D0with the 
orresponding stru
ture of argument 
laims. Predi
ate dynami
 arg/5 thenre
ursively explores the possible atta
ks via gen atta
k/5 until no more atta
ks 
an begenerated, and so the �nal instantiation of D o

urs.The 
ru
ial question then is how to de�ne the predi
ate gen atta
k/5 appropriately.In what follows we brie
y des
ribe two ways for doing that.142



CHAPTER 8. WORKED EXAMPLE 1438.1.1 Generating Atta
ks Intera
tivelyOne possibility is for gen atta
k/5 to explore the atta
k relation by going down the
lassi�
ation level in Figure 7.2 and querying for appropriate information as it rea
hes
hoi
e points, namely:� whi
h rewrite rule to apply at ea
h level; and� how to instantiate the 
onditions in the rewrite.In the latter 
ase, intera
tion happens exa
tly at stages where an element must besele
ted from a set|that is, when 2-
onditions need to be satis�ed.On
e all the ne
essary information has been supplied, the system performs the 
orre-sponding revision, generates the new atta
king argument and 
he
ks the relevant prop-erties that were a

umulated down the s
hemata 
lassi�
ation. Be
ause in this way itis always possible to 
ome up with a new atta
k, the pro
ess only terminates on
e theuser de
ides not to atta
k the last advan
ed argument.This system is highly 
exible and intera
tive, and is mostly intended to illustrate the
on
epts introdu
ed in the previous 
hapters. Its use is demonstrated in Se
tion 8.2.8.1.2 Generating Atta
ks Automati
allyAnother possibility is to allow the systemati
 sear
h of possible sequen
es of argumentex
hange, in whi
h 
ase gen atta
k/5 
onstru
ts atta
ks automati
ally from a pre-de�ned 
atalogue � of argument revision s
hemata2 rather than by intera
tively goingdown the 
lassi�
ation tree of possible revisions. Libraries of revision s
hemata are 
om-posed of 
attened revisions, as des
ribed in Appendix C. These represent the generalformat of atta
ks, with the properties a

umulated down the 
orresponding path in the
lassi�
ation and maybe some domain-spe
i�
 information in
orporated appropriately.At ea
h step the 
laims 
onstituting the possible points of atta
k 
an be 
al
ulated fromthe 
urrent dependen
y graph, and the system sele
ts one of these su
h that it mat
hes2 See De�nition 4.7.



some revision s
hema in � (i.e su
h that there is a s
hema in � that 
an be used toatta
k the 
laim). An argument is then generated, and the 
orresponding properties ofthe applied s
hema 
an guarantee that it supports the intended atta
k in the 
ontextof the arguments advan
ed so far.3 The dynami
 argument terminates on
e no moreatta
ks 
an be 
onstru
ted from the s
hemata in �.We illustrate the use of this system in Se
tion 8.3.8.2 The A
atoxin Debate RevisitedTo re
onstru
t the examples given in Chapter 5 we use the intera
tive argumentationsystem from Se
tion 8.1.1. For 
larity of presentation we 
ast the output of this systeminto an easier-to-read format, representing argument trees and other stru
tured termsgraphi
ally and using di�erent font types to reprodu
e the intera
tion between thesystem and the user: for instan
e, sans serif and itali
s are used to denote requests forinformation by the system and information supplied by the user, respe
tively.The following is an argument pro
ess, as generated by the system, about the FDA poli
ythat restri
ts a
atoxin levels to 20ppb.The initial theory TInit is represented by the following general logi
 program:min det level(a
atoxin ; 20)  true
auses(a
atoxin; 
an
er ; animal(X))  truerequired level(Ag; L)  
auses(Ag; 
an
er ;X) ^no safe level(Ag) ^min det level(Ag; L)no safe level(Ag)  not safe level(Ag; L)A

ording to De�nition 4.7, the �rst argument to be advan
ed is a justi�
ation4 sup-porting the main 
laim required level(a
atoxin ; 20).Argument A0 is a justi�
ation for required level(a
atoxin ; 20).3 Things that 
an be 
he
ked here in
lude whether the argument is 
onsistent and if it has not beenadvan
ed before (so as to avoid 
ir
ularity). Appendix D des
ribes pre
isely what it means for anargument to support a 
laim in the 
ontext of a dynami
 argument, 
onsidering that this argumentmay be based on a revision.4 For 
larity of presentation, from now on we omit the term true from the representation of argumenttrees (but not from the dependen
y graphs). 144



CHAPTER 8. WORKED EXAMPLE 145
required_level(aflatoxin, 20)

no_safe_level(aflatoxin) min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))

not safe_level(aflatoxin, L)The dependen
ies between 
laims at this initial stage are represented below, withhighlighted nodes 
orresponding to possible atta
k points.D0 : required level(a
atoxin; 20) : in
auses(a
atoxin; 
an
er; animal(X)) : in 33gggggggggggggg no safe level(a
atoxin) : inOO min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWWnot safe level(a
atoxin; L) : inOOsafe level(a
atoxin; L) : outOO

true : in
bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}Do you want to atta
k this argument? (yes/no) yesRevision �1 is determined intera
tively as follows.Enter rewrite 
hoi
e from the following:Rewrite 3: sele
t an in 
laim to be atta
kedRewrite 4: sele
t an out 
laim to be atta
ked Rewrite 4Enter out 
laim to be atta
ked safe level(a
atoxin ; L) : outEnter rewrite 
hoi
e from the following:Rewrite 7: add an argument supporting the senten
e Rewrite 7Enter rewrite 
hoi
e from the following:Rewrite 8: perform a trivial revision for justifying the senten
eRewrite 9: perform an elementary revision for justifying the senten
e



Rewrite 11: perform an updating revision for justifying the senten
e Rewrite 9Enter rewrite 
hoi
e from the following:Rewrite 13: justify the senten
e by adding a new fa
tRewrite 14: justify the senten
e by adding a new substantiated ruleRewrite 15: justify the senten
e by adding a new burden shift rule Rewrite 13Enter fa
t for justifying the senten
e safe level(a
atoxin ; s)In this way,�1 : add(fa
t(safe level(a
atoxin ; s) true))is an atta
k-based revision that 
an be used to 
onstru
t an argument for justifyingthat a safe exposure level s does exist for a
atoxins, whi
h is far greater than20ppb. Moreover, the properties a

umulated during the instantiation 
an ensurethat the generated argument in fa
t supports that safe level(a
atoxin ; L) : in.Argument A1 is a justi�
ation for safe level(a
atoxin ; s).
safe_level(aflatoxin, s)The dependen
ies between 
laims at this stage are represented below, again withhighlighted nodes 
orresponding to possible atta
k points. Remember that theatta
k points are only those nodes that 
ontribute to the 
urrent status of themain senten
e.D1 : required level(a
atoxin; 20) : out
auses(a
atoxin; 
an
er; animal(X)) : in 33gggggggggggggggg no safe level(a
atoxin) : outOO min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWWWWnot safe level(a
atoxin; L) : outOOsafe level(a
atoxin; L) : inOO

true : inOO

bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}146



CHAPTER 8. WORKED EXAMPLE 147Do you want to atta
k this argument? (yes/no) yesRevision �2 
an be determined intera
tively as follows.Enter rewrite 
hoi
e from the following:Rewrite 3: sele
t an in 
laim to be atta
kedRewrite 4: sele
t an out 
laim to be atta
ked Rewrite 4Enter out 
laim to be atta
ked required level(a
atoxin ; 20) : outEnter rewrite 
hoi
e from the following:Rewrite 7: add an argument supporting the senten
e Rewrite 7Enter rewrite 
hoi
e from the following:Rewrite 8: perform a trivial revision for justifying the senten
eRewrite 9: perform an elementary revision for justifying the senten
eRewrite 11: perform an updating revision for justifying the senten
e Rewrite 11Enter rewrite 
hoi
e from the following:Rewrite 19: justify the senten
e by dismissing an irrelevant pre
ondition from an existing axiomRewrite 21: justify the senten
e by generalising an exiting axiomRewrite 23: justify the senten
e by 
hanging the 
on
lusion of an exiting axiomRewrite 25: justify the senten
e by reversing an exiting axiom Rewrite 19Enter axiom to be updated via the irrelevan
e s
hemarequired level(Ag;L) 
auses(Ag; 
an
er ; X) ^no safe level(Ag) ^min det level(Ag;L)Enter pre
ondition to be removed no safe level(Ag)In this way,



�2 : retra
t (irrelevan
e0BB� required level(Ag;L) 
auses(Ag; 
an
er ; X) ^no safe level(Ag) ^min det level(Ag;L) 1CCA)andadd (irrelevan
e0� required level(Ag;L) 
auses(Ag; 
an
er ; X) ^min det level(Ag;L) 1A)is an atta
k-based revision allows argument 5.4 to be derived, reinstating the
laim that the maximum required level for a
atoxins should be set to 20ppb (seeInformal S
hema 7).Argument A2 is a justi�
ation for required level(a
atoxin ; 20).
required_level(aflatoxin, 20)

min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))The dependen
ies between 
laims at this stage are represented below, again withhighlighted nodes 
orresponding to possible atta
k points.D2 : required level(a
atoxin; 20) : in
auses(a
atoxin; 
an
er; animal(X)) : in 33gggggggggggggg min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWWtrue : inllXXXXXXXXXXXXXXXXX

33fffffffffffffffDo you want to atta
k this argument? (yes/no) yesRevision �3 
an be determined intera
tively as follows.Enter rewrite 
hoi
e from the following:Rewrite 3: sele
t an in 
laim to be atta
kedRewrite 4: sele
t an out 
laim to be atta
ked Rewrite 3Enter in 
laim to be atta
ked required level(a
atoxin ; 20) : inEnter rewrite 
hoi
e from the following:Rewrite 5: remove the argument supporting the senten
eRewrite 6: add an argument supporting a 
on
i
ting senten
e148



CHAPTER 8. WORKED EXAMPLE 149Rewrite 5Enter rewrite 
hoi
e from the following:Rewrite 10: perform an elementary revision for refuting the senten
eRewrite 12: perform an updating revision for refuting the senten
e Rewrite 12Enter rewrite 
hoi
e from the following:Rewrite 20: refute the senten
e by elaborating the axiom supporting itRewrite 22: refute the senten
e by spe
ialising the axiom supporting itRewrite 24: refute the senten
e by 
hanging the 
on
lusion of the axiom supporting itRewrite 26: refute the senten
e by reversing the axiom supporting it Rewrite 22Enter substitution that spe
ialises the axiomrequired level(Ag;L) 
auses(Ag; 
an
er ; X) ^min det level(Ag;L) X = humanIn this way,�2 : retra
t (spe
ialisation0� required level(Ag;L) 
auses(Ag; 
an
er ; X) ^min det level(Ag;L) 1A)andadd (spe
ialisation0� required level(Ag;L) 
auses(Ag; 
an
er ; human) ^min det level(Ag;L) 1A)is an atta
k-based revision that refutes argument A2 (see Informal S
hema 10).Argument A3 is a refutation of required level(a
atoxin ; 20).
required_level(aflatoxin, 20)

min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))The dependen
ies between 
laims at this stage are represented below, again withhighlighted nodes 
orresponding to possible atta
k points.D3 : required level(a
atoxin; 20) : out
auses(a
atoxin; 
an
er; human) : out 33gggggggggggggg min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWWWWtrue : in 33ggggggggggggggggggDo you want to atta
k this argument? (yes/no) yes



Revision �4 is determined intera
tively as follows.Enter rewrite 
hoi
e from the following:Rewrite 3: sele
t an in 
laim to be atta
kedRewrite 4: sele
t an out 
laim to be atta
ked Rewrite 4Enter out 
laim to be atta
ked 
auses(a
atoxin ; 
an
er ; human) : outEnter rewrite 
hoi
e from the following:Rewrite 7: add an argument supporting the senten
e Rewrite 7Enter rewrite 
hoi
e from the following:Rewrite 8: perform a trivial revision for justifying the senten
eRewrite 9: perform an elementary revision for justifying the senten
eRewrite 11: perform an updating revision for justifying the senten
e Rewrite 9Enter rewrite 
hoi
e from the following:Rewrite 13: justify the senten
e by adding a new fa
tRewrite 14: justify the senten
e by adding a new substantiated ruleRewrite 15: justify the senten
e by adding a new burden shift rule Rewrite 14Enter head and body of a substantiated rule for justifying the senten
e 
auses(Ag;P; human)
auses(Ag;P; animal(X))In this way,�4 : add(substantiated rule � 
auses(Ag;P; human) 
auses(Ag;P; animal(X)) �)is an atta
k-based revision that 
an be used to 
onstru
t an argument for justifyingthat a
atoxins 
ause 
an
er in humans (see Informal S
hema 2).Argument A4 is a justi�
ation for 
auses(a
atoxin ; 
an
er ; human).150
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causes(aflatoxin, cancer, human)

causes(aflatoxin, cancer, animal(X))The dependen
ies between 
laims at this initial stage are represented below, withhighlighted nodes 
orresponding to possible atta
k points.D4 : required level(a
atoxin; 20) : in
auses(a
atoxin; 
an
er; human) : in 33gggggggggggggg min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWW
auses(a
atoxin; 
an
er; animal(X)) : inOO true : inllXXXXXXXXXXXXXXXXX

77ooooooooooooooooooooooDo you want to atta
k this argument? (yes/no) yesRevision �5 
an be determined intera
tively as follows.Enter rewrite 
hoi
e from the following:Rewrite 3: sele
t an in 
laim to be atta
kedRewrite 4: sele
t an out 
laim to be atta
ked Rewrite 3Enter in 
laim to be atta
ked 
auses(a
atoxin ; 
an
er ; human) : inEnter rewrite 
hoi
e from the following:Rewrite 5: remove the argument supporting the senten
eRewrite 6: add an argument supporting a 
on
i
ting senten
e Rewrite 5Enter rewrite 
hoi
e from the following:Rewrite 10: perform an elementary revision for refuting the senten
eRewrite 12: perform an updating revision for refuting the senten
e Rewrite 12Enter rewrite 
hoi
e from the following:Rewrite 20: refute the senten
e by elaborating the axiom supporting it



Rewrite 22: refute the senten
e by spe
ialising the axiom supporting itRewrite 24: refute the senten
e by 
hanging the 
on
lusion of the axiom supporting itRewrite 26: refute the senten
e by reversing the axiom supporting it Rewrite 20Enter extra literal to be introdu
ed in the axiom
auses(Ag;P; human) 
auses(Ag;P; animal(X)) similar physiology(human; X)Enter position in the axiom body in whi
h to introdu
e the literal (0-1) 1In this way,�4 : retra
t (elaboration � 
auses(Ag;P; human) 
auses(Ag;P; animal(X)) �)andadd (elaboration0� 
auses(Ag;P; human) 
auses(Ag;P; animal(X)) ^similar physiology(human; X) 1A)is an atta
k-based revision that refutes argument A4 (see Informal S
hema 12).Argument A5 is a refutation of 
auses(a
atoxin ; 
an
er ; human).
causes(aflatoxin, cancer, human)

causes(aflatoxin, cancer, animal(X))The dependen
ies between 
laims at this initial stage are represented below, withhighlighted nodes 
orresponding to possible atta
k points.D5 : required level(a
atoxin; 20) : out
auses(a
atoxin; 
an
er; human) : out 33ffffffffffffff min det level(a
atoxin; 20) : inkkWWWWWWWWWWWWWWW
auses(a
atoxin; 
an
er; animal(X)) : inOO similar physiology(human;X) : outkkXXXXXXXXXXXXXX

true : iniiTTTTTTTTTTTTTTTTTTTTTTTT

99ttttttttttttttttttttttttttttDo you want to atta
k this argument? (yes/no) no152



CHAPTER 8. WORKED EXAMPLE 153With the argument terminating at this stage, the revised theory below is said to beuna

eptable with respe
t to the senten
e required level(a
atoxin ; 20):min det level(a
atoxin ; 20)  true
auses(a
atoxin ; 
an
er ; animal(X))  truerequired level(Ag; L)  
auses(Ag; 
an
er ; human) ^min det level(Ag;L)no safe level(Ag)  not safe level(Ag;L)safe level(a
atoxin ; s)  true
auses(Ag;P; human)  
auses(Ag; P; animal(X)) ^similar physiology(human ;X)This example illustrates the sort of arguments we 
an automate. Although the systemapplied here is highly intera
tive and relies on a great amount of information to beprovided by a user, it 
an be quite useful in analysing spe
i�
 arguments and exploringthe roles of 
ertain types of revision in a domain. There is s
ope for making use of therevisions de�ned during this intera
tive pro
ess in order to automati
ally explore otherpossible 
ourses of argument.8.3 Sear
hing for Alternative ArgumentsGiven that a 
atalogue � of possible atta
k-based revision s
hemata has been spe
i�ed,the system in Se
tion 8.1.2 
an then be used to generate dynami
 arguments in anautomated form. The question, then, is how to spe
ify �.8.3.1 A Catalogue of Argument S
hemata for the A
atoxin ExampleOne way to de�ne su
h a 
atalogue for the a
atoxin example is to 
onsider ea
h s
hemain � to be the 
attened equivalent of an operation determined during the intera
tiveargumentation. For instan
e, the following representation of �1 
ould be in
luded in �:Domain-Spe
i�
 Revision S
hema �1: 1) 2) 4) 7) 9) 13out(safe level(a
atoxin ; L); A;�);add(fa
t(P )); revise(�; fg; fPg;�0);in(safe level(a
atoxin ; L); A0;�0)



Properties: 8>><>>: atta
ks(A0; A);
onsistent(�0);supports(A0; safe level(a
atoxin ; L) : in;�0);unify(safe level(a
atoxin ; L); safe level(a
atoxin ; s)) 9>>=>>;Conditions: safe level(a
atoxin ; s) 2 L;P = safe level(a
atoxin ; s) trueThis s
hema is obtained dire
tly from the rewrites used in the intera
tive system, butit 
ould as well be de�ned manually by a designer of an argumentation system. It isimportant to note that we do not require all the properties to be veri�ed, so designersmight 
hoose to disregard properties whi
h they feel are redundant or not relevant. Here,for instan
e, properties like unify 
ould be safely dismissed as it is valid independently ofthe a
tual revision being performed and the new atta
k being generated. Also, be
ausewe are not 
onsidering priorities between arguments, atta
ks holds by de�nition as thearguments must support 
ontradi
tory 
laims (out and in, respe
tively). Furthermore,sin
e our 
hoi
e of formal language does not in
lude 
lassi
al negation there are no risksof logi
al in
onsisten
y, so as a designer we 
an 
hoose not to verify 
onsisten
y in therevised set of axioms. One 
ru
ial property to be tested, though, is that of supports ,be
ause it guarantees that an atta
king argument 
an in fa
t be generated and advan
ed.Hen
e in this 
ase the following is an equivalent des
ription of �1 above.Domain-Spe
i�
 Revision S
hema �1: 1) 2) 4) 7) 9) 13out(safe level(a
atoxin ; L); A;�);add(fa
t(P )); revise(�; fg; fPg;�0);in(safe level(a
atoxin ; L); A0;�0)Properties: � supports(A0; safe level(a
atoxin ; L) : in;�0) 	Conditions: safe level(a
atoxin ; s) 2 L;P = safe level(a
atoxin ; s) trueAnother point to be noted here is that 
onditions for applying the 
orresponding logi
-spe
i�
 rewrites from Se
tion 7.3.6 still remain. As remarked in the previous se
tion,intera
tion may happen only in 
ases where an element must be sele
ted from a set(2-
onditions). Although in domain-spe
i�
 s
hemata su
h elements have been deter-154



CHAPTER 8. WORKED EXAMPLE 155mined, 
onditions are still needed in order instantiate them appropriately throughoutthe s
hema.Similarly the following is a representation of revision �2.Domain-Spe
i�
 Revision S
hema �2: 1) 2) 4) 7) 11) 19out(required level(a
atoxin ; 20); A;�);retra
t (irrelevan
e(P )); add(irrelevan
e(P 0)); revise(�; fPg; fP 0g;�0);in(required level(a
atoxin ; 20); A0;�0)Properties: 8>><>>: supports (A0; required level(a
atoxin; 20) : in;�0);unify(required level(a
atoxin ; 20); required level(Ag;L));satis�able(B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm;�):satis�able(no safe level(a
atoxin);�) 9>>=>>;Conditions: P = required level(Ag;L) B1 ^ ::: ^Bm 2 �;Bi = no safe level(Ag) 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^ Bi+1 ^ ::: ^ BmNote that a s
hema that is obtained from the intera
tive system is spe
i�
 to the atta
kperformed in that system, and in this example these are grounded to the 
ase of therequired level of a
atoxin being 20ppb. However, be
ause the atta
k is based on a moregeneri
 statement required level(Ag;L), and be
ause the propertyunify(required level(a
atoxin ; 20); required level(Ag;L)),holds, then s
hema �2 
an be generalised so as to atta
k any senten
e of the formrequired level(Ag;L):Domain-Spe
i�
 Revision S
hema �2: 1) 2) 4) 7) 11) 19out(required level(Ag;L); A;�);retra
t (irrelevan
e(P )); add(irrelevan
e(P 0)); revise(�; fPg; fP 0g;�0);in(required level(Ag;L); A0;�0)Properties: 8<: supports (A0; required level(Ag;L) : in;�0);satis�able(B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm;�):satis�able(no safe level(Ag);�) 9=;Conditions: P = required level(Ag;L) B1 ^ ::: ^ Bm 2 �;Bi = no safe level(Ag) 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^ Bi�1 ^Bi+1 ^ ::: ^Bm



Other operations are des
ribed analogously.Domain-Spe
i�
 Revision S
hema �3: 1) 2) 3) 5) 12) 22in(required level(Ag;L); A;�);retra
t (spe
ialisation(P )); add(spe
ialisation(P 0)); revise(�; fPg; fP 0g;�0);out(required level(Ag;L); A;�0)Properties: � supports (A; required level(Ag;L) : out;�0):satis�able(
auses(Ag; 
an
er ; X)�0;�) �Conditions: P = required level(Ag;L) B 2 A;
auses(Ag; 
an
er ; X) 2 B;�0 = [X = human ℄;P 0 = (H  B)�0Domain-Spe
i�
 Revision S
hema �4: 1) 2) 4) 7) 9) 14out(
auses(Ag;P; human); A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(
auses(Ag;P; human); A0;�0)Properties: � supports (A0; 
auses(Ag;P; human) : in;�0)satis�able(
auses(Ag;P; animal(X));�) �Conditions: 
auses(Ag;P; human); 
auses(Ag;P; animal(X)) 2 L;P = 
auses(Ag;P; human) 
auses(Ag;P; animal(X))Domain-Spe
i�
 Revision S
hema �5: 1) 2) 3) 5) 12) 20in(
auses(Ag;P; human); A;�);retra
t (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g;�0);out(
auses(Ag;P; human); A;�0)Properties: 8<: supports(A; 
auses(Ag;P; human) : out;�0)satis�able(B1 ^ ::: ^ Bm;�);:satis�able(similar physiology(human; X);�) 9=;Conditions: P = 
auses(Ag;P; human) B 2 A;
auses(Ag;P; animal(X)) 2 B;B = similar physiology(human ; X) 2 L;P 0 = 
auses(Ag;P; human) B ^ BIn this way, � 
an be de�ned as the following set:� = f�1; �2; �3; �4; �5g.156



CHAPTER 8. WORKED EXAMPLE 1578.3.2 Exploring the Sear
h Spa
e of ArgumentsThe system in Se
tion 8.1.2 
an now be used to explore the sear
h spa
e of arguments.Moreover, given the sele
tion of possible revision s
hemata, we expe
t the system tobe able to re-generate the dynami
 argumentation that was 
onstru
ted intera
tively inSe
tion 8.2: hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5i.This argument in parti
ular does not su

eed in defending the FDA poli
y for restri
tinga
atoxin levels to 20ppb. It would be interesting, however, to see whether other 
oursesof argument|if they exist|yield the same 
on
lusion.The system takes advantage of the fa
t that 
ompli
ated 
hoi
e points (su
h as sele
t-ing an element from an unspe
i�ed or in�nite set) have already been explored by theintera
tive system and resolved in the s
hemata in �. The sear
h spa
e of possiblearguments 
an be exhaustively explored by traversing well de�ned sets: at ea
h step iof the pro
ess the system sele
ts one possible 
laim to be atta
ked (from Di) and onemat
hing argument s
hema (from �) that gives an atta
k to this 
laim. For the sameinitial theory TInit from Se
tion 8.2, the query:| ?- findall(D, dynami
 arg(required level(aflatoxin, 20), TInit, T, D), AllD).gives three possible dynami
 arguments based on �:hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5ihA0; �3; A03; �4; A4; �5; A5ihA0; �3; A03; �4; A4; �1; A1; �2; A2; �5; A5iwhere A03 is the following refutation of A0.
required_level(aflatoxin, 20)

no_safe_level(aflatoxin) min_det_level(aflatoxin, 20)causes(aflatoxin, cancer, animal(X))

not safe_level(aflatoxin, L)



The resulting theories are di�erent for ea
h 
ase,5 and required level(a
atoxin ; 20) isnot established in any of them.It seems also that generi
 trivial revisions6 should always be in
luded in the library ofpossible revisions, so inherent 
on
i
ts and alternative justi�
ations for a senten
e 
anbe explored automati
ally. In this example, however, no argument 
an be generatedbased on trivial revisions, as no 
on
i
ts are expli
itly de�ned and no two alternativearguments for any relevant senten
e 
oexist. Every possible atta
k 
onsists in eitherblo
king a derivation or introdu
ing a new justi�
ation.An issue arises here. We have shown that domain-spe
i�
 s
hemata 
an be obtainedfrom arguments that are 
onstru
ted intera
tively, but these may be over-spe
i�ed.Take for instan
e s
hema �1. Rather than 
ommitting to a parti
ular safe level s,we 
ould leave this as an open parameter to be automati
ally instantiated during theargumentation. This means we need to re�ne our framework for dynami
 argumentationin order to in
orporate spe
ial me
hanisms that provide the ne
essary information forinstantiation. This is quite an important point, as automating this pro
ess is not only
ru
ial for understanding dynami
s in argument, but it is also useful for (autonomous)agents that want to apply this te
hnique to parti
ular problems.Be
ause in these 
ases we may know less about spe
i�
 revisions, we need to know moreabout the 
onsequen
es of applying 
ertain types of revision. The next 
hapter in
ludesan investigation of desirable properties that libraries of revisions 
an have, and howthese 
an a�e
t the automati
 generation of arguments.

5 Considering that theories are implemented as lists, ��1�2�3�4�5 is distin
t from ��3�4�1�2�5 . Bothare 
omposed of the same premises, but in a di�erent order (one is a permutation of the other).6 See Se
tion C.1 in Appendix C. 158



Chapter 9Roles and Properties of ourApproa
h
So far we have presented the formal basis of our approa
h to argumentation, showingthat it is pra
ti
able to model and to automate argument dynami
s by spe
ifying a
atalogue of s
hemata for generating atta
ks. We have also presented a 
lassi�
ationthat allows di�erent types of atta
ks to be explored in a systemati
 way, and whi
htogether with the possibility for automati
 testing and sear
h, allows us to understandmore about dynami
s in argument.This 
hapter now 
onsiders some of the roles and properties of this formalisation, andpossible uses of our 
lassi�
ation both in analysing generated arguments as well as ingenerating new ones. The dis
ussion in the next se
tions is guided by the followingquestions:� what sorts of properties 
an we give to our formalisation?� to what extent 
an examples from existing frameworks 
an be 
aptured?� how well 
an existing approa
hes deal with the types of dynami
 argument ex-plored here?� what are the bene�ts and limitations of our approa
h?

159



9.1 Non-monotoni
 Aspe
ts of Dynami
 ArgumentationAs dis
ussed in Chapter 3, resear
h in argumentation in the 
ontext of non-monotoni
reasoning is about 
hara
terising pre
isely the 
lass of a

eptable arguments from a�xed knowledge base, so that \the role of argumentation is to justify the use of 
ertaindefeasible rules deriving a 
on
lusion in preferen
e to the use of other defeasible rulesderiving 
on
i
ting 
on
lusions" (Kowalski and Toni 1996). Se
tion 9.1.1 investigateshow our model relates to these argumentation frameworks if we �x the set of possibleatta
k-based revisions to trivial revisions only, and whether representative examples 
anthen be 
aptured.Other types of revision, however, spe
ify from a pro
edural perspe
tive how to 
hallengeinformation and introdu
e new arguments. This brings other non-monotoni
 issues intoplay that are related to the a
tual transformation of theories via atta
ks. We dis
ussthese in Se
tion 9.1.2.9.1.1 Determining A

eptability in Fixed TheoriesWork in argument-based semanti
s 
on
entrates primarily on de�ning in a de
larativeway (for instan
e by a �xpoint operator, or in terms of multiple extensions) when argu-ments and senten
es are justi�ed given 
ertain relations of 
on
i
t and defeat. Some-times proof theories are also developed, whi
h are 
on
erned with establishing|oftenin a diale
ti
al style|the status of individual arguments a

ording to the underlyingstatus 
hara
terisation.Re
all from Chapter 3 that there are in general three 
lasses of arguments, namelyjusti�ed, defensible and overruled. Exa
tly how these are de�ned varies between thedi�erent types of argument-based semanti
s proposed so far, but the general intuitionis often the same: justi�ed arguments are those a

eptable from a s
epti
al perspe
tive,whereas defensible arguments are those a

eptable for a 
redulous reasoner; overruledarguments are defeated by a justi�ed one, and hen
e not a

eptable.The model proposed here, however, is more a 
onstru
tive theory of how argument pro-
esses are generated than a way of 
hara
terising sets of a

eptable arguments a

ording160



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 161to their relation to all other arguments. Nonetheless the two approa
hes are expe
ted tobe related, mainly for the following reasons. First, there is an element of a

eptabilityalso in our formalisation|a

ording to De�nition 4.7 a senten
e is a

eptable if it ispossible to generate a dynami
 argument about it in whi
h all atta
ks generated froma 
atalogue � of argument s
hemata are appropriately dismissed. Se
ond, if � is �xedto 
ontain only trivial revisions then it 
an generate and explore every possible atta
kfrom a �xed knowledge base by means of the underlying provability relation. Therebydynami
 argumentation 
an be seen as a proof-theoreti
al me
hanism for determiningwhether an argument is defensible; i.e. a

eptable from a 
redulous perspe
tive.To make 
omparison easier, our model 
ould be des
ribed in terms of the ar
hite
turefor argumentation frameworks proposed by Dung (1995) and dis
ussed in Chapter 3.The Argument Generation Unit (AGU) generates arguments and spe
i�es the at-ta
k relationships between them.Here the AGU is 
omposed of the underlying provability relation `, and the library ofpossible atta
k-based revisions � restri
ted to trivial operations:1� = ftrivial(X : in; X : in); trivial(X : out; X : in)g.Note that by de�nition, if A and A0 are both arguments in a theory �, and A0 atta
ks A,then A0 
an be generated via a trivial revision.The Argument Pro
essing Unit (APU) 
orresponds to the proof theory for deter-mining whether a senten
e or an argument is a

eptable.Here the APU 
orresponds to the dynami
 argumentation me
hanism whi
h instantiatespossible s
hemata in � and veri�es the 
orresponding properties. A senten
e ' is said tobe a

eptable if hA0; �1; A1; :::; �N ; AN i is a dynami
 argument with respe
t to the (�xed)underlying theory � su
h that all atta
ks to ' have been dismissed (i.e. ' : in 2 DN ) .The following example illustrates this notion.1 Se
tion C.1 gives the general des
ription of trivial operations, represented here by expressions pa-rameterised by the relevant type of atta
k.



Example 9.1 Let � be the following theory in a Horn 
lause resolution-based system:2pa
i�st(X)  quaker(X)no pa
i�st(X)  republi
an(X)quaker (nixon)  truerepubli
an(nixon)  truesu
h that pa
i�st(X) and no pa
i�st(X) are 
on
i
ting senten
es in the language. Also,let Ap and Anp be the arguments supporting pa
i�st(nixon) and no pa
i�st(nixon), re-spe
tively.In this 
ase, the query:| ?- findall(D, dynami
 arg(pa
ifist(nixon), TInit, T, D), AllD).gives only one possible 
ourse of argument (with T = TInit):� Ap; trivial (pa
i�st(nixon) : in; no pa
i�st(nixon) : in); Anp;trivial (no pa
i�st(nixon) : in; pa
i�st(nixon) : in); Ap �.Note that Ap was allowed to be advan
ed again as it had not yet been used to atta
k Anp.This 
aptures the behaviour 
hara
teristi
 of a 
redulous reasoner: if arguments A andB atta
k ea
h other with equal strength, and B is used to atta
k A during argumentation,then A 
an be used to atta
k, and 
onsequently dismiss, B.3Analogously, the query:| ?- findall(D, dynami
 arg(no pa
ifist(nixon), TInit, T, D), AllD).gives also one possible argument, in whi
h Anp is also established as defensible. 2Very often su
h APUs are de�ned in a diale
ti
al style, as argument games between aproponent and an opponent:2 This example is drawn from (Prakken and Vreeswijk 1999), a 
omprehensive study on the relationbetween non-monotoni
 reasoning and argumentation. Their general dis
ussion, though, abstra
tsfrom the internal stru
ture of arguments, assuming both arguments and atta
ks to be primitive
on
epts. Thus in order to experiment with their examples we have re
onstru
ted them in a logi
programming, resolution-based style.3 Appendix D gives the restri
tions for advan
ing an atta
k by means of the property supports .162



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 163The proponent starts with an argument to be tested, and ea
h of the following move
onsists of an argument that atta
ks the last move of the other party with a 
ertainminimum for
e. The initial argument provably has a 
ertain status if the proponenthas a winning strategy, i.e., if he 
an make the opponent run out of moves whatevermoves the opponent makes. The exa
t rules of the game depend on the semanti
sit is meant to 
apture. (Prakken and Vreeswijk 1999, p. 82)In fa
t, Jakobovits (2000) has identi�ed some of the issues that give the �ne tuning forthe game rules so that it 
aptures the intended semanti
s. These in
lude:4� Can players repeat arguments?� Must the player rea
t immediately?� May players 
ontradi
t themselves?� Can players use arguments whi
h have already been atta
ked by the opponent?� Can a player use arguments whi
h have already been used by the opponent?The following for instan
e is a spe
i�
ation of a proof-theoreti
al dispute that 
apturess
epti
al reasoning, in whi
h only justi�ed arguments (rather than defensible ones) are
onsidered to be a

eptable:5De�nition 9.1 (Proof-theoreti
al Dispute) A (proof-theoreti
al) dispute on an ar-gument A is a non-empty sequen
e of moves of the form movei = (Player i; Ai) withA0 = A su
h that:� Player i = PROPONENT if and only if i is even; otherwise Player i = OPPONENT.� If Player i = Player j = PROPONENT, i 6= j, then Ai 6= Aj.� If Player i = PROPONENT, i � 0, then Ai stri
tly atta
ks Ai�1. (That is, Aiatta
ks Ai�1 but Ai�1 does not atta
k Ai.)� If Player i = OPPONENT, then Ai atta
ks Ai�1.4 Later in Chapter 12 we 
onsider some issues on how this view relates to the sorts of proto
ols,languages and game theory in multi-agent negotiation.5 Adapted from (Prakken and Vreeswijk 1999, p. 82).



The di�erent burdens of proof for the PROPONENT and the OPPONENT guarantee thatif the PROPONENT wins the dispute, then A is justi�ed. 2Clearly dynami
 arguments 
an also be seen as an argument game|both representpro
esses of argument ex
hange, the main di�eren
e being that atta
ks in our formalismare generated from a library of argument s
hemata. Remember that in a dynami
argument ea
h step is intended to alternately 
hange the a

eptability status of thesenten
e under dispute, either from out to in or from in to out; in this way, the �rst
an be seen as moves advan
ed by a PROPONENT, and the latter by an OPPONENT.The PROPONENT is also the �rst player to move by advan
ing a justi�
ation for thesenten
e. Finally, two 
atalogues of argument s
hemata 
ould be 
onsidered, one to beused by the PROPONENT and another by the OPPONENT, but for the type of 
redulousreasoning illustrated in Example 9.1 these 
an be assumed to be identi
al.Be
ause our me
hanism is essentially 
redulous, in order to 
apture the sort of s
epti
alreasoning in De�nition 9.1 we need to a

ount for some of the 
onditions that determinethe exa
t rules of that game. It turns out that the sorts of of features addressed in(Jakobovits 2000) 
an be easily in
orporated into our original me
hanism by meansof the properties that are tested in 
onne
tion with ea
h atta
k-based s
hema. Forinstan
e, a senten
e is said to be a

eptable from a s
epti
al perspe
tive (justi�ed) ifwe 
an generate a dynami
 argument hA0; �1; A1; :::; �N ; AN i su
h that:� �i 2 �PROPONENT if i is even, where �PROPONENT is obtained from � aboveas follows: �rst, re�ne the property supports so that it disallows any repetitionof arguments whatsoever; then, introdu
e the extra property :atta
ks(A0; A) toea
h s
hema in �PROPONENT, thus for
ing the atta
k to be stri
t;� �i 2 �OPPONENT if i is odd, where �OPPONENT is equivalent to � above.Example 9.2 Consider again the theory in Example 9.1, together with the me
hanismabove for generating s
epti
al dynami
 arguments. Now the query:| ?- findall(D, dynami
 arg(pa
ifist(nixon), TInit, T, D), AllD).164



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 165gives only the argumentation below, and therefore the argument for pa
i�st(nixon) isnot s
epti
ally a

eptable.
 Ap; trivial (pa
i�st(nixon) : in; no pa
i�st(nixon) : in); Anp �. 2This 
onne
tion with proof theories is not surprising, as our formalisation takes anessentially pro
edural view on argumentation. Existing proof-theoreti
al models of ar-gumentation 
an be expressed as dynami
 argumentation me
hanisms by restri
ting thetypes of revision to trivial ones and by adapting the 
orresponding properties so that itgives the same behaviour. Nevertheless \it turns out that all semanti
s have some prob-lems", and yet mu
h work remains to be done in providing 
orre
tness and 
ompletenessresults for the proof-theories proposed so far (Prakken and Vreeswijk 1999).Some other issues have been raised by Jakobovits (2000) whi
h are less 
on
erned withargument-based semanti
s than with real disputes, and therefore 
loser to our interests.These are:� How should atta
k between arguments be de�ned?� Is the set of possible arguments known before the dialogue takes pla
e, or is itgenerated dynami
ally?These questions have been addressed extensively throughout this thesis, but we nowfo
us a bit more on the latter, espe
ially on the 
onsequen
es of a
tually 
hanging theset of possible arguments dynami
ally.9.1.2 Non-monotoni
ity in Argument-based Theory RevisionA

ording to Prakken (2000, p. 2) the di�eren
e between proof-theoreti
al disputes inthe 
ontext of argument-based semanti
s and real disputes is that:[...℄ while in proof-theoreti
al disputes all arguments are 
onstru
ted from a givenbody of information, in disputes between real agents this body of information is



usually 
onstru
ted dynami
ally, during the dispute, sin
e the parti
ipants 
an atany time supply new or withdraw old information.Non-monotoni
ity in this 
ase is not only about some arguments being preferred overothers, but rather about the a
tual addition and retra
tion of information. Assumingthat the underlying provability relation is monotoni
,6 this se
tion looks at how 
ertaintypes of atta
k 
an a�e
t the interpretation set of the 
orresponding theory.The reason why su
h a 
hara
terisation is important is be
ause argument dynami
s 
analso be viewed as a pro
ess of theory manipulation intended to generate more a

eptabletheories. Central to this view is the notion of interpretation.7 When designing argumentsystems (and libraries of revision s
hemata), or analysing an argument produ
ed by su
hsystems, it should be possible to des
ribe how atta
k-based transformations a�e
t the
orresponding interpretation set.One way of expressing su
h relations is by 
onsidering the 
hara
teristi
s of 
ertain typesof s
hema in order to make predi
tions about the behaviour of the interpretation set.This gives a high level des
ription of key relations between transformation steps withoutsaying exa
tly how the arguments are going to be (or were) derived. A neat 
orrespon-den
e would for instan
e say that adding an argument 
auses the interpretation set toexpand, while removing an argument 
onstrains it. Unfortunately this is not always the
ase, as adding an argument sometimes means blo
king others, and vi
e-versa.The question now is whether the atta
k relation �(�;�0) 
an be expressed via setinequality relations between interpretation sets �(�) and �(�0) (assuming the underlyinglogi
 to be monotoni
). In what follows the 
lassi�
ation in Figure 7.2 is used for guidingthis analysis by 
onsidering the possibilities for an un
onstrained atta
k-based revision6 Although the extended resolution method for treating negation as failure in general logi
 programsis 
learly non-monotoni
, it is possible to 
onsider these from an abdu
tive perspe
tive that 
onsistsin adding non-provability assumptions as fa
ts to the theory and treating these monotoni
ally. Formore details, refer to se
tion on the Abstra
t Argumentation Framework in Chapter 3, and later inSe
tion 9.5.7 At this point the relation with the �elds of transformation (Pettorossi and Proietti 1998) and synthesis(Deville and Lau 1994) of logi
 programs be
omes more apparent. Transformation of logi
 programsis 
on
erned with preserving the semanti
 value of a spe
i�
ation as we derive 
orre
t and eÆ
ientprograms from it, so at ea
h transformation step the interpretation set must remain the same. Onthe other hand, some re
ent approa
hes to stru
tural synthesis have 
onsidered inequalities betweensets of 
onsequen
es as the basis for re�nement of spe
i�
ations (Robertson 1999b).166



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 167� �; �0. Between parentheses we refer to the se
tions in Appendix C that de�ne the
orresponding s
hemata.Adding an ArgumentTrivial Revision (Se
tion C.1)� trivial; �0 ! �(�) = �(�0)By de�nition, trivial revisions involve no 
hanges to the theory, so � = �0.Elementary Revisions (Se
tion C.2)� elementary; �0 ! �(�) � �(�0)This follows from the monotoni
ity of the system and the fa
t that elementary revisionsfor adding an argument 
onsist in adding axioms only|i.e. � � �0. In fa
t:Adding a Fa
t (Se
tion C.2.1)� fa
t; �0 ! � � �0Adding a Substantiated Rule (Se
tion C.2.2)� substantiated rule; �0 ! � � �0Adding a Burden Shift Rule (Se
tion C.2.3)� burden shift rule; �0 ! � � �0Remember that negation as failure 
an be represented by extra non-provability as-sumptions in the language.Updating Revisions (Se
tion C.3)� updating; �0 6! �(�) � �(�0)In this 
ase it is harder to predi
t how the interpretation set behaves in general, be
ause� 6� �0. However, looking at the properties asso
iated to ea
h logi
-spe
i�
 s
hema inthis 
ategory 
an provide more information about the 
hanges.Removing Irrelevan
e in a Rule (Se
tion C.3.1)� irrelevan
e; �0 ! �(�) � �(�0)



This follows from the properties asso
iated to the irrelevan
e s
hema: the axiomfrom � that is updated in �0 is su
h that all 
on
lusions derived from it are stillderived, and others are now allowed, namely those dependent on the satis�ability ofthe removed literal.Generalising a Rule (Se
tion C.3.2)� generalisation; �0 ! �(�) � �(�0)Again this follows from the properties asso
iated to the s
hema: the axiom in �0that is updated from � is obtained via the appli
ation of an inverse substitution(from terms to variables), so everything that was derived before 
an still be inferred.Revising the Consequent of a Rule (Se
tion C.3.3)� mis
on
lusion; �0 6! �(�) � �(�0)Revising the 
onsequent of a rule may introdu
e new elements into �(�0) but mayalso blo
k others from being derived. In this 
ase, no generi
 relation between theinterpretations sets 
an be identi�ed.Reversing a Rule (Se
tion C.3.4)� reversion; �0 6! �(�) � �(�0)As above, no set inequality relation between the two interpretation sets 
an be saidto hold in the general 
ase.Removing an ArgumentElementary Revisions (Se
tion C.4)� elementary; �0 ! �(�) � �(�0)This follows from the monotoni
ity of the system and the fa
t that elementary revisionsfor removing an argument 
onsist in retra
ting axioms only|i.e. � � �0. In fa
t:Retra
ting an Invalid Rule (Se
tion C.4.1)� invalid rule; �0 ! � � �0Retra
ting a Weak Rule (Se
tion C.4.2)� weak rule; �0 ! � � �0 168
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ting a Misrelation (Se
tion C.4.3)� misrelation; �0 ! � � �0Updating Revisions (Se
tion C.5)� updating; �0 6! �(�) � �(�0)Again it is harder to predi
t how the interpretation set behaves in general, be
ause � 6� �0.Analogously as in the updating 
ases above, the properties asso
iated to ea
h logi
-spe
i�
s
hema in this 
ategory 
an give more information about the 
hanges.Elaborating Pre
onditions in a Rule (Se
tion C.5.1)� elaboration; �0 ! �(�) � �(�0)The properties asso
iated to the elaboration s
hema guarantee that some 
on
lu-sions that were allowed in � will be blo
ked in �0, namely those dependent on thesatis�ability of the new literal whi
h is required to be unsatis�able in the theory.Spe
ialising a Rule (Se
tion C.5.2)� spe
ialisation; �0 ! �(�) � �(�0)Again this follows from the properties asso
iated to the spe
ialisation s
hema: theaxiom in �0 that is updated from � is obtained via the appli
ation of a substitution(from variables to terms), thus some of its original 
on
lusions may no longer beinferred.Revising the Consequent of a Rule (Se
tion C.5.3)� mis
on
lusion; �0 6! �(�) � �(�0)Revising the 
onsequent of a rule may blo
k some elements from �(�) but may alsointrodu
e new ones, so no generi
 relation between the interpretations sets 
an beidenti�ed.Reversing a Rule (Se
tion C.5.4)� reversion; �0 6! �(�) � �(�0)For the same reasons, no relations between the two interpretation sets 
an be guar-anteed to hold in the general 
ase.Designers of argument systems may 
hoose types of s
hema that 
onform to 
ertain
hara
teristi
s so as to predi
t an overall behaviour of the transformation pro
ess. For



instan
e if every s
hema � in a 
atalogue � is su
h that �(�) � �(��), then the inter-pretation set of a theory is guaranteed to either expand or at least remain un
hangedthroughout any dynami
 argument. On the other hand, if � also 
ontains 
ertain oper-ations su
h that �(�) � �(��), then nothing 
an be said about the global developmentof the argument, as transitivity 
annot be applied in this 
ase.Des
ribing possible revisions in terms of interpretation sets 
an provide yet more in-formation for in
uen
ing and guiding the design of domain spe
i�
 s
hemata from the
lassi�
ation in Figure 7.2. A question arises at this point, and is 
onsidered later inSe
tion 9.3, of whether this 
lassi�
ation is 
omplete is some sense. Also related tothis, Se
tion 9.4 dis
usses the role of this 
lassi�
ation in retrospe
tive analysis andexplanation of arguments.9.2 TerminationAt this stage termination 
an be redu
ed to the existen
e of �nite relevant argumentsin the theory. A revision 
an only be applied on
e to generate the same atta
k, andassuming that the number of possible revisions in the 
atalogue is �nite, the question iswhether an in�nite number of atta
ks satisfying the requirements of a 
ertain s
hema
an be generated. Problems 
an arise for in�nite 
hains of argumentation, but these area problem for diale
ti
al models of argumentation frameworks as well, as they may be
aptured by �xpoint approa
hes but not by exhaustively 
onsidering every argument inthe theory (Prakken and Vreeswijk 1999).9.3 Is Our Classi�
ation Complete?Chapter 7 proposed a way to parameterise the atta
k generation step by 
onstrainingthe types of revision operation in a 
as
ade of levels whi
h eventually gets to be domainspe
i�
. We do not 
laim that this is the only way to 
hara
terise the possible revisionsto argument, nor that the entire 
olle
tion in Figure 7.2 is 
omplete. We do argue,though, that this 
lassi�
ation is 
omplete up to a level, namely the level of instantiationdes
ribed in Se
tion 7.3.5. 170



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 171In fa
t, the level of instantiation des
ribed in Se
tion 7.3.4 and depi
ted in Figure 9.1below is 
omplete by de�nition, be
ause it is based on the 
hara
terisation of atta
ksgiven in Chapter 6. Any atta
k 
onsists in either introdu
ing a (not ne
essarily new)argument, or retra
ting an existing one. � �; �0� add argument; �0 � remove argument; �06,7 5
Figure 9.1: General types of revision.Se
tion 7.3.5 gives the general stru
ture of the revisions for adding and removing anargument, as depi
ted in Figure 9.2. Be
ause only fundamental types of revision are
onsidered, 
ompleteness 
an only be established with respe
t to these.� add argument; �0 � remove argument; �08� trivial; �0 � elementary; �0 129 11 � updating; �0� updating; �0 10� elementary; �0Figure 9.2: From dealing with arguments to dealing with premises.Arguing that this level is 
omplete is equivalent to saying that the following are theonly possible 
ombinations for adding or removing an argument:� adding an argument via a trivial revision;� adding an argument via an elementary revision (adding a new premise);� adding an argument via an updating revision (updating an existing premise);� removing an argument via an elementary revision (removing a premise);� removing an argument via an updating revision (updating an existing premise);whi
h in its turn is equivalent to saying the remaining 
ombinations below 
annot beused to des
ribe an atta
k:



� removing an argument via a trivial revision;� adding an argument via an elementary revision (removing a premise);� removing an argument via an elementary revision (adding a new premise).Let us then 
onsider ea
h possibility as follows:Removing an argument via a trivial revision.This is 
learly not possible, as removing an argument means refuting it, and that mustinvolve some revision to the theory.Removing an argument via an elementary revision (adding a premise).The most straightforward example in this 
ase involves the extended resolution me
hanismfor negation as failure, in whi
h adding a premise 
an blo
k 
on
lusions based on 
ertainnon-provability assumptions.For instan
e, the fa
t q(a) true 
an be added to the theory below is order to refute theargument for p(a) that is based on the non-provability of q(a).p(X)  not q(X)q(b)  trueInstead, this 
ould be interpreted as adding an argument for q(a) rather than as removingthe argument for p(a), and hen
e 
ould be obtained from rewrite 9.Adding an argument via an elementary revision (removing a premise).Analogously, this 
ase 
an also be redu
ed to that of removing an argument by removinga premise, and thus obtained from rewrite 10.Hen
e this level of instantiation is 
omplete for fundamental types of operations. Fromthe level of logi
-spe
i�
 s
hemata8 downwards 
ompleteness results 
an no longer beguaranteed, be
ause it is always possible to give more or less detailed des
riptions ofthe stru
tural revisions that are allowed.For instan
e elementary revisions for adding a premise are quite unspe
i�
, the mainrestri
tion 
on
erning the head of the 
lause to be added whi
h has to unify with the8 See Se
tion 7.3.6. 172
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e in question. Some updating revisions on the other hand are more spe
i�
 asthey depend on an existing axiom and on a well-de�ned way of transforming this axiom(e.g. spe
ialisation or generalisation). Also, our experien
e in modelling arguments hasshown that the types of s
hema for reversing a rule or revising its 
onsequent are not asfrequent as other updating s
hemata. We have even 
onsidered not in
luding these inthe 
olle
tion given in Chapter 7, but �nally de
ided on keeping them to illustrate thepossibility of introdu
ing and preserving diverse forms of revision.9.4 Communi
ating Dynami
 ArgumentsThis hierar
hi
al 
lassi�
ation not only promotes a methodi
al design of arguments
hemata in whi
h domain-spe
i�
 instan
es may be gradually devised, but also supportsanalysis, explanation and presentation of produ
ed arguments. Given that prede�neds
hemata may be re
ognised by the 
orresponding path in the hierar
hy, two sorts ofinformation may be 
ombined in 
ommuni
ating ea
h step in the argument: the vari-ous levels of instantiation for the revision operator, and the possible relations betweeninterpretation sets.We now revisit parts of the example in Chapter 8 to exemplify alternative modes ofargument 
ommuni
ation. In parti
ular, we 
onsider the dynami
 argument below:hA0; �1; A1; �2; A2; �3; A3; �4; A4; �5; A5i.A plain form of presentation whi
h 
onsists in laying out the whole argument in all itsdetails, with argument trees and instantiated argument s
hemata, may be denoted asfollows: A0 �1; A1 �2; A2 �3; A3 �4; A4 �5; A5.Sometimes, though, a higher level presentation may be more appropriate, and the follow-ing se
tions illustrate how the information asso
iated to ea
h s
hema may be employedfor that purpose.



9.4.1 Di�erent Levels of InstantiationThis se
tion explores alternative presentations of an argument based on the variouslevels of instantiation given by the hierar
hy in Figure 7.2. Also, assume that at everylevel the des
ription is parameterised by the type of atta
k it promotes, so it is possibleto say whi
h 
laim is supported at ea
h step.Expressing General Types of RevisionAt this level of des
ription|given in Se
tion 7.3.4|the argument pro
ess, whi
h startswith a justi�
ation for required level(a
atoxin ; 20), unfolds as follows:A0 add argument; A1 add argument; A2 remove argument; A3 add argument; A4 removeargument; A5The �rst move
onsists in adding an argument for safe level (a
atoxin ; s).The se
ond move
onsists in adding an argument for required level(a
atoxin ; 20).The third move
onsists in removing the argument for required level(a
atoxin ; 20).The fourth move
onsists in adding an argument for 
auses(a
atoxin ; 
an
er ; human).The �nal move
onsists in removing the argument for 
auses(a
atoxin ; 
an
er ; human).Expressing Fundamental Types of RevisionAt this level of des
ription|given in Se
tion 7.3.5|the argument pro
ess, whi
h startswith a justi�
ation for required level(a
atoxin ; 20), unfolds as follows:A0 elementary; A1 updating; A2 updating; A3 elementary; A4 updating; A5The �rst moveperforms an elementary revision for justifying safe level (a
atoxin ; s).The se
ond moveperforms an updating revision for justifying required level (a
atoxin ; 20).174



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 175The third moveperforms an updating revision for refuting required level(a
atoxin ; 20).The fourth moveperforms an elementary revision for justifying 
auses(a
atoxin ; 
an
er ; human).The �nal moveperforms an updating revision for refuting 
auses(a
atoxin ; 
an
er ; human).Expressing Logi
-Spe
i�
 Types of RevisionsAt this level of des
ription|given in Se
tion 7.3.6|the argument pro
ess, whi
h startswith a justi�
ation for required level(a
atoxin ; 20), unfolds as follows:A0 fa
t; A1 irrelevan
e; A2 spe
ialisation; A3 substantiated rule; A4 elaboration; A5The �rst move
onsists in adding a fa
t to justify safe level(a
atoxin ; s).The se
ond move
onsists in removing irrelevan
e in a rule to justify required level (a
atoxin ; 20).The third move
onsists in spe
ialising a rule to refute required level (a
atoxin ; 20)The fourth move
onsists in adding a substantiated rule to justify 
auses(a
atoxin ; 
an
er ; human).The �nal move
onsists in elaborating a rule to refute 
auses(a
atoxin ; 
an
er ; human).Finally ea
h step in the argument may be 
ommuni
ated in its integral form as originallyillustrated in Chapter 8.9.4.2 Relations between TheoriesDynami
 arguments may also be presented at a yet higher level of des
ription for ex-pressing set relations between theories, without knowing dire
tly how ea
h 
onse
utivetheory intera
ts nor how and what arguments triggered the transformation. A

ording



to the properties dis
ussed in Se
tion 9.1.2,9 the pro
ess of theory transformation basedon the a
atoxin example gives the following relations between ea
h transformation step:�(�) � �(��1) � �(��1�2) � �(��1�2�3) � �(��1�2�3�4) � �(��1�2�3�4�5)Noti
e that nothing 
an be guaranteed about the relation between the initial and �naltheory in this 
ase, be
ause di�erent kinds of transformation (expanding and 
onstrain-ing) have been involved.9.5 The Abstra
t Argumentation Framework: LimitationsWhile Se
tion 9.1.1 elaborated on how dynami
 argumentation relates to formalisms fordefeasible argumentation, this se
tion looks at types of arguments that 
annot be en-tirely 
aptured by these. In parti
ular, it takes the Abstra
t Argumentation Frameworkas a representative formalism and applies it to the example of argument from the safetyengineering domain in Chapter 2, identifying questions whi
h the existing framework donot answer but whi
h are needed to represent a larger 
lass of dynami
 arguments. Thisbrings in some of the issues to be addressed in the next part of this thesis in 
onne
tionto the automation of su
h examples.The reason why the Abstra
t Argumentation Framework is used here is be
ause itis 
exible and generi
, subsuming other approa
hes to defeasible argumentation (seeChapter 3). Also, it in
orporates some elements of revision, su
h as treating assumptionsas extra fa
ts in the theory (and whi
h 
an be atta
ked by proving their 
ontrary),and extending axioms to in
lude other non-provability assumptions. But although in(Kowalski and Toni 1996) it is 
laimed that the Abstra
t Argumentation Framework\seems to 
orrespond well with informal argumentation", there are some informal anduseful arguments that 
annot be represented within it.9 Assume that this example is now modelled as a de�nite logi
 program where negated atoms aretreated as positive assumptions extending the language, and whi
h are 
onsidered to be true but
an be atta
ked by their 
ontrary as de�ned by an asymmetri
 
on
i
t relation. This guaran-tees the monotoni
ity of the underlying language, and hen
e the use of properties dis
ussed inSe
tion 9.1.2. Noti
e that this only a�e
ts revision �1, whi
h now de�nes an atta
k of the form
annot be shown(safe level(a
atoxin ; L)) : in; safe level(a
atoxin ; L) : in rather than the originalsafe level(a
atoxin ; L) : out; safe level(a
atoxin ; L) : in.176



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 177One su
h example is the safety argument about the pressure tank 
ontrol system inSe
tion 2.1.1. Argumentation was used as a way of revising the system model in orderto in
rease its a

eptability with respe
t to known faults, based on a te
hnique knownas fault tree analysis. Fault tree analysis is essentially a method that \starts with anevent dire
tly related to an identi�ed hazard, the `top event', and works ba
kwards todetermine its 
ause" (Storey 1996, p.43). Taking the top event to be the rupture of thetank, the safety argument in Se
tion 2.1.1 followed by 
onsidering the possible 
auses (orminimal 
ut sets of events) leading to this event and adapting the model where ne
essaryso as to make the system a

eptably tolerant to these. For instan
e, one possible 
auseleading to the rupture of the tank is the primary failure of the relay k2 (see Figure 2.2),and the 
orresponding 
ourse of dynami
 argument 
ould be represented as follows:h A0 : The system is operational at all times�1 : introdu
e primary failure of k2A1 If relay k2 fails to open when it should, thesystem is no longer operational at all times�2 : add a redundant relay to the modelA2 If we add an extra relay in parallel,then the system is still operational iTo represent this argument in terms of an Abstra
t Argumentation Framework we �rstsele
t a supporting dedu
tive system, for instan
e the Horn 
lause resolution-basedsystem of (Kowalski and Toni 1996). Let A be the set of assumptions of the form
annot be shown('), where ' is a senten
e in the underlying language. Assuming thatwe know how to extend the rules appropriately, the following is a (simpli�ed) model �for the pressure tank system in Figure 2.2.operational tank(T )  on motor(T ) ^ not full(T )operational tank(T )  o� motor(T ) ^ pressurised(T )not operational tank(T )  on motor(T ) ^ pressurised(T )on motor(T )  
losed(relay(k2 ); T )o� motor(T )  open(relay(k2 ); T )
losed (relay(K); T )  energised(relay(K); T ) ^
annot be shown(open(relay(K); T )open(relay(K); T )  deenergised(relay(K); T ) ^
annot be shown(
losed (relay(K); T )Brie
y, the tank is operational at a time point T if the motor is pumping water into



it when it is not full, or when the tank is pressurised but the motor is o�. Otherwise,the tank is not operational if the motor is still on when the tank is pressurised. Noti
ethat operational tank(T ) and not operational tank(T ) are 
on
i
ting senten
es in thelanguage.In parti
ular, assume that at a given time t the relay k2 is de-energised and the tank ispressurised: pressurised(t)  truedeenergised (relay(k2 ); t)  trueAlso, as des
ribed in Se
tion 2.1 it is possible for the 
onta
ts of relay k2 to fail toopen when the 
oil is de-energised, 
ausing the rupture of the tank. This fault may berepresented by following axiom:
losed(relay(K); T )  deenergised (relay(k2 ); T )So let � denote the set of 
lauses above, and let:� = f
annot be shown(
losed (relay(k2 ); t)gAn argument supporting that the tank is operational at time t 
an be obtained if theassumption � is added to �: � [� ` operational tank(t): (9.1)Besides, the following argument for not operational tank (t) 
an also be derived:� ` not operational tank(t): (9.2)Be
ause the underlying system is monotoni
, the addition of 
lauses only allows morepossible 
on
lusions to be derived. In this way 9.1 and 9.2 are two 
on
i
ting arguments,but 9.1 
annot defend itself against 9.2. On the basis of a

eptable arguments (oradmissible assumptions), this framework dis
riminates between faulty and non-faultybehaviours and allows only the inferen
e of not operational tank (t).This is an important point be
ause it shows that the Abstra
t Argumentation Frame-work 
an formalise part of the safety argument about the pressure tank system. In178



CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 179this parti
ular 
ase where a fault is present, it does not allow a safe 
on
lusion to beerroneously derived.Yet this is a matter of safety, so it is essential that we 
an adapt the model to exhibit onlysafe behaviours. The revisions allowed in this framework, though, are only about addingextra non-provability assumptions. This makes it possible to defend operational tankfrom atta
ks by �rst assuming that things 
annot go wrong, and then prioritising thesearguments over the arguments for not operational tank . But these solutions do notrepresent any enhan
ement of system safety be
ause they do not 
hange the stru
tureof the system. Arguments su
h as \if an extra relay is added in parallel this atta
k willno longer be relevant enough to be a 
on
ern"|whi
h are 
ommon when modelling sys-tems in safety-
riti
al domains|
annot be expressed by means of extra non-provabilityassumptions.10This is another important point: the Abstra
t Argumentation Framework does say alot about what an argument is within a 
olle
tion of logi
 programming 
lauses, but itdoes not pres
ribe strategies for revising these 
lauses. Yet this is the most essentialtask in dynami
 argumentation. Although the Abstra
t Argumentation Framework ise�e
tive in expressing the defeasibility in argument, it does not a

ount for many ofthe features whi
h are responsible for argument dynami
s, as su
h as how atta
ks 
anmap onto 
hanges to the argument. In terms of argument s
hemata, for instan
e, one
ould de�ne a revision s
hema that adds redundan
y to the system by elaborating onthe axioms that depend on the behaviour of k2 .In summary, we took a novel view of spe
i�
ations as arguments (e.g. the des
riptionof the pressure tank model as an argument) and observed that in safety domains faulttrees are used to 
riti
ise spe
i�
ations. The Abstra
t Argumentation Framework alonedoes not enable us to repli
ate automati
ally the reasoning that is done based on faulttree analysis. What we found though is that it is in fa
t representationally adequatebut not enough distin
tions were made to a
tually represent that reasoning.In the next part we give a more detailed ar
hite
ture for adversarial argument that allowsfor external sour
es of information (su
h as the fault tree model) to generate instan
es10 It 
ould be argued that one 
ould just augment the set of 
lauses in some way, but the Abstra
tArgumentation Framework itself does not a

ount for any methodology supporting su
h a task.



of atta
ks from a 
atalogue of possible revision s
hemata. This ar
hite
ture in
ludes theme
hanisms ne
essary to give dynami
s to arguments, a

ounting for important aspe
tssu
h as:� where atta
ks 
ome from;� how these lead to 
ounter-atta
ks;� how the sour
e of these atta
ks maps onto 
hanges to the argument; and� how to determine the 
omparative strength of 
riti
ism.
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Part IIIInstantiating Appli
ations
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Chapter 10A General Ar
hite
ture forDynami
 Argumentation Systems
Having explored the me
hanisms for argument dynami
s in Part II, the aim of thispart is to de�ne the di�erent notions involved in dynami
 argumentation separately,thus providing a 
learer pi
ture of how arguments 
an be generated and evaluated, andalso allowing for a larger 
lass of arguments to be formally represented by 
onsideringpossible external sour
es of 
riti
ism and atta
k.The ar
hite
ture presented here was �rst proposed in (Carbogim et al. 1999) as anextension of the Abstra
t Argumentation Framework in (Kowalski and Toni 1996; Bon-darenko et al. 1997) and of the Argumentation Framework in (Dung 1995), in the sensethat these formalisms were used as a starting point in developing a more detailed frame-work for implementing adversarial argument. This 
hapter gives a general de�nition ofthe three types of 
omponents forming the basis of this proposal, namely a theory, a
riti
ism theory and a 
ontrol module.The rest of this part suggests ways of instantiating this ar
hite
ture so as to obtain,in a systemati
 way, relevant domain-spe
i�
 appli
ations of dynami
 argumentationsystems. At this point we return to the s
enarios introdu
ed in Chapter 2 to des
ribepossible argumentation systems to solve those problems. We �rst illustrate the useof this ar
hite
ture in a safety-engineering domain (Chapter 11), before des
ribing anappli
ation in the 
ontext of multi-agent negotiation (Chapter 12).
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10.1 The TheoryAs dis
ussed in Chapter 4, argument dynami
s is de�ned around the notion of a theory,so it only makes sense to keep it at the 
entre of the ar
hite
ture. Theories representthe obje
ts about whi
h we argue.De�nition 10.1 (Theory) Let (L;`) be a logi
al system, and FL be the set of axiomsin L. A theory � is any 
onsistent subset of FL.1 2Noti
e that this is where arguments and atta
ks are generated (via possible argument-based s
hemata), and so far the types of s
hemata used in Part II depended only onthe theory itself. But remember from the dis
ussion in Se
tion 8.3.2 that domain-spe
i�
 s
hemata may sometimes be over-spe
i�ed, so it is interesting to leave 
ertainopen parameters to be automati
ally instantiated during the argumentation, allowingfor points of atta
k to be provided by an external sour
e. This, though, requires anadditional theory.10.2 The Criti
ism TheoryThe intuition behind a 
riti
ism theory is to provide potential points of atta
k to argu-ments within the ar
hite
ture itself. These 
an guide the generation of atta
ks in thetheory �, but are de�ned separately from it by means of an additional theory �
rit .De�nition 10.2 (Criti
ism Theory) Let (L
rit ;`
rit) be a logi
al system, and FL
ritthe set of axioms in L
rit . A 
riti
ism theory �
rit is any 
onsistent subset of FL
rit . 2The notion of argument 
an be de�ned analogously to De�nition 4.3 by means of `
rit ,but no notion of atta
k is spe
i�ed within the 
riti
ism theory itself. Arguments from�
rit are mapped onto the theory in order to instantiate 
ertain atta
ks in �.Note that the 
riti
ism theory is not a mere partition of the theory itself, be
ause it mayinvolve di�erent inferen
e me
hanisms. In fa
t, the provability relations from theoryand 
riti
ism theory might be di�erent (e.g. ` 
an be dedu
tive and `
rit abdu
tive,1 This de�nition 
orresponds to De�nition 4.2 in Chapter 4.184



CHAPTER 10. A GENERAL ARCHITECTURE 185as illustrated in the next 
hapter), and this is one reason for de�ning them separately.This disso
iation, however, is not always 
lear be
ause the theories might 
lash whenthe underlying languages are equivalent, as in the 
ase of the Abstra
t ArgumentationFramework whi
h is abdu
tive at the meta-level although it uses a dedu
tive monotoni
logi
 at the obje
t-level.The pro
ess for interpreting arguments from �
rit to � is based on the relation:map � L� L
ritwhi
h essentially asso
iates 
onsequen
es from both theories,2 identifying whi
h sen-ten
es in the 
riti
ism theory 
orrespond to whi
h senten
es in the theory. This pro
essis des
ribed below and illustrated in Figure 10.1:
�0 = � [ ���0 ` ' map(�;�
rit ) �
rit `
rit 
�
ritmap('; 
)

Figure 10.1: Argument level: generating arguments based on a 
riti
ism theory.1. Let ' be a senten
e in L.2. If map('; 
) holds, then 
 is a point of 
onta
t between the additional theory andthe main one.3. Let �
rit `
rit 
 be an argument for 
 in �
rit .4. Let � be the 
orresponding set of senten
es in L obtained from �
rit a

ording tothe mapping above; i.e. map(�;�
rit).5. Then in the extended theory �0 = � [ � it should be possible to derive an argu-ment �0 ` ' for ' that is based on the 
orresponding argument for 
 in �
rit .2 The relation map('; 
) is said to hold between two formulae '; 
 if ('; 
) 2 map. Analogously,map(�;�0) holds between two sets of formulae if for every ' 2 � there exists 
 2 �0 su
h thatmap('; 
), and vi
e-versa.



Noti
e that it is hard if not impossible to pla
e any general 
onstraints on the mappingrelation so that the pro
ess above is always guaranteed to give a 
orresponding argumentin the main theory. There is more in sharing inferen
es than just translating expres-sions between logi
al systems (Corrêa da Silva et al. 1999)|for instan
e, the inferen
eme
hanisms of ea
h systems need to be 
ompatible. This is a diÆ
ult assumption tomake, but in our 
ase this pro
ess is quite dis
iplined and regulated.The reason why a 
riti
ism theory 
an provide points of atta
k to the theory is be
ause
onditions in an atta
k-based revision s
hemata may involve the generation of argumentsfrom this theory as a way of instantiating 
ertain elements in a s
hema. While Figure10.1 gives the general intuition behind mapping arguments from one theory to another,exa
tly whi
h axioms are added or altered in the theory are de�ned within a s
hemaby using the sorts of methods dis
ussed in the previous part. In this way, the mappingrelation above 
an be viewed as a spe
ial type of revision s
hema that depends onexternal theories to be instantiated. It be
omes more a mapping of 
on
epts than ofinferen
es, and whether the intended argument 
an then be generated is ensured by theproperties asso
iated to ea
h s
hema as dis
ussed in Chapter 7.Finally, the last type of 
omponent in our ar
hite
ture a

ounts for the notion of prior-ities and preferen
es between arguments.10.3 The Control ModuleIn human argument it is often the 
ase that extra information is applied to 
ontrol thegeneration of arguments, for instan
e when preferen
es are used for de
iding between
on
i
ting arguments (Prakken and Sartor 1997; Simari and Loui 1992; Brewka 1996;Amgoud and Cayrol 1998). Remember that our de�nition of atta
k3 already in
or-porates the notion of preferen
e between arguments (and whi
h 
ould be 
he
ked byasso
iated properties during the argumentation), although throughout Part II it wasassumed that every argument had equal strength.The role of the 
ontrol module is to de�ne 
omparative and prioritisation measures forarguments, and also to spe
ify 
riteria based on these measures for 
hoosing stronger3 See De�nition 4.4 in Chapter 4. 186



CHAPTER 10. A GENERAL ARCHITECTURE 187arguments, or for adjudi
ating between 
on
i
ting arguments. Of 
ourse 
riteria forde
iding whether arguments are preferred may not always exist, but if they do they arelikely to be domain-spe
i�
 (Carbogim et al. 2000b; Konolige 1988; Prakken and Sartor1997).There are many ways one 
an 
apture the notion of 
omparative measure between argu-ments, su
h as de�ning a stri
t partial ordering on the set of defeasible rules (Prakkenand Sartor 1997), or adopting the spe
i�
ity prin
iple (Simari and Loui 1992). But the
ontrol module also allows other types of prioritisation based on the individual strengthof arguments, whi
h 
ould be done in di�erent ways, e.g. by prioritising 
onsequen
esin the theory or by prioritising arguments from the 
riti
ism theory. Noti
e that thestudy of preferen
es is a subje
t in itself, and the fo
us on this thesis has been more onthe stru
ture of arguments. In any 
ase, Se
tion 11.4 brie
y dis
usses the possibilitiesfor prioritisation in this ar
hite
ture.So as to allow adaptation separately from the rest of the framework, we 
hara
terise the
ontrol module as a meta-level 
omponent whi
h treats theory and/or 
riti
ism theory assour
es of information and propagates priority measures through them a

ordingly. Thisar
hite
ture|sket
hed in Figure 10.2|is similar to the type of layered meta-interpreterdes
ribed in (Yal
inalp and Sterling 1991; Sterling and Shapiro 1994), and is useful forseparating the parts dealing with priorities from those dealing with the stru
ture of thearguments.
PRIORITY LEVEL

ARGUMENT LEVEL

� �
rit
Control

Figure 10.2: Ar
hite
ture overview: intera
tions between the 
ontrol module and thetheories in the argument level are of a di�erent nature than those between theory and
riti
ism theory, and thus are represented by dashed arrows rather than by the solidarrows depi
ted in Figure 10.1.



De�nition 10.3 (Control Module) Given a logi
al system (L0;`0) the 
ontrol mod-ule de�nes a priority measure on L0 and a me
hanism for propagating these measureson top of the argument generation me
hanism `0. 2This three-
omponent ar
hite
ture extends the formalism presented in Part II in orderto a

ount for external instantiation me
hanisms and for atta
ks based on priorities andpreferen
es. De�ning these separately allows for di�erent strategies to be used in ea
hof them, whi
h 
an be useful for understanding even more of the dynami
s in argument.Together with the library of possible argument s
hemata, this ar
hite
ture 
an deriveand 
ompare the arguments and atta
ks that will be needed for generating dynami
arguments4 by the sorts of me
hanisms explored in the previous part (and outlinedin Figure 7.1). As before, atta
ks allow 
hanges to be made to the theory, but nowthese 
an be based on preferen
e 
riteria for 
omparing arguments, priority measuresfor qualifying atta
ks, and on reasoned 
riti
ism arguments with the sour
e of these
riti
isms expli
itly de�ned.This is a quite generi
 and unrestri
ted des
ription so as to allow many possibilitiesfor instantiation. This thesis in parti
ular explores su
h possibilities in two di�erentdomains, namely safety-engineering in Chapter 11, and agent negotiation in Chapter12.

4 As dis
ussed in Se
tion 9.1, this is similar to the Argument Generation Unit in (Dung 1995).188



Chapter 11Worked Example: Instantiatingthe Ar
hite
ture
In Se
tion 3.4 we brie
y dis
ussed the importan
e of safety arguments in safety-
riti
aldomain. Now this 
hapter looks at how the ar
hite
ture proposed in Chapter 10 
an beinstantiated to des
ribe 
ertain relations in examples taken from the safety-engineering
ommunity, and whether dynami
 arguments 
an support the design and development ofmodels, being used as part of safety 
ases for supporting that the design of the proposedsystem is a

eptably safe (Krause et al. 1997; Gurr 1997).More spe
i�
ally, we 
onsider the safety argument in Se
tions 2.1.1 and 9.5 in whi
hfault tree analysis was used as a sour
e of possible arguments against the safety of apressure tank 
ontrol system, guiding the revision of a system model in order to in
reaseits a

eptability with respe
t to known faults (Vesely et al. 1981). The following se
-tions des
ribe exa
tly how this example 
an be modelled in our dynami
 argumentationframework, derived from the existing implementation of the system. This is done in twosteps:� �rst, we de�ne the three 
omponents of the ar
hite
ture as des
ribed in Chapter10, namely a theory, a 
riti
ism theory, and a 
ontrol module;� se
ond, we instantiate the me
hanism for generating dynami
 arguments dis
ussedin Part II by de�ning a suitable library of domain-spe
i�
 revision s
hemata.The implementation des
ribed in Chapter 8 is then used to automati
ally generate189
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FROM  RESERVOIRFigure 11.1: A pressure tank system (see Figure 2.2).dynami
 arguments about the pressure tank system being operational, and produ
esa

eptable theories|in this 
ase, models of the system|if all atta
ks based on thede�ned revisions and on the fault theory are su

essfully dismissed.111.1 Instantiating the Ar
hite
ture in a Safety DomainWe start by de�ning the 
omponents in the ar
hite
ture. For the sake of 
larity herewe just refer to fragments of the instantiation. The 
omplete ar
hite
ture de�nition inProlog as used in the implementation for this example is des
ribed in Appendix E.11.1.1 The Theory: The Pressure Tank ModelIn this 
ase, the theory|i.e. the obje
t about whi
h we argue|is the model of thepressure tank system in Figure 2.2 (reprodu
ed here in Figure 11.1). The following isone way to express this model in terms of a Horn 
lause resolution-based system.1 See De�nition 4.7 of a dynami
 argument.
190



CHAPTER 11. WORKED EXAMPLE 191operational tank(T )  on motor(T ) ^ not full(T )operational tank(T )  o� motor(T ) ^ pressurised(T )not operational tank(T )  on motor(T ) ^ pressurised(T )on motor(T )  
losed (relay(k2 ); T )o� motor(T )  open(relay(k2 ); T )
losed (relay(K); T )  energised(relay(K); T )open(relay(K); T )  deenergised (relay(K); T )As in Se
tion 9.5, here we adopt a simpli�ed version of the pressure tank model, whereenergised=deenergised and pressurised=not full are observable predi
ates in the sensethat they are given as fa
ts in the theory. For instan
e, assume that at time 60 the tankis observed to be pressurised, and relay k2 deenergised:2pressurised(60 )  truedeenergised(relay(k2 ); 60 )  trueIn our implementation, we use the expression main(T ) as a way to identify the maintheory T in the ar
hite
ture. If (L;`) is the underlying logi
al system, then expressionstheory(T;�) and provability (T; P ) are used to de�ne the set of axioms � 
orrespondingto the initial theory in L, and a predi
ate P for generating arguments based on theprovability relation `. In this example, this is instantiated in Prolog as follows:main(ptmodel).provability(ptmodel, solve).theory(ptmodel, TInit).where:� TInit is the list of axioms above de�ning the fun
tioning of the system, 
orre-sponding to the axioms in �, and� solve is a meta-interpreter that gives an argument for a senten
e from a list ofaxioms a

ording to resolution-based proof rules.Remember that in our Prolog implementation we represent sets of axioms as lists. Forease of referen
e in our dis
ussion we asso
iate a number with ea
h axiom. TInit isthen represented as follows:2 The spe
i�
ation in Appendix E is more 
omplex be
ause it models the behaviour of relays andthe pressurisation of the tank in terms of the behaviour of the other 
omponents and the givenpressurisation time.



1 operational tank(T )  on motor(T ) ^ not full(T )2 operational tank(T )  o� motor(T ) ^ pressurised(T )3 not operational tank(T )  on motor(T ) ^ pressurised(T )4 on motor(T )  
losed (relay(k2 ); T )5 o� motor(T )  open(relay(k2 ); T )6 
losed (relay(K); T )  energised (relay(K); T )7 open(relay(K); T )  deenergised (relay(K); T )8 pressurised(60 )  true9 deenergised (relay(k2 ); 60 )  true11.1.2 The Criti
ism Theory: The Fault Tree ModelA 
andidate theory for a 
riti
ism theory is the fault tree model asso
iated with thesystem. As dis
ussed in Se
tion 2.1.1 a fault tree is a model of the faults that 
an leadto an unsafe event in a system, and whi
h is de�ned separately from the system modelitself. Fault trees are basi
ally 
omposed of and- and or-gates, and therefore 
an beeasily expressed in a de
larative way in terms of Horn 
lauses. Figure 11.2 gives thebasi
 fault tree for the pressure tank system in Figure 11.1 as des
ribed in (Vesely et al.1981).
.
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E1 top event (tank rupture after the start of pumping)

Figure 11.2: Basi
 fault tree for the pressure tank example: 
ir
les denote basi
 events(faults) that require no further development, whereas boxes denote intermediate eventsin whi
h a fault o

urs be
ause of one or more ante
edent 
auses a
ting through logi
gates. Or-gates and and-gates are represented by + and �, respe
tively.The following is a fragment of this fault tree model represented here in our de
larativestyle. The top event|denoted here by tank rupture|o

urs if the pump 
ontinuouslyoperates for more than 60 se
onds, whi
h may happen if relay k2 
onta
ts fail to open192



CHAPTER 11. WORKED EXAMPLE 193after this time interval.1 tank rupture  
ontinuous pump operation2 
ontinuous pump operation  primary failure(relay(k2))Let the underlying 
riti
ism language L
rit be a Horn 
lause based language, and `
rit bean abdu
tive provability relation. We de�ne a set of abdu
ibles that 
orrespond to thebasi
 events in the fault tree, and arguments for tank rupture are based on assumptionsabdu
tively sele
ted from this set. For instan
e:fprimary failure(relay(k2))g `
rit tank ruptureNote that identifying minimal 
ut sets in fault trees|i.e. the 
ombination of failuresleading to system fault|is equivalent to applying abdu
tion with minimality 
onstraintsto the 
orresponding de
larative model. Hen
e `
rit di�ers from the dedu
tive inferen
eused to determine 
onsequen
es within the theory.In our implementation, we use the expression 
rit(T
) as a way to identify a 
riti
ismtheory T
 in the ar
hite
ture. Analogously as in the 
ase above, we use expressionstheory(T
;�
rit) and provability(T
; P
) to de�ne the set of axioms �
rit 
orrespondingto this 
riti
ism theory in L
rit , and a predi
ate P
 for generating arguments based onthe provability relation `
rit . The sort of fault tree based reasoning above 
an then be
hara
terised in Prolog as follows:
rit(ftree).provability(ftree, solve abd).theory(ftree, TCrit).where:� TCrit is a list of axioms de�ning the fault tree model, 
orresponding to the axiomsin �
rit , and� solve abd is an abdu
tive meta-interpreter for these axioms.Figure 11.3 illustrates the argumentation pro
ess for generating atta
ks based on a
riti
ism theory for this parti
ular safety argument. � and �
rit are fragments of the



tank rupture 
ontinuous pump operation� �
ritmap(not operational tank(T ); tank rupture)

pressurised(60)
onfli
t(operational tank(T );

operational tank(T )  off motor(T ) ^ pressurised(T )on motor(T ) ^ not full(T )operational tank(T )  
deenergised(relay(K); T )energised(relay(K); T )
losed(relay(K); T ) open(relay(k2); T )off motor(T ) not operational tank(T )  on motor(T ) ^ pressurised(T )
losed(relay(k2); T )on motor(T ) 

deenergised(relay(k2); 60)open(relay(K); T ) not operational tank(T ))open(relay(k2); T )
losed(relay(k2); T ) 


ontinuous pump operation primary failure(relay(k2))

map(
losed(relay(K); T ) open(relay(K); T ); primary failure(relay(K)))Figure 11.3: Generating atta
ks to the pressure tank model based on the fault theory.pressure tank system model and the asso
iated fault tree model, respe
tively. From theargument for tank rupture in �
rit whi
h is based on the primary failure of relay k2 , weadd to the theory the axiom 
losed(relay(k2); T ) open(relay(k2); T ) for representingthis type of failure|namely, k2 is 
losed when it should be open. Using this premisewe 
an derive an argument for not operational tank(60) whi
h atta
ks the argumentfor operational tank(60) in �.To illustrate why we 
annot 
atten all of this into a single theory, as we would have todo if we followed the approa
h des
ribed in the Abstra
t Argumentation Framework,3
onsider the example in Figure 11.4. If we interpret mappings m1 and m2 in (a) asimpli
ations, then we merge the theories as in (b). But then we do not have a meansof driving the non-monotoni
 revisions to the argument, sin
e we do not know that thefault stru
ture is tested di�erently from the rest (hen
e we do not know where to applyabdu
tion).Re
all that mappings between the theory and a 
riti
ism theory 
an be spe
i�ed as3 See Se
tions 3.1.4 and 9.5. 194
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m1m2 m2m1� �
rit
Figure 11.4: Our proposal (a) and the 
attened equivalent (b).argument s
hemata. The mapping above, for instan
e, 
orresponds to an operation foradding a substantiated 
lause based on arguments generated from the fault theory. Thefault theory gives exa
tly whi
h 
omponents 
an be validly instantiated in the domain-spe
i�
 s
hema below so that, if they fail, they should lead to a system fault. Noti
ethat this s
hema is obtained from the general s
hema for adding substantiated 
lauses(see Se
tion C.2.2) in a similar way as des
ribed in Se
tion 8.3.Domain-spe
i�
 S
hema PRIMARY FAILURE OF ACTIVE COMPONENTS: 1 ) 2 ) 3 )6) 9) 14 in(operational tank(T ); A;�);add(substantiated rule(P )); revise(�; fg; fPg [ A0;�0);in(not operational tank(T ); A0;�0)Properties: � supports(A0; not operational tank(T ) : in; �0);satis�able(on motor(T ) ^ pressurised (T ); � [ A0) �Conditions: operational tank(T ) : in 2 GA;not operational tank(T ); on motor(T ) ^ pressurised(T ) 2 L;P = not operational tank (T ) on motor (T ) ^ pressurised (T );gen argument(ftree; tank rupture;A
rit);A0 = f
losed (C; T ) open(C;T ) jprimary failure(C) 2 A
rit ; type(C) 6= tankgsu
h that arguments are generated via the 
orresponding meta-interpreter solve abd :gen argument(ftree, X, A) :-theory(ftree, TCrit),solve abd(X, A, TCrit).An interesting point to make about this s
hema is that it is not fundamental (i.e. trivial,elementary or updating) like most s
hemata dis
ussed so far. Apart from the 
lause for
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Figure 11.5: Generating atta
ks to models based on fault theories.deriving not operational tank(T )|whi
h is the 
lause intended to be substantiated|we need to add the axioms in A0 so as to substantiate it. In fa
t, remember fromSe
tion 7.3.5 that more 
omplex operations 
an be de�ned by expanding the sets R andA in a way that the asso
iated properties still hold.4 The only adaptation is that anyproperties involving the original theory � should 
onsider also the extra axioms|e.g.in the s
hema above rather than 
he
king that the body of the main 
lause is satis�ablein � we need to 
he
k that it is satis�able in � [ A0, so that P 
an in fa
t give theintended argument in �0 = � [A0 [ fPg.5The last two 
onditions in the s
hema give exa
tly what extra axioms should be addedbased on the 
riti
ism argument for tank rupture . The reason why we disregard thepossible primary failure of the tank itself is be
ause, a

ording to standard te
hniquesfor fault tree evaluation, the tank is a passive 
omponent (Vesely et al. 1981, p. VIII-12)rather than an a
tive 
omponent su
h as a relay or a swit
h.4 Re
all from De�nition 4.5 that a stru
tural revision operation is 
hara
terised by a pair (R;A) ofsets of axioms.5 Note that the axiom P in s
hema PRIMARY FAILURE OF ACTIVE COMPONENT is already inthe theory. Although theories are implemented as lists they are supposed to behave like sets, sothe addition of a new element whi
h is equivalent to an existing one does not 
reate a dupli
ate(equivalent) entry in the list.
196



CHAPTER 11. WORKED EXAMPLE 19711.1.3 The Control ModuleThere are various types of results that 
an be obtained from fault tree evaluation te
h-niques, in
luding determination of minimal 
ut sets, numeri
al probabilities asso
iatedwith these sets, and quantitative and qualitative rankings of 
ontribution to systemfailures (e.g. a

ording to the size of ea
h minimal 
ut set). That means that thereare also various ways of prioritising the atta
ks whi
h are based on these subsets ofassumptions from the fault tree model.One way for instan
e is by assigning probabilities to the basi
 events and propagatingthese through the fault tree model a

ording to the laws of probability theory. We 
anestimate the probability of the top event being derived from an argument and the 
riteriafor de
iding whether this argument defeats a safe argument from the theory is basedon the analysis of this probability. For instan
e, this 
an be 
ompared to a thresholdimportan
e value, under whi
h atta
ks based on the argument 
an be disregarded. Thatmeans that not every 
ombination of events leading to the top event needs to trigger arevision in the model so as to generate an atta
king argument; i.e. an atta
k is relevantenough to be a 
on
ern if the probability of the minimal 
ut set on whi
h it is based isnot a

eptable for safety standards. This 
losely resembles the method of analysis forfault toleran
e used in pra
ti
e, as des
ribed in (Vesely et al. 1981).As dis
ussed in Chapter 10, we 
hara
terise this sort of prioritisation by layered meta-interpreters so as to propagate priority measures on top of the generation of arguments.In our representation, the expression �lter(P1; P2) denotes that the meta-interpreterP2 treats the de�nition of meta-interpreter P1 for argument generation as a sour
e ofinformation. In this example, the expression below:filter(solve abd, solve filter).states that solve �lter 
onsiders the probabilities assigned to basi
 events and propa-gates these appropriately as arguments are 
onstru
ted by solve abd , thus �ltering thearguments that are strong or relevant enough and hen
e allowed to be advan
ed as at-ta
ks. The predi
ate solve �lter (rather than solve abd) is used to generate prioritisedarguments from the fault tree model:



gen argument(ftree, X, A) :-theory(ftree, TCrit),solve filter(solve abd(X, A, TCrit)).This is one way of prioritising arguments in the 
ontrol module; others are dis
ussed inSe
tion 11.4.11.2 Generating Dynami
 ArgumentsWith the ar
hite
ture 
omponents de�ned in this way, we 
an then use the me
hanismsdis
ussed in Part II to generate dynami
 arguments in this domain. Note, though,that with only one type of s
hema|namely PRIMARY FAILURE OF ACTIVE COMPONENTS|arguments 
an just introdu
e faults to the model. But as dis
ussed in Se
tion 9.5, it isimportant to allow adaptation of the model. One might say that the base model of thesystem|i.e. the initial model|satis�es all points of atta
k given by the 
orrespondingfault tree, although only the atta
ks that are strong enough (a

ording to the prioriti-sation de�nition) 
an in fa
t be advan
ed. In these 
ases, we should try to dismiss theseatta
ks by making appropriate 
hanges to the stru
ture of the model.However, the 
urrent spe
i�
ation does not give any means for that. Even if we 
onsidertrivial s
hemata, there are no alternative arguments for operational tank , and in any
ase these would not be enough to raise the 
on�den
e that the system is a

eptablysafe. To reinstate a parti
ular 
on
lusion after it has been atta
ked we need to performsome a
tion to 
hange the theory su
h that this atta
king argument 
an no longer bederived. This is illustrated in Se
tion 2.1.1, where a parallel relay was introdu
ed toimprove system safety. One way to undermine the argument based on the failure of k2 ,and thus to 
onsiderably improve system safety, is by adding some redundan
y to thesystem (i.e. another relay in parallel to k2 ).What it means for a new relay to be added in parallel to an existing relay is thatthe new relay must have the same behaviour as the original one. Moreover, if some
on
lusion depended on the original relay being open, the same 
on
lusion depends onthe new relay being open (only one relay being open is suÆ
ient to derive it). In termsof the model, we 
an dupli
ate the 
lauses de�ning the behaviour of the original relay in198



CHAPTER 11. WORKED EXAMPLE 199order to de�ne the behaviour of the new relay (whether and when its 
onta
ts are openor 
losed), as well as those 
lauses in whi
h the pre
onditions involve the original relaybeing open. On
e we add a redundant relay, if some 
on
lusion depended on the originalrelay being 
losed, it now depends on both relays being 
losed, and this is the 
lause inthe model that needs to be elaborated in order to blo
k 
ertain undesired 
on
lusions.This 
ould be 
aptured by the 
omplex (i.e. non fundamental) domain-spe
i�
 s
hemabelow for adding a redundant relay, obtained from the general s
hema for elaboratinga rule (see Se
tion C.5.1) in a similar way as des
ribed in Se
tion 8.3.6Domain-spe
i�
 S
hema REDUNDANCY OF RELAY: 1) 2) 3) 5) 12) 20in(X;A;�);retra
t (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g [ A00;�0);out(X;A;�0)Properties: 8<: supports(A;X : out;�0);unify(X;H);:satis�able(B�;� [ A0) 9=;Conditions: X : in 2 GA;
losed (relay(R); T ) open(relay(R); T ) 2 A;P = H  B1 ^ ::: ^ Bm 2 A;Bi = 
losed(relay(R); T );new 
omponent id(R1);B = 
losed(relay(R1); T ) 2 L;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H);A0 = fP1[R=R1℄ j P1 2 �; P1 6= PgThus, just be
ause we are adopting an ar
hite
ture that allows instantiation from ex-ternal sour
es it is not stri
tly ne
essary for all s
hemata to be instantiated in thatway. S
hemata like the one above suggest general ways for adapting models a

ordingto known faults that have been introdu
ed to the model deliberately. They 
an then beapplied to other arguments, thus produ
ing alternatives for design based on the initialmodel. These 
an vary, for instan
e, a

ording to di�erent measures of prioritisation(i.e. whi
h 
ombination of events 
an be safely dismissed) and also to the orderingin whi
h arguments have been generated (e.g. adding a redundant 
omponent mightblo
k other atta
ks from being supported based on the fault tree). On
e a dynami
6 As de�ned in Appendix A, F[T1=T2℄ denotes the formula obtained from a formula F by repla
ing everyo

urren
e of the term T1 by the term T2.



argumentation pro
ess is over|i.e. on
e every minimal 
ut set has been dismissed|wemay have produ
ed an alternative, more elaborated model. On
e again, one may wantto 
onsider the fault tree model for the new stru
tured system and rerun the pro
ess.11.3 A Dynami
 Argument in the Safety DomainNow that the ar
hite
ture and a 
atalogue � of atta
k-based revision s
hemata havebeen spe
i�ed, the system in Se
tion 8.1.2 
an be used to generate dynami
 argumentsin an automated form.Let TInit be the theory in Se
tion 11.1.1, and � be:fPRIMARY FAILURE OF ACTIVE COMPONENTS;REDUNDANCY OF RELAYg.Assume also that the threshold importan
e value is set e.g. to 0.1, meaning that anatta
k based on the fault tree model (
riti
ism theory) 
an only be advan
ed if the
orresponding minimal 
ut set 
ontributes in more than 10% to the probability of thetop event being derived.7 Below we present a dynami
 argument pro
ess about thetank being operational as generated by our implementation, in the same format as thea
atoxin argument in Se
tion 8.2.A

ording to De�nition 4.7, the �rst argument to be advan
ed is a justi�
ation sup-porting the main 
laim that the pressure tank system is operational, for instan
e, attime 60.Argument A0 is a justi�
ation for operational tank (60).
deenergised(relay(k2), 60)

open(relay(k2), 60)

off_motor(60)

operational_tank(60)

pressurised(60)

7 The relative quantitative importan
e of minimal 
ut sets is obtained by taking the ratio of the minimal
ut set probability to the total system probability (Vesely et al. 1981).200



CHAPTER 11. WORKED EXAMPLE 201Revision �1 is obtained from s
hema PRIMARY FAILURE OF ACTIVE COMPONENTS, andfrom the argument for tank rupture in the fault tree model whi
h is based onfprimary failure(relay(k2 ))g. As des
ribed by Vesely et al. (1981), the relativequantitative importan
e of this minimal 
ut set is 86%, and hen
e above thestipulated threshold.In this way,�1 : add(substantiated rule0BBBB� not operational tank(T ) on motor(T ) ^ pressurised (T );
losed(relay(k2); T ) open(relay(k2); T ) 1CCCCA)is an atta
k-based revision that 
an be used to 
onstru
t an argument for jus-tifying that the system is not operational at time 60. Moreover, the propertiesa

umulated during the instantiation 
an ensure that the generated argument infa
t supports that not operational tank(60) : in.Argument A1 is a justi�
ation for not operational tank (60).

deenergised(relay(k2), 60)

open(relay(k2), 60)

on_motor(60) pressurised(60)

closed(relay(k2), 60)

not_operational_tank(60)

Revision �2 adapts the model via s
hema REDUNDANCY OF RELAY, adding a new relayk2 0 in parallel to k2 in order to refute the 
laim that the motor is on at time 60.In this way,�4 : retra
t (elaboration � on motor(T ) 
losed(relay(k2 ); T ) �)andadd (elaboration0BBBBBB� on motor(T ) 
losed (relay(k2 ); T ) ^ 
losed(relay(k2 0); T );deenergised (relay(k2 0); 60) true ;o� motor(T ) open(relay(k2 0); T )
1CCCCCCA)is an atta
k-based revision that that refutes argument A1.



Argument A2 is a refutation of on motor (60).
deenergised(relay(k2), 60)

open(relay(k2), 60)

on_motor(60)

closed(relay(k2), 60)

At this point no other atta
k 
an be generated su
h that the 
laim operational tank(60)be
omes unsubstantiated. The revised theory below is said to be a

eptable with respe
tto the faults in the fault tree model.1 operational tank(T )  on motor(T ) ^ not full(T )2 operational tank(T )  o� motor(T ) ^ pressurised(T )3 not operational tank(T )  on motor(T ) ^ pressurised(T )4 on motor(T )  
losed (relay(k2 ); T ) ^ 
losed (relay(k2 0); T )5 o� motor(T )  open(relay(k2 ); T )6 
losed (relay(K); T )  energised (relay(K); T )7 open(relay(K); T )  deenergised (relay(K); T )8 pressurised(60 )  true9 deenergised (relay(k2 ); 60 )  true10 
losed (relay(k2); T )  open(relay(k2); T )11 deenergised(relay(k2 0); 60 )  true12 o� motor(T )  open(relay(k2 0); T )In a nutshell, there are two advantages in de�ning dynami
 argument systems based onthis ar
hite
ture: one is be
ause we allow external sour
es of 
riti
ism to be represented;the se
ond is to allow modular representation of priorities. This separation is interestingbe
ause it allows, for instan
e, di�erent inferen
es to be used and di�erent strategies ofprioritisation to be tested. Now that we have seen an example of argument prioritisation,the next se
tion dis
usses some of the uses of priorities in the generation and sele
tionof arguments within our ar
hite
ture.11.4 Argument Prioritisation in the Ar
hite
tureAs mentioned in Chapter 4 and illustrated in Se
tion 11.1.3, the use of defeat andprioritisation 
riteria to represent that 
ertain arguments may be preferred over othersis an important element in the generation and development of argumentation pro
esses.202



CHAPTER 11. WORKED EXAMPLE 203The issue of preferen
es in argumentation has been extensively studied in the literature,and various frameworks for dealing expli
itly with priorities and with how preferen
erelations 
an be integrated into argumentation systems have been proposed (Amgoudand Cayrol 1998; Prakken and Sartor 1997; Brewka 1996; Vreeswijk 1993; Grosof 1997).In general, prioritisation of arguments involve the aggregation of preferen
e 
riteria givensome pre
eden
e ordering. Very often it is assumed that a partial|i.e. transitive|ordering between arguments (or between axioms in the knowledge base) exist, basedon whi
h the notion of defeat is de�ned and 
on
i
ts are resolved. Examples of pri-oritisation 
riteria are the spe
i�
ity prin
iple, reliability of sour
es, or yet temporalpre
eden
e of arguments or axioms.This se
tion does not present a general a

ount of priorities in argumentation, nor itproposes a spe
i�
 representation for it (whi
h is likely to be domain-spe
i�
, as dis-
ussed earlier in this thesis). Priorities and preferen
es are not a main part of thisthesis, but it is interesting to note that our ar
hite
ture also allows for prioritisation ofindividual arguments as a way of measuring the quality of these arguments, thus blo
k-ing some from being advan
ed and redu
ing the spa
e of possible dynami
 arguments.Most existing systems only 
onsider preferen
es as a way of 
omparing two (
on
i
ting)arguments.Hen
e, given that up to this point we have presented details of a dynami
 argumentgenerator, various worked examples and an ar
hite
ture for dynami
 argument systems,we now brie
y dis
uss suitable prioritisation representations linked to our appli
ations,looking at some of the possibilities for priority handling within the ar
hite
ture pro-posed in Chapter 10. For instan
e, the example above des
ribed a way to prioritisearguments generated from a fault theory in a safety-
riti
al domain. This is one typeof prioritisation whi
h involves the �ltering of arguments a

ording to some relevan
e
riterion, and whi
h is dis
ussed in Se
tion 11.4.1.Another possibility for prioritisation in our ar
hite
ture, involving the primary 
ompar-ison of arguments, is dis
ussed in Se
tion 11.4.2. Finally, Se
tion 14.2.2 addresses somerelated issues in 
onne
tion with the sele
tion of arguments to be advan
ed.



11.4.1 Priority Criteria for Generating ArgumentsThis sort of prioritisation 
on
erns the generation of individual arguments, and hen
e
an be applied both to arguments generated in the main theory as well as to argumentsgenerated in a 
riti
ism theory. Essentially, it is about the quality of the arguments.As des
ribed in Se
tion 11.1.3, given a provability relation for argument generation|either in the theory or in a 
riti
ism theory|we 
an de�ne a layered meta-interpreterthat uses the de�nition of the �rst to propagate 
ertain priority measures as argumentsare generated, �ltering those arguments that satisfy some threshold 
ondition givensome pre
eden
e ordering. In the example in Se
tion 11.1.3, this was related to thequantitative 
ontribution of minimal 
ut sets to system failure.�
rit �
rit + �lter� any generated argument isrelevant prioritise 
riti
ism� + �lter prioritise 
onsequen
es inthe theory prioritise 
riti
ism and pri-oritise 
onsequen
es in thetheoryFigure 11.6: Prioritisation in the generation of individual arguments.Table 11.6 summarises the possibilities for prioritisation of argument generation in ourar
hite
ture. The fault tree example for instan
e �ts in the top-right box. Noti
e thatthis has nothing to do with 
he
king whether the property supports holds or not. Inthat 
ase, arguments may not be advan
ed be
ause they have already been 
onsideredin the pro
ess. Here arguments may be blo
ked be
ause they are not relevant enough,or good enough, in the domain.11.4.2 Preferen
e Relations for Comparing ArgumentsAnother possibility is to use priorities to blo
k arguments from being advan
ed notbe
ause they are not relevant enough per se, but be
ause they are not strong enoughto defeat some 
on
i
ting argument. This sort of prioritisation does not o

ur in the204



CHAPTER 11. WORKED EXAMPLE 205
ontext of generating individual arguments, but in the 
ontext of atta
ks and 
on
i
tsduring the argumentation pro
ess. Hen
e, it only o

urs within the main theory, whenan atta
k of the form in; in is advan
ed. If no prioritisation of this sort is de�ned, thenno argument is preferred over any other (remember that this is the basi
 assumptionwe adopted throughout Part II of this thesis).Comparative measures between 
on
i
ting arguments in the main theory 
an also bede�ned in the same layered style, in whi
h a meta-interpreter is used on top of theargument generator to propagate some preferen
e measure. But in this 
ase, rather than
omparing the 
on
lusive for
e of one argument to some threshold value, the preferen
eme
hanism 
ompares the relative for
e of two 
on
i
ting arguments. A meta-interpreterfor argument 
omparison again uses the de�nition of the provability relation in the maintheory to propagate 
ertain preferen
e measures a

ording to the argument stru
ture,taking as input any two arguments whi
h 
an then be 
ompared a

ording to somepre
eden
e ordering.Noti
e that we may have di�erent 
riteria for argument �ltering (e.g. we may only
onsider to be relevant those arguments involving less than �ve inferen
e steps) andargument 
omparison (e.g. we may de
ide between two 
on
i
ting arguments, both
onsisting of less than �ve inferen
e steps, by analysing their 
on
lusive for
e based onan expli
it partial order on the axioms in the underlying theory).





Chapter 12Relating Argument Dynami
s toa Multi-Agent Problem
Another potential area of appli
ation of dynami
 arguments is that of negotiation be-tween autonomous agents,1 in whi
h agents must 
ome to a mutually a

eptable agree-ment about some matter (Parsons and Jennings 1997; Parsons et al. 1998; Sierra et al.1997b). In fa
t, Jennings et al. (1998) have 
hara
terised three general topi
s in resear
hin negotiation, namely negotiation proto
ols, agreement obje
ts and agents' strategies.The �rst fo
uses on de�ning the rules of the game, su
h as the types of parti
ipants,the possible negotiation states and valid a
tions of ea
h parti
ipant in ea
h state. These
ond is about spe
ifying the range of negotiable issues|e.g. pri
e, delivery date,quality|over whi
h agreement is to be rea
hed. Finally, the last is 
on
erned with theagents' de
ision making strategies, and is often shaped by the �rst two.The di�eren
e in fo
us between negotiation proto
ols and agreement obje
ts is similarto the sort of distin
tion between proto
ol- and obje
t-based argumentation dis
ussedin Se
tions 3.3.3 and 3.3.4. Remember that we 
an emphasise di�erent aspe
ts of thepro
ess depending on what we want to formalise. On the one hand, emphasis is on
ommuni
ation between agents, and on de�ning proto
ols for ex
hanging messages 
on-taining proposals and 
ounter-proposals, and for de
iding whi
h 
on
lusion is a

eptableto every agent involved. On the other hand, though, emphasis is on the stru
ture ofthe agreement rather than on 
ommuni
ation and ex
hange of messages. This is aboutnegotiating 
omplex terms and 
onditions of a proposed deal/agreement, and adjusting1 See dis
ussion in Se
tions 2.1.2 and 3.3. 207



the terms of su
h agreements based on reasoned arguments by the agents involved.Be
ause the fo
us on argument dynami
s is on the development of an obje
t, we foundthat the parti
ular problem of forming 
ontra
ts between negotiating agents 
onformsto a style of reasoning similar to that of generating dynami
 argument. This 
hapterdes
ribes a way to instantiate a system from the general ar
hite
ture in Chapter 10 forgenerating arguments in this domain.12.1 Contra
t-based NegotiationWork on 
ontra
ts is not new. Sierra et al. (1997a) proposed a model of negotiationbased on 
ontra
ts that are represented as 
olle
tions of issues (variables) whose valuesneed to be set. Through negotiation, an agent proposes values within its a

eptablerange until an assignment of values suiting every parti
ipant is obtained.Although 
ontra
ts are essentially 
olle
tions of negotiable issues, some approa
hes fo
usless on the pro
ess of assigning a

eptable values to negotiables than on stru
turing thesein terms of logi
al rules. In the logi
-programming 
ommunity, for instan
e, Daskalopuluand Sergot (1997) have investigated the use of logi
-based (automated) tools supportingthe analysis and representation of legal 
ontra
ts in large-s
ale, long-term engineeringtrading agreements. These are substantially more 
omplex than sales of goods 
ontra
ts.Reeves et al. (1999, 2000) also propose a way for representing 
ontra
ts as 
ourteouslogi
 programs (Grosof 1997). The idea is to have a de
larative des
ription of thespe
i�
ation of a 
ontra
t, and then generate �nal, exe
utable 
ontra
ts via automati

on�guration for di�erent types of au
tions.In our model of 
ontra
t-based negotiation2 we also 
onsider 
ontra
ts to be sets oflogi
al rules whi
h 
an, via dynami
 argumentation pro
esses, be adjusted based onreasoned arguments by the agents involved in the agreement. By adjusting we mean notonly 
hanging the values asso
iated with negotiable issues, but also the stru
ture of the
orresponding rules and hen
e the relations between negotiables.2 The model we present in this 
hapter was initially proposed in (Carbogim and Robertson 1999).
208
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t-based Negotiation as Dynami
 ArgumentationThe worked example in this 
hapter is based on the model for 
ontra
t-based negoti-ation des
ribed in Se
tion 2.1.2. Remember that 
ontra
ts are obje
ts whi
h regulateagreements between two autonomous agents|a 
onsumer and a produ
er|about thesupply of a parti
ular produ
t (or servi
e). The purpose of 
ontra
t-based negotiationis to adjust the terms of this agreement so that it is a

eptable for both parties involved.We assume that only two parties are involved in the negotiation, although an agent mayalso be involved in other di�erent pro
esses simultaneously, even playing distin
t rolesin distin
t pro
esses (e.g. being a produ
er in some 
ontexts and a 
onsumer in others).The pro
ess of 
ontra
t-based negotiation starts when one of the parties proposes abinding 
ontra
t to regulate some agreement between produ
er and 
onsumer. We 
anassume that the produ
er makes this �rst proposal (e.g. upon previous request fromthe 
onsumer). This 
ontra
t is now the obje
t of negotiation between the parties and isrepresented as a set of formulae stating the 
onditions for a

omplishing the agreement.The 
onsumer re
eives the 
ontra
t from the produ
er and analyses it. If it agrees withthe 
lauses, then the pro
ess of negotiation is over. But if the 
onsumer has reasonsto believe that this parti
ular 
ontra
t will not be su

essfully 
ompleted, it sendsthe 
ontra
t ba
k to the produ
er with the appropriate 
riti
isms. The produ
er thentries to adapt some of the 
lauses in that parti
ular 
ontra
t in order to make it morea

eptable, sending it ba
k again to the 
onsumer for further analysis. The pro
ess ofadjusting the 
ontra
t 
ontinues until there are no more 
riti
isms (i.e. it is a

eptablefor both produ
er and 
onsumer) or until one of the parties withdraws.12.1.2 A Simple Language for Contra
tsThis se
tion des
ribes the basi
 s
enario we use to develop our ideas on how negotiationrelates to dynami
 argumentation, and a simple spe
i�
ation language used to represent
ontra
ts in this s
enario. In parti
ular, we 
onsider two types of agents:Produ
ers. The term produ
er (X;P ) denotes that agent X wants to sell produ
t P .Consumers. The term 
onsumer (Y; P ) denotes that agent Y wants to a
quire P .



Agents produ
er X
onsumer YAgreement agent X to supply produ
t P to agent YContra
t expli
itly state the 
onditions for the agents to 
ommitto this agreementFigure 12.1: Basi
 s
enario for 
ontra
t negotiation between produ
er and 
onsumer.If a produ
er X has agreed to supply produ
t P to a 
onsumer Y , then a 
ontra
t-based negotiation pro
ess is 
arried out by X and Y in order to adjust the 
lauses ofthis agreement so that it is a

eptable to both parties. This s
enario is summarised inFigure 12.1.Being the produ
er,X proposes an initial 
ontra
t to Y stating the 
onditions for su

essof the arrangement between them. These 
onditions might in
lude the appropriatedelivery of the produ
t by X within the stipulated time, and the appropriate paymentfor it by the 
onsumer Y . The form of a generi
 
ontra
t 
lause is given below, assumingan underlying Horn 
lause resolution-based system.A 
ontra
t between a produ
er X and a 
onsumer Y for the supply of a produ
t P is su

essfully
ompleted if all the agreed terms T1; :::; Tm are ful�lled. Ea
h term Ti|su
h as for instan
equantity, delivery or payment| may depend on X, Y and P .
ontra
t 
ompletion(X;Y; P )  produ
er (X;P ) ^
onsumer(Y; P ) ^ful�ll(T1) ^ ::: ^ ful�ll (Tm)For instan
e, the following is a possible instantiation of this general 
lause with two
ontra
tual terms, namely delivery and payment.A 
ontra
t between a produ
er X and a 
onsumer Y for the supply of a produ
t P is su

essfully
ompleted if the agreed terms of delivery of P are ful�lled by X, and the agreed terms of paymentfor P are ful�lled by Y . 210
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ontra
t 
ompletion(X;Y; P )  produ
er(X;P ) ^
onsumer(Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))The question now is how to determine whether a parti
ular term has been ful�lled ornot. Terms in a 
ontra
t usually spe
ify values of negotiables and determine a
tions tobe taken. Ful�lment then depends on whether the result of implementing these terms
onforms to what is set by the 
ontra
t-holders. For instan
e, we 
an say that paymentterms are ful�lled if the 
onsumer pays for the amount spe
i�ed in the 
ontra
t.A term T in a 
ontra
t is ful�lled if the result of its implementation 
onforms to the
orresponding value V set in the 
ontra
t.ful�ll(T )  set(T; V ) ^ out
ome(T; V )Be
ause it is impossible to predi
t the out
ome of implementing 
ertain 
onditions atthe time of 
ontra
t de�nition, we assume by default that whatever 
onditions spe
i�edin the 
ontra
t will be implemented by the responsible agent a

ordingly.out
ome(T; V )  set(T; V )As we will see in the following example, this is useful be
ause it gives points of atta
kand 
riti
ism within the 
ontra
t. Contradi
tions arise when an agent argues thatsome spe
i�ed 
ontra
tual 
lause should be implemented di�erently, hen
e yielding adi�erent out
ome than the one initially indi
ated. In this way, it is possible to derive
ontradi
tory 
laims based on distin
t out
omes V and V 0 for the same 
ontra
tualterm T .12.1.3 An Example of Contra
t FormationIf we adopt this representation, as well as a model of time based on integer time points(for instan
e representing days), the following set of formulae spe
i�es a 
ontra
t be-tween two agents a and b.



1 
ontra
t 
ompletion(X;Y; P )  produ
er (X;P ) ^
onsumer (Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))2 ful�ll(T )  set(T; V ) ^out
ome(T; V )3 set(delivery(X;Y; P ); D)  produ
tion time(X;P;D)4 set(payment(Y;X; P ); (V; std))  pri
e(P;X; V )5 out
ome(T; V )  set(T; V )6 produ
er (a; p)  true7 
onsumer (b; p)  true8 produ
tion time(a; p; 14)  true9 pri
e(p; a; 10)  trueFor a 
ontra
t to be a

eptable to an agent, we mean that the main 
on
lusion forsu

ess|in this 
ase 
ontra
t 
ompletion(a; b; p)|is substantiated, and that the agenthas no reason to atta
k it. We 
an say that the 
ontra
t above is a

eptable to agent abe
ause it is 
onsistent with its internal theory (sin
e a proposed it), and be
ause fromthis set of axioms we 
an derive a justi�
ation for 
ontra
t 
ompletion(a; b; p). In this
ase, the 
ontra
t is su

essfully 
ompleted if delivery terms are ful�lled|i.e. produ
tis delivered within two weeks| and also payment terms are ful�lled|i.e. the 
onsumerpays the stipulated pri
e for the produ
t, say 10.As noted before, some of the possibilities for 
ontradi
tion in this model have to dowith the value of the negotiables|in this 
ase, there are three of them: the time fordelivery D of the produ
t P by the produ
er X to the 
onsumer Y ; and the amountV to be payed by the 
onsumer Y , as well as the form of payment (initially set forstd , i.e. standard 30-day payment). Hen
e expressions out
ome(delivery(X;Y; P );D)and out
ome(delivery(X;Y; P );D0) are 
ontradi
tory if D and D0 are instantiated todi�erent values.At this point the produ
er a sends this 
ontra
t to the 
onsumer b, who investigateswithin its internal theory whether some 
on
i
ting arguments 
an be derived. Note thatthe 
onsumer is not trying to blo
k the 
on
lusion in an stri
tly opponent fashion|btoo wants to establish the agreement. But be
ause the 
ontra
t was proposed by theprodu
er, we 
an just assume that it is a

eptable to a but not ne
essarily to the
onsumer b. For instan
e, b might want the produ
t to be delivered at a di�erent date,212



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 213one week earlier than what was initially proposed by the produ
er. The 
onsumer thenadds the following 
lause to the 
ontra
t.out
ome(delivery(a; b; p);D) produ
tion time(a; p;D1) ^D is D1 � 7The 
lause above 
an be seen as a 
riti
ism to the initially proposed 
ontra
t, as the 
on-sumer 
an now derive a 
on
i
ting argument for out
ome(delivery(a; b; p); 14), namelyout
ome(delivery(a; b; p); 7). Remember from Chapter 6 that this sort of atta
k 
ausesthe main 
laim 
ontra
t 
ompletion(a; b; p) to be
ome unsubstantiated.The 
onsumer b sends this version of the 
ontra
t ba
k to a, who tries to re
on
ilethe 
riti
ism with the original 
lauses by attempting to re-substantiate the 
on
lusion
ontra
t 
ompletion . A new version of the 
ontra
t features 
hanges based on b 
riti
ism.For example, a 
an a

ept b's request for an earlier delivery by updating the 
on
lusionin the 
lause just introdu
ed by b so that it is now used for spe
ifying the new agreeddelivery time. set(delivery(a; b; p);D) produ
tion time(a; p;D1) ^D is D1 � 7The 
lause above spe
i�
ally addresses the delivery of produ
t p by a to b, as opposed tothe more generi
 formula proposed initially. This may still be valid in general, but herewe implement a sort of prioritisation based on re
en
y allowing only the most re
ent
lause among the possible (unifying) de�nitions of set(T; V ) to be used in a derivation.But nothing 
omes without a pri
e, so a may introdu
e other 
hanges to 
ompensatefor this 
on
ession of delivering a produ
t one week earlier than usual. For instan
e, amay in
rease by 10% the amount to be 
harged for p.set(payment(b; a; p); (V; std)) pri
e(a; p; V1) ^V is V1 + 0:1� PAfter these 
hanges a justi�
ation for 
ontra
t 
ompletion 
an again be derived, withdelivery set to an earlier date but at a higher 
ost. The produ
er sends this new versionof the 
ontra
t ba
k again to b, who 
an either agree with it or provide some morereasoned 
riti
ism. Suppose that b still does not �nd this deal a

eptable and asks for



a further dis
ount of 15% on the value of the produ
t. This is done by adding thefollowing 
lause to the 
ontra
t, whi
h suggests a smaller 
ost to be 
harged for p thanthe one stipulated by a. out
ome(payment(b; a; p); (V; std)) pri
e(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15� V2Again there is a 
ontradi
tion, and so 
ontra
t 
ompletion is on
e more unsubstantiated.This time a 
an a

ept b's request for a dis
ount, but not without 
onstraining thepayment form from standard 30-day to immediate.set(payment(b; a; p); (V; imm)) pri
e(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15� V2The produ
er sends this 
ontra
t again for b's s
rutiny. If b 
annot �nd any more reasonsfor not a

omplishing the agreement su

essfully|e.g. b has no target requirements withrespe
t to payment form, and all other requirements with respe
t to delivery and pri
ehave been met|then b agrees with the 
urrent proposal. The �nal binding 
ontra
tthat sets the terms for the supply of p by a to b is then des
ribed below. Note that onlythe more re
ent 
lauses de�ning ea
h 
ontra
tual term are kept, in a

ordan
e with thesort of prioritisation mentioned above.1 
ontra
t 
ompletion(X;Y; P )  produ
er (X;P ) ^
onsumer (Y; P ) ^ful�ll(delivery(X;Y; P )) ^ful�ll(payment(Y;X; P ))2 ful�ll(T )  set(T; V ) ^out
ome(T; V )5 out
ome(T; V )  set(T; V )6 produ
er (a; p)  true7 
onsumer (b; p)  true8 produ
tion time(a; p; 14)  true9 pri
e(p; a; 10)  true10 set(delivery(a; b; p); D)  produ
tion time(a; p;D1) ^D is D1 � 711 set(payment(b; a; p); (V; imm))  pri
e(a; p; V1) ^V2 is V1 + 0:1� V1 ^V is V2 � 0:15 � V2214



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 215This example illustrates the type of pro
ess in whi
h we are interested in 
onne
tionwith the problem of 
ontra
t-based negotiation in multi-agent domains. The argumentsex
hanged between the agents during this pro
ess are 
on
erned primarily with what isa

eptable to ea
h of them, and with how to adapt the 
ontra
t so that these are takeninto 
onsideration.Next we dis
uss how to instantiate ar
hite
ture in order to 
apture this pro
ess as adynami
 argument generated by the me
hanism des
ribed in Chapter 8.12.2 Instantiating the Ar
hite
ture in an Agent S
enarioThis se
tion des
ribes how the example above 
an be modelled in our dynami
 argu-mentation framework, derived from the existing implementation of the system. Herewe de�ne ea
h 
omponent of the ar
hite
ture as des
ribed in Chapter 10, as well as asuitable library of domain-spe
i�
 revision s
hemata. The implementation des
ribed inChapter 8 is then used to automati
ally generate dynami
 arguments about the 
ontra
tbeing su

essfully 
ompleted, produ
ing a mutually a

eptable 
ontra
t when all atta
ksgenerated by the agents via the de�ned revisions have been appropriately dismissed.12.2.1 The Theory: The Contra
t between Produ
er and ConsumerLet a; b be two autonomous agents|produ
er and 
onsumer, respe
tively|negotiatingthe terms of a 
ontra
t regarding the supply of a parti
ular produ
t p. This 
ontra
tis represented by a theory � in the Horn 
lause resolution-based language des
ribed inSe
tion 12.1.2. This theory 
ontains, in parti
ular, a top-level goal spe
ifying the termsfor the su

essful 
ompletion of the 
ontra
t.In this example, this is instantiated in Prolog style as follows:main(
ontra
t).provability(
ontra
t, solve).theory(
ontra
t, TInit).where TInit is the initial list of axioms given in Se
tion 12.1.3, and solve is a meta-interpreter for deriving arguments by means of resolution-based proof rules.



The adjustment of � is then guided by a dynami
 argument about the su

essful 
om-pletion of the 
ontra
t|i.e. about 
ontra
t 
ompletion(a; b; p). Atta
ks are generatedby a and b; or, in this ar
hite
ture, by the 
riti
ism theories.12.2.2 The Criti
ism Theories: Produ
er and ConsumerOne interesting aspe
t of this example is that it illustrates the uses of two 
riti
ismtheories in the ar
hite
ture. Let �a and �b represent the internal theories of agents aand b, respe
tively. Within ea
h agent's theory we assume that there is a module thata

ounts for 
ontra
t manipulation and negotiation whi
h is based on some provabilityrelation. In parti
ular, let �a
 � �a, �b
 � �b be su
h subsets of agents a and b'sinternal theories. For the sake of 
larity, we assume that the languages underlying �,�a
 and �b
 are equivalent, meaning that agents have agreed on a set of terms andde�nitions to be used in 
ontra
ts. However, we make no further assumptions aboutagents' theories, in parti
ular about the way beliefs are represented or revised. In fa
t,the rest of an agent's theory does not even need to be logi
al, as illustrated in Figure12.2. �a �b�b
��a
Figure 12.2: Contra
t-based negotiation in the ar
hite
ture.In this pro
ess, the role of the 
riti
ism theory is played by the sub-theories or modules�a
 and �b
 . The question now is how to de�ne these modules.Devising a formalism for representing autonomous, negotiating agents is outside thes
ope of this thesis. However, in order to experiment with our ideas and further inves-tigate the relation between negotiation and dynami
 argumentation, we have de�ned asimple representation language for the agents' 
ontra
t manipulation module so that we
an 
apture the sort of argument given in the previous example. This domain-spe
i�
language is essentially used to des
ribe the range of a

eptability for 
ontra
tual termsfor the agents, and what possible adjustments and 
on
essions 
ould be made in ea
h216
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ase. Below we des
ribe the terms used for spe
ifying this for individual agents of ea
htype|namely, 
onsumers and produ
ers.Consumers Remember that from a 
onsumer's perspe
tive, the 
riti
ism theory al-lows the generation of arguments for atta
king the su

essful 
ompletion of the 
ontra
t.These atta
ks, as dis
ussed in Se
tion 12.1.3, are essentially rebuttal atta
ks of the form:out
ome(T; V ) : in; out
ome(T; V 0) : infor di�erent values V and V 0 su
h that V 0 is better for b (e.g. 
heaper). Arguments inthe 
riti
ism theory will then give possible a

eptable values for 
ontra
tual terms. Therole of 
onsumers is then to make su
h proposals throughout the negotiation pro
ess.In parti
ular, the expression a

eptable value(T; V;NV ) is used to obtain a new valueNV for a 
ontra
tual term T whi
h is a

eptable|or more a

eptable|to the 
onsumer(as opposed to the 
urrent value V ). The following 
lauses for instan
e de�ne the
ontra
t manipulation module for agent b in the example from Se
tion 12.1.3.1 a

eptable value(delivery(X; b; p); V; 7) Di� is V � 7 > 0 ^re
on
ile(delivery(X; b; p); V �Di� )2 a

eptable value(payment(b;X; p); (V; ); (V � 15%; )) V > 10 ^re
on
ile(payment(b;X; p); (V � 15%; ))The expression re
on
ile(T; V ) suggests that V should be in
orporated to the 
orre-sponding 
ontra
tual 
lause for T , thus giving a new out
ome for T whi
h 
ontradi
tsthe one previously derived.Similar to the fault tree 
ase, if we 
onsider these expressions to be assumptions, thenwe 
an use abdu
tion to sele
t whi
h adjustments are needed in order to re
on
ile the
riti
ism with the original 
lauses in the 
ontra
t. For instan
e, if we take L
rit to be aHorn 
lause based language, and `
rit to be an abdu
tive provability relation, then thefollowing is an argument supporting the proposal of an earlier delivery for p:fre
on
ile(delivery (a; b; p); 14� 7)g `
rit a

eptable(delivery(a; b; p); 14; 7)



Note that the des
ription of b's 
ontra
t manipulation module is 
hara
terised withinthe ar
hite
ture as follows:
rit(b).provability(b, solve abd).theory(b, TCrit b).where TCrit b is the list of axioms above and solve abd is an abdu
tive meta-interpreterfor these axioms.Re
all that mappings between a theory and a 
riti
ism theory 
an be spe
i�ed as ar-gument s
hemata|in this 
ase, revisions are about adding a substantiated 
lause sup-porting the 
onsumer's proposal of a 
on
i
ting out
ome.Domain-spe
i�
 S
hema PROPOSAL OF CONTRADICTORY OUTCOME BY CONSUMER: 1)2) 3) 6) 9) 14 in(out
ome(T; V ); A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(out
ome(T; V 0); A0;�0)Properties: � supports(A0; out
ome(T ;V 0) : in; �0);satis�able(B; �) �Conditions: out
ome(T; V ) : in 2 GA;H;B 2 L;P = H  B;gen argument(b; a

eptable value(T; V; V 0); Ab);re
on
ile(T; E) 2 Ab;set(T;Var) B0 2 A;P 0 = out
ome(T;Var ) B0;adjust(P 0; E; P )The term adjust(P 0; E; P ) denotes that P is obtained by adjusting the variables inaxiom P 0 a

ording to expression E. Also, remember that b's arguments are generatedvia the 
orresponding meta-interpreter solve abd:gen argument(b, X, A b) :-theory(b, TCrit b),solve abd(X, A b, TCrit b).Produ
ers From the point of view of the produ
er, the 
ontra
t manipulation moduleallows new 
ontra
t versions to be generated, in whi
h arguments 
an be derived so as to218
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ontra
t 
ompletion . These atta
ks, as dis
ussedin the example 12.1.3, have the general form below:
ontra
t 
ompletion : out; 
ontra
t 
ompletion : in.Produ
ers need to de
ide whether it is possible or not to re
on
ile the 
onsumer's pro-posal (of out
ome V 0 for term T ) with the original theory, and if so whi
h other 
hangesshould also be 
arried out. In parti
ular, we use expression is a

eptable(T; V ) not onlyto verify whether a proposal for a 
ontra
tual term is a

eptable for the produ
er, butalso to (abdu
tively) determine if other adjustments and 
onditions need to hold for V tobe
ome a

eptable. The following 
lauses for instan
e de�ne the 
ontra
t manipulationmodule for agent a in the example from Se
tion 12.1.3.1 is a

eptable(delivery(a; Y; p); D) produ
tion time(a; p;D)2 is a

eptable(delivery(a; Y; p); D) produ
tion time(a; p;D1) ^D < D1 ^pri
e(a; p; V ) ^re
on
ile(payment(Y; a; p); (V + 10%; ))3 is a

eptable(payment(Y; a; p); (V; std)) pri
e(a; p; V )4 is a

eptable(payment(Y; a; p); (V; std)) pri
e(a; p; V 1) ^V < V 1 ^re
on
ile(payment(Y; a; p); ( ; imm))Note that the logi
al system underlying this 
riti
ism theory is equivalent to the oneadopted by the 
onsumer b: same language L
rit , same abdu
tive provability rela-tion `
rit , and same set of abdu
ibles|namely, the set of expressions of the formre
on
ile(T;E). The des
ription of a's 
ontra
t manipulation module is then 
har-a
terised within the ar
hite
ture as follows:
rit(a).provability(a, solve abd).theory(a, TCrit a).where TCrit a is the list of axioms above and solve abd is the abdu
tive meta-interpreteralso used by b.



Thus to defend from the sorts of atta
ks put forward by a 
onsumer, produ
ers need toadapt the 
lause supporting the 
ontradi
tory proposal so that it is used to spe
ify thenew agreed value for the 
ontra
tual term in question. In this 
ase 
hanges are aboutupdating this 
lause by revising its 
on
lusion. Abdu
tion 
an indi
ate whether otherrevisions need to be made|e.g. whether substantiated 
lauses need to be added so asto re
on
ile other 
riti
isms with the original axioms.Domain-spe
i�
 S
hema COUNTER-PROPOSAL FOR CONTRACT COMPLETION BY PRO-DUCER: 1) 2) 4) 7) 11) 23out(
ontra
t 
ompletion(X;Y; Pr); A;�);retra
t (mis
on
lusion(P )); add(mis
on
lusion(P 0)); revise(�; fPg; fP 0g [ A0;�0);in(
ontra
t 
ompletion(X;Y; Pr); A0;�0)Properties: � supports(A0; 
ontra
t 
ompletion(X ;Y ;Pr) : in;�0);satis�able(B;� [ A0) �Conditions: 
ontra
t 
ompletion(X;Y; Pr) : out 2 GA;
ontra
t 
ompletion(X;Y; Pr) B 2 �;out
ome(T; V 0) : in; out
ome(T; V ) : out 2 GA;gen argument (a; is a

eptable(T; V 0); Aa);P = out
ome(T; E) B0 2 A;H 0 = set(T;Var) 2 L;P 0 = H 0  B0;A0 = fPi j re
on
ile(Ti; Ei) 2 Aa;P 0i = set(Ti;Var i) Bi 2R � [ fP 0g;adjust(P 0i ; Ei; Pi)gNote that 2R 
orresponds to the usual set-membership 2 operator restri
ted to a re
en
yordering R in the set (list) of axioms. That is, X 2R S sele
ts the most re
ent elementin S that uni�es with X.12.2.3 The Control ModuleWith respe
t to preferen
es, priority measures 
ould be de�ned from two perspe
tives.On one hand, agents 
an have preferen
es based on utility fun
tions, values (Fox andParsons 1998) or expli
itly represented by means of a spe
ial meta-predi
ate (Sierraet al. 1997b). These are spe
i�ed within the agents theories and 
an be used to prioritise
riti
isms. 220



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 221On the other hand, we 
an also have 
riteria for preferring one 
lause over anotherin a 
ontra
t (e.g. the one introdu
ed most re
ently). In any 
ase these notions ofprioritisation 
onform to the ar
hite
ture in Se
tion 10.3, but in this example we onlyimplement the latter. Be
ause we are adopting a fairly simple spe
i�
ation languagefor the agents' 
ontra
t manipulation module, we assume in this 
ase that argumentsgenerated in the 
riti
ism theories have equal weight.Similarly to solve filter in the fault tree example,3 this sort of re
en
y-based pri-oritisation 
on
erns the generation of individual arguments. Assuming an ordering ofre
en
y among axioms, a layered meta-interpreter 
an then prioritise 
onsequen
es inthe theory, blo
king any derivation whi
h is based on an earlier de�nition of a 
lause.In terms of our ar
hite
ture, this is represented as follows:filter(solve, solve re
en
y).states that solve re
en
y 
onsiders the underlying re
en
y ordering for �ltering argu-ments 
onstru
ted by solve, allowing only those based on the most re
ent de�nitions ofa predi
ate to be advan
ed. The predi
ate solve re
en
y (rather than solve) is used togenerate prioritised arguments from the 
ontra
t:gen argument(
ontra
t, X, A) :-theory(
ontra
t, T),solve re
en
y(solve(X, A, T)).Thus this example populates the bottom-left box for argument prioritisation in Figure11.6.It is important to note that 
ontra
ts are de�ned and altered in terms of agents' internaltheories and target requirements. In this sense, they are similar to KQML messages,where the use of performatives is des
ribed in terms of the agents' 
ognitive states(Labrou and Finin 1994). However, di�erently from KQML, 
ontra
ts are stru
tures|or obje
ts|whi
h are manipulated by agents and used to test whether 
ertain propertiesare satis�ed or not.By instantiating the ar
hite
ture in this way, the sorts of dynami
 argument me
hanisms3 See Se
tion 11.1.3.



dis
ussed in Part II 
an then be applied in order to obtain, for instan
e, the �nal 
ontra
tin the example above.12.3 A Dynami
 Argument for Contra
t FormationA 
ouple of remarks in 
omparison to the previous adaptation of the ar
hite
ture inChapter 11 should be made at this point. First, in this 
ase we have all the s
hematabeing instantiated by external sour
es of 
riti
ism. No s
hema is dependent on thetheory only.Se
ond, ea
h agent has a

ess to its library of s
hemata only. In fa
t, � 
ould berepresented as follows:� = �PRODUCER [ �CONSUMER, where�PRODUCER = fCOUNTER-PROPOSAL FOR CONTRACT COMPLETIONg�CONSUMER = fPROPOSAL OF CONTRADICTORY OUTCOMEgRe
all that this is similar to the sort of dis
ussion about disputes and argument gamesin Se
tion 9.1.1 between opponents and proponents.Now that the ar
hite
ture and a 
atalogue � of atta
k-based revision s
hemata havebeen spe
i�ed, the system in Se
tion 8.1.2 
an be used to generate the dynami
 argumentin Se
tion 12.1.3 in an automated form.So let TInit be the initial theory as des
ribed in Se
tion 12.2.1, and � as de�ned above.Below we present a dynami
 argumentation pro
ess about 
ontra
t 
ompletion(a; b; p)as generated by our implementation. A

ording to De�nition 4.7, the �rst argumentto be advan
ed is a justi�
ation supporting the main 
laim that the 
ontra
t will besu

essfully 
ompleted.Argument A0 is a justi�
ation for 
ontra
t 
ompletion(a; b; p) advan
ed by a, based onout
ome(delivery(a; b; p); 14) and out
ome(payment(b; a; p); (10; std)).Revision �1 is obtained from s
hema PROPOSAL OF CONTRADICTORY OUTCOME, andfrom the argument for a

eptable value(delivery (a; b; p); 14; 7) in b's 
riti
ism modulewhi
h is based on re
on
ile(delivery (a; b; p); 14� 7).222



CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 223Argument A1 is a justi�
ation for out
ome(delivery(a; b; p); 7) advan
ed by b.Revision �2 adapts the 
ontra
t through s
hema COUNTER-PROPOSAL FOR CONTRACTCOMPLETION based on the a's argument for is a

eptable(delivery (a; b; p); 7) gener-ated from re
on
ile(payment(b; a; p); (10 + 10%; )) .Argument A2 is a justi�
ation for 
ontra
t 
ompletion(a; b; p) advan
ed by a, based onout
ome(delivery(a; b; p); 7) and out
ome(payment(b; a; p); (11; std)).Revision �3 is obtained from s
hema PROPOSAL OF CONTRADICTORY OUTCOME, andfrom the argument for a

eptable value(payment(b; a; p); (11; ); (9:35; )) in b's 
riti-
ism module whi
h is based on re
on
ile(payment(b; a; p); (11� 15%; )) .Argument A3 is a justi�
ation for out
ome(payment(b; a; p); (9:35; std)) advan
ed by b.Revision �4 adapts the 
ontra
t through s
hema COUNTER-PROPOSAL FOR CONTRACTCOMPLETION based on a's argument for is a

eptable(payment(b; a; p); (9:35; imm))generated from re
on
ile(payment(b; a; p); ( ; imm)).Argument A4 is a justi�
ation for 
ontra
t 
ompletion(a; b; p) advan
ed by a, based onout
ome(delivery(a; b; p); 7) and out
ome(payment(b; a; p); (9:35; imm)).12.4 Issues Raised by this ExampleThe type of appli
ation proposed in this 
hapter relates a style of reasoning that is
ommon in multi-agent s
enarios to the sort of argument dynami
s that we have exploredin this thesis. What we have done is to redu
e a problem of 
ontra
t negotiation to thegeneration of a dynami
 argument in whi
h 
riti
ism theories are 
omponents of theagents.Note that in the 
ase of the fault tree obtaining the 
riti
ism theory was a
tually astraightforward task, as fault trees are standard pra
ti
e in the safety domain and thuswidely available. In the 
ase of agent-based appli
ations, however, we felt the need ofdevising a simple spe
i�
ation language for individual agents in order to illustrate ourideas. This language, though, is quite spe
i�
 to this appli
ation and more thought



should be given on how it relates to existing proposals for agent formalisms and ar
hi-te
tures. As a matter of fa
t, our implementation is essentially sequential, and no formof agent 
ommuni
ation or intera
tion is pres
ribed.This opens interesting possibilities for resear
h, in whi
h for instan
e di�erent agents 
anadopt di�erent proof strategies and a
t in parallel in order to explore possible atta
ksin di�erent ways.
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Part IVCon
lusions and Dis
ussion
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Chapter 13Contributions
The overall goal of the resear
h des
ribed in this thesis is to explore the role of formalargumentation systems in the area of knowledge engineering. As stated in Chapter 1,our work has been guided by two leading, general questions, namely:� How 
an knowledge engineers bene�t from argumentation-based approa
hes toknowledge representation and reasoning?� How 
an we improve the methodology for building systems for supporting su
htasks?Regarding the �rst question, there is no doubt that the general paradigm of argument-based reasoning has proved appli
able to a variety of tasks, espe
ially those involvingin
onsistent and in
omplete information. Chapter 3 gave a detailed analysis of the sortsof problems that 
an be ta
kled by this means, and throughout the thesis we havepresented other appli
ations and examples of uses of argumentation.This links to the se
ond question above. Again, as dis
ussed in Chapter 1, we weremotivated by the need to take more 
omplex arguments into a

ount in a systemati
way. The way we did that was �rst by identifying a parti
ular type of argumentationpro
ess whi
h 
ould allow for di�erent types or argument to be represented, and then by
onstru
ting an abstra
t formal framework for 
apturing those pro
esses and allowingfor domain-spe
i�
 appli
ations to be instantiated from this framework.227



We took a pragmati
 approa
h to formal argumentation and to the generation ofdynami
 arguments, whi
h was essentially based on 
atalogues of (domain-spe
i�
)s
hemata for generating arguments and atta
ks. The development of our frameworkwas steered by the questions stated in Chapter 2, whi
h are reprodu
ed below beforewe summarise the main te
hni
al 
ontributions of this thesis.� Whi
h 
on
epts are involved in argument dynami
s, and whi
h of these would beinteresting to formalise? Can these be de�ned in a general way or are they (orsome of them) domain-spe
i�
?� How to represent and generate an argument? What types of arguments are im-portant to be represented?� How do arguments relate to ea
h other and what types of relationships 
an bede�ned between arguments?� Where do atta
ks 
ome from?� What me
hanisms are used to prioritise arguments, and how 
an 
ontextual (do-main) information be in
orporated into su
h me
hanisms?� When do dynami
 arguments terminate?Exploring these questions produ
ed the following main 
ontributions:A Problem-oriented Classi�
ation of Argument-based Resear
h.Chapter 3 
hara
terised the types of problems in knowledge engineering that 
anbe addressed by argumentation. These problems range from non-monotoni
 anddefeasible reasoning to de
ision making under un
ertainty, and from negotiationto design.A Formalisation of Dynami
 Argumentation.First of all, in Chapter 2 we have 
hara
terised exa
tly what we mean by argumentdynami
s, and how these 
ompare to other approa
hes to formal argumentation.Dynami
 arguments are based on the generation of pro
esses of argument ex
hange228



CHAPTER 13. CONTRIBUTIONS 229where the knowledge base from whi
h arguments are derived is dynami
, i.e. it
an be 
hanged during the pro
ess itself. Arguments are essentially proofs givenvia an underlying provability relation from this knowledge base. The 
on
ept ofdynami
 argumentation is novel in itself, although related to what is sometimesreferred to as pro
edural models of argumentation (see Se
tion 3.1). In this sense,we are 
on
erned with showing that this 
on
ept|dynami
 argument|is usefuland usable.A novel formalisation of dynami
 argumentation was given in Chapter 4, basedon atta
k-based revisions used for revising a knowledge base so as to generate aparti
ular atta
k. In 
onne
tion with this formalisation, we have taken a novelview of theories (i.e. knowledge bases) as arguments, and dynami
 argumentationas a pro
ess for theory transformation guided by atta
ks.A Pre
ise Chara
terisation of Atta
ks.Chapter 6 presented a pre
ise, well-founded 
hara
terisation of atta
ks, and ofpossible 
ontradi
tions in arguments.An Analysis of the Relation between Argumentation and TMS.In our representation we were able to e�e
tively 
ompare the fun
tions of truthmaintenan
e systems and argumentation. We also have shown that it is possibleto use a truth maintenan
e system me
hanism for implementing and maintainingthe stru
ture of 
laims whi
h 
an be atta
ked during a dynami
 argument (Se
tion6.4).Implementation of a Me
hanism for Generating Dynami
 Arguments.We have de�ned a general me
hanism for argument generation from the perspe
-tive of transformation of theories. Every step of argument is represented by ageneral atta
k-relation between the original theory and a revised theory (Se
tion7.1), and the theory may be revised until no more atta
ks 
an be generated.Two dynami
 argumentation systems have been implemented from this me
hanismby 
onsidering di�erent possibilities for atta
k generation based on the 
lassi�
a-tion of argument s
hemata presented in Chapter 7:



� one system generates atta
ks intera
tively by querying for appropriate in-formation ea
h time it rea
hes sele
tion points in this 
lassi�
ation (Se
tion8.1.1)� the other generates atta
ks automati
ally from a 
atalogue of arguments
hemata previously obtained from the 
lassi�
ation (Se
tion 8.1.2).A Method of Spe
ifying Argument S
hemata.We have devised a formal 
lassi�
ation of argument s
hemata (Chapter 7), whi
his essentially an abstra
t top-down approa
h to 
apture argument stru
ture, andobtaining argument s
hemata for generating atta
ks. This 
lassi�
ation, whi
h isbased on an underlying logi
 programming based theory, was de�ned in terms ofthe general types of atta
k (Chapter 6), and inspired by standard argumentativestru
tures from studies in the �elds of informal logi
 and argumentation theory(Chapter 5).A 
ru
ial element in this approa
h is the notion of properties asso
iated to ea
hrewrite. Properties a

umulate as we go down in the hierar
hy of rewrites de�ningpossible argument s
hemata, and they give a large 
exibility to our framework andto designers of 
atalogues of (domain-spe
i�
 s
hemata). Chapter 8 des
ribed away to de�ne a 
atalogue of domain-spe
i�
 s
hemata from this 
lassi�
ation.Se
tion 8.3 in parti
ular dis
ussed the use of properties in great detail. Moredomain-spe
i�
 s
hemata were de�ned later in the appli
ations in Part III.We also have shown that this 
lassi�
ation is 
omplete up to a 
ertain point. Otheruses of our proposed methodology are also supported, su
h as 
ommuni
ation andretrospe
tive analysis of arguments (Chapter 9).A General Ar
hite
ture for Dynami
 Argumentation SystemsWe have devised an ar
hite
ture that elaborates on the me
hanisms for dynami
argument generation so as to allow for external instantiation of revision s
hemata,and for atta
ks based on priorities and preferen
es (Chapter 10).
230



CHAPTER 13. CONTRIBUTIONS 231Instantiation of Appli
ations.Be
ause we 
annot formally prove the 
orre
tness of our model, appli
ations arene
essary to judge the relevan
e of the theory. We have ta
kled two distin
tproblems by adapting the ar
hite
ture to domain-spe
i�
 s
enarios. This is doneby maintaining the overall, generi
 me
hanism for generating dynami
 arguments,but allowing for domain-spe
i�
 adaptation of the 
omponents of the ar
hite
ture,and of the 
atalogue of revision s
hemata (Chapters 11 and 12).In summary, we have given details of dynami
 argumentation generators and of anar
hite
ture of dynami
 argumentation systems. Also, we have presented an analysisof various examples and of di�erent problems with similar grounds in argumentation,based on the same ar
hite
ture. Linked to some of these examples we have presented arestri
ted analysis of prioritisation.





Chapter 14What Next to Do?
Throughout this thesis we have tou
hed upon many related issues of interest, unsolvedproblems and possible avenues for future work. In this 
hapter we look 
arefully at theseissues, elaborating upon the limitations of our approa
h as well as the limitations of thisdo
ument, and expanding some of the topi
s whi
h we believe deserve|or require|further exploration.14.1 The Fine PrintSome of the short
omings of this thesis are intrinsi
 to our resear
h given the s
ope ofour problem and the appli
ability of our formalism.The most obvious limitation is that innumerable forms and types of arguments that
annot be 
aptured by our model. This is �ne, though, be
ause we do not aim atformalising argumentation. Our perspe
tive of the problem is that argumentation 
anbe used to model parti
ular styles of reasoning|and not that formal styles of reasoning
an be used to model argumentation. A similar distin
tion is made by Reed (1997).In fa
t, the sorts of problems that 
an be 
aptured as dynami
 arguments are thosethat 
an be idealised as operations and transformations over sets of axioms whi
h 
anbe guided by arguments. This is a very abstra
t problem des
ription, and similarly thesolution we provided was as abstra
t as possible. Essentially, we assume that theories
an be expressed as sets of axioms, and that suitable prede�ned 
atalogues of revisions
hemata are available from start. 233



By taking this view we have des
ribed a way of automating the generation of dynami
arguments. Remember from Chapter 2 that one of the reasons why we believe it isimportant to formalise and automate argumentation pro
esses is be
ause argument-based methodologies should be supported by (semi-) automated tools, whi
h 
an bothguide knowledge engineers in developing knowledge bases that derive the intended 
on-sequen
es, and also support designers of argument systems in investigating propertiesand e�e
ts of 
ertain atta
ks and revisions in a domain. Also, automated argumenta-tion systems 
an be used by arti�
ial agents that want to employ this solution to solveparti
ular problems.However, su
h a level of abstra
tion has made it very hard to demonstrate general formalproperties of the framework and to make stronger 
laims about the types of argumentpro
esses that are generated. It is diÆ
ult to prove for instan
e whether argumentswill terminate just by looking at a set of possible (un
onstrained) revision operations.Other questions may arise su
h as how mu
h do we have to know in advan
e in orderto de�ne a suitable 
atalogue.We do not 
laim that realisti
ally these me
hanisms 
an be used in their target domainsof appli
ation as they are. Although the 
lassi�
ation provides a systemati
 way to buildargument s
hemata, knowledge of formal methods and domain-spe
i�
 engineering workare still needed to be put in the task (for instan
e, on de
iding the terms and expressionsto be used in ea
h parti
ular domain). This is unlikely to be a trivial task, and supporttools still need to be provided.Related to this we have presented no de�nition of what 
onstitutes a good dynami
argument. Would it be possible to �nd an appropriate metri
 so as to evaluate gener-ated arguments automati
ally? One possibility for evaluation is to have human usersto analyse the plausibility of the arguments. But automati
 evaluation using some de-�ned metri
 
ould allow for the analysis and 
omparison of strategies and s
hemata forargument generation in terms of the quality of the dynami
 argumentation pro
esses,and of the �nal, resulting theories.Note that the design of our generi
 framework as well as the 
lassi�
ation of s
hematahave been informed by many ideas whi
h were transferred from the roots of argu-234



CHAPTER 14. WHAT NEXT TO DO? 235mentation theory. And while many 
on
epts underlying our 
lassi�
ation of s
hematawere built assuming a logi
 programming representation, the 
ore 
on
epts of dynami
argumentation|those de�ned in Chapter 4|are logi
-independent and should easilyadapt to di�erent logi
s. This brings up another question, though|namely of howeasy would it be to transfer these logi
-spe
i�
 
on
epts a
ross other 
hoi
es of logi
alrepresentation.In summary, our approa
h to argumentation is di�erent from the 
onventional stati
approa
hes in the literature. By taking this view we have broadened the s
ope of ap-pli
ation of argumentation in knowledge engineering 
ontexts, but we have also made itharder to re
ognise suitable problems in whi
h to apply this te
hnique. So, how easy isit really to de
ide whether some problem 
an be 
hara
terised as dynami
 argumenta-tion, and what would be a suitable 
atalogue of revisions in a target domain? To whi
hdegree does our formalisation, in
luding the 
lassi�
ation, pres
ribe how to ta
kle aparti
ular problem?Maybe some of these questions 
ould be further elu
idated if other limitations of thisthesis had been addressed|in this 
ase, limitations whi
h stem from the time-limit ofour resear
h proje
t, su
h as:� A 
omplete analysis of the use of priorities and preferen
es in argument generationwas not the fo
us of this thesis, although these 
an play an important role in thegeneration of arguments. We have only examined this linked to the appli
ationsof the ar
hite
ture, but not in a deep way.� Linked to this, an analysis of sele
tion strategies might shed more light on thea
tual generation of arguments, in parti
ular to the sele
tion of arguments andhow this 
ould a�e
t the pro
ess, generating more eÆ
ient arguments.So next we des
ribe a resear
h wish list, whi
h we believe would provide 
learer answersregarding the usefulness and usability of dynami
 argumentation.



14.2 A Wish ListOur work on arguments and dynami
s opens up a number of issues and areas for futureexploration, some of these are dis
ussed below.14.2.1 Analysis of Priorities and Preferen
esSe
tion 11.4 has investigated two ways in whi
h our ar
hite
ture allows for prioritisationof arguments: one involves the dire
t 
omparison of arguments in the theory; the otheris about prioritising individual arguments both in the theory and in the 
riti
ism theorya

ording to some measure of quality.This is as far as our analysis has gone, apart from providing some examples in 
on-ne
tion with the domains of appli
ation given in Part III. A deeper analysis of su
hprioritisation te
hniques, espe
ially in the 
ontext of Figure 11.6, is fundamental for adeeper understanding of dynami
 argumentation.14.2.2 Strategies for Sele
ting ArgumentsThis follows as a 
onsequen
e of the work in prioritisation, and 
an also shed light onaspe
ts of eÆ
ient argument generation in 
onne
tion with pro
edural and heuristi
layers of argument systems dis
ussed in Chapter 3.A trivial strategy for sele
ting the next argument to be advan
ed is simply to advan
ethe �rst argument that is generated. This is parti
ularly satisfa
tory if we are able toexplore the whole sear
h spa
e of possible dynami
 arguments, as des
ribed in Se
tion8.3. However, given that priority measures and pre
eden
e orderings may exist, onemight use this information to de
ide upon the best possibility, in what is essentially agenerate-and-test approa
h.Determining whi
h argument to advan
e is a a
tually a di�erent task from that ofsele
ting whi
h 
laim to atta
k (see Chapter 6). In our approa
h, the latter is equivalentto sele
ting whi
h instan
e of atta
k-based s
hema to apply in the next step. But thistask too 
an be guided by some sort of prioritisation, e.g. an expli
it partial orderingon the s
hemata in the 
atalogue �. 236



CHAPTER 14. WHAT NEXT TO DO? 237In any 
ase, rather than adopting a generate-all-and-sele
t-best strategy, it would beinteresting to analyse whether we 
an 
ombine the tasks of argument generation withthat of sele
tion so that at ea
h step in the argument pro
ess one possible argument isgiven.14.2.3 Automated Evaluation of Dynami
 ArgumentsWhile prioritisation is 
on
erned with the quality of arguments within the theory, eval-uation of dynami
 arguments would probably take other 
riteria into 
onsideration,maybe related to the quality of the �nal theory and to other 
on
epts in the heuristi
layer, su
h as eÆ
ien
y and persuasiveness.Coming up with some metri
 for this is a diÆ
ult task, and would probably have to beinformed by analysis and experiments with human users.14.2.4 Formal Analysis of the FrameworkAs we have argued before, proving generi
 formal results about our framework|e.g.termination|is a very diÆ
ult task. This may be made easier if we assume 
ertainproperties about the sorts of revisions allowed, maybe even in 
onne
tion with templatesand libraries of domain-spe
i�
 revisions.There is mu
h s
ope for resear
h in this area. Other areas of study may provide 
luesand results that 
ould be appli
able to our approa
h, su
h as resear
h in term rewritingsystems (given that our formalism 
an be de�ned as su
h).14.2.5 Adopting Di�erent Underlying Logi
sIn many 
ases, general logi
 programs may not be the best 
hoi
e of representation for atheory. Although we do not 
ommit to a parti
ular logi
 until later in the thesis, mu
hof what makes it appli
able to domains is dependent on this language.This opens an interesting possibility for resear
h, namely whether we 
an identify apre
ise notion of atta
k and des
ribe a similar 
lassi�
ation of s
hemata based on adi�erent representation language, and to what extent the logi
-spe
i�
 elements in this



thesis 
ould be reused.14.2.6 Editors and Tools Supporting the Design of Argument SystemsThis is perhaps one of the main areas for improvement in our work. Providing tools su
has s
hemata editors, with support for the adaptation of properties and for realisti
 useof argumentation me
hanisms in domains of appli
ations. Support for generi
 as wellas domain-spe
i�
 argument s
hemata 
ould also improve usability of this te
hnique.14.2.7 Testing PropertiesMaybe in relation to the editors and tools mentioned above, it should be possible tomake a better use of the properties in argument s
hemata. One possibility, for instan
e,is to allow users/designers to introdu
e extra properties, disregard others, or yet de�nenew ones, also testing the 
onsequen
es of these 
hoi
es in relation to the out
ome ofargumentation pro
esses.14.2.8 Appli
ations to DomainsThis involves mu
h more than just adapting the ar
hite
ture so as to generate dynami
arguments in parti
ular domains. Resear
h in this area demands identi�
ation of suit-able target domains, and a serious analysis of requirements of users/designers in thesedomains.For instan
e, we have just brie
y tou
hed issues like 
ommuni
ation of dynami
 argu-ments, but these are likely to involve di�erent aspe
ts for di�erent domains.14.2.9 Appli
ation in Real Multi-Agent S
enariosRealisti
 multi-agent appli
ations are 
hara
terised by aspe
ts and features su
h as
ommuni
ation languages, intera
tion and parallel pro
essing. It would be interestingto examine pre
isely how our me
hanisms 
ould �t within su
h s
enarios, and also howdynami
 argumentation relates to existing languages for negotiation.
238



Appendix ABasi
 Syntax: Logi
Programming
This appendix gives the basi
 syntax of logi
 programming theory used in this thesis.For a 
omplete a

ount of logi
 programming theory, see (Lloyd 1987; Apt 1995).Syntax. The syntax of logi
 programs is based on the usual 
on
epts of terms, atomsand well-formed formulae from �rst order languages. A literal is an atom (positiveliteral) or the negation of an atom (negative literal).A program 
lause, or de�nite 
lause, is a 
lause of the form:H  B1 ^ ::: ^Bn (A.1)where H;B1; :::; Bn are positive literals. H and B1 ^ ::: ^ Bn are 
alled the head andbody of the 
lause, respe
tively. A goal 
lause is a 
lause of the form: B1 ^ ::: ^Bn (A.2)A Horn 
lause is either a program 
lause or a goal 
lause.General 
lauses are essentially program 
lauses whi
h allow negative literals to o

ur inthe body of the 
lause. A general 
lause has the form:H  B1 ^ ::: ^Bm ^ not Bm+1 ^ ::: ^ not Bn (A.3)where not stands for negation as failure, and ea
h Bi is a positive literal.A de�nite logi
 program is a �nite set of de�nite 
lauses. A general logi
 program is a�nite set of general 
lauses. General logi
 programs are sometimes 
alled normal logi
programs.The body of a 
lause 
an be denoted by a single bold letter B representing a 
onjun
tionof literals. Individual literals are denoted by the (possibly indexed) letter B.239



Substitution and Uni�
ation. Uni�
ation gives means to 
ompute values in logi
programs. Variables Vi 
an be asso
iated with terms Ti via substitutions of the form� = [Vi=Ti℄. Uni�
ation is 
on
erned with �nding a substitution whi
h 
an be appliedto two expressions and make them synta
ti
ally identi
al.The most general uni�er is the simplest substitution that unify two expressions. Asubstitution � that represents the most general uni�er between two expressions senten
esis denoted by mgu.Also, we use the expression F[T1=T2℄ to denote the formula obtained from a formula Fby repla
ing every o

urren
e of a term T1 by term T2.
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Appendix BBasi
 Notation: Trees andGraphs
This appendix gives the basi
 notation used in this thesis for representing trees anddire
ted graphs. Trees are mainly used to represent arguments, whereas more generi
dire
ted graphs are used to express dependen
ies between 
laims in an argument.B.1 Dire
ted GraphsA graph G is a pair (V; E) of verti
es (or nodes) and edges (or links), respe
tively. Theset of verti
es of a graph G 
an be referred to as V(G), and the set of edges as E(G).A graph is said to be dire
ted if the edges have an orientation. An edge  ,! ' is saidto initiate at node  and terminate at node '.For the type of appli
ation in this thesis, it is useful to di�erentiate between two types ofedges, namely those initiating at a supporting node, and those initiating at a 
on
i
tingnode:� if  supports ' then  ,! ' is said to be a supporting link;� if  
on
i
ts with ' then  ,! ' is said to be a 
on
i
ting link.Alternatively, edges 
an be represented diagrammati
ally as follows, where dotted linesdenote a 
on
i
ting link. ' ' OO  OO
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Moreover, we are interested in dire
ted graphs with labelling fun
tions for expressingthe support status of ea
h node. The labelling fun
tion asso
iated with a graph G isdenoted by: labelG : V(G) 7! fin;outgThe status labelG( ) asso
iated with ea
h node in G may be determined either by anexternal fa
tor (e.g. given by some other labelling fun
tion), or by means of an operatorV that derives this value from the status of other nodes in the graph.Essentially, V gives the status in only if all supporting nodes of  in G are in, and all
on
i
ting nodes of  in G are out; otherwise, V derives out. This operator 
an beapplied given that other nodes have their labels already de�ned, thus forming the basestep of the de�nition.B.2 Argument TreesA tree is essentially an a
y
li
, 
onne
ted graph. In parti
ular, here we use rooted treesfor representing arguments derived from a provability relation, su
h that lower nodessupport the 
on
lusion above. In this representation, nodes in an argument tree haveat most one parent.Ea
h premise P of the form H  B1 ^ ::: ^ BN in an argument de�nes a tree withroot H and subtrees AB1 ; :::; ABN 
orresponding to the arguments supporting senten
esB1; :::; BN , respe
tively. Su
h trees are denoted here by the expression:tree(H; P; fAB1 ; :::; ABN g).
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Appendix CHarnessing Argument Rewriting
This appendix 
ontains the possible s
hemata for argument revision as represented inFigure 7.2 and produ
ed by the rewriting system of Se
tion 7.3. Altogether they indi
atethe general format of atta
k, with properties a

umulated down the 
lassi�
ation and
onditions that give the stru
ture of the premises to be added and retra
ted (in
luding2-
onditions from the previous rewrites that 
an be used sele
t appropriate instan
esof an atta
k).C.1 Trivial RevisionsApplying Argument Rewrites 1) 2) 3) 6) 8in(X;A;�);trivial(fg; fg); revise(�; fg; fg;�0);in(Y;A0;�0)Properties: 8<: atta
ks(A0; A);
onsistent(�0);supports(A0; Y : in;�0) 9=;Conditions: X : in 2 GA;Y 2 
on
i
t(X)Applying Argument Rewrites 1) 2) 4) 7) 8out(X;A;�);trivial(fg; fg); revise(�; fg; fg;�0);in(X;A0;�0)Properties: 8<: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0) 9=;Conditions: X : out 2 GA243



C.2 Elementary Revisions for Adding an ArgumentC.2.1 Adding a Fa
tApplying Argument Rewrites 1) 2) 3) 6) 9) 13in(X;A;�);add(fa
t(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>><>>: atta
ks(A0; A);
onsistent(�0);supports (A0; Y : in;�0);unify(Y;H) 9>>=>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H 2 L;P = H  trueApplying Argument Rewrites 1) 2) 4) 7) 9) 13out(X;A;�);add(fa
t(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>><>>: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0);unify(X;H) 9>>=>>;Conditions: X : out 2 GA;H 2 L;P = H  true
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APPENDIX C. HARNESSING ARGUMENT REWRITING 245C.2.2 Adding a Substantiated RuleApplying Argument Rewrites 1) 2) 3) 6) 9) 14in(X;A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; Y : in;�0);unify(Y;H);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H;B 2 L;P = H  B;� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 9) 14out(X;A;�);add(substantiated rule(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; X : in;�0);unify(X;H);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H;B 2 L;P = H  B;� = mgu(X;H)



C.2.3 Adding a Burden Shift RuleApplying Argument Rewrites 1) 2) 3) 6) 9) 15in(X;A;�);add(burden shift rule(P )); revise(�; fg; fPg;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; Y : in;�0);unify(Y;H);:satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H;B 2 L;P = H  not B;� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 9) 15out(X;A;�);add(burden shift rule(P )); revise(�; fg; fPg;�0);in(X;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0);unify(X;H);:satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H;B 2 L;P = H  not B;� = mgu(X;H)
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APPENDIX C. HARNESSING ARGUMENT REWRITING 247C.3 Updating Revisions for Adding an ArgumentC.3.1 Removing Irrelevan
e in a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 19in(X;A;�);retra
t (irrelevan
e(P )); add(irrelevan
e(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>>>><>>>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; Y : in;�0);unify(Y;H);satis�able((B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^ Bm)�;�);:satis�able(Bi�;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H  B1 ^ ::: ^ Bm 2 �;P = H  B1 ^ ::: ^ Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm,� = mgu(Y;H)Applying Argument Rewrites 1) 2) 4) 7) 11) 19out(X;A;�);retra
t (irrelevan
e(P )); add(irrelevan
e(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>>>><>>>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0);unify(X;H);satis�able((B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^ Bm)�;�);:satis�able(Bi�;�)
9>>>>>>=>>>>>>;Conditions: X : out 2 GA;H  B1 ^ ::: ^ Bm 2 �;P = H  B1 ^ ::: ^ Bm;Bi 2 fB1; :::; Bmg;P 0 = H  B1 ^ ::: ^Bi�1 ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)



C.3.2 Generalising a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 21in(X;A;�);retra
t (generalisation(P )); add(generalisation(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>>>><>>>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; Y : in;�0);unify(Y;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(Y;H�0)Applying Argument Rewrites 1) 2) 4) 7) 11) 21out(X;A;�);retra
t (generalisation(P )); add(generalisation(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>>>><>>>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0);unify(X;H�0);satis�able((B�0)�;�);ground(P;�) � ground(P 0;�)
9>>>>>>=>>>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;�0 2 inverse subst ;P 0 = (H  B)�0;� = mgu(X;H�0)Noti
e that in these s
hemata the property ground(P;�) � ground (P�0;�) holds by
onstru
tion be
ause �0 is an inverse substitution.
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APPENDIX C. HARNESSING ARGUMENT REWRITING 249C.3.3 Revising the Consequent of a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 23in(X;A;�);retra
t (mis
on
lusion(P )); add(mis
on
lusion(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; Y : in;�0);unify(Y;H 0);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(Y;H 0)Applying Argument Rewrites 1) 2) 4) 7) 11) 23out(X;A;�);retra
t (mis
on
lusion(P )); add(mis
on
lusion(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; X : in;�0);unify(X;H 0);satis�able(B�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;H 0 2 L;P 0 = H 0  B;� = mgu(X;H 0)



C.3.4 Reversing a RuleApplying Argument Rewrites 1) 2) 3) 6) 11) 25in(X;A;�);retra
t (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);in(Y;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports (A0; Y : in;�0);unify(Y;B);satis�able(H�;�) 9>>>>=>>>>;Conditions: X : in 2 GA;Y 2 
on
i
t(X);H  B 2 �;P = H  B;� = mgu(Y;B);P 0 = B  HApplying Argument Rewrites 1) 2) 4) 7) 11) 25out(X;A;�);retra
t (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);in(X;A0;�0)Properties: 8>>>><>>>>: atta
ks(A0; A);
onsistent(�0);supports(A0; X : in;�0);unify(X;B);satis�able(H�;�) 9>>>>=>>>>;Conditions: X : out 2 GA;H  B 2 �;P = H  B;� = mgu(X;B);P 0 = B  H
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APPENDIX C. HARNESSING ARGUMENT REWRITING 251C.4 Elementary Revisions for Removing an ArgumentRemember that the property atta
ks holds if an argument in the revised theory atta
ksan argument in the original theory. Hen
e in this 
ontext atta
ks(A;A) does not standfor self-defeating arguments, but rather it denotes that argument A in �0 is a refutationof argument A in �.C.4.1 Retra
ting an Invalid RuleApplying Argument Rewrites 1) 2) 3) 5) 10) 16in(X;A;�);retra
t (invalid rule(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0 2 subst : aÆrm(B�0 ^ not(H�0))C.4.2 Retra
ting a Weak RuleApplying Argument Rewrites 1) 2) 3) 5) 10) 17in(X;A;�);retra
t (weak rule(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0 2 subst : aÆrm(not(B�0))



C.4.3 Retra
ting a MisrelationApplying Argument Rewrites 1) 2) 3) 5) 10) 18in(X;A;�);retra
t (misrelation(P )); revise(�; fPg; fg;�0);out(X;A;�0)Properties: 8>><>>: atta
ks(A;A);
onsistent (�0);supports(A;X : out;�0);unify(X;H) 9>>=>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;9�0; �00 2 subst :aÆrm(B�0 ^ not(H�0) ^H�00 ^ not(B�00))
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APPENDIX C. HARNESSING ARGUMENT REWRITING 253C.5 Updating Revisions for Removing an ArgumentAgain, note that the property atta
ks(A;A) denotes that argument A in a revised theory�0 is a refutation of argument A in the original theory �.C.5.1 Elaborating Pre
onditions in a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 20in(X;A;�);retra
t (elaboration(P )); add(elaboration(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>>>><>>>>>>: atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H);satis�able((B1 ^ ::: ^Bm)�;�):satis�able(B�;�)
9>>>>>>=>>>>>>;Conditions: X : in 2 GA;H  B1 ^ ::: ^ Bm 2 A;P = H  B1 ^ ::: ^ Bm;B 2 L;i 2 f0; :::; mg;P 0 = H  B1 ^ ::: ^Bi ^B ^Bi+1 ^ ::: ^Bm,� = mgu(X;H)C.5.2 Spe
ialising a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 22in(X;A;�);retra
t (spe
ialisation(P )); add(spe
ialisation(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>>>>>><>>>>>>>>:

atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H);ground(P 0;�) � ground(P;�);8(Hg  Bg) 2 ground(P�;�) \ ground (P 0;�)::satis�able(Bg;�)
9>>>>>>>>=>>>>>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;� = mgu(X;H);�0 2 subst ;P 0 = (H  B)�0



Here the property ground(P�0;�) � ground (P;�) also holds by 
onstru
tion be-
ause �0 is a substitution.C.5.3 Revising the Consequent of a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 24in(X;A;�);retra
t (mis
on
lusion(P )); add(mis
on
lusion(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>><>>>>: atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H);:unify(X;H 0) 9>>>>=>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;H 0 2 L;P 0 = H 0  BC.5.4 Reversing a RuleApplying Argument Rewrites 1) 2) 3) 5) 12) 26in(X;A;�);retra
t (reversion(P )); add(reversion(P 0)); revise(�; fPg; fP 0g;�0);out(X;A;�0)Properties: 8>>>><>>>>: atta
ks(A;A);
onsistent(�0);supports(A;X : out;�0);unify(X;H);:unify(X;B) 9>>>>=>>>>;Conditions: X : in 2 GA;H  B 2 A;P = H  B;P 0 = B  H
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Appendix DChe
king the Property supports
The property supports ensures whether an argument 
an be advan
ed or not in order tosupport the intended 
laim in the 
ontext of moves advan
ed so far. Its main purposeis to avoid 
ir
ularity and ine�e
tive repetition of arguments.Intuitively, an argument is not allowed if it has been advan
ed before to atta
k the same
laim via the same atta
k-based revision operation. Moreover, if the revision is non-trivial, then the argument must a

ount for some premise that has either been retra
tedor added by the 
orresponding operation.So, let hA0; �1; A1; :::; �i�1; Ai�1irepresent the argument pro
ess so far, and Ai be an argument in the revised theory ��ithat is generated via the operation �i in order to support a 
laim C. Then:holds(supports(Ai; C;��i); �i; hA0; �1; A1; :::; �i�1; Ai�1i)ensures that argument Ai is a valid move in the pro
ess.The predi
ate holds/3 is used to 
he
k the various properties asso
iated with an at-ta
k. Below is the spe
i�
ation 
urrently used in our system for verifying the propertysupports . Note that as in the 
ase of any other property, designers of argument systemsmay 
hoose to relax or strengthen this spe
i�
ation. Predi
ate argtree member/2 veri-�es if a premise is used the argument; i.e. if it de�nes some sub-tree in the 
orrespondingargument tree.The predi
ate nextto/3 is a list operation de�ned in SICStus that 
he
ks whether twoelements appear side-by-side in a list.
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%----------------------------------------------------------------% Che
king property: supports%--- trivial revisionholds(supports(A, X:in, Theory), RevisionOp, ArgSofar) :-trivial(RevisionOp),atta
k type(RevisionOp, X:out ==> X:in),n+ member(A, ArgSofar).holds(supports(A, X:in, Theory), RevisionOp, ArgSofar) :-trivial(RevisionOp),atta
k type(RevisionOp, X1:in ==> X:in),n+ nextto(A, RevisionOp, ArgSofar).%--- non-trivial revision, where Rem is nonemptyholds(supports(A, C, Theory), RevisionOp, ArgSofar) :-nontrivial(RevisionOp, r(Rem, Add)),member(Axiom, Rem),argtree member(Axiom, A),n+ nextto(A, RevisionOp, ArgSofar).%--- non-trivial revision, where Rem is emptyholds(supports(A, C, Theory), RevisionOp, ArgSofar) :-nontrivial(RevisionOp, r(Rem, Add)),n+ member(Axiom, Rem),member(Axiom, Add),argtree member(Axiom, A),n+ nextto(A, RevisionOp, ArgSofar).Figure D.1: Che
king the property supports .
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Appendix EAr
hite
ture: the Pressure TankExample
This Appendix gives the Prolog �le 
ontaining the ar
hite
ture de�nition for the pressuretank example, as des
ribed in Chapter 11.%%% File:%%% ar
hite
ture.pl%%% Author:%%% Daniela Carbogim%%% Purpose:%%% Spe
ify ea
h 
omponent of the ar
hite
ture to be%%% used by the argument generator%%%------------------------------------------------------------%%%- Theory -%%%------------------------------------------------------------main(ptmodel).provability(ptmodel, solve).theory(ptmodel,[axiom(1, operational_tank(tank(pt), T),[on(motor(m), T), not_full(tank(pt), T)℄),axiom(2, operational_tank(tank(pt), T),[off(motor(m), T), full(tank(pt), T)℄),axiom(3, not_operational_tank(tank(pt), T),[on(motor(m), T), full(tank(pt), T)℄),axiom(4, on(motor(m), T),[
losed(relay(k2), T)℄),axiom(5, off(motor(m), T),[open(relay(k2), T)℄),axiom(6, 
losed(relay(k2), T),[
losed(relay(k1), T), 
losed(swit
h(ps), T)℄),axiom(7, open(relay(k2), T),[open(relay(k1), T)℄),axiom(8, open(relay(k2), T),[open(swit
h(ps), T)℄),axiom(9, 
losed(relay(k1), T),[
losed(relay(timer), T),
losed(swit
h(s1), Tp), pre
edes(T, Tp)℄),257



axiom(10, open(relay(k1), T),[open(relay(timer), T)℄),axiom(11, 
losed(swit
h(ps), T),[not_full(tank(pt), T)℄),axiom(12, open(swit
h(ps), T),[full(tank(pt), T)℄),axiom(13, 
losed(swit
h(s1), T),[initial_time(T)℄),axiom(14, open(swit
h(s1), T),[initial_time(Ti), greater(T, Ti)℄),axiom(15, 
losed(relay(timer), T),[timing(relay(timer), TC, T),pressurisation_time(TP), greater(TP, TC)℄),axiom(16, open(relay(timer), T),[timing(relay(timer), TC, T),pressurisation_time(TP), geq(TC, TP)℄),axiom(17, timing(relay(timer), 0, T),[initial_time(T)℄),axiom(18, timing(relay(timer), 0, T),[initial_time(Ti), greater(T, Ti), open(swit
h(ps), T)℄),axiom(19, timing(relay(timer), TC, T),[previous(T, Tp),timing(relay(timer), TCp, Tp), in
rement(TCp,1,TC)℄),axiom(20, full(tank(pt), T),[pressurisation_time(TP), mod(T, TP, 0)℄),axiom(21, not_full(tank(pt), T),[pressurisation_time(TP), mod(T, TP, X), greater(X, 0)℄),axiom(22, previous(T, Tp),[initial_time(Ti), greater(T, Ti), in
rement(T,-1,Tp)℄),axiom(23, pre
edes(T, Tp),[previous(T, Tp)℄ ),axiom(24, pre
edes(T, Tp),[previous(T, Tp1), pre
edes(Tp1, Tp)℄ ),axiom(25, initial_time(0), true),axiom(26, pressurisation_time(60), true)℄).%%%--- Confli
ting predi
ates
onfli
t(operational_tank(P, T), not_operational_tank(P, T)).%%%--- Provability relation for the theorysolve([℄, [℄, _Theory).solve([X|R℄, [ArgX|ArgR℄, Theory) :-solve(X, ArgX, Theory),solve(R, ArgR, Theory).solve(true, true, _Theory).solve(X, arg(X, Id, ArgB), Theory) :-member_list(axiom(Id, X, B), Theory),solve(B, ArgB, Theory).solve(X, arg(X, pmtv, true), _Theory) :-primitive_pred(X), X.primitive_pred(greater(_,_)).primitive_pred(geq(_,_)).primitive_pred(in
rement(_,_,_)).primitive_pred(mod(_,_,_)). 258
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%%%------------------------------------------------------------%%%- Criti
ism Theory -%%%------------------------------------------------------------
rit(ftree).provability(ftree, solve_abd).theory(ftree,[axiom(e1A, tank_rupture, [primary_failure(tank(pt))℄),axiom(e1B, tank_rupture, [
ontinuous_pump_operation℄),axiom(e2A, 
ontinuous_pump_operation, [primary_failure(relay(k2))℄),axiom(e2B, 
ontinuous_pump_operation, [emf_applied_on(relay(k2))℄),axiom(e3, emf_applied_on(relay(k2)),[primary_failure(swit
h(ps)), emf_applied_on(swit
h(ps))℄),axiom(e4A, emf_applied_on(swit
h(ps)), [primary_failure(swit
h(s1))℄),axiom(e4B, emf_applied_on(swit
h(ps)), [emf_applied_on(relay(k1))℄),axiom(e5A, emf_applied_on(relay(k1)), [primary_failure(relay(k1))℄),axiom(e5B, emf_applied_on(relay(k1)), [primary_failure(relay(timer))℄)℄).%%%--- Provability relation for the 
riti
ism theory:- dynami
 solve_abd/3.solve_abd([℄, [℄, _FTree).solve_abd([X|R℄, Arg, FTree) :-solve_abd(X, ArgX, FTree),solve_abd(R, ArgR, FTree),append(ArgX, ArgR, Arg).solve_abd(true, [℄, _FTree).solve_abd(X, [X℄, _FTree) :-abdu
ible(X).solve_abd(X, A, FTree) :-member_list(axiom(_Id, X, B), FTree),solve_abd(B, A, FTree).abdu
ible(primary_failure(_)).



%%%------------------------------------------------------------%%%- Control Module -%%%------------------------------------------------------------filter(solve_abd, solve_filter).%%%--- Measure values for 
riti
ism theory(ftree, solve_abd)m_ftree(abdu
ible(primary_failure(tank(pt))), 5.0e-06).m_ftree(abdu
ible(primary_failure(relay(k2))), 3.0e-05).m_ftree(abdu
ible(primary_failure(swit
h(ps))), 1.0e-04).m_ftree(abdu
ible(primary_failure(swit
h(s1))), 3.0e-05).m_ftree(abdu
ible(primary_failure(relay(k1))), 3.0e-05).m_ftree(abdu
ible(primary_failure(relay(timer))), 1.0e-04).filter_threshold(M) :-M > 0.1.%%%--- Propagation me
hanism solve_filter for solve_abdsolve_filter(solve_abd(X, A, FTree)) :-measure_arg(solve_abd(X, A, FTree), M1),measure_sent(X, M2, FTree),
ombine_measure(M1, M2, M),filter_threshold(M).measure_sent(X, M, FTree) :-findall(MX, measure_arg(solve_abd(X, _A, FTree), MX), Ms),
ombine_measure_sent(Ms, M).measure_arg((A1, A2), M) :-measure_arg(A1, M1),measure_arg(A2, M2),
ombine_measure_arg(M1, M2, M).measure_arg(true, 1).measure_arg(abdu
ible(X), M) :-m_ftree(abdu
ible(X), M).measure_arg(solve_abd(X, A, FTree), M) :-
lause(solve_abd(X, A, FTree), B),measure_arg(B, M).measure_arg(A, 1) :-\+ A = true,\+ A =.. [solve_abd|_℄,\+ A =.. [abdu
ible|_℄,\+ A = (_A1, _A2),A.
ombine_measure_arg(M1, M2, M) :-M is M1*M2.
ombine_measure_sent(Ms, M) :-sum(Ms, M).
ombine_measure(M1, M2, M) :-M is M1/M2.%-----------------------------------------------------------------% EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF EOF%-----------------------------------------------------------------260
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