-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Edinburgh Research Archive

Dynamics in Formal Argumentation

Daniela Vasconcelos Carbogim

Ph.D.
University of Edinburgh
2000

https://core.ac.uk/display/429723377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Z¢
To Bosco and Leinad
To Caio

constant sources of inspiration,
motivation,

courage,

and of a humanistic attitude towards life

Abstract

In this thesis we are concerned with the role of formal argumentation in artificial in-
telligence, in particular in the field of knowledge engineering. The intuition behind
argumentation is that one can reason with imperfect information by constructing and
weighing up arguments intended to give support in favour or against alternative con-
clusions. In dynamic argumentation, such arguments may be revised and strengthened
in order to increase or decrease the acceptability of controversial positions.

This thesis studies the theory, architecture, development and applications of formal
argumentation systems from the procedural perspective of actually generating argu-
mentation processes. First, the types of problems that can be tackled via the argumen-
tation paradigm in knowledge engineering are characterised. Second, an abstract formal
framework for dynamic argumentation is proposed, based on an analysis of dynamic as-
pects of informal argumentation. Formal arguments in this framework are built from
an underlying set of axioms, represented here as executable logic programs. Finally, an
architecture for dynamic argumentation systems is defined, and domain-specific appli-
cations are systematically instantiated from this formalisation. Relevant applications
are presented within different domains, thus grounding problems with very distinctive
characteristics into a similar source in argumentation.

The methods and definitions described in this thesis have been assessed on various
bases, including the reconstruction of informal arguments and of arguments captured
by existing formalisms, the relation between our framework and these formalisms, and
examples of dynamic argumentation applications in the safety-engineering and multi-
agent domains.

Acknowledgements

Someone once told me that writing a thesis can be an enjoyable experience. Well, T would
like to second that opinion and gratefully acknowledge all the people who somehow
influenced the work described here, helping to make this period a most pleasant one.

First and foremost, my biggest thanks to the best supervisors one could ask for, Dave
Robertson and John Lee. Their time, continuous support and precise advice were
crucial. Dave has influenced my work in so many aspects that I find it hard to enumerate
them all here; in particular, his questions and comments have made me think a lot about
my own research, and his sharp sense of humour was a big plus. John was an invaluable
source of motivation; his careful comments and constant presence have helped me in
directing my project and has given an interdisciplinary flavour to this work.

Special thanks go to my examiners, Corin Gurr and Simon Parsons, for their comments,
suggestions and for the most rewarding experience which was my Viva.

I am most grateful to current and past members and co-workers of the Software Sys-
tems and Processes (SSP) Group—Jaume Agusti, Virginia Brilhante, Alberto Castro,
Joao Cavalcanti, Luigi Ceccaroni, Jessica Chen-Burger, Flavio Corréa da Silva, Stefan
Daume, Peter Funk, Yannis Kalfoglou, Renaud Lecoeuche, Siu-Wai Leung, Chris Lin,
Edjard Mota, Steve Polyak, Dave Robertson, Jon Tonberg, Wamberto Vasconcelos and
Chris Walton. These people make the SSP Group the perfect environment for research
and collaboration (and thanks to Joao we have a SSP t-shirt too!). The SSP weekly
meetings were an invaluable opportunity for communication and feedback on the vari-
ous stages of my research. I also had the pleasure of organising these meetings for over
two years, so thanks to all of you who have kindly volunteered (or been volunteered) to
give a talk on a Wednesday morning.

Big thanks also to Elias Biris, Marcio Brandao, Marco Aurélio Carvalho, Herman
Gomes, Patricia Machado, Manuel Marques Pita, Sonia Schulenburg, Josh Singer and
Gerhard Wickler. They too deserve a lot of credit for all the help on various matters
and particularly for coping with my continuous talking for the past three years. Their
patience and disposition is warmly acknowledged—especially Virginia, Jodo, Alberto
and Yannis.

I would like to acknowledge all the participants of the Symposium on Argument and
Computation, with special thanks to Chris Reed and Tim Norman for organising such
an inspirational and stimulating event. A big thanks to the members of my group, Erik
Krabbe, Tim Norman and Doug Walton, and also to Peter McBurney.

A hearty thank-you is due to two great women who played a big role in my work and
life, Jane Hillston and Virginia Brilhante. Jane as my mentor has helped me to realise
a lot of my potential. Thank you both for your serenity, for the long and fruitful talks,
and for sharing with me your experiences and expectations.

Thanks to Flavio Corréa da Silva, my MSc supervisor in Brazil and the main person
responsible for me coming to Edinburgh in the first place. Flavio himself was a PhD
student at the former AI Department, in fact the first one to be supervised by Dave. A
big thank-you also to Wamberto Vasconcelos for all his tips, advice, time and knowledge

vil

from the early start.

More generally, I thank the staff of the former AI Department and now Division of
Informatics—particularly Janet Lee, Olga Franks, Jean Bunten, Deirdre Burke, Jane
Rankin, Michelle Siszczuk, Neil Brown, Craig Strachan, Gordon Reid and John Berry—
for the enjoyable and informative chats, and for being so helpful in every possible way. A
special acknowledgement goes to Olga for her commitment in providing a most complete
service which is the AI Library. Thanks are also due to the Informatics Graduate
School for support provided through the Student Travel Grant, and to the Faculty of
Science and Engineering for running valuable programmes such as the Transferable Skills
Programme and the Science and Engineering Mentoring and Springboard Programme.

For its direct support I would like to acknowledge the Brazilian National Research
Council (Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico, CNPq), un-
der grant no. 200074/97-0. Eli Ribeiro and Nelson Prugner in particular have been
extraordinarily helpful and efficient.

Finally, a most heartfelt and loving thank-you to my other half, Zé, who has given up
so much unselfishly, coming with me to Edinburgh, helping me with everything, reading
my drafts, making the right questions. Thanks for your love, and for being there all the
time.

viil

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

Daniela Vasconcelos Carbogim
Edinburgh
October 20, 2000

X

Contents

Abstract
Acknowledgements
Declaration

List of Figures

List of Definitions

I Background and Overview

1 Context and Motivation
1.1 Formal Argumentation and Reasoning
1.1.1 Truth and Acceptability
1.2 The Way We View Arguments
1.3 General Questions Addressed in this Thesis

1.3.1 Thesis Overview o v v i e e

2 Problem Definition: Dynamic Argumentation
2.1 Examples of Dynamic Arguments
2.1.1 Model Design o
2.1.2 Negotiation between Agents

2.2 Specific Questions Addressed in This Thesis

3 Argumentation and Knowledge Engineering

x1

vii

ix

X1xX

xx1

o O

11
14
14
16
17

19

3.1

3.2

3.3

3.4

3.5

Argument and Non-monotonic Reasoning
3.1.1 Problem Description 0L
3.1.2 Defeasible Argumentation
3.1.3 A Conceptual Framework for Defeasible Argumentation Systems
3.1.4 An Abstract Account of Defeasible Argumentation
3.1.5 Relation to Other Paradigms for Non-monotonic Reasoning . . .
Argument and Decision Making under Uncertainty
3.2.1 Problem Description 0 0oL
3.2.2 Argumentation and Decision Making
3.2.3 The Logic of Argumentation
3.2.4 Other Argumentation-based Approaches to Uncertainty
Argument and Multi-Agent Systems
3.3.1 Problem Description 0oL
3.3.2 Argumentation-based Negotiation
3.3.3 Protocol-based Negotiation via Argumentation
3.3.4 Object-based Negotiation via Argumentation
Argument and Design Lo o
3.4.1 Problem Description 0oL
3.4.2 Arguing about Software Design
3.4.3 Argumentation-based Design Rationale

Discussion e e

IT A Pragmatic Approach

4 Basic Concepts and Definitions

4.1
4.2

An Abstract View of Dynamic Argumentation.
Formal Definitions o
4.2.1 Arguments e e e e

4.2.2 Dynamic Arguments

5 Towards a Classification of Argument Schemata

xil

65

67
68
70
71
72

7

5.1 The Aflatoxin Debate: Assessing Cancer Risks 78

5.2 Argument Schemata for Arguing about Aflatoxins 80
5.2.1 An Overview of the Schemata Description Language 80

5.2.2 Adding a New Premise 82

5.2.3 Retracting an Existing Premise 85

5.2.4 Updating an Existing Premise 88

5.3 Relationship with Informal Argumentation Theory 94

6 Attacks in Argument Dynamics 99
6.1 Types of Argument Claims 99
6.1.1 Claim Dependencies in an Argument 101

6.2 The General Format of Attacks 105
6.3 Possible Attacks in a Dynamic Argument 113
6.4 Argumentation and Truth Maintenance Systems 116
6.4.1 Experiments with Truth Maintenance 118

7 A Formal Classification of Argument Schemata 123
7.1 Generating Dynamic Arguments 123
7.2 A Logic Programming Framework 124
7.2.1 Considering Negation as Failure 126

7.3 A System of Argument Rewrites 127
7.3.1 The General Attack Relation between Theories 128

7.3.2 The General Form of Theory Revision 128

7.3.3 Types of Argument Claims 129

7.3.4 From Contradictory Claims to General Types of Revision 130

7.3.5 From Dealing with Arguments to Dealing with Premises 131

7.3.6 Logic-Specific Rules for Specifying Premises 133

7.3.7 Domain-Specific Level 139

8 Worked Example: Defining Domain-Specific Schemata 141
8.1 Two Dynamic Argumentation Systems 141
8.1.1 Generating Attacks Interactively 143

xiii

8.1.2 Generating Attacks Automatically 143
8.2 The Aflatoxin Debate Revisited 144
8.3 Searching for Alternative Arguments 153

8.3.1 A Catalogue of Argument Schemata for the Aflatoxin Example . 153

8.3.2 Exploring the Search Space of Arguments 157

9 Roles and Properties of our Approach 159
9.1 Non-monotonic Aspects of Dynamic Argumentation 160
9.1.1 Determining Acceptability in Fixed Theories 160

9.1.2 Non-monotonicity in Argument-based Theory Revision. 165

9.2 Termination Lo 170
9.3 Is Our Classification Complete? 170
9.4 Communicating Dynamic Arguments 173
9.4.1 Different Levels of Instantiation 174

9.4.2 Relations between Theories 175

9.5 The Abstract Argumentation Framework: Limitations 176
IIT Instantiating Applications 181
10 A General Architecture for Dynamic Argumentation Systems 183
10.1 The Theory 184
10.2 The Criticism Theory 184
10.3 The Control Module o 186

11 Worked Example: Instantiating the Architecture 189
11.1 Instantiating the Architecture in a Safety Domain 190
11.1.1 The Theory: The Pressure Tank Model 190

11.1.2 The Criticism Theory: The Fault Tree Model 192

11.1.3 The Control Module 197

11.2 Generating Dynamic Arguments 198
11.3 A Dynamic Argument in the Safety Domain 200

Xiv

11.4 Argument Prioritisation in the Architecture
11.4.1 Priority Criteria for Generating Arguments

11.4.2 Preference Relations for Comparing Arguments

12 Relating Argument Dynamics to a Multi-Agent Problem

12.1 Contract-based Negotiation
12.1.1 Contract-based Negotiation as Dynamic Argumentation
12.1.2 A Simple Language for Contracts
12.1.3 An Example of Contract Formation

12.2 Instantiating the Architecture in an Agent Scenario.
12.2.1 The Theory: The Contract between Producer and Consumer
12.2.2 The Criticism Theories: Producer and Consumer
12.2.3 The Control Module

12.3 A Dynamic Argument for Contract Formation.

12.4 TIssues Raised by this Example.

IV Conclusions and Discussion

13 Contributions

14 What Next to Do?
14.1 The Fine Print
142 AWish Listo o e
14.2.1 Analysis of Priorities and Preferences
14.2.2 Strategies for Selecting Arguments
14.2.3 Automated Evaluation of Dynamic Arguments
14.2.4 Formal Analysis of the Framework
14.2.5 Adopting Different Underlying Logics
14.2.6 Editors and Tools Supporting the Design of Argument Systems .
14.2.7 Testing Properties oL

14.2.8 Applications to Domains L.

XV

207
208
209
209
211
215
215
216
220
222
223

225

227

14.2.9 Application in Real Multi-Agent Scenarios

A Basic Syntax: Logic Programming

B Basic Notation: Trees and Graphs
B.1 Directed Graphs

B.2 Argument Trees.

C Harnessing Argument Rewriting
C.1 Trivial Revisions o e
C.2 Elementary Revisions for Adding an Argument
C.2.1 AddingaFact
C.2.2 Adding a Substantiated Rule
C.2.3 Adding a Burden Shift Rule
C.3 Updating Revisions for Adding an Argument
C.3.1 Removing Irrelevance ina Rule
C.3.2 Generalisinga Ruleo
C.3.3 Revising the Consequent of a Rule
C.3.4 ReversingaRule 0.
C.4 Elementary Revisions for Removing an Argument
C.4.1 Retracting an Invalid Rule
C.4.2 Retractinga Weak Rule
C.4.3 Retracting a Misrelation
C.5 Updating Revisions for Removing an Argument
C.5.1 Elaborating Preconditionsina Rule
C.5.2 Specialisinga Rule 00000
C.5.3 Revising the Consequent of a Rule
C.5.4 ReversingaRule 000

D Checking the Property supports

E Architecture: the Pressure Tank Example

XVi

239

241
241
242

243
243
244
244
245
246
247
247
248
249
250
251
251
251
252
253
253
253
254
254

255

257

Bibliography 261

Index 271

XVil

List of Figures

2.1

2.2

3.1

3.2
3.3
3.4
3.5
3.6
3.7

4.1

6.1
6.2
6.3
6.4

7.1

Types of argumentation according to changes in the underlying knowl-
edge base, symbolised here by the possibly indexed letter I1. Ag, Ay, Ag, ...
represents the sequence of argument moves, while 1y, I1;, Ils, ... stands for
the sequence of knowledge bases obtained as changes (expressed by ~»)
are performed. Lo 13

A pressure tank system. L Lo oo 15

Toulmin’s argument structure: a claim is supported by data (or evidence)
and by a warrant, which is a general rule or principle supporting the step
from data to a claim; the backing is a justification for the warrant, and the
rebut is a condition where a warrant does not hold; a qualifier expresses

the applicability of the warrant. 36
The Argument Consequence Relation Facp. 39
Reasoning about beliefs, values and expected values. 43
Some KQML performatives classified into categories (Finin et al. 1997). 49
Negotiation protocol for two agents a and b (Parsons et al. 1998). 51
A software design argumentation model from (Sigman and Liu 1999). . 59
An example of a heuristicrule., 60
Dynamic argumentation: revising sets of premises. 75
Basic interfacing predicates as defined by Shoham (1994). 118
A TMS corresponding to argument A for p(a,b). 120
TMS from Figure 6.2 after premise — r(b) was deleted. 121
TMS from Figure 6.2 after s(a),t(a) — ¢(a) was updated. 122
A system for generating dynamic arguments. 124

Xix

7.2

8.1

9.1
9.2

10.1
10.2

11.1
11.2

11.3
11.4
11.5
11.6

12.1
12.2

D.1

Organisation of argument revision schemata obtained via our rewriting
system. Schemata 2, 3 and 4 are not depicted in the diagram because
they have no immediate effect on refining a revision operation, but are
still useful for harnessing the possible revisions that are allowed.

Prolog specification of a generic dynamic argumentation system.

General types of revision. o Lo

From dealing with arguments to dealing with premises.

Argument level: generating arguments based on a criticism theory.

Architecture overview: interactions between the control module and the
theories in the argument level are of a different nature than those between
theory and criticism theory, and thus are represented by dashed arrows
rather than by the solid arrows depicted in Figure 10.1.

A pressure tank system (see Figure 2.2).

Basic fault tree for the pressure tank example: circles denote basic events
(faults) that require no further development, whereas boxes denote inter-
mediate events in which a fault occurs because of one or more antecedent
causes acting through logic gates. Or-gates and and-gates are represented
by + and -, respectively. Lo

Generating attacks to the pressure tank model based on the fault theory.

Our proposal (a) and the flattened equivalent (b).
Generating attacks to models based on fault theories.

Prioritisation in the generation of individual arguments.

Basic scenario for contract negotiation between producer and consumer.

Contract-based negotiation in the architecture.

Checking the property supports.

XX

140

142

171
171

185

187

190

192
194
195
196
204

210
216

256

List of Definitions

3.1 Abstract Argumentation Framework00 28
3.2 Argument L e 29
3.3 Attack e 29
3.4 Acceptability 32
3.5 Admissibility 32
4.1 AXIOM . . L e e 71
4.2 Theory 71
4.3 Argument 71
4.4 Attack . ..o 73
4.5 Revisiono 73
4.6 Attack-based Revision 74
4.7 Dynamic Argumento 75
6.1 Typesof Claims e 100
6.2 Argument Claims 104
6.3 General Types of Revision 108
6.4 Dependency Graph L 114
9.1 Proof-theoretical Dispute 163
10.1 Theory o e 184
10.2 Criticism Theory o o 184
10.3 Control Module L 188

XxX1

Part 1

Background and Overview

Chapter 1

Context and Motivation

This thesis is concerned with the role of formal argumentation in knowledge engineering.
Our motivation is that research into argumentation can provide methods and techniques
for tackling the sorts of wicked problems that are common in this field, problems which
according to Rittel and Webber (1973) have no definitive and correct solutions because

criteria for success are often subjective and conflicting.

The intuition behind argumentation is that one can reason with imperfect information
and deal with such wicked problems by constructing and weighing up arguments relevant
to alternative conclusions. In a recent survey (Carbogim et al. 2000b), we have identified
four types of problems in knowledge engineering that have been tackled by argument-

based approaches:

e the problem of defeasibility in a knowledge base, where some conclusions might

be withdrawn in the presence of new knowledge;

e the problem of decision making based on uncertain knowledge, where we have to

decide which alternative to select;

e the problem of negotiation, where autonomous agents communicate and reason

about propositions in order to reach an agreement; and

e the problem of design, where it is important to make decisions, communicate
decisions and argue that the resulting artifact represents an acceptable solution

to a particular problem.

An analysis of the state of the art in argumentation research shows that there are as
yet few clear guides to standard practice in this area, and although argumentation
gives a generic architecture for a particular style of reasoning, much domain-specific
expertise is required to instantiate this architecture to a domain of application. Since
argumentation, in automated forms, is relatively new there do not yet exist methods
for guiding application of architectures to problems, and the focus has been on more
abstract argumentation theory. In many cases specialised solutions have been adopted
in order to implement practical systems from theoretical frameworks, and systems have

been mostly evaluated in terms of simple benchmark problems.

This present state of affairs reflects an expected direction of development in argument-
oriented research in knowledge engineering, summarised in the following two (related)

points:

e there is a need for increasing the practical utility of argumentation systems in

knowledge engineering by taking more complex arguments into account; and

e there is a need for clear methodologies for the systematic development of systems

for argument generation in specific domains.

This thesis looks at both issues.

1.1 Formal Argumentation and Reasoning

One of the assumptions underlying the use of classical methods for representation and
reasoning is that the information available is complete, certain and consistent. But often
this is not the case. In almost every domain, there will be beliefs that are not categorical;
rules that are incomplete, with unknown or implicit conditions; and conclusions that
are contradictory. Therefore, we need alternative knowledge representation techniques

for dealing with the problem of imperfect information.

There are two reactions to this sort of problem when designing systems. The first is
to resolve conflict and restore consistency, as for instance in most research in belief

revision. A second view, however, suggests that inconsistency can offer insights into

CHAPTER 1. CONTEXT AND MOTIVATION b}

rational processes and therefore should not be eradicated. Argumentation as a reasoning
technique is an example of the latter, through which we can construct and compare

arguments in order to reach and justify decisions.

Argumentation bears a strong resemblance to certain approaches for inconsistency man-
agement, in particular to truth maintenance systems (Doyle 1979). The difference is
more about a shift in emphasis than it is technical. Truth maintenance systems keep
track of the reasons for deriving conclusions from a knowledge base, so they can deal
with conflict by trying to explain why it happened. If a belief needs to be retracted (e.g.
to restore consistency), truth maintenance systems can identify which are the conclu-
sions that depend on this belief that should also be retracted. On the other hand, in
argumentation it is important to make the sources of inconsistency clearer, and also to

chart the course of an argument, so we can reason methodically in the face of conflict.

Formal argumentation theories are characterised by representing precisely some features
of (informal) argumentation via formal languages and by applying formal inference
techniques to these. Although such systems can be of different nature and have distinct
aims, the notion of argument adopted by them is usually the same, corresponding to
that of logical proof. In fact, the difference between formal argument and logical proof is
not syntactic, but pragmatic in the sense that proofs are certain and arguments can be
defeated by or preferred over others. As remarked by Krause et al. (1995), “arguments

have the form of logical proof, but they do not have the force of logical proof.”

Despite the traditional interest in argumentation in many disciplines, computational
frameworks for representing moderately complex arguments have appeared on the scene
only recently. Some believe that formal argumentation has many disadvantages, because
the study of formal logic can require a great deal of effort (van Eemeren et al. 1987)
and its use to model real (natural language) arguments is too restrictive (Reed 1997).
However, formal models of argumentation can be applied successfully as a reasoning
method in certain contexts, especially if used in a lightweight manner by applying
logic to specific parts of a problem in a focused and selective way (Robertson and
Agusti 1999). Recent efforts in bringing the communities of philosophy and artificial
intelligence together have also resulted in a handbook (Norman and Reed 2000) for

identifying problems, issues and a roadmap for research in the interdisciplinary field of

argument and computation.'

1.1.1 Truth and Acceptability

What is interesting about argumentation is that it explores aspects of practical reasoning
that are not always addressed by conventional reasoning theories. For instance, it is
based on the notion of acceptability—a proposition is acceptable on the basis of the

arguments that are relevant to it. As argued by Prakken and Vreeswijk (1999):

Argumentation systems are not concerned with the truth of propositions, but with

justification of accepting a proposition as true.
Note that this view had already been advocated by Doyle (1979, p.234):

To say that some attitude (such as belief, desire, intent, or action) is rational is
to say that there is some acceptable reason for holding that attitude. Rational
thought is the process of finding such acceptable reasons. [...] One consequence
of this view is that to study rational thought, we should study justified belief or

reasoned argument, and ignore questions of truth.

Being a constructive process for finding acceptable reasons, argumentation is essentially
dynamic in nature (Gabbay 1999, 2000), and also intrinsically non-monotonic because
a position may be warranted with respect to certain premises but not if other related
arguments are also considered. Note that argument processes rely mostly on conflict and
disagreement hence it is important to deal with these types of inconsistency properly.
Again, moving away from the notion of truth to that of acceptability gives a way for

doing this.

1.2 The Way We View Arguments

The study of argument is traditional in many disciplines, and although the notion of

argumentation is common to most of us there is still no consensus as to the correct

L «Call it computational theory of argumentation, or argument-based artificial intelligence (or both).”—
David Hitchcock, e-mail posting to the ARGTHRY list on 3 August 2000.

CHAPTER 1. CONTEXT AND MOTIVATION 7

meaning of the term (Gilbert 1995). The following tries to summarise the ubiquitous

character of informal argumentation.

Argumentation is a verbal and social activity of reason aimed at increasing (or
decreasing) the acceptability of a controversial standpoint for the listener or reader,
by putting forward a constellation of propositions intended to justify (or refute) the

standpoint before a rational judge. (van Eemeren et al. 1996, p. 5)

Note that this definition encompasses two views of an argument:

e a local, static view, in which an argument is intended to give support in favour or

against a conclusion; and

e a global, dynamic view, in which an argument is intended to increase or decrease

the acceptability of controversial positions.

Most existing formalisms are limited in scope because they describe the shape of an
argument but not the mechanisms needed to give dynamics to it. Such formalisms are
often characterised as two-step processes in which arguments are first generated and then
evaluated in terms of their acceptability. The dynamic counterpart of argumentation
is restricted to determining whether an argument is acceptable based on its relations
to all existing arguments. This may be defined in dialectical terms via dialogues and
debates, but is still a limited view of dynamics because it does not allow arguments to
be revised or strengthened in order to change their acceptability with respect to certain

positions.

Mechanisms for capturing dynamics involve revising arguments that have been attacked
in order to reestablish their validity; and also strengthening arguments by anticipating
criticisms and dismissing them. This thesis focuses on whether such mechanisms can
be formalised and automated and how argumentation seen from this dynamic perspec-
tive can provide an answer to the two research issues stated above. Our position is

summarised below:

e Argument dynamics broadens the scope of argument-based applications in the

knowledge engineering domain by grounding various problems with very distinc-

tive characteristics into a similar source.

e (Certain types of argument dynamics can be formalised and provide a generic
methodology supporting the design of domain-specific argument systems in a sys-

tematic way.

Although this view of dynamics has not been much explored in the context of formal
argumentation, it is a legitimate part of the study of arguments and informal logic.
Arguments are based on reasons and assumptions which are not necessarily acknowl-
edged by others, and which can therefore be challenged. Studies in argument analysis
include the use of techniques for strengthening an argument so as to reduce chances of
attacks and to eliminate the demand for yet more reasons and justifications. Fogelin

and Sinnott-Armstrong (1997, p. 40) have identified three such techniques:

Assuring an argument by stating that backup reasons exist, although they are not

explicitly presented.

Guarding an argument by weakening the argument claim, thus protecting it from

certain attacks.

Discounting an argument by anticipating criticisms and dismissing them.

Among these strategies, we are mostly interested in that of discounting, i.e. in ways of
considering potential attacks and dismissing them. According to Fogelin and Sinnott-
Armstrong (1997), “the general pattern of discounting is to cite a possible criticism in
order to reject it” by indicating that the current position is more important than this
criticism. We are also concerned with cases in which criticisms can be more important.
And to dismiss such criticisms, the argument under attack might need to be restructured:

some premises on which it is based may be reviewed, and new ones may be put forward.

1.3 General Questions Addressed in this Thesis

This thesis is about generating arguments. It is a study of theory, architecture and

development of formal argumentation systems in the context of knowledge engineering

CHAPTER 1. CONTEXT AND MOTIVATION 9

from a computational and procedural perspective. The central contribution is that it
is possible to construct an abstract formal framework for argument dynamics, and to

systematically instantiate domain-specific applications from this formalisation.

The work in this thesis has been guided by two main, general questions, namely:

e How can knowledge engineers benefit from argumentation-based approaches to

knowledge representation and reasoning?

e How can we improve the methodology for building systems for supporting such

tasks?

More specific questions are stated in the next section, after we define in more detail
the problem of formalising and automating argument dynamics. Before, though, we

delineate the structure of the present thesis.

1.3.1 Thesis Overview

The remainder of this thesis is divided as follows:

Part I. In Chapter 2 we identify and define precisely the problem to be addressed in
this thesis. Then, in Chapter 3, we characterise the types of problems that can

be tackled via the argumentation paradigm in knowledge engineering.

Part II. Chapter 4 introduces the formal concepts underlying our approach, and identi-
fies the subproblems that need to be addressed in order to formalise and automate
dynamic argumentation. The rest of the chapters in this part then address these
subproblems: Chapter 5 gives an intuitive description of our approach in terms
of informal examples and of concepts from informal argumentation theory; then,
Chapter 7 introduces the corresponding formal description based on a precise
characterisation of possible attacks given in Chapter 6; Chapter 8 gives a worked
example illustrating the use of two possible implementations for a dynamic argu-
mentation mechanism; and finally, roles and properties of our theory are discussed

in Chapter 9.

Part III. This part is about adapting our abstract theory of dynamic argumentation
to domain-specific applications. We do this in Chapter 10 by proposing a generic
architecture for argumentation systems which elaborates on the mechanisms de-
fined in Part II. Two areas of application are considered: safety-engineering in

Chapter 11, and negotiation in Chapter 12.

Part IV. In Chapter 13 we summarise our contributions, and finally, in Chapter 14,

we discuss possible directions and avenues for future work.

10

Chapter 2

Problem Definition: Dynamic
Argumentation

From a procedural perspective, formal argumentation is about capturing processes of
argument exchange by means of formal languages and inference techniques. Such argu-
ments are often represented by means of logical proofs, generated from an underlying
knowledge base—usually composed of facts and rules—via a provability relation. And
although argumentation processes can be of different natures and have distinct aims,

they are often based on conflict and disagreement between arguments.

Argumentation is sometimes used for determining whether a conclusion is acceptable
with respect to a static knowledge base (or a set of knowledge bases) assumed to be
fixed over time. Note that here time does not necessarily correspond to real time, but
rather it is related to the sequence of argument moves. Thus, the knowledge base—and
consequently the set of all arguments that can be derived from it—remain unchanged as
the argumentation develops. Most conventional formal argumentation systems describe
only this type of process for organising the relevant arguments (possibly in a dialectical
style) in order to specify if a conclusion can successfully defend itself from attacks.
Examples are given in Sections 3.1 and 3.2. In this work, however, we are interested in
argumentation processes that do account for changes to the underlying knowledge base.

We refer to these as dynamic.

Changes to a knowledge base can be of two broad types: those independent from the

argumentation, and those related to it. The first type is said to be external in the sense

11

that changes are caused by some outside, not necessarily known, factor. Such changes
happen over time, but independently from the sequence of argument moves. Dynamic
argumentation systems that account for external changes are used to determine whether
certain conclusions are acceptable given that the available information can change during

the argumentation. These are briefly discussed in Section 3.1.2.

The second type of change is said to be guided by argumentation, in the sense that
changes can allow desired arguments to be generated and undesired arguments to be
blocked. These are intrinsically related to the sequence of argument moves—we can de-
liberately try to increase or decrease the acceptability status of a position by performing
changes so as to introduce supporting or attacking arguments, respectively. Therefore,
dynamic argumentation systems that account for guided changes can be used not only
to determine if a conclusion is acceptable with respect to a knowledge base, but also to
affect its acceptability status by performing certain changes to this knowledge base dur-
ing the argumentation. Examples of such processes are presented later in this chapter,

in Section 2.1.

In brief, the nature and purpose of each type of argumentation process can be rather
different. Figure 2.1 illustrates the different sorts of processes with respect to the changes

allowed. Below we summarise the general concept of dynamic argumentation.

Dynamic argumentation is about using formal languages and inference techniques
for capturing processes of arqument exchange where the knowledge base from which
arguments are derived is dynamic, i.e. it can be changed during the argumentation

process, either via external changes or via guided changes.

In this thesis we are interested in formally describing dynamic argumentation processes
based on guided changes. From now on we refer to these by dynamic argumentation or
argument dynamics, unless there is a risk of ambiguity. We also use the term rewvision

to refer to any sort of change to the knowledge base.

12

CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 13

AU"ﬁAl"‘ﬁ.../‘ﬁAN

II

(a) Conventional (static) argumentation: argumentation steps assume fixed knowledge base.

AO _NAI’_ﬂ.../_ﬁAN

M | ~ |m | ~ & ~ o~ 7~ o

(b) Dynamic argumentation with ezternal changes: knowledge base may change independently
of argumentation step.

AU ’ Al ’ A2 o ’ AN

Mo | ~>|m | ~|m | ~ 7~

(c) Dynamic argumentation with guided changes: knowledge base changes as a consequence of
argumentation steps.

Figure 2.1: Types of argumentation according to changes in the underlying knowledge
base, symbolised here by the possibly indexed letter II. Ag, Ay, Ao, ... represents the
sequence of argument moves, while Ilg, II;, s, ... stands for the sequence of knowledge
bases obtained as changes (expressed by ~») are performed.

2.1 Examples of Dynamic Arguments

One way to think about argument dynamics is that it should be possible to change
and revise an argument in order to defend it from attacks. In formal systems, where
arguments are derived from a knowledge base, it should be possible to revise this knowl-
edge base so as to defend arguments from attacks, e.g. by adding new information so
that new supporting arguments or counter attacks can be derived. From this perspec-
tive, dynamic argumentation is a process of knowledge base revision guided by attacks
and counter attacks, which is intended to increase—rather than just determine—the

acceptability status of a position with respect to this knowledge base.

Our view is that argumentation seen from a dynamic perspective has a broader role
in computational systems. This section gives some scenarios in which formalising and
automating the kind of dynamic arguments above could be useful, and it turns out
that these are applicable also in domains far removed from the roots of argumentation
theory—for instance in describing relationships between fault trees and system models

in examples taken from the safety-engineering community.

2.1.1 Model Design

Argumentation can play an important role in design and analysis, especially in safety-
critical domains, where safety arguments are normally intended to convince people that

the specified system will be safe if implemented appropriately.

Consider for example a system that models the operation of the pressure tank control

system in Figure 2.2, as defined in the Fault Tree Handbook (Vesely et al. 1981):

The pump pumps fluid from an infinitely large reservoir into the tank. We shall
assume that it takes 60 seconds to pressurize the tank. The pressure switch has
contacts which are closed when the tank is empty. When the threshold pressure has
been reached, the pressure switch contacts open, deenergizing the coil of relay K2
so that relay K2 contacts open, removing power from the pump, causing the motor
to cease operation. The tank is fitted with an outlet valve that drains the entire

tank in an essentially negligible time. [...] When the tank is empty, the pressure

14

CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 15

I
I
I
| —_— & OUTLET
—_— VALVE
!]

|
— PRESSURE
[— TANK

FROM RESERVOIR | PUMP |

Figure 2.2: A pressure tank system.

switch contacts close, and the cycle is repeated.

Formal arguments for the safety of this system may involve a proof that the system is
operational at all times. In safety-critical domains, though, it is also important to show
that the system is acceptably tolerant to known faults, and such arguments are often

supported by fault tree analysis.

The fault tree technique is a well-established method used in industry for analysing
characteristics of systems under development. A fault tree is a model of the faults that
can lead to an unsafe event, or top event, in such systems. Fault tree analysis evaluates
weaknesses of the system by assessing the fault tree qualitatively and quantitatively. It
identifies the possible combinations of basic events in a fault tree from which the top
event can be derived (namely minimal cut sets), and estimates the probability of the
top event from the probabilities assigned to the basic events. Thus fault tree analysis
not only gives possible points of attack to the system model, but it also provides criteria

for priority and relevance of such arguments.

Consider the top event of a fault tree for this system to be the rupture of the pressure

tank after the start of pumping'. One of the minimal cut sets of this fault tree is

! See chapter VIIT in (Vesely et al. 1981) for the fault tree analysis with respect to this top event.

composed of the basic event primary failure of k2 . By primary failure of a component
we mean that the component fails to work under circumstances in which it should work,
so if k2 contacts fails to open when the coil of k2 is deenergised, then the tank will

rupture.

According to the fault tree analysis in (Vesely et al. 1981), the probability of this
minimal cut set is 3 x 10™°, which is fairly high for safety standards. This represents
a strong argument against system safety, but which can be undermined if we add some
redundancy to the system; i.e. safety could be considerably improved by adding another

relay in parallel to £2.

In such a way, the fault tree model is a source of possible arguments against system
safety that can guide the revision of a system model in order to increase its acceptability
with respect to known faults. Chapter 11 shows how our argumentation framework deals

with a fault tree example taken from the safety engineering literature.

2.1.2 Negotiation between Agents

Negotiation is often described as the process of achieving mutually acceptable agree-
ments between agents. Sometimes agreements are about finding acceptable solutions for
common problems (rather than deciding on conclusions that are acceptable to all agents
involved), which can be achieved in a sort of goal-oriented reasoning where agents take

some goal as a starting point and interact in order to agree on how to satisfy it.

In this context, negotiation focuses on the construction of objects as solutions to open
problems, and dynamic argumentation can provide means for building such solutions.
In contract-based negotiation for instance, contracts are objects that can be adjusted
based on reasoned arguments by the agents involved in the agreement so that it is

acceptable for all the parties involved.

Assume that contracts are objects which regulate agreements between autonomous
agents—consumers (or clients) and producers (or servers)—about the supply of products
and services. The process of contract-based negotiation could be described as follows.
Initially, one of the parties proposes a binding contract to regulate the agreement be-

tween them; without loss of generality, we can assume that a producer makes this first

16

CHAPTER 2. PROBLEM DEFINITION: DYNAMIC ARGUMENTATION 17

proposal. This contract is now the object of negotiation between producer and con-
sumer, and can be seen as a set of formulae stating the conditions for accomplishing the

agreement.

The consumer receives the contract from the producer and analyses it. If it agrees with
the clauses, then the process of negotiation is over. More interestingly, the consumer
might have reasons to believe that this particular contract will not be successfully com-
pleted. In this case, the consumer sends it back to the producer with the appropriate
criticisms. The producer then tries to adapt some of the clauses in that particular con-
tract in order to make it more acceptable, sending it back again to the consumer for
further analysis. The process of adjusting the contract continues until there are no more
criticisms (i.e. it is acceptable for producer and consumer) or until one of the parties
withdraws. This process is similar to the kind of negotiation that humans perform in

many situations involving contracts.

In such a way, negotiation can be viewed as a dynamic argument where the aim is to
increase the acceptability of a contract by revising it in terms of possible objections from
participating agents, until all agents commit to it. Chapter 12 shows how our argumen-

tation framework deals with an example of this sort in contract-based negotiation.

2.2 Specific Questions Addressed in This Thesis

There are two main reasons why we believe it is important to formalise and automate
argumentation processes like the ones mentioned above. First, argument-based method-
ologies should be supported by (semi-) automated tools which can both guide knowledge
engineers in developing knowledge bases that derive the intended consequences, and also
support designers of argument systems in investigating properties and effects of certain
attacks and revisions in a domain. Second, automated argument systems can be used by

artificial agents that want to employ this technique to solve certain types of problems.

A number of more specific questions has steered the development of such a formalisation
of argument dynamics (together with those general questions stated in Section 1.3), such

as:

e Which concepts are involved in argument dynamics, and which of these would be
interesting to formalise? Can these be defined in a general way or are they (or

some of them) domain-specific?

e How to represent and generate an argument? What types of arguments are im-

portant to be represented?

e How do arguments relate to each other and what types of relationships can be

defined between arguments?
e Where do attacks come from?

e What mechanisms are used to prioritise arguments, and how can contextual (do-

main) information be incorporated into such mechanisms?
e When do dynamic arguments terminate?
Now, before moving towards a formalism for capturing arguments dynamics, the next

chapter presents an overview of the existing work in argumentation in the context of

knowledge engineering.

18

Chapter 3

Argumentation and Knowledge
Engineering

One of the contributions of this thesis is to characterise the types of problems in the
knowledge engineering domain that have been tackled by formal argumentation. This
chapter surveys the state-of-the-art in formal models of argumentation and presents a

classification in terms of problems they are meant to solve.

Our goal is to illustrate the use of formal and structured semi-formal approaches to ar-
gumentation, evaluating its practical utility in knowledge engineering. Instead of taking
the usual path of reviewing different proposals for solving a particular problem, here
we analyse different issues that can be tackled by automated argumentation systems,
briefly comparing these approaches to other paradigms found in the literature. This is
not supposed to be an exhaustive survey, but an analysis of various formal representation

styles that are obtained by looking at argumentation from different perspectives.

Because at this point we take such a broad view of argumentation, the systems we de-
scribe are diverse. To guide the reader and facilitate comparison, the existing argument-
based efforts are analysed in terms of general problems stated at the beginning of each

section. The chapter is then organised as follows:

e Section 3.1 discusses how formal argumentation can deal with non-monotonic and

defeasible reasoning;

e Section 3.2 reports on some of the argument-based approaches for decision making

19

and reasoning under uncertainty;

e Section 3.3 reviews some applications of argumentation in distributed settings,

paying particular attention to multi-agent negotiation systems;

e Section 3.4 focuses on systems that use argumentation to support the design of

an artifact, especially in the software development context.

Because many argument-based systems share similar features and purposes, it is hard (if
not impossible) to establish a definitive classification of which research falls into which
category. However, an analysis based on our problem-oriented classification helps to

highlight strengths and problems in the existing proposals.

Finally, Section 3.5 summarises the current state-of-the-art and speculates on important

directions in argument-oriented research in knowledge engineering.

3.1 Argument and Non-monotonic Reasoning

3.1.1 Problem Description

This section considers the problem of drawing conclusions from a knowledge base in
the face of incompleteness and inconsistency. Very often, the addition of new propo-
sitions into a knowledge base can invalidate previously held conclusions and introduce

contradictions. In this case, reasoning is said to be non-monotonic.

Non-monotonic or defeasible reasoning! addresses the problem of reasoning under in-
completeness and inconsistency in the sense that some conclusions can be taken back in
the presence of new information. That is, a proposition can be accepted until a better
reason for rejecting it is found. Approaches for dealing with non-monotonic reasoning
should then have means for deciding which conclusions are justified and acceptable in
a knowledge base. Here we investigate how formal argumentation models can provide

this means.

! The term defeasibility has its origins in the context of Legal Philosophy—see (Prakken and Vreeswijk
1999, p. 10) and (Chesnevar et al. 1999, p. 3). As argued by Pollock (1987), the ideas behind defeasible
reasoning as it is studied in Philosophy and non-monotonic reasoning in Artificial Intelligence are
roughly equivalent, hence these terms have often been used interchangeably.

20

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 21

3.1.2 Defeasible Argumentation

Several approaches for formalising non-monotonic reasoning have been proposed in the
literature, such as default logics (Reiter 1980; Antoniou 1998). Argumentation provides
a different perspective to non-monotonic and defeasible reasoning, in which a claim is
accepted or withdrawn on the basis of the arguments for and against it, and on whether
these arguments can be attacked and defeated by others. This view has been charac-
terised as defeasible argumentation® and gained momentum after the publication of the
work of Loui (1987) and Pollock (1987). Since then, myriad defeasible argumentation
systems have been proposed (Nute 1988, 1994; Lin and Shoham 1989; Simari and Loui
1992; Freeman 1993; Brewka 1994; Dung 1995; Bondarenko et al. 1997; Jakobovits 2000),
also motivated by research in the area of legal reasoning (Kowalski and Toni 1996, 1994;
Verheij 1996; Prakken 1997a.b; Prakken and Sartor 1997, 1996; Vreeswijk 1997). It is
important to note that the field of Artificial Intelligence and Law has proved a fertile
domain for defeasible argumentation research and applications. This section, however,
does not describe particular approaches to legal argumentation.? Instead it concentrates
on general techniques for tackling defeasible reasoning based on argumentation, often

referred to as argument-based semantics.

In general, defeasible argumentation systems are intended to characterise precisely
whether an argument is acceptable based on its relations to other arguments. Prakken
(1995) has identified a generic conceptual framework which underlies the majority of
existing defeasible argumentation systems. This framework consists of five basic notions

that may not always be explicit:

1. an underlying logical language;

2. a concept of argument;

2 A comprehensive view of logics for defeasible argumentation can be found in (Prakken and Vreeswijk
1999), and this section is partly based on it. For another survey on this topic, including a historical
account of argumentation and defeasibility, see (Chesnevar et al. 1999).

An overview of legal applications of defeasible argumentation can be found in (Chesiievar et al. 1999,
pp. 12-14). A more recent roadmap paper (Bench-Capon et al. 2000) brings together various strands
of research in this area to create a conceptual model for the rational reconstruction of legal argument.
For more specific references, the interested reader can refer to the Artificial Intelligence and Law
Journal and to the Proceedings of the International Conference on Artificial Intelligence and Law,
both accessible from the homepage of the International Association for Artificial Intelligence and Law
at http://ais.gmd.de/iaail/.

3. a concept of conflict between arguments;
4. a notion of defeat among arguments; and

5. an account of the acceptability status of arguments.

The status of one argument depends on the whole set of arguments, and can be specified
in two ways: declaratively, by defining a class of acceptable arguments; and procedurally,

via proof-theoretical mechanisms for determining whether an argument is in this class.

A different view of procedural models was summarised by Loui (1998), who argues that
what makes beliefs rational is not only their relations to other beliefs, but also the way
in which they are built as the outcome of deliberative processes. In this sense, Loui
gives an account of defeasible argumentation as resource-bounded, dialectic disputation
protocols. Protocols are procedural models for constructing arguments based on notions
such as which parties are involved; what are the possible moves for each party; how
moves affect the outcome; how to determine if a disputation has finished; and if it has
been won or lost. For the outcome to be rational, such protocols must be fair (e.g.
parties get the same amount of resources, such as time) and effective (e.g. when a
conclusion is established, it means that maximum resources were used in unsuccessful

criticisms).

More recently, Prakken (2000) has also been focusing on the study of dialectical pro-
tocols, but from a slightly different perspective than Loui’s. Rather than considering
partial computation and limited resources, Prakken (2000) is interested in cases where
new information is added during the process, and in characterising the properties that
make protocols appropriate in these situations (e.g. if a participant could have advanced
an attack, this participant had the chance to do so during the argumentation). In his
words, protocols must be fair and sound. One could think of such protocols as repre-
senting dynamic argumentation with external changes (see Chapter 2), in the sense that
they do account for changes in the underlying knowledge base but are not concerned

with exactly why nor when these happened.

It has been argued that these sorts of procedural models are at a different layer of argu-

mentation, a layer concerned with disputes and dialogue games rather than declarative

22

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 23

acceptability of arguments. Bench-Capon et al. (2000) summarise the four types of layers
often considered in computational models of argument: a logical layer—corresponding
to the underlying logic mentioned above—for generating arguments and justifications
based on a monotonic logical system; an argument framework layer—addressed in this
section in terms of the framework above—for dealing with non-monotonic and defeasi-
ble reasoning by classifying acceptable arguments based on conflicts and attacks from a
fixed set of premises; a procedural layer for regulating real disputes in which information
can be added or challenged dynamically; and a heuristic layer on top of the procedu-
ral layer for considering efficient strategies for selection and presentation of arguments

during a dispute.

This thesis is mostly concerned with the latter two layers, particularly on how dynamic
changes to the set of premises relate to types of attacks that can be generated. The
analysis in this section, though, is concerned with non-monotonic and defeasible rea-
soning, and hence with the argument framework layer. We base this analysis on the
generic conceptual framework above, so it is possible to identify many similarities and
common features between existing systems for defeasible argumentation, and also dif-
ferences between these systems in terms of variations of these basic concepts. We will

be looking at this framework in detail in Section 3.1.3.

We are not presenting the various defeasible argumentation formalisms in detail. A com-
prehensive account of the most relevant ones can be found in (Prakken and Vreeswijk
1999) and (Chesnevar et al. 1999). Instead, the rest of this section focuses on a particu-
lar approach that is viewed as a unifying, abstract account of defeasible argumentation.
The Abstract Argumentation Framework of Kowalski & Toni (also known as the BDTK
approach) is a logic programming-based theory of argumentation that “unifies and gen-
eralises many approaches to default reasoning” (Bondarenko et al. 1997; Kowalski and
Toni 1994). Most existing defeasible argumentation systems can be understood and

described in terms of this formalism, which is discussed in Section 3.1.4.

Finally, Section 3.1.5 compares argument-based semantics approaches to other paradigms

for capturing defeasible and non-monotonic reasoning found in the literature.

3.1.3 A Conceptual Framework for Defeasible Argumentation Systems

This section discusses the five main concepts behind formalisms for defeasible argumen-
tation: an underlying logic notions of argument, conflict and defeat, and an account of
the possible status of an argument. Note that these are not always explicit, and the

terminology used to designate them may also vary between argumentation systems.

Each element is briefly described below based on the more complete account given in

(Prakken 1995; Prakken and Vreeswijk 1999).

Underlying Logic As discussed earlier, formal argumentation systems are charac-
terised by the use of formal knowledge representation and inference techniques.
The underlying logic is essentially the formal logic system defining a monotonic
consequence relation as the basis for deriving arguments. For instance, we might
adopt a Horn clause resolution-based system as the underlying logic. Such systems

are fundamentally deductive and therefore monotonic.

Arguments Arguments correspond to proofs in the underlying formal system. Con-

sider, for example, the set of Horn clauses below:
P qgATr q< s r < true s 4 true

Then the following proof of p (depicted as a tree with lower nodes supporting the

conclusion above) is said to be an argument for p.

Conflict Intuitively, argumentation presupposes disagreement, which is captured in
this framework by the notion of conflict. Also referred to in the literature as at-
tack or counter-argument (Prakken and Vreeswijk 1999), conflict determines which
conclusions in a knowledge base can be considered contradictory. For example,
the sentences married(X) and bachelor(X) can be seen as conflicting, when in-

stantiated by the same value for X.

24

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 25

It is possible to identify different types of conflict in terms of the underlying system,
e.g. rebuttal. Arguments are said to be rebutting if they have contradictory
conclusions. Assume for instance propositions p and not_p to be conflicting, and

suppose the following clauses are added to the small example above:
not_p < uANvAw U true v 4 true w true

then the arguments A; and Ay below are examples of rebutting arguments.

Aq p As not_p
VRN PN

q r u (% w

Defeat Because the underlying logic is monotonic, the addition of new information does
not invalidate existing arguments or previously derived conclusions, so conflicting
arguments may coexist in a knowledge base. In the item above, for example, we
are able to derive arguments for both p and not_p. The non-monotonic character
of argumentation arises from the fact that some arguments may be preferred
over others, and we should have means to decide which of these arguments are

acceptable.

The notion of defeat is usually based on some comparative measure for arguments
and a criterion based on this measure for adjudicating between conflicting argu-
ments. One way to do this is to assign some priority order to certain clauses in a
knowledge base, and to use this order to decide between arguments. For instance,
if the clause not_p < u A v A w has precedence over p < g A r, then the argument

Ay for not_p defeats the argument A; for p.

It has already been argued that such criteria are usually domain specific (Konolige
1988; Prakken and Sartor 1997), but in some cases it is possible to apply generic,
domain independent standards such as the specificity principle* (Simari and Loui

1992).

* The specificity principle is a priority measure in which rules that deal with specific cases are preferred
over generic ones. For example, if we can derive the following conflicting arguments:
Tweety flies because Tweety is a bird
Tweety does not fly because Tweety is a penguin

then by the specificity principle the argument for Tweety does not fly is preferred because the fact
that Tweety is a penguin is more specific than the fact that Tweety is a bird.

Status The goal of a defeasible argumentation system is to determine which claims
and which arguments are acceptable. The notion of acceptability can vary from
formalism to formalism, but intuitively an argument that defeats a conflicting
argument but is also defeated by a third one is not acceptable. Therefore it is not
enough to just look at the two conflicting arguments alone to decide upon them,

but instead all relevant arguments must be considered before making a decision.

For instance take the knowledge base that extends the examples above by the

addition of the following clauses.
notu < tANz 1< true 2z < true

Let the conflicting propositions be p and not_p; and u and not_u, and assume the

following priority ordering is assigned to this knowledge base.

e not_p < u Av A w has precedence over p < q A r;
e not_u < t A z has precedence over u + true;

e every other clause has equal precedence.

We know from this ordering that argument Ay for not_p defeats argument A; for
p. However, this is not enough to decide that argument A; is not acceptable. This
is because there might exist an argument Aj that defeats Ao, thus restoring the

validity of A;. In fact, the following argument for not_u defeats As.

As: not_u
RN
t z
In a sense, the acceptable arguments in a knowledge base can be viewed as one
way of settling existing conflicts. Sometimes, e.g. in the example above, there is
exactly one way of settling conflict according to the way preferences were defined,
hence the set of acceptable arguments is unique. There may be cases, however,
where conflict can be resolved in alternative ways, and therefore alternative sets

of acceptable arguments may exist.

A more refined view identifies three general classes of argument, intuitively de-

scribed as follows:

26

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 27

e An argument is justified if and only if all arguments defeating it are not

justified; e.g. A; and Ag above are justified arguments.

e An argument is overruled if and only if it is not justified and it is defeated

by a justified argument; e.g. Ay above.

e An argument is defensible otherwise.

From this perspective there are two possible attitudes towards acceptance of
arguments—credulous and sceptical. In credulous systems, an argument is ac-
cepted if it defensible. On the other hand, in sceptical systems an argument is
accepted only if it justified. This distinction between justified and defensible is
also possible in cases where there are alternative sets of acceptable arguments,
so an argument is defensible if it is in at least one of these sets, but for it to be

justified it must be in every alternative set.

This conceptual sketch is in line with Dung’s view that every argumentation system con-
sists of two essential parts: an Argument Generation Unit (AGU) for generating
arguments; and an Argument Processing Unit (APU) for deciding whether an ar-
gument is acceptable. Dung (1995) argues that logic programming and non-monotonic
reasoning are types of argumentation which can be formalised in an abstract way via
notions of argument and attack. He proposes a method for generating meta-interpreters
for argumentation systems, showing also that argumentation can be seen as logic pro-

gramming. The method is simple and is described below:

e The AGU specifies the attack (or conflict) relationships between arguments. In
(Dung 1995), these relations are considered to be primitive and represented in
terms of a binary predicate attack: if an argument A attacks an argument B, this

is expressed by attack (A, B).

e The APU is the following logic program with negation as failure that determines

whether an argument A is acceptable.

acceptable(A) <« not defeat(A)
defeat(A) <+ attack(B, A) A acceptable(B)

Intuitively, an argument is acceptable if it cannot be shown to be defeated, i.e. if
there is no acceptable argument that defeats it. This captures the idea that an
argument A can be attacked by another argument, which in its turn may also be
attacked by a third one, therefore restoring the validity of A, but does not capture

the distinction between justified and defensible arguments above.

From the perspective of this conceptual model we now take a closer look at the Abstract
Argumentation Framework, a logic programming based characterisation of defeasible

argumentation which is both generic and oriented towards computation.

3.1.4 An Abstract Account of Defeasible Argumentation

The Abstract Argumentation Framework in (Kowalski and Toni 1994, 1996; Bondarenko
et al. 1997) gives a flexible way of dealing with defeasibility in argument. As a language
independent formalisation of defeasible argumentation, it can semantically characterise
many approaches to default reasoning. This framework is partly based on Dung’s Ar-
gumentation Framework (Dung 1995), but a fundamental difference is that in Dung’s

formalism the notions of argument and attack are considered as primitives.

So let (£,F) be a monotonic deductive system, where £ is a formal language and - is
provability relation such that IT - « if there is a deduction of @ € £ from a theory II. A

theory is any set II C L.
Definition 3.1 (Abstract Argumentation Framework) Let (£,+) be a monotonic
deductive system. An Abstract Argumentation Framework (II, A,”) with respect to
(L,F) is an assumption-based framework defined by:

e q theory 11 C L representing facts or beliefs;

e a set of assumptions A C L, A# 0, that can extend any theory; and

e a mapping ~ : A — L to capture the notion of contrary of an assumption—i.e.

@ € L represents the contrary of a € A. O

A key motivation is that it should be possible to make explicit the assumptions on

which defeasible reasoning is based. For instance, an argument which rests on such

28

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 29

assumptions is accepted if there is no evidence to the contrary. Non-monotonicity arises
when evidence against these assumptions is provided, thus the arguments based on them

are no longer accepted (Bondarenko et al. 1997).

Definition 3.2 (Argument) If a conclusion o € L can be derived from A C A and

IT C L, then we say that ITU A F « is an argument for a. O

Note that arguments are based on assumptions, and these assumptions can be attacked

by others:

Definition 3.3 (Attack) Let (II, A,”) be an Abstract Argumentation Framework. A
set of assumptions A C A attacks another set of assumptions A' C A if there is a € A/
such that TTU A F @. O

The term attack used in this framework corresponds to the notion of conflict in the
conceptual sketch in Section 3.1.3. Because an argument can only be attacked by means
of its assumptions, conflicts between arguments are not symmetrical; i.e. if an argument
A attacks an argument B, then B does not necessarily attack A. These sorts of attacks
are known as assumption attacks. In this sense, all relations between arguments in the
Abstract Argumentation Framework are reduced to undermining attacks, as illustrated
in the following example, adapted from (Kowalski and Toni 1996) and (Robertson and
Agusti 1999).

Example 3.1 . Consider the following theory I1 of an Abstract Argumentation Frame-

work about inheritance.

inherits (P, estate(B)) <« wvalid_-will(W, B, P) (3.1)
disinherited (P, estate(B)) < found_guilty(P, murder(B)) (3.2)

found _guilty (john, murder (henry)) < (3.3)
valid_will(doc042, henry, john) <+ (3.4)

We say that a person P inherits the estate of B if there is a valid will W from B to
that person. On the other hand, we say that a person P is disinherited of the estate of

B if this person has been found guilty of the murder of B. In a particular inheritance

case, John has been found guilty of the murder of Henry, and there exists a valid will

identified as doc042 naming John the beneficiary of Henry’s estate.

Intuitively, there is conflict if a person P both inherits and is disinherited of some es-
tate. It should be possible to construct two rebutting arguments here: one supporting the
conclusion inherits(john, estate(henry)), and another disinherited(john, estate(henry)).
However, from the formal definition of attack given above, we cannot derive any con-

flicting argument.

Attacks are based on assumptions. Therefore, in order to allow arguments to be attacked
we need to appropriately extend the expressions in the theory by adding assumptions as
extra premises. Let the abducible sentences be represented by a non-provability operator

of the form cannot_be_shown(c), which denotes that a sentence « is assumed to be false

if it cannot be proved to be true. Note that cannot_be_shown(a) = c.

Ezpressions (3.1) and (3.2) could then be rewritten as follows:

inherits(P, estate(B)) <« wvalid_will(W, B, P) A
cannot_be_shown(disinherited (P, estate(B))) (3.5)
disinherited (P, estate(B)) <« found_guilty(P, murder(B)) A
cannot_be_shown (inherits(P, estate(B))) (3.6)

From Definition 3.3 we now have two undermining arguments corresponding to the

intuitive rebutting arguments. O

There is no explicit criterion for deciding between two arguments in an Abstract Argu-
mentation Framework. In fact, the notions of defeat and conflict coincide in the sense
that every attack to an argument defeats this argument. Note that defeat can be sym-
metrical, so it is possible to have two arguments defeating each other. This is illustrated
above, where the argument for inherits(john, estate(henry)), defeats the argument for
disinherited (john, estate(henry)), and vice versa. In this sense, there are two ways of
solving conflict in this inheritance base, corresponding to the following two alternative
sets of acceptable arguments: one containing the argument supporting inheritance, and

the other containing the argument supporting disinheritance. Both conclusions are de-

30

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 31

fensible (but not justified), so in a credulous system both would be acceptable whereas

in a sceptical system neither of them would.

It should be possible, however, to represent priorities and preferences in this framework.
Actually, there are two ways to prioritise an argument in terms of assumptions without
altering the semantics. One way is by removing assumptions so that the argument can
no longer be attacked. The second way is by introducing labels to the expressions and
adding rules that talk about their priorities. A methodology for doing the latter is

described in detail in (Kowalski and Toni 1996). Next we illustrate both cases.

Example 3.2 Consider again the example 3.1. Intuitively, if John is found guilty of
murdering the owner of the estate he is supposed to inherit (Henry), it can be expected
that he is disinherited of that estate, even if a wvalid will exists. Therefore, we would
like to prioritise the argument for disinheritance with respect to the one supporting

inheritance.

One way to do this is by removing the assumption in expression (3.6). Therefore, in
the theory consisting of expressions (3.5), (3.2), (3.3) and (3.4) there are no arguments
attacking the argument for disinherited(john, estate(henry)).

Another way to prioritise arguments is by talking about priorities in terms of labels.

Consider the following expressions:

rl : inherits(P, estate(B)) <« wvalid_will(W, B, P) A

cannot_be_shown(defeated (r1(P))) (3.7)

r2 : disinherited (P, estate(B)) <« found_guilty(P, murder(B)) A
cannot_be_shown(defeated (r2(P))) (3.8)
defeated (r1(P)) < cannot_be_shown(defeated (r2(P))) 9

Ezpression (3.9) intuitively corresponds to the idea of “inherits unless is disinherited of”,
so the argument for inheritance is defeated in case a person is proved to be disinherited of
the estate under consideration. In the theory composed of expressions (3.7), (3.8), (3.3),
(3.4) and (3.9), the argument for disinherited (john, estate(henry)) defeats the argument
for inherits(john, estate(henry)), but the reverse does not hold because no clause ezists

for defeated (r2(john)). O

Having defined the notions of defeat, the arguments in an Abstract Argumentation
Framework can be evaluated in terms of their ability to defend themselves against
attack (Kowalski and Toni 1994). The way in which the class of acceptable arguments
is defined can vary according to the semantics that one wants to capture. In the case
of admissibility semantics, for instance, an argument is acceptable if and only if it is

consistent and it attacks every argument that attacks it.

Definition 3.4 (Acceptability) An argument I1U A & « is acceptable if and only if

the set of assumptions A on which it is based is admissible. O

Definition 3.5 (Admissibility) A set of assumptions A C A is admissible if and only
if, for every A" C A, if A’ attacks A then A attacks A" — A. O

To build an admissible argument for a conclusion a we first need to construct an argu-
ment ITU A - «a and then augment the set of assumptions A so as to defend it against
all possible attacks. Note that this is not trivial because by adding new assumptions to

an argument we are also adding new potential points of attack against it.

Many other credulous and sceptical semantics for negation as failure can also be captured
by adopting other definitions of acceptability.® In particular, different logics for default
reasoning can be obtained by considering different notions of acceptability, different
sets of assumptions or even by assuming a different underlying logic. The advantage
of this framework is that it is both generic and oriented towards computation, since
it can be implemented as a logic program. Recently, a parametrisable proof theory
has been developed for it (Kakas and Toni 1999), where the different semantics that
can be formalised via argumentation can be computed in terms of instances of these

parameters.

3.1.5 Relation to Other Paradigms for Non-monotonic Reasoning

By appropriately instantiating the concepts described in Section 3.1.3, argumentation

frameworks can provide a characterisation of different formalisms for default reasoning,

® It has recently been shown in (Dimopoulos et al. 1999) that credulous reasoning under admissibility
semantics is as hard as under stable semantics, but in the case of sceptical reasoning it is actually
easier. Other complexity results for some of the semantics captured by the Abstract Argumentation
Framework can also be found in that paper.

32

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 33

such as logic programming with negation as failure, default logic and auto-epistemic
logic, among others. Reconstructing these formalisms in terms of an Abstract Argumen-
tation Framework means specifying appropriately each one of the elements in Definition
3.1, namely an underlying logic, a set of assumptions, and the notion of contrary of an

assumption.

For illustrative purposes, consider the case of default logic.® A default theory is based
on a first-order deductive system (£',F') and can be defined as a pair (W, D), where W
is a set of formulae in the underlying system and D is a set of default rules (Antoniou

041,81;---;,371

1998). Default rules have the general form , denoting that if « is true and if we

can assume f1, ..., B, to be consistent with «, then we can derive v. Let M 3 represent
that it is consistent to assume 3. A default theory (W, D) can then be described as
an instance of an Abstract Argumentation Framework (W, A,”) based on a deductive

system (£,) as follows:

e (L,F) is the underlying first-order deductive system:
—L=LU{MB | Be L)
— F is defined by the set of inference rules R below,

R = R’ U {o"Mﬁlj)-/--yMﬁn | azﬁl;}:--:ﬁn c D}’

where R’ is the set of inference rules defining .
e A is the set of assumptions defined by {M3 | 8 € L'}.

e The notion of the contrary of an assumption is defined as M3 = —(.

Recently, argumentation has also been applied to the problem of belief revision (Car-
bogim and Wassermann 2000), where an instance of the conceptual model in Section
3.1.3 is used in a resource-bounded belief model to decide whether an incoming belief

should be accepted or not.

As summarised by Prakken and Vreeswijk (1999, p. 9), the argumentation paradigm

seems to be applicable in areas other than defeasible reasoning:

5 The interested reader should refer to (Bondarenko et al. 1997) for a more complete account of this
reconstruction in terms of the Abstract Argumentation Framework with respect to the various possible
semantics.

[...] argumentation systems have a wider scope than just reasoning with default.
Firstly, argumentation systems can be applied to any form of reasoning with con-
tradictory information, whether the contradictions have to do with rules and ex-
ceptions or not. For instance, the contradictions may arise from reasoning with
several sources of information, or they may be caused by disagreement about be-
liefs or about moral, ethical or political claims. Moreover, it is important that
several argumentation systems allow the construction and attack of arguments that
are traditionally called ‘ampliative’, such as inductive, analogical and abductive ar-
guments: these reasoning forms fall outside the scope of most other non-monotonic

logics.

The following sections then explore this wider scope of argumentation in other contexts.

3.2 Argument and Decision Making under Uncertainty

3.2.1 Problem Description

As argued by Fox and Krause (1992), decision making is not only about quantitative
option selection. Practical reasoning—or reasoning about what is to be done—is a
rather complex activity that involves many other functions, such as decision structuring,
communication, and representation of values, beliefs and preferences. In particular, Fox
and Krause (1992) have identified the following requirements that decision support

systems should satisfy: robustness, flexibility, accountability and soundness.

What makes the problem of practical reasoning yet more complex is the fact that infor-
mation on which decisions are based is very likely to be imperfect and uncertain. Below

we describe some ways in which uncertainty can arise in a knowledge base.

e We can have degrees of confidence associated with the information in the knowl-
edge base, and these measures should be propagated appropriately as we reason

about it.

e Uncertainty may be present in a non-deterministic fashion, where either of two
(or more) alternatives can come about, but we do not know which. This type of

uncertainty is usually represented in terms of disjunctions in the knowledge base.

34

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 35

e Moreover, uncertainty can arise when we cannot explicitly account for the many
conditions that are necessary for a rule or a relation to hold. This is usually called

the qualification problem.

This section looks at the problem of decision making from the more complex perspective
advocated by Fox and Krause (1992), considering cases where the information available

is uncertain in one of the three senses described above.

3.2.2 Argumentation and Decision Making

Most standard decision theories do not address all the requirements identified by Fox
and Krause (1992) appropriately. On one hand, symbolic approaches such as knowledge
based expert systems are usually constructed in an ad hoc manner, and often considered
to be brittle. On the other hand, probabilistic decision theories are not sufficiently
flexible nor accountable with respect to the options considered, and therefore have
limited appeal to users. In fact, psychological research indicates that people do not
reason probabilistically when faced with uncertainty.” Moreover, it is not always possible

to obtain precise, objective statistics in certain domains (Parsons and Fox 1997).

The argumentation paradigm has been explored as an alternative approach to standard
decision making theories, where decisions are made by considering arguments for and

against decision options. As stated in (Fox and Krause 1992):

Argumentation captures a natural and familiar form of reasoning, and contributes
to the robustness, flexibility and intelligibility of problem solving, while having a

clear theoretical basis.

A recent statement on argumentation and practical reasoning has also elaborated on

the roles and issues underlying argument-based decision support systems (Girle et al.

2000).

Argumentation has been applied extensively in domains such as risk assessment (McBur-

ney and Parsons 1999, 2000) and medicine (Fox and Das 2000). The Logic of Argumen-

" See (Parsons and Fox 1997) for a more extensive discussion, including references to empirical evidence
supporting this claim.

tation (Krause et al. 1995) in particular is a well-established formal model for practical
reasoning in which a structured argument rather than some summative measure is used
for describing uncertainty. That is, the degree of confidence in a proposition is obtained
by analysing the structure of the arguments relevant to it. The Dialectical Argumen-
tation System (Freeman 1993) is also based on the same ideas and motivations, but it
has been less widely used than the Logic of Argumentation. Both will be discussed in

Section 3.2.3.

Other argumentation-based decision theories look at decision making from the same
perspective, but consider different representations of uncertainty. Section 3.2.4 briefly
discusses some of these other approaches, in particular Haenni’s Assumption-based Sys-
tems (Haenni 1998) and an extension of Dung’s Argumentation Framework for modelling

uncertainty (Ng et al. 1998).

3.2.3 The Logic of Argumentation

The Logic of Argumentation (LA) is a qualitative approach to decision making, pre-
sented as an alternative to standard formalisms in order to overcome some of the lim-
itations imposed by them. The development of LA was largely based on Toulmin’s
work on informal argumentation (Toulmin 1958; Fox et al. 1992), particularly on his

descriptive model of arguments which is summarised in Figure 3.1.

QUALIFIER

—

‘
|

| WARRANT| |[REBUT]
|

Figure 3.1: Toulmin’s argument structure: a claim is supported by data (or evidence)
and by a warrant, which is a general rule or principle supporting the step from data to
a claim; the backing is a justification for the warrant, and the rebut is a condition where
a warrant does not hold; a qualifier expresses the applicability of the warrant.

36

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 37

Fox and Parsons (1998) argue that certain characteristics of this structure make it
suitable for practical reasoning in general and for decision making under uncertainty in
particular. In contrast to strictly deductive mathematical reasoning, practical reasoning
can involve imperfect information and inference relations other than deduction (Elvang-
Goransson et al. 1993). In a sense, Toulmin’s model accounts for some of these issues:
the idea that conclusions are followed by a qualifier suggests that degrees of confidence
can be associated with claims; and contradiction can also be represented in terms of the

rebut component.

Arguments about Beliefs

In a nutshell, the idea behind LA is to analyse the structure of the arguments that are
relevant to a proposition in order to obtain a degree of confidence for it. As stated by
Krause and Clark (1993), “degrees or states of uncertainty can be viewed as a synthesis
of the outcome of reasoning processes (i.e. arguments) germane to the proposition in

question.”

The Logic of Argumentation is based on a fragment of minimal propositional logic com-
posed of connectives A, — and —. In line with most formal frameworks for argumenta-
tion, an argument is defined as a proof in this logic, but also with the more pragmatic
interpretation of tentative proof for indicating support for (or against) a proposition.
Each argument in LA is represented as the following structure in a Labelled Deductive

System style (Gabbay 1996):

(St:G:8S),

where:

e St is any formula of the underlying logic. It corresponds to the conclusion of the

argument, or the claim in Toulmin’s structure.

e (represents the grounds on which the argument is based, i.e. the proof or jus-
tification for the argument. The idea is that the sentences and formulae used to
derive St in the underlying logical system are explicitly represented in G. G is

therefore similar to the data and warrant supporting the claim in Toulmin’s model.

e S is a sign, i.e. an element of a dictionary (set) of symbols or numerical values
representing possible degrees of confidence in the sentence St, thus capturing the

notion of qualifier in Toulmin’s model.

A number of dictionaries of confidence measures were defined and analysed in (Fox and
Parsons 1998), with emphasis on symbolic ones. An example is the so-called bounded
generic dictionary {+,++}, in which + indicates that a claim is supported whereas
++ denotes that a claim is confirmed and hence cannot be rebutted with respect to
the grounds on which it is based. The delta dictionary {+, —} is another example of a
set of symbolic degrees of confidence, where — represents an opposing argument, or any
argument that decreases the confidence in a claim. In the delta dictionary for instance

the following relation holds:

(=St:G:+) e (St:G:-).

In summary, arguments are structures that describe how a sentence is justified. If A is
a knowledge base composed of such argument structures, then new arguments can be
generated from A via an argument consequence relation F4cpr. Figure 3.2 gives some
of the rules defining this relation in a consequent style. The interested reader can refer
to (Krause et al. 1995; Fox and Parsons 1998) for a complete and detailed definition of

FACR-

To illustrate the types of arguments that can be represented in LA, consider the following

example from a medical domain, adapted from (Fox and Parsons 1998).

Example 3.3 Suppose that a patient has colonic polyps which could become cancerous.
These beliefs can be represented in a knowledge base by the following arguments in terms
of the bounded generic dictionary.

b1: The patient has colonic polyps (cp: {bl}: ++)

b2: Polyps may lead to cancer (ecp = ca: {b2}: +)
Here cp stands for “the patient has colonic polyps” and ca for “the patient will develop
cancer”. The symbols bl and b2 are labels for identifying beliefs in the knowledge base.

These labels are particularly useful for representing the sentences that are used to prove

or justify an argument; i.e. its grounds.

38

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 39

(Ax) If (St : G : S) is in the knowledge base, then (St : G : S) is an argument itself.
(St:G:S)eA
A Facr (StGS)
(AE1) If we can build an argument for St A St’ on the grounds of G and with confi-
dence S, then we can eliminate one conjunct and build an argument for St on
the same grounds G and the same degree of confidence S associated with it.

A Facr (StASt:G:S)
A Facr (StGS)

(—E) If we can build an argument for St and an argument for St — St', then we
can build an argument for St'. The grounds on which St' is based are repre-
sented by the union of the grounds on which St and St — St' were derived.
The degree of confidence associated with St' is obtained from a combination
function with respect to the elimination of implication.

A Facr (StGS) A Facr (St—>St’:G’:S’)
A Facr (St:GUG :combimp_ciim (S,S")

Figure 3.2: The Argument Consequence Relation F4cpR.

The argument consequence relation in Figure 3.2 can derive, on the grounds of the

arguments above, that this patient may develop cancer.

b: The patient may develop cancer (ca: {bl,b2}: +)

More specifically, it uses the implication elimination rule (—E) which can be understood
as an special application of Modus Ponens in which the grounds and signs have to be
propagated appropriately. In this case, the sign propagation function is a minimalisation

of the degree of confidence. O

Thereby LA provides a way of building the arguments that are relevant to a sentence.
What still needs to be defined is a mechanism for combining every distinct argument in
order to obtain a single confidence measure for the sentence in question. This mechanism
is also known as aggregation or flattening, and is defined in terms of flattening functions
over the adopted dictionary. If A%¢ is the set of all arguments (St : G : Sg) relevant to
a sentence St, then:

Flat(ASt) = (St,v)

Y

where v can be an element of the given dictionary, but can also be drawn from different

ones.

The symbolic aggregation procedure defined in (Krause et al. 1995) is an example of
the latter case. It combines arguments for (+) and against (—) a proposition into an
element of a different dictionary (corresponding to v above) composed of the following

linguistic terms:

{certain, confirmed, probable, plausible, supported, open}.

Furthermore these terms closely resemble the qualifiers used by Toulmin. One advantage
of this approach is that it can provide a high level summary of the available evidence

without going into details of the aggregation procedure.

From the perspective of argumentation, practical reasoning in general and decision
making in particular can be characterised as a two-step process in which we first con-
struct arguments for the alternative options and then we select the most acceptable
one (Elvang-Goransson et al. 1993). The difference between this approach and the one
presented in Section 3.1 is that here degrees of acceptability are associated to each sen-
tence, and therefore the argument processing step consists of picking the most acceptable
argument instead of identifying the acceptable ones. It has been shown that the Logic
of Argumentation can be related to other systems for non-monotonic reasoning, such as
default logic. But unlike the argument-based applications to non-monotonic reasoning,
LA does not in itself account for the dialectical perspective of argumentation, nor for
the possibility of reinstatement. Such aspects are now being explored more broadly in

multi-agent negotiation contexts, as described in Section 3.3.3.

A clear mathematical semantics for argumentation and aggregation is provided in terms
of category theory (Ambler 1996), so that proofs of soundness can be developed for
the systems based on LA. Other alternative semantics have also been proposed, for
instance the probabilistic semantics in (Parsons and Fox 1997) allows LA to represent

probabilistic reasoning.

In the context of decision support systems the argumentation paradigm has been proved

quite effective (Fox and Das 2000; Fox and Parsons 1998). The Logic of Argumentation

40

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 41

has been widely used as the basis of an agents’ internal architectures® and employed in
a number of practical reasoning tasks, especially in medical domains where systems for

supporting medical diagnosis are amongst its applications (Parsons and Fox 1997).

Arguments about Actions

Reasoning about beliefs—what is the case—is actually different from reasoning about
actions—what we ought to do (Fox and Parsons 1998). In the first case LA can be
applied to build arguments (or tentative proofs) supporting a particular conclusion.
However, a different notion of support may be needed for reasoning about actions,
which may involve values—what is important or positive—and expected values—what

is the expected value of doing a certain action.

Expected values and utilities are traditional ingredients in standard decision theories.
In the context of informal argumentation, these concepts were also explored in the New
Rethoric (Perelman and Olbrects-Tyteca 1969), a theory that has inspired recent formal
approaches such as Daphne (Grasso 1998). Daphne is a system that builds arguments

to promote healthy nutrition education based on users’ values and preferences.’

The following is an informal example extracted from (Fox and Parsons 1998) which
extends Example 3.3 and gives an argument-based characterisation of a decision making

theory involving both beliefs and actions.

Example 3.4 Suppose that a patient has colonic polyps which could become cancerous.
Since cancer is life-threatening, some action ought to be taken in order to preempt this
threat. Surgical excision is an effective procedure for removing polyps, and hence this is
an argument for carrying out surgery. Although surgery is unpleasant and has significant

morbidity, this is preferable to loss of life, so surgery ought to be carried out.

Part of this reasoning is about beliefs and could be represented in LA-style as follows:

8 Fox and colleagues have developed the DOMINO model, an agent architecture based on the BDI—
Belief Desire Intention—model (Rao and Georgeff 1991, 1995), and which incorporates procedures
for decision making and plan execution based on the Logic of Argumentation (Fox and Das 2000; Das
et al. 1996; Fox and Das 1996).

9 Issues related to argument-based persuasion and guidance are raised in almost every contribution in
(Norman and Reed 2000), as for instance in (Gerlofs et al. 2000; Crosswhite et al. 2000).

b1l: The patient has colonic polyps (cp: {bl}: ++)

b2: Polyps may lead to cancer (ecp = ca: {b2}: +)

b3: Cancer may lead to loss of life (ca — 11 : {b3}: +)

bj: Surgery preempts malignancy (su— —=(cp — ca) : {b4d}: ++)
b5: Surgery has some side effect se (su — se: {b5} : ++)

Other arguments are about values for representing whether a state is desirable or not.

vl: Loss of life is intolerable (=l : {vl}: +4)
v2: Side effect of surgery is not desirable (—se: {v2}:+)

Arguments about the expected values of actions combine arguments about values with

standard LA arguments for reasoning about beliefs.

evl: Surgery should be carried out (su: {bl,b2,b3,b4,v1} : +)
ev2: Surgery should not be carried out (—su : {b5,v2} : +)

Furthermore, preferences between decision options and alternative courses of action

should be represented, and here this is done in terms of a special predicate pref.

pl: Surgery side-effects is preferable

to loss of life (pref (se,ll) : {v1,v2} : ++4)
p2: It is preferable to carry out surgery
than to mot carry out surgery (pref (su,—su) : {evl,ev2,pl}: ++)

Other types of argument can also be identified: closure arguments, whose grounds might
include a proof that all relevant arguments have been considered; and arguments for

committing to particular actions and decision options.

cll: No arguments to veto surgery (safe(su): G : ++)
col: Commit to surgery (do(su) : {p2,cll}: ++)

To deal with arguments about values—such as vl and v2—and expected values—such
as evl and ev2—Fox and Parsons (1998) have proposed a Logic of Value (LV) and a
Logic of Expected Value (LEV), respectively. Arguments in LV and LEV have essentially
the same format as the arguments in the Logic of Argumentation, explicitly stating the
grounds on which they are based. Figure 3.3 summarises the sort of reasoning schema
that combines belief arguments in LA with value arguments in LV to obtain an argument

for the expected value of an action in LEV.

42

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 43

On the grounds of GG, we can argue that action
A will lead to condition C' with confidence S (A=-C:G:S) (LA)

On the grounds of G', C has value V (C:G:V) (LV)

Therefore, on the grounds of G U G’
action A has expected value E (A:GUG': E) (LEV)

Figure 3.3: Reasoning about beliefs, values and expected values.

Apart from mechanisms for aggregating arguments about values and expected values,
we also need a function that combines signs from LV and LA into a sign in LEV. That
is, in Figure 3.3 we need a function for deriving an expected value E given a value V'

and a confidence measure S.

Compared to the Logic of Argumentation, LV and LEV are still in a preliminary stage of
development. The proposal in (Fox and Parsons 1998) concentrates on identifying which
behaviour to capture rather than on providing a complete formalisation and analysis of
these logics. To our knowledge, systems that involve LV and LEV have not yet been
effectively implemented. The merit of this approach, however, lies in the characterisation
of the different aspects of decision making in terms of argumentation. Defining such
aspects via separated argumentation systems is rather intuitive and provides a more

intelligible account to the problem of decision making under uncertainty.

LA and the Dialectical Argumentation System

Also inspired by Toulmin’s argumentation model is the work by Freeman and Farley
(1992), namely a formal theory for reasoning, making decisions, and proving and jus-
tifying claims in weak theory domains, i.e. domains in which knowledge is uncertain,
inconsistent or incomplete. Again, the motivation for applying argumentation to deal
with incomplete knowledge is that finding an adequate method for attaching numerical
values to propositions, and for combining and propagating these values is a difficult
task. As stated in (Freeman and Farley 1992), “argumentation can be used as a method

for locating, highlighting and organizing relevant information in support of and counter

to proposed claims.”

In contrast to the Logic of Argumentation, an argument may be viewed not only as a
structured entity, but also from a dialectical perspective. This means that an argument
is not only described as a structure that organises relevant information for and against a
claim, but also as a dynamic process engaged by conflicting parties as in a debate. The
argument structures adopted by Freeman and Farley (1992) correspond to a slightly
extended version of Toulmin’s original schema (see Figure 3.1) together with various
qualifiers for capturing uncertainty. The extended Toulmin structures have been imple-
mented as a Dialectical ARgumenTation System—DART—that generates arguments in
a game-like, dynamic process. DART has been used to model simple legal arguments
(Freeman and Farley 1996; Freeman 1993), but has not been applied to real world

scenarios.

3.2.4 Other Argumentation-based Approaches to Uncertainty

Arguing about beliefs under uncertainty is not fundamentally different from arguing
about the acceptability of a claim in a non-monotonic context as discussed in Section
3.1. For instance, Ng et al. (1998) propose a framework for dealing with uncertain
and conflicting knowledge that extends the proposals in (Dung 1995) and (Prakken and
Sartor 1997).

This proposal consists in applying argument-based mechanisms to resolve conflicts in a
distributed setting, both within an agent’s knowledge base and among different agents.
The agents’ knowledge bases are represented as extended disjunctive logic programs
(Gelfond and Lifschitz 1991), where uncertainty is described by disjunctions in the
head of the clauses. The clause below for instance says that a dog barks when it sees a
stranger or a fire; so if a dog barks then we know that one of these alternatives is true,

but we do not know which.

stranger V fire < dog_barks

As in (Prakken and Sartor 1997), two types of attack are considered: rebuttals, based

on strong (or classical) negation; and assumption attacks, based on weak negation (or

44

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 45

negation as failure). Defeat is based on an explicit preference hierarchy. In some specific
cases, such as a single agent scenario, this framework can be proved equivalent to that

of (Prakken and Sartor 1997).

Another approach to argument-based uncertainty has recently been proposed, this time
in terms of assumption-based systems. Haenni (1998) incorporates uncertainty as ex-
tra assumptions into propositional knowledge, analogously to the idea in the Abstract
Argumentation Framework (see Section 3.1.4) of making explicit the assumptions on
which defeasible reasoning is based. This connection is not surprising, as the latter is

an assumption-based system itself.

Haenni’s proposal consists in transforming uncertain causal relations into clauses in
an assumption-based propositional logic, and then building arguments for hypotheses
based on these assumptions. For instance, the causal relations expressed by the graph

below

©

|
vy v

could be represented by the following clause stating that if cause c is true then at least

one effect among ey, ..., e, is also true.

c—eVesV..Ve,

Moreover, because some relations in a causal network can be uncertain, the effects
may only come about under certain conditions, or assumptions. These assumptions are

introduced as extra premises in the corresponding clauses, as shown below.

cNha—e Ve V..Ve,

An argument for an hypothesis is a set of assumptions that allow this hypothesis to
be derived in the underlying propositional logic. An hypothesis is accepted or rejected
based on the arguments for and against it; i.e. on the arguments that allow the hy-

pothesis to be derived, and on the arguments that allow the falsity of the hypothesis

to be derived. Note that this differs from the Abstract Argumentation Framework in
the sense that counter-arguments are not defined in terms of assumption attacks, but

in terms of rebuttals.

Just as in the Logic of Argumentation, it is possible to aggregate the arguments relevant
to an hypothesis in order to obtain a confidence measure for it. In Haenni’s proposal,
however, the aggregation measure is purely quantitative, and it can be derived by as-
signing prior probabilities to the assumptions and propagating them accordingly. Note
that the framework also fits in the two-step process characterisation of argumentation
systems discussed in the previous sections, since we first build all arguments related to

an hypothesis and then, based on these arguments, we evaluate it quantitatively.

The formalism described in (Haenni 1998) has been implemented in ABEL (Assumption
Based Evidential Language), a modelling language for computing symbolic and numer-
ical arguments for an hypothesis given an expert knowledge base and a set of facts
and observations (Anrig et al. 1999). ABEL has been applied mostly for reconstructing
standard AT examples, in particular in the model-based diagnosis and causal modelling

domains.

Hence argumentation can be used to model decision processes under uncertainty in the
sense described in Section 3.2.1. Moreover, because the informal notion of argument is
naturally connected to that of disagreement between parties, it seems that this paradigm

could also be applied in distributed scenarios. This is what we explore next.

3.3 Argument and Multi-Agent Systems

3.3.1 Problem Description

Intelligent software agents should be able to interact with other agents in many dif-
ferent ways. Such interactions usually pose a variety of issues related to information
discovery, communication, reasoning, collaboration, coordination of joint approaches
and social abilities. Some of these issues may be viewed as a process of achieving mu-
tually acceptable agreements between agents (Parsons and Jennings 1997), where the

nature of these agreements varies according to the type of problem to be addressed.

46

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 47

There are in general two types of agreement that can be attempted by agents. On
one hand, agreement is about deciding on a conclusion that is acceptable to all agents
involved. This sort of interaction usually takes place when there is a conflict that needs
to be settled or resolved. On the other hand, agreement may be achieved in a goal-
oriented type of reasoning, in which agents take a previously accepted goal as a starting
point and interact in order to find an acceptable way of reaching or satisfying it. This
sort of interaction arises when there is a common problem to be solved by the agents,
who have to agree on a solution. In either case, it is important for agents to reason
about their own beliefs, as well as about other agents’ beliefs. So it is very likely that
these interactions will be based on imperfect information in general and contradictory

beliefs and intentions in particular.

Note that this way of looking at multi-agent interactions seems to be in line with the
classification of dialogues given by Walton and Krabbe (1995). They have identified
six basic types of argumentative dialogues, which can be characterised in terms of an
initial situation, a main goal, and the aims of the participants. One systematic way for
determining the type of a dialogue is to consider whether it starts from a conflicting
situation or from an open problem to be solved, in a similar way as we have characterised
the types of multi-agent agreements above. A more detailed discussion on the relation
between models in argumentation theory and in multi-agent approaches is given in
(Carbogim et al. 2000a), which addresses and identifies issues and open problems that

are of interest to both communities.

In the agent community in particular the problem of achieving mutually acceptable
agreements between agents has often been described as negotiation.'® In this context,
we now consider the problem of negotiation based on the two general types of agreements

identified above.

10 Negotiation is one of the six basic dialogue types identified in (Walton and Krabbe 1995)—it starts
with a conflict of interests and has settling, or making a deal, as the main goal. The multi-agent
community adopts a broader view of negotiation, usually defined as a general process for achieving
agreements. This definition subsumes other types of dialogues such as deliberation and persuasion,
but is still compatible with these: “negotiation dialogues may profit both from inquiries and from
persuasion dialogues as sub-dialogues” (Walton and Krabbe 1995, p. 73).

3.3.2 Argumentation-based Negotiation

Research in argumentation in multi-agent settings has been guided by the question of
whether it can provide or support intelligent interaction between agents. Recently there
has been much interest in applying argumentation systems to capture negotiation, since
processes for reaching agreements often involve the exchange of arguments between

agents.

Here we present two ways in which negotiation processes can be formalised in terms of
argumentation. Section 3.3.3 considers protocol-based argumentation approaches, which
focus on the exchange of messages between agents, and therefore are particularly useful
for reaching agreements about which conclusion to accept when there is conflict. Section
3.3.4 considers object-based argumentation formalisms. Such formalisms concentrate on
the construction of objects as solutions to open problems, and therefore are appropriate
for reaching agreements on how to satisfy or achieve certain goals. Note that this
classification is not novel, as a similar distinction on argumentation-based negotiation

research was presented in (Jennings et al. 1998).

3.3.3 Protocol-based Negotiation via Argumentation

Agent communication models or interaction protocols usually describe dialogues be-
tween agents in terms of notions that are relevant to argumentation, and therefore it
is possible to look at them from an argumentation perspective. For instance, consider
the case of the Knowledge Query and Manipulation Language—KQML—an agent com-
munication language that provides a set of performatives through which agents can
interact (Finin et al. 1997; Labrou et al. 1999). The notion of performatives comes from
speech act theory, and essentially is used to convey some action about a message when

transmitting it. Some KQML reserved performatives are shown in Figure 3.4.

More commonly, however, interaction protocols are only a part of argument-based ne-
gotiation models, which is used for dealing with communication issues. Negotiation
formalisms normally extend single-agent argumentation frameworks (of the types pre-
sented in the previous sections) by using these to generate arguments which will be

passed to other agents via some communication protocol, thus providing an argument-

48

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 49

Category Name

Basic query evaluate, ask-if, ask-about, ask-one, ask-all
Multi-response (query) stream-about, stream-all, eos

Response reply, sorry

Generic informational tell, achieve, cancel, untell, unachieve
Generator standby, ready, next, rest, discard, generator
Capability-definition advertise, subscribe, monitor, import, export
Networking register, unregister, forward, broadcast, route

Figure 3.4: Some KQML performatives classified into categories (Finin et al. 1997).

based approach for reasoning with imperfect information in a distributed setting.

For instance, the framework proposed by Moéra et al. (1998) extends the single-agent
declarative argumentation framework in (Prakken and Sartor 1997) to deal with coop-
eration among agents. Analogously to its single-agent counterpart, the aim is to decide
which conclusions are acceptable in this distributed environment, also characterising
the semantics of distributed logic programs in terms of argumentation. In this case,
however, agents can cooperate by looking for support from other agents when trying
to build arguments. Agents are defined as extended logic programs, so they cooperate
by asking other agents to infer certain conclusions necessary to complete a proof. The
communication process is implemented via an argumentation protocol based on five

speech acts: ask, reply, propose, oppose and agree.

The approach defined in (Schroeder 1999a) is also based on the same declarative frame-
work in Section 3.1.3. The proposal is preliminary, but it goes one step further in the
direction of building effective operational argumentation systems, as Schroeder touches
on issues related to the heuristic layer'! such as the need to define strategies for select-
ing the best argument in order to reduce the number of exchanged messages and the
need to increase general understanding of argumentation and logic, thus undermining
some of the most common criticisms of the use of formal logic in modelling arguments.
He addresses this need by proposing a graphical language for dynamically visualising

argumentation processes (Schroeder 1999b).!2

1 See Section 3.1.2.

12 Tnformation about this language is available at http://www.soi.city.ac.uk/homes/msch/cgi/viz/.
A system for cooperation between agents in business process modelling is also available at
http://www.soi.city.ac.uk/homes/msch/cgi/aca/aca.html. This system was motivated by a

In the context of decision making, where it is important to resolve conflicting objectives
and to coordinate cooperative actions, negotiation has been characterised in terms of a
generic process for exchanging proposals, critiques, counter-proposals, explanations and
meta-information. More recently, Wooldridge and Parsons (2000) have been focusing on
the study of formal properties that generic logical languages for negotiation can have,
as for instance what types of protocols are guaranteed to lead to an agreement. Below
we discuss the protocol for negotiation proposed in (Parsons and Jennings 1997), and

sketched in Figure 3.5.

Proposal A proposal is the basic element of negotiation, and it usually corresponds to

an offer or a request.

Critique Intuitively, to critique a proposal means to reject this proposal, maybe at-

tacking the parts which are not acceptable.

Counter-proposal A counter-proposal is a type of critique where the agent not only

rejects a proposal, but also presents another (preferable) one.

Explanation An explanation is a justification or an argument for a proposal, critique

or counter-proposal.

Meta-information Any piece of extra information that can be used for guiding the
analysis and evaluation of proposals, such as information about preferences or

values.

In the protocol outlined in Figure 3.5 there is no explicit indication of exchange of
meta-information, as this type of message can be passed at any point by any agent.
Arguments (explanations) may be sent together with critiques and proposals, and are

represented by the formula ¢.

This protocol forms the basis of the multi-agent decision making frameworks in (Parsons
et al. 1998) and (Sierra et al. 1997b) which, although related, look at argumentation

from two different but (maybe) complementary perspectives.

project for developing multi-agent models in the domain of business process management (Jennings
et al. 1996), which also inspired the negotiation model in (Sierra et al. 1997b) discussed later in this
section.

50

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 51

proposal proposal(b, a,)

critique(b, a, ¢) critique(ayd

proposal(a, b, ¢) proposal(b,a, ¢)
O proposal(a, b, ¢)

proposal(a, b, ¢) accept, a, ¢) ¢ proposal(b, a,)

withdraw withdraw

Initial state

Final state

OO

Figure 3.5: Negotiation protocol for two agents a and b (Parsons et al. 1998).

The work in (Sierra et al. 1997b) was motivated by multi-agent applications in business
process management domains (Jennings et al. 1996). The emphasis in this proposal
is given to the social aspects of negotiation rather than to the actual generation of
proposals, so attack relations are assumed to be primitive as in Dung’s approach. The
model is based on a specific common communication language which deals with elements
of persuasion (Sycara 1990)—such as threat, reward and appeal—that agents use to
try to change each other’s preferences, values and beliefs. Such changes are done in a
rather domain specific manner, and some investigation on notions such as values and
expected utility in the sense described in Section 3.2.3 might shed some light on how

persuasion could be defined in more systematic terms.

While this work focuses on social elements, the framework in (Parsons and Jennings
1997) and (Parsons et al. 1998) is more concerned with providing the necessary mecha-
nisms for implementing the negotiation process in Figure 3.5. More specifically, it uses

the Logic of Argumentation to:

e generate proposals, critiques, counter-proposals, meta-information and explana-

tions; and

e evaluate proposals, counter-proposals and meta-information.

The Logic of Argumentation provides means of generating proposals as arguments and
of evaluating them in terms of their acceptability. A crucial difference between how
LA is applied here and in a single-agent scenario is that now an agent has to make
explicit not only the rules and facts that it used to generate an argument, but also the
inference rules, because different agents might use different logics and therefore would
not be able to reconstruct an argument if necessary. This issue is tackled by adopting a
uniform underlying agent architecture, the multi-context architecture. An advantage of
the multi-context approach is that it is generic enough to capture other architectures,

such as the BDI framework (see footnote 8).

Although argumentation systems like LA give a generic architecture for a particular style
of reasoning, much domain-specific expertise is required to instantiate this architecture
to a domain of application. One way to define clear methodologies for the develop-
ment of argumentation systems is to emphasise the problem and domain by identifying
classes of problems in which certain evaluation principles would hold and then applying
argumentation in these domains (Jackson 1994; Nwana and Ndumu 1999). The sorts of
results given in (Wooldridge and Parsons 2000) represent one step in this direction. The
Logic of Argumentation also provides a very good example of this, where a number of
different symbolic dictionaries and aggregation mechanisms were identified as suitable
for medical applications, allowing different argument-based systems to be implemented

in this domain (Fox and Parsons 1998).

3.3.4 Object-based Negotiation via Argumentation

Negotiation-based models for decision making can also be seen from the perspective
of the object being negotiated, rather than from a communication protocol viewpoint
(Jennings et al. 1998). In general, objects are formalised as collections of issues (or
variables) over which agreement can be made, and the process of negotiation consists

in finding an assignment to the variables that suits every agent. However, it is also

52

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 53

possible to consider a wider, constructive view in which the object under negotiation
corresponds to an argument that has to be built by agents involved in mixed-initiative
tasks. This more generic view subsumes the one where objects correspond to variables,

allowing other types of negotiation processes to be characterised.

One example is the contract-based negotiation model initially proposed in (Carbogim
and Robertson 1999) and described later in Part III of this thesis. Contracts are objects
that are adjusted based on reasoned arguments by the agents involved in the agreement.
In this sense, negotiation is about adjusting the terms of an agreement as opposed to
the protocol-oriented view of forming an agreement. The same idea is explored in
(Ferguson and Allen 1994), now in the context of mixed-initiative planning. Plans are
explicitly represented as arguments that can be criticised and revised by the agents
in a framework for plan construction and communication. The framework used for
generating and evaluating arguments is based on previous work by Pollock (Pollock
1987) and Loui (Loui 1987). Unlike most defeasible argumentation systems, it is not
used to derive defeasible conclusions from a plan, but to build a plan which is the

defeasible argument itself.

In summary, the idea is to construct an argument (plan) supporting a particular con-
clusion (goal) which is acceptable to all agents involved. The example below, adapted

from (Ferguson and Allen 1994), illustrates this type of reasoning:

Example 3.5 Suppose that two agents are cooperating in order to construct a plan for
transporting certain supplies (x) to a particular location. To get this done, they first
need to move the supplies overland to the port and then carry them by ship. A ship (s)
leaves every day between 4h00 and 6h00. If the supplies are shipped by train to the ship,
they will arrive at 5h00. If they are shipped by truck, they will arrive at 3h00, but it will
cost three times more than if transported by train. One possible interaction between the

agents is defined below:

e Agent A suggests to ship the supplies by train.
e Agent B argues that the supplies will miss the ship if it leaves at 4h00.

e Agent A argues that the supplies will not miss the ship if it leaves at 6h00.

e Agent B then suggests to ship the supplies by truck.
o Agent A accepts this suggestion.

Note that the agents could go on arguing if for some reason (such as shipping by truck

is too expensive) agent A does not find the proposal acceptable. O

In order to build an acceptable plan, agents make proposals, evaluate suggestions and
propose alternative course of actions, in a similar way as described in the protocol-based
negotiation model of Figure 3.5. In this case, though, reasoning is goal-oriented—in

Example 3.5 the goal is to load the ship with the supplies before it leaves the dock.

In (Ferguson and Allen 1994) this sort of reasoning is formalised by means of defeasible
rules representing causal knowledge. Intuitively, these rules say that if the preconditions
for an action a hold at time ¢, then attempting a at time ¢ causes an event e; to happen
at the next time point. Defeasibility arises because it is hard (if not impossible) to
specify all the preconditions for a rule to hold, and implicit or unknown conditions can
invalidate the relation. This is also referred to as the qualification problem, already
mentioned in Section 3.2.1. Defeasible rules have the following generic form.
Holds(precond(a),t) A Try(a,t,e;) — Event(e;)
—Holds(precond(a),t) A Try(a,t,e;) — - Event(e;)
The definition of an event uses material implication (denoted here by D) instead of

defeasible implication to denote that the effects of this event will hold at the next time

point.

Event(e;) D Holds(effects(e;),n(t)).

This representation can formalise part of the reasoning in Example 3.5.

AtDock(x,t) A AtDock(s,t) A Try(load(x, s),t,e;) — Load (e, x, s) (3.10)

Load(ey, x,s) D In(x,s,n(t)) (3.11)

o4

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 55
Moreover, it is possible to capture uncertainty in terms of disjunctions.

AtDock(s,t) = t < 4h00 V t < 5h00 V t < 6h00 (3.12)

The fact that — is a defeasible connective is important. Agents can build arguments for
a particular goal and these arguments can be attacked because they involve elements of

uncertainty and defeasibility.

What is more interesting about this approach is that it allows the representation of
partial plans that do not take all the preconditions of an action into account. To
build partial plans, agents can use variants of the existing causal rules obtained by
considering only a subset of the preconditions specified in the original relation. As a
consequence, a preference criterion can be defined based on the specificity principle: in
case of conflicting positions, the position supported by the more specific variant (i.e.
the rule in which more preconditions are taken into account) defeats the position that

is based on a less specific variant of the same rule.

Example 3.6 To illustrate this idea, we represent the possible variants of rule (3.10)

ordered in a lattice of specificity, where the rule at the top is the most specific one.

(a) AtDock(z,t) A AtDock(s,t) A Try(load(z, s),t,er) — Load(et, x,s)

(b) AtDock(s,t) A Try(load(x,s),t,et) — Load(et,x, s) (¢) AtDock(z,t) A Try(load(z, s),t,e:) — Load(et, z, s)

(d) Try(load(x, s),t,et) — Load(e¢,x,s)

In Example 3.5, agent A presents a proposal for sending the supplies by ship based on a
partial plan that disregards whether the ship is in fact at the dock at the time of loading.
Such a plan can be supported by variant (c) of the original rule (3.10). O

Other issues are involved in the type of argument described in the example which are not
considered in this proposal. In particular, criteria other than specificity for evaluating

arguments could be useful in this domain, especially to capture the idea of values and

expected values of actions. Again, the work on practical reasoning and arguments about

13

actions'” is relevant also to this type of application.

The next section explores how this constructive view of argumentation has also been

applied in a broader context.

3.4 Argument and Design

3.4.1 Problem Description

Design is the process of creating an artifact, but this general definition does not capture
the complex, multifaceted nature of design activities. Moran and Carroll (1996) identify
four distinct paradigms in the literature which try to portray the nature of design: design
as decomposition and re-synthesis; design as search in a design space; design as a process
of deliberation and negotiation, in which uncertainty and disagreement is intrinsic; and
design as a reflective activity. They also describe a number of issues that must be
considered if we are to address the various aspects inherent to the problem of design,

some of which are listed below:

e how to represent changes in the problem definition;

e how to keep track of the decisions taken and assumptions made during the design

process;

e how to aid communication among different participants in the process.

These sorts of issues are relevant to design processes in a variety of domains, from
architectural design to engineering design and software design. This section considers

them from the perspective of software design.

3.4.2 Arguing about Software Design

If we look at design as a mixed-initiative process of negotiation, then the object of the

negotiation (in the same sense discussed in Section 3.3.4) is the artifact to be designed—

3 See Section 3.2.3 and (Girle et al. 2000).

56

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 57

in this case, the software system. In this way, we move from the type of multi-agent

applications to design support environments that possibly involve many participants.

There are two significant differences between the approaches considered in this section
and the multi-agent negotiation models presented earlier in Section 3.3. First, in the
context of design, less emphasis has been given to argumentation itself than to the
problem being tackled (i.e. the design of a software system involving one or more

parties). This is an important point, as argued by Moran and Carroll (1996, p. 7):

A lot of domain-specific knowledge is needed, and the practices of design are dif-
ferent in different domains [...] Useful design tools need to be domain-specific, but

many of the principles behind the tools are generic.

The second difference is that in the software development scenario, argument systems

for supporting design have been applied to fairly complex scenarios.

One way to relate the use of argumentation to software design is in terms of viewpoints
in requirements engineering (Finkelstein et al. 1994, 1992). Though viewpoints are not
explicitly characterised as arguments, they involve many ideas germane to the argument
paradigm, allowing multiple perspectives to be described and integrated by dealing with
inconsistencies just when it is necessary, thus preserving these different perspectives as

long as possible.

Also in the context of system requirements, a number of approaches for generating
safety arguments have been presented in (Krause et al. 1997). Safety arguments are
normally intended to convince people that the specified system will be safe if it is
implemented appropriately. According to MacKenzie (1996) there are essentially three
types of safety arguments. Inductive arguments support that a system is safe by testing
it. Deductive arguments correspond to mathematical proofs that the system is correct.
Finally, constructive arguments rely upon the process of design itself, which is argued
to be a safe process that results in safe outcomes. This section focuses on the latter

form of arguments.

Many problems arise when we try to represent safety arguments formally, although it

has been possible to obtain effective and useful results in domain-specific settings. A

significant number of these problems stem not from the technicalities of the chosen
argumentation system but from assumptions made about its design and deployment,
since the entire safety argument cannot be made internal to the formal argumentation
system and the fit to its external environment must be carefully shaped. A discussion

of these issues appears in (Robertson 1999a; Gurr 1997).

More commonly, argumentation is embedded in design rationale and computer-supported
collaborative argumentation (CSCA)'* systems that support the development of design
activities. Design rationale is about explicitly recording the reasons why an artifact
was designed in a particular way. In argumentation-based design rationale, reasons are
generally represented as semi-formal arguments in terms of Issue Based Information
System—IBIS—models (Conklin and Begeman 1988). Section 3.4.3 discusses another

argumentation-based methodology for software design rationale.

Related to design rationale and CSCA systems, argument-based mediation systems pro-
vide support for deliberative processes involving one or more participants (users), in
which the main goal is to reach a decision of some sort. Examples of mediation systems
are discussion fora, where it is important to argue and negotiate about different issues,
including design issues. The Zeno Argumentation Framework (Gordon and Karacapi-
lidis 1997) is an Internet-based environment that supports structured forms of group
decision making, and it has been widely applied across different domains. Zeno is also
based on Toulmin’s model of argument, and can be thought of as a formal version of
IBIS in the sense that it automatically labels and qualifies positions according to argu-
ments and preferences (i.e. determines a degree of acceptability associated with each
position). There is a focus shift between systems like Zeno and the formal approaches
for decision making discussed in Section 3.2, as in the first the emphasis is on represent-
ing arguments based on different sources and perspectives rather than on generating

these arguments from some set of premises.

3.4.3 Argumentation-based Design Rationale

Sigman and Liu (1999) use argumentation to connect software system requirements

4 See http://kmi.open.ac.uk/ simonb/csca/ for a resource site in CSCA.

o8

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 59

to the corresponding design dialogue, providing a methodology for capturing design
rationale, identifying conflicts and assessing the acceptability of design options. A
generic argumentation model is used to relate the components of software design to those
of design dialogue. This model allows different perspectives to be represented in terms

of requirements, constraints and design features. An overview of the argumentation

model is sketched in Figure 3.6.

Requirement

Conflict

suggest
modifications

!

Design Issue

sugdests A
v responds-to

(Position

supports/attacks A refines

supports/attacks

Argument

selects

Decision

references
\
(Artifact)

Figure 3.6: A software design argumentation model from (Sigman and Liu 1999).

A dialogue about a design issue is a directed graph in which all relevant arguments for
and against each alternative position are organised under the corresponding position
node. These structures are referred to as position dialogue graphs. Positions and argu-
ments have to explicitly state their owner, i.e. the participant that has advanced them.
Moreover, linguistic labels are attached to arguments to indicate their strength. The
strength measure used is that of fuzzy sets, represented in terms of the following quali-

tative labels: strong attack (SA),medium attack (MA), inconclusive (I),medium

support (MS) and strong support (SS).

Some general argumentation heuristic rules provide means of reducing the position

dialogue graphs in a way that all arguments are directly connected to the position node.

This transformation is needed in order to identify inconsistencies as well as to assess the
acceptability of the position. One example of such heuristic rules is defined below and

illustrated in Figure 3.7 in terms of a simplified version of position dialogue graphs.

Heuristic Rule 1 If an argument A strongly supports a position P and an argument

B strongly supports argument A, then argument B strongly supports position P.

Heuristic Rule 1 ‘

o
4 > s

owner A owner A owner B
A A B
A

SS

owner B
B

Figure 3.7: An example of a heuristic rule.

The acceptability of a position is then calculated via a favorability factor. The favorabil-
ity factor is a function that assigns a strength measure to the position in question based
on two aspects: the strength of the arguments that are relevant to this position; and
the priorities previously assigned to participants, representing some idea of hierarchy
among them. Comparing the favorability factors of alternative positions provides more

information on which decisions can be based.

Note that this model resembles decision making approaches in many ways (see Sections
3.2 and 3.3). First, the idea of using linguistic labels is similar to that proposed in the
Logic of Argumentation. Secondly, the calculation of the favorability factor for a position
actually corresponds to the notion of aggregation procedures in LA. Third, the idea of
assigning priorities to participants is in line with the social aspects considered in the
negotiation approaches in Section 3.3.3. Finally, this proposal can also be characterised
as a two-step argumentation model, because all arguments relevant to a position are
first gathered and then analysed in order to provide an acceptability measure for this

position.
The mechanisms for manipulating arguments in this framework and in other existing

60

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 61

approaches are essentially the same. The difference lies in the notion of argument
itself and in the ways arguments are generated. In this case, an argument does not
correspond to a proof, but is represented by a piece of text stating the argument. We
refer to these approaches as semi-formal, since argumentation is not fully automated; or
as lightweight, in the sense that formality is applied only to certain parts of the problem
in a focused and selective (e.g. automated argument evaluation). Lightweight uses of

logic have already been advocated elsewhere (Robertson and Agusti 1999).
Buckingham Shum and Hammond (1994) have argued that structured semi-formal ap-
proaches to design rationale are useful and usable, and can play several roles in design,
such as:

e structuring design problems;

e keeping track of decisions;

e facilitating communication and reasoning;

e assisting the integration of theory into design practice;

e supporting maintenance and reuse;

e exposing all assumptions—which may have been unstated, and conflicts—which

may be suppressed; and
e enabling the formal incorporation of diverse types of information.
The approaches considered in this section are lightweight applications of formal argu-

mentation which broaden the role of argumentation by carefully targeted applications

of a simple formal method.

3.5 Discussion

The main purpose of this chapter was to analyse the practical use and usefulness of
formal and structured semi formal argument-based systems in knowledge engineering.

We have done this by classifying the existing efforts in terms of the problems they

intend to solve, discussing whether these were actually solved or not, in which case we

addressed some of the limitations and the remaining issues that need to be considered.

Four general types of problems have been identified which can be tackled by argument-

based methodologies. These are:

e the problem of defeasibility in a knowledge base, where some conclusions might

be withdrawn in the presence of new knowledge;

e the problem of decision making based on uncertain knowledge, where we have to

decide which alternative to select;

e the problem of negotiation, where autonomous agents communicate and reason

about propositions in order to reach an agreement; and

e the problem of design, where it is important to make decisions, to communicate
decisions and to argue that the resulting artifact represents an acceptable solution

to a particular problem.

One thing that these problems have in common is that they involve knowledge that is
far from certain and complete. Potential disagreement and conflict are intrinsic to all
four categories above. Therefore, the fact that conflict is the essence of argumentation

might explain why the argument paradigm can be applied in these cases.

We have found many common features among the various approaches presented in this

chapter. Below we summarise these commonalities:

e In general, formal argumentation can be characterised as a two-step process: first,
arguments are generated; then, arguments are evaluated in terms of their accept-

ability.

e Automated frameworks for argumentation have appeared on the scene only re-
cently. This is probably one reason why most theories are not yet mature enough
to allow applications to be developed in a systematic way. In many cases ad hoc,
specialised solutions have been adopted in order to implement practical systems

from theoretical frameworks.

62

CHAPTER 3. ARGUMENTATION AND KNOWLEDGE ENGINEERING 63

e This is particularly true for argument evaluation. Generic criteria, such as the
specificity principle, are not sufficient for effectively capturing the notion of ar-
gument defeat across the myriad domains in which argumentation is applicable.
Therefore, many theoretical formalisms tend to leave concepts such as preferences
and priorities unspecified, but without addressing the issue of how to instantiate
these appropriately in order implement practical argument systems from these

formalisms.

e Because argumentation is such a broad concept, many already established for-
malisms can be viewed from an argument perspective. Examples are KQML (Sec-

tion 3.3.3), viewpoints (Section 3.4) and probabilistic reasoning (Section 3.2.3).

e Only a few argument systems have actually been deployed in real, complex do-

mains. Most systems have been evaluated in terms of simple benchmark problems.

There are still open research issues in each of these considerations which can reflect
an expected direction of development in argument-oriented research in knowledge engi-

neering.

e The idea of argumentation as a two-step process suggests that all arguments have
to be computed before they are evaluated. This may not always be the best
strategy if we want to build a constructive theory of argumentation for actually
generating arguments, and perhaps more emphasis should be given to the sort of
resource-bounded argument discussed by Loui and the procedural and heuristic

layers of argumentation (see Section 3.1.2).

e Section 3.3.3 discussed the need for clear methodologies for the development of
argumentation systems. Note that we do not advocate a one-size-fits-all approach
to argumentation, as we believe that the multifarious nature of argumentation
cannot be captured by a uniform method. However, we would like to provide
means of implementing argument theories in a systematic way, by trying to iden-
tify different methods that allow different types of argument-based systems to be
developed. This may be achieved by focusing on domains and problems rather
than on tasks, thus specifying domain-specific underlying theories and evaluation

criteria instead of generic, domain-independent formalisms for argumentation.

e [t was possible to look at certain problems in knowledge engineering from an ar-
gumentation viewpoint. This suggests that if we take a more lightweight approach
to argumentation formalisms, by using them in a focused and selective way, we
might broaden the scope of their applications in the field. This may be achieved
by considering more flexible, semi-formal notions of arguments other than that of

a proof.

e Finally, to increase the practical utility of these systems, more complex and real
arguments need to be taken into account. This again might be possible to achieve

by appropriately lightweight applications of argument formalisms.

This summarises the current landscape of argumentation research, which is scattered
with tantalising glimpses of problems which may be tackled by this means, yet there are
few clear guides to standard practice in this area; nor are there extensive case studies
to give maps of fertile domains. The work in this thesis draws a lot from existing work

and from the analysis presented here in order to address some of the issues above.

64

Part 11

A Pragmatic Approach

65

Chapter 4

Basic Concepts and Definitions

As discussed in Chapter 2, one way to think about argument dynamics is that it should
be possible to revise the underlying knowledge base so as to defend arguments and
positions from attacks, for instance by adding new information so that new arguments
or counter-attacks can be derived or by removing certain premises so as to block existing

derivations.

To formally describe this sort of argumentation we need to describe precisely what
types of revisions can be performed, and when they can be applied. In comparison
to external revisions, guided revisions have some interesting properties: first, we know
more about when they happen, because they follow the pace of argumentation and are
synchronised with argument moves; second, we know more about what they are, because
they are bound up with and guided by attacks to arguments. In practice, however, there
are many ways to attack and defend an argument, and these are essentially domain-
specific. We address this problem in a pragmatic way by describing how to capture
schemata for argument revision in terms of the structure of attacks, inspired by standard
argumentative structures from studies in the fields of informal logic and argumentation

theory.

The type of structural classification we present is not complete in itself, but it is based
on a complete account of what we mean by dynamic argumentation. But despite its
incompleteness, it allows the introduction of both generic and domain-specific revision
schemata in a systematic way. We will be carefully examining this approach in the next

chapters, where we first present an intuitive description of the classification in terms

67

of informal examples (Chapter 5) before introducing its formal counterpart (Chapter
7) based on a precise characterisation of possible attacks (Chapter 6). We then give
a worked example that illustrates how this approach can be used to capture dynamic
argumentation (Chapter 8), finally discussing the range of cases covered by our proposal,

and analysing how other existing proposals can cope with these cases (Chapter 9).

In the rest of this chapter we present a high level account of dynamic argumentation,

before explaining the formal concepts underlying our approach.

4.1 An Abstract View of Dynamic Argumentation

Chapter 1 discussed the informal notion of argumentation as usually encompassing two
views of an argument. In order to formalise argumentation, we need to account for both

of them:

e a local view, in which an argument is intended to give support in favour or against

a conclusion; and

e a global view, in which an argument is a process of argument exchange (from a
local perspective), often based on disagreement, that is used to determine and to

affect the acceptability status of certain controversial positions.

Our notion of dynamic argumentation comprehends both these views. From the local
perspective, arguments correspond to formal proofs, and are generated from a knowledge
base via a proof mechanism. From the global perspective, argumentation is a process
of argument exchange and knowledge base revision guided by attacks. Crucial to both

views is the concept of knowledge base, which we address more carefully now.

In a sense, this underlying knowledge base constitutes the space of reasons that can
be used to justify and refute positions, and which can be challenged and altered as
the argumentation process goes along; in short, it constitutes the space of argument
premises. From now on, we refer to such knowledge bases or spaces of premises as
sets of axioms or theories, the building blocks of our approach. An axiom set can

represent specifications, models, contracts, beliefs or any other theories we might want

68

CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 69

to argue about with respect to the consequences they support. We can assume that
these consequences can be derived from the premises via a logical inference relation. If
a conclusion can be derived from a theory, we say that there is an argument for that

conclusion in this theory.

Theories usually express someone’s view of a problem rather than universal truths,
and therefore are intrinsically arguable and refutable. It is likely that unwanted or
unpredicted conclusions will follow from a theory, or even that desired conclusions are
not supported. Dynamic argumentation is about revising this theory to protect it from

such attacks; in this sense, it is concerned with arguing about theories.

Argument dynamics can then be thought of as a type of goal-oriented reasoning meant
to increase the acceptability of a theory as an argument for the position in question by
appropriately defending it from attacks. This view is particularly useful if we consider
tasks such as argument construction and evaluation, where it is not enough to consider

a sole claim, but the whole argument—i.e. the theory—supporting the claim.

In this way, we can attack a theory for two reasons: either because it supports a position
that we would expect (or want) not to be justified; or because it does not support a
position that we would expect (or want) to be justified. How we decide on which are
the relevant claims that should or should not be justified in a theory is subject to a
deeper discussion, which will be addressed later in Chapter 7. But the intuition behind

it is simple:

e if a conclusion can be derived from a theory (if there is an argument for this
conclusion in the theory) when we believe it should not be, then we can revise the
theory in order to (try to) block this conclusion from being justified (in order to

reject the argument supporting it);

e analogously, if a conclusion cannot be derived from a theory (if there is no argu-
ment for this conclusion in the theory) when we believe it should be, then we can
revise the theory in order to (try to) allow the conclusion to be justified (in order

to introduce an argument that justifies it);

As described above, revision of a theory is guided by the intention of either invalidating
some existing argument, or adding a new argument to it. So instead of looking to
dynamic argumentation as a process of revising a theory, we could consider it as a
process for manipulating the arguments in that theory. Let us assume for a moment
the notion of argument to be primitive, and consider the set of all arguments in a

L. If we consider arguments

theory as the starting point of an argumentation process
to be primitive entities, then dynamic argumentation is about putting forward new
arguments and rejecting others in order to attack and defend certain positions. So, as
the process develops, new arguments can be added to the initial set, and others can be

withdrawn.

An advantage of defining argumentation as manipulation of a set of primitive arguments
rather than as revision of an underlying set of premises is that it is more intuitive to
talk about introducing and removing arguments than it is to talk about which premises
need to be added and removed in order to introduce or remove some argument. The
relationship between these views is not straightforward, and it also depends on the choice
of logic underlying the generation of arguments. This more abstract approach, however,
can be too abstract and also impractical, as accounting for the set of all arguments is

likely to be a computationally expensive, if not infinite, task.

Here we take a pragmatic approach by trying to identify ways for capturing this more
abstract view of manipulating sets of arguments in terms of guided revisions to the

underlying theories that represent the premises of these arguments.

4.2 Formal Definitions

In this section we formally define some general concepts underlying our approach to
dynamic argumentation. We start by defining what is meant by aziom and by theory.
Theories and axioms are at the heart of our proposal, as they represent the premises on

which arguments are based.

! A lot of research in formal argumentation is actually based on this assumption, e.g. (Dung 1995) and
(Prakken 2000). Jakobovits (2000) also describes how to obtain this set of all arguments from a logic
program.

70

CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 71

Definition 4.1 (Axiom) Let L be a logical language. An aziom is any well-formed

formula in L. 11 O

Definition 4.2 (Theory) Let L be a logical language on which a provability relation
is defined. Let Fp be the set of axioms (formulae) in L. A theory in L is any consistent

subset of Fr, denoted by the possibly indezed symbol 11. O

Note that at this point we are not making any commitments on the choice of logic
underlying an axiom set, nor on the inference rules associated with it; these will be
defined in more detail in Chapter 7. For the moment we assume that theories and

axiom sets are composed of facts and rules (conditionals).

4.2.1 Arguments

As in most conventional formalisms, arguments are associated with the provability rela-
tion in the underlying logical system, and therefore correspond to logical proofs. Such

arguments are often used to indicate support and justify positions.

Definition 4.3 (Argument) Let II be a theory and ¢ be a sentence in a logical system
(L,F). If ¢ can be inferred from T C II via the provability relation =, then T'F ¢ is an

argument (or justification) for ¢ in II. O

Arguments are represented by a two-part structure (often denoted by the letter A)
comprising an inference I' F ¢ and the corresponding derivation tree, with lower nodes

supporting the conclusion above. The generic form of a justification I' I ¢ consists of:

e a claim @: the conclusion of the argument;
e the grounds, or evidence I': the premises supporting the claim;

e the reasoning b-: the link that relates the conclusion ¢ (claim) to the premises T’
(evidence); here the reasoning step is based on a logical inference relation -, and

we often use the term Fp to indicate that this relation is restricted to a theory II.

Note that justification is not the only purpose of an argument. Arguments can play other
roles, such as to attack other claims and arguments, for instance in the form of counter-

arguments that justify opposing views, or in the form of refutations for rejecting other

arguments. These roles are not concerned with individual justifications but with the

relationships between them, hence they should be considered from a global perspective.

4.2.2 Dynamic Arguments

Instead of looking at arguments individually, dynamic argumentation is about consid-
ering how the relationships between relevant arguments will determine and affect the
status of the corresponding claims. Note that having measures of acceptability is not a
main part of this thesis. Instead we adopt a simple—yet expressive enough—notion of
acceptability: a claim becomes acceptable when an argument supporting it is presented;
but it becomes non-acceptable if this argument is attacked; moreover, if this attack is
itself attacked, the acceptable status of the claim is restored. In a nutshell, a claim is
acceptable if all attacks can be properly dismissed by means of counter-attacks (which

are attacks themselves).

The whole idea of attack is based on conflict. An argument is said to attack another ar-
gument if they support contradictory conclusions in the underlying language. Moreover,
it is also possible to attack and reject the grounds—or premises—on which an argument
is based. Yet another type of attack, standard in informal argumentation, consists in
rejecting the reasoning underlying an argument by suggesting that the conclusion does
not follow from the premises. But in formal systems justifications are generated by
means of a sound logical inference method, so we shall assume that the conclusion al-
ways follows from the premises.? This latter type of attack is therefore not relevant to
our approach, and we could say that here argument defeasibility is reduced to premise

defeasibility.

We also need to consider the fact that certain arguments may be preferred over others.
Preference can sometimes be determined from the logical structure of arguments and
claims, but it can also be based on comparative measures for arguments. The notion of
preference between contradictory arguments is often referred to as defeat, and defined

separately in terms of attack. Here we incorporate it in our definition of attack.

2 An inference or proof method is said to be sound if it produces only conclusions that are logical
consequences of its premises according to some defined notion of logical consequence. Remember
that at this point we have made no commitment on the choice of a particular logical system, or of a
logical consequence relation.

72

CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 73

Definition 4.4 (Attack) An argument A’ attacks an argument A if and only if A’

contradicts a claim supported by A and A is not preferred over A’. O

Some aspects of this definition are commented below:

e First, an argument can support different types of claims, and a characterisation
of what these claims might be can be extremely useful for describing the general

format of attacks.

e Second, what it means for claims to be contradictory in a language—as well as
what it means for arguments to be preferred over others—can depend on the choice

of the underlying logical language itself.

e Finally, criteria for deciding if arguments are preferred may not always exist, in
which case any argument is strong enough to reject a contradictory argument; but

if such criteria exist, they are likely to be domain-specific.
These are important remarks and will be further elaborated mainly in Chapter 6, and
later in Part III of this thesis.

Another concept we have to account for is that of revision. Notice that by revision we
mean structural revision, in which some premises can be retracted from and others can
be added to the original theory, allowing for instance for new concepts to be introduced.
In the context of argumentation, this intuitively corresponds to the idea of challenging

existing premises and bringing in new ones.

Definition 4.5 (Revision) A structural revision operation ¢ in a language L is char-

acterised by a pair (R, A), where:

e R C Fr corresponds to the axioms that will be retracted from a theory; and

o A C Fr corresponds to the axioms that will be added to a theory.

The outcome of applying ¢ to a theory 11 in L is a theory Iy obtained from 11 as follows:

Iy = (IT\ R) U A.

If R=0 and A= 10 then ¢ is said to be trivial. If either R is a singleton and A =0,
or if A is a singleton and R = (), then ¢ is said to be elementary. If ¢ is neither trivial

nor elementary, then it is said to be complez. O

Observation 4.1 Note that any non trivial operation can be decomposed into a se-

quence of elementary operations. g

In the context of dynamic argumentation, revisions to a theory are performed in order to
allow different types of attacks and counter-attacks to be generated. Therefore changes
are guided by attacks, so revisions are defined in terms of the argument in a theory that

is about to be attacked.

Definition 4.6 (Attack-based Revision) Let II be a theory and A be an argument
about ¢ in I1. An attack-based revision operation ¢ to 11 with respect to A defines a
theory 11y such that in Il we can derive an argument that attacks A.

Attack-based operations are denoted by ¢, as they may depend on II and A (and
consequently on). The superscript symbols may be omitted when the context is clear.

|

Note that neither the argument to be attacked nor the theory need to be fully specified
in an attack-based revision operation. Instead, such operations can be described by

partially defined structures, like generic schemata for arguments and theories.

In a sense these operations are a bit like actions. They have preconditions that determine
when they can be applied, and postconditions that define the outcome of applying them.
In the next chapters we analyse the types of revisions that can lead to relevant attacks.
We pay special attention to elementary operations, their properties and characteristics,

and also how more complex revisions can be defined from them.

We can now formalise the concept of dynamic argument. At this point we would also
like to emphasise the procedural nature of argumentation—in fact, argument dynamics
can be seen as a mechanism for proving whether a position is acceptable with respect
to a theory, where this proof process can involve revisions to the theory itself. Each

argument that is advanced changes the acceptability status of the initial claim, and

74

CHAPTER 4. BASIC CONCEPTS AND DEFINITIONS 75

for the theory to be acceptable with respect to this claim it has to be revised until all
attacks have been appropriately dismissed. Notice also that when we revise a set of
axioms to defend it from attacks new points of attacks may be introduced, so the whole
resulting theory should be again open to argument. This view is described below and

illustrated in Figure 4.1.

Definition 4.7 (Dynamic Argument) Let II be a theory and ¢ be a sentence in a
logical system (L,F), and let ® be a collection of attack-based revision operations defined

in terms of generic schemata for arquments and theories in L.

A dynamic argument § about I1 with respect to ¢ is denoted by a sequence:
(S(Qp, H) = <A0, ¢1, Al, ceey (ZSK, AK, >, where

e Ay is a justification for ¢ in I1;
® O1,...,0K,... € D is a sequence of revision operations to I1;
o fori>1, A; is an argument in Ily, 4,; and

o fori>1, A; attacks A;_q in the context of the moves (Ag, ¢1, A1, .., bi—1,Ai—1)

advanced so far.

If there is N > 0 such that no attack-based revision ¢ € ® can be applied to Iy, 4y
with respect to Ay, then we say that 6(p,II) converges to II' =11y, 4. . Also, if N is
even then 11" is said to be acceptable in relation to ¢ (or yet that ¢ is acceptable with

respect to 11'), as the attacks to @ have been appropriately dismissed. O

A A — . —{ay

Mo | ~»|m | ~|m| ~ 7 =y

Figure 4.1: Dynamic argumentation: revising sets of premises.

Note that this description accounts for all the concepts in conventional argument frame-

works, as identified by Prakken (Prakken 1995) and discussed in Chapter 3:

an underlying logical language;

a concept of argument;

a concept of conflict between arguments;

a notion of defeat among arguments; and

e an account of the acceptability status of arguments (and in this case, of theories).

Here, however, we have to consider one more notion:

e an account of attack-based revision.

Although we have characterised what properties a dynamic argument should have so
that it generates acceptable theories, we have not solved the problem of actually gener-

ating them. Instead we have identified exactly the subproblems that need to be tackled:

1. First, we need to characterise the possible attacks at some point ¢ > 1 in a dynamic

argument, considering the moves (Ag, ¢1, A1, ..., ¢;—1, A;—1) advanced so far.

2. Second, we need to specify the set ® of possible revision operations; i.e. how
attacking arguments can be generated and how they relate to changes and revisions
in a theory. Are there any desirable properties for ®, and what would be their

consequences? Is there a systematic way to define ®7

3. Finally, we need to specify a mechanism for selecting which attack to generate.
This selection mechanism is likely to be based on the set ® (item 2 above) and on

the characterisation of attacks (item 1 above).

In the rest of this part we will deal with the first two items, leaving the last—as well as
the discussion about preference criteria—for Part I1I, where we consider control aspects

of argument generation in automated dynamic argumentation systems.

76

Chapter 5

Towards a Classification of
Argument Schemata

Chapter 4 gave a characterisation of argument dynamics as a sequence of arguments
intended to defend positions from potential attacks, some of which may be put forward
only if a structural revision is performed in the underlying theory. In this way we cannot
assume that all premises used to generate arguments in a dynamic argument will be
available from the start, as some can be added and others withdrawn during the course

of the process.

So the aim of this chapter is to identify ways in which axioms in a theory can change as
we advance new arguments. Based on examples and ideas from argumentation theory,
we move towards a classification of argument schemata for relating the possible changes
in a set of premises with the types of attacks we want to put forward. This classification

will be used to describe the sorts of revision that characterise dynamic argumentation.

At this point we do not focus on choosing which claim or argument to attack. Instead,
we want to explore systematically the types of theory revision that can be performed
in order to generate an attack for a given claim. As might be expected, attacks can
sometimes be generated from the current set of premises, in which case the theory
need not be revised (or is ¢rivially revised). However, because here we are interested in
classifying changes, we can assume for the moment that attack-based revisions are non

trivial.

The descriptions in this chapter are informal in order to illustrate the possible sorts

77

of structural revision, but they will also serve to introduce the formal language that
will be used in Chapter 7 to define the complete argument schemata classification. To
make it easier to understand the idea behind each schema, we will follow the standard

description pattern below:

e we first present an informal description of the schema;
e then we present a natural language argument as an example of the schema;

e finally we cast the example by means of the formal schemata description language.

The arguments used to illustrate the schemata are drawn directly from or based on
policy debates about the possible carcinogenicity of chemical substances (McBurney
and Parsons 1999). We take a close look at the aflatozin debate, which has already been
used for investigating argument-based risk assessment (Fox 1994; Robertson 1995) and
conflict exploration (Haggith 1996). We set out the context for this debate in Section
5.1, before presenting examples of argument revision schemata in Section 5.2. Finally,
in Section 5.3 we briefly discuss some concepts from informal argumentation that have

founded the schemata presented here.

5.1 The Aflatoxin Debate: Assessing Cancer Risks

This example concerns a real debate about the carcinogenicity of certain chemical sub-
stances called aflatoxins, and about the FDA (US Food and Drugs Administration)
policy that restricts aflatoxin levels to 20 parts per billion (ppb). The following are
two arguments presented by Rodricks (1992)! for different standpoints concerning the

question of whether the FDA’s position is scientifically defensible.

(1) Yes. The FDA clearly did the right thing, and perhaps did not go far enough.
Aflatoxins are surely potent cancer-causing agents in animals. We don’t have sig-
nificant human data, but this is very hard to get and we shouldn’t wait for it before
we institute controls. We know from much study that animal testing gives a re-

liable indication of human risk. We also know that cancer-causing chemicals are

! As cited in (Fox 1994).

78

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 79

a special breed of toxicants—they can threaten health at any level of intake. We
should therefore eliminate human exposure to such agents whenever we can, and,
at the least reduce exposure to the lowest possible level whenever we’re not sure

how to eliminate it.

(2) No. The FDA went too far. Aflatoxins can indeed cause liver toxicity in
animals and are also carcinogenic. But they produce these adverse effects only at
levels far above the limit FDA set. We should ensure some safety margin to protect
humans, but 20 ppb is unnecessarily low and the policy that there is no safe level
is not supported by scientific studies. Indeed, it is not even certain that aflatoxins
represent a cancer risk to humans because animal testing is not known to be a
reliable predicator of human risk. Moreover, the carcinogenic potency of aflatoxins
varies greatly among the several animal species in which they have been tested.
Human evidence that aflatoxins cause cancer is unsubstantiated. There’s no sound

scientific basis for FDA’s position.

The second paragraph gives some reasons for rejecting the argument supporting the
FDA’s position, which is essentially based on animal testing—or bioassays. As argued
in (McBurney and Parsons 1999) bioassays are the most common sort of evidence sup-
porting the possible carcinogenicity of a substance, and the authors have identified a
number of different assumptions that must hold for this evidence to be considered valid.
For instance, to claim that a certain chemical is carcinogenic on the basis of a bioassay
on an animal species, the animal physiology and chemistry relevant to the activity of

this chemical must be sufficiently similar to human physiology and chemistry.

What we want to illustrate in this chapter is that there might exist standard ways for
advancing attacks (e.g. those in paragraph 2) that are based on the structure of the
argument being attacked (e.g. the argument in paragraph 1) and which can be instan-
tiated by domain-specific expertise (e.g. the assumptions identified by McBurney and
Parsons (1999)). Not all example arguments we present are an accurate reproduction
of the aflatoxin debate as stated by Rodricks (1992), as we might alter or introduce

information for illustrative purposes only.

In what follows, sets of beliefs related to the aflatoxin debate will be expressed as general
logic programs.? As expected, axioms (clauses) will be fundamentally arguable, as they

represent the essentials of a problem rather than universal truths.

5.2 Argument Schemata for Arguing about Aflatoxins

We now illustrate the use of argument schemata with some examples from the aflatoxin
debate. Schemata are used for generating arguments and attacks, specified in terms
of revision operations as defined in Section 4.2. Here we depict schemata built upon
elementary revisions (Sections 5.2.2 and 5.2.3) and upon updating revisions, i.e. those
composed of two elementary operations and used for updating an axiom by retracting
it and subsequently adding a modified version (Sections 5.2.4). First we give a general

account of the types of schema we consider and the language used for describing these.

5.2.1 An Overview of the Schemata Description Language

When describing argument schemata we want to represent not only the changes to be
performed to the knowledge base, but also the reasons why we can perform them. By
looking at concepts studied in argumentation theory—such as argumentation schemes

3 —we have identified a number of possible reasons and motivations for

and fallacies
adding, changing and adapting premises in an argument. Here we make use of a formal
description language to capture and represent a subset of these, which we feel is relevant

to the types of argument in which we are interested.

For instance, when we add a new premise to the theory we might want to say that we
are introducing a new fact, i.e. something that is taken to be true. In case we are adding
a new rule, then we can also specify whether it is a substantiated rule for yielding new

conclusions, or a burden shift rule for reversing the burden of proof.

It should also be possible in this language to represent the reasons for updating and
altering premises. We can, for instance, change an axiom in a theory because it should

be specialised, or generalised. Or else, we can replace it with a more elaborated version,

2 See Appendix A for a concise account of logic programming concepts and syntax.

3 See discussion in Section 5.3.

80

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 81

with extra preconditions; or with a less elaborated version obtained by removing some
precondition that is thought to be irrelevant. Furthermore, we could revise the conclu-
sion of a rule, or reverse the relation between the consequent and the antecedent. These

descriptions convey the possible reasons for altering and replacing axioms.

It is often the case, though, that these language constructs only summarise what could
be guessed from the structure of the updated or added premises—i.e. from the revision
operation itself that is associated with the schema. But changes that are different in
nature may sometimes yield identical instances of schemata based on identical revision
operations. In these cases, such a description language allows us to keep and represent

the original distinction.

This is particularly true when we remove premises from a theory. We may have a number
of different reasons for withdrawing a premise, but the type of revision associated with
these will always be syntactically equivalent. Thus in our representation we use different
constructs to distinguish between different reasons for retracting an axiom from a theory,
either because it is an invalid rule, a weak rule or a misrelation. The difference is briefly

discussed below:

Invalid rule. A rule can be considered to be invalid if there are exceptions

to it—cases where the antecedent holds but the consequent does not.

Weak rule. A rule can be considered to be weak if there are instances where

the antecedent does not hold, affecting the generality of the relation.

Misrelation. The relation expressed by an axiom is said to be mistaken if
there are cases where the antecedent holds and the consequent does
not, and instances where the antecedent does not hold but the conse-
quent does, thus compromising the adequacy of the correlation between

antecedent and consequent.

Note that we do not require these conditions to be necessarily valid when we apply the
corresponding revisions. However, they provide designers with extra information which

could be useful in defining domain-specific cases for theory revision.

The terms discussed in this section constitute part of the language we use for describing

argument schemata, which we illustrate in the next sections and formally define in

Chapter 7.

5.2.2 Adding a New Premise

In this section we look at schemata for deriving new arguments by adding a new axiom

to the theory. Added clauses are diagrammatically represented within light gray boxes .

Informal Schema 1 (Adding a New Fact) A trivial way to present an argument
for a sentence is by adding it as a fact in the theory, as facts immediately follow from

the theory.

This is particularly useful if the sentence corresponds to an observation, or to a belief

that is taken to be categorically true. For instance, to advance the following argument:

Aflatoxins are surely potent cancer-causing agents in animals.

it is enough to add it as a fact in the theory, justified by direct observation. Let
the sentence causes(aflatozin, cancer, animal (X)) represent the statement above, where
animal (X) denotes that X is a non-human animal species. The type of revision neces-

sary for justifying this sentence is depicted below,*

add(fact)

{} A causes (aflatoxin, cancer, animal(X))

and is represented by the following instantiated schema:

Justify(causes(aflatoxin, cancer, animal(X))) if

add(fact (

causes(aflatozin, cancer, animal(X)) <)
true

The following trivial argument can now be derived:

{causes(aflatozin, cancer, animal(X)) < true} b causes(aflatozrin, cancer, animal(X)) (5.1)

4 For reasons of clarity and space, in the revision diagrams in this section we denote facts of the form
H < true by the sole expression H in Prolog style.

82

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 83

This sort of argument is often regarded as a fallacy in argumentation theory, namely
begging the question or circular reasoning. Although logically sound, it is also “trivially
uninteresting” (Fogelin and Sinnott-Armstrong 1997, p. 40), and in our example cannot

be considered as a proof that aflatoxins cause cancer in animals.

However, such arguments are indeed valid. It might be uninteresting in this case, but can
be useful for generating arguments from more complicated schemata based on complex

types of revisions.

Informal Schema 2 (Adding a New Substantiated Rule) We can justify a sen-

tence by adding a new rule for deriving it such that the rule antecedent is supported.

For instance, we can advance the following argument supporting the claim that aflatox-

ins cause cancer in humans.

Aflatoxins are surely potent cancer-causing agents in animals. We know from much

study that animal testing gives a reliable indication of human risk.

So, for this claim to be derived we can add to the theory a rule stating that all agents that
cause some pathology in some non-human animal species would cause this pathology in
humans. This is a substantiated rule for the case of aflatoxins because its antecedent is
satisfied by the fact (in the theory) that aflatoxins cause cancer in non-human species.

This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) add(substantiated_rule) causes(aflatoxin, cancer, animal(X))

causes(A, P, human) <
causes(A, P, animal(X))

and is represented by the following instantiated schema:

Justify(causes(aflatozin, cancer, human)) if

causes(A, P, human) <+)
causes(A, P, animal (X))

add(substantiated_rule (

This rule may not be an universal truth, but it captures the general nature of the domain

we are representing. The following argument can now be derived:

causes(aflatoxin, cancer, human) (5.2)
causes(A,P,human)«causes(A,P,animal(X))

causes(aflatozin, cancer, animal (X))

Informal Schema 3 (Adding a Burden Shift Rule) We can shift the burden of
proof by adding a rule stating that a sentence is justified if some other (opposing) sen-
tence is not. In this way, we justify a sentence by arquing that its contrary cannot be

supported.

For instance, we can put forward the following argument for sustaining the claim that

there is no safe level of exposure for carcinogenic agents.

We can assume that there is no safe exposure level for an agent unless one can
scientifically prove that there is a safe level of exposure for this agent at which it

will not cause cancer.

This argument can be derived if we add a general rule stating that there is no safe
exposure level for a cancer-causing agent if we cannot justify the existence of a safe
level for it. Given that we cannot prove that there is a safe level for aflatoxins, this rule
shifts the burden of proof to someone willing to prove that such a level does exist. This

type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))
causes(A, P, human) 47 add(burden_shiﬁ_rule) causes(A, P, human) 47
causes(A, P, animal(X)) ~> causes(A, P, animal(X))

no_safe_level(A) <
not safe_level(A, L)

and is represented by the following instantiated schema:

Justify(no_safe_level(aflatoxin)) if

not safe_level(A, L)

add(burden_shift_rule (no-safe_level(A) «))

Hence the argument below can be derived, supporting the claim that there is no safe

exposure level for aflatoxins.

84

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 85

no_safe_level(aflatozin) (5.3)
no_safe_level(A)«not safe_level(A,L)

not safe_level(aflatozin, L)

Shifting the burden of proof is sometimes regarded as a fallacy, namely appeal to igno-
rance, whereby a claim is said to be true because there is no evidence that it is false.
This type of reasoning, however, can also be used non fallaciously in certain problems

and domains.
5.2.3 Retracting an Existing Premise

Revisions in this section are concerned with the quality of the premises used in an
argument, in particular with the quality of rules. We focus on rules rather than facts
and propositions because the general way for challenging and refuting a proposition is
to justify some opposing or contradicting position (i.e. to present a counter-argument).
In the case of rules, however, the qualification problem states that it is not always
possible to explicitly account for the many conditions necessary for rules to hold, so it

is important to investigate whether a rule is in fact germane to the problem in question.

What is interesting about retraction is that it brings into play more of the dynamics
of argumentation as opposed to the usual approach of only adding arguments which
overcome the weak ones. That allows for instance for previous arguments to be not

only defeated but invalidated, e.g. for being fallacious.

As discussed in Section 5.2.1, there may be different reasons for rejecting an axiom, and
now we look more closely at some of these ways through which we can withdraw a rule
and challenge its validity. Removed clauses are diagrammatically represented within
Informal Schema 4 (Retracting an Invalid Rule) We can refute an argument be-
cause the conditional used to derive the arqument claim is logically invalid, i.e. there

are exceptions to it (cases for which the antecedent holds but the consequent does not).

For instance, the argument below refutes argument 5.2, suggesting that the claim that

aflatoxins cause cancer in humans is unsubstantiated.

It’s not even certain that aflatoxins represent a cancer risk to humans because

animal testing is not known to be a reliable predictor of human risk.

This argument rejects the rule that relates animal testing and human risk by questioning
its reliability, e.g. because there might be exceptions to this relation (cases of an specific
agent known to cause some specific pathology in some animal species, and not causing

the same pathology in humans). This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))

retract(invalid_rule)
>

and is represented by the following instantiated schema:

refute(causes(aflatozin, cancer, human)) if

retract(invalid_rule (causes(A, P, human) «))

causes(A, P, animal (X))

In this way, argument 5.2 is no longer derivable from the revised set of premises.

Informal Schema 5 (Retracting a Weak Rule) We can refute an argument be-
cause the conditional used to derive the argument claim is logically weak, i.e. there
are cases for which the antecedent does mot hold, compromising the generality of the

relation.

Let us consider the following argument:

It’s not even certain that aflatoxins represent a cancer risk to humans because
animal testing is not known to be a reliable predictor of human risk. Moreover, the
carcinogenic potency of aflatoxins varies greatly among the several animal species

in which they have been tested.

Again, this argument rejects the rule that relates animal testing and human risk by
questioning its reliability. This challenge may not be grounded on explicit denials like

in the previous schema, but on weakening the generality and relevance of this relation.

86

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 87

For instance, by presenting cases where the antecedent does not hold, or a particular
animal species to which aflatoxins are not carcinogenic (in line with the assertion that
the carcinogenic potency of aflatoxins differs among species). This type of revision is

depicted below,

causes(aflatoxin, cancer, animal(X)) retmct(weak rule) causes(aflatoxin, cancer, animal(X))
[av2d

and is represented by the following instantiated schema:

refute(causes(aflatozin, cancer, human)) if

causes(A, P, human) <+)
causes(A, P, animal (X))

retract(weak _rule (

Note that this is identical to the instance of Schema 4, the only distinction being the
reason for retracting the rule, captured in this representation by the different constructs
invalid_rule and weak_rule. And again, argument 5.2 is no longer supported in the
revised set of premises, in which case the claim that aflatoxins cause cancer in humans

is unsubstantiated.

Informal Schema 6 (Retracting a Misrelation) We can refute an argument be-
cause the correlation expressed by the rule used to derive the argument claim is mistaken,

i.e. the correlation between antecedent and consequent is not adequate.

Let us consider again the following argument:

It’s not even certain that aflatoxins represent a cancer risk to humans because

animal testing is not known to be a reliable predictor of human risk.

This time we could challenge the reliability of the relation between human risk and
animal testing on the basis that this relation is mistaken, e.g. because the consequent is
not very likely to follow from the antecedent, or simply because there is no correlation
at all between the sentences (a particular agent is known to cause some pathology
in an animal species but not in humans, and some other agent is known to cause a
different pathology in humans but not in certain animal species). Such argument then
undermines the general extrapolation of animal risk to human risk. This type of revision

is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))

retract(misrelation)
>

and is represented by the following instantiated schema:

refute(causes(aflatozin, cancer, human)) if

causes(A, P, human) +))

retract(misrelation (causes(A, P, animal(X))

This argument once again refutes argument 5.2, in which case the claim that aflatoxins

cause cancer in humans is again unsupported.

5.2.4 Updating an Existing Premise

It it not always the case that a challenged rule needs to be retracted for good. In fact,
according to the qualification problem, it is hard (if not impossible) to specify all the
preconditions for a rule to hold, as there might be implicit or unknown conditions that
can invalidate the relation. So we can refute a rule by retracting it, and subsequently
adding an updated version that accounts for some of these implicit or unknown condi-
tions. In the same way, not all conditions in a rule may be pertinent to the problem we

are representing, so we can revise the rule again by dismissing such irrelevant premises.

In this section we look at examples where new arguments are generated on the basis
of revised rules. Notice that we can revise an axiom not only to refute an existing
argument that is based on it, but also to introduce a new argument that makes use of
the updated axiom in order to be inferred. After all, revision is also about strengthening

an argument by reviewing the axioms that support it.

Informal Schema 7 (Removing Irrelevance in a Rule) We can justify a sentence
by removing an irrelevant precondition from a rule so that the rule antecedent is now

satisfied, and the sentence consequently follows from it.
For instance, the argument below supports the claim that the maximum required level

of intake for aflatoxins should be set to its minimum detectable level, i.e. 20 parts per

billion, on the basis that such substances are carcinogenic.

88

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 89

We know that cancer-causing chemicals are a special breed of toxicants—they can
threaten health at any level of intake. We should therefore eliminate human expo-
sure to such agents whenever we can, and, at the least reduce exposure to the lowest
possible level whenever we're not sure how to eliminate it. The level of intake for
carcinogenic substances should always be restricted, even it is argued that a safe

level of intake exists which is far above the minimum detectable level.

Suppose that our theory about carcinogenicity of substances already contains a rule
stating that the required level of an agent should be set to its minimum detectable level
if it is carcinogenic and if there is no known safe exposure level for it. However, if the
theory also contains a fact stating that a safe exposure level s for aflatoxins does exist
which is far greater than the minimal detectable level, then the rule above cannot be
used as not all its preconditions are satisfied. What we argue, though, is that one can
never be too cautious when dealing with carcinogenic substances. So the required level
for aflatoxins should still be set to their minimum detectable level, because we must
disregard any conditions about safe exposure levels for an agent that can cause cancer.

This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X))
min_det_level(aflatoxin, 20ppb)
safe_level (aflatoxin, s)
no_safe_level(A) <

not safe_level(A, L)

update(irrelevance)
N

causes(aflatoxin, cancer, animal(X))
min_det_level(aflatoxin, 20ppb)
safe_level(aflatoxin, s)
no_safe_level(A) <

not safe_level(A, L)

required_level(A, L) <
causes (A, cancer, X) A
min_det_level(A, L)

and is represented by the following instantiated schema:

Justify(required_level(aflatozin, 20ppb) if

required _level (A, L) <
causes(A, cancer, X) N
no_safe_level(A) A)
min_det_level(A, L)

retract (irrelevance

and

causes(A, cancer, X) A
min_det_level(A, L)

required_level (A, L) +
add (irrelevance

The argument below can then be derived:

required_level(aflatoxin, 20ppb) (5.4)

rrquiredWer,Y)/\min_det_level(A,L)

causes(A, cancer, animal (X)) min_det_level(aflatozin, 20ppb)

Informal Schema 8 (Revising the Consequent of a Rule) We can revise the con-
sequent of a rule if it does not correspond to what is expected to follow from the precon-
ditions of this rule. This revision can either allow a new argument for a sentence to be
derived (if this sentence is now the revised consequent) or refute an existing argument

for a sentence (if this sentence was the consequent of the original rule).

Assume that in our current theory the claim that a safe level of intake for aflatoxins
exists is based on a rule stating that the minimum detectable level for a carcinogenic
substance is safe, in the sense that it will not cause adverse effects. We can present the

following argument for refuting this conclusion.

We know that cancer-causing chemicals are a special breed of toxicants—they can
threaten health at any level of intake. We should therefore eliminate human ex-
posure to such agents whenever we can, and, at the least reduce exposure to the

lowest possible level whenever we're not sure how to eliminate it.

In the current theory, we are inferring the wrong conclusion from the right premises.
The minimum detectable level of a carcinogenic substance should never be regarded as
safe, but as the best we can do to eliminate risk (i.e. the maximum acceptable level).

This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))
min_det_level(aflatoxin, 20ppb) update(misconclusion) min_det_level(aflatoxin, 20ppb)
required_level(A, L) <

causes(A, cancer, X) A
min_det_level(A, L)

and is represented by the following instantiated schema:

refute(safe_level(aflatoxin, cancer,20ppb)) if

safe_level(A, L) <
retract(misconclusion causes(A, cancer, X) A
min_det_level(A, L)
and

required _level (A, L) <
add(misconclusion causes(A, cancer, X) A
min_det_level(A, L)

90

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 91

Informal Schema 9 (Reversing a Rule) We can invert a rule when the relation be-
tween its antecedent and consequent is reversed. This revision can either allow a new
argument for a sentence to be derived (the antecedent of the original rule, which is now
the consequent of the updated rule) or refute an existing argument for a sentence (the

consequent of the original rule, which is now the antecedent of the updated rule).

Suppose that we still wanted to argue that there is a safe level of exposure for aflatoxins,
and that we had done so by introducing a (new substantiated) rule stating that the
required level of exposure for an agent is actually a safe exposure level. Below is a

counter argument that blocks the safe level conclusion from being derived in this case.

It is not the case that the maximum acceptable level of intake for a carcinogenic
substance is necessarily safe. In fact, it should be restricted by a safe exposure level,

if such safe level can ever be proven to exist.

In this way the conclusion that a safe level of intake for aflatoxins exists is no longer
supported, as the rule used to derive it can no longer be applied. This type of revision

is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))
min_det_level(aflatoxin, 20ppb) min_det_level(aflatoxin, 20ppb)
required_level(A, L) update(reversion) required_level(A, L) +
causes(A, cancer, X) A '~ causes (A, cancer, X) A
min_det_level(A, L) min_det_level(A, L)

required_level(A, L) <
safe_level(A, L)

and is represented by the following instantiated schema:

refute(safe_level(aflatozin, 20ppb)) if

retract(reversion (safe-level(4, L) «))

required _level (A, L)
and

add(reversion (

required _level (A, L) +)
safe_level(A, L)

The last two argument schemata were used to block the claim that the minimum de-
tectable level of aflatoxin is a safe exposure level for it. Notice, however, that these are
not intended to reject the required level of exposure from being set to this minimum
level. Instead, these schemata convey the idea that no safe level of intake for a car-
cinogenic agent can ever exist, i.e. that cancer-causing substances “can threaten health

health at any level of intake.”

Informal Schema 10 (Specialising a Rule) One way to refute an argument is by
specialising the rule used to derive the argument claim so that it is no longer applicable

to the case under discussion.

For instance, we can refute argument 5.4 for required _level (aflatozin, 20ppb) by advanc-

ing the following argument.

We should not restrict the level of aflatoxin intake to its minimum detectable level
unless it is known that aflatoxins cause cancer in humans. In fact, aflatoxins can
cause liver toxicity in animals and are also carcinogenic, but it is not even certain
that they represent a cancer risk to humans because animal testing is not known

to be a reliable predicator of human risk.

The idea behind this argument is that the rule for restricting the level of intake is too
general, and should only be applied if an agent is known to be carcinogenic to humans

in particular.

This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))
min_det_level(aflatoxin, 20ppb) update(specialisation) min_det_level(aflatoxin, 20ppb)
g required-level(A, L) «+
causes (A, cancer, human) A
min_det_level(A, L)

and is represented by the following instantiated schema:

refute(required_level(aflatozin,20ppb)) if

required _level (A, L) <
retract(specialisation causes(A, cancer, X) A |)
min_det_level(A, L)

and
required _level(A, L) +
add (specialisation causes(A, cancer, human) A |)
min_det_level(A, L)

In this way, we can no longer derive an argument for required _level (aflatozin, 20ppb) in

the revised theory.

Informal Schema 11 (Generalising a Rule) We can justify a sentence by general-

ising some existing rule so that it now allows this sentence to be derived.

92

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 93

Suppose we have previously observed that aflatoxins cause cancer in rabbits, and now
we want to use this fact to support the claim that aflatoxins are carcinogenic to humans

on the basis of a bioassay evidence.

Aflatoxins are potent cancer-causing substances in rabbits, and we know that animal

testing gives a reliable indication of human risk.

Suppose also that the current theory about carcinogenicity of chemical substances con-
tains a rule stating that a chemical agent causes some pathology in humans if it causes
this pathology in mice. The existing extrapolation rule cannot be applied because it is
specific to the case of mice, so to advance the argument above we need to generalise it.

This type of revision is depicted below,

causes(aflatoxin, cancer, animal(rabbit)) update(genemlisation) causes(aflatoxin, cancer, animal(rabbit))

causes(A, P, human) <
causes(A, P, animal(X))

and is represented by the following instantiated schema:

Justify(causes(aflatozin, cancer, human)) if

retract(generalisation causes(A, P, human) <)
g causes(A, P, animal(mouse))
and

- causes(A, P, human) +
add(generalisation (causes (A, P, animal (X))))

The argument below can then be derived:

causes(aflatozin, cancer, human) (5.5)

causes(A,P,human)<causes(A,P,animal(X))

causes(aflatozin, cancer, animal(rabbit))

Informal Schema 12 (Elaborating Preconditions in a Rule) One way to refute
an argument is by elaborating the preconditions in the rule used to derive the argument

claim so that its antecedent is no longer satisfied.

The following is an argument that refutes argument 5.2 (or similarly, argument 5.5) by

elaborating on the conditions for applying the general extrapolation rule.

To claim that an agent is carcinogenic on the basis of animal testing, the animal
physiology and chemistry relevant to the activity of this agent must be sufficiently

similar to human physiology and chemistry.

At this point, the claim that aflatoxins cause cancer in humans is unsubstantiated
because there is no indication of whether the type of animal that is considered is in fact

similar enough to humans. This type of revision is depicted below,

causes(aflatoxin, cancer, animal(X)) causes(aflatoxin, cancer, animal(X))

update(e/l\tﬁ)omtwn) causes(A, P, human) <

causes(A, P, animal(X)) A
similar_physiology (human, X)

and is represented by the following instantiated schema:

refute(causes(aflatozin, cancer, human)) if

retract(elaboration (Causj;éﬁ:;fé?;@;?ilz;(X))))
and
causes(A, P, human) <«
add(elaboration causes(A, P, animal(X)) A)
similar _physiology (human, X))

Note that this sort of refutation is not as damaging as those discussed in the previous
section. In fact, to reestablish the conclusion that aflatoxins cause cancer in humans,
we just need to explicitly account that the animal used in the bioassay was sufficiently
similar to humans in what matters. Furthermore, this elaborated rule may be better
protected from the types of refutations in Section 5.2.3, as it better specifies what has

to be considered as relevant in this domain.

5.3 Relationship with Informal Argumentation Theory

The schemata illustrated here all required some sort of domain-specific expertise to be
instantiated in a relevant way. But notice that we do not want to focus on a domain-
specific solution. Our point is that an analysis of formal argument structure can shed
some light on how justifications and refutations are generated in any particular domain,

thus providing rough sketches to which domain-specific knowledge can be applied.

To define a classification of schemata we have then looked into traditional argumenta-

tion theory. In fact, one of the main problem areas in the study of informal logic consists

94

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 95

in identifying, analysing and evaluating arguments (van Eemeren et al. 1996), so argu-
mentation theorists are often interested in developing models and tools for supporting

these tasks. One example is the notion of argumentation schemes (Walton 1996).

As argued by van Eemeren et al. (1996), argumentation schemes are concerned with
the internal structure of arguments, and “to the kind of relation established in a sin-
gle argument between its premises and the standpoint the argument aims to justify or
refute.” In summary, they are used for classifying and modelling various types of argu-
ment forms. Their use dates back to Aristotle, who discussed the idea of argumentation
schemes (or techniques, or moves) being selected and instantiated by an attacker during

dialectical debates (van Eemeren et al. 1996, p.38).

More recent approaches (Walton 1996; Perelman and Olbrects-Tyteca 1969) propose
lists and catalogues of argumentation schemes that represent acceptable ways for con-
necting premises and conclusions. The conclusion of a schema is then said to be pre-
sumptively (or defeasibly) valid if the associated premises and conditions hold. In the
New Rhetoric (Perelman and Olbrects-Tyteca 1969)°, for instance, schemes represent
logical as well as rhetorical arguments, and characterise inference mechanisms that can
be used to convince an audience in persuasive argumentation. Furthermore, critical
questions are asked in relation to an argumentation schema to determine whether it can

in fact be applied.

In our case, however, we adopt a slightly different position. We want to define generic
structures of logical arguments rather than different types of inference linkages. This is
because our arguments are generated based on a logical system, and on a formal and
sound logical inference mechanism. So defeasibility is related not with the reasoning

step but with the types of premises that can be used, added, removed or updated.

In the cases where premises are removed or updated, we have looked at the idea of
fallacies, i.e. arguments that appear to be valid but are actually not. The study of fal-
lacies constitutes another major area in argumentation theory, which provided us with
rich material for analysing the quality of premises in an argument, and for indicating

when these were not really well-grounded. Below we describe some informal fallacies

% As cited by van Eemeren et al. (1996) and by Warnick and Kline (1992).

that we have considered and identified as being relevant to our analysis, relating them
to the schemata in the previous sections. In particular, we refer to possible revision-
based schemata that could have been applied in order to improve the quality of the
fallacious argument. The literature on fallacies is vast, and we have based our descrip-
tions mainly on general resources such as (van Eemeren et al. 1996) and (Fogelin and

Sinnott-Armstrong 1997).

Slippery Slope. When a claim is said to be caused by a sequence of events, but there

is not enough evidence of such relationship.

In this case, the rule representing this relationship may be removed for being invalid
(Informal Schema 4), weak (Informal Schema 5), or mistaken (Informal
Schema 6); or its conclusion may be revised (Informal Schema 8).

False cause. When there is not enough evidence that one event caused another.

Similarly to the case above, we can apply Informal Schemas 4, 5, 6, 8.

Hasty conclusion. When we jump to a conclusion not based on enough grounds.

As above, here we could apply Informal Schemas 4, 5, 6, 8.

False criteria. When false or irrelevant criteria are used in the argument.

In this case, Informal Schema 7 can be used to disregard this criteria.

Wrong direction. When the relation between cause and effect is reversed.
Here Informal Schema 9 could be applied to reverse the relation.
Hasty generalisation. When the generalisation is not based on enough cases or sam-
ples.
In this case, we could apply Informal Schema 10 to specialise the rule.
Composition. When a property that is valid for a part is assumed to be valid for the
whole entity containing it.

Again, Informal Schema 10 could be applied to specialise the relation to consider

the part, and not the whole.

96

CHAPTER 5. TOWARDS A CLASSIFICATION OF ARGUMENT SCHEMATA 97

Division. When a property that is valid for a whole entity is assumed to be valid for

each of its parts.

Again, Informal Schema 11 could be applied to generalise the relation to consider

the whole, and not the parts.

Complex Cause. When the cause identified is simpler than the actual cause of the

effect.

In this case, Informal Schema 12 could be used to elaborate the relation and

introduce other relevant conditions.

By looking at existing accounts from informal argumentation theory, we were then able
to combine domain-independent knowledge about arguments to describe general logi-
cal forms of arguments and attacks in terms of the premises used. The next chapters
formally describe a classification of argument schemata and discuss some of its proper-
ties. To these generic structures we can then apply domain-specific knowledge so that
we instantiate and determine the contents of an attack to be advanced in an dynamic

argumentation process.

First, though, we need to describe exactly how arguments attack each other.

Chapter 6

Attacks in Argument Dynamics

Chapter 4 identified precisely the problems we need to address in order to fully describe
and generate dynamic arguments. This chapter considers one of those problems, namely
how to characterise the general format of attacks and the possible contradictions in

argument.

6.1 Types of Argument Claims

According to Definition 4.4, an argument A’ attacks an argument A if and only if A’
contradicts a claim supported by A and A is not preferred over A’. For the moment we
shall assume that no preference criterion is defined, thus no argument is preferred over
any other. We return to the topic of argument prioritisation later in Part III of this

thesis.

To characterise the types of attack to an argument we then need to identify what are the
claims supported by this argument and how these can be contradicted. In Chapter 4 we
have referred to a claim as being the conclusion of a justification,! but here we take the
view that claims are general statements (about sentences in the language) supported by
arguments in general. If, for example, an argument A is a justification for ¢ in a theory

I1, then based on A we can say that ¢ is substantiated in II.

Whereas a justification can serve as a reason for accepting a sentence, other types of

arguments—such as counter-justifications and refutations—can be used for rejecting a

! See Definition 4.3.

99

justification and consequently its conclusion. Notice that it only makes sense to talk
about these in connection with some previously constructed justification, and not as
individual entities. While counter-arguments are essentially justifications supporting a
sentence that conflicts with some point of the original argument, refutations are used
for blocking conclusions from being derived. That is, refutations are used for rejecting a
premise (axiom) in a justification, either by removing it from the theory or by updating
it so that the argument no longer follows. Thus refutations are logically valid but not
sound, because they contain axioms not considered to be sound with respect to the
theory in question. If an argument A is a refutation of a justification for ¢ in a theory

IT, then based on A we can say that ¢ is not substantiated.
The following definition summarises these notions.

Definition 6.1 (Types of Claims) Let A be an argument about ¢ in a theory II.

There are two cases to be considered:

e A is a justification T Fy1 ¢
Then A supports the claim that o is substantiated in I1—i.e that ¢ is in the set
of consequences of I1. We denote this by ¢ : in.

o A is a refutation® Tt/ ¢

Then A supports the claim that ¢ is unsubstantiated in I1—i.e. that ¢ is not in the
set of consequences of 11, at least with respect to A. We denote this by ¢ : out.

|

So claims are sentences annotated with labels in and out, which indicate whether the
sentence is acceptable or not in the theory with respect to the argument in question. By
adopting this notation the connection with truth maintenance systems draws even closer:
sentences in a TMS are said to be in if they have at least one currently acceptable (valid)
reason, and are said to be out otherwise (Doyle 1979). We shall be discussing points
of contact between argumentation and TMS throughout this chapter before looking at

this relationship more carefully in Section 6.4.

2 T b/ ¢ is a refutation of T+ ¢ in ITif T Fn, ¢ is a justification of ¢ in some previous theory I, and
IT is obtained from II, by retracting some premise from I" C IT,,.

100

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 101

Some important points need to be made about this, in relation to the discussion about

truth and acceptability in Section 1.1.1. As argued by Doyle (1979, p. 238):

The distinction between in and out is not that between true and false. The former
classification refers to current possession of valid reasons for belief. True and false,
on the other hand, classify statements according to truth value independent of any

reasons for belief.

This distinction also holds for labels in and out in Definition 6.1. To say that a sentence
¢ is out of the set of consequences of a theory with respect to an argument (refutation)
s not equivalent to saying that ¢ is not a consequence of the theory. The reason why
is that we have taken a computational view where arguments may exist in a theory
but may not yet have been found, thus labels give the status of sentences in relation to
the arguments that were computed and presented so far. Although we have rejected a
justification for ¢, there is no guarantee of whether some alternative justification for it
exists, in which case ¢ would in fact be a consequence of the theory. What we guarantee
is that there is one less way of inferring the sentence within the theory, but that does

not mean that its set of consequences is smaller.

6.1.1 Claim Dependencies in an Argument

Definition 6.1 gives the sorts of statements that can be made about an argument main
conclusion, or main claim. As arguments are structured objects composed of sub-
arguments, it should also be possible to make statements—or indirect claims—about
the sub-conclusions underpinning the main claim, and to say things such as a sentence s
substantiated because il is based on other sentences which are themselves substantiated.
To capture these dependencies, claims supported by an argument are represented in a
directed graph obtained from the corresponding argument tree. Appendix B gives the

basic notation used in this thesis for expressing argument trees and directed graphs.
The following example illustrates this notion.

Example 6.1 Let IT be the theory below in a Horn clause resolution-based language.

p(X,Y) = q(X)A r(Y)

(X)) «— s(X)A HX)
r(b) <+ true
s(a) <« true
tla) < true

Then the argument A below is a justification for p(a,b) in II.

{p(X,Y) + q(X) A r(Y), ¢(X) « s(X) AN t(X), s(a) < true, t(a) « true, r(b) + true} b p(a,b)

Notice that arguments can also be represented as rooted trees: each premise in the ar-
gument defines a sub-tree with root corresponding to the conclusion of the aziom, and
children corresponding to the sub-arqguments allowing this conclusion to be derived. This

alternative representation for A is given below:

p(a, b)
q(a)/\r(lb)
s(a) /\t(a) true
I I
true true
11

The dependencies between claims supported by A are organised in the following structure.

true : in

From this dependency structure we can say for instance that p(a,b) is supported because

both q(a) and r(b) are in. The term true is always in.

For the case of refutations, this sort of claim structure can be obtained by considering the
dependencies in the refuted justification, then removing the rejected premise and finally
propagating the labels appropriately. Consider for instance arqgument A above. There
are many ways to refute A, one is by rejecting the premise r(b) < true thus retracting
it from the theory so that A cannot be accepted as a justification for p(a,b) with respect
to IT\ {r(b) < true}. This refutation is represented below.

102

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 103

{P(X,Y) < q(X) A r(Y), ¢(X) + s(X) A UX), s(a) < true, t(a) + true, r(b) < true} Vm\ {r(b)true} P(a;b)

A refutation can be depicted as a tree as follows, where we indicate the rejected premise

by pruning the sub-tree defined by it.

p(a, b)
R)
ga) /\t(a) “true

true true

O\ {r(b)+true}

Among the things that can be said about this, p(a,b) is now argued to be unsubstanti-
ated in 11\ {r(b) < true} because r(b) is out in II\ {r(b) < true}. The dependencies

between claims are now represented as follows.

true : in

The structure of claims supported by an argument is essentially a directed graph in
which a node is labelled in only if all its supporting nodes are labelled in. This is again
very similar to the sorts of dependency networks kept by truth maintenance systems,
the only difference is that the dependency graph is obtained from a valid justification
that has been (at some point) successfully generated via the provability relation F, and
hence well-founded either on valid assumptions or on the premise true. In TMS the
graph is obtained from adding and deleting rules (so-called justifications) that are not

necessarily related nor chained.

Remember, though, that in the case of refutations premises may have been either re-
tracted or updated, and each of these possibilities must be carefully considered. But
before defining the structure of claims formally, a note on notation: the symbols used for
representing argument trees and directed graphs—e.g. the hooked arrow < to denote

supporting edges in a graph—are presented in detail in Appendix B.

Definition 6.2 (Argument Claims) Let A be an argument in I1. The claim structure
supported by A is the directed graph G4 (with associated labelling function) inductively

defined from the argument tree A as follows:

Base case:

o V(G4) ={true} and E(Ga)={}

o labelg, (true) = in

‘A = tree(p, assumption, {}) ‘

e V(Ga) ={¢} and £(Ga) = {}

o labelg,(¢) =in

Inductive case:

A =tree(pp, P, {Ayp A Ay 1)

PPy SAopy

LetGa,,...,Ga, be the claim structures supported by sub-arguments ALpP1 s e AWPN ,

respectively, such that root(Ayp) = ¢p,.

Before we define how to combine such structures in order to obtain G4, consider the
following auziliary sets and labelling function (which merge the labelling functions

obtained in the inductive step):

N N
o V' = JV(Ga) and & =]JEGa,)
=1 =1

in 3Ga,.labelg, (¢) =in

oy . ! =
o label' : V' — {in, out}, where label' (p) = { out otherwise

Moreover, let \ be an operator for combining and propagating labels across sup-

porting nodes in G4.

To define G4 we need to consider the possibilities for P, namely:

1. P is an aziom in the theory;
2. P has been removed from the theory;

3. P has been replaced by some aziom P’ in the theory.

104

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 105

1. Pell

N
e V(Ga) =V U{pp} and E(Ga) =& U J{er = or}
i=1

label' () ¢ # pp
o labelg, (y) =
/\80 Y =¢pP

2. P ¢ 11 has been removed in 11
Then the arguments supporting pp are no longer relevant:
e V(Ga) ={¢} and £(Ga) ={}
o labelg, (¢) = out
3. P ¢ 11 has been replaced by P' € 11
Let ¢pr and ¢py, ..., ©p! denote the conclusion and preconditions of P’.

If ppr # ¢p, this reduces to case 2 (as P' no longer derives op).

Otherwise, if opr = @p, then:
M
e V(G4) =V Ulpp} Ulppnompp } and £G4) =& U lgm < gp)
i=1
label'(p) ¢ # op and ¢ €)'
e labelg,(p) = ¢ out 0 #pp and p V'

A2 ©=ypp

Instances of cases 1 and 2 are given in Example 6.1, whereas case 3 is illustrated later

in Example 6.4. The observation below follows from this definition:

Observation 6.1 If A is a justification for ¢ then labelg,(p) = in; otherwise, if A is
a refutation of ¢ then labelg,(p) = out. O

6.2 The General Format of Attacks

The problem of how to generate an attack to a given argument can now be reduced to

that of generating an argument that supports a contradictory claim. The basic intuition

is simple: if a sentence is argued to be in, then in the next step of the argument we want
to claim that it is out—and vice versa. In one direction, we can refute the argument
that justifies this sentence; in the other, we can produce an alternative justification for

it.

remove_argument

¢ :in ~ ¢ :out
add_argument .
p :out ~ Y :in
Such types of attack are independent from the choice of logical system because they
rely on supporting and blocking conclusions only. Nonetheless, it should be possible to
account for any notion of conflict defined in the underlying language (e.g. through nega-
tion), meaning for instance that we could attack a justification not only by invalidating

its premises but also by justifying an opposing view.

A question arises at this point, of how these relate to the attacks above. In other words,
if B denotes a sentence that conflicts® with ¢ then we want to determine whether the

following types of attack are also legitimate:

1. If ¢ is argued to be in, then in the next step of the argument can we argue that

@ is out by arguing that P is in?

2. If p is argued to be out, then in the next step of the argument can we claim that

@ is in by arguing that ¥ is out?

The problem, though, is that the equivalence between ¢ : in and ¥ : out does not gen-
erally hold. As discussed in Section 6.1, argumentation is concerned not with the truth
of propositions but rather with justifying whether a proposition can be accepted as true
on the basis of the reasons that can be constructed for it. From this perspective, a sen-
tence can only be refuted if it has been previously justified. Arguing that a conflicting
sentence is out does not mean that the sentence is not a consequence of the theory, and
may not give enough reasons for accepting the sentence itself as substantiate (unless

this is explicitly stated, e.g. by a burden shift premise).

3 The only property assumed for the notion of conflict is that it is symmetric, so if @ conflicts with ¢
then ¢ conflicts with @.

106

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 107

Hence it is not necessarily the case that © : out implies ¢ : in. On the other hand,
however, it seems reasonable to contradict the claim that a sentence is in by justifying
a conflicting sentence, as this gives enough reasons for not accepting the original sentence
as substantiated; ¢ : out then follows as a consequence of % : in. In this way, only the

first type of attack above is also considered to be legitimate:
add_argument
N
Notice that in truth maintenance systems the situation is similar, as states in and out:

[...] are not symmetric, for while reasons can be constructed to make P in, no

reason can make P out. (At most, it can make =P in as well.) (Doyle 1979, p. 234)

The following example illustrates the intuition behind this.

Example 6.2 Let the following be sentences in a language for expressing the possible

colours of an object x:
{colour(z, red), colour(z, yellow), colour(z, green)}

such that conflict in this language is defined by colour (X, C) = colour(X,C"), where C' # C.

Assume that colour(x,red) is currently in. According to the discussion above, possible

attacks consist of either refuting colour(z, red) or justifying m, where:
colour(x, red) = colour(z, green) or colour(z, red) = colour(x, yellow).
If the advanced attack has the form:
colour(z, red) : in ~» colour(z, green) : in

then colour(x, red) becomes out as colour(xz, green) is now in. At this point arguing that
some conflicting sentence—e.g. colour(z, yellow)—is out may not change the current

out status of colour(z,red):

colour(x, red) : out % colour(z, yellow) : out.

This sort of attack does not have the quality of refuting the sentence colour(z,yellow)
as a justification for it has not yet been advanced. On the other hand colour(x, green)

has been justified so the following attack is legitimate:
colour(x, green) : in ~ colour(x, green) : out,

and it would consequently reinstantiate the in status of colour(x, red). O

This sort of attack can be useful to introduce new sentences other than supporting
sentences that are also relevant to the argumentation process. In this way, a sentence is
now said to be in not only if all its supporting sentences are argued to be in, but also

if no (known) conflicting sentence is in as well.

We now formalise this intuition, classifying the general purpose of revision operations for
generating attacks in a dynamic argument in terms of of the general format of attacks
discussed above. In Section 7.3.4 these are used as the starting point for defining a

collection of more detailed revisions.

Definition 6.3 (General Types of Revision) Let A be an argument in 1, and A’
be an argument in a revised theory I, such that it attacks A. To describe the types
of attack-based revision ¢ yielding the derivation of A’ (see Definition 4.6), we shall

consider the possibilities for contradiction.

On one hand, if A supports ¢ :in then A’ has to support o : out, either because it

directly rejects @ or because it supports @ : in.

remove_argumentn"“

(a) ¢ :in ~S ¢ : out
Here A’ is necessarily a refutation of A, in which we reject the premise used for
inferring . The purpose of ¢ is to refute ¢ by blocking the derivation of A,

withdrawing this argument as being a valid, well-grounded justification for .

. add_argument™* __
(b) ¢ :in o 7 :in

Here A’ is necessarily a counter-arqument for @, i.e. a justification for @ where @
and @ are conflicting sentences in the language. The purpose of ¢ is to allow A’

to be derived, where ¢ may be trivial if A" can be inferred from II.

108

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 109

On the other hand, for A" to contradict o : out, it must support ¢ : in.

add_argumentn’A

(c) ¢ :out ~> ¢ :in
Here A" must be a justification for ¢. As in case (b) above, the purpose of ¢ is to

Justify ¢ by allowing A" to be derived, and ¢ may be trivial if A" can already be

inferred from TI. O

A couple more notes on terminology. An attack that contradicts the main claim of an
argument is known as a direct attack, whereas an attack that contradicts an indirect
claim of an argument is said to be an indirect attack. Moreover, the possible types
of contradiction in Definition 6.3 are in accordance with the three general types of
conflict (or attack) identified in the literature, namely rebuttals, undercutting attacks

and assumption attacks (Prakken and Vreeswijk 1999):

1. Undercutting attacks reject not a sentence itself but the premise supporting its

inference.

Undercutting attacks correspond to case (a) above: if a sentence is proved to
be in, argue that it is out by refuting (undercutting) the justification given

for it.

2. Rebuttals are symmetric types of attack in which arguments have conflicting con-

clusions.

Rebuttals are captured by case (b) above: if a sentence is proved to be in,

rebut it by proving that a conflicting sentence is also in.
3. Assumption attacks prove the contrary of what was assumed without being proved.

Assumption attacks can be captured by case (¢), in the particular case of non-
provability assumptions: if a sentence is assumed to be out, prove that it is
in fact in (prove what was argued to be not provable). More generally, if as-
sumptions are considered to be special sentences that can extend the initial
language, then assumption attacks can be captured by case (b): if an assump-
tion is argued to be in, prove that its contrary is in (where the notion of the

contrary of an assumption is similar to that of conflict, but asymmetric).

Notice that some care may be needed in handling conflicting sentences appropriately.

The following example illustrates what problems might arise.

Example 6.3 In Example 6.2, the claim structure supported after the attack:
colour(z, red) : in ~» colour(z, green) : in

is depicted by the following directed graph, where the dotted edge represents a con-
flicting link rather than a supporting link (i.e. colour(z, green) is in conflict with

colour (z, red)):*

colour(z, red) : out

~

colour(z, green) tin

Both claims represent potential points of attack that can allow colour(x, red) to be rein-

stated. According to Definition 6.3, the possibilities for attack in the next step are:

colour(z, red) : out ~» colour(z, red) : in
colour(x, green) :in ~» colour(zx, green) : out

colour(x, green) :in ~ colour(z, green) : in

Nevertheless, because colour(z, green) is itself a conflicting sentence (rather than a sup-

porting node), not all sentences colour(x, green) in the third type of attack are guaranteed

to change the status of the sentence colour(xz,red) above in a coherent way. Consider

for instance the following attack, where colour(x, green) = colour(x, yellow):
colour(x, green) : in ~» colour(x, yellow) : in
The structure of dependencies is now represented as:

colour(z, red) : in

A~

colour(x, green) : out
-~

colour(x, yellow) tin

4 Refer to Appendix B for detailed notation.

110

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 111

which essentially says that “x is red because it is not green, and it is not green because
it is yellow”, and that is clearly inconsistent. The reason why this type of attack is
problematic is because sentences that conflict with colour(z, green) may also conflict with
colour(z, red). The solution is to restrict the types of rebuttals that can be generated for

conflicting nodes to those that created the conflict itself; in this case the only choice for

colour(z, green) that can effectively alter the status of colour(x,red) is colour(x,red)

itself:

colour(x, green) : in ~ colour(z, red) : in.

The next example also illustrates some of the concepts presented so far:

Example 6.4 Consider again argument A for p(a,b) in Ezample 6.1. One way to
refute A is for instance by arguing that q(a) should not be substantiated:

. remove_argumentT:4
q:1m ~ q : out
This attack corresponds to case (a) in Definition 6.3 instantiated to the sentence g(a).

Note that this is an indirect attack to A because it contradicts an indirect claim.

To present such an attack I needs to be revised into II' so as to reject the premise
used for deriving q(a). The following revision operation does that by elaborating on the

preconditions for applying the rule:

p(X,Y) < q(X) A (V) p(X,Y) «q(X) A r(Y)
_ remove_argument™ 4 9(X) < s(X) A (X)) A r(X)
r(b) « true ~ r(b) « true

s(a) + true s(a) + true

t(a) < true t(a) « true

The sentence q(a) is refuted because A is no longer a sound argument with respect to I1'.
This fragment of a dynamic argument is pictured below along the same lines as Figure

2.1.

— .
p(a, b) p(a, b)
@ o @ >
@ @ @ @
I remove_argument™:4 I’
[

Notice that this diagram only represents the original argument being refuted because this
1s what the argument move is about. However, we want also to be able to capture the
consequences of this revision, such as the addition of a new precondition, and this is

given by the corresponding claim structure.

As discussed in Definition 6.2, the structure of claims supported by a refutation is depen-
dent on the sub-argument defined by the rejected aziom; in this case, q¢(X) < s(X) A t(X).
The reason why sentence q(a) became unsupported after the update is because it now de-
pends on a new precondition, namely r(a), that is claimed to be out because it has not

(yet) been shown to be supported.

Every sentence that was dependent on q(a) also becomes unsupported after the refutation,
though other claims such as s(a) : in still hold and are still relevant to the argument.
The structure below represents these dependencies between sentences after the attack has

been advanced, according to case 3 in Definition 6.2.

true : in

This structure also gives claims that can be attacked in the next step. For instance, one

could alter the status of q(a)—and hence of p(a,b)—by justifying r(a). O

So the notion of contradictory claims provides a higher-level description of argument
dynamics than that based on structural revision. Claims convey the intention of reject-
ing existing arguments and also of advancing new ones, without specifying premises to
be retracted from or added to the theory. This is in line with the discussion in Section
4.1, where dynamic argumentation was described as an abstract process of manipula-
tion of arguments as primitive entities. In this sense, we have now taken a first step
towards capturing that abstract view in terms of a more pragmatic approach based on

the revision of sets of premises.

Determining which claims are supported after an attack has been advanced is particu-

larly important in the context of a dynamic argument, where we need to keep track of

112

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 113

issues such as:

e which claims can be contradicted during the course of argument;
e which claims are relevant at each point in the process; and

e how these relate to the main sentence under dispute.

Next we describe a way to propagate the effects of an attack to the claims supported
by the original argument, which is used in this thesis for generating and automating

argument dynamics.

6.3 Possible Attacks in a Dynamic Argument

In a dynamic argument about a sentence ¢, the purpose of each advanced argument
is to alter the status of ¢ from substantiated (in, or acceptable) to unsubstantiated
(out, or unacceptable), and vice-versa. As justifications and refutations are presented,
dependencies between ¢ and other sentences are made explicit, and we should be able
to look at these in order to select a claim to be contradicted so that it will change the

current acceptability status of ¢.

The moves (A, ¢1, A1, ..., ¢i, A;) advanced up to step i > 0 define a dependency struc-
ture of annotated sentences that represents not a precise record of the argumentation
but rather the claims that are supported and relevant after argument A; has been ad-
vanced. Essentially, this structure is a directed graph obtained from the corresponding
claim structures G4,,...,Ga, (see Definition 6.2) by combining them appropriately. In
the same way, a node is labelled in only if all supporting nodes are labelled in (and no
conflicting nodes are labelled in), and the claims to be contradicted are those that can

effectively alter the status of the node containing .

Based on the definitions of a dynamic argument (4.7), argument claims (6.2) and gen-
eral types of attack (6.3), we can now describe how to incrementally construct this

dependency graph as the course of argument develops.

Definition 6.4 (Dependency Graph) Let (A, ¢1, A1, ..., ¢i, A;) be the state of a dy-
namic argument §(p,I1) at step i > 0. The dependency graph of claims supported at this
point is a directed graph D; with labelling function, which can be defined as follows:

Base case (i =0)

By definition Ag is a justification for o, therefore Dy is equivalent to Ga,.

Inductive case (i > 0)

By definition A; attacks A; 1, thus A; contradicts a claim supported by A; 1 in the
context of (Ag, 1, A1, ..., pi—1, Ai—1)—i.e. a claim in D;_y. Let A; be an attack

to a sentence ¢, and Ga, the claim structure supported by it.

Moreover, let \ be an operator for combining and propagating labels across sup-
porting and conflicting nodes in D;. D; is constructed from D;_1 and Ga, as

follows:

e V(Di) =V(Di-1) U V(G4,)
° E(Dz) = (5(Di—1)\5V(gAi)(Di—1)) U f,'” where

— &y(D) C &E(D) denotes the set of edges in a graph D that terminate at some

node in the set V; and

— &' denotes the links between sentences in the argument structure, maybe with

an additional conflicting edge in the case of rebuttals:®

E(Ga,)U{® — ¢} A, was given by ¢ :in~ g : in
&=
E(Ga,) otherwise

The labelling function labelp, is defined below, where V' C V(D;) denotes the set

of nodes reachable in D; from some node in V(G4,):

labelg, (¢¥) ¥ €V(Ga,)
— labelp, () = { labelp,_,(¥) ¥ ¢V(Ga;) and Y ¢V’

N¢ W EV(Ga,) and b €V

|

® Remember from Appendix B that dotted arrows < represent conflicting edges in a graph whereas
supporting links are depicted by —.

114

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 115

The basic idea behind this definition is to remove any edges from the original dependency
graph which are used to support sentences from the new argument, actually replacing

these by the relations given in this argument.
Note that by construction the following observation holds:

Observation 6.2 The only way to introduce a conflicting node in the dependency graph
1s by explicitly justifying a conflicting sentence according to some notion of conflict—

case (b) of Definition 6.3. O

In fact, the argument structures themselves only include supporting links (see Defi-
nition 6.2). This type of attack allows for an explicit introduction of conflict, which
18 not captured by the underlying argument generated mechanism, but which can be

used both for rebutting sentences in the language and for contradicting assumptions.

This is again another point of connection with truth maintenance systems, where sen-
tences P and —P are unrelated unless this is explicitly stated, and a node is expressly

marked as a contradiction.

This definition tells us how the status of other sentences are affected by an attack, intro-
ducing sentences that become relevant in the light of the new argument and dismissing
others that are no longer at issue. This dependency structure gives the possible attacks
for the next step of argument, namely any claim such that altering its label will affect

the status of the main sentence.

e if a sentence in in, then all its supporting sentences (which are in) and its con-

flicting sentences (which are out) are potential points of attacks;

e if a sentence is out, then potential points of attacks include conflicting sentences

which are in or supporting sentences which are out.

The possible attacks to sentence ¢ at step ¢ in a dynamic argument are then given by
the transitive closure in D; of these potential points of attack with respect to the current
status of . This idea is equivalent to that of supporting-nodes defined by Doyle (1979),

who refers to the corresponding transitive closure as the ancestors of a node.

6.4 Argumentation and Truth Maintenance Systems

Considering the many similarities pointed out in the previous sections, this is a good time
to discuss the relation between these two approaches in more detail. Before deepening
the discussion, let us briefly summarise the basic concepts behind truth maintenance

systems (Doyle 1979; de Kleer 1986; Forbus and de Kleer 1993).

There are essentially two sorts of structures in a TMS: nodes representing propositions,
and justifications associated with these nodes. Each justification consists of two lists of
nodes—an IN-list and an OUT-list—such that a justification is said to be valid only if
every node in the IN-list is in and every node in the OQUT-list is out. Assumptions in
particular are nodes whose supporting justification has an empty IN-list (so they cannot
be justified) and a non-empty OUT-list (but they can be contradicted). There are also
two types of mechanisms involved: a truth maintenance procedure for making revisions
in the support status of nodes given that justifications may be added and retracted;
and the dependency-directed backtracking for identifying which assumptions need to be

changed in order to restore consistency in case of contradiction.

According to Doyle (1979, p. 236) the purpose of a TMS is that it:

[...] records and maintains arguments for potential program beliefs, so as to distin-

guish, at all times, the current set of program beliefs.

And given that Doyle also proposes a way to “organize a problem solving program’s use
of the TMS into the form of dialectical argumentation”®, the question of how exactly

the two approaches relate becomes more and more persistent.

The difference turns out to be more a shift in emphasis than it is technical. Whereas
truth maintenance systems are concerned with “how to make changes in computational
models” (Doyle 1979, p. 231), models of argumentation as studied in Al—especially
models of argument dynamics—are more concerned with the issue of what changes to
make. From an argumentation perspective there is not much interest in maintaining

or reestablishing consistency, but rather in exploring contradictions and introducing

6 See Section 6 in (Doyle 1979).

116

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 117

conflicts and attacks deliberately.

In this way, while the dependency-directed backtracking mechanism is more about restor-
ing consistency (and hence not as germane to the process of argumentation), the sort of
truth-maintenance procedure on the other hand seems to have a significant role to play
in argumentation models. Originally this is supposed to give the acceptability status of
sentences in the current set of beliefs, but it could also be interpreted as a mechanism
for keeping track of weaknesses and points of attack given the justifications considered

so far.

We have found that by forcing notation and terminology to be similar the differences and
relations between the argumentation and TMS became more apparent. For instance,

we are now able to ask a more specific question, namely:

If we keep adding and retracting justifications to a TMS according to the
justifications and refutations advanced during an argumentation process, will
the TMS network be equivalent to the dependency graph that is constructed

incrementally during the course of the argument?

The answer to this question is sometimes yes, but generally no. The fundamental
difference is that a TMS keeps a set of justifications associated with each node, each
representing a different reason for it, whereas the dependency graph in Definition 6.4
only maintains the links associated to one argument, namely the argument that was
last advanced (remember that every edge supporting a sentence is dismissed unless this
sentence is not part of the new argument). So if an invalid justification becomes valid
again there is no need to explicitly add this justification again, as the TMS automatically
updates the status of the supported sentence to in. Argumentation mechanisms on the
other hand must generate a new well-founded justification and the entire new argument

needs to be explicitly advanced again.

It is true, though, that one could bolt on a TMS to our argument revision component
to produce a more sophisticated system that can keep track of the consequences that
follow from every argument advanced so far, even if these have not been explicitly

stated before. However, it seems to us that the emphasis in argumentation is more on

add_just_rms (If, Then) :-
add a new justification If — Then to the database
and propagate the effects

del_just_rms (If, Then) :-
remove a justification If — Then to the database
and propagate the effects

Figure 6.1: Basic interfacing predicates as defined by Shoham (1994).

searching for and advancing appropriate arguments during the process. In any case, it is
also possible to force a truth maintenance system to keep only one relevant justification
associated to each node by deleting every previous justification when a new argument

is advanced.

6.4.1 Experiments with Truth Maintenance

Effective testing of this relation between truth maintenance procedures and dependency
graphs was also possible. The experiments consisted in feeding both mechanisms with
the same justifications and comparing the results at each step of argument. On the
argumentation side we have used our own Prolog implementation; on the TMS side we
have used Shoham’s implementation of a reason maintenance system’ as described in

(Shoham 1994). Figure 6.1 gives the basic interface predicates in this system.

This section illustrates one such experiment, namely the use of the TMS mechanism in
the context of Examples 6.1 and 6.4. Note that in this case the outcome is identical to
the one given by the dependency graph as no alternative reasons exist simultaneously

for any of the sentences.

In Shoham’s implementation, a justification is an expression of the form:

If — Then

where If is a list of nodes that justify the sentence Then. Supporting nodes of the form
(N, +) are in the so-called IN-list, while nodes denoted by (N, —) are said to be in the

" The Prolog code is available online at http://yoda.cis.temple.edu:8080/books/shoham/.

118

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS 119

OUT-list. Moreover, the special node premise is always in (note that this is equivalent

to the special term true in Definitions 6.2 and 6.4).

What we mean by justification in this thesis is more like a collection of justifications in
the TMS sense. So in order to supply appropriate information to the TMS machinery,
justifications then need to be broken into the smaller steps that correspond to the
application of each axiom. For instance, the following five justifications can represent

the justification A for p(a,b) given in Example 6.1:

?7- add_just_rms(((q(a),+), (r(b),+)), p(a,b)),
add_just_rms(((s(a),+), (t(a),+)), q(a)),
add_just_rms (((premise,+)), s(a)),
add_just_rms (((premise,+)), t(a)),
add_just_rms (((premise,+)), r(b)).

yes

After adding these justifications, the status of the sentences are represented by the
network in Figure 6.2, where the label in indicates that the corresponding sentence is in
the database. The predicate printdb/0 gives the current state of the database, where

in sentences are denoted by the predicate rms/1.

| ?- printdb.
Database listing :
The facts:

rms (premise) .
rms(s(a)) .

rms (t(a)) .
rms(q(a)) .

rms (r(b)) .

rms (p(a,b)) .

Justifiers:
justifier(q(a), +, j1).
justifier(r(b), +, j1).
justifier(s(a), +, j2).
justifier(t(a), +, j2).
justifier(premise, +, j3).
justifier(premise, +, j4).
justifier(premise, +, jb).

Justificands:
justificand(j1l, p(a,b)).
justificand(j2, q(a)).
justificand(j3, s(a)).
justificand(j4, t(a)).
justificand(j5, r(b)).

yes

J:il/;)(a,b):iri/\iT
r(b) :in

Lin)
+j2

4
2 L
t

(a) i
s(a) :in (a) : 1

premise : in

Figure 6.2: A TMS corresponding to argument A for p(a,b).

Consider now the case of refutations, which are used for rejecting axioms in a justifica-
tion, either by removing it from the theory or by updating it so that the argument no
longer follows. The first case is also illustrated in Example 6.1, where a refutation for
A was given on the basis of rejecting axiom r(b) < true. In TMS style, such refutation

could be obtained by deleting the corresponding justification as follows:

| ?- del_just_rms(((premise,+)), r(b)).
yes

| ?- printdb.
Database listing :
The facts:

rms (premise) .
rms(s(a)) .

rms (t(a)) .

rms (q(a)) .

Justifiers:
justifier(q(a), +,
justifier(r(b), +, j1).
justifier(s(a), +, j2).
justifier(t(a), +, j2).
justifier(premise, +, j3).
justifier(premise, +, j4).

j1).

+ + +

Justificands: justificand(jl, p(a,b)).
justificand(j2, q(a)).
justificand(j3, s(a)).
justificand(j4, t(a)).

yes

Figure 6.3 gives the state of the database after justification premise — r(b) was deleted.

Notice though that in refutations axioms do not need to be rejected for good, but can be

updated. Rather then refuting argument A by rejecting axiom r(b) + true, Example 6.4

120

CHAPTER 6. ATTACKS IN ARGUMENT DYNAMICS

J/ri,l/;:@{(a,b) ogé;tt
+J/2\(Q(a) : m‘<J2 r(b) : out
s(a) :in t(a) :in

premise : in

Figure 6.3: TMS from Figure 6.2 after premise — r(b) was deleted.

illustrates a type of refutation that elaborates on the preconditions for applying axiom

q(X) < s(X) A t(X). This can be captured in a TMS style as follows, considering the

particular instance of this axiom supporting the sentence p(a,b).

?7- del_just_rms(((s(a),+), (t(a),+)), qa)),
add_just_rms(((s(a),+), (t(a),+), (r(a),+)), q(a)).

yes

| ?- printdb.
Database listing :
The facts:

rms (premise) .
rms(s(a)).
rms(t(a)).

rms (r(b)) .

Justifiers:
justifier(q(a), +, j1).
justifier(r(b), +, j1).
justifier(premise, +, j3).
justifier(premise, +, j4).
justifier(premise, +, jb).
justifier(s(a), +, j6).
justifier(t(a), +, j6).
justifier(r(a), +, j6).

Justificands:
justificand(j1l, p(a,b)).
justificand(j3, s(a)).
justificand(j4, t(a)).
justificand(j5, r(b)).
justificand(j6, q(a)).

yes

Figure 6.4 gives the state of the database after justification s(a),t(a) — ¢(a) was elab-

orated into s(a),t(a),r(a) — q(a).

= <
e q(a) :in e r(b) :in
T eSO
s(a) tin t(a) :in r(a) : out
+3i4 +35

premise : in

Figure 6.4: TMS from Figure 6.2 after s(a),t(a) — ¢(a) was updated.

The fact is that it is possible to use a TMS to keep a record of points of attack during
argumentation. By taking the extra care of maintaining only one current justification
for each node, and of grounding any variables in order to bind them appropriately, we
can then get the desired results. In our current implementations of dynamic argumen-
tation generators (see Chapter 8) it is possible to use Shoham’s implementation as the

dependency graph mechanism.

So this chapter described a high level account of attack-based revision relations in terms
of potential contradictions, characterising the possible attacks during the course of a
dynamic argument. Chapter 8 further illustrates these concepts in terms of the aflatoxin
debate in Chapter 5. The next step is to propose a collection of operations that elaborate
on the general types of revision add_argument and remove_argument in order to satisfy
the sorts of attacks discussed in Section 6.2. Note, however, that up till now relations
were described only at a fairly abstract level. But to define such a collection of more
refined structural revisions we will need to commit to a particular underlying logical

system.

122

Chapter 7

A Formal Classification of
Argument Schemata

This chapter addresses another issue identified in Chapter 4, that of how to specify an
appropriate set of revision operations for generating dynamic arguments, and the way
we tackle this problem is by categorising argument revision schemata in terms of the
types of attacks identified in the previous chapter. At this point we also commit to a

specific underlying logical system.

7.1 Generating Dynamic Arguments

A dynamic argument as defined in Chapter 4 is a process of argument exchange which
may involve structural changes to the underlying knowledge base. From the perspective
of transformation of theories, the purpose of a dynamic argument is to produce a theory
IT" from an initial theory II which is more acceptable with respect to a sentence .
At each step, the original theory may revised until no more attacks to ¢—or counter
attacks to defend ¢p——can be generated. Whether this process converges and all attacks
are properly rejected depends on the types of predefined revision operations that are

allowed.

Dynamic arguments can then be generated by a term rewriting system, expressed in a

logic programming style in Figure 7.1.

The term k represents the attack generation step, expressed here as a relation between

123

S(p, ILII") = w(ILI") A 6(p, ", 1I')
o, ILI)

Figure 7.1: A system for generating dynamic arguments.

theories. In fact, x(II,II") holds if and only if from II” we can derive an attack on an
argument in II. If ¢ is an attack-based revision that can be applied to II, then x(II, I1)
holds by definition (see Definition 4.6).

In the rest of this chapter we propose a way to refine the relation x for obtaining an
organised collection of argument revision schemata based on the general characterisation
of attacks given in Chapter 6. This collection provides a systematic way to define the
set of revision operations that can be applied in a dynamic argument, also helping to

identify useful properties that these operations could have.

7.2 A Logic Programming Framework

In Chapter 4 we proposed a generic formalisation of dynamic argumentation that was
based on an arbitrary logical system, leaving a number of parameters undetermined.
Nevertheless, one of our aims is to define a dynamic argumentation framework that is
of practical use, and which can be applied in a systematic way. And whilst the concepts
defined in Section 4.2 are abstract enough to capture the type of behaviour in which
we are interested, they still leave too much to be specified for someone wishing to use

them.

So to fully describe the concepts in Chapter 4 we shall adopt a specific underlying sys-
tem, namely logic programming (based on the resolution method). The reasons behind
this choice are manifold. First, logic programming theory has its roots in first-order
predicate calculus. Because many people are familiar with first-order languages, there
is no need to introduce and explain new symbols, connectives or semantics. Moreover,
logic programming has proved suitable for a number of tasks in the knowledge repre-
sentation realm. In our case, for instance, it is natural to think of logic programs as
a way of expressing theories that represent models, contracts or beliefs. Finally, as an

executable language, logic programming is also computationally attractive.

124

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 125

We often assume that theories correspond to general logic programs in a first-order
language, as illustrated in Chapter 5. Though many of our results are based on definite
logic programs, which are general programs restricted to Horn clauses (without the
occurrence of negation as failure, and thus with the advantage of monotonicity), we also
discuss whether and how these results extend to the more generic case. A brief account

of logic programming is given in Appendix A.

Given an underlying logic programming framework, we can now elaborate on the formal
definitions in Section 4.2. In particular, the notion of argument follows directly. Just as
in Definition 4.3, an argument contains the clauses used in the derivation of a sentence

and can be depicted by the corresponding support tree.

Attacks are reduced to contradictory claims (as presented in Definition 6.3), although
what it means for two sentences to be in conflict still remains to be specified. In logical
languages, conflict is often represented in terms of explicit negation and thus reduced
to inconsistency. Rather than allowing an explicit account of (classical) negation within
the logic, we treat conflict as a meta-level relation between predicates in the language.
This approach is in line with a number of proposals in the literature (Bondarenko et al.

1997; Ambler 1996).

What is more, in the case of logic programming the types of argument claims seem to
be naturally associated with the notion of interpretation. The interpretation ¢(II) of
a (definite) logic program II contains all ground atoms that can be deduced from II;
that is, all the ground sentences that are justified in this theory. Hence, stating that an
argument in Il supports the claim ¢ : in corresponds to saying that at least one ground
instance of ¢ is in ¢(IT). Again, this correspondence does not hold as neatly for the case

of refutations because being out does not necessarily mean not being in.!

But this is not necessarily bad news. In fact, in the case of monotonic systems we can
associate the interpretation sets of an original theory and a revised theory by means of
set inequality relations. Moreover, the notion of argument (and of argument claim) is
important here because it helps focusing on certain elements of these sets, rather than

calculating and enumerating them all. We discuss these properties in Chapter 9.

! See discussion in Section 6.1.

7.2.1 Considering Negation as Failure

At this point we should make some remarks about how arguments involving negation
relate to the corresponding interpretation sets. The interpretation set of a general logic
program under the closed world assumption consists of all the ground atoms that can be
derived from this theory plus the negation of the ground atoms that cannot be inferred

from it.

It is worth noting that argumentation has been used for capturing various alternative
semantics for general logic programs, such as well-founded or stable semantics (Bon-
darenko et al. 1997). Our approach to negation here is slightly different. We are less
interested in discussing what is the right semantics for negation in logic programs than
in handling it as finite failure by using an extension of the original resolution mecha-
nism. These two approaches to negation are distinct and have been characterised by
Dix and Brewka (1997) as the NML-approach (focus on non-monotonic issues) and the
LP-approach (focus on logic programs themselves), respectively. Of course there are

non-monotonic aspects of our proposal, and these are discussed in Chapter 9.

In any case, if negation as failure is involved then the argument premises should contain
not only clauses from the program, but also the negated ground consequences needed
in the derivation. Such sentences are considered to be assumptions because they cannot
be formally proved to be in, but only assumed to be in because some contradictory

sentence is out.

Example 7.1 Let IT be the following general logic program:

p(X) <« q(X)A not r(X)
qla) <« true
r(b) <« true

Then argument A below is a derivation (based on the resolution mechanism extended

with negation as finite failure) supporting p(a):

p(a)
q(a)/\ not r(a)

true

126

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 127

and which can be represented by:

{p(X) < q(X) A not r(X), q(a) < true} U {not r(a)} Fu p(a).

The structure below depicts the dependencies between claims in argument A.

p(a) :in
T ~
g(a) :in not r(a) : in
true : in r(a) - out

7.3 A System of Argument Rewrites

Having introduced the notion of a general attack-based relation between theories, this
section describes an organised collection of argument revision schemata for satisfying
this relation. This is done by specifying a rewriting system for refining the relation «
in Figure 7.1 into argument schemata for theory revision based on the general charac-

terisation of attacks.

As discussed in Chapter 5, we want to provide descriptions of argument schemata to
which domain-specific knowledge can be applied. To enrich and give coherence to our
proposal, we organise these schemata in a cascade of levels ranging from an overall
classification in terms of interpretation to the manipulation of particular clauses in
a theory, eventually getting to a domain-specific level. The suggested organisation
provides a pragmatic way to define revision schemata for attack generation, but it turns
out to be useful also in supporting explanation and retrospective analysis of a dynamic

argument at different levels of abstraction.

As we go down this classification tree, we instantiate the necessary parameters for gener-
ating a valid attack. To guarantee that this is the case, to each rewrite we associate a set
of relevant properties that can be verified during or after the instantiation. Properties
associated with each rewrite persist through subsequent rewrites, thus accumulating a

set of properties during the process.

Rewrite rules also have conditions which are used to instantiate and constrain their
parameters. There are two types of conditions here: some are concerned with choosing
an element from a set (€-conditions); others, with instantiating the rewrites with these

selected elements (=-conditions). Satisfying these generates an instance of an attack.

In what follows, rewrites are grouped into sections according to the different classifica-
tion levels. A standard presentation pattern is adopted for each rewrite rule, consisting
of an informal description together with the formal rewrite rule, and the related prop-

erties and conditions.

7.3.1 The General Attack Relation between Theories

This section gives the rule for refining the general relation between theories, thus allow-
ing it to be rewritten as an attack generation step involving some unrestricted attack-
based revision to the underlying theory. The idea is to constrain this operation as
the attack relation is refined, and the property attacks can be used to ensure that the
original argument is in fact attacked by (and not preferred over) the argument that is

generated.

Argument Rewrite 1 For a general attack relation between two theories I and I’ to
hold, we can identify an argument A in 11 such that ¢ is an (unrestricted) attack-based

revision operation to I1 with respect to A, and hence in II' we can derive an argument

A’ that attacks A.2

K(ILT) = argument(A,II),
¢H,A

I %~ I,
argument (A’ TT")

Properties: { attacks(A’, A) }

Conditions: true

7.3.2 The General Form of Theory Revision

Any revision operation is characterised by two sets containing the axioms to be removed

from and added to the theory, respectively. Defining a meaningful revision operation

2 See Definition 4.6.

128

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 129

is then reduced to selecting these sets appropriately. Notice that this rewrite is less
about refining the revision operation per se than about specifying which tasks should

be defined for such an operation to be performed.

Argument Rewrite 2 An unconstrained attack-based revision operation is charac-
terised by sets of arioms R and A that will be removed from and added to 11 with
respect to the argument A being attacked, such that the resulting set is a theory (that is,
a consistent set of axioms).

Mm% ' = select(A, T, R, A
II

revise(II, R, A, TI')

Properties: { consistent(1l') }

Conditions: true

7.3.3 Types of Argument Claims

Rewrites in this section allow arguments to be rewritten in terms of the general claims
they support. Like the previous rule, they do not specify how to refine the revision
operation itself, but are useful for harnessing the possible claims that can be supported
by an argument. Given an argument A, these claims can be selected from the possible

attack points in the corresponding structure G, of argument claims.?

Argument Rewrite 3 An argument A in a theory 11 may support the claim that sen-

tence X 1is substantiated.
argument(A,II) = in(X, A1)
Properties: {}

Conditions: X:inegy

Argument Rewrite 4 An argument A in a theory II may support the claim that a

sentence X 1s not substantiated.

3 During a dynamic argument, claims can be selected from the overall dependency graph D, which
by definition (see Definition 6.4) includes the claims supported by the last advanced argument. See
Section 6.3 for more details.

argument(A,II) = out(X, A, 1)

Properties: {}

Conditions: X :out € Gy

7.3.4 From Contradictory Claims to General Types of Revision

This section gives rewrites for capturing the general purpose of revision operations
in terms of the contradictions they generate. Based on Definition 6.3, these rewrites
represent the first level of instantiation of revision operations in our classification. The
type of property that is accumulated here can be used to ensure that the argument to
be generated supports the intended contradiction, and also that it is valid in the context
of moves advanced so far. (e.g. that it is consistent and has not been presented before

under the same circumstances).

According to Definition 4.6, attack-based operations may depend on the theory and
the argument (and consequently on a claim supported by it) to be attacked. These
have been denoted so far as superscript symbols, but here we express them as extra

parameters in the predicate for selecting the sets of axioms that characterise a revision.

Argument Rewrite 5 A revision to Il can be defined by a predicate that selects the
sets A and R based on an argument A in I1, with the purpose of rejecting this argument.
If A substantiates a sentence X, the attack may consist in refuting A so that in the

revised theory it no longer substantiates X .

in(X, A1) = in(X, AT
select(A, I, R, A) remove_argument (X, A, I, R, A)
argument (A", TI') = out(X, A", ")

4

Properties: { supports(A’, X : out,IT') }

Conditions: A=A

Argument Rewrite 6 A revision to Il can be defined by a predicate that selects the sets
A and R based on an argument A in I1, with the purpose of introducing a justification A’

which attacks A. If A substantiates a sentence X, then A" may substantiate a conflicting

130

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 131

sentence Y in the revised theory.

in(X,A,T) = in(X,A,T)
select(A,TI, R, A) add_argument (Y, A,TI, R, A)
argument(A") II') = in(Y, A, TI')

¢

Properties: { supports(A’,Y :in,II') }

Conditions: Y € conflict(X)

Argument Rewrite 7 A revision on Il can be defined by a predicate that selects the
sets A and R based on an argument A in I1, with the purpose of introducing a justifica-
tion A" which attacks A. If A supports the claims that a sentence X is unsubstantiated,
then A" may substantiate X in the revised theory.

out(X, A II) = out(X, A,

select (A, I, R, A) add_argument (X, A, II, R, A)
argument (A", TI') = in(X, A IT')

4

Properties: { supports(A’, X :in,II') }

Conditions: true

7.3.5 From Dealing with Arguments to Dealing with Premises

The rules in this section relate the general types of revision for introducing or withdraw-
ing an argument with fundamental types of operation—namely trivial, elementary and
updating (see Definition 4.5 and Section 5.2). These are fundamental in the sense that
they represent the minimum changes necessary for adding or removing an argument,
and more complex operations can be defined by expanding the sets R and A in a way

that the associated properties still hold.

Argument Rewrite 8 A revision (R,.A) for introducing a justification for X (based

on argument A in I1) may be a trivial operation.

add_argument(X, A, I, R, A) = trivial(R, A)

Properties: {}

Conditions:

Argument Rewrite 9 A revision (R,.A) for introducing a justification for X (based
on an argument A in II1) may be an elementary operation that justifies X by adding a

premise P to the theory. So R is empty, and A is a singleton containing P.

add_argument(X, A, I, R, A) = elementary(justify(X), A, II, P)

Properties: {}
Conditions: R =0,
A={P}

Argument Rewrite 10 A revision (R, .A) for removing a justification A for X in 11
may be an elementary operation that refutes X by removing a premise P from the theory.

So R is a singleton containing P, and A is empty.

remove_argument (X, A, I, R, A) = elementary(refute(X), A, 11, P),

Properties: {}
Conditions: R = {P},
A=0

Argument Rewrite 11 A revision (R, A) for introducing a justification for X (based
on an argument A in I1) may be an updating operation that justifies X by removing a
premise P from the theory and adding an updated aziom P'. So R and A are singletons

containing P and P', respectively.

add_argument (X, A,TI, R, A) = updating(justify(X), A, 11, P, P")

Properties: {}
Conditions: R = {P},
A={P'}

Argument Rewrite 12 A revision (R, .A) for removing a justification A for X in 11
may be an updating operation that refutes X by removing a premise P from the theory

and adding an updated aziom P'. So R and A are singletons containing P and P’,

respectively.

132

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 133

remove_argument(X, A,TI, R, A) = updating(refute(X), A,II, P, P')

Properties: {}
Conditions: R ={P},
A={P'}

7.3.6 Logic-Specific Rules for Specifying Premises

Rewrites in this section further refine sets R and A in elementary and updating revisions

via predicates that specify the premises in these sets accordingly.

The predicate fact for example gives the sorts of facts that can be added to the theory
by an elementary revision intended to justify a sentence X—mnamely any axiom of the

form H < true such that X and H are unifiable, and H is an atom from L.

These sorts of rewrites are logic-specific because they rely on the syntax and mechanisms
of (general) logic programs to define the shape and structure of these premises. General
program clauses are denoted here by H < B, where H is a positive literal and B is a
conjunction of literals. Individual literals are denoted by the (possibly indexed) letter B.
A substitution o € subst that represents the most general unifier between two sentences

is denoted by mgu.*

Some predicates in these rewrites might require interaction with a user to supply key
components, for instance for introducing new literals or axioms and defining substitu-
tions. There are no difficulties in selecting premises to be removed from the theory
because this is a finite set which can be easily traversed, but determining exactly the
components of a new premise is likely to depend on domain information. What we
do at this point is to describe the general shape of new axioms, which can be further

instantiated by domain-specific schemata.

The level of classification in this section corresponds to the schemata to which domain-
specific knowledge was applied in Chapter 5. For comparison we refer to the corre-

sponding informal schemata between parentheses.

4 Please refer to Appendix A for the definition of syntax adopted in this section.

Argument Rewrite 13 (Informal Schema 1) An elementary operation intended to

justify X may be established by adding a fact H < true such that X and H are unifiable.

elementary(justify(X), A, II, P) = add(fact(P))

Properties: { unify(X,H) }

Conditions: HeL,
P = H + true

Argument Rewrite 14 (Informal Schema 2) An elementary operation intended to

justify X may be established by adding a substantiated clause H < B to the theory that

allows X to be deduced.

elementary(justify(X), A, II, P) = add(substantiated_rule(P))

. unify(X, H),
Properties: { satisfiable(Ba, IT)
Conditions: HBelL,

P=H + B,
o = mgu(X, H)

Argument Rewrite 15 (Informal Schema 3) An elementary operation intended to
justify X may be established by adding a rule H < not B that gives X because B cannot
be derived when H unifies with X.

elementary(justify(X), A, II, P) = add(burden_shift_rule(P))

. unify(X, H),
Properties: { —satisfiable(Bo, IT)
Conditions: H BelL,

P =H < not B,
o = mgu(X, H)

134

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 135

Argument Rewrite 16 (Informal Schema 4) An elementary operation intended to
refute X (by rejecting the argument A supporting it) may be established by removing the

clause H <+ B wused in A to derive X because this is an invalid rule.

elementary(refute(X), A, II, P) = retract(invalid_rule(P))

Properties: { unify(X,H) }
Conditions: H<+BeA,
P=H« B,

Jo' € subst. affirm(Bo’ A not(Ho'))

Argument Rewrite 17 (Informal Schema 5) An elementary operation intended to
refute X (by rejecting the argument A supporting it) may be established by removing the

clause H < B wused in A to derive X because this is a weak rule.

elementary(refute(X), A,II, P) = retract(weak_rule(P))

Properties: { unify(X,H) }
Conditions: H+BeA,
P=H« B,

Jo' € subst. affirm(not(Ba'))

Argument Rewrite 18 (Informal Schema 6) An elementary operation intended to
refute X (by rejecting the argument A supporting it) may be established by removing the

clause H < B in A used to derive X because it expresses a mistaken correlation.

elementary(refute(X), A,II, P) = retract(misrelation(P))

Properties: { unify(X,H) }
Conditions: H<+BegA,
P=H« B,

3o’ 0" € subst.
affirm(Bo’ A not(Ho') A Ho" A not(Ba"))

Argument Rewrite 19 (Informal Schema 7) An updating operation intended to jus-
tify X may be established by removing a clause from II, and adding a variant obtained

from this by dismissing some precondition that was blocking the derivation of X.

updating(justify(X), A, II, P, P’ = retract(irrelevance (P
P g(justify(X), A, 1L, P, ;
add(irrelevance(P"))

unify(X, H),
Properties: satisfiable((B1 A ... A Bi—1 A Bix1 A ... A By,)o, 1),
—satisfiable(B;o, 1)
Conditions: H <+ By AN...\B,, €1l
P=H« BiA...ABp,
B; € {B17 "':Bm}:

P =H<+ BiN..NBi_1 ABiy1 AN... AN By,
o =mgu(X, H)

Argument Rewrite 20 (Informal Schema 12) An updating operation intended to
refute X (by rejecting the argument A supporting it) may be established by removing
the clause used in A to derive X and adding an elaborated variant containing an extra

premise which is not satisfiable, thus blocking the derivation of X.

updating(refute(X), A,II, P,P') = retract(elaboration(P)),
add(elaboration(P"))

unify(X, H),
Properties: satisfiable((B1 A ... A By,)o, II)
—satisfiable(Bo, IT)
Conditions: H<+ BiN..ANBp, €A,
P=H« BiA...ABp,
BelL,
i €{0,...,m},

PP=H<¢+ B/ A.. NABiABAB;i1 A...A By,
o =mgu(X, H)

136

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 137

Argument Rewrite 21 (Informal Schema 11) An updating operation intended to
justify X may be established by removing a clause from 11 and adding a variant that
allows X to be inferred, generalising the original rule so that the set of ground instances

of the original rule is smaller than the set of ground instances of the variant rule.

updating (justify(X), A,TI, P, P') = retract(generalisation(P)),
add(generalisation(P"))

unify(X, Ho'),
Properties: satisfiable((Bo')o, I0),
ground (P,TT) C ground(P',TI)
Conditions: H <+ Bell,
P=H ¢« B,

o' € inverse_subst,
P’ = (H «+ B)d,
o= mgu(X,Ho')

Argument Rewrite 22 (Informal Schema 10) An updating operation intended to
refute X (by rejecting the argument A for it) may be established by removing the clause
used in A to derive X and adding a variant that blocks the derivation of X, specialising
the original rule so that the set of ground instances of the original rule is greater than
the set of ground instances of the variant rule. Derivation of X can fail for two reasons:
either because X no longer unifies with the head of the new rule or, if it does, because

the body is not satisfiable.

updating(refute(X), A,II, P, P') = retract(specialisation(P)),
add(specialisation(P'"))

unify(X, H),
. ground(P',II) C ground(P,II),
Properties: V(Hy < By) € ground(Po, 1) N ground (P, 11).
—satisfiable (Bgy, II)

Conditions: H<+BegA,

P=H « B,

o = mgu(X, H),

o' € subst,

P' = (H «+ B)d’

Argument Rewrite 23 (Informal Schema 8) An updating operation intended to jus-
tify X may be established by removing a clause from 11 and adding a variant that revises

the original conclusion, so that X can now be inferred.

updating (justify(X), A,II, P, P') = retract(misconclusion(P)),
add(misconclusion(P"))

Properties:

unify(X, H'),
{ satisfiable(Bo, IT) }

Conditions: H + Bell,
P=H « B,
H e,
P = H' « B,
o=mgu(X,H")

Argument Rewrite 24 (Informal Schema 8) An updating operation intended to re-
fute X (by rejecting the argument A for it) may be established by the removing the clause

used in A to derive X and adding a variant that revises the original conclusion, so that

X no longer follows.

updating(refute(X), A, TI, P, P') = retract(misconclusion(P)),
add(misconclusion(P"))

Properties:

{ unify(X, H), }
—unify(X, H')

Conditions: H+BeA,
P = H + B,
H €L,
P =H +B
Argument Rewrite 25 (Informal Schema 9) An updating operation intended to jus-

tify X may be established by removing a clause from II and adding the reversed rule so

that X can be inferred.

updating (justify(X), A,TI, P, P') = retract(reversion(P))
add(reversion(P'))

. unify(X, B),
Properties: { satisfiable(Ho, IT)
Conditions: H + Bell,

P=H ¢« B,
o = mgu(X, B),
PP=B+ H

138

CHAPTER 7. A FORMAL CLASSIFICATION OF ARGUMENT SCHEMATA 139

Argument Rewrite 26 (Informal Schema 9) An updating operation intended to re-
fute X (by rejecting the argument A for it) may be established by the removing the clause
used in A to derive X and adding the reversed rule so that X no longer follows.

updating(refute(X), A, II, P, P') = retract(reversion(P))
add(reversion(P'))

. unify(X, H),
Properties: { —unify(X, B)
Conditions: H « B € 4,

P =H «+ B7

P’ = B «— H

7.3.7 Domain-Specific Level

Figure 7.2 depicts the organised collection of rewrites up to the logic-specific level, where
predicates give the general shape of the clauses to be added and removed, thus expressing
standard types of revisions in argument. Appendix C gives the possible schemata for

argument revision obtained from this classification.

Notice that in practice not all the conditions in the rewrites can be satisfied in a straight-
forward way, especially if they involve the selection of elements from infinite or unspeci-
fied sets. For instance, deciding exactly which literals or substitutions instantiate certain
schemata is likely to be dependent on the domain, as illustrated in Chapter 5. The next
level in the classification should then be composed of domain-specific schemata, from
which we can construct libraries of possible revisions for generating dynamic arguments

automatically.

A worked example in the next chapter illustrates one way in which this classification

can be used to define possible revision operations in a particular domain.

I~ 11
6,7 5
H add-a[@ment H, H Temove’_g‘gument H,
8 9 11 12 10
trivial elementary updating ' updating ' elementary —,
H mzsr"ﬁl,;ltion H,
H]"g,c)t H, H we(il\c:)rule H,
substantiated_rule invalid_rule
II ~ ' m™-5"1
burden_shift_rule
II 5 I
H irreli:}.)ance H,
25
generalisation 4, elaboration 14,
I miscu]\zf)lusion H, I rev,e\rjion H, I specig\li;atiun H,

H Tev,e\r;;ion H, H misco};z;lusion H,

Figure 7.2: Organisation of argument revision schemata obtained via our rewriting
system. Schemata 2, 3 and 4 are not depicted in the diagram because they have no
immediate effect on refining a revision operation, but are still useful for harnessing the
possible revisions that are allowed.

140

Chapter 8

Worked Example: Defining
Domain-Specific Schemata

The system of rewrites in Section 7.3 not only allows harnessing of argument rewrit-
ing,! but also provides a technique for systematically generating attacks in dynamic
argumentation systems like the one in Figure 7.1. This chapter describes how examples
from the aflatozin debate in Chapter 5 could be modelled in this dynamic argument

framework.

8.1 Two Dynamic Argumentation Systems

Figure 7.1 gives the general form of a system for dynamic argumentation that explores
possible attacks to a sentence and converges when no more attacks can be generated.
Such a system constitutes the essence of the implementations we developed, two of
which we demonstrate in this chapter. We have implemented these systems in Pro-
log as described in Figure 8.1, which gives the top-level clauses corresponding to the
specification in Figure 7.1, here with an extra argument for recording the sequence of

moves.

In summary, the predicate dynamic_arg/4 generates dynamic arguments about a par-
ticular sentence given an initial theory, thus producing a revised theory that is more
acceptable with respect to the sentence only if all attacks to it have been dismissed.

Here theories are represented as lists of axiom; new axioms are added at the end of the

! See Appendix C and Figure 7.2.

141

% dynamic_arg(X, TInit, T, D) :-
% D is a dynamic argument about a theory TInit with
s respect to a sentence X, that converges to theory T

dynamic_arg(X, TInit, T, D) :-
initialise(X, TInit, DInit),
dynamic_arg(X, TInit, T, DInit, D).

dynamic_arg(X, TNow, T, DSofar, D) :-
gen_attack(X, TNow, TNext, DSofar, NewDSofar),
dynamic_arg (X, TNext, T, NewDSofar, D).
dynamic_arg(X, T, T, D, D).

Figure 8.1: Prolog specification of a generic dynamic argumentation system.

list whereas updated premises just replace the original ones. But like in sets, there are

no duplicate entries of the same axiom.

The extra parameter D is a structured term comprising both the sequence of arguments
and revisions (Ag, ¢1, A1, ..., ¢;, A;) advanced so far, as well as the current dependency

graph D;. In Prolog terms, D (or DSofar) is represented as follows:

d([Ai, Ri,..., A1, R1, AO], Di).

The first parameter has the sequence of arguments in reversed order in an accumulator
style, as it used to accumulate information on the way down through the recursion. The

predicate initialise/3 instantiates this term to:

d([A0], DO)

by generating an initial justification Ay for X, and initialising the dependency tree Dy
with the corresponding structure of argument claims. Predicate dynamic_arg/5 then
recursively explores the possible attacks via gen_attack/5 until no more attacks can be

generated, and so the final instantiation of D occurs.

The crucial question then is how to define the predicate gen_attack/5 appropriately.

In what follows we briefly describe two ways for doing that.

142

CHAPTER 8. WORKED EXAMPLE 143

8.1.1 Generating Attacks Interactively

One possibility is for gen_attack/5 to explore the attack relation by going down the
classification level in Figure 7.2 and querying for appropriate information as it reaches

choice points, namely:

e which rewrite rule to apply at each level; and

e how to instantiate the conditions in the rewrite.

In the latter case, interaction happens exactly at stages where an element must be

selected from a set—that is, when €-conditions need to be satisfied.

Once all the necessary information has been supplied, the system performs the corre-
sponding revision, generates the new attacking argument and checks the relevant prop-
erties that were accumulated down the schemata classification. Because in this way it
is always possible to come up with a new attack, the process only terminates once the

user decides not to attack the last advanced argument.

This system is highly flexible and interactive, and is mostly intended to illustrate the

concepts introduced in the previous chapters. Its use is demonstrated in Section 8.2.

8.1.2 Generating Attacks Automatically

Another possibility is to allow the systematic search of possible sequences of argument
exchange, in which case gen_attack/5 constructs attacks automatically from a pre-
defined catalogue ® of argument revision schemata? rather than by interactively going
down the classification tree of possible revisions. Libraries of revision schemata are com-
posed of flattened revisions, as described in Appendix C. These represent the general
format of attacks, with the properties accumulated down the corresponding path in the

classification and maybe some domain-specific information incorporated appropriately.

At each step the claims constituting the possible points of attack can be calculated from

the current dependency graph, and the system selects one of these such that it matches

2 See Definition 4.7.

some revision schema in ® (i.e such that there is a schema in ® that can be used to
attack the claim). An argument is then generated, and the corresponding properties of
the applied schema can guarantee that it supports the intended attack in the context

3

of the arguments advanced so far.” The dynamic argument terminates once no more

attacks can be constructed from the schemata in ®.

We illustrate the use of this system in Section 8.3.

8.2 The Aflatoxin Debate Revisited

To reconstruct the examples given in Chapter 5 we use the interactive argumentation
system from Section 8.1.1. For clarity of presentation we cast the output of this system
into an easier-to-read format, representing argument trees and other structured terms
graphically and using different font types to reproduce the interaction between the
system and the user: for instance, sans serif and italics are used to denote requests for

information by the system and information supplied by the user, respectively.

The following is an argument process, as generated by the system, about the FDA policy

that restricts aflatoxin levels to 20ppb.

The initial theory TInit is represented by the following general logic program:

min_det_level(aflatoxin, 20) true
causes(aflatozin, cancer, animal (X)) true
required_level(Ag,L) + causes(Ag, cancer,X) A
no_safe_level(Ag) A
min_det_level(Ag, L)
no_safe_level(Ag) < not safe_level(Ag, L)

T

According to Definition 4.7, the first argument to be advanced is a justification® sup-

porting the main claim required_level (aflatoxin, 20).

Argument Ag is a justification for required_level (aflatozin, 20).

® Things that can be checked here include whether the argument is consistent and if it has not been
advanced before (so as to avoid circularity). Appendix D describes precisely what it means for an
argument to support a claim in the context of a dynamic argument, considering that this argument
may be based on a revision.

4 For clarity of presentation, from now on we omit the term #rue from the representation of argument
trees (but not from the dependency graphs).

144

CHAPTER 8. WORKED EXAMPLE 145

required_level (aflatoxin, 20)

T

causes(aflatoxin, cancer, animal(X)) no_safe level(aflatoxin) min_det_level(aflatoxin, 20)

not safe_level (aflatoxin, L)

The dependencies between claims at this initial stage are represented below, with

highlighted nodes corresponding to possible attack points.

D():

required_level(aflatozin, 20) : in

_— T T

causes(aflatozin, cancer, animal(X)) : in no_safe_level(aflatoxin) : in min_det_level(aflatozin, 20) : in

-

not safe_level(aflatozin, L) : in

A

safe_level(aflatozin, L) : out

true : in

Do you want to attack this argument? (yes/no) yes

Revision ¢; is determined interactively as follows.

Enter rewrite choice from the following:

Rewrite 3: select an in claim to be attacked

Rewrite 4: select an out claim to be attacked

Rewrite 4

Enter out claim to be attacked
safe_level(aflatozin, L) : out

Enter rewrite choice from the following:

Rewrite 7: add an argument supporting the sentence
Rewrite 7

Enter rewrite choice from the following:

Rewrite 8: perform a trivial revision for justifying the sentence

Rewrite 9: perform an elementary revision for justifying the sentence

Rewrite 11: perform an updating revision for justifying the sentence

Rewrite 9
Enter rewrite choice from the following:
Rewrite 13: justify the sentence by adding a new fact
Rewrite 14: justify the sentence by adding a new substantiated rule
Rewrite 15: justify the sentence by adding a new burden shift rule
Rewrite 13

Enter fact for justifying the sentence

safe_level(aflatozin, s)

In this way,
o1 : add(fact(safe_level(aflatozin, s) < true))

is an attack-based revision that can be used to construct an argument for justifying
that a safe exposure level s does exist for aflatoxins, which is far greater than
20ppb. Moreover, the properties accumulated during the instantiation can ensure

that the generated argument in fact supports that safe_level(aflatozin, L) : in.

Argument A; is a justification for safe_level(aflatoxin, s).
safe_level(aflatoxin, s)

The dependencies between claims at this stage are represented below, again with
highlighted nodes corresponding to possible attack points. Remember that the
attack points are only those nodes that contribute to the current status of the

main sentence.

Dll

required_level(aflatozin, 20) : out

causes(aflatozin, cancer, animal(X)) : in no_safe_level(aflatozin) : out min_det_level(aflatozin, 20) : in

T

not safe_level(aflatozin, L) : out

-~

safe_level(aflatozin, L) : in

true : in

146

CHAPTER 8. WORKED EXAMPLE 147

Do you want to attack this argument? (yes/no) yes

Revision

Enter

Enter

Enter

Enter

¢ can be determined interactively as follows.

rewrite choice from the following:

Rewrite 3: select an in claim to be attacked

Rewrite 4: select an out claim to be attacked

Rewrite 4

Enter out claim to be attacked
required -level(aflatozin, 20) : out

rewrite choice from the following:

Rewrite 7: add an argument supporting the sentence
Rewrite 7

rewrite choice from the following:

Rewrite 8: perform a trivial revision for justifying the sentence
Rewrite 9: perform an elementary revision for justifying the sentence

Rewrite 11: perform an updating revision for justifying the sentence
Rewrite 11

rewrite choice from the following:

Rewrite 19: justify the sentence by dismissing an irrelevant precondition from an existing axiom
Rewrite 21: justify the sentence by generalising an exiting axiom
Rewrite 23: justify the sentence by changing the conclusion of an exiting axiom

Rewrite 25: justify the sentence by reversing an exiting axiom

Rewrite 19

Enter axiom to be updated via the irrelevance schema

required _level (Ag, L) < causes(Ag, cancer, X) A
no_safe_level(Ag) A
min_det_level(Ag, L)

Enter precondition to be removed

no_safe_level(Ag)

In this way,

required_level(Ag, L) +
causes(Ag, cancer, X) A
no_safe_level(Ag) A)
min-det_level(Ag, L)

@2 : retract(irrelevance

and
required_level(Ag, L) +

add (irrelevance causes(Ag, cancer, X) A |)
min_det_level(Ag, L)
is an attack-based revision allows argument 5.4 to be derived, reinstating the
claim that the maximum required level for aflatoxins should be set to 20ppb (see

Informal Schema 7).

Argument Aj is a justification for required_level (aflatozin, 20).

required_level (aflatoxin, 20)

/\

causes(aflatoxin, cancer, animal (X)) min_det_level(aflatoxin, 20)

The dependencies between claims at this stage are represented below, again with

highlighted nodes corresponding to possible attack points.

D2 :
required_level(aflatozin, 20) : in
/ \
causes (aflatozin, cancer, animal(X)) : in min_det_level(aflatozin, 20) : in
\ /
true : in
Do you want to attack this argument? (yes/no) yes

Revision ¢3 can be determined interactively as follows.

Enter rewrite choice from the following:

Rewrite 3: select an in claim to be attacked

Rewrite 4: select an out claim to be attacked

Rewrite 3

Enter in claim to be attacked
required _level (aflatozin, 20) : in

Enter rewrite choice from the following:

Rewrite 5: remove the argument supporting the sentence

Rewrite 6: add an argument supporting a conflicting sentence

148

CHAPTER 8. WORKED EXAMPLE 149

Rewrite 5
Enter rewrite choice from the following:
Rewrite 10: perform an elementary revision for refuting the sentence
Rewrite 12: perform an updating revision for refuting the sentence
Rewrite 12

Enter rewrite choice from the following:

Rewrite 20: refute the sentence by elaborating the axiom supporting it

Rewrite 22: refute the sentence by specialising the axiom supporting it

Rewrite 24: refute the sentence by changing the conclusion of the axiom supporting it
Rewrite 26: refute the sentence by reversing the axiom supporting it

Rewrite 22

Enter substitution that specialises the axiom
required _level (Ag, L) < causes(Ag, cancer, X) A min_det_level(Ag, L)

X = human

In this way,

required _level (Ag, L) <
@2 : retract(specialisation causes(Ag, cancer, X) A |)
min_det_level(Ag, L)
and
required _level (Ag, L) <
add(specialisation causes(Ag, cancer, human) A |)
min_det_level(Ag, L)

is an attack-based revision that refutes argument As (see Informal Schema 10).

Argument Aj is a refutation of required _level(aflatoxin, 20).

required_level (aflatoxin, 20)

causes(aflatoxin, cancer, animal (X)) min_det_level(aflatoxin, 20)

The dependencies between claims at this stage are represented below, again with

highlighted nodes corresponding to possible attack points.

Dg:

required_level(aflatozin, 20) : out

/ \

causes(aflatozin, cancer, human) : out min_det_level(aflatozin, 20) : in

true : in

Do you want to attack this argument? (yes/no) yes

Revision ¢4 is determined interactively as follows.

Enter rewrite choice from the following:

Rewrite 3: select an in claim to be attacked

Rewrite 4: select an out claim to be attacked

Rewrite 4

Enter out claim to be attacked
causes (aflatozin, cancer, human) : out

Enter rewrite choice from the following:

Rewrite 7: add an argument supporting the sentence
Rewrite 7

Enter rewrite choice from the following:

Rewrite 8: perform a trivial revision for justifying the sentence
Rewrite 9: perform an elementary revision for justifying the sentence

Rewrite 11: perform an updating revision for justifying the sentence
Rewrite 9

Enter rewrite choice from the following:

Rewrite 13: justify the sentence by adding a new fact
Rewrite 14: justify the sentence by adding a new substantiated rule

Rewrite 15: justify the sentence by adding a new burden shift rule

Rewrite 14

Enter head and body of a substantiated rule for justifying the sentence

causes(Ag, P, human)
causes(Ag, P, animal(X))

In this way,

¢4 : add(substantiated_rule < causes(Ag, P, human) «))

causes(Ag, P, animal (X))

is an attack-based revision that can be used to construct an argument for justifying

that aflatoxins cause cancer in humans (see Informal Schema 2).

Argument Ay is a justification for causes(aflatozin, cancer, human).

150

CHAPTER 8. WORKED EXAMPLE 151

causes(aflatoxin, cancer, human)

causes(aflatoxin, cancer, animal (X))

The dependencies between claims at this initial stage are represented below, with

highlighted nodes corresponding to possible attack points.

Dy :

required_level(aflatozin, 20) : in

/ \

causes(aflatozin, cancer, human) : in min_det_level(aflatozin, 20) : in

T

causes(aflatozin, cancer, animal(X)) : in

\

true : in

Do you want to attack this argument? (yes/no) yes

Revision ¢5 can be determined interactively as follows.

Enter rewrite choice from the following:

Rewrite 3: select an in claim to be attacked

Rewrite 4: select an out claim to be attacked

Rewrite 3

Enter in claim to be attacked
causes(aflatozin, cancer, human) : in

Enter rewrite choice from the following:

Rewrite 5: remove the argument supporting the sentence

Rewrite 6: add an argument supporting a conflicting sentence

Rewrite 5
Enter rewrite choice from the following:
Rewrite 10: perform an elementary revision for refuting the sentence
Rewrite 12: perform an updating revision for refuting the sentence
Rewrite 12

Enter rewrite choice from the following:

Rewrite 20: refute the sentence by elaborating the axiom supporting it

Rewrite 22: refute the sentence by specialising the axiom supporting it
Rewrite 24: refute the sentence by changing the conclusion of the axiom supporting it
Rewrite 26: refute the sentence by reversing the axiom supporting it

Rewrite 20

Enter extra literal to be introduced in the axiom
causes(Ag, P, human) < causes(Ag, P, animal(X))

similar_physiology (human, X)

Enter position in the axiom body in which to introduce the literal (0-1)

In this way,

¢4 : retract(elaboration (causes(Ag, P, human) «))))

causes(Ag, P, animal (X
and
causes(Ag, P, human) <

add(elaboration causes(Ag, P, animal(X)) A)
similar_physiology (human, X)

is an attack-based revision that refutes argument A4 (see Informal Schema 12).
Argument Aj is a refutation of causes(aflatozin, cancer, human).
causes(aflatoxin, cancer, human)

-
-
-
-

causes(aflatoxin, cancer, animal (X))

The dependencies between claims at this initial stage are represented below, with

highlighted nodes corresponding to possible attack points.

D5 .
required_level(aflatozin, 20)
/ \
causes(aflatozin, cancer, human) : out min_det_level (aflatozin, 20) : in
I
causes(aflatozin, cancer, animal(X similar _physiology (human, X) : out
true : in

Do you want to attack this argument? (yes/no) no

152

CHAPTER 8. WORKED EXAMPLE 153

With the argument terminating at this stage, the revised theory below is said to be

unacceptable with respect to the sentence required_level(aflatozin,20):

min_det_level(aflatozin,20) <+ true
causes(aflatozin, cancer, animal (X)) true
required_level(Ag,L) + causes(Ag, cancer, human) A
min_det_level(Ag, L)
no_safe_level(Ag) <+ not safe_level(Ag, L)
safe_level(aflatozin, s) true
causes(Ag, P, human) causes(Ag, P, animal (X)) A
similar_physiology (human, X))

4

TT

This example illustrates the sort of arguments we can automate. Although the system
applied here is highly interactive and relies on a great amount of information to be
provided by a user, it can be quite useful in analysing specific arguments and exploring
the roles of certain types of revision in a domain. There is scope for making use of the
revisions defined during this interactive process in order to automatically explore other

possible courses of argument.

8.3 Searching for Alternative Arguments

Given that a catalogue ® of possible attack-based revision schemata has been specified,
the system in Section 8.1.2 can then be used to generate dynamic arguments in an

automated form. The question, then, is how to specify ®.

8.3.1 A Catalogue of Argument Schemata for the Aflatoxin Example

One way to define such a catalogue for the aflatoxin example is to consider each schema
in ® to be the flattened equivalent of an operation determined during the interactive

argumentation. For instance, the following representation of ¢; could be included in ®:

Domain-Specific Revision Schema ¢: 1 =2=4=7=9= 13

out(safe_level(aflatozin, L), A, II),
add(fact(P)), revise(IL, {}, {P}, 1),
in(safe_level(aflatorin, L), A" II")

attacks(A’', A),
consistent (IT'),

Properties: supports(A’', safe_level(aflatorin, L) : in, '),
unify(safelevel(aflatozin, L), safe_level(aflatozin, s))
Conditions: safe_level(aflatozin, s) € L,

P = safe_level(aflatozin, s) < true

This schema is obtained directly from the rewrites used in the interactive system, but
it could as well be defined manually by a designer of an argumentation system. It is
important to note that we do not require all the properties to be verified, so designers
might choose to disregard properties which they feel are redundant or not relevant. Here,
for instance, properties like unify could be safely dismissed as it is valid independently of
the actual revision being performed and the new attack being generated. Also, because
we are not considering priorities between arguments, attacks holds by definition as the
arguments must support contradictory claims (out and in, respectively). Furthermore,
since our choice of formal language does not include classical negation there are no risks
of logical inconsistency, so as a designer we can choose not to verify consistency in the
revised set of axioms. One crucial property to be tested, though, is that of supports,

because it guarantees that an attacking argument can in fact be generated and advanced.

Hence in this case the following is an equivalent description of ¢ above.

Domain-Specific Revision Schema ¢: 1 =2=4=7=9= 13

out(safe_level(aflatozin, L), A, II),
add(fact(P)), revise(IL, {}, {P}, 1),
in(safe_level(aflatorin, L), A’ II")

Properties: { supports(A’', safe_level(aflatozin, L) : in,IT') }

Conditions: safe_level(aflatozin, s) € L,
P = safe_level(aflatozin, s) < true

Another point to be noted here is that conditions for applying the corresponding logic-
specific rewrites from Section 7.3.6 still remain. As remarked in the previous section,
interaction may happen only in cases where an element must be selected from a set

(e-conditions). Although in domain-specific schemata such elements have been deter-

154

CHAPTER 8. WORKED EXAMPLE 155

mined, conditions are still needed in order instantiate them appropriately throughout

the schema.

Similarly the following is a representation of revision ¢s.

Domain-Specific Revision Schema ¢y 1 =2=4=7=11=19

out(required_level(aflatozin, 20), A, IT),
retract (irrelevance(P)), add(irrelevance(P')), revise(IL, {P},{P'}, I1"),
in(required_level (aflatozin, 20), A" TI")

supports (A’ required_level(aflatorin, 20) : in, IT'),
unify (required _level(aflatozin, 20), required_level (Ag, L)),

Properties: satisfiable(By A ... A Bi_y A Bit1 A ... A By, TI)
—satisfiable (no_safe_level (aflatozin), IT)
Conditions: P = required_level(Ag,L) < Bi A ... A By, € 11,

B; = no_safe_level(Ag) € {Bu, ..., B},
P’:H(—Bl/\.../\Bi_l/\Bi_H/\.../\Bm

Note that a schema that is obtained from the interactive system is specific to the attack
performed in that system, and in this example these are grounded to the case of the
required level of aflatoxzin being 20ppb. However, because the attack is based on a more

generic statement required_level(Ag, L), and because the property

unify (required _level (aflatoxin, 20), required _level (Ag, L)),

holds, then schema ¢s can be generalised so as to attack any sentence of the form

required _level (Ag, L):

Domain-Specific Revision Schema ¢9: 1 =2=4=7=11= 19

out(required_level(Ag, L), A, IT),
retract (irrelevance (P)), add(irrelevance(P')), revise(II, {P},{P'}, 1),
in(required_level(Ag, L), A, TI')

supports(A’', required_level(Ag, L) : in, 1),
Properties: satisfiable(B1 A ... A Bi—1 A Bix1 A ... A By, 11)
—satisfiable(no_safe_level(Ag), 1)
Conditions: P = required_level(Ag,L) < Bi A ... A By, €11,

B; = no_safe_level(Ag) € {Bu, ..., Bm },
P’ZH(—Bl/\.../\Bifl/\Bi+1/\.../\Bm

Other operations are described analogously.

Domain-Specific Revision Schema ¢3: 1 =2=3=5=12= 22

in(required_level(Ag, L), A, II),
retract (specialisation(P)), add(specialisation(P")), revise(I,{ P}, {P'},II'),
out(required level(Ag, L), A, TI")

. supports (A, required level(Ag, L) : out, IT')
Properties: { —satisfiable(causes(Ag, cancer, X)o', 1)
Conditions: P = required_level(Ag, L) + B € A,

causes(Ag, cancer, X) € B,
o' = [X = human],
P' = (H + B)d’

Domain-Specific Revision Schema ¢4: 1 =2=4=7=9= 14

out(causes(Ag, P, human), A, 1),
add(substantiated_rule(P)), revise(IL, {}, {P},II'),
in(causes(Ag, P, human), A", TT")

Properties: supports(A’, causes(Ag, P, human) : in, IT')
operties: satisfiable(causes(Ag, P, animal(X)), IT)
Conditions: causes(Ag, P, human), causes(Ag, P, animal(X)) € L,

P = causes(Ag, P, human) < causes(Ag, P, animal(X))

Domain-Specific Revision Schema ¢5: 1 = 2=3=5=12= 20

in(causes(Ag, P, human), A, 1),
retract (elaboration(P)), add(elaboration(P’)), revise(IL, {P}, {P'},TI'),
out(causes(Ag, P, human), A, IT")

satisfiable(B1 A ... A By, II),

supports(A, causes(Ag, P, human) : out, IT')
Properties:
—satisfiable (similar_physiology (human, X), II)

Conditions: P = causes(Ag, P, human) + B € A,
causes(Ag, P, animal(X)) € B,
B = similar_physiology(human, X) € L,
P’ = causes(Ag, P, human) < BA B

In this way, ® can be defined as the following set:

P = {d)la ¢2a ¢3a ¢4a ¢5}

156

CHAPTER 8. WORKED EXAMPLE 157

8.3.2 Exploring the Search Space of Arguments

The system in Section 8.1.2 can now be used to explore the search space of arguments.
Moreover, given the selection of possible revision schemata, we expect the system to
be able to re-generate the dynamic argumentation that was constructed interactively in

Section 8.2:

<A01 ¢11 Ala ¢21 A?a ¢3a A3a ¢4a A4a ¢5a A5>

This argument in particular does not succeed in defending the FDA policy for restricting
aflatoxin levels to 20ppb. It would be interesting, however, to see whether other courses

of argument—if they exist—yield the same conclusion.

The system takes advantage of the fact that complicated choice points (such as select-
ing an element from an unspecified or infinite set) have already been explored by the
interactive system and resolved in the schemata in ®. The search space of possible
arguments can be exhaustively explored by traversing well defined sets: at each step ¢
of the process the system selects one possible claim to be attacked (from D;) and one
matching argument schema (from ®) that gives an attack to this claim. For the same

initial theory TInit from Section 8.2, the query:
?- findall(D, dynamic_arg(required_level(aflatoxin, 20), TInit, T, D), AllD).

gives three possible dynamic arguments based on ®:

(Ao, b1, Ar, 02, Ag, ¢3, Az, b4, A4, b5, As)
<A07 ¢37A,37 ¢47A47 ¢57A5>

<A07¢37A,37¢47A47¢17A17¢27A27¢57A5>

where A} is the following refutation of Aj.

required_level (aflatoxin, 20)

causes(aflatoxin, cancer, animal(X)) no_safe level(aflatoxin) min_det_level (aflatoxin, 20)

not safe_|evel(aflatoxin, L)

The resulting theories are different for each case,” and required_level(aflatozin,20) is

not established in any of them.

It seems also that generic trivial revisions® should always be included in the library of
possible revisions, so inherent conflicts and alternative justifications for a sentence can
be explored automatically. In this example, however, no argument can be generated
based on trivial revisions, as no conflicts are explicitly defined and no two alternative
arguments for any relevant sentence coexist. Every possible attack consists in either

blocking a derivation or introducing a new justification.

An issue arises here. We have shown that domain-specific schemata can be obtained
from arguments that are constructed interactively, but these may be over-specified.
Take for instance schema ¢. Rather than committing to a particular safe level s,
we could leave this as an open parameter to be automatically instantiated during the
argumentation. This means we need to refine our framework for dynamic argumentation
in order to incorporate special mechanisms that provide the necessary information for
instantiation. This is quite an important point, as automating this process is not only
crucial for understanding dynamics in argument, but it is also useful for (autonomous)

agents that want to apply this technique to particular problems.

Because in these cases we may know less about specific revisions, we need to know more
about the consequences of applying certain types of revision. The next chapter includes
an investigation of desirable properties that libraries of revisions can have, and how

these can affect the automatic generation of arguments.

® Considering that theories are implemented as lists, Ty, g gq646s is distinct from TTy,4,4, 6545 Both
are composed of the same premises, but in a different order (one is a permutation of the other).

5 See Section C.1 in Appendix C.

158

Chapter 9

Roles and Properties of our
Approach

So far we have presented the formal basis of our approach to argumentation, showing
that it is practicable to model and to automate argument dynamics by specifying a
catalogue of schemata for generating attacks. We have also presented a classification
that allows different types of attacks to be explored in a systematic way, and which
together with the possibility for automatic testing and search, allows us to understand

more about dynamics in argument.

This chapter now considers some of the roles and properties of this formalisation, and
possible uses of our classification both in analysing generated arguments as well as in
generating new ones. The discussion in the next sections is guided by the following
questions:

e what sorts of properties can we give to our formalisation?

e to what extent can examples from existing frameworks can be captured?

e how well can existing approaches deal with the types of dynamic argument ex-

plored here?

e what are the benefits and limitations of our approach?

159

9.1 Non-monotonic Aspects of Dynamic Argumentation

As discussed in Chapter 3, research in argumentation in the context of non-monotonic
reasoning is about characterising precisely the class of acceptable arguments from a
fized knowledge base, so that “the role of argumentation is to justify the use of certain
defeasible rules deriving a conclusion in preference to the use of other defeasible rules
deriving conflicting conclusions” (Kowalski and Toni 1996). Section 9.1.1 investigates
how our model relates to these argumentation frameworks if we fix the set of possible
attack-based revisions to trivial revisions only, and whether representative examples can

then be captured.

Other types of revision, however, specify from a procedural perspective how to challenge
information and introduce new arguments. This brings other non-monotonic issues into
play that are related to the actual transformation of theories via attacks. We discuss

these in Section 9.1.2.

9.1.1 Determining Acceptability in Fixed Theories

Work in argument-based semantics concentrates primarily on defining in a declarative
way (for instance by a fixpoint operator, or in terms of multiple extensions) when argu-
ments and sentences are justified given certain relations of conflict and defeat. Some-
times proof theories are also developed, which are concerned with establishing—often
in a dialectical style—the status of individual arguments according to the underlying

status characterisation.

Recall from Chapter 3 that there are in general three classes of arguments, namely
justified, defensible and overruled. Exactly how these are defined varies between the
different types of argument-based semantics proposed so far, but the general intuition
is often the same: justified arguments are those acceptable from a sceptical perspective,
whereas defensible arguments are those acceptable for a credulous reasoner; overruled

arguments are defeated by a justified one, and hence not acceptable.

The model proposed here, however, is more a constructive theory of how argument pro-

cesses are generated than a way of characterising sets of acceptable arguments according

160

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 161

to their relation to all other arguments. Nonetheless the two approaches are expected to
be related, mainly for the following reasons. First, there is an element of acceptability
also in our formalisation—according to Definition 4.7 a sentence is acceptable if it is
possible to generate a dynamic argument about it in which all attacks generated from
a catalogue ® of argument schemata are appropriately dismissed. Second, if @ is fixed
to contain only trivial revisions then it can generate and explore every possible attack
from a fixed knowledge base by means of the underlying provability relation. Thereby
dynamic argumentation can be seen as a proof-theoretical mechanism for determining

whether an argument is defensible; i.e. acceptable from a credulous perspective.

To make comparison easier, our model could be described in terms of the architecture

for argumentation frameworks proposed by Dung (1995) and discussed in Chapter 3.

The Argument Generation Unit (AGU) generates arguments and specifies the at-
tack relationships between them.

Here the AGU is composed of the underlying provability relation F, and the library of

possible attack-based revisions ® restricted to trivial operations:1

& = {trivial(X : in~ X :in), triviel(X : out ~» X :in)}.

Note that by definition, if A and A’ are both arguments in a theory II, and A’ attacks A,

then A’ can be generated via a trivial revision.

The Argument Processing Unit (APU) corresponds to the proof theory for deter-

mining whether a sentence or an argument is acceptable.

Here the APU corresponds to the dynamic argumentation mechanism which instantiates
possible schemata in ® and verifies the corresponding properties. A sentence ¢ is said to
be acceptable if (Ag, ¢1, A1, ..., dn, An) is a dynamic argument with respect to the (fixed)

underlying theory II such that all attacks to ¢ have been dismissed (i.e. ¢ :in € Dy) .

The following example illustrates this notion.

! Section C.1 gives the general description of trivial operations, represented here by expressions pa-
rameterised by the relevant type of attack.

Example 9.1 Let II be the following theory in a Horn clause resolution-based system:?

pacifist(X) <+ quaker(X)
no_pacifist(X) <« republican(X)
quaker(nizon) <« true
republican(nizon) < true

such that pacifist(X) and no_pacifist(X) are conflicting sentences in the language. Also,
let A, and Apy, be the arguments supporting pacifist(nizon) and no_pacifist(nizon), re-

spectively.

In this case, the query:
| 7- findall(D, dynamic.arg(pacifist(nixon), TInit, T, D), AllD).
gives only one possible course of argument (with T = TlInit):

A,, trivial (pacifist(nizon) : in ~ no_pacifist(nizon) : in), A,
trivial (no_pacifist (nizon) : in ~ pacifist(nizon) : in), A, /°

Note that A, was allowed to be advanced again as it had not yet been used to attack Apyp.
This captures the behaviour characteristic of a credulous reasoner: if arguments A and
B attack each other with equal strength, and B is used to attack A during arqumentation,

then A can be used to attack, and consequently dismiss, B.3

Analogously, the query:
| 7- findall(D, dynamic._arg(no_pacifist(nixon), TInit, T, D), AllD).

gives also one possible argument, in which A, is also established as defensible. O

Very often such APUs are defined in a dialectical style, as argument games between a

proponent and an opponent:

2 This example is drawn from (Prakken and Vreeswijk 1999), a comprehensive study on the relation
between non-monotonic reasoning and argumentation. Their general discussion, though, abstracts
from the internal structure of arguments, assuming both arguments and attacks to be primitive
concepts. Thus in order to experiment with their examples we have reconstructed them in a logic
programming, resolution-based style.

3 Appendix D gives the restrictions for advancing an attack by means of the property supports.

162

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 163

The proponent starts with an argument to be tested, and each of the following move
consists of an argument that attacks the last move of the other party with a certain
minimum force. The initial argument provably has a certain status if the proponent
has a winning strategy, i.e., if he can make the opponent run out of moves whatever
moves the opponent makes. The exact rules of the game depend on the semantics

it is meant to capture. (Prakken and Vreeswijk 1999, p. 82)

In fact, Jakobovits (2000) has identified some of the issues that give the fine tuning for

the game rules so that it captures the intended semantics. These include:*

Can players repeat arguments?

Must the player react immediately?

May players contradict themselves?

Can players use arguments which have already been attacked by the opponent?

Can a player use arguments which have already been used by the opponent?

The following for instance is a specification of a proof-theoretical dispute that captures
sceptical reasoning, in which only justified arguments (rather than defensible ones) are

considered to be acceptable:®

Definition 9.1 (Proof-theoretical Dispute) A (proof-theoretical) dispute on an ar-
gument A is a non-empty sequence of moves of the form move; = (Player;, A;) with

Ay = A such that:

e Player; = PROPONENT if and only if i is even; otherwise Player; = OPPONENT.
e If Player; = Player ; = PROPONENT, i # j, then A; # Aj;.

e If Player; = PROPONENT, i > 0, then A; strictly attacks A;—y. (That is, A;
attacks A;—1 but A;—1 does not attack A;.)

e [f Player, = OPPONENT, then A; attacks A;_;.

4 Later in Chapter 12 we consider some issues on how this view relates to the sorts of protocols,
languages and game theory in multi-agent negotiation.

® Adapted from (Prakken and Vreeswijk 1999, p. 82).

The different burdens of proof for the PROPONENT and the OPPONENT guarantee that

if the PROPONENT wins the dispute, then A is justified. O

Clearly dynamic arguments can also be seen as an argument game—both represent
processes of argument exchange, the main difference being that attacks in our formalism
are generated from a library of argument schemata. Remember that in a dynamic
argument each step is intended to alternately change the acceptability status of the
sentence under dispute, either from out to in or from in to out; in this way, the first
can be seen as moves advanced by a PROPONENT, and the latter by an OPPONENT.
The PROPONENT is also the first player to move by advancing a justification for the
sentence. Finally, two catalogues of argument schemata could be considered, one to be
used by the PROPONENT and another by the OPPONENT, but for the type of credulous

reasoning illustrated in Example 9.1 these can be assumed to be identical.

Because our mechanism is essentially credulous, in order to capture the sort of sceptical
reasoning in Definition 9.1 we need to account for some of the conditions that determine
the exact rules of that game. It turns out that the sorts of of features addressed in
(Jakobovits 2000) can be easily incorporated into our original mechanism by means
of the properties that are tested in connection with each attack-based schema. For
instance, a sentence is said to be acceptable from a sceptical perspective (justified) if

we can generate a dynamic argument (Ag, ¢1, A1, ..., ¢n, Ax) such that:

® d)z S (I)PROPONENT if 7 is even, where @PROPONENT is obtained from ® above
as follows: first, refine the property supports so that it disallows any repetition
of arguments whatsoever; then, introduce the extra property —attacks(A’, A) to

each schema in ®propoNENT, thus forcing the attack to be strict;
e ¢ € DoppoNENT if i is odd, where PoppoNENT iS equivalent to ® above.

Example 9.2 Consider again the theory in Example 9.1, together with the mechanism

above for gemerating sceptical dynamic arguments. Now the query:

?- findall(D, dynamic_arg(pacifist(nixon), TInit, T, D), AllD).

164

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 165

gives only the argumentation below, and therefore the argument for pacifist(nizon) is

not sceptically acceptable.

(Ay, trivial(pacifist(nizon) : in ~ no_pacifist(nizon) : in), Ay,).

This connection with proof theories is not surprising, as our formalisation takes an
essentially procedural view on argumentation. Existing proof-theoretical models of ar-
gumentation can be expressed as dynamic argumentation mechanisms by restricting the
types of revision to trivial ones and by adapting the corresponding properties so that it
gives the same behaviour. Nevertheless “it turns out that all semantics have some prob-
lems”, and yet much work remains to be done in providing correctness and completeness

results for the proof-theories proposed so far (Prakken and Vreeswijk 1999).

Some other issues have been raised by Jakobovits (2000) which are less concerned with
argument-based semantics than with real disputes, and therefore closer to our interests.

These are:

e How should attack between arguments be defined?
e [s the set of possible arguments known before the dialogue takes place, or is it

generated dynamically?

These questions have been addressed extensively throughout this thesis, but we now
focus a bit more on the latter, especially on the consequences of actually changing the

set of possible arguments dynamically.

9.1.2 Non-monotonicity in Argument-based Theory Revision

According to Prakken (2000, p. 2) the difference between proof-theoretical disputes in

the context of argument-based semantics and real disputes is that:

[...] while in proof-theoretical disputes all arguments are constructed from a given

body of information, in disputes between real agents this body of information is

usually constructed dynamically, during the dispute, since the participants can at

any time supply new or withdraw old information.

Non-monotonicity in this case is not only about some arguments being preferred over
others, but rather about the actual addition and retraction of information. Assuming
that the underlying provability relation is monotonic,® this section looks at how certain

types of attack can affect the interpretation set of the corresponding theory.

The reason why such a characterisation is important is because argument dynamics can
also be viewed as a process of theory manipulation intended to generate more acceptable
theories. Central to this view is the notion of interpretation.” When designing argument
systems (and libraries of revision schemata), or analysing an argument produced by such
systems, it should be possible to describe how attack-based transformations affect the

corresponding interpretation set.

One way of expressing such relations is by considering the characteristics of certain types
of schema in order to make predictions about the behaviour of the interpretation set.
This gives a high level description of key relations between transformation steps without
saying exactly how the arguments are going to be (or were) derived. A neat correspon-
dence would for instance say that adding an argument causes the interpretation set to
expand, while removing an argument constrains it. Unfortunately this is not always the

case, as adding an argument sometimes means blocking others, and vice-versa.

The question now is whether the attack relation x(II,TI") can be expressed via set
inequality relations between interpretation sets ¢(IT) and ¢(II') (assuming the underlying
logic to be monotonic). In what follows the classification in Figure 7.2 is used for guiding

this analysis by considering the possibilities for an unconstrained attack-based revision

6 Although the extended resolution method for treating negation as failure in general logic programs
is clearly non-monotonic, it is possible to consider these from an abductive perspective that consists
in adding non-provability assumptions as facts to the theory and treating these monotonically. For
more details, refer to section on the Abstract Argumentation Framework in Chapter 3, and later in
Section 9.5.

" At this point the relation with the fields of transformation (Pettorossi and Proietti 1998) and synthesis
(Deville and Lau 1994) of logic programs becomes more apparent. Transformation of logic programs
is concerned with preserving the semantic value of a specification as we derive correct and efficient
programs from it, so at each transformation step the interpretation set must remain the same. On
the other hand, some recent approaches to structural synthesis have considered inequalities between
sets of consequences as the basis for refinement of specifications (Robertson 1999b).

166

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 167

-5, Between parentheses we refer to the sections in Appendix C that define the

corresponding schemata.
Adding an Argument

Trivial Revision (Section C.1)
trivial

II~" 1 — ((II) = (IT")

By definition, trivial revisions involve no changes to the theory, so IT = II'.

Elementary Revisions (Section C.2)
I MY Ty (IT) C o(IT)

This follows from the monotonicity of the system and the fact that elementary revisions

for adding an argument consist in adding axioms only—i.e. II C II'. In fact:

Adding a Fact (Section C.2.1)
nmw - ncw
Adding a Substantiated Rule (Section C.2.2)

I substanﬁgted_rule I — 1 C '

Adding a Burden Shift Rule (Section C.2.3)

burden_shift_rule
a2

11 n — ImciIr
Remember that negation as failure can be represented by extra non-provability as-

sumptions in the language.

Updating Revisions (Section C.3)
dati
PRSI A W(TT) C o(IT)
In this case it is harder to predict how the interpretation set behaves in general, because

IT Z II'. However, looking at the properties associated to each logic-specific schema in

this category can provide more information about the changes.

Removing Irrelevance in a Rule (Section C.3.1)

I irrel,ggance I — L(H) C L(HI)

This follows from the properties associated to the irrelevance schema: the axiom
from II that is updated in II' is such that all conclusions derived from it are still
derived, and others are now allowed, namely those dependent on the satisfiability of
the removed literal.

Generalising a Rule (Section C.3.2)

generalisation
H A

' — o(IT) C (I
Again this follows from the properties associated to the schema: the axiom in IT'
that is updated from II is obtained via the application of an inverse substitution

(from terms to variables), so everything that was derived before can still be inferred.
Revising the Consequent of a Rule (Section C.3.3)

I miscogglusion 8l 7L> L(H) C L(H')

Revising the consequent of a rule may introduce new elements into ((II') but may

also block others from being derived. In this case, no generic relation between the

interpretations sets can be identified.

Reversing a Rule (Section C.3.4)
U A () €)

As above, no set inequality relation between the two interpretation sets can be said

to hold in the general case.
Removing an Argument

Elementary Revisions (Section C.4)

elementar
> 4 H’

I — (T1) D ((T1")

This follows from the monotonicity of the system and the fact that elementary revisions

for removing an argument consist in retracting axioms only—i.e. IT D II'. In fact:

Retracting an Invalid Rule (Section C.4.1)
I inva@_rule T — II » 8l
Retracting a Weak Rule (Section C.4.2)

I wea&rule I — 1I > T’

168

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 169

Retracting a Misrelation (Section C.4.3)

I misrgl[()ztion I — 1I > T’

Updating Revisions (Section C.5)
%™ 4 () D (1T

Again it is harder to predict how the interpretation set behaves in general, because IT 2 TI'.
Analogously as in the updating cases above, the properties associated to each logic-specific

schema in this category can give more information about the changes.

Elaborating Preconditions in a Rule (Section C.5.1)
I elab%,a)tion 1 L(H) » L(H')
The properties associated to the elaboration schema guarantee that some conclu-
sions that were allowed in IT will be blocked in II', namely those dependent on the

satisfiability of the new literal which is required to be unsatisfiable in the theory.

Specialising a Rule (Section C.5.2)

specialisation
e g

1 ' — o(I1) D o(IT)
Again this follows from the properties associated to the specialisation schema: the
axiom in II’ that is updated from II is obtained via the application of a substitution

(from variables to terms), thus some of its original conclusions may no longer be

inferred.
Revising the Consequent of a Rule (Section C.5.3)
I miscogglusion 8l 7L> L(H)) L(H')
Revising the consequent of a rule may block some elements from ¢(IT) but may also
introduce new ones, so no generic relation between the interpretations sets can be
identified.
Reversing a Rule (Section C.5.4)
TS T 4 (T1) D u(IT)
For the same reasons, no relations between the two interpretation sets can be guar-

anteed to hold in the general case.

Designers of argument systems may choose types of schema that conform to certain

characteristics so as to predict an overall behaviour of the transformation process. For

instance if every schema ¢ in a catalogue @ is such that ((II) C «(Il4), then the inter-
pretation set of a theory is guaranteed to either expand or at least remain unchanged
throughout any dynamic argument. On the other hand, if ® also contains certain oper-
ations such that ((IT) D ¢(Ilg), then nothing can be said about the global development

of the argument, as transitivity cannot be applied in this case.

Describing possible revisions in terms of interpretation sets can provide yet more in-
formation for influencing and guiding the design of domain specific schemata from the
classification in Figure 7.2. A question arises at this point, and is considered later in
Section 9.3, of whether this classification is complete is some sense. Also related to
this, Section 9.4 discusses the role of this classification in retrospective analysis and

explanation of arguments.

9.2 Termination

At this stage termination can be reduced to the existence of finite relevant arguments
in the theory. A revision can only be applied once to generate the same attack, and
assuming that the number of possible revisions in the catalogue is finite, the question is
whether an infinite number of attacks satisfying the requirements of a certain schema
can be generated. Problems can arise for infinite chains of argumentation, but these are
a problem for dialectical models of argumentation frameworks as well, as they may be
captured by fixpoint approaches but not by exhaustively considering every argument in

the theory (Prakken and Vreeswijk 1999).

9.3 Is Our Classification Complete?

Chapter 7 proposed a way to parameterise the attack generation step by constraining
the types of revision operation in a cascade of levels which eventually gets to be domain
specific. We do not claim that this is the only way to characterise the possible revisions
to argument, nor that the entire collection in Figure 7.2 is complete. We do argue,
though, that this classification is complete up to a level, namely the level of instantiation

described in Section 7.3.5.

170

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 171

In fact, the level of instantiation described in Section 7.3.4 and depicted in Figure 9.1
below is complete by definition, because it is based on the characterisation of attacks
given in Chapter 6. Any attack consists in either introducing a (not necessarily new)

argument, or retracting an existing one.

H add-a]\‘g;tment H, H remuve,_\a’:gument H,

Figure 9.1: General types of revision.

Section 7.3.5 gives the general structure of the revisions for adding and removing an
argument, as depicted in Figure 9.2. Because only fundamental types of revision are

considered, completeness can only be established with respect to these.

H add_a/(g’;iment H, H Temove/_\a’;‘gument H,
8 9 11 12 10
trivial elementary updating updating elementary
m~"1 I~ "I I "~ I m ~"m m ~ 1

Figure 9.2: From dealing with arguments to dealing with premises.

Arguing that this level is complete is equivalent to saying that the following are the
only possible combinations for adding or removing an argument:

e adding an argument via a trivial revision;

e adding an argument via an elementary revision (adding a new premise);

e adding an argument via an updating revision (updating an existing premise);

e removing an argument via an elementary revision (removing a premise);

e removing an argument via an updating revision (updating an existing premise);

which in its turn is equivalent to saying the remaining combinations below cannot be

used to describe an attack:

e removing an argument via a trivial revision;
e adding an argument via an elementary revision (removing a premise);

e removing an argument via an elementary revision (adding a new premise).
Let us then consider each possibility as follows:

Removing an argument via a trivial revision.

This is clearly not possible, as removing an argument means refuting it, and that must

involve some revision to the theory.

Removing an argument via an elementary revision (adding a premise).

The most straightforward example in this case involves the extended resolution mechanism
for negation as failure, in which adding a premise can block conclusions based on certain

non-provability assumptions.

For instance, the fact g(a) < true can be added to the theory below is order to refute the
argument for p(a) that is based on the non-provability of ¢(a).
p(X) <« not g(X)
q(b) <« true

Instead, this could be interpreted as adding an argument for g(a) rather than as removing

the argument for p(a), and hence could be obtained from rewrite 9.

Adding an argument via an elementary revision (removing a premise).

Analogously, this case can also be reduced to that of removing an argument by removing

a premise, and thus obtained from rewrite 10.

Hence this level of instantiation is complete for fundamental types of operations. From
the level of logic-specific schemata® downwards completeness results can no longer be
guaranteed, because it is always possible to give more or less detailed descriptions of

the structural revisions that are allowed.

For instance elementary revisions for adding a premise are quite unspecific, the main

restriction concerning the head of the clause to be added which has to unify with the

8 See Section 7.3.6.

172

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 173

sentence in question. Some updating revisions on the other hand are more specific as
they depend on an existing axiom and on a well-defined way of transforming this axiom
(e.g. specialisation or generalisation). Also, our experience in modelling arguments has
shown that the types of schema for reversing a rule or revising its consequent are not as
frequent as other updating schemata. We have even considered not including these in
the collection given in Chapter 7, but finally decided on keeping them to illustrate the

possibility of introducing and preserving diverse forms of revision.

9.4 Communicating Dynamic Arguments

This hierarchical classification not only promotes a methodical design of argument
schemata in which domain-specific instances may be gradually devised, but also supports
analysis, explanation and presentation of produced arguments. Given that predefined
schemata may be recognised by the corresponding path in the hierarchy, two sorts of
information may be combined in communicating each step in the argument: the vari-
ous levels of instantiation for the revision operator, and the possible relations between

interpretation sets.

We now revisit parts of the example in Chapter 8 to exemplify alternative modes of

argument communication. In particular, we consider the dynamic argument below:

<A01 ¢11 Ala ¢21 A?a ¢3a A3a ¢4a A4a ¢5a A5>

A plain form of presentation which consists in laying out the whole argument in all its
details, with argument trees and instantiated argument schemata, may be denoted as

follows:
A B A, B A, 8 4,2 4,8 A

Sometimes, though, a higher level presentation may be more appropriate, and the follow-
ing sections illustrate how the information associated to each schema may be employed

for that purpose.

9.4.1 Different Levels of Instantiation

This section explores alternative presentations of an argument based on the various
levels of instantiation given by the hierarchy in Figure 7.2. Also, assume that at every
level the description is parameterised by the type of attack it promotes, so it is possible

to say which claim is supported at each step.

Expressing General Types of Revision

At this level of description—given in Section 7.3.4—the argument process, which starts

with a justification for required _level(aflatoxin,20), unfolds as follows:

add_argument add_argument remove_arqument add_argument removeq rgument
A A A A 9 A A A 2 A

AO 1 2 3 4 5

The first move

consists in adding an argument for safe_level (aflatozin, s).

The second move

consists in adding an argument for required_level(aflatozin, 20).

The third move

consists in removing the argument for required _level(aflatozin, 20).

The fourth move

consists in adding an argument for causes(aflatozin, cancer, human).

The final move

consists in removing the argument for causes(aflatozin, cancer, human).

Expressing Fundamental Types of Revision

At this level of description—given in Section 7.3.5—the argument process, which starts

with a justification for required _level(aflatoxin,20), unfolds as follows:

elementar updatin updatin elementar updatin

The first move

performs an elementary revision for justifying safe_level(aflatozin, s).

The second move

performs an wupdating revision for justifying required_level (aflatozin, 20).

174

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 175

The third move

performs an wupdating revision for refuting required _level(aflatozin, 20).

The fourth move

performs an elementary revision for justifying causes(aflatozin, cancer, human).

The final move

performs an updating revision for refuting causes(aflatozin, cancer, human).
Expressing Logic-Specific Types of Revisions

At this level of description—given in Section 7.3.6—the argument process, which starts

with a justification for required _level(aflatoxin,20), unfolds as follows:

fact irrelevance specialisation substantiated _rule elaboration
Ag~ A ~ Ay ~> As ~ Ay ~> As

The first move

consists in adding a fact to justify safe_level(aflatoxin,s).

The second move

consists in removing irrelevance in a rule to justify required_level(aflatoxin, 20).

The third move

consists in specialising a rule to refute required_level (aflatozin, 20)

The fourth move

consists in adding a substantiated rule to justify causes(aflatozin, cancer, human).

The final move

consists in elaborating a rule to refute causes(aflatoxin, cancer, human).

Finally each step in the argument may be communicated in its integral form as originally

illustrated in Chapter 8.

9.4.2 Relations between Theories

Dynamic arguments may also be presented at a yet higher level of description for ex-
pressing set relations between theories, without knowing directly how each consecutive

theory interacts nor how and what arguments triggered the transformation. According

to the properties discussed in Section 9.1.2,% the process of theory transformation based

on the aflatoxin example gives the following relations between each transformation step:

L(H) C L(H¢1) - L(H¢1¢2) 2 L(H¢1¢2¢3) C L(H¢1¢2¢3¢4) 2 L(H¢1¢2¢3¢4¢5)

Notice that nothing can be guaranteed about the relation between the initial and final
theory in this case, because different kinds of transformation (expanding and constrain-

ing) have been involved.

9.5 The Abstract Argumentation Framework: Limitations

While Section 9.1.1 elaborated on how dynamic argumentation relates to formalisms for
defeasible argumentation, this section looks at types of arguments that cannot be en-
tirely captured by these. In particular, it takes the Abstract Argumentation Framework
as a representative formalism and applies it to the example of argument from the safety
engineering domain in Chapter 2, identifying questions which the existing framework do
not answer but which are needed to represent a larger class of dynamic arguments. This
brings in some of the issues to be addressed in the next part of this thesis in connection

to the automation of such examples.

The reason why the Abstract Argumentation Framework is used here is because it
is flexible and generic, subsuming other approaches to defeasible argumentation (see
Chapter 3). Also, it incorporates some elements of revision, such as treating assumptions
as extra facts in the theory (and which can be attacked by proving their contrary),
and extending axioms to include other non-provability assumptions. But although in
(Kowalski and Toni 1996) it is claimed that the Abstract Argumentation Framework
“seems to correspond well with informal argumentation”, there are some informal and

useful arguments that cannot be represented within it.

9 Assume that this example is now modelled as a definite logic program where negated atoms are
treated as positive assumptions extending the language, and which are considered to be true but
can be attacked by their contrary as defined by an asymmetric conflict relation. This guaran-
tees the monotonicity of the underlying language, and hence the use of properties discussed in
Section 9.1.2. Notice that this only affects revision ¢:, which now defines an attack of the form
cannot_be_shown (safe_level(aflatorin, L)) : in ~» safe_level(aflatozin, L) : in rather than the original
safe_level(aflatozin, L) : out ~ safe_level(aflatozin, L) : in.

176

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 177

One such example is the safety argument about the pressure tank control system in
Section 2.1.1. Argumentation was used as a way of revising the system model in order
to increase its acceptability with respect to known faults, based on a technique known
as fault tree analysis. Fault tree analysis is essentially a method that “starts with an
event directly related to an identified hazard, the ‘top event’, and works backwards to
determine its cause” (Storey 1996, p.43). Taking the top event to be the rupture of the
tank, the safety argument in Section 2.1.1 followed by considering the possible causes (or
minimal cut sets of events) leading to this event and adapting the model where necessary
so as to make the system acceptably tolerant to these. For instance, one possible cause
leading to the rupture of the tank is the primary failure of the relay k2 (see Figure 2.2),

and the corresponding course of dynamic argument could be represented as follows:
(Ao: The system is operational at all times

¢1 : introduce primary failure of k2

Ay If relay k2 fails to open when it should, the
system is no longer operational at all times

¢ : add a redundant relay to the model
Ay If we add an extra relay in parallel,
then the system is still operational)

To represent this argument in terms of an Abstract Argumentation Framework we first
select a supporting deductive system, for instance the Horn clause resolution-based
system of (Kowalski and Toni 1996). Let A be the set of assumptions of the form
cannot_be_shown(y), where ¢ is a sentence in the underlying language. Assuming that
we know how to extend the rules appropriately, the following is a (simplified) model II

for the pressure tank system in Figure 2.2.

operational_tank(T) < on_motor(T) A not_full(T)
operational _tank(T) <+ off -motor(T) A pressurised(T)
not_operational _tank(T) <+ on_-motor(T) A pressurised(T)
on_motor(T) < closed(relay(k2),T)
off -motor(T) < open(relay(k2),T)
closed(relay(K),T) < energised(relay(K),T) A

cannot _be_shown(open(relay(K),T)
deenergised(relay(K),T) A
cannot_be_shown(closed(relay(K),T)

4

open(relay(K),T)

Briefly, the tank is operational at a time point 7" if the motor is pumping water into

it when it is not full, or when the tank is pressurised but the motor is off. Otherwise,
the tank is not operational if the motor is still on when the tank is pressurised. Notice
that operational_tank(T) and not_operational_tank(T) are conflicting sentences in the

language.

In particular, assume that at a given time ¢ the relay k2 is de-energised and the tank is

pressurised:

pressurised(t) < true
deenergised(relay(k2),t) <« true

Also, as described in Section 2.1 it is possible for the contacts of relay k2 to fail to
open when the coil is de-energised, causing the rupture of the tank. This fault may be

represented by following axiom:

closed(relay(K),T) < deenergised(relay(k2),T)

So let II denote the set of clauses above, and let:

A = {cannot_be_shown(closed(relay(k2),t)}

An argument supporting that the tank is operational at time ¢ can be obtained if the

assumption A is added to II:

I U A + operational _tank(t). (9.1)

Besides, the following argument for not_operational_tank(t) can also be derived:

I1 + not_operational _tank(t). (9.2)

Because the underlying system is monotonic, the addition of clauses only allows more
possible conclusions to be derived. In this way 9.1 and 9.2 are two conflicting arguments,
but 9.1 cannot defend itself against 9.2. On the basis of acceptable arguments (or
admissible assumptions), this framework discriminates between faulty and non-faulty

behaviours and allows only the inference of not_operational_tank(t).

This is an important point because it shows that the Abstract Argumentation Frame-

work can formalise part of the safety argument about the pressure tank system. In

178

CHAPTER 9. ROLES AND PROPERTIES OF OUR APPROACH 179

this particular case where a fault is present, it does not allow a safe conclusion to be

erroneously derived.

Yet this is a matter of safety, so it is essential that we can adapt the model to exhibit only
safe behaviours. The revisions allowed in this framework, though, are only about adding
extra non-provability assumptions. This makes it possible to defend operational_tank
from attacks by first assuming that things cannot go wrong, and then prioritising these
arguments over the arguments for not_operational_tank. But these solutions do not
represent any enhancement of system safety because they do not change the structure
of the system. Arguments such as “if an extra relay is added in parallel this attack will
no longer be relevant enough to be a concern”—which are common when modelling sys-
tems in safety-critical domains—cannot be expressed by means of extra non-provability

assumptions. '’

This is another important point: the Abstract Argumentation Framework does say a
lot about what an argument is within a collection of logic programming clauses, but it
does not prescribe strategies for revising these clauses. Yet this is the most essential
task in dynamic argumentation. Although the Abstract Argumentation Framework is
effective in expressing the defeasibility in argument, it does not account for many of
the features which are responsible for argument dynamics, as such as how attacks can
map onto changes to the argument. In terms of argument schemata, for instance, one
could define a revision schema that adds redundancy to the system by elaborating on

the axioms that depend on the behaviour of k2.

In summary, we took a novel view of specifications as arguments (e.g. the description
of the pressure tank model as an argument) and observed that in safety domains fault
trees are used to criticise specifications. The Abstract Argumentation Framework alone
does not enable us to replicate automatically the reasoning that is done based on fault
tree analysis. What we found though is that it is in fact representationally adequate

but not enough distinctions were made to actually represent that reasoning.

In the next part we give a more detailed architecture for adversarial argument that allows

for external sources of information (such as the fault tree model) to generate instances

10 1t could be argued that one could just augment the set of clauses in some way, but the Abstract
Argumentation Framework itself does not account for any methodology supporting such a task.

of attacks from a catalogue of possible revision schemata. This architecture includes the
mechanisms necessary to give dynamics to arguments, accounting for important aspects

such as:

where attacks come from;

how these lead to counter-attacks;

how the source of these attacks maps onto changes to the argument; and

how to determine the comparative strength of criticism.

180

Part 111

Instantiating Applications

181

Chapter 10

A General Architecture for
Dynamic Argumentation Systems

Having explored the mechanisms for argument dynamics in Part II, the aim of this
part is to define the different notions involved in dynamic argumentation separately,
thus providing a clearer picture of how arguments can be generated and evaluated, and
also allowing for a larger class of arguments to be formally represented by considering

possible external sources of criticism and attack.

The architecture presented here was first proposed in (Carbogim et al. 1999) as an
extension of the Abstract Argumentation Framework in (Kowalski and Toni 1996; Bon-
darenko et al. 1997) and of the Argumentation Framework in (Dung 1995), in the sense
that these formalisms were used as a starting point in developing a more detailed frame-
work for implementing adversarial argument. This chapter gives a general definition of
the three types of components forming the basis of this proposal, namely a theory, a

criticism theory and a control module.

The rest of this part suggests ways of instantiating this architecture so as to obtain,
in a systematic way, relevant domain-specific applications of dynamic argumentation
systems. At this point we return to the scenarios introduced in Chapter 2 to describe
possible argumentation systems to solve those problems. We first illustrate the use
of this architecture in a safety-engineering domain (Chapter 11), before describing an

application in the context of multi-agent negotiation (Chapter 12).

183

10.1 The Theory

As discussed in Chapter 4, argument dynamics is defined around the notion of a theory,
so it only makes sense to keep it at the centre of the architecture. Theories represent

the objects about which we argue.

Definition 10.1 (Theory) Let (L,F) be a logical system, and F. be the set of axioms

in L. A theory I1 is any consistent subset of Fr.' O

Notice that this is where arguments and attacks are generated (via possible argument-
based schemata), and so far the types of schemata used in Part II depended only on
the theory itself. But remember from the discussion in Section 8.3.2 that domain-
specific schemata may sometimes be over-specified, so it is interesting to leave certain
open parameters to be automatically instantiated during the argumentation, allowing
for points of attack to be provided by an external source. This, though, requires an

additional theory.

10.2 The Criticism Theory

The intuition behind a criticism theory is to provide potential points of attack to argu-
ments within the architecture itself. These can guide the generation of attacks in the

theory II, but are defined separately from it by means of an additional theory Tl..;.

Definition 10.2 (Criticism Theory) Let (Lcpit,Ferit) be a logical system, and Fr

crit
the set of axioms in Lopi. A criticism theory Il is any consistent subset of Fr_ ... O
The notion of argument can be defined analogously to Definition 4.3 by means of ..,
but no notion of attack is specified within the criticism theory itself. Arguments from

I,y are mapped onto the theory in order to instantiate certain attacks in II.

Note that the criticism theory is not a mere partition of the theory itself, because it may
involve different inference mechanisms. In fact, the provability relations from theory

and criticism theory might be different (e.g. F can be deductive and F..; abductive,

! This definition corresponds to Definition 4.2 in Chapter 4.

184

CHAPTER 10. A GENERAL ARCHITECTURE 185

as illustrated in the next chapter), and this is one reason for defining them separately.
This dissociation, however, is not always clear because the theories might clash when
the underlying languages are equivalent, as in the case of the Abstract Argumentation
Framework which is abductive at the meta-level although it uses a deductive monotonic

logic at the object-level.

The process for interpreting arguments from Il..; to II is based on the relation:

map g L x ﬁcrit

which essentially associates consequences from both theories,? identifying which sen-
tences in the criticism theory correspond to which sentences in the theory. This process

is described below and illustrated in Figure 10.1:

I map(p,7) Merit

Fcrit }_crit Y

map (Fa Fcrit)

Figure 10.1: Argument level: generating arguments based on a criticism theory.

1. Let ¢ be a sentence in L.

2. If map(p,~) holds, then ~ is a point of contact between the additional theory and

the main one.
3. Let T'¢pit Fepig v be an argument for « in I.p;.

4. Let I' be the corresponding set of sentences in £ obtained from I'.,;; according to

the mapping above; i.e. map(T, T ¢pit).

5. Then in the extended theory II' = IT U T it should be possible to derive an argu-

ment ' F ¢ for ¢ that is based on the corresponding argument for v in Il..;.

2 The relation map(yp,v) is said to hold between two formulae ¢, if (p,v) € map. Analogously,
map(T,T') holds between two sets of formulae if for every ¢ € T there exists v € I" such that
map(p,~), and vice-versa.

Notice that it is hard if not impossible to place any general constraints on the mapping
relation so that the process above is always guaranteed to give a corresponding argument
in the main theory. There is more in sharing inferences than just translating expres-
sions between logical systems (Corréa da Silva et al. 1999)—for instance, the inference
mechanisms of each systems need to be compatible. This is a difficult assumption to

make, but in our case this process is quite disciplined and regulated.

The reason why a criticism theory can provide points of attack to the theory is because
conditions in an attack-based revision schemata may involve the generation of arguments
from this theory as a way of instantiating certain elements in a schema. While Figure
10.1 gives the general intuition behind mapping arguments from one theory to another,
exactly which axioms are added or altered in the theory are defined within a schema
by using the sorts of methods discussed in the previous part. In this way, the mapping
relation above can be viewed as a special type of revision schema that depends on
external theories to be instantiated. It becomes more a mapping of concepts than of
inferences, and whether the intended argument can then be generated is ensured by the

properties associated to each schema as discussed in Chapter 7.

Finally, the last type of component in our architecture accounts for the notion of prior-

ities and preferences between arguments.

10.3 The Control Module

In human argument it is often the case that extra information is applied to control the
generation of arguments, for instance when preferences are used for deciding between
conflicting arguments (Prakken and Sartor 1997; Simari and Loui 1992; Brewka 1996;
Amgoud and Cayrol 1998). Remember that our definition of attack® already incor-
porates the notion of preference between arguments (and which could be checked by
associated properties during the argumentation), although throughout Part II it was

assumed that every argument had equal strength.

The role of the control module is to define comparative and prioritisation measures for

arguments, and also to specify criteria based on these measures for choosing stronger

3 See Definition 4.4 in Chapter 4.

186

CHAPTER 10. A GENERAL ARCHITECTURE 187

arguments, or for adjudicating between conflicting arguments. Of course criteria for
deciding whether arguments are preferred may not always exist, but if they do they are
likely to be domain-specific (Carbogim et al. 2000b; Konolige 1988; Prakken and Sartor
1997).

There are many ways one can capture the notion of comparative measure between argu-
ments, such as defining a strict partial ordering on the set of defeasible rules (Prakken
and Sartor 1997), or adopting the specificity principle (Simari and Loui 1992). But the
control module also allows other types of prioritisation based on the individual strength
of arguments, which could be done in different ways, e.g. by prioritising consequences
in the theory or by prioritising arguments from the criticism theory. Notice that the
study of preferences is a subject in itself, and the focus on this thesis has been more on
the structure of arguments. In any case, Section 11.4 briefly discusses the possibilities

for prioritisation in this architecture.

So as to allow adaptation separately from the rest of the framework, we characterise the
control module as a meta-level component which treats theory and/or criticism theory as
sources of information and propagates priority measures through them accordingly. This
architecture—sketched in Figure 10.2—is similar to the type of layered meta-interpreter
described in (Yalcinalp and Sterling 1991; Sterling and Shapiro 1994), and is useful for
separating the parts dealing with priorities from those dealing with the structure of the

arguments.

"PRIORITY LEVEL ~ / ‘\ :
................. I........................ e e e e e e

Figure 10.2: Architecture overview: interactions between the control module and the
theories in the argument level are of a different nature than those between theory and
criticism theory, and thus are represented by dashed arrows rather than by the solid
arrows depicted in Figure 10.1.

Definition 10.3 (Control Module) Given a logical system (L',F') the control mod-
ule defines a priority measure on L' and a mechanism for propagating these measures

on top of the argument generation mechanism . O

This three-component architecture extends the formalism presented in Part IT in order
to account for external instantiation mechanisms and for attacks based on priorities and
preferences. Defining these separately allows for different strategies to be used in each
of them, which can be useful for understanding even more of the dynamics in argument.
Together with the library of possible argument schemata, this architecture can derive
and compare the arguments and attacks that will be needed for generating dynamic
arguments® by the sorts of mechanisms explored in the previous part (and outlined
in Figure 7.1). As before, attacks allow changes to be made to the theory, but now
these can be based on preference criteria for comparing arguments, priority measures
for qualifying attacks, and on reasoned criticism arguments with the source of these

criticisms explicitly defined.

This is a quite generic and unrestricted description so as to allow many possibilities
for instantiation. This thesis in particular explores such possibilities in two different
domains, namely safety-engineering in Chapter 11, and agent negotiation in Chapter

12.

* As discussed in Section 9.1, this is similar to the Argument Generation Unit in (Dung 1995).

188

Chapter 11

orked Example: Instantiating
the Architecture

In Section 3.4 we briefly discussed the importance of safety arguments in safety-critical
domain. Now this chapter looks at how the architecture proposed in Chapter 10 can be
instantiated to describe certain relations in examples taken from the safety-engineering
community, and whether dynamic arguments can support the design and development of
models, being used as part of safety cases for supporting that the design of the proposed
system is acceptably safe (Krause et al. 1997; Gurr 1997).

More specifically, we consider the safety argument in Sections 2.1.1 and 9.5 in which
fault tree analysis was used as a source of possible arguments against the safety of a
pressure tank control system, guiding the revision of a system model in order to increase
its acceptability with respect to known faults (Vesely et al. 1981). The following sec-
tions describe exactly how this example can be modelled in our dynamic argumentation
framework, derived from the existing implementation of the system. This is done in two

steps:
e first, we define the three components of the architecture as described in Chapter
10, namely a theory, a criticism theory, and a control module;

e second, we instantiate the mechanism for generating dynamic arguments discussed

in Part II by defining a suitable library of domain-specific revision schemata.

The implementation described in Chapter 8 is then used to automatically generate

189

< g OUTLET
VALVE

PRESSURE|__] []
SWITCH S

1
T l]_ -
SWITCH
S1

PRESSURE
TANK

FROM RESERVOIR

Figure 11.1: A pressure tank system (see Figure 2.2).

dynamic arguments about the pressure tank system being operational, and produces
acceptable theories—in this case, models of the system—if all attacks based on the
defined revisions and on the fault theory are successfully dismissed.!

11.1 Instantiating the Architecture in a Safety Domain

We start by defining the components in the architecture. For the sake of clarity here
we just refer to fragments of the instantiation. The complete architecture definition in

Prolog as used in the implementation for this example is described in Appendix E.

11.1.1 The Theory: The Pressure Tank Model

In this case, the theory—i.e. the object about which we argue—is the model of the
pressure tank system in Figure 2.2 (reproduced here in Figure 11.1). The following is

one way to express this model in terms of a Horn clause resolution-based system.

! See Definition 4.7 of a dynamic argument.

190

CHAPTER 11. WORKED EXAMPLE 191

on-motor(T) A not_full(T)
off -motor(T) A pressurised(T)
on_motor(T) A pressurised(T)

operational _tank(
operational _tank(
not_operational _tank(
(
(

3333333
Tt

on_motor closed(relay(k2),T)
off -motor open(relay(k2),T)
closed (relay(K) energised(relay (K),T)
open(relay (K), deenergised(relay(K),T)

As in Section 9.5, here we adopt a simplified version of the pressure tank model, where
energised / deenergised and pressurised /not_full are observable predicates in the sense
that they are given as facts in the theory. For instance, assume that at time 60 the tank

is observed to be pressurised, and relay k2 deenergised:?

pressurised(60) < true
deenergised(relay(k2), 60) < true

In our implementation, we use the expression main(T) as a way to identify the main
theory T in the architecture. If (£, F) is the underlying logical system, then expressions
theory (T, 11) and provability (T, P) are used to define the set of axioms IT corresponding
to the initial theory in £, and a predicate P for generating arguments based on the

provability relation F. In this example, this is instantiated in Prolog as follows:

main(ptmodel).
provability(ptmodel, solve).
theory(ptmodel, TInit).

where:

e TInit is the list of axioms above defining the functioning of the system, corre-

sponding to the axioms in II, and

e solve is a meta-interpreter that gives an argument for a sentence from a list of

axioms according to resolution-based proof rules.

Remember that in our Prolog implementation we represent sets of axioms as lists. For
ease of reference in our discussion we associate a number with each axiom. TInit is

then represented as follows:

2 The specification in Appendix E is more complex because it models the behaviour of relays and
the pressurisation of the tank in terms of the behaviour of the other components and the given
pressurisation time.

1 operational_tank(T) <+ on_-motor(T) A not_full(T)

2 operational_tank(T) < off -motor(T) A pressurised(T)
3 not_operational _tank(T) < on_motor(T) A pressurised(T)
4 on_motor(T) < closed(relay(k2),T)

5 off -motor(T) <« open(relay(k2),T)

6 closed(relay(K),T) <+ energised(relay(K),T)

7 open(relay(K),T) <+ deenergised(relay(K),T)

8 pressurised(60) < true

9 deenergised(relay(k2),60) <« true

11.1.2 The Criticism Theory: The Fault Tree Model

A candidate theory for a criticism theory is the fault tree model associated with the
system. As discussed in Section 2.1.1 a fault tree is a model of the faults that can lead
to an unsafe event in a system, and which is defined separately from the system model
itself. Fault trees are basically composed of and- and or-gates, and therefore can be
easily expressed in a declarative way in terms of Horn clauses. Figure 11.2 gives the
basic fault tree for the pressure tank system in Figure 11.1 as described in (Vesely et al.

1981).

E1l top event (tank rupture after the start of pumping)
E2, E3, E4, E5 intermediate fault events

R primary failure of timer relay

S primary failure of pressure switch

S1 primary failure of switch S1

K1 primary failure of relay K1

K2 primary failure of relay K2

T primary failure of pressure tank

Figure 11.2: Basic fault tree for the pressure tank example: circles denote basic events
(faults) that require no further development, whereas boxes denote intermediate events
in which a fault occurs because of one or more antecedent causes acting through logic
gates. Or-gates and and-gates are represented by + and -, respectively.

The following is a fragment of this fault tree model represented here in our declarative
style. The top event—denoted here by tank_rupture—occurs if the pump continuously

operates for more than 60 seconds, which may happen if relay £2 contacts fail to open

192

CHAPTER 11. WORKED EXAMPLE 193

after this time interval.

1 tank_rupture < continuous_pump_operation
2 continuous_pump_operation < primary_failure(relay(k2))

Let the underlying criticism language L..; be a Horn clause based language, and t-.,;; be
an abductive provability relation. We define a set of abducibles that correspond to the
basic events in the fault tree, and arguments for tank _rupture are based on assumptions

abductively selected from this set. For instance:

{primary_failure(relay (k2))} - crir tank_rupture

Note that identifying minimal cut sets in fault trees—i.e. the combination of failures
leading to system fault—is equivalent to applying abduction with minimality constraints
to the corresponding declarative model. Hence F.;; differs from the deductive inference

used to determine consequences within the theory.

In our implementation, we use the expression crit(T,) as a way to identify a criticism
theory T, in the architecture. Analogously as in the case above, we use expressions
theory (Te, 1 ¢piy) and provability (T,, P.) to define the set of axioms II..;; corresponding
to this criticism theory in L., and a predicate P. for generating arguments based on
the provability relation F..;;. The sort of fault tree based reasoning above can then be

characterised in Prolog as follows:

crit(ftree).
provability(ftree, solve_abd).
theory (ftree, TCrit).

where:

e TCrit is a list of axioms defining the fault tree model, corresponding to the axioms
in I, and
e solve_abd is an abductive meta-interpreter for these axioms.

Figure 11.3 illustrates the argumentation process for generating attacks based on a

criticism theory for this particular safety argument. II and Il..; are fragments of the

map(not_operational_tank(T), tank_rupture)

II Merie
operational_tank(T) <+ tank_rupture «

on_motor(T) A not_full(T) continuous_pump_operation

operational_tank(T) <+

continuous_pump_operation <—
of f-motor(T) A pressurised(T) pump-op

primary_failure(relay(k2))
not_operational_tank(T) «
on_motor(T) A pressurised(T)

on_motor(T) +
closed(relay(k2),T)

of f-motor(T) +
open(relay(k2), T)

closed(relay(K),T) +
energised(relay(K), T)

open(relay(K),T) +
deenergised(relay(K), T)

deenergised(relay(k2), 60)
pressurised(60)

conflict(operational_tank(T),
not_operational_tank(T))

' closed(relay(k2), T) «+ |

L _open(relay®2), 1) L N

map(closed(relay(K),T) + open(relay(K),T), primary_failure(relay(K)))

Figure 11.3: Generating attacks to the pressure tank model based on the fault theory.

pressure tank system model and the associated fault tree model, respectively. From the
argument for tank_rupture in Il..; which is based on the primary failure of relay £2, we
add to the theory the axiom closed(relay(k2),T) < open(relay(k2),T) for representing
this type of failure—mnamely, k2 is closed when it should be open. Using this premise
we can derive an argument for not_operational_tank(60) which attacks the argument

for operational tank(60) in II.

To illustrate why we cannot flatten all of this into a single theory, as we would have to
do if we followed the approach described in the Abstract Argumentation Framework,>
consider the example in Figure 11.4. If we interpret mappings m; and ms in (a) as
implications, then we merge the theories as in (b). But then we do not have a means
of driving the non-monotonic revisions to the argument, since we do not know that the
fault structure is tested differently from the rest (hence we do not know where to apply

abduction).

Recall that mappings between the theory and a criticism theory can be specified as

3 See Sections 3.1.4 and 9.5.

194

CHAPTER 11. WORKED EXAMPLE 195

1T mi Meri E
L —
c1 c2.7] TACF mig
c1 c2

Y Fc Fd
A B Cw_ |

Py A B Ce—F Fd
(€) (b)

Figure 11.4: Our proposal (a) and the flattened equivalent (b).

argument schemata. The mapping above, for instance, corresponds to an operation for
adding a substantiated clause based on arguments generated from the fault theory. The
fault theory gives exactly which components can be validly instantiated in the domain-
specific schema below so that, if they fail, they should lead to a system fault. Notice
that this schema is obtained from the general schema for adding substantiated clauses

(see Section C.2.2) in a similar way as described in Section 8.3.

Domain-specific Schema PRIMARY FAILURE OF ACTIVE COMPONENTS: 1 = 2 = 3 =

6=9=14
in(operational _tank(T), A, 1),
add(substantiated _rule(P)), revise(IL, {},{P} U A’ II'),
in(not_operational_tank(T), A’ TT')
Properties: supports(A’, not_operational_tank(T) : in, TI'),
P ‘ satisfiable(on_motor(T) A pressurised(T), TTU A")
Conditions: operational_tank(T) : in € Ga,

not_operational tank(T), on_motor(T) A pressurised(T) € L,
P = not-_operational_tank(T) < on_motor(T) A pressurised(T),
gen_argument(ftree, tank_rupture, Acqit),
A" = {closed(C,T) + open(C,T) |

primary_failure(C) € A rit, type(C) # tank}

such that arguments are generated via the corresponding meta-interpreter solve_abd:

gen_argument (ftree, X, A) :-
theory(ftree, TCrit),
solve_abd (X, A, TCrit).

An interesting point to make about this schema is that it is not fundamental (i.e. trivial,

elementary or updating) like most schemata discussed so far. Apart from the clause for

N ouTLET
VALVE

— [PressuRe
SWITCHS

PRESSURE
TANK

FROM RESERVOIR —— \—/

Figure 11.5: Generating attacks to models based on fault theories.

deriving not_operational _tank(T)—which is the clause intended to be substantiated—
we need to add the axioms in A’ so as to substantiate it. In fact, remember from
Section 7.3.5 that more complex operations can be defined by expanding the sets R and
A in a way that the associated properties still hold.* The only adaptation is that any
properties involving the original theory II should consider also the eztra axioms—e.g.
in the schema above rather than checking that the body of the main clause is satisfiable
in IT we need to check that it is satisfiable in II U A’, so that P can in fact give the
intended argument in I’ = ITU A" U {P}.5

The last two conditions in the schema give exactly what extra axioms should be added
based on the criticism argument for tank_rupture. The reason why we disregard the
possible primary failure of the tank itself is because, according to standard techniques
for fault tree evaluation, the tank is a passive component (Vesely et al. 1981, p. VIII-12)

rather than an active component such as a relay or a switch.

* Recall from Definition 4.5 that a structural revision operation is characterised by a pair (R,.A) of
sets of axioms.

® Note that the axiom P in schema PRIMARY FAILURE OF ACTIVE COMPONENT is already in
the theory. Although theories are implemented as lists they are supposed to behave like sets, so
the addition of a new element which is equivalent to an existing one does not create a duplicate
(equivalent) entry in the list.

196

CHAPTER 11. WORKED EXAMPLE 197

11.1.3 The Control Module

There are various types of results that can be obtained from fault tree evaluation tech-
niques, including determination of minimal cut sets, numerical probabilities associated
with these sets, and quantitative and qualitative rankings of contribution to system
failures (e.g. according to the size of each minimal cut set). That means that there
are also various ways of prioritising the attacks which are based on these subsets of

assumptions from the fault tree model.

One way for instance is by assigning probabilities to the basic events and propagating
these through the fault tree model according to the laws of probability theory. We can
estimate the probability of the top event being derived from an argument and the criteria
for deciding whether this argument defeats a safe argument from the theory is based
on the analysis of this probability. For instance, this can be compared to a threshold
importance value, under which attacks based on the argument can be disregarded. That
means that not every combination of events leading to the top event needs to trigger a
revision in the model so as to generate an attacking argument; i.e. an attack is relevant
enough to be a concern if the probability of the minimal cut set on which it is based is
not acceptable for safety standards. This closely resembles the method of analysis for

fault tolerance used in practice, as described in (Vesely et al. 1981).

As discussed in Chapter 10, we characterise this sort of prioritisation by layered meta-
interpreters so as to propagate priority measures on top of the generation of arguments.
In our representation, the expression filter(P;, P;) denotes that the meta-interpreter
P; treats the definition of meta-interpreter P; for argument generation as a source of

information. In this example, the expression below:
filter(solve_abd, solve_filter).

states that solve_filter considers the probabilities assigned to basic events and propa-
gates these appropriately as arguments are constructed by solve_abd, thus filtering the
arguments that are strong or relevant enough and hence allowed to be advanced as at-
tacks. The predicate solve_filter (rather than solve_abd) is used to generate prioritised

arguments from the fault tree model:

gen_argument (ftree, X, A) :-
theory(ftree, TCrit),
solve_filter(solve_abd(X, A, TCrit)).

This is one way of prioritising arguments in the control module; others are discussed in

Section 11.4.

11.2 Generating Dynamic Arguments

With the architecture components defined in this way, we can then use the mechanisms
discussed in Part II to generate dynamic arguments in this domain. Note, though,
that with only one type of schema—namely PRIMARY FAILURE OF ACTIVE COMPONENTS—
arguments can just introduce faults to the model. But as discussed in Section 9.5, it is
important to allow adaptation of the model. One might say that the base model of the
system—i.e. the initial model—satisfies all points of attack given by the corresponding
fault tree, although only the attacks that are strong enough (according to the prioriti-
sation definition) can in fact be advanced. In these cases, we should try to dismiss these

attacks by making appropriate changes to the structure of the model.

However, the current specification does not give any means for that. Even if we consider
trivial schemata, there are no alternative arguments for operational_tank, and in any
case these would not be enough to raise the confidence that the system is acceptably
safe. To reinstate a particular conclusion after it has been attacked we need to perform
some action to change the theory such that this attacking argument can no longer be
derived. This is illustrated in Section 2.1.1, where a parallel relay was introduced to
improve system safety. One way to undermine the argument based on the failure of k2,
and thus to considerably improve system safety, is by adding some redundancy to the

system (i.e. another relay in parallel to £2).

What it means for a new relay to be added in parallel to an existing relay is that
the new relay must have the same behaviour as the original one. Moreover, if some
conclusion depended on the original relay being open, the same conclusion depends on
the new relay being open (only one relay being open is sufficient to derive it). In terms

of the model, we can duplicate the clauses defining the behaviour of the original relay in

198

CHAPTER 11. WORKED EXAMPLE 199

order to define the behaviour of the new relay (whether and when its contacts are open
or closed), as well as those clauses in which the preconditions involve the original relay
being open. Once we add a redundant relay, if some conclusion depended on the original
relay being closed, it now depends on both relays being closed, and this is the clause in
the model that needs to be elaborated in order to block certain undesired conclusions.
This could be captured by the complex (i.e. non fundamental) domain-specific schema
below for adding a redundant relay, obtained from the general schema for elaborating

a rule (see Section C.5.1) in a similar way as described in Section 8.3.°

Domain-specific Schema REDUNDANCY OF RELAY: 1 =2 =3=5=12= 20

n(X, A1),
retract (elaboration(P)), add(elaboration(P")), revise(IL, {P},{P'} U A" TI'),
out(X, A, IT')

Properties: unify(X, H),

supports (A, X : out, '),
—satisfiable(Bo, 1 U A")

Conditions: X :in € G4,
closed(relay(R),T) < open(relay(R),T) € A,
P=H < B A..AB,, € A,
B; = closed(relay(R),T),
new _component_id(R1),
B = closed(relay(R:1),T) € L,
PP=H<+ B A.. N\BiABAB;i1 A...\Bp,
o = mgu(X, H),
A" ={Pi(r/r, | P €11, P, # P}

Thus, just because we are adopting an architecture that allows instantiation from ex-
ternal sources it is not strictly necessary for all schemata to be instantiated in that
way. Schemata like the one above suggest general ways for adapting models according
to known faults that have been introduced to the model deliberately. They can then be
applied to other arguments, thus producing alternatives for design based on the initial
model. These can vary, for instance, according to different measures of prioritisation
(i.e. which combination of events can be safely dismissed) and also to the ordering
in which arguments have been generated (e.g. adding a redundant component might

block other attacks from being supported based on the fault tree). Once a dynamic

6 As defined in Appendix A, Fir, /1, denotes the formula obtained from a formula F' by replacing every
occurrence of the term T4 by the term T5.

argumentation process is over—i.e. once every minimal cut set has been dismissed—we
may have produced an alternative, more elaborated model. Once again, one may want

to consider the fault tree model for the new structured system and rerun the process.

11.3 A Dynamic Argument in the Safety Domain

Now that the architecture and a catalogue @ of attack-based revision schemata have
been specified, the system in Section 8.1.2 can be used to generate dynamic arguments

in an automated form.

Let TInit be the theory in Section 11.1.1, and @ be:
{PRIMARY FAILURE OF ACTIVE COMPONENTS, REDUNDANCY OF RELAY }.

Assume also that the threshold importance value is set e.g. to 0.1, meaning that an
attack based on the fault tree model (criticism theory) can only be advanced if the
corresponding minimal cut set contributes in more than 10% to the probability of the
top event being derived.” Below we present a dynamic argument process about the
tank being operational as generated by our implementation, in the same format as the

aflatoxin argument in Section 8.2.

According to Definition 4.7, the first argument to be advanced is a justification sup-
porting the main claim that the pressure tank system is operational, for instance, at

time 60.

Argument Ag is a justification for operational_tank(60).

operational _tank(60)

/\

off_motor(60) pressurised(60)

open(relay(k2), 60)

deenergised(relay(k2), 60)

" The relative quantitative importance of minimal cut sets is obtained by taking the ratio of the minimal
cut set probability to the total system probability (Vesely et al. 1981).

200

CHAPTER 11. WORKED EXAMPLE 201

Revision ¢; is obtained from schema PRIMARY FAILURE OF ACTIVE COMPONENTS, and
from the argument for tank_rupture in the fault tree model which is based on
{primary_failure(relay (k2))}. As described by Vesely et al. (1981), the relative
quantitative importance of this minimal cut set is 86%, and hence above the

stipulated threshold.

In this way,

not_operational _tank(T) <
on_motor(T) A pressurised(T),
o1 : add(substantiated_rule)
closed(relay(k2),T) +
open(relay(k2),T)
is an attack-based revision that can be used to construct an argument for jus-
tifying that the system is not operational at time 60. Moreover, the properties
accumulated during the instantiation can ensure that the generated argument in

fact supports that not_operational_tank(60) : in.

Argument A; is a justification for not_operational_tank (60).

not_operational _tank(60)
on_motor(60) pressurised(60)

closed(relay(k2), 60)

open(relay(k2), 60)

deenergised(relay(k2), 60)

Revision ¢y adapts the model via schema REDUNDANCY OF RELAY, adding a new relay

k2" in parallel to k2 in order to refute the claim that the motor is on at time 60.

In this way,
] . on_motor(T)
¢4 : retract(elaboration (closed(relay(k2), T)))
and
on_motor(T) +
closed(relay(k2),T) A closed(relay(k2'),T),
add(elaboration)

deenergised (relay(k2'),60) < true,
off _-motor(T) <+ open(relay(k2'),T)

is an attack-based revision that that refutes argument A;.

Argument Ay is a refutation of on_motor(60).

on_motor (60)

-
-
-

-

closed(relay(k2), 60)

open(relay(k2), 60)

deenergised(relay(k2), 60)

At this point no other attack can be generated such that the claim operational_tank(60)
becomes unsubstantiated. The revised theory below is said to be acceptable with respect

to the faults in the fault tree model.

1 operational_tank(T) < on_motor(T) A not_full(T)

2 operational_tank(T) <+ off -motor(T) A pressurised(T)
3 not_operational_tank(T) <+ on_-motor(T) A pressurised(T)
4 on_motor(T) < closed(relay(k2),T) A closed(relay(k2'),T)
5 off .-motor(T) < open(relay(k2),T)

6 closed(relay(K),T) <+ energised(relay(K),T)

7 open(relay(K),T) <+ deenergised(relay(K),T)

8 pressurised(60) < true

9 deenergised(relay(k2), 60) <+ true

10 closed(relay(k2),T) <« open(relay(k2),T)

11 deenergised(relay(k2'), 60) < true

12 off -motor(T) <+ open(relay(k2'),T)

In a nutshell, there are two advantages in defining dynamic argument systems based on
this architecture: one is because we allow external sources of criticism to be represented;
the second is to allow modular representation of priorities. This separation is interesting
because it allows, for instance, different inferences to be used and different strategies of
prioritisation to be tested. Now that we have seen an example of argument prioritisation,
the next section discusses some of the uses of priorities in the generation and selection

of arguments within our architecture.

11.4 Argument Prioritisation in the Architecture

As mentioned in Chapter 4 and illustrated in Section 11.1.3, the use of defeat and
prioritisation criteria to represent that certain arguments may be preferred over others

is an important element in the generation and development of argumentation processes.

202

CHAPTER 11. WORKED EXAMPLE 203

The issue of preferences in argumentation has been extensively studied in the literature,
and various frameworks for dealing explicitly with priorities and with how preference
relations can be integrated into argumentation systems have been proposed (Amgoud

and Cayrol 1998; Prakken and Sartor 1997; Brewka 1996; Vreeswijk 1993; Grosof 1997).

In general, prioritisation of arguments involve the aggregation of preference criteria given
some precedence ordering. Very often it is assumed that a partial—i.e. transitive—
ordering between arguments (or between axioms in the knowledge base) exist, based
on which the notion of defeat is defined and conflicts are resolved. Examples of pri-
oritisation criteria are the specificity principle, reliability of sources, or yet temporal

precedence of arguments or axioms.

This section does not present a general account of priorities in argumentation, nor it
proposes a specific representation for it (which is likely to be domain-specific, as dis-
cussed earlier in this thesis). Priorities and preferences are not a main part of this
thesis, but it is interesting to note that our architecture also allows for prioritisation of
individual arguments as a way of measuring the quality of these arguments, thus block-
ing some from being advanced and reducing the space of possible dynamic arguments.
Most existing systems only consider preferences as a way of comparing two (conflicting)

arguments.

Hence, given that up to this point we have presented details of a dynamic argument
generator, various worked examples and an architecture for dynamic argument systems,
we now briefly discuss suitable prioritisation representations linked to our applications,
looking at some of the possibilities for priority handling within the architecture pro-
posed in Chapter 10. For instance, the example above described a way to prioritise
arguments generated from a fault theory in a safety-critical domain. This is one type
of prioritisation which involves the filtering of arguments according to some relevance

criterion, and which is discussed in Section 11.4.1.

Another possibility for prioritisation in our architecture, involving the primary compar-
ison of arguments, is discussed in Section 11.4.2. Finally, Section 14.2.2 addresses some

related issues in connection with the selection of arguments to be advanced.

11.4.1 Priority Criteria for Generating Arguments

This sort of prioritisation concerns the generation of individual arguments, and hence
can be applied both to arguments generated in the main theory as well as to arguments
generated in a criticism theory. Essentially, it is about the quality of the arguments.
As described in Section 11.1.3, given a provability relation for argument generation—
either in the theory or in a criticism theory—we can define a layered meta-interpreter
that uses the definition of the first to propagate certain priority measures as arguments
are generated, filtering those arguments that satisfy some threshold condition given
some precedence ordering. In the example in Section 11.1.3, this was related to the

quantitative contribution of minimal cut sets to system failure.

Hcrit Hcrit + filter

IT any generated argument is | prioritise criticism
relevant

IT + filter | prioritise consequences in | prioritise criticism and pri-
the theory oritise consequences in the
theory

Figure 11.6: Prioritisation in the generation of individual arguments.

Table 11.6 summarises the possibilities for prioritisation of argument generation in our
architecture. The fault tree example for instance fits in the top-right box. Notice that
this has nothing to do with checking whether the property supports holds or not. In
that case, arguments may not be advanced because they have already been considered
in the process. Here arguments may be blocked because they are not relevant enough,

or good enough, in the domain.

11.4.2 Preference Relations for Comparing Arguments

Another possibility is to use priorities to block arguments from being advanced not
because they are not relevant enough per se, but because they are not strong enough

to defeat some conflicting argument. This sort of prioritisation does not occur in the

204

CHAPTER 11. WORKED EXAMPLE 205

context of generating individual arguments, but in the context of attacks and conflicts
during the argumentation process. Hence, it only occurs within the main theory, when
an attack of the form in ~» in is advanced. If no prioritisation of this sort is defined, then
no argument is preferred over any other (remember that this is the basic assumption

we adopted throughout Part IT of this thesis).

Comparative measures between conflicting arguments in the main theory can also be
defined in the same layered style, in which a meta-interpreter is used on top of the
argument generator to propagate some preference measure. But in this case, rather than
comparing the conclusive force of one argument to some threshold value, the preference
mechanism compares the relative force of two conflicting arguments. A meta-interpreter
for argument comparison again uses the definition of the provability relation in the main
theory to propagate certain preference measures according to the argument structure,
taking as input any two arguments which can then be compared according to some

precedence ordering.

Notice that we may have different criteria for argument filtering (e.g. we may only
consider to be relevant those arguments involving less than five inference steps) and
argument comparison (e.g. we may decide between two conflicting arguments, both
consisting of less than five inference steps, by analysing their conclusive force based on

an explicit partial order on the axioms in the underlying theory).

Chapter 12

Relating Argument Dynamics to
a Multi-Agent Problem

Another potential area of application of dynamic arguments is that of negotiation be-
tween autonomous agents,' in which agents must come to a mutually acceptable agree-
ment about some matter (Parsons and Jennings 1997; Parsons et al. 1998; Sierra et al.
1997b). In fact, Jennings et al. (1998) have characterised three general topics in research
in negotiation, namely negotiation protocols, agreement objects and agents’ strategies.
The first focuses on defining the rules of the game, such as the types of participants,
the possible negotiation states and valid actions of each participant in each state. The
second is about specifying the range of negotiable issues—e.g. price, delivery date,
quality—over which agreement is to be reached. Finally, the last is concerned with the

agents’ decision making strategies, and is often shaped by the first two.

The difference in focus between negotiation protocols and agreement objects is similar
to the sort of distinction between protocol- and object-based argumentation discussed
in Sections 3.3.3 and 3.3.4. Remember that we can emphasise different aspects of the
process depending on what we want to formalise. On the one hand, emphasis is on
communication between agents, and on defining protocols for exchanging messages con-
taining proposals and counter-proposals, and for deciding which conclusion is acceptable
to every agent involved. On the other hand, though, emphasis is on the structure of
the agreement rather than on communication and exchange of messages. This is about

negotiating complex terms and conditions of a proposed deal/agreement, and adjusting

! See discussion in Sections 2.1.2 and 3.3.

207

the terms of such agreements based on reasoned arguments by the agents involved.

Because the focus on argument dynamics is on the development of an object, we found
that the particular problem of forming contracts between negotiating agents conforms
to a style of reasoning similar to that of generating dynamic argument. This chapter
describes a way to instantiate a system from the general architecture in Chapter 10 for

generating arguments in this domain.

12.1 Contract-based Negotiation

Work on contracts is not new. Sierra et al. (1997a) proposed a model of negotiation
based on contracts that are represented as collections of issues (variables) whose values
need to be set. Through negotiation, an agent proposes values within its acceptable

range until an assignment of values suiting every participant is obtained.

Although contracts are essentially collections of negotiable issues, some approaches focus
less on the process of assigning acceptable values to negotiables than on structuring these
in terms of logical rules. In the logic-programming community, for instance, Daskalopulu
and Sergot (1997) have investigated the use of logic-based (automated) tools supporting
the analysis and representation of legal contracts in large-scale, long-term engineering
trading agreements. These are substantially more complex than sales of goods contracts.
Reeves et al. (1999, 2000) also propose a way for representing contracts as courteous
logic programs (Grosof 1997). The idea is to have a declarative description of the
specification of a contract, and then generate final, executable contracts via automatic

configuration for different types of auctions.

In our model of contract-based negotiation? we also consider contracts to be sets of
logical rules which can, via dynamic argumentation processes, be adjusted based on
reasoned arguments by the agents involved in the agreement. By adjusting we mean not
only changing the values associated with negotiable issues, but also the structure of the

corresponding rules and hence the relations between negotiables.

2 The model we present in this chapter was initially proposed in (Carbogim and Robertson 1999).

208

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 209

12.1.1 Contract-based Negotiation as Dynamic Argumentation

The worked example in this chapter is based on the model for contract-based negoti-
ation described in Section 2.1.2. Remember that contracts are objects which regulate
agreements between two autonomous agents—a consumer and a producer—about the
supply of a particular product (or service). The purpose of contract-based negotiation
is to adjust the terms of this agreement so that it is acceptable for both parties involved.
We assume that only two parties are involved in the negotiation, although an agent may
also be involved in other different processes simultaneously, even playing distinct roles

in distinct processes (e.g. being a producer in some contexts and a consumer in others).

The process of contract-based negotiation starts when one of the parties proposes a
binding contract to regulate some agreement between producer and consumer. We can
assume that the producer makes this first proposal (e.g. upon previous request from
the consumer). This contract is now the object of negotiation between the parties and is

represented as a set of formulae stating the conditions for accomplishing the agreement.

The consumer receives the contract from the producer and analyses it. If it agrees with
the clauses, then the process of negotiation is over. But if the consumer has reasons
to believe that this particular contract will not be successfully completed, it sends
the contract back to the producer with the appropriate criticisms. The producer then
tries to adapt some of the clauses in that particular contract in order to make it more
acceptable, sending it back again to the consumer for further analysis. The process of
adjusting the contract continues until there are no more criticisms (i.e. it is acceptable

for both producer and consumer) or until one of the parties withdraws.

12.1.2 A Simple Language for Contracts

This section describes the basic scenario we use to develop our ideas on how negotiation
relates to dynamic argumentation, and a simple specification language used to represent

contracts in this scenario. In particular, we consider two types of agents:

Producers. The term producer (X, P) denotes that agent X wants to sell product P.

Consumers. The term consumer(Y, P) denotes that agent Y wants to acquire P.

Agents
producer X
consumer Y

Agreement
agent X to supply product P to agent V

Contract
explicitly state the conditions for the agents to commit
to this agreement

Figure 12.1: Basic scenario for contract negotiation between producer and consumer.

If a producer X has agreed to supply product P to a consumer Y, then a contract-
based negotiation process is carried out by X and Y in order to adjust the clauses of
this agreement so that it is acceptable to both parties. This scenario is summarised in

Figure 12.1.

Being the producer, X proposes an initial contract to Y stating the conditions for success
of the arrangement between them. These conditions might include the appropriate
delivery of the product by X within the stipulated time, and the appropriate payment
for it by the consumer Y. The form of a generic contract clause is given below, assuming

an underlying Horn clause resolution-based system.

A contract between a producer X and a consumer Y for the supply of a product P is successfully
completed if all the agreed terms T4, ..., Ty, are fulfilled. Each term T;—such as for instance

quantity, delivery or payment— may depend on X,Y and P.

contract_completion(X,Y,P) <+ producer(X,P) A
consumer (Y, P) A
Julfill(Ty) A ... A fulfill(T)

For instance, the following is a possible instantiation of this general clause with two

contractual terms, namely delivery and payment.

A contract between a producer X and a consumer Y for the supply of a product P is successfully
completed if the agreed terms of delivery of P are fulfilled by X, and the agreed terms of payment
for P are fulfilled by Y .

210

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 211

contract_completion(X,Y,P) <« producer(X,P) A
consumer(Y, P) A
fulfill(delivery (X,Y, P)) A
fulfill(payment (Y, X, P))
The question now is how to determine whether a particular term has been fulfilled or
not. Terms in a contract usually specify values of negotiables and determine actions to
be taken. Fulfilment then depends on whether the result of implementing these terms

conforms to what is set by the contract-holders. For instance, we can say that payment

terms are fulfilled if the consumer pays for the amount specified in the contract.

A term T in a contract is fulfilled if the result of its implementation conforms to the

corresponding value V' set in the contract.

fulfill(T) <« set(T,V) A outcome(T,V)

Because it is impossible to predict the outcome of implementing certain conditions at
the time of contract definition, we assume by default that whatever conditions specified

in the contract will be implemented by the responsible agent accordingly.

outcome(T,V) <+ set(T,V)

As we will see in the following example, this is useful because it gives points of attack
and criticism within the contract. Contradictions arise when an agent argues that
some specified contractual clause should be implemented differently, hence yielding a
different outcome than the one initially indicated. In this way, it is possible to derive
contradictory claims based on distinct outcomes V and V' for the same contractual

term 7.

12.1.3 An Example of Contract Formation

If we adopt this representation, as well as a model of time based on integer time points
(for instance representing days), the following set of formulae specifies a contract be-

tween two agents a and b.

1 contract_completion(X,Y, P) <« producer(X,P) A
consumer (Y, P) A
fulfill(delivery(X,Y, P)) A
fulfill(payment (Y, X, P))

2 fulfill(T) <« set(T,V) A
outcome (T, V)
3 set(delivery(X,Y, P),D) <« production_time(X, P, D)
4 set(payment(Y,X,P),(V,std)) <« price(P,X,V)
5 outcome(T,V) <+ set(T,V)
6 producer(a,p) < true
7 consumer(b,p) <« true
8 production_time(a,p,14) <« true
9 price(p,a,10) <« true

For a contract to be acceptable to an agent, we mean that the main conclusion for
success—in this case contract_completion(a,b, p)—is substantiated, and that the agent
has no reason to attack it. We can say that the contract above is acceptable to agent a
because it is consistent with its internal theory (since a proposed it), and because from
this set of axioms we can derive a justification for contract_completion(a,b,p). In this
case, the contract is successfully completed if delivery terms are fulfilled—i.e. product
is delivered within two weeks— and also payment terms are fulfilled—i.e. the consumer

pays the stipulated price for the product, say 10.

As noted before, some of the possibilities for contradiction in this model have to do
with the value of the negotiables—in this case, there are three of them: the time for
delivery D of the product P by the producer X to the consumer Y; and the amount
V' to be payed by the consumer Y, as well as the form of payment (initially set for
std, i.e. standard 30-day payment). Hence expressions outcome(delivery(X,Y, P), D)
and outcome(delivery(X,Y, P),D") are contradictory if D and D' are instantiated to

different values.

At this point the producer a sends this contract to the consumer b, who investigates
within its internal theory whether some conflicting arguments can be derived. Note that
the consumer is not trying to block the conclusion in an strictly opponent fashion—b
too wants to establish the agreement. But because the contract was proposed by the
producer, we can just assume that it is acceptable to a but not necessarily to the

consumer b. For instance, b might want the product to be delivered at a different date,

212

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 213

one week earlier than what was initially proposed by the producer. The consumer then

adds the following clause to the contract.

outcome(delivery(a,b,p), D) +
production_time(a,p, D1) A
D is Dy —7
The clause above can be seen as a criticism to the initially proposed contract, as the con-
sumer can now derive a conflicting argument for outcome(delivery(a,b, p),14), namely

outcome(delivery(a, b, p), 7). Remember from Chapter 6 that this sort of attack causes

the main claim contract_completion(a,b, p) to become unsubstantiated.

The consumer b sends this version of the contract back to a, who tries to reconcile
the criticism with the original clauses by attempting to re-substantiate the conclusion
contract_completion. A new version of the contract features changes based on b criticism.
For example, a can accept b’s request for an earlier delivery by updating the conclusion
in the clause just introduced by b so that it is now used for specifying the new agreed
delivery time.
set(delivery(a, b, p), D)

production_time(a, p, D1) A

Dis Dy —7
The clause above specifically addresses the delivery of product p by a to b, as opposed to
the more generic formula proposed initially. This may still be valid in general, but here
we implement a sort of prioritisation based on recency allowing only the most recent

clause among the possible (unifying) definitions of set(T, V') to be used in a derivation.

But nothing comes without a price, so @ may introduce other changes to compensate
for this concession of delivering a product one week earlier than usual. For instance, a
may increase by 10% the amount to be charged for p.
set(payment (b, a,p), (V, std)) +

price(a,p, Vi) A

VisVi+01xP
After these changes a justification for contract_completion can again be derived, with
delivery set to an earlier date but at a higher cost. The producer sends this new version
of the contract back again to b, who can either agree with it or provide some more

reasoned criticism. Suppose that b still does not find this deal acceptable and asks for

a further discount of 15% on the value of the product. This is done by adding the
following clause to the contract, which suggests a smaller cost to be charged for p than

the one stipulated by a.

outcome(payment (b, a,p), (V, std)) <
price(a,p, Vi) A
Vois Vi +0.1 x Vi A
Vs Vo —0.15 x Va
Again there is a contradiction, and so contract_completion is once more unsubstantiated.
This time a can accept b’s request for a discount, but not without constraining the
payment form from standard 30-day to immediate.
set(payment (b, a,p), (V,imm)) «
price(a,p, Vi) A
Vois Vi +0.1 x Vi A
V is VQ —0.15 x VQ
The producer sends this contract again for b’s scrutiny. If b cannot find any more reasons
for not accomplishing the agreement successfully—e.g. b has no target requirements with
respect to payment form, and all other requirements with respect to delivery and price
have been met—then b agrees with the current proposal. The final binding contract
that sets the terms for the supply of p by a to b is then described below. Note that only
the more recent clauses defining each contractual term are kept, in accordance with the
sort of prioritisation mentioned above.
1 contract_completion(X,Y,P) <« producer(X,P) A
consumer (Y, P) A

fulfill(delivery(X,Y, P)) A
fulfill(payment (Y, X, P))

2 fulfill(T) <« set(T,V) A
outcome(T, V)
5 outcome(T,V) <+ set(T,V)
6 producer(a,p) < true
7 consumer(b,p) < true
8 production_time(a,p,14) <« true
9 price(p,a,10) <+ true
10 set(delivery(a,b,p), D) <« production_time(a,p, D1) A

Dis Dy -7
11 set(payment(b,a,p), (V,imm)) <« price(a,p, Vi) A

Vois Vi+01xVi A
Vs V2—0.15><V2

214

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-F-AGENT SCENARIO 215

This example illustrates the type of process in which we are interested in connection
with the problem of contract-based negotiation in multi-agent domains. The arguments
exchanged between the agents during this process are concerned primarily with what is
acceptable to each of them, and with how to adapt the contract so that these are taken

into consideration.

Next we discuss how to instantiate architecture in order to capture this process as a

dynamic argument generated by the mechanism described in Chapter 8.

12.2 Instantiating the Architecture in an Agent Scenario

This section describes how the example above can be modelled in our dynamic argu-
mentation framework, derived from the existing implementation of the system. Here
we define each component of the architecture as described in Chapter 10, as well as a
suitable library of domain-specific revision schemata. The implementation described in
Chapter 8 is then used to automatically generate dynamic arguments about the contract
being successfully completed, producing a mutually acceptable contract when all attacks

generated by the agents via the defined revisions have been appropriately dismissed.

12.2.1 The Theory: The Contract between Producer and Consumer

Let a,b be two autonomous agents—producer and consumer, respectively—negotiating
the terms of a contract regarding the supply of a particular product p. This contract
is represented by a theory II in the Horn clause resolution-based language described in
Section 12.1.2. This theory contains, in particular, a top-level goal specifying the terms

for the successful completion of the contract.

In this example, this is instantiated in Prolog style as follows:

main(contract).
provability(contract, solve).
theory(contract, TInit).

where TInit is the initial list of axioms given in Section 12.1.3, and solve is a meta-

interpreter for deriving arguments by means of resolution-based proof rules.

The adjustment of II is then guided by a dynamic argument about the successful com-
pletion of the contract—i.e. about contract_completion(a,b,p). Attacks are generated

by a and b; or, in this architecture, by the criticism theories.

12.2.2 The Criticism Theories: Producer and Consumer

One interesting aspect of this example is that it illustrates the uses of two criticism
theories in the architecture. Let II, and II, represent the internal theories of agents a
and b, respectively. Within each agent’s theory we assume that there is a module that
accounts for contract manipulation and negotiation which is based on some provability
relation. In particular, let I, CII,, II;, CII, be such subsets of agents a and b’s
internal theories. For the sake of clarity, we assume that the languages underlying II,
I1,, and II;, are equivalent, meaning that agents have agreed on a set of terms and
definitions to be used in contracts. However, we make no further assumptions about
agents’ theories, in particular about the way beliefs are represented or revised. In fact,
the rest of an agent’s theory does not even need to be logical, as illustrated in Figure

12.2.

Figure 12.2: Contract-based negotiation in the architecture.

In this process, the role of the criticism theory is played by the sub-theories or modules

I1,. and II;,. The question now is how to define these modules.

Devising a formalism for representing autonomous, negotiating agents is outside the
scope of this thesis. However, in order to experiment with our ideas and further inves-
tigate the relation between negotiation and dynamic argumentation, we have defined a
simple representation language for the agents’ contract manipulation module so that we
can capture the sort of argument given in the previous example. This domain-specific
language is essentially used to describe the range of acceptability for contractual terms

for the agents, and what possible adjustments and concessions could be made in each

216

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 217

case. Below we describe the terms used for specifying this for individual agents of each

type—namely, consumers and producers.

Consumers Remember that from a consumer’s perspective, the criticism theory al-
lows the generation of arguments for attacking the successful completion of the contract.

These attacks, as discussed in Section 12.1.3, are essentially rebuttal attacks of the form:

outcome(T, V) : in ~» outcome(T,V') : in

for different values V' and V' such that V' is better for b (e.g. cheaper). Arguments in
the criticism theory will then give possible acceptable values for contractual terms. The

role of consumers is then to make such proposals throughout the negotiation process.

In particular, the expression acceptable_value(T,V,NV') is used to obtain a new value
NYV for a contractual term T which is acceptable—or more acceptable—to the consumer
(as opposed to the current value V). The following clauses for instance define the

contract manipulation module for agent b in the example from Section 12.1.3.

1 acceptable_value(delivery(X,b,p),V,7) «
Diff is V. —T7>0A
reconcile(delivery(X,b,p),V — Diff)
2 acceptable_value(payment (b, X, p), (V,-), (V — 15%,-)) +
V> 10 A
reconcile(payment (b, X, p), (V — 15%, -))
The expression reconcile(T, V') suggests that V' should be incorporated to the corre-
sponding contractual clause for T', thus giving a new outcome for 7" which contradicts

the one previously derived.

Similar to the fault tree case, if we consider these expressions to be assumptions, then
we can use abduction to select which adjustments are needed in order to reconcile the
criticism with the original clauses in the contract. For instance, if we take L. to be a
Horn clause based language, and .4 to be an abductive provability relation, then the

following is an argument supporting the proposal of an earlier delivery for p:

{reconcile(delivery(a,b,p), 14 — 7)} kit acceptable(delivery(a, b, p), 14,7)

Note that the description of b’s contract manipulation module is characterised within
the architecture as follows:
crit(b).

provability(b, solve_abd).
theory (b, TCrit.b).

where TCrit_b is the list of axioms above and solve_abd is an abductive meta-interpreter

for these axioms.

Recall that mappings between a theory and a criticism theory can be specified as ar-
gument schemata—in this case, revisions are about adding a substantiated clause sup-

porting the consumer’s proposal of a conflicting outcome.

Domain-specific Schema PROPOSAL OF CONTRADICTORY OUTCOME BY CONSUMER: 1 =
2=3=6=9=14

in(outcome(T, V), A, II),
add(substantiated_rule(P)), revise(IL, {}, {P},II'),
in(outcome (T, V'), A", TI")

. supports(A’, outcome(T, V') : in, TI'),
Properties: { satisfiable(B, II)
Conditions: outcome(T,V) :in € Ga,

HBeL,
P=H<«B,

gen_argument (b, acceptable_value(T,V, V'), Ay),
reconcile(T, E) € A,

set(T, Var) < B' € A,

P’ = outcome(T, Var) + B',

adjust(P', E, P)

The term adjust(P’, E, P) denotes that P is obtained by adjusting the variables in
axiom P’ according to expression E. Also, remember that b’s arguments are generated
via the corresponding meta-interpreter solve_abd:

gen_argument (b, X, Ab) :-

theory(b, TCrit_b),
solve_abd(X, A_b, TCrit_b).

Producers From the point of view of the producer, the contract manipulation module

allows new contract versions to be generated, in which arguments can be derived so as to

218

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 219

reestablish the substantiated status of contract_completion. These attacks, as discussed

in the example 12.1.3, have the general form below:

contract_completion : out ~» contract_completion : in.

Producers need to decide whether it is possible or not to reconcile the consumer’s pro-
posal (of outcome V' for term T') with the original theory, and if so which other changes
should also be carried out. In particular, we use expression is_acceptable(T, V') not only
to verify whether a proposal for a contractual term is acceptable for the producer, but
also to (abductively) determine if other adjustments and conditions need to hold for V' to
become acceptable. The following clauses for instance define the contract manipulation
module for agent a in the example from Section 12.1.3.

1 is_acceptable(delivery(a,Y,p), D) <
production_time(a,p, D)

2 is_acceptable(delivery(a,Y,p), D) +
production_time(a,p, D1) A
D < D1 A
price(a,p,V) A
reconcile(payment(Y,a,p), (V + 10%, .))

3 is_acceptable(payment (Y, a,p), (V, std)) +
price(a,p, V')

4 is_acceptable(payment (Y, a,p), (V, std)) <

price(a,p, V1) A

V<VIA

reconcile(payment(Y,a,p), (-, imm))
Note that the logical system underlying this criticism theory is equivalent to the one
adopted by the consumer b: same language L., same abductive provability rela-
tion F.., and same set of abducibles—namely, the set of expressions of the form
reconcile(T, E). The description of a’s contract manipulation module is then char-
acterised within the architecture as follows:

crit(a).

provability(a, solve_abd).
theory(a, TCrit.a).

where TCrit_a is the list of axioms above and solve_abd is the abductive meta-interpreter

also used by b.

Thus to defend from the sorts of attacks put forward by a consumer, producers need to
adapt the clause supporting the contradictory proposal so that it is used to specify the
new agreed value for the contractual term in question. In this case changes are about
updating this clause by revising its conclusion. Abduction can indicate whether other
revisions need to be made—e.g. whether substantiated clauses need to be added so as

to reconcile other criticisms with the original axioms.

Domain-specific Schema COUNTER-PROPOSAL FOR CONTRACT COMPLETION BY PRO-
DUCER: 1 = 2=4="7=11 = 23
out(contract_completion(X,Y, Pr), A, 1I),

retract (misconclusion(P)), add(misconclusion(P')), revise(IL, {P},{P'} U A", IT'),
in(contract_completion(X,Y, Pr), A’ II')

. supports(A’, contract_completion(X, Y, Pr) : in,IT'),
P : .
roperties { satisfiable(B,TTU A")
Conditions: contract_completion(X,Y, Pr) : out € Ga,

contract_completion(X,Y, Pr) < B € II,
outcome(T, V') : in, outcome(T,V) : out € Ga,
gen_argument (a, is_acceptable(T, V'), A,),
P = outcome(T,E) < B’ € A,
H' = set(T, Var) € L,
P =H « B,
A" = {P; | reconcile(T;, E;) € Aq,
P} = set(T;, Var;) + B; er TTU {P'},
adjust(P}, E;, P;)}

Note that € corresponds to the usual set-membership € operator restricted to a recency
ordering R in the set (list) of axioms. That is, X € S selects the most recent element

in S that unifies with X.

12.2.3 The Control Module

With respect to preferences, priority measures could be defined from two perspectives.
On one hand, agents can have preferences based on utility functions, values (Fox and
Parsons 1998) or explicitly represented by means of a special meta-predicate (Sierra
et al. 1997b). These are specified within the agents theories and can be used to prioritise

criticisms.

220

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-AGENT SCENARIO 221

On the other hand, we can also have criteria for preferring one clause over another
in a contract (e.g. the one introduced most recently). In any case these notions of
prioritisation conform to the architecture in Section 10.3, but in this example we only
implement the latter. Because we are adopting a fairly simple specification language
for the agents’ contract manipulation module, we assume in this case that arguments

generated in the criticism theories have equal weight.

Similarly to solve_filter in the fault tree example,® this sort of recency-based pri-
oritisation concerns the generation of individual arguments. Assuming an ordering of
recency among axioms, a layered meta-interpreter can then prioritise consequences in
the theory, blocking any derivation which is based on an earlier definition of a clause.

In terms of our architecture, this is represented as follows:
filter(solve, solve_recency).

states that solve_recency considers the underlying recency ordering for filtering argu-
ments constructed by solve, allowing only those based on the most recent definitions of
a predicate to be advanced. The predicate solve_recency (rather than solve) is used to

generate prioritised arguments from the contract:

gen_argument (contract, X, A) :-
theory(contract, T),
solve recency(solve(X, A, T)).

Thus this example populates the bottom-left box for argument prioritisation in Figure

11.6.

It is important to note that contracts are defined and altered in terms of agents’ internal
theories and target requirements. In this sense, they are similar to KQML messages,
where the use of performatives is described in terms of the agents’ cognitive states
(Labrou and Finin 1994). However, differently from KQML, contracts are structures—
or objects—which are manipulated by agents and used to test whether certain properties

are satisfied or not.

By instantiating the architecture in this way, the sorts of dynamic argument mechanisms

3 See Section 11.1.3.

discussed in Part II can then be applied in order to obtain, for instance, the final contract

in the example above.

12.3 A Dynamic Argument for Contract Formation

A couple of remarks in comparison to the previous adaptation of the architecture in
Chapter 11 should be made at this point. First, in this case we have all the schemata
being instantiated by external sources of criticism. No schema is dependent on the

theory only.

Second, each agent has access to its library of schemata only. In fact, ® could be

represented as follows:

® = Ppropuckr U Pconsumrr, where
®PRODUCER = {COUNTER-PROPOSAL FOR CONTRACT COMPLETION }
PCONSUMER = {PROPOSAL OF CONTRADICTORY OUTCOME}

Recall that this is similar to the sort of discussion about disputes and argument games

in Section 9.1.1 between opponents and proponents.

Now that the architecture and a catalogue ® of attack-based revision schemata have
been specified, the system in Section 8.1.2 can be used to generate the dynamic argument

in Section 12.1.3 in an automated form.

So let TInit be the initial theory as described in Section 12.2.1, and ® as defined above.
Below we present a dynamic argumentation process about contract_completion(a,b,p)
as generated by our implementation. According to Definition 4.7, the first argument
to be advanced is a justification supporting the main claim that the contract will be

successfully completed.

Argument A is a justification for contract_completion(a,b,p) advanced by a, based on

outcome(delivery(a, b, p), 14) and outcome(payment (b, a, p), (10, std)).

Revision ¢; is obtained from schema PROPOSAL OF CONTRADICTORY OUTCOME, and
from the argument for acceptable_value(delivery(a,b, p),14,7) in b’s criticism module

which is based on reconcile(delivery(a,b,p), 14 — 7).

222

CHAPTER 12. ARGUMENT DYNAMICS IN A MULTI-F-AGENT SCENARIO 223

Argument A, is a justification for outcome(delivery(a,b, p),7) advanced by b.

Revision ¢ adapts the contract through schema COUNTER-PROPOSAL FOR CONTRACT
COMPLETION based on the a’s argument for is_acceptable(delivery(a,b,p),7) gener-

Y

ated from reconcile(payment (b, a,p), (10 + 10%, _)) .

Argument Aj is a justification for contract_completion(a,b, p) advanced by a, based on

outcome(delivery(a,b,p), 7) and outcome(payment(b,a,p), (11, std)).

Revision ¢3 is obtained from schema PROPOSAL OF CONTRADICTORY OUTCOME, and
from the argument for acceptable_value(payment(b,a,p),(11,.),(9.35,.)) in b’s criti-

Y

cism module which is based on reconcile(payment(b,a,p), (11 — 15%,_)) .

Argument Aj is a justification for outcome(payment(b,a,p), (9.35, std)) advanced by b.

Y

Revision ¢4 adapts the contract through schema COUNTER-PROPOSAL FOR CONTRACT
COMPLETION based on a’s argument for is_acceptable(payment(b,a,p), (9.35, imm))

generated from reconcile(payment (b, a, p), (-, imm)).

Argument Ay is a justification for contract_completion(a,b,p) advanced by a, based on

outcome(delivery(a, b, p),7) and outcome(payment (b, a,p), (9.35, imm)).

12.4 Issues Raised by this Example

The type of application proposed in this chapter relates a style of reasoning that is
common in multi-agent scenarios to the sort of argument dynamics that we have explored
in this thesis. What we have done is to reduce a problem of contract negotiation to the
generation of a dynamic argument in which criticism theories are components of the

agents.

Note that in the case of the fault tree obtaining the criticism theory was actually a
straightforward task, as fault trees are standard practice in the safety domain and thus
widely available. In the case of agent-based applications, however, we felt the need of
devising a simple specification language for individual agents in order to illustrate our

ideas. This language, though, is quite specific to this application and more thought

should be given on how it relates to existing proposals for agent formalisms and archi-
tectures. As a matter of fact, our implementation is essentially sequential, and no form

of agent communication or interaction is prescribed.

This opens interesting possibilities for research, in which for instance different agents can
adopt different proof strategies and act in parallel in order to explore possible attacks

in different ways.

224

Part IV

Conclusions and Discussion

225

Chapter 13

Contributions

The overall goal of the research described in this thesis is to explore the role of formal
argumentation systems in the area of knowledge engineering. As stated in Chapter 1,

our work has been guided by two leading, general questions, namely:

e How can knowledge engineers benefit from argumentation-based approaches to

knowledge representation and reasoning?

e How can we improve the methodology for building systems for supporting such

tasks?

Regarding the first question, there is no doubt that the general paradigm of argument-
based reasoning has proved applicable to a variety of tasks, especially those involving
inconsistent and incomplete information. Chapter 3 gave a detailed analysis of the sorts
of problems that can be tackled by this means, and throughout the thesis we have

presented other applications and examples of uses of argumentation.

This links to the second question above. Again, as discussed in Chapter 1, we were
motivated by the need to take more complex arguments into account in a systematic
way. The way we did that was first by identifying a particular type of argumentation
process which could allow for different types or argument to be represented, and then by
constructing an abstract formal framework for capturing those processes and allowing

for domain-specific applications to be instantiated from this framework.

227

We took a pragmatic approach to formal argumentation and to the generation of

dynamic arguments, which was essentially based on catalogues of (domain-specific)

schemata for generating arguments and attacks. The development of our framework

was steered by the questions stated in Chapter 2, which are reproduced below before

we summarise the main technical contributions of this thesis.

Which concepts are involved in argument dynamics, and which of these would be
interesting to formalise? Can these be defined in a general way or are they (or

some of them) domain-specific?

How to represent and generate an argument? What types of arguments are im-

portant to be represented?

How do arguments relate to each other and what types of relationships can be

defined between arguments?
Where do attacks come from?

What mechanisms are used to prioritise arguments, and how can contextual (do-

main) information be incorporated into such mechanisms?

When do dynamic arguments terminate?

Exploring these questions produced the following main contributions:

A Problem-oriented Classification of Argument-based Research.

Chapter 3 characterised the types of problems in knowledge engineering that can
be addressed by argumentation. These problems range from non-monotonic and
defeasible reasoning to decision making under uncertainty, and from negotiation

to design.

A Formalisation of Dynamic Argumentation.

First of all, in Chapter 2 we have characterised exactly what we mean by argument
dynamics, and how these compare to other approaches to formal argumentation.

Dynamic arguments are based on the generation of processes of argument exchange

228

CHAPTER 13. CONTRIBUTIONS 229

where the knowledge base from which arguments are derived is dynamic, i.e. it
can be changed during the process itself. Arguments are essentially proofs given
via an underlying provability relation from this knowledge base. The concept of
dynamic argumentation is novel in itself, although related to what is sometimes
referred to as procedural models of argumentation (see Section 3.1). In this sense,
we are concerned with showing that this concept—dynamic argument—is useful

and usable.

A novel formalisation of dynamic argumentation was given in Chapter 4, based
on attack-based revisions used for revising a knowledge base so as to generate a
particular attack. In connection with this formalisation, we have taken a novel
view of theories (i.e. knowledge bases) as arguments, and dynamic argumentation

as a process for theory transformation guided by attacks.

A Precise Characterisation of Attacks.

Chapter 6 presented a precise, well-founded characterisation of attacks, and of

possible contradictions in arguments.

An Analysis of the Relation between Argumentation and TMS.

In our representation we were able to effectively compare the functions of truth
maintenance systems and argumentation. We also have shown that it is possible
to use a truth maintenance system mechanism for implementing and maintaining

the structure of claims which can be attacked during a dynamic argument (Section

6.4).

Implementation of a Mechanism for Generating Dynamic Arguments.

We have defined a general mechanism for argument generation from the perspec-
tive of transformation of theories. Every step of argument is represented by a
general attack-relation between the original theory and a revised theory (Section

7.1), and the theory may be revised until no more attacks can be generated.

Two dynamic argumentation systems have been implemented from this mechanism
by considering different possibilities for attack generation based on the classifica-

tion of argument schemata presented in Chapter 7:

e one system generates attacks interactively by querying for appropriate in-
formation each time it reaches selection points in this classification (Section

8.1.1)

e the other generates attacks automatically from a catalogue of argument

schemata previously obtained from the classification (Section 8.1.2).

A Method of Specifying Argument Schemata.

We have devised a formal classification of argument schemata (Chapter 7), which
is essentially an abstract top-down approach to capture argument structure, and
obtaining argument schemata for generating attacks. This classification, which is
based on an underlying logic programming based theory, was defined in terms of
the general types of attack (Chapter 6), and inspired by standard argumentative
structures from studies in the fields of informal logic and argumentation theory

(Chapter 5).

A crucial element in this approach is the notion of properties associated to each
rewrite. Properties accumulate as we go down in the hierarchy of rewrites defining
possible argument schemata, and they give a large flexibility to our framework and
to designers of catalogues of (domain-specific schemata). Chapter 8 described a
way to define a catalogue of domain-specific schemata from this classification.
Section 8.3 in particular discussed the use of properties in great detail. More

domain-specific schemata were defined later in the applications in Part ITI.

We also have shown that this classification is complete up to a certain point. Other
uses of our proposed methodology are also supported, such as communication and

retrospective analysis of arguments (Chapter 9).

A General Architecture for Dynamic Argumentation Systems

We have devised an architecture that elaborates on the mechanisms for dynamic
argument generation so as to allow for external instantiation of revision schemata,

and for attacks based on priorities and preferences (Chapter 10).

230

CHAPTER 13. CONTRIBUTIONS 231

Instantiation of Applications.

Because we cannot formally prove the correctness of our model, applications are
necessary to judge the relevance of the theory. We have tackled two distinct
problems by adapting the architecture to domain-specific scenarios. This is done
by maintaining the overall, generic mechanism for generating dynamic arguments,
but allowing for domain-specific adaptation of the components of the architecture,

and of the catalogue of revision schemata (Chapters 11 and 12).

In summary, we have given details of dynamic argumentation generators and of an
architecture of dynamic argumentation systems. Also, we have presented an analysis
of various examples and of different problems with similar grounds in argumentation,
based on the same architecture. Linked to some of these examples we have presented a

restricted analysis of prioritisation.

Chapter 14

hat Next to Do?

Throughout this thesis we have touched upon many related issues of interest, unsolved
problems and possible avenues for future work. In this chapter we look carefully at these
issues, elaborating upon the limitations of our approach as well as the limitations of this
document, and expanding some of the topics which we believe deserve—or require—

further exploration.

14.1 The Fine Print

Some of the shortcomings of this thesis are intrinsic to our research given the scope of

our problem and the applicability of our formalism.

The most obvious limitation is that innumerable forms and types of arguments that
cannot be captured by our model. This is fine, though, because we do not aim at
formalising argumentation. Our perspective of the problem is that argumentation can
be used to model particular styles of reasoning—and not that formal styles of reasoning

can be used to model argumentation. A similar distinction is made by Reed (1997).

In fact, the sorts of problems that can be captured as dynamic arguments are those
that can be idealised as operations and transformations over sets of axioms which can
be guided by arguments. This is a very abstract problem description, and similarly the
solution we provided was as abstract as possible. Essentially, we assume that theories
can be expressed as sets of axioms, and that suitable predefined catalogues of revision

schemata are available from start.

233

By taking this view we have described a way of automating the generation of dynamic
arguments. Remember from Chapter 2 that one of the reasons why we believe it is
important to formalise and automate argumentation processes is because argument-
based methodologies should be supported by (semi-) automated tools, which can both
guide knowledge engineers in developing knowledge bases that derive the intended con-
sequences, and also support designers of argument systems in investigating properties
and effects of certain attacks and revisions in a domain. Also, automated argumenta-
tion systems can be used by artificial agents that want to employ this solution to solve

particular problems.

However, such a level of abstraction has made it very hard to demonstrate general formal
properties of the framework and to make stronger claims about the types of argument
processes that are generated. It is difficult to prove for instance whether arguments
will terminate just by looking at a set of possible (unconstrained) revision operations.
Other questions may arise such as how much do we have to know in advance in order

to define a suitable catalogue.

We do not claim that realistically these mechanisms can be used in their target domains
of application as they are. Although the classification provides a systematic way to build
argument schemata, knowledge of formal methods and domain-specific engineering work
are still needed to be put in the task (for instance, on deciding the terms and expressions
to be used in each particular domain). This is unlikely to be a trivial task, and support

tools still need to be provided.

Related to this we have presented no definition of what constitutes a good dynamic
argument. Would it be possible to find an appropriate metric so as to evaluate gener-
ated arguments automatically? One possibility for evaluation is to have human users
to analyse the plausibility of the arguments. But automatic evaluation using some de-
fined metric could allow for the analysis and comparison of strategies and schemata for
argument generation in terms of the quality of the dynamic argumentation processes,

and of the final, resulting theories.

Note that the design of our generic framework as well as the classification of schemata

have been informed by many ideas which were transferred from the roots of argu-

234

CHAPTER 14. WHAT NEXT TO DO? 235

mentation theory. And while many concepts underlying our classification of schemata
were built assuming a logic programming representation, the core concepts of dynamic
argumentation—those defined in Chapter 4—are logic-independent and should easily
adapt to different logics. This brings up another question, though—mnamely of how
easy would it be to transfer these logic-specific concepts across other choices of logical

representation.

In summary, our approach to argumentation is different from the conventional static
approaches in the literature. By taking this view we have broadened the scope of ap-
plication of argumentation in knowledge engineering contexts, but we have also made it
harder to recognise suitable problems in which to apply this technique. So, how easy is
it really to decide whether some problem can be characterised as dynamic argumenta-
tion, and what would be a suitable catalogue of revisions in a target domain? To which
degree does our formalisation, including the classification, prescribe how to tackle a

particular problem?

Maybe some of these questions could be further elucidated if other limitations of this
thesis had been addressed—in this case, limitations which stem from the time-limit of

our research project, such as:

e A complete analysis of the use of priorities and preferences in argument generation
was not the focus of this thesis, although these can play an important role in the
generation of arguments. We have only examined this linked to the applications

of the architecture, but not in a deep way.

e Linked to this, an analysis of selection strategies might shed more light on the
actual generation of arguments, in particular to the selection of arguments and

how this could affect the process, generating more efficient arguments.

So next we describe a research wish list, which we believe would provide clearer answers

regarding the usefulness and usability of dynamic argumentation.

14.2 A Wish List

Our work on arguments and dynamics opens up a number of issues and areas for future

exploration, some of these are discussed below.

14.2.1 Analysis of Priorities and Preferences

Section 11.4 has investigated two ways in which our architecture allows for prioritisation
of arguments: one involves the direct comparison of arguments in the theory; the other
is about prioritising individual arguments both in the theory and in the criticism theory

according to some measure of quality.

This is as far as our analysis has gone, apart from providing some examples in con-
nection with the domains of application given in Part III. A deeper analysis of such
prioritisation techniques, especially in the context of Figure 11.6, is fundamental for a

deeper understanding of dynamic argumentation.

14.2.2 Strategies for Selecting Arguments

This follows as a consequence of the work in prioritisation, and can also shed light on
aspects of efficient argument generation in connection with procedural and heuristic

layers of argument systems discussed in Chapter 3.

A trivial strategy for selecting the next argument to be advanced is simply to advance
the first argument that is generated. This is particularly satisfactory if we are able to
explore the whole search space of possible dynamic arguments, as described in Section
8.3. However, given that priority measures and precedence orderings may exist, one
might use this information to decide upon the best possibility, in what is essentially a

generate-and-test approach.

Determining which argument to advance is a actually a different task from that of
selecting which claim to attack (see Chapter 6). In our approach, the latter is equivalent
to selecting which instance of attack-based schema to apply in the next step. But this
task too can be guided by some sort of prioritisation, e.g. an explicit partial ordering

on the schemata in the catalogue ®.

236

CHAPTER 14. WHAT NEXT TO DO? 237

In any case, rather than adopting a generate-all-and-select-best strategy, it would be
interesting to analyse whether we can combine the tasks of argument generation with
that of selection so that at each step in the argument process one possible argument is

given.

14.2.3 Automated Evaluation of Dynamic Arguments

While prioritisation is concerned with the quality of arguments within the theory, eval-
uation of dynamic arguments would probably take other criteria into consideration,
maybe related to the quality of the final theory and to other concepts in the heuristic

layer, such as efficiency and persuasiveness.

Coming up with some metric for this is a difficult task, and would probably have to be

informed by analysis and experiments with human users.

14.2.4 Formal Analysis of the Framework

As we have argued before, proving generic formal results about our framework—e.g.
termination—is a very difficult task. This may be made easier if we assume certain
properties about the sorts of revisions allowed, maybe even in connection with templates

and libraries of domain-specific revisions.

There is much scope for research in this area. Other areas of study may provide clues
and results that could be applicable to our approach, such as research in term rewriting

systems (given that our formalism can be defined as such).

14.2.5 Adopting Different Underlying Logics

In many cases, general logic programs may not be the best choice of representation for a
theory. Although we do not commit to a particular logic until later in the thesis, much

of what makes it applicable to domains is dependent on this language.

This opens an interesting possibility for research, namely whether we can identify a
precise notion of attack and describe a similar classification of schemata based on a

different representation language, and to what extent the logic-specific elements in this

thesis could be reused.

14.2.6 Editors and Tools Supporting the Design of Argument Systems

This is perhaps one of the main areas for improvement in our work. Providing tools such
as schemata editors, with support for the adaptation of properties and for realistic use
of argumentation mechanisms in domains of applications. Support for generic as well

as domain-specific argument schemata could also improve usability of this technique.

14.2.7 Testing Properties

Maybe in relation to the editors and tools mentioned above, it should be possible to
make a better use of the properties in argument schemata. One possibility, for instance,
is to allow users/designers to introduce extra properties, disregard others, or yet define
new ones, also testing the consequences of these choices in relation to the outcome of

argumentation processes.

14.2.8 Applications to Domains

This involves much more than just adapting the architecture so as to generate dynamic
arguments in particular domains. Research in this area demands identification of suit-
able target domains, and a serious analysis of requirements of users/designers in these

domains.
For instance, we have just briefly touched issues like communication of dynamic argu-

ments, but these are likely to involve different aspects for different domains.

14.2.9 Application in Real Multi-Agent Scenarios

Realistic multi-agent applications are characterised by aspects and features such as
communication languages, interaction and parallel processing. It would be interesting
to examine precisely how our mechanisms could fit within such scenarios, and also how

dynamic argumentation relates to existing languages for negotiation.

238

Appendix A

Basic Syntax: Logic
Programming

This appendix gives the basic syntax of logic programming theory used in this thesis.
For a complete account of logic programming theory, see (Lloyd 1987; Apt 1995).

Syntax. The syntax of logic programs is based on the usual concepts of terms, atoms
and well-formed formulae from first order languages. A literal is an atom (positive
literal) or the negation of an atom (negative literal).

A program clause, or definite clause, is a clause of the form:
H <+ By N...\By (A.1)

where H, By, ..., By, are positive literals. H and By A ... A B), are called the head and
body of the clause, respectively. A goal clause is a clause of the form:

« BiA...\ By (A.2)

A Horn clause is either a program clause or a goal clause.

General clauses are essentially program clauses which allow negative literals to occur in
the body of the clause. A general clause has the form:

H <+ By AN...\NB,, Anot B,y 1 \ ... A\not B, (A.3)

where not stands for negation as failure, and each B; is a positive literal.

A definite logic program is a finite set of definite clauses. A general logic program is a
finite set of general clauses. General logic programs are sometimes called normal logic
programs.

The body of a clause can be denoted by a single bold letter B representing a conjunction
of literals. Individual literals are denoted by the (possibly indexed) letter B.

239

Substitution and Unification. Unification gives means to compute values in logic
programs. Variables V; can be associated with terms T; via substitutions of the form
o = [Vi/T;]. Unification is concerned with finding a substitution which can be applied
to two expressions and make them syntactically identical.

The most general unifier is the simplest substitution that unify two expressions. A
substitution o that represents the most general unifier between two expressions sentences
is denoted by mgu.

Also, we use the expression Fip, 7,) to denote the formula obtained from a formula F
by replacing every occurrence of a term T} by term T5.

240

Appendix B

Basic Notation: Trees and
Graphs

This appendix gives the basic notation used in this thesis for representing trees and
directed graphs. Trees are mainly used to represent arguments, whereas more generic
directed graphs are used to express dependencies between claims in an argument.

B.1 Directed Graphs

A graph G is a pair (V, €) of vertices (or nodes) and edges (or links), respectively. The
set of vertices of a graph G can be referred to as V(G), and the set of edges as £(G).

A graph is said to be directed if the edges have an orientation. An edge ¢ — ¢ is said
to initiate at node ¥ and terminate at node .

For the type of application in this thesis, it is useful to differentiate between two types of
edges, namely those initiating at a supporting node, and those initiating at a conflicting
node:

e if ¢ supports ¢ then 1) — ¢ is said to be a supporting link;

e if ¢ conflicts with ¢ then ¢ — ¢ is said to be a conflicting link.

Alternatively, edges can be represented diagrammatically as follows, where dotted lines
denote a conflicting link.

>

< —6

241

Moreover, we are interested in directed graphs with labelling functions for expressing
the support status of each node. The labelling function associated with a graph G is
denoted by:

labelg : V(G) — {in, out}

The status labelg(v) associated with each node in G may be determined either by an
external factor (e.g. given by some other labelling function), or by means of an operator
A\ that derives this value from the status of other nodes in the graph.

Essentially, A ¢ gives the status in only if all supporting nodes of ¢ in G are in, and all
conflicting nodes of ¥ in G are out; otherwise, A 1) derives out. This operator can be
applied given that other nodes have their labels already defined, thus forming the base
step of the definition.

B.2 Argument Trees

A tree is essentially an acyclic, connected graph. In particular, here we use rooted trees
for representing arguments derived from a provability relation, such that lower nodes
support the conclusion above. In this representation, nodes in an argument tree have
at most one parent.

Each premise P of the form H < By A ... A By in an argument defines a tree with
root H and subtrees Ap,, ..., A, corresponding to the arguments supporting sentences
By, ..., By, respectively. Such trees are denoted here by the expression:

tree(H, P, {Ap,,...,ABy}).

242

Appendix C

Harnessing Argument Rewriting

This appendix contains the possible schemata for argument revision as represented in
Figure 7.2 and produced by the rewriting system of Section 7.3. Altogether they indicate
the general format of attack, with properties accumulated down the classification and
conditions that give the structure of the premises to be added and retracted (including
€-conditions from the previous rewrites that can be used select appropriate instances

of an attack).

C.1 Trivial Revisions

Applying Argument Rewrites 1 = 2=3=6=8

(X, A TI),
trivial({},{}), revise(IL, {}, {}, '),
in(Y, A", TT')
attacks(A’', A),
Properties: consistent (IT'),
supports(A',Y :in, IT')

Conditions: X :in € Ga4,
Y € conflict(X)

Applying Argument Rewrites 1 = 2=4=7=28

out(X, A, II),
trivial({},{}), revise(IL, {}, {}, '),
in(X, A, IT)
attacks(A’', A),
Properties: consistent (IT'),
supports(A’, X 1 in, II')

Conditions: X :out € Gy

243

C.2 Elementary Revisions for Adding an Argument

C.2.1 Adding a Fact
Applying Argument Rewrites 1 = 2=3=6= 9= 13

Zn(X7 A, H)7
add(fact(P)), revise(IL, {}, {P}, 1),
in(Y, A" IT")

attacks(A’', A),
consistent (IT'),

Properties: supports(A',Y :in, IT'),
unify(Y, H)
Conditions: X :in € G4,
Y € conflict(X),
HecL,
P = H <« true

Applying Argument Rewrites 1 = 2=4=7=9= 13

out(X, A, II),
add(fact(P)), revise(IL, {}, {P},IT),
in(X, A IT)

attacks(A', A),
consistent (IT'),

Properties: supports(A', X 1 in, II'),
unify(X, H)
Conditions: X :out € Ga,

HeL,
P = H + true

244

APPENDIX C. HARNESSING ARGUMENT REWRITING 245

C.2.2 Adding a Substantiated Rule

Applying Argument Rewrites 1 = 2=3=06=9= 14

(X, A1),
add(substantiated_rule(P)), revise(IL, {}, {P},1I'),
in(Y, A", TT')

attacks(A’', A),
consistent (IT'),
Properties: supports(A',Y :in, II'),
unify (Y, H),
satisfiable (Bo, IT)

Conditions: X :in € Ga,
Y € conflict(X),
HBeL,
P=H <« B,
o =mgu(Y,H)

Applying Argument Rewrites 1 = 2=4=7=9= 14

out(X, A, II),
add(substantiated rule(P)), revise(IL, {},{P},1'),
in(X, A, IT)

attacks(A', A),
consistent (IT'),

Properties: supports(A', X 1 in, II'),
unify(X, H),
satisfiable (Bo, IT)
Conditions: X :out € Ga,
H,Be€ L,
P=H+«B,

o =mgu(X, H)

C.2.3 Adding a Burden Shift Rule

Applying Argument Rewrites 1 = 2=3=6=9= 15

(X, A1),
add(burden_shift _rule(P)), revise(IL, {}, {P}, 1),
in(Y, A", TT')

attacks(A’', A),

consistent (IT'),
Properties: supports(A',Y :in, II'),
unify (Y,),
—satisfiable (Bo, IT)

Conditions: X :in € Ga,

Y € conflict(X),

H,Bel,

P = H < not B,

o =mgu(Y,H)

Applying Argument Rewrites 1 = 2=4=7=9=15

out(X, A, II),
add(burden_shift_rule(P)), revise(IL, {},{P}, '),
in(X, A, IT)

attacks(A', A),
consistent (IT'),
Properties: supports(A', X 1 in, II'),
unify(X, H),
—satisfiable (Bo, IT)

Conditions: X :out € Ga,
H,B € L,
P =H + not B,
o =mgu(X,H)

246

APPENDIX C. HARNESSING ARGUMENT REWRITING 247

C.3 Updating Revisions for Adding an Argument

C.3.1 Removing Irrelevance in a Rule

Applying Argument Rewrites 1 = 2=3=6= 11 =19

(X, A1),
retract (irrelevance (P)), add(irrelevance(P')), revise(II, {P},{P'},II'),
in(Y, A" IT")

attacks(A’', A),

consistent (IT'),
. supports(A',Y :in, IT'),
Properties: unify(Y, H),
satisﬁable((Bl A...ANBi_1 ABix1 A... A Bm)a, H),
—satisfiable(B;o, IT)
Conditions: X :in € G4,

Y € conflict(X),

H <+ Bi A...\B,, €1I,
P=H «+ Bi A... A\ B,

Bi € {Bi,..., B},

P =H + BiAN..ANBi_1 ABit1 A ... AN Bip,
o =mgu(Y,H)

Applying Argument Rewrites 1 = 2=4=7=11=19

out(X, A, II),
retract (irrelevance (P)), add(irrelevance(P')), revise(II, {P},{P'},II'),
in(X, A, IT)

attacks(A’', A),

consistent (IT'),
. supports(A', X 1 in, IT'),
Properties: unify(X, H),
satisfiable((B1 A ... A Bi—1 A Bix1 A ... A By,)o, 1),
—satisfiable(B;o, IT)
Conditions: X :out € Ga,

H <+ BiA...A B, €11,
P=H<+ By A...A B,

B; € {Bi,..., B},

P =H<+ BiA... ANBi_1 ABiy1 A ... A By,
o =mgu(X,H)

C.3.2 Generalising a Rule
Applying Argument Rewrites 1 = 2=3=6= 11 = 21

Zn(X7 A7 H)7
retract (generalisation(P)), add(generalisation(P’)), revise(IL, {P}, {P'},1I'),
in(Y, A", TT')

attacks(A’', A),
consistent (IT'),
supports(A',Y :in, II'),

Properties: unify(Y, Ho'),
satisfiable((Bo')o, I0),
ground (P, II) C ground(P',1I)
Conditions: X :1in € G4,
Y € conflict(X),
H+«Bell,
P=H+« B,

o' € inverse_subst,
P' = (H + B)d/,
o = mgu(Y, Ho'")

Applying Argument Rewrites 1 = 2=4=7= 11 = 21

out(X, A, II),
retract (generalisation(P)), add(generalisation(P")), revise(Il, {P}, {P'}, II"),
in(X, A, IT)

attacks(A', A),
consistent (IT'),
supports(A', X 1 in, II'),
unify(X, Ho'),
satisfiable((Bo')o, I0),
ground (P, II) C ground(P',II)

Properties:

Conditions: X :out € Ga,
H+Bell,
P=H + B,
o' € inverse_subst,
P' = (H + B)d/,
o = mgu(X, Ho')

Notice that in these schemata the property ground(P,I1) C ground(Po’,1I) holds by
construction because ¢’ is an inverse substitution.

248

APPENDIX C. HARNESSING ARGUMENT REWRITING 249

C.3.3 Revising the Consequent of a Rule

Applying Argument Rewrites 1 = 2=3=06= 11 = 23

(X, A1),
retract (misconclusion(P)), add(misconclusion(P")), revise(Il,{P},{P'},II'),
in(Y, A", TT')

attacks(A’', A),
consistent (IT'),
Properties: supports(A',Y :in, II'),
unify (¥, H'),
satisfiable (Bo, IT)

Conditions: X :in € Ga,
Y € conflict(X),
H+« Bell,
P=H <« B,
H €L,
P =H « B,
o =mgu(Y,H")

Applying Argument Rewrites 1 = 2=4=7= 11 =23

out(X, A, II),
retract (misconclusion(P)), add(misconclusion(P")), revise(Il,{P},{P'}, IT'),
in(X, A IT)

attacks(A’', A),
consistent (IT'),
Properties: supports(A', X ¢ in, IT'),
unify(X, H'),
satisfiable (Bo, IT)

Conditions: X :out € Ga,
H <+ Bell,
P=H« B,
H e,
P' = H' « B,
o= mgu(X,H')

C.3.4 Reversing a Rule

Applying Argument Rewrites 1 = 2=3=06= 11 =25

(X, A1),
retract (reversion(P)), add(reversion(P")), revise(Il,{P},{P'},II'),
in(Y, A", TT')

attacks(A’', A),

consistent (IT'),
Properties: supports(A',Y :in, II'),
unify (Y, B),
satisfiable(Ho, I1)

Conditions: X :in € Ga,

Y € conflict(X),

H+« Bell,

P=H« B,

o = mgu(Y, B),

PP=B+ H

Applying Argument Rewrites 1 = 2=4=7= 11 =25

out(X, A, II),
retract (reversion(P)), add(reversion(P")), revise(Il,{P},{P'},II'),
in(X, A" TT')

attacks(A’', A),

consistent (IT'),
Properties: supports(A’', X : in, IT'),
unify(X, B),
satisfiable(Ho, IT)

Conditions: X :out € Ga,

H<+ Bell,

P=H ¢« B,

o = mgu(X, B),

PP=B+ H

250

APPENDIX C. HARNESSING ARGUMENT REWRITING 251
C.4 Elementary Revisions for Removing an Argument

Remember that the property attacks holds if an argument in the revised theory attacks
an argument in the original theory. Hence in this context attacks(A, A) does not stand
for self-defeating arguments, but rather it denotes that argument A in IT' is a refutation
of argument A in II.

C.4.1 Retracting an Invalid Rule

Applying Argument Rewrites 1 = 2=3=5=10= 16

Zn(X7 A7 H)7
retract (invalid_rule(P)), revise(II, {P}, {},1II'),
out(X, A, II')

attacks(A, A),
consistent (IT'),

Properties: supports(A, X : out,IT'),
unify(X, H)
Conditions: X :in € G4,
H<+ BeA,
P=H + B,

3o’ € subst. affirm(Bo’ A not(Ho'))

C.4.2 Retracting a Weak Rule

Applying Argument Rewrites 1 = 2=3=5=10= 17

n(X, A1),
retract (weak-rule(P)), revise(IL, { P}, {}, IT'),
out(X, A, II')

attacks(A, A),
consistent (IT'),

Properties: supports(A, X : out,IT'),
unify(X, H)
Conditions: X :in € Ga,
H<+BeA,
P=H+« B,

3o’ € subst. affirm(not(Bo'))

C.4.3 Retracting a Misrelation

Applying Argument Rewrites 1 = 2=3=5=10= 18

Zn(X7 A7 H)7
retract (misrelation(P)), revise(I1, {P}, {},1I'),
out(X, A, II')

attacks(A, A),
consistent (TT'),

Properties: supports(A, X : out, IT'),
unify(X, H)
Conditions: X :in € Ga,
H<+ BeA,
P=H « B,

o', 0" € subst.affirm(Bo’ A not(Ho') A Ho" A not(Ba"))

252

APPENDIX C. HARNESSING ARGUMENT REWRITING 253
C.5 Updating Revisions for Removing an Argument

Again, note that the property attacks(A, A) denotes that argument A in a revised theory
IT" is a refutation of argument A in the original theory II.

C.5.1 Elaborating Preconditions in a Rule

Applying Argument Rewrites 1 = 2=3=5=12= 20

n(X, A1),
retract (elaboration(P)), add(elaboration(P’)), revise(IL, {P}, {P'},TI'),
out(X, A, II')

attacks(A, A),
consistent (IT'),
supports(A, X : out, '),

Properties: unify(X, H),
satisfiable((B1 A ... A By,)o, IT)
—satisfiable(Bao, IT)
Conditions: X :1in € Ga,

H<+ BiA..A\B,, € A,
P=H <+ Bi A...A By,

BelL,

i €{0,...,m},

PP=H+ B A.. N\B;ABAB;y1 A...\Bp,
o =mgu(X,H)

C.5.2 Specialising a Rule

Applying Argument Rewrites 1 = 2=3= 5= 12= 22

Zn(X7 A7 H)7
retract (specialisation(P)), add(specialisation(P")), revise(Il,{ P}, {P'},IT'),
out(X, A, II')
(attacks(A, A),)

consistent (IT'),
supports(A, X : out, IT'),
Properties: unify(X, H),
ground (P',1I) C ground(P,II),
V(H, + By) € ground(Po,I1) N ground (P’ II).

L —satisfiable(Bygy, I1))
Conditions: X :in € Ga4,
H+BegA,
P = H + B,
o = mgu(X, H),
o' € subst,

P' = (H + B)o’

Here the property ground(Po’,I1) C ground(P,1II) also holds by construction be-
cause o’ is a substitution.

C.5.3 Revising the Consequent of a Rule
Applying Argument Rewrites 1 = 2=3=5=12= 24

n(X, A1),
retract (misconclusion(P)), add(misconclusion(P")), revise(Il,{P},{P'}, IT'),
out(X, A, IT')

attacks(A, A),
consistent (IT'),
Properties: supports(A, X : out, '),
unify(X, H),
—unify(X, H')

Conditions: X :in € Ga,
H+BeA,
P=H+ B,
H €L,
P=H +B

C.5.4 Reversing a Rule

Applying Argument Rewrites 1 = 2=3=5=12= 26

n(X, A1),
retract (reversion(P)), add(reversion(P')), revise(I1,{ P}, {P'}, '),
out(X, A, II')

attacks(A, A),

consistent (IT'),
Properties: supports(A, X : out,IT'),
unify(X, H),
—unify(X, B)
Conditions: X :in € Ga,
H + B € A,
P=H + B,
PP=B+ H

254

Appendix D

Checking the Property supports

The property supports ensures whether an argument can be advanced or not in order to
support the intended claim in the context of moves advanced so far. Its main purpose
is to avoid circularity and ineffective repetition of arguments.

Intuitively, an argument is not allowed if it has been advanced before to attack the same
claim via the same attack-based revision operation. Moreover, if the revision is non-
trivial, then the argument must account for some premise that has either been retracted
or added by the corresponding operation.

So, let
<A07 (bla A17 teey ¢i71a Ai*l)

represent the argument process so far, and A; be an argument in the revised theory Il
that is generated via the operation ¢; in order to support a claim C. Then:

holds (supports(A;, C\1Ly,), ¢i, (Ao b1, A1y ees diz1, Ai1))

ensures that argument A; is a valid move in the process.

The predicate holds/3 is used to check the various properties associated with an at-
tack. Below is the specification currently used in our system for verifying the property
supports. Note that as in the case of any other property, designers of argument systems
may choose to relax or strengthen this specification. Predicate argtree _member/2 veri-
fies if a premise is used the argument; i.e. if it defines some sub-tree in the corresponding
argument tree.

The predicate nextto/3 is a list operation defined in SICStus that checks whether two
elements appear side-by-side in a list.

255

% Checking property: supports

h--- trivial revision

holds(supports(A, X:in, Theory), RevisionOp, ArgSofar) :-
trivial (RevisionOp),
attack_type (RevisionOp, X:out ==> X:in),
\+ member (A, ArgSofar).

holds (supports (A, X:in, Theory), RevisionOp, ArgSofar) :-
trivial (RevisionOp),
attack_type (RevisionOp, X1:in ==> X:in),
\+ nextto(A, RevisionOp, ArgSofar).

h-—- non-trivial revision, where Rem is nonempty
holds (supports (A, C, Theory), RevisionOp, ArgSofar) :-
nontrivial (RevisionOp, r(Rem, Add)),
member (Axiom, Rem),
argtree_member (Axiom, A),
\+ nextto(A, RevisionOp, ArgSofar).

%--- non-trivial revision, where Rem is empty
holds (supports(A, C, Theory), RevisionOp, ArgSofar) :-
nontrivial (RevisionOp, r(Rem, Add)),
\+ member (Axiom, Rem),
member (Axiom, Add),
argtree_member (Axiom, A),
\+ nextto(A, RevisionOp, ArgSofar).

Figure D.1: Checking the property supports.

256

Appendix E

Architecture: the Pressure Tank
Example

This Appendix gives the Prolog file containing the architecture definition for the pressure
tank example, as described in Chapter 11.

%hh File:

Whih architecture.pl
%%% Author:

W Daniela Carbogim
%%% Purpose:

Wt Specify each component of the architecture to be

Wl used by the argument generator

F A Sttt
Wl Theory -
P A
main(ptmodel) .

provability(ptmodel, solve).

theory (ptmodel,

[axiom(1, operational_tank(tank(pt), T),
[on(motor(m), T), not_full(tank(pt), T)1),
axiom(2, operational_tank(tank(pt), T),
[off (motor(m), T), full(tank(pt), T)]),
axiom(3, not_operational_tank(tank(pt), T),
[on(motor(m), T), full(tank(pt), T)1),
axiom(4, on(motor(m), T),
[closed(relay(k2), T)1),
axiom(5, off(motor(m), T),
[open(relay(k2), T)1),
axiom(6, closed(relay(k2), T),
[closed(relay(kl), T), closed(switch(ps), T)]1),
axiom(7, open(relay(k2), T),
[open(relay(kl), T)]),
axiom(8, open(relay(k2), T),
[open(switch(ps), T)1),
axiom(9, closed(relay(kl), T),
[closed(relay(timer), T),
closed(switch(s1), Tp), precedes(T, Tp)1),

257

axiom(10, open(relay(kl), T),
[open(relay(timer), T)1),
axiom(11l, closed(switch(ps), T),
[not_full(tank(pt), T)1),
axiom(12, open(switch(ps), T),
[full(tank(pt), T)1),
axiom(13, closed(switch(sl), T),
[initial_time(T)]),
axiom(14, open(switch(s1), T),
[initial_time(Ti), greater(T, Ti)]),
axiom(15, closed(relay(timer), T),
[timing(relay(timer), TC, T),
pressurisation_time(TP), greater(TP, TC)]),
axiom(16, open(relay(timer), T),
[timing(relay(timer), TC, T),
pressurisation_time(TP), geq(TC, TP)]),
axiom(17, timing(relay(timer), 0, T),
[initial_time(T)]1),
axiom(18, timing(relay(timer), 0, T),
[initial_time(Ti), greater(T, Ti), open(switch(ps), T)1),
axiom(19, timing(relay(timer), TC, T),
[previous(T, Tp),
timing(relay(timer), TCp, Tp), increment(TCp,1,TC)]),
axiom(20, full(tank(pt), T),
[pressurisation_time (TP), mod(T, TP, 0)]),
axiom(21, not_full (tank(pt), T),
[pressurisation_time(TP), mod(T, TP, X), greater(X, 0)1),
axiom(22, previous(T, Tp),
[initial_time(Ti), greater(T, Ti), increment(T,-1,Tp)1),
axiom(23, precedes(T, Tp),
[previous(T, Tp)l),
axiom(24, precedes(T, Tp),
[previous(T, Tpl), precedes(Tpl, Tp)]),
axiom(25, initial_time(0), true),
axiom(26, pressurisation_time(60), true)]).

Whlh-—-- Conflicting predicates

conflict (operational_tank(P, T), not_operational_tank(P, T)).

hhh-—- Provability relation for the theory

solve([]1, [1, _Theory).

solve([X|R], [ArgX|ArgR], Theory) :-
solve (X, ArgX, Theory),
solve(R, ArgR, Theory).

solve(true, true, _Theory).

solve(X, arg(X, Id, ArgB), Theory) :-
member_list (axiom(Id, X, B), Theory),
solve(B, ArgB, Theory).

solve(X, arg(X, pmtv, true), _Theory) :-
primitive_pred(X), X.

primitive_pred(greater(_,_)).
primitive_pred(geq(_,_)).
primitive_pred(increment (_,_,_)).
primitive_pred(mod(_,_,_)).

258

APPENDIX E. ARCHITECTURE: THE PRESSURE TANK EXAMPLE

crit(ftree).

provability(ftree, solve_abd).

theory (ftree,
[axiom(elA, tank_rupture, [primary_failure(tank(pt))]),
axiom(elB, tank_rupture, [continuous_pump_operation]),
axiom(e2A, continuous_pump_operation, [primary_failure(relay(k2))]),
axiom(e2B, continuous_pump_operation, [emf_applied_on(relay(k2))]1),
axiom(e3, emf_applied_on(relay(k2)),

[primary_failure(switch(ps)), emf_applied_on(switch(ps))]),
axiom(e4A, emf_applied_on(switch(ps)), [primary_failure(switch(s1))]),
axiom(e4B, emf_applied_on(switch(ps)), [emf_applied_on(relay(k1))]),
axiom(e5A, emf_applied_on(relay(kl)), [primary_failure(relay(k1))]),
axiom(eb5B, emf_applied_on(relay(kl)), [primary_failure(relay(timer))])]).

hhh--- Provability relation for the criticism theory
:- dynamic solve_abd/3.

solve_abd([], [], _FTree).

solve_abd([X|R], Arg, FTree) :-
solve_abd (X, ArgX, FTree),
solve_abd (R, ArgR, FTree),
append (ArgX, ArgR, Arg).

solve_abd(true, [], _FTree).

solve_abd (X, [X], _FTree) :-
abducible (X) .

solve_abd (X, A, FTree) :-
member_list (axiom(_Id, X, B), FTree),
solve_abd(B, A, FTree).

abducible (primary_failure(_)).

259

filter(solve_abd, solve_filter).

hhh-—- Measure values for criticism theory(ftree, solve_abd)
m_ftree(abducible (primary_failure(tank(pt))), 5.0e-06) .
m_ftree(abducible (primary_failure(relay(k2))), 3.0e-05) .
m_ftree(abducible(primary_failure (switch(ps))), 1.0e-04).
m_ftree(abducible (primary_failure(switch(s1))), 3.0e-05).
m_ftree(abducible (primary_failure(relay(k1))), 3.0e-05) .
m_ftree(abducible (primary_failure(relay(timer))), 1.0e-04).

filter_threshold(M) :-
M>O0.1.

h#%h--- Propagation mechanism solve_filter for solve_abd

solve_filter(solve_abd (X, A, FTree)) :-
measure_arg(solve_abd (X, A, FTree), M1),
measure_sent (X, M2, FTree),
combine_measure (M1, M2, M),
filter_threshold(M).

measure_sent (X, M, FTree) :-
findall(MX, measure_arg(solve_abd(X, _A, FTree), MX), Ms),
combine_measure_sent (Ms, M).

measure_arg((A1, A2), M) :-
measure_arg (A1, M1),
measure_arg (A2, M2),
combine_measure_arg(M1, M2, M).

measure_arg(true, 1).

measure_arg(abducible(X), M) :-
m_ftree(abducible(X), M).

measure_arg(solve_abd(X, A, FTree), M) :-
clause(solve_abd(X, A, FTree), B),
measure_arg (B, M).

measure_arg(A, 1) :-

\+ A = true,

\+ A =.. [solve_abdl|_],
\+ A =.. [abduciblel_],
\+ A = (_A1, _A2),

A.

combine_measure_arg(M1i, M2, M) :-

M is M1xM2.
combine_measure_sent (Ms, M) :-
sum(Ms, M).
combine_measure (M1, M2, M) :-
M is M1/M2.

260

Bibliography

Ambler, S. (1996). A categorical approach to the semantics of argumentation. Mathe-
matical Structures in Computer Science, 6(2):167-188.

Amgoud, L. and Cayrol, C. (1998). On the acceptability of arguments in preference-
based argumentation frameworks. In Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI98), pages 1-T.

Anrig, B., Bissig, R., Haenni, R., Kohlas, J., and Lehmann, N. (1999). Proba-
bilistig argumentation systems: introduction to assumption-based modeling with
ABEL. Technical report 99-1, Institute of Informatics of the University of
Fribourg. It is possible to download ABEL from the project homepage at
http://www2-iiuf .unifr.ch/tcs/ABEL/.

Antoniou, G. (1998). A tutorial on default reasoning. The Knowledge Engineering
Review, 13(3):225-246.

Apt, K. R. (1995?). From logic programming to Prolog. ?

Bench-Capon, T., Freeman, J., Hohmann, H., and Prakken, H. (2000). Computational
models, argumentation theories and legal practice. In Handbook on Argument and
Computation, Bonskeid Symposium on Argument and Computation. (in preparation).

Bondarenko, A., Dung, P. M., Kowalski, R. A., and Toni, F. (1997). An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93(1-
2):63-101.

Brewka, G. (1994). A reconstruction of Rescher’s theory of formal disputation based on
default logic. In Cohn, A. G., editor, Proceedings of the 11th European Conference
on Artificial Intelligence (ECAI94), pages 366—370.

Brewka, G. (1996). Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research, 4:19-36.

Buckingham Shum, S. and Hammond, N. (1994). Argumentation-based design rationale:
what use at what cost? International Journal of Computer Studies, 40(4):603-652.

Carbogim, D., Krabbe, E. C. W., Norman, T., and Walton, D. (2000a). Argumenta-
tion in multi-agent systems. In Handbook on Argument and Computation, Bonskeid
Symposium on Argument and Computation. (in preparation).

261

Carbogim, D. and Robertson, D. (1999). Contract-based negotiation via argumentation.
In Workshop on Multi- Agent Systems in Logic Programming (MAS99) at the Interna-
tional Conference on Logic Programming (ICLP99). Also available at the workshop
site http://www.cs.sfu.ca/conf/MAS99/.

Carbogim, D. and Wassermann, R. (2000). Full acceptance via argumentation.
In Proceedings of the Discussion Track of The International Joint Conference
SBIA/IBERAMIA2000 (15th Brazilian Symposium on Artificial Intelligence and 7th
Ibero-American Conference on Artificial Intelligence), Atibaia, Brazil.

Carbogim, D. V., Robertson, D., and Lee, J. (2000b). Argument-based applications to
knowledge engineering. The Knowledge Engineering Review, 15(2):119-149.

Carbogim, D. V., Robertson, D. S., and Lee, J. R. (1999). Extending the abstract
argumentation framework to describe argument dynamics. DAT Research Paper 940,
Artificial Intelligence, Division of Informatics, University of Edinburgh.

Chesnievar, C. 1., Maguitman, A. G., and Loui, R. P. (1999). Logical
models of argument. ACM Computing Surveys, submitted. Available at
http://www.cs.wustl.edu/"loui/survey.ps.

Conklin, J. and Begeman, M. L. (1988). gIBIS: a hypertext tool for exploratory policy
discussion. ACM Transactions on Information Systems, 6(4):303-331.

Corréa da Silva, F. S.; Vasconcelos, W. W., Agusti, J., Robertson, D., and Melo, A.
C. V. (1999). Why ontologies are not enough for knowledge sharing. In Proceedings
of the 12th International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA-AIE99), Cairo, Egypt.

Crosswhite, J., Fox, J., Reed, C., Scaltsas, D., and Stumpf, S. (2000). Computational
models of rhetorical argument. In Handbook on Argument and Computation, Bonskeid
Symposium on Argument and Computation. (in preparation).

Das, S., Fox, J., and Krause, P. (1996). A unified framework for hypothetical and
practical reasoning (1): theoretical foundations. In Gabbay, D. M. and Ohlbach,
H. J., editors, Proceedings of the International Conference on Formal and Applied
Practical Reasoning (FAPRY6), pages 58-72.

Daskalopulu, A. and Sergot, M. (1997). Representation of legal contracts. ATl and
Society, 11(1-2):6-17.

de Kleer, J. (1986). An assumption based truth maintenance system. Artificial Intelli-
gence, 28:127-162.

Deville, Y. and Lau, K.-K. (1994). Logic program synthesis. Journal of Logic Program-
ming, 19/20:321-350.

Dimopoulos, Y., Nebel, B., and Toni, F. (1999). Preferred arguments are harder to com-
pute than stable extensions. In Dean, T., editor, Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI99), pages 36-41.

262

BIBLIOGRAPHY 263

Dix, J. and Brewka, G. (1997). Knowledge representation with logic programs. In
Dix, J., Pereira, L. M., and Przymusinski, T. C., editors, Logic Programming and
Knowledge Representation, Third International Workshop (LPKR97), number 1471 in
Lecture Notes in Computer Science, pages 1-51, Port Jefferson, USA. Springer-Verlag.
To appear in Handbook of Philosophical Logic, 2nd edition, Volume 6, Chapter 6,
Oxford University Press, 2001.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3):231-272.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321-358.

Elvang-Goransson, M., Krause, P., and Fox, J. (1993). Acceptability of arguments as
logical uncertainty. In Clarke, M., Kruse, R., and Moral, S., editors, Proceedings
of European Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (ECSQARUY3), volume 747 of Lecture Notes in Computer Science, pages
85-90. Springer-Verlag.

Ferguson, G. and Allen, J. F. (1994). Arguing about plans: plan representation and
reasoning for mixed-initiative planning. In Proceedings of the Second International
Conference on AI Planning Systems (AIPS94), pages 43-48, Chicago, USA.

Finin, T., Labrou, Y., and Mayfield, J. (1997). KQML as an agent communication lan-
guage. In Bradshaw, J. M., editor, Software Agents, pages 291-316. AAAT Press/MIT
Press.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B. (1994). Incon-
sistency handling in multi-perspective specifications. IEEE Transactions on Software
Engineering, 20(8):569-578.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M. (1992).
Viewpoints: a framework for integrating multiple perspectives in system development.

International Journal of Software Engineering and Knowledge Engineering, 2(1):31—
58.

Fogelin, R. J. and Sinnott-Armstrong, W. (1997). Understanding arguments, an intro-
duction to informal logic. Harcourt Brace College Publishers, fifth edition.

Forbus, K. D. and de Kleer, J. (1993). Building problem solvers. The MIT Press.

Fox, J. (1994). An example of the use of formal argument in assessing cancer risk: the
cases for and against FDA policy on aflatoxins. Technical report, Imperial Cancer
Research Fund, London.

Fox, J. and Das, S. (1996). A unified framework for hypothetical and practical reason-
ing (2): lessons from medical applications. In Gabbay, D. M. and Ohlbach, H. J.,
editors, Proceedings of the International Conference on Formal and Applied Practical
Reasoning (FAPRY6), pages 73-92.

Fox, J. and Das, S. (2000). Safe and Sound: Artificial Intelligence in Hazardous Appli-
cations. Jointly published by the AAAT and MIT Press.

Fox, J. and Krause, P. (1992). Qualitative frameworks for decision support: lessons
from medicine. The Knowledge Engineering Review, 7(1):19-33.

Fox, J., Krause, P., and Ambler, S. (1992). Arguments, contradictions and practical
reasoning. In Neumann, B., editor, Proceedings of the 10th European Conference on
Artificial Intelligence (ECAI92), pages 623-627.

Fox, J. and Parsons, S. (1998). Arguing about beliefs and actions. In Hunter, A. and
Parsons, S., editors, Applications of Uncertainty Formalisms, volume 1455 of Lecture
Notes in Artificial Intelligence. Springer-Verlag.

Freeman, K. (1993). Toward formalizing dialectical argumentation. PhD thesis, Depart-
ment of Computer and Information Science of the University of Oregon, USA.

Freeman, K. and Farley, A. M. (1992). Argumentation in weak theory domains. In Ryan,
K. and Sutcliffe, R., editors, Proceedings of the 5th Irish Conference on Artificial
Intelligence and Cognitive Science. Springer-Verlag.

Freeman, K. and Farley, A. M. (1996). A model of argumentation and its application
to legal reasoning. Artificial Intelligence and Law, 4(3-4):163-197.

Gabbay, D. M. (1996). Labelled Deductive Systems: principles and applications. Volume
1: introduction, volume 33 of Ozford Logic Guides. Oxford University Press.

Gabbay, D. M. (1999). What’s on my mind... column. Journal of Logic and Computa-
tion, 9(1):3-6.

Gabbay, D. M. (2000). Dynamics of Practical Reasoning. (draft).

Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9(3—4):365-385.

Gerlofs, J.-M., Gilbert, M., Grasso, F., Groarke, L., and Gurr, C. (2000). The persuasion
machine: An exercise in argumentation and computational linguistics. In Handbook
on Argument and Computation, Bonskeid Symposium on Argument and Computation.
(in preparation).

Gilbert, M. (1995). The delimitation of argument. Inquiry, 15(1):63-75.

Girle, R., Hitchcock, D., McBurney, P., and Verheij, B. (2000). Practical reasoning: an
argument and computation perspective. In Handbook on Argument and Computation,
Bonskeid Symposium on Argument and Computation. (in preparation).

Gordon, T. F. and Karacapilidis (1997). The Zeno argumentation framework. In Borges,
D. L. and Kaestner, C. A. A., editors, Proceedings of the International Conference
on Artificial Intelligence and Law (ICAIL-97), pages 10-18, University of Melbourne,
Australia. More information on the Zeno System is available at the project homepage
at http://ais.gmd.de/MS/zeno/zenoSystem.html.

Grasso, F. (1998). Exciting avocados and dull pears: combining behavioural and ar-
gumentative theory for producing effective advice. In Proceedings of 20th Annual
Meeting of the Cognitive Science Society (COG-SCI98), pages 436-441, Madison,
USA.

264

BIBLIOGRAPHY 265

Grosof, B. (1997). Prioritized conflict handling for logic programs. In Maluszynski, J.,
editor, Proceedings of the International Symposium on Logic Programming (ILPS97),
pages 197211, Port Jefferson, USA.

Gurr, C. A. (1997). Knowledge engineering in the communication of information for
safety critical systems. Knowledge Engineering Review, 12(3):249-270.

Haenni, R. (1998). Modeling uncertainty with propositional assumption-based systems.
In Hunter, A. and Parsons, S., editors, Applications of Uncertainty Formalisms, vol-
ume 1455 of Lecture Notes in Artificial Intelligence, pages 446—470. Springer Verlag.

Haggith, M. (1996). A meta-level framework for representing and reasoning about dis-
agreement. PhD thesis, University of Edinburgh, Department of Artificial Intelligence.

Jackson, M. (1994). Problems, methods and specialisation. Software Engineering Jour-
nal, 9(6):249-255.

Jakobovits, H. (2000). On the theory of argumentation frameworks. PhD thesis, Vrije
Universiteit Brussel.

Jennings, N. R., Faratin, P., Johnson, M. J., O'Brien, P., and Wiegand, M. E. (1996).
Agent-based business process management. International Journal of Cooperative In-
formation Systems, 5(2-3):105-130.

Jennings, N. R., Parsons, S., Noriega, P., and Sierra, C. (1998). On argumentation-
based negotiation. In Proceedings of the International Workshop on Multi-Agents
System (IWMAS), pages 1-7, Boston, USA.

Kakas, A. C. and Toni, F. (1999). Computing argumentation in logic programming,.
Journal of Logic and Computation, 9(4):515-562.

Konolige, K. (1988). Defeasible argumentation in reasoning about events. In Ras,
Z. W. and Saitta, L., editors, Proceedings of the Third International Symposium on
Methodologies for Intelligent Systems (ISMIS 1988), pages 380-390, Turin, Ttaly.

Kowalski, R. and Toni, F. (1994). Argument and reconciliation. In Proceedings of the
Workshop of Applications of Logic Programming to Legal Reasoning at the Interna-
tional Symposium on Fifth Generation Computer Systems (ICOTY94), Tokyo.

Kowalski, R. and Toni, F. (1996). Abstract argumentation. Artificial Intelligence and
Law, 4(3-4):275-296. Special Issue on Logical Models of Argumentation, H. Prakken
and G. Sartor, editors.

Krause, P., Ambler, S., Elvang-Goransson, M., and Fox, J. (1995). A logic of argumen-
tation for reasoning under uncertainty. Computational Intelligence, 11(1):113-131.

Krause, P. and Clark, D. (1993). Representing uncertain knowledge: an artificial intel-
ligence approach. Intellect Books, Oxford.

Krause, P., Hesketh, J., and Robertson, D. (1997). Reliable and accountable system
design. Knowledge Engineering Review, 12(3):289-305.

Labrou, Y. and Finin, T. (1994). A semantics approach for KQML — a general purpose
communication language for software agents. In Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM94), pages 447-455,
Gaithersburg, USA.

Labrou, Y., Finin, T., and Peng, Y. (1999). Agent communication languages: the
current landscape. IEEE Intelligent Systems, 14(2):45-52.

Lin, F. and Shoham, Y. (1989). Argument systems: a uniform basis for nonmono-
tonic reasoning. In Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning (KR89), pages 245-255. Morgan Kaufmann
Publishers Inc.

Lloyd, J. W. (1987). Foundations of logic programming (2ed). Springer Verlag.

Loui, R. P. (1987). Defeat among arguments: a system of defeasible inference. Compu-
tational Intelligence, 2:100-106.

Loui, R. P. (1998). Process and policy: resource-bounded non-demonstrative reasoning.
Computational Intelligence, 14(1):1-38.

MacKenzie, D. (1996). A worm in the bud? Computers, systems, and the safety-case
problem. Prepared for a Dibner Institute Symposium on The Spread of the Systems
Approach, convened by Thomas P. Hughes. Cambridge, Mass, 3-5 May, 1996.

McBurney, P. and Parsons, S. (1999). Truth or consequence: using argumentation to
reason about risk. In BPS Symposium on Practical Reasoning, London, UK.

McBurney, P. and Parsons, S. (2000). Risk agoras: Using dialectical argumentation to
debate risk. Risk Management Journal, (forthcoming).

Mora, 1. A., Alferes, J. J., and Schroeder, M. (1998). Argumentation and cooperation
for distributed extended logic programs. In Proceedings of the 7th Workshop on Non-
Monotonic Reasoning (NMRY8), Trento, Italy.

Moran, T. P. and Carroll, J. M., editors (1996). Design rationale: concepts, techniques,
and use. Computer, Cognition, and Work. Lawrence Erlbaum Associates.

Ng, B. H.-K., Wong, K.-F., and Low, B.-T. (1998). Resolving conflicting arguments
under uncertainties. In Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence (UAI98).

Norman, T. and Reed, C., editors (2000). Handbook on Argument and Computation,
Bonskeid Symposium on Argument and Computation. (in preparation).

Nute, D. (1988). Defeasible reasoning and decision support systems. Decision Support
Systems, 4:97-110.

Nute, D. (1994). Defeasible logic. In Gabbay, D. M., Hogger, C. J., and Robinson, J. A.,
editors, Nonmonotonic Reasoning and Uncertain Reasoning, volume 3 of Handbook
of Logic for Artificial Intelligence and Logic Programming, pages 353-395. Oxford
University Press.

266

BIBLIOGRAPHY 267

Nwana, H. and Ndumu, D. (1999). A perspective on software agents research. The
Knowledge Engineering Review, 14(2):125-142.

Parsons, S. and Fox, J. (1997). Argumentation and decision making. In Proceedings of
the IEE Cologquium on Decision Making and Problem Solving.

Parsons, S. and Jennings, N. R. (1997). Negotiation through argumentation — a prelimi-
nary report. In Proceedings of 2nd International Conference on Multi-Agents System,
pages 267-274, Kyoto, Japan.

Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason and negotiate
by arguing. Journal of Logic and Computation, 8(3):261-292.

Perelman, C. and Olbrects-Tyteca, L. (1969). The New Rethoric - a treatise on argu-
mentation. University of Notre Dame Press, Notre Dame/London.

Pettorossi, A. and Proietti, M. (1998). Transformation of logic programs. In Gabbay,
D. M., Hogger, C. J., and Robinson, J. A., editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, Logic Programming, pages 697-787.
Oxford Science Publications.

Pollock, J. (1987). Defeasible reasoning. Cognitive Science, 11(4):481-518.

Prakken, H. (1995). From logic to dialectics in legal argument. In Proceedings of
the Fifth International Conference on Artificial Intelligence and Law, pages 165-174,
Washington DC, USA. ACM Press.

Prakken, H. (1997a). Dialectical proof theory for defeasible argumentation with defea-
sible priorities (preliminary report). In Proceedings of the 4th ModelAge Workshop
on Formal Models of Agents.

Prakken, H. (1997b). Logical tools for modelling legal argument: a study of defeasible
reasoning in law. Kluwer Academic Publishers.

Prakken, H. (2000). Relating protocols for dynamic dispute with logics for defeasible ar-
gumentation. Synthese, forthcoming. Special issue on New Perspectives in Dialogical
Logic, S. Rahman and H. Riickert, editors.

Prakken, H. and Sartor, G. (1996). A dialectical model of assessing conflicting arguments
in legal reasoning. Artificial Intelligence and Law, 4(3-4):331-368.

Prakken, H. and Sartor, G. (1997). Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-classical Logics, 7(1):25-75. Special issue
on Handling Inconsistency in Knowledge Systems.

Prakken, H. and Vreeswijk, G. (1999). Logics for defeasible argumentation. In Gabbay,
D., editor, Handbook of Philosophical Logic (to appear). Kluwer Academic Publishers,
second edition.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In Allen, J., Fikes, R., and Sandewall, E., editors, Proceedings of the
Second International Conference on Principles of Knowledge Representation and Rea-
soning (KR91), pages 473-484. Morgan Kaufmann.

Rao, A. S. and Georgeff, M. P. (1995). Formal models and decision procedures for
multi-agent systems. Technical report 61, Australian Artificial Intelligence Institute,
Melbourne, Australia.

Reed, C. (1997). Representing and applying knowledge for argumentation in a social
context. Al & Society, 11(3-4):138-154.

Reeves, D. M., Grosof, B. N., Wellman, M. P.; and Chan, H. Y. (1999). Towards a
declarative language for negotiating executable contracts. In Finin, T. and Grosof, B.,
editors, Proceedings of the AAAIY9 Workshop on Artificial Intelligence in Electronic
Commerce (AIEC99), Orlando, USA. Paper also available as IBM Research Report
RC 21476.

Reeves, D. M., Grosof, B. N., Wellman, M. P., and Chan, H. Y. (2000). Generating
auction configurations from declarative contract descriptions. In Proceedings of the
AAAT2000 Workshop on Knowledge-based Electronic Markets (KBEM-00).

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13:81-132.

Rittel, H. and Webber, M. (1973). Dilemmas in a general theory of planning. Policy
Science, 4:155-169.

Robertson, D. (1995). Some thoughts on logics of arguments. An unpublished note on
the paper ‘An example of the use of formal argument in assessing cancer risk’ by John
Fox.

Robertson, D. (1999a). Can formal argumentation raise our confidence in safe design?
In Towards System Safety: Proceedings of the Seventh Safety-Critical Systems Sym-
posium, Huntingdon, UK.

Robertson, D. (1999b). Pragmatics in the synthesis of logic programs. PhD thesis,
Universitat Autonoma de Barcelona.

Robertson, D. and Agusti, J. (1999). Software blueprints: lightweight uses of logic in
conceptual modelling. Addison-Wesley (ACM Press).

Rodricks, J. V. (1992). Calculated risks: the toxicity and human health risks of chemicals
in our environment. Cambridge University Press.

Schroeder, M. (1999a). An efficient argumentation framework for negotiating au-
tonomous agents. In Proceedings of the Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW99).

Schroeder, M. (1999b). Using VRML to visualise argumentation, agents and arguing
agents: a preliminary report. In Proceedings of Educational Applications of VRML
(VRMLY9).

Shoham, Y. (1994). Artificial Intelligence Techniques in Prolog. Morgan Kaufmann
Publishers.

Sierra, C., Faratin, P., and Jennings, N. R. (1997a). A service-oriented negotiation
model between autonomous agents. In Proceedings of 8nd European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, Ronneby, Sweden.

268

BIBLIOGRAPHY 269

Sierra, C., Jennings, N. R., Noriega, P., and Parsons, S. (1997b). A framework for
argumentation-based negotiation. In Proceedings of 4th International Workshop on
Agent Theories, Architectures and Languages (ATAL’97), pages 167-182, Rhode Is-
land, USA.

Sigman, S. and Liu, X. F. (1999). An intelligent argumentation methodology for captur-
ing and analysing design rationale from multiple persperctives. In Proceedings of the
11th International Conference on Software Engineering and Knowledge Engineering
(SEKE99), pages 227-231.

Simari, G. R. and Loui, R. P. (1992). A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53(2-3):125-157.

Sterling, L. and Shapiro, E. (1994). The art of Prolog. MIT Press, 2nd edition.
Storey, N. (1996). Safety-critical computer systems. Addison-Wesley.

Sycara, K. (1990). Persuasive argumentation in negotiation. Theory and Decision,
28(3):203-242.

Toulmin, S. (1958). The uses of argument. Cambridge University Press, Cambridge.

van Eemeren, F. H., Grootendorst, R., and Henkemans, F. S. (1996). Fundamentals of
argumentation theory. Lawrence Erlbaum Associates.

van Eemeren, F. H., Grootendorst, R., and Kruiger, T. (1987). Handbook of argumen-
tation theory: a critical survey of classical backgrounds and modern studies. Studies
of Argumentation in Pragmatics and Discourse Analysis. Foris, Dordrecht.

Verheij, B. (1996). Rules, reasons, arguments: formal studies of argumentation and
defeat. PhD thesis, Universiteit Maastricht.

Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D. F. (1981). Fault tree
handbook (NUREG-0492). U.S. Nuclear Regulatory Commission.

Vreeswijk, G. (1993). Studies in defeasible argumentation. PhD thesis, Vrije Universiteit,
Amsterdam.

Vreeswijk, G. (1997). Abstract argumentation systems. Artificial Intelligence, 90(1-
2):225-279.

Walton, D. N. (1996). Argument Schemes for Presumptive Reasoning. Lawrence Erl-
baum Associates.

Walton, D. N. and Krabbe, E. C. W. (1995). Commitment in dialogue: basic concepts
of interpersonal reasoning. State University of New York Press.

Warnick, B. and Kline, S. L. (1992). The New Rethoric’s argument schemes: a rethorical
view of practical reasoning. Argumentation and Advocacy, 29(Summer 1992):1-15.

Wooldridge, M. and Parsons, S. (2000). Languages for negotiation. In Horn, W.,
editor, Proceedings of the Fourteenth Furopean Conference on Artificial Intelligence

(ECAT2000), Berlin, Germany. John Wiley.

Yalcinalp, L. U. and Sterling, L. (1991). Uncertainty reasoning in Prolog with layered
meta-interpreters. In Proceedings of the 7th IEEE Conf. in AI Applications.

Index

=-conditions, 128
€-conditions, 128, 143, 154

abduction, 193, 217
Abstract Argumentation Framework, 23,
28, 166, 176-179, 183, 185, 194
acceptability, 6, 72, 75, 161, 166
degree of, 40, 58, 60
truth and, 6, 101
acceptable arguments, 22, 28, 32

adding an argument, see argument, adding

an
admissibility, 32
aflatoxin debate, 78-79, 141, 144-158
agent communication languages, 48
aggregation, 39, 46, 60
agreement
types of, 47
appeal to ignorance, 85
argument, 7, 24, 29, 68, 71, 125, 184
acceptability status of an, 25
adding an, 106, 107, 108, 130, 131,
167
communication of, 173
dynamic, 75, 113
formal, 5
removing an, 106, 108, 130, 168
roles of an, 71
argument claims, see claims
Argument Consequence Relation, 38
argument dynamics, see argumentation,
dynamic
argument evaluation, see evaluation cri-
teria
argument framework layer, 23
argument games, 162, 164, 222
rules of, 163
Argument Generation Unit, 27, 161, 188
argument moves, see moves

271

argument prioritisation, see prioritisa-
tion
Argument Processing Unit, 27
argument schemata, see schemata
argument tree, see tree
argumentation, 7
dynamic, 7-8, 12, 68, 112, 228
formal, 4-6, 11
informal, 94-97, 234
static, 11
termination of, 170
argumentation models, 22
layers of, 22
two-step, 40, 46, 60, 62
argumentation schemes, 80, 95
catalogues of, 95
Artificial Intelligence and Law, 21
assumption, 126, 176, 217
contrary of an, 28, 109
non-provability, 30, 109, 166, 177
assumption attack, 29, 44, 109, 115
Assumption Based Evidential Language,
46
assumption-based system, 28, 45
attack, 27, 29, 68-70, 73, 99, 125, 184,
229
direct, 109
generating an, 123, 142, 184, 193
indirect, 109
possible, see possible attacks
types of, 106, 113
attack, see conflict
attack-based revision, see revision, attack-
based
automated argumentation, 62, 76, 143,
153-158, 176, 230
reasons for, 17, 158
axiom, 71
adding, 82, 128, 194
retracting, 85, 128

updating, 88
axiom set, 68

BDI model, 41

begging the question, 83

belief revision, 33

bioassay, 79

burden shift rule, 80, 84, 134, 167
business process management, 49, 51

catalogue of revision schemata, see schemata,

library of
circular reasoning, 83
circularity, 144
claims, 21, 34, 36, 37, 99, 104, 113
acceptable, 75
contradictory, 105-107, 112-212
in, see in-claims
justification, 71
out, see out-claims
types of, 100
closed world assumption, 126
communicating arguments, 173
complex cause, 97
complex revision, 74, 131
composition, 96
computer-supported collaborative argu-
mentation, 58
conceptual framework, 21, 23-28, 75
conditions in argument schemata, 128,
186
conflict, 6, 24, 29, 62, 72, 106, 116, 186
meta-level representation of, 125
constructive arguments, 57
consumers, 16, 209
contract-based negotiation, see negotia-
tion, contract-based
contradictory claims, see claims, contra-
dictory
control module, 183, 188, 197, 220
counter-argument, 71, 100
counter-justification, 99
counter-proposal, 50, 207
credulous system, 27, 31, 160, 161
critical questions, 95
criticism theory, 183, 184, 187, 192, 216
critique, 50

Daphne, 41

272

decision making, 35
declarative models, 22, 160
deduction, 193
deductive arguments, 57
deductive system, 28
default logic, 33
defeasible argumentation, 21
conceptual framework for, see con-
ceptual framework
defeasible reasoning, 20
defeat, 25, 72
defensible arguments, 27, 160, 161
degree of confidence, 34
dictionaries of, 38, 40
deliberation, 47
dependencies between claims, 101, 104
dependency graph, 114, 142, 143, 241
dependency networks, 103
dependency-directed backtracking, 116
design, 56
nature of, 56
safety-critical model, 14-16
software, 5661
design rationale, 58
argumentation-based, 58
usefulness and usability, 61
Dialectical Argumentation System, 44
dialectical protocols, 22
dialogue
types of, 47
directed graph, 101
discussion fora, 58
disjunction, 34
disputation protocols, 22
disputes, 222
proof-theoretical, 163
real disputes, 165
division, 97
domain-specific knowledge, 52, 57, 127,

133, 234

Dung’s Argumentation Framework, 27,
161, 183

dynamic argument, see argument, dy-
namic

convergence of a, 75, 123, 141
examples of, 14-17, 231
contract-based negotiation, 16-17,
211-222

INDEX

safety-critical model design, 14—
16, 176-179, 190-200
dynamic argumentation, see argumenta-
tion, dynamic
an architecture for, 183, 189, 230
implementing a system for, 141, 189,
215, 229
with external changes, 11
with guided changes, 12

elaboration, 80, 93, 136, 169

elementary revision, 74, 80, 131, 132,
167, 168, 172

evaluation criteria, 32, 52, 55, 63, 187

expected values, 41

explanation, 50

fact, 80, 82, 133, 134, 167

fallacies, 80, 95

false cause, 96

false criteria, 96

fault tree, 192

fault tree analysis, 15, 177, 189

favorability factor, 60

flattened revision, 143, 153

flattening, 39

formal argument, see argument, formal

formal argumentation, see argumenta-
tion, formal

formal language, see logical language

fundamental revision, 195

generalisation, 80, 92, 137, 168
grounds, 37, 71

hasty conclusion, 96

hasty generalisation, 96

heuristic layer, 23, 49, 63, 236

heuristic rules, 59

Horn clause, 101, 125, 162, 177, 190,
192, 210, 215, 217, 239

IBIS model, 58

in-claims, 100

inconsistency, 4, 6, 125, 154
indirect claims, 101

inductive arguments, 57

informal schemata, 82-94, 133
interactive argumentation, 143, 230

273

interpretation, see logic programs, inter-
pretation of

invalid rule, 81, 85, 135, 168

irrelevance, 81, 88, 136, 167

Issue Based Information System, see IBIS
model

justification, 71, 99
justified arguments, 27, 160

knowledge base, 68

knowledge engineering, 3, 7, 19, 63, 228

Knowledge Query and Manipulation Lan-
guage, see KQML

knowledge representation, 124

KQML, 48, 63

Labelled Deductive Systems, 37
labels, 100
layered meta-interpreter, 187
legal reasoning, 21
lightweight use of formality, 5, 61
Logic of Argumentation, 36-41
Logic of Expected Value, 42
Logic of Value, 42
logic programming, 27, 80

bb, 239

reasons for using, 124
logic programs

bb, 239

definite, 125

disjunctive, 44

distributed, 49

extended, 44

general, 80, 125, 133, 237

interpretation of, 125, 166
logical language, 28, 71
logical layer, 23
logical proof, see proof

main claims, 101

mediation systems, 58

mgu, 133, 240

minimal cut set, 15, 177, 193, 197
misconclusion, 81, 90, 138, 168, 169, 220
misrelation, 81, 87, 135, 169

model design, see design

most general unifier, see mgu

moves, 75, 113, 141

multi-agent interaction, 47, 224
protocols for, 48, 207

negation, 125
as failure, 45, 126, 134, 166

logic programming approach to, 126

non-monotonic approach to, 126

classical, 44, 154

negotiables, 207

negotiation, 47, 183, 207
argumentation-based, 48-56
contract-based, 16-17, 208-215
design as, 56
logical languages for, 50
object-based, 52-56, 208, 209
protocol-based, 48-52, 207

New Rethoric, 41, 95

non-monotonic reasoning, 20, 27, 160,

162

opponent, 162, 164, 222
out-claims, 100
overruled arguments, 27, 160

performatives, 48
KQML, 49
persuasion, 41, 47, 51
planning, 53
plans
arguments as, 53
position dialogue graphs, 59
possible attacks, 76
practical reasoning, 34, 37
preference criteria, 72, 186
prioritisation, 25, 31, 60, 72, 186, 197
198, 213, 221, 236
probabilistic decision theory, 35
probability theory, 40, 63, 197
procedural layer, 23, 63, 236
procedural models, 22, 165
producers, 16, 209
Prolog specification, 141, 190, 191, 215
proof, 5, 11
properties of argument schemata, 127,
143, 144, 186, 230, 238
attacks, 128, 154
supports, 130, 144
unify, 154
proponent, 162, 164, 222

274

proposal, 50, 207
provability relation, 28, 71, 191, 193, 215,
217

qualification problem, 35, 54, 85, 88

reasoning about actions, 41

reasoning about beliefs, 37

reasoning step, 71, 95

rebuttal, 44, 109, 115

redundancy, 16, 179

refutation, 71, 100

removing an argument, See argument,

removing an

reversion, 81, 91, 138, 139, 168, 169

revision, 12, 73, 195, 218, 220
attack-based, 74, 124, 130, 222
types of, 67, 108

revision schemata, see schemata

rewrite rules, 127-139, 154

safety arguments, 57
safety-critical domain, 14-16, 176, 183,
189-200
sceptical system, 27, 31, 160
schemata, 67, 74, 127, 184, 186, 195, 218
classification of, 77, 139, 140, 230
completeness of, 170
designing, 166-173
domain-specific, 139, 154, 158
library of, 143, 153, 158, 161, 164,
188, 189, 215
schemata description language, 78, 80
selection mechanism, 76
set of axioms, see axiom set
sharing inferences, 186
slippery slope, 96
specialisation, 80, 92, 137, 169
specificity principle, 25, 55, 63, 187
speech acts, 48, 49
static argumentation, see argumentation,
static
structural revision, see revision
substantiated rule, 80, 83, 134, 167, 195,
218
substantiated sentence, 100, 113
substitution, 133, 240
symbolic decision theory, 35
synthesis of logic programs, 166

INDEX

term rewriting systems, 123, 237
termination, 170, 237
theory, 28, 68, 71, 183, 184, 187, 190,
215
acceptable, 75, 123, 166
implementing as lists, 141, 191
unacceptable, 153
TMS, 5, 100, 103, 107, 115-122, 229
Shoham’s implementation of a, 118
top event, 15, 177, 192
Toulmin’s argument structure, 36
transformation of logic programs, 166
transformation of theories, 123
tree, 101, 242
trivial revision, 74, 131, 158, 160, 167,
172
truth, 6, 101
truth maintenance procedure, 116
truth maintenance systems, see TMS

uncertainty, 34

undercutting attack, 109

underlying logic, 24, 125, 237
unification, 240

unsubstantiated sentence, 100, 113
updating revision, 80, 131, 132, 167, 169
utilities, 41, 220

viewpoints, 57, 63

weak rule, 81, 86, 135, 168
weak theory domains, 43
wicked problems, 3

wrong direction, 96

Zeno Argumentation Framework, 58

275

